
Ken Kousen

Kotlin
 Cookbook
A Problem-Focused Approach

Ken Kousen

Kotlin Cookbook
A Problem-Focused Approach

978-1-492-04667-7

[LSI]

Kotlin Cookbook
by Ken Kousen

Copyright © 2020 Ken Kousen. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editors: Zan McQuade and
Tyler Ortman
Development Editor: Corbin Collins
Production Editor: Christopher Faucher
Copyeditor: Sharon Wilkey

Proofreader: Charles Roumeliotis
Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2019: First Edition

Revision History for the First Edition
2019-11-14: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492046677 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Kotlin Cookbook, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492046677

For Sandra, who got me through this.

Your kindness, unflagging support, and expert skills continue to change my life.

Table of Contents

Foreword. ix

Preface. xi

1. Installing and Running Kotlin. 1
1.1 Running Kotlin Without a Local Compiler 1
1.2 Installing Kotlin Locally 3
1.3 Compiling and Running Kotlin from the Command Line 5
1.4 Using the Kotlin REPL 7
1.5 Executing a Kotlin Script 8
1.6 Building a Standalone Application Using GraalVM 9
1.7 Adding the Kotlin Plug-in for Gradle (Groovy Syntax) 12
1.8 Adding the Kotlin Plug-in for Gradle (Kotlin Syntax) 15
1.9 Using Gradle to Build Kotlin Projects 16
1.10 Using Maven with Kotlin 19

2. Basic Kotlin. 21
2.1 Using Nullable Types in Kotlin 21
2.2 Adding Nullability Indicators to Java 24
2.3 Adding Overloaded Methods for Java 26
2.4 Converting Between Types Explicitly 31
2.5 Printing to Different Bases 33
2.6 Raising a Number to a Power 35
2.7 Using Bitwise Shift Operators 38
2.8 Using Bitwise Boolean Operators 40
2.9 Creating Pair Instances with to 43

v

3. Object-Oriented Programming in Kotlin. 47
3.1 Understanding the Difference Between const and val 47
3.2 Creating Custom Getters and Setters 49
3.3 Defining Data Classes 51
3.4 The Backing Property Technique 55
3.5 Overloading Operators 58
3.6 Using lateinit for Delayed Initialization 60
3.7 Using Safe Casting, Reference Equality, and Elvis to Override equals 63
3.8 Creating a Singleton 66
3.9 Much Ado About Nothing 69

4. Functional Programming. 73
4.1 Using fold in Algorithms 73
4.2 Using the reduce Function for Reductions 76
4.3 Applying Tail Recursion 79

5. Collections. 83
5.1 Working with Arrays 83
5.2 Creating Collections 86
5.3 Creating Read-Only Views from Existing Collections 89
5.4 Building a Map from a Collection 90
5.5 Returning a Default When a Collection Is Empty 91
5.6 Restricting a Value to a Given Range 93
5.7 Processing a Window on a Collection 94
5.8 Destructuring Lists 96
5.9 Sorting by Multiple Properties 98
5.10 Defining Your Own Iterator 100
5.11 Filtering a Collection by Type 102
5.12 Making a Range into a Progression 104

6. Sequences. 109
6.1 Using Lazy Sequences 109
6.2 Generating Sequences 112
6.3 Managing Infinite Sequences 114
6.4 Yielding from a Sequence 116

7. Scope Functions. 119
7.1 Initializing Objects After Construction with apply 119
7.2 Using also for Side Effects 121
7.3 Using the let Function and Elvis 123
7.4 Using let with a Temporary Variable 124

vi | Table of Contents

8. Kotlin Delegates. 127
8.1 Implementing Composition by Delegation 127
8.2 Using the lazy Delegate 130
8.3 Ensuring That a Value Is Not Null 132
8.4 Using the observable and vetoable Delegates 134
8.5 Supplying Maps as Delegates 138
8.6 Creating Your Own Delegates 140

9. Testing. 143
9.1 Setting the Test Class Life Cycle 143
9.2 Using Data Classes for Tests 148
9.3 Using Helper Functions with Default Arguments 151
9.4 Repeating JUnit 5 Tests with Different Data 152
9.5 Using Data Classes for Parameterized Tests 156

10. Input/Output. 159
10.1 Managing Resources with use 159
10.2 Writing to a File 163

11. Miscellaneous. 165
11.1 Working with the Kotlin Version 165
11.2 Executing a Lambda Repeatedly 167
11.3 Forcing when to Be Exhaustive 168
11.4 Using the replace Function with Regular Expressions 170
11.5 Converting to Binary String and Back 172
11.6 Making a Class Executable 174
11.7 Measuring Elapsed Time 177
11.8 Starting Threads 179
11.9 Forcing Completion with TODO 182
11.10 Understanding the Random Behavior of Random 183
11.11 Using Special Characters in Function Names 186
11.12 Telling Java About Exceptions 187

12. The Spring Framework. 191
12.1 Opening Spring-Managed Bean Classes for Extension 191
12.2 Persisting Kotlin Data Classes 194
12.3 Injecting Dependencies 197

13. Coroutines and Structured Concurrency. 201
13.1 Choosing Coroutine Builders 201
13.2 Replacing async/await with withContext 207
13.3 Working with Dispatchers 209

Table of Contents | vii

13.4 Running Coroutines on a Java Thread Pool 211
13.5 Cancelling Coroutines 214
13.6 Debugging Coroutines 217

Index. 221

viii | Table of Contents

Foreword

Every few years, there is a revolutionary new language that threatens to change the
way that people write software. The reality seldom lives up to the hype. Kotlin is dif‐
ferent. Since its creation back in 2011, it has slowly, almost imperceptibly, crept its
way into codebases across the world. Developers who have used Java for so long and
found it lacking have been able to sneak in a little Kotlin here and there. In so doing,
they have shrunk the size—and increased the power—of their code.

Having gained some fame as the preferred language for Android development, Kotlin
is now at a sufficiently mature stage that a book like this is desperately needed. With a
wealth of useful tips, Kotlin Cookbook begins at the beginning. Ken shows you how to
install Kotlin and configure it for your project. He shows how to run it in a Java envi‐
ronment, in a browser, or as a standalone application. But the book quickly moves on,
solving the kind of day-to-day programming problems faced by developers and archi‐
tects everywhere.

Although there is a section set aside for Kotlin testing, you will find that the book is
itself test-driven. It uses tests as practical examples of how to use the language. The
tests will allow you to adapt the recipes to fit your needs more precisely.

This book brings you the kind of straightforward, practical help that will guide your
progress on your Kotlin journey. It’s the essential how-to Kotlin guide, and every
developer should keep it on their desktop (real or virtual) to support their daily work.

Dawn and David Griffiths
Authors, Head First Kotlin
October 6, 2019

ix

Preface

Welcome to Kotlin Cookbook! The overall focus of the book is not only to teach Kotlin
syntax and semantics, but also to show you when and why a particular feature should
be used. The goal isn’t necessarily to cover every detail of Kotlin’s syntax and libraries.
In the end, however, many recipes on basic principles were added to make the book
understandable even to readers with only a beginning level of Kotlin knowledge.

There is a strong movement by JetBrains to encourage the Kotlin community to
embrace multiplatform, native, and JavaScript development. In the end, the decision
was made not to include recipes involving them, since all are either in beta form or
have very low adoption rates. As a result, the book concentrates exclusively on Kotlin
for the JVM.

The GitHub repository for all the code can be found at https://github.com/kousen/
kotlin-cookbook. It includes a Gradle wrapper (with the build file written in the Kotlin
DSL, of course) and all the tests pass.

All of the code examples in the book have been compiled and tested with both avail‐
able Long Term Support versions of Java, namely Java 8 and Java 11. Even though
Java 8 is technically past its end-of-life deadline, it is still pervasive enough in the
industry to ensure the code examples work with it. At the time of this writing, the
current version of Kotlin is 1.3.50, with 1.3.60 on the way. All the code works with
both versions, and the GitHub repository will frequently be updated to use the latest
version of Kotlin.

Who Should Read This Book
This book is written for developers who already know the basics of object-oriented
programming, especially in Java or another JVM-based language. While Java knowl‐
edge would be helpful, it isn’t required.

A recipe book like this one is more focused on using the techniques and idioms of
Kotlin than on being an exhaustive resource on the language. That has the advantage

xi

https://github.com/kousen/kotlin-cookbook
https://github.com/kousen/kotlin-cookbook

of using the full power of the language in any given recipe, but the disadvantage of
spending only a limited time on the basics of those features. Each chapter includes a
summary of the basic techniques, so if you are only vaguely familiar with how to cre‐
ate collections, work with arrays, or design classes, you should still be fine. The online
reference manual provides a solid introduction to the language, and the book makes
frequent reference to examples and discussions found there.

