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unexplored spaces. This is a look inside a mind without peer.” 
—Edward Snowden
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people in this space. He has rendered this experience 
and expertise into an amazing book—a hacker’s-point-of-
view bible to anyone trying to work in or understand and 
work in the emerging and evolving world of hardware.” 
—Joi Ito, Director, MIT Media Lab
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process in China. A very entertaining and informative read.” 
—Mitch Altman, inventor of TV-B-Gone
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“The Hardware Hacker is, at its core, the primer for under-
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build thousands of things, and why Open Hardware works.” 
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preface
When Bill Pollock, founder of No Starch Press, first contacted 
me with the idea of publishing a compilation of my writings, I 
was skeptical. I didn’t think there would be enough material 
to fill a hundred pages. It seems I was wrong.

My mother often said, “It doesn’t matter what’s in your 
head if you can’t tell people what’s in it,” and when I was in 
seventh grade, she enrolled me in an after-school essay writ-
ing class. I hated the class at the time, but in retrospect, I’m 
thankful. Starting with my college application essays and up 
to this day, I’ve found the ability to organize my thoughts into 
prose invaluable. 



Most of the material in this book was originally published 
on my blog, but as you’ll soon see, those posts weren’t puff 
pieces written to drive ad revenue. One reason I write is to 
solidify my own understanding of complicated subjects. It’s 
easy to believe you understand a topic until you try to explain 
it to someone else in a rigorous fashion. Writing is how I distill 
my intuition into structured knowledge; I only write when I 
find something interesting to write about, and then I post it 
with a CC BY-SA license to encourage others to share it. 

This book includes a selection of my writings on manu-
facturing, intellectual property (with a focus on comparing 
Western versus Chinese perspectives), open hardware, reverse 
engineering, and biology and bioinformatics. The good editors 
at No Starch Press also curated a couple of interviews I’ve done 
in the past that were particularly informational or insight-
ful. The common thread throughout these diverse topics is 
hardware: how it’s made, the legal frameworks around it, and 
how it’s unmade. And yes, biological systems are hardware. 

I’ve always gravitated toward hardware because while I’m 
not particularly gifted when it comes to abstract thought (hence 
the need to write to organize my thoughts), I am pretty good 
with my hands. I have a much better chance of understanding 
things that I can see with my own two eyes. 

My entire understanding of the world has always been 
built on a series of simple, physical experiences, starting from 
when I stacked blocks and knocked them over as a child. This 
book shares some of my more recent experiences. I hope that 
by reading them, you will gain a deeper understanding of the 
world of hardware, without having to spend decades stacking 
blocks and knocking them over. 

Happy hacking,
—b.
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Part 1
adventures in 
manufacturing
I first set foot in China in November 2006. I had no idea what I 
was walking into. When I told my mother I was going to visit 
Shenzhen, she exclaimed, “Why are you going there? It’s just a 
fishing village!” She wasn’t wrong: Shenzhen was just a town 
of 300,000 back in 1980, but it had exploded into a megacity of 
10 million in less than 30 years. Between my first visit and 
the time I wrote this book, Shenzhen gained an estimated 
4 million people—more than the population of Los Angeles.

In a way, my understanding of manufacturing over the 
years has mirrored Shenzhen’s growth. Before going to China, 
I had never mass-produced anything. I didn’t know anything 
about supply chains. I had no idea what “operations and logis-
tics” meant. To me, it sounded like something out of a math 
or programming textbook. 

Still, Steve Tomlin, my boss at the time, charged me with 
figuring out how to build a supply chain suitable for our hard-
ware startup, Chumby. Sending a novice into China was a 
big risk, but my lack of preconceived notions was more of an 
asset than a liability. Back then, venture capitalists shunned 



hardware, and China was only for established companies look-
ing to build hundreds of thousands of units of a given product. 
My first set of tours in China certainly supported that notion, 
as I primarily toured mega-factories serving the Fortune 500. 

Chumby was lucky to be taken under the wing of PCH 
International as its first startup customer. At PCH, I was 
mentored by some of the finest engineers and supply chain 
specialists. I was also fortunate to be allowed to share my 
experiences on my blog, as Chumby was one of the world’s 
first open hardware startups.

Although meeting the minimum order volumes of our con-
ventional manufacturing partners was a constant struggle, 
I kept noticing small things that didn’t square with conven-
tional wisdom. Somehow, local Chinese companies were able 
to remix technology into boutique products. The so-called 
shanzhai integrated cell phones into all kinds of whimsical 
forms, from cigarette lighters to ornamental golden Buddha 
statuettes (more on this in Chapter 4). The niche nature of 
these products meant they had to be economical to produce in 
smaller volumes. I also noticed that somehow factories were 
able to rapidly produce bespoke adapter circuits and testing 
apparatuses of surprisingly high quality in single-unit volumes. 
I felt there was more to the ecosystem—a story that was being 
told over and over again—but few had the time to listen, and 
those who did heard only the parts they wanted to hear. 

The financial crisis of 2008 changed everything. The con-
sumer electronics market was crushed, and factories that were 
once too busy printing money were now swimming in excess 
capacity. I made friends at several medium-sized factories 
in the area. I started to inquire about how, exactly, these 
factories were able to so nimbly produce their internal test 
equipment, and how shanzhai were able to prototype and build 
such bespoke phones. 
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The bosses and engineers were initially reticent, not because 
they wanted to hide potential competitive advantages from 
me, but because they were ashamed of their practices. Foreign 
clients were full of corporate process, documentation, and qual-
ity procedures, but they also paid dearly for such overhead. 
Local companies were much more informal and pragmatic. So 
what if a bin is labeled “scrap”? If the bits inside are suitable 
for a job, then use them!

I wanted in. As an engineer, tinkerer, and hacker, I cared 
a lot about the cost to produce a few units, and a couple of 
minor assembly defects was nothing compared to the design 
issues I had to debug. I eventually managed to coax a factory 
into letting me build a part using its low-quality but ultra-
cheap assembly process. 

The trick was to guarantee that I would pay for all the 
product, including defective units. Most customers refuse to 
pay for imperfect goods, forcing the factory to eat the cost of 
any part that isn’t exactly to specification. Thus, factories 
strongly dissuade customers from using cheaper but low-
quality processes. 

Of course, my promise to pay for defective product meant 
there was no incentive for the factory to do a good job. It could 
have, in theory, just handed me a box of scrap parts and I’d 
still have had to pay for it. But in reality, nobody had such ill 
intentions; as long as everyone simply tried their best, they 
got it right about 80 percent of the time. Since small-volume 
production costs are dominated by setup and assembly, my 
bottom line was still better despite throwing away 20 percent 
of my parts, and I got parts in just a couple of days instead of 
a couple of weeks. 

Having options to trade cost, schedule, and quality against 
each other changes everything. I’ve made it a point to discover 
more alternative production methods and continue shortening 
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the path between ideas and products, with ever more options 
along the cost-schedule-quality spectrum. 

After Chumby, I decided to remain unemployed, partly to 
give myself time for discovery. For example, every January, 
instead of going to the frenzied Consumer Electronics Show 
(CES) in Las Vegas, I rented a cheap apartment in Shenzhen 
and engaged in the “monastic study of manufacturing”; for 
the price of one night in Las Vegas, I lived in Shenzhen for a 
month. I deliberately picked neighborhoods with no English 
speakers and forced myself to learn the language and customs 
to survive. (Although I’m ethnically Chinese, my parents pri-
oritized accent-free fluency in English over learning Chinese.) 
I wandered the streets at night and observed the back alleys, 
trying to make sense of all the strange and wonderful things 
I saw going on during the daytime. Business continues in 
Shenzhen until the wee hours of the morning, but at a much 
slower pace. At night, I could make out lone agents acting out 
their interests and intentions.

If there’s one thing those studies taught me, it’s that I 
have a lot more to learn. The Pearl River Delta ecosystem is 
incomprehensibly vast. As with the Grand Canyon, simply 
hiking one trail from rim to base doesn’t mean you’ve seen it 
all. I have, however, picked up enough knowledge to build a 
custom laptop and to develop a new process for peel-and-stick 
electronic circuits. 

In this part of the book, you’ll follow my journey as I learned 
the Shenzhen ecosystem over the years, via a remix of blog 
posts that I wrote along the way. Some of the essays are reflec-
tions on particular aspects of Chinese culture; others are case 
studies of specific manufacturing practices. I conclude with a 
chapter called “The Factory Floor,” a set of summary recom-
mendations for anyone considering outsourced manufacturing. 
If you’re in a hurry, you can skip all the background and go 
directly there. 
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However, hindsight is 20/20. Once you’ve walked a path, 
it’s easy to point out the shortcuts and hazards along the 
way; it’s even easier to forget all of the wrong turns and bad 
assumptions. There’s no one-size-fits-all method for approach-
ing China, and my hope is that by reading these stories, you 
can come to your own (perhaps different) conclusions that 
better serve your unique needs.
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1.  made in china
Before my first visit to China, I was convinced that Akihabara 
in Tokyo was the go-to place for the latest electronics, knick-
knacks, and components. That changed in January 2007, when 
I first set eyes on the SEG Electronics Market in Shenzhen. 
SEG is eight floors of all the components a hardware addict 
could ever want, and only later did I learn that it’s just the 
tip of the Hua Qiang electronics district iceberg. 

As the lead hardware engineer at Chumby at the time, I 
was in China with then-CEO Steve Tomlin to figure out how 
to make chumbys (an open source, Wi-Fi-enabled content 
delivery device) cheaply and on time. With prices like those 
at SEG, we were definitely in the right country to make at 
least the first part of that mission a success. 



Shenzhen’s SEG Electronics Market, the new electronics mecca. 
Akihabara, eat your heart out!

The Ultim ate Electronic Component 

Flea M arket

When I first stepped into the SEG building, I was assaulted 
by a whirlwind of electronic components: tapes and reels of 
resistors and capacitors, ICs of every type, inductors, relays, 
pogo pin test points, voltmeters, and trays of memory chips. 
As a total newcomer to manufacturing in volume, I was blown 
away by everything I saw at SEG.
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All of those parts were crammed into tiny six-by-three-
foot booths, each with a storekeeper poking away at a laptop. 
Some storekeepers played Go, and some counted parts. Some 
booths were true mom-and-pop shops, with mothers tending 
to babies and kids playing in the aisles.

A couple of family-run component shops

made in china  9



Other booths were professional setups with uniformed 
staff, and these worked like a bar—complete with stools—for 
electronic components.

A swanky professional parts seller

No one at SEG says, “Oh, you can get 10 of these LEDs or 
a couple of these relays,” like you might hear in Akihabara. 
No, no. These booths specialize, and if you see a component 
you like, you can usually buy several tubes, trays, or reels 
of it; you can get enough to go into production the next day.

Looking around the market, I saw a woman sorting stacks 
of 1GB mini-SD cards like poker chips. A man was putting 
sticks of 1GB Kingston memory into retail packages, and next 
to him, a girl was counting resistors.
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The bottom-left corner of this display was packed with all kinds of SD cards.

Another booth had stacks of power supplies, varistors, 
batteries, and ROM programmers, and yet another had chips 
of every variety: Atmel, Intel, Broadcom, Samsung, Yamaha, 
Sony, AMD, Fujitsu, and more. Some chips were clearly ripped 
out of used equipment and remarked, some of them in brand-
new laser-marked OEM packaging.

The sheer quantity of chips for sale at a single booth at SEG was incredible.
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I saw chips that I could never buy in the United States, 
reels of rare ceramic capacitors that I could only dream about 
at night. My senses tingled; my head spun. I couldn’t suppress 
a smile of anticipation as I walked around the next corner to 
see shops stacked floor to ceiling with probably 100 million 
resistors and capacitors.

Reels and reels of components, in every shop window

Sony CCD and CMOS camera elements! I couldn’t buy 
those in the United States if I pulled teeth out of the sales 
reps. (Some sellers even have the datasheets behind the coun-
ter; always ask.) Next, I spotted a stack of Micrel regulator 
chips, followed by a Blackfin DSP chip for sale. Nearby, a 
lady counted 256Mb DRAM chips—trays of 108 components, 
stacked 20 high, in perhaps 10 rows. 
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The equivalent of Digi-Key’s entire stock of DRAM chips sat right in front of me!

And across from her were a half-dozen more little shops 
packed with chips just like hers. At one shop, a man stood 
proudly over a tray of 4Gb NAND flash chips. All of this was 
available for a little haggling, a bit of cash, and a hasty good-bye. 

A close look at a tray of 4Gb flash chips 
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And that’s just the first two floors of SEG. There are six 
more floors of computer components, systems, laptops, mother-
boards, digital cameras, security cameras, thumb drives, mice, 
video cameras, high-end graphics cards, flat-panel displays, 
shredders, lamps, projectors—you name it. On weekends, 
“booth babes” dressed in outrageous Acer-branded glittery 
bodysuits loiter around, trying to pull you in to buy their 
wares. This market has all the energy of a year-round CES 
meets Computex, except instead of just showing off the latest 
technology, the point is getting you into these booths to buy 
that hardware. Trade shows always feel like a bit of a strip 
tease, with your breath making ghostly rings on the glass as 
you hover over the unobtainable wares underneath. 

But SEG is no strip tease. It’s the orgy of consumer and 
industrial electronic purchasing, where you can get your grubby 
paws on every piece of equipment for enough kuai* out of your 
wallet. Between the smell, the bustle, and the hustle, SEG is 
the ultimate electronic component flea market. It’s as if Digi-
Key went mad and let monkeys into its Minnesota warehouse, 
and the resulting chaos spilled into a flea market in China.

Of course, a lot of the parts I marveled at in 2007 are 
antiques now. For example, 4Gb flash chips are trash, and 
1GB flash disks are old news. At the time, however, those 
things were a big deal, and SEG is still the best place to get 
the latest tech in bulk.

The Next Technological Revolution

Three blocks down the street from SEG lay the Shenzhen 
Bookstore.† The first and most visible rack was a foreign book 
section, packed with classics like Stanford University professor 
Thomas Lee’s The Design of CMOS Radio-Frequency Integrated 

* Colloquial word for yuan, the base counting unit for the renminbi (RMB), the currency in China.

† This bookstore has closed since the visit I describe here.
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Circuits and several titles by UCLA professor Behzad Razavi. 
I picked up Lee’s book, and it cost 68 kuai, or $8.50 USD. Holy 
cow! Jin Au Kong’s book on Maxwell’s equations? $5. Jin Au 
Kong taught me Maxwell’s equations at MIT. 

I went on a spree, packing my bag with six or seven titles, 
probably around $700 worth of books if I’d bought them in the 
United States. At the checkout counter, I bought them for less 
than $35, complete with the supplemental CDs, saving about 
$665. That’s equivalent to buying an economy-class ticket to 
Hong Kong!

In China, knowledge is cheap. Components are cheap. 
The knowledge in the books at the Shenzhen Bookstore was 
the Real Deal, the parts to use that knowledge are down the 
street at SEG, and within an hour’s drive north are probably 
200 factories that can take any electronics idea and pump it 
out by the literal boatload. These are no backward factories, 
either. With my own eyes, I saw name-brand, 1,550-nanometer, 
single-mode, long-haul, fiber-optic transceivers being built 
and tested there. Shenzhen is fertile ground, and you need to 
see it to understand it. 

Shenzhen has the pregnant feel of the swapfests in Silicon 
Valley back in the ’80s, when all the big companies were just 
being founded and starting up, except magnified by 25 years 
of progress in Moore’s law and the speed of information flow 
via the internet. In this city of 12 million people, most are 
involved in tech or manufacturing, many are learning English, 
and all of them are willing to work hard. 

There has to be a Jobs and Wozniak there somewhere, 
quietly building the next revolution. But I’m a part of Shenzhen, 
too, and I still tremble in my boots with terror and excitement 
at the thought of being part of that revolution. This is my story, 
starting with that eye-opening trip to Shenzhen for Chumby. 
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Touring Factories w ith Chumby

In September 2006, Chumby was just a team of about a half-
dozen people, and we had just given away about 200 early 
prototype chumby devices at FOO Camp, a conference put on 
by Tim O’Reilly. The devices were well received by the FOO 
Camp attendees, so I got the go-ahead to build the Asian 
supply chain.

Steve and I went to China to visit potential factories in 
November, but before we left, we had a trusted vendor in the 
United States give their best price for the job as a baseline 
for negotiations with the Chinese manufacturers. Then, we 
called up a lot of friends with experience in China and lined up 
about six factory tours. We hit quite a variety of places, from 
specialty factories as small as 500 people to mega-factories 
with over 40,000 people. 

There’s no substitute for going to China to tour a factory. 
Pictures can only tell the story framed by the photographer, 
and you can’t get a sense of a facility’s scale and quality without 
seeing it firsthand. In general, factories welcome you to take 
a tour, and I wouldn’t work with one that didn’t allow me to 
visit. However, most factories do appreciate a week’s notice, 
although as your relationship with them progresses, things 
should become more open and transparent.

Speaking of openness, Chumby’s open source nature helped 
the factory selection process a lot. First, we had no fears about 
people stealing our design (we were giving it away already), 
so we’d eliminated the friction of NDAs (non-disclosure agree-
ments) when sharing critical information like the bill of mate-
rials. I think this gave us a better reception with factories in 
China; they seemed more willing to open up to us because 
we were willing to open up to them. Second, there was no 
question in any factory’s mind that this was a competitive 
situation. Anybody could and would quote and bid on our job 
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(in fact, we received a few unsolicited quotations that were 
quite competitive), so it saved a round of huffing and puffing.

After reviewing several manufacturing options, Steve 
and I eventually decided to work with a company called PCH 
China Solutions. PCH itself owns only a few facilities, but it 
has a comprehensive network of trusted and validated ven-
dors, primarily in China but also in Europe and the United 
States. Not surprisingly, the factories that PCH subcontracts 
to were some of the best facilities we visited in China. PCH 
is actually headquartered out of Ireland—thus most of their 
staff engineers are Irish—so there was also no language bar-
rier for us. (PCH engineers are also hardworking, resourceful, 
and well trained—and, as a bonus, they always seem to know 
the best place to find a pint, no matter where they are. I had 
no idea China had so many Guinness taps!)

There’s a lot to take in when you tour even one factory, 
let alone a half-dozen, and it’s easy to get overwhelmed and 
lost in the vagaries of electronics manufacturing. But there 
were some key details I found most fascinating during my 
factory tours for Chumby and in working with PCH to bring 
the chumby to life. 

Scale in Shenzhen

One stunning thing about working in China is the sheer scale 
of the place. I haven’t been to an auto plant in Michigan or to 
the Boeing plant in Seattle, but I get the sense that Shenzhen 
gives both a run for their money in terms of scale. In 2007, 
Shenzhen had 9 million people. 

To give you an idea of the scale of a Shenzhen factory, the 
New Balance factory there employed 40,000 people and had the 
capacity to produce over a million shoes a month. I estimate 
that from raw fabric to finished shoe, the process took about 
50 minutes, and every perfectly stitched bundle of plastic and 
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leather was sewn by hand on an industrial sewing machine. 
The stations are designed so that each stage in the process 
takes a worker about 30 seconds. 

Of course, the New Balance factory is dwarfed by Foxconn, 
the factory where iPods and iPhones are made. 

You know you’re big when you have your own exit off the freeway. 

Foxconn is a huge facility, apparently with over 250,000 
employees, and it has its own special free trade status. The 
entire facility is walled off, and I’ve heard you need to show 
your passport and clear customs to get into the facility. That’s 
just short of the nuclear-powered robotic dogs from the nation-
corporation franchulates of Neal Stephenson’s Snow Crash. 

Feeding the Factory

There’s an old Chinese saying: min yi shi wei tian. A literal 
translation would be “people consider food divine” or “for people, 
food is next to heaven.” You can also look at it as a piece of 
governing advice: “the government’s mandate [synonymous 
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with heaven] is only as robust as the food on people’s plates.” 
Or, you can interpret it as an excuse to procrastinate: “let’s 
eat first [since it is as important as heaven].”

Whichever way you cut it, I think the saying still holds in 
China. One important metric for gauging how well a factory 
treats its employees is how good the food is, as it’s common 
for factory workers to be housed, fed, and cared for on site.

The food is actually quite good at some factories. For 
example, when eating with the workers at the factory that 
manufactured chumby circuit boards, I was served a mix of 
steamed fish, broiled pork, egg rolls, clean fried vegetables, 
and some pickled-vegetable-and-meat combo. Rice, soup, and 
apples were also provided in “help yourself ” quantities.

A meal from the factory that made the chumby circuit boards

Every facility I visited also had separate utensils and plates 
for guests. At one factory, my food was served on a Styrofoam 
plate with disposable chopsticks, while a factory worker I ate 
with was served food on a steel plate with steel chopsticks. I 
hadn’t passed the factory’s physical examination, so they gave 
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me disposable eating tools to prevent me from contaminating 
the factory with potential foreign diseases. 

Going back to scale, some factory food operations are 
impressively large. I heard that Foxconn’s workers consume 
3,000 pigs a day. From pigs to iPhones, it all happens right 
here in Shenzhen!

A truckload of pigs, exiting the highway toward Foxconn

Dedication to Quality

After I started working with PCH on actually manufacturing 
the chumby, I ran into a situation sometime around June 2007 
that showed me just how dedicated the factory workers in 
Shenzhen were to getting their jobs right.

I had updated the chumby motherboard to include an 
electret microphone, with an integral pre-amp field-effect 
transistor (FET). The microphone needed to be inserted in 
the correct orientation with respect to the circuit so the FET 
would receive a proper bias current.
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The first samples I got back from PCH’s factory had the 
microphone in backward, and I called the factory to tell them 
to reverse its polarity. I was going to visit the factory the next 
week, and I wanted to see corrected samples. When I arrived 
and tested the microphone, I found to my dismay that the 
microphones were still not working.

How could that be? There are only two ways to connect a 
microphone.

It turns out there were two operators on the line assem-
bling the microphone. One soldered the red and black wires 
to the microphone. The next soldered these red and black 
wires to the circuit board. The operators were told to reverse 
the order, and both of them dutifully complied—giving me a 
microphone that was still soldered in backward, but with the 
color of the wires swapped. (This is actually a pretty typical 
story for problems in China.)

The factory was scheduled to manufacture a first pilot run 
of 450 circuit boards the next day. Everything had to go per-
fectly for Chumby’s production timeline to stay on schedule. 
We had soldering stencils rebuilt (we were debugging a yield 
issue with the QFN packaged audio CODEC as well) and 
ready by around noon, and by around 6 pm, I had the first 
boards in my hands to test. I ran the final factory test, and 
the device failed again—at the microphone. This was not a 
happy moment for anybody in the factory, as the factory was 
liable for any manufacturing defects. 

I donned my smock and marched onto the line to start 
debugging the problem.

For the rest of the night, I remained in the factory, and so 
did every manager and tech involved in manufacturing the 
chumby. The pressure was enormous: right next to us was a 
line churning out 450 potentially defective circuit boards, and 
I was unwilling to pull the plug because I still didn’t know 
what the root cause was, and we had to stay on schedule.
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I was debugging circuits at 3 am on the day of the final factory test for the chumby. 

I literally had a panel of factory workers standing by the 
entire night to bring me anything I needed: soldering irons, 
test equipment, more boards, X-ray machines, microscopes. 
Remarkably, not a single person hesitated; not a single person 
complained; not a single person lost focus on the problem. 
People canceled dinner plans with friends without batting an 
eyelash. Anyone who wasn’t needed in a particular moment 
was busy overseeing other aspects of the project. I hadn’t seen 
blind dedication like that since I worked with the autonomous 
underwater robotics team at MIT.

And this went on until 3 am. 
Embarrassingly, the problem wasn’t PCH’s fault in the 

end. The problem was the new firmware release I received 
earlier that day from the team in the United States. It had 
a bug that disabled the microphone due to a hack that was 
accidentally checked into the build tree.

22  C h a pt  e r  1



Even more impressively, when PCH found out, nobody was 
angry, and nobody complained. (Well, the saleswoman gave 
me a hard time, but I deserved it; she had been kind enough 
to accompany me on the production line all night long and be 
my translator, since my Mandarin wasn’t up to snuff.) They 
were simply relieved that it wasn’t their fault. 

We all parted ways, and I came back into the factory the 
next day at 11 am, after a good night’s sleep. I saw Christy, 
the factory’s project manager for manufacturing the chumby 
boards. I asked her when she came into work, and she told me 
she always has to report by 8 am. I started to feel really bad; 
Christy stayed up late because of our bug, and she came in early 
while I slept in. I asked her why she stayed up so late even 
though she knew she had to report to work at 8 am. She could 
have gone home, and we could have continued the next day. 

She just smiled and said, “It’s my job to make sure this 
gets done, and I want to do a good job.”

Building Technology Without Using It

Here’s another interesting story. On our way out of the factory 
floor one day, Xiao Li (the quality assurance manager at the 
factory where we made the chumby) asked me, “What does a 
chumby do?” I didn’t speak Chinese very well, and she didn’t 
speak English very well either, so I decided to start with a 
few basic questions.

I asked her if she knew what the World Wide Web was. 
She said no.

I asked her if she knew what the internet was. She said no.
I was stunned, and I didn’t know what to say. How do you 

describe the color blue to the blind? 
Xiao Li was an expert in building and testing computers. 

On some projects, she probably built PCs and booted Windows 
XP a hundred thousand times over and over again. (God knows 
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I heard that darn startup sound a zillion times during the 
microphone incident, as there was a bank of final test stations 
for ASUS motherboards right next to me.) But she didn’t know 
what the internet was. 

I had assumed that if you touched a computer, you were 
also blessed by the bounties of the internet. All at once, I felt 
like a spoiled snob and a pig for forgetting that Xiao Li prob-
ably couldn’t afford a computer, much less broadband internet 
access. Given the opportunity, she was certainly smart enough 
to learn it all, but she was too busy making money that she 
probably sent back home to her family.

In the end, the best I could do was to tell Xiao Li that the 
chumby was a device for playing games.

Skilled Workers

Shenzhen workers may not know a lot about everything they 
make, but on top of their dedication, they are highly skilled. 
I once watched a guy working at the same factory that sewed 
the chumby bags, and I swear, he could sew cosmetic cases 
together at a rate of 5 seconds per bag. And he wasn’t even 
100 percent focused on his task; he was listening to his iPod 
while he sewed.

And apparently, he wasn’t their fastest employee! They had 
someone about twice as fast, and he’d been with the company 
for about seven years. I went to watch the faster worker, but 
he had already gone to lunch because he’d finished everything; 
there were two enormous bins of finished cosmetic cases next 
to his workstation.
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On a similar note, I was amazed to learn how rubberized 
tags (the ones you see all over clothes) are made in China. I 
always thought they were pressed by a machine, but I was 
wrong. All those words, colors, and letters are drawn by hand. 
Someone just places a logo stencil over the blank tag, paints 
over the stencil with amazing precision, and moves on to the 
next tag in their queue. When there are multiple colors, there’s 
a person for each color, to keep the process quick.

I asked PCH if they had any mechanized factories for stuff 
like that. They told me the facilities exist, but the minimum 
order quantity is enormous (hundreds of thousands, sometimes 
millions) because of the extraordinarily low cost of the product 
and the relatively high cost of tooling for the automated process. 
This is consistent with what I’ve heard about McDonald’s Happy 
Meal toys. They’re usually held together with screws because it’s 
cheaper to pay someone to screw together a toy over the whole 
production run than it is to make a steel injection-molding tool 
with the tolerances necessary for snapping the toys together.*

There was a similar trade-off inside the chumby hardware. 
There were four connectors on the internal chumby electronics. 
Using the US-based vendors that I could source, one connector 
had a best price of about $1 USD, and the other three had a 
best price of about $0.40 each. PCH’s very talented sourcing 
expert (her reputation was feared and respected by every 
vendor) managed to find me connectors that cost $0.10 and 
$0.06, respectively, saving almost a full $2 in cost. There’s one 
catch: the connectors lacked the sacrificial plastic pick-and-
place pad that would enable them to be machine-assembled.

The solution? A person, of course.

* Due to high wage inflation since this particular visit, this is probably no longer true.
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This man hand-placed the cheaper connectors on every chumby,  
for about a nickel per unit. Thanks to him, chumbys were $2 cheaper,  
which freed up more money for us consumers to spend at Starbucks.

The Need for Craftspeople

I’d like to introduce you to a man I know simply as Master 
Chao. I met him during the chumby manufacturing process, 
and I’m pretty sure that in your lifetime, you have used or 
seen something that he created. 

When I went to the sample room for the factory where 
Master Chao worked, I was shocked at how many items on 
their shelf I had purchased, used, or seen in a store in the 
United States myself. Top-tier consumer brands manufacture 
their stuff in this factory, and to the best of my knowledge, 
the factory had just one master pattern maker at the time: 
Master Chao. He’s had a hand in creating cosmetic bags for 
Braun, accessory cases for Microsoft, and the medical braces for 
major brands sold in drugstores, among many other products.
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Master Chao is the person in the foreground; in the background is Joe Perrott, 
Chumby’s excellent project engineer from PCH China Solutions.

Master Chao is a craftsman in the traditional sense. It 
used to be that the finest furniture was designed and built only 
with the intuition and skill of a master craftsman. Now, we 
all go to IKEA and get CAD-designed, supply-chain-managed, 
picture-book-assembly furniture kits—and despite all that, it 
doesn’t look too shabby. As a result, the word craft has been 
relegated to describe some scrapbook or needlepoint kit you 
buy at Michaels and put together on a slow weekend. We’ve 
forgotten that in an age before machines, “craft” was the only 
way anything of any quality was built.

It turns out, however, that traditional craft still matters, 
because CAD tools haven’t brought about the ability to simu-
late our mistakes before we make them. 

The creation of a flat pattern for textile goods is a good 
example of a process that requires a craftsman. A flat pattern 
is the set of 2D shapes used to guide the cutting of fabrics. 
These shapes are cut, folded, and sewn into a complex 3D 
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shape. Mapping the projection of an arbitrary 3D shape onto 
a 2D surface with minimal waste area between the pieces is 
hard enough. The fact that the material stretches and distorts, 
sometimes in different directions, and that sewing requires 
ample tolerances for good yields, makes pattern creation a 
difficult problem to automate. 

The chumby cases added another level of complexity, 
because they involved sewing a piece of leather onto a soft 
plastic frame. In that situation, as you sew the leather on, the 
frame distorts slightly and stretches the leather out, creating 
a sewing bias dependent upon the direction and rate of sewing. 
This force is captured in the seams and contributes to the final 
shape of the case. I challenge someone to make a computer 
simulation tool that can accurately capture those forces and 
predict how a product like that will look when sewn together.

Yet, somehow, Master Chao’s proficiency in the art of 
pattern making enabled him to very quickly, and in very few 
iterations, create and tweak a pattern that compensated for 
all of those forces. His results, all obtained with cardboard, 
scissors, and pencils, were astoundingly clever and insightful. 
Be grateful for his old-world skills; they’ve likely played a role 
in the production of something you’ve used or benefited from.

There wasn’t a single computer in Master Chao’s office, yet the products  
I saw here wrapped around a wide array of high-tech devices.
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Automation for Electronics Assembly

Before my work at Chumby, I thought almost everything was 
made by a machine. Of course, the tours of the textile factories 
corrected my impression very quickly; yet high-tech stuff like 
electronics assembly does still tend to be heavily automated, 
even in China. The only exceptions I saw during my factory 
tours were, ironically, the lowest-cost products, such as toys. 
These shops were still dominated by lines of workers, stuffing 
and dip-soldering circuit boards by hand.

One interesting dichotomy related to automation is the 
bimodal distribution of products that use chip-on-board (CoB) 
technology. CoB assembly directly bonds a silicon die to a PCB. 
Finished CoB assemblies have the distinctive “glob of epoxy” 
look to them, as opposed to the finished plastic-package look. 
High-end, dense electronics assemblies often employ CoB 
technologies. I’ve done a couple of CoB designs for some 10 
Gb optical transceivers in my time, and they were not cheap. 

At the same time, however, almost all toys use CoB technol-
ogy, to eliminate the cost of the IC package! It’s a testament 
to toy factories’ tenacity about cost reduction that they would 
buy an automated wire bonder and stick it next to lines mold-
ing doll heads and sewing up stuffed animals because having 
an in-house wire bonder saves a nickel.

A typical wire bonder bonds a wire as thin as a human 
hair to a site on a silicon chip not much larger than the wire 
diameter, and it does this several times a second. Wire bond-
ers are very fast, precise pieces of equipment. The bonding 
happens so quickly that the board seems to swivel smoothly 
around, but in fact, it stops 16 times as it spins around, and 
at each stop, a wire is bonded between the chip and the board.

Immediately before bonding, however, the chip is glued very 
carefully to the board by hand, and immediately after bond-
ing, the chip is encapsulated by a human operator dispensing 
epoxy very carefully by hand. That means wire bonder is the 
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only automated piece of equipment on assembly lines for simple 
toys. Seeing that process gave me a new appreciation for what 
goes into those talking Barney dolls that sell for $10 at Target.

The chumby manufacturing process used a bit of automa-
tion, too, courtesy of a chip shooter. Chip shooters (as well as 
pick-and-place machines) place surface-mount components on 
PCBs so the components can be soldered. 

The chumby PCB assembly factory in China had dozens of lines 
 filled with tried-and-true Fuji chip shooters.

It’s absolutely mesmerizing to see a chip shooter in action. 
The chip shooters at the chumby PCB assembly factory were 
capable of placing 10,000 to 20,000 components per hour, per 
machine. This means that each machine could put down 3 to 
6 components per second. The robotic assemblies move faster 
than the eye can see, and it all turns into an awe-inspiring 
blur. The chip shooter I saw at the chumby factory worked 
something like a Gatling gun: the chip gun itself was fixed, 
and the board danced around beneath the gun. The chip 
shooter actually “looked at” each component and rotated it to 
the correct orientation before putting it down on the board. 

30  C h a pt  e r  1



This is the end of the line for a chumby core board assembly!

The factory we used for the chumby’s PCB assembly also 
produced name-brand PC motherboards and seemed to have 
no problem pushing out well over 10,000 such complex assem-
blies each day. But even though processes like component 
placement can be automated, there are some things a machine 
just can’t do.

Precision, Injection Molding, and Patience

In the course of engineering the chumby, I also had to learn 
about injection molding, because the circuit board had to go 
inside a case of some kind. For an electronics guy with little 
mechanical background, this was no small hill to climb. The 
concept seems simple: you make a cavity out of steel, push 
molten plastic into it at high pressure, let it cool, and voilà—
a finished part comes out, just like the Play-Doh molds from 
elementary school.

Oh, if only the process were that simple.
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Sure, plastic flows, but it’s not particularly runny. It moves 
slowly, and it cools as it flows. The color of the plastic is 
impacted by the temperature changes, and when using an 
improperly designed mold, you can even see flow lines and knit 
lines in the final product. There’s also a whole assortment of 
issues with how the finished part is pulled from the mold, how 
the mold is made and finished, where the gates and runners 
are for getting the plastic inside the mold, and so on.

Fortunately, PCH had experts in China who knew all about 
this, and I got to learn mostly by watching.

If I were to summarize injection molding with a single 
adjective, it would be precision. When done right, the molds 
are precise to better than hair-thin tolerances, yet they are 
made out of hard steel. Achieving this level of precision out of 
such a durable material is no mean feat, and it’s impressive 
to see a machine cut a mold out of raw steel. 

The machine that cut the molds for the chumby case had 
a moving stage that rapidly pushed around a block of steel 
probably weighing several hundred pounds; it milled away at 
the metal in quite a hurry!

The mold-cutting machine used in manufacturing chumbys.  
Compare it to the people standing next to it for scale.
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But machining is only the roughest step in mold making. 
After the rough shape is cut out, the mold is put into an elec-
trical discharge machine (EDM), where a burst of electrons 
knocks microscopic chunks off the steel surface. This is a ter-
rifically tedious process: I’ve watched many EDMs do their job, 
and it’s like watching paint dry. EDMs are, however, wicked 
precise, and they yield spectacular, repeatable results. 

From a project management standpoint, the phenomenally 
long lead times of production-quality injection-molded plastics 
was the biggest eye opener for me. All told, the chumby mold 
transformed from a block of raw steel into a first-shot tool in 
four to six weeks, and I had to go to China and see the tooling 
shop do its work before I was convinced there wasn’t some 
gross amount of schedule padding. 

Even more harrowing from the risk management stand-
point was the lack of good simulation tools to predict how 
plastics would flow through a mold. If we saw visible blemishes 
like flow lines and knit lines, we had to wait four to six weeks 
to see if the new mold was better. Ouch! 

Fortunately, the toolmakers Chumby used in China antici-
pated these issues, and they made the tools to err on the side 
of excess steel, because removing material to fix a problem is 
much easier than adding material. It’s like the old carpenter’s 
saying: measure twice, cut once, and if you have to cut wrong, 
cut long.

The mold that was used to create the chumby’s back bezel 
was extra complex, because it involved a process called over-
molding. If you happen to own a chumby classic, look at the 
back side. There’s a rubbery TPE surrounding the hard ABS 
bezel. Many people assumed this was a glued-on rubber band. 
In fact, the TPE is molded in place on the back piece. This 
requires a two-shot mold.
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The final mold for the chumby’s back bezel, inside an injection-molding machine

There were actually two molds, and one side of the mold 
spun around so that the alternating material systems could 
be molded at the right points in the process. 

A lot of hard work goes into the humble plastic parts you 
see every day, and that’s all part of creating quality products. 
But at the same time, there’s also a very real need to meet the 
expectation of cheap prices.

The Challenge of Quality

Clearly, with the expectation of low cost of China-made goods 
comes a great challenge in quality management. Look at the 
media coverage on topics like lead paint in toys, industrial 
chemicals in food, and other items made in China, and you 
can see some of the bad decisions made to keep prices down. 

When considering cases like that, I think it’s important 
to apply Hanlon’s razor. To paraphrase, “Never attribute to 
malice that which can be adequately explained by ignorance.” 
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The Brits also have a nice, pithy version of the aphorism: 
“Cock-up before conspiracy.” 

Some manufacturers are indeed out there to make a buck 
at any cost, but I think the majority of mistakes are made out 
of ignorance. Most of the rank-and-file in factories don’t know 
what their product is ultimately used for, and under intense 
pressure to reduce costs, they make those bad decisions. 
Factories also have to deal with products that are woefully 
underspecified, as well as customers who overwhelm them 
with all kinds of frivolous requirements—and most customers 
don’t follow up in either case. In the end, the factories play a 
game of “ship and find out,” and if the customer doesn’t notice 
a missing spec, then the spec must not have been important. 
It’s not a great game, and it means that customers need to be 
ever vigilant about audits and keeping the quality standard up.

The Disconnect  Between  A merica and   China

One fundamental problem behind this game is that many 
Chinese residents do not understand or appreciate basic 
things that we take for granted in America, and vice versa. 
Many Chinese factory workers are well educated, but they 
didn’t grow up in a “gadget culture” like we have in the United 
States, so you can’t assume anything about their abilities to 
subjectively interpret specifications for a product. 

For example, you can tell a US engineer, “I’d like a button 
on that panel,” and you’ll probably get something pretty close 
to what you expect in terms of look and feel, since you and 
the engineer share common experiences and expectations 
for a button on a panel. If you did the same in China, you’d 
probably get something that looks a little awkward and has a 
clunky feel but is darn cheap and really easy to build and test. 
While the latter properties are desirable for practical reasons, 
American gadget connoisseurs just won’t buy something that’s 
aesthetically awkward or feels clunky.
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Yet, ultimately, it’s those consumers who want—nay, 
demand—low-priced goods, and that need drives the decision 
to manufacture in China. The trouble is that aside from the 
label on the product that says “Made in China” or “Made in the 
USA,” consumers really don’t care about the manufacturing 
process. What markup would you pay for a gadget that said 
“Made in the USA” on it? The cost premium for US labor is 
10 times what it is in China. Think about it: can the average US 
factory worker be 10 times more productive than the average 
Chinese factory worker? It’s a hard multiplier to play against. 

I’m not saying there’s no value in domestic vendors: it 
would be a lot less effort and less risk for me to get stuff made 
in the United States. In fact, most early prototypes are made 
there because of the enormous value that the domestic ven-
dors can add. However, the pricing just doesn’t work out for a 
mass-market product. Nobody would buy it, because its price 
wouldn’t justify its feature set. One could even accuse me of 
being lazy if I were to just stick with a domestic vendor and 
pass the higher cost on to the customers.

Being Involved   in the M anufacturing     Process

In the end, manufacturing in China is the best way to keep 
costs down, and to maintain quality, there is no substitute 
for going to China and getting directly involved. Almost every 
factory will “clean up” the day you come to visit, but with a 
sharp eye and the right questions, you can see through any 
quick veneers put in place. 

When I evaluated factories for Chumby, I always visited 
the quality control (QC) room. I expected to see rows of well-
maintained and well-worn binders with design documenta-
tion and QC standards, as well as golden samples, which are 
pre-production samples of a product. I’d demand to see the 
contents of a random binder and the golden sample associated 
with it, and verify that the employees knew what was going 
on in the binder. (Some factories do fill product binders with 

36  C h a pt  e r  1



random data.) I also considered hard investments in equip-
ment a good sign: the best manufacturers I visited all had a 
couple of rooms with sophisticated equipment for thermal, 
mechanical, and electrical limit testing, and of course, opera-
tors were in the room actually using the equipment. (I could 
definitely imagine a Chinese manufacturer buying a room of 
equipment just for show.)

But I suspect that toy manufacturers and food manufactur-
ers don’t fly technicians like me out to factories in China to 
oversee things on a regular basis. Contrast that with Apple, 
which regularly sends a cadre of engineers to work intense 
two-week (or longer) shifts in the factories (usually Foxconn, 
affectionately nicknamed “Mordor” by some at Apple). As a 
result, I bumped into many Apple engineers at the expat bars 
in Shenzhen. 

The fact that PCH China Solutions offered Western-style 
management and quality control on site in China was impor-
tant for us at Chumby. If we had a problem with a vendor, 
PCH sent someone to the factory right away to see what was 
going on—no phone tag, no FedEx filibuster. And factory 
owners in China tend to be very responsive when you show 
up at their doorstep.

Thus, Chumby’s approach to the quality conundrum was 
holistic. We started by having an engineer (me) at the factory 
almost on day one to survey the situation. It’s important to 
learn what the factory can and cannot do. I looked at what was 
being built on the line and what techniques were used. Then, 
when it came time to engineer the product, I tried to use the 
processes and techniques that were most comfortable for the 
factory. When I had to do something new (and any good, inno-
vative product will need to), I picked my battles and focused 
on them, because anything new would be a multiweek chal-
lenge to get right. This strategy applies to even the smallest 
details: if the factory shrink-wraps goods in plastic, and you 
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want to wrap your product in paper, then plan to focus heavily 
on developing the paper-wrapping process, because it’s quite 
possible that none of the line workers at your factory of choice 
have even seen a paper-wrapped product before.

Of course, when developing a new process for the chumby, 
I preferred to be in the factory, and I still do. There’s nothing 
like standing on the line and showing the workers who will 
be building your device how it should be made. For example, 
I personally trained the chumby assembly-line workers on 
how to attach a piece of copper tape to the LCD assembly to 
form a proper EMI shield. 

It’s difficult to describe the intricacies of how to fold tape 
across a complex piece of sheet metal to ensure it makes good 
electrical contact to the grounding surfaces without risking 
a short circuit to other components. Subtleties like the fact 
that the adhesive on one side is a poor insulator also require a 
basic understanding of physics that line workers simply don’t 
have. Worse yet, explaining these concepts requires technical 
words that your translator might not even know. 

In my case, even a good 3D drawing or photograph of the 
finished assembly couldn’t have gotten the whole concept 
across, because the stiffness of the tape required a particu-
lar motion to fold without tearing. Describing the process 
remotely, approving samples via photographs, and ultimately 
approving a unit delivered via FedEx might have taken a 
couple of weeks, but standing in front of a group of workers 
and demonstrating the process firsthand took only a few 
minutes. And despite the language barrier, I could tell from 
their facial expressions and body language whether they 
understood the importance of a particular step. Given those 
cues, I immediately reviewed processes that were ambiguous 
or difficult to master.

Typically, when you can demonstrate a process at this level 
of detail and intimacy, the workers will get it right within 
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hours, instead of weeks. This is part of the reason I spent so 
much time in China during the development of the chumby’s 
manufacturing process.

Everyone was involved in the chumby quality process. This photo shows 
CEO Steve Tomlin (far left) and Artistic Director Susan Kare (middle)  

at the sewing factory, working out the details of logo silkscreening. 

HomeGrown  Remote Testing

However, it wasn’t always possible for Chumby to send some-
one to China. I, for one, preferred not to live in China, so at 
Chumby, we relied a lot on PCH to watch the quality and make 
sure things went well, and they did a superb job.

Often, working long distance meant that new processes 
took weeks to phase in if I wasn’t there to tweak and approve 
on the spot, because every single tweak involved sending 
something almost round-trip through FedEx. After going 
through that process a few times, I learned to allocate two 
weeks per tweak, as opposed to the few hours it took when I 
was on the factory floor. 

Those sets of two weeks added up fast.
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Given the difficulty of overseeing operations in China from 
the United States, remote electronic monitoring of the products’ 
test results was essential. For the chumby, I developed a set of 
testers that programmed, personalized, booted, verified, and 
measured every device off the assembly line. All data from the 
testing process was recorded to a log, and at the end of the 
day, the log was transferred to a server in the United States. 

This data let me debug a plethora of problems on the floor. 
I could tell if an operator at a particular tester was having 
trouble with their barcode scanner. I also immediately knew 
if there was a yield problem that day, or if the throughput was 
slower than expected. It was very powerful to have this home-
grown audit capability in place, because the factory knew I 
was watching them. In fact, having such a capability in place 
can make relationships with the factory run better: the fac-
tory eats the cost of yield problems (at least initially), so they 
appreciate it when the design engineer can offer expedient 
advice and help before any problems get out of hand.

A pair of chumby test stations in the factory in China. There’s quite a story about 
the trouble we went through getting those laptops into China.
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F urther  Factory Testing

Once you’ve finished setting up the testing process, it can run 
autonomously at the factory. For example, at the chumby’s PCB 
factory, the first pass of final inspection was done manually—
one person went over every circuit board, and then with the 
help of a cardboard template, another operator ensured that 
no components were missing. The units then went on to auto-
mated testing.

Periodically, both PCH and the factory also performed 
Restriction of Hazardous Substances (RoHS) testing on chumby 
units to ensure that there was no contamination with a speci-
fied set of potentially harmful chemicals, including lead. RoHS 
is a hazardous chemical safety standard required in Europe  
but, ironically, not in the United States. Factories routinely 
do this test on all products, even those only shipping to the 
United States, because latent contamination on the line could 
prevent other products manufactured on the same line from 
shipping to Europe.

Even after all that testing, back in the United States, 
Chumby continued to sample units for QC purposes. To this 
end, we regularly ordered, characterized, and dissected devices 
to ensure that all the operating procedures were being followed.

Mistakes   Still  H appen

Despite such safeguards, some mistakes will be made on any 
product. Every product goes through a phase where bugs that 
weren’t caught by internal QA get pounded out. You have to 
rely on a top-notch customer service and support team, and 
you have to plan on being very agile and innovative during 
this phase to solve the problems and prevent them from ever 
happening again. 

When I was at Chumby, if I heard about a unit in the wild 
with hardware problems, I actually called the customer who 
reported it. I wanted to know what went wrong so I could fix 
the problem and make sure it never happened again, to anyone! 
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My biggest hope with the chumby, however, was to avoid 
what happened to Microsoft and the Xbox 360’s “red ring of 
death,” where consoles would experience a major hardware 
failure, stop working, and just display a red light around the 
power button, causing huge frustration for players. This prob-
lem only exhibited itself after the Xbox 360 had been out for 
years, after millions of units had been shipped. Situations like 
the red ring of death are a product engineer’s worst nightmare. 

So you see, getting the chumby (or any product) to the 
point where it can ship to consumers is just the beginning. 
The real challenge starts after. 

If you ever find yourself at this point in the manufacturing 
process, I wish you luck!

Closing Thoughts

The stories told here share some of my adventures—and 
failures—learning how to build products in volume. The next 
two chapters are more reflective and less narrative. The next 
chapter takes us on a virtual tour of three factories to see what 
we can learn from them, and Chapter 3 attempts to summa-
rize all the lessons I’ve learned about manufacturing so far.
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2.  inside three very  
     different factories
It’s hard to understand how a computer works without opening 
it and looking around inside. Likewise, it’s hard to understand 
how products are made without going into a factory and tour-
ing the line. Although we often think of manufacturing as the 
necessary but boring step after innovation, in reality, the two 
are tightly coupled. An inventor thinks about a product once; 
a factory thinks about the same product day in and day out, 
sometimes for years on end. 

The importance of factories as an innovation node is only 
growing in today’s connected global economy. The reality is 
that there is no “Apple factory” or “Nike factory.” Rather, there 
is a series of facilities that are domain experts in processes 
(such as PCB fabrication or zipper manufacturing) that are 



curated by the familiar brands. Thus, it’s not uncommon to see 
two competitors’ products running side by side down similar 
lines in a single facility. This concentration of domain-specific 
expertise means that the best place to learn how to make an 
aspect of your product better is often the same place that 
makes a similar aspect in everybody else’s products. 

Some of the greatest insights I’ve had into improving a 
product have come from observing technicians at work on a 
line and seeing the clever optimization tricks they’ve developed 
after doing the same thing over and over for so long. 

This chapter takes you on a tour of three factories that 
make everyday things: PCBs (in particular, the ones used in 
the Arduino), USB memory sticks, and zippers. By peeling back 
the curtain, you’ll get some insight into the design trade-offs 
behind the products, and how they can be made better. In the 
PCB factory, I discovered the secret of how they print a high-
resolution map of Italy on the back of every Arduino; in the 
USB memory stick factory, I witnessed a strange marriage 
of high- and low-tech manufacturing techniques; and in the 
zipper factory, I found out how even the humblest of products 
can bear valuable lessons for product designers. 

Wh ere Arduinos Are Born

It was July 2012, and it had been about six months since my 
previous startup, Chumby, ceased operations. I had decided to 
take a year off to figure things out and cross a few items off the 
bucket list, one of which was a trip to Italy. My girlfriend had 
the bright idea of reaching out to the Arduino team to see if I 
could visit their factory in Scarmagno (this was years before 
the Arduino/Genuino split) as part of our itinerary. Members 
of Officine Arduino (particularly managing director Davide 
Gomba) kindly took time out of their busy schedules to show 

44  C h a pt  e r  2



me around their factory. They patiently waited as I expressed 
my inner shutterbug and general love for all things hardware, 
and I definitely came away with a lot of great photos.

A small town in northern Italy, Scarmagno is about an 
hour and a half west of Milan by car, near the Olivetti factories 
on the outskirts of Torino. The town handles all the circuit 
board fabrication, board stuffing, and distribution for officially 
branded Arduinos. I was really excited to see the factories, 
and the highlight of my tour was seeing System Elettronica, 
the PCB factory that made the Arduino PCBs.

One charming aspect of System Elettronica is that the 
owner painted the factory green, white, and red to match the 
colors of the Italian flag. On the factory floor, I saw some of 
that spirit in the red and green posts that ran the length of 
the facility. 

A wide view of the factory floor at System Elettronica in August 2012

But I soon stopped paying much attention to the décor, as 
that factory floor was also where I got to follow a fresh batch of 
Arduino Leonardos through the entire manufacturing process. 
Here’s how those boards were made. 
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Starting with a Sheet of Copper

Arduino Leonardo boards start as huge sheets of virgin copper-
clad FR-4, a material made of fiberglass and epoxy that most 
PCBs use for a substrate, an insulating and structural layer 
between the copper layers. The sheets were 1.6mm thick (the 
most common thickness for a PCB, which corresponds to 1/16 
inch), probably a meter wide, and about a meter and a half long.

A stack of copper sheets waiting to become Arduino boards

The first step in processing PCBs is to drill all the holes—
pads, vias (the small holes that connect different layers of the 
PCB), mounting holes, plated slots, and so forth. When a PCB 
is manufactured, the holes are drilled before patterning, the 
stage where a masking chemical is photographically defined 
on the sheet everywhere the final boards need to have copper, 
including locations of traces, solder pads, and so on. Some of 
the drilled holes are used to align the masks that pattern the 
traces later in the process. Drilling is also a dirty and messy 
process that could damage circuit patterns if they were in 
place beforehand.
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The CNC drilling head used to drill the Arduino boards

The blank copper panels were stacked three high, and a 
CNC drill took a single pass for all three, allowing it to drill 
three substrates at a time.

The drill rack used by the CNC drilling machine.  
If you’ve ever had to create NC-drill files, this is that “drill rack.”

Every hole in the Arduino board was mechanically drilled, 
including vias. The same is true of any PCB with through-holes, 
which is why the via count is such an important parameter 
in calculating the cost of a PCB. 
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Note that the particular drill I saw at System Elettronica 
was relatively small. I’ve seen massive drill decks in China 
that gang (mechanically attach) four or six drill heads together 
in a truck-size machine, processing dozens of panels at the 
same time as opposed to the three panels this drill could 
handle. The reasoning behind this approach is that the precise, 
robotic positioning assembly is the expensive part of a drilling 
machine. The drill itself is cheap—just a spinning motor to 
drive the bit. So, one way to increase throughput is to gang 
several drills together on one large assembly and move them 
in concert. Each individual drill still goes through its own 
stack of panels, but for the price of one X-Y positioner, you 
get four to six times the throughput as the drill I saw on my 
trip to Italy. Those bigger machines drill so fast and hard that 
the ground shakes with every via drilled, even from several 
meters away.

Once the panels are drilled, cleaned, and deburred, they 
are ready for the next step in the manufacturing process.

A stack of finished, drilled panels of Arduino Leonardo boards 
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Applying the PCB Pattern to the Copper

The next step is to apply a photoresist, a light-sensitive chemi-
cal, to the panel and expose a pattern. At System Elettronica, 
this process used a light box and a high-contrast film. I’ve also 
seen direct laser imaging—in the form of a raster-scanning 
laser—used to apply a pattern to a PCB. Direct laser scanners 
are more common in quick-turn prototype houses, and film 
imaging is more common in mass-production houses.

Before and after: the right panel shows photoresist prior to exposure,  
and the left panel after.

A PCB being mounted into a light box that will expose its unprocessed backside film
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After the pattern is applied, each panel of boards is sent 
into a machine to be developed. In this case, the same machine 
is used to develop both the photoresist and the soldermask.

The machine that develops the photoresist

This photo of a panel with developed photoresist is  
one of my favorite photos from the System Elettronica factory.  
Also, something about “Codice: Leonardo” just sounds cool.
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Etching the PCBs

After photo processing and development, the panels go through 
a series of chemical baths that etch and plate the copper.

The panels are swished gently back and forth in a chemi-
cal bath to expedite the etching process. The movement also 
circulates used etchant away from the panels, ensuring a 
more uniform etch rate regardless of the amount of copper to 
be removed. Moving the panels through these chemical baths 
was fully automated at Scarmagno. Automation is necessary 
because the panels must be treated with a series of caustic 
chemical baths with minimal exposure to oxygen. Oxygen can 
spoil a panel in a matter of seconds, so the transfer between 
the baths needs to be fast, and the amount of time a panel 
spends in a bath must be consistent. The baths also contain 
chemicals harmful to humans, so it’s much safer for a robot 
to do this work.

A machine that moves panels around in etchant

Once the panels are processed in this series of solutions, a 
dull, white plating (which I’m guessing is nickel or tin) develops 
on all the surfaces of the panel not treated with photoresist, 
including the previously unplated through-hole vias and pads.
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Panels of Arduino Leonardo boards after going through a series of chemical baths

At this point, the resist and unplated copper are stripped 
off, leaving just the raw FR-4 and the plated copper. The final 
step of processing produces a bright copper finish. 

A panel etched of unwanted copper
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PCB panels with bright, shiny copper. This photo doesn’t show an Arduino panel, 
as those weren’t going through the machine when I photographed it.

Applying Soldermask and Silkscreen

Once the copper is polished, the panels are ready for the solder-
mask (a protective, lacquer-like layer that insulates the copper 
traces below and prevents solder bridging above) and silkscreen 
(the ink used to label components, draw logos, and so on). 
These are applied in a process very similar to that of the trace 
patterns, using a photomask and developer/stripper machine.

A panel of Arduino boards with both soldermask and silkscreen developed
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In the case of Arduinos, the silkscreen is actually a second 
layer of soldermask. A very specific formulation of dry-film 
white soldermask was procured for the Arduino team to create 
a sharp, good-looking layer that resolved the intricate artwork 
you see on Arduino boards—particularly the map of Italy on 
the backside. Other techniques I’ve seen for producing silk-
screen layers include high-resolution inkjet printing, which is 
better suited for quick-turn board houses, and of course, the 
namesake squeegee-and-paint silkscreen process. 

Testing and Finishing the Boards

After all that chemical processing, the panels receive a protec-
tive plating of solder from a hot-air solder leveling machine. 

With the solder plating in place, every board is 100 percent 
tested. Every trace has its continuity and resistance measured 
with a pair of flying probes. The process I saw is called flying 
head testing (also referred to as flying probe testing), and in that 
sort of setup, several pairs of arms with needlelike probes test 
continuity between pairs of traces in a swift tapping motion. 
Considering all the traces on an Arduino Leonardo, that’s a 
lot of probing! Fortunately the robot’s arms move like a blur, 
as it can probe hundreds of points per minute.

Note	 An alternative to flying head testing is clamshell testing, 

where a set of pogo pins is put into a fixture that can test the 

entire board with a single mechanical operation. However, 

clamshell fixtures are very labor-intensive to assemble and 

maintain, and require physical rewiring every time the Gerber 

files describing the PCB images are updated. So, in lower 

volumes, flying probe testing is more cost-effective and flex-

ible than clamshell testing.
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A stack of near-finished PCB panels,  
ready for a final step of routing out the individual boards

This particular facility only created the panels; a different 
factory actually populated the components. In situations like 
that, before the panels can be sent to the next factory, the 
individual PCBs need to be routed so they’ll fit inside surface 
mount technology (SMT) machines to have the components 
placed. The panels are once again stacked up and batch-
processed through a machine that uses a router bit to cut and 
release the boards. After that, the boards are finally ready to 
ship to the SMT facility.

Several Arduino panels, stacked for routing
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Smaller 2×6 panels make SMT processing more efficient.

A veritable stack of about 25,000 bare Arduino PCBs,  
ready to leave the PCB factory. From there, they were stuffed,  

shipped, and sold to makers around the world!

I’m glad I made the side trip to visit the Arduino PCB fac-
tory. I’ve visited several PCB factories, and every one has a 
different character and its own set of tricks to improve yield, as 
well as unique limitations that designers need to compensate 
for. It was also interesting to see the little trick about using an 
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extra layer of soldermask instead of silkscreen for achieving 
high cosmetic quality. While the resolution of a silkscreen is 
limited by the mesh of the silk barrier to hold the paint, sol-
dermask is limited by the quality of the optics and chemical 
developing, giving over an order of magnitude improvement in 
resolution and ultimately a higher perceived quality. Normally 
the lower quality of silkscreen is acceptable because end users 
don’t see the circuit boards inside computers, but for Arduino, 
the end product is the circuit board.

Wh ere USB Memory Sticks Are Born

Several months after my tour of the Arduino factory, I had the 
good fortune of being a keynote speaker at Linux Conference 
Australia (LCA) 2013. In my talk, “Linux in the Flesh: 
Adventures Embedding Linux in Hardware,” I discussed how 
Linux is in all kinds of devices we see every day. This story 
isn’t about Linux, but it does connect me and, tangentially, 
LCA to a factory. 

One of the tchotchkes I received from the LCA organizers 
was a little USB memory stick with Tux the penguin, the Linux 
mascot, on the outside. When I saw the device, I thought it 
was a neat coincidence that about a week before the confer-
ence, I had been in a factory that manufactured USB memory 
sticks exactly like it. I saw the USB stick board assembly 
process from start to finish, and it surprisingly involved a lot 
less automation than the Arduino manufacturing process did. 

The Beginning of a USB Stick 

USB sticks start life as bare flash memory chips. Prior to 
being mounted on PCBs, these chips are screened for memory 
capacity and functionality.
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A workstation where flash memory chips are screened.  
The metal rectangle on the left with the circular cutaway is the probe card.

At a workstation in this factory, stacks of bare-die flash 
chips awaited testing and binning with a probe card, which 
has tiny, very accurately positioned pins used to touch down 
on pads only a little bit wider than a human hair on a silicon 
wafer’s surface. (I love how the worker at this particular 
station used rubber bands to hold an analog current meter to 
the probe card.) 

The probe card, up close
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Looking through the microscope on the microprobing station. Notice the needles 
touching the square pads at the edge of the flash chip’s surface. Each pad is 

perhaps 100 microns on a side—a human hair is about 70 microns in diameter.

Interestingly, the chips I saw were absolutely not tested 
in a clean-room environment. Workers handled chips with 
tweezers and hand suction vises and mounted the probe cards 
into their jigs by hand.

Hand-Placing Chips on a PCB

Once the chips were screened for functionality, they were placed 
by hand onto the USB stick PCBs. This is not an unusual 
practice; every value-oriented wire-bonding facility I’ve visited 
relies on the manual placement of bare die. 
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A controller IC being placed on a panel of USB-stick PCBs.  
The tiny bare dies are on the right, sitting in a waffle pack.

A zoomed-out view of the die-placing workstation

The lady I watched placing the bare die was using a chop-
stick-like tool made of hand-cut bamboo. I still haven’t figured 
out exactly how the process works, but my best guess is that the 
bamboo sticks have just the right surface energy to adhere to 
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the silicon die, such that silicon sticks to the tip of the bamboo 
rod. A dot of glue is preapplied to the bare boards, so when 
the operator touches the die down onto the glue, the surface 
tension of the glue pulls the die off of the bamboo stick.

It’s trippy to think that the chips inside my USB stick were 
handled using modified chopsticks.

Bonding the Chips to the PCB

Once the chips were placed on the PCB, they were wire bonded 
to the board with an automated bonding machine, which uses 
computer-assisted image recognition to find the location of 
the bond pads (this is part of the reason the factories can get 
away with manual die placement). Wire bonding is the pro-
cess that connects an integrated circuit to its packaging, and 
the automated bonding machine connected wires to the IC at 
an insane speed, rotating the circuit board all the while. As I 
watched this process, the operator had to pull off and replace 
a misbonded wire by hand and then refeed the wire into the 
machine. Given that these wires are thinner than a strand of 
hair and that the bonding pads on the packaging and the IC 
are microscopic, that was no mean feat of manual dexterity.

A Close Look at the USB Stick Boards

Just as the Arduino factory used panels containing multiple 
Leonardo boards, the USB memory stick factory used panels 
of eight USB sticks each. Each stick in the panel consisted of 
a flash memory chip and a controller IC that handled the 
bridging between USB and raw flash, a nontrivial task that 
includes managing bad block maps and error correction, among 
other things. The controller was probably an 8051-class CPU 
running at a few dozen MHz.
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The partially bonded but fully die-mounted PCB that the  
factory owner gave me as a memento from my visit.  

