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Preface

Who Should Read This Book
Kubernetes is the de facto standard for cloud native development. It is a powerful tool
that can make your next application easier to develop, faster to deploy, and more reli‐
able to operate. However, unlocking the power of Kubernetes requires using it cor‐
rectly. This book is intended for anyone who is deploying real-world applications to
Kubernetes and is interested in learning patterns and practices they can apply to the
applications that they build on top of Kubernetes.

Importantly, this book is not an introduction to Kubernetes. We assume that you have
a basic familiarity with the Kubernetes API and tools, and that you know how to cre‐
ate and interact with a Kubernetes cluster. If you are looking to learn Kubernetes,
there are numerous great resources out there, such as Kubernetes: Up and Running
(O’Reilly) that can give you an introduction.

Instead, this book is a resource for anyone who wants to dive deep on how to deploy
specific applications and workloads on Kubernetes. It should be useful to you
whether you are about to deploy your first application onto Kubernetes or you’ve
been using Kubernetes for years.

Why We Wrote This Book
Between the four of us, we have significant experience helping a wide variety of users
deploy their applications onto Kubernetes. Through this experience, we have seen
where people struggle, and we have helped them find their way to success. When sit‐
ting down to write this book, we attempted to capture these experiences so that many
more people could learn by reading the lessons that we learned from these real-world
experiences. It’s our hope that by committing our experiences to writing, we can scale
our knowledge and allow you to be successful deploying and managing your applica‐
tion on Kubernetes on your own.
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Navigating This Book
Although you might read this book from cover to cover in a single sitting, that is not
really how we intended you to use it. Instead, we designed this book to be a collection
of standalone chapters. Each chapter gives a complete overview of a particular task
that you might need to accomplish with Kubernetes. We expect people to dive into
the book to learn about a specific topic or interest, and then leave the book alone,
only to return when a new topic comes up.

Despite this standalone approach, there are some themes that span the book. There
are several chapters on developing applications on Kubernetes. Chapter 2 covers
developer workflows. Chapter 5 discusses Continuous Integration and testing. Chap‐
ter 15 covers building higher-level platforms on top of Kubernetes, and Chapter 16
discusses managing state and stateful applications. In addition to developing applica‐
tions, there are several chapters on operating services in Kubernetes. Chapter 1 covers
the setup of a basic service, and Chapter 3 covers monitoring and metrics. Chapter 4
covers configuration management, while Chapter 6 covers versioning and releases.
Chapter 7 covers deploying your application around the world.

There are also several chapters on cluster management, including Chapter 8 on
resource management, Chapter 9 on networking, Chapter 10 on pod security, Chap‐
ter 11 on policy and governance, Chapter 12 on managing multiple clusters, and
Chapter 17 on admission control and authorization. Finally there are several chapters
that are truly independent; these cover machine learning (Chapter 14) and integrat‐
ing with external services (Chapter 13).

Though it can be useful to read all of the chapters before you actually attempt the
topic in the real world, our primary hope is that you will treat this book as a refer‐
ence. It is intended as a guide as you put these topics to practice in the real world.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.
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Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/KBPsample.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Kubernetes Best Practi‐
ces by Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan Evenson (O’Reilly).
Copyright 2020 Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan Evenson,
978-1-492-05647-8.”
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If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/KubBP.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Setting Up a Basic Service

This chapter describes the practices for setting up a simple multitier application in
Kubernetes. The application consists of a simple web application and a database.
Though this might not be the most complicated application, it is a good place to start
to orient to managing an application in Kubernetes.

Application Overview
The application that we will use for our sample isn’t particularly complex. It’s a simple
journal service that stores its data in a Redis backend. It has a separate static file
server using NGINX. It presents two web paths on a single URL. The paths are one
for the journal’s RESTful application programming interface (API), https://my-host.io/
api, and a file server on the main URL, https://my-host.io. It uses the Let’s Encrypt ser‐
vice for managing Secure Sockets Layer (SSL) certificates. Figure 1-1 presents a dia‐
gram of the application. Throughout this chapter, we build up this application, first
using YAML configuration files and then Helm charts.

1
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Figure 1-1. An application diagram

Managing Configuration Files
Before we get into the details of how to construct this application in Kubernetes, it is
worth discussing how we manage the configurations themselves. With Kubernetes,
everything is represented declaratively. This means that you write down the desired
state of the application in the cluster (generally in YAML or JSON files), and these
declared desired states define all of the pieces of your application. This declarative
approach is far preferable to an imperative approach in which the state of your cluster
is the sum of a series of changes to the cluster. If a cluster is configured imperatively,
it is very difficult to understand and replicate how the cluster came to be in that state.
This makes it very challenging to understand or recover from problems with your
application.

When declaring the state of your application, people typically prefer YAML to JSON,
though Kubernetes supports them both. This is because YAML is somewhat less ver‐
bose and more human editable than JSON. However, it’s worth noting that YAML is
indentation sensitive; often errors in Kubernetes configurations can be traced to
incorrect indentation in YAML. If things aren’t behaving as expected, indentation is a
good thing to check.

Because the declarative state contained in these YAML files serves as the source of
truth for your application, correct management of this state is critical to the success of
your application. When modifying your application’s desired state, you will want to
be able to manage changes, validate that they are correct, audit who made changes,
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and possibly roll things back if they fail. Fortunately, in the context of software engi‐
neering, we have already developed the tools necessary to manage both changes to
the declarative state as well as audit and rollback. Namely, the best practices around
both version control and code review directly apply to the task of managing the
declarative state of your application.

These days most people store their Kubernetes configurations in Git. Though the spe‐
cific details of the version control system are unimportant, many tools in the Kuber‐
netes ecosystem expect files in a Git repository. For code review there is much more
heterogeneity, though clearly GitHub is quite popular, others use on-premises code
review tools or services. Regardless of how you implement code review for your
application configuration, you should treat it with the same diligence and focus that
you apply to source control.

When it comes to laying out the filesystem for your application, it’s generally worth‐
while to use the directory organization that comes with the filesystem to organize
your components. Typically, a single directory is used to encompass an Application
Service for whatever definition of Application Service is useful for your team. Within
that directory, subdirectories are used for subcomponents of the application.

For our application, we lay out the files as follows:

journal/
  frontend/
  redis/
  fileserver/

Within each directory are the concrete YAML files needed to define the service. As
you’ll see later on, as we begin to deploy our application to multiple different regions
or clusters, this file layout will become more complicated.

Creating a Replicated Service Using Deployments
To describe our application, we’ll begin at the frontend and work downward. The
frontend application for the journal is a Node.js application implemented in Type‐
Script. The complete application is slightly too large to include in the book. The
application exposes an HTTP service on port 8080 that serves requests to the /api/*
path and uses the Redis backend to add, delete, or return the current journal entries.
This application can be built into a container image using the included Dockerfile
and pushed to your own image repository. Then, substitute this image name in the
YAML examples that follow.

Creating a Replicated Service Using Deployments | 3
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Best Practices for Image Management
Though in general, building and maintaining container images is beyond the scope of
this book, it’s worthwhile to identify some general best practices for building and
naming images. In general, the image build process can be vulnerable to “supply-
chain attacks.” In such attacks, a malicious user injects code or binaries into some
dependency from a trusted source that is then built into your application. Because of
the risk of such attacks, it is critical that when you build your images you base them
on only well-known and trusted image providers. Alternately, you can build all your
images from scratch. Building from scratch is easy for some languages (e.g., Go) that
can build static binaries, but it is significantly more complicated for interpreted lan‐
guages like Python, JavaScript, or Ruby.

The other best practices for images relate to naming. Though the version of a con‐
tainer image in an image registry is theoretically mutable, you should treat the ver‐
sion tag as immutable. In particular, some combination of the semantic version and
the SHA hash of the commit where the image was built is a good practice for naming
images (e.g., v1.0.1-bfeda01f). If you don’t specify an image version, latest is used by
default. Although this can be convenient in development, it is a bad idea for produc‐
tion usage because latest is clearly being mutated every time a new image is built.

Creating a Replicated Application
Our frontend application is stateless; it relies entirely on the Redis backend for its
state. As a result, we can replicate it arbitrarily without affecting traffic. Though our
application is unlikely to sustain large-scale usage, it’s still a good idea to run with at
least two replicas so that you can handle an unexpected crash or roll out a new ver‐
sion of the application without downtime.

Though in Kubernetes, a ReplicaSet is the resource that manages replicating a con‐
tainerized application, so it is not a best practice to use it directly. Instead, you use the
Deployment resource. A Deployment combines the replication capabilities of Repli‐
caSet with versioning and the ability to perform a staged rollout. By using a Deploy‐
ment you can use Kubernetes’ built-in tooling to move from one version of the
application to the next.

The Kubernetes Deployment resource for our application looks as follows:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  labels:
    app: frontend
  name: frontend
  namespace: default
spec:
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  replicas: 2
  selector:
    matchLabels:
      app: frontend
  template:
    metadata:
      labels:
        app: frontend
    spec:
      containers:
      - image: my-repo/journal-server:v1-abcde
        imagePullPolicy: IfNotPresent
        name: frontend
        resources:
          request:
            cpu: "1.0"
            memory: "1G"
          limits:
            cpu: "1.0"
            memory: "1G"

There are several things to note in this Deployment. First is that we are using Labels
to identify the Deployment as well as the ReplicaSets and the pods that the Deploy‐
ment creates. We’ve added the app: frontend label to all of these resources so that we
can examine all resources for a particular layer in a single request. You’ll see that as
we add other resources, we’ll follow the same practice.

Additionally, we’ve added comments in a number of places in the YAML. Although
these comments don’t make it into the Kubernetes resource stored on the server, just
like comments in code, they serve to help guide people who are looking at this con‐
figuration for the first time.

You should also note that for the containers in the Deployment we have specified
both Request and Limit resource requests, and we’ve set Request equal to Limit.
When running an application, the Request is the reservation that is guaranteed on the
host machine where it runs. The Limit is the maximum resource usage that the con‐
tainer will be allowed. When you are starting out, setting Request equal to Limit will
lead to the most predictable behavior of your application. This predictability comes at
the expense of resource utilization. Because setting Request equal to Limit prevents
your applications from overscheduling or consuming excess idle resources, you will
not be able to drive maximal utilization unless you tune Request and Limit very, very
carefully. As you become more advanced in your understanding of the Kubernetes
resource model, you might consider modifying Request and Limit for your applica‐
tion independently, but in general most users find that the stability from predictabil‐
ity is worth the reduced utilization.

Now that we have the Deployment resource defined, we’ll check it into version con‐
trol, and deploy it to Kubernetes:
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git add frontend/deployment.yaml
git commit -m "Added deployment" frontend/deployment.yaml
kubectl apply -f frontend/deployment.yaml

It is also a best practice to ensure that the contents of your cluster exactly match the
contents of your source control. The best pattern to ensure this is to adopt a GitOps
approach and deploy to production only from a specific branch of your source con‐
trol, using Continuous Integration (CI)/Continuous Delivery (CD) automation. In
this way you’re guaranteed that source control and production match. Though a full
CI/CD pipeline might seem excessive for a simple application, the automation by
itself, independent of the reliability it provides, is usually worth the time taken to set
it up. And CI/CD is extremely difficult to retrofit into an existing, imperatively
deployed application.

There are also some pieces of this application description YAML (e.g., the ConfigMap
and secret volumes) as well as pod Quality of Service that we examine in later
sections.

Setting Up an External Ingress for HTTP Traffic
The containers for our application are now deployed, but it’s not currently possible
for anyone to access the application. By default, cluster resources are available only
within the cluster itself. To expose our application to the world, we need to create a
Service and load balancer to provide an external IP address and to bring traffic to our
containers. For the external exposure we are actually going to use two Kubernetes
resources. The first is a Service that load-balances Transmission Control Protocol
(TCP) or User Datagram Protocol (UDP) traffic. In our case, we’re using the TCP
protocol. And the second is an Ingress resource, which provides HTTP(S) load bal‐
ancing with intelligent routing of requests based on HTTP paths and hosts. With a
simple application like this, you might wonder why we choose to use the more com‐
plex Ingress, but as you’ll see in later sections, even this simple application will be
serving HTTP requests from two different services. Furthermore, having an Ingress
at the edge enables flexibility for future expansion of our service.

Before the Ingress resource can be defined, there needs to be a Kubernetes Service for
the Ingress to point to. We’ll use Labels to direct the Service to the pods that we cre‐
ated in the previous section. The Service is significantly simpler to define than the
Deployment and looks as follows:

apiVersion: v1
kind: Service
metadata:
  labels:
    app: frontend
  name: frontend
  namespace: default
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spec:
  ports:
  - port: 8080
    protocol: TCP
    targetPort: 8080
  selector:
    app: frontend
  type: ClusterIP

After you’ve defined the Service, you can define an Ingress resource. Unlike Service
resources, Ingress requires an Ingress controller container to be running in the clus‐
ter. There are a number of different implementations you can choose from, either
provided by your cloud provider, or implemented using open source servers. If you
choose to install an open source ingress provider, it’s a good idea to use the Helm
package manager to install and maintain it. The nginx or haproxy Ingress providers
are popular choices:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: frontend-ingress
spec:
  rules:
  - http:
      paths:
      - path: /api
        backend:
          serviceName: frontend
          servicePort: 8080

Configuring an Application with ConfigMaps
Every application needs a degree of configuration. This could be the number of jour‐
nal entries to display per page, the color of a particular background, a special holiday
display, or many other types of configuration. Typically, separating such configura‐
tion information from the application itself is a best practice to follow.

There are a couple of different reasons for this separation. The first is that you might
want to configure the same application binary with different configurations depend‐
ing on the setting. In Europe you might want to light up an Easter special, whereas in
China you might want to display a special for Chinese New Year. In addition to this
environmental specialization, there are agility reasons for the separation. Usually a
binary release contains multiple different new features; if you turn on these features
via code, the only way to modify the active features is to build and release a new
binary, which can be an expensive and slow process.

The use of configuration to activate a set of features means that you can quickly (and
even dynamically) activate and deactivate features in response to user needs or
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application code failures. Features can be rolled out and rolled back on a per-feature
basis. This flexibility ensures that you are continually making forward progress with
most features even if some need to be rolled back to address performance or correct‐
ness problems.

In Kubernetes this sort of configuration is represented by a resource called a Config‐
Map. A ConfigMap contains multiple key/value pairs representing configuration
information or a file. This configuration information can be presented to a container
in a pod via either files or environment variables. Imagine that you want to configure
your online journal application to display a configurable number of journal entries
per page. To achieve this, you can define a ConfigMap as follows:

kubectl create configmap frontend-config --from-literal=journalEntries=10

To configure your application, you expose the configuration information as an envi‐
ronment variable in the application itself. To do that, you can add the following to the
container resource in the Deployment that you defined earlier:

...
# The containers array in the PodTemplate inside the Deployment
containers:
  - name: frontend
    ...
    env:
    - name: JOURNAL_ENTRIES
      valueFrom:
        configMapKeyRef:
          name: frontend-config
          key: journalEntries
...

Although this demonstrates how you can use a ConfigMap to configure your applica‐
tion, in the real world of Deployments, you’ll want to roll out regular changes to this
configuration with weekly rollouts or even more frequently. It might be tempting to
roll this out by simply changing the ConfigMap itself, but this isn’t really a best prac‐
tice. There are several reasons for this: the first is that changing the configuration
doesn’t actually trigger an update to existing pods. Only when the pod is restarted is
the configuration applied. Because of this, the rollout isn’t health based and can be ad
hoc or random.

A better approach is to put a version number in the name of the ConfigMap itself.
Instead of calling it frontend-config, call it frontend-config-v1. When you want
to make a change, instead of updating the ConfigMap in place, you create a new v2
ConfigMap, and then update the Deployment resource to use that configuration.
When you do this, a Deployment rollout is automatically triggered, using the appro‐
priate health checking and pauses between changes. Furthermore, if you ever need to
rollback, the v1 configuration is sitting in the cluster and rollback is as simple as
updating the Deployment again.
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Managing Authentication with Secrets
So far, we haven’t really discussed the Redis service to which our frontend is connect‐
ing. But in any real application we need to secure connections between our services.
In part this is to ensure the security of users and their data, and in addition, it is
essential to prevent mistakes like connecting a development frontend with a produc‐
tion database.

The Redis database is authenticated using a simple password. It might be convenient
to think that you would store this password in the source code of your application, or
in a file in your image, but these are both bad ideas for a variety of reasons. The first
is that you have leaked your secret (the password) into an environment where you
aren’t necessarily thinking about access control. If you put a password into your
source control, you are aligning access to your source with access to all secrets. This is
probably not correct. You probably will have a broader set of users who can access
your source code than should really have access to your Redis instance. Likewise,
someone who has access to your container image shouldn’t necessarily have access to
your production database.

In addition to concerns about access control, another reason to avoid binding secrets
to source control and/or images is parameterization. You want to be able to use the
same source code and images in a variety of environments (e.g., development, canary,
and production). If the secrets are tightly bound in source code or image, you need a
different image (or different code) for each environment.

Having seen ConfigMaps in the previous section, you might immediately think that
the password could be stored as a configuration and then populated into the applica‐
tion as an application-specific configuration. You’re absolutely correct to believe that
the separation of configuration from application is the same as the separation of
secrets from application. But the truth is that a secret is an important concept by
itself. You likely want to handle access control, handling, and updates of secrets in a
different way than a configuration. More important, you want your developers think‐
ing differently when they are accessing secrets than when they are accessing configu‐
ration. For these reasons, Kubernetes has a built-in Secret resource for managing
secret data.

You can create a secret password for your Redis database as follows:

kubectl create secret generic redis-passwd --from-literal=passwd=${RANDOM}

Obviously, you might want to use something other than a random number for your
password. Additionally, you likely want to use a secret/key management service,
either via your cloud provider, like Microsoft Azure Key Vault, or an open source
project, like HashiCorp’s Vault. When you are using a key management service, they
generally have tighter integration with Kubernetes secrets.
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Secrets in Kubernetes are stored unecrypted by default. If you want
to store secrets encrypted, you can integrate with a key provider to
give you a key that Kubernetes will use to encrypt all of the secrets
in the cluster. Note that although this secures the keys against
direct attacks to the etcd database, you still need to ensure that
access via the Kubernetes API server is properly secured.

After you have stored the Redis password as a secret in Kubernetes, you then need to
bind that secret to the running application when deployed to Kubernetes. To do this,
you can use a Kubernetes Volume. A Volume is effectively a file or directory that can
be mounted into a running container at a user-specified location. In the case of
secrets, the Volume is created as a tmpfs RAM-backed filesystem and then mounted
into the container. This ensures that even if the machine is physically compromised
(quite unlikely in the cloud, but possible in the datacenter), the secrets are much
more difficult to obtain by the attacker.

To add a secret volume to a Deployment, you need to specify two new entries in the
YAML for the Deployment. The first is a volume entry for the pod that adds the vol‐
ume to the pod:

...
  volumes:
  - name: passwd-volume
    secret:
    secretName: redis-passwd

With the volume in the pod, you need to mount it into a specific container. You do
this via the volumeMounts field in the container description:

...
  volumeMounts:
  - name: passwd-volume
    readOnly: true
    mountPath: "/etc/redis-passwd"
...

This mounts the secret volume into the redis-passwd directory for access from the
client code. Putting this all together, you have the complete Deployment as follows:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  labels:
    app: frontend
  name: frontend
  namespace: default
spec:
  replicas: 2
  selector:
    matchLabels:
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      app: frontend
  template:
    metadata:
      labels:
        app: frontend
    spec:
      containers:
      - image: my-repo/journal-server:v1-abcde
        imagePullPolicy: IfNotPresent
        name: frontend
        volumeMounts:
        - name: passwd-volume
          readOnly: true
          mountPath: "/etc/redis-passwd"
        resources:
          requests:
            cpu: "1.0"
            memory: "1G"
          limits:
            cpu: "1.0"
            memory: "1G"
      volumes:
        - name: passwd-volume
          secret:
            secretName: redis-passwd

At this point we have configured the client application to have a secret available to
authenticate to the Redis service. Configuring Redis to use this password is similar;
we mount it into the Redis pod and load the password from the file.

Deploying a Simple Stateful Database
Although conceptually deploying a stateful application is similar to deploying a client
like our frontend, state brings with it more complications. The first is that in Kuber‐
netes a pod can be rescheduled for a number of reasons, such as node health, an
upgrade, or rebalancing. When this happens, the pod might move to a different
machine. If the data associated with the Redis instance is located on any particular
machine or within the container itself, that data will be lost when the container
migrates or restarts. To prevent this, when running stateful workloads in Kubernetes
its important to use remote PersistentVolumes to manage the state associated with the
application.

There is a wide variety of different implementations of PersistentVolumes in Kuber‐
netes, but they all share common characteristics. Like secret volumes described ear‐
lier, they are associated with a pod and mounted into a container at a particular
location. Unlike secrets, PersistentVolumes are generally remote storage mounted
through some sort of network protocol, either file based, such as Network File System
(NFS) or Server Message Block (SMB), or block based (iSCSI, cloud-based disks,
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etc.). Generally, for applications such as databases, block-based disks are preferable
because they generally offer better performance, but if performance is less of a con‐
sideration, file-based disks can sometimes offer greater flexibility.

Managing state in general is complicated, and Kubernetes is no
exception. If you are running in an environment that supports
stateful services (e.g., MySQL as a service, Redis as a service), it is
generally a good idea to use those stateful services. Initially, the cost
premium of a stateful Software as a Service (SaaS) might seem
expensive, but when you factor in all the operational requirements
of state (backup, data locality, redundancy, etc.), and the fact that
the presence of state in a Kubernetes cluster makes it difficult to
move applications between clusters, it becomes clear that, in most
cases, storage SaaS is worth the price premium. In on-premises
environments where storage SaaS isn’t available, having a dedicated
team provide storage as a service to the entire organization is defi‐
nitely a better practice than allowing each team to roll its own.

To deploy our Redis service, we use a StatefulSet resource. Added after the initial
Kubernetes release as a complement to ReplicaSet resources, a StatefulSet gives
slightly stronger guarantees such as consistent names (no random hashes!) and a
defined order for scale-up and scale-down. When you are deploying a singleton, this
is somewhat less important, but when you want to deploy replicated state, these
attributes are very convenient.

To obtain a PersistentVolume for our Redis, we use a PersistentVolumeClaim. You
can think of a claim as a “request for resources.” Our Redis declares abstractly that it
wants 50 GB of storage, and the Kubernetes cluster determines how to provision an
appropriate PersistentVolume. There are two reasons for this. The first is so that we
can write a StatefulSet that is portable between different clouds and on-premises,
where the details of disks might be different. The other reason is that although many
PersistentVolume types can be mounted to only a single pod, we can use volume
claims to write a template that can be replicated and yet have each pod assigned its
own specific PersistentVolume.

The following example shows a Redis StatefulSet with PersistentVolumes:

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: redis
spec:
  serviceName: "redis"
  replicas: 1
  selector:
    matchLabels:
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      app: redis
  template:
    metadata:
      labels:
        app: redis
    spec:
      containers:
      - name: redis
        image: redis:5-alpine
        ports:
        - containerPort: 6379
          name: redis
        volumeMounts:
        - name: data
          mountPath: /data
  volumeClaimTemplates:
  - metadata:
      name: data
    spec:
      accessModes: [ "ReadWriteOnce" ]
      resources:
        requests:
          storage: 10Gi

This deploys a single instance of your Redis service, but suppose you want to replicate
the Redis cluster for scale-out of reads and resiliency to failures. To do this you need
to obviously increase the number of replicas to three, but you also need to ensure that
the two new replicas connect to the write master for Redis.

When you create the headless Service for the Redis StatefulSet, it creates a DNS entry
redis-0.redis; this is the IP address of the first replica. You can use this to create a
simple script that can launch in all of the containters:

#!/bin/sh

PASSWORD=$(cat /etc/redis-passwd/passwd)

if [[ "${HOSTNAME}" == "redis-0" ]]; then
  redis-server --requirepass ${PASSWORD}
else
  redis-server --slaveof redis-0.redis 6379 --masterauth ${PASSWORD} --
requirepass ${PASSWORD}
fi

You can create this script as a ConfigMap:

kubectl create configmap redis-config --from-file=./launch.sh

You then add this ConfigMap to your StatefulSet and use it as the command for the
container. Let’s also add in the password for authentication that we created earlier in
the chapter.
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The complete three-replica Redis looks as follows:

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: redis
spec:
  serviceName: "redis"
  replicas: 3
  selector:
    matchLabels:
      app: redis
  template:
    metadata:
      labels:
        app: redis
    spec:
      containers:
      - name: redis
        image: redis:5-alpine
        ports:
        - containerPort: 6379
          name: redis
        volumeMounts:
        - name: data
          mountPath: /data
        - name: script
          mountPath: /script/launch.sh
          subPath: launch.sh
        - name: passwd-volume
          mountPath: /etc/redis-passwd
        command:
        - sh
        - -c
        - /script/launch.sh
      volumes:
      - name: script
        configMap:
          name: redis-config
          defaultMode: 0777
      - name: passwd-volume
        secret:
          secretName: redis-passwd
  volumeClaimTemplates:
  - metadata:
      name: data
    spec:
      accessModes: [ "ReadWriteOnce" ]
      resources:
        requests:
          storage: 10Gi
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Creating a TCP Load Balancer by Using Services
Now that we’ve deployed the stateful Redis service, we need to make it available to
our frontend. To do this, we create two different Kubernetes Services. The first is the
Service for reading data from Redis. Because Redis is replicating the data to all three
members of the StatefulSet, we don’t care which read our request goes to. Conse‐
quently, we use a basic Service for the reads:

apiVersion: v1
kind: Service
metadata:
  labels:
    app: redis
  name: redis
  namespace: default
spec:
  ports:
  - port: 6379
    protocol: TCP
    targetPort: 6379
  selector:
    app: redis
  sessionAffinity: None
  type: ClusterIP

To enable writes, you need to target the Redis master (replica #0). To do this, create a
headless Service. A headless Service doesn’t have a cluster IP address; instead, it pro‐
grams a DNS entry for every pod in the StatefulSet. This means that we can access
our master via the redis-0.redis DNS name:

apiVersion: v1
kind: Service
metadata:
  labels:
    app: redis-write
  name: redis-write
spec:
  clusterIP: None
  ports:
  - port: 6379
  selector:
    app: redis

Thus, when we want to connect to Redis for writes or transactional read/write pairs,
we can build a separate write client connected to the redis-0.redis-write server.
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Using Ingress to Route Traffic to a Static File Server
The final component in our application is a static file server. The static file server is
responsible for serving HTML, CSS, JavaScript, and image files. It’s both more
efficient and more focused for us to separate static file serving from our API serving
frontend described earlier. We can easily use a high-performance static off-the-shelf
file server like NGINX to serve files while we allow our development teams to focus
on the code needed to implement our API.

Fortunately, the Ingress resource makes this source of mini-microservice architecture
very easy. Just like the frontend, we can use a Deployment resource to describe a
replicated NGINX server. Let’s build the static images into the NGINX container and
deploy them to each replica. The Deployment resource looks as follows:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  labels:
    app: fileserver
  name: fileserver
  namespace: default
spec:
  replicas: 2
  selector:
    matchLabels:
      app: fileserver
  template:
    metadata:
      labels:
        app: fileserver
    spec:
      containers:
      # This image is intended as an example, replace it with your own
      # static files image.
      - image: my-repo/static-files:v1-abcde
        imagePullPolicy: Always
        name: fileserver
        terminationMessagePath: /dev/termination-log
        terminationMessagePolicy: File
        resources:
          request:
            cpu: "1.0"
            memory: "1G"
          limits:
            cpu: "1.0"
            memory: "1G"
      dnsPolicy: ClusterFirst
      restartPolicy: Always
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Now that there is a replicated static web server up and running, you will likewise cre‐
ate a Service resource to act as a load balancer:

apiVersion: v1
kind: Service
metadata:
  labels:
    app: fileserver
  name: fileserver
  namespace: default
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    app: fileserver
  sessionAffinity: None
  type: ClusterIP

Now that you have a Service for your static file server, extend the Ingress resource to
contain the new path. It’s important to note that you must place the / path after
the /api path, or else it would subsume /api and direct API requests to the static file
server. The new Ingress looks like this:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: frontend-ingress
spec:
  rules:
  - http:
      paths:
      - path: /api
        backend:
          serviceName: fileserver
          servicePort: 8080
      # NOTE: this should come after /api or else it will hijack requests
      - path: /
        backend:
          serviceName: fileserver
          servicePort: 80

Parameterizing Your Application by Using Helm
Everything that we have discussed so far focuses on deploying a single instance of our
service to a single cluster. However, in reality, nearly every service and every service
team is going to need to deploy to multiple different environments (even if they share
a cluster). Even if you are a single developer working on a single application, you
likely want to have at least a development version and a production version of your
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application so that you can iterate and develop without breaking production users.
After you factor in integration testing and CI/CD, it’s likely that even with a single
service and a handful of developers, you’ll want to deploy to at least three different
environments, and possibly more if you consider handling datacenter-level failures.

An initial failure mode for many teams is to simply copy the files from one cluster to
another. Instead of having a single frontend/ directory, have a frontend-production/
and frontend-development/ pair of directories. The reason this is so dangerous is
because you are now in charge of ensuring that these files remain synchronized with
one another. If they were intended to be entirely identical, this might be easy, but
some skew between development and production is expected because you will be
developing new features; it’s critical that the skew is both intentional, and easily
managed.

Another option to achieve this would be to use branches and version control, with
the production and development branches leading off from a central repository, and
the differences between the branches clearly visible. This can be a viable option for
some teams, but the mechanics of moving between branches are challenging when
you want to simultaneously deploy software to different environments (e.g., a CI/CD
system that deploys to a number of different cloud regions).

Consequently, most people end up with a templating system. A templating system
combines templates, which form the centralized backbone of the application configu‐
ration, with parameters that specialize the template to a specific environment configu‐
ration. In this way, you can have a generally shared configuration, with intentional
(and easily understood) customization as needed. There are a variety of different
template systems for Kubernetes, but the most popular by far is a system called Helm.

In Helm, an application is packaged in a collection of files called a chart (nautical
jokes abound in the world of containers and Kubernetes).

A chart begins with a chart.yaml file, which defines the metadata for the chart itself:

apiVersion: v1
appVersion: "1.0"
description: A Helm chart for our frontend journal server.
name: frontend
version: 0.1.0

This file is placed in the root of the chart directory (e.g., frontend/). Within this direc‐
tory, there is a templates directory, which is where the templates are placed. A tem‐
plate is basically a YAML file from the previous examples, with some of the values in
the file replaced with parameter references. For example, imagine that you want to
parameterize the number of replicas in your frontend. Previously, here’s what the
Deployment had:
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...
spec:
  replicas: 2
...

In the template file (frontend-deployment.tmpl), it instead looks like the following:

...
spec:
  replicas: {{ .replicaCount }}
...

This means that when you deploy the chart, you’ll substitute the value for replicas
with the appropriate parameter. The parameters themselves are defined in a val‐
ues.yaml file. There will be one values file per environment where the application
should be deployed. The values file for this simple chart would look like this:

replicaCount: 2

Putting this all together, you can deploy this chart using the helm tool, as follows:

helm install path/to/chart --values path/to/environment/values.yaml

This parameterizes your application and deploys it to Kubernetes. Over time these
parameterizations will grow to encompass the variety of different environments for
your application.

Deploying Services Best Practices
Kubernetes is a powerful system that can seem complex. But setting up a basic appli‐
cation for success can be straightforward if you use the following best practices:

• Most services should be deployed as Deployment resources. Deployments create
identical replicas for redundancy and scale.

• Deployments can be exposed using a Service, which is effectively a load balancer.
A Service can be exposed either within a cluster (the default) or externally. If you
want to expose an HTTP application, you can use an Ingress controller to add
things like request routing and SSL.

• Eventually you will want to parameterize your application to make its configura‐
tion more reusable in different environments. Packaging tools like Helm are the
best choice for this kind of parameterization.

Summary
The application built in this chapter is a simple one, but it contains nearly all of the
concepts you’ll need to build larger, more complicated applications. Understanding
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how the pieces fit together and how to use foundational Kubernetes components is
key to successfully working with Kubernetes.

Laying the correct foundation via version control, code review, and continuous deliv‐
ery of your service ensures that no matter what you build, it is built in a solid manner.
As we go through the more advanced topics in subsequent chapters, keep this foun‐
dational information in mind.
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CHAPTER 2

Developer Workflows

Kubernetes was built for reliably operating software. It simplifies deploying and man‐
aging applications with an application-oriented API, self-healing properties, and use‐
ful tools like Deployments for zero downtime rollout of software. Although all of
these tools are useful, they don’t do much to make it easier to develop applications for
Kubernetes. Furthermore, even though many clusters are designed to run production
applications and thus are rarely accessed by developer workflows, it is also critical to
enable development workflows to target Kubernetes, and this typically means having
a cluster or at least part of a cluster that is intended for development. Setting up such
a cluster to facilitate easy development of applications for Kubernetes is a critical part
of ensuring success with Kubernetes. Clearly if there is no code being built for your
cluster, the cluster itself isn’t accomplishing much.

Goals
Before we describe the best practices for building out development clusters, it is
worth stating our goals for such clusters. Obviously, the ultimate goal is to enable
developers to rapidly and easily build applications on Kubernetes, but what does that
really mean in practice and how is that reflected in practical features of the develop‐
ment cluster?

It is useful to identify phases of developer interaction with the cluster.

The first phase is onboarding. This is when a new developer joins the team. This
phase includes giving the user a login to the cluster as well as getting them oriented to
their first deployment. The goal for this phase is to get a developer’s feet wet in a min‐
imal amount of time. You should set a key performance indicator (KPI) goal for this
process. A reasonable goal would be that a user could go from nothing to the current
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application at HEAD running in less than half an hour. Every time someone is new to
the team, test how you are doing against this goal.

The second phase is developing. This is the day-to-day activity of the developer. The
goal for this phase is to ensure rapid iteration and debugging. Developers need to
quickly and repeatedly push code to the cluster. They also need to be able to easily
test their code and debug it when it isn’t operating properly. The KPI for this phase is
more challenging to measure, but you can estimate it by measuring the time to get a
pull request (PR) or change up and running in the cluster, or with surveys of the
user’s perceived productivity, or both. You will also be able to measure this in the
overall productivity of your teams.

The third phase is testing. This phase is interleaved with developing and is used to
validate the code before submission and merging. The goals for this phase are two-
fold. First, the developer should be able to run all tests for their environment before a
PR is submitted. Second, all tests should automatically run before code is merged into
the repository. In addition to these goals you should also set a KPI for the length of
time the tests take to run. As your project becomes more complex, it’s natural for
more and more tests to take a longer time. As this happens, it might become valuable
to identify a smaller set of smoke tests that a developer can use for initial validation
before submitting a PR. You should also have a very strict KPI around test flakiness. A
flaky test is one that occasionally (or not so occasionally) fails. In any reasonably
active project, a flakiness rate of more than one failure per one thousand runs will
lead to developer friction. You need to ensure that your cluster environment does not
lead to flaky tests. Whereas sometimes flaky tests occur due to problems in the code,
they can also occur because of interference in the development environment (e.g.,
running out of resources and noisy neighbors). You should ensure that your develop‐
ment environment is free of such issues by measuring test flakiness and acting
quickly to fix it.

Building a Development Cluster
When people begin to think about developing on Kubernetes, one of the first choices
that occurs is whether to build a single large development cluster or to have one clus‐
ter per developer. Note that this choice only makes sense in an environment in which
dynamic cluster creation is easy, such as the public cloud. In physical environments,
its possible that one large cluster is the only choice.

If you do have a choice you should consider the pros and cons of each option. If you
choose to have a development cluster per user, the significant downside of this
approach is that it will be more expensive and less efficient, and you will have a large
number of different development clusters to manage. The extra costs come from the
fact that each cluster is likely to be heavily underutilized. Also, with developers creat‐
ing different clusters, it becomes more difficult to track and garbage-collect resources
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that are no longer in use. The advantage of the cluster-per-user approach is simplic‐
ity: each developer can self-service manage their own cluster, and from isolation, it’s
much more difficult for different developers to step on one another’s toes.

On the other hand, a single development cluster will be significantly more efficient;
you can likely sustain the same number of developers on a shared cluster for one-
third the price (or less). Plus, it’s much easier for you to install shared cluster services,
for example, monitoring and logging, which makes it significantly easier to produce a
developer-friendly cluster. The downside of a shared development cluster is the pro‐
cess of user management and potential interference between developers. Because the
process of adding new users and namespaces to the Kubernetes cluster isn’t currently
streamlined, you will need to activate a process to onboard new developers. Although
Kubernetes resource management and Role-Based Access Control (RBAC) can
reduce the probability that two developers conflict, it is always possible that a user
will brick the development cluster by consuming too many resources so that other
applications and developers won’t schedule. Additionally, you will still need to ensure
that developers don’t leak and forget about resources they’ve created. This is some‐
what easier, though, than the approach in which developers each create their own
clusters.

Even though both approaches are feasible, generally, our recommendation is to have a
single large cluster for all developers. Although there are challenges in interference
between developers, they can be managed and ultimately the cost efficiency and abil‐
ity to easily add organization-wide capabilities to the cluster outweigh the risks of
interference. But you will need to invest in a process for onboarding developers,
resource management, and garbage collection. Our recommendation would be to try
a single large cluster as a first option. As your organization grows (or if it is already
large), you might consider having a cluster per team or group (10 to 20 people) rather
than a giant cluster for hundreds of users. This can make both billing and manage‐
ment easier.

Setting Up a Shared Cluster for Multiple Developers
When setting up a large cluster, the primary goal is to ensure that multiple users can
simultaneously use the cluster without stepping on one another’s toes. The obvious
way to separate your different developers is with Kubernetes namespaces. Namespa‐
ces can serve as scopes for the deployment of services so that one user’s frontend ser‐
vice doesn’t interfere with another user’s frontend service. Namespaces are also scopes
for RBAC, ensuring that one developer cannot accidentally delete another developer’s
work. Thus, in a shared cluster it makes sense to use a namespace as a developer’s
workspace. The processes for onboarding users and creating and securing a name‐
space are described in the following sections.
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Onboarding Users
Before you can assign a user to a namespace, you have to onboard that user to the
Kubernetes cluster itself. To achieve this, there are two options. You can use
certificate-based authentication to create a new certificate for the user and give them
a kubeconfig file that they can use to log in, or you can configure your cluster to use
an external identity system (for example, Microsoft Azure Active Directory or AWS
Identity and Access Management [IAM]) for cluster access.

In general, using an external identity system is a best practice because it doesn’t
require that you maintain two different sources of identity, but in some cases this isn’t
possible and you need to use certificates. Fortunately, you can use the Kubernetes cer‐
tificate API for creating and managing such certificates. Here’s the process for adding
a new user to an existing cluster.

First, you need to generate a certificate signing request to generate a new certificate.
Here is a simple Go program to do this:

package main

import (
 "crypto/rand"
 "crypto/rsa"
 "crypto/x509"
 "crypto/x509/pkix"
 "encoding/asn1"
 "encoding/pem"
 "os"
)

func main() {
 name := os.Args[1]
 user := os.Args[2]

 key, err := rsa.GenerateKey(rand.Reader, 1024)
 if err != nil {
  panic(err)
 }
 keyDer := x509.MarshalPKCS1PrivateKey(key)
 keyBlock := pem.Block{
  Type:  "RSA PRIVATE KEY",
  Bytes: keyDer,
 }
 keyFile, err := os.Create(name + "-key.pem")
 if err != nil {
  panic(err)
 }
 pem.Encode(keyFile, &keyBlock)
 keyFile.Close()
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 commonName := user
 // You may want to update these too
 emailAddress := "someone@myco.com"

 org := "My Co, Inc."
 orgUnit := "Widget Farmers"
 city := "Seattle"
 state := "WA"
 country := "US"

 subject := pkix.Name{
  CommonName:         commonName,
  Country:            []string{country},
  Locality:           []string{city},
  Organization:       []string{org},
  OrganizationalUnit: []string{orgUnit},
  Province:           []string{state},
 }

 asn1, err := asn1.Marshal(subject.ToRDNSequence())
 if err != nil {
  panic(err)
 }
 csr := x509.CertificateRequest{
  RawSubject:         asn1,
  EmailAddresses:     []string{emailAddress},
  SignatureAlgorithm: x509.SHA256WithRSA,
 }

 bytes, err := x509.CreateCertificateRequest(rand.Reader, &csr, key)
 if err != nil {
  panic(err)
 }
 csrFile, err := os.Create(name + ".csr")
 if err != nil {
  panic(err)
 }

 pem.Encode(csrFile, &pem.Block{Type: "CERTIFICATE REQUEST", Bytes: 
bytes})
 csrFile.Close()
}

You can run this as follows:

go run csr-gen.go client <user-name>;

This creates files called client-key.pem and client.csr. You then can run the following
script to create and download a new certificate:

#!/bin/bash

csr_name="my-client-csr"
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name="${1:-my-user}"

csr="${2}"

cat <<EOF | kubectl create -f -
apiVersion: certificates.k8s.io/v1beta1
kind: CertificateSigningRequest
metadata:
  name: ${csr_name}
spec:
  groups:
  - system:authenticated
  request: $(cat ${csr} | base64 | tr -d '\n')
  usages:
  - digital signature
  - key encipherment
  - client auth
EOF

echo
echo "Approving signing request."
kubectl certificate approve ${csr_name}

echo
echo "Downloading certificate."
kubectl get csr ${csr_name} -o jsonpath='{.status.certificate}' \
 | base64 --decode > $(basename ${csr} .csr).crt

echo
echo "Cleaning up"
kubectl delete csr ${csr_name}

echo
echo "Add the following to the 'users' list in your kubeconfig file:"
echo "- name: ${name}"
echo "  user:"
echo "    client-certificate: ${PWD}/$(basename ${csr} .csr).crt"
echo "    client-key: ${PWD}/$(basename ${csr} .csr)-key.pem"
echo
echo "Next you may want to add a role-binding for this user."

This script prints out the final information that you can add to a kubeconfig file to
enable that user. Of course, the user has no access privileges, so you will need to apply
Kubernetes RBAC for the user in order to grant them privileges to a namespace.
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Creating and Securing a Namespace
The first step in provisioning a namespace is actually just creating it. You can do this
using kubectl create namespace my-namespace.

But the truth is that when you create a namespace, you want to attach a bunch of
metadata to that namespace, for example, the contact information for the team that
builds the component deployed into the namespace. Generally, this is in the form of
annotations; you can either generate the YAML file using some templating, such as
Jinja or others, or you can create and then annotate the namespace. A simple script to
do this looks like:

ns='my-namespace'
kubectl create namespace ${ns}
kubectl annotate namespace ${ns} annotation_key=annotation_value

When the namespace is created, you want to secure it by ensuring that you can grant
access to the namespace to a specific user. To do this, you can bind a role to a user in
the context of that namespace. You do this by creating a RoleBinding object within
the namespace itself. The RoleBinding might look like this:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: example
  namespace: my-namespace
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: edit
subjects:
- apiGroup: rbac.authorization.k8s.io
  kind: User
  name: myuser

To create it, you simply run kubectl create -f role-binding.yaml. Note that you
can reuse this binding as much as you want so long as you update the namespace in
the binding to point to the correct namespace. If you ensure that the user doesn’t have
any other role bindings, you can be assured that this namespace is the only part of the
cluster to which the user has access. A reasonable practice is to also grant reader
access to the entire cluster; in this way developers can see what others are doing in
case it is interfering with their work. Be careful in granting such read access, however,
because it will include access to secret resources in the cluster. Generally, in a devel‐
opment cluster this is OK because everyone is in the same organization and the
secrets are used only for development; however, if this is a concern, then you can cre‐
ate a more fine-grained role that eliminates the ability to read secrets.