In addition, the book frequently dives into the implementations of features from the
Kotlin libraries. That’s to show how the developers of the language work with it in
practice, as well as to discuss why things are done the way they are. No prior knowl‐
edge of the implementation is expected, however, and you are free to skip those
details if you are in a hurry.

How This Book Is Organized
This book is organized into recipes, and while each is self-contained, many reference
others in the book. The hope is that you can read them in any particular order. That
said, there is a loose ordering to the chapters, as follows:

• Chapter 1 covers the basic process of installing and running Kotlin, including
using the REPL, working with build tools like Maven and Gradle, and employing
the native image generator in Graal.

• Chapter 2 covers some fundamental features of Kotlin—such as nullable types,
overloading operators, and converting between types—before examining some
more esoteric issues including working with bitwise shift operators or the to
extension function on the Pair class.

• Chapter 3 focuses on object-oriented features of the language that developers
from other languages might find surprising or unusual. It includes how to use the
const keyword, how Kotlin handles backing properties, delayed initialization,
and the dreaded Nothing class, which is guaranteed to confuse existing Java
developers.

• Chapter 4 has only a few recipes, which involve functional features that need
their own explanations. Functional programming concepts are covered through‐
out the book, especially when talking about collections, sequences, and corou‐
tines, but there are a handful of techniques included in this chapter that you may
find unusual or particularly interesting.

• Chapter 5 covers arrays and collections, dealing mostly with nonobvious meth‐
ods like destructing collections, sorting by multiple properties, building a win‐
dow on a collection, and creating progressions.

xii | Preface

https://kotlinlang.org/docs/reference

• Chapter 6 shows how Kotlin handles sequences of items lazily, similar to the way
Java uses streams. Recipes cover generating sequences, yielding from them, and
working with infinite sequences.

• Chapter 7 covers another topic unique to Kotlin: functions that execute a block
of code in the context of an object. Functions like let, apply, and also are quite
useful in Kotlin, and this chapter illustrates why and how to use them.

• Chapter 8 discusses a convenient feature of Kotlin: how it implements delegation.
Delegation lets you employ composition rather than inheritance, and Kotlin
includes several delegates in the standard library, like lazy, observable, and
vetoable.

• Chapter 9 covers the important topic of testing, with a particular focus on JUnit
5. In its current version, JUnit is designed to work well with Kotlin, and that
includes both its regular usage and employing it in Spring Framework applica‐
tions. This chapter discusses several approaches that make writing and executing
tests easier.

• Chapter 10 includes a couple of recipes specifically for managing resources. File
I/O is covered, as is the use function, which has broad applicability in several
contexts.

• Chapter 11 covers topics that do not fit easily in any other category. Topics such
as how to get the current Kotlin version, how to force the when statement to be
exhaustive even when it doesn’t return a value, and how to use the replace func‐
tion with regular expressions are covered. In addition, the TODO function and the
Random class are discussed, as well as how to integrate with Java exception
handling.

• Chapter 12 involves the Spring Framework along with Spring Boot, which is very
friendly to Kotlin. A few recipes are included to show how to use Kotlin classes as
managed beans, how to implement JPA persistence, and how to inject dependen‐
cies when needed.

• Chapter 13 covers the subject of coroutines, one of the most popular features of
Kotlin and the basis of concurrent and parallel programming in the language.
Recipes cover the basics, like builders and dispatchers, along with how to cancel
and debug coroutines, and how to run them on your own custom Java thread
pool.

The chapters, and indeed the recipes themselves, do not have to be read in any partic‐
ular order. They do complement each other, and each recipe ends with references to
others, but you can start reading anywhere. The chapter groupings are provided as a
way to put similar recipes together, but it is expected that you will jump from one to
another to solve whatever problem you may have at the moment.

Preface | xiii

Special note for Android developers: Kotlin is now the preferred language for Android
development, but it is a much broader, general-purpose programming language. You
can use it anywhere you would use Java, and more. This book does not have a dedica‐
ted section just for Android. Instead, Android uses of Kotlin are discussed through‐
out. A few specific Android-related recipes, like coroutine cancellation, take advan‐
tage of the fact that Android libraries make extensive use of Kotlin, but in general the
features of the language covered in this book can be used anywhere. It is hoped that
by covering the language in a more general way, Android developers will find techni‐
ques useful to them in any coding project.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

xiv | Preface

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/kousen/kotlin-cookbook.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but do not generally require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Kotlin Cookbook by Ken
Kousen (O’Reilly). Copyright 2020 Ken Kousen, 978-1-492-04667-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

Preface | xv

https://github.com/kousen/kotlin-cookbook
mailto:permissions@oreilly.com
http://oreilly.com
https://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information: https://oreil.ly/kotlin-cookbook.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
At the Google I/O conference in 2017, the company announced that Kotlin would be
a supported language for Android development. Later that year, Gradle, Inc.—the
company behind the Gradle build tool—announced that it would support a Gradle
domain-specific language (DSL) for builds. Both of those developments convinced
me to dig into the language, and I’ve been happy to have done so.

Over the past few years, I’ve been giving regular presentations and workshops on
Kotlin. While the basics of the language are easy to learn and apply, I’ve been
impressed with its depth and how aware it is of the way modern development ideas
are implemented in other languages, like Groovy or Scala. Kotlin is a synthesis of
many of the best programming ideas throughout the industry, and I’ve learned a lot
by doing the deep dive necessary to write a book like this.

As part of my learning process, I’ve benefitted from working with many active Kotlin
developers, including Dawn and Dave Griffiths, whose books Head First Android
Development and Head First Kotlin are outstanding; they even agreed to write the
foreword for this book. Hadi Harriri, a developer advocate at JetBrains, gives presen‐
tations on Kotlin on a regular basis. Those talks always inspire me to spend time on

xvi | Preface

https://oreil.ly/kotlin-cookbook
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

the language, and he was kind enough to be a technical reviewer for this book. I’m
very grateful to them.

Bill Fly also provided a technical review. I’ve interacted with him on the O’Reilly
Learning Platform more times than I can count, and he always provides interesting
insights (and hard questions). My good friend Jim Harmon helped me get up to speed
on Android many years ago, and has always been willing to answer my questions and
talk about how Kotlin is used in practice. Mark Maynard is an active developer in
industry who helped me understand how Kotlin worked with the Spring Framework,
and I’m grateful for that. Finally, the inimitable Venkat Subramaniam was kind
enough to take time from his busy schedule writing his own Kotlin book (entitled
Programming Kotlin: it’s as good as the rest of his books) to help me with mine. I’m
happy to know all my tech reviewers and am humbled by the amount of time and
effort they spent improving the book you see now.

I need to acknowledge many of my fellow speakers on the NFJS tour, including Nate
Schutta, Michael Carducci, Matt Stine, Brian Sletten, Mark Richards, Pratik Patel,
Neal Ford, Craig Walls, Raju Gandhi, Jonathan Johnson, and Dan “the Man” Hino‐
josa for their constant doses of perspective and encouragement. I’m sure I’ve left out
someone on the tour, and, if so, I assure you it was deliberate.

Okay, maybe not. Writing books and teaching training classes (my actual day job) are
solitary pursuits. It’s great having a community of friends and colleagues that I can
rely on for perspective, advice, and various forms of entertainment.

Many people at O’Reilly Media were involved in the creation of this book. Rather
than call them out individually, I specifically want to mention Zan McQuade, who
was frequently placed in awkward positions by my irregular schedule and my general
contrary nature. Thank you for your patience, understanding, and hard work to bring
the book to completion.

Finally, I need to express all my love to my wife, Ginger, and my son, Xander. Without
the support and kindness of my family, I would not be the person I am today, a fact
that grows more obvious to me with each passing year. I can never express what you
both mean to me.

Preface | xvii

CHAPTER 1

Installing and Running Kotlin

The recipes in this chapter help you get up and running with the Kotlin compiler,
both from the command line and using an integrated development environment
(IDE).

1.1 Running Kotlin Without a Local Compiler
Problem
You want to try out Kotlin without a local installation, or run it on a machine that
does not support it (for example, a Chromebook).

Solution
Use the Kotlin Playground, an online sandbox for exploring Kotlin.

Discussion
The Kotlin Playground provides an easy way to experiment with Kotlin, explore fea‐
tures you haven’t used, or simply run Kotlin on systems that don’t have an installed
compiler. It gives you access to the latest version of the compiler, along with a web-
based editor that allows you to add code without installing Kotlin locally.