Some of the wire bonds were crushed in transit.
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Interestingly, the entire USB stick assembly is flexible prior to encapsulation.  

The die marking from the flash chip. Apparently, it’s made by Intel.
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A die shot of the controller chip that went inside the USB sticks

Once the panels were bonded and tested, they were over-
molded with epoxy and then cut into individual pieces, ready 
for sale. 

But that’s enough about electronics manufacturing; next, 
I want to show you a different kind of factory floor. 

A Tale of T wo Zippers

My friend Chris “Akiba” Wang has a similar background to 
mine, except in his younger years he was way hipper: he was 
a dancer for acts like LL Cool J and Run DMC in the ’90s. 
After going through a phase working for big semiconduc-
tor companies, he eventually quit and followed his passion 
to design and manufacture his own hardware projects. An 
expert in short-range, low-power wireless networking (he’s 
co-authored a book on Bluetooth low energy and sells an 
Arduino + 802.15.4 variant called the “Freakduino”), he now 
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consults for organizations like the United Nations and Keio 
University, runs FreakLabs, and collaborates with various 
dance acts, such as the Wrecking Crew, to provide unique and 
compelling lighting solutions for stage shows. 

I had the good fortune of introducing Akiba to the greater 
Shenzhen area on a trip with MIT Media Lab students in 
2013—the same trip where we toured the USB memory stick 
factory. Since then, he’s been exploring deeper and deeper into 
the area. As his work spans the disciplines of performance 
art, wearables, and electronics, his network of factories is 
quite different from mine, so I always relish the opportunity 
to learn more about his world.

In January 2015, Akiba took me to visit his friend’s zipper 
factory. I was very excited for the tour: no matter how humble 
the product, I always learn something new by visiting its fac-
tory. This factory was very different from both the Arduino and 
the USB stick facilities. There were far fewer employees, and 
it was a highly automated, vertically integrated manufacturer. 
To give you an idea of what that means, this facility turned 
metal ingots, sawdust, and rice into zipper parts.

Approximately 1 ton of ingots,  
composed of 93 percent zinc and 7 percent aluminum alloy
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Compressed sawdust pellets, used to fuel the ingot smelter

Rice, used to feed the workers
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Finished zipper puller and slider assemblies

Let’s look at one side of how that process actually works.

A Fully Automated Process

Between the three input materials and the output product 
was a fully automated die-casting line to create the zipper 
pullers and sliders, a set of tumblers and vibrating pots (or, 
as I like to call them, “vibrapots”) to release and polish the 
zippers, and a set of machines to deburr and join each puller 
to its slider. I think I counted fewer than a dozen employees 
in the facility, and I’m guessing their capacity well exceeds a 
million zippers a month.

I was mesmerized by the vibrapots* that put the zippers 
together. There were two vibrapots: one with pullers and one 
with sliders. Both sliders and pullers were deposited onto a 
moving rail, and as I watched these miracles at work, it looked 
as if the sliders and pullers were lining themselves up in the 
right orientation by magic. Each fell into its rail, and at the 
end of the line, they were pressed together into a familiar zip-
per form, all in a single, fully automated machine.

* I honestly don’t what they’re called, so yes, I’m going to keep calling them that.
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When I put my hand in the pot, I found there was no 
stirrer to cause the motion; I just felt a strong vibration. I 
relaxed my hand, and found it started to move along with all 
the other items in the pot. The entire pot was vibrating in a 
biased fashion, such that the items inside tended to move in 
a circular motion. This pushed the pullers and sliders onto 
the set of rails, which were shaped to take advantage of asym-
metries in the objects to allow only the pieces that jumped on 
the rail in the correct orientation to continue to the next stage.

A Semiautomated Process

Despite the high level of automation in this factory, many of 
the workers I saw were performing one operation. They fed the 
pullers for a different kind of zipper into a device connected 
to another vibrapot containing sliders, while the device put 
the sliders and pullers together. 

Of course, I asked, “Why do some zippers have fully auto-
mated assembly processes, whereas others are semiautomatic?” 

The answer, it turns out, is very subtle, and it boils down 
to shape.

Note the difference in these two pullers, indicated by the arrows. 
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One tiny tab, barely visible, was the difference between full 
automation and needing a human to join millions of sliders and 
pullers together. To understand why, let’s review one critical 
step in the vibrapot operation. A worker kindly paused the 
vibrapot responsible for sorting the pullers into the correct 
orientation for the fully automatic process so I could take a 
photo of the key step.

Pullers coming through the vibrapot

When the pullers came around the rail, their orientation 
was random: some faced right, some left. But the joining opera-
tion must only insert the slider into the smaller of the two holes. 
That tiny tab allowed gravity to cause all the pullers to hang 
in the same direction as they fell into a rail toward the left.

The semiautomated zipper design doesn’t have this tab; 
as a result, the design is too symmetric for a vibrapot to align 
the puller. I asked the factory owner if adding the tiny tab 
would save this labor, and he said absolutely.

At this point, it seemed blindingly obvious to me that all 
zippers should have this tiny tab, but the zipper’s designer 
wouldn’t have it. Even though such a tab is very small, con-
sumers can feel the subtle bumps, and some perceive it as a 

inside three very different factories  69



defect in the design. As a result, the designer insisted upon 
a perfectly smooth tab, which accordingly had no feature to 
easily and reliably allow for automatic orientation.

The Irony of Scarcity and Demand

I’d like to imagine that most people, after watching a person 
join pullers to sliders for a couple of minutes, would be quite 
content to suffer a tiny bump on the tip of their zipper to 
save another human the fate of manually aligning pullers 
into sliders for eight hours a day. Alternatively, I suppose an 
engineer could spend countless hours trying to design a more 
complex method for aligning the pullers and sliders, but there 
are two problems with that: 

•	 The zipper’s customer probably wouldn’t pay for that effort. 

•	 It’s probably net cheaper to pay unskilled labor to manu-
ally perform the sorting. 

This zipper factory owner had already automated every-
thing else in the facility, so I figure they’ve thought long and 
hard about this problem, too. My guess is that robots are 
expensive to build and maintain; people are self-replicating 
and largely self-maintaining. Remember that third input to 
the factory—rice? Any robot’s spare parts have to be cheaper 
than rice for the robot to earn a place on this factory’s floor.

In reality, however, it’s too much effort to explain this 
concept to end customers; in fact, quite the opposite happens 
in the market. Putting the smooth zippers together involves 
extra labor, so the zippers cost more; therefore, they tend to 
end up in high-end products. This further enforces the notion 
that really smooth zippers with no tiny tab on them must be 
the result of quality control and attention to detail.

My world is full of small frustrations like this. For example, 
most customers perceive plastics with a mirror finish to be 
of a higher quality than those with a satin finish. There is 
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no functional difference between the two plastics’ structural 
performance, but making something with a mirror finish takes 
a lot more effort. The injection-molding tools must be pains-
takingly and meticulously polished, and at every step in the 
factory, workers must wear white gloves. Mountains of plastic 
are scrapped for hairline defects, and extra films of plastic are 
placed over mirror surfaces to protect them during shipping.

For all that effort, for all that waste, what’s the first thing 
users do? They put their dirty fingerprints all over the mirror 
finish. Within a minute of a product coming out of the box, 
all that effort is undone. Or worse yet, the user leaves the 
protective film on, resulting in a net worse cosmetic effect 
than a satin finish. 

Contrast this to satin-finished plastic. Satin finishes don’t 
require protective films, are easier for workers and users to 
handle, last longer, and have much better yields. In the user’s 
hands, they hide small scratches, fingerprints, and bits of dust. 
Arguably, the satin finish offers a better long-term customer 
experience than the mirror finish.

But that mirror finish sure does look pretty in photographs 
and showroom displays!
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3.  the factory f loor
The previous two chapters were filled with stories of my per-
sonal experiences learning, making mistakes, and growing 
with the manufacturing ecosystem in the greater Shenzhen 
area. In January 2013, after I’d learned the ropes, the MIT 
Media Lab asked me to start mentoring graduate students on 
supply chain and manufacturing, and I took them on a tour 
of Shenzhen (the same tour where I met Akiba and visited 
the USB memory stick factory). This chapter is an attempt 
to distill everything I taught over a course of weeks into a 
couple dozen pages. 



The challenges and trade-offs in low-volume manufactur-
ing are different from those of well-funded corporate exercises 
that prototype at the scale of thousands of units. I learned this 
over time, but not everyone has six years to bumble through 
all the newbie mistakes. If you’re already in a fast-moving 
tech startup, you probably don’t have the luxury of doing any 
exploration at all. The lessons in this chapter are applicable 
to anyone looking to bootstrap a hardware product from an 
initial prototype to moderate volumes (perhaps hundreds of 
thousands of units). Treat this summary as a general guideline, 
not a detailed roadmap. The devil is always in the details, and 
one fun part of making new, innovative hardware products is 
there’s no end of novel and interesting challenges to be solved. 

How to M ake a Bill of M ateri als

Most makers trying to scale up their output quickly realize 
the only practical path forward is to outsource production. If 
only outsourcing were as easy as schematic + cash = product!

Whether you work with the assembly shop down the street 
or send your work to China, a clear and complete bill of mate-
rials (BOM) is the first step to outsourcing production. Every 
single assumption you make about your circuit board, down to 
the color of the soldermask, has to be spelled out unambigu-
ously for a third party to faithfully reproduce your design. 
Missing or incomplete documentation is the leading cause of 
production delays, defects, and cost overruns. 

A Simple BOM for a Bicycle Safety Light

For a case study, suppose you ran a successful Kickstarter 
campaign for a bicycle safety light. It contains a circuit that 
uses a 555 timer to flash a small array of LEDs. After a great 
marketing campaign, several hundred orders need to be filled 
in a few months’ time.
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At first, a BOM for the bicycle light, as automatically gen-
erated by a design tool such as Altium, might look like this:

Quantity Comment Designator

1 0.1µF C1

1 10µF C2

3 white LED D1, D2, D3

1 2N3904 Q1

1 100 R1

2 20k R2, R4

1 1k R3

1 555 timer U1

A very basic bicycle safety light BOM

This BOM, along with a schematic, is likely sufficient 
for any graduate of a US electrical engineering program to 
reproduce the prototype, but it’s far from adequate for a manu-
facturing cost quotation. This version of the BOM addresses 
only electronics. A complete BOM for an LED flasher also 
needs to include the PCB, battery, plastic case pieces, lens, 
screws, any labeling (like a serial number), a manual, and 
packaging (plastic bag plus cardboard box, for example). It 
may also need a master carton to ship multiple LED flashers 
together, as a single boxed LED flasher is too small to ship 
on its own. Although cardboard boxes are cheap, they aren’t 
free, and if they aren’t ordered on time, inventory will sit on 
the dock until a master carton is delivered for final pack-out 
prior to shipment.

The following key information is also missing:

•	 Approved manufacturer for each component

•	 Tolerance, material composition, and voltage specification 
for passive components

•	 Package type information for all parts

•	 Extended part numbers specific to each manufacturer

Let’s look at each of the missing items in more detail.
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Approved Manufacturers

A proper factory will require you to supply an approved ven-
dor list (AVL) specifying the allowed manufacturer(s) for 
every part on a PCB. A manufacturer is not a distributor but 
rather the company that actually makes a part. A capacitor, 
for example, could be made by TDK, Murata, Taiyo Yuden, 
AVX, Panasonic, Samsung, and so on. I’m still surprised at 
how many BOMs I’ve reviewed list DigiKey, Mouser, Avnet, 
or some other distributor as the manufacturer for a part.

It may seem silly to trifle over who makes a capacitor, but 
there are definitely situations where the maker of a component 
matters—even for the humble capacitor. For example, blindly 
substituting the filter capacitors on a switching regulator, even 
if the substitute has the same rated capacitance and voltage, 
can lead to unstable operation and even boards catching fire.

Of course, some parts in a design can be truly insensitive 
to the manufacturer, in which case I would mark “any/open” 
on the BOM for the AVL. (This is particularly true for parts 
like pull-up resistors.) This invites the factory to suggest their 
preferred supplier on your behalf.

Tolerance, Composition, and Voltage Specification

For passive components marked “any/open,” you should always 
specify the following key parameters to ensure the right part 
is purchased:

•	 For resistors, specify at minimum the tolerance and watt-
age. A 1 kΩ, 1 percent tolerance, 1/4 W carbon resistor is 
a very different beast from a 1 kΩ, 5 percent tolerance, 
1 W wire-wound resistor!

•	 For capacitors, specify at minimum the tolerance, voltage 
rating, and dielectric type. For special applications, also 
specify certain parameters such as ESR or ripple current 
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tolerance. A 10 µF, electrolytic, 10 percent tolerance capaci-
tor rated for 50V has vastly different performance at high 
frequencies compared to a 10 µF, ceramic, 20 percent toler-
ance capacitor rated for 16V. 

Inductors are sufficiently specialized that I don’t recom-
mend ever labeling them as “any/open” in your BOM. For 
power inductors, the basic parameters to specify are core 
composition, DC resistance, saturation, temperature rise, and 
current, but unlike resistors and capacitors, inductors have no 
standard for casing. Furthermore, important parameters such 
as shielding and potting, which can have material impacts on 
a circuit’s performance, are often implicit in a part number; 
hence, it’s best to fully specify the inductor. The same goes 
for RF inductors.

Electronic Component Form Factor

Always fully specify the form factor, or package type, of a com-
ponent. Poorly specified or underspecified package parameters 
can lead to assembly errors. Beyond basic parameters like the 
Electronic Industries Alliance (EIA) or JEDEC Solid State 
Technology Association package code (that is, 0402, 0805, 
TSSOP, and so on), consider the following package informa-
tion as you create your BOM:

Surface mount packages   The height of a component 
can vary, particularly for packages larger than 1206 or for 
inductors. Pay attention to whether the board is slotting 
into a tight case.

Through-hole packages  Always specify lead pitch and 
component height.

For ICs in general, try to also specify the common name 
that corresponds to the package, not just the manufacturer’s 
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internal code. For example, a Texas Instruments “DW” type 
package code corresponds to an SOIC package. This consis-
tency check helps guard against errors.

Extended Part Numbers

Designers often think about components in abbreviated part 
numbers. A great example of this is the 7404. The venerable 
7404 is a hex inverter and has been in service for decades. 
Because of its ubiquity, 7404 can be used as a generic term 
for an inverter among design engineers. 

When going to production, however, you must specify 
information like the package type, manufacturer, and logic 
family. A complete part number for a particular hex inverter 
might be 74VHCT04AMTC, which specifies an inverter made 
by Fairchild Semiconductor, from the VHCT series, in a TSSOP 
package, shipped in tubes. The extra characters are very 
important, because small variations can cause big problems, 
such as quoting and ordering the wrong packaged device and 
being stuck with a reel of unusable parts or subtle reliability 
problems. 

For example, on a robotics controller I designed (codenamed 
Kovan), I encountered a problem due to a mistaken substitution 
of VHC in the part number for a component in the VHCT logic 
family. Using the VHC part switched the input thresholds of 
the inverter from TTL to CMOS logic-compatible, and some 
units had an asymmetric response to input signals as a result. 
Fortunately, I caught this problem before production ramped. 
The correct part was used on all other units, and I avoided a 
whole lot of potential rework—or worse, returns from upset 
customers. Luckily, the only cost of the mistake was reworking 
the few prototypes I was validating before production.

Here’s another example of how missing a few characters in 
a part number can cost thousands of dollars. A fully specified 
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part number for the LM3670 switching regulator might be 
LM3670MFX-3.3/NOPB. If /NOPB is omitted, the part num-
ber is still valid and orderable—but that version uses leaded 
solder. This could be disastrous for products exporting to a 
region that requires RoHS compliance (meaning lead-free, 
among other things), like the European Union. 

The X in the part number is another, more subtle issue. 
Part numbers with an X come in reels of 3,000 pieces, and 
those lacking an X come in reels of 1,000 pieces. While many 
factories will question an /NOPB omission since they typically 
assemble RoHS documentation as they purchase parts, they 
rarely flag the reel quantity as an issue. 

But you should care about the reel quantity. If you plan to 
build only 1,000 products, including the X in the part number 
means you’ll have 2,000 extra LM3670s. And yes, you’re on 
the hook to pay for the excess, since your BOM specified that 
part number. There are many valid reasons for ordering excess 
parts, so factories will rarely question a decision like that. 

On the other hand, parts ordered in lots of 1,000 units 
are a bit more expensive per unit than those ordered in lots 
of 3,000. So, if you leave out the X as your volume increases, 
you’ll end up paying more for the part than you have to. Either 
way, the factory will quote your BOM exactly as specified, and 
if your quantity specifiers are incorrect, you could be leaving 
money on the table—or worse, losing money.

The bottom line? Every digit and character counts, and 
lack of attention to detail can cost real money!

The Bicycle Safety Light BOM Revisited

With those four points in mind, consider how a proper, fully 
specified BOM for the bicycle safety light example might look.
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There’s a big difference between a BOM that any engineer 
could use to produce a prototype, like the first one I showed for 
the bicycle safety light, and a BOM like this, which any factory 
could use to mass-produce a product. Notice the MOQ (mini-
mum order quantity) and Lead Time columns in particular. 
These columns are irrelevant when you’re building low-volume 
prototypes, as you’d typically buy parts from distributors that 
have few MOQ restrictions and maintain stock for next-day 
deliveries. When scaling into production, however, you save 
a lot of money by cutting the distributor overhead and buying 
through wholesale channels. In wholesale channels, MOQs 
and lead times matter.

The good news is that the factory will fill in the MOQ and 
lead time as part of the quotation process. But you’ll find it 
helpful to track these parameters from the beginning. If the 
MOQ of a particular component is very high, the factory may 
have to buy massive numbers of excess parts, which increases 
the effective price of the project. If the lead time of a part is 
very long, you may want to consider redesigning for a part with 
a shorter lead time. Using parts with shorter lead times not 
only saves time but also improves cash flow: no one wants to 
tie up cash on long-lead components four months in advance 
of sales revenue.

This BOM also includes several nonelectronic items—like 
the box, a bar code label, and so on—which wouldn’t be on the 
engineering prototype’s BOM. These miscellaneous bits are 
easy to forget, but a missing user manual in an initial BOM 
is often not discovered until the final sample is opened for 
approval, leading to a last-minute scramble to get the manual 
into the final product. Many products have been delayed 
simply because a user manual or box art wasn’t completed and 
approved in time, and it sucks to have a hundred thousand 
dollars’ worth of inventory idling in a warehouse for want of 
a slip of paper.
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Beyond a proper BOM, providing the factory with golden 
samples of your product along with your CAD files is another 
best practice. These working prototypes enable the factory 
to make smarter decisions about any ambiguities in your 
submitted BOM. Hand-soldering one more unit just for the 
factory may seem annoying, but in my opinion, a few hours 
of soldering beats a week of trading emails with the factory.

Note	 When you’re building a business model, parts and packag-

ing still aren’t the only costs to consider. Even this detailed 

BOM doesn’t list factory margin, labor for assembly, pack-

out, shipping, duties, and so on. I discuss these “soft costs” 

in “Picking (and Maintaining) a Partner” on page 107. 

Planning for and Coping with Change

Of course, even if your design is perfect and your BOM is 
ideal, your design may still have to change if vendors end-
of-life (EOL), or stop making, components you selected. And 
let’s face it: there’s always a chance your design assumptions 
won’t survive contact with real consumers, too. 

Before crossing the threshold into production, formalize the 
process for changing a design with the factory. It’s best prac-
tice to use written, formal engineering change orders (ECO) to 
update the factory on any changes after the initial quotation. 
At minimum, here’s what an ECO template should include: 

•	 The details of each changed part, and a brief explanation 
of why the change is needed

•	 A unique revision number for conveniently referencing the 
change down the road 

•	 A method to record the factory’s receipt of the ECO 
paperwork 
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Be thorough with ECOs, rather than relying on casual 
emails, or the buyers at your factory may buy the wrong part. 
Worse yet, the factory might install the wrong part, and entire 
lots of your product will need to be scrapped or reworked. Even 
after troubleshooting a problem with the factory engineers, I 
still write up a formal ECO and submit it to the production 
staff to formalize the findings. I hate paperwork as much as 
the next engineer, but in production, one small mistake can 
cost tens of thousands of dollars, and that thought keeps me 
disciplined on ECOs.

On the next page is an actual ECO I issued that ended up 
saving me time and money.

Note the date on this ECO: February 27, 2014. This ECO 
was issued right before the Chinese New Year, when the fac-
tories go on holiday for a couple of weeks. There is significant 
turnover of unskilled labor inside factories after the holidays, 
and thus there’s a lot of opportunity for work orders to get 
lost and forgotten. Worried that the ECO would be missed, I 
consulted with the managers after the factory resumed pro-
duction to ensure the ECO wasn’t forgotten. They assured me 
it was applied, but I still felt a vague paranoia, so I asked for 
photos of the circuit board to confirm. Sure enough, the first 
production batch was missing the change in my ECO. 

Thanks to the detailed ECO, the factory readily admitted 
its error, repaired the entire production run, and paid for the 
reworking. But if I’d sent the change order in a quick email 
without referencing specific batches or work orders, there 
could have been sufficient ambiguity for the factory to get out 
of the rework charges. The factory could have argued that it 
thought I meant to apply the change to a future production 
run, or it could simply deny receiving a confirmed order, as 
emails are a fairly casual form of communication. Either way, 
a few minutes of documentation saved days of negotiation and 
hundreds of dollars in rework fees.
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Example of an actual ECO used in production.  
Thanks to the formal documentation process, a production  

mix-up related to this ECO was resolved in my favor.

Process Optimization:  

Design for M a nufacturing

While you’re designing your final product and putting together 
a BOM, considering yield, the number of good units that come 
out of the manufacturing process, is also important. Yield is 
a boring subject for many engineers, but for entrepreneurs, 
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success or failure will be determined in part by whether they 
achieve a reasonable yield. Fortunately, you can help your 
yield by designing with it in mind.

Why DFM?

Unlike software, every copy of a physical good has slight imper-
fections. Sometimes the imperfections cancel out; sometimes, 
they gang up and degrade performance. As production volume 
ramps, a fraction of the product always ends up nonsalable. 
In a robust design, the failing fraction may be so small that 
functional tests can be simplified, leading to further cost reduc-
tions. In contrast, designs sensitive to component tolerances 
require extensive testing and will suffer heavy yield losses. 
Reworking defective units incurs extra labor and parts charges, 
ultimately eroding profits.

Thus, redesigning to improve robustness in the face of nor-
mal manufacturing tolerances is a major challenge of moving 
from the engineering bench to mass production. This process 
is called design for manufacturing (DFM).

#
 o

f u
ni

ts

performance metric
(e.g., brightness uniformity)

#
 o

f u
ni

ts

performance metric
(e.g., brightness uniformity)

acceptance
level

failing units passing units failing units passing units

acceptance
level

Left, before DFM, almost half the units are not meeting the acceptance level and 
are therefore failing. Right, after DFM, the acceptance level is the same, but the 

average performance is improved, leading to most units passing.

To understand the importance of DFM, consider these 
graphs. Each depicts a bell curve, which is an assumed sta-
tistical distribution of a particular parameter. The x-axis is a 
parameter of interest, and the y-axis is the number of items 
produced that hit the given parameter. For example, in a plot 

the factory floor  85



of the brightness of thousands of LEDs, the x-axis would be 
brightness, and the y-axis would be the number of LEDs that 
reach a given brightness. The position of the bell curve relative 
to the pass/fail criteria determines the net production yield. 

On the right-hand curve, most LEDs are bright enough, 
and most of the production inventory is shippable. On the 
left-hand curve, maybe 40 percent of the LEDs pass. Given 
that most hardware companies operate with about a 30 to 50 
percent gross margin, scrapping 40 percent of the material 
would mean the end of the business. In such a situation, the 
only viable options are to spend the time and effort to rework 
the LEDs until they pass or to lower the performance require-
ment. The product wouldn’t be as high quality as hoped, but 
at least the business could keep operating. 

Tolerances to Consider

The goal of DFM is to ensure that your product always passes 
muster and that you’re never faced with the unsavory choice of 
reducing margins, lowering quality standards, or going out of 
business. But there are some component aspects to think about 
when applying DFM.

Electronic   Tolerances   

Passive component tolerances are the most obvious tolerances 
to design for. If a resistor’s true value can be +/–5 percent of 
its labeled value, be sure the rest of your circuit can cope with 
the edge cases.

Active component datasheet parameters—like current 
gain (hFE) for bipolar transistors, threshold voltage (Vt ) for 
field effect transistors (FETs), and forward bias voltage (Vf ) 
for LEDs—can also vary widely. Always read the datasheet, 
and watch for parameters with a great disparity between their 
minimum and maximum values, a difference often referred 
to as a min-max spread. For example, the min-max on hFE 
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for Fairchild’s 2N3904 ranges from 40 to 300, and the Vf on 
a superbright LED from Kingbright is between 2 and 2.5V. 

Nominal operating voltage aside, a component’s maxi-
mum voltage rating is particularly important for capacitors 
and input networks. I try to use capacitors rated for twice 
the nominal voltage; for example, where possible, I use 10V 
capacitors for 5V rails and 6.3V capacitors for 3.3V rails. To 
understand why, consider ceramic capacitor dielectrics, which 
have reduced capacitance with increasing voltage. In designs 
operating near a ceramic capacitor’s maximum voltage, that 
component’s operating capacitance will be at the negative 
end of its tolerance range. Also, input networks (any part of 
the circuit that a user can plug something into) are subject to 
punishing electrostatic discharge and other transient abuses, 
so pay special attention to the ratings of capacitors there to 
achieve your desired reliability.

Finally, after you have a good sense of the components you’ll 
use, pay close attention to trace widths and layer stack varia-
tions when designing your PCB. These will impact systems 
that require matched impedance or deal with high currents.

Mechanical     Tolerances 

Electronic tolerances aren’t the end of your worries, though; 
mechanical tolerances are important, too. Neither PCBs nor 
cases will come out exactly the right size, so design your case 
with some wiggle room. If your case design has zero tolerance 
for the PCB dimensions, half the time the factory will force 
PCBs into cases, when either the PCB is cut a little large or 
the case comes out a little small. This can cause unintentional 
mechanical damage to the circuitry or the case.

And don’t forget about cosmetic blemishes! Any manu-
factured product is subject to small blemishes, such as dust 
trapped in plastics, small scratches, sink marks, and abra-
sions. It’s important to work out the acceptance criteria for 
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such defects with the factory ahead of time. For example, you 
might tell the factory that a unit can be considered “good” if 
it has no more than two dot blemishes larger than 0.2mm, no 
scratch longer than 0.3mm, and so on. Most factories will have 
a particular system they’ve adopted to describe and enforce 
these standards. If you discuss these parameters in advance, 
the factory can craft the manufacturing process to avoid such 
defects, as opposed to the more expensive alternative of building 
extra units and throwing away those that don’t meet criteria 
imposed late in the game. 

Of course, avoiding defects isn’t free. To keep your product 
cheaper, avoid high-gloss finishes and consider using matte 
or textured finishes that naturally hide blemishes.

Following DFM Helps Your Bottom Line

To imagine DFM in a real-world scenario, return to the bicycle 
safety flasher case study from “How to Make a Bill of Materials” 
on page 74. Say the prototype design calls for an array of 
three LEDs in parallel, each with its own resistor to set the 
current. The forward bias voltage, or Vf , of an LED at a given 
brightness can vary by perhaps 20 percent between devices; 
in this case, that swing is from 2.0 to 2.5V. 

A design that limits the current to the LEDs with resis-
tors, called resistive current limiting, will amplify this varia-
tion. This happens because an efficient circuit would drop a 
minority of the voltage across the current-limiting resistor, 
leaving the parameter that sets the current (the voltage drop 
across the resistor) more sensitive to the variation in Vf. Since 
the brightness of an LED is not proportional to the voltage 
but rather the current flowing through it, setting the LED 
brightness with resistive current limiting can cause jarring 
inconsistencies in LED brightness.
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current-set resistor 

voltage

20% LED Vf
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Comparing high Vf  and low Vf  corners 

In this example, a 20 percent LED Vf variation (from 2.0V 
to 2.5V, per the LED manufacturer’s specification) leads to a 
40 percent change in the voltage across a current-set resistor 
for a fixed 3.3V supply. This will cause a 40 percent change 
in the current flowing through the LED. As brightness is 
directly proportional to current, the change manifests as up 
to a 40 percent variation in perceived brightness between 
individual LEDs. A design like that may work well most of 
the time; the problem would only be pronounced when a high 
Vf unit is observed next to a low Vf unit. 

P3.3VP3.3V P3.3V

1
2

D10C

R13C
330Ω,1%

1
2

D11C

R14C
330Ω,1%

1
2

D12C

R15C
330Ω,1%

GND GND GND

LED 
brightness

LED 
brightness

LED 
brightness

Setting current for individual LEDs using resistors  
can lead to dramatic variations in brightness.
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The one or two units prepared on the lab bench during 
development may have looked great, but in production a mean-
ingful fraction may have such serious brightness uniformity 
issues that units must be rejected. As most large hardware 
businesses have to survive on lean margins, losing even 10 per-
cent of finished goods to defects is a terrible outcome.

One stop-gap option is to rework the failed units. A factory 
can identify an LED that is too dim or too bright in an array 
and replace it with one that better matches its cohorts. But 
that rework would drive up costs and result in an unexpected 
and unpleasant invoice at the 11th hour of a manufacturing 
program. Naive designers may be inclined to blame the fac-
tory for poor quality and argue over who should bear the cost, 
but it’s better to proactively avoid these kinds of problems by 
subjecting every design to a DFM check and using a small 
pilot run to sanity-check yield before punching out a whole 
bunch of units.

The cost of yield fallout quantifies how much money to 
spend on extra circuitry to compensate for normal compo-
nent variability. For example, a product with a $10 cost of 
goods sold (COGS) that yields 80 percent good units has an 
effective cost per salable unit of $12.50, as calculated with 
this formula:

Effective cost = COGS × total units built / yielded units

Increasing the COGS by $2.50 to improve yield to 100 per-
cent would allow you to break even. But using the same for-
mula, spending $1 extra dollar in COGS to improve yield to 
99 percent would actually improve the bottom line by $1.38.
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VCC

GND

SP6699EK-L/TR

pull up to turn on by default

22µH Sumida CDRH5D28R-220NC

A circuit to set the current on three LEDs, created by applying DFM 

In the case of the bicycle safety light, that dollar could 
be spent on a current-feedback boost regulator IC like the 
SP6699EK-L/TR, allowing the LEDs to be stacked in series 
instead of parallel. The design would be far more complicated 
and expensive than using individual resistors, but it would 
guarantee each LED has a consistent, identical current flow-
ing through it by driving all three LEDs in a series circuit with 
a fixed-current feedback loop. That would virtually eliminate 
brightness variation. While the cost of the boost regulator is 
much greater than the penny spent on three current-limiting 
resistors, the improvement in manufacturing yield more than 
pays for the extra component costs. In fact, this trick is standard 
practice for applications that require good uniformity of bright-
ness out of LEDs, such as in the backlights of LCD panels. A 
typical mobile phone backlight uses about a dozen LEDs, but, 
thanks to circuits like this, you never see light or dark splotches 
despite the large variations in Vf between the constituent LEDs.

The Product Behind Your Product

Alongside dealing with tolerances, another often-neglected 
design responsibility is the test program. A factory can only 
detect the problems it is instructed to look for. Therefore, every 
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feature of a product must be tested, no matter how trivial. For 
example, on a chumby device, every user-facing feature had 
an explicit factory test, including the LCD, touchscreen, audio, 
microphone, all the expansion ports (USB, audio), battery, 
buttons, knobs, and so on. I made sure that even the simplest 
buttons were tested. While it’s tempting to skip testing such 
simple components, I guarantee that anything not tested will 
lead to returns.

I like to call the factory tester “the product behind your 
product.” That’s because in some cases, the factory tester is 
more complicated and more difficult to engineer than the 
product you’re trying to sell. This is particularly true of simple 
products. 

A Real   -World Test Program 

As a case study, consider this microcontroller sticker from 
Chibitronics, a project I discuss at length in Chapter 8.

A microcontroller circuit—on a sticker

This circuit is very simple: it consists of just an 8-bit AVR 
microcontroller and a handful of resistors and capacitors. 
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(It’s also the same product referred to in the ECO example on 
page 84.) My collaborator and I sketched in Adobe Illustrator 
for about two days before we derived the final shape for this 
product. Then we spent about a day in Altium designing the 
circuit, and about a week coding in the Arduino IDE to create 
its firmware. In all, the development process took about two 
weeks. For production, the microcontroller is paired with a 
set of sensors that can process sound, light, and touch, and as 
a result, the test program runs on all four at the same time.

The testing machine for the Chibitronics microcontroller sticker 

The test rig pictured consists of a 32-bit ARM computer 
running Linux with a graphical UI rendered on an HDMI 
monitor. Behind this is an FPGA, some adapter electronics to 
create analog waveforms for testing, and a mechanical pogo-pin 
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assembly for touching down on the sticker. Breaking down the 
design process for this rig into its component parts, we spent:

•	 Several days designing in Altium 

•	 A week programming in the Xilinx ISE for the FPGA 

•	 A couple of weeks hacking on Linux drivers 

•	 A couple of solid months hacking in C++, to create the Qt 
integration framework

•	 A couple of days in SolidWorks, to create the mechanical 
apparatus to hold the whole thing together 

Altogether, creating the tester for the microcontroller 
sticker took over two months, compared to the two weeks to 
create the product itself. 

Why go through all this effort? Because time is money, 
and defects and returns are expensive to process. The tester 
can process one board in under 30 seconds; and in those 30 
seconds, the tester has to program two microcontrollers; test 
sensors for light, sound, and touch; and confirm operation 
at both 5V and 3V. A manual test for all these operations 
could take several minutes of skilled labor and wouldn’t be 
as reliable. Thanks to this tester, we processed zero returns 
due to defective material. Also, the graphical UI on the tester 
makes it very easy for the factory to determine exactly which 
point in the circuit is failing, facilitating fast rework of any 
imperfect material.

Guidelines  for Creating  a Test Program 

As a rule of thumb, for every product you make, you’re actually 
making two related products: one for the end user, and a test 
for the factory. In many ways, the test for the factory has to 
be as user-friendly and foolproof as the product itself; after all, 
tests are not run by electrical engineers. But the related testing 
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product will be much quicker and faster to build if adequate 
testing features are designed into the consumer product. 

And no, don’t outsource the test program to the factory, 
even if the factory offers that service. The factory often won’t 
understand your design intent, so their test programs will 
either be inefficient or test for the wrong behavior. Factories 
also have an incentive to pass as much material as possible, 
as quickly as possible, so their test programs tend to be primi-
tive and inadequate.

Here are some guidelines to follow when designing your 
own program:

Strive for 100 percent feature coverage.
Don’t overlook simple or secondary features like status LEDs 
or an internal voltage sensor. When creating the test list, I 
take an “outside/inside” approach. First, look at the product 
from the outside: list every way a consumer can interact 
with it. Does your test program address every interaction 
surface, even if only superficially? Is every LED lit, every 
button pressed, every sensor stimulated, and every memory 
device touched? Has every bullet point in your marketing 
material been confirmed? Promising “world-class” RF sensi-
tivity is different from simply advertising the presence of a 
radio. Then, think about the inside: from the schematic, look 
at every port and consider key internal nodes to monitor. 
If the product has a microcontroller, review which drivers 
are loaded to cross-check the test list, and make sure no 
components are forgotten. 

Minimize incremental setup effort.
Optimize the amount of time required to set up the test for 
each unit. This is often done through jigs that employ pogo 
pins or prealigned connector arrays. A test that requires 
an operator to manually probe a dozen test points with a 
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multimeter or insert a dozen connectors is time-consuming 
and error-prone. Most factories in China can help design 
the jig for a nominal cost, but jig design is easier and more 
effective if the design itself already includes adequate test 
points.

Automate test procedure into a linear flow.
An ideal test runs with a single button press, and produces 
a pass or fail result. In practice, there are always stop 
points that require operator intervention, but try not to 
require too much. For example, don’t require an operator 
to key in or select an SSID from a list during each Wi-Fi 
connectivity test. Instead, fix the test target’s SSID and 
hardcode that value into a test script so the connection 
cycle is automatic.

Use icons and colors, not text, to communicate with 
operators. 

Not every operator is guaranteed to be literate in a given 
language.

Employ audit logs.
Record test results correlated to device serial numbers 
by incorporating a barcode scanner into the test rig. 
Alternatively, have the device print a coupon with a unique, 
timestamped code or a locally stored audit log to prove 
which units passed a test. Logs will help you figure out 
what went wrong when a consumer returns a failed prod-
uct, and they let you quickly check that all products were 
tested. After an eight-hour shift of testing, an operator may 
make mistakes, such as accidentally putting a defective 
unit into the “good” bin. Being able to check that every 
shipped product was subjected to and passed the full test 
can help you identify and isolate such problems.
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Provide an easy update mechanism.
Like any program, test programs have bugs. Tests also 
need to evolve as your product is patched and upgraded. 
Have a mechanism to update and fix test programs without 
visiting the factory in person. Many of my test fixtures can 
“phone home” via a VPN, and I can SSH into the jig itself 
to fix bugs. Even my simplest jig employs a Linux laptop 
(or equivalent) at its core. This is in part because Linux is 
easier to update and maintain than a bespoke microcon-
troller that requires a special adapter for firmware updates.

These guidelines are easy to implement if your product 
is designed with testability in mind. Most of the products 
I design run Linux, and I leverage the processor inside the 
product itself to run most tests and help manage the test user 
interface. For products that lack user interaction surfaces, an 
Android phone or a laptop connected via Wi-Fi or serial can 
be used to render the test user interface.

Testing vs. Validation

Production tests are meant to check for assembly errors, not 
parametric variations or design issues. If a test is screening out 
devices because of normal parametric component variations, 
either buy better components or redo your design.

For consumer-grade products, you don’t need to run a 
five-minute comprehensive RAM test on every unit. In theory, 
your product should be designed well enough that if it’s all 
soldered together correctly, the RAM will do its job. A quick 
test to check that there are no stuck or open address pins is 
easy enough. Name-brand chip vendors typically have very 
low defectivity, so you’re not validating the silicon; rather, 
you’re validating the solder joints and connectors and check-
ing for missing or swapped components. (But if you buy clone 
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chips or off-brand, remarked, or partially tested devices to 
cut costs, I recommend making a mini validation program for 
those components.)

Validating  a Switch

To illustrate the difference between production testing and 
validation, let’s look at how both might work for a switch.

A production test for a switch may simply ask the operator 
to hit the switch a few times and verify that the feel is right, 
and that electrical contact is made through a simple digital 
indicator. A validation test, on the other hand, may involve 
selecting a few devices at random, measuring the switch contact 
resistance with a multimeter that is accurate to five signifi-
cant digits (also called a five-digit multimeter), subjecting the 
devices to elevated humidity and temperature for a couple of 
days, and then putting the devices into an automated jig that 
cycles the switches 10,000 times. Finally, you might remeasure 
the switch contact resistance with a five-digit multimeter and 
note any degradation in close-state contact resistance.

Clearly, this level of validation can’t be performed on every 
device manufactured. Rather, the validation program evalu-
ates the switch’s performance over the expected lifetime of the 
product. The production test, on the other hand, just makes 
sure the switch is put together right. 

Note	 It’s good practice to rerun validation tests on a couple of 

randomly sampled units out of every several thousand units 

produced. There are formulas and tables you can use to com-

pute how much sampling you need to achieve a certain level 

of quality; just search online for “manufacturing validation 

test table.”

But how much testing is enough? You can derive one 
threshold for testing through a cost argument. Every additional 
test run incurs equipment costs, engineering costs, and the 
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variable cost of the test time. As a result, testing is subject to 
diminishing returns: at some point, it’s cheaper just to take 
a product return than to test more. Naturally, the testing bar 
is much higher for medical or industrial-grade equipment, as 
the liability associated with faulty equipment is also much 
higher. Likewise, a novelty product meant to be given away 
may need much less testing.

Designing  Your  Test J ig

A final thought: always apply solid engineering to your test jig 
design. When I worked on the chumby 8, there was a problem 
where a 50-pin flat flex cable adapter was exhibiting random 
cold-solder-joint failures. I asked the factory to build a test 
to validate the adapters. Their solution was to hang LEDs 
from every pin of the adapter, apply a test voltage to one side 
of the cable, and look for LEDs that didn’t light on the other 
side. The cold solder joints weren’t simply open or closed; 
some just had high resistance. Enough current would flow to 
light an LED, yet there was also enough resistance to cause 
a fault in the design. 

The factory proposed buying 50 multimeters and attach-
ing them to every pin to check the resistance manually, which 
would have been expensive and error-prone. It’s not reason-
able to expect an operator to look at 50 displays hundreds of 
times a day and be able to reliably find the out-of-spec num-
bers. Instead, I chose to daisy-chain the connections across 
the adapter and use a single multimeter to check the net 
resistance of the daisy chain. By putting the connections in 
series, I could check all 50 connections with a single numeric 
measurement, as opposed to the subjective observation of an 
LED’s brightness. 

As this case illustrates, there are good and bad ways to 
implement even a test as simple as checking for cold solder 
joints on a cable adapter. Ever more complicated components 
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require ever more subtle tests, and there’s real value in using 
engineering skills to craft efficient yet foolproof tests.

Finding Bala nce in Industri al Design

Even if your product passes all validation tests with flying 
colors, it still may not be successful if consumers don’t want 
it. Remember: sex sells. To within a factor of two or so, the 
performance of a CPU or amount of RAM in a box is less 
important to a typical consumer than how the device looks. 
Apple devices command a hefty premium in part because of 
their slick industrial design, and many product designers 
aim to emulate the success of Sir Jonathan Ive, Apple’s chief 
design officer, in their own products.

There are many schools of thought in industrial design, 
the process of designing how a product will look before actu-
ally making it. One school invokes the monastic designer, 
who creates a beautiful, pure concept, and the production 
engineers, who spoil the design’s purity when they tweak 
it for functionality. Another school invokes the pragmatic 
designer, who works closely with production engineers to 
hammer out gritty compromises to produce an inexpensive 
and high-yielding design.

In my experience, neither extreme is compelling. The 
monastic approach often results in an unmanufacturable 
product that is either late to market or expensive to produce. 
The pragmatist approach often results in a product that looks 
and feels so cheap that consumers have trouble assigning it a 
significant value. The real trick is understanding how to strike 
a balance between the two, and it begins by getting into the 
factory and understanding how things are done. Here’s a couple 
of examples of what I’ve learned about how different factory 
processes affect that balance, from Chumby and Arduino.
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The chumby One’s Trim and Finish

Trim and finish are difficult, making them points of distinc-
tion in a product’s appearance. When I worked at Chumby, we 
wanted the final product to have a minimalist, honest finish. 
(Honest finishes feature the natural properties of the mate-
rial systems in play and eschew the use of paints and decals.) 
Minimalist designs are very hard to manufacture because with 
fewer features, even tiny blemishes stand out. Honest finishes 
can be difficult, too, as all the burs, gates, sinks, knits, scoring, 
and flow lines that are facts of life in manufacturing are laid 
naked before the consumer. As a result, this school of design 
requires well-made manufacturing tools that are constantly 
checked and maintained throughout production.

If you don’t have pockets deep enough to invest in new 
equipment and capabilities on behalf of your factory (that is, 
if you’re not a Fortune 500 company), the first step is to learn 
the vocabulary available. A design vocabulary is defined by the 
capabilities of the factory or factories producing the goods, like 
what materials you can obtain, what finish is possible, what 
tolerances are achievable, and what fastening technology exists. 
These are all heavily dependent upon the processes available 
to your factory.

Therefore, I find that visiting a factory in person early in 
the design process results in a better design. After a factory 
visit, you’ll discard some design vocabulary, but you’ll discover 
some new vocabulary as well. The engineers who work in the 
factory day in and day out develop process innovations that 
can open up novel design possibilities that you won’t discover 
unless you visit.

The chumby One is a concrete example of the impact 
manufacturing processes can have on design outcome. In the 
original concept art, a blue highlight was added around the 
front edge to resemble a speech balloon, like those used in 
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comic strips. The idea was that the chumby would caption 
your world with snippets from the internet.

A finished chumby One unit

But applying a blue trim across a raised surface was very 
hard. The first factory used paint, because the front edge wasn’t 
flat enough to make silk screening an option. Pad printing (also 
known as tampo printing, a process in which ink is transferred 
from a silicone pad to an object) can handle curved surfaces, 
but the alignment of the ridge on the chumby One wasn’t 
good enough, and the tiniest ink bleed over the edge looked 
terrible from the side. Decals and stickers likewise couldn’t 
achieve the alignment we wanted. In the end, a small channel 
was carved to contain the paint, and the factory created the 
highlight with a stencil and spray paint. 

The yield was terrible. In some lots, over 40 percent of the 
chumby One cases were thrown away due to painting errors. 
Fortunately, plastic is cheap, so throwing away every other 
case after painting had a net cost impact of about $0.35.
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Two chumby One units with bad paint jobs

Midway through production, we started producing chumby 
One units in a second-source facility. The second factory had 
different plastic molding equipment, and unlike the first fac-
tory, this facility could do double-shot molds. A double-shot 
mold involves twice the number of tools of a single-shot injec-
tion mold, but it can injection-mold two different colors, or 
even two different materials, into the same mold. At the new 
factory, we tried a double-shot process instead of painting for 
the thin blue strip. 

A perfect chumby One ridge,  
from the double-injection mold process

overpaint

paint too thin
underpaint
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The results were stunning. Every unit came off the line with 
a crisp blue line, and no paint meant a cleaner, more honest 
finish. But the cost per case jumped to $0.94 apiece with the 
more expensive process, despite the 100 percent yield. It would 
have been cheaper to throw away more than half of the painted 
cases, but even the best painted cases could not compare to the 
quality of the finish delivered by the double-shot tool.

The Arduino Uno’s Silkscreen Art

Another great example of how tweaking a factory process can 
improve a product’s appearance is the Arduino motherboard. 
The wonderfully detailed artwork on the back side, sporting 
an outline of Italy and very fine lettering, isn’t silkscreen. The 
factory that makes these boards actually puts on two layers 
of soldermask: one blue and one white. 

The underside of an Arduino Uno R3

When Arduino boards are manufactured, soldermask is 
applied through the photolithographic process I described 
in “Where Arduinos Are Born” on page 44. This process 
results in artwork with much better resolution, consistency, 
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and alignment than a silkscreen. And since an Arduino’s look 
is the circuit board, this art gives the product a distinctive, 
high-quality appearance that is difficult to copy using conven-
tional processing methods.

Thus, the process capability of a factory (whether it’s 
painting versus double-shot molding, or double soldermask-
ing versus silkscreening) can have a real effect on a product’s 
perceived quality, without a huge impact on cost. The factory, 
however, may not appreciate the full potential of its processes, 
and until a designer interacts with the facility directly, your 
product can’t harness that potential, either. 

Unfortunately, many designers don’t visit a factory until 
something has gone wrong. At that point, the tools are cut, 
and even if you discover a cool process that could solve all your 
problems, it’s often too late.

My Design Process

Design is an intensely personal activity, and as a result, 
every designer will develop their own process. If you need 
a framework for developing your own, however, this is the 
general process I might use to develop a product on a tight, 
startup budget:

1.	 Start with a sketchbook. Decide on the soul and identity of 
the design, and pick a material system and vocabulary that 
suits your concept. But don’t fall in love with it, because 
it may have to change.

2.	 Break down the design by material system, and identify a 
factory capable of producing each material system.

3.	 Visit the facility, and note what is actually running down 
the production lines. Don’t assume anything based on the 
one-off units from the sample room. Practice makes perfect, 
and from the operators to the engineers, factory workers 
execute procedures they do daily much better than they 
would an arcane capability they don’t use often.
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4.	 Reevaluate your design based on a new understanding 
of what’s possible at the factory, and iterate. Go back to 
step 1 if small tweaks aren’t enough. This is the stage when 
it’s easiest to make compromises without sacrificing the 
purity of your design.

5.	 Rough out the details of your design. Pick sliding surfaces, 
parting lines where pieces of the case snap together, fin-
ishes, fastening systems, and so on based on what the 
factory can do best.

6.	 Pass a revised drawing to the factory, and work with them 
to finalize details such as draft angles, fastening surfaces, 
internal ribbing, and so on.

7.	 Validate the design using a 3D print and extensive 3D 
model checks. 

8.	 Identify features prone to tolerance errors, and trim the 
initial manufacturing tool so that the tolerance favors 
modifications that will help you minimize costly changes 
to the tool. For example, consider injection molding, where 
a steel tool is the negative of the plastic it’s molding. 
Removing steel from a tool (adding plastic) is easier than 
adding steel (removing plastic), so target the initial test 
shot to use more steel on critical dimensions, as opposed 
to too little. A button is one mechanism that benefits from 
tuning like this: predicting exactly how a button will feel 
from CAD or 3D prints is hard, and perfecting the tactile 
feel usually requires a little trimming of the tool.

Of course, this process isn’t a set of hard rules to follow. 
You may need to add or repeat steps based on your experience 
with your factory, but if you choose a good factory, this should 
be a good starting point.
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Picking (a nd M aintaining) a Partner

Just like the wands from Harry Potter, a good factory chooses 
you as much as you choose it, so forget the term vendor and 
replace it with partner. If you’re doing it right, you aren’t simply 
instructing the factory; there should be a frank dialogue about 
the trade-offs involved and how the manufacturing process 
can be improved. That’s the only way to get the best product 
possible. 

A healthy relationship with a factory can also lead to better 
payment terms, which improves your cash flow. In some cases, 
factory credit can directly replace raising venture capital, tak-
ing loans, or getting Kickstarter funding. As a result, I treat 
good factories with the same respect as investors and partners 
in a business. For an idea of what that means, here are some 
tips on how to choose and work with your factory. 

Tips for Forming a Relationship with a Factory

First, pick the right-sized factory for your product. If you 
work with a factory that’s too big, you risk getting lost in 
bureaucracy and pushed out of the production line by bigger 
customers at critical times. Work with a factory too small, and 
it won’t be able to provide the services you need. As a rule, I 
pick the biggest facility where I can get direct access to the 
lao ban (factory boss) on a regular basis, because if you can’t 
talk to the boss, you’re nobody. It’s a good sign if the lao ban 
is there on the first meeting to give you a tour and asks astute 
questions about your business over lunch.

Second, follow the adage “Sunlight is the best disinfectant.” 
If a factory won’t quote with an open BOM, where the cost of 
every component, process, and margin is explicitly disclosed, 
I won’t work with them. Cost reduction discussions cannot 
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function without transparency, because there are too many 
places to bury costs otherwise. Likewise, if cost discussions 
turn into a game of whack-a-mole, where reduced costs on one 
line item are inexplicably popping up in another, run away.

This final tip applies primarily to startups. In your early 
stages, everyone knows your cash supplies are finite. Even if 
you’ve just closed a big round of financing, swaggering into a 
factory with money bags is not a sustainable approach. Smart 
factories know your cash supplies are limited, and if the great-
est value you propose to bring to the factory is piles of money, 
your value is limited; in the best case, it won’t really pay out 
until years down the road when the product is shipping in 
high volumes. As a result, it’s helpful to try to deliver value 
to the factory in nonmonetary ways. 

As silly as it sounds, being a pleasant and constructive 
person goes a long way in currying the favor of your facility. 
Manufacturing is a high-stress, low-margin business, and 
everyone in the facility has to deal with difficult problems all 
day. I find I get better service—even better than customers 
with deeper pockets—if I treat my factories as I would treat 
a friendly acquaintance, and not as slave labor or a mere 
subcontractor. Mistakes happen, and being able to turn a 
bad situation into a learning experience will benefit you on 
the day you make a stupid (and perhaps expensive) mistake.

Tips on Quotations

Openness aside, know that if a quote seems too good to be 
true, it often is. When negotiating prices with a factory, step 
back and check if the quote makes sense. Factories that lose 
money on a deal will stop at nothing to make it back, and 
many manufacturing horror stories have roots in unhealthy 
cost structures. A factory’s first prerogative is survival, 
even if that means mixing defective units into lots to boost 
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margin, or assigning novice engineers to a flagging project 
to better monetize their seasoned engineers on more profit-
able customers. 

As you evaluate a quote, make sure it includes the following: 

•	 The price of each part 

•	 The excess material for the job due to minimum order 
quantities (MOQs)

•	 Labor costs

•	 The factory’s overhead cost 

•	 Nonrecurring engineering (NRE) fees

Let’s look at a few of these items in detail.

K eeping an  Eye  on Excess

Excess is the result of what I call the “hot dogs and buns” 
problem. Hot dogs come in packs of 10, but buns come in 
packs of 8. Unless you buy 40 servings, you’ll have leftover 
buns or hot dogs. 

Likewise, many components only come in 3,000-piece 
reels. A 10,000-piece build requires 4 reels for a total of 12,000 
pieces, leaving 2,000 pieces of excess. Factories can buy parts 
in cut tape or partial reels, but the cost per part of cut tape 
is much higher, as the risk of excess material is shifted onto 
the distributor. 

Excess isn’t all bad, though: it can be folded into future 
runs of a product. As long as your product sustains a decent 
production rate, excess component inventory should turn into 
cash on a regular basis. At some point, however, production 
will end or pause, and the bill for the excess will arrive, put-
ting a crimp on cash flow. If a quote lacks an excess column, 
the factory may charge you for the full reel but keep the excess 
for their own purposes; this is where many of the gray-market 
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goods in Shenzhen come from. They may also just send an 
unexpected invoice for it down the road, which often arrives 
at the worst possible time—revenue from the product has 
already ceased, but bills keep coming in. Either way, it’s best 
to know up front the complete cradle-to-grave business model.

F iguring  Out  L abor  Costs

Labor costs are devilishly tricky to estimate, but the good news 
is that for high-tech assemblies, labor is typically a small frac-
tion of total cost. The labor cost of assembling small volumes 
of a straightforward board with 200 parts may be about $2 or 
$3 in China, while the cost of assembling in the United States 
is closer to $20 or $30. Even if labor prices double overnight 
in China and halve in the United States, China may still be 
competitive. 

This is in contrast to the lower-value goods moving out 
of China (such as textiles), where the base value of the raw 
material is already low, so labor costs are a significant por-
tion of the final product cost. I usually don’t argue much over 
labor costs, since the end result of scrimping on labor is often 
lowered quality, and pushing too hard on labor costs can force 
the factory to reduce the workers’ quality of life by trimming 
benefits.

The Factory ’s Overhead  

Negotiating factory margin is also a bit of an art, and there are 
no hard-and-fast rules. I’ll give guidance here, but there are 
always exceptions to the rule, and every factory can cut you a 
special deal depending on the circumstances. Ultimately, it’s 
important to look at the big picture when reviewing a factory’s 
quote and use some common sense. 

What constitutes a fair margin for a factory depends on 
how much value it adds to your product, and the volume of 
production. The definition of “margin” also varies depending on 
the facility. Some facilities include scrap, handling overhead, 
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and even research and development expenses in the margin, 
while others may break those out on separate lines. 

In general, margin ranges between single-digit and low 
double-digit percentages, depending upon volume, value add, 
and project complexity. For very low-quantity production lots 
(fewer than 1,000 pieces), you may also be charged a per-lot 
line fee. This fee partially defrays the cost of setting up an 
assembly line only to tear it down after a couple of hours. A 
line’s throughput may be very fast, producing hundreds to 
thousands of units a day, but it also takes days to set up.

Nonrecurring   Engineering Costs

NRE costs are onetime fees required to set up a production 
run, such a stencils, SMT programming, jigs, and test equip-
ment. Note that reusing test equipment between customers is 
considered bad practice; if a multimeter is required as part of 
a production test, don’t be surprised if a bill for a multimeter 
is tacked onto the NRE. Customers have drastically varying 
standards around the maintenance and use of test equipment, 
so good factories don’t take chances with it.

Miscellaneous Advice

Who you can talk to and how open the factory is about costs 
are certainly key concerns, but with experience, you’ll learn a 
lot more about dealing with factories that doesn’t fall into any 
particular category. To close, here are a few more important 
points to keep in mind when selecting a factory.

Scrap   and   Y ield

Ideally, you’d pay a factory only for good, delivered items, 
and the factory would bear the burden of defective units. This 
gives the factory an incentive to maintain a high production 
quality, because every percent of defectiveness eats away 
at its margin. But if your design has a flaw or is too hard to 
build, and defectiveness is high, the factory may start shipping 
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lower-quality units as a desperate measure to meet produc-
tion and margin targets. It may also start selling defective 
goods on the gray market to recover cost, leading to brand 
reputation problems down the road. 

To avoid situations like that, reach an understanding 
with the factory ahead of time on how to handle scrap units 
or exceptional yield loss. This may include, for example, a 
dedicated “scrap” line item inside the quotation to handle 
defectiveness explicitly.

Order More U nits  Than   the Proven  Demand  

Despite everyone’s best efforts, mistakes will happen, custom-
ers will receive bad devices, and you’ll want extra working units 
for returns and exchanges. Ordering 1,000 pieces to fulfill a 
1,000-piece Kickstarter campaign means if customers want 
to return or exchange units that were broken in shipping, all 
you can do is issue refunds. It’s just not practical to fire up 
the factory to make a dozen replacement units. 

As a general rule, I order a few percent excess beyond the 
number of units I need to deliver to customers, to have stock 
on hand to handle returns and exchanges. Units that don’t 
get used up by the returns process can be turned into demo 
loaners or business development giveaways to drum up the 
next set of orders!

Shipping Costs Money

Keep an eye on shipping costs. These fees aren’t typically built 
into a factory’s quotation, but they impact your bottom line, 
even more so for low-volume products. Shipping FedEx is a 
great way to save time, but it’s also very expensive. Courier 
fees can easily wash out the profit on a small project, so man-
age those costs. 

Note	 Couriers offer discounts to frequent shippers, but you have 

to call in to negotiate the special rates.
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Factor in I mport Duties

Components imported to China without an import license are 
levied a roughly 20 percent compulsory duty on their value. 
The general rule for China is dutiable on import, duty free on 
export. If something is accidentally shipped across the border to 
Hong Kong, expect to pay a duty to get it back into China, too. 

Get a customs broker to work angles for saving money; for 
example, some brokers can get goods taxed by their weight 
and not their value, which for microelectronics is typically a 
good deal. I haven’t figured out all the customs rules, as they 
seem to be a moving target. Every month it seems there’s a 
new rule, fine, exceptional fee, or tariff to deal with. There are 
also plenty of shady ways to get goods into China, but I sleep 
better at night knowing I do my best to comply with every rule. 

Quotations don’t include duties, because factories assume 
by default that you will have an import license. Import licenses 
enable the duty-free import of goods. But import licenses cost 
a few thousand bucks, take weeks to process, and have no 
room for flexibility, as they are tied to an exact BOM for the 
product. Small engineering change orders can invalidate an 
import license. I’ve known customs officers to count the number 
of decoupling caps on a PCB, and if it doesn’t match the count 
in the license, a fine is levied and the license is invalidated. 
Even deviations in the material used to line a decorative box 
can invalidate a license. In short, this import license scheme 
favors high-volume products, and punishes low-volume pro-
ducers, so tread lightly.

Closing Thoughts

Going to China for manufacturing clearly isn’t for everyone. 
Particularly if you’re based in the United States, the overhead 
of courier fees, travel, duties, and late-night conference calls 
adds up rapidly. As a rule of thumb, a small US-based company 
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is often better off assembling PCBs in the United States for 
volumes under 1,000 units, and you won’t start seeing clear 
advantages until volumes of perhaps 5,000 to 10,000 units. 

That math shifts in China’s favor as processes like injection 
molding and chassis assembly come into play, due to the exper-
tise Chinese factories have in these labor-intensive processes. 
The break-even point can also be much lower if you live in or 
near China, as courier fees, travel, and time-zone impact are 
all a small fraction of what they’d be from the United States. 
This compounds with the fact that locals are more effective 
at leveraging the component ecosystem in China, leading to 
further cost reductions compared to a design produced using 
only US parts. 

On the other hand, physically large assemblies or systems 
built using lots of dutiable components may be cheaper to 
build domestically, as they save on shipping costs and tariffs. 
In the end, keep an open mind and try to consider all the pos-
sible secondary costs and benefits of domestic versus foreign 
manufacturing before deciding where to park production.
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part 2
thinking differently: 
intellectual property 
in china
China has a reputation for lax enforcement of intellectual 
property (IP) laws, and that leads to problems like fake and 
copycat products. This part of the book takes a nuanced look 
at China’s IP ecosystem and finds a novel way to reward inno-
vation that serves as an alternative to traditional Western 
IP practices.

First, consider this question: what, exactly, constitutes a 
fake? It seems relatively straightforward to answer; anything 
that’s not an original must be a fake. The situation becomes 
muddied, however, when you consider the possibility that 
some contract manufacturers produce fakes by running a 
ghost shift, an after-hours production run not reported to the 
product’s brand owner. These items are produced on the same 
equipment, by the same people, and with the same procedures 
as the original product, but they’re sold directly to customers 
at a much higher margin to the manufacturer.



In fact, the spectrum of fakes runs an entire gamut of pos-
sibilities. Used and damaged goods get upcycled; production 
rejects with minor flaws are refurbished and sold as originals; 
original products get relabeled to advertise a higher capabil-
ity or capacity (for example, memory cards with 4GB actual 
capacity are sold as 8GB), and so on. Chapter 4 relates sev-
eral encounters I’ve had with fake goods in China, and dives 
into the issues and incentives enabling the rise of such fakes. 

Cloning and copying are also common practices in China. 
A nebulous and sometimes shadowy group of rogue innova-
tors known as shanzhai creates products that attempt to 
mimic the features and function of an original product, often 
with assistance from the original’s blueprints. But the clones 
are heavily modified to save cost or include unique features. 
Often, the most offensive aspect of the practice is the use of the 
original product’s brands and trade dress on the clones. Aside 
from trademark violations, a look inside the products reveals 
an incredible amount of original engineering and innovation. 

Dismissing the shanzhai as mere thieves and copycats 
overlooks the fact that they can achieve what few Western 
companies can: they can build complete mobile phones, and 
on a shoestring budget to boot. Chapter 5 takes a deep dive 
into a prime example of shanzhai engineering, a feature 
phone designed for emerging markets that costs under $10. 
The phone is a tour de force of cost reduction and a fresh look 
at ways of building to address markets that are untouchable 
with Western engineering practices. 

One of the most insightful lean engineering practices 
enabling the creation of complex systems on a shoestring bud-
get is the shanzhai method for sharing IP. I’ll explore this by 
comparing and contrasting the Western notion of open source 
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with the shanzhai method, which I refer to as gongkai. In 
Western law, open source has a formal definition, referring 
specifically to an IP sharing system governed by an explicit 
license to share. This license is granted by the copyright holder, 
often with significant commercial restrictions. Open source 
advocates vigorously defend this notion and are quick to dis-
avow any IP that doesn’t explicitly use an approved license. 

In gongkai, if you can obtain a copy of the blueprints, 
you can use them as you please; it doesn’t matter who made 
them. Yet people still share their ideas because the blueprints 
act as an advertisement. Blueprints often refer explicitly to 
certain chips or contain contact information for the firm that 
drew them. The creators hope circulating their blueprints will 
bring business to their factory when people order parts or sub
assemblies referenced within, or when people call their firm 
to improve or customize the design. In other cases, blueprints 
are traded. For example, there are bulletin board exchanges 
where before you download a blueprint, you must contribute 
one of your own. 