Setting Up a Shared Cluster for Multiple Developers | 27

https://oreil.ly/vvtTF


If you want to limit the amount of resources consumed by a particular namespace,
you can use the ResourceQuota resource to set a limit to the total number of resour‐
ces that any particular namespace consumes. For example, the following quota limits
the namespace to 10 cores and 100 GB of memory for both Request and Limit for the
pods in the namespace:

apiVersion: v1
kind: ResourceQuota
metadata:
  name: limit-compute
  namespace: my-namespace
spec:
  hard:
    requests.cpu: "10"
    requests.memory: 100Gi
    limits.cpu: "10"
    limits.memory: 100Gi

Managing Namespaces
Now that you have seen how to onboard a new user and how to create a namespace to
use as a workspace, the question remains how to assign a developer to the namespace.
As with many things, there is no single perfect answer; rather, there are two
approaches. The first is to give each user their own namespace as part of the onboard‐
ing process. This is useful because after a user is onboarded, they always have a dedi‐
cated workspace in which they can develop and manage their applications. However,
making the developer’s namespace too persistent encourages the developer to leave
things lying around in the namespace after they are done with them, and garbage-
collecting and accounting individual resources is more complicated. An alternate
approach is to temporarily create and assign a namespace with a bounded time to live
(TTL). This ensures that the developer thinks of the resources in the cluster as transi‐
ent and that it is easy to build automation around the deletion of entire namespaces
when their TTL has expired.

In this model, when the developer wants to begin a new project, they use a tool to
allocate a new namespace for the project. When they create the namespace, it has a
selection of metadata associated with the namespace for management and account‐
ing. Obviously, this metadata includes the TTL for the namespace, but it also includes
the developer to which it is assigned, the resources that should be allocated to the
namespace (e.g., CPU and memory), and the team and purpose of the namespace.
This metadata ensures that you can both track resource usage and delete the name‐
space at the right time.

Developing the tooling to allocate namespaces on demand can seem like a challenge,
but simple tooling is relatively simple to develop. For example, you can achieve the
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allocation of a new namespace with a simple script that creates the namespace and
prompts for the relevant metadata to attach to the namespace.

If you want to get more integrated with Kubernetes, you can use custom resource def‐
initions (CRDs) to enable users to dynamically create and allocate new namespaces
using the kubectl tool. If you have the time and inclination, this is definitely a good
practice because it makes namespace management declarative and also enables the
use of Kubernetes RBAC.

After you have tooling to enable the allocation of namespaces, you also need to add
tooling to reap namespaces when their TTL has expired. Again, you can accomplish
this with a simple script that examines the namespaces and deletes those that have an
expired TTL.

You can build this script into a container and use a ScheduledJob to run it at an inter‐
val like once per hour. Combined together, these tools can ensure that developers can
easily allocate independent resources for their project as needed, but those resources
will also be reaped at the proper interval to ensure that you don’t have wasted resour‐
ces and that old resources don’t get in the way of new development.

Cluster-Level Services
In addition to tooling to allocate and manage namespaces, there are also useful
cluster-level services, and it’s a good idea to enable them in your development cluster. 
The first is log aggregation to a central Logging as a Service (LaaS) system. One of the
easiest things for a developer to do to understand the operation of their application is
to write something to STDOUT. Although you can access these logs via kubectl
logs, that log is limited in length and is not particularly searchable. If you instead
automatically ship those logs to a LaaS system such as a cloud service or an Elastic‐
search cluster, developers can easily search through logs for relevant information as
well as aggregate logging information across multiple containers in their service.

Enabling Developer Workflows
Now that we succesfully have a shared cluster setup and we can onboard new applica‐
tion developers to the cluster itself, we need to actually get them developing their
application. Remember that one of the key KPIs that we are measuring is the time
from onboarding to an initial application running in the cluster. It’s clear that via the
just-described onboarding scripts we can quickly authenticate a user to a cluster and
allocate a namespace, but what about getting started with the application? Unfortu‐
nately, even though there are a few techniques that help with this process, it generally
requires more convention than automation to get the initial application up and run‐
ning. In the following sections, we describe one approach to achieving this; it is by no
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means the only approach or the only solution. You can optionally apply the approach
as is or be inspired by the ideas to arrive at your own solution.

Initial Setup
One of the main challenges to deploying an application is the installation of all of the
dependencies. In many cases, especially in modern microservice architectures, to
even get started developing on one of the microservices requires the deployment of
multiple dependencies, either databases or other microservices. Although the deploy‐
ment of the application itself is relatively straightforward, the task of identifying and
deploying all of the dependencies to build the complete application is often a frustrat‐
ing case of trial and error married with incomplete or out-of-date instructions.

To address this issue, it is often valuable to introduce a convention for describing and
installing dependencies. This can be seen as the equivalent of something like npm
install, which installs all of the required JavaScript dependencies. Eventually, there
is likely to be a tool similar to npm that provides this service for Kubernetes-based
applications, but until then, the best practice is to rely on convention within your
team.

One such option for a convention is the creation of a setup.sh script within the root
directory of all project repositories. The responsibility of this script is to create all
dependencies within a particular namespace to ensure that all of the application’s
dependencies are correctly created. For example, a setup script might look like the
following:

kubectl create my-service/database-stateful-set-yaml
kubectl create my-service/middle-tier.yaml
kubectl create my-service/configs.yaml

You then could integrate this script with npm by adding the following to your
package.json:

{
    ...
    "scripts": {
        "setup": "./setup.sh",
        ...
    }
}

With this setup, a new developer can simply run npm run setup and the cluster
dependencies will be installed. Obviously, this particular integration is Node.js/npm
specific. In other programming languages, it will make more sense to integrate with
the language-specific tooling. For example, in Java you might integrate with a Maven
pom.xml file instead.
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Enabling Active Development
Having set up the developer workspace with required dependencies, the next task is
to enable them to iterate on their application quickly. The first prerequisite for this is
the ability to build and push a container image. Let’s assume that you have this
already set up; if not, you can read how to do this in a number of other online resour‐
ces and books.

After you have built and pushed a container image, the task is to roll it out to the
cluster. Unlike traditional rollouts, in the case of developer iteration, maintaining
availability is really not a concern. Thus, the easiest way to deploy new code is to sim‐
ply delete the Deployment object associated with the previous Deployment and then
create a new Deployment pointing to the newly built image. It is also possible to
update an existing Deployment in place, but this will trigger the rollout logic in the
Deployment resource. Although it is possible to configure a Deployment to roll out
code quickly, doing so introduces a difference between the development environment
and the production environment that can be dangerous or destabilizing. Imagine, for
example, that you accidentally push the development configuration of the Deploy‐
ment into production; you will suddenly and accidentally deploy new versions to pro‐
duction without appropriate testing and delays between phases of the rollout. Because
of this risk and because there is an alternative, the best practice is to delete and re-
create the Deployment.

Just like installing dependencies, it is also a good practice to make a script for per‐
forming this deployment. An example deploy.sh script might look like the following:

kubectl delete -f ./my-service/deployment.yaml
perl -pi -e 's/${old_version}/${new_version}/' ./my-service/deployment.yaml
kubectl create -f ./my-service/deployment.yaml

As before, you can integrate this with existing programming language tooling so that
(for example) a developer can simply run npm run deploy to deploy their new code
into the cluster.

Enabling Testing and Debugging
After a user has successfully deployed their development version of their application,
they need to test it and, if there are problems, debug any issues with the application.
This can also be a hurdle when developing in Kubernetes because it is not always
clear how to interact with your cluster. The kubectl command line is a veritable
Swiss army knife of tools to achieve this, from kubectl logs to kubectl exec and
kubectl port-forward, but learning how to use all of the different options and ach‐
ieving familiarity with the tool can take a considerable amount of experience. Fur‐
thermore, because the tool runs in the terminal, it often requires the composition of
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multiple windows to simultaneously examine both the source code for the application
and the running application itself.

To streamline the testing and debugging experience, Kubernetes tooling is increas‐
ingly being integrated into development environments, for example, the open source
extension for Visual Studio (VS) Code for Kubernetes. The extension is easily
installed for free from the VS Code marketplace. When installed, it automatically dis‐
covers any clusters that you already have in your kubeconfig file, and it provides a
tree-view navigation pane for you to see the contents of your cluster at a glance.

In addition to being able to see your cluster state at a glance, the integration allows a
developer to use the tools available via kubectl in an intuitive, discoverable way.
From the tree view, if you right-click a Kubernetes pod, you can immediately use port
forwarding to bring a network connection to the pod directly to the local machine.
Likewise, you can access the logs for the pod or even get a terminal within the run‐
ning container.

The integration of these commands with prototypical user interface expectations
(e.g., right-click shows a context menu), as well as the integration of these experiences
alongside the code for the application itself, enable developers with minimal Kuber‐
netes experience to rapidly become productive in the development cluster.

Of course this VS Code extension isn’t the only integration between Kubernetes and a
devlopment environment; there are several others that you can install depending on
your choice of programming environment and style (vi, emacs, etc.).

Setting Up a Development Environment Best Practices
Setting up successful workflows on Kubernetes is key to productivity and happiness.
Following these best practices will help to ensure that developers are up and running
quickly:

• Think about developer experience in three phases: onboarding, developing, and
testing. Make sure that the development environment you build supports all
three of these phases.

• When building a development cluster, you can choose between one large cluster
and a cluster per developer. There are pros and cons to each, but generally a sin‐
gle large cluster is a better approach.

• When you add users to a cluster, add them with their own identity and access to
their own namespace. Use resource limits to restrict how much of the cluster they
can use.

• When managing namespaces, think about how you can reap old, unused resour‐
ces. Developers will have bad hygiene about deleting unused things. Use automa‐
tion to clean it up for them.
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• Think about cluster-level services like logs and monitoring that you can set up
for all users. Sometimes, cluster-level dependencies like databases are also useful
to set up on behalf of all users using templates like Helm charts.

Summary
We’ve reached a place where creating a Kubernetes cluster, especially in the cloud, is a
relatively straightforward exercise, but enabling developers to productively use such a
cluster is significantly less obvious and easy. When thinking about enabling develop‐
ers to successfully build applications on Kubernetes, it’s important to think about the
key goals around onboarding, iterating, testing, and debugging applications. Like‐
wise, it pays to invest in some basic tooling specific to user onboarding, namespace
provisioning, and cluster services like basic log aggregation. Viewing a development
cluster and your code repositories as an opportunity to standardize and apply best
practices will ensure that you have happy and productive developers, successfully
building code to deploy to your production Kubernetes clusters.
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CHAPTER 3

Monitoring and Logging in Kubernetes

In this chapter, we discuss best practices for monitoring and logging in Kubernetes.
We’ll dive into the details of different monitoring patterns, important metrics to col‐
lect, and building dashboards from these raw metrics. We then wrap up with exam‐
ples of implementing monitoring for your Kubernetes cluster.

Metrics Versus Logs
You first need to understand the difference between log collection and metrics collec‐
tion. They are complementary to each other but serve different purposes.

Metrics
A series of numbers measured over a period of time

Logs
Used for exploratory analysis of a system

An example of where you would need to use both metrics and logging is when an
application is performing poorly. Our first indication of the issue might be an alert of
high latency on the pods hosting the application, but the metrics might not give a
good indication of the issue. We then can look into our logs to perform an investiga‐
tion of errors that are being emitted from the application.

Monitoring Techniques
Black-box monitoring focuses on monitoring from the outside of an application and
is what’s been used traditionally when monitoring systems for components like CPU,
memory, storage, and so on. Black-box monitoring can still be useful for monitoring
at the infrastructure level, but it lacks insights and context into how the application is
operating. For example, to test whether a cluster is healthy, we might schedule a pod,
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and if it’s successful, we know that the scheduler and service discovery are healthy
within our cluster, so we can assume the cluster components are healthy.

White-box monitoring focuses on the details in the context of the application state,
such as total HTTP requests, number of 500 errors, latency of requests, and so on.
With white-box monitoring, we can begin to understand the “Why” of our system
state. It allows us to ask, “Why did the disk fill up?” and not just, “The disk filled up.”

Monitoring Patterns
You might look at monitoring and say, “How difficult can this be? We’ve always moni‐
tored our systems.” Yes, some of your typical monitoring patterns in place today also
fit into how you monitor Kubernetes. The difference is that platforms like Kubernetes
are much more dynamic and transient, and you’ll need to change your thinking
about how to monitor these environments. For example, when monitoring a virtual
machine (VM) you expect that VM to be up 24/7 and all its state preserved. In Kuber‐
netes, pods can be very dynamic and short-lived, so you need to have monitoring in
place that can handle this dynamic and transient nature.

There are a couple of different monitoring patterns to focus on when monitoring dis‐
tributed systems.

The USE method, popularized by Brendan Gregg, focuses on the following:

• U—Utilization
• S—Saturation
• E—Errors

This method is focused on infrastructure monitoring because there are limitations on
using it for application-level monitoring. The USE method is described as, “For every
resource, check utilization, saturation, and error rates.” This method lets you quickly
identify resource constraints and error rates of your systems. For example, to check
the health of the network for your nodes in the cluster, you will want to monitor the
utilization, saturation, and error rate to be able to easily identify any network bottle‐
necks or errors in the network stack. The USE method is a tool in a larger toolbox
and is not the only method you will utilize to monitor your systems.

Another monitoring approach, called the RED method, was popularized by Tom
Willke. The RED method approach is focused on the following:

• R—Rate
• E—Errors
• D—Duration
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The philosophy was taken from Google’s Four Golden Signals:

• Latency (how long it takes to serve a request)
• Traffic (how much demand is placed on your system)
• Errors (rate of requests that are failing)
• Saturation (how utilized your service is)

As an example, you could use this method to monitor a frontend service running in
Kubernetes to calculate the following:

• How many requests is my frontend service processing?
• How many 500 errors are users of the service receiving?
• Is the service overutilized by requests?

As you can see from the previous example, this method is more focused on the expe‐
rience of the users and their experience with the service.

The USE and RED methods are complementary to each other given that the USE
method focuses on the infrastructure components and the RED method focuses on
monitoring the end-user experience for the application.

Kubernetes Metrics Overview
Now that we know the different monitoring techniques and patterns, let’s look at
what components you should be monitoring in your Kubernetes cluster. A Kuber‐
netes cluster consists of control-plane components and worker-node components.
The control-plane components consist of the API Server, etcd, scheduler, and con‐
troller manager. The worker nodes consist of the kubelet, container runtime, kube-
proxy, kube-dns, and pods. You need to monitor all these components to ensure a
healthy cluster and application.

Kubernetes exposes these metrics in a variety of ways, so let’s take a look at different
components that you can use to collect metrics within your cluster.

cAdvisor
Container Advisor, or cAdvisor, is an open source project that collects resources and
metrics for containers running on a node. cAdvisor is built into the Kubernetes kube‐
let, which runs on every node in the cluster. It collects memory and CPU metrics
through the Linux control group (cgroup) tree. If you are not familiar with cgroups,
it’s a Linux kernel feature that allows isolation of resources for CPU, disk I/O, or
network I/O. cAdvisor will also collect disk metrics through statfs, which is built into
the Linux kernel. These are implementation details you don’t really need to worry
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about, but you should understand how these metrics are exposed and the type of
information you can collect. You should consider cAdvisor as the source of truth for
all container metrics.

Metrics Server
The Kubernetes metrics server and Metrics Server API are a replacement for the dep‐
recated Heapster. Heapster had some architectural disadvantages with how it imple‐
mented the data sink, which caused a lot of vendored solutions in the core Heapster
code base. This issue was solved by implementing a resource and Custom Metrics
API as an aggregated API in Kubernetes. This allows implementations to be switched
out without changing the API.

There are two aspects to understand in the Metrics Server API and metrics server.

First, the canonical implementation of the Resource Metrics API is the metrics server.
The metrics server gathers resource metrics such as CPU and memory. It gathers
these metrics from the kubelet’s API and then stores them in memory. Kubernetes
uses these resource metrics in the scheduler, Horizontal Pod Autoscaler (HPA), and
Vertical Pod Autoscaler (VPA).

Second, the Custom Metrics API allows monitoring systems to collect arbitrary met‐
rics. This allows monitoring solutions to build custom adapters that will allow for
extending outside the core resource metrics. For example, Prometheus built one of
the first custom metrics adapters, which allows you to use the HPA based on a cus‐
tom metric. This opens up better scaling based on your use case because now you can
bring in metrics like queue size and scale based on a metric that might be external to
Kubernetes.

Now that there is a standardized Metrics API, this opens up many possibilities to
scale outside the plain old CPU and memory metrics.

kube-state-metrics
kube-state-metrics is a Kubernetes add-on that monitors the object stored in Kuber‐
netes. Where cAdvisor and metrics server are used to provide detailed metrics on
resource usage, kube-state-metrics is focused on identifying conditions on Kuber‐
netes objects deployed to your cluster.

Following are some questions that kube-state-metrics can answer for you:

• Pods
— How many pods are deployed to the cluster?
— How many pods are in a pending state?
— Are there enough resources to serve a pods request?
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• Deployments
— How many pods are in a running state versus a desired state?
— How many replicas are available?
— What deployments have been updated?

• Nodes
— What’s the status of my worker nodes?
— What are the allottable CPU cores in my cluster?
— Are there any nodes that are unschedulable?

• Jobs
— When did a job start?
— When did a job complete?
— How many jobs failed?

As of this writing, there are 22 object types that kube-state-metrics tracks. These are
always expanding, and you can find the documentation in the Github repository.

What Metrics Do I Monitor?
The easy answer is “Everything,” but if you try to monitor too much, you can create
too much noise that filters out the real signals into which you need to have insight.
When we think about monitoring in Kubernetes, we want to take a layered approach
that takes into account the following:

• Physical or virtual nodes
• Cluster components
• Cluster add-ons
• End-user applications

Using this layered approach to monitoring allows you to more easily identify the cor‐
rect signals in your monitoring system. It allows you to approach issues with a more
targeted approach. For example, if you have pods going into a pending state, you can
start with resource utilization of the nodes, and if all is OK, you can target cluster-
level components.

Following are metrics you would want to target in your system:

• Nodes
— CPU utilization
— Memory utilization

What Metrics Do I Monitor? | 39

https://oreil.ly/bdTp2


— Network utilization
— Disk utilization

• Cluster components
— etcd latency

• Cluster add-ons
— Cluster Autoscaler
— Ingress controller

• Application
— Container memory utilization and saturation
— Container CPU utilization
— Container network utilization and error rate
— Application framework-specific metrics

Monitoring Tools
There are many monitoring tools that can integrate with Kubernetes, and more arriv‐
ing every day, building on their feature set to have better integration with Kubernetes.
Following are a few popular tools that integrate with Kubernetes:

Prometheus
Prometheus is an open source systems monitoring and alerting toolkit originally
built at SoundCloud. Since its inception in 2012, many companies and organiza‐
tions have adopted Prometheus, and the project has a very active developer and
user community. It is now a standalone open source project and maintained
independent of any company. To emphasize this, and to clarify the project’s gov‐
ernance structure, Prometheus joined the Cloud Native Computing Foundation
(CNCF) in 2016 as the second hosted project, after Kubernetes.

InfluxDB
InfluxDB is a time-series database designed to handle high write and query loads.
It is an integral component of the TICK (Telegraf, InfluxDB, Chronograf, and
Kapacitor) stack. InfluxDB is meant to be used as a backing store for any use case
involving large amounts of timestamped data, including DevOps monitoring,
application metrics, IoT sensor data, and real-time analytics.

Datadog
Datadog provides a monitoring service for cloud-scale applications, providing
monitoring of servers, databases, tools, and services through a SaaS-based data
analytics platform.
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Sysdig
Sysdig Monitor is a commercial tool that provides Docker monitoring and
Kubernetes monitoring for container-native apps. Sysdig also allows you to col‐
lect, correlate, and query Prometheus metrics with direct Kubernetes integration.

Cloud provider tools

GCP Stackdriver
Stackdriver Kubernetes Engine Monitoring is designed to monitor Google
Kubernetes Engine (GKE) clusters. It manages monitoring and logging
services together and features an interface that provides a dashboard cus‐
tomized for GKE clusters. Stackdriver Monitoring provides visibility into the
performance, uptime, and overall health of cloud-powered applications. It
collects metrics, events, and metadata from Google Cloud Platform (GCP),
Amazon Web Services (AWS), hosted uptime probes, and application
instrumentation.

Microsoft Azure Monitor for containers
Azure Monitor for containers is a feature designed to monitor the perfor‐
mance of container workloads deployed to either Azure Container Instances
or managed Kubernetes clusters hosted on Azure Kubernetes Service. Moni‐
toring your containers is critical, especially when you’re running a produc‐
tion cluster, at scale, with multiple applications. Azure Monitor for
containers gives you performance visibility by collecting memory and pro‐
cessor metrics from controllers, nodes, and containers that are available in
Kubernetes through the Metrics API. Container logs are also collected. After
you enable monitoring from Kubernetes clusters, metrics and logs are auto‐
matically collected for you through a containerized version of the Log Ana‐
lytics agent for Linux.

AWS Container Insights
If you use Amazon Elastic Container Service (ECS), Amazon Elastic Kuber‐
netes Service, or other Kubernetes platforms on Amazon EC2, you can use
CloudWatch Container Insights to collect, aggregate, and summarize metrics
and logs from your containerized applications and microservices. The met‐
rics include utilization for resources such as CPU, memory, disk, and net‐
work. Container Insights also provides diagnostic information, such as
container restart failures, to help you isolate issues and resolve them quickly.

One important aspect when looking at implementing a tool to monitor metrics is to
look at how the metrics are stored. Tools that provide a time-series database with
key/value pairs will give you a higher degree of attributes for the metric.
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Always evaluate monitoring tools you already have, because taking
on a new monitoring tool has a learning curve and a cost due to the
operational implementation of the tool. Many of the monitoring
tools now have integration into Kubernetes, so evaluate which ones
you have today and whether they will meet your requirements.

Monitoring Kubernetes Using Prometheus
In this section we focus on monitoring metrics with Prometheus, which provides
good integrations with Kubernetes labeling, service discovery, and metadata. The
high-level concepts we implement throughout the chapter will also apply to other
monitoring systems.

Prometheus is an open source project that is hosted by the CNCF. It was originally
developed at SoundCloud, and a lot of its concepts are based on Google’s internal
monitoring system, BorgMon. It implements a multidimensional data model with
keypairs that work much like how the Kubernetes labeling system works. Prometheus
exposes metrics in a human-readable format, as in the following example:

# HELP node_cpu_seconds_total Seconds the CPU is spent in each mode.
# TYPE node_cpu_seconds_total counter
node_cpu_seconds_total{cpu="0",mode="idle"} 5144.64
node_cpu_seconds_total{cpu="0",mode="iowait"} 117.98

To collect metrics, Prometheus uses a pull model in which it scrapes a metrics end‐
point to collect and ingest the metrics into the Prometheus server. Systems like
Kubernetes already expose their metrics in a Prometheus format, making it simple to
collect metrics. Many other Kubernetes ecosystem projects (NGINX, Traefik, Istio,
LinkerD, etc.) also expose their metrics in a Prometheus format. Prometheus also can
use exporters, which allow you to take emitted metrics from your service and trans‐
late them to Prometheus-formatted metrics.

Prometheus has a very simplified architecure, as depicted in Figure 3-1.

Figure 3-1. Prometheus architecture
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You can install Prometheus within the cluster or outside the cluster.
It’s a good practice to monitor your cluster from a “utility cluster”
to avoid a production issue also affecting your monitoring system.
There are tools like Thanos that provide high availability for Prom‐
etheus and allow you to export metrics into an external storage
system.

A deep dive into the Prometheus architecture is beyond the scope of this book, and
you should refer to another one of the dedicated books on this topic. Prometheus: Up
& Running (O’Reilly) is a good in-depth book to get you started.

So, let’s dive in and get Prometheus set up on our Kubernetes cluster. There are many
different ways to do this, and the deployment will depend on your specific implemen‐
tation. In this chapter we install the Prometheus Operator:

Prometheus Server
Pulls and stores metrics being collected from systems.

Prometheus Operator
Makes the Prometheus configuration Kubernetes native, and manages and oper‐
ates Prometheus and Alertmanager clusters. Allows you to create, destroy, and
configure Prometheus resources through native Kubernetes resource definitions.

Node Exporter
Exports host metrics from Kubernetes nodes in the cluster.

kube-state-metrics
Collects Kubernetes-specific metrics.

Alertmanager
Allows you to configure and forward alerts to external systems.

Grafana
Provides visualization on dashboard capabilities for Prometheus.

helm install --name prom stable/prometheus-operator

After you’ve installed the Operator, you should see the following pods deployed to
your cluster:

$ kubectl get pods -n monitoring
NAME                                   READY   STATUS    RESTARTS   AGE
alertmanager-main-0                    2/2     Running   0          5h39m
alertmanager-main-1                    2/2     Running   0          5h39m
alertmanager-main-2                    2/2     Running   0          5h38m
grafana-5d8f767-ct2ws                  1/1     Running   0          5h39m
kube-state-metrics-7fb8b47448-k6j6g    4/4     Running   0          5h39m
node-exporter-5zk6k                    2/2     Running   0          5h39m
node-exporter-874ss                    2/2     Running   0          5h39m
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node-exporter-9mtgd                    2/2     Running   0          5h39m
node-exporter-w6xwt                    2/2     Running   0          5h39m
prometheus-adapter-66fc7797fd-ddgk5    1/1     Running   0          5h39m
prometheus-k8s-0                       3/3     Running   1          5h39m
prometheus-k8s-1                       3/3     Running   1          5h39m
prometheus-operator-7cb68545c6-gm84j   1/1     Running   0          5h39m

Lets take a look at the Prometheus Server to see how you can run some queries to
retrieve Kubernetes metrics:

kubectl port-forward svc/prom-prometheus-operator-prometheus 9090

This creates a tunnel to our localhost on port 9090. Now, we can open a web browser
and connect to the Prometheus server on http://127.0.0.1:9090.

Figure 3-2 depicts the screen you’ll see if you successfully deployed Prometheus to
your cluster.

Now that we have Prometheus deployed, let’s explore some Kubernetes metrics
through the Prometheus PromQL query language. There is a PromQL Basics guide
available.

We talked earlier in the chapter about employing the USE method, so let’s gather
some node metrics on CPU utilization and saturation.

Figure 3-2. The Prometheus dashboard

In the Expression input, enter the following query:

avg(rate(node_cpu_seconds_total[5m]))

This will return the average CPU utilization for the entire cluster.
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If we want to get the CPU utilization per node, we can write a query like the
following:

avg(rate(node_cpu_seconds_total[5m])) by (node_name)

This returns average CPU utilization for each node in the cluster.

So, now that you have some experience with running queries within Prometheus, let’s
take a look at how Grafana can help build dashboard visualization for these common
USE method metrics we want to track. The great thing about the Prometheus Opera‐
tor you installed is that it comes with some prebuilt Grafana dashboards that you can
use.

You’ll now need to create a port-forward tunnel to the Grafana pod so that you can
access it from your local machine:

kubectl port-forward svc/prom-grafana 3000:3000

Now, point your web browser at http://localhost:3000 and log in using the following
credentials:

• Username: admin
• Password: admin

Under the Grafana dashboard you’ll find a dashboard called Kubernetes / USE
Method / Cluster. This dashboard gives you a good overview of the utilization and
saturation of the Kubernetes cluster, which is at the heart of the USE method.
Figure 3-3 presents an example of the dashboard.

Figure 3-3. A Grafana dashboard

Go ahead and take some time to explore the different dashboards and metrics that
you can visualize in Grafana.
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Avoid creating too many dashboards (aka “The Wall of Graphs”)
because this can be difficult for engineers to reason with in trouble‐
shooting situations. You might think having more information in a
dashboard means better monitoring, but the majority of the time it
causes more confusion for a user looking at the dashboard. Focus
your dashboard design on outcomes and time to resolution.

Logging Overview
Up to this point, we have discussed a lot about metrics and Kubernetes, but to get the
full picture of your environment, you also need to collect and centralize logs from the
Kubernetes cluster and the applications deployed to your cluster.

With logging, it might be easy to say, “Let’s just log everything,” but this can cause two
issues:

• There is too much noise to find issues quickly.
• Logs can consume a lot of resources and come with a high cost.

There is no clear-cut answer to what exactly you should log because debug logs
become a necessary evil. Over time you’ll start to understand your environment bet‐
ter and learn what noise you can tune out from the logging system. Also, to address
the ever-increasing amount of logs stored, you will need to implement a retention
and archival policy. From an end-user experience, having somewhere between 30 and
45 days worth of historical logs is a good fit. This allows for investigation of problems
that manifest over a longer period of time, but also reduces the amount of resources
needed to store logs. If you require longer-term storage for compliance reasons, you’ll
want to archive the logs to more cost-effective resources.

In a Kubernetes cluster, there are multiple components to log. Following is a list of
components from which you should be collecting metrics:

• Node logs
• Kubernetes control-plane logs

— API server
— Controller manager
— Scheduler

• Kubernetes audit logs
• Application container logs

With node logs, you want to collect events that happen to essential node services. For
example, you will want to collect logs from the Docker daemon running on the
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worker nodes. A healthy Docker daemon is essential for running containers on the
worker node. Collecting these logs will help you diagnose any issues that you might
run into with the Docker daemon, and it will give you information into any underly‐
ing issues with the daemon. There are also other essential services that you will want
to log from the underlying node.

The Kubernetes control plane consists of several components from which you’ll need
to collect logs to give you more insight into underlying issues within it. The Kuber‐
netes control plane is core to a healthy cluster, and you’ll want to aggregate the logs
that it stores on the host in /var/log/kube-APIserver.log, /var/log/kube-scheduler.log,
and /var/log/kube-controller-manager.log. The controller manager is responsible for
creating objects defined by the end user. As an example, as a user you create a Kuber‐
netes service with type LoadBalancer and it just sits in a pending state; the Kubernetes
events might not give all the details to diagnose the issue. If you collect the logs in a
centralized system, it will give you more detail into the underlying issue and a quicker
way to investigate the issue.

You can think of Kubernetes audit logs as security monitoring because they give you
insight into who did what within the system. These logs can be very noisy, so you’ll
want to tune them for your environment. In many instances these logs can cause a
huge spike in your logging system when first initialized, so make sure that you follow
the Kubernetes documentation guidance on audit log monitoring.

Application container logs give you insight into the actual logs your application is
emitting. You can forward these logs to a central repository in multiple ways. The
first and recommended way is to send all application logs to STDOUT because this
gives you a uniform way of application logging, and a monitoring daemon set can
gather the logs directly from the Docker daemon. The other way is to use a sidecar
pattern and run a log forwarding container next to the application container in a
Kubernetes pod. You might need to use this pattern if your application logs to the
filesystem.

There are many options and configurations for managing Kuber‐
netes audit logs. These audit logs can be very noisy and it can be
expensive to log all actions. You should consider looking at the
audit logging documentation, so that you can fine-tune these logs
for your environment.

Tools for Logging
Like collecting metrics there are numerous tools to collect logs from Kubernetes and
applications running in the cluster. You might already have tooling for this, but be
aware of how the tool implements logging. The tool should have the capability to run
as a Kubernetes DaemonSet and also have a solution to run as a sidecar for

Tools for Logging | 47

https://oreil.ly/L84dM


applications that don’t send logs to STDOUT. Utilizing an existing tool can be advan‐
tageous because you will already have a lot of operational knowledge of the tool.

Some of the more popular tools with Kubernetes integration are:

• Elastic Stack
• Datadog
• Sumo Logic
• Sysdig
• Cloud provider services (GCP Stackdriver, Azure Monitor for containers, and

Amazon CloudWatch)

When looking for a tool to centralize logs, hosted solutions can provide a lot of value
because they offload a lot of the operational cost. Hosting your own logging solution
seems great on day N, but as the environment grows, it can be very time consuming
to maintain the solution.

Logging by Using an EFK Stack
For the purposes of this book, we use an Elasticsearch, Fluentd, and Kibana (EFK)
stack to set up monitoring for our cluster. Implementing an EFK stack can be a good
way to get started, but at some point you’ll probably ask yourself, “Is it really worth
managing my own logging platform?” Typically it’s not worth the effort because self-
hosted logging solutions are great on day one, but they become overly complex by
day 365. Self-hosted logging solutions become more operationally complex as your
environment scales. There is no one correct answer, so evaluate whether your busi‐
ness requirements need you to host your own solution. There are also a number of
hosted solutions based on the EFK stack, so you can always move pretty easily if you
choose not to host it yourself.

You will deploy the following for your monitoring stack:

• Elasticsearch Operator
• Fluentd (forwards logs from our Kubernetes environment into Elasticsearch)
• Kibana (visualization tool to search, view, and interact with logs stored in

Elasticsearch)

Deploy the manifest to your Kubernetes cluster:

kubectl create namespace logging

kubectl apply -f https://raw.githubusercontent.com/dstrebel/kbp/master/
elasticsearch-operator.yaml -n logging
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Deploy the Elasticsearch operator to aggregate all forwarded logs:

kubectl apply -f https://raw.githubusercontent.com/dstrebel/kbp/master/efk.yaml 
-n logging

This deploys Fluentd and Kibana, which will allow us to forward logs to Elasticsearch
and visualize the logs using Kibana.

You should see the following pods deployed to your cluster:

kubectl get pods -n logging

efk-kibana-854786485-knhl5               1/1     Running   0          4m
elasticsearch-operator-5647dc6cb-tc2st   1/1     Running   0          5m
elasticsearch-operator-sysctl-ktvk9      1/1     Running   0          5m
elasticsearch-operator-sysctl-lf2zs      1/1     Running   0          5m
elasticsearch-operator-sysctl-r8qhb      1/1     Running   0          5m
es-client-efk-cluster-9f4cc859-sdrsl     1/1     Running   0          4m
es-data-efk-cluster-default-0            1/1     Running   0          4m
es-master-efk-cluster-default-0          1/1     Running   0          4m
fluent-bit-4kxdl                         1/1     Running   0          4m
fluent-bit-tmqjb                         1/1     Running   0          4m
fluent-bit-w6fs5                         1/1     Running   0          4m

After all pods are “Running,” let’s go ahead and connect to Kibana through port for‐
warding to our localhost:

export POD_NAME=$(kubectl get pods --namespace logging -l 
"app=kibana,release=efk" -o jsonpath="{.items[0].metadata.name}")

kubectl port-forward $POD_NAME 5601:5601

Now point your web browser at http://localhost:5601 to open the Kibana dashboard.

To interact with the logs forwarded from our Kubernetes cluster, you first need to
create an index.

The first time you start Kibana, you will need to navigate to the Management tab, and
create an index pattern for Kubernetes logs. The system will guide you through the
required steps.

After you create an index, you can search through logs using a Lucene query syntax,
such as the following:

log:(WARN|INFO|ERROR|FATAL)

This returns all logs containing the fields warn, info, error, or fatal. You can see an
example in Figure 3-4.
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Figure 3-4. The Kibana dashboard

In Kibana, you can perform ad hoc queries on the logs, and you can build out dash‐
boards to give you an overview of the environment.

Go ahead and take some time to explore the different logs that you can visualize in
Kibana.

Alerting
Alerting is a double-edged sword, and you need to strike a balance on what you alert
on versus what should just be monitored. Alerting on too much causes alert fatigue,
and important events will be lost in all the noise. An example would be generating an
alert any time a pod fails. You might be asking, “Why wouldn’t I want to monitor for a
pod failure?” Well, the beauty of Kubernetes is that it provides features to automati‐
cally check the health of a container and restart the container automatically. You
really want to focus alerting on events that affect your Service-Level Objectives
(SLOs). SLOs are specific measurable characteristics such as availability, throughput,
frequency, and response time that you agree upon with the end user of your service.
Setting SLOs sets expectations with your end users and provides clarity on how the
system should behave. Without an SLO, users can form their opinion, which might be
an unrealistic expectation of the service. Alerting in a system like Kubernetes needs
an entirely new approach from what we are typically accustomed to and needs to
focus on how the end user is experiencing the service. For example, if your SLO for a
frontend service is a 20-ms response time and you are seeing higher latency than
average, you want to be alerted on the problem.
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You need to decide what alerts are good and require intervention. In typical monitor‐
ing, you might be accustomed to alerting on high CPU usage, memory usage, or pro‐
cesses not responding. These might seem like good alerts, but probably don’t indicate
an issue that someone needs to take immediate action on and requires notifying an
on-call engineer. An alert to an on-call engineer should be an issue that needs imme‐
diate human attention and is affecting the UX of the application. If you have ever
experienced a “That issue resolved itself ” scenario, then that is a good indication that
the alert did not need to contact an on-call engineer.

One way to handle alerts that don’t need immediate action is to focus on automating
the remediation of the cause. For example, when a disk fills up, you could automate
the deletion of logs to free up space on the disk. Also, utilizing Kubernetes liveness
probes in your app deployment can help autoremediate issues with a process that is
not responding in the application.

When building alerts, you also need to consider alert thresholds; if you set thresholds
too short, then you can get a lot of false positives with your alerts. It’s generally rec‐
ommended to set a threshold of at least five minutes to help eliminate false positives.
Coming up with standard thresholds can help define a standard and avoid microma‐
naging many different thresholds. For example, you might want to follow a specific
pattern of 5 minutes, 10 minutes, 30 minutes, 1 hour, and so on.

When building notifications for alerts you want to ensure that you provide relevant
information in the notification, for example, providing a link to a “playbook” that
gives troubleshooting or other helpful information on resolving the issue. You should
also include information on the datacenter, region, app owner, and affected system in
notifications. Providing all this information will allow engineers to quickly formalize
a theory around the issue.

You also need to build notification channels to route alerts that are fired. When
thinking about “Who do I notify when an alert is triggered?” you should ensure that
notifications are not just sent to a distribution list or team emails. What tends to hap‐
pen if alerts are sent to larger groups is that they end up getting filtered out because
users see these as noise. You should route notifications to the user who is going to
take responsibility for the issue.

With alerting, you’ll never get it perfect on day one, and we could argue it might
never be perfect. You just want to make sure that you incrementally improve on alert‐
ing to preclude alert fatigue, which can cause many issues with staff burnout and your
systems.

For further insight on how to approach alerting on and managing
systems, read “My Philosophy on Alerting” by Rob Ewaschuk,
which is based on Rob’s observations as a site reliability engineer
(SRE) at Google.
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Best Practices for Monitoring, Logging, and Alerting
Following are the best practices that you should adopt regarding monitoring, logging,
and alerting.

Monitoring
• Monitor nodes and all Kubernetes components for utilization, saturation, and

error rates, and monitor applications for rate, errors, and duration.
• Use black-box monitoring to monitor for symptoms and not predictive health of

a system.
• Use white-box monitoring to inspect the system and its internals with

instrumentation.
• Implement time-series-based metrics to gain high-precision metrics that also

allow you to gain insight within the behavior of your application.
• Utilize monitoring systems like Prometheus that provide key labeling for high

dimensionality; this will give a better signal to symptoms of an impacting issue.
• Use average metrics to visualize subtotals and metrics based on factual data. Uti‐

lize sum metrics to visualize the distribution across a specific metric.

Logging
• You should use logging in combination with metrics monitoring to get the full

picture of how your environment is operating.
• Be cautious of storing logs for more than 30 to 45 days and, if needed, use

cheaper resources for long-term archiving.
• Limit usage of log forwarders in a sidecar pattern, as they will utilize a lot more

resources. Opt for using a DaemonSet for the log forwarder and sending logs to
STDOUT.

Alerting
• Be cautious of alert fatigue because it can lead to bad behaviors in people and

processes.
• Always look at incrementally improving upon alerting and accept that it will not

always be perfect.
• Alert for symptoms that affect your SLO and customers and not for transient

issues that don’t need immediate human attention.
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Summary
In this chapter we discussed the patterns, techniques, and tools that can be used for
monitoring our systems with metric and log collection. The most important piece to
take away from this chapter is that you need to rethink how you perform monitoring
and do it from the outset. Too many times we see this implemented after the fact, and
it can get you into a very bad place in understanding your system. Monitoring is all
about having better insight into a system and being able to provide better resiliency,
which in turn provides a better end-user experience for your application. Monitoring
distributed applications and distributed systems like Kubernetes requires a lot of
work, so you must be ready for it at the beginning of your journey.
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CHAPTER 4

Configuration, Secrets, and RBAC

The composable nature of containers allows us as operators to introduce configura‐
tion data into a container at runtime. This makes it possible for us to decouple an
application’s function from the environment it runs in. By means of the conventions
allowed in the container runtime to pass through either environment variables or
mount external volumes into a container at runtime, you can effectively change the
configuration of the application upon its instantiation. As a developer, it is important
to take into consideration the dynamic nature of this behavior and allow for the use
of environment variables or the reading of configuration data from a specific path
available to the application runtime user.

When moving sensitive data such as secrets into a native Kubernetes API object, it is
important to understand how Kubernetes secures access to the API. The most com‐
monly implemented security method in use in Kubernetes is Role-Based Access Con‐
trol (RBAC) to implement a fine-grained permission structure around actions that
can be taken against the API by specific users or groups. This chapter covers some of
the best practices regarding RBAC and also provides a small primer.

Configuration Through ConfigMaps and Secrets
Kubernetes allows you to natively provide configuration information to our applica‐
tions through ConfigMaps or secret resources. The main differentiator between the
two is the way a pod stores the receiving information and how the data is stored in
the etcd data store.

ConfigMaps
It is very common to have applications consume configuration information through
some type of mechanism such as command-line arguments, environment variables,
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or files that are available to the system. Containers allow the developer to decouple
this configuration information from the application, which allows for true application
portability. The ConfigMap API allows for the injection of supplied configuration
information. ConfigMaps are very adaptable to the application’s requirements and
can provide key/value pairs or complex bulk data such as JSON, XML, or proprietary
configuration data.

The ConfigMaps not only provide configuration information for pods, but can also
provide information to be consumed for more complex system services such as con‐
trollers, CRDs, operators, and so on. As mentioned earlier, the ConfigMap API is
meant more for string data that is not really sensitive data. If your application
requires more sensitive data, the Secrets API is more appropriate.

For your application to use the ConfigMap data, it can be injected as either a volume
mounted into the pod or as environment variables.

Secrets
Many of the attributes and reasons for which you would want to use a ConfigMap
apply to secrets. The main differences lie in the fundamental nature of a Secret. Secret
data should be stored and handled in a way that can be easily hidden and possibly
encrypted at rest if the environment is configured as such. The Secret data is repre‐
sented as base64-encoded information, and it is critical to understand that this is not
encrypted. As soon as the secret is injected into the pod, the pod itself can see the
secret data in plain text.

Secret data is meant to be small amounts of data, limited by default in Kubernetes to 1
MB in size, for the base64-encoded data, so ensure that the actual data is approxi‐
mately 750 KB because of the overhead of the encoding. There are three types of
secrets in Kubernetes:

generic

This is typically just regular key/value pairs that are created from a file, a direc‐
tory, or from string literals using the --from-literal= parameter, as follows:

kubectl create secret generic mysecret --from-literal=key1=$3cr3t1 --
from-literal=key2=@3cr3t2`

docker-registry

This is used by the kubelet when passed in a pod template if there is an image
Pullsecret to provide the credentials needed to authenticate to a private Docker
registry:

kubectl create secret docker-registry registryKey --docker-server 
myreg.azurecr.io --docker-username myreg --docker-password $up3r
$3cr3tP@ssw0rd --docker-email ignore@dummy.com
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tls

This creates a Transport Layer Security (TLS) secret from a valid public/private
key pair. As long as the cert is in a valid PEM format, the key pair will be encoded
as a secret and can be passed to the pod to use for SSL/TLS needs:

kubectl create secret tls www-tls --key=./path_to_key/wwwtls.key --
cert=./path_to_crt/wwwtls.crt

Secrets are also mounted into tmpfs only on the nodes that have a pod that requires
the secret and are deleted when the pod that needs it is gone. This prevents any
secrets from being left behind on the disk of the node. Although this might seem
secure, it is important to know that by default, secrets are stored in the etcd datastore
of Kubernetes in plain text, and it is important that the system administrators or
cloud service provider take efforts to ensure that the security of the etcd environment,
including mTLS between the etcd nodes and enabling encryption at rest for the etcd
data. More recent versions of Kubernetes use etcd3 and have the ability to enable etcd
native encryption; however, this is a manual process that must be configured in the
API server configuration by specifying a provider and the proper key media to prop‐
erly encrypt secret data held in etcd. As of Kubernetes v1.10 (it has been promoted to
beta in v1.12), we have the KMS provider, which promises to provide a more secure
key process by using third-party KMS systems to hold the proper keys.