1

https://play.kotlinlang.org

Figure 1-1 is a snapshot of the browser page.

Figure 1-1. The Kotlin Playground home page

Just type in your own code and click the Play button to execute it. The Settings button
(the gear icon) allows you to change Kotlin versions, decide which platform to run on
(JVM, JS, Canvas, or JUnit), or add program arguments.

As of Kotlin 1.3, the Kotlin function main can be defined without
parameters.

The Examples section contains an extensive set of sample programs, organized by
topic, that can be executed using an embedded block in a browser. Figure 1-2 shows
the “Hello world” program page.

2 | Chapter 1: Installing and Running Kotlin

Figure 1-2. Examples in the Kotlin Playground

The playground also has a dedicated section for Kotlin Koans, which are a series of
exercises to help you become more familiar with the language. While these are useful
online, if you use IntelliJ IDEA or Android Studio, the Koans can be added using the
EduTools plug-in.

1.2 Installing Kotlin Locally
Problem
You want to execute Kotlin from a command prompt on your local machine.

Solution
Perform a manual install from GitHub or use one of the available package managers
for your operating system.

1.2 Installing Kotlin Locally | 3

Discussion
The page at http://kotlinlang.org/docs/tutorials/command-line.html discusses the
options for installing a command-line compiler. One option is to download a ZIP file
containing an installer for your operating system. This page contains a link to the
GitHub repository for Kotlin current releases. ZIP files are available for Linux,
macOS, Windows, and the source distribution. Simply unzip the distribution and add
its bin subdirectory to your path.

A manual install certainly works, but some developers prefer to use package manag‐
ers. A package manager automates the installation process, and some of them allow
you to maintain multiple versions of a particular compiler.

SDKMAN!, Scoop, and other package managers
One of the most popular installation programs is SDKMAN!. Originally designed for
Unix-based shells, there are plans to make it available for other platforms as well.

Installing Kotlin with SDKMAN! begins with a curl install:

> curl -s https://get.sdkman.io | bash

Then, once it’s installed, you can use the sdk command to install any one of a variety
of products, including Kotlin:

> sdk install kotlin

By default, the latest version will be installed in the ~/.sdkman/candidates/kotlin direc‐
tory, along with a link called current that points to the selected version.

You can find out what versions are available by using the list command:

> sdk list kotlin

The install command by default selects the latest version, but the use command
will let you select any version, offering to install it if necessary:

> sdk use kotlin 1.3.50

That will install version 1.3.50 of Kotlin, if necessary, and use it in the current shell.

IntelliJ IDEA or Android Studio can use the downloaded versions,
or they can maintain their own versions separately.

Other package managers that support Kotlin include Homebrew, MacPorts, and
Snapcraft.

4 | Chapter 1: Installing and Running Kotlin

http://kotlinlang.org/docs/tutorials/command-line.html
https://oreil.ly/AXqXM
https://sdkman.io
http://brew.sh
https://www.macports.org
https://snapcraft.io

On Windows, you can use Scoop. Scoop does for Windows what the other package
managers do for non-Windows systems. Scoop requires PowerShell 5 or later
and .NET Framework 4.5 or later. Simple installation instructions are found on the
Scoop website.

Once Scoop is installed, the main bucket allows you to install the current version of
Kotlin:

> scoop install kotlin

This will install the scripts kotlin.bat, kotlinc.bat, kotlin-js.bat, and kotlin-jvm.bat and
add them all to your path.

That is sufficient, but if you want to try it, there is an experimental installer called
kotlin-native, which installs a native Windows compiler as well. This installs an
LLVM backend for the Kotlin compiler, a runtime implementation, and a native code
generation facility by using the LLVM toolchain.

Regardless of how you install Kotlin, you can verify that it works and is in your path
by using the simple command kotlin -version. A typical response to that com‐
mand is shown here:

> kotlin -version
Kotlin version 1.3.50-release-112 (JRE 13+33)

See Also
Recipe 1.3 discusses how to use Kotlin from the command line after it is installed.

1.3 Compiling and Running Kotlin from the Command
Line
Problem
You want to compile and execute Kotlin from the command line.

Solution
Use the kotlinc-jvm and kotlin commands, similar to Java.

Discussion
The Kotlin SDK for the JVM includes the Kotlin compiler command, kotlinc-jvm,
and the Kotlin execution command, kotlin. They are used just like javac and java
for Java files.

1.3 Compiling and Running Kotlin from the Command Line | 5

https://scoop.sh

The Kotlin installation includes a script called kotlinc-js for compil‐
ing to JavaScript. This book assumes you are planning to use the
JVM version. The basic script kotlinc is an alias for kotlinc-jvm.

For example, consider a trivial “Hello, Kotlin!” program, stored in a file called hello.kt,
with the code shown in Example 1-1.

Example 1-1. hello.kt

fun main() {
 println("Hello, Kotlin!")
}

The command kotlinc compiles this file, and the command kotlin is used to exe‐
cute the resulting class file, as in Example 1-2.

Example 1-2. Compiling and executing a regular Kotlin file

> kotlinc-jvm hello.kt

> ls
hello.kt HelloKt.class

> kotlin HelloKt
Hello, Kotlin!

Compiles the source

Executes the resulting class file

The compiler produces the HelloKt.class file, which contains bytecodes that can be
executed on the Java Virtual Machine. Kotlin does not generate Java source code—it’s
not a transpiler. It generates bytecodes that can be interpreted by the JVM.

The compiled class takes the name of the file, capitalizes the first letter, and appends
Kt on the end. This can be controlled with annotations.

If you wish to produce a self-contained JAR file that can be executed by the Java com‐
mand, add the -include-runtime argument. That allows you to produce an exe‐
cutable JAR that can be run from the java command, as in Example 1-3.

Example 1-3. Including the Kotlin runtime

> kotlinc-jvm hello.kt -include-runtime -d hello.jar

6 | Chapter 1: Installing and Running Kotlin

The resulting output file is called hello.jar, which can be executed using the java
command:

> java -jar hello.jar
Hello, Kotlin!

Leaving out the -include-runtime flag would produce a JAR file that needs the Kot‐
lin runtime on the classpath in order to execute.

The kotlinc command without any arguments starts the interac‐
tive Kotlin REPL, which is discussed in Example 1-4.

See Also
Example 1-4 shows how to use the Kotlin read-eval-print loop (REPL) for interactive
coding. Recipe 1.5 discusses executing Kotlin scripts from the command line.

1.4 Using the Kotlin REPL
Problem
You want to run Kotlin in an interactive shell.

Solution
Use the Kotlin REPL by typing kotlinc by itself at the command line.

Discussion
Kotlin includes an interactive compiler session manager, known as a REPL (read-
eval-print loop) that is triggered by the kotlinc command with no arguments. Once
inside the REPL, you can evaluate arbitrary Kotlin commands and see the results
immediately.

The Kotlin REPL is also available inside Android Studio and Intel‐
liJ IDEA as the Kotlin REPL entry under the Tools → Kotlin menu.

After running the kotlinc command, you will receive an interactive prompt. An
example session is shown in Example 1-4.

1.4 Using the Kotlin REPL | 7

Example 1-4. Using the Kotlin REPL

▶ kotlinc
Welcome to Kotlin version 1.3.50 (JRE 11.0.4+11)
Type :help for help, :quit for quit
>>> println("Hello, World!")
Hello, World!
>>> var name = "Dolly"
>>> println("Hello, $name!")
Hello, Dolly!

>>> :help
Available commands:
:help show this help
:quit exit the interpreter
:dump bytecode dump classes to terminal
:load <file> load script from specified file

>>> :quit

The REPL is a quick and easy way to evaluate Kotlin expressions without starting up
a full IDE. Use it if you don’t want to create an entire project or other IDE-based col‐
lection of files, or if you want to do a quick demo in order to help another developer,
or if you don’t have your preferred IDE available.

1.5 Executing a Kotlin Script
Problem
You want to write and execute a script written in Kotlin.

Solution
Enter your code in a file ending in .kts. Then use the kotlinc command with the
-script option to execute it.

Discussion
The kotlinc command supports several command-line options, one of which allows
Kotlin to be used as a scripting language. A script is defined as a Kotlin source file
with the file extension .kts that includes executable code.

As a simple example, the file southpole.kts in Example 1-5 shows the current time at
the South Pole and prints whether it is currently on daylight saving time. The script
uses the java.time package added to Java in version 8.