In short, the gongkai IP ecosystem is a variant of the ad-
driven business model, but optimized for hardware-oriented 
businesses. Just as Google provides high-quality search, 
email, and mapping services for free in exchange for show-
ing ads, shanzhai innovators share ideas to land follow-up 
orders in their factories. 

Here lies a key distinction between most Western inno-
vators and their counterparts in Shenzhen: everyone who is 
anyone in Shenzhen owns or has close ties to a factory. The 
fastest path to material wealth is selling more product. Arguing 
over who has rights to abstract ideas is a waste of effort best 
left for baijiu-fueled discussions after dinner.* On the opposite 
end of the spectrum are Western patent trolls so removed 

* Baijiu is a type of strong Chinese alcohol.
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from factories that they probably don’t even have a soldering 
iron, yet they invest millions of dollars into litigation and 
collecting royalties on ideas they didn’t invent.

Neither system is perfect, but the gongkai method is 
uniquely adapted to the fast pace of technology. In a world 
where chips get faster and cheaper every couple of years, a 
20-year patent lifetime is an eternity. Spending a decade to 
bring a product to market simply is not an option; the best 
factories in China can turn a napkin sketch into a prototype 
in days and bring it to scale production in weeks. Long patent 
terms may be appropriate for markets like pharmaceuticals, 
but in fast-moving markets, investing months and tens of 
thousands of dollars in lawyer fees to negotiate a license or 
just apply for a patent can lead to missed opportunities. 

Perhaps a discussion on reforming the Western patent 
system is long overdue. The gongkai ecosystem is living proof 
that granting 20-year monopolies on ideas as trivial as “slide 
to unlock” for a smartphone may not be the One True Path to 
incentivize innovation. I look forward to starting the conver-
sation with this whirlwind tour of the good, the bad, and the 
ugly of the Chinese IP.
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4.  gongkai innovation
If the term intellectual property sounds like an oxymoron to you, 
you’re not alone. If I give you an apple and say, “This is your 
apple,” what that means is pretty clear. You can do what you 
want with that apple: you can eat it, sell it, or even use the seeds 
to plant an apple tree and make more apples, which you can 
then sell or use to feed your family. But if I hand you a phone 
and say, “This Apple iPhone is yours,” you own the collection 
of atoms in your hand, but you have extremely limited rights 
to the software, patents, and trademarks—the intellectual 
property—associated with that phone. Unlike with the fruit, 
you can’t take what’s inside your iPhone and use that knowl-
edge as a seed to make more iPhones. 



Intellectual property works very differently in China, 
though. There, you could (and people do) use a phone as the 
seed for your own original works. Two experiences I had in 
China opened my eyes to the fact that there isn’t one true path 
for dealing with intellectual property. 

I Broke My Phone’s Screen,  

a nd It Was Aw esome

My first story begins, as many of my adventures do, with step-
ping out of a taxi at the Futian border checkpoint going into 
China. It was May 2014, and I was heading to Shenzhen to 
hammer out production plans for the Novena open hardware 
laptop, which I’ll talk more about in Chapter 7. As I stepped 
out of the taxi, my hand caught on my backpack, sending my 
phone tumbling toward the concrete sidewalk. As the phone 
smashed into the ground, I heard the dry “thud” of a shatter-
ing touchscreen.

There is no better place in the world to break your phone’s 
screen than the border crossing into Shenzhen. Within an hour, 
I had a new screen installed by skilled hands in Hua Qiang 
Bei, for just $25—including parts and labor.

I originally planned to replace the screen myself. The phone 
still worked, so I hastily visited iFixit for details on how to 
replace the screen and then booked it to Hua Qiang Bei to pur-
chase replacement parts and tools. The stall I visited quoted 
me about $120 USD for a new screen, but then the shop owner 
grabbed my phone out of my hands and launched a built-in 
self-test program by punching *#0*# into the dialer UI.

She confirmed that there were no bad pixels on my OLED 
display and that the digitizer was still functional, just cracked. 
She then offered to buy my broken OLED and digitizer module, 
but only if her shop could replace my screen. I said that would 
be fine as long as I could watch to make sure they didn’t swap 
out any other parts.
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Of course, they had no problem with that. In 20 minutes, 
they took my phone apart, removed the broken module, stripped 
the adhesive from the phone body, replaced the adhesive, fit-
ted the phone with a “new” (presumably refurbished) module, 
and put it all back together. The process involved a hair dryer 
(used as a heat gun), copious amounts of contact cleaner (used 
to soften the adhesive), and a very long thumbnail (in lieu of 
a spudger/guitar pick). Unfortunately, I couldn’t take pictures 
of the process because the device I would have used to do so 
was in pieces in front of me. 

This is the power of recycling and repair. Instead of pay-
ing $120 for a screen and throwing away a functional piece of 
electronics, I just paid the cost to replace the broken glass. I 
had assumed that the glass on the digitizer was inseparable 
from the OLED, but apparently those clever folks in Hua 
Qiang Bei found an efficient way to recycle those parts. After 
all, the bulk of the module’s cost was in the OLED display. 
The touchscreen sensor electronics, which were also grafted 
onto the module, were undamaged by the fall. Why waste 
perfectly good parts?

And so my phone had a broken screen for all of an hour, 
and it was fixed for less than the cost of shipping spare parts 
to Singapore (my country of residence). Experiences like this 
get me thinking: why aren’t there services like this in every 
country? What makes Shenzhen so unique that you can go from 
a broken screen to a fixed phone in half an hour for much less 
than the cost of a monthly phone bill? A multitude of factors 
contribute to this phenomenon, most of which can be traced 
to a group of people called the shanzhai.

Sha nzhai as Entrepreneurs

The shanzhai of China originally became famous as the pro-
ducers of knockoffs of products like the iPhone, so they’ve 
historically been dismissed by the popular press as simply 
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“copycat barons.” But I think they may have something in 
common with teams like Hewlett and Packard or Jobs and 
Wozniak, back when they were working out of garages. 

Who Are the Shanzhai?

To understand why I think this, it helps to understand the 
cultural context of the word shanzhai. Shanzhai (山寨) comes 
from the Chinese words mountain fortress, but the literal 
translation is a bit misleading. The English term fortress 
connotes a large fortified structure or stronghold, perhaps 
conjuring imagery of castle turrets and moats. On the other 
hand, its denotation states that it is simply a fortified place, 
and this is closer to the original Chinese meaning, which refers 
to something like a cave or guerrilla-style hideout. 

In its contemporary context, shanzhai is a historical allu-
sion to the people who lived in such hideouts, like Song Jiang 
and his 108 bandits, a group of outlaws who lived in the 12th 
century. A friend of mine described Song Jiang as a sort of 
Robin Hood meets Che Guevara. He was a rebel and a soldier 
of fortune, yet selfless and kind to those in need. The tale is 
still popular today; my father instantly recognized it when I 
asked him about it. 

Modern shanzhai innovators are rebellious, individualis-
tic, underground, and self-empowered—just like Song Jiang. 
They’re rebellious in the sense that they are celebrated for 
their copycat products. They’re individualistic in the sense 
that they have a visceral dislike for the large companies. 
(Many shanzhai are former employees of large companies, 
both American and Asian, who departed because they were 
frustrated by the inefficiency of their employers.) They’re 
underground in the sense that once a shanzhai “goes legit” 
and does business directly through traditional retail chan-
nels, they no longer belong to the fraternity of the shanzhai. 
They’re self-empowered in the sense that they’re universally 
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tiny operations, bootstrapped on minimal capital, and their 
attitude is, “If you can do it, then I can as well.”

An estimated 300 shanzhai organizations were operating 
in Shenzhen in 2009. Shanzhai shops range from just a couple 
of folks to a few hundred employees. Some specialize in pro-
cesses like tooling, PCB design, PCB assembly, or cell phone 
skinning, while others have broader capabilities. 

Since the shanzhai are small, they have to be efficient to 
maximize output. One shop of under 250 employees can churn 
out over 200,000 mobile phones per month with a high mix of 
products, sometimes producing runs as short as a few hundred 
units. Collectively, shanzhai in the Shenzhen area produced 
an estimated 20 million phones per month in 2009. That’s an 
economy approaching a billion dollars a month. Most of those 
phones sell into third-world and emerging markets like India, 
Africa, Russia, and southeast Asia. 

More Than Copycats

Significantly, the shanzhai’s product portfolio includes more 
than just copycat phones. They innovate and riff on designs 
to make original products as well. These original phones inte-
grate wacky features like 7.1 stereo sound, dual SIM cards, 
a functional cigarette holder, a high-zoom lens, or a built-in 
UV LED for counterfeit money detection. 

The shanzhai do to hardware what the web did to mashup 
compilations. Mobile phones that are also toy Ferraris and 
watch-phone combos (complete with camera!) are good examples: 
they don’t copy any single idea, but rather mix IP from multiple 
sources to create a new heterogeneous composition, such that 
the original source material is still distinctly recognizable in 
the final product. Also, like many web mashups, the result 
might seem nonsensical to a mass market (like the Ferrari 
phone) but is extremely relevant to a select long-tail market. 
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In a way, some shanzhai products are just ahead of their time; 
the watch-phones I saw, for example, predated smartwatches 
by several years. 

             

           

Top: The front and back sides of a phone made to look like a pack of cigarettes. 
Bottom left: An Android-based smart watch, which unlike the Apple Watch 

includes a call-capable phone in the watch. Bottom right: A shanzhai-designed 
“baby iPhone,” running Android, shown next to an Apple iPhone 6 for scale.

Community-Enforced IP Rules

The shanzhai also employ a concept called the open BOM: 
when one shanzhai builds something new, they share the bill 
of materials and other design documents with the others. If 
the product is based on an existing product, any improvements 
they make are also shared. These rules are policed by word of 
mouth within the community to the extent that if someone is 
found cheating, they are ostracized by the shanzhai ecosystem.

This system is viewed very positively in China. For example, 
I once heard a local say it was great that the shanzhai could 

124  C h a pt  e r  4



not only clone an iPhone but also improve upon the original 
by giving the clone a user-replaceable battery. US law would 
call this activity illegal and infringing, but given the fecun-
dity of mashup culture on the web, I can’t help but wonder 
if hardware mashup isn’t a bad thing. There’s definitely a 
perception in the United States that if it’s strange and it 
happens in China, it must be bad. This bias casts a long 
shadow over objective evaluation of a cultural phenomenon 
that could eventually be very relevant to the United States. 

In a sense, the shanzhai are brethren of the classic Western 
notion of hacker-entrepreneurs, but with a distinctly Chinese 
twist. My personal favorite shanzhai story is about a chap who 
owns a three-story house that I am extraordinarily envious 
of. His bedroom is on top, the middle floor is a complete SMT 
manufacturing line, and the bottom floor is a retail outlet 
for the products produced a floor above and designed in his 
bedroom. Talk about a vertically integrated supply chain! 
Owning infrastructure like that would certainly disrupt the 
way I innovate. I could save on production costs, reduce my 
prototyping time, and aggressively turn inventory around, 
thereby reducing inventory capital requirements. And if my 
store were in a high-traffic urban location, I could also cut out 
the 20 to 50 percent minimum retail margin typically required 
by US retailers.

I have a theory that when the amount of knowledge and 
the scale of the markets in Shenzhen reach critical mass, the 
Chinese will stop being simply workers or copiers. They’ll take 
control of their destinies and, ultimately, become innovation 
leaders. These stories about the shanzhai and their mashups 
are just the tip of an iceberg with the potential to change the 
way business is done—perhaps not in the United States, but 
certainly in that massive, untapped market often referred to 
as “the rest of the world.”
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The $12 Phone

Mashup cell phones demonstrate the shanzhai’s innovation 
and willingness to experiment. But despite all the bells and 
whistles, those phones are quite affordable. One question you 
might ask, then, is how cheaply can you make a phone?

A short jaunt to the northeast corner of the Hua Qiang Bei 
electronics district brings you to the Mingtong Digital Mall. It’s 
a four-story maze packed with tiny shops hawking all manner 
of quirky phones with features useful in economies that lack the 
infrastructure of consistent electricity or cable networks. For 
instance, some phones can run for a month thanks to comically 
oversized batteries. Others have analog TV tuners, integral 
hand-crank chargers, and multiple user profiles, enabling a 
family or small village to share a single phone.

During a visit to the Hua Qiang Bei district in 2013, I paid 
$12 for a complete phone, featuring quad-band GSM, Blue
tooth, MP3 playback, an OLED display, and a keypad for the 
UI. It’s nothing compared to a smartphone, but it’s useful if 
you’re going out and worried about your primary phone get-
ting wet or stolen. And for a couple billion people, it may be 
the only phone they can afford.

Keep in mind this is the contract-free price. In countries 
that allow carriers to lock phones, such as the United States, 
phones are often given away or sold to buyers at a fraction of 
their cost in exchange for a subscription contract often worth 
several times the phone’s value. The fact that I paid $12 over 
the counter for a contract-free, nonpromotional, unlocked, 
new-in-box phone with a charger, protective silicone sleeve, 
and cable means that the phone’s production cost has to 
be somewhere below the retail price of $12. Otherwise, the 
phone’s maker would be losing money. Rumors placed its cost 
below $10.
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My simple but functional $12 phone

This is a really amazing price point. That’s about the price 
of a large Domino’s cheese pizza, or a decent glass of wine in an 
urban US restaurant. It’s even cheap compared to an Arduino 
Uno. Admittedly, the comparison is a little unfair, but humor 
me and take a look at the specs for both, shown in Table 1.

Table 1: Comparing the $12 Phone with an Arduino

Spec This phone Arduino Uno

Price $12 $29

CPU speed 260 MHz, 32-bit 16 MHz, 8-bit

RAM 8MiB 2.5kiB

Interfaces USB, microSD, SIM USB

Wireless Quadband GSM, Bluetooth —

Power LiPo battery, includes adapter External, no adapter

Display Two-color OLED —
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How is it possible that this phone has better specs than 
an Arduino and costs less than half the price? I don’t have 
the answers, but I’m trying to learn them. Tearing down the 
phone yielded a few hints.

Inside the $12 Phone

First, there are no screws in this phone. The whole case snaps 
together.

The back of the phone, after the cover is removed
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There are (almost) no connectors on the inside. For shipping 
and storage, you get to flip a switch to hard-disconnect the 
battery. As best as I can tell, the battery also has no secondary 
protection circuit. Still, the phone features accoutrements such 
as a backlit keypad and decorative lights around the edge.

Everything from the display to the battery is soldered directly to the board. 

There are little decorative LEDs all over this PCB.

gongkai innovation  129



The Bluetooth antenna is the small length of wire on the bottom left.

The electronics consist of just two major ICs: the MediaTek 
MT6250DA and a Vanchip VC5276. The MT6250 is rumored 
to sell in volume for under $2. I was able to anecdotally con-
firm the price by buying a couple of pieces on cut tape from a 
retail broker for about $2.10 each.* That beats the best price 
I’ve ever been able to get on an ATMega of the types used in 
an Arduino. With price competition like this, Western firms 
are suing to protect ground: Vanchip got into a bit of a legal 
tussle with RF Micro, and MediaTek has been subject to a 
few lawsuits of its own.

Two MediaTek MT6250 ICs

* No, I will not broker these chips for you. 
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Of course, you can’t just call up MediaTek and buy these 
chips. It’s extremely difficult to engage with them “going 
through the front door” to do a design. However, if you know 
a bit of Chinese and the right websites, you can download 
schematics, board layouts, and software utilities for some-
thing similar to this phone, possibly with some different 
parts . . . for “free.” Free is in quotes because you could obtain 
the source code but not the unambiguous legal right to use it, 
as the source code was distributed without the explicit legal 
consent of the copyright holders. But anyone unconcerned or 
unfamiliar with such legal frameworks could build versions of 
this phone, with minimal cash investment. It feels like open 
source, but it’s not: it’s a different kind of open ecosystem.

Introducing Gongkai

Welcome to the Galapagos of Chinese “open” source. I call 
it gongkai (公开), which is the Chinese transliteration of 
the English open, as applied to open source. There’s a literal 
translation for open source into Chinese (kaiyuan), but the 
only similarity between gongkai practices and Western open 
source practices is that both allow you to download source 
code; the legal and cultural frameworks that enable such shar-
ing couldn’t be more different. It’s like convergent evolution, 
where two species may exhibit similar traits, but the genes 
and ancestry are totally different. 

Gongkai refers to the fact that copyrighted documents, some-
times labeled “confidential” and “proprietary,” are made known 
to the public and shared overtly, but not necessarily according to 
the letter of the law. This copying isn’t a one-way flow of value, 
as it would be in the case of copied movies or music. Rather, 
these documents are the knowledge base someone would need 
to build a phone using the copyright owner’s chips, and sharing 
the documents promotes sales of their chips. There is ultimately 
a quid pro quo between the copyright holders and the copiers.
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Western model of IP Chinese model of IP

Comparing IP models. On the left, the Western “broadcast” model, with  
a single owner who controls and disseminates IP and is paid by society.  

On the right, the Chinese “network” model, where IP trades hands  
like a commodity, and payment is often in-kind or as favors.

This gray relationship between companies and entrepre-
neurs is just one manifestation of a much broader cultural 
gap between the East and the West. The West has a “broad-
cast” view of IP and ownership: good ideas and innovation 
are credited to a clearly specified set of authors or inventors, 
and society pays them a royalty for their initiative and good 
works. China has a “network” view of IP and ownership: one 
attains the far-reaching sight necessary to create good ideas 
and innovations by standing on the shoulders of others, and 
people trade these ideas as favors. In a system with such a 
loose attitude toward IP, sharing with the network is necessary, 
as tomorrow your friend could be standing on your shoulders, 
and you’ll be looking to them for favors. 

In the West, however, rule of law enables IP to be amassed 
over a long period of time, creating impenetrable monopoly 
positions. That’s good for the guys on top but tough for upstarts, 
causing a situation like the modern Western cell phone mar-
ket. Companies like Apple and Google build amazing phones 
of outstanding quality, and startups can only hope to build 
an “appcessory” for their ecosystem. 
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I’ve reviewed business plans for over 100 hardware start-
ups, and the foundations for most are overpriced chipsets 
built with antiquated process technologies. I’m no exception 
to this rule; the Novena uses a Freescale (now NXP after an 
acquisition) i.MX6 processor, which was neither the cheapest 
nor the fastest chip on the market when I designed the laptop. 
But it’s a chip with two crucial qualities: anyone can freely 
download almost complete documentation for it, and anyone 
can buy it on Digi-Key. 

Scarce documentation and supply for cutting-edge technol-
ogy force Western hardware entrepreneurs to look primarily 
at Arduino, Beaglebone, and Raspberry Pi as starting points 
for their good ideas. Chinese entrepreneurs, on the other hand, 
churn out new phones at an almost alarming pace. 

Every object pictured here is a phone.

Phone models change on a seasonal basis. Entrepreneurs 
experiment all the time, integrating wacky features into 
phones, such as cigarette lighters, extra-large battery packs 
(to charge a second phone), huge buttons (for the visually 
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impaired), call-home buttons only (to give to children for emer-
gencies), watch form factors, and so on. This works because 
small teams of engineers can obtain complete design packages 
for working phones—including the case, board, and firmware—
allowing them to fork the design and focus only on changing 
the pieces they really care about.

As a hardware engineer, I want that. 
I want to be able to fork existing cell phone designs. I saw 

the $12 phone, and I, too, wanted to use a 364 MHz 32-bit 
microcontroller with megabytes of integrated RAM and dozens 
of peripherals that costs $3 in single quantities. The Arduino 
Uno’s ATMega microcontroller, a 16 MHz 8-bit microcontroller 
with a few kilobytes of RAM and a smattering of peripherals, 
pales in comparison yet costs twice as much, at $6. 

From Gongkai to Open Source

So, I decided to take my study of the phone one step further 
from a teardown, and attempt to make my own version—in 
the style of the shanzhai, but interpreted through Western 
eyes. That’s how Sean “xobs” Cross and I started a project 
we dubbed Fernvale. Sean has been my adventure partner 
on dozens of projects since we first met at Chumby, where I 
recognized his talent as a firmware engineer when he showed 
me how he ported Quake to chumby in his spare time. Sean 
has always marched to the beat of his own drum. Born in 
Germany to American parents, he studied cognitive science in 
college, and prior to working at Chumby, he spent six months 
wandering New Zealand and Australia, searching for adven-
ture and work. At Chumby, he was easy to spot, thanks to his 
ponytail and kilt (actually, a Utilikilt).

After Chumby went out of business, Sean and I found 
ourselves washed up on the shores of Singapore, where I 
started a boutique hardware consulting firm called Sutajio 
Ko-Usagi, which is bunniestudios translated to Japanese and 
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then romanized into English characters. Sean’s virtuoso coding 
abilities have been an excellent complement to my hardware 
design skills, and since then, we’ve completed several signifi-
cant open source projects. 

We figured at first we should at least try to go “through 
the front door” and inquire directly with the chipmakers about 
what it might take to get a proper Western-licensed embedded 
development kit (EDK) for the chips used in these shanzhai 
phones. Our inquiries were met with a cold shoulder. I was 
told the volumes for our little experiment were too small, or 
we’d have to enter minimum purchase agreements backed by a 
prohibitive cash deposit in the hundreds of thousands of dollars. 

Even for people who jump through such hoops, these EDKs 
don’t include all the reference material the Chinese get to play 
with. The datasheets are incomplete, and you’re forced to use 
the companies’ proprietary OS ports. It feels like a case of the 
nice guys finishing last. Could we find a way to get ahead yet 
still play nice?

Engineers Have Rights, Too

Thus, Fernvale had two halves: the technical task of reverse 
engineering and re-engineering the phone and the legal task 
of creating a general methodology for absorbing gongkai IP 
into the Western ecosystem. I’ll recount the technical task in 
Chapter 9 and focus on the legal task for the remainder of 
this chapter.

After some research into the legal frameworks and chal-
lenges, I believed I’d found a path to repatriate some of the IP 
from gongkai into proper open source. I must, however, give a 
disclaimer: I’m not a lawyer. I’ll tell you my beliefs, but don’t 
construe them as legal advice.*

* I’ve often wondered why the “I am not a lawyer” disclaimer is necessary. It was explained to me 
that even the appearance of dispensing legal advice without the disclaimer can make me guilty of 
practicing law without a proper license. I could also be held accountable for bad decisions made 
by people who construe the opinions as legal advice. 
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My basic idea with Fernvale was to exercise the right to 
reverse engineer in a careful, educated fashion to increase the 
likelihood that, if push came to shove, the courts would agree 
with my actions. But I also feel that shying away from reverse 
engineering simply because it’s controversial is a slippery slope: 
to have your rights, you must exercise them. If women didn’t 
vote and black people sat in the back of the bus because they 
were afraid of controversy, the United States would still be 
segregated and without universal suffrage. Although reverse 
engineering is a trivial issue compared to racial equality and 
universal suffrage, the precedent is clear: in order to have 
rights, you must be bold enough to stand up and assert them.

Dealing   with  Patents  and   Other L aws

Open source has two broad categories of IP issues to deal with: 
patents and copyrights. Patents present complex issues, and 
it seems the most practical approach is to essentially punt on 
the issue. For instance, nobody, as far as I know, checks their 
Linux commits for patent infringement before upstreaming 
them, and in fact, many corporations have similar policies at 
the engineering level. 

Why? Determining which patents apply and if a product 
infringes takes a huge amount of resources. Even after expend-
ing those resources, you can’t be 100 percent sure. Further, 
becoming very familiar with the body of patents amplifies 
the possibility that any infringement is willful, thus tripling 
damages. Finally, it’s not even clear where the liability for 
infringement lies, particularly in an open source context. 

Thus, Sean and I did our best not to infringe with Fernvale, 
but we couldn’t be 100 percent sure that no one would allege 
infringement. However, we did apply a license to our work 
that includes a “poison pill” clause for patent holders who 

136  C h a pt  e r  4



might attempt to litigate. Poison pills make the entire body of 
open source work unavailable to any party who files a lawsuit 
alleging infringement of any part against any entity.*

For copyrights, the issue is also extremely complex. The 
Coders’ Rights Project from the Electronic Frontier Foundation 
(EFF) has a Reverse Engineering FAQ† that’s a good read if 
you really want to dig into the issues. To sum it up, courts 
have found that reverse engineering to understand the ideas 
embedded in code and to achieve interoperability is fair use. 
As a result, anyone likely has the right to study the gongkai-
style IP, understand it, produce a new work, and apply a 
Western-style Open IP license to it. 

However, before I could attack the copyright issues for 
Fernvale, I had to make sure we wouldn’t bump into other 
laws that could impede our fair use rights. First, there’s the 
Digital Millennium Copyright Act (DMCA). The DMCA makes 
circumventing any encryption designed to enforce a copyright 
basically illegal, with only a few poorly tested exemptions 
allowed. Since none of the files or binaries Sean and I down-
loaded were encrypted or had access controlled by any tech-
nological measure, we didn’t have to do any circumvention. 
No circumvention, no DMCA problem.

All the files we obtained came from searches linking to 
public servers, so there would be no Computer Fraud and 
Abuse Act (CFAA) problems. None of the devices we used in 
the work came with shrink-wraps, click-throughs, or other 
end-user license agreements (EULAs), terms of use, or other 
agreements that could waive our rights.

* Specifically, Apache 2.0, section 3 reads, “Grant of Patent License. . . . If You institute patent 
litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that 
the Work or a Contribution incorporated within the Work constitutes direct or contributory 
patent infringement, then any patent licenses granted to You under this License for that Work 
shall terminate as of the date such litigation is filed.”

† https://www.eff.org/issues/coders/reverse-engineering-faq/
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Dealing   with  Copyrights

With the DMCA, CFAA, and EULA concerns set aside, we were 
finally able to address the core issue: what to do about copyrights.

The cornerstone of our methodology hinged on decisions 
rendered on several occasions by courts stating that facts are 
not copyrightable. For example, Justice O’Connor wrote the 
following in Feist Publications, Inc. v. Rural Telephone Service 
Co., Inc. (449 U.S. 340, 345, 349 (1991):* 

Common sense tells us that 100 uncopyrightable facts do not magi-
cally change their status when gathered together in one place. . . . 
The key to resolving the tension lies in understanding why facts 
are not copyrightable: The sine qua non of copyright is originality.

And:

Notwithstanding a valid copyright, a subsequent compiler remains 
free to use the facts contained in another’s publication to aid in 
preparing a competing work, so long as the competing work does 
not feature the same selection and arrangement.

Based on this opinion, anyone has the right to extract facts 
from proprietary documentation and carefully re-express those 
facts in their own selection and arrangement. Just as the facts 
that “John Doe’s phone number is 555-1212” and “John Doe’s 
address is 10 Main St.” are not copyrightable, facts such as 
“The interrupt controller’s base address is 0xA0060000” and 
“Bit 1 controls status reporting of the LCD” aren’t copyright-
able, either. Sean and I extracted such facts from datasheets 
and re-expressed them in our own header files where, as the 
legal owners of newly created expressive speech, we applied 
a proper open source license of our choice.

M aking   a Programming    L anguage

But the situation was further complicated by hardware blocks 
we had absolutely no documentation for. In some cases, we 
couldn’t even learn what a block’s registers meant or how the 

* See also Sony Computer Entertainment, Inc. v. Connectix Corp., 203 F. 3d 596, 606 (9th Cir. 
2000) and Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510, 1522-23 (9th Cir. 1992).
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blocks functioned from a datasheet. For these blocks, we iso-
lated and extracted the code responsible for initializing their 
state. We then reduced this code into a list of address and 
data pairs, and expressed it in a custom scripting language 
we called scriptic. We invented our own language to avoid 
subconscious plagiarism—it’s too easy to read one piece of 
code and, from memory, code something almost exactly the 
same. By transforming the code into a new language, we were 
forced to consider the facts presented and express them in an 
original arrangement.

Scriptic is basically a set of assembler macros, and the 
syntax is very simple. Here is an example of a scriptic script:

#include "scriptic.h"
#include "fernvale-pll.h"

sc_new "set_plls", 1, 0, 0

  sc_write16 0, 0, PLL_CTRL_CON2
  sc_write16 0, 0, PLL_CTRL_CON3
  sc_write16 0, 0, PLL_CTRL_CON0
  sc_usleep 1

  sc_write16 1, 1, PLL_CTRL_UPLL_CON0
  sc_write16 0x1840, 0, PLL_CTRL_EPLL_CON0
  sc_write16 0x100, 0x100, PLL_CTRL_EPLL_CON1
  sc_write16 1, 0, PLL_CTRL_MDDS_CON0
  sc_write16 1, 1, PLL_CTRL_MPLL_CON0
  sc_usleep 1

  sc_write16 1, 0, PLL_CTRL_EDDS_CON0
  sc_write16 1, 1, PLL_CTRL_EPLL_CON0
  sc_usleep 1

  sc_write16 0x4000, 0x4000, PLL_CTRL_CLK_CONDB
  sc_usleep 1

  sc_write32 0x8048, 0, PLL_CTRL_CLK_CONDC
  /* Run the SPI clock at 104 MHz */
  sc_write32 0xd002, 0, PLL_CTRL_CLK_CONDH
  sc_write32 0xb6a0, 0, PLL_CTRL_CLK_CONDC
  sc_end
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This script initializes the Phase Locked Loop (PLL, a 
circuit for generating clock waveforms) on the target chip for 
Fernvale, the MediaTek MT6260. To contrast, here are the 
first few lines of the code snippet from which that scriptic 
code was derived:

// enable HW mode TOPSM control and clock CG of PLL control 

*PLL_PLL_CON2 = 0x0000; // 0xA0170048, bit 12, 10 and 8 set to 0 
                        // to enable TOPSM control 
                        // bit 4, 2 and 0 set to 0 to enable 
                        // clock CG of PLL control
*PLL_PLL_CON3 = 0x0000; // 0xA017004C, bit 12 set to 0 to enable 
                        // TOPSM control

// enable delay control 
*PLL_PLLTD_CON0= 0x0000; // 0x A0170700, bit 0 set to 0 to 
                         // enable delay control

// wait for 3us for TOPSM and delay (HW) control signal stable
for(i = 0 ; i < loop_1us*3 ; i++);

// enable and reset UPLL
reg_val = *PLL_UPLL_CON0;
reg_val |= 0x0001;
*PLL_UPLL_CON0  = reg_val; // 0xA0170140, bit 0 set to 1 to 
                           // enable UPLL and
                           // generate reset of UPLL

The original code actually goes on for pages and pages, and 
even this snippet is surrounded by conditional statements, 
which we culled as they were irrelevant to initializing the 
PLL correctly.

Knowledge of our rights, a pool of documentation to extract 
facts from, and scriptic were tools in our armory. With them, 
Sean and I derived sufficient functionality for our Fernvale 
project to eventually boot a small, BSD-licensed, real-time 
operating system (RTOS) known as NuttX, running on our 
own custom hardware. I’ll go more into the gory details of how 
we did that in Chapter 9.
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Closing Thoughts

Rights atrophy and get squeezed out by competing interests 
if they aren’t vigorously exercised. Sean and I did Fernvale 
because we think it’s imperative to exercise our fair use rights 
to reverse engineer and create interoperable, open source solu-
tions. For decades, engineers have sat on the sidelines and 
seen ever more expansive patent and copyright laws shrink 
their latitude to learn freely and to innovate. I’m sad that the 
formative tinkering I did as a child is no longer a legal option 
for the next generation of engineers. 

The rise of the shanzhai and their amazing capabilities is 
a wake-up call. I see it as evidence that a permissive IP envi-
ronment spurs innovation, especially at the grassroots level. 
If more engineers learn their fair use rights and exercise them 
vigorously and deliberately, perhaps this can catalyze a larger 
and much-needed reform of the patent and copyright system. 
Our Fernvale project is hopefully just a signpost pointing the 
way for much bigger efforts to bridge the gap between the 
gongkai and open source communities. 

Being able to cherry-pick the positive aspects of gongkai 
into the Western IP ecosystem is an important tool. Rule of 
law has its place, and an overly permissive system has its 
own problems. The next chapter explores some of the nega-
tive consequences of an overly permissive IP ecosystem: fake 
and counterfeit goods.
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5.  fake goods
The gongkai system fosters an amazing amount of innovation 
in China, and the shanzhai can make interesting original 
products, like the cell phones I showed you in Chapter 4. That 
said, China does produce plenty of fake electronic goods, and 
they aren’t all knockoff iPhones. Clever counterfeiters can 
produce fake integrated circuits, including microSD cards 
and even FPGAs.

W ell -Ex ecuted Counterfeit Chips

For instance, in 2007 (while I was still working with Chumby) 
I encountered some counterfeit chips so well executed that I 
couldn’t be certain they were fake without investigating.



Two suspicious chip specimens from an Asian source

The chips claimed to be ST19CF68s, a chip made by STMicro
electronics and described on its datasheet as a “CMOS MCU 
Based Safeguard Smartcard I/O with Modular Arithmetic 
Processor.” ST19CF68 chips are normally sold prepackaged in 
smartcard (for example, the chip on the front of a credit card) 
or diced wafer (a silicon wafer that’s been diced into individual 
chips, but with no other package around it) format, but curi-
ously, these were SOIC-20 packaged devices. To find out the 
reason for the odd package choice, I dissolved the black epoxy 
packaging off the top of one chip to decapsulate it so I could 
inspect the silicon on the inside using a microscope.

The die inside the package was much too small and 
simple for a complex microcontroller unit (MCU) matching 
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the description of the ST19CF68. The pattern of gold-colored 
rectangles tiled across the chip was too coarse; I could make 
out individual transistors at low zoom with an optical micro-
scope. The size of these features is referred to as the chip’s 
process geometry. The process geometry of a smartcard would 
typically trail a cutting-edge CPU by at most three or four 
generations, making transistors very difficult to resolve even 
at the highest levels of zoom. 

The silicon inside the fake ST19CF68

Along with the unexpectedly coarse process geometry, why 
did this part have 20 bondable pads and 20 pins when, accord-
ing to the datasheet, it should have only 8 pads? Zooming in 
a bit on the die revealed some interesting details.
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The chip manufacturer and copyright date

The chip wasn’t made by STMicroelectronics after all! 
The label on the silicon said FSC, indicating it was made by 
Fairchild Semiconductor. Of course, then I had to check the 
part label on the silicon, too.

Discovering the true part number
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The die within that chip turned out to be a Fairchild 
74LCX244, which is a “Low Voltage Buffer/Line Driver with 
5V Tolerant Inputs and Outputs.” The 74LCX244 is a much 
cheaper piece of silicon than the ST19CF68 the package sup-
posedly contained.

Of course, the mismatched pin count was suspicious, but 
manufacturers have been known to put chips in larger pack-
ages, especially during early runs of the chip before it has 
been size-optimized. The thing that really got me was the 
convincing quality of the package and the markings.

Normally, remarked or fake chips look cheesier than this 
one. The original chips are sanded down or painted over to 
remove the previous markings, and the new marking is typi-
cally applied with silkscreened paint. 

But these chips showed no evidence of remarking at all. The 
markings are of first-run quality: someone acquired unmarked 
blanks of the 74LCX244 chip and programmed a production 
laser engraver to put high-quality fake markings on an other
wise virgin package. They even got the proportions of the ST 
logo exactly right. 

A close-up of the outside of the fake ST19CF68
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The quality difference between a remarked chip and first-
run marking is like the quality difference between spray paint 
used to hide a scratch on a car and the car’s original, factory-
fresh paint job. This chip definitely had the “new car” look.

This discovery left me with a lot of unanswered questions. 
How did someone acquire unmarked Fairchild silicon? Was 
the person an insider, or did Fairchild sloppily throw away 
unmarked reject chips without grinding them up or clipping 
off leads so they couldn’t be picked out of a dumpster and 
resold? The laser-marking machine used to make those mark-
ings wasn’t a cheap desktop engraver, either; it had to be a 
high-power raster engraver, and the artwork was spot-on.

I still find it hard to believe those fake chips were made 
and sold, but maybe I shouldn’t. I’ve seen brazen remarking 
of dual inline memory modules (DIMMs, the memory used 
in personal computers) in the SEG Electronics Market, and 
many counterfeiters at the market openly display their arsenal 
of professional-quality thermal transfer label printers and 
hologram sticker blanks.

If fakes of this quality become more common, they could 
present a problem for the supply chain. Clearly, whoever 
made the counterfeit ST19CF68 can fake just about any chip, 
and the fakes are gradually appearing on the US market. 
Resellers, especially distributors that specialize in buying 
excess manufacturer inventory, implicitly trust the mark-
ings on a chip. 

I don’t think chipmakers will put anticounterfeiting mea-
sures on chip markings, but the quality of these fakes definitely 
made me wary when I discovered them, and it still does. Not 
all fakes get spotted before they’re used, and fake components 
pose problems in any project where they appear.
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Counterfeit Chips in  

US Military Hardware

Counterfeit chips can be particularly problematic when they 
find their way into military projects. The US military has a 
unique problem: it’s one of the biggest and wealthiest buyers 
of really old parts because military designs have shelf lives of 
decades. Like anything else, the older a part is, the harder it is 
to find, and sometimes contractors are sold fakes. For example, 
a 2011 Senate hearing report revealed that some parts used 
in the P-8 Poseidon (a plane the US Navy commissioned from 
Boeing) were, as an article from the Defense Tech website put 
it, “badly refurbished,” causing a key system to fail. 

The US government attempted to reduce fakes in its 
supply chain with Amendment 1092 to the National Defense 
Authorization Act for Fiscal Year 2012 (H.R. 1540). The amend-
ment is a well-intentioned but misguided provision outlining 
measures designed to reduce the prevalence of counterfeit 
chips in the US military supply chain.

Even before Amendment 1092 was put on the table, the 
Defense Authorization Act drew flak for a provision that 
authorizes the US military to detain US citizens indefinitely 
without trial. It also rather ironically requires an assessment 
of the US federal debt owed China as a potential “national 
security risk” (section 1225 of H.R. 1540).

Under the anticounterfeit amendment, first-time offenders 
can receive a $5 million fine and 20-year prison sentence for 
individuals, or a $15 million fine for corporations—a penalty 
comparable to that of trafficking cocaine.* While the amend-
ment explicitly defines counterfeit to include refurbished 
parts represented as new, the wording is regrettably vague on 
whether you must be willfully trafficking such goods to also 
be liable for such a stiff penalty.

* See Sec 2320 (b) at https://www.govtrack.us/congress/bills/112/hr1540/text. 
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If you took a dirty but legitimately minted coin and washed 
it so that it looked mint condition, nobody would accuse you of 
counterfeiting. Yet this amendment puts a 20-year, $5 million 
penalty not only on the act of counterfeiting chips destined for 
military use but also potentially on the unwitting distribu-
tion of refurbished chips that you putatively bought as new. 
Unfortunately, in many cases an electronic part can be used 
for years with no sign of external wear.

The amendment also has a provision to create an “inspec-
tion program”:

(b) Inspection of Imported Electronic Parts —

(1) . . . the Secretary of Homeland Security shall establish a program 
of enhanced inspection by U.S. Customs and Border patrol of elec-
tronic parts imported from any country that has been determined 
by the Secretary of Defense to have been a significant source of 
counterfeit electronic parts . . .

Inspecting fruits and vegetables as they enter the coun-
try for pests and other problems makes sense, but requiring 
customs officers to become experts in detecting fake elec-
tronic components seems misguided. Burdening vendors with 
detecting fakes when there are such high penalties for failure 
is also misguided, given how easy it is for forgers to create 
high-quality counterfeits.

Types of Counterfeit Parts

To better understand the magnitude of the chip counterfeiting 
problem, let’s look at how fakes are made. The fake chips I’ve 
seen fall into the following broad categories.

External  Mimicry

The most trivial counterfeit chips are simply empty plastic 
packages with authentic-looking top marks, or remarked parts 
that share only physical traits with the authentic parts. For 
example, a simple transistor-transistor logic (TTL) chip might 
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be placed inside the same package, with identical markings, 
as an expensive microcontroller.

I consider external mimicry trivial because fakes produced 
this way are easy to detect in a factory test. At worst, you’re 
sold a mixture of mostly authentic parts with a few counter-
feits blended in so that testing just one part out of a tube or 
reel isn’t good enough to catch the issue. But most products 
employ 100 percent testing at the system level, so typically 
the problem is discovered before anything leaves the factory.

Refurbished   Parts

Counterfeits don’t technically have to be fake at all, though. 
Refurbished parts are authentic chips that are desoldered from 
e-waste and reprocessed to look new. They’re very difficult to 
spot since the chip is in fact authentic, and a skilled refurbisher 
can produce stunningly new-looking chips that only isotopic 
or elemental analysis could identify as used. 

This category also includes parts that are “new” in the 
sense that they’ve never been soldered onto a board but have 
been stored improperly, perhaps in a humid environment. 
Such chips should be scrapped but are sometimes stuck in a 
fresh foil pack with a more recent date code, and sold as new.

Rebinned  Parts

Counterfeiters sometimes remark authentic parts that have 
never been used (and so can be classified as new) as a better ver-
sion of an otherwise identical part. A classic example is grind-
ing and remarking CPUs with a higher speed grade, or more 
trivially, marking parts that contain lead as RoHS-compliant. 

But rebinning can get more sophisticated. Vendors may 
reverse engineer and reprogram the fuse codes inside the 
remarked chip so that the chip’s electronic records actually 
match the faked markings on top. Vendors have also been 
known to hack flash drive firmware so that a host operating 
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system will perceive a small memory as much larger. Such 
hacks even go so far as to “loop” memory so that writes beyond 
the device capacity appear to succeed, thus requiring a time-
consuming full readback and comparison of the written data 
to detect the issue.

Ghost-Shift  Parts

Some fakes are created on the exact same fabrication facility 
as authentic parts; they’re run very late at night by rogue 
employees without the manufacturer’s authorization and 
never logged on the books. These unlogged production runs 
are called ghost shifts. It’s like an employee in a mint striking 
extra coins after-hours. Ghost-shift parts are often assigned 
a lot code identical to a legitimate run, but certain testing 
steps are skipped. 

Ghost shifts often use marginal material left over from the 
genuine product that would normally be disposed of but was 
intercepted on the way to the grinder. As a result, the mark-
ings and characteristics of the material often look absolutely 
authentic. These fakes can be extremely hard to detect. 

Factory Scrap 

Factory rejects and prototype runs can be recovered from the 
scrap heap for a small bribe, given authentic markings, and 
resold as new. To avoid detection, workers often replace the 
salvaged scrap with physically identical dummy packages, 
thus foiling attempts to audit the scrap trail. This practice of 
replacing salvageable scrap with dummy fakes helps drive the 
market for the trivial “external mimicry” fakes. The existence 
of an industry that supplies low-quality fakes to dodge audits 
that would otherwise prohibit high-quality fakes gives you 
an idea of how sophisticated and mature the counterfeiting 
industry has become.
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Second -Sourcing  Gone Bad

Second-sourcing is a standard industry practice where competi-
tors create pin-compatible replacements for popular products 
to drive price competition and strengthen the supply chain 
against events like natural disasters. The practice goes bad when 
inferior parts are remarked with the logos of premium brands. 

High-value but functionally simple discrete analog chips 
such as power regulators are particularly vulnerable to this 
problem. Premium US-branded power regulators sometimes 
fetch a price 10 times higher than drop-in Asian-branded sub-
stitutes. However, the Asian-branded parts are notorious for 
spotty quality, cut corners, and poor parametric performance. 
Clearly, there is ample opportunity for counterfeiters to make a 
lot of money by buying unmarked chips from the second-source 
fab and remarking them with authentic-looking top marks of 
premium US brands. In some cases, there are no inexpensive 
or fast tests to detect these fakes, short of decapsulating the 
chip and comparing mask patterns and cross-sections, as I 
did for the ST19CF68.

Fakes and US Military Designs

The variety of counterfeiting methods available, combined with 
the fact that many commodity parts have production cycles of 
only a few years, presents a big problem for institutions like 
the US military, where design lifetimes are often measured in 
decades. It’s like asking someone to build a NeXTcube* moth-
erboard today using only certifiably new parts, with no second-
hand or refurbished parts allowed. I don’t think it’s possible.

The impossibility of this situation may sometimes make 
military contractors complicit in the consumption of coun-
terfeit parts to bad effect. In the P-8 Poseidon case, people 
were quick to point fingers at China, but a poor refurbishing 

* Remember that one? The NeXTcube was a computer released in 1990 by Steve Jobs’s 
company, NeXT.
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job is probably detectable with a simple visual inspection. 
Maybe part of the problem is that a subcontractor was lax in 
checking incoming stock—or perhaps looking the other way. 
If those parts were the last of their kind in the world, what 
else could be done?

My guess is that the stocks of any distributor in the second-
hand electronics business are already flooded with undetected 
counterfeits. Remember, only the bad fakes are ever caught, 
and chip packaging was not designed with anticounterfeiting 
measures in mind. While all gray-market parts are suspect, 
that’s not necessarily a bad thing. 

Gray markets play an essential role in the electronics 
ecosystem; using them is a calculated, but sometimes unavoid-
able, risk. In fact, many traders in the gray market are very 
upfront about their goods being recycled. Many even post signs 
on their stalls advertising this fact. However, these signs are 
written in Chinese. In that case, whose fault is it—the seller 
for selling recycled goods, or the buyer for not being able to 
read the sign?

Anticounterfeit Measures

The counterfeit chip situation is a mess, but some simple 
measures could fix it. 

Physical   Identifiers 

Embedding anticounterfeit measures in chips approved for 
military use is one option. For chips larger than 1 cm wide, 
a unique 2D barcode could be laser-engraved by equipment 
relatively common in chip packaging facilities. Despite a 
tiny footprint, the codes would be backed with a guarantee 
of 100 percent uniqueness. Such techniques are effective in 
biotech, where systems like Matrix 2D track disposable sample 
tubes in biology labs. 

Another potential solution is to mix a UV dye into the 
component’s epoxy that changes fluorescence properties upon 
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exposure to reflow temperatures—a consistent set of well-
defined temperatures at which solder melts. This makes it 
impossible to recondition the chip to a “new” state after it’s been 
soldered down the first time. If the dye is distributed through 
the entire package body, it will be impossible to remove with 
surface grinding alone.

Changing   How E-Waste  Is H andled 

Managing e-waste more effectively would also alleviate the 
counterfeit problem. E-waste is harvested in bulk for used 
parts. Crudely desoldered MSM-series chips—the brains of 
many Android smartphones, made by Qualcomm and marketed 
under the brand name of Snapdragon—are purchasable by 
the pound, at around 10 cents per chip. Counterfeiters clean 
up the chips, reball (that is, add new solder balls, for ball-grid 
array packages) and sometimes remark them, put them into 
tapes and reels, and sell them as brand-new, commanding a 
markup 10 times the original purchase price. A single batch 
of refurbished chips can net thousands of dollars, making the 
practice a compelling source of income for skilled workers 
who would otherwise earn $200 per month in a factory doing 
exactly the same thing.* (Factories are typically authorized 
to recover chips off of defective boards or consumer returns 
that can’t be repaired.) 

If the United States stopped shipping e-waste overseas for 
disposal, or at least ground up the parts before shipping them, 
then the supply for refurbished chip markets would decrease. 
Domestic e-waste processing would also create more jobs, a 
resource as valuable as gold. 

On the other hand, I think component-level recycling is 
quite good for the environment and the human ecosystem in 
the long term. Most electronic parts will function perfectly for 

* This was the salary rate in the mid-2000s; due to wage inflation since then, it’s risen to around 
$1,000 per month, but refurbishing chips is still more lucrative.
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years beyond a consumer’s trash bin, and emerging economies 
create technology-hungry markets that can’t afford new parts 
purchased on the primary market.

K eeping a Reserve  of Authentic   Parts

A final option to ensure trustworthiness for critical military 
hardware could be to establish a strategic reserve of parts. 
A production run of military planes is limited to perhaps 
hundreds of units, a small volume compared to consumer 
electronics production runs. I imagine the lifetime demand of 
a part, including replacements, is limited to tens of thousands 
of units. Physically, then, a parts reserve isn’t unmanageable: 
10,000 chips will fit inside a large shoebox. 

Financially, I estimate purchasing a reserve of raw replace-
ment components for critical avionics systems would add only 
a fraction of a percent to the cost of an airplane. This could 
even lead to long-term savings, as manufacturers can achieve 
greater scale efficiency if they run one large batch all at once.

Obviously, anticounterfeit measures would be incredibly 
useful in civilian projects, too. I have sympathy for anyone 
who has to deal with counterfeit parts, as I myself have been 
burned on several occasions. Here’s a tale of a particularly 
annoying issue I ran into during my work on the chumby One. 

Fake MicroSD Cards

In December 2009, in the middle of the chumby One’s produc-
tion run, I set out on a forensic investigation to find the truth 
behind some irregular Kingston memory cards. The factory 
called to tell me that SMT yield dropped dramatically on one 
lot of chumby Ones, so I drove over to see what I could do to 
fix the problem. After poking and prodding at some chumby 
Ones, I realized that all failing units had Kingston microSD 
cards from a particular lot code. I had the factory pull the 
entire lot of microSD cards from the line and rework the units 
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that had these cards loaded. After swapping the cards, yield 
returned to normal.

The story should have ended there. In this situation, I’d 
usually get a return merchandise authorization (RMA) from 
the manufacturer for the defective parts, exchange the lot for 
parts that work, and move on. But I had a couple of problems. 

First, Kingston wouldn’t take the cards back, because we 
programmed them. Second, there were a lot of defective cards 
(about 1,000 altogether, and chumby was already deeply back-
ordered), and memory cards aren’t cheap. This type of memory 
card cost around $4 or $5 at the time, leaving a few thousand 
dollars in scrap if we couldn’t get them exchanged. Chumby 
couldn’t afford to sneeze at a few kilobucks, so I kicked into 
forensics mode. 

Visible Differences

Irregular external markings were the first suspicious feature 
I noticed about the defective Kingston cards.

An irregular microSD card (left) and a normal card (right).  
The arrows and circles show suspicious differences.

The strangest physical difference was that the lot code 
on the irregular card was silkscreened with the same stencil 

lot code lot code
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as the main logo. Silkscreening a lot code isn’t unusual, but 
typically, the manufacturer won’t use the same stencil for the 
lot code and the logo. There should be some variance in the 
coloration, font, or alignment of the lot code from the rest of 
the text. The entire batch of irregular cards also had the same 
lot code (N0214-001.A00LF). Typically, the lot code changes 
at least every couple hundred cards. Contrast the irregular 
card with the normal card, which is laser-marked. The normal 
cards’ lot codes varied with every tray of 96 units.

The second strange feature was subtler and perhaps not 
damning: an irregularity in the microSD logo. Brand-name 
vendors like Kingston are very picky about the accuracy of 
their logos: SanDisk cards have a broken D, but Kingston cards 
sold in the United States almost universally use a solid D.

Investigating the Cards

Oddities in the external markings were just the start. When I 
read the electronic card ID data on the two cards (by checking 
/sys entries in Linux), this is what I found in the irregular card:

cid:41343253443247422000000960400049
csd:002600325b5a83a9e6bbff8016800095
date:00/2000
fwrev:0x0
hwrev:0x2
manfid:0x000041
name:SD2GB
oemid:0x3432
scr:0225000000000000
serial:0x00000960

And this is what I found in the normal card:

cid:02544d5341303247049c62cae60099dd
csd:002e00325b5aa3a9ffffff800a80003b
date:09/2009
fwrev:0x4
hwrev:0x0
manfid:0x000002

158  C h a pt  e r  5



name:SA02G
oemid:0x544d
scr:0225800001000000
serial:0x9c62cae6

First, notice the date code on the irregular card. Dates are 
counted as the offset from 00/2000 in the CID field, so a value of 
00/2000 means the manufacturer didn’t bother to assign a date. 
Furthermore, in the year 2000, 2GB microSD cards didn’t even 
exist. Also, the serial number on the defective card is very low: 
in decimal, 0x960 is 2,400. Other cards in the irregular batch 
had similarly low serial numbers, in the hundreds or thousands. 

For a popular product like a microSD card, the chance of 
getting the very first units out of a factory is pretty remote. For 
example, the serial number of the normal card is 0x9C62CAE6 
in hexadecimal, or 2,623,720,166 in decimal, which is much 
more feasible. Very low serial numbers, like very low MAC 
ID addresses, are hallmarks of a ghost shift. 

Finally, the manufacturer’s ID on the irregular card is 0x41 
(capital A in ASCII), which I didn’t recognize.* The original 
equipment manufacturer identification (OEMID) number 
was 0x3432—an ASCII 42, which is one more than the hex 
value for the manufacturer ID. Manufacturer IDs are usually 
the ASCII character given by the hexadecimal value, not the 
hexadecimal values themselves. Confusing hex and ASCII is a 
possible sign that someone who didn’t appreciate the meaning 
of the fields was running a ghost shift making these cards.

Were the MicroSD Cards Authentic?

Armed with this evidence, Chumby confronted the Kingston 
distributor in China and Kingston’s US sales representative. 
We asked whether the cards were authentic and, if so, why the 
serialization codes were irregular. After some time, Kingston 
swore the cards were authentic, not fakes, but it did reverse 

* JEDEC Publication N. 106AA lists all SD card manufacturer ID codes, and 0x41 wasn’t on there.
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its position on exchanging the cards. The company took back 
the programmed cards and gave us new ones, no further 
questions asked.

However, Kingston never said why the card ID numbers 
were irregular. I know Chumby was small fry compared to the 
Nokias of the world, but companies should still answer basic 
questions about quality control, even for small fry. I was once 
accidentally shipped an old version of a Quintic part, and once 
I could prove the issue, I received world-class customer service 
from Quintic. The company gave me a thorough explanation 
and immediately paid for a full exchange of the parts. That 
was exemplary service, and I commend and strongly recom-
mend Quintic for it. Kingston, on the other hand, did not set 
an example to follow.

I’d normally have disqualified Kingston as a vendor, but I 
was persistent. It was disconcerting that a high-profile, estab-
lished brand would stand behind such irregular components. 
Who could say SanDisk or Samsung wouldn’t do the same? 
Price erosion at the time hit flash vendors hard, and as small 
fry, I could have been taken advantage of by any of those com-
panies as a sink for marginal material to improve their bottom 
line. Given the relatively high cost of microSD cards, I needed 
incoming quality control (IQC) guidelines for inspections to 
follow to accept or reject shipments from memory vendors 
based on set quality standards. To develop those guidelines, 
I continued digging for the truth behind those cards.

Further Forensic Investigation

First, I collected a lot of sample microSD cards. I wanted to 
collect both regular and irregular cards in the wild, so I went 
to the Hua Qiang Bei district and wandered around the gray 
markets there. I bought 10 memory cards from small vendors, 
at prices from 30 to 50 RMB ($4.40 to $7.30 USD). 
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Shopping for irregular cards was interesting. In talking to 
a couple dozen vendors, I learned that Kingston, as a brand, 
was weak in China for microSD cards. SanDisk did a lot more 
marketing, so SanDisk cards were much easier to find on the 
open market, and the quality of gray-market SanDisk cards 
was fairly consistent. 

Small vendors were also entirely brazen about selling well-
crafted fakes. They had bare cards sitting loose in trays in the 
display case. (Page 11 in Chapter 1 has photos showing what 
an SD card vendor’s stall looks like.) Once I agreed on a price 
and committed to buying a card, the vendor tossed a loose card 
into a “real” Kingston retail package, miraculously pulled out 
a certificate—complete with hologram, serial numbers, and a 
kingston.com URL to visit to validate the purchase—and 
slapped the certificate on the back of the retail package right 
in front of my eyes. 

A freshly purchased Kingston microSD card. It was just like new!

One vendor particularly interested me. There was literally 
a mom, a pop, and one young child sitting in a small stall of 
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the mobile phone market. They were busily slapping dozens 
of non-Kingston cards into Kingston retail packaging. They 
had no desire to sell to me, but I was persistent. This card 
interested me in particular because it also had the broken D 
logo, but no Kingston marking. The preceding photo is the 
card and the package it came in; the card is Sample 4 in the 
next section, where you can see a detailed analysis of seven 
different microSD cards from my shopping trip.

Gathering Data

After collecting my samples, I read out their card ID information 
by checking their /sys entries under Linux and then decapsu-
lated (that is, dissolved) their packages with nitric acid. As you 
can see in the photos in Table 2, my decapsulation technique 
was pretty crude. Most of the damage to the cards came from 
removing dissolved encapsulant with acetone and a Q-tip. I had 
to get a little rough, which didn’t do the bond wires any favors. 
But it was good enough for my purposes.

Here’s all the basic information I pulled from those cards:

Sample 1  The irregular card that started this whole inves-
tigation. It was purchased through a sanctioned Kingston 
distributor in China, and to the best of my knowledge, none 
were shipped to Chumby’s end customers. MID = 0x000041, 
OEMID = 0x3432, serial = 0x960, name = SD2GB.

Sample 2  A normal card that I purchased from the same 
sanctioned Kingston distributor in China where I bought 
Sample 1. It was typical of microSD cards actually shipped 
in the first lot of chumby Ones. MID = 0x000002, OEMID = 
0x544D, serial = 0x9C62CAE6, name = SA02G.

Sample 3  A Kingston card purchased through a major 
US retail chain. MID = 0x000002, OEMID = 0x544D, 
serial =  xA6EDFA97, name = SD02G. Note how the MID and 
OEMID are identical to those Sample 2, but not Sample 1.
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Sample 4  The non-Kingston card I saw slapped into 
Kingston-marked packaging, bought on the open market 
in Shenzhen. MID = 0x000012, OEMID = 0x3456, serial = 
0x253, name = MS. Note the low serial number.

Sample 5  A device from a more established retailer in the 
Shenzhen market. I bought it because it had the XXX.A00LF 
marking, like my original irregular card. MID = 0x000027, 
OEMID = 0x5048, serial = 0x7CA01E9C, name = SD2GB.

Sample 6  A SanDisk card bought on the open market 
from a sketchy shop run by a sassy chain-smoking girl 
who wouldn’t stop texting. I actually acquired three total 
SanDisk cards from different sketchy sources, but all of 
them checked out with the same CID info, so I opened 
only one. MID = 0x000003, OEMID = 0x5344, serial = 
0x114E933D, name = SU02G.

Sample 7  A Samsung card that I bought from a Samsung 
wholesale distributor. I didn’t scan this one before decap-
sulating it, and the card actually had no markings on the 
outside (it was blank, with just a laser mark on the back), 
so I didn’t photograph it. From appearances alone, it was 
the sketchiest of the bunch, but it was one of the best built. 
You can’t judge a book by its cover! MID = 0x00001B, 
OEMID = 0x534D, serial = 0xB1FE8A54, name = 00000.

That’s a lot of data, and I had my work cut out for me in  
drawing some kind of useful conclusion from it all.  

Note	 Interestingly, one SanDisk card from three in Sample 6 

turned out to be used and only quick-formatted. With help 

from some recovery software, I found DLLs, WAVs, maps, 

and VeriSign certificates belonging to Navione’s Careland 

GPS. Someday, I’ll acquire lots of refurb microSD cards and 

collect interesting data from them.
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Table 2: A Breakdown of All the Cards Collected for the Investigation

Sample 1: 
Original 
Kingston 
card from 
authorized 
Kingston distro

Sample 2: 
Normal 
Kingston 
card from 
authorized 
Kingston distro

Sample 3: 
US retail 
Kingston card

Front marking

Back marking

Decapsulated

Controller die 
marking

Flash die marking SanDisk/Toshiba 
flash
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Sample 4: 
Fake card 
bought from 
Shenzhen 
market

Sample 5: 
Questionably 
authentic 
Kingston card 
bought from 
Shenzhen market

Sample 6: 
SanDisk card 
bought from 
Shenzhen 
market

Sample 7: 
Samsung card 
bought from 
authorized 
Samsung distro

Photo 
unavailable

Photo 
unavailable

SanDisk/Toshiba 
flash

SanDisk/Toshiba 
flash
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Summarizing My Findings

Here are the most interesting high-level conclusions I drew 
from my survey:

•	 The “normal” Kingston cards (Samples 2 and 3) were fab-
ricated by Toshiba, as indicated by the flash die markings 
and their OEMIDs. In ASCII, 0x544D is TM, presumably for 
Toshiba Memory. These cards employ Toshiba controllers 
and Toshiba memory chips and seem to be of good quality. 
Thankfully, they were only ones sent to Chumby customers. 

•	 The irregular card (Sample 1) used the same controller chip 
as the outright fake (Sample 4) I bought in the market. 
Both the irregular Kingston and the fake Kingston had low 
serial numbers and wacky ID information. Both of these 
cards exhibited abnormal operation under certain circum-
stances. I still hesitate to call Kingston’s irregular card a 
fake, as that’s a very strong accusation, but its construc-
tion was similar to another card of clearly questionable 
quality, which leads me to question Kingston’s choice of 
authorized manufacturing partners.

•	 The irregular card is the only card in the group that does 
not use a stacked CSP construction. Instead, it uses side-by-
side bonding—that is, the microcontroller and the memory 
chip are simply placed next to each other. Stacked CSPs 
place the microcontroller on top of the memory chip. This 
is significantly more complex than side-by-side placement 
because the chips must first have their inert back-side 
material ground off to make the overall height of the stack 
fit inside such a slim package. Despite the difficulty, stack-
ing chips is popular because it allows vendors to cram more 
silicon into the same footprint.

•	 The only two memory chip foundries in this sample set were 
Toshiba/SanDisk and Samsung. (SanDisk and Toshiba co-
own the factory that makes their memory chips.)
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•	 Samsung’s NAND die, which is the most expensive part of 
a microSD card, is about 17 percent larger than dies from 
Toshiba/SanDisk. This means that Samsung microSD 
cards should naturally carry a slightly higher price than 
Toshiba/SanDisk cards. However, Samsung can offset that 
against the ability to place the same bare die that normally 
gets crammed inside a microSD package into thin small 
outline package (TSOP) devices suitable for board-level 
machine assembly instead. If demand for microSD cards 
slumps, Samsung can slap excess bare dies inside TSOP 
packages and sell those to third parties that do conventional 
machine assembly of chips. Plus, Samsung also doesn’t 
have a middleman like Kingston to eat away at margins.

I knew (like many others in manufacturing) that Kingston 
wasn’t a semiconductor manufacturer, in that it owned no 
fabrication facilities, but this research implied that Kingston 
did no original design of its own. I hoped to at least find a 
Kingston-branded controller chip inside the Kingston cards, 
even if the chip was fabricated by a foundry. I also expected to 
see Kingston sourcing memory chips from a broader variety of 
companies. Being able to balance the supply chain and be less 
dependent on a single, large competitor for chips would be a 
significant value-add to customers, giving Kingston leverage 
to negotiate a better price that few others can achieve. But 
every Kingston card I bought had a SanDisk/Toshiba memory 
chip inside. The only “value-add” that I saw was in the selec-
tion of the controller chip. 