Common Best Practices for the ConfigMap and Secrets
APIs
The majority of issues that arise from the use of a ConfigMap or secret are incorrect
assumptions on how changes are handled when the data held by the object is upda‐
ted. By understanding the rules of the road and adding a few tricks to make it easier
to abide by those rules, you can steer away from trouble:

• To support dynamic changes to your application without having to redeploy new
versions of the pods, mount your ConfigMaps/Secrets as a volume and configure
your application with a file watcher to detect the changed file data and reconfig‐
ure itself as needed. The following code shows a Deployment that mounts a Con‐
figMap and a Secret file as a volume:

apiVersion: v1
kind: ConfigMap
metadata:
    name: nginx-http-config
    namespace: myapp-prod
data:
  config: |
    http {
      server {
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        location / {
        root /data/html;
        }

        location /images/ {
          root /data;
        }
      }
    }

apiVersion: v1
kind: Secret
metadata:
  name: myapp-api-key
type: Opaque
data:
  myapikey: YWRtd5thSaW4=

apiVersion: apps/v1
kind: Deployment
metadata:
  name: mywebapp
  namespace: myapp-prod
spec:
  containers:
  - name: nginx
    image: nginx
    ports:
    - containerPort: 8080
    volumeMounts:
    - mountPath: /etc/nginx
      name: nginx-config
    - mountPath: /usr/var/nginx/html/keys
      name: api-key
  volumes:
    - name: nginx-config
      configMap:
        name: nginx-http-config
        items:
        - key: config
          path: nginx.conf
    - name: api-key
      secret:
        name: myapp-api-key
        secretname: myapikey
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There are a couple of things to consider when using volumeMounts.
First, as soon as the ConfigMap/Secret is created, add it as a vol‐
ume in your pod’s specification. Then mount that volume into the
container’s filesystem. Each property name in the ConfigMap/
Secret will become a new file in the mounted directory, and the
contents of each file will be the value specified in the ConfigMap/
Secret. Second, avoid mounting ConfigMaps/Secrets using the volu
meMounts.subPath property. This will prevent the data from being
dynamically updated in the volume if you update a ConfigMap/
Secret with new data.

• ConfigMap/Secrets must exist in the namespace for the pods that will consume
them prior to the pod being deployed. The optional flag can be used to prevent
the pods from not starting if the ConfigMap/Secret is not present.

• Use an admission controller to ensure specific configuration data or to prevent
deployments that do not have specific configuration values set. An example
would be if you require all production Java workloads to have certain JVM prop‐
erties set in production environments. There is an alpha API called PodPresets
that will allow ConfigMaps and secrets to be applied to all pods based on an
annotation, without needing to write a custom admission controller.

• If you’re using Helm to release applications into your environment, you can use a
life cycle hook to ensure the ConfigMap/Secret template is deployed before the
Deployment is applied.

• Some applications require their configuration to be applied as a single file such as
a JSON or YAML file. ConfigMap/Secrets allows an entire block of raw data by
using the | symbol, as demonstrated here:

apiVersion: v1
kind: ConfigMap
metadata:
  name: config-file
data:
  config: |
    {
      "iotDevice": {
        "name": "remoteValve",
        "username": "CC:22:3D:E3:CE:30",
        "port": 51826,
        "pin": "031-45-154"
      }
    }

• If the application uses system environment variables to determine its configura‐
tion, you can use the injection of the ConfigMap data to create an environment
variable mapping into the pod. There are two main ways to do this: mounting
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every key/value pair in the ConfigMap as a series of environment variables into
the pod using envFrom and then using configMapRef or secretRef, or assigning
individual keys with their respective values using the configMapKeyRef or
secretKeyRef.

• If you’re using the configMapKeyRef or secretKeyRef method, be aware that if
the actual key does not exist, this will prevent the pod from starting.

• If you’re loading all of the key/value pairs from the ConfigMap/Secret into the
pod using envFrom, any keys that are considered invalid environment values will
be skipped; however, the pod will be allowed to start. The event for the pod will
have an event with reason InvalidVariableNames and the appropriate message
about which key was skipped. The following code is an example of a Deployment
with a ConfigMap and Secret reference as an environment variable:

apiVersion: v1
kind: ConfigMap
metadata:
  name: mysql-config
data:
  mysqldb: myappdb1
  user: mysqluser1

apiVersion: v1
kind: Secret
metadata:
  name: mysql-secret
type: Opaque
data:
  rootpassword: YWRtJasdhaW4=
  userpassword: MWYyZDigKJGUyfgKJBmU2N2Rm

apiVersion: apps/v1
kind: Deployment
metadata:
  name: myapp-db-deploy
spec:
  selector:
    matchLabels:
      app: myapp-db
  template:
    metadata:
      labels:
        app: myapp-db
    spec:
      containers:
      - name: myapp-db-instance
        image: mysql
        resources:
          limits:
            memory: "128Mi"
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            cpu: "500m"
        ports:
        - containerPort: 3306
        env:
          - name: MYSQL_ROOT_PASSWORD
            valueFrom:
              secretKeyRef:
                name: mysql-secret
                key: rootpassword
          - name: MYSQL_PASSWORD
            valueFrom:
              secretKeyRef:
                name: mysql-secret
                key: userpassword
          - name: MYSQL_USER
            valueFrom:
              configMapKeyRef:
                name: mysql-config
                key: user
          - name: MYSQL_DB
            valueFrom:
              configMapKeyRef:
                name: mysql-config
                key: mysqldb

• If there is a need to pass command-line arguments to your containers, environ‐
ment variable data can be sourced using $(ENV_KEY) interpolation syntax:

[...]
spec:
  containers:
  - name: load-gen
    image: busybox
    command: ["/bin/sh"]
args: ["-c", "while true; do curl $(WEB_UI_URL); sleep 10;done"]
    ports:
    - containerPort: 8080
    env:
    - name: WEB_UI_URL
      valueFrom:
        configMapKeyRef:
          name: load-gen-config
          key: url

• When consuming ConfigMap/Secret data as environment variables, it is very
important to understand that updates to the data in the ConfigMap/Secret will
not update in the pod and will require a pod restart either through deleting the
pods and letting the ReplicaSet controller create a new pod, or triggering a
Deployment update, which will follow the proper application update strategy as
declared in the Deployment specification.
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• It is easier to assume that all changes to a ConfigMap/Secret require an update to
the entire deployment; this ensures that even if you’re using environment vari‐
ables or volumes, the code will take the new configuration data. To make this eas‐
ier, you can use a CI/CD pipeline to update the name property of the ConfigMap/
Secret and also update the reference in the deployment, which will then trigger
an update through normal Kubernetes update strategies of your deployment. We
will explore this in the following example code. If you’re using Helm to release
your application code into Kubernetes, you can take advantage of an annotation
in the Deployment template to check the sha256 checksum of the ConfigMap/
Secret. This triggers Helm to update the Deployment using the helm upgrade
command when the data within a ConfigMap/Secret is changed:

apiVersion: apps/v1
kind: Deployment
[...]
spec:
  template:
    metadata:
      annotations:
        checksum/config: {{ include (print $.Template.BasePath "/config
map.yaml") . | sha256sum }}
[...]

Best practices specific to secrets
Because of the nature of sensitive data of the Secrets API, there are naturally more
specific best practices, which are mainly around the security of the data itself:

• The original specification for the Secrets API outlined a pluggable architecture to
allow the actual storage of the secret to be configurable based on requirements.
Solutions such as HashiCorp Vault, Aqua Security, Twistlock, AWS Secrets Man‐
ager, Google Cloud KMS, or Azure Key Vault allow the use of external storage
systems for secret data using a higher level of encryption and auditability than
what is offered natively in Kubernetes.

• Assign an imagePullSecrets to a serviceaccount that the pod will use to auto‐
matically mount the secret without having to declare it in the pod.spec. You can
patch the default service account for the namespace of your application and add
the imagePullSecrets to it directly. This automatically adds it to all pods in the
namespace:

Create the docker-registry secret first
kubectl create secret docker-registry registryKey --docker-server
myreg.azurecr.io --docker-username myreg --docker-password $up3r$3cr3tP@ssw0rd
--docker-email ignore@dummy.com

patch the default serviceaccount for the namespace you wish to configure
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kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name":
"registryKey"}]}'

• Use CI/CD capabilities to get secrets from a secure vault or encrypted store with
a Hardware Security Module (HSM) during the release pipeline. This allows for
separation of duties. Security management teams can create and encrypt the
secrets, and developers just need to reference the names of the secret expected.
This is also the preferred DevOps process to ensure a more dynamic application
delivery process.

RBAC
When working in large, distributed environments, it is very common that some type
of security mechanism is needed to prevent unauthorized access to critical systems.
There are numerous strategies around how to limit access to resources in computer
systems, but the majority all go through the same phases. Using an analogy of a com‐
mon experience such as flying to a foreign country can help explain the processes
that happen in systems like Kubernetes. We can use the common travler’s experience
with a passport, travel visa, and customs or border guards to show the process:

1. Passport (subject authentication). Usually you need to have a passport issued by
some government agency that will offer some sort of verification as to who you
are. This would be equivalent to a user account in Kubernetes. Kubernetes relies
on an external authority to authenticate users; however, service accounts are a
type of account that is managed directly by Kubernetes.

2. Visa or travel policy (authorization). Countries will have formal agreements to
accept travelers holding passports from other countries through formal short-
term agreements such as visas. The visas will also outline what the visitor may do
and for how long they may stay in the visiting country, depending on the specific
type of visa. This would be equivalent to authorization in Kubernetes. Kubernetes
has different authorization methods, but the most used is RBAC. This allows very
granular access to different API capabilities.

3. Border patrol or customs (admission control). When entering a foreign country,
usually there is a body of authority that will check the requisite documents,
including the passport and visa, and, in many cases, inspect what is being
brought into the country to ensure it abides by that country’s laws. In Kubernetes
this is equivalent to admission controllers. Admission controllers can allow, deny,
or change the requests into the API based upon rules and policies that are
defined. Kubernetes has many built-in admission controllers such as PodSecurity,
ResourceQuota, and ServiceAccount controllers. Kubernetes also allows for
dynamic controllers through the use of validating or mutating admission
controllers.
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The focus of this section is the least understood and the most avoided of these three
areas: RBAC. Before we outline some of the best practices, we first must present a pri‐
mer on Kubernetes RBAC.

RBAC Primer
The RBAC process in Kubernetes has three main components that need to be defined:
the subject, the rule, and the role binding.

Subjects
The first component is the subject, the item that is actually being checked for access.
The subject is usually a user, a service account, or a group. As mentioned earlier, users
as well as groups are handled outside of Kubernetes by the authorization module
used. We can categorize these as basic authentication, x.509 client certificates, or
bearer tokens. The most common implementations use either x.509 client certificates
or some type of bearer token using something like an OpenID Connect system such
as Azure Active Directory (Azure AD), Salesforce, or Google.

Service accounts in Kubernetes are different than user accounts in
that they are namespace bound, internally stored in Kubernetes;
they are meant to represent processes, not people, and are managed
by native Kubernetes controllers.

Rules
Simply stated, this is the actual list of actions that can be performed on a specific
object (resource) or a group of objects in the API. Verbs align to typical CRUD (Cre‐
ate, Read, Update, and Delete) type operations but with some added capabilities in
Kubernetes such as watch, list, and exec. The objects align to the different API
components and are grouped together in categories. Pod objects, as an example, are
part of the core API and can be referenced with apiGroup: "" whereas deployments
are under the app API Group. This is the real power of the RBAC process and proba‐
bly what intimidates and confuses people when creating proper RBAC controls.

Roles
Roles allow the definition of scope of the rules defined. Kubernetes has two types of
roles, role and clusterRole, the difference being that role is specific to a
namespace, and clusterRole is a cluster-wide role across all namespaces. An exam‐
ple Role definition with namespace scope would be as follows:

64 | Chapter 4: Configuration, Secrets, and RBAC



kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  namespace: default
  name: pod-viewer
rules:
- apiGroups: [""] # "" indicates the core API group
  resources: ["pods"]
  verbs: ["get", "watch", "list"]

RoleBindings
The RoleBinding allows a mapping of a subject like a user or group to a specific role.
Bindings also have two modes: roleBinding, which is specific to a namespace, and
clusterRoleBinding, which is across the entire cluster. Here’s an example RoleBind‐
ing with namespace scope:

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: noc-helpdesk-view
  namespace: default
subjects:
- kind: User
  name: helpdeskuser@example.com
  apiGroup: rbac.authorization.k8s.io
roleRef:
  kind: Role #this must be Role or ClusterRole
  name: pod-viewer # this must match the name of the Role or ClusterRole to 
bind to
  apiGroup: rbac.authorization.k8s.io

RBAC Best Practices
RBAC is a critical component of running a secure, dependable, and stable Kubernetes
environment. The concepts underlying RBAC can be complex; however, adhering to
a few best practices can ease some of the major stumbling blocks:

• Applications that are developed to run in Kubernetes rarely ever need an RBAC
role and role binding associated to it. Only if the application code actually inter‐
acts directly with the Kubernetes API directly does the application require RBAC
configuration.

• If the application does need to directly access the Kubernetes API to perhaps
change configuration depending on endpoints being added to a service, or if it
needs to list all of the pods in a specific namespace, the best practice is to create a
new service account that is then specified in the pod specification. Then, create a
role that has the least amount of privileges needed to accomplish its goal.
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• Use an OpenID Connect service that enables identity management and, if
needed, two-factor authentication. This will allow for a higher level of identity
authentication. Map user groups to roles that have the least amount of privileges
needed to accomplish the job.

• Along with the aforementioned practice, you should use Just in Time (JIT) access
systems to allow site reliability engineers (SREs), operators, and those who might
need to have escalated privileges for a short period of time to accomplish a very
specific task. Alternatively, these users should have different identities that are
more heavily audited for sign-on, and those accounts should have more elevated
privileges assigned by the user account or group bound to a role.

• Specific service accounts should be used for CI/CD tools that deploy into your
Kubernetes clusters. This ensures for auditability within the cluster and an
understanding of who might have deployed or deleted any objects in a cluster.

• If you’re using Helm to deploy applications, the default service account is Tiller,
deployed to kube-system. It is better to deploy Tiller into each namespace with a
service account specifically for Tiller that is scoped for that namespace. In the
CI/CD tool that calls the Helm install/upgrade command, as a prestep, initialize
the Helm client with the service account and the specific namespace for the
deployment. The service account name can be the same for each namespace, but
the namespace should be specific. It is important to call out that as of this publi‐
cation, Helm v3 is in alpha state and one of its core principles is that Tiller is no
longer needed to run in a cluster. An example Helm Init with a Service account
and namespace would look like this:

kubectl create namespace myapp-prod

kubectl create serviceaccount tiller --namespace myapp-prod

cat  <<EOF | kubectl apply -f -
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: tiller
  namespace: myapp-prod
rules:
- apiGroups: ["", "batch", "extensions", "apps"]
  resources: ["*"]
  verbs: ["*"]
EOF

cat <<EOF | kubectl apply -f -
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: tiller-binding
  namespace: myapp-prod
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subjects:
- kind: ServiceAccount
  name: tiller
  namespace: myapp-prod
roleRef:
  kind: Role
  name: tiller
  apiGroup: rbac.authorization.k8s.io
  EOF

helm init --service-account=tiller --tiller-namespace=myapp-prod

helm install ./myChart --name myApp --namespace myapp-prod --set global.name-
space=myapp-prod

Some public Helm charts do not have value entries for namespace
choices to deploy the application components. This might require
customization of the Helm chart directly or using an elevated Tiller
account that can deploy to any namespace and has rights to create
namespaces.

• Limit any applications that require watch and list on the Secrets API. This basi‐
cally allows the application or the person who deployed the pod to view the
secrets in that namespace. If an application needs to access the Secrets API for
specific secrets, limit using get on any specific secrets that the application needs
to read outside of those that it is directly assigned.

Summary
Principles for developing applications for cloud native delivery is a topic for another
day, but it is universally accepted that strict separation of configuration from code is a
key principal for success. With native objects for nonsensitive data, the ConfigMap
API, and for sensitive data, the Secrets API, Kubernetes can now manage this process
in a declarative approach. As more and more critical data is represented and stored
natively in the Kubernetes API, it is critical to secure access to those APIs through
proper gated security processes such as RBAC and integrated authentication systems.

As you’ll see throughout the rest of this book, these principles permeate every aspect
of the proper deployment of services into a Kubernetes platform to build a stable,
reliable, secure, and robust system.
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CHAPTER 5

Continuous Integration, Testing,
and Deployment

In this chapter, we look at the key concepts of how to integrate a continuous integra‐
tion/continuous deployment (CI/CD) pipeline to deliver your applications to Kuber‐
netes. Building a well-integrated pipeline will enable you to deliver applications to
production with confidence, so here we look at the methods, tools, and processes to
enable CI/CD in your environment. The goal of CI/CD is to have a fully automated
process, from a developer checking in code to rolling out the new code to production.
You want to avoid manually rolling out updates to your apps deployed to Kubernetes
because it can be very error prone. Manually managing application updates in Kuber‐
netes leads to configuration drift and fragile deployment updates, and overall agility
delivering an application is lost.

We cover the following topics in this chapter:

• Version control
• CI
• Testing
• Tagging images
• CD
• Deployment strategies
• Testing Deployments
• Chaos testing

We also go through an example CI/CD pipeline, which consists of the following tasks:
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• Pushing code changes to the Git repository
• Running a build of the application code
• Running test against the code
• Building a container image on a successful test
• Pushing the container image to a container registry
• Deploying the application to Kubernetes
• Running a test against a deployed application
• Performing rolling upgrades on Deployments

Version Control
Every CI/CD pipeline starts with version control, which maintains a running history
of application and configuration code changes. Git has become the industry standard
as a source-control management platform, and every Git repository will contain a
master branch. A master branch contains your production code. You will have other
branches for feature and development work that eventually will also be merged to
your master branch. There are many ways to set up a branching strategy, and the
setup will be very dependent on the organization structure and separation of duties.
We find that including both application code and configuration code, such as a
Kubernetes manifest or Helm charts, helps promote good DevOps principles of com‐
munication and collaboration. Having both application developers and operation
engineers collaborate in a single repository builds confidence in a team to deliver an
application to production.

Continuous Integration
CI is the process of integrating code changes continuously into a version-control
repository. Instead of committing large changes less often, you commit smaller
changes more often. Each time a code change is committed to the repository, a build
is kicked off. This allows you to have a quicker feedback loop into what might have
broken the application if problems indeed arise. At this point you might be asking,
“Why do I need to know about how the application is built, isn’t that the application
developer’s role?” Traditionally, this might have been the case, but as companies move
toward embracing a DevOps culture, the operations team comes closer to the applica‐
tion code and software development workflows.

There are many solutions that provide CI, with Jenkins being one of the more popu‐
lar tools.
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Testing
The goal of running tests in the pipeline is to quickly provide a feedback loop for
code changes that break the build. The language that you’re using will determine the
testing framework you use. For example, Go applications can use go test for run‐
ning a suite of unit tests against your code base. Having an extensive test suite helps
to avoid delivering bad code into your production environment. You’ll want to ensure
that if tests fail in the pipeline, the build fails after the test suite runs. You don’t want
to build the container image and push it to a registry if you have failing tests against
your code base.

Again, you might be asking, “Isn’t creating tests a developer’s job?” As you begin
automating the delivery of infrastructure and applications to production, you need to
think about running automated tests against all of the pieces of the code base. For
example, in Chapter 2, we talked about using Helm to package applications for
Kubernetes. Helm includes a tool called helm lint, which runs a series of tests
against a chart to examine any potential issues with the chart provided. There are
many different tests that need to be run in an end-to-end pipeline. Some are the
developer’s responsibility, like unit testing for the application, but others, like smoke
testing, will be a joint effort. Testing the code base and its delivery to production is a
team effort and needs to be implemented end to end.

Container Builds
When building your images, you should optimize the size of the image. Having a
smaller image decreases the time it takes to pull and deploy the image, and also
increases the security of the image. There are multiple ways of optimizing the image
size, but some do have trade-offs. The following strategies will help you build the
smallest image possible for your application:

Multistage builds
These allow you to remove the dependencies not needed for your applications to
run. For example, with Golang, we don’t need all the build tools used to build the
static binary, so multistage builds allow you in a single Dockerfile to run a build
step with the final image containing only the static binary that’s needed to run the
application.

Distroless base images
These remove all the unneeded binaries and shells from the image. This really
reduces the size of the image and increases the security. The trade-off with distro‐
less images is you don’t have a shell, so you can’t attach a debugger to the image.
You might think this is great, but it can be a pain to debug an application. Distro‐
less images contain no package manager, shell, or other typical OS packages, so
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you might not have access to the debugging tools you are accustomed to with a
typical OS.

Optimized base images
These are images that focus on removing the cruft out of the OS layer and pro‐
vide a slimmed-down image. For example, Alpine provides a base image that
starts at just 10 MB, and it also allows you to attach a local debugger for local
development. Other distros also typically offer an optimized base image, such as
Debian’s Slim image. This might be a good option for you because its optimized
images give you capabilities you expect for development while also optimizing
for image size and lower security exposure.

Optimizing your images is extremely important and often overlooked by users. You
might have reasons due to company standards for OSes that are approved for use in
the enterprise, but push back on these so that you can maximize the value of
containers.

We have found that companies starting out with Kubernetes tend to be successful
with using their current OS but then choose a more optimized image, like Debian
Slim. After you mature in operationalizing and developing against a container envi‐
ronment, you’ll be comfortable with distroless images.

Container Image Tagging
Another step in the CI pipeline is to build a Docker image so that you have an image
artifact to deploy to an environment. It’s important to have an image tagging strategy
so that you can easily identify the versioned images you have deployed to your envi‐
ronments. One of the most important things we can’t preach enough about is not to
use “latest” as an image tag. Using that as an image tag is not a version and will lead to
not having the ability to identify what code change belongs to the rolled-out image.
Every image that is built in the CI pipeline should have a unique tag for the built
image.

There are multiple strategies we’ve found to be effective when tagging images in the
CI pipeline. The following strategies allow you to easily identify the code changes and
the build with which they are associated:

BuildID
When a CI build kicks off, it has a buildID associated with it. Using this part of
the tag allows you to reference which build assembled the image.

Build System-BuildID
This one is the same as BuildID but adds the Build System for users who have
multiple build systems.
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Git Hash
On new code commits, a Git hash is generated, and using the hash for the tag
allows you to easily reference which commit generated the image.

githash-buildID
This allows you to reference both the code commit and the buildID that gener‐
ated the image. The only caution here is that the tag can be kind of long.

Continuous Deployment
CD is the process by which changes that have passed successfully through the CI
pipeline are deployed to production without human intervention. Containers provide
a great advantage for deploying changes into production. Container images become
an immutable object that can be promoted through dev and staging and into produc‐
tion. For example, one of the major issues we’ve always had has been maintaining
consistent environments. Almost everyone has experienced a Deployment that works
fine in staging, but when it gets promoted to production, it breaks. This is due to hav‐
ing configuration drift, with libraries and versioning of components differing in each
environment. Kubernetes gives us a declarative way to describe our Deployment
objects that can be versioned and deployed in a consistent manner.

One thing to keep in mind is that you need to have a solid CI pipeline set up before
focusing on CD. If you don’t have a robust set of tests to catch issues early in the pipe‐
line, you’ll end up rolling bad code to all your environments.

Deployment Strategies
Now that we learned the principles of CD, let’s take a look at the different rollout
strategies that you can use. Kubernetes provides multiple strategies to roll out new
versions of your application. And even though it has a built-in mechanism to provide
rolling updates, you can also utilize some more advanced strategies. Here, we exam‐
ine the following strategies to deliver updates to your application:

• Rolling updates
• Blue/green deployments
• Canary deployments

Rolling updates are built into Kubernetes and allow you to trigger an update to the
currently running application without downtime. For example, if you took your
frontend app that is currently running frontend:v1 and updated the Deployment to
frontend:v2, Kubernetes would update the replicas in a rolling fashion to frontend:v2.
Figure 5-1 depicts a rolling update.
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Figure 5-1. A Kubernetes rolling update

A Deployment object also lets you configure the maximum amount of replicas to be
updated and the maximum unavailable pods during the rollout. The following mani‐
fest is an example of how you specify the rolling update strategy:

kind: Deployment
apiVersion: v1
metadata:
  name: frontend
spec:
  replicas: 3
  template:
    spec:
      containers:
      - name: frontend
        image: brendanburns/frontend:v1
  strategy:
    type: RollingUpdate
    rollingUpdate:
      maxSurge: 1 # Maximum amount of replicas to update at one time
      maxUnavailable: 1 # Maximum amount of replicas unavailable during rollout

You need to be cautious with rolling updates because using this strategy can cause
dropped connections. To deal with this issue, you can utilize readiness probes and
preStop life cycle hooks. The readiness probe ensures that the new version deployed is
ready to accept traffic, whereas the preStop hook can ensure that connections are
drained on the current deployed application. The life cycle hook is called before the
container exits and is synchronous, so it must complete before the final termination
signal is given. The following example implements a readiness probe and life cycle
hook:
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kind: Deployment
apiVersion: v1
metadata:
  name: frontend
spec:
  replicas: 3
  template:
    spec:
      containers:
      - name: frontend
        image: brendanburns/frontend:v1
        livenessProbe:
          # ...
        readinessProbe:
          httpGet:
            path: /readiness # probe endpoint
            port: 8888
        lifecycle:
          preStop:
            exec:
              command: ["/usr/sbin/nginx","-s","quit"]
  strategy:
    # ...

The preStop life cycle hook in this example will gracefully exit NGINX, whereas a
SIGTERM conducts a nongraceful, quick exit.

Another concern with rolling updates is that you now have two versions of the appli‐
cation running at the same time during the rollover. Your database schema needs to
support both versions of the application. You can also use a feature flag strategy in
which your schema indicates the new columns created by the new app version. After
the rolling update has completed, the old columns can be removed.

We have also defined a readiness and liveness probe in our Deployment manifest. A
readiness probe will ensure that your application is ready to serve traffic before
putting it behind the service as an endpoint. The liveness probe ensures that your
application is healthy and running, and restarts the pod if it fails its liveness probe.
Kubernetes can automatically restart a failed pod only if the pod exits on error. For
example, the liveness probe can check its endpoint and restart it if we had a deadlock
from which the pod did not exit.

Blue/green deployments allow you to release your application in a predictable manner.
With blue/green deployments, you control when the traffic is shifted over to the new
environment, so it gives you a lot of control over the rollout of a new version of your
application. With blue/green deployments, you are required to have the capacity to
deploy both the existing and new environment at the same time. These types of
deployments have a lot of advantages, such as easily switching back to your previous
version of the application. There are some things that you need to consider with this
deployment strategy, however:
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• Database migrations can become difficult with this deployment option because
you need to consider in-flight transactions and schema update compatibility.

• There is the risk of accidental deletion of both environments.
• You need extra capacity for both environments.
• There are coordination issues for hybrid deployments in which legacy apps can’t

handle the deployment.

Figure 5-2 depicts a blue/green deployment.

Figure 5-2. A blue/green deployment

Canary deployments are very similar to blue/green deployments, but they give you
much more control over shifting traffic to the new release. Most modern ingress
implementations will give you the ability to release a percentage of traffic to a new
release, but you can also implement a service mesh technology, like Istio, Linkerd, or
HashiCorp Consul, which give you a number of features that help implement this
deployment strategy.

Canary deployments allow you to test new features for only a subset of users. For
example, you might roll out a new version of an application and only want to test the
deployment for 10% of your user base. This allows you to reduce the risk of a bad
deployment or broken features to a much smaller subset of users. If there are no
errors with the deployment or new features, you can begin shifting a greater percent‐
age of traffic to the new version of the application. There are also some more
advanced techniques that you can use with canary deployments in which you release
to only a specific region of users or just target only users with a specific profile. These
types of releases are often referred to as A/B or dark releases because users are
unaware they are testing new feature deployments.
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With canary deployments, you have some of the same considerations that you have
with blue/green deployments, but there are some additional considerations as well.
You must have:

• The ability to shift traffic to a percentage of users
• A firm knowledge of steady state to compare against a new release
• Metrics to understand whether the new release is in a “good” or “bad” state

Figure 5-3 provides an example of a canary deployment.

Figure 5-3. A canary deployment

Canary releases also suffer from having multiple versions of the
application running at the same time. Your database schema needs
to support both versions of the application. When using these
strategies, you’ll need to really focus on how to handle dependent
services and having multiple versions running. This includes hav‐
ing strong API contracts and ensuring that your data services sup‐
port the multiple versions you have deployed at the same time.

Testing in Production
Testing in production helps you to build confidence in the resiliency, scalability, and
UX of your application. This comes with the caveat that testing in production doesn’t
come without challenges and risk, but it’s worth the effort to ensure reliability in your
systems. There are important aspects you need to address up front when embarking
on the implementation. You need to ensure that you have an in-depth observability
strategy in place, in which you have the ability to identify the effects of testing in pro‐
duction. Without being able to observe metrics that affect the end users’ experience of
your applications, you won’t have a clear indication of what to focus on when trying
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to improve the resiliency of your system. You also need a high degree of automation
in place to be able to automatically recover from failures that you inject into your
systems.

There are many tools that you’ll need to implement to reduce risk and effectively test
your systems when they’re in production. Some of the tools we have already discussed
in this chapter, but there are a few new ones, like distributed tracing, instrumentation,
chaos engineering, and traffic shadowing. To recap, here are the tools we have already
mentioned:

• Canary deployments
• A/B testing
• Traffic shifting
• Feature flags

Chaos engineering was developed by Netflix. It is the practice of deploying experi‐
ments into live production systems to discover weaknesses within those systems.
Chaos engineering allows you to learn about the behavior of your system by observ‐
ing it during a controlled experiment. Following are the steps that you want to imple‐
ment before doing a “game-day” experiment:

1. Build a hypothesis and learn about your steady state.
2. Have a varying degree of real-world events that can affect the system.
3. Build a control group and experiment to compare to steady state.
4. Perform experiments to form the hypothesis.

It’s extremely important that when you’re running experiments, you minimize the
“blast radius” to ensure that the issues that might arise are minimal. You’ll also want
to ensure that when you’re building experiments, you focus on automating them,
given that running experiments can be labor intensive.

By this point, you might be asking, “Why wouldn’t I just test in staging?” We find
there are some inherent problems when testing in staging, such as the following:

• Nonidentical deployment of resources.
• Configuration drift from production.
• Traffic and user behavior tend to be generated synthetically.
• The number of requests generated don’t mimic a real workload.
• Lack of monitoring implemented in staging.
• The data services deployed contain differing data and load than in production.
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We can’t stress this enough: ensure that you have solid confidence in the monitoring
you have in place for production, because this practice tends to fail users who don’t
have adequate observability of their production systems. Also, starting with smaller
experiments to first learn about your experiments and their effects will help build
confidence.

Setting Up a Pipeline and Performing a Chaos Experiment
The first step in the process is to get a GitHub repository forked so that you can have
your own repository to use through the chapter. You will need to use the GitHub
interface to fork the repository.

Setting Up CI
Now that you have learned about CI, you will set up a build of the code that we
cloned previously.

For this example, we use the hosted drone.io. You’ll need to sign up for a free account.
Log in with your GitHub credentials (this registers your repositories in Drone and
allows you to synchronize the repositories). After you’re logged in to Drone, select
Activate on your forked repository. The first thing that you need to do is add some
secrets to your settings so that you can push the app to your Docker Hub registry and
also deploy the app to your Kubernetes cluster.

Under your repository in Drone, click Settings and add the following secrets (see
Figure 5-4):

• docker_username

• docker_password

• kubernetes_server

• kubernetes_cert

• kubernetes_token

The Docker username and password will be whatever you used to register on Docker
Hub. The following steps show you how to create a Kubernetes service account and
certificate and retrieve the token.

For the Kubernetes server, you will need a publicly available Kubernetes API
endpoint.
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Figure 5-4. Drone secrets configuration

You will need cluster-admin privileges on your Kubernetes cluster
to perform the steps in this section.

You can retrieve your API endpoint by using the following command:

kubectl cluster-info

You should see something like the following: Kubernetes master is running at https://
kbp.centralus.azmk8s.io:443. You’ll store this in the kubernetes_server secret.

Now let’s create a service account that Drone will use to connect to the cluster. Use
the following command to create the serviceaccount:

kubectl create serviceaccount drone

Now use the following command to create a clusterrolebinding for the serviceac
count:

kubectl create clusterrolebinding drone-admin \
  --clusterrole=cluster-admin \
  --serviceaccount=default:drone
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Next, retrieve your serviceaccount token:

TOKENNAME=`kubectl -n default get serviceaccount/drone -o json-
path='{.secrets[0].name}'`
TOKEN=`kubectl -n default get secret $TOKENNAME -o jsonpath='{.data.token}' | 
base64 -d`
echo $TOKEN

You’ll want to store the output of the token in the kubernetes_token secret.

You will also need the user certificate to authenticate to the cluster, so use the follow‐
ing command and paste the ca.crt for the kubernetes_cert secret:

kubectl get secret $TOKENNAME -o yaml | grep 'ca.crt:'

Now, build your app in a Drone pipeline and then push it to Docker Hub.

The first step is the build step, which will build your Node.js frontend. Drone utilizes
container images to run its steps, which gives you a lot of flexibility in what you can
do with it. For the build step, use a Node.js image from Docker Hub:

pipeline:
  build:
    image: node
    commands:
      - cd frontend
      - npm i redis --save

When the build completes, you’ll want to test it, so we include a test step, which will
run npm against the newly built app:

test:
    image: node
    commands:
      - cd frontend
      - npm i redis --save
      - npm test

Now that you have successfully built and tested your app, you next move on to a pub‐
lish step to create a Docker image of the app and push it to Docker Hub.

In the .drone.yml file, make the following code change:

repo: <your-registry>/frontend

publish:
    image: plugins/docker
    dockerfile: ./frontend/Dockerfile
    context: ./frontend
    repo: dstrebel/frontend
    tags: [latest, v2]
    secrets: [ docker_username, docker_password ]

After the Docker build step finishes, it will push the image to your Docker registry.
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Setting Up CD
For the deployment step in your pipeline, you will push your application to your
Kubernetes cluster. You will use the deployment manifest that is under the frontend
app folder in your repository:

kubectl:
    image: dstrebel/drone-kubectl-helm
    secrets: [ kubernetes_server, kubernetes_cert, kubernetes_token ]
    kubectl: "apply -f ./frontend/deployment.yaml"

After the pipeline finishes its deployment, you will see the pods running in your clus‐
ter. Run the following command to confirm that the pods are running:

kubectl get pods

You can also add a test step that will retrieve the status of the deployment by adding
the following step in your Drone pipeline:

  test-deployment:
    image: dstrebel/drone-kubectl-helm
    secrets: [ kubernetes_server, kubernetes_cert, kubernetes_token ]
    kubectl: "get deployment frontend"

Performing a Rolling Upgrade
Let’s demonstrate a rolling upgrade by changing a line in the frontend code. In the
server.js file, change the following line and then commit the change:

console.log('api server is running.');

You will see the deployment rolling out and rolling updates happening to the existing
pods. After the rolling update finishes, you’ll have the new version of the application
deployed.

A Simple Chaos Experiment
There are a variety of tools in the Kubernetes ecosystem that can help with perform‐
ing chaos experiments in your environment. They range from sophisticated hosted
Chaos as a Service solutions to basic chaos experiment tools that kill pods in your
environment. Following are some of the tools with which we’ve seen users have
success:

Gremlin
Hosted chaos service that provides advanced features for running chaos
experiments

PowerfulSeal
Open source project that provides advanced chaos scenarios
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Chaos Toolkit
Open source project with a mission to provide a free, open, and community-
driven toolkit and API to all the various forms of chaos engineering tools

KubeMonkey
Open source tool that provides basic resiliency testing for pods in your cluster

Let’s set up a quick chaos experiment to test the resiliency of your application by
automatically terminating pods. For this experiment, we’ll use Chaos Toolkit:

pip install -U chaostoolkit

pip install chaostoolkit-kubernetes

export FRONTEND_URL="http://$(kubectl get svc frontend -o jsonpath="{.sta
tus.loadBalancer.ingress[*].ip}"):8080/api/"

chaos run experiment.json

Best Practices for CI/CD
Your CI/CD pipeline won’t be perfect on day one, but consider some of the following
best practices to iteratively improve on the pipeline:

• With CI, focus on automation and providing quick builds. Optimizing the build
speed will provide developers quick feedback if their changes have broken the
build.

• Focus on providing reliable tests in your pipeline. This will give developers rapid
feedback on issues with their code. The faster the feedback loop to developers,
the more productive they’ll become in their workflow.

• When deciding on CI/CD tools, ensure that the tools allow you to define the
pipeline as code. This will allow you to version-control the pipeline with your
application code.

• Ensure that you optimize your images so that you can reduce the size of the
image and also reduce the attack surface when running the image in production.
Multistage Docker builds allow you to remove packages not needed for the appli‐
cation to run. For example, you might need Maven to build the application, but
you don’t need it for the actual running image.

• Avoid using “latest” as an image tag, and utilize a tag that can be referenced back
to the buildID or Git commit.

• If you are new to CD, utilize Kubernetes rolling upgrades to start out. They are
easy to use and will get you comfortable with deployment. As you become more
comfortable and confident with CD, look at utilizing blue/green and canary
deployment strategies.

Best Practices for CI/CD | 83



• With CD, ensure that you test how client connections and database schema
upgrades are handled in your application.

• Testing in production will help you build reliability into your application, and
ensure that you have good monitoring in place. With testing in production, also
start at a small scale and limit the blast radius of the experiment.

Summary
In this chapter, we discussed the stages of building a CI/CD pipeline for your applica‐
tions, which let you reliably deliver software with confidence. CI/CD pipelines help
reduce risk and increase throughput of delivering applications to Kubernetes. We also
discussed the different deployment strategies that can be utilized for delivering
applications.
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CHAPTER 6

Versioning, Releases, and Rollouts

One of the main complaints of traditional monolithic applications is that over time
they begin to grow too large and unwieldy to properly upgrade, version, or modify at
the speed the business requires. Many can argue that this is one of the main critical
factors that led to more Agile development practices and the advent of microservice
architectures. Being able to quickly iterate on new code, solve new problems, or fix
hidden problems before they become major issues, as well as the promise of zero-
downtime upgrades, are all goals that development teams strive for in this ever-
changing internet economy world. Practically, these issues can be solved with proper
processes and procedures in place, no matter the type of system, but this usually
comes at a much higher cost of both technology and human capital to maintain.

The adoption of containers as the runtime for application code allows for the isola‐
tion and composability that was helpful in designing systems that could get close, but
still required a high level of human automation or system management to maintain at
a dependable level over large system footprints. As the system grew, more brittleness
was introduced, and systems engineers began to build complex automation processes
to deliver on complex release, upgrade, and failure detection mechanisms. Service
orchestrators such as Apache Mesos, HashiCorp Nomad, and even specialized
container-based orchestrators such as Kubernetes and Docker Swarm evolved this
into more primitive components to their runtime. Now, systems engineers can solve
more complex system problems as the table stakes have been elevated to include the
versioning, release, and deployment of applications into the system.

Versioning
This section is not meant to be a primer on software versioning and the history
behind it; there are countless articles and computer science course books on the sub‐
ject. The main thing is to pick a pattern and stick with it. The majority of software
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companies and developers have agreed that some form of semantic versioning is the
most useful, especially in a microservice architecture in which a team that writes a
certain microservice will depend on the API compatibility of other microservices that
make up the system.

For those new to semantic versioning, the basics are that it follows a three-part ver‐
sion number in a pattern of major version, minor version, and patch, usually expressed
in a dot notation such as 1(major).2(minor).3(patch). The patch signifies an incre‐
mental release that includes a bug fix or very minor change that has no API changes.
The minor version signifies updates that might have new API changes but is back‐
ward compatible with the previous version. This is a key attribute for developers
working with other microservices they might not be involved in developing. Know‐
ing that I have my service written to communicate with version 1.4.7 of another
microservice that has been recently upgraded to 1.5.7 should signify that I might not
need to change my code unless I want to take advantage of any new API features. The
major version is a breaking change increment to the code. In most cases, the API is
no longer compatible between major versions of the same code. There are many
slight modifications to this process, including a “4” version to indicate the stage of the
software in its development life cycle, such as 1.4.7.0 for alpha code, and 1.4.7.3 for
release. The most important thing is that there is consistency across the system.

Releases
In truth, Kubernetes does not really have a release controller, so there is no native
concept of a release. This is usually added to a Deployment metadata.labels specifi‐
cation and/or in the pod.spec.template.metadata.label specification. When to
include either is very important, and based on how CD is used to update changes to
deployments, it can have varied effects. When Helm for Kubernetes was introduced,
one of its main concepts was the notion of a release to differentiate the running
instance of the same Helm chart in a cluster. This concept is easily reproducible
without Helm; however, Helm natively keeps track of releases and their history, so
many CD tools integrate Helm into their pipelines to be the actual release service.
Again, the key here is consistency in how versioning is used and where it is surfaced
in the system state of the cluster.

Release names can be quite useful if there is institutional agreement as to the defini‐
tion of certain names. Often labels such as stable or canary are used, which helps to
also give some kind of operational control when tools such as service meshes are
added to make fine-grained routing decisions. Large organizations that drive numer‐
ous changes for different audiences will also adopt a ring architecture that can also be
denoted such as ring-0, ring-1, and so on.

This topic requires a little side trip into the specifics of labels in the Kubernetes
declarative model. Labels themselves are very much free form and can be any
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key/value pair that follows the syntactical rules of the API. The key is not really the
content but how each controller handles labels, changes to labels, and selector match‐
ing of labels. Jobs, Deployments, ReplicaSets, and DaemonSets support selector-based
matching of pods via labels through direct mapping or set-based expressions. It is
important to understand that label selectors are immutable after they are created,
which means if you add a new selector and the pod’s labels have a corresponding
match, a new ReplicaSet is made, not an upgrade to an existing ReplicaSet. This
becomes very important to understand when dealing with rollouts, which we discuss
next.

Rollouts
Prior to the Deployment controller being introduced in Kubernetes, the only mecha‐
nism that existed to control how applications were rolled out by the Kubernetes con‐
troller process was using the command-line interface (CLI) command kubectl
rolling-update on the specific replicaController that was to be updated. This was
very difficult for declarative CD models because this was not part of the state of the
original manifest. One had to carefully ensure that manifests were updated correctly,
versioned properly so as to not accidentally roll the system back, and archived when
no longer needed. The Deployment controller added the ability to automate this
update process using a specific strategy and then allowing the system to read the
declarative new state based on changes to the spec.template of the deployment. This
last fact is often misunderstood by early users of Kubernetes and causes frustration
when they change a label in the Deployment metadata fields, reapply a manifest, and
no update has been triggered. The Deployment controller is able to determine
changes to the specification and will take action to update the Deployment based on a
strategy that is defined by the specification. Kubernetes deployments support two
strategies, rollingUpdate and recreate, the former being the default.

If a rolling update is specified, the deployment will create a new ReplicaSet to scale to
the number of required replicas, and the old ReplicaSet will scale down to zero based
on specific values for maxUnavailble and maxSurge. In essence, those two values will
prevent Kubernetes from removing older pods until a sufficient number of newer
pods have come online, and will not create new pods until a certain number of old
pods have been removed. The nice thing is that the Deployment controller will keep a
history of the updates, and through the CLI, you can roll back deployments to previ‐
ous versions.

The recreate strategy is a valid strategy for certain workloads that can handle a com‐
plete outage of the pods in a ReplicaSet with little to no degradation of service. In this
strategy the Deployment controller will create a new ReplicaSet with the new configu‐
ration and will delete the prior ReplicaSet before bringing the new pods online. Serv‐
ices that sit behind queue-based systems are an example of a service that could handle
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this type of disruption, because messages will queue while waiting for the new pods to
come online, and message processing will resume as soon as the new pods come
online.