8 | Chapter 1: Installing and Running Kotlin

Example 1-5. southpole.kts

import java.time.*

val instant = Instant.now()
val southPole = instant.atZone(ZoneId.of("Antarctica/South_Pole"))
val dst = southPole.zone.rules.isDaylightSavings(instant)
println("It is ${southPole.toLocalTime()} (UTC${southPole.offset})
 at the South Pole")
println("The South Pole ${if (dst) "is" else "is not"} on Daylight Savings Time")

Execute this file with the kotlinc command using the -script option:

> kotlinc -script southpole.kts
It is 10:42:56.056729 (UTC+13:00) at the South Pole
The South Pole is on Daylight Savings Time

Scripts contain the code that would normally appear inside the standard main method
in a class. Kotlin can be used as a scripting language on the JVM.

1.6 Building a Standalone Application Using GraalVM
Problem
You want to generate an application that can be run from the command line without
any additional dependencies.

Solution
Use the GraalVM compiler and native-image tool.

Discussion
GraalVM is a high-performance virtual machine that provides a cross-language run‐
time for running applications written in a variety of languages. You can write in a
JVM-based language like Java or Kotlin, and integrate with JavaScript, Ruby, Python,
R, and more.

One nice feature of GraalVM is that you can use it to create a native executable from
your code. This recipe shows a simple example of how to use GraalVM’s native-
image tool to create a native binary from Kotlin source code.

You can install GraalVM from the downloads page. For the current recipe, the free
Community Edition was installed using the SDKMAN! tool:

> sdk install java 19.2.0.1-grl
> java -version
openjdk version "1.8.0_222"
OpenJDK Runtime Environment (build 1.8.0_222-20190711112007.graal.jdk8u-src...

1.6 Building a Standalone Application Using GraalVM | 9

https://www.graalvm.org
https://oreil.ly/UcmZD

OpenJDK 64-Bit GraalVM CE 19.2.0.1 (build 25.222-b08-jvmci-19.2-b02, mixed mode)

> gu install native-image
// installs native image component

Consider the Kotlin version of “Hello, World!” from Figure 1-1, reproduced here:

fun main() {
 println("Hello, World!")
}

As stated in Recipe 1.3, you can just compile this script by using kotlinc-jvm, which
generates HelloKt.class, and then run with kotlin:

> kotlinc-jvm hello.kt // generates HelloKt.class
> kotlin HelloKt
Hello, World!

To generate a native image instead, first compile the script with the -include-
runtime option. That generates a file called hello.jar:

> kotlinc-jvm hello.kt -include-runtime -d hello.jar

The GraalVM system includes the native-image tool, which you can use to generate
the native executable, as in Example 1-6.

Example 1-6. Building a native executable using GraalVM

> native-image -jar hello.jar

From the docs: “For compilation, native-image depends on the
local toolchain, so please make sure glibc-devel, zlib-devel (header
files for the C library and zlib) and gcc are available on your
system.”

The output will resemble the following:

> native-image -jar hello.jar
Build on Server(pid: 61247, port: 49590)*
[hello:61247] classlist: 1,497.63 ms
[hello:61247] (cap): 2,225.47 ms
[hello:61247] setup: 3,451.98 ms
[hello:61247] (typeflow): 2,163.16 ms
[hello:61247] (objects): 1,793.53 ms
[hello:61247] (features): 215.90 ms
[hello:61247] analysis: 4,247.68 ms
[hello:61247] (clinit): 107.96 ms
[hello:61247] universe: 399.58 ms
[hello:61247] (parse): 329.84 ms
[hello:61247] (inline): 753.12 ms
[hello:61247] (compile): 3,426.14 ms

10 | Chapter 1: Installing and Running Kotlin

[hello:61247] compile: 4,807.54 ms
[hello:61247] image: 306.96 ms
[hello:61247] write: 180.22 ms
[hello:61247] [total]: 15,246.88 ms

The result will be a file called hello that you can invoke at the command line. On a
Mac or other Unix-based system, you’ll see the following:

> ./hello
Hello, World!

There are now three ways to run the original script:

• Compile with kotlinc-jvm and then execute with kotlin.
• Compile including the runtime and then execute the resulting JAR with java.
• Compile with kotlinc, create a native image with GraalVM, and then execute

from the command line.

The sizes of the resulting files are quite different. The compiled bytecode file Hel‐
loKt.class is only about 700 bytes. The hello.jar file with its included runtime is about
1.2 MB. The native image is still larger, at about 2.1 MB. The speed differences are
dramatic however, even on a tiny script like this. Example 1-7 shows a simple
comparison.

Example 1-7. Timing the hello script

> time kotlin HelloKt
Hello, World!
kotlin HelloKt 0.13s user 0.05s system 112% cpu 0.157 total

~/Documents/kotlin
> time java -jar hello.jar
Hello, World!
java -jar hello.jar 0.08s user 0.02s system 99% cpu 0.106 total

~/Documents/kotlin
> time ./hello
Hello, World!
./hello 0.00s user 0.00s system 59% cpu 0.008 total

The relative values are telling. While the JAR file is somewhat quicker than running
kotlin directly, the native image is literally an order of magnitude faster. In this
example, it takes only about 8 milliseconds to run.

1.6 Building a Standalone Application Using GraalVM | 11

If you are a Gradle user, you can use a GraalVM plug-in called
gradle-graal. It adds a native-image task (among others) to your
build. See the home page for the plug-in for details.

1.7 Adding the Kotlin Plug-in for Gradle (Groovy Syntax)
Problem
You want to use add the Kotlin plug-in to a Gradle build by using the Groovy
domain-specific language (DSL) syntax.

Solution
Add the Kotlin dependency and plug-in by using the Groovy DSL tags in a build file.

Discussion

This recipe uses the Groovy DSL for Gradle. The next recipe shows
how to use the Kotlin DSL for Gradle instead.

The Gradle build tool supports compiling Kotlin on the JVM by using a plug-in sup‐
plied by JetBrains. The kotlin-gradle-plugin, adding to Gradle build script
has been registered at the Gradle plug-ins repository, and can be added to a Gradle
build script as in Example 1-8. The code shown is added to a file called build.gradle in
the project root.

Example 1-8. Adding the Kotlin plug-in by using the plugins block (Groovy DSL)

plugins {
 id "org.jetbrains.kotlin.jvm" version "1.3.50"
}

The version value represents both the plug-in version and the Kotlin version. Gradle
still supports the older syntax for adding plug-ins, as shown in Example 1-9.

Example 1-9. Older syntax for the Kotlin plug-in (Groovy DSL)

buildscript {
 repositories {
 mavenCentral()
 }

12 | Chapter 1: Installing and Running Kotlin

https://oreil.ly/3eY3Y
https://gradle.org
https://plugins.gradle.org

 dependencies {
 classpath 'org.jetbrains.kotlin:kotlin-gradle-plugin:1.3.50'
 }
}

plugins {
 id "org.jetbrains.kotlin.jvm" version "1.3.50"
}

Both of these snippets use the Groovy DSL syntax for Gradle build files, which sup‐
ports both single- and double-quoted strings. As with Kotlin, Groovy uses double-
quoted strings when doing interpolation, but since none is required here, single-
quoted strings also work.

The plugins block does not require you to state where the plug-in is found, as in the
repositories block in the latter example. This is true for any Gradle plug-in regis‐
tered at the Gradle plug-ins repository. Using the plugins block also automatically
“applies” the plug-in, so no apply statement is required either.

The settings.gradle file is recommended but not required. It is processed during the
initialization phase of Gradle processing, which occurs when Gradle determines
which project build files need to be analyzed. In a multiproject build, the settings file
shows which subdirectories of the root are themselves Gradle projects as well. Gradle
can share settings and dependencies among subprojects, can make one subproject
depend on another, or can even process subproject builds in parallel. For details, see
the multiproject build sections of the Gradle User Manual.

Kotlin sources can be mixed with Java sources in the same folder, or you can create
separate src/main/java and src/main/kotlin folders for them individually.

Android projects
The Kotlin plug-in for Android is handled slightly differently. Android projects are
multiproject builds in Gradle, meaning they normally have two build.gradle files: one
in the root directory, and one in a subdirectory called app by default. Example 1-10
shows a typical top-level build.gradle file containing only the Kotlin plug-in
information.

Example 1-10. Using Kotlin in Android projects (Groovy DSL)

buildscript {
 ext.kotlin_version = '1.3.50'
 repositories {
 google()
 jcenter()

 }
 dependencies {

1.7 Adding the Kotlin Plug-in for Gradle (Groovy Syntax) | 13

https://oreil.ly/mwGJW

 classpath 'com.android.tools.build:gradle:3.5.0'
 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"
 }
}

// ... more tasks, unrelated to the plug-in ...