Oddly enough, of all the vendors, Kingston quoted Chumby 
with the best lead times and pricing, despite SanDisk and 
Samsung making all their own silicon and thereby having 
lower inherent costs. This told me that Kingston must have 
a very low margin on its microSD cards, which could explain 
why irregular cards found their way into its supply chain. 
Kingston is also probably more willing to talk to smaller 
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accounts like Chumby because, as a channel brand, Kingston 
can’t compete against OEMs like SanDisk or Samsung for the 
biggest contracts from the likes of Nokia and Apple. 

So, the irregular microSD card I pulled from the chumby 
One production line may not have been counterfeit, but it was 
still a child of the remarking ecosystem in China. Kingston 
is more of a channel trader and less of a technology provider, 
and is probably seen by SanDisk and Toshiba as a demand 
buffer for their production output. I also wouldn’t be surprised 
if SanDisk/Toshiba sold Kingston less-than-perfect parts, 
keeping the best of the lot for themselves. Thus I’d expect 
Kingston cards to have slightly more defective sectors, but 
thanks to the magic of error correction and spare sectors, this 
fact is hidden to end users.

As a result, Kingston plays an important role in stabiliz-
ing microSD card prices and improving fab margins. But the 
potential conflict of interest seems staggering, and I’m still very 
curious about how this ecosystem came to be. Buying a signifi-
cant amount of a competitor’s technology from a competitor’s 
fab yet still selling at a competitive price is counterintuitive 
to me, and perhaps my greatest folly in investigating that 
irregular microSD card was expecting something different.

Fake FPGAs

Anyone who has done manufacturing in China for a while will 
have more than one story about irregularities in the supply 
chain. Here’s another one of my favorite stories, which high-
lights some of the core incentives that drive agents to cheat.

The White Screen Issue

It was March 2013, and I was wrapping up the first volume pro-
duction run of a bespoke robotics controller board codenamed 
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Kovan.* At the conclusion of any production run, I always 
review the list of issues encountered in production, to identify 
areas of improvement. Manufacturing is a Sisyphean struggle 
toward perfection: every run has some units you just have to 
scrap, and the difference between profit and loss is how well 
you can manage the scrap rate. 

On this run, one particular problem, dubbed the “white 
screen issue” after its most obvious symptom, was the domi-
nant problem. About 4 percent of the total run exhibited this 
problem, accounting for almost 80 percent of unit failures. I 
had the factory send me a few samples of the failed units to 
analyze in more detail. 

As I’ve often discovered when analyzing failed units, the 
most obvious symptom of the problem was only tangentially 
related to the root cause. The LCD screen appeared white on 
these units because the FPGA failed to configure. An FPGA, 
short for Field Programmable Gate Array, is essentially a blob 
of logic and memory devices embedded in a dense network of 
wires that can be configured at runtime to behave a certain 
way. The behavior of the FPGA is typically described in a 
high-level language that resembles a programming language 
like C (for instance, Verilog) or Ada (like VHDL), which is then 
compiled into a configuration bitstream. 

FPGAs are very handy for implementing time-sensitive 
hardware interfaces that software would have trouble emu-
lating. In this particular application, the FPGA controlled 
everything from the motors to the sensors and even the LCD. 
When the FPGA failed to configure, the LCD didn’t receive 
sync and data signals, leading it to show a blank, white screen 
instead of the expected factory test patterns. 

FPGA failure was a big deal. For starters, the FPGA was 
the most expensive part on the board by a long shot, at around 

* Kovan is open hardware; you can read more about it and download the source on the Kosagi 
wiki at http://www.kosagi.com/w/index.php?title=Kovan_Main_Page.
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$11 per chip. I was also worried this problem could point to 
a deeper design issue. Perhaps the FPGA’s power regulators 
were unstable, or maybe there was an issue with the boot 
sequence that aggravated a corner case in configuration tim-
ing that would creep into the “good” production units as they 
aged. The situation definitely warranted a deeper investigation.

Incorrect ID Codes

I hooked up the debug console, dug into the problem, and dis-
covered that the failure was linked to the FPGA not responding 
with the correct ID code. The ID code is checked via queries 
over a test access bus known as JTAG. Most users don’t check 
an FPGA ID before programming, but we designed an ID code 
check into Kovan because we allowed customers to specify 
what capacity FPGA they wanted to use for a given production 
lot. Some applications are more demanding, while others are 
more cost-sensitive. As a result, a customer could have a mixed 
inventory of FPGAs, and we wanted to be able to detect and 
protect the hardware from an accidental mismatch between 
the bitstream and the FPGA.

But this was a single production lot, and in theory all the 
FPGAs should have been the same. How, then, could the FPGA 
have reported a mismatched ID code at all? I scratched my 
head for a while and suspected a bug in our JTAG implemen-
tation, until I looked up the reported ID code. It was a known 
code—but for silicon marked as “Engineering Samples” from 
Xilinx, the vendor that makes these FPGAs. Engineering 
samples are preproduction units sold by Xilinx that have some 
minor known bugs but are sufficiently functional for most 
applications, to the point where most customers wouldn’t see 
a difference, except for the ID code.

I looked closer at the PCB, and for the first time, I noticed 
that a small, white rectangle was laser-etched into the FPGA’s 
surface. The rectangle was right below the part number, where 
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the “ES” designator for an engineering sample would normally 
be marked. Someone had blasted the letters off and sold us 
engineering samples as full production units!

Chip has been laser-
etched to remove “ES” 

designation

An engineering sample FPGA on a Kovan board

For contrast, an FPGA of the same type that hasn’t been tampered with

The problem was very clearly a supply chain issue, not 
a design issue. Someone in the chain was taking ES silicon, 
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blasting off the letters, and blending them in with legitimate 
units at a rate of around 3 to 5 percent. Typically, Xilinx 
would require that all ES silicon in a distributor’s inven-
tory be scrapped once production units become available, 
but the ES units were almost fully functional, to the point 
where most applications would be unaffected. A production 
bitstream would seamlessly load into an ES part, and nobody 
would know the difference. The only way to tell them apart 
would be by doing an ID code check, which is, as I noted 
previously, atypical. 

Thus, slipping ES silicon into production lots would likely 
go unnoticed. Mixing ES parts in at a rate of 3 to 5 percent 
was also very clever: a low mix rate makes substitutions very 
hard to catch without 100 percent prescreening of the parts. 
Even in production, if the ES silicon were marginal, it would 
be maddeningly difficult to nail down the root cause of an 
issue due to its rarity. 

In fact, there’s a correlation between manufacturing dif-
ficulty and the use of FPGAs. Usually if your design calls for 
an FPGA, you’re pushing boundaries on multiple fronts, so 
a scrap rate of a few percent is to be expected. The margin 
on FPGA-powered hardware is also often fat enough that a 
4 percent failure rate might simply be accepted by the end 
customer. Thus, whoever did this knew exactly what they 
were doing; it was virtually risk-free money. 

Finally, it’s important to note that most vendors in a sup-
ply chain survive on single-digit margins, so finding an extra 
3 to 5 percent of “free money” on the most expensive part on a 
board virtually doubles profitability. That provides a very strong 
incentive to cheat, especially if you think you won’t be caught.

The Solution

The resolution to this problem was quite interesting. I met 
with the managers and CEO of AQS, the CM charged with 
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producing Kovan, briefed them about the problem, and showed 
them the evidence I had accumulated. When my presentation 
ended, the CEO didn’t point a finger at upstream vendors or 
partners. Instead, he immediately looked his staff in the eyes 
and asked, “Did any of you do this?” He understood better than 
anyone else in the room that any individual buyer or manager 
would effectively double their take-home pay that month if 
they could pull off this cheat without getting caught. 

In other words, the truly remarkable part of this situation 
is how rarely the problem I experienced happens, given what’s 
at stake and how hard these problems are to catch. And while I 
do have a few good bar stories to tell about fakes in the supply 
chain, remember that I’ve also shipped hundreds of thousands 
of units of good product. The majority of people I’ve worked 
with in China are hardworking, honest people who pass on 
easy opportunities to cheat me and turn a profit. It’s important 
not to generalize the whole based on the bad actions of a few.

At the end of the day, the vendor who sold us the chips 
didn’t admit fault, but they did replace all remarked units at 
their own cost. (We still had to pay for the labor cost to replace 
the chips and recertify the boards.) This is about the closest 
you can get to an amicable resolution in China when you’re 
not a giant like Apple or Foxconn. I did send a note to Xilinx 
HQ about potential misbehavior by one of their authorized 
vendors, but in the end, I’m a small customer, and the sub-
stitution of parts could have happened literally anywhere on 
the supply chain. Even the courier delivering the packages 
could have done the swap. 

It wouldn’t be worth the cost to Xilinx in terms of man-
power, relationships, and focus to investigate the problem 
and rat out the one bad actor in literally hundreds of possible 
suspects. But I’d like to imagine that at least a memo was 
sent around, and whoever was swapping in the ES parts got 
scared enough that they stopped.
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Closing Thoughts

At the end of the day, a permissive IP ecosystem has benefits 
and drawbacks. As an engineer and a designer, I prefer to be 
in an ecosystem where ideas are accessible, even if it means I 
have to be on guard for occasional problems with fake goods. 
Put another way, a fundamental prerequisite for virality is the 
ability to make copies. The explosion of interest in hardware 
startups is in part thanks to the highly competitive manufac-
turing ecosystem that could flourish only in a product-over-
patent culture.

Westerners who come to China without understanding the 
principles of gongkai and guanxi* often feel like they’re being 
cheated. But once you understand the rules and learn how to 
use them to drive your interests, you won’t feel like the game 
is rigged against you anymore. 

In the US IP system, honor has little economic value, and 
law trumps honor. For example, patent trolling is a perfectly 
legal, and very profitable, way to make a living. In the Chinese 
system, however, reputation can trump law. This opens the 
door for corruption but also crowdsources the enforcement of 
social and moral values, driving a market value for honor, 
especially in local, tightly knit communities. 

Of course, the approach of making money by locking up 
ideas and selling the rights to them is patently incompatible 
with a permissive IP ecosystem. Thankfully, the notion that 
ideas are community property dovetails nicely with my open 
source philosophies. In the next part of the book, I’ll talk more 
about my experiences creating open hardware and building 
businesses rooted in these principles.

* Guanxi (关系) is a traditional social networking platform deeply embedded in the Chinese 
culture. Like modern social networks, it has notions of followers, likes/dislikes, karma, and 
moderators. Guanxi predates the modern legal system and can be more effective than the civil 
code for resolving or avoiding all manners of disputes. Guanxi is also essential in facilitating 
new deals and relationships.
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Part 3
what open hardware 
means to me
Before there was open hardware, hardware was open. 

A yellow, tattered sheet of paper hanging next to my 
monitors—the schematic for the Apple II computer—reminds 
me of that fact every day. When I got the schematic as a child, 
it became a blueprint for the rest of my life. I couldn’t under-
stand the schematic, but that didn’t matter; it taught me that 
hardware is knowable. It empowered me to understand my 
world and master the technology I relied on. That empower-
ment propels me to this day.

The legal doctrine of open source was still nascent when the 
Apple II was created, so while anyone can read the schematic, 
it bears no open source license. It simply shows the patent 
number 4,136,359. Back then, people just shared ideas—until 
investors with lawyers came along and tragically spoiled the 
commons. The software community defended itself with the 
same tools used against it: primarily, copyright law. 

Copyright law originally applied to literary and artistic 
works. Today it also applies to computer code because, like 
literature and art, code is a form of expressive speech. In the 
same way that you can copyright a painting of the Grand 



Canyon but not the Grand Canyon itself, you can copyright 
an implementation of Quicksort in C but not Quicksort itself. 
To ensure source code could be shared freely, the software 
community created open source licenses. Those licenses range 
from copyleft (that is, openness begets openness) arrange-
ments like the GNU Public License (GPL) to more permissive 
agreements that boil down to “acknowledge me, don’t sue me, 
and otherwise do as you wish,” like the Berkeley Software 
Distribution (BSD) licenses. 

Hardware blueprints can be protected by copyright, too, 
but blueprints are functional, so defining “open hardware” is 
trickier. Virtually every piece of hardware used to ship with 
a schematic. Somewhere along the way, however, it became 
impossible for users to service hardware themselves without 
breaking its warranty. Devices are now filled with trade secrets. 
This shift created an artificial distinction between closed and 
open hardware. I say “artificial” because while software can be 
encrypted with ciphers so strong you’d have to build a planet-
sized computer to break them, you can reverse any hardware 
design into a schematic, given a powerful enough microscope 
and the software to stitch and process the resulting images.

The internet is littered with well-intentioned but misguided 
attempts to apply software-centric open copyright licenses to 
hardware. But using a software license on a piece of hardware 
is like filing a marriage license for a corporate merger: while 
the license conveys the author’s intent, it may not actually 
do anything. For example, the text of the GPL doesn’t use the 
word hardware once, meaning a court could rule that the GPL 
doesn’t legally apply to hardware. 

Some hardware-specific open licenses have been created to 
help rectify the situation (the CERN OHL is a decent copyleft-
style hardware license), but the community is divided over 
how much of the creation process has to be open for a piece 
of hardware to be considered open. For instance, if I share 
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schematics for a board I designed using a closed-source tool, 
many would argue that the design does not qualify as open 
source. But even if I designed the board using a schematic 
capture and layout tool that was free and open source software 
(F/OSS) compliant, what about the designs of the silicon chips 
it uses or the bits of firmware burned into the silicon? Do we 
need to see blueprints of the particle accelerators used to shoot 
dopants into the silicon? What about the machine used to 
engrave the masks used for silicon production? It’s turtles all 
the way down. Hardware can’t be purely open source, because 
at some point, ideas must translate into matter, and access to 
the objects required to transform and shape matter is rarely 
open to the community.

There are, however, much more pragmatic approaches 
to open hardware than doing electron microscopy or demanding 
open silicon foundries. Simply sharing blueprints at a given 
layer of abstraction takes much less effort, is more intuitive, 
and still has a positive effect. The shanzhai’s gray-market style 
of open source, which I referred to in earlier chapters as gong-
kai, reaps the benefits of such sharing. In China, blueprints 
are shared publicly, but under dubious terms. Most designs 
still bear “confidential” or “proprietary” copyright notices, and 
the shanzhai use pirated copies of professional-grade, closed 
source design software to create derivative works. But at the 
end of the day, this laissez-faire openness creates an ecosystem 
where hundreds of small companies make a living repairing 
or building mobile phones. Walking through the electronics 
markets of Shenzhen made me realize that building a phone 
isn’t difficult or scary. Communities outside the shanzhai just 
don’t feel empowered to peer inside the box, due to restrictive 
IP laws. 

The gongkai ecosystem, explored in Part 2, values intellec-
tual and physical property almost equally. Schematics without 
a supply chain are useless: you can’t make a phone call with 

what open hardware means to me  177



blueprints for a phone. Likewise, chipmakers have no business 
if no products use their chips. As a result, hardware creators 
have a natural incentive to share information, particularly 
the information necessary to design a given module or chip 
into a larger system. Getting a customer to adopt chip-specific 
design IP virtually guarantees that customer will purchase 
the same chips when they’re ready to bring a product to mass 
production. This balance between IP and the supply chain 
has been difficult to strike in IP-centric Western ecosystems, 
where ideas are much more valuable than factories. This 
may partially explain why so many manufacturing jobs have 
migrated to China, an ecosystem that more comparably values 
the production of products and the ideas behind them.

I’m optimistic that with consistent effort, growing public 
awareness, and the right economic conditions, the world’s 
hardware ecosystem will eventually yield an open silicon 
foundry. However, until then, “open hardware” has to be a 
more pragmatic concept that is constrained to exist within 
certain layers of abstraction. After all, just being able to 
share blueprints (even if the licenses aren’t perfect and the 
formats aren’t easily edited) dramatically affects innovation. 
The shanzhai are living proof. 

Whether it’s gongkai or open source, open hardware is 
about empowering users to be the masters of their own tech-
nology, not about any specific legal arrangement. Damn the 
torpedoes—full speed ahead! The freedom to learn, tinker, 
and improve technology is so core to my person that I view it 
as a basic human right. Freedom atrophies if not exercised, 
which is why I actively defend this freedom. I share my work 
openly, hoping to empower others and raise awareness that 
technology is knowable. We’re not slaves to our computers or 
the corporations that build them. 

I also challenge legislative and legal attempts to curtail 
our freedoms. I was born into a DMCA-free world; I’d like to 
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leave the world in a similar state by establishing that everyone 
has the right to understand, repair, and modify the things 
they own. This is more important than ever as we become 
increasingly dependent upon technology. If we allow technol-
ogy to become a black box, we also surrender our agency to 
the companies and governments that produce and regulate it. 

This part of the book describes how I built three open 
hardware platforms: chumby, Novena, and chibitronics. I 
hope that by reading my stories, you’ll also realize hardware 
is knowable and be empowered by this knowledge.
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6.  the story of chumby
One of my earliest open hardware projects was chumby, the 
Wi-Fi-enabled content delivery device that took me to China 
to set up my first supply chain in 2007.* Working on chumby 
was personally exciting to me for two reasons. First, I had the 
opportunity to build a product that could improve people’s lives 
in some small way. The always-on, always-connected users who 
blog and rely on IM to keep in touch could use chumby to make 
those connections more easily. At the same time, chumby was 
a chance for me to create a truly open platform that enabled 
hackers to tinker and modify it however they liked.

* Of course, I want to make clear that I wasn’t the only guy behind chumby; I worked with a 
whole team of fun, talented people. As I mentioned in Chapter 1, I was just the lead hardware 
designer, though I did the Linux kernel stuff too. (That was new for me at the time, but it was 
a lot of fun learning the insides of Linux from boot to halt!) 



A Hacker-Friendly Platform

Hackers have an insatiable desire to extend, modify, custom-
ize, and abuse consumer products to discover unintended 
functionality. At Chumby, we hoped hackers would learn 
how the device worked and transform it to do things we never 
imagined, so we designed chumby to be as open as possible to 
anybody who wanted to hack it. We considered not only open 
source software hackers, but also hardware hackers, artists, 
and crafters—that is, people skilled with and passionate about 
noncomputer things, like metalworking, sewing, or carpentry. 
To encourage and enable chumby hackers, we made the source 
code, schematics, board layouts, bill of materials, flat patterns, 
and 3D CAD databases of the plastic pieces freely available. 
You can still find them all on the chumby wiki (http://wiki 
.chumby.com/). 

The original soft chumby
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The idea was to let hackers break away from point-solution 
hacks on inscrutable hardware and into hacks they could 
share with just about anyone. For instance, imagine you add 
a blood pressure cuff to a chumby and give the chumby to your 
grandmother. Now you can check on Grandma’s health, and 
she can watch pictures of her grandchildren while she gets 
her blood pressure taken. But imagine this scenario with a 
WRT-54G router instead of a chumby. Sure, you can add a 
blood pressure cuff to a WRT-54G as well (in fact, it’s quite 
similar to chumby architecturally), but try teaching Grandma 
how to set it up and use it. In other words, we felt making 
chumby a simple product would allow hackers to make their 
own hacks more usable and more understandable to the less 
technical people in their lives.

Making chumby open had other benefits for hackers, too. 
This time, imagine your thermostat is a little too far from the 
place where you actually want to regulate temperature. You 
could solve that problem in a weekend by adding a tempera-
ture sensor to a chumby. The chumby platform has Wi-Fi and 
I built a hacker sensor package for the device, so the project 
would require minimal hardware grunge work: you’d just mod 
two chumbys (one with a temperature sensor and one with an 
interface to the thermostat) and enable both with the sensor 
package. Such a device would not only help you keep your liv-
ing room at the right temperature but also tell you the latest 
news and help you track your favorite TV shows. 

The icing on the cake is that you’d also be free to publish 
your modifications and even resell modified chumbys with 
those custom capabilities. Others could benefit from your 
work, and you could make some money. (On a lighter note, 
the original chumby housing was made of fabric, so you could 
even modify it to match your décor!)

The original chumby design, now called the chumby classic, 
premiered at FOO Camp in 2006, and it went on sale in 2008. 
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Unfortunately, however, the chumby classic hit full-stride 
launch in the middle of the worst economic downturn since 
the Great Depression. Its cute, cuddly form factor had a price 
tag that many consumers just couldn’t stomach, so I did what 
any entrepreneur would do in a recession: I scaled back.

Evolving chumby

Shortly after Lehman Brothers filed for Chapter 11 bankruptcy 
protection in 2008, we started work on a product that could 
address a new economic reality. As I drew my first napkin 
sketches for the product, which we later dubbed the chumby 
One, the stock market was in free fall and losing several hun-
dred points a day. Given that, the key goal was cost reduction. 
I took a good, hard look at the whole design so I could build a 
cheaper, faster product that would be better for the market. 
We wanted chumby One to win new customers yet retain the 
loyalty of our existing consumer base, and we wanted it out 
before Christmas 2009.

Fortunately, an applications engineer from Freescale (since 
acquired by NXP) contacted me about a new, remarkably inex-
pensive CPU (the i.MX233) that Freescale planned to launch 
in 2009. It looked like a promising fit for chumby, so I drew 
up some straw-man renderings and ran some cost scenarios. 
At CES in January 2009, we shared the new design with a 
few potential customers to get feedback on the features and 
pricing. The idea slow-rolled through March, and after the 
Chinese New Year, I built the first prototype board. 

Note	 One really cool thing about the i.MX233 is that it has embed-

ded power regulators, and they aren’t just linear regulators: 

they’re switching regulators. But they’re not just any switch-

ing regulators; they derive three voltages using just a single 

inductor! How cool is that? I have to give mad props to the 

guy who designed that system.
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Around May, we contracted an industrial designer to do 
some sketches, and by June, we had a near-final industrial 
design. We made our first 3D-printed prototypes around then, 
but we couldn’t afford a mechanical engineering contractor. 
I had to learn SolidWorks and do the mechanical integration 
for the 3D prototype myself. Since I enjoy learning new things, 
the experience was quite rewarding.

In July, we inked a purchase order for steel tooling, and by 
August, we had first-shot plastics. I spent September refining 
and debugging the design and October on more testing, refin-
ing, and ramping up mass production. By November 2009, 
the first shipment of chumby Ones was 35,000 feet above the 
Pacific Ocean en route to LAX. 

The finished chumby One

The chumby One retailed for about half the price of the 
chumby classic, and it had more features, like an FM radio 
and support for a rechargeable lithium ion battery, a feature 
users of the squishy, leather chumby classic often requested. 
The initial reactions to the battery in the chumby One were 
an interesting study in consumer psychology. For some reason, 
even though the chumby One was smaller and lighter than 
the chumby classic and did exactly the same things, people 
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didn’t feel it should have a rechargeable battery. They had 
no intrinsic desire to pick up the chumby One and carry it 
around. That just goes to show how much form factor influ-
ences a consumer’s perception of function! 

At any rate, customers certainly liked all those options, 
but to me, they weren’t the most significant new features. 

A More Hackable Device

What really excited me about the chumby One was that it was 
much more hackable than the chumby classic. On the chumby 
classic, we used a soldered-down SLC NAND chip, which 
was cost-effective but made development quite complicated. 
Developers were exposed directly to all the warts of NAND 
flash memory, including bad blocks and error correction, and 
if the system failed to boot correctly, one had few recovery 
options. We addressed these problems on the chumby One by 
storing the firmware on a microSD card.

If you happen to get your hands on a chumby One, you’ll 
notice that you can’t replace the microSD card from the out-
side. We made that choice to prevent nonhackers from pulling 
the microSD card out and wondering why the device wouldn’t 
boot. But if you unscrew and remove the back panel (no glue 
seals, unlike the chumby classic), the microSD card is easy 
to access. Thanks to this key change, hackers didn’t have to 
worry about bricking their chumbys. If someone screwed up 
the firmware, they could just pull the microSD card out, mount 
it on their dev box, and write a new image. 

We also chose to make the chumby One’s microSD card a 
managed NAND device so that we could directly drop ext3 (a 
popular default Linux filesystem configuration) onto it. The 
root partition was still mounted as read-only at the factory to 
prevent accidental damage, but a managed NAND system made 
remounting the root partition as read/write and modifying 
the Linux system trivial. We consciously made the OS image 
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use only a small portion of the total microSD card capacity, 
leaving hackers with over a gigabyte of extra space to load 
custom applications and libraries. (Keep in mind that a gig 
was a big deal at the time.)

In hardware, what’s good for hackers is also good for 
developers. The flexibility we added for hackers allowed us 
to add a ton of great features to the OS. For example, the 
chumby One supported certain 3G modems and could serve 
Wi-Fi as an access point through those 3G modems. That 
basically made the device a 3G-to-Wi-Fi router, which I found 
enormously useful when I was traveling and needed to create 
a Wi-Fi hotspot for other devices. We didn’t expose that fea-
ture at the mainstream user level at first, but we knew we (or 
anyone else—it was an open project, after all) could wrap a 
GUI around it and make it more user-friendly if people liked 
it. And if you plugged a USB keyboard into a chumby One, it 
would automatically open a console shell that you could type 
into. That’s handy for times when you can’t SSH in, like when 
you’re debugging network scripts.

Hardware with No Secrets

As with the chumby classic, we also made the chumby One 
design as open as possible. We posted schematics, gerber files, 
and the GPL source code online. In the following figure, you 
can see a preproduction pilot chumby One board. The mass-
production board was basically identical, with some minor 
tweaks to enhance compatibility with the SMT machines we 
used in China.

In particular, notice the pair of test points on the board 
labeled SETEC ASTRONOMY in the bottom-left corner of 
the photo of the back of the mainboard. You could use those 
points to bypass the write protection on the chumby One’s 
authentication ROM and wipe out the keys that Chumby 
used to authenticate the device. I can’t think of a real reason 
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to do that, but I added them on the principle that hardware 
you own shouldn’t hold secrets from you. If you don’t like hav-
ing encrypted access codes on a device, you should be able to 
nuke them. In the case of a chumby One, that meant you’d no 
longer have the codes to fetch widgets from Chumby’s servers, 
but hey, it’s your hardware. When hardware is truly yours, 
you can void the warranty and do what you want with it. Of 
course, we published the security protocol that chumby Ones 
used to fetch widgets, too. 

I also designed the chumby One motherboard with mounting 
holes and features so it could be retrofitted back into a chumby 
classic. Although Chumby never planned to put chumby One 
boards into chumby classic enclosures—hand-stitched Italian 
leather was just too expensive, and there were a couple of 
technical issues with integration—I thought intrepid hackers 
would appreciate the option to do it themselves. 

MicroSD 
firmware card

(2GB)

TTL-level 115200, 
8N1 serial console Li-ion battery 

connector

Chumbilical connector (not used);
warning: not compatible with 

chumby classic chumbilical
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ROM write protect 

override points
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I continued to work on improving the chumby line for sev-
eral years, but eventually, I wanted more time for personal 
projects and a break from entrepreneurship.

The End of Chumby, New Adv entures

In April 2012, Chumby as the world knew it came to an end. 
We had run out of money, and the investors had run out of 
patience. I’d already left the company discreetly in January; I 
had a good run, but it was also time for me to move on. Upon 
hearing the news, my good friend Phil Torrone from Make: 
reached out to me for an interview, and I was happy to oblige. 
You can read the full interview online,* but I’ve excerpted 
parts of it here that you might find useful if you’re excited to 
get into the hardware business.

* See http://makezine.com/2012/04/30/makes-exclusive-interview-with-andrew-bunnie-huang 
-the-end-of-chumby-new-adventures/ for the full interview.
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Phil: How did you get involved at Chumby? And what was 
your role at the company?

bunnie: I was originally an advisor to the company, a consul-
tant brought in to figure out some bits of the hardware strategy. 
We had weekly dinners where we’d talk about what the product 
might be. Eventually, I got excited enough about the product 
that I just hammered out an initial prototype motherboard in 
my spare time. Around the same time, my boss at my prior 
company was really irritating me (he lectured me about the 
importance of being in my chair every morning by 9am, com-
pletely ignoring the fact that I’d worked until midnight the 
day before), so I resigned on the spot and joined the founding 
team of Chumby.

My role at the company was initially VP of Hardware, 
which sounds grand. But when the hardware organization 
consists of exactly one person, you’re also the solder jockey 
and the janitor. Now that I think back on it, the team took a 
big chance on me. At the time I had no experience in supply 
chain management and had never been to China. They took 
a leap of faith and gave me the opportunity to figure it all 
out. I really appreciate that they gave me so much latitude 
to learn on the job.

Phil: What was the best part of making the chumby?

bunnie: There were so many great things about making the 
chumby. I think overall, one of the best parts was that I had 
to figure everything out from conception to distribution. It 
meant that I got to see every part of the process firsthand: 
industrial design, electronics design, tooling, supply chain, 
retail, and reverse logistics. There are so many things that go 
into a product, and satisfying that curiosity about how things 
are made was great.

The other thing I really treasure from making the chumby 
was all the wonderful people I got to work with and meet 
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along the way. I made a lot of friends, and I had so many 
excellent mentors.

And finally, I think the best part about making chumby 
isn’t really the making. It’s seeing people use it, and seeing 
people enjoy and appreciate the device. The smile on a user’s 
face is the ultimate reward.

Phil: Can you talk about making a device from start to finish, 
from idea to factory to retail shelves?

bunnie: One of the best parts about making a device from 
start to finish is that you have a totally unconstrained set of 
tools to solve the problems at hand. You can solve business 
problems with board layout, and vice versa. For example, there 
was a question about how we could uniquely and flexibly brand 
units, in a fashion that allowed for swappable faceplates (that 
is, snap on the NFL faceplate and get your football scores, snap 
on the Bloomberg faceplate and get your financial news, and 
so on). This is a topic that could take dozens of meetings to 
hash out. But as the sole hardware guy, I knew that embed-
ding an EEPROM costs only $0.20 and while everyone else 
discussed possible solutions in the staff meeting, I fired up 
my board design tool, added the eight-pin EEPROM to the 
board, tossed on an appropriate connector, and had the whole 
solution engineered by the time action items were assigned. It 
actually took me longer to convince them that the work was 
done than it took to do the work.

I think I ended up absorbing many of the skills required 
to build a product from start to finish because it’s very diffi-
cult to communicate requirements. The question was always 
whether it would be faster for me to do it myself or to explain 
it to someone else, wait for them to do it, and possibly have 
to re-explain it and have them change it. That’s one reason I 
learned mechanical design; the industrial design and plastics 
tooling is a long pole in the tent for many consumer products, 

the story of chumby  191



and being able to efficiently and effectively communicate with 
a mechanical engineering team using their language was 
important to getting the job done right.

Phil: What were the challenges with retail sales?

bunnie: Retail and distribution were the most difficult chal-
lenges. Here are a few difficulties I encountered:

Dealing with the merchant buyers.  Brick-and-mortar 
retailers hire teams of buyers assigned to monetize shelf 
space. They think about products in terms of revenue per 
shelf space, and they don’t really see anything beyond 
that. This puts into sharp relief any improvements you 
want to add to the product that also drive up product 
costs. Merchants tend to look at your product as so many 
grams of plastic and so many wires. They multiply those 
numbers by the commodity price of the raw materials to 
set expectations for how much they’ll pay to have it on 
the shelf. It’s possible to cut better deals, but educating 
a merchant about the value of your product takes a lot of 
effort. Unfortunately, the turnover in merchant staff can 
be fairly high, so you may spend months cutting a deal 
only to find that the person you were working with has 
left the organization.

Margin.  Everyone in the supply chain has a hand out: 
the distributor, the merchant, and the factory. Beyond that, 
market development funds and other slush money have 
to be factored in. At the end of the day, the shelf cost of a 
product is about three times your BOM cost. This means 
adding a $0.50 part turns into a $1.50 retail price impact.

This is aggravated by the fact that prices are quantized 
into “magic” numbers (like $19.99, $49.99, or $99.99) that 
you have to hit. You just don’t MSRP a product for $127.45. 
If a product retails for above $99, it’s psychologically binned 
with the $149 or $199 products. When your product’s BOM 
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cost approaches one of these quantization points, you’ll do 
lots of soul searching about whether it’s worth $0.50 to 
improve, say, the speakers. Either that small cost increase 
will come out of your own margin, or you risk pushing your 
product into a higher price tier.

Cash flow.  Retailers are notoriously bad at paying on 
time. You may negotiate 60-day terms, but often you’re not 
paid after 90 or even 120 days. If your product doesn’t sell 
out so that the retailer has to place another order with you 
(at which point you have some leverage to collect outstand-
ing payment), you’ll get strung out. This can be partially 
mitigated with financial instruments such as factoring 
insurance. Insurance companies will sell insurance on 
anything, including insurance hedging against retailers not 
paying on time or going insolvent before they can pay you.

Reverse logistics and returns.  Many retailers offer 
no-questions-asked return guarantees. That’s great for 
the customer, but guess who services those returns? The 
retailer passes the buck back to the entrepreneur! This is 
part of why payment times can be quite bad: retailers are 
retaining cash to hand back to customers to satisfy returns. 
Once the returns are processed, you get to figure out how 
to get the returned material off their dock and back into 
a facility where you can refurbish the units. Typically, 
most returned units aren’t defective. They simply didn’t 
meet customer expectations, or the customer had buyer’s 
remorse after an impulse buy. The otherwise working 
units are usually missing accessories or are cosmetically 
marred, thereby requiring extensive rework to refurbish.

Contracts.  Retailers will hand you a default contract 
full of terms that very strongly favor them in almost every 
contingency. Sometimes, the contracts can expose you to 
liabilities that you can’t possibly hope to cover. For example, 
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I’ve seen language such that if an affiliated content website 
was down for longer than a specified amount of time, then 
you could be liable for nonspecific damage to the brand 
reputation of the retailer selling your goods. Those sorts 
of open-ended liabilities are unacceptable, and negotiating 
them out can take months. Other onerous terms include 
penalties for late shipments or fines for defective units. 
The contract negotiation process is very distracting to top 
management and can put a real drag on an organization.

Phil: Did you get any patents? How do they work within the 
world of open source?

bunnie: Yes, I actually was granted several patents dur-
ing my tenure at Chumby. Patents are a very natural way 
to protect hardware ideas. As F/OSS [free and open source 
software] licenses like the GPL [GNU general public license] 
and BSD [Berkeley software distribution] rely on copyright 
for power, open hardware licenses can likewise draw upon 
patents for power.

When we started, no license existed that addressed the 
patent issue, so chumby created its own flavor of open source 
license. It was basically an automatic cross-license with users 
who created derivative works. Those who utilized our source 
would get a license to the patents, under the condition that 
any patents granted for the derivative work also had to be 
automatically licensed back to us.

The license had a couple of other restrictions that were not 
“truly” open, like a condition that the derivative work had to 
at least give users the option to run the chumby network in a 
competing product (an opt-in checkpoint during the boot pro-
cess). There was also an “ask us if you want to manufacture” 
clause, which stated that derivatives going to mass production 
had to get additional authorization from Chumby. We added 
that primarily to create a checkpoint to verify interoperability 
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with the servers, and also to enforce proper trademark and 
branding rules. Burying that clause in the license meant that 
the license couldn’t be called open source because Chumby could 
always say no, though it never did in practice. However, the 
situation does highlight an ongoing struggle in open source 
hardware: how to address trademark and interoperability 
issues in an increasingly complex and diverse ecosystem.

Also, the rights to the patents I created at Chumby are 
all assigned to the investors. They will likely be sold to the 
highest bidder, which could very well be a patent troll. I would 
regard that outcome as unfortunate, but it’s a reality that I 
must accept. The investors have the right to explore all lawful 
venues to recover their investment. In an ideal world, however, 
I’d buy back the rights at an affordable price, license them 
to the open source community, and try to establish a mate-
rial precedent on how to handle patents in the open source 
community.

Phil: Do you have any advice for a maker who is considering 
taking venture capitalist funding? Anything different if they’re 
doing open source hardware?

bunnie: I think VC funding is suitable only for accelerating 
certain kinds of growth. It’s not very good for early-stage 
research and development or businesses that have slow, but 
steady, growth models.

The hardware model is radically different from the soft-
ware model. Software is innately scalable. You can acquire 
100,000 users overnight. Monetizing the user base in software 
is trickier, but most software plays start with scale and then 
worry about money.

Because hardware requires the movement of atoms to 
acquire a user, scalability is limited by the rate at which you 
can economically and reliably assemble your atoms and ship 
them to the customer. On the other hand, there is a very natural 
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point for monetization in hardware: the margin you charge on 
every unit sold. Money comes earlier and more often, but the 
growth rate is limited by pesky things like the laws of physics 
and the availability of raw materials and skilled labor to build 
the units. Notable exceptions to this rule are concepts like the 
Square reader. Square’s hardware was cleverly designed to 
be so cheap that its cost was arguably lower than the cost to 
acquire a customer through other means (like print advertis-
ing and mailing campaigns), making the dongle cheap enough 
to just give away.

Therefore, in hardware, first ask this: what is your distri-
bution channel, and how hard is getting your product to end 
users? Ultimately, the size of that pipe and the monetary drag 
on transactions limits the growth rate of your idea. You also 
have to factor in boomerang costs like returns and customer 
support costs. You’ll be shocked at how many support calls 
you get from people who forgot to plug your product in.

If you have an awesome distribution channel, a solid 
marketing campaign, and customers lined up out the door, 
maybe VC is a reasonable match. But a typical maker will 
start out selling stuff online, possibly in boutique stores. The 
time it takes to turn capital into revenue will be on the order 
of months initially, and that’s a brutal cycle to finance with 
VC. All the money you have tied up in the supply chain isn’t 
adding any value to you, but you traded a lot of your owner-
ship in the company to get that money.

I would typically recommend that a maker try to first 
fund research and development out of pocket, or with a very 
friendly angel loan. Once you have a prototype and a solid plan 
for production, it’s smarter to go into debt to finance small 
batches of builds so you’re never overextended and build your 
market one step at a time. Every time you turn inventory, you 
should come back with more cash, which you can plow into 
making more inventory. 
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Doing this forces good discipline. It will help you focus on 
leaning up the supply chain so that inventory turns faster. 
The best hardware companies turn inventory in a matter of 
days. If you’re growing your capital base by 20 percent with 
every inventory turn, it only takes four turns to double your 
money: $100 turns into $120, which turns into $144, which 
turns into $172, which on the fourth turn results in $207. 
That’s the magic of compounded percentages. 

If you can do a full turn of inventory once every eight 
weeks and sustain a 20 percent growth rate with each turn, 
you’ll grow your business by over 300 percent in one year. Of 
course, the markets are never so ideal and predictable, but 
you can play with turn time versus margin available to grow 
your business. Higher-margin businesses can take longer to 
turn inventories and still sustain a palatable growth rate.

Bootstrapping like this is a lot of hard work, but at the 
end of the day, you own every penny you make, as you have 
no investors. The glory stories for this model aren’t as big as, 
say, Instagram or Google, but if you’re doing it right, you’re 
in control, and your work is more likely to pay off in the end. 
In fact, many successful Chinese hardware manufacturing 
businesses grew primarily using bootstrapped funding just 
like this.

Phil: What are your thoughts on Kickstarter for funding?

bunnie: I don’t think it’s a good idea to fund early research 
and development with Kickstarter or other crowdfunding plat-
forms because of the hard commitments you have to make to 
customers early on. Kickstarter is a great phenomenon, but you 
also need to be careful raising money there. To some extent, 
Kickstarter is the ultimate dumb money. Customers are sold 
on a vision and buy in early on, and you have to deliver on that 
vision. In crowdsourcing your money, you’ve also crowdsourced 
your board of directors. But the road to product development 
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is never smooth. As a result, Kickstarter money can lock you 
into commitments early on that you can’t back out of.

I think Kickstarter can be a better solution than VC, but you 
should only use it after the idea has matured sufficiently and 
you’re primarily looking to find a better way to finance produc-
tion than VC money or a bank loan. In fact, after you consider 
the frictional losses of extracting money from Kickstarter, a 
bank loan with a few percent interest could be favorable. But 
of course, a bank loan doesn’t come with the same visibility, 
marketing, and upside potential as a crowdfunding platform. 

Phil: When you advise companies, what do you most often 
suggest to the founders?

bunnie: Ship or die! Particularly if you’ve accepted VC funding. 
The moment VC money hits your books, you’re on a fixed-length 
fuse. If that fuse runs out and you haven’t created substantial 
value, a bomb goes off that wipes out a chunk of your valua-
tion. If you’ve raised a million dollars and you plan to burn it 
in a year, every day “costs” you $4,000. I use that as a value 
barometer to guide decision making: if $30 in expedite fees 
can pull in the schedule on a long-pole task by one day, the 
money is well spent. This is also part of the reason I lived on 
“China time” while chumby was in production even though 
I was in California. Staying up until 4 or 5am every night to 
flip emails with the factory and shorten the longest pole in the 
tent shaved days off the schedule, which translated to tens of 
thousands of dollars in burn.

In the face of “ship or die,” don’t look to ship the perfect 
product. Shipping a product that’s good enough is more impor-
tant than shipping a great product late, especially in consumer 
electronics or any similarly seasonal business. In consumer 
electronics, up to 90 percent of your business can happen in the 
fourth quarter. If you miss Christmas, you’ll have no revenue 
for the next three quarters; missing Christmas is like dropping 
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an extra year of burn on your capitalization table. Worse yet, 
during that year, your competitors will continue to improve.

Chumby suffered from precisely this. We premiered an 
alpha version of the device in August 2006, but we missed 
Christmas 2007. We didn’t launch our squishy, connected 
alarm clock until just after Christmas, in February 2008.

Consider some world events that happened around these 
dates: the iPhone shipped in June 2007, and the global economy 
crashed in October 2008. It was bad enough that we had to 
weather almost a full year, from February 2008 until Christmas 
2008, burning venture money to stay warm. But when the 
economy fell out, so did the appetite for a $200 stocking stuffer. 
We had too much inventory and had to fight for survival.

If my memory is correct, we could have shipped a product 
for Christmas 2007. It just wouldn’t have been quite as polished 
and would have lacked some features. But maybe it would 
have been good enough. In retrospect, the iPhone had by far 
less momentum in 2007 than in 2008, and we probably could 
have cleared a lot of inventory. On the other hand, perhaps 
knowing the iPhone, its apps, and its awesome touchscreen 
would obsolete a connected alarm clock drove us to second-
guess our strategy and delay launch to strengthen features 
like streaming music integration.

At any rate, the lesson is clear enough to me: ship or die!
A second piece of advice I’d give to hardware companies is 

to aim high with price. It’s virtually impossible to raise your 
pricing if you start too low, and there’s nothing like a sale to 
get people to buy.

Hardware startups that principally sell online are tempted 
to set the price as low as possible to drive buzz and improve 
initial sales. The temptation to sell your $35 device for $49 
direct online is huge. After all, that’s about a 28 percent margin 
(unless your BOM doesn’t factor in soft costs). That’s great, 
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until you’ve dropped off the front page of Engadget and your 
sales are plummeting.

Engaging a retailer may help bring in more, and more 
consistent, sales, but a retailer will initially try to buy your 
product from you for between 40 and 60 percent of your MSRP. 
This means they’d want to buy a product for $49 and sell it at 
$99. If you’ve already sold a bunch of units at $49, there’s no 
way the retailer can sell it for $99. To access retail, you’d have 
to sell your $35 product to a retailer for $25 so the retailer can 
sell it at your established price of $49. Even if you’re successful 
with such a drastic cost-down, you’re still left making no money!

Selling your $35 device for $99 might garner fewer cus-
tomers at first, but your initial margins would be spectacular, 
and you’d have the room to cut in a retailer or run sales of your 
own to get more customers. That’s part of the reason MSRPs 
are so high. Retailers also love to use sales to make units move, 
and a $99 unit priced down to $69 feels like a smart buy. But 
at $69, the retailer is only making 29 percent margin.

Aiming too low on pricing effectively robs you of the oppor-
tunity to use retail as a possible distribution channel, and 
you simultaneously lose the opportunity to have sales and 
promotions yourself. Promotions are important because viral 
marketing can only get you in front of a customer once or 
twice at best. So when you put your heart and soul into your 
product, price it like you mean it.

Phil: If you could do it over, how would you change the hard-
ware of the chumby? The software? The way chumby was made?

bunnie: Well, as my previous answer indicates, I would have 
focused much more on shipping on time, perhaps at the expense 
of jettisoning some features.

A more counterintuitive thing I learned is that accessories 
and packaging can take more time to develop than a product. 
The squishy chumby classic came with a wonderful set of linen 
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and microfiber bags and rubber charms. (We developed over a 
dozen charms in all.) There was also a custom power adapter, 
branded ribbons, gift boxes, branded tissue paper . . . I even 
had to iterate the hardware design and spin an injection-mold 
tool to improve the attachment method for the charms to the 
device. I spent at least four months intensely focused on the 
accessories and packaging for the product. Our fan base went 
wild over the attention to detail, and that helped goose sales. 

But in retrospect, I wonder if we could have done better 
forgoing the details and shipping before Christmas. One of the 
most gut-wrenching realizations that small companies have 
to make is that they aren’t Apple. Apple spends over a billion 
dollars a year on tooling. An injection-molding tool may cost 
around $40,000 and take two to three months to make; Apple 
is known to build five or six simultaneously and then scrap all 
but one so they can evaluate multiple design approaches. For 
Apple, tossing $200,000 in tooling to save two months’ time 
to market is peanuts. But for a startup that raised a million 
bucks, that’s unthinkable. Apple also has hundreds of staff; a 
startup has just a few members to do everything. The precision 
and refinement of Apple’s products come at an enormous cost 
that is out of reach for startups.

I don’t mean to say that design isn’t important. It’s still an 
absolutely critical element to a product, and good design and 
attention to detail allow a startup to charge more for a prod-
uct and differentiate themselves from competitors. Apple has 
raised the bar very high for design and user experience, and 
users will judge your product accordingly. But it’s important 
to keep in mind that your true bar for comparison is other 
startups, not Apple. If your chief competitor is Apple, either 
you need a billion dollars in cash to invest in product design 
or you need to rethink your strategy.

That leads to another thing I’d probably change. Pivoting 
is so important for a startup. A startup has to be able to run 
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circles around big companies. Culturally, Chumby just found 
it challenging to be agile enough to adapt to a rapidly chang-
ing technological landscape.

Of course, hindsight is 20/20. There’s a lot we could have 
done differently, but when I think back on all the early deci-
sions we made and how we got there (the resistive touchscreen, 
lack of integrated battery, using Flash as our core platform), 
I don’t see how we could have made any different fact-based 
decisions back then.

But that does show a flaw of fact-based reasoning. Engineers 
love to make decisions based upon available data and high-
confidence models of the future. But I think the real visionaries 
either don’t know enough, or have the sheer conviction and cour-
age to see past the facts and cast a long shot. It’s probably a bit 
of both. Taking risks also means there’s a bit of luck involved.

I certainly have a fact-induced myopia. My recent focus on 
operational efficiency, schedules, and risk management has 
sapped my ability to have creative and audacious visions. I’m 
actually taking a year off from entrepreneurship to decompress 
a bit and to try to rediscover and develop the creative bits of 
myself that have atrophied over the past couple of years.

Phil: Now that you’ve been part of a full cycle of a VC- 
funded company that makes hardware, what suggestions do 
you have for company structure, from the people to the loca-
tion to the overall organization?

bunnie: The structure really depends on the type of product 
you’re trying to build. Hardware has many different special-
ties (like consumer, medical, and industrial) and markets (like 
high-end boutique, hobby items, and mass market devices). 
There’s good business potential in all of them, but your location, 
focus, and team composition need to be tuned based on your 
product and what gives you a competitive edge. At Chumby, 
hardware was just a barrier to entry for apps to run in your 
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home, so it was instantly a race to the bottom. The hardware 
part of the company had to run lean (remember, Chumby had 
one hardware engineer and one operations director), and it 
needed a China-centric strategy from day one.

Generally, if you can suffer doing a hardware startup 
through bootstrapping, it’s worthwhile. A broad range of 
hardware products can be bootstrapped at first—and then 
Kickstarted, debt-financed, or VC-funded to scale. For instance, 
MakerBot developed and shipped its 3D printer entirely on 
angel money, before closing a round of VC funding. Bre Pettis, 
one of the cofounders, once mentioned that they lived on noth-
ing but cup ramen noodles for a month. 

Any hardware company that has passed the idea phase 
and is entering the scaling-up phase has to be razor-focused 
on operations and cash flow. Maintaining a build-to-order 
paradigm is critical but difficult: a key metric for any hardware 
company, small or large, is how quickly you can turn inventory 
into cash. There are two halves to the equation. One is leaning 
up your supply chain and trimming lead times so you don’t need 
to sit on much inventory, yet can satisfy new orders quickly. 
The other is leaning up your cash management so you can bill 
customers quickly while stretching your credit lines as far as 
possible. That’s a multidimensional optimization problem that 
can make your head explode without the right staff, so your 
team should include a crack operations director and someone 
adept in semi-exotic financial instruments like factoring insur-
ance, collateralized lines of credit, and trade contracts.

Being able to access China effectively early offers a disrup-
tive advantage to your startup (it’s hard to ignore the order-
of-magnitude advantage China has over the United States in 
assembly costs), but working with China does come at a huge 
cost and risk to the organization. It may not be for everyone, 
particularly on day one.
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I outsourced myself to Singapore to get closer to China, 
because I knew I’d never be able to get away from the China 
ecosystem. China has such a firm grip on hardware manufac-
turing, and I think it will take decades for them to lose their 
edge. This geographic diversity also means that any effective 
hardware startup has to be able to function effectively with 
a delocalized team.

Phil: What’s next for bunnie? What are you most excited to 
do next?

bunnie: That is the question for me! I don’t really know what’s 
next. As I noted earlier in the interview, I’m taking a year off to 
do things that aren’t specifically entrepreneurial. My current 
priorities are to first have fun with my work, second to not 
lose too much money, and third to do something good for the 
community through a combination of hacktivism, volunteer 
work, and open source methodology. I’m hoping in this year 
I’ll collect the bits of my soul that I’ve lost along the way, find 
some new ones, and relearn the value of magic in my life. I’m 
also spending a fair bit of my focus tuning up myself, getting 
fit, changing my diet habits, and losing weight. The coolest 
piece of hardware you’ll ever own is your body, and if that’s 
not working well, there’s no hope for anything else. Once I’m 
done with my aimless wanderings, hopefully I’ll have a better 
idea of what’s next!

While reviewing that interview for this book, I chuckled 
a bit to myself. By that point, the year I took off had turned 
into four years. Several concerned associates of mine asked, 
“When are you going to stop your midlife crisis and get a real 
career?” But in retrospect, not going back to the corporate 
world was the best decision I ever made. 

I do live a lot leaner than I did when I had VC/corporate 
backing, but I have a lot more independence. It was a choice 
between golden handcuffs and an Aeron chair, or a rucksack 
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and an interesting spot near the horizon. I’m still working on 
collecting the bits of my soul, and I’m still slowly relearning the 
values of enchantment and wonder. But at least I have the free-
dom to contemplate values other than the wealth of my invested 
shareholders. Thankfully, I had some success in revising my 
dietary habits and fitness level; tuning up my own body was an 
excruciating year of calorie tracking, sore muscles, and blistered 
hands, but it paid off in spades. My mother used to tell me that 
without health, you have nothing; she’s absolutely right. If you 
don’t have the stamina to work, it’s hard to turn opportunities 
into outcomes. With any luck, my health will hold out, and I’ll 
have many more stories to share with you in the future.

Wh y the Best Days of Open Hardware Are 

Yet to Come

One of the most critical outcomes from my year of soul search-
ing was the realization that the best days of open hardware 
are still ahead. As I contemplated in my interview with Phil, 
Chumby didn’t fail because of its open hardware model. At 
worst, the model had little bearing upon the consumer appeal 
of the product; at best, it was a good talking point. Nowhere in 
that interview did I gripe about plummeting sales in response 
to cheap clones appearing on the market due to our liberal 
open source policies. 

Rather, one of our biggest challenges was an inability to 
keep up with Moore’s law. Chumby simply didn’t have the 
resources as a startup to keep pace. It took two to three years 
to push a major platform revision, at which point that revision 
was already obsolete. My PhD dissertation* was centered on 
Moore’s law and its impact on computer architecture. The most 
powerful computers are descendants of a processor designed 
in the 1970s (the Intel 8085) with derivatives still used today 

* http://bunniestudios.com/bunnie/phdthesis.pdf
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as the brains of toaster oven. Why? Because running existing 
code on backward-compatible CPUs has almost always been 
faster than porting old code to a new microarchitecture. Given 
that fact, in my thesis, I designed a microarchitecture that 
nobody could possibly implement at the time but that might 
be optimal for a computer that could be built 10 to 15 years 
out. A small team of researchers would have ample time to 
develop the infrastructure necessary for a novel computer 
that would be relevant the day it’s finally switched on. I spent 
several months in the late ’90s studying the underpinnings 
of Moore’s law, trying to understand where it runs thin and 
where it holds strong. At the time, the strongest limitation was 
the speed of light, so my thesis revolved around architectural 
tricks to reduce communication latencies. 

In 2011, about a decade after my graduation and right 
around the end of Chumby, I had an opportunity to give a 
“vision” keynote at the Open Hardware Summit. I decided to 
review my notes from college and see if there might be another 
decade left in Moore’s law. There isn’t, and that has profound 
ramifications on the future of open source hardware. This sec-
tion is an adaptation of a blog post I wrote in 2011 sharing 
my thoughts; thankfully, here in 2016, I’ve yet to retract any 
of the statements I made back then.

Where We Came From: Open to Closed

Open hardware is a niche industry, and certain trends have 
caused the hardware industry to favor large, closed businesses 
at the expense of small or individual innovators. Looking 20 
to 30 years into the future, however, I see a fundamental shift 
in trends that can tilt the balance of power to favor innova-
tion over scale.

As I said in this part’s preface: in the beginning, hardware 
was open. Early consumer electronic products, such as vacuum-
tube radios, often shipped with user manuals containing full 
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schematics, a list of replacement parts, and instructions for 
service. In the ’80s, computers often shipped with schematics. 
For example, the Apple II shipped with a reference manual 
that included a full schematic of the mainboard, an artifact I 
credit for strongly influencing me to get into hardware. 

A vacuum-tube radio schematic
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But contemporary user manuals lack this depth of informa-
tion. The most complex diagram I’ve seen in a Mac Pro user 
guide instructs you on how to sit at the computer: keep your 
“thighs tilted slightly,” “shoulders relaxed,” and so on.

What happened? Did electronics just get too hard and 
complex? On the contrary, improving electronics got too easy: 
the pace of Moore’s law has been too much for small-scale 
innovators to keep up.

Where We Are: “Sit and Wait” vs. “Innovate”

Consider this snapshot of Moore’s law, which states that 
“goodness” (pick virtually any metric: performance, transis-
tor density, price per quanta, etc.) doubles every 18 months. 
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Moore’s law, doubling once every 18 months versus linear improvement of 75 percent 
per year. The shaded sliver between the two lines at t < 2 years represents the 

window of opportunity where linear improvement exceeds Moore’s law. 

This chart is unusual in that the vertical axis is linear. 
Most charts depicting Moore’s law use a logarithmic vertical 
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scale, which flattens the curve’s sharp upward trend into a 
much more innocuous-looking straight line. The shaded area, 
on the other hand, represents a linear improvement over time. 
This might represent a small innovator working at a constant, 
noncompounding, but respectable rate of 75 percent per year to 
add or improve features on a given platform. The tiny (almost 
invisible) space enclosed by the curves represents the market 
opportunity of the small innovator versus Moore’s law.

The juxtaposition of these two curves highlights the central 
challenge facing small innovators. Sitting and waiting have 
long been more profitable than innovating. If it takes two 
years to double the performance of a system, you’re better off 
simply waiting and upgrading to the latest hardware in two 
years. Racing against Moore’s law is a Sisyphean exercise.

This exponential growth mechanic favors large businesses 
with the resources to achieve huge scale. Instead of developing 
one product at a time, a competitive business must have the 
resources and vision to develop three or four generations of 
products simultaneously. Reaching the global market within 
the timespan of a single technology generation requires a 
supply chain and distribution channel that can do millions 
of units a month: selling at a rate of 10,000 units per month, 
reaching “only” a million users, or about 1 percent of the house-
holds in the United States alone, would take eight years. And 
significantly, the small barrier (a few months’ time) created 
by closing a design and forcing the competition to reverse-
engineer products can be an advantage, especially against 
the pace of Moore’s law. 

Thus, technology markets have become inaccessible to 
small innovators as individuals struggle to keep up with the 
technology treadmill and big companies continue to close their 
designs to gain a thin edge on their competition. This trend 
is changing, however.
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Where We’re Going: Heirloom Laptops

Gordon Moore, the man who observed Moore’s law, is one of 
Intel’s co-founders. Moore’s law is best known for describing 
how transistor density, and by extension CPU performance, 
would increase over time. For instance, consider this plot of 
Intel CPU clock speed at introduction versus time.* 
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CPU clock speed over time. The plateau has held steady since 2014.

Notice the abrupt plateau where clock speed stops increas-
ing. At that point, CPU makers started using multicore tech-
nology to drive performance, but this wasn’t by choice. CPUs 
reached physical limits that prevented practical clock scaling, 
primarily related to power and wire delay scaling. Transistor 
density, and hence core count, continues to increase over 
time, but the pace is decelerating. Transistor count used to 
double once every 18 months; then it slowed down to double 
less than once every 24 months. Eventually, transistor density 
scaling will effectively end. The absolute endpoint for transis-
tor scaling is a topic of debate, but one study† indicates that 

* Data primarily from https://en.wikipedia.org/wiki/List_of_Intel_microprocessors and https://
en.wikipedia.org/wiki/List_of_Intel_Core_i7_microprocessors. I track Intel CPUs because histori-
cally they have led the MHz curve and thus provide the most rigorous interpretation of Moore’s law.

† H. Iwai, “Roadmap for 22nm and Veyond,” Microelectronic Engineering 86, no. 7–9 (2009), doi: 
10.1016/j.mee.2009.03.129.
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scaling may stop at an effective gate length of about 5 nm. 
That’s about the space between 10 silicon atoms, so even if 
this guess is wrong, it can’t be wrong by much.

The implications are profound. One day, you won’t be able 
to rely on buying a faster computer next year. Your phone won’t 
get any smaller or more powerful. And the flash drive you buy 
next year will cost the same and store the same number of 
bits as the one you bought this year. The idea of an “heirloom 
laptop” may sound preposterous today, but someday, we may 
perceive our computers as cherished and useful heirlooms to 
hand down to our children as part of our legacy.

An Opportunity for Open Hardware

This slowing trend is good for small businesses, and likewise 
open hardware practices. To see why, let’s revisit the plot of 
Moore’s law versus linear improvement. This time, I’ll overlay 
two new scenarios: technology doubling once every 24 and 
36 months.
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improvement and the t=18 months scenario turns into a large region of opportunity 

under the t=36 months scenario. (Note that the vertical axis is log scale.)
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The area bounded by the curved line and the straight line 
at the bottom represents the market opportunity for linear 
improvement versus Moore’s law. In the 36-month scenario, 
not only does linear improvement have over eight years to go 
before it is lapped by Moore’s law, but also there is a point 
at around year two or three where the optimized solution is 
clearly superior to Moore’s law. In other words, there is a 
genuine market window for monetizing innovative solutions 
at a pace that small businesses can handle.

As Moore’s law decelerates, there’s also potential for greater 
standardization of platforms. Creating a standard tablet or 
mobile phone chassis with interchangeable components may 
seem ridiculous now, but it becomes a reasonable proposition 
when components stop shrinking and changing so much. As 
technology decelerates, there will be a convergence between 
hardware found in mobile phones and hardware found in 
embedded CPU modules like the Arduino. Just look at the 
Raspberry Pi, which was introduced in 2012. Models released 
in 2016 offer a quad-core, 1.2GHz CPU for performance com-
parable to entry-level smartphones at the time. 

Creating stable, performance-competitive open platforms 
will empower small businesses. Of course, a small business 
can still choose to be closed, but by doing so, it must create a 
vertical set of proprietary infrastructure, and the dilution of 
focus to implement such a stack could be disadvantageous.

In the post–Moore’s law future, FPGAs may perform 
respectably compared to their hardwired CPU kin, for at 
least two reasons. First, the flexible yet regular structure 
of an FPGA may lend it a longer scaling curve, in part due 
to the FPGA’s ability to reconfigure circuits around small-
scale fluctuations in fabrication tolerances. Second, the extra 
effort to optimize code for hardware acceleration will amortize 
more favorably as CPU performance scaling increasingly 
relies upon difficult techniques like using parallel cores on a 
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massive scale. Massively multicore CPU architectures look 
a lot like the coarse-grain FPGA architectures proposed in 
academic circles in the ’90s. An equalization of FPGA-to-CPU 
performance should greatly facilitate the penetration of open 
hardware at a deep level.

There will be a rise in repair culture as technology becomes 
less disposable and more permanent. Replacing worn-out 
computer parts five years from their purchase date won’t 
seem so silly when the replacement part has virtually the 
same specifications and price as the old part. This rise in 
repair culture will create a demand for schematics and spare 
parts that in turn facilitates the growth of open ecosystems 
and small businesses.

Personally, I’m looking forward to the return of artisan 
engineering, where elegance, optimization, and balance are 
valued over feature creep, and where I can use the same tool 
for a decade and not be viewed as an anachronism. (Most 
people laugh when they hear I held on to Eudora 7 as my 
email client until 2012, when I switched to my current client, 
Thunderbird.)

The deceleration of Moore’s law has already impacted 
markets that are less sensitive to performance. Consider 
the rise of Arduino. It took several years to gain popularity, 
with virtually the same hardware at its core the whole time. 
Fortunately, the demands of Arduino’s primary market (physi-
cal computing, education, and embedded control applications) 
have not grown, allowing the platform to remain stable. This 
stability has enabled Arduino to grow deep roots in a thriv-
ing user community with open and interoperable standards.

With some hard work and a bit of luck, I believe the open 
hardware ecosystem will surely blossom. The inevitable slow-
down of Moore’s law may spell trouble for technology giants, 
but it will also create an opportunity for the open hardware 
movement to grow roots and start something potentially very 
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big. To seize this opportunity, open hardware pioneers will need 
to set the stage by creating a culture of permissive standards 
and customs that can scale over time.

I look forward to being a part of open hardware’s bright 
future.

Closing Thoughts

Although chumby, conceived in 2006, was a bit ahead of its 
time and the company ultimately fell victim to Moore’s law, 
my reflections on the slowing pace of Moore’s law encouraged 
me to try yet another experiment in open hardware. The next 
chapter, on Novena, shares the story of my quixotic adventures 
building a bespoke open source laptop.
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7.  novena: building  
     my own laptop
It was 2012, and I was unemployed. My previous startup had 
failed, and I was taking a year off to figure out what I should 
do next. My friend xobs (introduced in Chapter 4) and I had 
a tradition that we maintain to this day: every Friday, we sit 
down for a few beers at lunch and shoot the breeze. During 
one of those “Beer Friday” discussions, we decided to build our 
own laptop. I expressed displeasure with how I’d never been 
employed to build a product that I’d actually want to use every 
day. As a design engineer, you’re typically driven by market 
requirements, not your own eclectic tastes. We bantered a 
bit about things we’d find useful and realized that, thanks to 
the gradual slowing of Moore’s law, maybe it wasn’t so crazy 
for us to build an open laptop with some wacky features just 



for hackers. From there, we started a hobby project to build 
a computer just for ourselves, something we’d use every day 
that would be easy to extend and mod—our very own electronic 
Swiss Army knife. We gave the project the code name Novena, 
the name of a Singaporean metro station and Latin for “nine.”