Putting It All Together
Within a single service deployment, a few key areas are affected by versioning,
release, and rollout management. Let’s examine an example deployment and then
break down the specific areas of interest as they relate to best practices:

# Web Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
  name: gb-web-deploy
  labels:
    app: guest-book
    appver: 1.6.9
    environment: production
    release: guest-book-stable
    release number: 34e57f01
spec:
  strategy:
    type: rollingUpdate
    rollingUpdate:
      maxUnavailbale: 3
      maxSurge: 2
  selector:
    matchLabels:
      app: gb-web
      ver: 1.5.8
    matchExpressions:
      - {key: environment, operator: In, values: [production]}
  template:
    metadata:
      labels:
        app: gb-web
        ver: 1.5.8
        environment: production
    spec:
      containers:
      - name: gb-web-cont
        image: evillgenius/gb-web:v1.5.5
        env:
        - name: GB_DB_HOST
          value: gb-mysql
        - name: GB_DB_PASSWORD
          valueFrom:
            secretKeyRef:
              name: mysql-pass
              key: password
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        resources:
          limits:
            memory: "128Mi"
            cpu: "500m"
        ports:
        - containerPort: 80
---
# DB Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
  name: gb-mysql
  labels:
    app: guest-book
    appver: 1.6.9
    environment: production
    release: guest-book-stable
    release number: 34e57f01
spec:
  selector:
    matchLabels:
      app: gb-db
      tier: backend
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: gb-db
        tier: backend
        ver: 1.5.9
        environment: production
    spec:
      containers:
      - image: mysql:5.6
        name: mysql
        env:
        - name: MYSQL_PASSWORD
          valueFrom:
            secretKeyRef:
              name: mysql-pass
              key: password
        ports:
        - containerPort: 3306
          name: mysql
        volumeMounts:
        - name: mysql-persistent-storage
          mountPath: /var/lib/mysql
      volumes:
      - name: mysql-persistent-storage
        persistentVolumeClaim:
          claimName: mysql-pv-claim
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---
# DB Backup Job
apiVersion: batch/v1
kind: Job
metadata:
  name: db-backup
  labels:
    app: guest-book
    appver: 1.6.9
    environment: production
    release: guest-book-stable
    release number: 34e57f01
  annotations:
    "helm.sh/hook": pre-upgrade
    "helm.sh/hook": pre-delete
    "helm.sh/hook": pre-rollback
    "helm.sh/hook-delete-policy": hook-succeeded
spec:
  template:
    metadata:
      labels:
        app: gb-db-backup
        tier: backend
        ver: 1.6.1
        environment: production
    spec:
      containers:
      - name: mysqldump
        image: evillgenius/mysqldump:v1
        env:
        - name: DB_NAME
          value: gbdb1
        - name: GB_DB_HOST
          value: gb-mysql
        - name: GB_DB_PASSWORD
          valueFrom:
            secretKeyRef:
              name: mysql-pass
              key: password
        volumeMounts:
          - mountPath: /mysqldump
            name: mysqldump
      volumes:
        - name: mysqldump
          hostPath:
            path: /home/bck/mysqldump
      restartPolicy: Never
  backoffLimit: 3

Upon first inspection, things might look a little off. How can a deployment have a
version tag and the container image the deployment uses have a different version tag?
What will happen if one changes and the other does not? What does release mean in
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this example, and what effect on the system will that have if it changes? If a certain
label is changed, when will it trigger an update to my deployment? We can find the
answers to these questions by looking at some of the best practices for versioning,
releases, and rollouts.

Best Practices for Versioning, Releases, and Rollouts
Effective CI/CD and the ability to offer reduced or zero downtime deployments are
both dependent on using consistent practices for versioning and release management.
The best practices noted below can help to define consistent parameters that can
assist DevOps teams in delivering smooth software deployments:

• Use semantic versioning for the application in its entirety that differs from the
version of the containers and the version of the pods deployment that make up
the entire application. This allows for independent life cycles of the containers
that make up the application and the application as a whole. This can become
quite confusing at first, but if a principled hierarchical approach is taken to when
one changes the other, you can easily track it. In the previous example, the con‐
tainer itself is currently on v1.5.5; however, the pod specification is a 1.5.8,
which could mean that changes were made to the pod specification, such as new
ConfigMaps, additional secrets, or updated replica values, but the specific con‐
tainer used has not changed its version. The application itself, the entire guest‐
book application and all of its services, is at 1.6.9, which could mean that
operations made changes along the way that were beyond just this specific ser‐
vice, such as other services that make up the entire application.

• Use a release and release version/number label in your deployment metadata to
track releases from CI/CD pipelines. The release name and release number
should coordinate with the actual release in the CI/CD tool records. This allows
for traceability through the CI/CD process into the cluster and allows for easier
rollback identification. In the previous example, the release number comes
directly from the release ID of the CD pipeline that created the manifest.

• If Helm is being used to package services for deployment into Kubernetes, take
special care to bundle together those services that need to be rolled back or
upgraded together into the same Helm chart. Helm allows for easy rollback of all
components of the application to bring the state back to what it was before the
upgrade. Because Helm actually processes the templates and all of the Helm
directives before passing a flattened YAML configuration, the use of life cycle
hooks allows for proper ordering of the application of specific templates. Opera‐
tors can use proper Helm life cycle hooks to ensure that upgrades and rollback
will happen correctly. The previous example for the Job specification uses Helm
life cycle hooks to ensure that the template runs a backup of the database before a
rollback, upgrade, or delete of the Helm release. It also ensures that the Job is
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deleted after the job is run successfully, which, until the TTL Controller comes
out of alpha in Kubernetes, would require manual cleanup.

• Agree on a release nomenclature that makes sense for the operational tempo of
the organization. Simple stable, canary, and alpha states are quite adequate for
most situations.

Summary
Kubernetes has allowed for more complex, Agile development processes to be adop‐
ted within companies large and small. The ability to automate much of the complex
processes that would usually require large amounts of human and technical capital
has now been democratized to allow for even startups to take advantage of this cloud
pattern with relative ease. The true declarative nature of Kubernetes really shines
when planning the proper use of labels and using native Kubernetes controller capa‐
bilities. By properly identifying operational and development states within the declar‐
ative properties of the applications deployed into Kubernetes, organizations can tie in
tooling and automation to more easily manage the complex processes of upgrades,
rollouts, and rollbacks of capabilities.
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CHAPTER 7

Worldwide Application Distribution
and Staging

So far throughout this book, we have seen a number of different practices for build‐
ing, developing, and deploying applications, but there is a whole different set of con‐
cerns when it comes to deploying and managing an application with a worldwide
footprint.

There are many different reasons why an application might need to scale to a global
deployment. The first and most obvious one is simply scale. It might be that your
application is so successful or mission critical that it simply needs to be deployed
around the world in order to provide the capacity needed for its users. Examples of
such applications include a worldwide API gateway for a public cloud provider, a
large-scale IoT product with a worldwide footprint, a highly successful social net‐
work, and more.

Although there are relatively few of us who will build out systems that require world‐
wide scale, many more applications require a worldwide footprint for latency. Even
with containers and Kubernetes there is no getting around the speed of light, and thus
to minimize latency to our applications, it is sometimes necessary to distribute our
applications around the world to minimize the distance to our users.

Finally, an even more common reason for global distribution is locality. Either for
reasons of bandwidth (e.g., a remote sensing platform) or data privacy (geographic
restrictions), it is sometimes necessary to deploy an application in specific locations
for the application to be possible or successful.

In all of these cases, your application is no longer simply present in a small handful of
production clusters. Instead it is distributed across tens to hundreds of different geo‐
graphic locations, and the management of these locations, as well as the demands of
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rolling out a globally reliable service, is a significant challenge. This chapter covers
approaches and practices for doing this successfully.

Distributing Your Image
Before you can even consider running your application around the world, you need
to have that image available in clusters located around the globe. The first thing to
consider is whether your image registry has automatic geo-replication. Many image
registries provided by cloud providers will automatically distribute your image
around the world and resolve a request for that image to the storage location nearest
to the cluster from which you are pulling the image. Many clouds enable you to
decide where you want to replicate the image; for example, you might know of loca‐
tions where you are not going to be present. An example of such a registry is the
Microsoft Azure container registry, but others provide similar services. If you use a
cloud-provided registry that supports geo-replication, distributing your image
around the world is simple. You push the image into the registry, select the regions
for geo-distribution, and the registry takes care of the rest.

If you are not using a cloud registry, or your provider does not support automatic
geo-distribution of images, you will need to solve that problem yourself. One option
is to use a registry located in a specific location. There are several concerns about
such an approach. Image pull latency often dictates the speed with which you can
launch a container in a cluster. This in turn can determine how quickly you can
respond to a machine failure, given that generally in the case of a machine failure,
you will need to pull the container image down to a new machine.

Another concern about a single registry is that it can be a single point of failure. If the
registry is located in a single region or a single datacenter, it’s possible that the registry
could go offline due to a large-scale incident in that datacenter. If your registry goes
offline, your CI/CD pipeline will stop working, and you’ll be unable to deploy new
code. This obviously has a significant impact on both developer productivity and
application operations. Additionally, a single registry can be much more expensive
because you will be using significant bandwidth each time you launch a new con‐
tainer, and even though container images are generally fairly small, the bandwidth
can add up. Despite these negatives, a single registry solution can be the appropriate
answer for small-scale applications running in only a few global regions. It certainly is
simpler to set up than full-scale image replication.

If you cannot use cloud-provided geo-replication and you need to replicate your
image, you are on your own to craft a solution for image replication. To implement
such a service, you have two options. The first is to use geographic names for each
image registry (e.g., us.my-registry.io, eu.my-registry.io, etc.). The advantage of
this approach is that it is simple to set up and manage. Each registry is entirely inde‐
pendent, and you can simply push to all registries at the end of your CI/CD pipeline.
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The downside is that each cluster will require a slightly different configuration to pull
the image from the nearest geographic location. However, given that you likely will
have geographic differences in your application configurations anyway, this downside
is relatively easy to manage and likely already present in your environment.

Parameterizing Your Deployment
When you have replicated your image everywhere, you need to parameterize your
deployments for different global locations. Whenever you are deploying to a variety
of different regions, there are bound to be differences in the configuration of your
application in the different regions. For example, if you don’t have a geo-replicated
registry, you might need to tweak the image name for different regions, but even if
you have a geo-replicated image, it’s likely that different geographic locations will
present different load on your application, and thus the size (e.g., the number of repli‐
cas) as well as other configuration can be different between regions. Managing this
complexity in a manner that doesn’t incur undue toil is key to successfully managing
a worldwide application.

The first thing to consider is how to organize your different configurations on disk. A
common way to achieve this is by using a different directory for each global region.
Given these directories, it might be tempting to simply copy the same configurations
into each directory, but doing this is guaranteed to lead to drift and changes between
configurations in which some regions are modified and other regions are forgotten.
Instead, using a template-based approach is the best idea so that most of the configu‐
ration is retained in a single template that is shared by all regions, and then parame‐
ters are applied to that template to produce the region-specific templates. Helm is a
commonly used tool for this sort of templating (for details, see Chapter 2).

Load-Balancing Traffic Around the World
Now that your application is running around the world, the next step is to determine
how to direct traffic to the application. In general, you want to take advantage of geo‐
graphic proximity to ensure low-latency access to your service. But you also want to
failover across geographic regions in case of an outage or any other source of service
failure. Correctly setting up the balancing of traffic to your various regional deploy‐
ments is key to the establishment of both a performant and reliable system.

Let’s begin with the assumption that you have a single hostname that you want to
serve as your service. For example, myapp.myco.com. One initial decision that you
need to make is whether you want to use the Domain Name System (DNS) protocol
to implement load balancing across your regional endpoints. If you use DNS for load
balancing, the IP address that is returned when a user makes a DNS query to
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myapp.myco.com is based on both the location of the user accessing your service as
well as the current availability of your service.

Reliably Rolling Out Software Around the World
After you have templatized your application so that you have proper configurations
for each region, the next important problem is how to deploy these configurations
around the world. It might be tempting to simultaneously deploy your application
worldwide so that you can efficiently and quickly iterate your application, but this,
although Agile, is an approach that can easily leave you with a global outage. Instead,
for most production applications, a more carefully staged approach to rolling out
your software around the world is more appropriate. When combined with things
like global load balancing, these approaches can maintain high availability even in the
face of major application failures.

Overall, when approaching the problem of a global rollout, the goal is to roll out soft‐
ware as quickly as possible, while simultaneously detecting issues quickly—ideally
before they affect any other users. Let’s assume that by the time you are performing a
global rollout, your application has already passed basic functional and load testing.
Before a particular image (or images) is certified for a global rollout, it should have
gone through enough testing that you believe the application is operating correctly. It
iss important to note that this does not mean that your application is operating cor‐
rectly. Though testing catches many problems, in the real world, application prob‐
lems are often first noticed when they are rolled out to production traffic. This is
because the true nature of production traffic is often difficult to simulate with perfect
fidelity. For example, you might test with only English language inputs, whereas in
the real world, you see input from a variety of languages. Or your set of test inputs is
not comprehensive for the real-world data your application ingests. Of course, any
time that you do see a failure in production that wasn’t caught by testing, it is a strong
indicator that you need to extend and expand your testing. Nonetheless, it is still true
that many problems are caught during a production rollout.

With this in mind, each region that you roll out to is an opportunity to discover a
new problem. And, because the region is a production region, it is also a potential
outage to which you will need to react. These factors combine to set the stage for how
you should approach regional rollouts.

Pre-Rollout Validation
Before you even consider rolling out a particular version of your software around the
world, it’s critically important to validate that software in some sort of synthetic test‐
ing environment. If you have your CD pipeline set up correctly, all code prior to a
particular release build will have undergone some form of unit testing, and possibly
limited integration testing. However, even with this testing in place, it’s important to
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consider two other sorts of tests for a release before it begins its journey through the
release pipeline. The first is complete integration testing. This means that you assem‐
ble the entirety of your stack into a full-scale deployment of your application but
without any real-world traffic. This complete stack generally will include either a
copy of your production data or simulated data on the same size and scale as your
true production data. If in the real world, the data in your application is 500 GB, it’s
critical that in preproduction testing your dataset is roughly the same size (and possi‐
bly even literally the same dataset).

Generally speaking, this is the most difficult part of setting up a complete integration
test environment. Often, production data is really present only in production, and
generating a synthetic dataset of the same size and scale is quite difficult. Because of
this complexity, setting up a realistic integration testing dataset is a great example of a
task that it pays to do early on in the development of an application. If you set up a
synthetic copy of your dataset early, when the dataset itself is quite small, your inte‐
gration test data grows gradually at the same pace as your production data. This is
generally significantly more manageable than if you attempt to duplicate your pro‐
duction data when you are already at scale.

Sadly, many people don’t realize that they need a copy of their data until they are
already at a large scale and the task is difficult. In such cases it might be possible to
deploy a read/write-deflecting layer in front of your production data store. Obviously,
you don’t want your integration tests writing to production data, but it is often possi‐
ble to set up a proxy in front of your production data store that reads from produc‐
tion but stores writes in a side table that is also consulted on subsequent reads.

Regardless of how you manage to set up your integration testing environment, the
goal is the same: to validate that your application behaves as expected when given a
series of test inputs and interactions. There are a variety of ways to define and execute
these tests—from the most manual, a worksheet of tests and human effort (not rec‐
ommended because it is fairly error prone), through tests that simulate browsers and
user interactions, like clicks and so forth. In the middle are tests that probe RESTful
APIs but don’t necessarily test the web UI built on top of those APIs. Regardless of
how you define your integration tests, the goal should be the same: an automated test
suite that validates the correct behavior of your application in response to a complete
set of real-world inputs. For simple applications it may be possible to perform this
validation in premerge testing, but for most large-scale real-world applications, a
complete integration environment is required.

Integration testing will validate the correct operation of your application, but you
should also load-test the application. It is one thing to demonstrate that the applica‐
tion behaves correctly, it is quite another to demonstrate that it stands up to real-
world load. In any reasonably high-scale system, a significant regression in
performance—for example, a 20% increase in request latency—has a significant
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impact on the UX of the application and, in addition to frustrating users, can cause an
application to completely fail. Thus, it is critical to ensure that such performance
regressions do not happen in production.

Like integration testing, identifying the correct way to load-test an application can be
a complex proposition; after all, it requires that you generate a load similar to produc‐
tion traffic but in a synthetic and reproduceable way. One of the easiest ways to do
this is to simply replay the logs of traffic from a real-world production system. Doing
this can be a great way to perform a load-test whose characteristics match what your
application will experience when deployed. However, using replay isn’t always fool‐
proof. For example, if your logs are old, and your application or dataset has changed,
it’s possible that the performance on old, replayed logs will be different that the per‐
formance on fresh traffic. Additionally, if you have real-world dependencies that you
haven’t mocked, it’s possible that the old traffic will be invalid when sent over to the
dependencies (e.g., the data might no longer exist).

Because of these challenges, many systems, even critical systems, are developed for a
long time without a load test. Like modeling your production data, this is a clear
example of something that is easier to maintain if you start earlier. If you build a load-
test when your application has only a handful of dependencies, and improve and iter‐
ate the load-test as you adapt your application, you will have a far easier time than if
you attempt to retrofit load-testing onto an existing large-scale application.

Assuming that you have crafted a load test, the next question is the metrics to watch
when load-testing your application. The obvious ones are requests per second and
request latency because those are clearly the user-facing metrics.

When measuring latency, it’s important to realize that this is actually a distribution,
and you need to measure both the mean latency as well as the outlier percentiles (like
the 90th and 99th percentile) since they represent the “worst” UX of your application.
Problems with very long latencies can be hidden if you just look at the averages, but if
10% of your users are having a bad time, it can have a significant impact on the suc‐
cess of your product.

In addition, it’s worth looking at the resource usage (CPU, memory, network, disk) of
the application under load test. Though these metrics do not directly contribute to
the UX, large changes in resource usage for your application should be identified and
understood in preproduction testing. If your application is suddenly consuming
twice as much memory, it’s something you will want to investigate, even if you pass
your load test, because eventually such significant resource growth will affect the
quality and availability of your application. Depending on the circumstances, you
might continue bringing a release to production, but at the same time, you need to
understand why the resource footprint of your application is changing.
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Canary Region
When your application appears to be operating correctly, the first step should be a
canary region. A canary region is a deployment that receives real-world traffic from
people and teams who want to validate your release. These can be internal teams that
depend on your service, or they might be external customers who are using your ser‐
vice. Canaries exist to give a team some early warning about changes that you are
about to roll out that might break them. No matter how good your integration and
load testing, it’s always possible that a bug will slip through that isn’t covered by your
tests, but is critical to some user or customer. In such cases, it is much better to catch
these issues in a space where everyone using or deploying against the service under‐
stands that there is a higher probability of failure. This is what the canary region is.

Canaries must be treated as a production region in terms of monitoring, scale, fea‐
tures, and so on. However, because it is the first stop on the release process, it is also
the location most likely to see a broken release. This is OK; in fact it is precisely the
point. Your customers will knowingly use a canary for lower-risk use cases (e.g.,
development or internal users) so that they can get an early indication of any break‐
ing changes that you might be rolling out as part of a release.

Because the goal of a canary is to get early feedback on a release, it is a good idea to
leave the release in the canary region for a few days. This enables a broad collection of
customers to access it before you move on to additional regions. The need for this
length of time is that sometimes a bug is probabilistic (e.g., 1% of requests) or it man‐
ifests only in an edge case that takes some time to present itself. It might not even be
severe enough to trigger automated alerts, but there might be a problem in business
logic that is visible only via customer interactions.

Identifying Region Types
When you begin thinking about rolling out your software across the world, it’s
important to think about the different characteristics of your different regions. After
you begin rolling out software to production regions, you need to run it through inte‐
gration testing as well as initial canary testing. This means that any issues you find
will be issues that did not manifest in either of these settings. Think about your dif‐
ferent regions. Do some get more traffic than others? Are some accessed in a different
way? An example of a difference might be that in the developing world, traffic is more
likely to come from mobile web browsers. Thus, a region that is geographically close
to more developing countries might have significantly more mobile traffic than your
test or canary regions.

Another example might be input language. Regions in non-English speaking areas of
the world might send more Unicode characters that could manifest bugs in string or
character handling. If you are building an API-driven service, some APIs might be
more popular in some regions versus others. All of these things are examples of
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differences that might be present in your application and might be different than your
canary traffic. Each of these differences is a possible source of a production incident.
Build a table of different characteristics that you think are important. Identifying
these characteristics will help you plan your global rollout.

Constructing a Global Rollout
Having identified the characteristics of your regions, you want to identify a plan for
rolling out to all regions. Obviously, you want to minimize the impact of a produc‐
tion outage, so a great first region to start with is a region that looks mostly like your
canary and has light user traffic. Such a region is very unlikely to have problems, but
if they do occur, the impact is also smaller because the region receives less traffic.

With a successful rollout to the first production region, you need to decide how long
to wait before moving on to the next region. The reason for waiting is not to artifi‐
cially delay your release; rather, it’s to wait long enough for a fire to send up smoke.
This time-to-smoke period is a measure of generally how long it takes between a roll‐
out completing and your monitoring seeing some sign of a problem. Clearly if a roll‐
out contains a problem, the minute the rollout completes, the problem is present in
your infrastructure. But even though it is present, it can take some time to manifest.
For example, a memory leak might take an hour or more before the impact of the
leaked memory is clearly discernible in monitoring or is affecting users. The time-to-
smoke is the probability distribution that indicates how long you should wait in order
to have a strong probability that your release is operating correctly. Generally speak‐
ing, a decent rule of thumb is doubling the average time it takes for a problem to
manifest.

If, over the past six months, each outage took an average of an hour to show up, wait‐
ing two hours between regional rollouts gives you a decent probability that your
release is successful. If you want to derive richer (and more meaningful) statistics
based on the history of your application, you can estimate this time-to-smoke even
more closely.

Having successfully rolled out to a canary-like, low-traffic region, it’s time to roll out
to a canary-like, high-traffic region. This is a region where the input data looks like
that in your canary, but it receives a large volume of traffic. Because you successfully
rolled out to a similar looking region with lower traffic, at this point the only thing
you are testing is your application’s ability to scale. If you safely perform this rollout,
you can have strong confidence in the quality of your release.

After you have rolled out to a high-traffic region receiving canary-like traffic, you
should follow the same pattern for other potential differences in traffic. For example,
you might roll out to a low-traffic region in Asia or Europe next. At this point, it
might be tempting to accelerate your rollout, but it is critically important to roll out
only to a single region that represents any significant change in either input or load to
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your release. After you are confident that you have tested all of the potential
variability in the production input to your application, you then can start parallizing
the release to speed it up with strong confidence that it is operating correctly and
your rollout can complete successfully.

When Something Goes Wrong
So far, we have seen the pieces that go into setting up a worldwide rollout for your
software system, and we have seen the ways that you can structure this rollout to
minimize the chances that something goes wrong. But what do you do when some‐
thing actually does go wrong? All emergency responders know that in the heat and
panic of a crisis, your brain is significantly stressed and it is much more difficult to
remember even the simplest processes. Add to this pressure the knowledge that when
an outage happens, everyone in the company from the CEO down is going to be
feverishly waiting for the “all clear” signal, and you can see how easy it is to make a
mistake under this pressure. Additionally, in such circumstances, a simple mistake,
like forgetting a particular step in a recovery process, can make a bad situation an
order of magnitude worse.

For all of these reasons, it is critical that you are capable of responding quickly,
calmly, and correctly when a problem happens with a rollout. To ensure that every‐
thing necessary is done, and done in the correct order, it pays to have a clear checklist
of tasks organized in the order in which they are to be executed as well as the
expected output for each step. Write down every step, no matter how obvious it might
seem. In the heat of the moment, even the most obvious and easy steps can be the
ones that are forgotten and accidentally skipped.

The way that other first responders ensure a correct response in a high-stress situa‐
tion is to practice that response without the stress of the emergency. The same prac‐
tice applies to all the activities that you might take in response to a problem with your
rollout. You begin by identifying all of the steps needed to respond to an issue and
perform a rollback. Ideally, the first response is to “stop the bleeding,” to move user
traffic away from the impacted region(s) and into a region where the rollout hasn’t
happened and your system is operating correctly. This is the first thing you should
practice. Can you successfully direct traffic away from a region? How long does it
take?

The first time you attempt to move traffic using a DNS-based traffic load balancer,
you will realize just how long and in how many ways our computers cache DNS
entries. It can take nearly a day to fully drain traffic away from a region using a DNS-
based traffic shaper. Regardless of how your first attempt to drain traffic goes, take
notes. What worked well? What went poorly? Given this data, set a goal for how long
a traffic drain should take in terms of time to drain a percentage of traffic, for exam‐
ple, being able to drain 99% of traffic in less than 10 minutes. Keep practicing until
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you can achieve that goal. You might need to make architectural changes to make this
possible. You might need to add automation so that humans aren’t cutting and past‐
ing commands. Regardless of necessary changes, practice will ensure that you are
more capable at responding to an incident and that you will learn where your system
design needs to be improved.

The same sort of practice applies to every action that you might take on your system.
Practice a full-scale data recovery. Practice a global rollback of your system to a previ‐
ous version. Set goals for the length of time it should take. Note any places where you
made mistakes, and add validation and automation to eliminate the possibility of
mistakes. Achieving your incident reaction goals in practice gives you confidence that
you will be able to respond correctly in a real incident. But just like every emergency
responder continues to train and learn, you too need to set up a regular cadence of
practice to ensure that everyone on a team stays well versed in the proper responses
and (perhaps more important) that your responses stay up to date as your system
changes.

Worldwide Rollout Best Practices
• Distribute each image around the world. A successful rollout depends on the

release bits (binaries, images, etc.) being nearby to where they will be used. This
also ensures reliability of the rollout in the presence of networking slowdowns or
irregularities. Geographic distribution should be a part of your automated release
pipeline for guaranteed consistency.

• Shift as much of your testing as possible to the left by having as much extensive
integration and replay testing of your application as possible. You want to start a
rollout only with a release that you strongly believe to be correct.

• Begin a release in a canary region, which is a preproduction environment in
which other teams or large customers can validate their use of your service before
you begin a larger-scale rollout.

• Identify different characteristics of the regions where you are rolling out. Each
difference can be one that causes a failure and a full or partial outage. Try to roll
out to low-risk regions first.

• Document and practice your response to any problem or process (e.g., a roll‐
back) that you might encounter. Trying to remember what to do in the heat of the
moment is a recipe for forgetting something and making a bad problem worse.
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Summary
It might seem unlikely today, but most of us will end up running a worldwide scale
system sometime during our careers. This chapter described how you can gradually
build and iterate your system to be a truly global design. It also discussed how you
can set up your rollout to ensure minimal downtime of the system while it is being
updated. Finally, we covered setting up and practicing the processes and procedures
necessary to react when (note that we didn’t say “if ”) something goes wrong.
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CHAPTER 8

Resource Management

In this chapter, we focus on the best practices for managing and optimizing Kuber‐
netes resources. We discuss workload scheduling, cluster management, pod resource
management, namespace management, and scaling applications. We also dive into
some of the advanced scheduling techniques that Kubernetes provides through affin‐
ity, anti-affinity, taints, tolerations, and nodeSelectors.

We show you how to implement resource limits, resource requests, pod Quality of
Service, PodDisruptionBudgets, LimitRangers, and anti-affinity policies.

Kubernetes Scheduler
The Kubernetes scheduler is one of the main components that is hosted in the control
plane. The scheduler allows Kubernetes to make placement decisions for pods
deployed to the cluster. It deals with optimization of resources based on constraints of
the cluster as well as user-specified constraints. It uses a scoring algorithm that is
based on predicates and priorities.

Predicates
The first function Kubernetes uses to make a scheduling decision is the predicate
function, which determines what nodes the pods can be scheduled on. It implies a
hard constraint, so it returns a value of true or false. An example would be when a
pod requests 4 GB of memory and a node cannot satisfy this requirement. The node
would return a false value and would be removed from viable nodes for the pod to be
scheduled to. Another example would be if the node is set to unschedulable; it would
then be removed from the scheduling decision.

The scheduler checks the predicates based on order of restrictiveness and complexity.
As of this writing, the following are the predicates that the scheduler checks for:
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    CheckNodeConditionPred,
    CheckNodeUnschedulablePred,
    GeneralPred,
    HostNamePred,
    PodFitsHostPortsPred,
    MatchNodeSelectorPred,
    PodFitsResourcesPred,
    NoDiskConflictPred,
    PodToleratesNodeTaintsPred,
    PodToleratesNodeNoExecuteTaintsPred,
    CheckNodeLabelPresencePred,
    CheckServiceAffinityPred,
    MaxEBSVolumeCountPred,
    MaxGCEPDVolumeCountPred,
    MaxCSIVolumeCountPred,
    MaxAzureDiskVolumeCountPred,
    MaxCinderVolumeCountPred,
    CheckVolumeBindingPred,
    NoVolumeZoneConflictPred,
    CheckNodeMemoryPressurePred,
    CheckNodePIDPressurePred,
    CheckNodeDiskPressurePred,
    MatchInterPodAffinityPred

Priorities
Whereas predicates indicate a true or false value and dismiss a node for scheduling,
the priority value ranks all of the valid nodes based on a relative value. The following
priorities are scored for nodes:

    EqualPriority
    MostRequestedPriority
    RequestedToCapacityRatioPriority
    SelectorSpreadPriority
    ServiceSpreadingPriority
    InterPodAffinityPriority
    LeastRequestedPriority
    BalancedResourceAllocation
    NodePreferAvoidPodsPriority
    NodeAffinityPriority
    TaintTolerationPriority
    ImageLocalityPriority
    ResourceLimitsPriority

The scores will be added, and then a node is given its final score to indicate its prior‐
ity. For example, if a pod requires 600 millicores and there are two nodes, one with
900 millicores available and one with 1,800 millicores, the node with 1,800 millicores
available will have a higher priority.

If nodes are returned with the same priority, the scheduler will use a selectHost()
function, which selects a node in a round-robin fashion.
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Advanced Scheduling Techniques
For most cases, Kubernetes does a good job of optimally scheduling pods for you. It
takes into account pods that are placed only on nodes that have sufficient resources. It
also tries to spread pods from the same ReplicaSet across nodes to increase availabil‐
ity and will balance resource utilization. When this is not good enough, Kubernetes
gives you the flexibility to influence how resources are scheduled. For example, you
might want to schedule pods across availability zones to mitigate a zonal failure caus‐
ing downtime to your application. You might also want to colocate pods to a specific
host for performance benefits.

Pod Affinity and Anti-Affinity
Pod affinity and anti-affinity let you set rules to place pods relative to other pods.
These rules allow you to modify the scheduling behavior and override the scheduler’s
placement decisions.

For example, an anti-affinity rule would allow you to spread pods from a ReplicaSet
across multiple datacenter zones. It does this by utilizing keylabels set on the pods.
Setting the key/value pairs instructs the scheduler to schedule the pods on the same
node (affinity) or prevent the pods from scheduling on the same nodes (anti-affinity).

Following is an example of setting a pod anti-affinity rule:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx
spec:
  selector:
    matchLabels:
      app: frontend
  replicas: 4
  template:
    metadata:
      labels:
        app: frontend
    spec:
      affinity:
        podAntiAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
          - labelSelector:
              matchExpressions:
              - key: app
                operator: In
                values:
                - frontend
            topologyKey: "kubernetes.io/hostname"
      containers:
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      - name: nginx
        image: nginx:alpine

This manifest of an NGINX deployment has four replicas and the selector label
app=frontend. The deployment has a PodAntiAffinity stanza configured that will
ensure that the scheduler does not colocate replicas on a single node. This ensures
that if a node fails, there are still enough replicas of NGINX to serve data from its
cache.

nodeSelector
A nodeSelector is the easiest way to schedule pods to a particular node. It uses label
selectors with key/value pairs to make the scheduling decision. For example, you
might want to schedule pods to a specific node that has specialized hardware, such as
a GPU. You might ask, “Can’t I do this with a node taint?” The answer is, yes, you can.
The difference is that you use a nodeSelector when you want to request a GPU-
enabled node, whereas a taint reserves a node for only GPU workloads. You can use
both node taints and nodeSelectors together to reserve the nodes for only GPU work‐
loads, and use the nodeSelector to automatically select a node with a GPU.

Following is an example of labeling a node and using a nodeSelector in the pod
specification:

kubectl label node <node_name> disktype=ssd

Now, let’s create a pod specification with a nodeSelector key/value of disktype: ssd:

apiVersion: v1
kind: Pod
metadata:
  name: redis
  labels:
    env: prod
spec:
  containers:
  - name: frontend
    image: nginx:alpine
    imagePullPolicy: IfNotPresent
  nodeSelector:
    disktype: ssd

Using the nodeSelector schedules the pod to only nodes that have the label
disktype=ssd:

Taints and Tolerations
Taints are used on nodes to repel pods from being scheduled on them. But isn’t that
what anti-affinity is for? Yes, but taints take a different approach than pod anti-
affinity and serve a different use case. For example, you might have pods that require
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a specific performance profile, and you do not want to schedule any other pods to the
specific node. Taints work in conjunction with tolerations, which allow you to over‐
ride tainted nodes. The combination of the two gives you fine-grained control over
anti-affinity rules.

In general, you will use taints and tolerations for the following use cases:

• Specialized node hardware
• Dedicated node resources
• Avoiding degraded nodes

There are multiple taint types that affect scheduling and running containers:

NoSchedule
A hard taint that prevents scheduling on the node

PreferNoSchedule
Schedules only if pods cannot be scheduled on other nodes

NoExecute
Evicts already-running pods on the node

NodeCondition
Taints a node if it meets a specific condition

Figure 8-1 shows an example of a node that is tainted with gpu=true:NoSchedule.
Pod Spec 1 has a toleration key with gpu, so it will be scheduled to the tainted node.
Pod Spec 2 has a toleration key of no-gpu, so it will not be scheduled to the node.

Figure 8-1. Kubernetes taints and tolerations

When a pod cannot be scheduled due to tainted nodes, you’ll see an error message
like the following:
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Warning:  FailedScheduling  10s (x10 over 2m)  default-scheduler  0/2 nodes are 
available: 2 node(s) had taints that the pod did not tolerate.

Now that we’ve seen how we can manually add taints to affect scheduling, there is
also the powerful concept of taint-based eviction, which allows the eviction of run‐
ning pods. For example, if a node becomes unhealthy due to a bad disk drive, the
taint-based eviction can reschedule the pods on the host to another healthy node in
the cluster.

Pod Resource Management
One of the most important aspects of managing applications in Kubernetes is appro‐
priately managing pod resources. Managing pod resources consists of managing CPU
and memory to optimize the overall utilization of your Kubernetes cluster. You can
manage these resources at the container level and at the namespace level. There are
other resources, such as network and storage, but Kubernetes doesn’t yet have a way
to set requests and limits for those resources.

For the scheduler to optimize resources and make intelligent placement decisions, it
needs to understand the requirements of an application. As an example, if a container
(application) needs a minimum of 2 GB to perform, we need to define this in our pod
specification, so the scheduler knows that the container requires 2 GB of memory on
the host to which it schedules the container.

Resource Request
A Kubernetes resource request defines that a container requires X amount of CPU or
memory to be scheduled. If you were to specify in the pod specification that a con‐
tainer requires 8 GB for its resource request and all your nodes have 7.5 GB of mem‐
ory, the pod would not be scheduled. If the pod is not able to be scheduled, it will go
into a pending state until the required resources are available.

So let’s take a look at how this works in our cluster.

To determine the available free resource in your cluster, use kubectl top:

kubectl top nodes

The output should look like this (the memory size might be different for your
cluster):

NAME                       CPU(cores)   CPU%   MEMORY(bytes)   MEMORY%
aks-nodepool1-14849087-0   524m         27%    7500Mi          33%
aks-nodepool1-14849087-1   468m         24%    3505Mi          27%
aks-nodepool1-14849087-2   406m         21%    3051Mi          24%
aks-nodepool1-14849087-3   441m         22%    2812Mi          22%
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As this example shows, the largest amount of memory available to a host is 7,500 Mi,
so let’s schedule a pod that requests 8,000 Mi of memory:

apiVersion: v1
kind: Pod
metadata:
  name: memory-request
spec:
  containers:
  - name: memory-request
    image: polinux/stress
    resources:
      requests:
        memory: "8000Mi"

Notice that the pod will stay pending, and if you look at the events on the pods, you’ll
see that no nodes are avalaible to schedule the pods:

kubectl describe pods memory-request

The output of the event should look like this:

Events:
  Type     Reason            Age                From               Message
  Warning  FailedScheduling  27s (x2 over 27s)  default-scheduler  0/3 nodes 
are available: 3 Insufficient memory.

Resource Limits and Pod Quality of Service
Kubernetes resource limits define the maximum CPU or memory that a pod is given.
When you specify limits for CPU and memory, each takes a different action when it
reaches the specified limit. With CPU limits, the container is throttled from using
more than its specified limit. With memory limits, the pod is restarted if it reaches its
limit. The pod might be restarted on the same host or a different host within the
cluster.

Specifying limits for containers is a good practice to ensure that applications are allot‐
ted their fair share of resources within the cluster:

apiVersion: v1
kind: Pod
metadata:
  name: cpu-demo
  namespace: cpu-example
spec:
  containers:
  - name: frontend
    image: nginx:alpine
    resources:
      limits:
        cpu: "1"
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      requests:
        cpu: "0.5"

apiVersion: v1
kind: Pod
metadata:
  name: qos-demo
  namespace: qos-example
spec:
  containers:
  - name: qos-demo-ctr
    image: nginx:alpine
    resources:
      limits:
        memory: "200Mi"
        cpu: "700m"
      requests:
        memory: "200Mi"
        cpu: "700m"

When a pod is created, it’s assigned one of the following Quality of Service (QoS)
classes:

• Guaranteed
• Burstable
• Best effort

The pod is assigned a QoS of guaranteed when CPU and memory both have request
and limits that match. A burstable QoS is when the limits are set higher than the
request, meaning that the container is guaranteed its request, but it can also burst to
the limit set for the container. A pod is assigned best effort when no request or limits
are set for the containers in the pod.

Figure 8-2 depicts how QoS is assigned to pods.

Figure 8-2. Kubernetes QoS
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With guaranteed QoS, if you have multiple containers in your pod,
you’ll need to have memory request and limits set for each con‐
tainer, and you’ll also need CPU request and limits set for each
container. If the request and limits are not set for all containers, it
will not be assigned guaranteed QoS.

PodDisruptionBudgets
At some point in time, Kubernetes might need to evict pods from a host. There are
two types of evictions: voluntary and involuntary disruptions. Involuntary disruptions
can be caused by hardware failure, network partitions, kernel panics, or a node being
out of resources. Voluntary evictions can be caused by performing maintenance on
the cluster, the Cluster Autoscaler deallocating nodes, or updating pod templates. To
minimize the impact to your application, you can set a PodDisruptionBudget to
ensure uptime of the application when pods need to be evicted. A PodDisruption
Budget allows you to set a policy on the minimum available and maximum unavail‐
able pods during voluntary eviction events. An example of a voluntary eviction would
be when draining a node to perform maintenance on the node.

For example, you might specify that no more than 20% of pods belonging to your
application can be down at a given time. You could also specify this policy in terms of
X number of replicas that must always be available.

Minimum available

In the following example, we set a PodDisruptionBudget to handle a minimum avail‐
able to 5 for app: front-end.

apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
  name: frontend-pdb
spec:
  minAvailable: 5
  selector:
    matchLabels:
      app: frontend

In this example, the PodDisruptionBudget specifies that for the frontend app there
must always be five replica pods available at any given time. In this scenario, an evic‐
tion can evict as many pods as it wants, as long as five are available.

Maximum unavailable

In the next example, we set a PodDisruptionBudget to handle a maximum unavail‐
able to 10 replicas for the frontend app:
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apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
  name: frontend-pdb
spec:
  maxUnavailable: 20%
  selector:
    matchLabels:
      app: frontend

In this example, the PodDisruptionBudget specifies that no more than 20% of replica
pods can be unavailable at any given time. In this scenario, an eviction can evict a
maximum of 20% of pods during a voluntary disruption.

It’s essential that when designing your Kubernetes cluster you think about the sizing
of the cluster resources so that you can handle a number of failed nodes. For example,
if you have a four-node cluster and one node fails, you will be losing a quarter of your
cluster capacity.

When specifying a pod disruption budget as a percentage, it might
not correlate to a specific number of pods. For example, if your
application has seven pods and you specify maxAvailable to 50%,
it’s not clear whether that is three or four pods. In this case, Kuber‐
netes rounds up to the closest integer, so the maxAvailable would
be four pods.

Managing Resources by Using Namespaces
Namespaces in Kubernetes give you a nice logical separation of resources deployed to
a cluster. This allows you to set resource quotas per namespace, Role-Based Access
Control (RBAC) per namespace, and also network policies per namespace. It gives
you soft multitenancy features, so you can separate out workloads in a cluster without
dedicating specific infrastructure to a team or application. This allows you to get the
most out of your cluster resource while also maintaining a logical form of separation.

For example, you could create a namespace per team and give each team a quota on
the number of resources that it can utilize, such as CPU and memory.

When designing how you want to configure a namespace, you should think about
how you want to control access to a specific set of applications. If you have multiple
teams that will be using a single cluster, it is typically best to allocate a namespace to
each team. If the cluster is dedicated to only one team, it might make sense to allocate
a namespace for each service deployed to the cluster. There’s no single solution to
this; your team organization and responsibilities will drive the design.

After deploying a Kubernetes cluster, you’ll see the following namespaces in your
cluster:
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kube-system

Kubernetes internal components are deployed here, such as coredns, kube-
proxy, and metrics-server.

default

This is the default namespace that is used when you don’t specify a namespace in
the resource object.

kube-public

Used for anonymous and unauthenticated content, and reserved for system
usage.

You’ll want to avoid using the default namespace because it can make it really easy to
make mistakes when managing resources within your cluster.

When working with namespaces, you need to use the –namespace flag, or -n for
short, when working with kubectl:

kubectl create ns team-1

kubectl get pods --namespace team-1

You can also set your kubectl context to a specific namespace, which is useful so that
you don’t need to add the –namespace flag with every command. You can set your
namespace context by using the following command:

kubectl config set-context my-context --namespace=team-1

When dealing with multiple namespaces and clusters, it can be a
pain to set different namespaces and cluster context. We’ve found
that using kubens and kubectx can help make it easy to switch
between these different namespaces and contexts.

ResourceQuota
When multiple teams or applications share a single cluster, it’s important to set up
ResourceQuotas on your namespaces. ResourceQuotas allow you to divvy up the
cluster in logical units so that no single namespace can consume more than its share
of resources in the cluster. The following resources can have a quota set for them:

• Compute resources
— requests.cpu: Sum of CPU requests cannot exceed this amount
— limits.cpu: Sum of CPU limits cannot exceed this amount
— requests.memory: Sum of memory requests cannot exceed this amount
— limit.memory: Sum of memory limits cannot exceed this amount
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• Storage resources
— requests.storage: Sum of storage requests cannot exceed this value
— persistentvolumeclaims: The total number of PersistentVolume claims that

can exist in the namespace
— storageclass.request: Volume claims associated with the specified storage-

class cannot exceed this value
— storageclass.pvc: The total number of PersistentVolume claims that can

exist in the namespace
• Object count quotas (only an example set)

— count/pvc
— count/services
— count/deployments
— count/replicasets

As you can see from this list, Kubernetes gives you fine-grained control over how you
carve up resource quotas per namespace. This allows you to more efficiently operate
resource usage in a multitenant cluster.

Let’s see how these quotas actually work by setting up a quota on a namespace. Apply
the following YAML file to the team-1 namespace:

apiVersion: v1
kind: ResourceQuota
metadata:
  name: mem-cpu-demo
  namespace: team-1
spec:
  hard:
    requests.cpu: "1"
    requests.memory: 1Gi
    limits.cpu: "2"
    limits.memory: 2Gi
    persistentvolumeclaims: "5"
    requests.storage: "10Gi

kubectl apply quota.yaml -n team-1

This example sets quotas for CPU, memory, and storage on the team-1 namespace.

Now let’s try to deploy an application to see how the resource quotas affect the
deployment:

kubectl run nginx-quotatest --image=nginx --restart=Never --replicas=1 --
port=80 --requests='cpu=500m,memory=4Gi' --limits='cpu=500m,memory=4Gi' -n 
team-1
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This deployment will fail with the following error due to the memory quota exceed‐
ing 2Gi of memory:

Error from server (Forbidden): pods "nginx-quotatest" is forbidden: exceeded 
quota: mem-cpu-demo

As this example demonstrates, setting resource quotas can let you deny deployment
of resources based on policies you set for the namespace.