In Gradle parlance, the plug-in is then applied, as in the typical app directory
build.gradle file shown in Example 1-11.

Example 1-11. Applying the Kotlin plug-in

apply plugin: 'com.android.application'

apply plugin: 'kotlin-android'

apply plugin: 'kotlin-android-extensions'

android {
 // ... android information ...
}

dependencies {
 implementation "org.jetbrains.kotlin:kotlin-stdlib-jdk8:$kotlin_version"

 // ... other unrelated dependencies ...
}

Applies the Kotlin plug-in for Android

Applies the Android Kotlin extensions

Standard library dependency, can use JDK 8 or JDK 7

The Kotlin plug-in for Android is declared in the buildscript section and then
applied in this file. The plug-in knows how to compile Kotlin code inside your
Android application. The downloaded plug-in also includes the Android extensions,
which makes it easy to access Android widgets by their ID values.

The Kotlin plug-in can generate bytecodes for either JDK 7 or JDK 8. Change the jdk
value in the listed dependency to select whichever you prefer.

At the time of this writing, there is no option to select the Kotlin
DSL when creating Android projects. You can create your own
build files that use the Kotlin DSL, but that is unusual. The Kotlin
DSL will be available in version 4.0 of Android Studio, which will
also include full support for KTS files and Kotlin live templates.

14 | Chapter 1: Installing and Running Kotlin

See Also
The same process using the Kotlin DSL is shown in Recipe 1.8, other than for the
Android section.

1.8 Adding the Kotlin Plug-in for Gradle (Kotlin Syntax)
Problem
You want to add the Kotlin plug-in to a Gradle build, using the Kotlin DSL.

Solution
Add the Kotlin dependency and plug-in, using the Kotlin DSL tags in a build file.

Discussion

This recipe uses the Kotlin DSL for Gradle. The previous recipe
shows how to use the Groovy DSL for Gradle instead.

Gradle (version 5.0 and above) includes the new Kotlin DSL for configuring the build
file. It also makes available kotlin-gradle-plugin, registered at the Gradle plug-in
repository, which can be added to a Gradle build script shown in Example 1-12.
Alternatively, you can use the older buildscript syntax in Example 1-13. The code
shown is added to a file called build.gradle.kts in the project root.

Example 1-12. Adding the Kotlin plug-in by using the plugins block (Kotlin DSL)

plugins {
 kotlin("jvm") version "1.3.50"
}

Example 1-13. Older syntax for the Kotlin plug-in (Kotlin DSL)

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath(kotlin("gradle-plugin", version = "1.3.50"))
 }
}

1.8 Adding the Kotlin Plug-in for Gradle (Kotlin Syntax) | 15

https://plugins.gradle.org

plugins {
 kotlin("jvm")
}

The plugins block does not require you to state where the plug-in is found, as in the
repositories block in the latter example. This is true for any Gradle plug-in regis‐
tered at the Gradle plug-ins tepository. Using the plugins block also automatically
“applies” the plug-in, so no apply statement is required either.

The default build filenames for the Kotlin DSL in Gradle are set‐
tings.gradle.kts and build.gradle.kts.

As you can see, the biggest differences from the Groovy DSL syntax are as follows:

• Double quotes are required on any strings.
• The parentheses are required in the Kotlin DSL.
• Kotlin uses an equals sign (=) to assign values, rather than a colon (:).

The settings.gradle.kts file is recommended but not required. It is processed during
the initialization phase of Gradle processing, which occurs when Gradle determines
which project build files need to be analyzed. In a multiproject build, the settings file
shows which subdirectories of the root are themselves Gradle projects as well. Gradle
can share settings and dependencies among subprojects, can make one subproject
depend on another, or can even process subproject builds in parallel. For details, see
the multiproject build sections of the Gradle User Manual.

Kotlin and Java source code can be mixed together in src/main/java or src/main/
kotlin, or you can add your own source files by using the sourceSets property of
Gradle. See the Gradle documentation for details.

See Also
The same process using the Groovy DSL in Gradle is shown in Recipe 1.7. Additional
details for Android projects can be found in that recipe as well, as the Kotlin DSL is
not currently an option when generating Android projects.

1.9 Using Gradle to Build Kotlin Projects
Problem
You want to build a project that contains Kotlin by using Gradle.

16 | Chapter 1: Installing and Running Kotlin

https://oreil.ly/L3BUe
https://oreil.ly/XG4EN

Solution
In addition to the Kotlin plug-in for Gradle, add the Kotlin JDK dependency at com‐
pile time.

Discussion
The examples in Recipes 1.7 and 1.8 showed how to add the Kotlin plug-in for Gra‐
dle. This recipe adds features to the build file to process any Kotlin code in your
project.

To compile the Kotlin code in Gradle, you need to add an entry to the dependencies
block in your Gradle build file, as shown in Example 1-14.

Example 1-14. Kotlin DSL for simple Kotlin project (build.gradle.kts)

plugins {
 `java-library`
 kotlin("jvm") version "1.3.50"
}

repositories {
 jcenter()
}

dependencies {
 implementation(kotlin("stdlib"))
}

Adds tasks from the Java Library plug-in

Adds the Kotlin plug-in to Gradle

Adds the Kotlin standard library to the project at compile time

The java-library plug-in defines tasks for a basic JVM-based project, like build,
compileJava, compileTestJava, javadoc, jar, and more.

The plugins section must come first, but the other top-level blocks
(repositories, dependencies, etc.) can be in any order.

The dependencies block indicates that the Kotlin standard library is added at com‐
pile time (older versions of Gradle still use the compile configuration instead of
implementation, but the effect is the same). The repositories block indicates that

1.9 Using Gradle to Build Kotlin Projects | 17

the Kotlin dependency will be downloaded from jcenter, which is the public Artifac‐
tory Bintray repository.

If you run the gradle build --dry-run task at the command line, you can see the
tasks that would be executed by Gradle without actually running them. The result is
as follows:

> gradle build -m

:compileKotlin SKIPPED
:compileJava SKIPPED
:processResources SKIPPED
:classes SKIPPED
:inspectClassesForKotlinIC SKIPPED
:jar SKIPPED
:assemble SKIPPED
:compileTestKotlin SKIPPED
:compileTestJava SKIPPED
:processTestResources SKIPPED
:testClasses SKIPPED
:test SKIPPED
:check SKIPPED
:build SKIPPED

BUILD SUCCESSFUL in 0s

The Kotlin plug-in adds the compileKotlin, inspectClassesForKotlinIC, and
compileTestKotlin tasks.

The project can be built by using the same command without the -m flag, which is the
abbreviation for --dry-run.

18 | Chapter 1: Installing and Running Kotlin

1.10 Using Maven with Kotlin
Problem
You want to compile Kotlin by using the Maven build tool.

Solution
Use the Kotlin Maven plug-in and standard library dependencies.

Discussion
The basic details for using Maven can be found on the documentation web page.

This documentation recommends that first you specify the Kotlin version you want
to use as a property in a Maven pom.xml file that looks like this:

<properties>
 <kotlin.version>1.3.50</kotlin.version>
</properties>

Then, add the Kotlin standard library as a dependency, as in Example 1-15.

Example 1-15. Adding the Kotlin standard library dependency

<dependencies>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-stdlib</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
</dependencies>

As with Gradle, you can specify kotlin-stdlib-jdk7 or kotlin-
stdlib-jdk8 to use extension functions for Java 1.7 or 1.8.

Additional available artifact IDs include kotlin-reflect for reflection, and kotlin-
test and kotlin-test-junit for testing.

To compile Kotlin source code, tell Maven in which directories it is located, as in
Example 1-16.

1.10 Using Maven with Kotlin | 19

https://oreil.ly/LLy3h

Example 1-16. Specifying Kotlin source directories

<build>
 <sourceDirectory>${project.basedir}/src/main/kotlin</sourceDirectory>
 <testSourceDirectory>${project.basedir}/src/test/kotlin</testSourceDirectory>
</build>

Then tell the Kotlin plug-in to compile the sources and tests (Example 1-17).

Example 1-17. Referencing the Kotlin plug-in

<build>
 <plugins>
 <plugin>
 <artifactId>kotlin-maven-plugin</artifactId>
 <groupId>org.jetbrains.kotlin</groupId>
 <version>${kotlin.version}</version>

 <executions>
 <execution>
 <id>compile</id>
 <goals><goal>compile</goal></goals>
 </execution>

 <execution>
 <id>test-compile</id>
 <goals><goal>test-compile</goal></goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

When your project contains both Kotlin code and Java code, the Kotlin compiler
should be invoked first. That means kotlin-maven-plugin should be run before
maven-compiler-plugin. The documentation page provided previously shows how
to ensure that via configuration options in your pom.xml file.