The second-generation Novena design that went up on Crowd Supply
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The finished Novena was a 1.2GHz, Freescale (now NXP) 
i.MX6 quad-core ARM architecture computer closely coupled 
with a Xilinx FPGA. It was designed for users who wanted to 
modify and extend their hardware: all the documentation and 
PCBs were and still are open and free to download,* and we 
gave it a variety of features that facilitated rapid prototyping.

Not a Laptop for the Faint of Heart

As I talked to more people about Novena, however, I realized 
that others were interested in owning a laptop like that but 
perhaps didn’t want (or didn’t know how) to make their own 
circuit boards. In response to the overwhelmingly positive 
feedback we received to a blog post on the topic, xobs and 
I launched a campaign on Crowd Supply in 2014, once the 
design was stable and tested. Over 1,000 people pledged their 
support; I am happy to report that we fulfilled every single 
campaign pledge, most of them within a few months of the 
promised date. After the campaign’s close, we decided it would 
spread our limited resources too thin to maintain the supply 
chain for the full laptop configuration, but we would sell and 
support the Novena motherboard hardware for at least five 
years from the launch of the campaign. 

To be clear, Novena is not a machine for the faint of heart. 
It’s an open source project, which means part of the joy (and 
frustration) of the device is that it is continuously improv-
ing. It’s perhaps the only laptop that’s ever shipped with a 
screwdriver. Anyone who bought one of the original designs 
had to install the battery and screw on the LCD bezel of their 
choice—green or blue. The speakers came as a kit so users 
wouldn’t have to use our speaker box design. If someone had 
access to a 3D printer, they could make and fine-tune their 
own speaker box.

* You can find the documentation online via the Kosagi wiki at http://www.kosagi.com/.

novena: building my own laptop  217



Despite all of those DIY options, I wasn’t looking to break 
any low-price records with Novena. It was designed as a low-
volume, handcrafted laptop made with uniquely open source 
components, and the cost matched the design. We offered 
three tiers:

•	 An “all-in-one desktop” option for $1,195 that was ready 
to use with a keyboard and mouse out of the gate, but 
needed to be plugged in

•	 A “laptop” option for $1,995 that included a battery con-
troller board, for hackers on the go

•	 An “heirloom laptop” tier for $5,000 that came in a gor-
geous, handcrafted wood-and-aluminum case

In Chapter 6, I said that as Moore’s law slows down, I 
predict parents passing down computers to their children. The 
Heirloom Novena is meant to be treated that way, though it 
has the same hardware on the inside as the other two options.

But those prices weren’t so different from the prices of 
high-end consumer laptops. The biggest challenge was figur-
ing out how to offer something so custom and complex at that 
price point, in low volumes. We weren’t looking to recover the 
research and development cost in the campaign; that’s a sunk 
cost, as anyone is free to download the source and benefit from 
our thoroughly vetted design today. Our minimum funding goal 
of $250,000 was a tiny fraction of what’s typically required to 
recover the million-dollar-plus investment behind the develop-
ment and manufacture of a conventional laptop; xobs and I met 
this challenge with a combination of know-how, unique design, 
and strong relationships with our supply chain.
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Designing the Early Nov ena

We optimized the Novena’s design to reduce the amount of 
expensive tooling required, while still preserving our primary 
goal of it being easy to hack and modify. We spent a year and 
a half poring over three revisions of the PCBA until we were 
confident that the complex design would be functional and 
producible. We also optimized certain tricky components, such 
as the LCD and the internal display port adapter, for reliable 
sourcing at low volumes. Finally, I spent a few months travel-
ing the world, lining up a supply chain that could deliver this 
design (even in low volume) at a price comparable to other 
premium laptops. 

Of course, all the design documentation is open, so with 
sufficient skill and resources, you could build a Novena from 
scratch yourself. I chose the hardware and its subcomponents 
to make this the most practically open hardware laptop I could 
with state-of-the-art technology. You can download, without 
NDA, the datasheets for all the components, and key periph-
eral options were chosen such that you can build a complete 
firmware from source with no opaque blobs. 

Under the Hood

This board’s dimensions are approximately 121 mm × 150 mm; 
it’s sized to fit comfortably underneath a standard-sized laptop 
keyboard (though the image is rotated compared to the instal-
lation orientation). As you can see in the full laptop photos 
earlier in the chapter, the port farm is on the right side of the 
laptop, not the bottom. The board is just under 14 mm thick, 
a height set by the thickness of an Ethernet connector. The 
base portion of my Lenovo T520 is just under 24 mm thick, 
and once a keyboard and plastics are stacked on this board, 
the base of the Novena comes to just about the same thickness.
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The earliest Novena motherboard 

Now let’s look at some of the motherboard’s features.

Preliminary   Features  

The first iteration of the Novena motherboard used a Freescale 
iMX6 CPU, which has an NDA-free datasheet and program-
ming manual. In the lists that follow, items marked with a 
double asterisk (**) require a closed-source firmware blob, but 
the system is bootable and usable without the blob. 

The CPU footprint we used could support the following 
quad- and dual-lite versions of the iMX6:

•	 Quad-core Cortex A9 CPU with NEON FPU @ 1.2 GHz

•	 Vivante GC2000 OpenGL ES2.0 GPU, 200Mtri/s, 1Gpix/s**

This version of Novena booted from microSD firmware. In 
terms of other internal memory, it had a 64-bit, DDR3-1066 
SO-DIMM, which could be upgraded to 4GB, and a SATA-II 
(3Gbps) hard drive. 
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Novena was full of internal ports and sensors from the 
start, too. These are the highlights:

•	 A Mini PCI-express (mPCIe) slot, for blob-free Wi-Fi, 
Bluetooth, mobile data, and so on

•	 A UIM slot, for mPCIe mobile data cards

•	 A dual-channel LVDS LCD connector with up to QXGA 
resolution (2,048 × 1,536 px) at 60 Hz and a USB 2.0 side 
channel for a display-side camera

•	 A resistive touchscreen controller (capacitive touch dis-
plays, on the other hand, typically come with an integrated 
controller)

•	 1.1 W, 8-ohm internal speaker connectors

•	 Two USB2.0 internal connectors, for a keyboard and mouse 
or trackpad

•	 A digital microphone

•	 A three-axis accelerometer

•	 A header for an optional AW-NU137 Wi-Fi module**

We made the following ports externally accessible:

•	 HDMI

•	 The SD card reader

•	 The headphone and microphone jacks (compatible with 
most mobile phone headsets, these also supported sensing 
inline cable buttons)

•	 Two USB 2.0 ports, supporting high-current (1.5A) device 
charging

•	 A 1Gb Ethernet port
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And, of course, since xobs and I were making the Novena 
for ourselves, we included a bunch of other “fun” features that 
we knew would be great for hackers:

•	 100Mb Ethernet (dual Ethernet capability allows Novena 
to be used as an inline packet filter or router)

•	 USB On-the-Go (enables the Novena to spoof or fuzz 
Ethernet, serial, and other connections over USB via a 
gadget interface to other USB hosts)

•	 A utility serial EEPROM, for storing crash logs and other 
bits of handy data

•	 A Spartan-6 CSG324-packaged FPGA with several inter-
faces to the CPU, including a 2Gbps (peak) RAM-like 
bus—for bitcoin mining, or whatever else you might want 
to toss in an FPGA

•	 Eight FPGA-driven 12-bit, 200ksps analog inputs

•	 Eight FPGA-driven digital I/O pins

•	 Eight FPGA-driven PWM headers, compatible with hobby 
ESC and PWM pinouts (enables direct interfacing with 
various RC motor/servo configurations and quad-copter 
controllers)

•	 Raspberry Pi–compatible expansion header

•	 Thirteen CPU-driven supplemental digital I/Os

•	 Three internal UART ports

We tweaked those specs going into production, making the 
most drastic changes around the FPGA expansion connectors. 
Instead of a cluster of motion-control-focused headers, we opted 
to install a header capable of high data rates, which xobs and 
I used to great effect in future projects involving the Novena. 
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The Battery  Board

To give maximum power management flexibility, I imple-
mented the battery interface functions on a daughtercard. I 
co-opted a cheap and common SATA-style connector to route 
power and control signals between the mainboard and the 
daughtercard. To prevent users from accidentally plugging 
a hard drive into the battery port, I inverted the gender of 
the battery-SATA connector from the actual mass-storage 
SATA-II connector. 

The battery card in the first Novena board was meant to 
work with the battery packs used by most RC enthusiasts: 
LiPo packs ranging from 2S1P to 4S1P (that is, two-cell to 
four-cell). RC packs are great because they’re designed for 
super-fast charging and they’re cheap and easy to buy. For the 
board-side battery plug, I decided to use the Molex connector 
found on classic disk drives, since they are cheap, common, and 
easy to assemble with simple tools. I couldn’t use a standard 
RC connector because the vast majority of them are designed 
for inline use, and the few that have board mounts were too 
thick or too weird for this application.

Power 
input

Battery status
(5 LED bar)

2-4 cell LiPo support
(3-cell balancing 

connector shown)

Battery connector to mainboard

STM32 for system power and
charging control & monitoring

Primary battery
connector (uses

classic disk drive 
Molex header)

Battery thermal sensors

Analog panel meter driver GP analog
input

The preliminary Novena battery board
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The battery board could charge batteries at rates in excess 
of 4A; for example, charging a three-cell, 45 Wh (4 Ah) bat-
tery took about one hour. If typical power consumption were 
around 5 to 6 W per hour, that would be seven or eight hours 
of runtime with a one-hour charge time. Of course, since the 
whole laptop was user-configurable, typical power consumption 
was really hard to estimate. If a user dropped in a monster 
LCD and a power-hungry magnetic hard drive with loads of 
peripherals, the power consumption would be much higher. 

xobs suggested another cute power-related feature that 
made it into the design. He thought it would be neat to embed 
a retro analog needle meter into the palm rest of the laptop 
to display power consumption in real time. I thought it was a 
great idea, so I designed that into the circuit board. Of course, 
the analog meter is driven by a DAC on the battery micro-
controller, so it could be configured to perform a multitude of 
useful (or not so useful) analog readouts, such as remaining 
runtime, battery voltage, temperature, the time (represented 
as an analog value), and so on.

After spending a couple of months validating all the fea-
tures (it was a long list of features to grind through), we ported 
drivers and a Linux distro to the board. That was no small 
task either, but thankfully, I had xobs’s skillful help, and we 
got the job done. 

The Enclosure

From there, I was really looking forward to designing the enclo-
sure. For the first revision, I thought about making something 
out of laser-cut acrylic that would be vaguely tablet-like, to 
avoid having to mess around with a friction clutch on the first 
go at a case. I ended up hand-building our first prototype cases 
from aluminum and leather, to validate the laptop use case 
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for Novena. That design was rough; as Cory Doctorow put it 
on Boing Boing, it was “gloriously fuggly.”* 

I love that my laptop smells of leather when it runs!

* http://boingboing.net/2014/01/17/building-a-fully-open-transpa.html
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The second-generation Novena case I showed earlier is 
sleeker. The first thing you probably noticed about the design 
is that it opens the “wrong” way. This feature allows the 
Novena to be used as a wall-hanging unit when the screen is 
closed. It also solves a major problem I had with the original 
clamshell prototype: it was a real pain to access the hardware 
for hacking, as it was blocked by the keyboard mounting plate. 

In the version we sold on Crowd Supply, the screen auto-
matically pops open with the slide of a latch, thanks to an 
internal gas spring. (Novena isn’t just an open laptop—it’s a 
self-opening laptop!) We intentionally left the internals naked 
in this mode for easy access, but bare internals also make clear 
that Novena isn’t for casual home users. 

We included an array of mounting bosses—which we called a 
Peek array—as well, to facilitate hackability. Normally, laptops 
have mounting points only for the handful of features designed 
into their original blueprints. But a hackable laptop must 
accommodate a huge space of possible peripherals. Instead of 
requiring users to drill holes or glue things down in their laptop 
cases, we provided a regular array of threaded inserts. It was a 
bit like a breadboard, but for rapid mechanical prototyping. To 
help define the array, I consulted with Nadya Peek, a graduate 
student at MIT’s Center for Bits and Atoms and an expert in 
digital fabrication—hence the name Peek array. 

Another feature of the second-generation design is that 
the LCD bezel is made of a single, simple aluminum sheet. 
This allows anyone with access to a minimal machine shop to 
modify or craft their own bezels; no custom tooling required. 
My hope with that design was to make adding knobs and 
connectors or changing the LCD relatively easy for Novena 
hackers. To encourage users to experiment, we shipped desk-
top and laptop Novenas with two LCD bezels so no one had to 
worry about having an unusable machine if they messed one 
up while experimenting. 
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Most laptops have a keyboard and mouse attached to the 
enclosure, but the Novena has a detached keyboard and track-
point because that feature was attractive to me personally. I’d 
always wanted a display I could “hang” on the seat in front 
of mine when sitting in an airplane or a bus: it’s a lot easier 
on the neck, and the arrangement actually works better if the 
person in front reclines their seat.

While I was still considering whether to do a clamshell 
design or some other funky design for the exterior, I also 
thought about trying an enclosure made of wood and brass. 
After all, the whole idea of making my own laptop was to 
play around with some new ideas! As mentioned earlier, we 
actually did wind up doing a limited run of a wooden-cased 
Novena that we dubbed the heirloom laptop.

The Heirloom Novena laptop

The Heirloom Laptop’s Custom Wood 

Composite

When mainline Novena production was finally humming along 
in April 2015, I spent a week in Portland, Oregon, working 
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alongside Kurt Mottweiler (a designer and woodworker who 
specializes in making cameras with wooden enclosures) to 
hammer out all of the final open issues on the Heirloom 
devices. xobs and I are certainly proud of how the Heirloom 
Novenas turned out!

Working with Kurt on the Heirloom laptop

Growing Novenas

In a literal sense, the Heirloom Novenas were “grown.” Wooden 
enclosures meant important structural elements came from 
trees. Making every laptop identical would have been easy, but 
we felt it would be much more apropos of a bespoke product to 
make each laptop unique by picking the finest woods and match-
ing their finish and color in a tasteful fashion. As a result, no 
two Heirloom laptops look the same; each is uniquely beautiful.

Some handpicked wood, waiting to become a Novena case

228  C h a pt  e r  7



A lot of science and engineering went into the Heirloom 
laptops, too. For starters, Kurt created a unique composite 
material by layering cork, fiberglass, and wood. To help char-
acterize the novel composite, we took some material samples 
to the Center for Bits and Atoms, where Nadya Peek and Will 
Langford characterized the performance of the material. We 
took sections of the wood composite and performed a three-point 
bend test using an Instron 4411 electromechanical material 
testing machine. 

Heirloom composite material loaded into the testing machine

The Mechanical Engineering Details

From the test data, we were able to extract the flexural modu-
lus (also called Young’s modulus) and flexural strength of 
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the material. I’m not a mechanical engineer by training, so 
terms like modulus and specific strength kind of go over my 
head. But Nadya was kind enough to lend me some insight. 
She pointed me at the Ashby chart, which, as with some xkcd 
comic panels, I could stare at for an hour and still not absorb 
all the information contained within.
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The Ashby chart plots Young’s modulus versus density for many materials. The 
annotated area shows approximately where the Heirloom composite material lands. 

The bottom left of the chart shows bendy, light materi-
als like cork, and the top right of the chart has rigid, heavy 
materials, like tungsten (W). For a laptop case, we wanted a 
material with the density of cork but the stiffness of plastic. 
Wood products occupy a space in the chart to the left of plas-
tics, meaning they are less dense, but they have a problem: 
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they are weak perpendicular to the grain. Depending on the 
direction of the strain, wood can be as yielding as polyethylene 
(the material used to make plastic shopping bags) or stiffer 
than polycarbonate (the material layered with glass to make 
bulletproof windows). Composite materials are great because 
they allow you to blend the characteristics of multiple materi-
als to hit the desired characteristic. In the Heirloom laptop’s 
case, Kurt blended cork, glass fiber, and wood.

The measurements of the Heirloom composite show a flex-
ural strength of about 33 megapascals, and a flexural modulus 
of about 2.2 to 3.2 gigapascals.* The density of the material is 
0.49 g/cm3, meaning it’s about half the density of ABS plastic, 
the plastic LEGO bricks are made from. As shown on the Ashby 
chart, plotting these numbers reveals that the Heirloom com-
posite occupies a nice spot to the left of plastics and provides a 
compromise on stiffness based on grain direction. And during 
testing, the material didn’t fail catastrophically. 

Graphs of load versus extension on the Heirloom laptop composite,  
as plotted by the Instron testing machine

Even after being bent past its peak load, the composite was 
still mostly intact and providing resistance. This result was a 
bit surprising. We had expected the material to break in two 

* One megapascal is 1 newton (unit of force) per mm2; 1 gigapascal is 1 kilonewton per mm2. 
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on failure, like natural wood. Furthermore, after we reset 
the test, the material bounced back to its original shape. We 
bent the composite by over 10 mm, but once the load was 
removed, I could barely tell it went through testing. This high 
fracture toughness and resilience are desirable properties for 
a laptop case.

Of course, watching a machine go to work on the material 
was fun, but there’s nothing quite like holding it yourself. I 
still remember picking up the material, feeling how light it 
was, giving it a good bend, and being surprised by its rigidity 
and ruggedness. 

Cha nges to the Finished Product

From the moment Novena was successfully crowdfunded, an 
incredible team of people worked to make it a reality. With 
help from the engineers and product managers at our manu-
facturing partner, AQS, Novena’s case moved from prototype 
to pilot production just four months after the campaign. 

The conference room where we did the T1 plastics review in Dongguan, China

Sure, xobs and I did plenty of work on our own before we 
even started the crowdfunding, but it takes many hands to build 
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a product of this complexity. We couldn’t have done it without 
our dedicated and hardworking team at AQS. I’ve said before 
that your factory is your partner, and thanks to a great partner, 
we were able to get this done in a short amount of time.

Case Construction and Injection-Molding Problems 

By the late summer of 2014, the Novena cases we were carrying 
around were made of entirely production-process hardware—no 
more hand-built prototypes. To get there, we’d opened a total 
of 10 injection-molding tools; for comparison, a product like 
NeTV or chumby had perhaps 3 or 4 injection-molding tools.

As I briefly described in Chapter 1, injection molding is a 
process where plastic is molded into a net shape. Hot, high-
pressure liquid plastic is forced into a hardened steel cavity 
called a tool. The steel tool is a masterpiece of engineering in 
itself: it’s a water-cooled block weighing about a ton and capable 
of handling pressures found at the bottom of the Mariana 
Trench, and the internal surfaces are machined to tolerances 
better than the width of a human hair. On top of that, the tool 
contains a clockwork of moving pieces, with dozens of ejector 
pins, sliders, lifters, and parting surfaces that come apart and 
back together again smoothly over thousands of cycles. It’s 
amazing that tools of such complexity and refinement can be 
crafted in a couple of months.

With so many moving parts, it’s no surprise that the tools 
required several iterations of refinement to get absolutely 
perfect. In tooling jargon, the iterations are referred to as T0, 
T1, T2, and so on. You’re doing pretty well if you can go to full 
production at T2; thankfully, our T1 plastics were 99 percent 
of the way there, meaning we had an easy path to full produc-
tion. T1 had just a few issues relating to flow and knit lines, 
as well as spots where the plastic warped during cooling or 
bound itself to the tool during ejection, causing deformation. 
This manifested itself as spots where the seams weren’t as 
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tight as we wanted them to be in the case, and with just a 
little bit of tuning, we were production-ready.

Most people have only seen products of finished tooling, 
so I’ll share what a pretty typical T0 (first-attempt) shot looks 
like, particularly for a large and complex tool like the Novena 
case base part. Test shots like this are typically done with 
scrap resin in light colors that highlight defects. We used 
gray plastic here to make tuning the mold easier, but the final 
units had black bases.

Some T0 shots of the base of the Novena case. The regular array of circles on the 
left in the top photo form the basis of the Peek array. To make the array, threaded 

brass inserts were heat-staked into the circular bosses after injection molding.

There’s a lot going on with this piece of plastic. Let’s zoom 
in on some of the artifacts.
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A visual guide to the deformations in the T0 case base

The circles highlight a set of sink marks, which happen 
when the opposite side of the plastic has a particularly thin 
or thick feature. These areas cool faster or slower than the 
bulk of the plastic, causing them to pucker slightly and cre-
ate a sort of shadow. Sink marks are particularly noticeable 
on mirror-finish parts. In this case, the sink marks happened 
because the plastic underneath the nut bosses of the Peek 
array were much thinner than the surrounding plastic. To 
fix this problem, we thickened that region slightly, reducing 
the overall internal clearance of the case by 0.8 mm. That 
was possible because fortunately, I’d designed the case with 
a little extra clearance margin.

The straight arrow points to a knit line. This is a region 
where plastic flow meets within the tool. As plastic is injected 
into the cavity, it tends to flow from one or more gates, and 
where the molten plastic meets itself, a hairline scar forms. 
Knit lines are often located at points of symmetry between the 
gates where the plastic is injected. On this tool, there were 
four gates located underneath the spot where the rubber feet 
go. Gates are considered cosmetically unattractive, and thus 
we placed them strategically to hide their location.

knit lines

flow marks

sink marks
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The white feathery artifacts indicated by the curved arrow 
are flow marks. These streaks appeared because the plastic 
cooled a bit too quickly within the tool. You can often fix this 
problem by adjusting the injection pressure, cycle length, 
and temperature. It’s best to use test shots on the molding 
machine to make those tweaks. You can tweak one parameter 
at a time, shot after shot, until you find an optimum cooling 
speed. This process can sometimes take hundreds of shots, 
creating a small hill of scrap plastic as a by-product.

Most of these gross defects were fixed by T1, and at that 
point, the plastic looked much closer to production-grade. 
We were also able to start using black-colored plastic, which 
tends to hide defects.

There were still a few issues around fit and finish, of 
course. But despite them, the case felt much more solid than 
the prototypes, and the gas piston mechanism was finally 
consistent and really smooth.

The T1 case base, in initial testing after the  
live hardware was transferred into the plastics

236  C h a pt  e r  7



Changes to the Front Bezel

The front bezel of Novena’s case (not to be confused with the 
aluminum LCD bezel) went through some changes after the 
campaign. When we closed funding, it had two outward-facing 
USB ports and one switch. Novena shipped with two switches, 
one outward-facing USB port, and one inward-facing USB port.

One switch is for power: it goes directly to the power board 
and can be used to turn the system on and off even when the 
main board is fully powered down. The other switch is wired 
to a user keypress to facilitate Bluetooth association for key-
boards that are being stupid. Some keyboards can take up to 
a half-minute to cycle through something (presumably, it’s 
security-related) before they connect. There are hacks for 
bypassing that, but you’d have to run a script on the host. 
Our idea was that by pressing this button, users could trigger 
a convenience script to get past the utter folly of Bluetooth. 
This switch also doubles as a wake-up button for when the 
system is suspended.

As for the USB ports, the design still had four in total, but 
the configuration became as follows:

•	 Two higher-current-capable ports on the right

•	 One standard-current-capable port on the front

•	 One standard-current-capable port facing toward the Peek 
array

In other words, we faced one USB port toward the inside 
of the machine. Since half the fun of Novena is modding the 
hardware, I figured a USB port on the inside would be at least 
as useful as one on the outside.

For users who wouldn’t do hardware mods, an inside 
USB port would also be a fine place to plug small dongles 
that generally stay attached, like the radio transceiver for 
a keyboard. It’s a little inconvenient to initially plug in the 
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dongle, but keeping the radio transceiver dongle facing inside 
helps protect it from damage when you throw your laptop into 
your travel bag.

DIY Speakers

We toyed with several speaker options for Novena. A core idea 
behind the design was to encourage every user to choose their 
own speaker. Some people really listen to music on their laptop 
when they travel, but others simply rely upon the speaker 
for notification tones and would prefer to use headphones for 
media capabilities. Physics dictates that high-quality sound 
requires a certain amount of space and mass. We wanted users 
with a more relaxed fidelity requirement to be able to reclaim 
the space and weight that nicer speakers would require.

Kurt Mottweiler selected a nice but very compact off-
the-shelf speaker, the PUI ASE06008MR-LW150-R, for the 
Heirloom. When we found that the same speaker fit well into 
the standard Novena’s Peek array and had acceptable fidelity, 
particularly for its size, we adopted it as the standard offer-
ing for audio. But we shipped it with a mounting kit for easy 
removal, so users who might need to reclaim the space (or 
who wanted to put in larger speakers) could do so with ease.

The PVT2 Mainboard

The Novena mainboard went through a minor revision prior to 
mass production. The fourth and final revision of the mother-
board was known as the “PVT2” version. The majority of the 
changes focused on replacing or updating components that 
were at risk of reaching end-of-life. The two most significant 
additions from a design standpoint were an internal flexible 
printed circuit (FPC) header to connect to the front bezel clus-
ter, and a dedicated hardware real-time clock (RTC) module.
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We added the internal FPC header to improve signal rout-
ing from the mainboard to the front bezel cluster. We had to 
run two USB ports plus a smattering of GPIOs and power to 
the front bezel, and the original connection scheme required 
multiple cables. The updated design condensed that into a 
single FPC to simplify the design and improve reliability.

We included a dedicated hardware RTC module because 
the i.MX6’s built-in RTC didn’t perform well. The CPU simply 
had a higher leakage on the RTC than reported in the data-
sheet, and the lifetime of the RTC when the system was turned 
off was measured in, at best, minutes. We decided that there 
was too much risk in continuing to develop with the on-board 
RTC and opted for an external, dedicated RTC module that 
we knew worked. To increase compatibility with other i.MX6 
platforms, we picked the same module used by the Solid-Run 
Hummingboard, the NXP PCF8523T/1.

It’s also important to note that we completely overhauled 
the FPGA expansion header on our second revision of the 
motherboard. The version of the motherboard shown at the 
beginning of this chapter contained a cluster of headers 
optimized for motion control applications. We decided that 
our motherboard was too large for anyone to put it inside a 
quad copter, and perhaps the FPGA would see more use as a 
high-speed data acquisition and processing device. To enable 
this functionality, we gave the FPGA a dedicated 256MB of 
DDR3 memory and broke out high-speed differential signals 
to a connector capable of passing signals at rates exceeding a 
gigabit per second. Users could still use the FPGA for motion 
control applications, but they’d need to plug in a simple 
breakout board (like the GPBB I discuss next) to route our 
signals to the connector formats commonly used by motion 
control systems. 
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The updated Novena motherboard
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A Breakout Board for Beginners

One of the rewards every backer received as thanks for sup-
porting our campaign was a breakout board that we referred 
to as the GPBB, or the General-Purpose Breakout Board. 
Redesigning our FPGA expansion header on Novena to target 
high-speed applications also made getting started with the 
device much more difficult for entry-level hackers. Due to the 
constraints of physics, high-speed connectors tend to have 
very dense pin arrangements that are unfriendly to beginners. 
We designed the GPBB to help entry-level users work with 
the FPGA. The GPBB converts the dense, high-speed signal 
header on the FPGA into a beginner-friendly 0.1-inch-pitch, 
40-pin header and includes a few LEDs and analog data con-
verters to boot.

The final production GPBB
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One growing challenge for beginners is the fact that Moore’s 
law keeps on pushing down the allowable voltage range of 
digital I/Os. Newer generations of transistors run at lower 
voltages, which make them incompatible with the venerable 
+5 V standards most entry-level projects use. For instance, 
our FPGA could only handle signals up to +3.3 V. As a result, 
we built voltage translators into the GPBB that could safely 
handle +5 V and bring them down to the +3.3 V levels accepted 
by the FPGA. 

The final version of the GPBB included a tweak enabling 
users to adjust the I/O voltage, instead of fixing it at +5 V. We 
provided a software setting to allow users to choose whether 
the GPBB’s external I/Os default to 5 V or 3.3 V, and we 
designed the board so that users could adjust the lower voltage 
to 2.5 V or 1.8 V by changing a single resistor (R12). I labeled 
that resistor “I/O VOLTAGE SET” and made it a 1206 part, 
so soldering novices could make the change themselves.

The Desktop Novena’s Power Pass-Through Board

The “all-in-one desktop” tier originally included just the desktop 
case, the Novena mainboard, and the front panel breakout. 
But that configuration made power management awkward, as 
I designed the overall power management system for the case 
assuming there would be a helper microcontroller managing 
a master cutoff switch.

Complexity is the devil, and getting the software going 
for even a single configuration was hard enough on its own. 
Ultimately, we found it cheaper to introduce a new piece of 
hardware to the power management system for the desktop, 
rather than deal with multiple code configurations.

Therefore, desktop systems shipped with a power pass-
through board. It was a simple PCB assembly containing just 
the STM32 controller and power switch of the full battery 
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board. This allowed us to use a consistent gross power man-
agement architecture across both the desktop and the laptop 
systems.

The desktop’s pass-through board

This approach was like swatting a fly with a sledgehammer—
but the sledgehammer cost as much as the flyswatter. Plus it’s 
inconvenient to carry both a flyswatter and a sledgehammer 
around. So, yes, we used a 32-bit ARM CPU to read the state 
of a pushbutton and flip a GPIO, and yes, a full multithreaded 
real-time operating system (ChibiOS) ran underneath it all. 

It did feel a little silly, though. That’s why we broke out 
some of the unused GPIO pins, making Novena even more 
hackable. Hopefully, some clever user will find an application 
for all that untapped power!

Custom Battery Pack Problems

The battery pack for Novena was definitely a wildcard in the 
project stack. Building Novena was the first time xobs or I had 
made a system with such a high-capacity battery, and working 
through all the shipping regulations to get them delivered to 
customers was a challenge.

Some countries have particularly strict regulations around 
importing lithium batteries. In the worst case, we had to 
send some customers a laptop with no battery inside, and 
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we shipped an off-the-shelf battery pack from a vendor that 
specializes in RC battery packs (like Hobby King) separately 
to those customers at our own cost. They got the same bat-
tery featured in the crowdfunding campaign, but they had to 
plug it in themselves. That was our safest fallback solution, 
since Hobby King ships thousands of battery packs a day all 
around the world.

Shipping woes didn’t stop us from developing a custom 
battery pack, though. Maintaining a standing stock of bat-
tery packs is difficult because batteries need to be periodi-
cally conditioned, so only campaign backers got that battery 
pack—provided their country of residence allowed its import. 
We couldn’t know for sure until we tried, but we did get 
UN38.3 certification for the custom battery pack. In theory, 
that certification would allow us to ship the batteries by air 
freight, but regulations around battery shipment are always 
in flux. It seems countries and carriers keep inventing new 
rules, particularly with all the paranoia about the potential 
use of lithium batteries as incendiary devices, and we didn’t 
have the resources to keep up with the zeitgeist.

The custom pack’s capacity was rated at 5,000 mAh, which 
is about twice the capacity of the pack we featured in the 
crowdfunding campaign. (That one had 3,000 mAh printed 
on the outside but delivered about 2,500 mAh in practice.) In 
real-life testing, the custom pack provided about six or seven 
hours of runtime with minimal power management enabled. 
Also, since I got to specify the battery, I knew it had the correct 
protection circuitry built into it and the provenance of its cells, 
so I was confident in its long-term performance and stability.

Choosing a Hard Drive

The crowdfunding campaign referenced providing 240GiB Intel 
530 (or equivalent) and 480GiB Intel 720 drives for the laptop 
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and heirloom models, respectively. We left the spec slightly 
ambiguous because the SSD market moves quickly. We knew 
the best drive when we drew up the spec would probably be 
different from the best drive we could get when we actually 
did the purchasing.

After doing some research, we felt the best equivalent 
drives at purchase time were the 240GiB Samsung 840 EVO 
(for the laptop model) and the 512GiB Samsung 850 Pro (for 
the Heirloom). xobs and I personally used the 840 EVO in our 
own units for several months, and it performed admirably. 

An important metric for us was how well the drives held 
up under unexpected power outages. Outages happen fairly 
often, for example, when you’re doing development work on a 
power management subsystem. Some hard drives failed quite 
reliably (how’s that for an oxymoron?) after a few unexpected 
power-down cycles. 

For the Heirloom, we used Samsung’s 850 PRO series. 
This drive came with a serious warranty fit for an heirloom: 
10 years. Samsung could offer such a high claim of reliabil-
ity because the drive used a technology the company calls 
V-NAND, which I consider the first bona fide production-grade 
3D transistor technology. 

Note	 Intel claims it makes 3D transistors, but that’s just market-

ing hype. Yes, the gate region has a raised surface topology, 

but you still only get a single layer of devices. From a design 

standpoint, you’re still working with a 2D graph of devices. 

Intel should have stuck with what I consider the “origi-

nal” (and more descriptive/less misleading) name, FinFET, 

because by calling these 3D transistors, I don’t know what it 

will call actual 3D arrays of transistors, if it ever gets around 

to making them.
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Chipworks, a patent support company, did an excellent 
initial analysis of V-NAND,* showing that the technology isn’t 
about stacking just a couple of transistors. A V-NAND stack 
is a 38-layer active transistor sandwich, all in a single spot. 
This is process technology badassery at its finest. This is Neo 
decoding the Matrix. This is Mal shooting first. It’s a game 
changer, and it’s not vaporware. Heirloom backers received 
laptops with over 4 trillion of those transistors packed inside.

Finalizing Firmware

From the software side, the next step at this point was final-
izing the kernel, bootloader, and distro selection, as well as 
deciding what to show when Novena booted for the first time.

Marek Vasut got Novena supported in mainline U-Boot 
(Universal Bootloader), one of the most popular open source 
bootloaders. (Marek is one of U-Boot’s maintainers.) The pro-
cess involved a surprising number of patches, in part because 
few ARM boards support as much RAM as Novena. With those 
patches in place, Novena had full U-Boot support, including 
USB and video.

We decided to make Debian the factory-default distribution 
for Novena, and we used the stock Linux kernel with those 
patches added. Any patches that we thought might be useful 
to other projects were submitted upstream and will continue to 
be submitted. Upstreaming just means that a package that 
is part of a derivative operating system becomes part of the 
distro it’s derived from. 

We did keep a few local patches, ranging from special-
ized hacks to experimental features, features that weren’t 
ready to push upstream, or features that relied on features 
that weren’t upstream at the time. For example, the display 
system on a laptop is very different from what you’d usually 

* If you’re curious, you can find that analysis at https://www.chipworks.com/about-chipworks/
overview/blog/second-shoe-drops-%E2%80%93-samsung-v-nand-flash/.
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see on an ARM device. In most ARM devices, the screen is 
fixed during boot and it isn’t possible to hot-swap displays at 
runtime. Like a typical laptop, Novena supports two different 
displays at once and allows you to plug in an HDMI monitor 
without requiring a reboot. Support for this feature required 
a local-only patch to the kernel, as it relied on features that 
weren’t yet upstreamed for the ARM platform at that time.

Finally, we just had to decide what to show when Novena 
powered up. In Linux, it’s not at all common to have a first-
boot setup screen where you create your user, set the time, 
and configure the network. That’s common in Windows and 
OS X, which come preinstalled, but under Linux, the installer 
generally takes care of that. 

We were torn between creating a good desktop-style experi-
ence and making a practical embedded developer’s experience. 
A desktop-style experience would ship as a blank slate and 
prompt the user to create an account via a locally attached 
keyboard and monitor. But embedded developers may never 
plug in a monitor, and instead prefer to connect via console or 
SSH; for them, a default username, password, and hostname 
would have been more helpful. Either way, we wanted to cre-
ate just a single firmware common across all platforms and 
avoid special-casing releases to a particular target. 

In the end, we decided to create a desktop-style experi-
ence, with escapes for power users to bypass the formalities 
of user enrollment. This gave us the best of both worlds. It 
improved the accessibility of Novena to entry-level users, yet 
power users could still cut to the chase and get down to work.

Building a Community

From the start, xobs and I built Novena to empower hackers, 
so I was pleased that even before shipping, Novena had active 
alpha developers. Jon Nettleton and Russell King worked on 
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graphics, Marek Vasut from U-Boot lent a hand, and a couple 
of other alpha user groups actually made hardware for the 
system.

MyriadRF, an open source hardware and software commu-
nity focused on wireless technology, created a software-defined 
radio board for Novena. We bought and integrated those boards 
with the first desktop and laptop units we shipped. 

The CrypTech group also started applying Novena to its 
projects before the laptop shipped. The CrypTech project 
developed a hardware security module, with a BSD and CC 
BY-SA 3.0 licensed reference design. The group wanted to 
create a widely reviewed, designed-for-crypto device that 
anyone could compose for their application and easily build 
with their own trusted supply chain. CrypTech used Novena 
to prototype elements of its design.

A prototype CrypTech expansion board, plugged into the Novena motherboard

The expansion board shown here is a prototype noise source 
based on avalanche noise from a transistor in the middle of 
the board. CrypTech uses that noise to generate entropy in 
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Novena’s FPGA. The entropy is then combined with entropy 
generated by ring oscillators in the FPGA and mixed using, 
say, SHA-512 to generate seeds. The seeds are then used to 
initialize the ChaCha stream cipher, ultimately resulting 
in a stream of cryptographically sound random values. The 
result is a high-performance, state-of-the art, random-number-
generator coprocessor.  

Closing Thoughts

As a final note, if there’s one thing xobs and I have learned in 
the hardware business, it’s that you can’t count your chickens 
before they hatch. Making good progress to a certain point 
didn’t mean we’d have an easy path to finished units. Even 
though we had fully functional prototypes at the close of 
fundraising, it still took months of intense effort to deliver 
hundreds of units to end users.

Now that Novena has finished shipping, we’re continuing 
to support our enthusiastic yet very patient user base. It’s a lot 
of work, which falls primarily on xobs’s shoulders, but we’ve 
been answering questions from users, pushing patches, and 
keeping the Novena kernel up to date. 

We do this even though we garner no new revenue from 
Novena sales. Upon reviewing our post-campaign sales data, 
it was fairly clear there was no viable path forward to run 
a hardware business selling Novena; we’d sell on average a 
couple of units per month. Although we cleared the minimum-
order requirements of our vendors through the initial crowd-
funding campaign, it would be very difficult to engage any of 
our suppliers at volumes less than a couple hundred units. 
Selling a couple units per month at that minimum buy would 
leave us saddled with inventory debt for about a hundred 
months. We’d be in debt to our suppliers for several years. 
Being unable to repay your suppliers for several years is also 
known as bankruptcy. 
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We are, of course, keeping our original promise to support 
the Novena motherboard for at least five years from the initial 
funding campaign. We’ve set aside a hefty chunk of cash to 
ensure a steady supply of the mainboards. Our original crowd 
funding and now online sales partner, Crowd Supply, has 
taken over the remaining inventory of cases and accessories. 
Thanks to our open hardware model, Crowd Supply has the 
option to manufacture and sell accessories for Novena, should 
end user demand materialize.

In the end, I’m very happy to see the tender green shoots of 
new projects aiming to offer better open source laptop solutions 
to end users. Rather than compete with them, I think it’s most 
appropriate for Novena to give way and enable enthusiastic 
new developers to find opportunity and fortune selling their 
solutions. After all, we started on this adventure mostly to see 
if it could be done. We wanted to build a cool tool, customized 
for our everyday use case; we didn’t want to start a business 
selling laptops with a sustainable mass-market appeal. If the 
ultimate impact of the Novena project is raising the bar for 
open hardware, and perhaps even encouraging a new genera-
tion of laptop-themed projects, that would be a huge reward 
in and of itself.
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8.  chibitronics:  
     creating circuit  
     stickers
In today’s world of contract manufacturing and turnkey ser-
vice providers, designers tend to pick from a palette of exist-
ing processes to develop products. Most consumer electronic 
devices are an amalgamation of rigid PCBs with SMT reflow 
or through-hole wave soldering, ABS or PC injection mold-
ing, sheet-metal forming, and some finishing processes like 
painting or electroplating. These options cover the full range 
of utility most products require. Really outstanding products, 
however, also tend to introduce new materials or novel manu-
facturing processes.

Developing those new processes doesn’t have to be 
expensive—as long as you’re willing to go onto the factory 
floor and direct the improvements yourself. In other words, the 



expensive bit of process development is typically paying the 
experts developing and qualifying the process, not so much 
the equipment or materials. 

To prove that point to myself, I started exploring flex circuits 
as a design medium. Instead of using a 1- or 2-millimeter-thick 
rigid substrate composed of woven glass fiber impregnated 
with a stiff epoxy, flex circuits typically use a pliable poly-
mer substrate just fractions of a millimeter thick. Polyimide 
is a popular substrate in flex circuits because of its ability 
to withstand soldering temperatures. Although flex-circuit 
technology is common inside consumer products (a mobile 
phone probably contains at least a half-dozen flex PCBs, con-
necting peripherals like buttons, cameras, and displays to the 
mainboard), this technology is underrepresented in hobby and 
DIY products. But I don’t think it has to be.

I had a hunch that the right kind of product designed in 
flex could enable new and creative applications, but I wasn’t 
quite sure how, so I decided to learn more about the unique 
benefits and challenges of designing for flexible circuits. As 
part of a project where I explored the guts of SD cards, which 
I’ll talk more about in Chapter 9, I needed to create an adapter 
for my Novena that would allow me to snoop and emulate 
the NAND flash memory found inside certain styles of older 
SD cards. The thinness and pliability of flexible circuits were 
a great match for the job.

The resulting adapter was very thin; it fit perfectly under 
the TSOP package of the NAND. The bendy nature of the 
board meant I could also accommodate a broad variety of 
target board shapes, even boards much larger than a typical 
SD card. Although a useful application of flexible circuits, it 
still felt like I was just scratching the surface of possibility.
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My custom flex adapter

Then came the moment of serendipity. While working 
on the SD card project, I met Jie Qi, then a PhD candidate 
at the MIT Media Lab, who was combining papercraft and 
electronics as part of her research. She was part of the group 
of MIT Media Lab students I took on a tour of Shenzhen in 
January 2012, and seeing examples of her paper circuits set 
the gears turning in my head. 

The final artwork for Jie Qi’s paper circuit art piece, Pu Gong Ying Tu
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A close-up of the flowers

Peeling back the painting to reveal circuitry
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The flower circuits inside Pu Gong Ying Tu

Using nothing more than copper tape, paper, and dollops 
of solder or tape to hold components in place, Jie was able to 
craft sublime works of art that glowed and interacted with 
viewers. These enchanting masterpieces showed how electron-
ics could be used not just as a functional medium, but also as 
an expressive medium, inspiring wonder and awe. The photo 
here shows the insides of one of her famous early works, Pu 
Gong Ying Tu (Dandelion Painting), where the circuitry itself 
is as much a work of art as the painting overlaying it.

Jie is also very passionate about education, and she saw 
great potential in paper electronics to make technology more 
relevant and accessible to non-engineering audiences. On 
our trip to Shenzhen, we discussed the possibility of building 
circuits on flex and then soldering a flex circuit onto paper. 
In the end, she felt that would be at best a marginal improve-
ment. Although soldering isn’t a difficult skill to master, the 
high temperatures, chemicals, and specialized equipment 
involved are a major deterrent to beginners. What would really 
be magical is if circuits could be assembled like stickers on a 
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page. Wouldn’t it be great if we could use flex-circuit technol-
ogy with traditional SMT reflow processes to create modules 
that users could then stick onto wires made of copper tape?

And that’s how we came to collaborate on Chibitronics, a 
project in which we designed a set of peel-and-stick electronic 
circuits for crafting and education. Chibitronics has been an 
open hardware project from the start, and you can still find all 
the activities from the Circuit Sticker Sketchbook, the source 
code for all microcontrollers used, and other technical details 
through the project’s wiki at http://chibitronics.com/wiki/.

The Chibitronics STEM Starter Kit includes the Circuit Sticker Sketchbook, 
LED stickers, copper tape, batteries, and binder clips for the batteries.

An explanation of how to create a DIY pressure sensor
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The crafted DIY pressure sensor

The DIY pressure sensor with paper overlay

Crafting w ith Circuits

The solution we arrived at in early 2012 built on a body of work 
from Professor Leah Buechley’s High-Low Tech research group 
at MIT. We decided to build circuits on a flexible polyimide 
substrate with anisotropic tape (also called Z-tape, because 
electricity only flows vertically through the tape, not laterally) 
laminated on the back.
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A piece of Z-tape under a microscope

Using Z-tape allows end users to assemble circuits without 
high-temperature processes like soldering or reflow. The abil-
ity to simply stick components in place is incredibly useful for 
art projects, which often involve heat-sensitive and/or pliable 
material substrates like paper, fabric, and plastic. Circuit 
stickers and copper tape are flexible, too, further enabling any-
one to integrate electronics into projects using nontraditional 
materials. Such friendly and expressive materials encourage 
creators to turn the circuits themselves into beautiful works 
of art.

Circuit stickers on paper
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Circuit stickers on fabric

Creating these circuit stickers revolved around the limita-
tions of the Z-tape. In the magnified section of Z-tape laminated 
onto a polyimide substrate shown here, the silvery-white 
stipples are tiny metal particles that span from one side of the 
adhesive layer to the other according to a statistical distribu-
tion. Given the nature of the metal distribution, to ensure 
good electrical contact, each pad on a circuit sticker needed 
to be fairly large. Furthermore, traces very close to each other 
could be shorted out by the embedded metal particles, so as I 
designed the circuits, I had to be careful to leave enough space 
between exposed pads. The datasheet for the Z-tape material 
contains rules for the minimum pad size and spacing, so I 
used those as a guide.

Developing a New Process

It’s one thing to design stickers containing working electronic 
circuits, but it’s a whole different thing to actually build 
them. No standard manufacturing processes existed that 
could produce circuit stickers as we envisioned them. At last, 
I had a meaningful opportunity to test my theory that new 
process development can be done cheaply if you’re willing to 
do it yourself. So I started my own little research program to 
explore flex-circuit media and the challenges of making circuit 
stickers out of them, all on a shoestring R&D budget.
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Visiting the Factory

As a first step, I visited the facility where flex PCBs are manu-
factured. The visit was eye-opening.

A worker manually aligning coverlay onto flex-circuit material 

Instead of soldermask, flex-circuit traces are protected by 
a polyimide sheet called coverlay. Soldermask is too brittle 
and will crack if bent, but coverlay reliably stays intact over 
thousands of flexing cycles. Sometimes, however, you want 
to make portions of a flex circuit stiff; for instance, a part of 
the circuit might need to stay stiff for mechanical mounting, 
and a stiff circuit is also helpful for SMT processing.

 

Steel plates being laminated to the back of flex-circuit material 
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I knew that polyimide stiffeners could be laminated to 
flex, but as it turns out, steel lamination is also possible. I 
wouldn’t have known that if I hadn’t taken the factory tour 
myself. Visiting the factory in person also gave me an invalu-
able opportunity to see the wide range of complex shapes that 
could be produced thanks to die cutting. Having a variety 
of possible shapes was key, because we wanted to make the 
circuit stickers look cool, too. Questions like how narrow we 
could cut the material or how tight a radius is allowable in a 
die cut are difficult to answer by email, but the answers were 
intuitively obvious after I saw the process in person.

The intricate flex-circuit shapes achievable with die cutting

Performing a Process Capability Test

After the factory visit, the next step was to do a process capa-
bility test to push the limits of the manufacturing process. 
We designed a non-homogenous sheet of sticker variants that 
exercised all kinds of capabilities: long via chains, 3-mil line 
widths, 0201 components (a small SMT package size), 0.5 mm 
pitch QFN parts (surface-mount components that have all 
their contacts on the bottom), bulky components, the use of 
soldermask instead of coverlay, fine detail in silkscreening, 
captive tabs, curved cutouts, hybrid SMT and through-hole 
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soldering techniques, Z-tape lamination, and more. Our process 
capability test intentionally broke parts of the manufacturing 
process to discover weak links that could prevent our design 
from working out. 

The circuit sticker design we manufactured for the process capability test
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When I first presented the design, the factory rejected it 
outright, saying it was impossible to manufacture. After I 
explained my goals, however, the factory agreed to produce it, 
with the understanding that I’d accept and pay for all units 
made, naturally including the defective ones. Through ana-
lyzing the failure modes of the defective units, I developed a 
set of design rules for maintaining high yield (and therefore 
lowering cost) on the circuit stickers.

Based on these design rules, Jie and I created our first 
set of “production candidate” stickers. They included LEDs of 
four different colors (white, red, blue, and yellow), as well as 
two sets of smart stickers. The first set of smart stickers con-
tained a preprogrammed microcontroller that could generate 
patterns of light, such as fading, heartbeats, twinkling, and 
blinking. We called these the “effects” stickers; they are a form 
of physical programming that enables noncoders to customize 
the behavior of their projects. The second set contained a user-
programmable microcontroller with a fun record-and-playback 
capability loaded into it as a demo, along with three sensors. 
We called these the “sensor & microcontroller” stickers. 

We ran small batches of our production candidates to 
find problems we might encounter should we need to scale 
up, and we thoroughly investigated any issues that would 
affect reliability, yield, or usability. In particular, we had to 
develop a novel method for laminating Z-tape onto the back of 
the stickers that would be process-compatible with the type 
of die cutting necessary to create stickers.

After two iterations of production candidates, we felt we 
were ready to see what other people could do with circuit 
stickers. As this was part of Jie’s doctoral research, we had 
two options for doing user testing. The traditional academic 
approach would have been to apply for a budget from her 
advisor, produce a limited number of stickers, and conduct a 
series of closed workshops to study how young and creative 
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minds interacted with this new media. But this happened in 
2013, so viable crowdfunding platforms unlocked the possibil-
ity of offering our research directly to interested users, thus 
allowing us to conduct research at scale. The MIT Media Lab 
where Jie researched is also very keyed in to the possibilities 
enabled by research at scale, as embodied by their “deploy” 
initiative. In 2011, when Joi Ito became the Media Lab’s new 
director, he started transforming the Media Lab’s culture 
from “demo or die” to “deploy or die,” which was eventually 
shortened to the less menacing “deploy” directive. Under the 
old “demo or die” regime, research groups were encouraged to 
create whizzy demonstrations of technology that could help 
raise money. Under Ito’s directive, the idea is to get technol-
ogy out of the lab and into the wild by conducting research 
at scale through tools like crowdfunding and lean hardware.

In November 2013, we launched a crowdfunding campaign 
with Crowd Supply. It was very important to us to remain 
pure to the academic mission behind the circuit stickers, so 
we set our funding goal at just $1. If even one person thought 
circuit stickers might be interesting, we’d produce the stickers 
and work with that person to gather feedback. And, of course, 
we would make that research available to the world, in case 
someone wanted to fork the project or otherwise hack their 
circuit stickers.

We beat our modest goal by several orders of magnitude, 
closing just shy of $60,000 after a little over one month of 
funding and a very low-key campaign.

Deli v ering on a Promise

As part of our campaign, we stated that we would ship orders 
for fulfillment by May 2014. Thankfully, we were able to meet 
our goal, right on time. 
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Sixty-two cartons containing over a thousand Chibitronics starter kits,  
waiting for pickup

Delivering on time is no simple task for any crowdfunded 
project, however. I made the contentious choice to use Crowd 
Supply in part because they show more savvy around vetting 
hardware products, and the services they offer to campaigns 
(fulfillment, tier-one customer support, post-campaign preorder 
support, and rolling delivery dates based on demand versus 
capacity) are a boon for hardware upstarts. Getting fulfill-
ment, customer support, and an ongoing e-commerce site as 
part of the package meant we didn’t have to hire someone to 
deal with all of that. Whether your “company” consists of just 
two people trialing an academic project or a couple of people 
working out of a garage, that’s a big deal.

Crowd Supply doesn’t have the same media footprint or 
brand power that Kickstarter has, which can make it harder 
to raise as much money. But at the end of the day, I feel it’s 
very important to establish an example of sustainable crowd-
funding practices that’s better for both the entrepreneur and 
the consumer. It’s not just about a money grab today; it’s 
about building a brand and reputation that can be trusted 
for years to come.
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Wh y On-Time Deli v ery Is Importa nt

I set a personal challenge for Chibitronics to take our delivery 
commitment to backers very seriously. I’ve seen too many 
underperforming crowdfunding campaigns, and I’m deeply 
concerned that crowdfunding for hardware is becoming syn-
onymous with scams and spams. 

Kickstarter and Indiegogo have been plagued by non
delivery and scams, and their blithe, caveat emptor attitude 
around campaigns highlights the conflict of interest between 
consumers and crowdfunding websites. The crowdfunding 
sites are basically saying to backers, “Hey, thanks for the 
nickel, but what happened to your dollar is your problem.” 
I’m honestly worried that crowdfunding will get such a bad 
reputation that it eventually won’t be a viable platform for 
well-intentioned entrepreneurs and innovators.

The bottom line is this: if I can’t prove to current and 
future backers that I can deliver a project on time, I stand 
to lose a valuable platform for launching my future products. 
Fortunately, we definitely proved ourselves with Chibitronics, 
and I’ve continued to use Crowd Supply for other crowdfund-
ing projects since.

Lessons Learned

We didn’t deliver Chibitronics on time because we had it easy, 
though. When I drew up the original campaign timeline, my 
minimum and maximum bounds on delivery time spanned 
from just after Chinese New Year 2014 (February) to around 
April. I padded that schedule by one month beyond the max, 
just to be safe, and we used every last bit of this padding.

I made a lot of mistakes along the way, but through a 
combination of hard work, luck, planning, and strong factory 
relationships, we successfully overcame many hardships. Here 
are a few lessons I learned during the process.
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Not All Simple Requests Are Simple for Everyone

Every Chibitronics starter kit included a physical copy of a 
fantastic book Jie wrote as a step-by-step, self-instruction 
guide to designing with circuit stickers, the Circuit Sticker 
Sketchbook (shown on pages 256–257). The book is unusual 
because you’re meant to paste electronic circuits into it, so we 
had to customize several aspects of the printing. The paper 
had to be the right thickness to get good light diffusion when 
LEDs were placed underneath a sheet. The binding needed 
special attention for a better circuit-crafting experience, and 
there’s even a little pocket in the back to hold swatches of craft 
material used as part of the projects in the book. 

The printer found most of these requests relatively easy 
to accommodate, but one in particular threw them for a loop. 
The book’s metal spiral binding had to be nonconductive so 
that placing copper tape on the binding wouldn’t accidentally 
cause a short circuit. 

Checking a wire for conductivity seems like a simple 
enough request for someone who designs circuits for a living, 
but for a book printer, it’s weird. No part of traditional book 
printing or binding requires such knowledge. The printer 
originally said they couldn’t guarantee anything about the 
conductivity of the binding wire. Sure enough, while the first 
sample wire was nonconductive, the second was conductive, 
and the printer couldn’t explain why. 

Face-to-face meetings were invaluable here. Instead of 
yelling at the printer over email, we arranged a meeting with 
them during one of my monthly trips to Shenzhen. We had a 
productive discussion about their concerns, and at the conclusion 
of the meeting, we ordered them a $5 multimeter in exchange 
for a guarantee of a nonconductive book spine. In the end, the 
printer was simply unwilling to guarantee something for which 
they had no quality control procedure, which is completely rea-
sonable. We just had to teach them how to use a multimeter.
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This unusual nonconductivity requirement did extend our 
lead time by several days and added a few cents to the cost of 
the book, but overall, I was willing to accept that compromise.

Never Skip a Check Plot

The pad shapes for the circuit stickers are complex polyline 
geometries, which Altium, the PCB design software I was 
using, didn’t handle very gracefully. I discovered the hard way 
that in Altium, the soldermask layer occasionally disappears 
for pads with complex geometry. Older versions of my design 
would contain a soldermask layer, but then upon saving the 
design file, the layer would silently disappear. This sort of bug 
is rare, but it does happen. Normally, I’d import the gerber 
file into a third-party tool as a check plot before making an 
order, but I was in a rush and reordering an existing design 
that had worked before, so I skipped the check plot procedure. 

The result? Thousands of dollars’ worth of PCBs had to 
be scrapped, and we lost four weeks from the schedule. Ouch.

It was good that I padded my delivery dates—and that I 
keep a bottle of fine Scotch on hand, to help bitter reminders 
of what happens when I get complacent go down a little easier.

If a Component Can Be Placed Incorrectly, It Will Be

I’m paranoid about parts being placed incorrectly, as this prob-
lem has burned me many times. The Chibitronics effects sticker 
sheet was a prime example of the issue waiting to happen. 

The Chibitronics effects stickers
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The sheet is an array of four stickers that flash different 
patterns on an LED but are otherwise identical. The flash-
ing pattern is controlled by software. Trying to manage four 
separate firmware files and get them all loaded into the right 
spot in a tester is a nightmare waiting to happen. To solve 
that problem, I designed the stickers to use the exact same 
firmware. Their behaviors were instead set by the value of a 
single external resistor, which was measured on boot by the 
microcontroller’s integrated ADC.

My logic went something like this: if all the stickers have 
the same firmware, there’s no “wrong way” to program the 
stickers. Right?

Unfortunately, I also designed the master PCB panels to 
be perfectly symmetric. You could load the panels into the 
assembly robot rotated by pi radians, and the assembly pro-
gram would run flawlessly—except that the resistors setting 
the firmware behavior would be populated in reverse order 
compared to the silkscreen labels. Despite having fiducial holes 
to provide a frame of reference and text on the PCBs in both 
Chinese and English that is uniquely orienting, this problem 
actually happened. On the first effect sticker samples, the 
“heartbeat” sticker was “blinking,” the “twinkle” sticker was 
“fading,” and vice versa.

Fortunately, the factory very consistently loaded the boards 
in backward, which is the best case for a problem like this. I 
rushed a firmware patch (also a risky thing to do) that reversed 
the interpretation of the resistor values, and had a new set 
of samples shipped to me in Singapore via FedEx for a san-
ity check. We also built a secondary test jig to add a manual 
double-check for correct flashing behavior on the line in China. 

The effects sheet problem was solved, but in making that 
additional test, we discovered another common problem.
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Some Concepts Don’t Translate into Chinese Well 

I wrote instructions in Chinese to describe the difference 
between fading (a slow blinking pattern) and twinkling (a 
flickering pattern) to the factory, but it turns out that the 
Chinese translations for blink and twinkle are similar. Twinkle 
translates to 闪烁 (“flickering, twinkling”) or 闪耀 (“to glint, to 
glitter, to sparkle”), and blink translates to 闪闪 (“flickering, 
sparkling, glittering”) or 闪亮 (“brilliant, shiny, to glisten, to 
twinkle”). 

I always dread writing subjective descriptions for test 
operators in Chinese, which is part of the reason I try to auto-
mate as many tests as possible. As one of my Chinese friends 
once remarked, Mandarin is a wonderful language for poetry 
and arts but difficult for precise technical communications.

The challenge, then, was to come up with a bulletproof, 
cross-cultural explanation of the difference between fading and 
twinkling, using only simple terms anyone could understand; 
that is, I had to avoid technical terms like random, frequency, 
hertz, and periodic.

I sent the factory a video of the different LED patterns, 
and our factory recommended we use 渐变 (“gradual change”) 
for fade and 闪烁 (“flickering, twinkling”) for twinkle. I’m still 
not convinced that was a bulletproof description, but it was 
superior to any translation I came up with. And, to this day, 
we are dogged by problems trying to explain to quality control 
staff the difference between these effects. It turns out that a 
malfunctioning sticker also makes a pretty good twinkling 
effect—for a while.

Funnily enough, it was also a challenge for Jie and me 
to agree upon what a “twinkle” effect should look like. She 
described our first iteration of the effect as “closer to a lightning 
storm than twinkling.” We had several long conversations on 
the topic, followed by demo videos to clarify the desired effect. 
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We basically tweaked code until it looked about right to both 
of us. Given the difficulty we had describing the effect to each 
other, it’s no surprise I had trouble accurately describing the 
effect in Chinese.

Eliminate Single Points of Failure

When we built test jigs, we built two copies of each, even 
though throughput requirements demanded just one. Why? 
Because one might fail. 

And guess what: one test jig did fail. I still don’t know why. 
Thank goodness we built two copies, though, or I’d have had 
to rush to China on short notice to diagnose why our sole test 
jig didn’t work.

Some Last-Minute Changes Are Worth It

About six weeks before we finalized our order for the Chibi
tronics kits with the factory, Jie suggested that we include 
a stencil of the sticker patterns with the sensor and micro-
controller kits. She reasoned that it can be difficult to lay 
out the copper tape patterns for complex stickers like the 
microcontroller, which has seven pads, without a drawing of 
the contact patterns. I originally resisted the idea; I didn’t 
want to delay shipment on account of something we didn’t 
originally promise. As Jie discovered, I can be very tempera-
mental, especially when it comes to schedule slips. (Sorry, 
Jie! Thanks for bearing with me.) 

But her arguments were sound, so I instructed our fac-
tory to search for a stencil vendor. After two weeks, we hadn’t 
found anyone willing to take the job, but our factory’s sourcing 
department didn’t give up. Eventually, they found one vendor 
who had enough material in stock to tool up a die cutter and 
turn around a couple thousand stencils within two weeks—just 
barely in time to meet the schedule.
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The sensor and microcontroller sheet and stencil

When I got samples of the sensor and microcontroller kit 
with the stencils, I gave them a whirl. Jie was absolutely right 
about their utility. I found my experience vastly improved 
when I had a template to work from, particularly for the 
microcontroller sticker with seven closely spaced pads, and 
I felt users would agree. That’s how even though the stencil 
wasn’t promised as part of the original campaign, all backers 
who ordered the sensor and microcontroller kit received a free 
stencil to help them lay out designs.

Chinese New Year Impacts the Supply Chain 

Even though the Chinese New Year is a two-week holiday, our 
initial schedule essentially wrote off the month of February. 
Reality matched this expectation, but I want to share with 
you exactly how Chinese New Year impacted this project, in 
case you’re considering manufacturing a product in China. 
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We had a draft manuscript of our book ready in January, 
but I couldn’t get a complete sample until March. That wasn’t 
because the printer was closed for a month straight; like every-
one else, their holiday was about two weeks long. The paper 
vendor, however, started their holiday about 10 days before 
the printer, and the binding vendor ended their holiday about 
10 days after the printer. Even though each vendor took only 
two weeks off, the net supply chain for printing a custom book 
was out for around 24 days, or effectively the entire month of 
February. The staggered observance of Chinese New Year is 
necessary because of the sheer magnitude of human migration 
that accompanies the holiday.

Shipping Is Expensive and Difficult 

When I ran the initial numbers on shipping, I realized that 
we weren’t exactly selling circuit stickers—taking the book 
into account, by volume and weight, our principal product 
was printed paper. To optimize logistics cost, I pushed to ship 
starter kits (which contained a book) and additional stand-
alone book orders by ocean, rather than air.

We actually had starter kits and books ready to go almost 
four weeks before the first kits shipped, but we just couldn’t 
get a reasonable quotation for the cost of shipping them by 
ocean. We spent almost three weeks haggling and quoting 
with ocean freight companies. In the end, their price was 
basically the same as going by air but would take three weeks 
longer and incurred more risk. Freight cost is apparently a 
minor component of shipping by ocean, and you get killed by 
a multitude of surcharges, from paying the longshoremen 
to paying all the intermediate brokers and warehouses that 
handle your goods at the dock. Those fixed costs added up such 
that even though we were shipping over 60 cartons of goods, 
air shipping was still more cost-effective. 
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Note	 For reference, a Maersk 40-foot sea container would fit over 

1,250 cartons, each containing 40 starter kits. We were an 

order of magnitude away from being able to efficiently utilize 

ocean freight.