LimitRange
We’ve discussed setting request and limits at the container level, but what happens
if the user forgets to set these in the pod specification? Kubernetes provides an admis‐
sion controller that allows you to automatically set these when there are none indica‐
ted in the specification.

First, create a namespace to work with quotas and LimitRanges:

kubectl create ns team-1

Apply a LimitRange to the namespace to apply defaultRequest in limits:

apiVersion: v1
kind: LimitRange
metadata:
  name: team-1-limit-range
spec:
  limits:
  - default:
      memory: 512Mi
    defaultRequest:
      memory: 256Mi
    type: Container

Save this to limitranger.yaml and then run kubectl apply:

kubectl apply -f limitranger.yaml -n team-1

Verify that the LimitRange applies default limits and requests:

 kubectl run team-1-pod --image=nginx -n team-1

Next, let’s describe the pod to see what requests and limits were set on it:

kubectl describe pod team-1-pod -n team-1

You should see the following requests and limits set on the pod specification:

Limits:
      memory:  512Mi
    Requests:
      memory:  256Mi
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It’s important to use LimitRange when using ResourceQuotas, because if no request
or limits are set in the specification, the deployment will be rejected.

Cluster Scaling
One of the first decisions you need to make when deploying a cluster is the instance
size you’ll want to use within your cluster. This becomes more of an art than science,
especially when you’re mixing workloads in a single cluster. You’ll first want to iden‐
tify what a good starting point is for the cluster; aiming for a good balance of CPU
and memory is one option. After you’ve decided on a sensible size for the cluster, you
can use a couple of Kubernetes core primitives to manage the scaling of your cluster.

Manual scaling
Kubernetes makes it easy to scale your cluster, especially if you’re using tools like
Kops or a managed Kubernetes offering. Scaling your cluster manually is typically
just choosing a new number of nodes, and the service will add the new nodes to your
cluster.

These tools also allow you to create node pools, which allows you to add new instance
types to an already running cluster. This becomes very useful when running mixed
workloads within a single cluster. For example, one workload might be more CPU
driven, whereas the other workloads might be memory-driven applications. Node
pools allow you to mix multiple instance types within a single cluster.

But perhaps you don’t want to manually do this and want it to autoscale. There are
things that you need to take into consideration with cluster autoscaling, and we have
found that most users are better off starting with just manually scaling their nodes
proactively when resources are needed. If your workloads are highly variable, cluster
autoscaling can be very useful.

Cluster autoscaling
Kubernetes provides a Cluster Autoscaler add-on that allows you to set the minimum
nodes available to a cluster and also the maximum number of nodes to which your
cluster can scale. The Cluster Autoscaler bases its scale decision on when a pod goes
pending. For example, if the Kubernetes scheduler tries to schedule a pod with a
memory request of 4,000 Mib and the cluster has only 2,000 Mib available, the pod
will go into a pending state. After the pod is pending, the Cluster Autoscaler will add
a node to the cluster. As soon as the new node is added to the cluster, the pending
pod is scheduled to the node. The downside of the Cluster Autoscaler is that a new
node is added only before a pod goes pending, so your workload may end up waiting
for a new node to come online when it is scheduled. As of Kubernetes v1.15, the
Cluster Autoscaler doesn’t support scaling based on custom metrics.
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The Cluster Autoscaler can also reduce the size of the cluster after resources are no
longer needed. When the resources are no longer needed, it will drain the node and
reschedule the pods to new nodes in the cluster. You’ll want to use a PodDisruption
Budget to ensure that you don’t negatively affect your application when it performs its
drain operation to remove the node from the cluster.

Application Scaling
Kubernetes provides multiple ways to scale applications in your cluster. You can scale
an application by manually changing the number of replicas within a deployment.
You can also change the ReplicaSet or replication controller, but we don’t recommend
managing your applications through those implementations. Manual scaling is per‐
fectly fine for workloads that are static or when you know the times that the workload
spikes, but for workloads that experience sudden spikes or workloads that are not
static, manual scaling is not ideal for the application. Happily, Kubernetes also pro‐
vides a Horizontal Pod Autoscaler (HPA) to automatically scale workloads for you.

Let’s first take a look at how you can manually scale a deployment by applying the
following Deployment manifest:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: frontend
spec:
  replicas: 3
  template:
    metadata:
      name: frontend
      labels:
        app: frontend
    spec:
      containers:
      - image: nginx:alpine
        name: frontend
        resources:
          requests:
            cpu: 100m

This example deploys three replicas of our frontend service. We then can scale this
deployment by using the kubectl scale command:

kubectl scale deployment frontend --replicas 5

This results in five replicas of our frontend service. This is great, but let’s look at how
we can add some intelligence and automatically scale the application based on
metrics.
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Scaling with HPA
The Kubernetes HPA allows you to scale your deployments based on CPU, memory,
or custom metrics. It performs a watch on the deployment and pulls metrics from the
Kubernetes metrics-server. It also allows you to set the minimum and maximum
number of pods available. For example, you can define an HPA policy that sets the
minimum number of pods to 3 and the maximum number of pods to 10, and it scales
when the deployment reaches 80% CPU usage. Setting the minimum and maximum
is critical because you don’t want the HPA to scale the replicas to an infinite amount
due to an application bug or issue.

The HPA has the following default setting for sync metrics, upscaling, and downscal‐
ing replicas:

horizontal-pod-autoscaler-sync-period

Default of 30 seconds for syncing metrics

horizontal-pod-autoscaler-upscale-delay

Default of three minutes between two upscale operations

horizontal-pod-autoscaler-downscale-delay

Default of five minutes between two downscale operations

You can change the defaults by using their relative flags, but you need to be careful
when doing so. If your workload is extremely variable, it’s worth playing around with
the settings to optimize them for your specific use case.

Let’s go ahead and set up an HPA policy for the frontend application that you
deployed in the previous exercise.

First, expose the deployment on port 80:

 kubectl expose deployment frontend --port 80

Next, set the autoscale policy:

kubectl autoscale deployment frontend --cpu-percent=50 --min=1 --max=10

This sets the policy to scale your app from a minimum of 1 replica to a maximum of
10 replicas and will invoke the scale operation when the CPU load reaches 50%.

Let’s generate some load so that we can see the deployment autoscale:

kubectl run -i --tty load-generator --image=busybox /bin/sh

Hit enter for command prompt
while true; do wget -q -O- http://frontend.default.svc.cluster.local; done

kubectl get hpa

You might need to wait a few minutes to see the replicas scale up automatically.
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To learn more about the internal details of the autoscaling algo‐
rithm, check out the design proposal.

HPA with Custom Metrics
In Chapter 4, we introduced the role that the metrics server plays in monitoring our
systems in Kubernetes. With the Metrics Server API, we can also support scaling our
applications with custom metrics. The Custom Metrics API and Metrics Aggregator
allows third-party providers to plug in and extend the metrics, and HPA can then
scale based on these external metrics. For example, instead of just basic CPU and
memory metrics, you could scale based on a metric you’re collecting on an external
storage queue. By utilizing custom metrics for autoscaling, you have the ability to
scale application-specific metrics or external service metrics.

Vertical Pod Autoscaler
The Vertical Pod Autoscaler (VPA) differs from the HPA in that it doesn’t scale repli‐
cas; instead, it automatically scales requests. Earlier in the chapter, we talked about
setting requests on our pods and how that guarantees X amount of resources for a
given container. The VPA frees you from manually adjusting these requests, and
automatically scales up and scales down pod requests for you. For workloads that
can’t scale out due to their architecture, this works well for automatically scaling the
resources. For example, a MySQL database doesn’t scale the same way as a stateless
web frontend. With MySQL, you might want to set the Master nodes to automatically
scale up based on workload.

The VPA is more complex than the HPA, and it consists of three components:

Recommender

Monitors the current and past resource consumption, and provides recom‐
mended values for the container’s CPU and memory requests

Updater

Checks which of the pods have the correct resources set, and if they don’t, kills
them so that they can be re-created by their controllers with the updated requests

Admission Plugin

Sets the correct resource requests on new pods

As of Kubernetes v1.15, the VPA is not recommended for production deployments.
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Resource Management Best Practices
• Utilize pod anti-affinity to spread workloads across multiple availability zones to

ensure high availability for your application.
• If you’re using specialized hardware, such as GPU-enabled nodes, ensure that

only workloads that need GPUs are scheduled to those nodes by utilizing taints.
• Use NodeCondition taints to proactively avoid failing or degraded nodes.
• Apply nodeSelectors to your pod specifications to schedule pods to specialized

hardware that you have deployed in the cluster.
• Before going to production, experiment with different node sizes to find a good

mix of cost and performance for node types.
• If you’re deploying a mix of workloads with different performance characteris‐

tics, utilize node pools to have mixed node types in a single cluster.
• Ensure that you set memory and CPU limits for all pods deployed to your cluster.
• Utilize ResourceQuotas to ensure that multiple teams or applications are alotted

their fair share of resources in the cluster.
• Implement LimitRange to set default limits and requests for pod specifications

that don’t set limits or requests.
• Start with manual cluster scaling until you understand your workload profiles on

Kubernetes. You can use autoscaling, but it comes with additional considerations
around node spin-up time and cluster scale down.

• Use the HPA for workloads that are variable and that have unexpected spikes in
their usage.

Summary
In this chapter, we discussed how you can optimally manage Kubernetes and applica‐
tion resources. Kubernetes provides many built-in features to manage resources that
you can use to maintain a reliable, highly utilized, and efficient cluster. Cluster and
pod sizing can be difficult at first, but through monitoring your applications in pro‐
duction you can discover ways to optimize your resources.
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CHAPTER 9

Networking, Network Security,
and Service Mesh

Kubernetes is effectively a manager of distributed systems across a cluster of connec‐
ted systems. This immediately puts critical importance on how the connected systems
communicate with one another, and networking is the key to this. Understanding
how Kubernetes facilitates communication among the distributed services it manages
is important for the effective application of interservice communication.

This chapter focuses on the principles that Kubernetes places on the network and best
practices around applying these concepts in different situations. With any discussion
of networking, security is usually brought along for the ride. The traditional models
of network security boundaries being controlled at the network layer are not absent
in this new world of distributed systems in Kubernetes, but how they are imple‐
mented and the capabilities offered change slightly. Kubernetes brings along a native
API for network security policies that will sound eerily similar to firewall rules of old.

The last section of this chapter delves into the new and scary world of service meshes.
The term “scary” is used in jest, but it is quite the Wild West when it comes to service
mesh technology in Kubernetes.

Kubernetes Network Principles
Understanding how Kubernetes uses the underlying network to facilitate communi‐
cation among services is critical to understanding how to effectively plan application
architectures. Usually, networking topics start to give most people major headaches.
We are going to keep this rather simple because this is more of a best practice guid‐
ance than a lesson on container networking. Luckily for us, Kubernetes has laid down
some rules of the road for networking that help to give us a start. The rules outline
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how communication is expected to behave between different components. Let’s take a
closer look at each of these rules:

Container-to-container communication in the same pod
All containers in the same pod share the same network space. This effectively
allows localhost communication between the containers. It also means that con‐
tainers in the same pod need to expose different ports. This is done using the
power of Linux namespaces and Docker networking to allow these containers to
be on the same local network through the use of a paused container in every pod
that does nothing but host the networking for the pod. Figure 9-1 shows how
Container A can communicate directly with Container B using localhost and the
port number that the container is listening on.

Figure 9-1. Intrapod communication between containers

Pod-to-pod communication
All pods need to communicate with one another without any network address
translation (NAT). This means that the IP address that a pod is seen as by the
receiving pod is the sender’s actual IP address. This is handled in different ways,
depending on the network plug-in used, which we discuss in more detail later in
the chapter. This rule is true between pods on the same node and pods that are
on different nodes in the same cluster. This also extends to the node being able to
communicate directly to the pod with no NAT involved. This allows host-based
agents or system daemons to communicate to the pods as needed. Figure 9-2 is a
representation of the communication processes between pods in the same node
and pods in different nodes of the cluster.
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Figure 9-2. Pod to pod communication intra- and internode

Service-to-pod communication
Services in Kubernetes represent a durable IP address and port that is found on
each node that will forward all traffic to the endpoints that are mapped to the ser‐
vice. Over the different iterations of Kubernetes, the method in favor of enabling
this has changed, but the two main methods are via the use of iptables or the
newer IP Virtual Server (IPVS). Most implementations today use the iptables
implementation to enable a pseudo-Layer 4 load balancer on each node.
Figure 9-3 is a visual representation of how the service is tied to the pods via label
selectors.
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Figure 9-3. Service to pod communication

Network Plug-ins
Early on, the Special Interest Group (SIG) guided the networking standards to more
of a pluggable architecture, which opened the door for numerous third-party net‐
working projects, which in many cases injected value-added capabilities into Kuber‐
netes workloads. These network plug-ins come in two flavors. The most basic is
called Kubenet and is the default plug-in provided by Kubernetes natively. The sec‐
ond type of plug-in follows the Container Network Interface (CNI) specification,
which is a generic plug-in network solution for containers.

Kubenet
Kubenet is the most basic network plug-in that comes out of the box in Kubernetes. It
is the simplest of the plug-ins and provides a Linux bridge, cbr0, that’s a virtual
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Ethernet pair for the pods connected to it. The pod then gets an IP address from a 
Classless Inter-Domain Routing (CIDR) range that is distributed across the nodes of
the cluster. There is also an IP masquerade flag that should be set to allow traffic des‐
tined to IPs outside the pod CIDR range to be masqueraded. This obeys the rules of
pod-to-pod communication because only traffic destined outside the pod CIDR
undergoes network address translation (NAT). After the packet leaves a node to go to
another node, some kind of routing is put in place to facilitate the process to forward
the traffic to the correct node.

Kubenet Best Practices
• Kubenet allows for a simplistic network stack and does not consume precious IP

addresses on already crowded networks. This is especially true of cloud networks
that are extended to on-premises datacenters.

• Ensure that the pod CIDR range is large enough to handle the potential size of
the cluster and the pods in each cluster. The default pods per node set in kubelet
is 110, but you can adjust this.

• Understand and plan accordingly for the route rules to properly allow traffic to
find pods in the proper nodes. In cloud providers, this is usually automated, but
on-premises or edge cases will require automation and solid network
management.

The CNI Plug-in
The CNI plug-in has some basic requirements set aside by the specification. These
specifications dictate the interfaces and minimal API actions that the CNI offers and
how it will interface with the container runtime that is used in the cluster. The net‐
work management components are defined by the CNI, but they all must include
some type of IP address management and minimally allow for the addition and dele‐
tion of a container to a network. The full original specification that was originally
derived from the rkt networking proposal is available.

The Core CNI project provides libraries that you can use to write plug-ins that pro‐
vide the basic requirements and that can call other plug-ins that perform various
functions. This adaptability led to numerous CNI plug-ins that you can use in con‐
tainer networking from cloud providers like the Microsoft Azure native CNI and the
Amazon Web Services (AWS) VPC CNI plug-in, to traditional network providers
such as Nuage CNI, Juniper Networks Contrail/Tunsten Fabric, and VMware NSX.

CNI Best Practices
Networking is a critical component of a functioning Kubernetes environment. The
interaction between the virtual components within Kubernetes and the physical
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network environment should be carefully designed to ensure dependable application
communication:

1. Evaluate the feature set needed to accomplish the overall networking goals of the
infrastructure. Some CNI plug-ins provide native high availability, multicloud
connectivity, Kubernetes network policy support, and various other features.

2. If you are running clusters via public cloud providers, verify that any CNI plug-
ins that are not native to the cloud provider’s Software-Defined Network (SDN)
are actually supported.

3. Verify that any network security tools, network observability, and management
tools are compatible with the CNI plug-in of choice, and if not, research which
tools can replace the existing ones. It is important to not lose either observability
or security capabilities because the needs will be expanded when moving to a
large-scale distributed system such as Kubernetes. You can add tools like Weave‐
works Weave Scope, Dynatrace, and Sysdig to any Kubernetes environment, and
each offers its own benefits. If you’re running in a cloud provider’s managed ser‐
vice, such as Azure AKS, Google GCE, or AWS EKS, look for native tools like
Azure Container Insights and Network Watcher, Google Stackdriver, and AWS
CloudWatch. Whatever tool you use, it should at least provide insight into the
network stack and the Four Golden signals, made popular by the amazing Goo‐
gle SRE team and Rob Ewashuck: Latency, Traffic, Errors, and Saturation.

4. If you’re using CNIs that do not provide an overlay network separate from the
SDN network space, ensure that you have proper network address space to han‐
dle node IPs, pod IPs, internal load balancers, and overhead for cluster upgrade
and scale out processes.

Services in Kubernetes
When pods are deployed into a Kubernetes cluster, because of the basic rules of
Kubernetes networking and the network plug-in used to facilitate these rules, pods
can directly communicate only with other pods within the same cluster. Some CNI
plug-ins give the pods IPs on the same network space as the nodes, so technically,
after the IP of a pod is known, it can be accessed directly from outside the cluster.
This, however, is not an efficient way to access services being served by a pod,
because of the ephemeral nature of pods in Kubernetes. Imagine that you have a func‐
tion or system that needs to access an API that is running in a pod in Kubernetes. For
a while, that might work with no issue, but at some point there might be a voluntary
or involuntary disruption that will cause that pod to disappear. Kubernetes will
potentially create a replacement pod with a new name and IP address, so naturally
there needs to be some mechanism to find the replacement pod. This is where the
service API comes to the rescue.
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The service API allows for a durable IP and port to be assigned within the Kubernetes
cluster and automatically mapped to the proper pods as endpoints to the service. This
magic happens through the aforementioned iptables or IPVS on Linux nodes to cre‐
ate a mapping of the assigned service IP and port to the endpoint’s or pod’s actual IPs.
The controller that manages this is called the kube-proxy service, which actually runs
on each node in the cluster. It is responsible for manipulating the iptables rules on
each node.

When a service object is defined, the type of service needs to be defined. The service
type will dictate whether the endpoints are exposed only within the cluster or outside
of the cluster. There are four basic service types that we will discuss briefly in the fol‐
lowing sections.

Service Type ClusterIP
ClusterIP is the default service type if one is not declared in the specification. Clus‐
terIP means that the service is assigned an IP from a designated service CIDR range.
This IP is as long lasting as the service object, so it provides an IP and port and proto‐
col mapping to backend pods using the selector field; however, as we will see, there
are cases for which you can have no selector. The declaration of the service also pro‐
vides for a Domain Name System (DNS) name for the service. This facilitates service
discovery within the cluster and allows for workloads to easily communicate to other
services within the cluster by using DNS lookup based on the service name. As an
example, if you have the service definition shown in the following example and need
to access that service from another pod inside the cluster via an HTTP call, the call
can simply use http://web1-svc if the client is in the same namespace as the service:

apiVersion: v1
kind: Service
metadata:
  name: web1-svc
spec:
  selector:
    app: web1
  ports:
  - port: 80
    targetPort: 8081

If it is required to find services in other namespaces, the DNS pattern would be <ser
vice_name>.<namespace_name>.svc.cluster.local.

If no selector is given in a service definition, the endpoints can be explicitly defined
for the service by using an endpoint API definition. This will basically add an IP and
port as a specific endpoint to a service instead of relying on the selector attribute to
automatically update the endpoints from the pods that are in scope by the selector
match. This can be useful in a few scenarios in which you have a specific database
that is not in a cluster that is to be used for testing but you will change the service
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later to a Kubernetes-deployed database. This is sometimes called a headless service
because it is not managed by kube-proxy as other services are, but you can directly
manage the endpoints, as shown in Figure 9-4.

Figure 9-4. ClusterIPPod and Service visualization

Service Type NodePort
The NodePort service type assigns a high-level port on each node of the cluster to the
Service IP and port on each node. The high-level NodePorts fall within the 30,000
through 32,767 ranges and can either be statically assigned or explicitly defined in the
service specification. NodePorts are usually used for on-premises clusters or bespoke
solutions that do not offer automatic load-balancing configuration. To directly access
the service from outside the cluster, use NodeIP:NodePort, as depicted in Figure 9-5.
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Figure 9-5. NodePort–Pod, Service and Host network visualization

Service Type ExternalName
The ExternalName service type is seldom used in practice, but it can be helpful for
passing cluster-durable DNS names to external DNS named services. A common
example is an external database service from a cloud provider that has a unique DNS
provided by the cloud provider, such as mymongodb.documents.azure.com.
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Technically, this can be added very easily to a pod specification using an Environment
variable, as discussed in Chapter 6; however, it might be more advantageous to use a
more generic name in the cluster, such as prod-mongodb, which enables the change of
the actual database it points to by just changing the service specification instead of
having to recycle the pods because the Environment variable has changed:

kind: Service
apiVersion: v1
metadata:
  name: prod-mongodb
  namespace: prod
spec:
  type: ExternalName
  externalName: mymongodb.documents.azure.com

Service Type LoadBalancer
LoadBalancer is a very special service type because it enables automation with cloud
providers and other programmable cloud infrastructure services. The LoadBalancer
type is a single method to ensure the deployment of the load-balancing mechanism
that the infrastructure provider of the Kubernetes cluster provides. This means that in
most cases, LoadBalancer will work roughly the same way in AWS, Azure, GCE,
OpenStack, and others. In most cases, this entry will create a public-facing load-
balanced service; however, each cloud provider has some specific annotations that
enable other features, such as internal-only load balancers, AWS ELB configuration
parameters, and so on. You can also define the actual load-balancer IP to use and the
source ranges to allow within the service specification, as seen in the code sample that
follows and the visual representation in Figure 9-6:

kind: Service
apiVersion: v1
metadata:
  name: web-svc
spec:
  type: LoadBalancer
  selector:
    app: web
  ports:
  - protocol: TCP
    port: 80
    targetPort: 8081
  loadBalancerIP: 13.12.21.31
  loadBalancerSourceRanges:
  - "142.43.0.0/16"
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Figure 9-6. LoadBalancer–Pod, Service, Node, and Cloud Provider network
visualization

Ingress and Ingress Controllers
Although not technically a service type in Kubernetes, the Ingress specification is an
important concept for ingress to workloads in Kubernetes. Services, as defined by the
Service API, allow for a basic level of Layer 3/4 load balancing. The reality is that
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many of the stateless services that are deployed in Kubernetes require a high level of
traffic management and usually require application-level control: more specifically,
HTTP protocol management.

The Ingress API is basically an HTTP-level router that allows for host- and path-
based rules to direct to specific backend services. Imagine a website hosted on
www.evillgenius.com and two different paths that are hosted on that site, /registration
and /labaccess, that are served by two different services hosted in Kubernetes, reg-
svc and labaccess-svc. You can define an ingress rule to ensure that requests to
www.evillgenius/registration are forwarded to the reg-svc service and the correct
endpoint pods, and, similarly, that requests to www.evillgenius.com/labaccess are for‐
warded to the correct endpoints of the labaccess-svc service. The Ingress API also
allows for host-based routing to allow for different hosts on a single ingress. An addi‐
tional feature is the ability to declare a Kubernetes secret that holds the certificate
information for Transport Layer Security (TLS) termination on port 443. When a
path is not specified, there is usually a default backend that can be used to give a bet‐
ter user experience than the standard 404 error.

The details around the specific TLS and default backend configuration are actually
handled by what is known as the Ingress controller. The Ingress controller is decou‐
pled from the Ingress API and allows for operators to deploy an Ingress controller of
choice, such as NGINX, Traefik, HAProxy, and others. An Ingress controller, as the
name suggests, is a controller, just like any Kubernetes controller, but it’s not part of
the system and is instead a third-party controller that understands the Kubernetes
Ingress API for dynamic configuration. The most common implementation of an
Ingress controller is NGINX because it is partly maintained by the Kubernetes
project; however, there are numerous examples of both open source and commercial
Ingress controllers:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: labs-ingress
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /
spec:
  tls:
  - hosts:
    - www.evillgenius.com
    secretName: secret-tls
  rules:
  - host: www.evillgenius.com
    http:
      paths:
      - path: /registration
        backend:
          serviceName: reg-svc

134 | Chapter 9: Networking, Network Security, and Service Mesh



          servicePort: 8088
      - path: /labaccess
        backend:
          serviceName: labaccess-svc
          servicePort: 8089

Services and Ingress Controllers Best Practices
Creating a complex virtual network environment with interconnected applications
requires careful planning. Effectively managing how the different services of the
application communicate with one another and to the outside world requires con‐
stant attention as the application changes. These best practices will help make the
management easier:

• Limit the number of services that need to be accessed from outside the cluster.
Ideally, most services will be ClusterIP, and only external-facing services will be
exposed externally to the cluster.

• If the services that need to be exposed are primarily HTTP/HTTPS-based serv‐
ices, it is best to use an Ingress API and Ingress controller to route traffic to back‐
ing services with TLS termination. Depending on the type of Ingress controller
used, features such as rate limiting, header rewrites, OAuth authentication,
observability, and other services can be made available without having to build
them into the applications themselves.

• Choose an Ingress controller that has the needed functionality for secure ingress
of your web-based workloads. Standardize on one and use it across the enterprise
because many of the specific configuration annotations vary between implemen‐
tations and prevent the deployment code from being portable across enterprise
Kubernetes implementations.

• Evaluate cloud service provider-specific Ingress controller options to move the
infrastructure management and load of the ingress out of the cluster, but still
allow for Kubernetes API configuration.

• When serving mostly APIs externally, evaluate API-specific Ingress controllers,
such as Kong or Ambassador, that have more fine-tuning for API-based work‐
loads. Although NGINX, Traefik, and others might offer some API tuning, it will
not be as fine-grained as specific API proxy systems.

• When deploying Ingress controllers as pod-based workloads in Kubernetes,
ensure that the deployments are designed for high availability and aggregate per‐
formance throughput. Use metrics observability to properly scale the ingress, but
include enough cushion to prevent client disruptions while the workload scales.
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Network Security Policy
The NetworkPolicy API built into Kubernetes allows for network-level ingress and
egress access control defined with your workload. Network policies allow you to con‐
trol how groups of pods are allowed to communicate with one another and with
other endpoints. If you want to dig deeper into the NetworkPolicy specification, it
might sound confusing, especially given that it is defined as a Kubernetes API, but it
requires a network plug-in that supports the NetworkPolicy API.

Network policies have a simple YAML structure that can look complicated, but if you
think of it as a simple East-West traffic firewall, it might help you to understand it a
little better. Each policy specification has podSelector, ingress, egress, and policy
Type fields. The only required field is podSelector, which follows the same conven‐
tion as any Kubernetes selector with a matchLabels. You can create multiple
NetworkPolicy definitions that can target the same pods, and the effect is additive in
nature. Because NetworkPolicy objects are namespaced objects, if no selector is given
for a podSelector, all pods in the namespace fall into the scope of the policy. If there
are any ingress or egress rules defined, this creates a whitelist of what is allowed to or
from the pod. There is an important distinction here: if a pod falls into the scope of a
policy because of a selector match, all traffic, unless explicitly defined in an ingress or
egress rule, is blocked. This little, nuanced detail means that if a pod does not fall into
any policy because of a selector match, all ingress and egress is allowed to the pod.
This was done on purpose to allow for ease of deploying new workloads into Kuber‐
netes without any blockers.

The ingress and egress fields are basically a list of rules based on source or destina‐
tion and can be specific CIDR ranges, podSelectors, or namespaceSelectors. If you
leave the ingress field empty, it is like a deny-all inbound. Similarly, if you leave the
egress empty, it is deny-all outbound. Port and protocol lists are also supported to
further tighten down the type of communications allowed.

The policyTypes field specifies to which network policy rule types the policy object
is associated. If the field is not present, it will just look at the ingress and egress lists
fields. The difference again is that you must explicitly call out egress in policyTypes
and also have an egress rule list for this policy to work. Ingress is assumed, and defin‐
ing it explicitly is not needed.

Let’s use a prototypical example of a three-tier application deployed to a single name‐
space where the tiers are labeled as tier: "web", tier: "db", and tier: "api". If
you want to ensure that traffic is limited to each tier properly, create a NetworkPolicy
manifest like this:
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Default deny rule:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: default-deny-all
spec:
  podSelector: {}
  policyTypes:
  - Ingress

Web layer network policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: webaccess
spec:
  podSelector:
    matchLabels:
      tier: "web"
  policyTypes:
  - Ingress
  ingress:
  - {}

API layer network policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-api-access
spec:
  podSelector:
    matchLabels:
      tier: "api"
  policyTypes:
  - Ingress
  ingress:
  - from:
    - podSelector:
        matchLabels:
          tier: "web"

Database layer network policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-db-access
spec:
  podSelector:
    matchLabels:
      tier: "db"
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  policyTypes:
  - Ingress
  ingress:
  - from:
    - podSelector:
        matchLabels:
          tier: "api"

Network Policy Best Practices
Securing network traffic in an enterprise system was once the domain of physical
hardware devices with complex networking rule sets. Now, with Kubernetes network
policy, a more application-centric approach can be taken to segment and control the
traffic of the applications hosted in Kubernetes. Some common best practices apply
no matter which policy plug-in used:

• Start off slow and focus on traffic ingress to pods. Complicating matters with
ingress and egress rules can make network tracing a nightmare. As soon as traffic
is flowing as expected, you can begin to look at egress rules to further control
flow to sensitive workloads. The specification also favors ingress because it
defaults many options even if nothing is entered into the ingress rules list.

• Ensure that the network plug-in used either has some of its own interface to the
NetworkPolicy API or supports other well-known plug-ins. Example plug-ins
include Calico, Cilium, Kube-router, Romana, and Weave Net.

• If the network team is used to having a “default-deny” policy in place, create a
network policy such as the following for each namespace in the cluster that will
contain workloads to be protected. This ensures that even if another network
policy is deleted, no pods are accidentally “exposed”:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: default-deny-all
spec:
  podSelector: {}
  policyTypes:
  - Ingress

4. If there are pods that need to be accessed from the internet, use a label to explic‐
itly apply a network policy that allows ingress. Be aware of the entire flow in case
the actual IP that a packet is coming from is not the internet, but the internal IP
of a load balancer, firewall, or other network device. For example, to allow traffic
from all (including external) sources for pods having the allow-internet=true
label, do this:
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apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: internet-access
spec:
  podSelector:
    matchLabels:
      allow-internet: "true"
  policyTypes:
  - Ingress
  ingress:
  - {}

5. Try to align application workloads to single namespaces for ease of creating rules
because the rules themselves are namespace specific. If cross-namespace commu‐
nication is needed, try to be as explicit as possible and perhaps use specific labels
to identify the flow pattern:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: namespace-foo-2-namespace-bar
  namespace: bar
spec:
  podSelector:
    matchLabels:
      app: bar-app
  policyTypes:
  - Ingress
  ingress:
  - from:
    -  namespaceSelector:
        matchLabels:
          networking/namespace: foo
       podSelector:
        matchLabels:
          app: foo-app

6. Have a test bed namespace that has fewer restrictive policies, if any at all, to allow
time to investigate the correct traffic patterns needed.

Service Meshes
It is easy to imagine a single cluster hosting hundreds of services that load-balance
across thousands of endpoints that communicate with one another, access external
resources, and potentially are being accessed from external sources. This can be quite
daunting when trying to manage, secure, observe, and trace all of the connections
between these services, especially with the dynamic nature of the endpoints coming
and going from the overall system. The concept of a service mesh, which is not unique
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to Kubernetes, allows for control over how these services are connected and secured
with a dedicated date plane and control plane. Service meshes all have different capa‐
bilities, but usually they all offer some of the following:

• Load balancing of traffic with potentially fine-grained traffic-shaping policies
that are distributed across the mesh.

• Service discovery of services that are members of the mesh, which might include
services within a cluster or in another cluster, or an outside system that is a mem‐
ber of the mesh.

• Observability of the traffic and services, including tracing across the distributed
services using tracing systems like Jaeger or Zipkin that follow the OpenTracing
standards.

• Security of the traffic in the mesh using mutual authentication. In some cases,
not only pod-to-pod or East-West traffic is secured, but an Ingress controller is
also provided that offers North-South security and control.

• Resiliency, health, and failure-prevention capabilities that allow for patterns such
as circuit breaker, retries, deadlines, and so on.

The key here is that all of these features are integrated into the applications that take
part in the mesh with little or no application changes. How can all of these amazing
features come for free? Sidecar proxies are usually the way this is done. The majority
of service meshes available today inject a proxy that is part of the data plane into each
pod that is a member of the mesh. This allows for policies and security to be
synchronized across the mesh by the control-plane components. This really hides the
network details from the container that holds the workload and leaves it to the proxy
to handle the complexity of the distributed network. To the application, it just talks
via localhost to its proxy. In many cases, the control plane and data plane might be
different technologies but complementary to each other.

In many cases, the first service mesh that comes to mind is Istio, a project by Google,
Lyft, and IBM that uses Envoy as its data-plane proxy and uses proprietary control-
plane components Mixer, Pilot, Galley, and Citadel. There are other service meshes
that offer varying levels of capabilities, such as Linkerd2, which uses its own data-
plane proxy built using Rust. HashiCorp has recently added more Kubernetes-centric
service mesh capabilities to Consul, which allows you to choose between Consul’s
own proxy or Envoy, and offers commercial support for its service mesh.

The topic of service meshes in Kubernetes is a fluid one—if not overly emotional in
many social media tech circles—so a detailed explanation of each mesh has no value
here. I would be remiss if I did not mention the promising efforts lead by Microsoft,
Linkerd, HashiCorp, Solo.io, Kinvolk, and Weaveworks around the Service Mesh
Interface (SMI). The SMI hopes to set a standard interface for basic feature sets that
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are expected of all service meshes. The specification as of this writing covers traffic
policy such as identity and transport-level encryption, traffic telemetry that captures
key metrics between services in the mesh, and traffic management to allow for traffic
shifting and weighting between different services. This project hopes to take some of
the variability out of the service meshes yet allow for service mesh vendors to extend
and build value-added capabilities into their products to differentiate themselves
from others. 

Service Mesh Best Practices
The service mesh community continues to grow every day, and as more and more
enterprises help define their needs, the service mesh ecosystem will change dramati‐
cally. These best practices are, as of this writing, based on common necessities that
service meshes try to solve today:

• Rate the importance of the key features service meshes offer and determine
which current offerings provide the most important features with the least
amount of overhead. Overhead here is both human technical debt and infra‐
structure resource debt. If all that is really required is mutual TLS between cer‐
tain pods, would it be easier to perhaps find a CNI that offers that integrated into
the plug-in?

• Is the need for a cross-system mesh such as multicloud or hybrid scenarios a key
requirement? Not all service meshes offer this capability, and if they do, it is a
complicated process that often introduces fragility into the environment.

• Many of the service mesh offerings are open source community-based projects,
and if the team that will be managing the environment is new to service meshes,
commercially supported offerings might be a better option. There are companies
that are beginning to offer commercially supported and managed service meshes
based on Istio, which can be helpful because it is almost universally agreed upon
that Istio is a complicated system to manage.

Summary
In addition to application management, one of the most important things that Kuber‐
netes provides is the ability to link different pieces of your application together. In
this chapter, we looked at the details of how Kubernetes works, including how pods
get their IP addresses through CNI plug-ins, how those IPs are grouped together to
form services, and how more application or Layer 7 routing can be implemented via
Ingress resources (which in turn use services). You also saw how to limit traffic and
secure your network using networking policies, and, finally, how service mesh
technologies are transforming the ways in which people connect and monitor the
connections between their services. In addition to setting up your application to run
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and be deployed reliably, setting up the networking for your application is a crucial
piece of using Kubernetes successfully. Understanding how Kubernetes approaches
networking and how that intersects optimally with your application is a critical piece
of its ultimate success.
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CHAPTER 10

Pod and Container Security

When it comes to pod security via the Kubernetes API, you have two main options at
your disposal: PodSecurityPolicy and RuntimeClass. In this chapter, we review the
purpose and use of each API and provide best practices for their use.

PodSecurityPolicy API
The PodSecurityPolicy API is under active development. As of
Kubernetes 1.15, this API was in beta. Please visit the upstream
documentation for the latest updates on the feature state.

This cluster-wide resource creates a single place to define and manage all of the
security-sensitive fields found in pod specifications. Prior to the creation of the Pod‐
SecurityPolicy resource, cluster administrators and/or users would need to independ‐
ently define individual SecurityContext settings for their workloads or enable
bespoke admission controllers on the cluster to enforce some aspects of pod security.

Does all of this sound too easy? PodSecurityPolicy is surprisingly difficult to imple‐
ment effectively and will more often than not get turned off or evaded in other ways.
We do, however, strongly suggest taking the time to fully understand PodSecurityPo‐
licy because it’s one of the single most effective means to reduce your attack surface
area by limiting what can run on your cluster and with what level of privilege.

Enabling PodSecurityPolicy
Along with the resource API, a corresponding admission controller must be enabled
to enforce the conditions defined in the PodSecurityPolicy resource. This means that
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the enforcement of these policies happens at the admission phase of the request flow.
To learn more about how admission controllers work, refer to Chapter 17.

It’s worth mentioning that enabling PodSecurityPolicy is not widely available among
public cloud providers and cluster operations tools. In the cases for which it is avail‐
able, it’s generally shipped as an opt-in feature.

Proceed with caution when enabling PodSecurityPolicy because it’s
potentially workload blocking if adequate preparation isn’t done at
the outset.

There are two main components that you need to complete in order to start using
PodSecurityPolicy:

1. Ensure that the PodSecurityPolicy API is enabled (this should already be done if
you’re on a currently supported version of Kubernetes).
You can confirm that this API is enabled by running kubectl get psp. As long
as the response isn’t the server doesn't have a resource type "PodSecuri
tyPolicies, you are OK to proceed.

2. Enable the PodSecurityPolicy admission controller via the api-server flag --
enable-admission-plugins.

If you are enabling PodSecurityPolicy on an existing cluster with
running workloads, you must create all necessary policies, service
accounts, roles, and role bindings before enabling the admission
controller.

We also recommend the addition of the --use-service-account-credentials=true
flag to kube-controller-manager, which will enable service accounts to be used for
each individual controller within kube-controller-manager. This allows for more
granular policy control even within the kube-system namespace. You can simply run
the following command to determine whether the flag has been set. It demonstrates
that there is indeed a service account per controller:

$ kubectl get serviceaccount -n kube-system | grep '.*-controller'
attachdetach-controller              1         6d13h
certificate-controller               1         6d13h
clusterrole-aggregation-controller   1         6d13h
cronjob-controller                   1         6d13h
daemon-set-controller                1         6d13h
deployment-controller                1         6d13h

144 | Chapter 10: Pod and Container Security



disruption-controller                1         6d13h
endpoint-controller                  1         6d13h
expand-controller                    1         6d13h
job-controller                       1         6d13h
namespace-controller                 1         6d13h
node-controller                      1         6d13h
pv-protection-controller             1         6d13h
pvc-protection-controller            1         6d13h
replicaset-controller                1         6d13h
replication-controller               1         6d13h
resourcequota-controller             1         6d13h
service-account-controller           1         6d13h
service-controller                   1         6d13h
statefulset-controller               1         6d13h
ttl-controller                       1         6d13h

It’s extremely important to remember that having no PodSecurity‐
Policies defined will result in an implicit deny. This means that
without a policy match for the workload, the pod will not be
created.

Anatomy of a PodSecurityPolicy
To best understand how PodSecurityPolicy enables you to secure your pods, let’s
work through an end-to-end example together. This will help solidify the order of
operations from policy creation through use.

Before you continue, the following section requires that your cluster have PodSecuri‐
tyPolicy enabled in order for it to work. To see how to enable it, refer to the previous
section.

You should not enable PodSecurityPolicy on a live cluster without
considering the warnings provided in the previous section. Proceed
with caution.

Let’s first test the experience without making any changes or creating any policies.
The following is a test workload that simply runs the trusty pause container in a
Deployment (save this file as pause-deployment.yaml on your local filesystem for use
throughout this section):

apiVersion: apps/v1
kind: Deployment
metadata:
  name: pause-deployment
  namespace: default
  labels:
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    app: pause
spec:
  replicas: 1
  selector:
    matchLabels:
      app: pause
  template:
    metadata:
      labels:
        app: pause
    spec:
      containers:
      - name: pause
        image: k8s.gcr.io/pause

By running the following command, you can verify that you have a Deployment and
a corresponding ReplicaSet but NO pod:

$ kubectl get deploy,rs,pods -l app=pause
NAME                                     READY   UP-TO-DATE   AVAILABLE   AGE
deployment.extensions/pause-delpoyment   0/1     0            0           41s

NAME                                                DESIRED   CURRENT   READY   
AGE
replicaset.extensions/pause-delpoyment-67b77c4f69   1         0         0       
41s

If you describe the ReplicaSet, you can confirm the cause from the event log:

$ kubectl describe replicaset -l app=pause
Name:           pause-delpoyment-67b77c4f69
Namespace:      default
Selector:       app=pause,pod-template-hash=67b77c4f69
Labels:         app=pause
                pod-template-hash=67b77c4f69
Annotations:    deployment.kubernetes.io/desired-replicas: 1
                deployment.kubernetes.io/max-replicas: 2
                deployment.kubernetes.io/revision: 1
Controlled By:  Deployment/pause-delpoyment
Replicas:       0 current / 1 desired
Pods Status:    0 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
  Labels:  app=pause
           pod-template-hash=67b77c4f69
  Containers:
   pause:
    Image:        k8s.gcr.io/pause
    Port:         <none>
    Host Port:    <none>
    Environment:  <none>
    Mounts:       <none>
  Volumes:        <none>
Conditions:
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  Type             Status  Reason
  ----             ------  ------
  ReplicaFailure   True    FailedCreate
Events:
  Type     Reason        Age                  From                   Message
  ----     ------        ----                 ----                   -------
  Warning  FailedCreate  45s (x15 over 2m7s)  replicaset-controller  Error cre-
ating: pods "pause-delpoyment-67b77c4f69-" is forbidden: unable to validate 
against any pod security policy: []

This is because there are either no pod security policies defined or the service account
is not allowed access to use the PodSecurityPolicy. You might have also noticed that
all of the system pods in the kube-system namespace are probably still in RUNNING
state. This is because these requests have already passed the admission phase for the
request. If there were an event that restarted these pods, they would also suffer the
same fate as our test workload given that there are no PodSecurityPolicy resources
defined:

replicaset-controller  Error creating: pods "pause-delpoyment-67b77c4f69-" is 
forbidden: unable to validate against any pod security policy: []

Let’s delete the test workload deployment:

$ kubectl delete deploy -l app=pause
deployment.extensions "pause-delpoyment" deleted

Now, let’s go fix this by defining pod security policies. For a complete list of policy
settings, refer to the Kubernetes documentation. The following policies are basic var‐
iations of the examples provided in the Kubernetes documentation.

Call the first policy privileged, which we use to demonstrate how to allow privileged
workloads. You can apply the following resources by using kubectl create -f
<filename>:

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: privileged
spec:
  privileged: true
  allowPrivilegeEscalation: true
  allowedCapabilities:
  - '*'
  volumes:
  - '*'
  hostNetwork: true
  hostPorts:
  - min: 0
    max: 65535
  hostIPC: true
  hostPID: true
  runAsUser:
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    rule: 'RunAsAny'
  seLinux:
    rule: 'RunAsAny'
  supplementalGroups:
    rule: 'RunAsAny'
  fsGroup:
    rule: 'RunAsAny'

The next policy defines restricted access and will suffice for many workloads apart
from those responsible for running Kubernetes cluster-wide services such as
kube-proxy, located in the kube-system namespace:

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: restricted
spec:
  privileged: false
  allowPrivilegeEscalation: false
  requiredDropCapabilities:
    - ALL
  volumes:
    - 'configMap'
    - 'emptyDir'
    - 'projected'
    - 'secret'
    - 'downwardAPI'
    - 'persistentVolumeClaim'
  hostNetwork: false
  hostIPC: false
  hostPID: false
  runAsUser:
    rule: 'RunAsAny'
  seLinux:
    rule: 'RunAsAny'
  supplementalGroups:
    rule: 'MustRunAs'
    ranges:
      - min: 1
        max: 65535
  fsGroup:
    rule: 'MustRunAs'
    ranges:
      - min: 1
        max: 65535
  readOnlyRootFilesystem: false

You can confirm that the policies have been created by running the following
command:

$ kubectl get psp
NAME         PRIV    CAPS   SELINUX    RUNASUSER          FSGROUP     
SUPGROUP    READONLYROOTFS   VOLUMES
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privileged   true    *      RunAsAny   RunAsAny           RunAsAny    RunA-
sAny    false            *
restricted   false          RunAsAny   MustRunAsNonRoot   MustRunAs   MustRu-
nAs   false            configMap,emptyDir,projected,secret,downwardAPI,persis-
tentVolumeClaim

Now that we have defined these policies, we need to grant the service accounts access
to use these policies via Role-Based Access Control (RBAC).