20 | Chapter 1: Installing and Running Kotlin

CHAPTER 2

Basic Kotlin

This chapter contains recipes that work with the fundamentals of Kotlin. They show
you how to use the language without relying on specific libraries.

2.1 Using Nullable Types in Kotlin
Problem
You want to ensure that a variable is never null.

Solution
Define the type of a variable without a question mark. Nullable types also combine
with the safe call operator (?.) and the Elvis operator (?:)

Discussion
The most attractive feature of Kotlin may be that it eliminates almost all possible
nulls. In Kotlin, if you define a variable without including a trailing question mark,
the compiler will require that value to be non-null, as in Example 2-1.

Example 2-1. Declaring a non-nullable variable

var name: String

// ... later ...
name = "Dolly"
// name = null

Assignment to a non-null string

21

Assignment to null does not compile

Declaring the name variable to be of type String means that it cannot be assigned the
value null or the code won’t compile.

If you do want a variable to allow null, add a question mark to the type declaration,
as in Example 2-2.

Example 2-2. Declaring a nullable variable

class Person(val first: String,
 val middle: String?,
 val last: String)

val jkRowling = Person("Joanne", null, "Rowling")
val northWest = Person("North", null, "West")

JK Rowling has no given middle name; she selected K for her initial to honor her
grandmother Katherine

Neither does Kim and Kanye’s baby, who will no doubt have bigger issues than
this

In the Person class shown, you still have to supply a value for the middle parameter,
even if it’s null.

Life gets interesting when you try to use a nullable variable in an expression. Kotlin
requires you to check that the value is not null, but it’s not quite as easy as that
sounds. For example, consider the null check in Example 2-3.

Example 2-3. Checking nullability of a val variable

val p = Person(first = "North", middle = null, last = "West")
if (p.middle != null) {
 val middleNameLength = p.middle.length
}

Smart cast to non-null String

The if test checks whether the middle property is non-null, and if so, Kotlin per‐
forms a smart cast: it treats p.middle as though it was of type String rather than
String?. This works, but only because the variable p was declared with the val key‐
word, so it cannot change once it is set. If, on the other hand, the variable was
declared with var instead of val, the code is as shown in Example 2-4.

22 | Chapter 2: Basic Kotlin

Example 2-4. Asserting that a var variable is not null

var p = Person(first = "North", middle = null, last = "West")
if (p.middle != null) {
 // val middleNameLength = p.middle.length
 val middleNameLength = p.middle!!.length
}

Smart cast to String impossible, because p.middle is a complex expression

Null-asserted (please don’t do this unless absolutely necessary)

Because p uses var instead of val, Kotlin assumes that it could change between the
time it is defined and the time the middle property is accessed, and refuses to do the
smart cast. One way around this is to use the bang-bang, or not-null, assertion opera‐
tor (!!) which is a code smell if ever there was one. The !! operator forces the vari‐
able to be treated as non-null and throws an exception if that is not correct. That’s
one of the few ways it is still possible to get a NullPointerException even in Kotlin
code, so try to avoid it if possible.

A better way to handle this situation is to use the safe call operator (?.). Safe call
short-circuits and returns a null if the value is null, as in Example 2-5.

Example 2-5. Using the safe call operator

var p = Person(first = "North", middle = null, last = "West")
val middleNameLength = p.middle?.length

Safe call; the resulting type is Int?

The problem is that the resulting inferred type is also nullable, so middleNameLength
is of type Int?, which is probably not what you want. Therefore, it is helpful to com‐
bine the safe call operator with the Elvis operator (?:), as in Example 2-6.

Example 2-6. Safe call with Elvis

var p = Person(first = "North", middle = null, last = "West")
val middleNameLength = p.middle?.length ?: 0

Elvis operator, returns 0 if middle is null

The Elvis operator checks the value of the expression to the left, and if it is not null,
returns it. Otherwise, the operator returns the value of the expression on the right. In
this case, it checks the value of p.middle?.length, which is either an integer or null.
If it is an integer, the value is returned. Otherwise, the expression returns 0.

2.1 Using Nullable Types in Kotlin | 23

1 Or, rather, Groovy was designed that way. The Elvis operator is borrowed from Groovy.

The righthand side of an Elvis operator can be an expression, so
you can use return or throw when checking function arguments.

The real challenge, perhaps, is looking at ?:, turning your head to the side, and some‐
how managing to see Elvis Presley. Clearly, Kotlin was designed for developers with
an active imagination.1

Finally, Kotlin provides a safe cast operator, as?. The idea is to avoid throwing a
ClassCastException if the cast isn’t going to work. For example, if you try to cast an
instance of Person to that type, but the value may be null, you can write the code
shown in Example 2-7.

Example 2-7. The safe cast operator

val p1 = p as? Person

Variable p1 is of type Person?

The cast will either succeed, resulting in a Person, or will fail, and p1 will receive null
as a result.

2.2 Adding Nullability Indicators to Java
Problem
Your Kotlin code needs to interact with Java code, and you want it to enforce nullabil‐
ity annotations.

Solution
Enforce JSR-305 nullability annotations in your Kotlin code, using the compile-time
parameter -Xjsr305=strict.

Discussion
One of Kotlin’s primary features is that nullability is enforced in the type system at
compile time. If you declare a variable to be of type String, it can never be null,
whereas if it is declared to be of type String?, it can, as in Example 2-8.

24 | Chapter 2: Basic Kotlin

Example 2-8. Nullable versus non-nullable types

var s: String = "Hello, World!"
var t: String? = null

Cannot be null, or code won’t compile

Question mark on type indicates a nullable type

This is fine until you want to interact with Java code, which has no such mechanism
built into the language. Java does, however, have a @Nonnull annotation defined in
the javax.annotation package. While this specification is now considered dormant,
many libraries have what are referred to as JSR-305 compatible annotations, and Kot‐
lin supports them.

For example, when using the Spring Framework, you can enforce compatibility by
adding the code in Example 2-9 to your Gradle build file.

Example 2-9. Enforcing JSR-305 compatibility in Gradle (Groovy DSL)

sourceCompatibility = 1.8
compileKotlin {
 kotlinOptions {
 jvmTarget = "1.8"
 freeCompilerArgs = ["-Xjsr305=strict"]
 }
}
compileTestKotlin {
 kotlinOptions {
 jvmTarget = "1.8"
 freeCompilerArgs = ["-Xjsr305=strict"]
 }
}

To do the same using Gradle’s Kotlin DSL, see Example 2-10.

Example 2-10. Enforcing JSR-305 compatibility in Gradle (Kotlin DSL)

tasks.withType<KotlinCompile> {
 kotlinOptions {
 jvmTarget = "1.8"
 freeCompilerArgs = listOf("-Xjsr305=strict")
 }
}

For Maven, add the snippet from Example 2-11 to the POM file, as described in the
Kotlin reference guide.

2.2 Adding Nullability Indicators to Java | 25

Example 2-11. Enforcing JSR-305 compatibility in Maven

<plugin>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-plugin</artifactId>
 <version>${kotlin.version}</version>
 <executions>...</executions>
 <configuration>
 <nowarn>true</nowarn> <!-- Disable warnings -->
 <args>
 <!-- Enable strict mode for JSR-305 annotations -->
 <arg>-Xjsr305=strict</arg>
 ...
 </args>
 </configuration>
</plugin>

The @Nonnull annotation defined in JSR-305 takes a property called when. If the value
of when is When.ALWAYS, the annotated type is treated as non-null. If it is When.MAYBE
or When.NEVER, it is considered nullable. If it is When.UNKNOWN, the type is assumed to
be a platform type whose nullability is not known.

2.3 Adding Overloaded Methods for Java
Problem
You have a Kotlin function with default parameters, and you want to invoke it from
Java without having to specify explicit values for each parameter.

Solution
Add the @JvmOverloads annotation to the function.

Discussion
Say you have a Kotlin function that specifies one or more default arguments, as in
Example 2-12.

Example 2-12. A Kotlin function with default parameters

fun addProduct(name: String, price: Double = 0.0, desc: String? = null) =
 "Adding product with $name, ${desc ?: "None" }, and " +
 NumberFormat.getCurrencyInstance().format(price)

For the addProduct function, a String name is required, but the description and
price have default values. The description is nullable and defaults to null, while the
price defaults to 0.