You’re Not Out of the Woods Until You Ship 

At each milestone in this project, I had to remind myself not 
to count my chickens before they hatched. Problems ranging 
from a routine UPS screwup to a tragic aviation accident to a 
logistics problem at Crowd Supply’s fulfillment depot to a cus-
toms problem could stymie an on-time delivery. But, at the very 
least, we did everything within our power to deliver on time.

Thankfully, when all was said and done, our backers 
received their orders right on time. Since then, Chibitronics 
has continued to surpass my wildest expectations. Although 
we started this project as an academic experiment, grassroots 
user adoption prompted us to grow the experiment into a full-
fledged company. As the circuit stickers are an open hardware 
project, the specs are available for savvy hackers to play with, 
but most users are nontechnical folks who would benefit more 
directly from support on basic usage. To that end, the company 
strives to provide users with assistance, activities, and more 
stickers to help them keep learning and making beautiful 
electronic crafts.

Closing Thoughts

Chibitronics has been an ongoing learning experience for me, 
as I’ve never had a company successfully mature like this. I’m 
excited to see where the company goes, but as an engineer, 
I also know my limitations: I’m not cut out to be a business
person. Once the company is big enough to support its own 
staff in a sustainable fashion, I’m looking forward to handing 
over the reins, returning to my workbench, and dreaming up 
new open hardware inventions.
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Part 4
a hacker’s perspective
Engineering and reverse engineering are two sides of the 
same coin. The best makers know how to hack their tools, and 
the best hackers routinely make new tools. I might set out to 
design a circuit, and find myself reverse engineering a chip 
because the datasheet is vague, incomplete, or simply incorrect. 
Engineering is a creative exercise; reverse engineering is a 
learning exercise. When you combine them, even the toughest 
problems can be solved as a creative learning exercise.

I spent over a quarter-century in school, but I’ve learned 
more about electronics from reverse engineering. I love try-
ing to figure out why the engineer behind a piece of random 
hardware made certain design choices. Highly skilled engi-
neers develop clever tricks without realizing how innovative 
they are. Those tricks often go undocumented or unpatented, 
and the only way to tap that knowledge is to decipher it from 
finished designs. 

After seeing enough boards, I started recognizing patterns 
and personal styles that almost have a cultural nature about 
them. For example, Apple circuit boards are austere and black, 
with a look almost as iconic as Steve Jobs’s black mock turtle-
necks. There are so many decisions to make when designing 
a circuit board that most engineers can only draw from their 



cultural influences and toolchains to constrain stylistic things 
like fonts and part choices. 

This kind of learning is so important to me that, for over 
a decade now, every month I’ve presented a circuit board on 
my blog and challenged readers to divine its function from its 
design. Part of my motivation for holding these regular competi-
tions is to make reverse engineering feel culturally acceptable 
to readers. People often ask me if reading other people’s designs 
or modifying and hacking hardware is legal. But anyone who 
has raised a child knows that learning through emulation is 
a part of human nature. I disagree with interpretations of the 
law that put the terms of a software license above your right 
to own your hardware. If you can’t hack it, you don’t own it.

The importance of democratic access to technology only 
grows as we become increasingly dependent on smartphones 
and computers. Technology is fundamentally neutral toward 
human ethics; the people who control technology are respon-
sible for applying it ethically. One school of thought believes 
that technology should be controlled by a select group of 
trusted masters; the other believes that control over technol-
ogy should belong to anyone with the motivation and will 
to learn it. Increasingly, our technology infrastructure is 
becoming a monoculture managed by a cartel of technology 
providers. Everyone carries identical phones running operat-
ing systems based on the same libraries and uses one or two 
cloud services to store their data. But history has proven that 
a monoculture with no immunity is a recipe for disaster. One 
virus can wipe out a whole population. Universal access to 
technology may allow the occasional bad actor to develop a 
harmful exploit, but this bitter pill ultimately inoculates our 
technological immune system, forcing us to grow stronger and 
more resilient. Wherever that threat comes from, a robust 
and vibrant culture of free-thinking technologists will be our 
ultimate defense against any attack. 
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Speaking of viruses and immune systems, there are remark-
able parallels between hardware systems and biological sys-
tems. Just as hacking is all about rethinking APIs to do 
unexpected things, a central tenant of biology—evolution—is 
all about superior implementations of “APIs” superseding 
weaker interpretations. 

I routinely read journals about the life sciences not just 
because I find the subject fascinating, but also because it’s good 
for me. Looking outside your primary field for fresh ideas is 
very helpful for problem solving. Figuring out how an organism 
works is an incredibly difficult reverse engineering problem: 
there’s no documentation, there’s no designer to consult, and 
your diagnostic tools are roughly equivalent to throwing crate 
after crate of smartphones into a blender and running the 
mixture through various sieves. Biologists have developed 
a bag of extremely clever tricks to map out complex systems 
without the benefit of an oscilloscope, and at a high level, some 
of the principles are applicable to electronic systems.

As our understanding of biology becomes more complete, 
there’s ample opportunity for computer engineering principles 
to advance the field. We’re already at the point of custom-
engineering organisms; the technology to hack humans—or 
engineer our successor—is likely to arrive within decades. 
Such powerful tools deserve a closer look so that we can make 
independent judgments about what is fact and what is fiction.

While engineering is a creative activity, hacking is an 
important and often underrated learning exercise. The ability 
to effortlessly switch modes from forward to reverse engineer-
ing is a powerful tool, and the right to hack is the foundation 
of a healthy technological culture. The first chapter in this 
section reviews some of my own hacking methods and efforts 
and discusses some of the legal frameworks that protect these 
activities. The second chapter attempts to unpack some key 
concepts from biology and frame them from the perspective 
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of an electronics person. The final chapter in this book is a 
collection of interviews where I discuss what being a hacker 
means to me, as well as recap some of my experiences in 
manufacturing and hardware startups. The collection isn’t 
exhaustive, but I hope you enjoy reading some of my more 
off-the-cuff thoughts.
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9.  hardware hacking
The biggest barrier to hacking is often the fear that you’ll break 
something while poking around. But you have to break eggs 
to make an omelet; likewise, you have to be willing to sacrifice 
devices to hack a system. Fortunately, acquiring multiple 
copies of a mass-produced piece of hardware is easy. I often 
do a bit of dumpster diving or check classified advertisements 
to get sample units for research purposes. I generally try to 
start with three copies: one to tear apart and never put back 
together, one to probe, and one to keep relatively pristine. I use 
the pristine copy to sanity-check whether a certain behavior 
is due to my probing or just how the hardware behaves.



My typical approach to any hardware hack is first getting 
the device open and then getting a probe in just the right spot 
without affecting the device’s functionality. When you’re look-
ing inside computer chips, that’s virtually the entire challenge. 
The first hack in this chapter is an example of silicon hacking, 
and you’ll see that once the package is off and you’re staring 
at naked silicon, an attacker has a profound advantage.

Some hardware hacks require more system engineering, 
particularly when you want to reverse engineer and repur-
pose a device. In these situations, I tend to develop additional 
bespoke tools that allow me to tweak and observe a system in 
close to real time, or at least as fast as I can type commands, 
to minimize the time spent validating hypotheses. The goal 
is to make the primary limitation how fast you can think 
of ideas to test, not how long it takes to upload a change to 
test those ideas. The second hack in this chapter talks about 
reverse engineering a relatively simple System-on-Chip (SoC) 
device found inside common SD memory cards and some tools 
I developed to aid that process.

Finally, some hacks inevitably push the boundaries of the 
law. The third hack in this chapter talks about NeTV, a sys-
tem I developed that takes a new look at the High-Definition 
Content Protection (HDCP) encryption standard, which secures 
most HDMI video links. NeTV is a hack on both a legal issue 
and a hardware system. It works around the thorny problems 
presented by the DMCA by reinterpreting the HDCP standard 
to enable a man-in-the-middle (MITM) attack to change video 
data without circumventing encryption. No circumvention, 
no DMCA problem. Hacks often push the boundary of what’s 
legal and what’s been tested in the courts. Just like any other 
system, the legal system can also be hacked, and one key 
takeaway from this chapter is how to think of laws as just 
another constraint to work with on the way to achieving a 
particular goal.
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The final hack in this chapter combines hardware penetra-
tion, tool creation, and legal considerations to reverse engineer 
a complex mobile phone SoC. That’s another project I worked 
on with xobs, and once again, building bespoke hacking tools 
was invaluable because it allowed us to experiment with the 
system as it ran.

Hacking the PIC18F1320

Keeping a secret is a common challenge for any security 
system. To solve this challenge, security system designers 
frequently hide secrets inside silicon chips because the chips’ 
rugged epoxy packages and tiny geometries are difficult to 
penetrate and inspect.

This sounds good in theory but is problematic in practice. 
Chip designers make mistakes, and when a chip has a problem, 
the designers need a way to open it up and investigate. This 
situation is so common that there are commercial services that 
specialize in opening up chips expressly for that purpose. Called 
failure analysis services, they’ve mastered several techniques 
for removing tough epoxy from chips.

A couple of years before my crash course in setting up a 
Chinese supply chain with Chumby, I decided it would be fun 
to demonstrate how simple hacking a chip can be if you’re 
aware of failure analysis services. At the time, Microchip’s 
PIC series of microcontrollers was quite ubiquitous, so I 
decided to have a go at a popular PIC model. PICs typically 
have configuration fuses, which you can activate to prevent 
certain regions of memory from being read or written to. 
But there’s often a legitimate need to read the contents of a 
secured, programmed PIC. For instance, a company that loses 
either the documentation for a product or the personnel that 
originally created the codes for a secured PIC would be stuck 
without a way to read the chip. This is a problem when a 
company needs to revise or upgrade a legacy line of products.
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I wanted to figure out how to dump the memory from a 
secured PIC. Knowing I’d have to break a few eggs to make 
this omelet, I scored four PIC18F1320s from a friend and 
started stripping them down. Here’s what I found.

A PIC18F1320 in its native state

Decapping the IC

First, I had to take the top off so I could see the silicon under 
the hood. Many homebrew techniques for decapping a chip 
typically involve applying fuming nitric or sulfuric acid, but 
those aren’t compounds you’d want to keep at home, nor are 
they easy to obtain. Nitric acid, in particular, is an important 
compound for explosives fabrication. So, I’ve found the easiest 
and most reliable way to decap a chip is to just send it to a 
failure analysis lab. For about $50, you can have a decapped 
part in two days.

I decapped three parts for this project. Two were function-
ally decapped (silicon revealed with the device still in its lead 
frame, fully functional), and the last was fully decapped (just a 
bare silicon die with no package). I had one die fully decapped 
because my inspection microscope had a very short working 
distance at the highest magnifications, and the remaining 
epoxy from the package would have interfered with the lens.
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A functionally decapped PIC18F1320.  
The little raised square in the middle (it’s goldish in real life) is the silicon chip.

Taking a Closer Look

With my decapped ICs in hand, I did a sweep around one of 
the dies with the microscope and noticed several prominent 
features. Because physics is the same everywhere, most of the 
fine-grained structure in a silicon chip looks pretty much 
the same, no matter who makes the chip. These constraints 
propagate their way up to the system level, and with a bit of 
training, you can read a silicon chip like a book.

8KB FLASH Bandgap?

Dickson-style charge pump 
for FLASH/EEPROM
programming

256 bytes
EEPROM

Internal timers/
oscillators

Computational core

Microcode ROM?
Security fuse 
array

256 bytes
SRAM

A/D
converter

My best guess at what various structures in this chip do. I could be wrong.
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One set of structures grabbed my attention immediately: 
there were metal shields over some transistors, following a 
regular pattern that had about the right number of devices to 
account for all the security bits. Full-metal shields covering a 
device are very rare in silicon, so they’re like a big X marking 
the spot where something very important is kept.

Zooming in on the metal shields

Erasing the Flash Memory

The shields were significant because of some interesting facts 
about flash memory technology, which this PIC device used 
to store the security fuse information, as well as the internal 
program code. Flash technology uses a floating-gate transis-
tor structure very similar to old UV-erasable programmable 
read-only memory (UV-EPROM) technologies like the ceramic-
packaged 2716 chips from the 1970s, which had quartz windows 
so they could be erased.

In both flash and UV-EPROM devices, data is written 
when electrons tunnel into a floating gate, where the electrons 
remain for decades. The extra electrons in the floating gate 

A transistor

Shields
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create a measurable offset in the characteristics of the storage 
transistor. The difference is that flash memory can withdraw 
the stored electrons (erase the device) using only electrical 
pulses, while a UV-EPROM requires energetic photons to 
knock the electrons out of the floating gate. The UV light 
required to accomplish this is typically on a wavelength of 
around 250 nm. You need expensive quartz optics to manipu-
late this wavelength of UV without excessive loss, making it 
a bit difficult to harness.

Here’s the important conclusion I drew from these facts: 
flash devices can usually also be erased using UV light since 
they have a similar transistor structure to UV-EPROM devices. 
The encapsulation around a flash device normally prevents 
any UV light from effectively reaching the die, but since the 
PIC devices had the plastic around them removed, I could 
attempt to apply UV light and see what happened.

I performed a simple experiment by programming the PIC 
device with a ramping pattern, where I stored the hexadeci-
mal numbers from 0x00 to 0xFF over and over again. Then, 
I tossed the PIC into my UV-EPROM eraser to bake for . . . 
oh, about the length of a good long shower and some email 
checking. When I took the device out of the eraser, the flash 
memory was indeed blanked to its normal all 1s state, and the 
security fuses were unaffected. After baking a few more PIC 
devices in the eraser, I found that if I didn’t bake a PIC long 
enough, I got odd readings out of the array I wrote to, such as 
all 0s, a phenomenon that I still don’t understand.

Erasing the Security Bits

Clearly, the metal shields over the security fuses were there to 
thwart attempts to selectively erase the security fuses while 
leaving the flash memory array unaffected.
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bounced light

A diagram showing how the shields got in the way of the fuse bits,  
and how to work around them

My problem was that for the flash memory transistor to be 
erased, high-intensity UV light needed to strike the floating gate. 
The metal shield effectively reflected all incident light, so the 
light never reached the gate. But I knew there was a refraction 
index mismatch between the optically clear protective dielectric 
layer of silicon dioxide covering the chip and the silicon proper, 
meaning light at certain angles would reflect off of the smooth 
silicon surface. For an example of this reflective effect, jump 
in a swimming pool, go under water, and look up at where the 
water and air meet. The water should look highly reflective at 
an oblique angle because the refractive index mismatch between 
water and air causes total internal reflection of light.

I planned to use this reflection to bounce the UV light off 
the oxide to hit the metal shield and bounce back onto the 
floating gate. By angling the PIC inside the ROM eraser, 
I thought I could get enough light to bounce into the flash 
memory transistor region and erase the security bits. After a 
couple of attempts using bits and bobs of material to fix the 
angle of the chip, I developed a simple technique that worked 
surprisingly well: shoving the chip into the antistatic foam 
liner of the UV eraser at an angle.
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The chip in the UV eraser’s antistatic foam

Protecting the Other Data

That technique didn’t protect the flash data I wanted to keep, 
though. To avoid erasing this data, I made a hard mask out of 
a very carefully cut piece of electrical tape and stuck that mask 
to the surface of the die using a steady hand, two tweezers, and 
a microscope. The electrical tape blocked the UV light from 
directly hitting the flash code memory regions and somewhat 
absorbed light bounced back from the silicon substrate.

The die in its package, with electrical tape over the flash ROM array

Electrical tape
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This mask allowed me to reset only the security fuses 
without impacting the flash code array too much. The follow-
ing screenshots show the array memory status according to 
the programming and readback tool I was using.

My PIC programmer workspace, showing the device settings before erasure

The device settings after erasure
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In the before shot, note the settings of the security fuses in 
the Configuration Bits window and the values programmed 
in the flash ROM, shown in the Program Memory window. 
In the after shot, the security fuses switch to being disabled, 
while the flash ROM contents in the Program Memory win-
dow read identically to what was programmed in previously. 
A different part of the code array was actually still erased, 
but I could probably have fixed that by cutting a bigger piece 
of electrical tape.

I’ve heard reports that since this hack was published, 
Microchip started putting metal shields over the code memory 
array as well as the fuses, making it a bit more difficult to pull 
off this trick. Still, this hack underscores the fact that quite 
often, the hardest part of silicon hacking is removing the outer 
package, and fortunately, there are cheap, if obscure, services 
available to assist with that problem.

Hacking SD Cards

Years later, I found myself hacking into yet another interest-
ing device with flash memory: an SD card. I’d already torn 
down SD cards when investigating a batch of potentially fake 
cards that found their way into Chumby production units, 
which I discuss in “Fake MicroSD Cards” on page 156. This 
time, my intent was to figure out how to get an SD card to 
do something it wasn’t made to do. This particular hack was 
another team effort with my friend xobs, and it was funded by 
DARPA’s Cyber Fast Track (CFT) initiative. The brainchild of 
uberhacker .mudge (one of the original crew of L0pht), CFT 
was a hack on the US government to make it smarter about 
innovation, particularly on matters related to internet security. 
We pulled it off around the same time we were working on 
Novena and I was collaborating with Jie Qi on Chibitronics.
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xobs and I discovered that some SD cards contain vulner-
abilities that allow arbitrary code execution on the memory 
cards themselves. We also found that similar classes of vul-
nerabilities exist in related devices like USB flash drives 
and solid-state drives. On the dark side, code execution on a 
memory card enables MITM attacks where the card seems to 
behave one way but in fact does something else as an attacker 
intercepts and manipulates communications between the 
card and the device using it. On the light side, however, this 
vulnerability also gives hardware enthusiasts access to a very 
cheap and ubiquitous source of microcontrollers.

Some of the eggs—or rather, SD cards—we cracked open to find the vulnerability

How SD Cards Work

To understand the hack, you need to know how SD cards are 
structured. The information I’m about to explain applies to 
all managed flash devices, which includes microSD, SD, and 
MMC, as well as the eMMC and iNAND devices typically 
soldered onto the mainboards of smartphones to store the 
operating system and other private user data.
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Flash memory is billed as a contiguous, reliable storage 
medium, and it’s really cheap—so cheap that the premise is 
literally too good to be true. In reality, all flash memory is 
riddled with defects, without exception. It crafts the illusion 
of reliability through sophisticated error correction and bad-
block management functions. This system is the result of a 
constant arms race between the engineers and mother nature: 
every time the fabrication process shrinks transistors, memory 
becomes cheaper but more unreliable. Likewise, with every 
generation of chips, engineers create more sophisticated and 
complicated algorithms to compensate for nature’s propensity 
for entropy and randomness at the atomic scale.

These algorithms are too complicated and too device-specific 
to be run at the application or operating system level, so every 
flash memory disk ships with a reasonably powerful micro-
controller to run a custom set of disk abstraction algorithms. 
Even tiny microSD cards contain not one, but at least two, 
chips: a controller and at least one flash chip. (High-density 
cards stack multiple flash dies.)

Inside a microSD card. The small square in the upper-right  
corner is a microcontroller SoC mounted on top of the larger  

flash memory chip that it manages.

In my experience, the quality of the flash chip(s) integrated 
into memory cards varies widely. The chip could be anything 
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from high-grade, factory-new silicon to material with more than 
80 percent bad sectors. If you’re concerned about e-waste, you 
may (or may not) be pleased to know that memory card vendors 
commonly use recycled flash chips salvaged from discarded 
parts. Larger vendors tend to offer more consistent quality, 
but even the largest players staunchly reserve the right to mix 
and match flash memory chips with different controllers yet 
sell the assembly as the same part number. That’s a nightmare 
if you’re dealing with implementation-specific bugs.

A memory card’s embedded microcontroller is often a heav-
ily modified Intel 8051 or ARM CPU that approaches 100 MHz 
performance levels and has several hardware accelerators 
on-die. Amazingly, adding these controllers to a memory card 
only costs about $0.15 to $0.30, particularly for companies that 
can fab both the flash memory and the controllers in the same 
business unit. Even more interestingly, due to the high cost 
of testing chips at the wafer level, it’s probably net cheaper to 
add a microcontroller that manages bad blocks, rather than 
thoroughly test and characterize each raw flash memory chip. 
And in fact, managed flash devices tend to be cheaper per bit 
than raw flash chips, despite the extra functionality.

Every flash implementation has unique algorithmic 
requirements, multiplying the number of hardware abstrac-
tion layers a microcontroller must handle. This complexity 
inevitably leads to bugs, meaning indelibly burning a static 
body of code into on-chip ROM just isn’t feasible, particularly 
for third-party controllers.

Thus, a firmware loading and update mechanism is vir-
tually mandatory. End users are rarely exposed to this pro-
cess since it all happens in the factory, but the mechanism 
exists. While exploring the electronics markets in China, I’ve 
seen shopkeepers burn firmware onto a card that “expands” 
the card’s capacity. In other words, they load firmware that 
reports the capacity of a card as much larger than the actual 
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available storage. The fact that this is possible at the point of 
sale indicates the update mechanism is likely not well secured.

Reverse Engineering the Card’s Microcontroller

xobs and I discovered an example of this vulnerability while 
exploring memory cards using AppoTech’s AX211 and AX215 
microcontrollers. We discovered a simple “knock” sequence 
transmitted over manufacturer-reserved commands (a com-
mand named CMD63 followed by the bytes A, P, P, O) that dropped 
the controller into a firmware loading mode. After receiving 
the knock sequence, the card accepted the next 512 bytes and 
ran the data as code.

Note	 The AppoTech chips I describe here technically integrate suf-

ficient functionality that in an academic sense, they’re not 

mere microcontrollers; they’re full SoCs. But it’s just weird 

to me to refer to the AppoTech as an SoC, so I won’t. It will 

always be a microcontroller to me!

The AppoTech system on this particular memory card also 
used an 8051 microcontroller. From the knock sequence beach-
head, we used a combination of analyzing code with IDA, the 
interactive disassembler, and fuzzing (that is, giving the micro-
controller invalid or random input to see how it responds) to 
reverse engineer most of the 8051’s function-specific registers. 
That allowed us to develop novel applications for the control-
ler without the manufacturer’s proprietary documentation. 
We did most of this work with the Novena laptop hardware I 
described in Chapter 7.

As I alluded at the beginning of this chapter, we devel-
oped several bespoke tools to help us reverse engineer the SD 
card. One of the more interesting tools we (and by we, I mean 
primarily xobs) made is an interactive REPL (read-evaluate-
print-loop) shell for executing arbitrary code on the SD card. 
The following listing shows what that environment looks like.
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root@bunnie-novena:~/ax211-code# ./ax211 -d debug.bin
FPGA hardware v1.26
Debug mode APPO response [6]: {0x3f 0x00 0xc1 0x04 0x17 0xab}
Result of factory mode: 0
00000000  0f 41 1f 0f 0f 0f ff ff                      |.A......|
Expected 0x00 0x00, got 0x0f 0x41
Loaded debugger
Locating fixup hooks... Done
AX211> help
List of available commands:
   hello  Make sure the card is there
    peek  Read an area of memory
    poke  Write to an area of memory
    jump  Jump to an area of memory
 dumprom  Dump all of ROM to a file
  memset  Set a range of memory to a single value
    null  Do nothing and return all zeroes
  disasm  Disassemble an area of memory
     ram  Manipulate internal RAM
     sfr  Manipulate special function registers
    nand  Operate on the NAND in some fashion
   extop  Execute an extended opcode on the chip
   reset  Reset the AX211 card
    help  Print this help
For more information on a specific command, type 'help [command]'
AX211> help disasm
Help for disasm:
Disassemble a number of bytes at the given offset.
Usage: disasm [address] [bytes]
AX211> disasm 0x200 16
.org 0x0200
        nop
        nop
        reti

        nop
        mov R7, A
        reti

        mov R7, A
        nop
        mov R7, A
        nop
        mov R7, A
        nop
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From inside this environment, we could run programs in a 
debugger, get a list of available commands and what they did 
by entering help, and disassemble sections of code by entering 
disasm. Although it took a lot of time to develop an interactive 
tool with such a rich feature set, the effort quickly paid off 
because we could test complex hypotheses using automated 
fuzzing frameworks.

The code upload size was limited to 512 bytes, which meant 
we had to partition the REPL environment between the host 
Novena computer and the target device.* For example, dis-
assembling a particular region of memory breaks down to a 
script executed on the host side that drives issue requests to 
the AX211 to dump the requested portion of memory, followed 
by the disassembly algorithm running on the host ARM CPU.

Echo

Peek

Poke

Jump

Nand

Sfr_get

(etc.)

Dispatch ISR

SD PHY
state machine

FPGA GPIO-like
interface

Main loop

SD PHY emulator

Disassemble

Initialize

Fixup

REPL shell

Formatting

(etc.)

HOST
(ARM i.MX6)

TARGET
(AX211 / 8051)

debug.bin
(512 bytes of 
8051 assembly)

debugger.c

sd.c

Partitioning the SD debugger functions between the host and the target

The tool we built started with an SD physical emulation 
layer, which I’ll refer to as PHY. We used the FPGA built into 
the Novena to present a GPIO-like register API for the SD 

* You can find a copy of the code at https://github.com/xobs/ax211-code/.
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host PHY. There was one register for data output, one register 
for data input, and one register to bitwise set the data direc-
tion. The AX211 card was attached to the FPGA via a custom 
flex-circuit adapter.* 

A flex-circuit adapter plugged into a Novena

The SD commands were received on the AX211 and pro-
cessed by a hardware state machine attached to the embedded 
8051 CPU. The state machine handled receiving the data, plus 
it computed and checked the cyclic redundancy code for error 
detection. Once a complete packet was received by the state 
machine, an interrupt notified the 8051 of the packet’s arrival.

* Tangentially, we used the same flex adapter I mentioned in Chapter 8, which led in part to 
the development of Chibitronics.
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We hijacked the interrupt processing mechanism and 
remapped the default handler to our own 512-byte code stub. 
That allowed us to define a novel set of SD commands that we 
used to implement the callback functions our REPL environ-
ment needed, like peek, poke, jump, NAND register manipula-
tion, and so on. These callbacks were also an ideal hook for 
implementing an MITM attack.

The callback functions for the REPL, displayed in IDA

I don’t know how many other manufacturers leave their 
firmware updating sequences unsecured. AppoTech is a rela-
tively minor player in the SD controller world; a handful of 
companies that you’ve probably never heard of also produce 
SD controllers, including Alcor Micro, Skymedi, Phison, and 
SMI. Of course, there are also SanDisk and Samsung. Each 
has different mechanisms and methods for loading and updat-
ing firmware. But I know of at least one Samsung eMMC 
implementation using an ARM instruction set that had a 
bug requiring a firmware updater to be pushed to Android 
devices, indicating yet another potentially promising venue 
for further discovery.
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Potential Security Issues

From a security perspective, our findings indicated that while 
memory cards look inert, they run code that could be modified 
to perform MITM attacks that are difficult to detect. There’s no 
standard protocol or method to inspect and attest to the con-
tents of the code running on the memory card’s microcontroller. 
If you’re using an SD card in a high-risk, high-sensitivity situ-
ation, don’t assume that running a security-erase command 
(or some other secure erase tool) on a card will guarantee the 
complete erasure of sensitive data. If you really need data 
to disappear, I recommend disposing of your memory card 
through total physical destruction. Grind it up with a mortar 
and pestle if you have to.

A Resource for Hobbyists

From a DIY and hacker perspective, our findings suggested 
a potentially interesting source of cheap and powerful micro-
controllers for use in simple projects. An Arduino clone—with 
an 8-bit, 16 MHz microcontroller—will set you back around 
$20. A microSD card with several gigabytes of memory and 
a microcontroller with several times the performance costs a 
fraction of the price. While SD cards are admittedly I/O-limited, 
some clever hacking of the microcontroller in an SD card could 
make for a very economical and compact data logging solution 
for I2C or SPI-based sensors.

Hacking HDCP- Secured Links  

to Allow Custom Ov erlays

“That’s neat, but is it legal?” is a frequently asked question 
I get when hacking. Just as engineered systems have hacks, 
legal systems have loopholes. Some legal loopholes exist by 
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design; others are unintentional. Either way, they can provide 
vital breathing room for innovation. When contemplating a 
hack, I consider legal issues as I do engineering constraints, 
similar to having to fit something within a case of a certain 
height or run for a certain length of time on a given battery.

Around 2011, when I was still at Chumby, we were puzzling 
about how to drive adoption in the face of the iPhone and 
Android phones consuming the market niche we hoped to 
occupy. Cost was an eternal barrier for user adoption, and the 
integral LCD in a chumby was by far the highest-cost item. Our 
then-CEO, Steve Tomlin, observed that the biggest screen in 
the house had yet to become connected to the internet in any 
meaningful way. And so this question was posed to me: could we 
find a way to kill two birds with one stone, removing the screen 
from our bill of materials while bringing TVs into the internet 
age? This was before products like the Google Chromecast or 
the Logitech Revue were introduced on the market.

It occurred to us that we could pack a cheap computer into 
a stick that plugs into an HDMI port. This solves the prob-
lem of getting chumby onto a TV screen, but then you’re not 
watching your favorite movies or TV shows when the chumby 
is selected. We figured what people really wanted was some 
way to watch TV and have, say, Twitter or Facebook notifica-
tions pop up onscreen, too.

The concept is simple enough. Take the existing output 
from a cable box, Blu-ray player, or AV receiver; feed it into 
a box that blends in chumby content; and pass the resulting 
video on to a TV. But due to the ubiquitous application of 
HDCP encryption over digital video feeds, it is legally perilous 
to remix content if you do it the wrong way. Figuring out the 
right way to do it is how NeTV was born.
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A NeTV sporting the Chumby logo

Inside the NeTV

Background and Context

NeTV was my response to the challenge of remixing existing 
video with internet content while staying within legal bound-
aries, aided by the public release of the master key to HDCP 
in September 2010. To help you understand this hack, let’s 
start with a little background on HDCP.
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High-bandwidth Digital Content Protection is a pixel-level 
encryption system used to encrypt video transmissions over 
HDMI. HDCP puts broadcasters and studios in control of the 
screens their content plays on, as those companies use the 
encryption as a copyright control mechanism. HDCP restricts 
legitimate content manipulation like picture-in-picture dis-
plays, content overlays, and third-party filtering and image 
modification. Combine HDCP with the DMCA, which crimi-
nalizes the circumvention of copyright control, and you’ll real-
ize that when watching certain videos, it’s illegal to modify 
content on your own screen. That’s why there are few HDMI 
video mixing solutions that actually operate on broadcast or 
movie content.

To recap, I had four goals for NeTV: enable consumer-
side content remixing, allow users to eliminate ads or replace 
them with ads relevant to themselves, create an interactive 
TV experience, and make something compatible with any TV. 
To accomplish those goals, I designed NeTV as a man in the 
middle to take data from, say, a Blu-ray player, and apply the 
master key to give users a custom overlay. There are many 
applications for video overlays, but the basic scenario is that 
while you’re enjoying content X, you’d also like to be aware 
of content Y. Combining the two content sources requires a 
video overlay mechanism.

With my MITM attack, NeTV overlaid a WebKit browser 
(the engine Safari and Chrome use) over any video feed. A 
concrete use case for this technology is overlaying Twitter feeds 
as news crawlers across a TV show to watch community com-
mentary in real time on the same screen you’re watching the 
show on. Some TV programs attempt to incorporate Twitter 
feeds already, but they’ve only done so on the source side; 
users can only watch hashtags the show displays. With this 
hack, however, the same broadcast program (say, a political 
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debate) could have a very different viewing experience based 
on which hashtag is keyed into the viewer’s Twitter crawler.

The simple fact that a trivial video overlay is an interest-
ing topic illustrates the distortion of traditional rights and 
freedoms brought about by the DMCA. Unlike the HDCP 
strippers people speculated would come out of the master key’s 
release, however, my hack never decrypted the original video 
data it operated on. Thus, it didn’t circumvent copyright, and 
the DMCA couldn’t apply to it. Loophole found!

How NeTV Worked

Of course, I released the exploit as an entirely open source 
project,* including the hardware and the Verilog implemen-
tation of the Spartan-6 FPGA I used to create the TMDS-
compatible source and sink. TMDS is the signaling standard 
used by HDMI and DVI. The basic pipeline within the FPGA 
deserializes incoming video and reserializes it to the output. 
In this trivial mode, NeTV is simply a signal amplifier for the 
video: encrypted pixels in, encrypted pixels out—no decryption 
and no video manipulation.

NeTV could mix a user-generated content stream over an 
encrypted video feed because HDCP encrypts without valida-
tion. In other words, if a man in the middle tampers with the 
encrypted feed, the receiver simply accepts the tampered pixels 
as valid data, decrypts them, and presents them to the user. 
The lack of link verification is intentional and necessary. The 
natural bit error rate of HD video links is atrocious, but the 
human eye won’t detect bit errors even on the level of 1 in every 
10,000 bits. (At high error rates, users see a “sparkle” or “snow” 
on the screen, but the image is largely intact.) Allowing some 
pixel-level corruption keeps consumer costs low. Otherwise, 

* You can read the documentation on the Sutajio Ko-Usagi wiki, although by the time of publica-
tion, the original NeTV product sold on Adafruit will probably have been phased out in favor of 
a newer, better implementation.
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much higher-quality cables would be required along with FEC 
techniques to achieve a bit error rate compatible with strict 
cryptographic verification techniques like full-frame hashing.

Thus, NeTV’s prime challenge is to derive a keystream 
identical and synchronized to the transmitter’s keystream, 
encrypt the user-generated content with this keystream, 
and selectively swap the transmitter’s pixels on the fly for 
user-encrypted pixels. If everything lines up, the receiver will 
decrypt an image that appears to be a perfect overlay of user-
generated content on top of the original video feed.

Swap encrypted
pixels for alternate

encrypted pixels

Original
video

Cipher
stream

Encrypted
video

Cipher
stream

Decrypted
video

XOR

XOR

Video
cable

Video source TV
XOR

NeTV UI
video

Tx-synchronized
cipher stream

Video
cable

NeTV

A high-level conceptual diagram of how NeTV worked

Creating  the Overlay 

To generate the user overlay content, we connected a tiny 
embedded Linux computer to an FPGA. From the Linux com-
puter’s standpoint, the FPGA emulates a parallel RGB LCD 
that you can access by using the frame buffer at /dev/fb0 
(the filepath for the first frame buffer in Linux). The Linux 
computer would automatically launch a WebKit browser full-
screen at boot, thus filling /dev/fb0 with the user’s content.

The system selected which pixel to swap by observing the 
color of the WebKit overlay’s video, a trick known as chroma 
keying. The overlay video wasn’t encrypted and was gener-
ated by the user, so looking at the color of the overlay video 
was perfectly legal. Other more expressive and aesthetically 
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appealing pixel-combining methods like alpha blending, how-
ever, would have required decrypting the original video, which 
would have been illegal.

If the overlay video matched a certain chroma key color (in 
this case, a specific shade of bright pink), the incoming video 
was displayed; otherwise, the overlay video was displayed. 
Following this system, users could create transparent “holes” 
in the custom UI to show the original video underneath. 
Since the UI was rendered by a WebKit browser, users could 
implement chroma keying by simply setting the background 
color in the CSS of the UI pages to that magic shade of pink. 
With those settings, the default state of a web page would be 
transparent, and all items rendered on top of it were opaque,  
so long as the UI elements avoided the chroma key color and 
turned off enhancements like anti-aliasing.

Crafting    a K eystream  

Of course, the chroma keying happened in the encrypted 
domain. Thus, the FPGA’s second job was to snoop the HDMI 
link and craft a keystream identical to the transmitter’s. 
First, the FPGA observed an I2C link found on HDMI known 
as the data display channel (DDC). The DDC enables moni-
tors to report their capability records (called extended display 
identification data, or EDID) and is also where the encryption 
keys are exchanged.

By observing the key exchange handshake between the 
transmitter and the receiver, NeTV could mathematically 
extract the transmitter’s and receiver’s private keys with the 
help of the HDCP master key. Once the private-key vectors 
were derived, they could be multiplied exactly as they’d be 
in the source or sink to derive the shared secret, called Km. 
When that shared secret was written into the FPGA’s HDCP 
engine, the cipher state was ready to go, allowing NeTV to 
encrypt overlays on the video transmitted between the video 
source and the video display device.
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By considering legal constraints as just another engineering 
constraint, I was able to create a completely new device that 
proves a point: it’s incorrect to automatically equate hacks 
that work around a DRM system with attempts to circumvent 
copyright. NeTV never decrypts previously encrypted video and 
can’t operate without an existing, valid HDCP link, making it 
a bona fide, non-infringing, commercially useful application 
of the HDCP master key.
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A more detailed block diagram showing how NeTV’s FPGA worked

So far in this chapter, we’ve seen examples of different 
hardware hacking approaches and techniques, from physi-
cal penetration to system-level tool building and analysis 
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to treating legal constraints as engineering problems. In 
“Who Are the Shanzhai?” on page 122, I discussed the legal 
approach of a project, codenamed Fernvale, to reverse engineer 
a mobile phone chipset. In addition to thinking about law as 
engineers, xobs and I had to pull out all the stops and apply 
every technical skill at our disposal to reverse engineer such 
a complex system. The rest of this chapter dives into some of 
these techniques.

Hacking a Sha nzhai Phone

When xobs and I worked on Fernvale, our goal was to make 
a new platform derived from the hardware in my $12 gong-
kai phone and repatriate technical information into the open 
source IP system. We had no documentation whatsoever for 
some parts of the chip we wanted to reverse, but that didn’t 
deter us. We navigated complex legal waters and created our 
own custom scripting language to program the chip’s firmware 
to avoid subconscious plagiarism.

Compared to the firmware, though, the hardware reverse-
engineering task was fairly straightforward. The documents 
we scavenged gave us a notion of the chip’s pinout, and the 
pin naming scheme was sufficiently descriptive that I could 
apply common sense and experience to guess how to connect 
the chip. For ambiguous areas, I buzzed out some stripped-
down phones with a multimeter or stared at them under a 
microscope to determine connectivity. In the worst cases, I’d 
probe a live phone with an oscilloscope to make sure I under-
stood the connections correctly. The more difficult question 
was how to architect the hardware.

The System Architecture

We weren’t gunning to build a phone, but rather something 
closer to Particle’s Spark Core (since reborn as the Photon), 
a generic System-on-Module type of single-board computer 
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built for Internet of Things applications. In fact, our original 
renderings and pinouts were designed to be compatible with 
the Spark ecosystem of hardware extensions, until we real-
ized the gongkai phone’s MT6260 microcontroller just had too 
many interesting peripherals to fit into such a small footprint.

Early sketches of the Fernvale PCB

We settled eventually on a single-sided core PCB that we 
called the Fernvale Frond, which embedded the microUSB, 
microSD, battery, camera, speaker, and Bluetooth functionality 

One-sided layout, 
allows for SMT to 

daughtercard

Castellations for 
SMT processing

SMT castellations 

MT6260DA
(to scale)

MicroUSB

DIP headers,  
note pins protrude 

from component side

0.3 mm FFC connector 
to Fernvale Blade

RF connector  
to Fernvale Spore
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(as well as the obligatory buttons and LED) on one board. The 
Frond turned out slim and small, at 3.5 mm thick, 57 mm long, 
and 35 mm wide. We included holes to mount a partial set of 
pin headers, spaced for Arduino compatibility, although the 
board could only be plugged into 3.3 V–compatible Arduino 
devices.

The actual implementation of the Fernvale Frond,  
pictured with an Arduino Uno for size reference

We broke the remaining peripherals out to a pair of con-
nectors: one dedicated to GSM-related signals (GSM is the 
protocol for 2G cell phone networks) and the other to UI-related 
peripherals. We called the GSM board the Fernvale Spore 
and the UI board the Fernvale Blade. We split GSM into a 
module with many choices for the RF frontend to make GSM a 
bona fide user-installed feature, thus pushing the regulatory 

Fernvale Frond

Arduino Uno
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and emissions issue down to the user level. Splitting the 
UI-related features out to another board also reduced the 
cost of the core module and let users try the Frond in numer-
ous scenarios without being locked into a particular LCD or 
button arrangement.

Fernvale Mainboard
(MT6260DA)

UART Speaker Battery Camera USB 1.1 MicroSD BT Arduino

AFE header Expansion header

GSM antenna

GSM RF:
PA + TxRx + Filters

Expansion/breakout
board

Headphone
Keypad SIM

TS LCD

A Fernvale system diagram, showing the features of each of the three boards
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Inside the MT6260

I had some X-rays taken of the MT6260 to help us identify fake com-
ponents. We had to source our MT6260s on the gray market, and we 
wanted to guard against being sold empty epoxy blocks or remarked 
versions of other chips. The MT6260 has -DA and -A variants, where 
the difference is how much on-chip flash memory is included.

An X-ray of the MT6260 chip. 
Look carefully to spot outlines of multiple ICs among the wire bonds.

To our surprise, this $3 chip didn’t contain a single IC, but rather 
a set of at least four (possibly five) chips integrated into a single mul-
tichip module (MCM) containing hundreds of wire bonds. I remember 
back when the Pentium Pro’s dual-die package came out in the late 
1990s. It sparked arguments over yield costs of MCMs versus using a 
single big die; generally, MCMs were considered exotic and expensive.

I also remember at the same time Krste Asanović , then a professor 
at the MIT Artificial Intelligence Lab and later at UC Berkeley, told 
me that the future of electronics wasn’t system-on-a-chip devices, but 
rather “system-mostly-on-a-chip” devices. The root of his claim was 
that the economics of adding in mask layers to merge DRAM, flash, 
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Reverse Engineering the Boot Structure

Shanzhai engineers in China seem to have access to just enough 
documentation to assemble a phone and customize its UI, but 
not enough to do a full OS port. After looking at enough phones, 
I eventually realized that all phones based on a particular 
chipset will have the same backdoor codes, and their GUIs 
are often inconsistent with the implemented hardware. For 
example, the $12 phone I tore down in Chapter 4 prompted 
me to plug headphones into the headphone jack for the FM 
radio to work, yet it has no headphone jack.

To make Fernvale accessible to engineers in the West 
through open source licensing, we had to reconstruct everything 
from scratch, including the toolchain, the firmware flashing 
tool, the OS, and the applications. But all the Chinese phone 
implementations simply relied on MediaTek’s proprietary 
toolchain, meaning we had to do some reverse engineering 
to figure out the boot process and firmware upload protocol.

analog, RF, and digital into a single process wasn’t favorable; bonding 
multiple dies together into a single package was cheaper and easier.

It’s still a race between the cost impact (in terms of both the per-
unit cost and nonrecurring engineering costs) of adding more process 
steps in the semiconductor fab, and the yield impact, relative rework-
ability, and lower nonrecurring engineering cost of assembling modules. 
Single-chip, System-on-Chip devices were the zeitgeist when Krste 
made that observation and they still kind of are, so it was interesting 
to see a significant data point validating his insight.

Understanding the internal structure of the chip was also helpful 
in reverse engineering the system. Knowing that MediaTek was simply 
combining several chips together in a single package shed much-needed 
light on the purpose and organization of their APIs. It also tipped us 
off that certain elements of the system would be reused across several 
product categories and generations, so we knew we could draw mean-
ingful conclusions from documentation on older or related chips. When 
you’re piecing together a puzzle this complex, every clue helps, includ-
ing those gained by just looking at the physical structure of the chip.
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My first step in reversing a chip is always to dump the 
ROM, if possible. We found exactly one phone model with an 
external ROM that we could desolder (it used the -D ROMless 
variant of the chip), and we read its data using a conventional 
ROM reader. We saw very little ciphertext in the ROM, but 
there was a lot of compressed data. Here is a page from our 
notes after we did a static analysis on the ROM image:

0x0000_0000             media signature "SF_BOOT"
0x0000_0200             bootloader signature "BRLYT", "BBBB"
0x0000_0800             sector header 1 ("MMM.8")
0x0000_09BC             reset vector table
0x0000_0A10             start of ARM32 instructions  
                          – stage 1 bootloader?
0x0000_3400             sector header 2 ("MMM.8")  
                          – stage 2 bootloader?
0x0000_A518             thunk table of some type
0x0000_B704             end of code (padding until next sector)
0x0001_0000             sector header 3( "MMM.8") – kernel?
0x0001_0368             jump table + runtime setup (stack, etc.)
0x0001_0828             ARM thumb code start – possibly also  
                          baseband code
0x0007_2F04             code end
0x0007_2F05             begin padding "DFFF"
0x0009_F005            end padding "DFFF"
0x0009_F006             code section begin "Accelerated  
                          Technology / ATI / Nucleus PLUS"
0x000A_2C1A             code section end; pad with zeros
0x000A_328C             region of compressed/unknown data begin
0x007E_E200             modified FAT partition #1
0x007E_F400             modified FAT partition #2

The hexadecimal numbers on the left are memory addresses, 
and the text on the right describes what xobs and I thought was 
stored at each address. One concern about reverse engineer-
ing an SoC is it has an internal boot ROM that always runs 
before code is loaded from an external device. That internal 
ROM can also have signature and security checks that prevent 
tampering with the external code.
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To determine how hard reverse engineering this system 
would be, we wanted to quickly figure out how much code was 
running inside the CPU before jumping to external boot code. 
A Tek MDO4104B-6 oscilloscope let us accomplish that task 
in just a couple of hours.

UART analog trace 
overlaps CLK/STROBE 

from SPI ROM

D2 is the interpretation of 
the analog trace as ASCII data

Digital 
signals 

showing 
SPI ROM 

access

Screenshot from the Tek MDO4104B-6. 
The top quarter shows a zoomed-out view of the entire capture.  

Notice how the SPI ROM accesses are punctuated with console output.

This particular oscilloscope has the uncanny ability to 
perform post-capture analysis on deep, high-resolution analog 
traces and output the result as digital data. For example, we 
could simply probe around the chip with a multimeter while 
cycling power until we saw something that looked like an 
RS-232 encoded signal, and then run a post-capture analy-
sis to extract any ASCII text that was coded in the analog 
traces. Likewise, if we captured SPI traces, the oscilloscope 
could extract ROM access patterns through a similar method. 
By looking at the timing of text emissions versus SPI ROM 
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address patterns, we quickly determined that if the internal 
boot ROM did any verification, it was minimal and nothing 
approaching the computational complexity of RSA encryption.

From there, we needed to speed up our measure-modify-
test loop. Desoldering the ROM, sticking it in a burner, and 
resoldering it to the board were going to get old really fast. 
Fortunately, we’d implemented a NAND flash ROM emulator 
(we lovingly shortened that to ROMulator) on Novena, which 
we previously used to reverse engineer the AX211 contained in 
certain SD cards. We just reused that codebase and made an 
SPI ROMulator. We hacked up a GPBB and its corresponding 
FPGA code to add the ability to swap between the original boot 
SPI ROM and a dual-ported 64kiB emulator region that was 
also memory-mapped into the Novena Linux host’s address 
space. Then, we plugged the phone into the laptop and put 
the ROMulator to work.

64k BRAM
shadow

64k BRAM SPI bus
emulation

EIM interface

Novena i.MX6 host

Original 
SPINOR
EEPROM

MT6260
CPU

C
lk

M
osi

M
iso

Cs_cpu

Cs_emu

Level
translators

Bypass

FPGA

C
s_spi

A block diagram of the SPI ROMulator FPGA
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There’s a phone in my Novena! What’s that doing there?

With the address stream determined by the Tek oscil-
loscope, some rapid ROM patching by the ROMulator, and 
hints of a SHA-1 function existing in the ROM via a static 
code analysis using IDA, we determined that the initial boot-
loader (which we called the 1bl), was hash-checked using a 
SHA-1 appendix.

Note	 The assembly for a hash function tends to have a very dis-

tinctive shape, or set of instructions, and a given hash also 

has some amount of magic numbers unique to it. Given those 

facts, when trying to reverse an authentication method, one 

of the first things a hacker does is use IDA to search for such 

constants near a function with the shape of the hash function 

in question.

Building a Beachhead

The next step was to create a small interactive shell we could 
use as a beachhead for running experiments on the target 
hardware. Just as he did for the SD card reverse engineering 
project, xobs created a compact REPL environment, called 
Fernly, that supported commands like peeking at memory, 
writing data, and dumping CPU registers.
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Designing the ROMulator to make the emulated ROM 
appear as a 64kiB memory-mapped window on a Linux host 
enabled useful POSIX abstractions like the mmap() function, the 
open() function (via /dev/mem), the read() function, and the 
write() function to access the emulated ROM. xobs used these 
abstractions to create an I/O target for radare2, a portable 
reverse engineering framework. The I/O target automatically 
updated the SHA-1 hash every time we made changes in the 
1bl code space. With that system in place, we could do cute 
things like interactively patch and disassemble code within 
the emulated ROM space.

Patching some code in the ROM

We also wired up the power switch of the phone to an FPGA 
I/O. That allowed us to write automated scripts that toggled 
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the power on the phone while updating the ROM contents so 
we could automatically fuzz unknown hardware blocks.

Attaching a Debugger

We had to take an unconventional approach to attach a debug-
ger to the code in the ROM, because locating critical blocks 
was difficult, and JTAG was multiplexed with critical func-
tions on the target device. xobs emulated the ARM core and 
used his Fernly shell to reflect virtual loads and stores to the 
live target. We were able to attach a remote debugger to the 
emulated core that way, bypassing the need for JTAG entirely. 
That also let us use cross-platform tools like IDA on x86 for 
the reversing UI.

At the heart of this debugging technique was QEMU, a 
multiplatform system emulator. QEMU supports emulating 
ARM targets, specifically the ARMv5 chip our target device 
used. We made a new virtual machine type, called Fernvale, 
that implemented part of the observed hardware on the target 
and simply passed unknown memory accesses directly to the 
device.

The Fernly shell was stripped down to support only three 
commands: write, read, and zero-memory. The write command 
pokes a byte, word, or dword of data into RAM on the live tar-
get. A read command reads a byte, word, or dword from the 
live target. The zero-memory command is an optimization, as 
the operating system writes large quantities of zeros across 
a large memory area.

We also hooked and emulated the serial port registers, 
allowing a host system to display serial data as if it were 
printed on the target device. Finally, we emulated SPI, IRAM, 
and PSRAM as they’d appear on the real device. Other areas 
of memory were either trapped and funneled to the actual 
device or left unmapped and reported as errors by QEMU.
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QEMU virtual 
ARM CPU

Emulated
SPI FLASH

Load/store
dispatch

Emulated
UART

Emulated
CPU ID

Known/bypassable 
memory regions

Fernly serial
protocol

Virtual MT6260 running on Novena

Actual MT6260
ARM CPU

Fernly shell
(run on boot)

PeripheralsHardware
peripherals

Actual
hardware

peripherals

Actual MT6260 running Fernly
shell with LD/ST reflector

Unknown 
memory 
regions

GDB, IDA, etc.

GDB network 
protocol

Remote debug UI host (any architecture)

The architecture of the debugger

Invoking the debugger was a multistage process. First, 
we primed the actual MT6260 target with the Fernly shell 
environment. Then, we booted the QEMU virtual ARM CPU 
with a version of the original vendor image primed with a 
known register state at a convenient point in the boot pro-
cess. At this point, code execution proceeded on the virtual 
machine until a load or store was performed to an unknown 
address. On that load or store, virtual machine execution 
paused while a query was sent to the real MT6260 via the 
Fernly shell interface. The load or store was then executed on 
the real machine, which would relay the results of the load 
or store to the virtual machine so execution could resume.

318  C h a pt  e r  9



We couldn’t run Fernly directly from the SPI ROM because 
the vendor binary’s initialization routine modified SPI ROM 
timings. But of course Fernly would have crashed if a store 
happened to land somewhere inside its memory footprint. To 
avoid the possibility of a load or store overwriting the Fernly 
shell code, we hid the code in a region of IRAM that was 
trapped and emulated. Emulating the target CPU let us attach 
a remote debugger like IDA via GDB over TCP. The debugger 
had complete control over the emulated CPU and could access 
its emulated RAM. Here is an example of the output of the 
hybrid QEMU/live-target debug harness.