First, create the following ClusterRole that allows access to use the restricted PodSe‐
curityPolicy that we created in the previous step:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: psp-restricted
rules:
- apiGroups:
  - extensions
  resources:
  - podsecuritypolicies
  resourceNames:
  - restricted
  verbs:
  - use

Now, create the following ClusterRole that allows access to use the privileged PodSe‐
curityPolicy we created in the previous step:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: psp-privileged
rules:
- apiGroups:
  - extensions
  resources:
  - podsecuritypolicies
  resourceNames:
  - privileged
  verbs:
  - use

We must now create a corresponding ClusterRoleBinding that allows the sys
tem:serviceaccounts group access to psp-restricted ClusterRole. This group
includes all of the kube-controller-manager controller service accounts:

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: psp-restricted
subjects:
- kind: Group
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  name: system:serviceaccounts
  namespace: kube-system
roleRef:
  kind: ClusterRole
  name: psp-restricted
  apiGroup: rbac.authorization.k8s.io

Go ahead and create the test workload again. You can see that the pod is now up and
running:

$ kubectl create -f pause-deployment.yaml
deployment.apps/pause-deployment created
$ kubectl get deploy,rs,pod
NAME                                     READY   UP-TO-DATE   AVAILABLE   AGE
deployment.extensions/pause-deployment   1/1     1            1           10s

NAME                                                DESIRED   CURRENT   READY   
AGE
replicaset.extensions/pause-deployment-67b77c4f69   1         1         1       
10s

NAME                                    READY   STATUS    RESTARTS   AGE
pod/pause-deployment-67b77c4f69-4gmdn   1/1     Running   0          9s

Update the test workload deployment to violate the restricted policy. Adding privi
leged=true should do the trick. Save this manifest as pause-privileged-
deployment.yaml on your local filesystem and then apply it by using kubectl apply
-f <filename>:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: pause-privileged-deployment
  namespace: default
  labels:
    app: pause
spec:
  replicas: 1
  selector:
    matchLabels:
      app: pause
  template:
    metadata:
      labels:
        app: pause
    spec:
      containers:
      - name: pause
        image: k8s.gcr.io/pause
        securityContext:
          privileged: true
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Again, you can see that both the Deployment and the ReplicaSet have been created;
however, the pod has not. You can find the details of why in the event log of the
ReplicaSet:

$ kubectl create -f pause-privileged-deployment.yaml
deployment.apps/pause-privileged-deployment created
$ kubectl get deploy,rs,pods -l app=pause
NAME                                                READY   UP-TO-DATE   
AVAILABLE   AGE
deployment.extensions/pause-privileged-deployment   0/1     0            
0           37s

NAME                                                           DESIRED   
CURRENT   READY   AGE
replicaset.extensions/pause-privileged-deployment-6b7bcfb9b7   1         
0         0       37s
$ kubectl describe replicaset -l app=pause
Name:           pause-privileged-deployment-6b7bcfb9b7
Namespace:      default
Selector:       app=pause,pod-template-hash=6b7bcfb9b7
Labels:         app=pause
                pod-template-hash=6b7bcfb9b7
Annotations:    deployment.kubernetes.io/desired-replicas: 1
                deployment.kubernetes.io/max-replicas: 2
                deployment.kubernetes.io/revision: 1
Controlled By:  Deployment/pause-privileged-deployment
Replicas:       0 current / 1 desired
Pods Status:    0 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
  Labels:  app=pause
           pod-template-hash=6b7bcfb9b7
  Containers:
   pause:
    Image:        k8s.gcr.io/pause
    Port:         <none>
    Host Port:    <none>
    Environment:  <none>
    Mounts:       <none>
  Volumes:        <none>
Conditions:
  Type             Status  Reason
  ----             ------  ------
  ReplicaFailure   True    FailedCreate
Events:
  Type     Reason        Age                   From                   Message
  ----     ------        ----                  ----                   -------
  Warning  FailedCreate  78s (x15 over 2m39s)  replicaset-controller  Error cre-
ating: pods "pause-privileged-deployment-6b7bcfb9b7-" is forbidden: unable to 
validate against any pod security policy: [spec.containers[0].securityCon-
text.privileged: Invalid value: true: Privileged containers are not allowed]
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The preceding example shows the exact reason why: Privileged containers are
not allowed. Let’s delete the test workload deployment.

$ kubectl delete deploy pause-privileged-deployment
deployment.extensions "pause-privileged-deployment" deleted

So far, we’ve dealt only with cluster-level bindings. How about we allow the test work‐
load access to the privileged policy using a service account.

First, create a serviceaccount in the default namespace:

$ kubectl create serviceaccount pause-privileged
serviceaccount/pause-privileged created

Bind that serviceaccount to the permissive ClusterRole. Save this manifest as role-
pause-privileged-psp-permissive.yaml on your local filesystem and then apply it by
using kubectl apply -f <filename>:

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: RoleBinding
metadata:
  name: pause-privileged-psp-permissive
  namespace: default
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: psp-privileged
subjects:
- kind: ServiceAccount
  name: pause-privileged
  namespace: default

Finally, update the test workload to use the pause-privileged service account. Then
apply it to the cluster using kubectl apply:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: pause-privileged-deployment
  namespace: default
  labels:
    app: pause
spec:
  replicas: 1
  selector:
    matchLabels:
      app: pause
  template:
    metadata:
      labels:
        app: pause
    spec:
      containers:
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      - name: pause
        image: k8s.gcr.io/pause
        securityContext:
          privileged: true
       serviceAccountName: pause-privileged

You can see that the pod is now able to use the privileged policy:

$ kubectl create -f pause-privileged-deployment.yaml
deployment.apps/pause-privileged-deployment created
$ kubectl get deploy,rs,pod
NAME                                                READY   UP-TO-DATE   
AVAILABLE   AGE
deployment.extensions/pause-privileged-deployment   1/1     1            
1           14s

NAME                                                           DESIRED   
CURRENT   READY   AGE
replicaset.extensions/pause-privileged-deployment-658dc5569f   1         
1         1       14s

NAME                                               READY   STATUS    RESTARTS   
AGE
pod/pause-privileged-deployment-658dc5569f-nslnw   1/1     Running   0          
14s

You can see which PodSecurityPolicy was matched by using the fol‐
lowing command:

$ kubectl get pod -l app=pause -o yaml | grep psp
      kubernetes.io/psp: privileged

PodSecurityPolicy Challenges
Now that you understand how to configure and use PodSecurityPolicy, it’s worth not‐
ing that there are quite a few challenges with using it in real-world environments. In
this section, we describe things that we have experienced that make it challenging.

Reasonable default policies
The real power of PodSecurityPolicy is to enable the cluster administrator and/or
user to ensure that their workloads meet a certain level of security. In practice, you
might often overlook just how many workloads run as root, use hostPath volumes,
or have other risky settings that force you to craft policies with security holes just to
get the workloads up and running.

Lots of toil
Getting the policies just right is a large investment, especially where there is a large set
of workloads already running on Kubernetes without PodSecurityPolicy enabled.
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Are your developers interested in learning PodSecurityPolicy?
Will your developers want to learn PodSecurityPolicy? What would be the incentive
for them to do so? Without a lot of up front coordination and automation to make
enabling PodSecurityPolicy a smooth transition, it’s very likely that PodSecurityPolicy
won’t be adopted at all.

Debugging is cumbersome
It’s difficult to troubleshoot policy evaluation. For example, you might want to under‐
stand why your workload matched or didn’t match a specific policy. Tooling or log‐
ging to make that easy doesn’t exist at this stage.

Do you rely on artifacts outside your control?
Are you pulling images from Docker Hub or another public repository? Chances are
they will violate your policies in some shape or form and will be out of your control
to fix. Another common place is Helm charts: do they ship with the appropriate poli‐
cies in place?

PodSecurityPolicy Best Practices
PodSecurityPolicy is complex and can be error prone. Refer to the following best
practices before implementing PodSecurityPolicy on your clusters:

• It all comes down to RBAC. Whether you like it or not, PodSecurityPolicy is
determined by RBAC. It’s this relationship that actually exposes all of the short‐
comings in your current RBAC policy design. We cannot stress just how impor‐
tant it is to automate your RBAC and PodSecurityPolicy creation and
maintenance. Specifically locking down access to service accounts is the key to
using policy.

• Understand the policy scope. Determining how your policies will be laid out on
your cluster is very important. Your policies can be cluster-wide, namespaced, or
workload-specific in scope. There will always be workloads on your cluster that
are part of the Kubernetes cluster operations that will need more permissive
security privileges, so make sure that you have appropriate RBAC in place to stop
unwanted workloads using your permissive policies.

• Do you want to enable PodSecurityPolicy on an existing cluster? Use this handy
open source tool to generate policies based on your current resources. This is a
great start. From there, you can hone your policies.
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PodSecurityPolicy Next Steps
As demonstrated, PodSecurityPolicy is an extremely powerful API to assist in keeping
your cluster secure, but it demands a high tax for use. With careful planning and a
pragmatic approach, PodSecurityPolicy can be successfully implemented on any clus‐
ter. At the very least, it will keep your security team happy.

Workload Isolation and RuntimeClass
Container runtimes are still largely considered an insecure workload isolation bound‐
ary. There is no clear path to whether the most common runtimes of today will ever
be recognized as secure. The momentum and interest among those in the industry
toward Kubernetes has led to the development of different container runtimes that
offer varying levels of isolation. Some are based on familiar and trusted technology
stacks, whereas others are a completely new attempt to tackle the problem. Open
source projects like Kata containers, gVisor, and Firecracker tout the promise of
stronger workload isolation. These specific projects are either based on nested virtu‐
alization (running a super lightweight virtual machine within a virtual machine) or
system call filtering and servicing.

The introduction of these container runtimes that offer different workload isolation
allows users to choose many different runtimes based on their isolation guarantees in
the same cluster. For example, you could have trusted and untrusted workloads run‐
ning in the same cluster in different container runtimes.

RuntimeClass was introduced into Kubernetes as an API to allow container runtime
selection. It is used to represent one of the supported container runtimes on the clus‐
ter when it has been configured by the cluster administrator. As a Kubernetes user,
you can define specific runtime classes for your workloads by using the Runtime‐
ClassName in the pod specification. How this is implemented under the hood is that
the RuntimeClass designates a RuntimeHandler which is passed to the Container
Runtime Interface (CRI) to implement. Node labeling or node taints then can be used
in conjunction with nodeSelectors or tolerations to ensure that the workload lands on
a node capable of supporting the desired RuntimeClass. Figure 10-1 demonstrates
how a kubelet uses RuntimeClass when launching pods.
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Figure 10-1. RuntimeClass flow diagram

The RuntimeClass API is under active development. For the latest
updates on the feature state, visit the upstream documentation.

Using RuntimeClass
If a cluster administrator has set up different RuntimeClasses, you can use them sim‐
ply by specifying runtimeClassName in the pod specification; for example:

apiVersion: v1
kind: Pod
metadata:
  name: nginx
spec:
  runtimeClassName: firecracker

Runtime Implementations
Following are some open source container runtime implementations that offer differ‐
ent levels of security and isolation for your consideration. This list is intended as a
guide and is by no means exhaustive:

CRI containerd
An API facade for container runtimes with an emphasis on simplicity, robust‐
ness, and portability.
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cri-o
A purpose-built, lightweight Open Container Initiative (OCI)-based implemen‐
tation of a container runtime for Kubernetes.

Firecracker
Built on top of the Kernel-based Virtual Machine (KVM), this virtualization
technology allows you to launch microVMs in nonvirtualized environments very
quickly using the security and isolation of traditional VMs.

gVisor
An OCI-compatible sandbox runtime that runs containers with a new user-space
kernel, which provides a low overhead, secure, isolated container runtime.

Kata Containers
A community that’s building a secure container runtime that provides VM-like
security and isolation by running lightweight VMs that feel and operate like
containers.

Workload Isolation and RuntimeClass Best Practices
The following best practices will help you to avoid common workload isolation and
RuntimeClass pitfalls:

• Implementing different workload isolation environments via RuntimeClass will
complicate your operational environment. This means that workloads might not
be portable across different container runtimes given the nature of the isolation
they provide. Understanding the matrix of supported features across different
runtimes can be complicated to understand and will lead to poor user experience.
We recommend having separate clusters, each with a single runtime to avoid
confusion, if possible.

• Workload isolation doesn’t mean secure multitenancy. Even though you might
have implemented a secure container runtime, this doesn’t mean that the Kuber‐
netes cluster and APIs have been secured in the same fashion. You must consider
the total surface area of Kubernetes end to end. Just because you have an isolated
workload doesn’t mean that it cannot be modified by a bad actor via the
Kubernetes API.

• Tooling across different runtimes is inconsistent. You might have users who rely
on container runtime tooling for debugging and introspection. Having different
runtimes means that you might no longer be able to run docker ps to list run‐
ning containers. This leads to confusion and complications when
troubleshooting.
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Other Pod and Container Security Considerations
In addition to PodSecurityPolicy and workload isolation, here are some other tools
you may consider when determining how to handle pod and container security.

Admission Controllers
If you’re worried about diving into the deep end with PodSecurityPolicy, here are
some options that offer a fraction of the functionality but might offer a viable alterna‐
tive. You can use admission controllers such as DenyExecOnPrivileged and DenyEsca
latingExec in conjunction with an admission webhook to add SecurityContext
workload settings to achieve a similar outcome. For more information on admission
control, refer to Chapter 17.

Intrusion and Anomaly Detection Tooling
We’ve covered security policies and container runtimes, but what happens when you
want to introspect and enforce policy within the container runtime? There are open
source tools that can do this and more. They operate by either listening and filtering
Linux system calls or by utilizing a Berkeley Packet Filter (BPF). One such tool is
Falco. Falco is a Cloud Native Computing Foundation (CNCF) project that simply
installs as a Demonset and allows you to configure and enforce policy during execu‐
tion. Falco is just one approach. We encourage you to take a look at the tooling in this
space to see what works for you.

Summary
In this chapter, we covered in depth both the PodSecurityPolicy and the Runtime‐
Class APIs with which you can configure a granular level of security for your work‐
loads. We have also taken a look at some open source ecosystem tooling that you can
use to monitor and enforce policy within the container runtime. We have provided a
thorough overview for you to make an informed decision about providing the level of
security that is best suited for your workload needs.
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CHAPTER 11

Policy and Governance for Your Cluster

Have you ever wondered how you can ensure that all containers running on a cluster
come only from an approved container registry? Or maybe you’ve been asked to
ensure that services are never exposed to the internet. These are precisely the prob‐
lems that policy and governance for your cluster set out to answer. As Kubernetes
matures and becomes adopted by more and more enterprises, the question of policy
and governance is becoming increasingly frequent. Although this area is still rela‐
tively new and upcoming, in this chapter we share what you can do to make sure that
your cluster is in compliance with the defined policies of your enterprise.

Why Policy and Governance Are Important
Whether you operate in a highly regulated environment—for example, health care or
financial services—or you simply want to make sure that you maintain a level of con‐
trol over what’s running on your clusters, you’re going to need a way to implement
the stated policies of the enterprise. After these policies are defined, you will need to
determine how to implement policy and maintain clusters that are compliant to these
policies. These policies might be in place to meet regulatory compliance or simply to
enforce best practices. Whatever the reason, you must be sure that you do not sacri‐
fice developer agility and self-service when implementing these policies.

How Is This Policy Different?
In Kubernetes, policy is everywhere. Whether it be network policy or pod security
policy, we’ve all come to understand what policy is and when to use it. We trust that
whatever is declared in Kubernetes resource specifications is implemented as per the
policy definition. Both network policy and pod security policy are implemented at
runtime. However, who manages the content that is actually defined in these
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Kubernetes resource specifications? That’s the job for policy and governance. Rather
than implementing policy at runtime, when we talk about policy in the context of
governance, what we mean is defining policy that controls the fields and values in the
Kubernetes resource specifications themselves. Only Kubernetes resource specifica‐
tions that are compliant against these policies are allowed and committed to the
cluster state.

Cloud-Native Policy Engine
To be able to make decisions about what resources are compliant, we need a policy
engine that is flexible enough to meet a variety of needs. The Open Policy Agent
(OPA) is an open source, flexible, lightweight policy engine that has become increas‐
ingly popular in the cloud-native ecosystem. Having OPA in the ecosystem has
allowed many implementations of different Kubernetes governance tools to appear.
One such Kubernetes policy and governance project the community is rallying
around is called Gatekeeper. For the rest of this chapter, we use Gatekeeper as the
canonical example to illustrate how you might achieve policy and governance for
your cluster. Although there are other implementations of policy and governance
tools in the ecosystem, they all seek to provide the same user experience (UX) by
allowing only compliant Kubernetes resource specifications to be committed to the
cluster.

Introducing Gatekeeper
Gatekeeper is an open source customizable Kubernetes admission webhook for clus‐
ter policy and governance. Gatekeeper takes advantage of the OPA constraint frame‐
work to enforce custom resource definition (CRD)-based policies. Using CRDs
allows for an integrated Kubernetes experience that decouples policy authoring from
implementation. Policy templates are referred to as constraint templates, which can be
shared and reused across clusters. Gatekeeper enables resource validation and audit
functionality. One of the great things about Gatekeeper is that it’s portable, which
means that you can implement it on any Kubernetes clusters, and if you are already
using OPA, you might be able to port that policy over to Gatekeeper.

Gatekeeper is still under active development and is subject to
change. For the most recent updates on the project, visit the official
upstream repository.
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Example Policies
It’s important not to become too stuck in the weeds and actually consider the problem
that we are trying to solve. Let’s take a look at some policies that solve some of the
most common compliance issues for context:

• Services must not be exposed publicly on the internet.
• Allow containers only from trusted container registries.
• All containers must have resource limits.
• Ingress hostnames must not overlap.
• Ingresses must use only HTTPS.

Gatekeeper Terminology
Gatekeeper has adopted much of the same terminology as OPA. It’s important that we
cover what that terminology is so that you can understand how Gatekeeper operates. 
Gatekeeper uses the OPA constraint framework. Here, we introduce three new terms:

• Constraint
• Rego
• Constraint template

Constraint
The best way to think about constraints is as restrictions that you apply to specific
fields and values of Kubernetes resource specifications. This is really just a long way
of saying policy. This means that when constraints are defined, you are effectively
stating that you DO NOT want to allow this. The implications of this approach mean
that resources are implicitly allowed without a constraint that issues a deny. This is
important because instead of allowing the Kubernetes resources specification fields
and values you want, you are denying only the ones you do not want. This architec‐
tural decision suits Kubernetes resource specifications nicely because they are ever
changing.

Rego
Rego is an OPA-native query language. Rego queries are assertions on the data stored
in OPA. Gatekeeper stores rego in the constraint template.

Constraint template
You can think of this as a policy template. It’s portable and reusable. Constraint tem‐
plates consist of typed parameters and the target rego that is parameterized for reuse.
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Defining Constraint Templates
Constraint templates are a Custom Resource Definition (CRD) that provide a means
of templating policy so that it can be shared or reused. In addition, parameters for the
policy can be validated. Let’s take a look at a constraint template in the context of the
earlier examples. In the following example, we share a constraint template that pro‐
vides the policy “Only allow containers from trusted container registries”:

apiVersion: templates.gatekeeper.sh/v1alpha1
kind: ConstraintTemplate
metadata:
  name: k8sallowedrepos
spec:
  crd:
    spec:
      names:
        kind: K8sAllowedRepos
        listKind: K8sAllowedReposList
        plural: k8sallowedrepos
        singular: k8sallowedrepos
      validation:
        # Schema for the `parameters` field
        openAPIV3Schema:
          properties:
            repos:
              type: array
              items:
                type: string
  targets:
    - target: admission.k8s.gatekeeper.sh
      rego: |
        package k8sallowedrepos

        deny[{"msg": msg}] {
          container := input.review.object.spec.containers[_]
          satisfied := [good | repo = input.constraint.spec.parame
ters.repos[_] ; good = startswith(container.image, repo)]
          not any(satisfied)
          msg := sprintf("container <%v> has an invalid image repo <%v>, 
allowed repos are %v", [container.name, container.image, input.con
straint.spec.parameters.repos])
        }

The constraint template consists of three main components:

Kubernetes-required CRD metadata
The name is the most important part. We reference this later.
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Schema for input parameters
Indicated by the validation field, this section defines the input parameters and
their associated types. In this example, we have a single parameter called repo
that is an array of strings.

Policy definition
Indicated by the target field, this section contains templated rego (the language
to define policy in OPA). Using a constraint template allows the templated rego
to be reused and means that generic policy can be shared. If the rule matches, the
constraint is violated.

Defining Constraints
To use the previous constraint template, we must create a constraint resource. The
purpose of the constraint resource is to provide the necessary parameters to the con‐
straint template that we created earlier. You can see that the kind of the resource
defined in the following example is K8sAllowedRepos, which maps to the constraint
template defined in the previous section:

apiVersion: constraints.gatekeeper.sh/v1alpha1
kind: K8sAllowedRepos
metadata:
  name: prod-repo-is-openpolicyagent
spec:
  match:
    kinds:
      - apiGroups: [""]
        kinds: ["Pod"]
    namespaces:
      - "production"
  parameters:
    repos:
      - "openpolicyagent"

The constraint consists of two main sections:

Kubernetes metadata
Notice that this constraint is of kind K8sAllowedRepos, which matches the name
of the constraint template.

The spec
The match field defines the scope of intent for the policy. In this example, we are
matching pods only in the production namespace.

The parameters define the intent for the policy. Notice that they match the type
from the constraint template schema from the previous section. In this case, we
allow only container images that start with openpolicyagent.
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Constraints have the following operational characteristics:

• Logically AND-ed together
— When multiple policies validate the same field, if one violates then the whole

request is rejected
• Schema validation that allows early error detection
• Selection criteria

— Can use label selectors
— Constrain only certain kinds
— Constrain only in certain namespaces

Data Replication
In some cases, you might want to compare the current resource against other resour‐
ces that are in the cluster, for example, in the case of “Ingress hostnames must not
overlap.” OPA needs to have all of the other Ingress resources in its cache in order to
evaluate the rule. Gatekeeper uses a config resource to manage which data is cached
in OPA in order to perform evaluations such as the one previously mentioned. In
addition, config resources are also used in the audit functionality, which we explore a
bit later on.

The following example config resource caches v1 service, pods, and namespaces:

apiVersion: config.gatekeeper.sh/v1alpha1
kind: Config
metadata:
name: config
  namespace: gatekeeper-system
spec:
  sync:
    syncOnly:
    - kind: Service
      version: v1
    - kind: Pod
      version: v1
    - kind: Namespace
      version: v1

UX
Gatekeeper enables real-time feedback to cluster users for resources that violate
defined policy. If we consider the example from the previous sections, we allow con‐
tainers only from repositories that start with openpolicyagent.

Let’s try to create the following resource; it is not compliant given the current policy:
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apiVersion: v1
kind: Pod
metadata:
  name: opa
  namespace: production
spec:
  containers:
    - name: opa
      image: quay.io/opa:0.9.2

This gives you the violation message that’s defined in the constraint template:

$ kubectl create -f bad_resources/opa_wrong_repo.yaml
Error from server (container <opa> has an invalid image repo <quay.io/opa:
0.9.2>, allowed repos are ["openpolicyagent"]): error when creating "bad_resour
ces/opa_wrong_repo.yaml": admission webhook "validation.gatekeeper.sh" denied 
the request: container <opa> has an invalid image repo <quay.io/opa:0.9.2>, 
allowed repos are ["openpolicyagent"]

Audit
Thus far, we have discussed only how to define policy and have it enforced as part of
the request admission process. How do you handle a cluster that already has resour‐
ces deployed where you want to know what is in compliance with the defined policy?
That is exactly what audit sets out to achieve. When using audit, Gatekeeper periodi‐
cally evaluates resources against the defined constraints. This helps with the detection
of misconfigured resources according to policy and allows for remediation. The audit
results are stored in the status field of the constraint, making them easy to find by
simply using kubectl. To use audit, the resources to be audited must be replicated.
For more details, refer to “Data Replication” on page 164.

Let’s take a look at the constraint called prod-repo-is-openpolicyagent that you
defined in the previous section:

$ kubectl get k8sallowedrepos prod-repo-is-openpolicyagent -o yaml
apiVersion: constraints.gatekeeper.sh/v1alpha1
kind: K8sAllowedRepos
metadata:
  creationTimestamp: "2019-06-04T06:05:05Z"
  finalizers:
  - finalizers.gatekeeper.sh/constraint
  generation: 2820
  name: prod-repo-is-openpolicyagent
  resourceVersion: "4075433"
  selfLink: /apis/constraints.gatekeeper.sh/v1alpha1/k8sallowedrepos/prod-repo-
is-openpolicyagent
  uid: b291e054-868e-11e9-868d-000d3afdb27e
spec:
  match:
    kinds:
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    - apiGroups:
      - ""
      kinds:
      - Pod
    namespaces:
    - production
  parameters:
    repos:
    - openpolicyagent
status:
  auditTimestamp: "2019-06-05T05:51:16Z"
  enforced: true
  violations:
  - kind: Pod
    message: container <nginx> has an invalid image repo <nginx>, allowed repos 
are
      ["openpolicyagent"]
    name: nginx
    namespace: production

Upon inspection, you can see the last time the audit ran in the auditTimestamp field.
We also see all of the resources that violate this constraint under the violations field.

Becoming Familiar with Gatekeeper
The Gatekeeper repository ships with fantastic demonstration content that walks you
through a detailed example of building policies to meet compliance for a bank. We
would strongly recommend walking through the demonstration for a hands-on
approach to how Gatekeeper operates. You can find the demonstration in this Git
repository.

Gatekeeper Next Steps
The Gatekeeper project is continuing to grow and is looking to solve other problems
in the areas of policy and governance, which includes features like these:

• Mutation (modifying resources based on policy; for example, add these labels)
• External data sources (integration with Lightweight Directory Access Protocol

[LDAP] or Active Directory for policy lookup)
• Authorization (using Gatekeeper as a Kubernetes authorization module)
• Dry run (allow users to test policy before making it active in a cluster)

If these sound like interesting problems that you might be willing to help solve, the
Gatekeeper community is always looking for new users and contributors to help
shape the future of the project. If you would like to learn more, head over to the
upstream repository on GitHub.
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Policy and Governance Best Practices
You should consider the following best practices when implementing policy and gov‐
ernance on your clusters:

• If you want to enforce a specific field in a pod, you need to make a determination
of which Kubernetes resource specification you want to inspect and enforce. Let’s
consider the case of Deployments, for example. Deployments manage Replica‐
Sets, which manage pods. We could enforce at all three levels, but the best choice
is the one that is the lowest handoff point before the runtime, which in this case
is the pod. This decision, however, has implications. The user-friendly error mes‐
sage when we try to deploy a noncompliant pod, as seen in “UX” on page 164, is
not going to be displayed. This is because the user is not creating the noncompli‐
ant resource, the ReplicaSet is. This experience means that the user would need
to determine that the resource is not compliant by running a kubectl describe
on the current ReplicaSet associated with the Deployment. Although this might
seem cumbersome, this is consistent behavior with other Kubernetes features,
such as pod security policy.

• Constraints can be applied to Kubernetes resources on the following criteria:
kinds, namespaces, and label selectors. We would strongly recommend scoping
the constraint to the resources to which you want it to be applied as tightly as
possible. This ensures consistent policy behavior as the resources on the cluster
grow, and means that resources that don’t need to be evaluated aren’t being
passed to OPA, which can result in other inefficiencies.

• Synchronizing and enforcing on potentially sensitive data such as Kubernetes
secrets is not recommended. Given that OPA will hold this in its cache (if it is
configured to replicate that data) and resources will be passed to Gatekeeper, it
leaves surface area for a potential attack vector.

• If you have many constraints defined, a deny of constraint means that the entire
request is denied. There is no way to make this function as a logical OR.

Summary
In this chapter, we covered why policy and governance are important and walked
through a project that’s built upon OPA, a cloud-native ecosystem policy engine, to
provide a Kubernetes-native approach to policy and governance. You should now be
prepared and confident the next time the security teams asks, “Are our clusters in
compliance with our defined policy?”
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CHAPTER 12

Managing Multiple Clusters

In this chapter, we discuss best practices for managing multiple Kubernetes clusters.
We dive into the details of the differences between multicluster management and fed‐
eration, tools to manage multiple clusters, and operational patterns for managing
multiple clusters.

You might wonder why you would need multiple Kubernetes clusters; Kubernetes was
built to consolidate many workloads to a single cluster, correct? This is true, but there
are scenarios such as workloads across regions, concerns of blast radius, regulatory
compliance, and specialized workloads.

We discuss these scenarios and explore the tools and techniques for managing multi‐
ple clusters in Kubernetes.

Why Multiple Clusters?
When adopting Kubernetes, you will likely have more than one cluster, and you
might even start with more than one cluster to break out production from staging,
user acceptance testing (UAT), or development. Kubernetes provides some multite‐
nancy features with namespaces, which are a logical way to break up a cluster into
smaller logical constructs. Namespaces allow you to define Role-Based Access Con‐
trol (RBAC), quotas, pod security policies, and network policies to allow separation
of workloads. This is a great way to separate out multiple teams and projects, but
there are other concerns that might require you to build a multicluster architecture.
Following are concerns to think about when deciding to use multicluster versus a
single-cluster architecture:

• Blast radius
• Compliance
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• Security
• Hard multitenancy
• Regional-based workloads
• Specialized workloads

When thinking through your architecture, blast radius should come front and center.
This is one of the main concerns that we see with users designing for multicluster
architectures. With microservice architectures we employ circuit breakers, retries,
bulkheads, and rate limiting to constrain the extent of damage to our systems. You
should design the same into your infrastructure layer, and multiple clusters can help
with preventing the impact of cascading failures due to software issues. For example,
if you have one cluster that serves 500 applications and you have a platform issue, it
takes out 100% of the 500 applications. If you had a platform layer issue with 5 clus‐
ters serving those 500 applications, you affect only 20% of the applications. The
downside to this is that now you need to manage five clusters, and your consolidation
ratios will not be as good with a single cluster. Dan Woods wrote a great article about
an actual cascading failure in a production Kubernetes environment. It is a great
example of why you will want to consider multicluster architectures for larger
environments.

Compliance is another area of concern for multicluster design because there are spe‐
cial considerations for Payment Card Industry (PCI), Health Insurance Portability
and Accountability (HIPAA), and other workloads. It’s not that Kubernetes doesn’t
provide some multitenant features, but these workloads might be easier to manage if
they are segregated out from general purpose workloads. These compliant workloads
might have specific requirements with respect to security hardening, nonshared com‐
ponents, or dedicated workload requirements. It’s just much easier to separate these
workloads than have to treat the cluster in such a specialized fashion.

Security in large Kubernetes clusters can become difficult to manage. As you start
onboarding more and more teams to a Kubernetes cluster each team may have differ‐
ent security requirements and it can become very difficult to meet those needs in a
large multi-tenant cluster. Even just managing RBAC, network policies, and pod
security policies can become difficult at scale in a single cluster. A small change to a
network policy can inadvertently open up security risk to other users of the cluster.
With multiple clusters you can limit the security impact with a misconfiguration. If
you decide that a larger Kubernetes cluster fits your requirements, then ensure that
you have a very good operational process for making security changes and under‐
stand the blast radius of making a change to RBAC, network policy, and pod security
policies.

Kubernetes doesn’t provide hard multitenancy because it shares the same API bound‐
ary with all workloads running within the cluster. With namespacing this gives us
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good soft multitenancy, but not enough to protect against hostile workloads within
the cluster. Hard multitenancy is not a requirement for a lot of users; they trust the
workloads that will be running within the cluster. Hard multitenancy is typically a
requirement if you are a cloud provider, hosting Software as a Service (SaaS)-based
software or untrusted workloads with untrusted user control.

When running workloads that need to serve traffic from in-region endpoints, your
design will include multiple clusters that are based per region. When you have a glob‐
ally distributed application, it becomes a requirement at that point to run multiple
clusters. When you have workloads that need to be regionally distributed, it’s a great
use case for cluster federation of multiple clusters, which we dig into further later in
this chapter.

Specialized workloads, such as high-performance computing (HPC), machine learn‐
ing (ML), and grid computing, also need to be addressed in the multicluster architec‐
ture. These types of specialized workloads might require specific types of hardware,
have unique performance profiles, and have specialized users of the clusters. We’ve
seen this use case to be less prevalent in the design decision because having multiple
Kubernetes node pools can help address specialized hardware and performance pro‐
files. When you have the need for a very large cluster for an HPC or machine learning
workload, you should take into consideration just dedicating clusters for these
workloads.

With multicluster, you get isolation for “free,” but it also has design concerns that you
need to address at the outset.

Multicluster Design Concerns
When choosing a multicluster design there are some challenges that you’ll run into.
Some of these challenges might deter you from attempting a multicluster design given
that the design might overcomplicate your architecture. Some of the common chal‐
lenges we find users running into are:

• Data replication
• Service discovery
• Network routing
• Operational management
• Continuous deployment

Data replication and consistency has always been the crux of deploying workloads
across geographical regions and multiple clusters. When running these services, you
need to decide what runs where and develop a replication strategy. Most databases
have built-in tools to perform the replication, but you need to design the application
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to be able to handle the replication strategy. For NoSQL-type database services this
can be easier because they can can handle scaling across multiple instances, but you
still need to ensure that your application can handle eventual consistency across geo‐
graphic regions or at least the latency across regions. Some cloud services, such as
Google Cloud Spanner and Microsoft Azure CosmosDB, have built database services
to help with the complications of handling data across multiple geographic regions.

Each Kubernetes cluster deploys its own service discovery registry, and registries are
not synchronized across multiple clusters. This complicates applications being able to
easily identify and discover one another. Tools such as HashiCorp’s Consul can trans‐
parently synchronize services from multiple clusters and even services that reside
outside of Kubernetes. There are other tools like Istio, Linkerd, and Cillium that are
building on multiple cluster architectures to extend service discovery between
clusters.

Kubernetes makes networking from within the cluster very easy, as it’s a flat network
and avoids using network address translation (NAT). If you need to route traffic in
and out of the cluster, this becomes more complicated. Ingress into the cluster is
implemented as a 1:1 mapping of ingress to the cluster because it doesn’t support
multicluster topologies with the Ingress resource. You’ll also need to consider the
egress traffic between clusters and how to route that traffic. When your applications
reside within a single cluster this is easy, but when introducing multicluster, you need
to think about the latency of extra hops for services that have application dependen‐
cies in another cluster. For applications that have tightly coupled dependencies, you
should consider running these services within the same cluster to remove latency and
extra complexity.

One of the biggest overheads to managing multiclusters is the operational manage‐
ment. Instead of one or a couple of clusters to manage and keep consistent, you might
now have many clusters to manage in your environment. One of the most important
aspects to managing multiclusters is ensuring that you have good automation practi‐
ces in place because this will help to reduce the operational burden. When automat‐
ing your clusters, you need to take into account the infrastructure deployment and
managing add-on features to your clusters. For managing the infrastructure, using a
tool like HashioCrp’s Terraform can help with deploying and managing a consistent
state across your fleet of clusters.

Using an Infrastructure as Code (IaC) tool like Terraform will give you the benefit of
providing a reproducible way to deploy your clusters. On the other hand, you also
need to be able to consistently manage add-ons to the cluster, such as monitoring,
logging, ingress, security, and other tools. Security is also an important aspect of
operational management, and you must be able to maintain security policies, RBAC,
and network policies across clusters. Later in this chapter, we dive deeper into the
topic of maintaining consistent clusters with automation.
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With multiple clusters and Continuous Delivery (CD), you now need to deal with
multiple Kubernetes API endpoints versus a single API endpoint. This can cause
challenges in the distribution of applications. You can easily manage multiple pipe‐
lines, but suppose that you have a hundred different pipelines to manage, which can
make application distribution very difficult. With this in mind, you need to look at
different approaches to managing this situation. We take a look at solutions to help
manage this later in the chapter.

Managing Multiple Cluster Deployments
One of the first steps that you want to take when managing multicluster deployments
is to use an IoC tool like Terraform to set up deployments. Other deployment tools,
such as kubespray, kops, or other cloud provider–specific tools, are all valid choices
but, most importantly, use a tool that allows you to source control your cluster
deployment for repeatability.

Automation is key to successfully managing multiple clusters in your environment.
You might not have everything automated on day one, but you should make it a pri‐
ority to automate all aspects of your cluster deployments and operations.

An interesting project in development is the Kubernetes Cluster API. The Cluster
API is a Kubernetes project to bring declarative, Kubernetes-style APIs to cluster cre‐
ation, configuration, and management. It provides optional, additive functionality on
top of core Kubernetes. The Cluster API provides a cluster-level configuration
declared through a common API, which will give you the ability to easily automate
and build tooling around cluster automation. As of this writing, the project is still in
development, so make sure to keep an eye out for it as it matures.

Deployment and Management Patterns
Kubernetes operators were introduced as an implementation of the Infrastructure as
Software concept. Using them allows you to abstract the deployment of applications
and services in a Kubernetes cluster. For example, suppose that you want to standard‐
ize on Prometheus for monitoring your Kubernetes clusters. You would need to cre‐
ate and manage various objects (deployment, service, ingress, etc.) for each cluster
and team. You would also need to maintain the fundamental configurations of Prom‐
etheus, such as versions, persistence, retention policies, and replicas. As you can
imagine, the maintenance of such a solution could be difficult across a large number
of clusters and teams.

Instead of dealing with so many objects and configurations, you could install the
prometheus-operator. This extends the Kubernetes API, exposing multiple new
object kinds called Prometheus, ServiceMonitor, PrometheusRule, and AlertMan
ager, which allow you to specify all of the details of a Prometheus deployment using
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just a few objects. You can use the kubectl tool to manage such objects, just as it
manages any other Kubernetes API object.

Figure 12-1 shows the architecture of the prometheus-operator.

Figure 12-1. prometheus-operator architecture

Utilizing the Operator pattern for automating key operational tasks can help improve
your overall cluster management capabilities. The Operator pattern was introduced
by the CoreOS team in 2016 with the etcd operator and prometheus-operator. The
Operator pattern builds on two concepts:

• Custom resource definitions
• Custom controllers

Custom resource definitions (CRDs) are objects that allow you to extend the Kuber‐
netes API, based on your own API that you define.

Custom controllers are built on the core Kubernetes concepts of resources and con‐
trollers. Custom controllers allow you to build your own logic by watching events
from Kubernetes API objects such as namespaces, Deployments, pods, or your own
CRD. With custom controllers, you can build your CRDs in a declarative way. If you
consider how the Kubernetes Deployment controller works in a reconciliation loop to
always maintain the state of the deployment object to maintain its declarative state,
this brings the same advantages of controllers to your CRDs.

When utilizing the Operator pattern, you can build in automation to operational
tasks that need to be performed on operational tooling in multiclusters. Let’s take the
following Elasticsearch operator as an example. As in Chapter 3, we utilized the Elas‐
ticsearch, Logstash, and Kibana (ELK) stack to perform log aggregation of our cluster.
The Elasticsearch operator can perform the following operations:
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• Replicas for master, client, and data nodes
• Zones for highly available deployments
• Volume sizes for master and data nodes
• Resizing of cluster
• Snapshot for backups of the Elasticsearch cluster

As you can see, the operator provides automation for many tasks that you would need
to perform when managing Elasticsearch, such as automating snapshots for backup
and resizing the cluster. The beauty of this is that you manage all of this through
familiar Kubernetes objects.

Think about how you can take advantage of different operators like the prometheus-
operator in your environment and also how you can build your own custom opera‐
tor to offload common operational tasks.

The GitOps Approach to Managing Clusters
GitOps was popularized by the folks at Weaveworks, and the idea and fundamentals
were based on their experience of running Kubernetes in production. GitOps takes
the concepts of the software development life cycle and applies them to operations.
With GitOps, your Git repository becomes your source of truth, and your cluster is
synchronized to the configured Git repository. For example, if you update a Kuber‐
netes Deployment manifest, those configuration changes are automatically reflected
in the cluster state.

By using this method, you can make it easier to maintain multiclusters that are con‐
sistent and avoid configuration drift across the fleet. GitOps allows you to declara‐
tively describe your clusters for multiple environments and drives to maintain that
state for the cluster. The practice of GitOps can apply to both application delivery and
operations, but in this chapter, we focus on using it to manage clusters and opera‐
tional tooling.

Weaveworks Flux was one of the first tools to enable the GitOps approach, and it’s the
tool we will use throughout the rest of the chapter. There are many new tools that
have been released into the cloud-native ecosystem that are worth a look, such as
Argo CD, from the folks at Intuit, which has also been widely adopted for the GitOps
approach.

Figure 12-2 presents a representation of a GitOps workflow.
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Figure 12-2. GitOps workflow

So, let’s get Flux set up in your cluster and get a repository synchronized to the
cluster:

git clone https://github.com/weaveworks/flux
cd flux

You now need to make a change to the Deployment manifest to configure it with
your forked repo from Chapter 6. Modify the following line in the Deployment file to
match your forked GitHub repository:

vim deploy/flux-deployment.yaml

Modify the following line with your Git repository:

--git-url=git@github.com:weaveworks/flux-get-started  (ex. --git-
url=git@github.com:your_repo/kbp )

Now, go ahead and deploy Flux to your cluster:

kubectl apply -f deploy

When Flux installs, it creates an SSH key so that it can authenticate with the Git
repository. Use the Flux command-line tool to retrieve the SSH key so that you can
configure access to your forked repository; first, you need to install fluxctl.

For MacOS:

brew install fluxctl

For Linux Snap Packages:

snap install fluxctl

For all other packages, you can find the latest binaries here:

fluxctl identity

Open GitHub, navigate to your fork, go to Setting > “Deploy keys,” click “Add deploy
key,” give it a Title, select the “Allow write access” checkbox, paste the Flux public key,
and then click “Add key.” See the GitHub documentation for more information on
how to manage deploy keys.

176 | Chapter 12: Managing Multiple Clusters

https://oreil.ly/4TAx5


Now, if you view the Flux logs, you should see that it is synchronizing with your Git‐
Hub repository:

kubectl -n default logs deployment/flux -f

After you see that it’s synchronizing with your GitHub repository, you should see that
the Elasticsearch, Prometheus, Redis, and frontend pods are created:

kubectl get pods -w

With this example complete, you should be able to see how easy it is for you to syn‐
chronize your GitHub repository state with your Kubernetes cluster. This makes
managing the multiple operational tools in your cluster much easier, because multiple
clusters can synchronize with a single repository and remove the situation of having
snowflake clusters.

Multicluster Management Tools
When working with multiple clusters, using Kubectl can immediately become con‐
fusing because you need to set different contexts to manage the different clusters. 
Two tools that you will want to install right away when dealing with multiple clusters
are kubectx and kubens, which allow you to easily change between multiple contexts
and namespaces.

When you need a full-fleged multicluster management tool, there are a few within the
Kubernetes ecosystem to look at for managing multiple clusters. Following is a sum‐
mary of some of the more popular tools:

• Rancher centrally manages multiple Kubernetes clusters in a centrally managed
user interface (UI). It monitors, manages, backs up, and restores Kubernetes clus‐
ters across on-premises, cloud, and hosted Kubernetes setups. It also has tools for
controlling applications deployed across multiple clusters and provides opera‐
tional tooling.

• KQueen provides a multitenant self-service portal for Kubernetes cluster provi‐
sioning and focuses on auditing, visibility, and security of multiple Kubernetes
clusters. KQueen is an open source project that was developed by the folks at
Mirantis.