26 | Chapter 2: Basic Kotlin

It is easy enough to call this function from Kotlin with one, two, or three arguments,
as the test in Example 2-13 shows.

Example 2-13. Calling the overloaded variations from Kotlin

@Test
fun `check all overloads`() {
 assertAll("Overloads called from Kotlin",
 { println(addProduct("Name", 5.0, "Desc")) },
 { println(addProduct("Name", 5.0)) },
 { println(addProduct("Name")) }
)
}

Each call to addProduct uses one fewer argument than the previous one.

Optional or nullable properties should be placed at the end of a
function signature, so they can be left out when calling the function
with positional arguments.

All of the calls execute properly.

Java, however, does not support default arguments for methods, so when calling this
function from Java, you have to supply them all, as in Example 2-14.

Example 2-14. Calling the function from Java

@Test
void supplyAllArguments() {
 System.out.println(OverloadsKt.addProduct("Name", 5.0, "Desc"));
}

If you add the annotation @JvmOverloads to the function, the generated class will
support all the function overloads, as in Example 2-15.

Example 2-15. Calling all the overloads from Java

@Test
void checkOverloads() {
 assertAll("overloads called from Java",
 () -> System.out.println(OverloadsKt.addProduct("Name", 5.0, "Desc")),
 () -> System.out.println(OverloadsKt.addProduct("Name", 5.0)),
 () -> System.out.println(OverloadsKt.addProduct("Name"))
);
}

2.3 Adding Overloaded Methods for Java | 27

To see why this works, you can decompile the generated bytecodes from Kotlin.
Without the @JvmOverloads annotation, the generated code resembles Example 2-16.

Example 2-16. Decompiled function from Kotlin bytecodes

@NotNull
public static final String addProduct(@NotNull String name,
 double price, @Nullable String desc) {
 Intrinsics.checkParameterIsNotNull(name, "name");
 // ...
}

When you add the @JvmOverloads annotation, the result instead resembles
Example 2-17.

Example 2-17. Decompiled function with overloads

// public final class OverloadsKt {
@JvmOverloads
@NotNull
public static final String addProduct(@NotNull String name,
 double price, @Nullable String desc) {
 Intrinsics.checkParameterIsNotNull(name, "name");

 // ...
}

@JvmOverloads
@NotNull
public static final String addProduct(
 @NotNull String name, double price) {
 return addProduct$default(name, price,
 (String)null, 4, (Object)null);
}

@JvmOverloads
@NotNull
public static final String addProduct(@NotNull String name) {
 return addProduct$default(name, 0.0D,
 (String)null, 6, (Object)null);
}

The generated class includes additional methods that invoke the full method with
supplied, default arguments.

You can also do this with constructors. The Product class shown in Example 2-18
generates three constructors: one with all three arguments, one with only the name
and price, and one with only the name.

28 | Chapter 2: Basic Kotlin

Example 2-18. Kotlin class with overloaded constructors

data class Product @JvmOverloads constructor(
 val name: String,
 val price: Double = 0.0,
 val desc: String? = null
)

The explicit constructor call is necessary so that you can add the @JvmOverloads
annotation to it. Now, instantiating the class can be done with multiple arguments in
Kotlin, as in Example 2-19.

Example 2-19. Instantiating the Product class from Kotlin

@Test
internal fun `check overloaded Product contructor`() {
 assertAll("Overloads called from Kotlin",
 { println(Product("Name", 5.0, "Desc")) },
 { println(Product("Name", 5.0)) },
 { println(Product("Name")) }
)
}

Or you can call the constructors from Java, as in Example 2-20.

Example 2-20. Instantiating the Product class from Java

@Test
void checkOverloadedProductCtor() {
 assertAll("overloads called from Java",
 () -> System.out.println(new Product("Name", 5.0, "Desc")),
 () -> System.out.println(new Product("Name", 5.0)),
 () -> System.out.println(new Product("Name"))
);
}

This all works, but note that a subtle trap exists. If you look at the decompiled code
for the Product class, you’ll see all the necessary constructors, shown in
Example 2-21.

Example 2-21. Overloaded Product constructors in decompiled code

@JvmOverloads
public Product(@NotNull String name, double price,
 @Nullable String desc) {
 Intrinsics.checkParameterIsNotNull(name, "name");
 super();
 this.name = name;
 this.price = price;

2.3 Adding Overloaded Methods for Java | 29

 this.desc = desc;
}

@JvmOverloads
public Product(String var1, double var2, String var4,
 int var5, DefaultConstructorMarker var6) {

 // ...

 this(var1, var2, var4);
}

@JvmOverloads
public Product(@NotNull String name, double price) {
 this(name, price, (String)null, 4, (DefaultConstructorMarker)null);
}

@JvmOverloads
public Product(@NotNull String name) {
 this(name, 0.0D, (String)null, 6, (DefaultConstructorMarker)null);
}

Calls three-argument constructor

Calls generated constructor, which then calls three-argument constructor

Each of the overloaded constructors ultimately calls the full, three-argument version
with various defaults supplied. This is probably fine, but keep in mind that when you
invoke a constructor with optional arguments, you’re not calling the analogous con‐
structor in the superclass; all calls are going through a single constructor with the
most arguments.

Calls to constructors marked @JvmOverloads do not call super
with the same number of arguments. Instead, they call the full con‐
structor with supplied defaults.

In Java, each constructor calls its parent by using super, and when you overload con‐
structors, you often invoke super with the same number of arguments. That’s not
happening in this case. The superclass constructor that gets invoked is the one with
all the parameters, with supplied defaults.

30 | Chapter 2: Basic Kotlin

2.4 Converting Between Types Explicitly
Problem
Kotlin does not automatically promote primitive types to wider variables, such as an
Int to a Long.

Solution
Use the explicit conversion functions toInt, toLong, and so on to convert the smaller
type explicitly.

Discussion
One of the surprises Kotlin brings to Java developers is that shorter types are not
automatically promoted to longer types. For example, in Java it is perfectly normal to
write the code in Example 2-22.

Example 2-22. Promoting shorter primitive types to longer ones in Java

int myInt = 3;
long myLong = myInt;

Automatic promotion of int to long

When autoboxing was introduced in Java 1.5, it became easy to convert from a primi‐
tive to a wrapper type, but converting from one wrapper type to another still requires
extra code, as in Example 2-23.

Example 2-23. Converting from an Integer to a Long

Integer myInteger = 3;
// Long myWrappedLong = myInteger;
Long myWrappedLong = myInteger.longValue();
myWrappedLong = Long.valueOf(myInteger);

Does not compile

Extracts a long, then wraps it

Unwraps int, promotes to long, then wraps it

In other words, dealing with the wrapped types directly requires you to do the unbox‐
ing yourself. You can’t simply assign an Integer instance to a Long without extracting
the wrapped value first.

2.4 Converting Between Types Explicitly | 31

In Kotlin, primitives are not supported directly. The bytecodes may generate their
equivalents, but when you are writing the code yourself, you need to keep in mind
that you are dealing with classes rather than primitives.

Fortunately, Kotlin provides a set of conversion methods of the form toInt, toLong,
and so on, as illustrated in Example 2-24.

Example 2-24. Promoting an Int to a Long in Kotlin

val intVar: Int = 3
// val longVar: Long = intVar
val longVar: Long = intVar.toLong()

Does not compile

Explicit type conversion

Since intVar and longVar are instances of classes in Kotlin, perhaps being unable to
automatically assign an instance of Int to a variable of type Long is not too surprising.
But it is easy to forget that, especially if you have a Java background.

The available conversion methods are as follows:

• toByte: Byte

• toChar: Char

• toShort: Short

• toInt(): Int

• toLong(): Long

• toFloat(): Float

• toDouble(): Double

Fortunately, Kotlin does take advantage of operator overloading to perform type con‐
versions transparently, so the following code does not require an explicit conversion:

val longSum = 3L + intVar

The plus operator automatically converts the intVar value to a long and adds it to
the long literal.

32 | Chapter 2: Basic Kotlin

2.5 Printing to Different Bases
Problem
You want to print a number in a base other than base 10.

Solution
Use the extension function toString(radix: Int) for a valid radix.

Discussion

This recipe is for a special situation that arises infrequently. Still, it’s
interesting and may be useful if you deal with alternate numerical
bases.

There’s an old joke:

There are 10 kinds of people
Those who know binary, and those who don't

In Java, if you wanted to print a number in binary, you would use the static Inte
ger.toBinaryString method or the static Integer.toString(int, int) method.
The first argument is the value to convert, and the second argument is the desired
base.