bunnie@bunnie-novena-laptop:~/code/fernvale-qemu$ ./run.sh

~~~ Welcome to MTK Bootloader V005 (since 2005) ~~~
**===================================================**

READ WORD Fernvale Live 0xa0010328 = 0x0000... ok
WRITE WORD Fernvale Live 0xa0010328 = 0x0800... ok
READ WORD Fernvale Live 0xa0010230 = 0x0001... ok
WRITE WORD Fernvale Live 0xa0010230 = 0x0001... ok
READ DWORD Fernvale Live 0xa0020c80 = 0x11111011... ok
WRITE DWORD Fernvale Live 0xa0020c80 = 0x11111011... ok
READ DWORD Fernvale Live 0xa0020c90 = 0x11111111... ok
WRITE DWORD Fernvale Live 0xa0020c90 = 0x11111111... ok
READ WORD Fernvale Live 0xa0020b10 = 0x3f34... ok
WRITE WORD Fernvale Live 0xa0020b10 = 0x3f34... ok

This output shows the trapped serial writes appearing on 
the console, plus a log of the writes and reads executed by the 
emulated ARM CPU as they were relayed to the live target 
running the reduced Fernly shell. This was our beachhead.

From there, xobs and I discovered the offsets of a few IP 
blocks that were reused from previous known MediaTek chips 
by searching for their “signature” in memory. A signature 
could be as simple as the power-on default register values, or 
something more complex, like changes in bit patterns due to 
the side effects of bit set or clear registers located at offsets 
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within the IP block’s address space. Following the signatures 
helped us find the register offsets of several peripherals and 
generate a memory map.

Starting 
Address

Ending 
Address

Size of 
Region

Description

0x00000000 0x0fffffff 0x0fffffff PSRAM map, repeated and mirrored  

at 0x00800000 offsets

0x10000000 0x1fffffff 0x0fffffff Memory-mapped SPI chip

?????????? ?????????? ?????????? ????????????????????????????????

0x70000000 0x7000cfff 0xcfff On-chip SRAM (maybe cache?)

?????????? ?????????? ?????????? ????????????????????????????????

0x80000000 0x80000008 0x08 Config block (chip version, etc.)

0x82200000 ?????????? ??????????

0x83000000 ?????????? ??????????

0xa0000000 0xa0000008 0x08 Config block (mirror?)

0x10010000 ?????????? ?????????? (?SPI mode?) ????????????????????

0x10020000 0xa0020e10 0x0e10 GPIO control block

0xa0030000 0xa0030040 0x40 WDT block

  + 0x08 -> WDT register (?)

  + 0x18 -> Boot src (?)

0xa0030800 ?????????? ?????????? ????????????????????????????????

0xa0040000 ?????????? ?????????? ????????????????????????????????

0xa0050000 ?????????? ?????????? ????????????????????????????????

0xa0060000 ?????????? ?????????? ?? Possible IRQs at 0xa0060200 ??

0xa0070000 ========== ========== == Empty (all zeroes) ===========

0xa0080000 0xa008005c 0x5c UART1 block

0xa0090000 0xa009005c 0x5c UART2 block

0xa00a0000 ?????????? ?????????? ?????????????????????????????????

This memory map shows what content is stored at different 
address ranges on the chip. For instance, the second address 
range in the map (0x10000000 to 0x1FFFFFFF) consisted 
of 0x0FFFFFFF bytes corresponding to a memory-mapped 
SPI chip.
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Booting an OS

After finding the register offsets, we progressed rapidly on 
many fronts, but our goal (to port NuttX, a BSD-based real-
time operating system, to the device) remained elusive. There 
was no documentation on the interrupt controller within the 
canon of shanzhai datasheets. We found the routines that 
installed the interrupt handlers through static analysis of the 
binaries, but we couldn’t determine the address offsets of the 
interrupt controller itself.

All we could do was open the MediaTek codebase and 
refer to the header file that contained the register offsets and 
bit definitions of the interrupt controller. This fit within our 
self-imposed limitations to not breach copyright, because facts 
are not copyrightable. I describe the legal reasoning behind 
this idea in Chapter 4, under “Dealing with Copyrights” on 
page 138. After looking up those facts, we created our own 
custom scripting language, called Scriptic, to avoid uncon-
sciously plagiarizing anything from the existing codebase.

Building a New Toolchain

Requiring users to own a Novena ROMulator to hack on 
Fernvale wasn’t a scalable solution, however. To round out 
the story, we created a complete developer toolchain. The 
compiler was fairly cut-and-dried; many standard compilers 
support ARM as a target, including clang and GCC. But mak-
ing open tools for flashing the MT6260 was much trickier. 
All the existing tools we knew supported the protocol version 
required by the MT6260 were proprietary Windows programs. 
That meant we had to reverse engineer the MediaTek flashing 
protocol and write our own open source tool.
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Fortunately, a blank, unfused MT6260 shows up as /dev/
ttyUSB0 when you plug it into a Linux host. In other words, 
it shows up as an emulated serial device over USB. That took 
care of the lower-level details of sending and receiving bytes 
to the device, leaving us to reverse engineer the protocol layer.

xobs located the internal boot ROM of the MT6260 and 
performed static code analysis to learn more about the proto-
col. He also did some static analysis on MediaTek’s flashing 
tool and captured live traces using a USB protocol analyzer 
to clarify the remaining details. Here is a summary of the 
commands he extracted, as we used in our open version of 
the USB flashing tool.

enum mtk_commands {
  mtk_cmd_old_write16 = 0xa1,
  mtk_cmd_old_read16 = 0xa2,
  mtk_checksum16 = 0xa4,
  mtk_remap_before_jump_to_da = 0xa7,
  mtk_jump_to_da = 0xa8,
  mtk_send_da = 0xad,
  mtk_jump_to_maui = 0xb7,
  mtk_get_version = 0xb8,
  mtk_close_usb_and_reset = 0xb9,
  mtk_cmd_new_read16 = 0xd0,
  mtk_cmd_new_read32 = 0xd1,
  mtk_cmd_new_write16 = 0xd2,
  mtk_cmd_new_write32 = 0xd4,
  // mtk_jump_to_da = 0xd5,
  mtk_jump_to_bl = 0xd6,
  mtk_get_sec_conf = 0xd8,
  mtk_send_cert = 0xe0,
  mtk_get_me = 0xe1, /* Responds with 22 bytes */
  mtk_send_auth = 0xe2,
  mtk_sla_flow = 0xe3,
  mtk_send_root_cert = 0xe5,
  mtk_do_security = 0xfe,
  mtk_firmware_version = 0xff,
};

This is just a C enum structure, making it a very geeky 
way of specifying a mapping of numbers to command 
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meanings. For example, mtk_cmd_old_write16 is command 0xA1, 
mtk_command_old_read16 is command 0xA2, and so on.

Fernvale Results

After about a year of on-and-off effort between work on the 
Novena and Chibitronics campaigns, we were able to boot a 
port of NuttX on the MT6260, supporting a minimal set of hard-
ware peripherals. It was enough for us to roughly reproduce 
the functionality of an AVR used in an Arduino-like context, 
but not much more.

xobs and I presented our results at the 31st Chaos Com
munication Congress (CCC), and events actually took an 
unexpected twist as we wrote our proposal. The week before 
submission, we learned that MediaTek released the LinkIT 
ONE development platform, based on the MT2502A, in con-
junction with Seeed Studios. The LinkIT ONE is an Internet 
of Things platform made for entrepreneurs and hobbyists. It’s 
integrated into the Arduino framework and features an open 
API that enables the full functionality of the chip, including 
GSM functions. But the core OS that boots on the MT2502A 
in the LinkIT ONE is still proprietary, and you can’t access 
the hardware without going through the API calls provided 
by the Arduino shim.

Realistically, it’s still going to be a while before we can port 
a reasonable fraction of the MT6260’s features into the open 
source domain. It’s quite possible we’ll never be able to do a 
blob-free implementation of the GSM call functions, as those 
are controlled by a DSP unit that’s even more obscure and 
undocumented than the MT6260. Given the robust function-
ality of the LinkIT ONE compared to Fernvale, we decided to 
leave the question of whether there was value in continuing 
the effort to reverse engineer the MT6260 to the open source 
community. In the end, there was a lot of enthusiasm for the 
project, but not a lot of action. The LinkIT ONE’s introduction 
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took a lot of wind out of the sails of the Fernvale project, which 
has since been effectively retired.

This is, in fact, the fate of most open source projects. There 
are dozens, if not hundreds, of open source operating systems 
but only one Linux. The truth is that there are far more inter-
esting ideas than capable developers to execute them. For an 
open source project to catch fire and become self-sustaining, 
it has to not only pass the minimum viable product (MVP) 
stage but also meet a receptive audience with a real need 
for the project. Sometimes your project strikes a chord, and 
a huge community pushes it forward. Other times, you get a 
lot of nice, helpful onlookers who nod appreciatively but are 
unwilling or too busy with day jobs to jump in. And still other 
times, you yell into a void or, worse, get torn to shreds on some 
internet forum about how flawed and pointless your project is.

Closing Thoughts

Given the nature of open source projects, I tend to take a 
page from my startup days and follow a “fail forward fast” 
philosophy. Try a bunch of different things, see what sticks, 
learn from your mistakes, and try again. It’s important not 
to get too wedded to any one idea, especially if the idea isn’t 
working out. Finally, you’ll find it helps to be more about the 
journey than the destination. Fernvale was most certainly an 
epic journey; xobs and I learned a lot, honed a set of tools and 
skills that we continue to use to this day for other projects, 
and most importantly, had a lot of fun.

In the next chapter, we’ll take a look at another kind of 
hacking that will become increasingly relevant to all of us over 
the coming decades—that of biological systems.
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10.  biology and  
       bioinformatics
I once came across a beautiful diagram in Science* show-
ing the metabolic pathways of one of the smallest bacteria, 
Mycoplasma pneumoniae. It reminded me of staring at an 
Apple II schematic when I was less than a decade old. Back 
then, I knew that the Apple II schematic’s fascinatingly com-
plex mass of lines was a map to the computer in front of me, 
though I didn’t know quite enough to do anything with that 
map. But the point was that a map existed, so despite its 
imposing appearance, it gave me hope that I could unravel 
such complexities. Biological “schematics” like the one on the 
next page give me the same hope.

* Eva Yus et al., “Impact of Genome Reduction on Bacterial Metabolism and Its Regulation,” 
Science 326, no. 5957 (2009): 1263–1268, http://science.sciencemag.org/content/326/5957/1263/.



Mycoplasma pneumoniae’s metabolic pathway

The Apple II schematic from my wall
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The M. pneumoniae diagram isn’t quite as precise as the 
Apple II schematic, but from 10,000 feet, they feel similar 
in complexity and detail. The metabolic diagram is detailed 
enough for me to trace a path from glucose to ethanol, and 
the Apple II schematic is detailed enough for me to trace a 
path from the CPU to the speaker. And just as a biologist 
wouldn’t make much of a box with 74LS74 attached to it, an 
electrical engineer wouldn’t make much of a box with ADH 
inside it. (A 74LS74 contains two instances of a synchronous 
electronic storage device, and ADH is alcohol dehydrogenase, 
an enzyme coded by gene MPN564 that can turn acetaldehyde 
into ethanol.)

Furthering the computer analogy, though, the Science 
article’s authors also included a list that read like a BOM for 
M. pneumoniae in their supplemental material. The pentago-
nal boxes in the diagram are enzymes, proteins that catalyze 
specific chemical reactions. Each enzyme is listed with a 
functional description along with its gene sequence, which is 
equivalent to source code.

At the very end of that list, I saw a table of uncharacter-
ized genes. If you’ve done a bit of reverse engineering, you’ve 
probably made similar tables for parts or function calls in an 
electronic system. They’re the first place I go for fresh clues 
when I get stuck. I find it heartening to see biologists and 
hackers applying similar techniques to reverse engineering 
complex systems.

Comparing H1N1 to a Computer Virus

The comparison of biological systems to computer systems 
doesn’t stop at the metabolic level. I once read a fascinating 
article in Nature* that compared the pathogenic components 

* Gabriele Neumann, Takeshi Noda, and Yoshihiro Kawaoka, “Emergence and Pandemic Potential 
of Swine-Origin H1N1 Influenza Virus,” Nature 459, no. 7249 (2009): 931–939, http://www.nature 
.com/nature/journal/v459/n7249/full/nature08157.html.
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of the novel H1N1 virus (better known as swine flu) to those of 
other flu strains, and that article got me thinking about how 
digital and organic viruses compare. For example, how big is 
an organic virus relative to a digital one? To put the question 
another way, how many bits does it take to kill a human, or 
at least make one quite sick? In exploring this idea, I found 
it helpful to draw a few analogies between the digital and 
organic worlds.

DNA and RNA as Bits

When the H1N1 pandemic broke out in 2009, the virus was com-
prehensively sequenced and logged in the National Center for 
Biotechnology Information’s (NCBI) Influenza Virus Resource 
database, and the data collected there is amazing. I love the 
specificity of the records. For example, the entire sequence 
of an instance of influenza known as A/Italy/49/2009(H1N1) 
isolated from the nose of a 26-year-old female Homo sapiens 
returning from the United States to Italy is on the NCBI web-
site. Here are the first 120 bits of the DNA sequence:

atgaaggcaa tactagtagt tctgctatat acatttgcaa ccgcaaatgc agacacatta

With 120 bits total, each symbol (A, T, G, or C) represents 
2 bits of information. In genes, this can be alternatively rep-
resented as an amino acid sequence, where every three DNA 
symbols are a codon corresponding to one amino acid. Long 
chains of amino acids fold into complex structures called pro-
teins that give structure and function to a cell, and chains of 
amino acids too short to be a complete protein are often called 
peptides. Using a translation lookup table that biologists call 
the standard genetic code, I converted the previous sequence 
into the following peptide: MKAILVVLLYTFATANADTL.

In this sequence, each symbol represents an amino acid, 
which is the equivalent of six bits or three DNA bases per 
amino acid. There are 20 amino acids in the canonical codon 
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table, and each letter corresponds to a different amino acid. 
M is methionine, K is lysine, A is alanine, and so on.

Now, consider RNA, which passes information from DNA 
on how to synthesize proteins to the rest of the cell. As with 
DNA, each base in RNA specifies one of four possible symbols 
(in this case, A, U, G, or C), so a single base corresponds to two 
bits of information. DNA and RNA are information-equivalent 
on a one-to-one mapping. Think of DNA as a program stored on 
disk and RNA as the same program loaded into RAM. When 
DNA is loaded, protein synthesis instructions are transcribed 
into RNA, but all T bases are replaced with U bases. 

Proteins, then, are the output of running an RNA pro-
gram. Proteins are synthesized according to the instructions 
in RNA on a three-to-one mapping. You can think of proteins 
like pixels in a frame buffer, as follows: 

•	 A complete protein is like an image on the screen.

•	 Each amino acid on a protein is like a pixel. 

•	 Each pixel has a depth of six bits, due to the three-to-one 
mapping of a medium that stores two bits per base. 

•	 Finally, each pixel goes through a color palette (the codon 
translation table) to transform the raw data into a final 
rendered color. Unlike a computer frame buffer, however, 
different biological proteins vary in amino acid count 
(analogous to a pixel count).

To ground this in a specific example, imagine that six 
bits stored as ATG on your hard drive (DNA) are loaded into 
RAM (RNA) as AUG because T is transcribed as U when 
going from DNA to RNA. When the RNA program in RAM is 
executed, AUG is translated to a pixel (amino acid) of color 
M, or methionine, which is the biological “start” codon—that 
is, the first instruction in every valid RNA program. 
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As a shorthand, since DNA and RNA are one-to-one equiva-
lent, bioinformaticists represent gene sequences in DNA for-
mat, even if the biological mechanism is in RNA format. The 
influenza virus has an RNA architecture, rather than DNA, 
and the 120 bits of DNA I showed earlier correspond to an 
RNA subroutine in influenza. That subroutine codes for the 
HA gene, which produces an H1 variety of the hemagglutinin 
protein. This is the H1 in the H1N1 designation of swine flu.

Organisms Have Unique Access Ports

Given that background information, if you think of organisms 
as computers with IP addresses, each functional group of cells 
in the organism listens to the environment through its own 
active port. As port 25 maps specifically to SMTP services on a 
computer, port H1 maps specifically to the windpipe region on 
a human. Interestingly, the same port H1 maps to the intes-
tinal tract on a bird. Thus, the same H1N1 virus will attack 
the respiratory system of a human and the gut of a bird. In 
contrast, H5—the variety of hemagglutinin protein found in 
H5N1, the deadly avian flu—specifies the port for your inner 
lungs. As a result, H5N1 is much deadlier than H1N1 because 
it attacks your inner lung tissue, causing severe pneumonia. 
H1N1 is less deadly because it attacks a more benign port 
that just makes you blow your nose a lot and cough up loogies.

Note	 Researchers are still discovering more about the H5 port. The 

Nature article I read indicated that perhaps certain human 

mutants have lungs that don’t listen on the H5 port. People 

whose lungs ignore the H5 port would have a better chance 

of surviving an avian flu infection, while those that open port 

H5 on the lungs have no chance to survive (make your time 

. . . all your base pairs are belong to H5N1).*

* If you’re not familiar with this turn of phrase, see https://en.wikipedia.org/wiki/All_your 
_base_are_belong_to_us.
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Knowing a virus is deadly, you can figure out how many 
bits it takes to kill a human (or at least make one quite sick) 
by calculating the number of bits in the viral genome. The 
question, then, is how many bits are in this instance of H1N1? 
The raw number of bits, by my count, is 26,022; the number 
of actual coding bits is approximately 25,054. I say “approxi-
mately” because in some places, the virus does the equivalent 
of self-modifying code to create two proteins out of a single 
gene. It’s hard to say what counts as code and what counts as 
an incidental, nonexecuting NOP sled required for the self-
modified code.

That means it takes about 25Kb or 3.2KB of data to code 
for a virus that has a nontrivial chance of killing a human. 
This is more efficient than a computer virus like MyDoom, 
which comes in around 22KB. Knowing that I could be killed 
by 3.2KB of genetic data is humbling. Then again, with roughly 
800MB of data in my genome, there’s bound to be an exploit 
or two.

Hacking Swine Flu

One interesting consequence of reading this Nature article and 
having access to the virus sequence is that in theory, I now 
know how to modify the virus sequence to make it deadlier. 
For instance, the Nature article notes that variants of the 
PB2 influenza gene with glutamic acid at position 627 in the 
sequence have a low pathogenicity, meaning they aren’t very 
deadly. However, PB2 variants with lysine at the same posi-
tion increase the likelihood of mortality. 

Let’s see the sequence of PB2 for H1N1. Going back to the 
NCBI database, I found the following amino acid sequences 
around position 627:

601 QQMRDVLGTFDTVQIIKLLP
621 FAAAPPEQSRMQFSSLTVNV
641 RGSGLRILVRGNSPVFNYNK
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The numbers to the left indicate the position of the first 
symbol in each line of the sequence; I’ll follow that convention 
for the rest of this discussion. Check the line labeled 621, and 
note the E in position 627. E is the symbol for glutamic acid. 
Thankfully, H1N1 seems to be a less-deadly version of influ-
enza; perhaps this is why fewer people died from contracting 
H1N1 than the media might have led you to believe. 

Now, let’s reverse this back to the DNA code:

621   F   A   A   A   P   P   E   Q   S   R  
1861 ttt gct gct gct cca cca gaa cag agt agg

Notice the GAA codes for E. To modify this genome to be 
deadlier, you’d simply need to replace GAA with one of the 
codes for lysine (K). Lysine can have a code of either AAA or 
AAG. Thus, a deadlier variant of H1N1 would have a coding 
sequence like this:

621   F   A   A   A   P   P   K   Q   S   R  
1861 ttt gct gct gct cca cca aaa cag agt agg
                             ^ changed

So, a single base-pair change—simply flipping two bits—
might be all you’d need to turn the H1N1 swine flu virus 
into a deadlier variant. Theoretically, I could apply a series 
of well-known biological procedures to synthesize this strain 
and actually implement the hack. As a first step, I could go to 
a DNA synthesis website and order the modified sequence to 
get my deadly little project going for just over $1,000. Some of 
those companies have screening procedures to protect against 
DNA sequences that could be used to implement biohazardous 
products, but even if they happened to screen for HA variants, 
there are well-known protocols for site-directed mutagenesis 
that could possibly be used to modify a single base of RNA 
from material extracted from normal H1N1.
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Adaptable Influenza

Of course, I have to give influenza some credit. It packs a 
deadly punch in 3.2KB, and despite scientists’ best efforts, we 
haven’t eradicated it. Could influenza do hacks like the one I 
just described on its own already?

The short answer is yes.
In fact, the influenza virus evolved to allow for these adap-

tations. Normally, when DNA is copied, an error-checking 
protein runs over the copied genome to verify that no mistakes 
were made. This keeps the error rate quite low. But remember, 
the influenza virus uses an RNA architecture. It therefore 
needs a different mechanism from DNA for copying.

Inside its protein capsule, the influenza virus packs code 
for a protein complex called RNA-dependent RNA polymerase, 
which is a tiny machine for copying RNA off of RNA templates. 
Normally, RNA is only generated by transcribing DNA, not by 
copying an existing piece of RNA, so this mechanism is essen-
tial for the replication of RNA-based influenza. Significantly, 
RNA-dependent RNA polymerase omits an error-checking 
protein that would prevent mutations. The result is that 
influenza makes about one error per 10,000 base pairs that 
get copied. The influenza genome is about 13,000 base pairs 
long, so on average, every copy of an influenza virus has one 
random mutation.

Some of these mutations make no difference; others ren-
der the virus harmless; and quite possibly, some render the 
virus much more dangerous. Since viruses are replicated and 
distributed in astronomical quantities, the chance that this 
little hack could end up occurring naturally is in fact quite 
high. I think this is part of the reason health officials were so 
worried about H1N1: people had no resistance to it, and even 
though it wasn’t as deadly as it could have been, the strain 
was probably just a couple of mutations away from being a 
much bigger health problem.
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There is one other important subtlety to the RNA archi-
tecture of the influenza virus, aside from its high mutation 
rate: the virus’s genetic information is stored as eight separate, 
relatively short, snippets of RNA. In many other viruses and 
simple organisms, genetic information is instead stored as a 
single unbroken strand. 

To understand why that’s important, consider what hap-
pens when a host is infected by two types of the influenza 
virus at the same time. If the genes were stored as a single 
piece of DNA or RNA, there would be little opportunity for the 
genes between the two types to shuffle. But because influenza 
stores its genes as eight separate snippets, those genes mix 
freely inside the infected cell and are randomly shuffled into 
virus packets as they emerge. If you’re unlucky enough to 
get two types of flu at once, the result is a potentially novel 
strain of flu, as RNA strands are copied, mixed, picked out of 
the metaphorical hat, and then packed into virus particles. 
This process is elegant in that the same mechanism allows 
for mixing of an arbitrary number of strains in a single host. 
If you can infect a cell with three or four types of influenza 
at once, the result is an even wilder variation of flu particles.

This mechanism is part of the reason novel H1N1 is called 
a triple-reassortant virus. Through a series of dual infections or 
perhaps a single calamitous infection of multiple flu varieties, 
novel H1N1 acquired a mix of RNA snippets that gave it high 
transmission rates and made it something humans weren’t 
innately immune to. That’s the perfect storm for a pandemic.

If there were a computer analogy to this RNA-shuffling 
model, it would be a virus that distributes itself in the form 
of unlinked object code files plus a small helper program that, 
upon infecting a host, relinks its files in a random order before 
copying and redistributing itself. It would also search for 
similar viruses that may already be infecting that computer 
and on occasion link in object code with matching function 
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templates from the other viruses. This rearrangement and 
novel relinking of the code itself would foil classes of antivirus 
software that search for virus signatures based on fixed code 
patterns. It would also proliferate a diverse set of viruses in 
the wild, with less predictable properties.

The influenza virus’s multilevel adaptation mechanism is 
remarkable. The virus has both a slowly evolving point muta-
tion mechanism and a mechanism for drastically altering its 
properties in a single generation through gene-level mixing 
with other viruses. It doesn’t work quite like sex, but the 
result is probably just as good, if not better. It’s also remark-
able that these two important properties of the virus arise as 
a consequence of using RNA instead of DNA as the genetic 
storage medium.

A Silver Lining

Since there are so many variants of flu, no vaccine can target 
all types of the virus, but the H1N1 story does have a silver 
lining. Apparently, a patient who contracted swine flu during 
the pandemic created a novel antibody with the remarkable 
ability to confer immunity to all 16 subtypes of influenza A. 
A group of researchers sifted through the patient’s white blood 
cells and managed to isolate four B cells that contained the 
code to produce this antibody. They cloned the cells and pro-
duced antibodies, facilitating further research into a potential 
vaccine that could confer broad protection against the flu.

I found this really interesting at a gut level because it gives 
me hope that if a killer virus did wipe out most of humanity, 
maybe a small group of people would survive it. 

Rev erse Engineering Superbugs

In 2011, a “superbug” strain of E. coli (a species of bacteria 
with subtypes that can cause food poisoning) called EHEC 
O104:H4 broke out in Europe. When I found out that scientists 
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at BGI, located in Shenzhen, had released the entire sequence 
of O104:H4 freely online for anyone to examine, I got very 
curious about the situation. I couldn’t help but wonder exactly 
what tools bioinformaticists use to analyze DNA sequences. 
Manually inspecting the relatively simple sequences of the 
influenza virus is one thing, but there must be computational 
tools to help make sense of more complicated organisms like 
E. coli.

Fortunately, my perlfriend (s/perl/girl/) is also a noted 
bioinformaticist. She took some time out of her busy schedule 
to show me some tools of the trade. It turns out most of the 
tools for analyzing DNA are freely available online. Since DNA 
is just sequences of A’s, T’s, G’s, and C’s, the standard data 
interchange format is plain old ASCII text, which means you 
can do a lot of analysis using command-line tools like grep, 
sed, and awk. 

The O104:H4 DNA Sequence

The raw sequence data BGI provided was a set of oversampled 
subsequences that we needed to assemble by matching up 
overlapping regions. Stitching subsequences together is a bit 
like composing a large picture from small photos taken at ran-
dom. With enough sampling, you’ll eventually create a mostly 
complete picture, but the image will still have ambiguities, 
particularly in areas with regular patterns.

The genome of O104:H4 was provided as a list of over 
500,000 short DNA samples. The assembly process stitched 
the short DNA samples together into 513 contiguous fragments 
of DNA (known as contigs), with a total genome length of 
5.3 million base pairs. An organism like E. coli has just one big 
loop of DNA, so there were 513 spots where limitations in the 
sequencing technology (or just bad luck) missed an unknown 
number of base pairs, preventing us from knowing the entire, 
unbroken sequence. Notably, a typical, non-superbug strain of 
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E. coli has around 4.6 million base pairs, so O104:H4 is prob-
ably at least 15 percent longer. Likewise, this strain would 
take more time to replicate than a non-drug-resistant strain. 
Take a look at contig 34 of the assembly:

AAATGGTATTCCTGTTCACGATACTATTGCCAGAGTTGTATCCTGTATCAGTCCTGC
AAAATTTCATGAGTGCTTTATTAACTGGATGCGTGACTGCCATTCTTCAGATGATAA
AGACGTCATTGCAATTGATGGAAAAACGCTCCGGCACTCTTATGACAAGAGTCGCCG
CAGGGGAGCGATTCATGTCATTAGTGCGTTCTCAACAATGCACAGTCTGGTCATCGG
ACAGATCAAGACGGATGAGAAATCTAATGAGATTACAGCTATCCCAGAACTTCTTAA
CATGCTGGATATTAAAGGAAAAATCATCACAACTGATGCGATGGGTTGCCAGAAAGA
TATTGCAGAGAAGATACAAAAACAGGGAGGTGATTATTTATTCGCGGTAAAAGGAAA
CCAGGGGCGGCTAAATAAAGCCTTTGAGGAAAAATTTCCGCTGAAAGAATTAAATAA
TCCAGAGCATGACAGTTACGCAATTAGTGAAAAGAGTCACGGCAGAGAAGAAA

I could have picked any contig, and it probably would have 
made about as much sense to you as this block of letters. Aside 
from making gratuitous pop culture references (the word 
GATTACA occurs 252 times in the genome of O104:H4), the 
raw DNA sequence isn’t very insightful. It’s a bit like star-
ing at binary machine code. To analyze the data, you need to 
“decompile” the “methods” contained within the code. 

In this case, we were searching for DNA sequences that 
code for proteins. As I mentioned earlier, proteins are com-
plex, often interwoven chains of molecules consisting of small 
building blocks known as amino acids. Cells get things done 
using proteins: some proteins turn sugar into energy, others 
use that energy to move around or change the cell’s shape, and 
still others are responsible for copying and repairing the cell.

Fortunately, protein sequences are highly conserved in 
DNA. Nature tends to reuse protein structures, with few 
modifications, between organisms. Thus, a function that has 
been determined through a biological experiment, even on 
another species, can often be correlated with a sequence of 
DNA. For instance, one common experiment for determining 
the function of a sequence is to cut a piece of DNA out of a 
cell and observe what happens to the cell; the loss of function 
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resulting from the missing DNA is often indicative of the 
protein’s role in the cell. 

Biologists have amassed decades of research on what 
certain proteins do into huge databases. Thus, to figure out 
what a chunk of DNA means, you can do a fuzzy pattern 
match between your DNA of interest and the database of 
known proteins.

Reversing Tools for Biology

I needed two tools to reverse engineer DNA: a protein data-
base and a piece of software called BLASTX. Both are free to 
download online.

The U ni Prot Database 

I downloaded a list of known proteins from the Universal 
Protein Resource, or UniProt (http://www.uniprot.org/). In 
2011, a search of the database for “drug resistance” restricted to 
E. coli organisms yielded a list of 1,378 proteins that scientists 
have identified over the years as parts of the E. coli bacteria’s 
drug-resistance machinery. Every year, new discoveries are 
added to the database. 

Here’s a snippet from the database that describes a protein 
that gives O104:H4 resistance to a drug you may recognize:

>sp|P0AD65|PBP2_ECOLI Penicillin-binding protein 2
OS=Escherichia coli (strain K12) GN=mrdA PE=3 SV=1 

MKLQNSFRDYTAESALFVRRALVAFLGILLLTGVLIANLYNLQIVRFTDYQTRSNENRIK
LVPIAPSRGIIYDRNGIPLALNRTIYQIEMMPEKVDNVQQTLDALRSVVDLTDDDIAAFR
KERARSHRFTSIPVKTNLTEVQVARFAVNQYRFPGVEVKGYKRRYYPYGSALTHVIGYVS
KINDKDVERLNNDGKLANYAATHDIGKLGIERYYEDVLHGQTGYEEVEVNNRGRVIRQLK
EVPPQAGHDIYLTLDLKLQQYIETLLAGSRAAVVVTDPRTGGVLALVSTPSYDPNLFVDG
ISSKDYSALLNDPNTPLVNRATQGVYPPASTVKPYVAVSALSAGVITRNTTLFDPGWWQL
PGSEKRYRDWKKWGHGRLNVTRSLEESADTFFYQVAYDMGIDRLSEWMGKFGYGHYTGID
LAEERSGNMPTREWKQKRFKKPWYQGDTIPVGIGQGYWTATPIQMSKALMILINDGIVKV
PHLLMSTAEDGKQVPWVQPHEPPVGDIHSGYWELAKDGMYGVANRPNGTAHKYFASAPYK
IAAKSGTAQVFGLKANETYNAHKIAERLRDHKLMTAFAPYNNPQVAVAMILENGGAGPAV
GTLMRQILDHIMLGDNNTDLPAENPAVAAAEDH
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PBP2_ECOLI* is linked to penicillin resistance and is a 
mutated gene that determines the shape of the bacteria. It 
seems this resistant variant adapted to operate despite the 
presence of penicillin; bacteria with nonresistant forms of 
the gene are unable to form properly shaped cell walls in the 
presence of penicillin, and are killed by the drug. Other genes 
might cause more active countermeasures, like pumping an 
antibiotic out of the cell or modifying the antibiotic to be less 
toxic to the cell. Browsing the UniProt database gives you a 
feel for the huge variety of genes available in nature that can 
make bacteria resistant to drugs.

The Decompiler

Next, I needed the actual decompiler. That’s where BLASTX 
(eventually updated to BLAST+) came in. BLASTX is a variant 
of BLAST, which stands for Basic Local Alignment Search Tool. 
First, I had this analysis program compute all possible trans-
lations of the E. coli DNA to protein sequences. Translating 
DNA results in six possible protein sequences: DNA can be 
read forward and backward (known as 5′→3′ and 3′→5′), and 
each direction has three possible frame positions. Then, I had 
the program check for patterns among the resulting amino acid 
sequences that matched the database of sequences known to 
provide drug resistance. (I could have also checked for other 
types of patterns, by typing something different into the data-
base query.) The result was a sorted list of each known drug 
resistance protein, along with the region of the E. coli genome 
that best matches the protein.

The following is the BLASTX output for the penicillin 
example.

* Incidentally, I find it amusing that the sequence for PBP2 is shorter than, for example, my 
PGP public key block.
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# BLASTX 2.2.24 [Aug-08-2010] 

# Query: 43 87880
# Database: uniprot-drug-resistance-AND-organism-coli.fasta
# Fields: Query id, Subject id, % identity, alignment length,  
mismatches, gap openings, q. start, q. end, s. start, s. end,  
e-value, bit score
43 sp|P0AD65|PBP2_ECOLI 100.00 632 0 0 29076 30971 1 632 0.0 1281
43 sp|P0AD68|FTSI_ECOLI 25.08 650 458 21 29064 30926 6 574 2e-33 142
43 sp|P60752|MSBA_ECOLI 32.80 186 120 6 12144 12686 378 558 6e-17 87.0
43 sp|P60752|MSBA_ECOLI 27.78 216 148 5 77054 77677 361 566 8e-14 76.6
43 sp|P77265|MDLA_ECOLI 27.98 193 133 6 12141 12701 370 555 2e-10 65.5

--snip--

The Fields line describes what each column in the table 
shows. In the % identity column, you can see that the gene for 
PBP2_ECOLI has a 100 percent match inside the genome of 
O104:H4.

Answering Biological Questions  
with UNIX Shell Scripts

With this list, I could answer some interesting questions, like 
“How many of the known drug resistance genes are inside 
O104:H4?” Here’s the one-liner program that my perlfriend 
wrote to answer that particular question:

cat uniprot_search_m9 | awk '{if ($3 == 100) { print;}}' | \ 
  cut -f2 |grep -v ^# | cut -f1 -d"_" | cut -f3 -d"|" | \ 
  sort | uniq | wc -l

The output from that script told us that 1,138 genes in 
O104:H4 were a 100 percent match against the database of 
1,378 genes that can confer drug resistance. When we loos-
ened the criteria to also list 99 percent matches, allowing for 
one or two mutations per gene, the list expanded to 1,224 out 
of 1,378. The “superbug” O104:H4 earned its title, having 
acquired roughly 90 percent of the known resistance genes!
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I also wanted to answer the inverse question: which drug-
resistance genes are most definitely not in O104:H4? By looking 
at the resistance genes missing from a superbug, we might be 
able to gather clues as to which treatments could be effective 
against the bug.

To rule out a drug-resistance gene, we crafted another 
search that would reveal which resistance genes in the data-
base had less than a 70 percent match against the sequence 
of O104:H4. The 70 percent threshold was just an arbitrary 
number I picked; there’s probably a rigorous standard that 
scientists and clinicians use.

Here is the list, as it appeared in my terminal:

A0SKI3 A2I604 A3RLX9 A3RLY0 A3RLY1 A5H8A5 B0FMU1 B1A3K9 B1LGD9 
B3HN85 B3HN86 B3HP88B5AG18 B6ECG5 B7MM15 B7MUI1 B7NQ58 B7NQ59 
B7TR24 BLR CML D2I9F6 D5D1U9 D5D1Z3 D5KLY6 D6JAN9 D7XST0 D7Z7R4 
D7Z7W9 D7ZDQ3 D7ZDQ4 D8BAY2 D8BEX8 D8BEX9 DYR21 DYR22 DYR23 
E0QC79 E0QC80 E0QE33 E0QF09 E0QF10 E0QYN4 E1J2I1 E1S2P1 E1S2P2 
E1S382 E3PYR0 E3UI84 E3XPK9 E3XPQ2 E4P490 E5ZP70 E6A4R5 E6A4R6 
E6ASX0 E6AT17 E6B2K3 E6BS59 E7JQV0 E7JQZ4 E7U5T3 E9U1P2 E9UGM7 
E9VGQ2 E9VX03 E9Y7L7 O85667 Q05172 Q08JA7 Q0PH37 Q0T948 Q0T949 
Q0TI28 Q1R2Q2 Q1R2Q3 Q3HNE8 Q4HG53 Q4HG54 Q4HGV8 Q4HGV9 Q4HH67 
Q4U1X2 Q4U1X5 Q50JE7 Q51348 Q56QZ5 Q56QZ8 Q5DUC3 Q5UNL3 Q6PMN4 
Q6RGG1 Q6RGG2 Q75WM3 Q79CI3 Q79D79 Q79DQ2 Q79DX9 Q79IE6 Q79JG0 
Q7BNC7 Q83TT7 Q83ZP7 Q8G9W6 Q8G9W7 Q8GJ08 Q8VNN1 Q93MZ2 Q99399 
Q9F0D9 Q9F0S4 Q9F7C0 Q9F8W2 Q9L798

You can plug any of these protein codes into the UniProt 
database and find out more about them. For example, BLR 
is beta-lactamase, an enzyme that causes resistance to beta-
lactam antibiotics. UniProt describes it like this:

Has an effect on the susceptibility to a number of antibiotics involved 
in peptidoglycan biosynthesis. Acts with beta lactams, D-cycloserine 
and bacitracin. Has no effect on the susceptibility to tetracycline, 
chloramphenicol, gentamicin, fosfomycin, vacomycin or quinolones. 
Might enhance drug exit by being part of multisubunit efflux pump. 
Might also be involved in cell wall biosynthesis.

Unfortunately, a cursory inspection revealed that most func-
tions that O104:H4 lacked were just small, poorly understood 
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fragments of machines involved in drug resistance. As a result, 
there was no clear candidate for a superbug killer in its genome. 

More Questions Than Answers

The good news is that anyone can access the tools to analyze 
genomes, and some tools, such as grep, awk, and sed, are already 
familiar to computer engineers. The bad news is that while we 
can ask questions about the genome with these tools, we’re still 
left with more questions than answers. For example, antibiotic 
resistance sounds like a good thing for the survival of bacte-
ria, so why don’t all bacteria have it? And how do bacteria go 
about acquiring (or losing) such genes?

The rise of antibiotic-resistant superbugs is a product of our 
love of antibiotics. As DNA in E. coli copies at a rate of about 
a dozen base pairs per second, shedding even a single unused 
gene can lend a meaningful advantage in an exponential growth 
race; after all, an E. coli population can double every 20 minutes 
in optimal conditions. As a result, there is selective pressure 
to shed genes that aren’t necessary for survival. The genome 
of O104:H4 is 15 percent longer than that of a typical E. coli 
strain, which means that after seven generations, a typical E. 
coli strain would have twice the population of O104:H4. Within 
half a day under optimal, antibiotic-free growth conditions, a 
strain of E. coli unburdened with antibiotic resistance genes 
would have over 20 times the population of O104:H4. Thus, a 
bacterium that hangs on to its antibiotic resistance genes is 
like a sprinter wearing a bulletproof vest to a race. Likewise, 
one of the greatest natural threats to superbugs is a lean, 
fast-replicating common bug that can edge out the superbug 
by sheer numbers alone.

However, bacteriocidal and bacteriostatic antibiotics kill off 
or prohibit growth of nonresistant bugs, respectively, leaving 
only the resistant bugs to grow unhindered. Over time and 
with exposure to several types of antibiotics, it stands to reason 
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that the resistant bug population would continue to selectively 
breed for multiple resistance genes, creating a superbug. 

Still, I find it astonishing that resistant bugs seem to 
develop resistance genes so quickly. We’re taught that evolu-
tion is a slow process, so it seems remarkable that bacteria can 
serendipitously evolve a suite of antibiotic resistance genes 
totaling hundreds of thousands of base pairs. New genes do 
in fact take a very long time to spontaneously arise (there are 
very few clearly documented cases of this, such as the Long-
Term Evolution Experiment by Richard Lenski). Instead, most 
resistance genes are acquired from the environment through 
horizontal gene transfer.

Our environment is teeming with DNA fragments. The 
GitHub of biology is all around us, from the dirt to the sea 
to the air we breathe. Some DNA fragments code for useful 
traits; some are just junk. When a bacterium is under stress 
(like it is when exposed to antibiotics), it may start to take up 
random DNA fragments from the environment and manufac-
ture proteins based off the code. If it’s going to die anyway, it 
might as well, right? Most of the time, the incorporated DNA 
fragments are not helpful, but if one lucky bacterium picks up 
the necessary resistance gene from the environment, it can 
rapidly outcompete others in an antibiotic-laden environment.

Thus, while nonresistant strains of a bug will rapidly 
outnumber antibiotic-resistant strains, the tiny remaining 
population of resistant bugs (or perhaps even their lifeless 
bodies floating about in the environment) form a reservoir of 
genetic material that can be drafted in times of stress. And 
since the genetic code is interoperable across all species, resis-
tance genes can even be acquired from unrelated organisms. 

Discovering that the functions O104:H4 lacked were poorly 
understood was an interesting lesson in itself. Fiction popular-
izes the notion that knowing a DNA sequence is the same as 
knowing what diseases or traits an organism may have. But 
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even though we know the sequences and general properties of 
many proteins, it’s much harder to link proteins to a specific 
disease or trait. At some point, someone has to get their hands 
dirty and do biological experiments involving actual organ-
isms to assign biological significance to a given protein family. 

Pop culture references to DNA analysis are glibly unaware 
of this missing link in the process, which leads to overinflated 
expectations for genetic analysis, particularly in its utility 
for diagnosing and curing human disease and applications 
in eugenics. Let’s take a closer look at some of those myths.

Mythbusting Personalized Genomics

We’re definitely living in The Future in a lot of ways. For 
instance, we have electric cars! But Hollywood reels from 
the ’60s and ’70s also predicted that I’d be using a flying car 
to get around town by now, not just an electric car on the 
ground. Of course, automotive technology isn’t the only victim 
of Hollywood hype. 

The potential impact of personalized genomics is greatly 
overstated in movies like GATTACA, which create a myth that 
your genome is like a crystal ball, and somehow your fate is 
predestined by your genetic programming. The perlfriend I 
mentioned earlier coauthored a paper in Nature* examining 
23andMe’s direct-to-consumer (DTC) personal genomics offer-
ings. Let’s have a look at her paper, and let the mythbusting 
begin!

Myth: Having Your Genome Read Is Like  
Hex-Dumping the ROM of Your Computer 

An inexpensive technique to look at parts of the genome is 
called genotyping. Here, a selective diff is done between your 
genome and a reference human genome; in other words, your 

* P.C. Ng et al., “An Agenda for Personalized Medicine,” Nature 461, no. 7265 (2009): 724–726, 
http://www.nature.com/nature/journal/v461/n7265/full/461724a.html.
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genome is simply sampled in potentially interesting spots for 
single-point mutations called single nucleotide polymorphisms 
(SNPs, pronounced “snips”). The concept of genotyping natu-
rally leads to two questions. First, how do you decide which 
SNPs are interesting enough to sample? And second, how do 
you know the reference genome is an accurate comparison 
point? This sets up two more busted myths.

Myth: We Know Which Mutations Predict Disease

Some mutations in the human genome simply correlate with 
disease; they are not proven to be predictive or causal. In 
truth, we really don’t understand why many genetic diseases 
happen. For poorly understood diseases, all we can say is that 
people who have a particular disease tend to have a certain 
pattern of SNPs. It’s important not to confuse causality with 
correlation. 

Thus, while scientists can make predictions about diseases 
based on SNPs, most of those predictions are correlative, not 
causative (and weakly correlative, at that). As a result, a 
genotype should not be considered a crystal ball for predict-
ing your disease future. Rather, it’s closer to a Rorschach blot 
that you have to squint and stare at for a while before you can 
say what it means. For instance, in the paper my perlfriend 
wrote, she found that companies often didn’t match up on 
their predictions for disease risk because they interpreted 
mutation meanings differently.

Myth: The Reference Genome Is an Accurate Reference

The word reference in reference genome should tip you off on a 
problem: it implies there are “reference people.” Ultimately, 
just a handful of individuals were sequenced to create today’s 
reference genome, and most of them are of European ances-
try. As time goes on and more full-sequence genetic data is 
collected, the reference genome will be merged and massaged 
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to present a more accurate picture of the overall human race, 
but for now, it’s important to remember that a genotype study 
is a diff against a source repository of questionable universal 
validity. 

For example, some SNPs have different frequencies in dif-
ferent populations. The base A might dominate in a European 
population, but at that same position in an African population, 
the base G could dominate. It’s also important to remember 
that the reference genome has an aggregate error rate of about 
1 error in 10,000 base pairs, although to be fair, the process 
of discovering a disease variant usually cleans up any errors 
in the reference genome for the relevant sequence regions.

It will be decades before we have a full understanding 
of what all the sequences in the human genome mean, and 
even then, they may not be truly predictive of disease risk or 
anything else about our health. Here lies perhaps the most 
important message, and a point I can’t stress enough: in most 
situations, environment has more to do with who you are, 
what you will become, and what diseases you will have than 
your genes do. Any upside to personal genomics won’t be due 
to crystal-ball predictions, but rather to the fact that know-
ing about their own genetic predispositions may encourage 
more people to make lifestyle changes that will help them 
stay healthy. If there’s one thing I’ve learned from dating a 
preeminent bioinformaticist, it’s that no matter your genetic 
makeup, most common diseases can be prevented or delayed 
with proper diet and exercise.

Patching a Genome

So far in this chapter, I’ve given examples of sequencing and 
analyzing genomes. That’s more or less the equivalent of being 
able to dump a program executable and analyze it in IDA. 
Oftentimes, after you analyze an executable, you’ll want to 
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patch it to do something new. Patching software is relatively 
straightforward and reliable: just fire up a hex editor and 
change the file. In the worst case, you might have to use a 
focused ion beam (FIB) to modify the individual wires of a 
mask ROM inside a chip. 

But historically, the ability to patch a genome has been 
severely limited. Information in cells is stored at the molecu-
lar level, and changing a specific portion of a gene can be a 
painstaking process. Just as vacuum tubes and transistors 
came before the integrated circuit, zinc finger nucleases (ZFNs) 
and transcription activator-like effector nucleases (TALENs) 
enabled gene editing, but with significant caveats in efficiency, 
performance, and ultimately, cost. In 2012, the integrated cir-
cuit of gene editing was introduced: the CRISPR/Cas* system. 

CRISPRs in Bacteria

CRISPR, short for clustered regularly interspaced short palin-
dromic repeat, describes a particular RNA structure, while Cas 
are proteins that associate with CRISPRs. CRISPRs are, as far 
as biologists know, common only in bacteria and archaea (for 
example, fungi), and they’re part of a devilishly clever system 
for immunity in simple organisms. Like humans, bacteria have 
immune systems that can be programmed through exposure 
to pathogens. When bacteria encounter a viral invader, they 
have proteins that can snip out short sequences of the viral 
DNA and archive the sequences as spacers in a CRISPR. 

Labs that failed for months to edit a gene using TALENs 
switched to CRISPR/Cas and succeeded on the first try. They 
succeeded so quickly because the process just involves design-
ing a short snippet of RNA that’s inserted into a CRISPR, a 
simple exercise that can be done entirely on a computer or, I 

* Addgene has an excellent white paper describing the system in great detail. I recommend 
checking it out if my cursory treatment here whets your appetite: https://www.addgene.org/
CRISPR/guide/.
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daresay, by hand. The RNA snippet itself can be fabricated 
in about a week for less than $50 using one of several service 
providers, replacing a significant amount of wet lab complex-
ity with an informatics exercise. 

Each CRISPR region is tagged by a leader sequence, imme-
diately followed by the CRISPR proper. A CRISPR itself con-
sists of a guide RNA (gRNA) or “spacer” sequence delimited by 
a well-defined DNA direct repeat sequence that is palindromic. 

Note	 The term spacer is used when discussing an immune system, 

while guide RNA is used when discussing genome editing. 

Calling a region of interest a spacer is confusing, but mis-

nomers can happen with reverse engineering. I can’t blame 

scientists for first noticing a pattern of repeating delimiters 

and calling the stuff between the delimiters “spacers.” After 

all, physicists got the current flow convention backward and 

stuck with it. Who are we to judge?

Palindromic typically means that a string is equivalent 
when simply reversed, like the word racecar. When biologists 
say a sequence is “palindromic,” they mean the sequence is 
equivalent when first complemented (A→T, T→A, G→C, C→G) 
and then reversed. For instance, GAATTC is considered biologi-
cally palindromic, even though it is not lexically palindromic.

The CRISPR/Cas system was described shortly after 
the demise of Chumby, and at the time, I was interning at 
Dr. Swaine Chen’s infectious diseases laboratory at the Genome 
Institute of Singapore. Among other things, I studied various 
strains of E. coli that induce urinary tract infection, under 
the guidance of Lu Ting Liow. While assisting an investiga-
tion into portions of phage virus DNA that found its way into 
E. coli, I was asked to write a script to identify palindromic and 
repeating sequences of DNA in the E. coli genome. My script 
showed that the genome was littered with the sequences; I 
figured the code had a bug and didn’t think much of the result. 
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But perhaps some of the direct repeats I saw were portions 
of a CRISPR. 

Let’s look at a CRISPR from a strain of E. coli now. This 
is the CRISPR direct repeat sequence for E. coli O104:H4: 

GAGTTCCCCGCGCCAGCGGGGATAAACCG  

The bolded base pairs are the palindromic regions. When 
this DNA sequence is translated into RNA (so that T→U), the 
palindromic region can pair with itself, forming a hairpin or 
stem loop, as shown here.
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A C
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A stem loop

This shape hints at the significance of the repeated palin-
dromic structures in a CRISPR: when translated into RNA, the 
sequence can fold onto itself, forming a secondary structure. 
It’s important to remember that genes are not just lines of 
code; they are physical molecules whose overall shape sig-
nificantly impacts their function. Biologists use a four-tier 
system for describing the physical structure that molecules 
like DNA, RNA, and proteins can take based on their source 
code. Primary structure is simply the sequence of monomers 
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(bases or amino acids). Secondary structure refers to physical 
shapes that arise from the localized interactions of monomers, 
due to physical properties such as the spacing and number of 
hydrogen bonds between molecules, or the affinity of certain 
monomers for water. In RNA and DNA, that means structures 
like hairpin loops; in proteins, it means structures like spi-
rals and sheets. Tertiary structure refers to the complex 3D 
shape of a molecule that arises from long-distance interactions 
between potentially remote portions of the primary sequence. 
Tertiary structure is particularly applicable to proteins, as 
some amino acids, such as cysteine, can cross-link with each 
other over longer distances. Quaternary structure refers to 
structures formed from the interaction of multiple molecules. 
A Cas9/RNA complex is an example of a quaternary structure. 
The final, chemically active and targeted molecule arises only 
when a Cas9 protein is merged with a gRNA, and the stem 
loop secondary structure of the gRNA is necessary for Cas9 
to recognize it.

Determining Where to Cut a Gene

RNA derived from a CRISPR region through transcription is 
incorporated into a protein complex with other Cas proteins. 
Specific Cas proteins (such as Cas9) use the RNA as a search-
and-destroy template: the Cas9/RNA complexes float around 
the cell, and when they find a DNA sequence that matches the 
RNA template, they selectively cut the DNA at the template 
site, effectively neutralizing the intruding virus. But you may 
have noticed a recursion problem: the Cas9/RNA complex 
should also cut up the CRISPR region in the host organism’s 
genome, as that region also has the target pattern. This would 
effectively destroy the CRISPR region for future use.

To avoid destroying the CRISPR region, the Cas9/RNA 
complex targets the template DNA plus a short, defined three-
to-five base pair sequence called a proto-space adjacent motif 
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(PAM). For example, the PAM for a popular Cas9 protein from 
S. pyogenes is [AGTC]GG when written in regular expression 
format; biologists use a different convention, NGG, to say the 
same thing. As long as the CRISPR archive doesn’t include 
the PAM sequence, it won’t be cut up by the complex. 

The PAM requirement means there are some limitations 
on where you can cut a gene. It’s a bit like targeting only hex 
strings that end in 0xC3 or searching for return-oriented 
programming (ROP) gadgets. Just as hackers searching for 
ROP gadgets look for short sequences of instructions that end 
in a RET opcode, bioinformaticists have to search for short 
sequences of DNA to edit that end in a PAM.

Despite these limitations, CRISPR/Cas has proven to be 
a versatile and reliable gene-editing tool. It has been adapted 
to both cut genes and paste in new sequences. Making a 
precise cut at an arbitrary location in DNA is the hardest 
step of inserting new DNA. But in conjunction with well-
studied techniques like non-homologous end joining (NHEJ) 
or homology-directed repair (HDR), CRISPR/Cas can be used 
to insert modifications into a gene.

Implications for Engineering Humans

Even though CRISPR/Cas is a naturally occurring system 
found in bacteria and fungi, the universal genetic code means 
the system is binary-compatible with all species, including 
humans. Before this system was discovered, genes were largely 
read-only, especially in living organisms. CRISPR/Cas gives 
us a much more reliable and efficient tool to patch and repair 
genes, without necessarily disrupting the viability of the host 
organism. Biologists have managed to pack the necessary DNA 
for a CRISPR/Cas exploit into viruses, enabling them to sneak 
these gene-editing tools through the cell walls of live, complex 
organisms like mice, plants, and humans. The structure of a 
CRISPR also allows scientists to perform multiple edits in a 
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single experiment, expanding the experimental and therapeutic 
versatility of the technique.

This technology has already been validated on human cells, 
even human embryos, and the implications are simply mind-
boggling. Regardless of ethical standards set by the scientific 
and legal communities in your country of residence, I think the 
promise of custom-designed children, free of genetic diseases 
that once plagued parents, is too strong a temptation. Even 
if most countries banned such a practice, I feel it’s inevitable 
that someone, somewhere, perhaps funded by a wealthy bil-
lionaire unable to have viable children of their own, will start 
tinkering with custom-engineered humans. If the results are 
positive, it will likely change the course of humanity more 
profoundly than Moore’s law. And that’s if a mechanism called 
gene drive doesn’t get there first. 

Hacking Evolution with Gene Drive

Gene drive rewrites the rules of sexual reproduction and, 
consequently, evolution in a way previously unseen in nature. 
You might know that you have two copies of every gene: one 
from your mother and one from your father. Each copy is an 
allele. If the alleles match, you’re said to be homozygous for 
that gene. If the alleles are different, you’re heterozygous for 
it. Normally, which allele a child gets from each parent is a 
coin toss, and the fitness of a child in a given environment is 
the primary deciding factor for passing a set of alleles on to 
a new generation.

Gene drive eliminates this coin toss. Environmental selec-
tion is short-circuited, allowing genes with potentially negative 
side effects to propagate rapidly in a population. This exploit is 
made possible by outfitting the desired allele with a CRISPR/
Cas-assisted gene-editing mechanism that targets and converts 
a heterozygous allele into a homozygous allele. For example, 
if a mother has a gene outfitted with a CRISPR/Cas-assisted 
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gene drive mechanism, it doesn’t matter what the father’s 
genes are. Inside the child, the mother’s copy will express the 
CRISPR/Cas editing mechanisms, seeking out the father’s copy 
and editing it to be the same as the mother’s. 

In terms of disruptive power, if CRISPR/Cas is the rm com-
mand, then gene drive is like calling rm -r * instead.

This has a profound effect on natural selection. Forget 
survival of the fittest; changes no longer have to strictly 
benefit an organism’s fitness to spread through the popula-
tion. Furthermore, gene-driven changes can sweep through a 
natural population at an exponential rate (much faster than 
typical mutations) because they don’t rely on coin tosses and 
natural selection to amplify a mutation.

On the upside, gene drive could be used to force good 
changes into the world, like malaria-free mosquitoes. On the 
downside, this new mechanism, previously unseen in nature, 
could wreck havoc on evolution and the ecosystem. Although 
our changes could be well engineered and well intentioned, 
nature likes to shake things up through mutations, spontane-
ous rearrangements, and horizontal gene transfer. If a gene-
driven organism were to pick up extra genes in the payload 
region, the outcome could be unpredictable. 

For instance, malaria-free mosquitoes would benefit 
humans, but mosquitoes also play a large role in the Earth’s 
ecosystem as a food source for fish and birds. If modified mos-
quitoes failed to thrive and occupy their ecological niche, there 
could be a domino effect that hurts other species. This could 
all happen on a timescale so short that we may not be able to 
reverse it if we tried. Furthermore, organisms like mosquitoes 
don’t recognize geopolitical boundaries. Thus, banning gene 
drive in most of the world doesn’t make anyone safe from its 
potential consequences. If just one well-engineered organism 
makes it into the wild, everyone has to deal with it.
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Perhaps it’s no mistake that CRISPR/Cas has been found 
only in bacteria and archaea—organisms that are known to 
reproduce asexually. Perhaps the ability to short-circuit the 
fitness requirement in sexual reproduction rapidly degrades 
the overall fitness of any germ line carrying a CRISPR/Cas 
mutation so that the line goes extinct before it can take over 
a population. After all, any accidental genes or spontaneous 
mutation that finds its way into a CRISPR/Cas payload would 
also sweep through the population as quickly as the initial 
drive. 

The question, then, is how long does it take for this degra-
dation and extinction to happen? The example of eradicating 
malaria vectors would have a very different outcome if the 
modified mosquitoes went extinct within a few years versus 
several millennia.

Closing Thoughts

Clearly, there are a lot of unanswered questions on the frontier 
of biological engineering, and it’s all happening right now. 
Whether good or bad, the outcome of today’s experiments will 
probably affect humanity as profoundly as Moore’s law and 
the internet. Electronic technology reshaped the way we think 
and communicate, and biotech will reshape our bodies and our 
environment. The big difference is that in biotech, we haven’t 
developed the ability to do backups, but we are developing 
technology with the potential power of the rm -r * command.

Personally, I’m optimistic; I think these technologies can 
and will be used to improve our lives. But for that to happen, 
we need society to understand the issues at stake and have a 
vigorous and open debate. Even if these biological techniques 
have scary implications for our health and safety, failing to 
disclose and discuss vulnerabilities just invites zero-days. And 
who wants to wake up one morning infected with crippling 
malware and no viable patch? 
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Hardware breakthroughs have changed our lives as we 
know it, but Moore’s law is slowing down, and DNA sequencing 
has outpaced it. Who knows what new world will be created 
by advancements in biotech? And just as society benefits from 
the responsible disclosure and sharing of vulnerabilities and 
exploits, engaging in scientific discourse is more construc-
tive than attempting to censor it. Perhaps the experience 
and perspectives gained in maturing the hardware industry 
over the past 50 years from pocket calculators into pocket 
supercomputers can help guide biotech to a similarly positive 
outcome. 
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11.  selected inter views
I’ve done several interviews over the years, and this chapter 
compiles a couple that I thought you might enjoy. The first 
interview was originally published by the China Software 
Developer Network (CSDN), which describes itself as a “pro-
grammer magazine.” At the end, you’ll find a story from the 
Blueprint, a collection of interviews with founders and inno-
vators in hardware.

A ndrew “bunnie” Hua ng: 

Hardware Hacker (CSDN)

This interview originally appeared in CSDN in Chinese in 2013, 
and the magazine kindly allowed me to publish an English 
translation on my blog. In the first section, I discussed my 



thoughts on the maker movement, which was relatively new 
at the time, and my experience with making hardware prod-
ucts. The second section was more about hardware hacking 
and what I feel it means to have a hacker spirit. You can find 
the original Chinese-language version at http://www.csdn 
.net/article/2013-07-03/2816095.

About Open Hardware and the Maker Movement

The maker and open hardware movements have attracted 
a lot of attention. Chris Anderson wrote a book called 
Makers, and Paul Graham called this time the “Hardware 
Renaissance.” How do you think this movement will affect 
ordinary people, developers, and our IT industry?

This movement, as it may be, is more a symptom than a cause, 
in my opinion. First, let’s review how we got to this point.

In 1960, there was only hardware, and it was all open. When 
you bought a transistor radio, it had a schematic printed in 
the back. If the radio broke, you had to fix it yourself. It was 
popular to buy kits to make your own radios.

Between 1980 and 1990, the personal computer revolution 
began. Computers started to become powerful enough to run 
software that was interesting and enabling.

From 1990 to 2005, Moore’s law drove computers to be twice 
as fast and have twice as much memory every 1.5 to 2 years. 
Only software mattered, because unless you could afford to 
fab a chip in the latest technology, making hardware wasn’t 
worth it. By the time you got the components together, a new 
chip would make your design look slow. Optimizing software 
also mattered less than features, convenience, and creativity. 
Users could just buy a faster computer and run old software 
faster. “Making” fell out of fashion because there was no time 
for it: you had to ship code or die.
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From 2005 to 2010, computers didn’t get much faster 
in terms of clock speed, but they got smaller. Smartphones 
were born. Everything became an app, and everything is still 
becoming more connected.

From about 2010 to now, Moore’s law has been slowing 
down. This slowdown is rippling through the innovation chain. 
PCs aren’t getting faster, better, or cheaper in a meaning-
ful way. We buy new PCs just to replace broken ones, not 
because the latest model is so much better. It’s too early to 
tell, but smartphones may also be solidifying as a platform: 
the iPhone 5 is quite similar to the iPhone 4, and Samsung 
phones also look pretty similar across revisions.

The question, then, is how to innovate? How can you create 
market differentiation? With Moore’s law slowing down, it’s 
possible to innovate in hardware and not have your innova-
tion look slow because a new chip came out. You have steady 
platforms (PCs, smartphones, tablets) that you can target your 
hardware ideas toward. You don’t have to fab chips just to have 
an advantage. Everyone is now sifting through technology’s 
past, looking for niches that were overlooked. Even an outdated 
smartphone motherboard looks amazing when you put it in 
a quadcopter, satellite, HVAC system, automobile, energy 
monitoring system, health monitoring system, and so on.

Furthermore, as humans, we fundamentally feel differ-
ently toward physical things and virtual things. Apps are 
wonderful, but human homes are more than a smartphone, a 
food tray, a bed, and a toilet. People still surround themselves 
with knickknacks, photos of friends, and physical gifts from 
special occasions. I don’t think there will ever be a time when 
a virtual teddy bear app will displace a physical teddy bear 
for cuddling at night.

As a result, there will always be a place for people to make 
hardware that fills this need for tangible goods. This hardware 
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will merge more technology and run more software, but in the 
end, there is a space for makers and hardware startups, and 
that space is just getting bigger now that hardware technol-
ogy is stabilizing.

Arduino and Raspberry Pi seem to reduce the threshold 
for designing hardware. How do you think this will affect 
the hardware industry? Do you think these platforms 
will progress the industry by leaps and bounds? If not, 
what does it take to make a really innovative hardware 
product?

Arduino and Raspberry Pi serve specific market niches.
Arduino’s key contribution is reducing computation to an 

easy-to-use physical form. It was made first and foremost by 
designers and artists, and less so by technologists. This unique 
perspective on technology is very powerful because people who 
aren’t programmers or hardware designers want to access hard-
ware technology, too. Some very moving, deep interactive art 
pieces have been made using the Arduino, allowing hardware 
to transform menial control applications into artwork that 
changes your mood or makes you think about life differently. I 
think Arduino is just the first step toward taking the “tech” out 
of technology and letting everyday people not just use technol-
ogy but create with it. There will be other platforms, for sure.

Raspberry Pi is a very inexpensive embedded hardware 
reference module, and I think other platforms will follow in its 
footsteps. It’s cheap enough that for many applications, you 
can use the Raspberry Pi as is and gain no net cost advantage 
by designing and building your own hardware. For hardware 
professionals, the nice thing about this platform is that instead 
of buying a reference design and then having to spin your own 
board, you can just buy the Raspberry Pi and ship it in your 
product. For people who have relatively low-volume products, 
this makes sense.
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I see an ongoing trend toward product design becoming 
more feasible at low volumes. There’s still a market for million-
unit blockbuster devices like smartphones and coffeemakers, 
but eventually, there will also be a market for devices that only 
have a production run of 1,000 to 10,000 units, but with a much 
higher margin. These small-run products will be developed 
and sold by teams of just one or two people so that the profit 
will still be a good living for the individuals. The key to the 
success for these products is that they are highly customized 
and help solve a specific problem for a small group of users 
who are willing to pay more for the solution.

When new concepts or technologies first appear, they 
always generate optimistic discussion, but most of them 
will really affect our lives only after a long period of 
development. When discussing the maker and open 
hardware movements, are we too optimistic? Does the 
average person have common misunderstandings about 
this field?

Yes, it does take a long time for technology to really change 
our lives.

The maker movement, I think, is less about developing 
products and more about developing people. It’s about helping 
people realize that because technology is man-made, every per-
son has the power to control it with a little knowledge. There 
is no magic in technology. You could also say that anyone can 
be a magician with a little training.

Open hardware is more of a philosophy. The success or 
failure of a product is largely disconnected from whether the 
hardware is open or closed. Closing hardware doesn’t stop 
people from cloning or copying, and opening hardware doesn’t 
mean that bad ideas will be copied simply because they are 
open. Unlike software, hardware requires a supply chain, 
distribution, and a network of relationships to build it at a 
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low cost. That overhead means being open or closed is only 
a small part of the equation, and the question of whether to 
open or close a project revolves around how much you want 
to involve end users or third parties to modify or interoperate 
with your product.

Looking at the future of open source hardware, do you 
think it will be analogous to the open source software 
industry, where many commercial companies also 
support open source software? What are the differences 
between them?

I don’t think they’re quite analogous. In software, the cost to 
copy, modify, and distribute is basically zero. I can clone a 
copy of the Linux source repository, run the make command, 
and have the same high-quality kernel running on my desktop 
that runs on top-end servers and supercomputers.

But copying hardware has a real cost: the parts, the facto-
ries, and the skilled workers used to build them; the quality 
control procedures; and the manufacturing process are all 
important factors in the final product’s cost, look, feel, and 
performance. Simply giving someone a copy of my schematics 
and drawings doesn’t mean they can make my exact product. 
Even injection molding has art to it. If I give the same CAD 
drawing to two tooling makers, the outcome could be very dif-
ferent depending on where the mold maker decides to place 
the gates, the ejector pins, the cooling for the mold, the mold 
cycle time, temperature, and so on.

And then you have to think about the distribution chan-
nel, reverse logistics, financing, and so on. Even as the world 
becomes more efficient at logistics, you’ll never be able to buy 
a TV as easily as you can download the movies that you’d 
watch on that TV.

362  C h a pt  e r  1 1



What kind of business model do you think is ideal for 
an open source hardware company? Could you give an 
example?

One of my key theories behind open source hardware is that 
regardless of the license, hardware is essentially open, at least 
at the level of schematics and PCB layout. For a relatively 
small amount of money, you can pay a service to extract the 
details required to copy a PCB design. Therefore, you can 
assume that once you ship hardware, it can be copied. If you 
accept this assumption, then it follows that not releasing 
schematics and PCB layouts won’t stop people from copying 
your goods. If someone wants to copy a piece of hardware, they 
will, whether you share your design files or not.

But sharing design files does make a difference to a sepa-
rate and important group of people. There are other businesses 
and individual innovators who could use your design files to 
design accessories, upgrades, or third-party enhancements 
that rely upon your product. In that case, sharing your design 
files improves your opportunity for new business relation-
ships, which makes doing so (with an open source hardware 
license to reserve a few basic rights and protections) a practi-
cal suggestion.

Clearly, some hardware strategies aren’t compatible with 
open source. If your sole value to the consumer is your abil-
ity to make stand-alone hardware, and you have no strategic 