• Gardener takes a different approach to multicluster management in that it utilizes
Kubernetes primitives to provide Kubernetes as a Service to your end users. It
provides support for all major cloud vendors and was developed by the folks at
SAP. This solution is really geared toward users who are building a Kubernetes as
a Service offering.
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Kubernetes Federation
Kubernetes first introduced Federation v1 in Kubernetes 1.3, and it has since been
deprecated in lieu of Federation v2. Federation v1 set out to help with the distribution
of applications to multiple clusters. Federation v1 was built utilizing the Kubernetes
API and heavily relied on Kubernetes annotations, which imposed some problems in
its design. The design was tightly coupled to the core Kubernetes API, which made
Federation v1 quite monolithic in nature. At the time, the design decisions were
probably not bad choices, but were built on the primitives that were available. The
introducton of Kubernetes CRDs allowed a different way of thinking about how Fed‐
eration could be designed.

Federation v2 (now called KubeFed) requires Kubernetes 1.11+ and is currently in
alpha as of this writing. Federation v2 is built around the concept of CRDs and cus‐
tom controllers, which allows you to extend Kubernetes with new APIs. Building
around CRDs allows Federation to have new API types and not be restricted just to
previous v1 deployment objects.

KubeFed is not necessarily about multicluster management, but providing high avail‐
ability (HA) deployments across multiple clusters. It allows you to combine multiple
clusters into a single management endpoint for delivering applications on Kuber‐
netes. For example, if you have a cluster that resides in multiple public cloud environ‐
ments, you can combine these clusters into a single control plane to manage
deployments to all clusters to increase the resiliency of your application.

As of this writing, the following Federated resources are supported:

• Namespaces
• ConfigMaps
• Secrets
• Ingress
• Services
• Deployments
• ReplicaSets
• Horizontal Pod Autoscalers
• DaemonSets
• Jobs

To understand how this all works, let’s first take a look at the architecture in
Figure 12-3.
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Figure 12-3. Kubernetes Federation architecture

It’s important to understand that with Federation, not everything is just copied down
to all clusters. For example, with Deployments and ReplicaSets, you define the num‐
ber of replicas, which are then spread out across the clusters. This is the default for
Deployments, but you can change the configuration. On the other hand, if you create
a namespace, that namespace is cluster scoped and created in each cluster. Secrets,
ConfigMaps, and DaemonSets work the same way and are copied down to each clus‐
ter. The Ingress resource is also different from the aforementioned objects because it
creates a global multicluster resource with a single entry point into a service. As you
can see from how KubeFed works, the use cases Kubefed supports are multiregion,
multicloud, and global application deployments to Kubernetes.

Following is an example of a federated Deployment:

apiVersion: types.kubefed.io/v1beta1
kind: FederatedDeployment
metadata:
  name: test-deployment
  namespace: test-namespace
spec:
  template:
    metadata:
      labels:
        app: nginx
    spec:
      replicas: 5
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      selector:
        matchLabels:
          app: nginx
      template:
        metadata:
          labels:
            app: nginx
        spec:
          containers:
          - image: nginx
            name: nginx
  placement:
    clusters:
    - name: azure
    - name: google

This example creates a federated Deployment of an NGINX pod with five replicas,
which are then spread across our clusters in Azure and another cluster in Google.

Setting up federated Kubernetes clusters is beyond the scope of this book, but you can
learn more about the subject by referring to the KubeFed User Guide.

KubeFed is still in alpha, so keep an eye on it, but embrace the tools that you already
have or can implement now so that you can be successful with Kubernetes HA and
multicluster deployments.

Managing Multiple Clusters Best Practices
Consider the following best practices when managing multiple Kubernetes clusters:

• Limit the blast radius of your clusters to ensure cascading failures don’t have a
bigger impact on your applications.

• If you have regulatory concerns such as PCI, HIPPA, or HiTrust, think about uti‐
lizing multiclusters to ease the complexity of mixing these workloads with gen‐
eral workloads.

• If hard multitenancy is a business requirement, workloads should be deployed to
a dedicated cluster.

• If multiple regions are needed for your applications, utilize a Global Load Bal‐
ancer to manage traffic between clusters.

• You can break out specialized workloads such as HPC into their own individual
clusters to ensure that the specialized needs for the workloads are met.

• If you’re deploying workloads that will be spread across multiple regional data‐
centers, first ensure that there is a data replication strategy for the workload.
Multiple clusters across regions can be easy, but replicating data across regions
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can be complicated, so ensure that there is a sound strategy to handle asynchro‐
nous and synchronous workloads.

• Utilize Kubernetes operators like the prometheus-operator or Elasticsearch
operator to handle automated operational tasks.

• When designing your multicluster strategy, also consider how you will do service
discovery and networking between clusters. Service mesh tools like HashiCorp’s
Consul or Istio can help with networking across clusters.

• Be sure that your CD strategy can handle multiple rollouts between regions or
multiple clusters.

• Investigate utilizing a GitOps approach to managing multiple cluster operational
components to ensure consistency between all clusters in your fleet. The GitOps
approach doesn’t always work for everyone’s environment, but you should at least
investigate it to ease the operational burden of multicluster environments.

Summary
In this chapter, we discussed different strategies for managing multiple Kubernetes
clusters. It’s important to think about what your needs are at the outset and whether
those needs match a multicluster topology. The first scenario to think about is
whether you truly need hard multitenancy because this will automatically require a
multicluster strategy. If you don’t, consider your compliance needs and whether you
have the operational capacity to consume the overhead of multicluster architectures.
Finally, if you’re going with more, smaller clusters, ensure that you put automation
around the delivery and management of them to reduce the operational burden.
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CHAPTER 13

Integrating External Services
and Kubernetes

In many of the chapters in this book, we’ve discussed how to build, deploy, and man‐
age services in Kubernetes. However, the truth is that systems don’t exist in a vaccum,
and most of the services that we build will need to interact with systems and services
that exist outside of the Kubernetes cluster in which they’re running. This might be
because we are building new services that are being accessed by legacy infrastructure
running in virtual or physical machines. Conversely, it might be because the services
that we are building might need to access preexisting databases or other services that
are likewise running on physical infrastructure in an on-premises datacenter. Finally,
you might have multiple different Kubernetes clusters with services that you need to
interconnect. For all of these reasons, the ability to expose, share, and build services
that span the boundary of your Kubernetes cluster is an important part of building
real-world applications.

Importing Services into Kubernetes
The most common pattern for connecting Kubernetes with external services consists
of a Kubernetes service that is consuming a service that exists outside of the Kuber‐
netes cluster. Often, this is because Kubernetes is being used for some new application
development or interface for a legacy resource like an on-premises database. This pat‐
tern often makes the most sense for incremental development of cloud-native serv‐
ices. Because the database layer contains significant mission-critical data, it is a heavy
lift to move it to the cloud, let alone containers. At the same time, there is a great deal
of value in providing a modern layer on top of such a database (e.g., supplying a
GraphQL interface) as the foundation for building a new generation of applications.
Likewise, moving this layer to Kubernetes often makes a great deal of sense because
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rapid development and reliable continuous deployment of this middleware enables a
great deal of agility with minimal risk. Of course, to achieve this, you need to make
the database accessible from within Kubernetes.

When we consider the task of making an external service accessible from Kubernetes,
the first challenge is simply to get the networking to work correctly. The specific
details of getting networking operational are very specific to both the location of the
database as well as the location of the Kubernetes cluster; thus, they are beyond the
scope of this book, but generally, cloud-based Kubernetes providers enable the
deployment of a cluster into a user-provided virtual network (VNET), and those vir‐
tual networks can then be peered up with an on-premises network for connectivity.

After you’ve established network connectivity between pods in the Kubernetes cluster
and the on-premises resource, the next challenge is to make the external service look
and feel like a Kubernetes service. In Kubernetes, service discovery occurs via
Domain Name System (DNS) lookups and, thus, to make our external database feel
like it is a native part of Kubernetes, we need to make the database discoverable in the
same DNS.

Selector-Less Services for Stable IP Addresses
The first way to achieve this is with a selector-less Kubernetes Service. When you cre‐
ate a Kubernetes Service without a selector, there are no Pods that match the service;
thus, there is no load balancing performed. Instead, you can program this selector-
less service to have the specific IP address of the external resource that you want to
add to the Kubernetes cluster. That way, when a Kubernetes pod performs a lookup
for your-database, the built-in Kubernetes DNS server will translate that to a service
IP address of your external service. Here is an example of a selector-less service for an
external database:

apiVersion: v1
kind: Service
metadata:
  name: my-external-database
spec:
  ports:
  - protocol: TCP
    port: 3306
    targetPort: 3306

When the service exists, you need to update its endpoints to contain the database IP
address serving at 24.1.2.3:

apiVersion: v1
kind: Endpoints
metadata:
  # Important! This name has to match the Service.
  name: my-external-database
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subsets:
  - addresses:
      - ip: 24.1.2.3
    ports:
      - port: 3306

Figure 13-1 depicts how this integrates together within Kubernetes.

Figure 13-1. Service integration

CNAME-Based Services for Stable DNS Names
The previous example assumed that the external resource that you were trying to
integrate with your Kubernetes cluster had a stable IP address. Although this is often
true of physical on-premises resources, depending on the network toplogy, it might
not always be true, and it is significantly less likely to be true in a cloud environment
where virtual machine (VM) IP addresses are more dynamic. Alternatively, the ser‐
vice might have multiple replicas sitting behind a single DNS-based load balancer. In
these situations, the external service that you are trying to bridge into your cluster
doesn’t have a stable IP address, but it does have a stable DNS name.

In such a situation, you can define a CNAME-based Kubernetes Service. If you’re not
familiar with DNS records, a CNAME, or Canonical Name, record is an indication
that a particular DNS address should be translated to a different Canonical DNS
name. For example, a CNAME record for foo.com that contains bar.com indicates that
anyone looking up foo.com should perform a recursive lookup for bar.com to obtain
the correct IP address. You can use Kubernetes Services to define CNAME records in
the Kubernetes DNS server. For example, if you have an external database with a DNS
name of database.myco.com, you might create a CNAME Service that is named myco-
database. Such a Service looks like this:
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kind: Service
apiVersion: v1
metadata:
  name: myco-database
spec:
  type: ExternalName
  externalName: database.myco.com

With a Service defined in this way, any pod that does a lookup for myco-database will
be recursively resolved to database.myco.com. Of course, to make this work, the DNS
name of your external resource also needs to be resolveable from the Kubernetes DNS
servers. If the DNS name is globally accessible (e.g., from a well-known DNS service
provider), this will simply automatically work. However, if the DNS of the external
service is located in a company-local DNS server (e.g., a DNS server that services only
internal traffic), the Kubernetes cluster might not know by default how to resolve
queries to this corporate DNS server.

To set up the cluster’s DNS server to communicate with an alternate DNS resolver,
you need to adjust its configuration. You do this by updating a Kubernetes Config‐
Map with a configuration file for the DNS server. As of this writing, most clusters
have moved over to the CoreDNS server. This server is configured by writing a Core
file configuration into a ConfigMap named coredns in the kube-system namespace.
If you are still using the kube-dns server, it is configured in a similar manner but with
a different ConfigMap.

CNAME records are a useful way to map external services with stable DNS names to
names that are discoverable within your cluster. At first it might seem counterintui‐
tive to remap a well-known DNS address to a cluster-local DNS address, but the con‐
sistency of having all services look and feel the same is usually worth the small
amount of added complexity. Additionally, because the CNAME service, like all
Kubernetes services, is defined per namespace, you can use namespaces to map the
same service name (e.g., database) to different external services (e.g., canary or pro
duction), depending on the Kubernetes namespace.

Active Controller-Based Approaches
In a limited set of circumstances, neither of the previous methods for exposing exter‐
nal services within Kubernetes is feasible. Generally, this is because there is neither a
stable DNS address nor a single stable IP address for the service that you want to
expose within the Kubernetes cluster. In such circumstances, exposing the external
service within the Kubernetes cluster is significantly more complicated, but it isn’t
impossible.

To achieve this, you need to have some understanding of how Kubernetes Services
work under the hood. Kubernetes Services are actually made up of two different
resources: the Service resource, with which you are doubtless familiar, and the
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Endpoints resource that represents the IP addresses that make up the service. In nor‐
mal operation, the Kubernetes controller manager populates the endpoints of a ser‐
vice based on the selector in the service. However, if you create a selector-less service,
as in the first stable-IP approach, the Endpoints resource for the service will not be
populated, because there are no pods that are selected. In this situation, you need to
supply the control loop to create and populate the correct Endpoints resource. You
need to dynamically query your infrastructure to obtain the IP addresses for the ser‐
vice external to Kubernetes that you want to integrate, and then populate your serv‐
ice’s endpoints with these IP addresses. After you do this, the mechanisms of
Kubernetes take over and program both the DNS server and the kube-proxy cor‐
rectly to load-balance traffic to your external service. Figure 13-2 presents a complete
picture of how this works in practice.

Figure 13-2. An external service

Exporting Services from Kubernetes
In the previous section, we explored how to import preexisting services to Kuber‐
netes, but you might also need to export services from Kubernetes to the preexisting
environments. This might occur because you have a legacy internal application for
customer management that needs access to some new API that you are developing in
a cloud-native infrastructure. Alternately, you might be building new microservice-
based APIs but you need to interface with a preexisting traditional web application
firewall (WAF) because of internal policy or regulatory requirements. Regardless of
the reason, being able to expose services from a Kubernetes cluster out to other inter‐
nal applications is a critical design requirement for many applications.

The core reason that this can be challenging is because in many Kubernetes installa‐
tions, the pod IP addresses are not routeable addresses from outside of the cluster.
Via tools like flannel, or other networking providers, routing is established within a
Kubernetes cluster to facilitate communication between pods and also between nodes
and pods, but the same routing is not generally extended out to arbitrary machines in
the same network. Furthermore, in the case of cloud to on-premises connectivity, the
IP addresses of the pods are not always advertised back across a VPN or network
peering relationship into the on-premises network. Consequently, setting up routing
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between a traditional application and Kubernetes pods is the key task to enable the
export of Kubernetes-based services.

Exporting Services by Using Internal Load Balancers
The easiest way to export from Kubernetes is by using the built-in Service object. If
you have had any previous experience with Kubernetes, you have no doubt seen how
you can connect a cloud-based load balancer to bring external traffic to a collection
of pods in the cluster. However, you might not have realized that most clouds also
offer an internal load balancer. The internal load balancer provides the same capabili‐
ties to map a virtual IP address to a collection of pods, but that virtual IP address is
drawn from an internal IP address space (e.g., 10.0.0.0/24) and thus is only routea‐
ble from within that virtual network. You activate an internal load balancer by adding
a cloud-specific annotation to your Service load balancer. For example, in Microsoft
Azure, you add the service.beta.kubernetes.io/azure-load-balancer-

internal: "true" annotation. On Amazon Web Services (AWS), the annotation is
service.beta.kubernetes.io/aws-load-balancer-internal: 0.0.0.0/0. You
place annotations in the metadata field in the Service resource as follows:

apiVersion: v1
kind: Service
metadata:
  name: my-service
  annotations:
    # Replace this as needed in other environments
    service.beta.kubernetes.io/azure-load-balancer-internal: "true"
...

When you export a Service via an internal load balancer, you receive a stable, routea‐
ble IP address that is visible on the virtual network outside of the cluster. You then
can either use that IP address directly or set up internal DNS resolution to provide
discovery for your exported service.

Exporting Services on NodePorts
Unfortunately, in on-premises installations, cloud-based internal load balancers are
unavailable. In this context using a NodePort-based service is often a good solution.
A Service of type NodePort exports a listener on every node in the cluster that for‐
wards traffic from the node’s IP address and selected port into the Service that you
defined, as shown in Figure 13-3.
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Figure 13-3. A NodePort-based service

Here’s an example YAML file for a NodePort service:

apiVersion: v1
kind: Service
metadata:
  name: my-node-port-service
spec:
  type: NodePort
...

Following the creation of a Service of type NodePort, Kubernetes automatically
selects a port for the service; you can get that port from the Service by looking at the
spec.ports[*].nodePort field. If you want to choose the port yourself, you can spec‐
ify it when you create the service, but the NodePort must be within the configured
range for the cluster. The default for this range are ports between 30000 and 30999.

Kubernetes’ work is done when the service is exposed on this port. To export it to an
existing application outside of the cluster, you (or your network administrator) will
need to make it discoverable. Depending on the way your application is configured,
you might be able to give your application a list of ${node}:${port} pairs, and the
application will perform client-side load balancing. Alternatively, you might need to
configure a physical or virtual load balancer within your network to direct traffic
from a virtual IP address to this list of ${node}:${port} backends. The specific
details for this configuration will be different depending on your environment.

Integrating External Machines and Kubernetes
If neither of the previous solutions work well for you—perhaps because you want
tighter integration for dynamic service discovery—the final choice for exposing
Kubernetes services to outside applications is to directly integrate the machine(s)
running the application into the Kubernetes cluster’s service discovery and
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networking mechanisms. This is significantly more invasive and complicated than
either of the previous approaches, and you should use it only when necessary for
your application (which should be infrequent). In some managed Kubernetes envi‐
ronments, it might not even be possible.

When integrating an external machine into the cluster for networking, you need to
ensure that the pod network routing and DNS-based service discovery both work
correctly. The easiest way to do this is actually to run the kubelet on the machine that
you want to join to the cluster, but disable scheduling in the cluster. Joining a kubelet
node to a cluster is beyond of the scope of this book, but there are numerous other
books or online resources that describe how to achieve this. When the node is joined,
you need to immediately mark it as unschedulable using the kubectl cordon ...
command to prevent any additional work being scheduled on it. This cordoning will
not prevent DaemonSets from landing pods onto the node, and thus the pods for
both the KubeProxy and network routing will land on the machine and make
Kubernetes-based services discoverable from any application running on that
machine.

The previous approach is quite invasive to the node because it requires installing
Docker or some other container runtime. Thus, it might not be feasible in many envi‐
ronments. A lighter weight but more complex approach is to just run the kube-proxy
as a process on the machine and adjust the machine’s DNS server. Assuming that you
can set up pod routing to work correctly, running the kube-proxy will set up
machine-level networking so that Kubernetes Service virtual IP addresses will be
remapped to the pods that make up that Service. If you also change the machine’s
DNS to point to the Kubernetes cluster DNS server, you will have effectively enabled
Kubernetes discovery on a machine that is not part of the Kubernetes cluster.

Both of these approaches are complicated and advanced, and you should not take
them lightly. If you find yourself considering this level of service discovery integra‐
tion, ask yourself whether it is possibly easier to actually bring the service you are
connecting to the cluster into the cluster itself.

Sharing Services Between Kubernetes
The previous sections have described how to connect Kubernetes applications to out‐
side services and how to connect outside services to Kubernetes applications, but
another significant use case is connecting services between Kubernetes clusters. This
may be to achieve East-West failover between different regional Kubernetes clusters,
or it might be to link together services run by different teams. The process of achiev‐
ing this interaction is actually a combination of the designs described in the previous
sections.
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First, you need to expose the Service within the first Kubernetes cluster to enable net‐
work traffic to flow. Let’s assume that you’re in a cloud environment that supports
internal load balancers, and that you receive a virtual IP address for that internal load
balancer of 10.1.10.1. Next, you need to integrate this virtual IP address into the sec‐
ond Kubernetes cluster to enable service discovery. You achieve this in the same man‐
ner as importing an external application into Kubernetes (first section). You create a
selector-less Service and you set its IP address to be 10.1.10.1. With these two steps
you have integrated service discovery and connectivity between services within your
two Kubernetes clusters.

These steps are fairly manual, and although this might be acceptable for a small, static
set of services, if you want to enable tighter or automatic service integration between
clusters, it makes sense to write a cluster daemon that runs in both clusters to per‐
form the integration. This daemon would watch the first cluster for Services with a
particular annotation, say something like myco.com/exported-service; all Services
with this annotation would then be imported into the second cluster via selector-less
services. Likewise, the same daemon would garbage-collect and delete any services
that are exported into the second cluster but are no longer present in the first. If you
set up such daemons in each of your regional clusters, you can enable dynamic, East-
West connectivity between all clusters in your environment.

Third-Party Tools
Thus far, this chapter has described the various ways to import, export, and connect
services that span Kubernetes clusters and some outside resource. If you have previ‐
ous experience with service mesh technologies, these concepts might seem quite
familiar to you. Indeed, there are a variety of third-party tools and projects that you
can use to interconnect services both with Kubernetes and with arbitrary applications
and machines. Generally, these tools can provide a lot of functionality, but they are
also significantly more complex operationally than the approaches described just ear‐
lier. However, if you find yourself building more and more networking interconnec‐
tivity, you should explore the space of service meshes, which is rapidly iterating and
evolving. Nearly all of these third-party tools have an open source component, but
they also offer commercial support that can reduce the operational overhead of run‐
ning additional infrastructure.

Connecting Cluster and External Services Best Practices
• Establish network connectivity between the cluster and on-premises. Networking

can be varied between different sites, clouds, and cluster configurations, but first
ensure that pods can talk to on-premises machines and vice versa.
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• To access services outside of the cluster, you can use selector-less services and
directly program in the IP address of the machine (e.g., the database) with which
you want to communicate. If you don’t have fixed IP addressess, you can instead
use CNAME services to redirect to a DNS name. If you have neither a DNS name
nor fixed services, you might need to write a dynamic operator that periodically
synchronizes the external service IP addresses with the Kubernetes Service
endpoints.

• To export services from Kubernetes, use internal load balancers or NodePort
services. Internal load balancers are typically easier to use in public cloud envi‐
ronments where they can be bound to the Kubernetes Service itself. When such
load balancers are unavailable, NodePort services can expose the service on all of
the machines in the cluster.

• You can achieve connections between Kubernetes clusters through a combination
of these two approaches, exposing a service externally that is then consumed as a
selector-less service in the other Kubernetes cluster.

Summary
In the real world, not every application is cloud native. Building applications in the
real world often involves connecting preexisting systems with newer applications.
This chapter described how you can integrate Kubernetes with legacy applications
and also how to integrate different services running across multiple distinct Kuber‐
netes clusters. Unless you have the luxury of building something brand new, cloud-
native development will always require legacy integration. The techniques described
in this chapter will help you achieve that.
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CHAPTER 14

Running Machine Learning in Kubernetes

The age of microservices, distributed systems, and the cloud has provided the perfect
environmental conditions for the democratization of machine learning models and
tooling. Infrastructure at scale has now become commoditized, and the tooling
around the machine learning ecosystem is maturing. It just so happens that Kuber‐
netes is one of the platforms that has become increasingly popular among data scien‐
tists and the wider open source community as the perfect environment to enable the
machine learning workflow and life cycle. In this chapter, we will cover why Kuber‐
netes is a great place for machine learning and provide best practices for both cluster
administrators and data scientists alike on how to get the most out of Kubernetes
when running machine learning workloads. Specifically, we focus on deep learning
rather than traditional machine learning because deep learning has fast become the
area of innovation on platforms like Kubernetes.

Why Is Kubernetes Great for Machine Learning?
Kubernetes has quickly become the home for rapid innovation in deep learning. The
confluence of tooling and libraries such as TensorFlow make this technology more
accessible to a large audience of data scientists. What makes Kubernetes such a great
place to run your deep learning workloads? Let’s cover what Kubernetes provides:

Ubiquitous
Kubernetes is everywhere. All of the major public clouds support it, and there are
distributions for private clouds and infrastructure. Basing ecosystem tooling on a
platform like Kubernetes allows users to run their deep learning workloads
anywhere.
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Scalable
Deep learning workflows typically need access to large amounts of computing
power in order to efficiently train machine learning models. Kubernetes ships
with native autoscaling capabilities that make it easy for data scientists to achieve
and fine-tune the level of scale they need to train their models.

Extensible
Efficiently training a machine learning model typically requires access to special‐
ized hardware. Kubernetes allows cluster administrators to quickly and easily
expose new types of hardware to the scheduler without having to change the
Kubernetes source code. It also allows custom resources and controllers to be
seamlessly integrated into the Kubernetes API to support specialized workflows,
such as hyperparameter tuning.

Self-service
Data scientists can use Kubernetes to perform self-service machine learning
workflows on demand, without needing specialized knowledge of Kubernetes
itself.

Portable
Machine learning models can be run anywhere, provided that the tooling is based
on the Kubernetes API. This allows machine learning workloads to be portable
across Kubernetes providers.

Machine Learning Workflow
To effectively understand the needs of deep learning, you must understand the com‐
plete workflow. Figure 14-1 represents a simplified machine learning workflow.

Figure 14-1. Machine learning development workflow

Figure 14-1 illustrates that the machine learning development workflow has the fol‐
lowing phases:

Dataset preparation
This phase includes the storage, indexing, cataloging, and metadata associated
with the dataset that is used to train the model. For the purposes of this book, we
consider only the storage aspect. Datasets vary in size, from hundreds of
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megabytes to hundreds of terabytes. The dataset needs to be provided to the
model in order for the model to be trained. You must consider storage that pro‐
vides the appropriate properties to meet these needs. Typically, large-scale block
and object stores are required and must be accessible via Kubernetes native stor‐
age abstractions or directly accessible APIs.

Machine learning algorithm development
This is the phase in which data scientists write, share, and collaborate on
machine learning algorithms. Open source tools like JupyterHub are easy to
install on Kubernetes because they typically function like any other workload.

Training
This is the process by which the model will use the dataset to learn how to per‐
form the tasks for which it has been designed. The resulting artifact of training
process is usually a checkpoint of the trained model state. The training process is
the piece that takes advantage of all of the capabilities of Kubernetes at the same
time. Scheduling, access to specialized hardware, dataset volume management,
scaling, and networking will all be exercised in unison in order to complete this
task. We cover more of the specifics of the training phase in the next section.

Serving
This is the process of making the trained model accessible to service requests
from clients so that it can make predictions based on the the data supplied from
the client. For example, if you have an image-recognition model that’s been
trained to detect dogs and cats, a client might submit a picture of a dog, and the
model should be able to determine whether it is a dog, with a certain level of
accuracy.

Machine Learning for Kubernetes Cluster Admins
In this section, we discuss topics you will need to consider before running machine
learning workloads on your Kubernetes cluster. This section is specifically targeted
toward cluster administrators. The largest challenge you will face as a cluster admin‐
istrator responsible for a team of data scientists is understanding the terminology.
There are myriad new terms that you must become familiar with over time, but rest
assured, you can do it. Let’s take a look at the main problem areas you’ll need to
address when preparing a cluster for machine learning workloads.

Model Training on Kubernetes
Training machine learning models on Kubernetes requires conventional CPUs and 
graphics processing units (GPUs). Typically, the more resources you apply, the faster
the training will be completed. In most cases, model training can be achieved on a
single machine that has the required resources. Many cloud providers offer
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multi-GPU virtual machine (VM) types, so we recommend scaling VMs vertically to
four to eight GPUs before looking into distributed training. Data scientists use a tech‐
nique known as hyperparameter tuning when training models. Hyperparameter tun‐
ing is the process of finding the optimal set of hyperparameters for model training. A
hyperparameter is simply a parameter that has a set value before the training process
begins. The technique involves running many of the same training jobs with a differ‐
ent set of hyperparameters.

Training your first model on Kubernetes
In this example, you are going to use the MNIST dataset to train an image-
classification model. The MNIST dataset is publicly available and commonly used for
image classification.

To train the model, you are going to need GPUs. Let’s confirm that your Kubernetes
cluster has GPUs available. The following output shows that this Kubernetes cluster
has four GPUs available:

$ kubectl get nodes -o yaml | grep -i nvidia.com/gpu
      nvidia.com/gpu: "1"
      nvidia.com/gpu: "1"
      nvidia.com/gpu: "1"
      nvidia.com/gpu: "1"

To run your training, you are going to using the Job kind in Kubernetes, given that
training is a batch workload. You are going to run your training for 500 steps and use
a single GPU. Create a file called mnist-demo.yaml using the following manifest, and
save it to your filesystem:

apiVersion: batch/v1
kind: Job
metadata:
  labels:
    app: mnist-demo
  name: mnist-demo
spec:
  template:
    metadata:
      labels:
        app: mnist-demo
    spec:
      containers:
      - name: mnist-demo
        image: lachlanevenson/tf-mnist:gpu
        args: ["--max_steps", "500"]
        imagePullPolicy: IfNotPresent
        resources:
          limits:
           nvidia.com/gpu: 1
      restartPolicy: OnFailure
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Now, create this resource on your Kubernetes cluster:

$ kubectl create -f mnist-demo.yaml
job.batch/mnist-demo created

Check the status of the job you just created:

$ kubectl get jobs
NAME         COMPLETIONS   DURATION   AGE
mnist-demo   0/1           4s         4s

If you take a look at the pods, you should see the training job running:

$ kubectl get pods
NAME               READY   STATUS    RESTARTS   AGE
mnist-demo-hv9b2   1/1     Running   0          3s

Looking at the pod logs, you can see the training happening:

$ kubectl logs mnist-demo-hv9b2
2019-08-06 07:52:21.349999: I tensorflow/core/platform/cpu_feature_guard.cc:
137] Your CPU supports instructions that this TensorFlow binary was not com-
piled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2019-08-06 07:52:21.475416: I tensorflow/core/common_runtime/gpu/gpu_device.cc:
1030] Found device 0 with properties:
name: Tesla K80 major: 3 minor: 7 memoryClockRate(GHz): 0.8235
pciBusID: d0c5:00:00.0
totalMemory: 11.92GiB freeMemory: 11.85GiB
2019-08-06 07:52:21.475459: I tensorflow/core/common_runtime/gpu/gpu_device.cc:
1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: Tesla 
K80, pci bus id: d0c5:00:00.0, compute capability: 3.7)
2019-08-06 07:52:26.134573: I tensorflow/stream_executor/dso_loader.cc:139] suc-
cessfully opened CUDA library libcupti.so.8.0 locally
Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Extracting /tmp/tensorflow/input_data/train-images-idx3-ubyte.gz
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Extracting /tmp/tensorflow/input_data/train-labels-idx1-ubyte.gz
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Extracting /tmp/tensorflow/input_data/t10k-images-idx3-ubyte.gz
Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting /tmp/tensorflow/input_data/t10k-labels-idx1-ubyte.gz
Accuracy at step 0: 0.1255
Accuracy at step 10: 0.6986
Accuracy at step 20: 0.8205
Accuracy at step 30: 0.8619
Accuracy at step 40: 0.8812
Accuracy at step 50: 0.892
Accuracy at step 60: 0.8913
Accuracy at step 70: 0.8988
Accuracy at step 80: 0.9002
Accuracy at step 90: 0.9097
Adding run metadata for 99
...
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Finally, you can see that the training has completed by looking at the job status:

$ kubectl get jobs
NAME         COMPLETIONS   DURATION   AGE
mnist-demo   1/1           27s        112s

To clean up the training job, simply run the following command:

$ kubectl delete -f mnist-demo.yaml
job.batch "mnist-demo" deleted

Congratulations! You just ran your first model training job on Kubernetes.

Distributed Training on Kubernetes
Distributed training is still in its infancy and is difficult to optimize. Running a train‐
ing job that requires eight GPUs will almost always be faster to train on a single eight-
GPU machine compared to two machines each with four GPUs. The only time that
you should resort to using distributed training is when the model doesn’t fit on the
biggest machine available. If you are certain that you must run distributed training, it
is important to understand the architecture. Figure 14-2 depicts the distributed
TensorFlow architecture, and you can see how the model and the parameters are
distributed.

Figure 14-2. Distributed TensorFlow architecture

Resource Constraints
Machine learning workloads demand very specific configurations across all aspects of
your cluster. The training phases are most certainly the most resource intensive. It’s
also important to note, as we mentioned a moment ago, that machine learning algo‐
rithm training is almost always a batch-style workload. Specifically, it will have a start
time and a finish time. The finish time of a training run depends on how quickly you
can meet the resource requirements of the model training. This means that scaling is
almost certainly a quicker way to finish training jobs faster, but scaling has its own set
of bottlenecks.
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Specialized Hardware
Training and serving a model is almost always more efficient on specialized hard‐
ware. A typical example of such specialized hardware would be commodity GPUs.
Kubernetes allows you to access GPUs via device plug-ins that make the GPU
resource known to the Kubernetes scheduler and therefore able to be scheduled.
There is a device plug-in framework that facilitates this capability, which means that
vendors do not need to modify the core Kubernetes code to implement their specific
device. These device plug-ins typically run as DaemonSets on each node, which are
processes that are responsible for advertising these specific resources to the Kuber‐
netes API. Let’s take a look at the NVIDIA device plug-in for Kubernetes, which ena‐
bles access to NVIDIA GPUs. After they’re running, you can create a pod as follows,
and Kubernetes will ensure that it is scheduled to a node that has these resource
available:

apiVersion: v1
kind: Pod
metadata:
  name: gpu-pod
spec:
  containers:
    - name: digits-container
      image: nvidia/digits:6.0
      resources:
        limits:
          nvidia.com/gpu: 2 # requesting 2 GPUs

Device plug-ins are not limited to GPUs; you can use them wherever specialized
hardware is needed—for example, Field Programmable Gate Arrays (FPGAs) or
InfiniBand.

Scheduling idiosyncrasies
It’s important to note that Kubernetes cannot make decisions about resources that it
does not have knowledge about. One of the things you might notice is that the GPUs
are not running at capacity when you are training. You are therefore not achieving
the level of utilization that you would like to see. Let’s consider the previous example;
it exposes only the number of GPU cores and omits the number of threads that can
be run per core. It also doesn’t expose which bus the GPU core is on, so that jobs that
need access to one another or to the same memory might be colocated on the same
Kubernetes nodes. These are all considerations that might be addressed by device
plug-ins in the future but might leave you wondering why you cannot get 100% uti‐
lization on that beefy GPU you just purchased. It’s also worth mentioning that you
cannot request fractions of GPUs (for example, 0.1), which means that even if the
specific GPU supports running multiple threads concurrently, you will not be able to
utilize that capacity.
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Libraries, Drivers, and Kernel Modules
To access specialized hardware, you typically need purpose-built libraries, drivers,
and kernel modules. You will need to ensure that these are mounted into the con‐
tainer runtime so that they are available to the tooling running in the container. You
might ask, “Why don’t I just add these to the container image itself?” The answer is
simple: the tools need to match the version on the underlying host and must be con‐
figured appropriately for that specific system. There are container runtimes such as
NVIDIA Docker that remove the burden of having to map host volumes into each
container. In lieu of having a purpose-built container runtime, you might also be able
to build an admission webhook that provides the same functionality. It’s also impor‐
tant to consider that you might need privileged containers to access some specialized
hardware, which also affects the cluster security profile. The installation of the associ‐
ated libraries, drivers, and kernel modules might also be facilitated by Kubernetes
device plug-ins. Many device plug-ins run checks on each machine to confirm that all
installations have been completed before they advertise the schedulable GPU resour‐
ces to the Kubernetes scheduler.

Storage
Storage is one of the most critical aspects of the machine learning workflow. You need
to consider storage because it directly affects the following pieces of the machine
learning workflow:

• Dataset storage and distribution among worker nodes during training
• Checkpoints and saving models

Dataset storage and distribution among worker nodes during training
During training, the dataset must be retrievable by every worker node. The storage
needs are read-only, and, typically, the faster the disk, the better. The type of disk
that’s providing the storage is almost completely dependent on the size of the dataset.
Datasets of hundreds of megabytes or gigabytes might be perfect for block storage,
but datasets that are several or hundreds of terabytes in size might be better suited to
object storage. Depending on the size and location of the disks that hold the datasets,
there might be a performance hit on your networking.

Checkpoints and saving models
Checkpoints are created as a model is being trained, and saving models allows you to
use them for serving. In both cases, you need storage attached to each of the worker
nodes to store this data. The data is typically stored under a single directory, and each
worker node is writing to a specific checkpoint or save file. Most tools expect the
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checkpoint and save data to be in a single location and require ReadWriteMany. Read
WriteMany simply means that the volume can be mounted as read-write by many
nodes. When using Kubernetes PersistentVolumes, you will need to determine the
best storage platform for your needs. The Kubernetes documentation keeps a list of
volume plug-ins that support ReadWriteMany.

Networking
The training phase of the machine learning workflow has a large impact on the net‐
work (specifically, when running distributed training). If we consider TensorFlow’s
distributed architecture, there are two discrete phases to consider that create a lot of
network traffic: variable distribution from each of the parameter servers to each of
the worker nodes, and also the application of gradients from each worker node back
to the parameter server (see Figure 14-2). The time it takes for this exchange to hap‐
pen directly affects the time it takes to train a model. So, it’s a simple game of the
faster, the better (within reason, of course). With most public clouds and servers
today supporting 1-Gbps, 10-Gbps, and sometimes 40-Gbps network interface cards,
generally network bandwidth is only a concern at lower bandwidths. You might also
consider InfiniBand if you need high network bandwidth.

While raw network bandwidth is more often than not a limiting factor, there are also
instances for which getting the data onto the wire from the kernel in the first place is
the problem. There are open source projects that take advantage of Remote Direct
Memory Access (RDMA) to further accelerate network traffic without the need to
modify your worker nodes or application code. RDMA allows computers in a net‐
work to exchange data in main memory without using the processor, cache, or oper‐
ating system of either computer. You might consider the open source project
Freeflow, which boasts of having high network performance for container network
overlays.

Specialized Protocols
There are other specialized protocols that you can consider when using machine
learning on Kubernetes. These protocols are often vendor specific, but they all seek to
address distributed training scaling issues by removing areas of the architecture that
quickly become bottlenecks, for example, parameter servers. These protocols often
allow the direct exchange of information between GPUs on multiple nodes without
the need to involve the node CPU and OS. Here are a couple that you might want to
look into to more efficiently scale your distributed training:

• Message Passing Interface (MPI) is a standardized portable API for the transfer
of data between distributed processes.
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• NVIDIA Collective Communications Library (NCCL) is a library of topology-
aware multi-GPU communication primitives.

Data Scientist Concerns
In the previous discussion, we shared considerations that you need to make in order
to be able to run machine learning workloads on your Kubernetes cluster. But what
about the data scientist? Here we cover some popular tools that make it easy for data
scientists to utilize Kubernetes for machine learning without having to be a Kuber‐
netes expert.

• Kubeflow is a machine learning toolkit for Kubernetes. It is native to Kubernetes
and ships with several tools necessary to complete the machine learning work‐
flow. Tools such as Jupyter Notebooks, pipelines, and Kubernetes-native control‐
lers make it simple and easy for data scientists to get the most out of Kubernetes
as a platform for machine learning.

• Polyaxon is a tool for managing machine learning workflows that supports many
popular libraries and runs on any Kubernetes cluster. Polyaxon has both com‐
mercial and open source offerings.

• Pachyderm is an enterprise-ready data science platform that has a rich suite of
tools for dataset preparation, life cycle, and versioning along with the ability to
build machine learning pipelines. Pachyderm has a commercial offering that you
can deploy to any Kubernetes cluster.

Machine Leaning on Kubernetes Best Practices
To achieve optimal performance for your machine learning workloads, consider the
following best practices:

• Smart scheduling and autoscaling. Given that most stages of the machine learn‐
ing workflow are batch by nature, we recommend that you utilize a Cluster
Autoscaler. GPU-enabled hardware is costly, and you certainly do not want to be
paying for it when it’s not in use. We recommend batching jobs to run at specific
times using either taints and tolerations or via a time-specific Cluster Autoscaler.
That way, the cluster can scale to the needs of the machine learning workloads
when needed, and not a moment sooner. Regarding taints and tolerations,
upstream convention is to taint the node with the extended resource as the key.
For example, a node with NVIDIA GPUs should be tainted as follows: Key: nvi
dia.com/gpu, Effect: NoSchedule. Using this method means that you can also
utilize the ExtendedResourceToleration admission controller, which will
automatically add the appropriate tolerations for such taints to pods requesting
extended resources so that the users don’t need to manually add them.
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• The truth is that model training is a delicate balance. Allowing things to move
faster in one area often leads to bottlenecks in others. It’s an endeavor of constant
observation and tuning. As a general rule of thumb, we recommend that you try
to make the GPU become the bottleneck because it is the most costly resource.
Keep your GPUs saturated. Be prepared to always be on the lookout for bottle‐
necks, and set up your monitoring to track the GPU, CPU, network, and storage
utilization.

• Mixed workload clusters. Clusters that are used to run the day-to-day business
services might also be used for the purposes of machine learning. Given the high
performance requirements of machine learning workloads, we recommend using
a separate node pool that’s tainted to accept only machine learning workloads.
This will help protect the rest of the cluster from any impact from the machine
learning workloads running on the machine learning node pool. Furthermore,
you should consider multiple GPU-enabled node pools, each with different per‐
formance characteristics to suit the workload types. We also recommend ena‐
bling node autoscaling on the machine learning node pool(s). Use mixed mode
clusters only after you have a solid understanding of the performance impact that
your machine learning workloads have on your cluster.

• Achieving linear scaling with distributed training. This is the holy grail of dis‐
tributed model training. Most libraries unfortunately don’t scale in a linear fash‐
ion when distributed. There is lots of work being done to make scaling better, but
it’s important to understand the costs because this isn’t as simple as throwing
more hardware at the problem. In our experience, it’s almost always the model
itself and not the infrastructure supporting it that is the source of the bottleneck.
It is, however, important to review the utilization of the GPU, CPU, network, and
storage before pointing fingers at the model itself. Open source tools such as
Horovod seek to improve distributed training frameworks and provide better
model scaling.

Summary
We’ve covered a lot of ground in this chapter and have hopefully provided valuable
insight into why Kubernetes is a great platform for machine learning, especially deep
learning, and the considerations you need to be aware of before deploying your first
machine learning workload. If you exercise the recommendations in this chapter, you
will be well equipped to build and maintain a Kubernetes cluster for these specialized
workloads.
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CHAPTER 15

Building Higher-Level Application
Patterns on Top of Kubernetes

Kubernetes is a complex system. Although it simplifies the deployment and opera‐
tions of distributed applications, it does little to make the development of such sys‐
tems easy. Indeed, in adding new concepts and artifacts for the developer to interact
with, it adds an additional layer of complexity in the service of simplified operations.
Consequently, in many environments, it makes sense to develop higher-level abstrac‐
tions in order to provide more developer-friendly primitives on top of Kubernetes.
Additionally, in many large companies, it makes sense to standardize the way in
which applications are configured and deployed so that everyone adheres to the same
operational best practices. This can also be achieved by developing higher-level
abstractions so that developers automatically adhere to these principles. However,
developing these abstractions can hide important details from the developer and
might introduce a walled garden that limits or complicates the development of certain
applications or the integration of existing solutions. Throughout the development of
the cloud, the tension between the flexibility of infrastructure and the power of the
platform has been a constant. Designing the proper higher-level abstractions enables
us to walk an ideal path through this divide.

Approaches to Developing Higher-Level Abstractions
When considering how to develop a higher-level primitive on top of Kubernetes,
there are two basic approaches. The first is to wrap up Kubernetes as an implementa‐
tion detail. With this approach, developers who consume your platform should be
largely unaware that they are running on top of Kubernetes; instead, they should
think of themselves as consumers of the platform you supply, and thus Kubernetes is
an implementation detail.
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The second option is to use the extensibility capabilities built into Kubernetes itself.
The Kubernetes Server API is quite flexible, and you can dynamically add arbitrary
new resources to the Kubernetes API itself. With this approach, your new higher-level
resources coexist alongside the built-in Kubernetes objects, and the users use the
built-in tooling for interacting with all of the Kubernetes resources, both built-in ones
and extensions. This extension model results in an environment in which Kubernetes
is still front and center for your developers but with additions that reduce complexity
and make it easier to use.

Given the two approaches, how do you choose the one that is appropriate? It really
depends on the goals for the abstraction layer that you are building. If you are con‐
structing a fully isolated, integrated environment in which you have strong confi‐
dence that users will not need to “break glass” and escape, and where ease of use is an
important characteristic, the first option is a great choice. A good example of such a
use case would be building a machine learning pipeline. The domain is relatively well
understood. The data scientists who are your users are likely not familiar with Kuber‐
netes. Enabling these data scientists to rapidly get their work done and focus on their
domains rather than distributed systems is the primary goal. Thus, building a com‐
plete abstraction on top of Kubernetes makes the most sense.