advantage in terms of cost, then you’d want to keep your plans 
secret to delay low-cost copies for as long as possible.

But the most innovative products today aren’t just pieces 
of hardware. They also involve software and services. Open 
hardware business models work better in such hybrid products. 
In many cases, consumers are willing to pay annually (think 
in terms of subscriptions, advertising, upsells, accessories, 
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royalties, or upgrades) for many products. In fact, it’s most 
profitable to just collect these fees and not involve yourself in 
the hardware manufacturing portion. Controlling access to an 
ongoing service is also much easier than controlling the plans 
for a piece of hardware.

Thus, if you couple a profitable online service with your 
hardware, open hardware makes a lot of sense. Letting other 
people copy the hardware, sell it, and add more users to your 
online service simply means you get more revenue without 
more risk.

You come to China often and know a lot about this 
country. China’s software technology is not advanced. Do 
you think that being the world factory center will help 
China improve its overall level of technology? How can 
this country change from just a manufacturing center to 
a place focused on design, research, and development? 
What is China missing?

I wouldn’t say I know much about China. I know a little about 
one small corner of China in one specific area—hardware 
manufacturing. If there’s one thing I do know, however, it’s 
that China is a very big country with many different kinds of 
people and a long history that I am only beginning to under-
stand. However, I’ve lived through almost the entire history 
of high technology, so I can comment on the relationship 
between high technology and people, from which I can derive 
some perspective about China.

First, every country that is a technology powerhouse today 
started with manufacturing. The United States started as 
colonies of Britain, mining ores, trapping furs, and farming 
cotton and tobacco. Over time, the United States had steel 
mills and linen production. The United States didn’t really 
start to develop original technology until the early 1900s, and 
that process didn’t take off until the mid 1900s.
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Japan developed similarly. It started in manufacturing, 
copying many US-made goods. In fact, if you believe the histori-
cal accounts, the first cars and radios made in Japan were not 
great. It took the United States and Japan decades to go from 
manufacturing-based economies to service-based economies.

Compare that to China, where the electronics manufactur-
ing industry started maybe 20 years ago, at most, and China is 
just turning the corner from being a manufacturing-oriented 
economy to one that can do more design and software technol-
ogy. I believe this is a natural series of events. Some portion of 
entry-level workers will eventually become technicians, then 
some technicians will become designers, and finally, some 
designers will become successful entrepreneurs.

In concrete numbers, if you have 10 million factory work-
ers, maybe 1 percent, or 100,000 workers, will learn enough 
to become technicians after a few years. After a few years 
of technician work, maybe 1 percent will gain enough skill 
to become original designers, giving 1,000 designers. These 
experienced, grassroots designers would become the core of an 
entrepreneurial economy, and from there, the economy could 
begin to transform.

Over the course of a decade or two, a thousand companies 
would eventually be distilled to just a handful of global brand 
companies. I believe China is currently going through this 
final phase. A lot of people in Shenzhen have the experience 
of manufacturing, the wisdom to do design, and the ability to 
apply their talent to innovation and original product design. 
The next decade will be an exciting one for China’s technology 
industry, if the current policies on economic and intellectual 
development stay roughly on course.

This pattern applies primarily to hardware or hardware-
dominated products. Software products have a similar pat-
tern, but I believe there are unique cultural aspects that give 
the West an advantage in software design. In hardware, if a 
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process is not efficient or is producing low yield, you can easily 
identify the root cause and produce direct physical evidence of 
the problem. Hardware problems, in essence, are indisputable.

In software, if code is not efficient or it’s poorly written, 
it’s very hard to identify the exact problem that causes it. You 
can see evidence of programs crashing or running slowly, but 
there’s no broken wire or missing screw you can hold up to 
show everyone why the software is broken. Instead, develop-
ers have to review complex designs, consider many opinions, 
and ultimately, identify a problem that comes down to nothing 
more than one individual’s bad decision. All software APIs are 
simply constructs of human opinions.

Asian cultures have a strong focus on guanxi, reputation, 
and respect for the elders. The West tends to be more rebel-
lious and willing to accept outsiders as champions, and they 
have less respect for the advice of elders. As a result, I think 
it’s very culturally difficult in an Asian context to discuss code 
quality and architectural decisions. The field of software itself 
is only 30 years old, and older, more experienced engineers 
are also the most out of date in terms of methodology and 
knowledge. In fact, the young engineers often have the best 
ideas. But if it’s culturally difficult for young engineers to 
challenge the decisions of elder engineers, you end up with 
poorly architected code and no hope to be competitive.

Overcoming these obstacles is possible, but enforcing the 
correct incentives and culture would require a very strong 
management philosophy. The workers should be rewarded 
fairly for making correct decisions, and there can be no favor-
ites based upon friendship, relationship, or seniority. Senior 
engineers and managers must see a real financial reward for 
accepting their mistakes, instead of saving face by forcing junior 
engineers to code patches around bad high-level decisions. US 
companies usually achieve this alignment by sharing equity 
in a company among the engineers so that the big payout only 
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comes if the company as a whole survives, regardless of an 
individual’s ego.

What do you think the relationship between individual 
makers and commercial companies will be in the future? 
And as individual makers may compete not only with 
commercial companies but also with other makers in the 
future, what factors are critical to a product’s success?

As minimum order quantities decrease and innovation gets 
closer to the edge, I think commercial companies will see 
more competition from makers, especially as the logistics 
industry transforms itself into an API that can plug directly 
into websites. At the end of the day, the most critical factor 
to success will still be how much value consumers perceive 
from a product. This is related to superior features and good 
product quality, but the presentation to the consumer and how 
clearly the benefits are explained are important, too.

As a result, any product will need to be visually appeal-
ing, be easy to use, and come with marketing material that 
clearly explains the benefits of using it. Those elements are 
often challenging for individual makers who are good at mak-
ing products that are valuable technically but have less talent 
for sales and marketing. Makers who can master both facets 
will have an edge.

About Hardware Hackers

You’ve participated in the development process of many 
products, but what is your personal goal?

I would like to make people happy by building things that 
improve their life in some way. The greatest pleasure is to 
see someone enjoying something I made, and knowing I’ve 
improved that person’s life in some small way. Sometimes, the 
product is solving a big problem for its users; other times, the 
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product is more whimsical, and the user’s happiness comes from 
fun or beauty. But either way, knowing I’m helping another 
person by making something is important to me. I’ve learned 
that money beyond a certain level doesn’t make me any hap-
pier. This makes me difficult to work with, because it’s hard 
for people to just hire me by offering a lot of money. Instead, 
they need to convince me that the activity will somehow also 
make people happy.

Another important goal for me is to just understand how 
the world works. I have a natural curiosity, and I want to 
learn and understand all kinds of things. The universe has 
a lot of patterns to it, and sometimes, you’ll find seemingly 
unrelated pieces fitting together like magic. Discovering these 
links and seeing the world fit together like a big jigsaw puzzle 
is profound and satisfying.

Failure tends to give people more experience. Could 
you talk about the not-so-successful projects you have 
participated in, or if you’ve ever seen other failed projects 
that inspired you?

My life is a story of failures. The only thing I have done repeat-
edly and reliably is fail. But I have two rules when handling 
failure:

1.	 Don’t give up.

2.	 Don’t make the same mistake twice.

If you follow these rules, eventually, you’ll find success 
after many failures. That said, I do have an interview that 
focuses on one of my recent failures. You can read it at http://
makezine.com/2012/04/30/makes-exclusive-interview-with 
-andrew-bunnie-huang-the-end-of-chumby-new-adventures/.*

* This interview is excerpted in Chapter 6. 
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Your book, Hacking the Xbox, has been published for 
10 years. For people who want to learn reverse engineering 
or become a hardware hacker today, how do these 
experiences and skills still apply?

I’d like to think the core principles covered in the book are 
still relevant today. The Xbox was simply an example I used 
to show how to do things. The approach and the techniques 
are applicable to a broad range of problems.

For the Chinese audience, I have found mobile phone 
repair manuals to be quite interesting to read, even though 
I can’t read Chinese well. Their descriptions on the theory of 
electronics are not always completely accurate, but practi-
cally speaking, they’re good enough, and they provide a quick 
way to get started while learning immediately useful skills 
in repairing phones.

There’s also a Chinese magazine, called 无线电 (something 
like Radio Electronics in English), which I have found to be 
quite good. If you get started building the projects in there, I 
think you will learn very quickly.

The Xbox One has more stringent restrictions for users. 
What do you think about this? Are you interested in 
exploring this black box and upgrading your book?

I haven’t done much work on video game consoles in a while; 
there’s a whole new generation of console hackers who are 
excited to explore them, and I’m happy for that. As for the Xbox 
One’s security, I’m sure it is one of the most secure systems 
built. Microsoft did a very good job on the Xbox 360, and the 
Xbox One security team members I know personally have a 
very solid understanding of the principles needed to build 
secure hardware. It should be very hard to crack.

That said, I’m glad I have no desire to buy or use one. I 
think I would become very frustrated with their use policies 
and restrictions very quickly.
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There’s a lot of controversy over whether electronic 
devices should have a lock to prevent user rooting. What 
do you think about this? Is there a contradiction between 
ensuring user safety and giving users complete control 
of their devices?

I believe users should own their hardware, and owning some-
thing means having the right to modify it and having root 
access rights. If a company is concerned about users being 
unsafe, then it’s easy enough to allow users to opt out by sign-
ing an electronic waiver to give up their support and warranty 
rights in order to gain complete access to their own machines. 
Most people who can root their machines are already smarter 
than the phone support they would be calling inside the com-
pany, so they shouldn’t have problems.

The laws have changed to make some rooting activities 
illegal, even on hardware that you bought and own. I think 
this reduction in our natural rights of ownership is dangerous 
and can put consumers in unfair situations. This also discour-
ages consumers from exploring and learning more about the 
technologies they’ve become so dependent upon.

As hardware systems become more integrated, do you think 
hardware hacking is getting more and more difficult, or 
do you worry about hardware hackers becoming extinct? 
If so, how could we change this situation?

Hardware system integration has been increasing for a long 
time. The TX-0 just used transistors, the Apple II used TTL 
ICs, PCs use controller chipsets, and mobile phones have just 
a single System-on-Chip. Increasing integration does make 
some parts harder to hack, but there are always opportunities 
at the system integration level.

In other words, I still think there is art in hardware, but 
the level at which hardware hackers have to work gets higher 

370  C h a pt  e r  1 1



every day, and that’s a good thing. It means hacks are getting 
more powerful with time as well.

Hacking the Xbox is dedicated to Aaron Swartz. Could 
you talk about why you think the hacker spirit is 
important today?

The hacker spirit is the ultimate expression of human problem-
solving ability. It’s about the ability to see the world for what it 
is, and not the constructs and conventions that society puts in 
place. For instance, a brick is not just used to make buildings; 
it can be a doorstop, a weapon, a paperweight, a heating bal-
last, or it can be ground up and used for soil. Hackers question 
convention through the lens of doing what’s most practical and 
correct for the situation at hand. Sometimes their methods 
aren’t always harmonious, as hackers often prioritize doing 
the right thing over being nice or playing by the rules.

I find the more difficult situations become, the more per-
vasive and stronger the hacker spirit becomes among common 
people. I see evidence of this around the world. This spirit is 
linked to the human will to survive and to thrive. I think it’s 
important for a society to cultivate and tolerate the hacker 
spirit. Not everyone has it, but the few who do help make 
society more resilient and survivable in hard times.

Do you have other words you would like to share with 
Chinese readers?

I was reading some comments on a Chinese web forum and 
was surprised that many Chinese regard the term shanzhai 
as a negative term. As an outsider, I feel that the shanzhai 
have done a lot of very interesting and useful innovation.

In English, we have a similar problem. The term hacker in 
English started as a good term but over time became associated 
with many kinds of negative acts. The term maker was coined 
to distinguish between the positive and negative aspects of 
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hackers, but I still call myself a hacker because I still adhere 
to the traditional definition of the word.

It may be easier to explain the innovation happening 
in China if a similar linguistic bifurcation could happen in 
Chinese. I recently proposed referring to the innovative, open 
aspects of what the shanzhai do, like their method of sharing 
design files, as gongkai (公开). Significantly, I feel the term  
开放 (kai fang, which means to lay open or to open to the 
public) as used in 开放源代码 (kai fang yuan dai ma, which 
means open source software) doesn’t quite apply. It refers to a 
specific Western-centric legal aspect of being open, which is not 
applicable to the methods engaged in the Chinese ecosystem.

Note 	 Incidentally, kai fang also means to bloom, so it sounds poetic 

in Chinese. Gongkai, on the other hand, just means public or 

overt—whether you like it or not. Its meaning is not as poetic 

or optimistic as kai fang.

The fact that China has found its own way to share IP, 
unique from the Western system, doesn’t mean that the Chinese 
system is bad. It’s actually quite interesting, and I’m very curi-
ous to see where it goes. Since I see positive value in some 
of the methods that the shanzhai use, I’d propose using the 
more positive, generic term gongkai to describe the style of 
IP sharing commonly used in China, but I would stop short of 
formally associating it with the strict definition of open source.

But then again, who am I to say? I’m not a native Chinese 
speaker, and maybe there is a much better way to address 
the situation.

The Blueprint Talks to A ndrew Hua ng

The Blueprint publishes stories about founders in the hardware 
space, and this interview focuses on, as the writer put it, my 
“personal journey.” I discuss what got me into hardware as a 
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kid, what projects I was working on when I gave the interview, 
and pitfalls that hardware startups should keep an eye out 
for. The original interview, which includes some photos of my 
projects and answers to a few other interesting questions that 
didn’t appear in the interview proper, is at https://theblueprint 
.com/stories/andrew-huang/.

How would you describe your first encounters with 
hardware?

My dad bought an Apple II clone when I was eight years old, 
and that sparked my interest in hardware. The clone came 
without a case, leaving all of the electronics exposed. I could 
see the electronics, and I wanted to fiddle with them. My dad 
didn’t want me to touch the computer because I might break it, 
but when he wasn’t home, I’d still fiddle with the electronics. 
I broke it several times because the chips were in sockets. 
Even though my dad told me not to, I just wanted to see what 
happened when you put the chips in backward. I learned very 
early on that putting chips in backward is a bad thing!

The great thing is that the Apple II came with a cool set of 
schematics and source code. I was the weird kid in elementary 
school who carried around an Apple II reference manual. On 
the playground, I’d just pull up the schematic and stare at 
it because it was so fascinating. I didn’t understand what I 
was looking at, but I had some inkling about the connection 
between lines on the schematic and wires on the board. Over 
time, I learned to map the schematic’s symbols to the computer 
functions bit-by-bit, and it all started coming together.

By junior high or high school, I was able to build my own 
plug-in cards for the computer, and I built a little speech 
synthesizer. That’s what you do when you grow up among 
cornfields in Michigan and kids don’t want to play with you 
because you look strange and you are the only Chinese kid.
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How did your early experiences affect your decision to 
go into the hardware industry?

I just kept learning more from there. When I went to MIT, I 
flipped a coin, and instead of going into biology, I went into 
electronics. I got a degree, eventually went into industry, hated 
that, and then went back for my PhD because I wanted to hide 
in my shell a little more. After getting my PhD, I participated 
in a bunch of startups that all failed. I never had a successful 
startup, but I learned a lot from failure.

I did some silicon chip design and reverse engineering 
before I did manufacturing. For many years, I wanted to do 
the biggest, baddest, hardest project I could do, which meant 
working for a pure tech startup. With something like that, 
you’re way in the future and basically by the time the technol-
ogy works and goes onto the market, the patents have expired. 
There is no capital monetization, you work really hard, and 
the product is really obscure. As a result, I never had anything 
ship in volume. That was the most frustrating part: to put 
my life into something and never have it see the light of day.

What lessons did you learn while working on chumby?

I got tired of working for a pure tech company and decided it 
was time to join a company that could monetize a business idea 
quickly. When I joined Chumby, I wanted to do open hardware 
and manufacturing, and I started logging experience in both. 
I worked on the first chumby and then multiple generations 
after that from 2005 to 2010.

When I started, I had never mass-produced a product or 
done mechanical design. I didn’t even know what injection 
molding was. But I had the privilege of sitting with other 
engineers at PCH, and I would just get on the factory floor, see 
what they were doing, and learn about it. By the time I was 
through with Chumby, I was able to use SolidWorks to design 
my own cases and make injection-molded cases from scratch.
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It was a very educational experience. I learned to do test 
plans, manufacturing, sourcing, and other skills you just have 
to pick up along the way. When Chumby went under, I was 
living in Singapore, where I had attempted to open a field 
office. I stayed behind to wind down the office, give it a clean 
shutdown, and make sure everyone got jobs elsewhere. After 
everything was taken care of, I decided to be unemployed 
for one year; the first thing I did was design a radiation sen-
sor for Japan after the terrible earthquake and tsunami on 
March 11, 2011.

Then I started thinking about what my next project would 
be. I did a series of projects like reverse engineering SD cards, 
and I met Jie Qi, who I helped to produce circuit stickers under 
the Chibitronics brand.

One of the guys working with me in Singapore was Sean 
Cross, and we were sitting around asking what we should 
build. We decided to build something we could use because 
when I was at Chumby, I built things for other people rather 
than myself. I use a laptop every day, and we needed a devel-
opment platform, so we built a laptop that we would actually 
use. We’re now doing a crowdfunding campaign around that 
product.

How would you describe your process of going from a 
prototype to manufacturing it?

There’s actually a lot of art in designing things to be easy to 
make. One great approach to this is to be fully responsible 
for your own supply chain. I don’t like to have a supply chain 
manager and a manufacturing manager. I want to make 
something myself. I insist on doing all of the testing myself. I 
insist on handling the manufacturing issues myself because, 
from a design standpoint, doing so forces you to think, “Can I 
build that? If I gloss over this bit of detail, I might pay dearly 
for that later.”
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From the very beginning when you start designing, I 
think about how to make something manufacturable. What 
manufacturing process should I use? How do I make sure I 
can source all of these components? When I actually get to 
the manufacturing time, I’ve made all the decisions because 
I’m the one who has to pay the price at the end of the day.

What do people most overlook when they are designing?

There are a lot of aspects you could forget. The two that come 
to mind first are the ability to source the materials and the 
yield. For example, the instructions for a cool project in Make: 
magazine often tell you to go find an obscure or out-of-date 
object, like a motor from a 1980s VHS player. In theory, that 
would be great because many people have this cheap item in 
their garage. But all of a sudden, everyone is going to eBay 
trying to find the same part, and it’s not sourceable.

On the yield side, a lot of people won’t run the numbers 
in terms of what it means to be yielding. Every step of the 
manufacturing process has some fallout. If every step is about 
99 percent yield and you take 10 steps like that, your yield 
will be about 90 percent. People essentially build the Leaning 
Tower of Pisa into their project, and at the end of the day the 
problems compound, preventing delivery. It’s crucial to build 
a system that is robust and reworkable so that every step 
can be coupled with another step to minimize yield fallouts. 
Otherwise, you’ll throw away a lot of money.

How would you describe how things have changed in 
the perception of hardware since you got involved in 
manufacturing?

It’s weird. Right around the time I was working on the Xbox 
in 2001, hardware was probably at the rock bottom. During 
the dot-com boom, working on Web 2.0 was really super-hot, 
and if you did something with Amazon or XML, it was cool. 
Soldering was a low-value thing that happened somewhere else.
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But I was that weird guy who knew how to solder in a 
lab, so people would come to me with broken things and I’d 
fix them. I just stuck with it because that’s what I do, and I 
love doing it. One reason the Xbox’s security was relatively 
easy to break was because of the assumption that hardware 
was hard and soldering was difficult. But if you know how to 
solder, breaking the security is very easy. I did it on a grad 
school budget for about $150. I gave some talks at conferences 
after the Xbox hacking, basically telling people that hardware 
is not hard, that there’s no magic behind it. I showed people 
that the “magic” was actually pretty simple manufacturing 
techniques.

Then Kickstarter came. Money started going into a system 
where it hadn’t before because VCs wouldn’t touch hardware. 
They thought hardware was a retail chasm where all this 
money had to be paid up front, then basically the startups all 
die, and investors don’t get returns.

All of a sudden, these cool companies began raking in a 
million dollars in Kickstarter as their seed round and eventu-
ally delivering on their products enough of the time. There’s 
nothing like money to get the interest of the guys in Silicon 
Valley. Since then, hardware perception has changed radically. 
People are starting to get into hardware more and more. The 
problem is that a lot of people think they have to add hardware 
to products now, yet have no idea how.

Another problem is an increasing number of scams on 
Kickstarter, where there are all these hardware bits and pieces, 
and backers can’t tell what’s real or what’s fake. I know the 
industry definitely feels like a bubble already; I can sense the 
bubble growing now.

I think maybe I liked it better when nobody knew about 
hardware because at least I didn’t have to worry about com-
peting with fraudsters.
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How have you approached finding your own factories?

If you’re a startup and the only value you can bring to a 
factory is money, then you’re basically worthless. Startups 
don’t have any money, and if you have money, it’s finite. All 
factories know this.

A lot of startups want to go to somewhere like Foxconn, but 
Foxconn has a ton of people and capability. They don’t need 
your help. But they do need your money, and you don’t have a 
lot of it. If you try to engage with the really hip factories, you’ll 
deplete your cash very quickly and won’t be able to launch.

I look for factories that are missing certain capabilities, 
so I can give them more value than money. When I come in 
with my product, I help train the staff to build my product. 
The factories see value in that training, and I get to that point 
where I’m building a relationship by trading more than money.

What’s the challenge for online hardware startups when 
they get to the retail phase?

In the world of the internet, where everything is automated, 
it seems like you could solve any problem with technology. 
But retail is all about the salesperson meeting buyers face-
to-face, doing demonstrations, and going to the Walmart or 
Target headquarters to actually develop relationships and cut 
deals. It feels like an older system, and a lot of people don’t 
expect that because they’re doing business with Kickstarter.

The problem is that people want to physically see and 
touch and feel a product before they spend a couple hundred 
dollars on it. Best Buy is becoming a showroom for Amazon, 
but offering the product in-store is really valuable. There is 
probably room for some disruption (perhaps you can convince 
credible reviewers to try your hardware and describe it to other 
people), but at the end of the day, retail presence is needed to 
sell hardware effectively.
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Margins are much fatter online, so companies that start a 
business online from the beginning tend to underprice their 
products. Then, when they get to retail, they can’t survive.

What are some of the most common questions that hard
ware entrepreneurs ask you?

The questions teams tend to ask usually center on weaknesses 
in their team composition. Some teams have super-hotshot 
electrical engineers, but they have no mechanical engineering 
background. These teams have a bunch of “mech-y” questions. 
Some teams have no electrical engineers, and then the big 
question is how to create a hardware startup with no one who 
can design electronics.

Hardware startup teams generally tend to be technical, 
so they’re often weak on marketing and business. Some do 
have business guys involved early on who can map it all out 
and get a strategy in place, but a lot of teams have great tech 
ideas without realizing they’re missing crucial aspects to their 
strategy.

At that point, I get them to tell me what they’re doing, and 
I give feedback. It’s almost not what teams ask, but rather 
what they forget to ask, that they need the most help with.

What do you think is missing from startups that will 
be necessary for the ongoing support of the hardware 
ecosystem?

There is a huge mismatch between the way manufacturing 
has been done and the way it needs to be done to match these 
more agile, lean, and honestly, less experienced companies. 
But I don’t think it’s an impassable chasm.

The original design manufacturers (ODMs) who have fac-
tories and resources need to raise their level of service. People 
expect ODMs to be able to answer a lot of questions. There 
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are unreasonable expectations between startups and ODMs 
because ODMs can offer absolutely zero insight into costing 
down your product. People get upset because they just don’t 
see that conflict of interest.

A lot of people think that building a product in China 
means the cost of parts gets magically cheaper. They don’t 
understand. A factory is not a designer; its job is to ensure that 
your design works and is built to specification. If you specify an 
expensive part, and the factory substitutes a cheaper version, 
who gets the blame when the product doesn’t work as well? 
Furthermore, the factory makes its money as a percentage 
margin over the bill of materials. Thus, recommending cheaper 
parts to use exposes them to greater risk, while making them 
less money. A lot of people get mad at factories for not being 
more aggressive on keeping the cost down, but if you think 
about it, you really have to get engaged. You need to get an 
engineer working with these guys to cost things down because 
ultimately, it’s your bottom line. It’s your net profit. You don’t 
just go to China and expect them to do it right.

An ODM can possibly solve that problem by hiring staff 
dedicated to reducing costs, but then the ODM would either 
need to charge the customer extra to make the service sus-
tainable, or require a significantly larger order volume over 
which to amortize the extra cost of providing such services.

More interoperability in the industry would be good, too. 
One startup I work with is Spark,* which really tries to enable 
people to use its hardware platform by being open. I feel like 
one piece missing for Spark is getting ODMs to be “Spark 
certified” to make products that use Spark’s platform. Often, 
someone wants to design one product into another product, 
and suggestions about how to do that effectively are all over 

* Eventually, Spark changed its name to Particle.
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the place. Even if you have all the necessary information, it’s 
not a streamlined process for most people.

When someone is given all the design answers, a lot of 
decoding still has to happen. Even bigger companies are afraid 
of that because they don’t have the competency to hire the 
people to get that decoding done.

What is your current focus in the hardware industry?

Right now, I’m working with Jie Qi on circuit stickers. We’re 
getting to the point of shipping the units out, and I’m hell-
bent on making sure that I meet the deadlines I set for my 
campaign. I actually want to ship on time and get things to 
people when I said I would because there has been way too 
much lateness in crowdfunded campaigns. It doesn’t have 
to be that way. You just have to set expectations, have your 
stuff together before you announce the date, and know when 
the inventory is pretty much ready to go. We have a number 
of product lines that are selling; about half are done with 
manufacturing and are just waiting in the factory to ship. A 
couple of new lines are behind, but we still have until May to 
solve these issues. I think it will be no problem, and I’m look-
ing forward to seeing our lines grow and develop and work 
with more people.

The other thing I am working on is this Novena laptop 
project with Sean Cross, which we weren’t really planning on 
doing last year. I built this handmade prototype last December; 
it was a little, kind of crummy, leather-and-paper thing. We 
used it to give a presentation at CCC, and the response was 
overwhelming. That was great, and I refactored the design 
to make it more manufacturable and more sourceable. The 
campaign seems to be going well so far. I think it will fund, 
and I’m looking forward to getting Novena manufactured and 
out in the world.
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What have you learned from your two crowdfunding 
campaigns?

Completing almost two crowdfunding campaigns has given me 
a lot of insight. Earlier, I mentioned that people selling online 
price their product too low to later move into retail. But it’s 
been really painful to maintain the high price that I say that 
everyone else should maintain. It’s so tempting to go lower to 
an unsustainable point.

The reason a lot of crowdfunding campaigns fail to deliver 
is because they price too low. They can’t actually build the 
product for the price they set. Even knowing this, I still had 
to grit my teeth on the laptop because I had to price it higher 
than I would have liked. Despite the high price, if we were 
to close the campaign at exactly the amount I hope to raise, 
I would probably just barely not lose money on it, but a lot 
of people don’t see that. Look at something like the Ubuntu 
Edge, which raised $12 million but needed $25 million to 
succeed. That’s because in order to set a price of $700–800 
per phone, they had to build 40,000 phones. So even though 
people thought the Ubuntu Edge was cool and it raised a lot 
of money, it didn’t reach its funding goal, which is a sad con-
clusion for everyone.

I knew I could either price my laptop much lower and 
need thousands of people to buy it to reach my goal, or I could 
service a really focused market of a few hundred open source 
enthusiasts who are totally on the same page as me. At the 
end of the day, especially in the early phases, you really want 
those enthusiasts. They’re going to be your best users. You 
want to take care of them and give them the best service pos-
sible. You’re going to charge a little more, but you’re going to 
build a really good product for them and they’re going to be 
happy. That’s a much happier conclusion in my mind than 
trying to shoot the moon and failing.
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epilogue
When I start hacking or making, it’s driven by curiosity. Only a 
small portion of my work ends up being relevant or interesting, 
but I journal my successes and my failures at my blog, http://
bunniestudios.com/, and I occasionally tweet observations at 
@bunniestudios. It’s hard to know what will be a hit or a miss; 
but as long as I’m learning, the journey is worthwhile. And so 
I will keep wandering the electronic frontier . . .

https://twitter.com/bunniestudios/




afterword
Have you ever noticed how smart TVs seem pretty dumb com-
pared to our phones? It’s because Section 1201 of the DMCA 
enables a small cartel of stakeholders to pick and choose who 
gets to process video. For example, anyone is allowed to write 
a translation app for their smartphone that does real-time 
video translation of text. However, it’s potentially unlawful 
to build a box—even in the privacy of my own home—that 
implements the same thing over the HDCP-encrypted video 
feeds that go from my set-top box to my TV screen.



This is due to a quirk of the DMCA that makes it unlaw-
ful for most citizens to bypass encryption—even for lawful 
free-speech activities, such as self-expression and innovation. 

Since the founding of the United States, it’s been unlawful 
to make copies of copyrighted work. There are stiff penalties 
for violating copyright law, which I believe offer sufficient 
protection from piracy and theft. 

However, in 1998, a group of lobbyists managed to convince 
Congress that the digital millennium presented an existential 
threat to copyright holders, and thus stiffer penalties were 
needed for the mere act of bypassing encryption—no matter 
the reason. Congress put these penalties in place in addition 
to the existing penalties imposed by copyright law.

By passing this law, Congress effectively turned bypassing 
encryption into a form of pre-crime, empowering copyright 
holders to be the sole judge, jury, and executioner of what your 
intentions might have been. Thus, even if you were to bypass 
encryption solely for lawful purposes, such as to translate text, 
the copyright holder nonetheless has the power to prosecute 
you for any crimes that could follow from bypassing their 
encryption scheme. In this way, Section 1201 of the DMCA 
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effectively gives corporations the power to license when and 
how you express yourself where encryption is involved.

I believe that corporate interests shouldn’t be trusted 
with the unchecked power to license freedom of expression. 
Encryption is important for privacy and security, and it’s 
winding its way into every corner of our life. It’s fundamen-
tally a good thing, but we need to make sure that corporations 
can’t abuse Section 1201 to control every aspect of our lives. 
In our digital age, the very canvas upon which we paint our 
thoughts can be access-controlled with cryptography, but we 
need the right to paint our thoughts freely and share them 
broadly if we are to continue to live in a free and just society. 
This is why, in July of 2016, I joined a lawsuit against the 
US government* that was filed with the help of the EFF in an 
attempt to reform Section 1201. The lawsuit does not seek to 
diminish the power of copyright one bit—it simply aims to limit 
the expansive “pre-crime” powers granted via Section 1201 to 
license holders.

In a related rulemaking, the organization that licenses 
HDCP has lodged one notable objection to letting users bypass 
it: “no other users have specified how they are adversely 
affected by HDCP in their ability to make specific noninfringing 
use of protected content . . . [bunnie] has failed to demonstrate 
. . . how “users ‘are, or are likely to be,’ adversely affected by 
the prohibition on circumventing HDCP.” †

This is, of course, a catch-22, because how can you build 
a user base to demonstrate the need for freedoms when the 
mere act of trying to build that user base could be a crime 
in itself? No investor would touch a product that could be 
potentially unlawful.

This book explores how I developed NeTV in an effort to 
put a cheap computer in-line with an encrypted TV signal and 

* https://www.eff.org/cases/green-v-us-department-justice/

† https://www.copyright.gov/1201/2018/comments-021218/class4/Class_04_Opp'n_DCP.pdf
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overlay user graphics without decrypting the video stream. The 
result was a compact FPGA-based system that could determine 
the encryption key of the cipher that typically protects the 
digital video link. The key is then used to encrypt a graphics 
overlay in such a manner that the TV would correctly display 
it. Significantly, this implementation never decrypts a single 
pixel, allowing it to side-step the thorny questions raised by 
Section 1201.  

Of course, if the source video data is never decrypted, it’s 
impossible to manipulate the video stream in any meaningful 
way—you can only replace a pixel with a new one of your own. 
Want to enhance the image? Or, perhaps, apply the latest and 
greatest AI techniques to a video feed to translate subtitles, or 
even do facial recognition of your favorite TV personalities so 
you can send them a tip, Patreon-style, every time they come 
on screen? You’ll need something that can decrypt pixels and 
crunch them, which is currently unlawful under Section 1201.

My latest project, NeTV2, was successfully crowdfunded 
in June 2018 and attempts to improve on the first-generation 
NeTV by including a beefier FPGA capable of doing machine 
learning algorithms, as well as a frame buffer that assists with 
the temporary storage of data for automatic processing. It also 
features a more robust CPU and improved I/O capabilities. 

Unfortunately, as limited by prevailing law, the NeTV2 
can only perform video processing on unencrypted video, as 
one might find coming out of select laptops and computers in 
certain modes. Of course, it can also still perform encryption-
only video overlays through the same trick used by the original 
NeTV. However, it’s my hope that the NeTV2 will become a 
platform that stirs the imaginations of developers and users 
so that together we can develop examples of what we could do 
if we had the right to process video—thus painting a vibrant 
picture of what a future might look like if we have the right 
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to express our ideas using the currently controlled paints on 
currently denied canvases.

I believe like-minded developers, dreamers, users, and 
enthusiasts like you can build the case that a small but impor-
tant group of people can—and would—do more, if only we had 
the right to do so. I invite the reader to join the NeTV2 com-
munity or to please consider making a donation to the EFF so 
that we can continue the fight to preserve our digital freedoms.

- bunnie

a f t e r w o r d   389





A
accessories and packaging, 200–201
adaptations, influenza, 333–335
Akiba, 64–65
all-in-one desktop Novena, 218, 242–243
Amendment 1092 to National Defense 

Authorization Act, 149–150
American vs. Chinese manufacturing, 

35–36
amino acids, 328–329
anisotropic tape, 257–259
antibiotic-resistant superbugs, 342–343
anticounterfeit measures for 

US military, 149, 154–156
Apple

Apple II, 207, 326–327, 373
Foxconn, 18, 20
quality control, 37
refinement costs, 202

AppoTech chips, 293
approved vendor list (AVL), 76
Arduino, 213, 360

Arduino Uno, 104–105, 127
manufacturing, 44–57

copper sheets, 46–48
etching PCBs, 51–53
PCB pattern, applying to copper, 

49–50
soldermask and silkscreen, 

53–54
testing and finishing, 54–57

artisan engineering, 213
Asanović, Krste, 310–311
Ashby chart, 230
audit logs for test programs, 96
authentic parts, keeping reserve of, 156
automation

for electronics assembly, 29–31
test program, 96
in zipper factory, 67–70

AVL (approved vendor list), 76

B
bacteria

CRISPRs in, 347–350
metabolic pathways, 325–327

barcode, embedding in chips, 154
battery board, Novena, 223–224
battery pack, Novena, 243–244
beachhead, building, 315–317
bicycle safety light, 74–75, 79–82
bill of materials (BOM), 74–84

approved vendor list, 76
for bicycle safety light, 74–75, 79–82
change, planning for, 82–84
extended part numbers, 78–79
form factor, 77–78
quotations, 107–108
tolerance, composition, and voltage 

specification, 76–77
biology and bioinformatics, 277–278

comparing H1N1 to computer virus, 
327–335

adaptable influenza, 333–335
DNA and RNA as bits, 328–330
hacking swine flu, 331–332
silver lining, 335
unique access ports, 330–331

patching genome, 346–354
CRISPRs in bacteria, 347–350
gene drive, 352–354
human engineering, 351–352
where to cut genes, 350–351

personalized genomics, 344–346
reverse engineering superbugs, 

335–344
antibiotic resistance, 342–344
O104:H4 DNA sequence, 

336–338
reversing tools for biology, 

338–340
UNIX Shell Scripts, 340–342

BLASTX decompiler, 339–340

index



Blueprint interview, 372–382
BOM. See bill of materials
bonding USB chips to PCBs, 61
booting OS, 321
bootstrapping, 197, 203
boot structure, reverse engineering, 

311–315
bottom line, and DFM, 88–91
breakout board for beginners, 241–242
building technology without using it, 

23–24
business model, 363

C
capacitors, 12, 76–77
case construction

chumby, 26–28
Novena, 233–236

cash flow, Chumby, 193
cell phones

hacking, 306–324
attaching debugger, 317–320
beachhead, building, 315–317
booting OS, 321
building new toolchains, 

321–323
results, 323–324
reverse engineering boot 

structure, 311–315
system architecture, 306–311

screen replacement, 120–121
$12 phone, 126–140

engineer rights, 135–140
from gongkai to open source, 

134–135
hardware, 128–131

CFT (Cyber Fast Track) initiative, 289
change, planning for and coping with, 

82–84
check plots, 268
Chibitronics, 251–274

background, 251–259
check plots, 268
Chinese New Year, impact on 

supply chain, 272–273

complications regarding simple 
requests, 267–268

delivery, 264–266
developing new process, 259
incorrect placement of components, 

268–269
last-minute changes, 271–272
process capability test, 261–264
shipping, 273–274
single points of failure, 

eliminating, 271
stencil of sticker patterns, 271–272
test program, 92–94
translation issues, 270–271
visiting factory, 260–261

China. See also factories; Shenzhen, 
China

Chinese New Year, impact on 
supply chain, 272–273

Chinese translation problems, 
270–271

technology growth, 364–366
China Software Developer Network 

(CSDN) interview, 357–372
about hardware hackers, 367–372
about open hardware and maker 

movement, 358–367
chip-on-board (CoB) technology, 29
chips

bonding to PCBs, 61
counterfeit, 143–148. See also 

US military hardware, 
counterfeit chips in

decapping, 282–283
hand-placing on PCBs, 59–61
SEG Electronics Market, 11–14
for USB memory sticks, 57–59

chip shooters, 30
Chipworks, 246
chroma keying, 303–304
Chumby, 1–2, 181

automation in assembly, 29–31
case production, 26–28
cash flow, 193
chumby classic, 183–184

392  index



Chumby (continued)

chumby One
development of, 184–189
trim and finish, 101–104

connector placement, 25–26
contracts, 193–205
counterfeit microSD cards

authenticity, 159–160
electronic card ID data, 158–159
forensic investigation, 160–162
gathering data, 162–165
summarizing findings, 166–168
visible differences, 157–158

factory testing, 41
factory tours, 16–17
hacker-friendly platform, 182–184
injection molding, 31–34
interview with Phil Torrone, 

189–205
lessons learned from, 374–375
margin, 192–193
merchant buyers, 192
microphone factory installation, 

20–23
motherboard, 188–189
NeTV. See NeTV
quality control, 36–39
remote testing, 39–40
reverse logistics and returns, 193
test points, 187–188

circuit stickers, 251–274. See also 
Chibitronics

background, 251–259
check plots, 268
Chinese New Year, impact on 

supply chain, 272–273
complications for simple requests, 

267–268
delivery, 264–266
developing new process, 259
incorrect placement of components, 

268–269
last-minute changes, 271–272
process capability test, 261–264
shipping, 273–274

single points of failure, 
eliminating, 271

stencils of, 271–272
translation issues, 270–271
visiting factory, 260–261

Circuit Sticker Sketchbook, 256–257, 
267–268

clamshell testing, 54
cloning, 116
CoB (chip-on-board) technology, 29
Coders’ Rights Project, 137
COGS (cost of goods sold), 90–92
colors, communicating with operators 

through, 96
community-enforced IP rules, 124–125
community support for Novena, 

247–249
company structure, 202–203
composition, BOM, 76–77
computer virus, comparing H1N1 

virus to, 327–335
adaptability, 333–335
antibodies, 335
DNA and RNA as bits, 328–330
hacking H1N1 virus 331–332
unique access ports in organisms, 

330–331
configuration fuses, 281
contracts, negotiating, 193–205
copper sheets, for PCBs, 46–50
copying, 116
copyrights, 137, 138, 175–177
cosmetic blemishes, 87–88
cost of goods sold (COGS), 90–92
counterfeit goods. See fake goods
couriers, 112
coverlay, 260–261
craftspeople, need for, 26–28
CRISPR/Cas system, 347–352
Cross, Sean “xobs”, 134–135, 215–216, 

289–290. See also Novena; 
SD cards, hacking

crowdfunding, 197–198, 265, 266, 382
Crowd Supply, 250, 264, 265
CrypTech, 248–249

index  393



custom battery pack problems, 243–244
Cyber Fast Track (CFT) initiative, 289

D
data display channel (DDC), 304
Debian, 246
debugger, attaching, 317–320
decapping IC, 282–283
decompiler, 339–340
dedicated hardware real-time clock 

(RTC) module, 238–239
dedication to quality, 20–23
defective units, paying for, 3
delivery of circuit stickers, 264–266
design files, sharing, 363
design for manufacturing (DFM), 

84–100. See also test program
bottom line, 88–91
overview, 85–86
testing vs. validation, 97–100
tolerances, 86–88

design process, 105–106
design vocabulary, 101
desktop Novena, 218, 242–243
DFM. See design for manufacturing
Digital Millennium Copyright Act 

(DMCA), 137
direct repeat sequence, 348
direct-to-consumer (DTC) personal 

genomics, 344–345
disease predictions based on 

mutations, 345
distribution channel, 196
DIY speakers, 237–238
DMCA (Digital Millennium 

Copyright Act), 137
DNA, 328–330. See also genome
double-shot molds, 103–104
DRAM chips, 12–13
drilling process, PCB boards, 46–48
drug resistance, 338–341
DTC (direct-to-consumer) personal 

genomics, 344–345

E
ECO (engineering change orders), 

82–84
E. coli, 342
EDID (extended display 

identification data), 304
EDK (embedded development kit), 135
EDM (electrical discharge machine), 33
EFF (Electronic Frontier 

Foundation), 137
effects stickers, 263
EHEC O104:H4, 335–344

answering questions with UNIX 
shell scripts, 340–342

antibiotic resistance, 342–344
DNA sequence, 336–338
reversing tools for biology, 338–340

electrical discharge machine (EDM), 33
electronic card ID data, 158–159
Electronic Frontier Foundation 

(EFF), 137
electronic tolerances, 86–87
embedded development kit (EDK), 135
enclosure, Novena, 224–227
end-of-life (EOL), 82
engineering change orders (ECO), 82–84
engineering humans, 351–352
engineering samples, 170–172
engineer rights, 135–140

copyrights, 138
patents and other laws, 136–137
programming languages, 138–140

EOL (end-of-life), 82
erasing

flash memory, 284–285
memory cards, 298
security bits, 285–287

etching PCBs, 51–53
e-waste, handling, 155–156
extended display identification data 

(EDID), 304
extended part numbers, 78–79
external mimicry, 150–151

394  index



F
factories, 2–3, 43–44. See also quality; 

specific factories by name

automation, 29–31
building technology without 

using it, 23–24
dedication to quality, 20–23
defective units, paying for, 3
feeding workers, 18–20
injection molding, 31–34
mistakes in manufacturing, 34, 

41–42
need for craftspeople, 26–28
partnerships with, 107–113

import duties, 113
ordering more units than proven 

demand, 112
quotations, 108–111
scrap and yield, 111–112
shipping costs, 112
tips for forming, 107–108

scale in Shenzhen, 17–18
scrap, 152
searching for, 378
skilled workers, 24–26
testing, 41

failure analysis services, 281
failures, learning from, 368–369
Fairchild 74LCX244, 146–147
fake goods, 143–174

chips, well-executed, 143–148
chips in US military hardware, 

149–156
anticounterfeit measures, 

154–156
types of counterfeit parts, 

150–153
US military designs, 153–154

FPGAs, 168–174
incorrect ID codes, 170–172
solutions, 172–174
white screen issue, 168–170

microSD cards, 156–168
authenticity, 159–160
electronic card ID data, 158–159

forensic investigation,  
160–162

gathering data, 162–165
summarizing findings,  

166–168
visible differences, 157–158

feeding factory workers, 18–20
Feist Publications, Inc. v. Rural 

Telephone Service 

Co., Inc., 138
Fernly shell, 315–316, 317–319
Fernvale, 306

attaching debugger, 317–320
beachhead, building, 315–317
booting OS, 321
Frond, 307–308
legal tasks, 134–136
peripheral connectors, 308–309
results, 323–324
reverse engineering boot structure, 

311–315
system architecture, 306–311
system diagram, 309
toolchains, building new, 321–323

field programmable gate array. 
See FPGAs

film imaging, 49–50
firmware

in memory cards, 292
Novena, 246–247

five-digit multimeter, 98
flash chips, for USB memory sticks, 

57–59
flash memory, erasing, 284–285
flat patterns, 26–28
flex circuits, 252–253
flex PCB factory, 260–261
flow marks, 236
flying head testing, 54
form factor, 77–78
forward bias voltage, 88, 89
founders, suggestions for, 199
Foxconn, 18, 20
FPC (internal flexible printed circuit) 

header, 238–239

index  395



FPGAs (field programmable gate array)
counterfeit, 168–174

incorrect ID codes, 170–172
solutions, 172–174
white screen issue, 168–170

future trends, 212–213
Novena, 239

Freescale/NXP iMX6 CPU, 220
front bezel, Novena, 237–238
fully decapped chips, 282
functionally decapped chips, 282–283
fuzzing, 293

G
gene drive, 352–354
General-Purpose Breakout Board 

(GPBB), 241–242
genome

disease predictions based on 
mutations, 345

genotyping, 344–345
patching, 346–354

CRISPRs in bacteria, 347–350
engineering humans, 351–352
gene drive, 352–354
where to cut genes, 350–351

reference, 345–346
genotyping, 344–345
ghost shift, 115, 152
golden samples, 36, 82
gongkai (公开), 117–118, 119–120. 

See also shanzhai
cell phone screen replacement, 

120–121
defined, 131–134
vs. kai fang yuan dai ma  

(开放源代码), 372
$12 phone, 126–140

engineer rights, 135–140
from gongkai to open source, 

134–135
hardware, 128–131

GPBB (General-Purpose Breakout 
Board), 241–242

gray markets, 154

H
H1N1 virus, comparing to computer 

virus, 327–335
adaptability, 333–335
antibodies, 335
DNA and RNA as bits, 328–330
hacking H1N1 virus 331–332
unique access ports in organisms, 

330–331
H5 port, 330
hacker-friendly platform, 182–184
hacker spirit, 371
hacking hardware. See hardware 

hacking
hand-placing chips on PCBs, 59–61
hard drive, choosing, 244–246
hardware hacking, 279–281

CSDN interview about, 367–372
general discussion, 275–278
HDCP-secured links to allow 

custom overlays, 298–306
of PI C18F1320, 281–289

closer look, 283–284
decapping IC, 282–283
erasing flash memory, 284–285
erasing security bits, 285–287
protecting other data, 287–289

of SD cards, 289–298
potential security issues, 298
resource for hobbyists, 298
reverse engineering 

microcontroller, 293–297
shanzhai phones, 306–324

attaching debugger, 317–320
beachhead, building, 315–317
booting OS, 321
building new toolchains, 321–323
Fernvale results, 323–324
reverse engineering boot 

structure, 311–315
system architecture, 306–311

structure of cards, 290–293
hardware startups, 378–380
hash function, 315
HDCP-secured links, hacking, 298–306

396  index



health, caring for, 205
heirloom laptops, 210–211
Heirloom Novena, 218, 227–232

hard drive, 245–246
mechanical engineering details, 

229–232
wood for enclosure, 228–229

honest finishes, 101
horizontal gene transfer, 343
human engineering, 351–352

I
ID codes, FPGA, 170–172
import duties and licenses, 113
i.MX233, 184
incoming quality control (IQC) 

guidelines, 160
incorrect placement of components on 

circuit stickers, 268–269
industrial design, 100–106

Arduino Uno silkscreen art, 104–105
chumby One trim and finish, 

101–104
personal design process, 105–106

injection molding
general discussion, 31–34
in Novena manufacturing, 233–236

innovation, 359
input networks, 87
intellectual property (IP). See also 

gongkai; shanzhai
general discussion, 115–118
Western vs. Chinese models, 

131–132
internal flexible printed circuit (FPC) 

header, 238–239
interoperability, 380
interviews, 357–382

Blueprint, 372–382
China Software Developer Network 

(CSDN), 357–372
about hardware hackers, 367–372
about open hardware and maker 

movement, 358–367
Make:, 189–205

inventory turning, 196–197
investigating fake microSD cards, 

158–159, 160–162
involvement in manufacturing process, 

36–39
IP. See intellectual property
IQC (incoming quality control) 

guidelines, 160
Ito, Joi, 264

J
Japan, economic development of, 365
JTAG, 170

K
kai fang yuan dai ma  

(开放源代码), 372
keystreams, 304–306
Kare, Susan, 39
Kickstarter, 197–198, 377
Kingston microSD cards, 156–168

authenticity, 159–160
electronic card ID data, 158–159
forensic investigation of, 160–162
gathering data, 162–165
summarizing findings, 166–168
visible differences, 157–158

knit lines, 235
Kovan, 169

L
labor costs, 110
laptop Novena, 218
laser imaging, 49
last-minute changes, 271–272
LCA (Linux Conference Australia), 57
LCD bezel, Novena, 226
LEDs, in bicycle safety light, 74–75, 

79–82
Li, Xiao, 23–24
LinkIT ONE, MediaTek, 323–324
Linux Conference Australia (LCA), 57
logs for test programs, 96

index  397



M
Make: interview, 189–205
MakerBot, 203
maker movement, 358–367
managed NAND system, 186–187
man-in-the-middle (MITM) attacks, 

290, 298, 301
manufacturer ID, 158–159
manufacturing. See factories
margins

chumby, 192–193
factory, 110–111

Master Chao, 26–28
MCM (multichip module), 310
mechanical engineering, Novena, 

229–232
mechanical tolerances, 87–88
MediaTek LinkIT ONE, 323–324
MediaTek MT6250DA, 130–131
MediaTek MT6260, 140, 310–311
merchant buyers, 192
metal spiral binding, Circuit Sticker 

Sketchbook, 267–268
microcontroller

in memory cards, 292
reverse engineering, 293–297
test program, 92–94

microphone, chumby, 20–23
microSD cards

chumby One, 186
counterfeit, 156–168

authenticity, 159–160
electronic card ID data,  

158–159
forensic investigation, 160–162
gathering data, 162–165
summarizing findings, 166–168
visible differences, 157–158

military hardware, counterfeit chips in, 
149–156

anticounterfeit measures, 154–156
types of counterfeit parts, 150–153
US military designs, 153–154

minimum order quantity (MOQ), 81

min-max spread, 86–87
mirror-finished plastic, 70–71
mistakes in manufacturing, 34, 41–42
MITM (man-in-the-middle) attacks, 

290, 298, 301
MIT Media Lab, 264
monastic design, 100
Moore’s law, 206–212, 359
MOQ (minimum order quantity), 81
motherboard

chumby One, 188–189
Novena, 221–222, 238–239

Mottweiler, Kurt, 228, 238
multichip module (MCM), 310
mutations, disease predictions 

based on, 345
Mycoplasma pneumoniae, 325–327
MyriadRF, 248

N
NAND flash chips, 13
National Defense Authorization Act, 

149–150
NeTV, 280, 387–388

background on HDCP, 300–301
conceptual diagram of, 303
development of, 299–300
FPGA diagram, 305
goals for, 301
how it worked, 302–303
keystream, creating, 304–305
user overlay content, creating, 

303–304
NeTV2, 388–389
New Balance factory, 17–18
Ng, P.C., 344–345
nonrecurring engineering (NRE) 

costs, 111
Novena, 133, 215–250

all-in-one desktop, 218, 242–243
breakout board for beginners, 

241–242
case construction, 233–236
community support, 247–249
custom battery pack, 243–244

398  index



Novena (continued)

design, 219–227
battery board, 223–224
enclosure, 224–227
motherboard, 221–222

dimensions, 219
DIY speakers, 237–238
firmware, 246–247
front bezel changes, 237–238
hard drive, choosing, 244–246
Heirloom, 218, 227–232

hard drive, 245–246
mechanical engineering details, 

229–232
wood for enclosure, 228–229

injection molding, 233–236
laptop, 218
motherboard, 238–239
power pass-through board, 242–243
pricing, 218
PVT2 mainboard, 238–240
users, 217–218

NRE (nonrecurring engineering) 
costs, 111

NuttX, 141

O
O104:H4 DNA sequence, 336–338
ocean freight, 273–274
ODMs (original design manufacturers), 

379–380
online hardware startups, 378–380
on-time delivery, 266
open BOM, 124–125
open source, 117, 134–135

hardware, 176–178, 205–214. See 

also Chibitronics; Chumby; 
Fernvale; Kovan; NeTV; 
Novena

CSDN interview about, 358–367
heirloom laptops, 210–211
monetization, 195–196
opportunities for, 211–214
trends in, 206–209

software, 362

ordering more units than proven 
demand, 112

original design manufacturers (ODMs), 
379–380

overlay, creating, 303–304
overmolding, 34

P
package type, 77–78
pad printing, 102
palindromic sequences, 348
PAM (proto-space adjacent motif), 

350–351
Particle’s Spark Core, 306–307
partnerships with factories, 107–113

import duties, 113
order more units than proven 

demand, 112
quotations, 108–111
scrap and yield, 111–112
shipping costs, 112
tips for forming, 107–108

part numbers, 78–79
patching genome, 346–354

CRISPRs in bacteria, 347–350
engineering humans, 351–352
gene drive, 352–354
where to cut genes, 350–351

patents, 136–137, 194–195
patterning, 46
pattern makers, 26–28
PB2 influenza gene, 331–332
PCBs, 44–57

applying pattern to copper, 49–50
bonding chips to, 61
for circuit stickers, 260–261
copper sheets, 46–48
etching, 51–53
Fernvale Frond, 307–308
hand-placing chips on, 59–61
soldermask and silkscreen, 53–54
testing and finishing, 54–57

PCH China Solutions, 17, 37
Peek, Nadya, 226
Peek array, 226

index  399



penicillin resistance, 338–339
Perrott, Joe, 27
personal design process, 105–106
personalized genomics, 344–346
Phase Locked Loop (PLL), 140
photoresist, 49–50
physical identifiers, embedding, 

154–155
physical programming, 263
PIC18F1320, hacking, 281–289

closer look at, 283–284
decapping IC, 282–283
erasing flash memory, 284–285
erasing security bits, 285–287
protecting other data, 287–289

plastic finishes, 70–71
PLL (Phase Locked Loop), 140
poison pills, 136–137
polyimide, 260–261
power pass-through board, 242–243
pragmatic design, 100
precision, 31–34
pricing

aiming high, 199–200
Novena, 218
quality control, 34–35

probe card, 58
process capability test, 261–264
process geometry, 144–145
production candidate stickers, 263
programming languages, 138–140
protecting data when hacking, 287–289
protein database, 338–339
proteins, 329, 337
proto-space adjacent motif (PAM), 

350–351

Q
QC (quality control) room, 36–39
QEMU, 317–318
Qi, Jie, 253–256, 263–264, 270–271. 

See also Chibitronics
quality, 34–35

American vs. Chinese 
manufacturing, 35–36

dedication to, 20–23
factory testing, 41
involvement in manufacturing 

process, 36–39
mistakes, 41–42
remote testing, 39–40

quality control (QC) room, 36–39
quaternary structure, 350
quotations, evaluating, 108–111

R
Radio Electronics (无线电), 369
Raspberry Pi, 360
read-evaluate-print-loop (REPL) shell, 

293–297
real-time clock (RTC) module, 238–239
reballing, 155
rebinned parts, 151–152
recycling, 154–155
red ring of death, 42
reference genome, 345–346
refurbished parts, 150–151, 154
remote testing, 39–40
repair culture, 213
REPL (read-evaluate-print-loop) shell, 

293–297
resistive current limiting, 88
resistors, 76
Restriction of Hazardous Substances 

(RoHS) testing, 41
retailers, engaging, 200, 378
returns, in retail, 193
reverse engineering, 137

boot structure, 311–315
general discussion, 275–278
microcontroller, 293–297
superbugs, 335–344

antibiotic resistance, 342–344
O104:H4 DNA sequence, 

336–338
reversing tools, 338–340
UNIX shell scripts, 340–342

reverse logistics, 193
RNA, 328–330
RNA-dependent RNA polymerase, 333

400  index



robotics controller, 78
RoHS (Restriction of Hazardous 

Substances) testing, 41
ROM, dumping, 312–316
rooting, user, 370
routing PCBs, 55
RTC (real-time clock) module, 238–239
rubberized tags, 25

S
Samsung microSD cards, 163–168
SanDisk microSD cards, 163–168
satin-finished plastic, 70–71
scale in factories, 17–18
scarcity and demand, 70–71
Scarmagno, Italy, 44–45
scrap, handling, 111–112
scriptic language, 139–140
SD cards, hacking, 289–298

potential security issues, 298
resource for hobbyists, 298
reverse engineering microcontroller, 

293–297
structure of cards, 290–293
vulnerabilities, 290

secondary structure, 349–350
second-sourcing, 153
security bits, erasing, 285–287
security issues, SD cards, 298
semiautomated process, in zipper 

factory, 68–70
sensor and microcontroller 

stickers, 263
shanzhai (山寨), 116–117, 121–125, 

177, 371–372. See also 

gongkai
cell phones, 2
community-enforced IP rules, 

124–125
hacking phones, 306–324

attaching debugger, 317–320
beachhead, building, 315–317
booting OS, 321
building new toolchains, 

321–323

Fernvale results, 323–324
reverse engineering boot 

structure, 311–315
system architecture, 306–311

more than copycats, 123–124
sharing design files, 363
Shenzhen, China, 1–4. See also 

factories
screen replacement, 120–121
SEG Electronics Market, 8–14
shanzhai organizations in, 123

Shenzhen Bookstore, 14–15
“ship or die” motto, 198–199
shipping products, 112, 273–274
side-by-side bonding, 166
signatures, in memory, 319–320
silkscreen, 53–54, 57
single nucleotide polymorphisms 

(SNPs), 345–346
single points of failure, 

eliminating, 271
sink marks, 235
skilled workers, 24–26
smartcards, 144–145
smart watches, 124
SMT (surface mount technology), 55, 

77–78
SNPs (single nucleotide 

polymorphisms), 345–346
soldermask, 53–54, 57
Song Jiang, 122
smartphones. See cell phones
spacers, 348
speakers, Novena, 237–238
SPI ROMulator FPGA, 313
ST19CF68 chips, 144–148
stacked CSPs, 166
standardization of platforms, 212
stencil of circuit sticker patterns, 

271–272
superbugs, reverse engineering, 

335–344
antibiotic resistance, 342–344
O104:H4 DNA sequence, 336–338
reversing tools, 338–340
UNIX shell scripts, 340–342

index  401



supply chain, impact of Chinese New 
Year on, 272–273

surface mount technology (SMT), 55, 
77–78

swine flu. See H1N1 virus, comparing 
to computer virus

switches
Novena, 237
validating, 98–99

system architecture, 306–311
System Elettronica, 44–57

applying PCB pattern to copper 
sheet, 49–50

applying soldermask and silkscreen, 
53–54

copper sheets, 46–48
etching PCBs, 51–53
testing and finishing, 54–57

System-on-Chip devices, 310–311

T
tampo printing, 102
technology level, in China, 364–366
Tek MDO4104B-6 oscilloscope, 313
tertiary structure, 350
testing

flash chips, 58–59
PCBs, 54–57
vs. validation, 97–100

test jigs, 99–100, 271
test points, chumby One, 187–188
test program, 91–95

guidelines for, 94–97
icons, communicating with 

operators through, 96
real-world, 92–94
setup of, 95–96
update mechanisms for, 97

3D transistors, 245
through-hole packages, 77–78
tolerances, 76–77, 86–88
Tomlin, Steve, 39, 299
toolchains, building new, 321–323
tooling, 233–234

Torrone, Phil, 189–205
toy factories, 29–30
transistor scaling, 210–211
translation problems, 270–271
transparency in factory relationships, 

107–108
trim and finish, chumby, 101–104
triple-reassortant virus, 334–335
$12 phone, 126–140

engineer rights, 135–140
from gongkai to open source, 

134–135
hardware, 128–131

U
U-Boot (Universal Bootloader), 246
Ubuntu Edge, 382
unique access ports, in organisms, 

330–331
Universal Protein Resource (UniProt), 

338–339, 341
UNIX shell scripts, answering 

biological questions with, 
340–342

upstreaming, 246
USB flashing tool, open version of, 

320–322
USB memory stick factory, 57–64

beginning of USB sticks, 57–59
bonding chips to PCBs, 61
close look at USB stick boards, 

61–64
hand-placing chips on PCBs, 59–61

USB ports, Novena, 237
US military hardware, counterfeit 

chips in, 149–156
anticounterfeit measures, 154–156
types of counterfeit parts, 150–153
US military designs, 153–154

UV dye in chips, 154–155
UV-erasable programmable read-only 

memory (UV-EPROM), 
284–285, 286

402  index



V
vacuum-tube radio schematic, 207
validation vs. testing, 97–100
Vanchip VC5276, 130
Vasut, Marek, 246, 248
venture capitalist funding, 195–196, 

197–199
vibrapots, 67–68
viruses. See H1N1 virus, comparing to 

computer virus
V-NAND, 245, 246
voltage specification, BOM, 76–77

W
Wang, Chris “Akiba”, 64–65
waste, handling, 155–156
white screen issue, 168–170
wire bonding, 29–30, 61
wood enclosure for Novena, 228–229

X
Xbox 360, 42
Xbox One, 369
Xilinx, 170–174
xobs, 134–135, 215–216, 289–290. 

See also Novena; SD cards, 
hacking

Y
yield, 84–85, 90, 111–112
Young’s modulus, 229–230

Z
zipper factory, 64–71

fully automated process, 67–68
irony of scarcity and demand, 70–71
semiautomated process, 68–70

Z-tape, 257–259

index  403



about the author

Andrew “bunnie” Huang has always had trouble getting up 
before noon. That, compounded with his tendency to question 
authority means he will never hold a job at a Fortune 500. 
Thus, he is grateful for all the beers that he’s received from 
crowdfunding because it means he can get some calories 
through hydration.









“A look inside a mind without peer.”

— Edward Snowden
Andrew “bunnie” Huang 

has shaped the fields of hacking and hardware for more 
than a decade. In The Hardware Hacker, bunnie shares 
his experiences manufacturing electronics and develop-
ing open hardware in a collection of personal essays 
that is sure to intrigue the explorer in us all. 

bunnie’s journey begins with a visit to the staggering 
electronics markets in Shenzhen, China, with their 
booths overflowing with capacitors, memory chips, volt-
meters, and possibility. He recounts his experiences 
navigating the world of Chinese factories in his effort to 
bring his hardware projects chumby, Novena, and Chibi-
tronics to life, covering everything from creating a Bill 
of Materials to choosing the most suitable factory. 
Throughout, bunnie shares his thoughts on engineering, 
law, and society and how his beliefs have affected his 
dedication to open hardware.  

With a new afterword from bunnie, The Hardware 
Hacker offers a rare look inside the mind of one of the 
world’s most esteemed hackers, making it a must-read 
for aspiring engineers, hackers, and makers everywhere.

Cover design by Hotiron Creative

Printed in USA

Shelve in: 

Technology & Engineering/Electronics

Price: $18.95 ($24.95 CDN)


	brief contents

	contents in detail
	preface
	Part 1: adventures in manufacturing
	1.  made in china
	The Ultimate Electronic Component Flea Market
	The Next Technological Revolution
	Touring Factories with Chumby
	Scale in Shenzhen
	Feeding the Factory
	Dedication to Quality
	Building Technology Without Using It
	Skilled Workers
	The Need for Craftspeople
	Automation for Electronics Assembly
	Precision, Injection Molding, and Patience
	The Challenge of Quality

	Closing Thoughts

	2.  inside three very 
     different factories
	Where Arduinos Are Born
	Starting with a Sheet of Copper
	Applying the PCB Pattern to the Copper
	Etching the PCBs
	Applying Soldermask and Silkscreen
	Testing and Finishing the Boards

	Where USB Memory Sticks Are Born
	The Beginning of a USB Stick 
	Hand-Placing Chips on a PCB
	Bonding the Chips to the PCB
	A Close Look at the USB Stick Boards

	A Tale of Two Zippers
	A Fully Automated Process
	A Semiautomated Process
	The Irony of Scarcity and Demand


	3.  the factory f loor
	How to Make a Bill of Materials
	A Simple BOM for a Bicycle Safety Light
	Approved Manufacturers
	Tolerance, Composition, and Voltage Specification
	Electronic Component Form Factor
	Extended Part Numbers
	The Bicycle Safety Light BOM Revisited
	Planning for and Coping with Change

	Process Optimization: 
Design for Manufacturing
	Why DFM?
	Tolerances to Consider
	Following DFM Helps Your Bottom Line
	The Product Behind Your Product
	Testing vs. Validation

	Finding Balance in Industrial Design
	The chumby One’s Trim and Finish
	The Arduino Uno’s Silkscreen Art
	My Design Process

	Picking (and Maintaining) a Partner
	Tips for Forming a Relationship with a Factory
	Tips on Quotations
	Miscellaneous Advice

	Closing Thoughts


	Part 2: thinking differently: intellectual property in china
	4.  gongkai innovation
	I Broke My Phone’s Screen, and It Was Awesome
	Shanzhai as Entrepreneurs
	Who Are the Shanzhai?
	More Than Copycats
	Community-Enforced IP Rules

	The $12 Phone
	Inside the $12 Phone
	Introducing Gongkai
	From Gongkai to Open Source
	Engineers Have Rights, Too

	Closing Thoughts

	5.  fake goods
	Well-Executed Counterfeit Chips
	Counterfeit Chips in 
US Military Hardware
	Types of Counterfeit Parts
	Fakes and US Military Designs
	Anticounterfeit Measures

	Fake MicroSD Cards
	Visible Differences
	Investigating the Cards
	Were the MicroSD Cards Authentic?
	Further Forensic Investigation
	Gathering Data
	Summarizing My Findings

	Fake FPGAs
	The White Screen Issue
	Incorrect ID Codes
	The Solution

	Closing Thoughts


	Part 3: what open hardware means to me
	6.  the story of chumby
	A Hacker-Friendly Platform
	Evolving chumby
	A More Hackable Device
	Hardware with No Secrets

	The End of Chumby, New Adventures
	Why the Best Days of Open Hardware Are Yet to Come
	Where We Came From: Open to Closed
	Where We Are: “Sit and Wait” vs. “Innovate”
	Where We’re Going: Heirloom Laptops
	An Opportunity for Open Hardware

	Closing Thoughts

	7.  novena: building 
     my own laptop
	Not a Laptop for the Faint of Heart
	Designing the Early Novena
	Under the Hood
	The Enclosure

	The Heirloom Laptop’s Custom Wood Composite
	Growing Novenas
	The Mechanical Engineering Details

	Changes to the Finished Product
	Case Construction and Injection-Molding Problems 
	Changes to the Front Bezel
	DIY Speakers
	The PVT2 Mainboard
	A Breakout Board for Beginners
	The Desktop Novena’s Power Pass-Through Board
	Custom Battery Pack Problems
	Choosing a Hard Drive
	Finalizing Firmware

	Building a Community
	Closing Thoughts

	8.  chibitronics: 
     creating circuit 
     stickers
	Crafting with Circuits
	Developing a New Process
	Visiting the Factory
	Performing a Process Capability Test

	Delivering on a Promise
	Why On-Time Delivery Is Important
	Lessons Learned
	Not All Simple Requests Are Simple for Everyone
	Never Skip a Check Plot
	If a Component Can Be Placed Incorrectly, It Will Be
	Some Concepts Don’t Translate into Chinese Well 
	Eliminate Single Points of Failure
	Some Last-Minute Changes Are Worth It
	Chinese New Year Impacts the Supply Chain 
	Shipping Is Expensive and Difficult 
	You’re Not Out of the Woods Until You Ship 

	Closing Thoughts


	Part 4: a hacker’s perspective
	9.  hardware hacking
	Hacking the PIC18F1320
	Decapping the IC
	Taking a Closer Look
	Erasing the Flash Memory
	Erasing the Security Bits
	Protecting the Other Data

	Hacking SD Cards
	How SD Cards Work
	Reverse Engineering the Card’s Microcontroller
	Potential Security Issues
	A Resource for Hobbyists

	Hacking HDCP-Secured Links 
to Allow Custom Overlays
	Background and Context
	How NeTV Worked

	Hacking a Shanzhai Phone
	The System Architecture
	Reverse Engineering the Boot Structure
	Building a Beachhead
	Attaching a Debugger
	Booting an OS
	Building a New Toolchain
	Fernvale Results

	Closing Thoughts

	10.  biology and 
       bioinformatics
	Comparing H1N1 to a Computer Virus
	DNA and RNA as Bits
	Organisms Have Unique Access Ports
	Hacking Swine Flu
	Adaptable Influenza
	A Silver Lining

	Reverse Engineering Superbugs
	The O104:H4 DNA Sequence
	Reversing Tools for Biology
	Answering Biological Questions 
with UNIX Shell Scripts
	More Questions Than Answers

	Mythbusting Personalized Genomics
	Myth: Having Your Genome Read Is Like 
Hex-Dumping the ROM of Your Computer 
	Myth: We Know Which Mutations Predict Disease
	Myth: The Reference Genome Is an Accurate Reference

	Patching a Genome
	CRISPRs in Bacteria
	Determining Where to Cut a Gene
	Implications for Engineering Humans
	Hacking Evolution with Gene Drive

	Closing Thoughts

	11.  selected inter views
	Andrew “bunnie” Huang:
Hardware Hacker (CSDN)
	About Open Hardware and the Maker Movement
	About Hardware Hackers

	The Blueprint Talks to Andrew Huang


	epilogue
	afterword

	index