On the other hand, when building a higher-level developer abstraction—for example,
an easy way to deploy Java applications—it is a far better choice to extend Kubernetes
rather than wrap it. The reason for this is two-fold. First, the domain of application
development is extraordinarily broad. It will be difficult for you to anticipate all of the
requirements and use cases for your developers, especially as the applications and
business iterate and change over time. The other reason is to ensure that you can con‐
tinue to take advantage of the Kubernetes ecosystem of tools. There are countless
cloud-native tools for monitoring, continuous delivery, and more. Extending rather
than replacing the Kubernetes API ensures that you can continue to use these tools
and new ones as they are developed.

Extending Kubernetes
Because every layer that you might build over Kubernetes is unique, it is beyond the
scope of this book to describe how you might build such a layer. But the tools and
techniques for extending Kubernetes are generic to any construction you might do on
top of Kubernetes, and, thus, we’ll spend time covering them.

Extending Kubernetes Clusters
A complete how-to for extending a Kubernetes cluster is a large topic and more com‐
pletely covered in other books like Managing Kubernetes and Kubernetes: Up and
Running (O’Reilly). Rather than going over the same material here, this section focu‐
ses on providing an understanding of how to use Kubernetes extensibility. Extending
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the Kubernetes cluster involves understanding the touch points for resources in
Kubernetes. There are three related technical solutions. The first is the sidecar. Side‐
car containers (shown in Figure 15-1) have been popularized in the context of service
meshes. They are containers that run alongside a main application container to pro‐
vide additional capabilities that are decoupled from the main application and often
maintained by a separate team. For example, in service meshes, a sidecar might pro‐
vide transparent mutual Transport Layer Security (mTLS) authentication to a con‐
tainerized application.

Figure 15-1. The sidecar design

You can use sidecars to add capabilities to your user-defined applications.

Of course, the entire goal of this effort was to make a developer’s life easier, but if we
require that they learn about and know how to use sidecars, we’ve actually made the
problem worse. Fortunately, there are additional tools for extending Kubernetes that
simplify things. In particular, Kubernetes features admission controllers. Admission
controllers are interceptors that read Kubernetes API requests prior to them being
stored (or “admitted”) into the cluster’s backing store. You can use these admission
controllers to validate or modify API objects. In the context of sidecars, you can use
them to automatically add sidecars to all pods created in the cluster so that developers
do not need to know about the sidecars in order to reap their benefits. Figure 15-2
illustrates how admission controllers interact with the Kubernetes API.

Figure 15-2. Admission controllers

The utility of admission controllers isn’t limited to adding sidecars. You can also use
them to validate objects submitted by developers to Kubernetes. For example, you
could implement a linter for Kubernetes that ensures developers submit pods and
other resources that follow best practices for using Kubernetes. A common mistake
for developers is to not reserve resources for their application. For those circumstan‐
ces, an admission controller-based linter could intercept such requests and reject
them. Of course, you should also leave an escape hatch (for example, a special
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annotation) so that advanced users can opt out of the lint rule, as appropriate. We
discuss the importance of escape hatches later on in the chapter.

So far, we’ve only covered ways to augment existing applications and to ensure that
developers follow best practices—we haven’t really covered how to add higher-level
abstractions. This is where custom resource definitions (CRDs) come into play. CRDs
are a way to dynamically add new resources to an existing Kubernetes cluster. For
example, using CRDs, you could add a new ReplicatedService resource to a Kuber‐
netes cluster. When a developer creates an instance of a ReplicatedService, it turns
around to Kubernetes and creates corresponding Deployment and Service resources.
Thus, the ReplicatedService is a convenient developer abstraction for a common pat‐
tern. CRDs are generally implemented by a control loop that is deployed into the
cluster itself to manage these new resource types.

Extending the Kubernetes User Experience
Adding new resources to your cluster is a great way to provide new capabilities, but to
truly take advantage of them, it’s often useful to extend the Kubernetes user experi‐
ence (UX) as well. By default, the Kubernetes tooling is unaware of custom resources
and other extensions and thus treats them in a very generic and not particularly user-
friendly manner. Extending the Kuberentes command line can provide an enhanced
user experience.

Generally, the tool used for accessing Kubernetes is the kubectl command-line tool.
Fortunately, it too has been built for extensibility. kubectl plug-ins are binaries that
have a name like kubectl-foo, where foo is the name of the plug-in. When you
invoke kubectl foo ... on the command line, the invocation is in turn routed to an
invocation of the plug-in binary. Using kubectl plug-ins, you can define new experi‐
ences that deeply understand the new resources that you have added to your cluster.
You are free to implement whatever kind of experiences are suitable while at the same
time taking advantage of the familiarity of the kubectl tooling. This is especially val‐
uable because it means that you don’t need to teach developers about a new tool set.
Likewise, you can gradually introduce Kubernetes-native concepts as the developers
advance their Kubernetes knowledge.

Design Considerations When Building Platforms
Countless platforms have been built to enable developer productivity. Given the
opportunity to observe all of the places where these platforms have succeeded and
failed, you can develop a common set of patterns and considerations so as to learn
from the experience of others. Following these design guidelines can help to ensure
that the platform you build is a successful one instead of a “legacy” dead end from
which you must eventually move away.
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Support Exporting to a Container Image
When building a platform, many designs provide simplicity by enabling the user to
simply supply code (e.g., a function in Function as a Service [FaaS]) or a native pack‐
age (e.g., a JAR file in Java) instead of a complete container image. This approach has
a great deal of appeal because it lets the user stay within the confines of their well-
understood tools and development experience. The platform handles the containeri‐
zation of the application for them.

The problem with this approach, however, comes when the developer encounters the
limitations of the programming environment that you have given them. Perhaps it’s
because they need a specific version of a language runtime to work around a bug. Or
it might be that they need to package additional resources or executables that aren’t
part of the way you have structured the automatic containerazation of the application.

No matter the reason, hitting this wall is an ugly moment for the developer, because it
is a moment when they suddenly must learn a great deal more about how to package
their application, when all they really wanted to do was to extend it slightly to fix a
bug or deliver a new feature.

However, it doesn’t need to be this way. If you support the exporting of your plat‐
form’s programming environment into a generic container, the developer using your
platform doesn’t need to start from scratch and learn everything there is to know
about containers. Instead, they have a complete, working container image that repre‐
sents their current application (e.g., the container image containing their function
and the node runtime). Given this starting point, they can then make the small
tweaks necessary to adapt the container image to their needs. This sort of gradual
degradation and incremental learning dramatically smoothes out the path from
higher-level platform down into lower-level infrastructure and thus increases the gen‐
eral utility of the platform because using it doesn’t introduce steep cliffs for
developers.

Support Existing Mechanisms for Service and Service Discovery
Another common story of platforms is that they evolve and interconnect with other
systems. Many developers might be very happy and productive in your platform, but
any real-world application will span both the platform that you build and lower-level
Kubernetes applications as well as other platforms. Connections to legacy databases or
open source applications built for Kubernetes will always become a part of a suffi‐
ciently large application.

Because of this need for interconnectivity, it’s critically important that the core Kuber‐
netes primitives for services and service discovery are used and exposed by any plat‐
form that you construct. Don’t reinvent the wheel in the interest of improved
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platform experience, because in doing so you will be creating a walled garden incapa‐
ble of interacting with the broader world.

If you expose the applications defined in your platform as Kubernetes Services, any
application anywhere within your cluster will be able to consume your applications
regardless of whether they are running in your higher-level platform. Likewise, if you
use the Kubernetes DNS servers for service discovery, you will be able to connect
from your higher-level application platform to other applications running in the clus‐
ter, even if they are not defined in your higher-level platform. It might be tempting to
build something better or easier to use, but interconnectivity across different plat‐
forms is the common design pattern for any application of sufficient age and com‐
plexity. You will always regret the decision to build a walled garden.

Building Application Platforms Best Practices
Although Kubernetes provides powerful tools for operating software, it does consid‐
erably less to enable developers to build applications. Thus, it is often necessary to
build platforms on top of Kubernetes to make developers more productive and/or
Kubernetes easier. When building such platforms, you’ll benefit from keeping the fol‐
lowing best practices in mind:

• Use admission controllers to limit and modify API calls to the cluster. An admis‐
sion controller can validate (and reject invalid) Kubernetes resources. A mutating
admission controller can automatically modify API resources to add new side‐
cars or other changes that users might not even need to know about.

• Use kubectl plug-ins to extend the Kubernetes user experience by adding new
tools to the familiar existing command-line tool. In rare occasions, a purpose-
built tool might be more appropriate.

• When building platforms on top of Kubernetes, think carefully about the users of
the platform and how their needs will evolve. Making things simple and easy to
use is clearly a good goal, but if this also leads to users that are trapped and
unable to be successful without rewriting everything outside of your platform, it
will ultimately be a frustrating (and unsuccessful) experience.

Summary
Kubernetes is a fantastic tool for simplifying the deployment and operation of soft‐
ware, but unfortunately, it is not always the most developer-friendly or productive
environment. Because of this, a common task is to build a higher-level platform on
top of Kubernetes in order to make it more approachable and usable by the average
developer. This chapter described several approaches for designing such a higher-
level system and provided a summary of the core extensibility infrastructure that is

210 | Chapter 15: Building Higher-Level Application Patterns on Top of Kubernetes



available in Kubernetes. It concluded with lessons and design principles drawn from
our observation of other platforms that have been built on top of Kubernetes, with
the hope that they can guide the design of your platform.
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CHAPTER 16

Managing State and Stateful Applications

In the early days of container orchestration, the targeted workloads were usually
stateless applications that used external systems to store state if necessary. The
thought was that containers are very temporal, and orchestration of the backing stor‐
age needed to keep state in a consistent manner was difficult at best. Over time the
need for container-based workloads that kept state became a reality and, in select
cases, might be more performant. Kubernetes adapted over many iterations to not
only allow for storage volumes mounted into the pod, but those volumes being man‐
aged by Kubernetes directly was an important component in orchestration of storage
with the workloads that require it.

If the ability to mount an external volume to the container was enough, many more
examples of stateful applications running at scale in Kubernetes would exist. The real‐
ity is that volume mounting is the easy component in the grand scheme of stateful
applications. The majority of applications that require state to be maintained after
node failure are complicated data-state engines such as relational database systems,
distributed key/value stores, and complicated document management systems. This
class of applications requires more coordination between how members of the clus‐
tered application communicate with one another, how the members are identified,
and the order in which members either appear or disappear into the system.

This chapter focuses on best practices for managing state, from simple patterns such
as saving a file to a network share, to complex data management systems like Mon‐
goDB, mySQL, or Kafka. There is a small section on a new pattern for complex sys‐
tems called Operators that brings not only Kubernetes primitives, but allows for
business or application logic to be added as custom controllers that can help make
operating complex data management systems easier.
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Volumes and Volume Mounts
Not every workload that requires a way to maintain state needs to be a complex data‐
base or high throughput data queue service. Often, applications that are being moved
to containerized workloads expect certain directories to exist and read and write per‐
tinent information to those directories. The ability to inject data into a volume that
can be read by containers in a pod is covered in Chapter 5; however, data mounted
from ConfigMaps or secrets is usually read-only, and this section focuses on giving
containers volumes that can be written to and will survive a container failure or, even
better, a pod failure.

Every major container runtime, such as Docker, rkt, CRI-O, and even Singularity,
allows for mounting volumes into a container that is mapped to an external storage
system. At its simplest, external storage can be a memory location, a path on the con‐
tainer’s host, or an external filesystem such as NFS, Glusterfs, CIFS, or Ceph. Why
would this be needed, you might wonder? A useful example is that of a legacy appli‐
cation that was written to log application-specific information to a local filesystem.
There are many possible solutions including, but not limited to, updating the applica‐
tion code to log out to a stdout or stderr of a sidecar container that can stream log
data to an outside source via a shared pod volume or using a host-based logging tool
that can read a volume for both host logs and container application logs. The last sce‐
nario can be attained by using a volume mount in the container using a Kubernetes
hostPath mount, as shown in the following:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-webserver
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx-webserver
  template:
    metadata:
      labels:
        app: nginx-webserver
    spec:
      containers:
      - name: nginx-webserver
        image: nginx:alpine
        ports:
        - containerPort: 80
        volumeMounts:
          - name: hostvol
            mountPath: /usr/share/nginx/html
      volumes:
        - name: hostvol
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          hostPath:
            path: /home/webcontent

Volume Best Practices
• Try to limit the use of volumes to pods requiring multiple containers that need to

share data, for example adapter or ambassador type patterns. Use the emptyDir
for those types of sharing patterns.

• Use hostDir when access to the data is required by node-based agents or
services.

• Try to identify any services that write their critical application logs and events to
local disk, and if possible change those to stdout or stderr and let a true
Kubernetes-aware log aggregation system stream the logs instead of leveraging
the volume map.

Kubernetes Storage
The examples so far show basic volume mapping into a container in a pod, which is
just a basic container engine capability. The real key is allowing Kubernetes to man‐
age the storage backing the volume mounts. This allows for more dynamic scenarios
where pods can live and die as needed, and the storage backing the pod will transition
accordingly to wherever the pod may live. Kubernetes manages storage for pods
using two distinct APIs, the PersistentVolume and PersistentVolumeClaim.

PersistentVolume
It is best to think of a PersistentVolume as a disk that will back any volumes that are
mounted to a pod. A PersistentVolume will have a claim policy that will define the
scope of life of the volume independent of the life cycle of the pod that uses the vol‐
ume. Kubernetes can use either dynamic or statically defined volumes. To allow for
dynamically created volumes, there must be a StorageClass defined in Kubernetes.
PersistentVolumes can be created in the cluster of varying types and classes, and only
when a PersistentVolumeClaim matches the PersistentVolume will it actually be
assigned to a pod. The volume itself is backed by a volume plug-in. There are numer‐
ous plug-ins supported directly in Kubernetes, and each has different configuration
parameters to adjust:

apiVersion: v1
kind: PersistentVolume
metadata:
name: pv001
labels:
  tier: "silver"
spec:
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capacity:
  storage: 5Gi
accessModes:
- ReadWriteMany
persistentVolumeReclaimPolicy: Recycle
storageClassName: nfs
mountOptions:
  - hard
  - nfsvers=4.1
nfs:
  path: /tmp
  server: 172.17.0.2

PersistentVolumeClaims
PersistentVolumeClaims are a way to give Kubernetes a resource requirement defini‐
tion for storage that a pod will use. Pods will reference the claim, and then if a persis
tentVolume that matches the claim request exists, it will allocate that volume to that
specific pod. At minimum, a storage request size and access mode must be defined,
but a specific StorageClass can also be defined. Selectors can also be used to match
certain PersistentVolumes that meet a certain criteria will be allocated:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: my-pvc
spec:
  storageClass: nfs
    accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 5Gi
  selector:
    matchLabels:
      tier: "silver"

The preceding claim will match the PersistentVolume created earlier because the stor‐
age class name, the selector match, the size, and the access mode are all equal.

Kubernetes will match up the PersistentVolume with the claim and bind them
together. Now to use the volume, the pod.spec should just reference the claim by
name, as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-webserver
spec:
  replicas: 3
  selector:
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    matchLabels:
      app: nginx-webserver
  template:
    metadata:
      labels:
        app: nginx-webserver
    spec:
      containers:
      - name: nginx-webserver
        image: nginx:alpine
        ports:
        - containerPort: 80
        volumeMounts:
          - name: hostvol
            mountPath: /usr/share/nginx/html
      volumes:
        - name: hostvol
          persistentVolumeClaim:
            claimName: my-pvc

Storage Classes
Instead of manually defining the PersistentVolumes ahead of time, administrators
might elect to create StorageClass objects, which define the volume plug-in to use and
any specific mount options and parameters that all PersistentVolumes of that class
will use. This then allows the claim to be defined with the specific StorageClass to use,
and Kubernetes will dynamically create the PersistentVolume based on the Storage‐
Class parameters and options:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: nfs
provisioner: cluster.local/nfs-client-provisioner
parameters:
  archiveOnDelete: True

Kubernetes also allows operators to create a default storage class using the Default‐
StorageClass admission plug-in. If this has been enabled on the API server, then a
default StorageClass can be defined and any PersistentVolumeClaims that do not
explicitly define a StorageClass. Some cloud providers will include a default storage
class to map to the cheapest storage allowed by their instances.

Container Storage Interface and FlexVolume
Often referred to as “Out-of-Tree” volume plug-ins, the Container Storage Interface
(CSI) and FlexVolume enable storage vendors to create custom storage plug-ins
without the need to wait for direct code additions to the Kubernetes code base like
most volume plug-ins today.
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The CSI and FlexVolume plug-ins are deployed on Kubernetes clusters as extensions
by operators and can be updated by the storage vendors when needed to expose new
functionality.

The CSI states its objective on GitHub as:

To define an industry standard Container Storage Interface that will enable storage
vendors (SP) to develop a plug-in once and have it work across a number of container
orchestration (CO) systems.

The FlexVolume interface has been the traditional method used to add additional fea‐
tures for a storage provider. It does require specific drivers to be installed on all of the
nodes of the cluster that will use it. This basically becomes an executable that is
installed on the hosts of the cluster. This last component is the main detractor to
using FlexVolumes, especially in managed service providers, because access to the
nodes is frowned upon and the masters practically impossible. The CSI plug-in solves
this by basically exposing the same functionality and being as easy to use as deploying
a pod into the cluster.

Kubernetes Storage Best Practices
Cloud native application design principles try to enforce stateless application design
as much as possible; however, the growing footprint of container-based services has
created the need for data storage persistence. These best practices around storage in
Kubernetes in general will help to design an effective approach to providing the
required storage implementations to the application design:

• If possible, enable the DefaultStorageClass admission plug-in and define a default
storage class. Many times, Helm charts for applications that require PersistentVo‐
lumes default to a default storage class for the chart, which allows the applica‐
tion to be installed without too much modification.

• When designing the architecture of the cluster, either on-premises or in a cloud
provider, take into consideration zone and connectivity between the compute
and data layers using the proper labels for both nodes and PersistentVolumes,
and using affinity to keep the data and workload as close as possible. The last
thing you want is a pod on a node in zone A trying to mount a volume that is
attached to a node in zone B.

• Consider very carefully which workloads require state to be maintained on disk.
Can that be handled by an outside service like a database system or, if running in
a cloud provider, by a hosted service that is API consistent with currently used
APIs, say a mongoDB or mySQL as a service?

• Determine how much effort would be involved in modifying the application code
to be more stateless.
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• While Kubernetes will track and mount the volumes as workloads are scheduled,
it does not yet handle redundancy and backup of the data that is stored in those
volumes. The CSI specification has added an API for vendors to plug in native
snapshot technologies if the storage backend can support it.

• Verify the proper life cycle of the data that volumes will hold. By default the
reclaim policy is set to for dynamically provisioned persistentVolumes which will
delete the volume from the backing storage provider when the pod is deleted.
Sensitive data or data that can be used for forensic analysis should be set to
reclaim.

Stateful Applications
Contrary to popular belief, Kubernetes has supported stateful applications since its
infancy, from mySQL, Kafka, and Cassandra to other technologies. Those pioneering
days, however, were fraught with complexities and were usually only for small work‐
loads with lots of work required to get things like scaling and durability to work.

To fully grasp the critical differences, you must understand how a typical ReplicaSet
schedules and manages pods, and how each could be detrimental to traditional state‐
ful applications:

• Pods in a ReplicaSet are scaled out and assigned random names when scheduled.
• Pods in a ReplicaSet are scaled down in an arbitrary manner.
• Pods in a ReplicaSet are never called directly through their name or IP address

but through their association with a Service.
• Pods in a ReplicaSet can be restarted and moved to another node at any time.
• Pods in a ReplicaSet that have a PersistentVolume mapped are linked only by the

claim, but any new pod with a new name can take over the claim if needed when
rescheduled.

Those that have only cursory knowledge of cluster data management systems can
immediately begin to see issues with these characteristics of ReplicaSet-based pods.
Imagine a pod that has the current writable copy of the database just all of a sudden
getting deleted! Pure pandemonium would ensue for sure.

Most neophytes to the Kubernetes world assume that StatefulSet applications are
automatically database applications and therefore equate the two things. This could
not be further from the truth in the sense that Kubernetes has no sense of what type
of application it is deploying. It does not know that your database system requires
leader election processes, that it can or cannot handle data replication between mem‐
bers of the set, or, for that matter, that it is a database system at all. This is where
StatefulSets come in to play.
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StatefulSets
What StatefulSets do is make it easier to run applications systems that expect more
reliable node/pod behavior. If we look at the list of typical pod characteristics in a
ReplicaSet, StatefulSets offer almost the complete opposite. The original spec back in
Kubernetes version 1.3 called PetSets was introduced to answer some of the critical
scheduling and management needs for stateful-type applications such as complex
data management systems:

• Pods in a StatefulSet are scaled out and assigned sequential names. As the set
scales up, the pods get ordinal names, and by default a new pod must be fully
online (pass its liveness and/or readiness probes) before the next pod is added.

• Pods in a StatefulSet are scaled down in reverse sequence.
• Pods in a StatefulSet can be addressed individually by name behind a headless

Service.
• Pods in a StatefulSet that require a volume mount must use a defined Persistent‐

Volume template. Volumes claimed by pods in a StatefulSet are not deleted when
the StatefulSet is deleted.

A StatefulSet specification looks very similar to a Deployment except for the Service
declaration and the PersistentVolume template. The headless Service should be cre‐
ated first, which defines the Service that the pods will be addressed with individually.
The headless Service is the same as a regular Service but does not do the normal load
balancing:

apiVersion: v1
kind: Service
metadata:
  name: mongo
  labels:
    name: mongo
spec:
  ports:
  - port: 27017
    targetPort: 27017
  clusterIP: None #This creates the headless Service
  selector:
    role: mongo

The StatefulSet definition will also look exactly like a Deployment with a few changes:

apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
  name: mongo
spec:
  serviceName: "mongo"
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  replicas: 3
  template:
    metadata:
      labels:
        role: mongo
        environment: test
    spec:
      terminationGracePeriodSeconds: 10
      containers:
        - name: mongo
          image: mongo:3.4
          command:
            - mongod
            - "--replSet"
            - rs0
            - "--bind_ip"
            - 0.0.0.0
            - "--smallfiles"
            - "--noprealloc"
          ports:
            - containerPort: 27017
          volumeMounts:
            - name: mongo-persistent-storage
              mountPath: /data/db
        - name: mongo-sidecar
          image: cvallance/mongo-k8s-sidecar
          env:
            - name: MONGO_SIDECAR_POD_LABELS
              value: "role=mongo,environment=test"
  volumeClaimTemplates:
  - metadata:
      name: mongo-persistent-storage
      annotations:
        volume.beta.kubernetes.io/storage-class: "fast"
    spec:
      accessModes: [ "ReadWriteOnce" ]
      resources:
        requests:
          storage: 2Gi

Operators
StatefulSets has definitely been a major factor in introducing complex stateful data
systems as feasible workloads in Kubernetes. The only real issue is, as stated earlier,
Kubernetes does not really understand the workload that is running in the Stateful‐
Set. All of the other complex operations, like backups, failover, leader registration,
new replica registration, and upgrades, are all operations that need to happen quite
regularly and will require some careful consideration when running as StatefulSets.

Early on in the growth of Kubernetes, CoreOS site reliability engineers (SREs) created
a new class of cloud native software for Kubernetes called Operators. The original
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intent was to encapsulate the application domain-specific knowledge of running a
specific application into a specific controller that extends Kubernetes. Imagine build‐
ing up on the StatefulSet controller to be able to deploy, scale, upgrade, backup, and
run general maintenance operations on Cassandra or Kafka. Some of the first Opera‐
tors that were created were for etcd and Prometheus, which uses a time series data‐
base to keep metrics over time. The proper creation, backup, and restore
configuration of Prometheus or etcd instances can be handled by an Operator and
are basically new Kubernetes-managed objects just like a pod or Deployment.

Until recently, Operators have been one-off tools created by SREs or by software ven‐
dors for their specific application. In mid-2018, RedHat created the Operator Frame‐
work, which is a set of tools including an SDK life cycle manager and future modules
that will enable features such as metering, marketplace, and registry type functions.
Operators are not only for stateful applications, but because of their custom control‐
ler logic they are definitely more amenable to complex data services and stateful
systems.

Operators are still an emerging technology in the Kubernetes space, but they are
slowly taking a foothold with many data management system vendors, cloud provid‐
ers, and SREs the world over who want to include some of the operational knowledge
they have in running complex distributed systems in Kubernetes. Take a look at
OperatorHub for an updated list of curated Operators.

StatefulSet and Operator Best Practices
Large distributed applications that require state and possibly complicated manage‐
ment and configuration operations benefit from Kubernetes StatefulSets and Opera‐
tors. Operators are still evolving, but they have the backing of the community at large,
so these best practices are based on current capabilities at the time of publication:

• The decision to use Statefulsets should be taken judiciously because usually state‐
ful applications require much deeper management that the orchestrator cannot
really manage well yet (read the “Operators” on page 221 section for the possible
future answer to this deficiency in Kubernetes).

• The headless Service for the StatefulSet is not automatically created and must be
created at deployment time to properly address the pods as individual nodes.

• When an application requires ordinal naming and dependable scaling, it does not
always mean it requires the assignment of PersistentVolumes.

• If a node in the cluster becomes unresponsive, any pods that are part of a State‐
fulSet are not not automatically deleted; they instead will enter a Terminating or
Unkown state after a grace period. The only way to clear this pod is to remove the
node object from the cluster, the kubelet beginning to work again and deleting
the pod directly, or an Operator force deleting the pod. The force delete should
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be the last option and great care should be taken that the node that had the
deleted pod does not come back online, because there will now be two pods with
the same name in the cluster. You can use kubectl delete pod nginx-0 --
grace-period=0 --force to force delete the pod.

• Even after force deleting a pod, it might stay in an Unknown state, so a patch to the
API server will delete the entry and cause the StatefulSet controller to create a
new instance of the deleted pod: kubectl patch pod nginx-0 -p '{"meta
data":{"finalizers":null}}'.

• If you’re running a complex data system with some type of leader election or data
replication confirmation processes, use preStop hook to properly close any con‐
nections, force leader election, or verify data synchronization before the pod is
deleted using a graceful shutdown process.

• When the application that requires stateful data is a complex data management
system, it might be worth a look to determine whether an Operator exists to help
manage the more complicated life cycle components of the application. If the
application is built in-house, it might be worth investigating whether it would be
useful to package the application as an Operator to add additional manageability
to the application. Look at the CoreOS Operator SDK for an example.

Summary
Most organizations look to containerize their stateless applications and leave the
stateful applications as is. As more and more cloud native applications run in cloud
provider Kubernetes offerings, data gravity becomes an issue. Stateful applications
require much more due diligence, but the reality of running them in clusters has been
accelerated by the introduction of StatefulSets and Operators. Mapping volumes into
containers allow Operators to abstract the storage subsystem specifics away from any
application development. Managing stateful applications such as database systems in
Kubernetes is still a complex distributed system and needs to be carefully orchestra‐
ted using the native Kubernetes primitives of pods, ReplicaSets, Deployments, and
StatefulSets, but using Operators that have specific application knowledge built into
them as Kubernetes-native APIs may help to elevate these systems into production-
based clusters.
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CHAPTER 17

Admission Control and Authorization

Controlling access to the Kubernetes API is key to ensuring that your cluster is not
only secured but also can be used as a means to impart policy and governance for all
users, workloads, and components of your Kubernetes cluster. In this chapter, we
share how you can use admission controllers and authorization modules to enable
specific features and how you can customize them to suit your specific needs.

Figure 17-1 provides insight on how and where admission control and authorization
take place. It depicts the end-to-end request flow through the Kubernetes API server
until the object, if accepted, is saved to storage.

Figure 17-1. An API request flow

Admission Control
Have you ever wondered how namespaces are automatically created when you define
a resource in a namespace that doesn’t already exist? Maybe you’ve wondered how a
default storage class is selected? These changes are powered by a little-known feature
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called admission controllers. In this section, we take a look at how you can use admis‐
sion controllers to implement Kubernetes best practices on the server side on behalf
of the user and how we can utilize admission control to govern how a Kubernetes
cluster is used.

What Are They?
Admission controllers sit in the path of the Kubernetes API server request flow and
receive requests following the authentication and authorization phases. They are used
to either validate or mutate (or both) the request object before saving it to storage.
The difference between validating and mutating admission controllers is that mutat‐
ing can modify the request object they admit, whereas validating cannot.

Why Are They Important?
Given that admission controllers sit in the path of all API server requests, you can use
them in a variety of different ways. Most commonly, admission controller usage can
be grouped into the following three groups:

Policy and governance
Admission controllers allow policy to be enforced in order to meet business
requirements; for example:

• Only internal cloud load balancers can be used when in the dev namespace.
• All containers in a pod must have resource limits.
• Add predefined standard labels or annotations to all resources in order to

make them discoverable to existing tools.
• All Ingress resources only use HTTPS. For more details on how to use

admission webhooks in this context, see Chapter 11.

Security
You can use admission controllers to enforce a consistent security posture across
your cluster. A canonical example is the PodSecurityPolicy admission controller,
which enables controls on security-sensitive fields of the pod specification, for
example, denying privileged containers or usage of specific paths from the host
filesystem. You can enforce more granular or custom security rules using admis‐
sion webhooks.

Resource management
Admission controllers allow you to validate in order to provide best practices for
your cluster users, for example:

• Ensure all ingress fully qualified domain names (FQDN) fall within a specific
suffix.

226 | Chapter 17: Admission Control and Authorization



• Ensure ingress FQDNs don’t overlap.
• All containers in a pod must have resource limits.

Admission Controller Types
There are two classes of admission controllers: standard and dynamic. Standard
admission controllers are compiled into the API server and are shipped as plug-ins
with each Kubernetes release; they need to be configured when the API server is
started. Dynamic controllers, on the other hand, are configurable at runtime and are
developed outside the core Kubernetes codebase. The only type of dynamic admis‐
sion control is admission webhooks, which receive admission requests via HTTP
callbacks.

Kubernetes ships with more than 30 admission controllers, which are enabled via the
following flag on the Kubernetes API server:

--enable-admission-plugins

Many of the features that ship with Kubernetes depend on the enablement of specific
standard admission controllers and, as such, there is a recommended set of defaults:

--enable-admission-
plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorage-
Class,DefaultTolerationSeconds,MutatingAdmissionWebhook,ValidatingAdmissionWebho
ok,Priority,ResourceQuota,PodSecurityPolicy

You can find the list of Kubernetes admission controllers and their functionality in
the Kubernetes documentation.

You might have noticed the following from the list of recommended admission con‐
trollers to enable: “MutatingAdmissionWebhook,ValidatingAdmissionWebhook.”
These standard admission controllers don’t implement any admission logic them‐
selves; rather, they are used to configure a webhook endpoint running in-cluster to
forward the admission request object.

Configuring Admission Webhooks
As previously mentioned, one of the main advantages of admission webhooks is that
they are dynamically configurable. It is important that you understand how to effec‐
tively configure admission webhooks because there are implications and trade-offs
when it comes to consistency and failure modes.

The snippet that follows is a ValidatingWebhookConfiguration resource manifest.
This manifest is used to define a validating admission webhook. The snippet provides
detailed descriptions on the function of each field:

apiVersion: admissionregistration.k8s.io/v1beta1
  kind: ValidatingWebhookConfiguration
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  metadata:
    name: ## Resource name
  webhooks:
  - name: ## Admission webhook name, which will be shown to the user when any 
admission reviews are denied
    clientConfig:
      service:
        namespace: ## The namespace where the admission webhook pod resides
        name: ## The service name that is used to connect to the admission
          webhook
       path: ## The webhook URL
      caBundle: ## The PEM encoded CA bundle which will be used to validate the 
webhook's server certificate
    rules: ## Describes what operations on what resources/subresources the API 
server must send to this webhook
    - operations:
      - ## The specific operation that triggers the API server to send to this 
webhook (e.g., create, update, delete, connect)
      apiGroups:
      - ""
      apiVersions:
      - "*"
      resources:
      - ## Specific resources by name (e.g., deployments, services, ingresses)
    failurePolicy: ## Defines how to handle access issues or unrecognized 
errors, and must be Ignore or Fail

For completeness, let’s take a look at a MutatingWebhookConfiguration resource
manifest. This manifest defines a mutating admission webhook. The snippet provides
detailed descriptions on the function of each field:

apiVersion: admissionregistration.k8s.io/v1beta1
  kind: MutatingWebhookConfiguration
  metadata:
    name: ## Resource name
  webhooks:
  - name: ## Admission webhook name, which will be shown to the user when any 
admission reviews are denied
    clientConfig:
      service:
        namespace: ## The namespace where the admission webhook pod resides
        name: ## The service name that is used to connect to the admission web
hook
       path: ## The webhook URL
      caBundle: ## The PEM encoded CA bundle which will be used to validate the 
webhook's server certificate
    rules: ## Describes what operations on what resources/subresources the API 
server must send to this webhook
    - operations:
      - ## The specific operation that triggers the API server to send to this 
webhook (e.g., create, update, delete, connect)
      apiGroups:
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      - ""
      apiVersions:
      - "*"
      resources:
      - ## Specific resources by name (e.g., deployments, services, ingresses)
    failurePolicy: ## Defines how to handle access issues or unrecognized 
errors, and must be Ignore or Fail

You might have noticed that both resources are identical, with the exception of the
kind field. There is one difference on the backend, however: MutatingWebhookCon‐
figuration allows the admission webhook to return a modified request object,
whereas ValidatingWebhookConfiguration does not. Even still, it is acceptable to
define a MutatingWebhookConfiguration and simply validate; there are security con‐
siderations that come into play, and you should consider following the least-privilege
rule.

It is also likely that you thought to yourself, “What happens if I
define a ValidatingWebhookConfiguration or MutatingWebhook‐
Configuration with the resource field under the rule object to be
either ValidatingWebhookConfiguration or MutatingWebhook‐
Configuration?” The good news is that ValidatingAdmissionWeb‐
hooks and MutatingAdmissionWebhooks are never called on
admission requests for ValidatingWebhookConfiguration and
MutatingWebhookConfiguration objects. This is for good reason:
you don’t want to accidentally put the cluster in an unrecoverable
state.

Admission Control Best Practices
Now that we’ve covered the power of admission controllers, here are our best practi‐
ces to help you make the most of using them:

• Admission plug-in ordering doesn’t matter. In earlier versions of Kubernetes, the
ordering of the admission plug-ins was specific to the processing order; hence it
mattered. In current supported Kubernetes versions, the ordering of the admis‐
sion plug-ins as specified as API server flags via --enable-admission-plugins
no longer matters. Ordering does, however, play a small role when it comes to
admission webhooks, so it’s important to understand the request flow in this
case. Request admittance or rejection operates as a logical AND, meaning if any
of the admission webhooks reject a request, the entire request is rejected and an
error is sent back to the user. It’s also important to note that mutating admission
controllers are always run prior to running validating admission controllers. If
you think about it, this makes good sense: you probably don’t want to validate
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objects that you are going to subsequently modify. Figure 17-2 illustrates a
request flow via admission webhooks.

Figure 17-2. An API request flow via admission webhooks

• Don’t mutate the same fields. Configuring multiple mutating admission web‐
hooks also presents challenges. There is no way to order the request flow through
multiple mutating admission webhooks, so it’s important to not have mutating
admission controllers modify the same fields, because this can result in unexpec‐
ted results. In the case where you have multiple mutating admission webhooks,
we generally recommend configuring validating admission webhooks to confirm
that the final resource manifest is what you expect post-mutation because it’s
guaranteed to be run following mutating webhooks.

• Fail open/fail closed. You might recall seeing the failurePolicy field as part of
both the mutating and validating webhook configuration resources. This field
defines how the API server should proceed in the case where the admission web‐
hooks have access issues or encounter unrecognized errors. You can set this field
to either Ignore or Fail. Ignore essentially fails to open, meaning that process‐
ing of the request will continue, whereas Fail denies the entire request. This
might seem obvious, but the implications in both cases require consideration.
Ignoring a critical admission webhook could result in policy that the business
relies on not being applied to a resource without the user knowing.
One potential solution to protect against this would be to raise an alert when the
API server logs that it cannot reach a given admission webhook. Fail can be
even more devastating by denying all requests if the admission webhook is expe‐
riencing issues. To protect against this you can scope the rules to ensure that only
specific resource requests are set to the admission webhook. As a tenet, you
should never have any rules that apply to all resources in the cluster.

• If you have written your own admission webhook, it’s important to remember
that user/system requests can be directly affected by the time it takes for your
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admission webhook to make a decision and respond. All admission webhook
calls are configured with a 30-second timeout, after which time the failurePo
licy takes effect. Even if it takes several seconds for your admission webhook to
make an admit/deny decision, it can severely affect user experience when work‐
ing with the cluster. Avoid having complex logic or relying on external systems
such as databases in order to process the admit/deny logic.

• Scoping admission webhooks. There is an optional field that allows you to scope
the namespaces in which the admission webhooks operate on via the Namespace
Selector field. This field defaults to empty, which matches everything, but can
be used to match namespace labels via the use of the matchLabels field. We rec‐
ommend that you always use this field because it allows for an explicit opt-in per
namespace.

• The kube-system namespace is a reserved namespace that’s common across all
Kubernetes clusters. It’s where all system-level services operate. We recommend
never running admission webhooks against the resources in this namespace
specifically, and you can achieve this by using the NamespaceSelector field and
simply not matching the kube-system namespace. You should also consider it on
any system-level namespaces that are required for cluster operation.

• Lock down admission webhook configurations with RBAC. Now that you know
about all the fields in the admission webhook configuration, you have probably
thought of a really simple way to break access to a cluster. It goes without saying
that the creation of both a MutatingWebhookConfiguration and ValidatingWeb‐
hookConfiguration is a root-level operation on the cluster and must be locked
down appropriately using RBAC. Failure to do so can result in a broken cluster
or, even worse, an injection attack on your application workloads.

• Don’t send sensitive data. Admission webhooks are essentially black boxes that
accept AdmissionRequests and output AdmissionResponses. How they store and
manipulate the request is opaque to the user. It’s important to think about what
request payloads you are sending to the admission webhook. In the case of
Kubernetes secrets or ConfigMaps, they might contain sensitive information and
require strong guarantees about how that information is stored and shared. Shar‐
ing these resources with an admission webhook can leak sensitive information,
which is why you should scope your resource rules to the minimum resource
needed to validate and/or mutate.

Authorization
We often think about authorization in the context of answering the following ques‐
tion: “Is this user able to perform these actions on these resources?” In Kubernetes,
the authorization of each request is performed after authentication but before
admission. In this section, we explore how you can configure different authorization
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modules and better understand how you can create the appropriate policy to serve
the needs of your cluster. Figure 17-3 illustrates where authorization sits in the
request flow.

Figure 17-3. API request flow via authorization modules

Authorization Modules
Authorization modules are responsible for either granting or denying permission to
access. They determine whether to grant access based on policy that must be explic‐
itly defined; otherwise all requests will be implicitly denied.

As of version 1.15, Kubernetes ships with the following authorization modules out of
the box:

Attribute-Based Access Control (ABAC)
Allows authorization policy to be configured via local files

RBAC
Allows authorization policy to be configured via the Kubernetes API (refer to
Chapter 4)

Webhook
Allows the authorization of a request to be handled via a remote REST endpoint

Node
Specialized authorization module that authorizes requests from kubelets

The modules are configured by the cluster administrator via the following flag on the
API server: --authorization-mode. Multiple modules can be configured and are
checked in order. Unlike admission controllers, if a single authorization module
admits the request, the request can proceed. Only for the case in which all modules
deny the request will an error be returned to the user.
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ABAC
Let’s take a look at a policy definition in the context of using the ABAC authorization
module. The following grants user Mary read-only access to a pod in the kube-
system namespace:

apiVersion: abac.authorization.kubernetes.io/v1beta1
kind: Policy
spec:
  user: mary
  resource: pods
  readonly: true
  namespace: kube-system

If Mary were to make the following request, it would be denied because Mary doesn’t
have access to get pods in the demo-app namespace:

apiVersion: authorization.k8s.io/v1beta1
kind: SubjectAccessReview
spec:
  resourceAttributes:
    verb: get
    resource: pods
    namespace: demo-app

This example introduced a new API group, authorization.k8s.io. This set of APIs
exposes API server authorization to external services and has the following APIs,
which are great for debugging:

SelfSubjectAccessReview
Access review for the current user

SubjectAccessReview
Like SelfSubjectAccessReview but for any user

LocalSubjectAccessReview
Like SubjectAccessReview but namespace specific

SelfSubjectRulesReview
Returns a list of actions a user can perform in a given namespace

The really cool part is that you can query these APIs by creating resources as you typ‐
ically would. Let’s actually take the previous example and test this for ourselves using
the SelfSubjectAccessReview. The status field in the output indicates that this request
is allowed:

$ cat << EOF | kubectl create -f - -o yaml
apiVersion: authorization.k8s.io/v1beta1
kind: SelfSubjectAccessReview
spec:
  resourceAttributes:

Authorization | 233



    verb: get
    resource: pods
    namespace: demo-app
EOF
apiVersion: authorization.k8s.io/v1beta1
kind: SelfSubjectAccessReview
metadata:
  creationTimestamp: null
spec:
  resourceAttributes:
    namespace: kube-system
    resource: pods
    verb: get
status:
  allowed: true

In fact, Kubernetes ships with tooling built into kubectl to make this even easier. The
kubectl auth can-i command operates by querying the same API as the previous
example:

$ kubectl auth can-i get pods --namespace demo-app
yes

With administrator credentials, you can also run the same command to check actions
as another user:

$ kubectl auth can-i get pods --namespace demo-app --as mary
yes

RBAC
Kubernetes role-based access control is covered in depth in Chapter 4.

Webhook
Using the webhook authorization module allows a cluster administrator to configure
an external REST endpoint to delegate the authorization process to. This would run
off cluster and be reachable via URL. The configuration of the REST endpoint is
found in a file on the master filesystem and configured on the API server via --
authorization-webhook-config-file=SOME_FILENAME. After you’ve configured it,
the API server will send SubjectAccessReview objects as part of the request body to
the authorization webhook application, which processes and returns the object with
the status field complete.

Authorization Best Practices
Consider the following best practices before making changes to the authorization
modules configured on your cluster:
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• Given that the ABAC policies need to be placed on the filesystem of each master
node and kept synchronized, we generally recommend against using ABAC in
multimaster clusters. The same can be said for the webhook module because the
configuration is based on a file and a corresponding flag being present. Further‐
more, changes to these policies in the files require a restart of the API server to
take effect, which is effectively a control-plane outage in a single master cluster or
inconsistent configuration in a multimaster cluster. Given these details, we rec‐
ommend using only the RBAC module for user authorization because the rules
are configured and stored in Kubernetes itself.

• Webhook modules, although powerful, are potentially very dangerous. Given
that every request is subject to the authorization process, a failure of a webhook
service would be devastating for a cluster. Therefore, we generally recommend
not using external authorization modules unless you completely vet and are com‐
fortable with your cluster failure modes if the webhook service becomes unreach‐
able or unavailable.

Summary
In this chapter, we covered the foundational topics of admission and authorization
and covered best practices. Put these skills to use by determining the best admission
and authorization configuration that allows you to customize the controls and poli‐
cies needed for the life of your cluster.
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CHAPTER 18

Conclusion

The primary strength of Kubernetes is its modularity and generality. Nearly every
kind of application that you might want to deploy you can fit within Kubernetes, and
no matter what kind of adjustments or tuning you need to make to your system,
they’re generally possible.

Of course, this modularity and generality come at a cost, and that cost is a reasonable
amount of complexity. Understanding how the APIs and components of Kubernetes
work is critical to successfully unlocking the power of Kubernetes to make your appli‐
cation development, management, and deployment easier and more reliable.

Likewise, understanding how to link Kubernetes up with a wide variety of external
systems and practices as varied as an on-premises database and a Continuous Deliv‐
ery system is critical to efficiently making use of Kubernetes in the real world.

Throughout this book we have worked to provide concrete real-world experience on
specific topics that you will likely encounter whether you are a newcomer to Kuber‐
netes or an experienced administrator. Regardless of whether you are facing a new
area in which you need to become an expert, or you simply want a refresher about
how others have addressed a familiar problem, hopefully, the chapters in this book
have enabled you to learn from our experience. We also hope that in this learning,
you gain the skills and confidence to use Kubernetes to its fullest capabilities. Thank
you and we look forward to seeing you out in the real world!
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