Kotlin, however, took the static method in Java and made it the extension function
toString(radix: Int) on Byte, Short, Int, and Long. For example, to convert the
number 42 to a binary string in Kotlin, you would write Example 2-25.

Example 2-25. Printing 42 in binary

42.toString(2) == "101010"

In binary, the bit positions from left to right are 1, 2, 4, 8, 16, and so on. Because 42 is
2 + 8 + 32, those bit positions have 1s and the others have 0s.

The implementation of the toString method in Int is given by the following:

public actual inline fun Int.toString(radix: Int): String =
 java.lang.Integer.toString(this, checkRadix(radix))

The extension function on Int thus delegates to the corresponding static method in
java.lang.Integer, after checking the radix in the second argument.

2.5 Printing to Different Bases | 33

The actual keyword indicates a platform-specific implementation
in multiplatform projects.

The checkRadix method verifies that the specified base is between Charac

ter.MIN_RADIX and Character.MAX_RADIX (again, this is for the Java implementa‐
tion), and throws an IllegalArgumentException otherwise. The valid min and max
values are to 2 and 36, respectively. Example 2-26 shows the output of printing the
number 42 in all the valid radices.

Example 2-26. Printing 42 in all available radix values

(Character.MIN_RADIX..Character.MAX_RADIX).forEach { radix ->
 println("$radix: ${42.toString(radix)}")
}

The output (with some formatting) is as follows:

Radix Value
 2: 101010
 3: 1120
 4: 222
 5: 132
 6: 110
 7: 60
 8: 52
 9: 46
10: 42
...
32: 1a
33: 19
34: 18
35: 17
36: 16

The number 42 is the Answer to the Ultimate Question of Life, the
Universe, and Everything (at least according to Douglas Adams in
his Hitchhiker’s Guide to the Galaxy series).

Combining this capability with multiline strings gives a Kotlin version of a nice varia‐
tion of the original joke, as in Example 2-27.

34 | Chapter 2: Basic Kotlin

Example 2-27. Improving the binary joke

val joke = """
 Actually, there are ${3.toString(3)} kinds of people
 Those who know binary, those who don't,
 And those who didn't realize this is actually a ternary joke
""".trimIndent()
println(joke)

That code prints the following:

Actually, there are 10 kinds of people
Those who know binary, those who don't,
And those who didn't realize this is actually a ternary joke

2.6 Raising a Number to a Power
Problem
You want to raise a number to a power but notice that Kotlin doesn’t have a prede‐
fined exponentiation operator.

Solution
Define an infix function that delegates to the Kotlin extension function pow already
added to Int and Long.

Discussion
Kotlin, like Java, does not have a built-in exponentiation operator. Java at least
includes the static pow function in the java.lang.Math class, whose signature is as
follows:

public static double Math.pow(double a, double b)

Since Java automatically promotes shorter primitive types to longer ones (for exam‐
ple, int to double), this is the only function required to do the job. In Kotlin, how‐
ever, there are no primitives, and instances of classes like Int are not automatically
promoted to Long or Double. This becomes annoying when you notice that the Kotlin
standard library does define an extension function called pow on Float and Double,
but that there is no corresponding pow function in Int or Long.

The signatures for the existing functions are as follows:

fun Double.pow(x: Double): Double
fun Float.pow(x: Float): Float

2.6 Raising a Number to a Power | 35

That means to raise an integer to a power, you need to go through a conversion to
Float or Double first, then invoke pow, and finally convert the result back to the origi‐
nal type, as in Example 2-28.

Example 2-28. Raising an Int to a power

@Test
fun `raise an Int to a power`() {
 assertThat(256, equalTo(2.toDouble().pow(8).toInt()))
}

If all you want to do is raise to a power of 2, the shl and shr func‐
tions are ideal, as shown in Recipe 2.7.

That works, but the process can be automated by defining extension functions on Int
and Long with the following signatures:

fun Int.pow(x: Int) = toDouble().pow(x).toInt()
fun Long.pow(x: Int) = toDouble().pow(x).toLong()

This might be better done as an infix operator. Although only the predefined opera‐
tor symbols can be overloaded, you can fake one by enclosing it in backticks, as in
Example 2-29.

Example 2-29. Defining an infix operation for exponentiation

import kotlin.math.pow

infix fun Int.`**`(x: Int) = toDouble().pow(x).toInt()
infix fun Long.`**`(x: Int) = toDouble().pow(x).toLong()
infix fun Float.`**`(x: Int) = pow(x)
infix fun Double.`**`(x: Int) = pow(x)

// Pattern similar to existing functions on Float and Double
fun Int.pow(x: Int) = `**`(x)
fun Long.pow(x: Int) = `**`(x)

The infix keyword was used in the definition of the ** function, but not in extend‐
ing pow to Int and Long to keep with the pattern in Float and Double.

The result is that you can use the ** symbol as a synthesized exponentiation operator,
as in Example 2-30.

36 | Chapter 2: Basic Kotlin

Example 2-30. Using the ** extension function

@Test
fun `raise to power`() {
 assertAll(
 { assertThat(1, equalTo(2 `**` 0)) },
 { assertThat(2, equalTo(2 `**` 1)) },
 { assertThat(4, equalTo(2 `**` 2)) },
 { assertThat(8, equalTo(2 `**` 3)) },

 { assertThat(1L, equalTo(2L `**` 0)) },
 { assertThat(2L, equalTo(2L `**` 1)) },
 { assertThat(4L, equalTo(2L `**` 2)) },
 { assertThat(8L, equalTo(2L `**` 3)) },

 { assertThat(1F, equalTo(2F `**` 0)) },
 { assertThat(2F, equalTo(2F `**` 1)) },
 { assertThat(4F, equalTo(2F `**` 2)) },
 { assertThat(8F, equalTo(2F `**` 3)) },

 { assertThat(1.0, closeTo(2.0 `**` 0, 1e-6)) },
 { assertThat(2.0, closeTo(2.0 `**` 1, 1e-6)) },
 { assertThat(4.0, closeTo(2.0 `**` 2, 1e-6)) },
 { assertThat(8.0, closeTo(2.0 `**` 3, 1e-6)) },

 { assertThat(1, equalTo(2.pow(0))) },
 { assertThat(2, equalTo(2.pow(1))) },
 { assertThat(4, equalTo(2.pow(2))) },
 { assertThat(8, equalTo(2.pow(3))) },

 { assertThat(1L, equalTo(2L.pow(0))) },
 { assertThat(2L, equalTo(2L.pow(1))) },
 { assertThat(4L, equalTo(2L.pow(2))) },
 { assertThat(8L, equalTo(2L.pow(3))) }
)
}

The tests on Double.** use the Hamcrest matcher closeTo to avoid comparing for
equality on doubles. The set of tests with Float probably should do the same, but the
tests currently pass as they are.

The idea of defining an infix function for this purpose was sug‐
gested by an answer by Olivia Zoe to a question on Stack Overflow.

If you find wrapping the star-star operator in backticks annoying, it’s easy enough to
define an actual function name, like exp, instead.

2.6 Raising a Number to a Power | 37

https://oreil.ly/1go1V

2.7 Using Bitwise Shift Operators
Problem
You want to perform bitwise shift operations.

Solution
Kotlin includes bitwise infix functions like shr, shl, and ushr for this purpose.

Discussion
Bitwise operations come up in a variety of applications, including access control lists,
communication protocols, compression and encryption algorithms, and computer
graphics. Unlike many other languages, Kotlin does not use specific operator symbols
for shifting operations, but instead defines functions for them.

Kotlin defines the following shift operators as extension functions on Int and Long:

shl

Signed left shift

shr

Signed right shift

ushr

Unsigned right shift

Because of two’s complement arithmetic, shifting bits left or right is like multiplying
or dividing by 2, as shown in Example 2-31.

Example 2-31. Multiplying and dividing by 2

@Test
fun `doubling and halving`() {
 assertAll("left shifts doubling from 1", // 0000_0001
 { assertThat(2, equalTo(1 shl 1)) }, // 0000_0010
 { assertThat(4, equalTo(1 shl 2)) }, // 0000_0100
 { assertThat(8, equalTo(1 shl 3)) }, // 0000_1000
 { assertThat(16, equalTo(1 shl 4)) }, // 0001_0000
 { assertThat(32, equalTo(1 shl 5)) }, // 0010_0000
 { assertThat(64, equalTo(1 shl 6)) }, // 0100_0000
 { assertThat(128, equalTo(1 shl 7)) } // 1000_0000
)

 assertAll("right shifts halving from 235", // 1110_1011
 { assertThat(117, equalTo(235 shr 1)) }, // 0111_0101
 { assertThat(58, equalTo(235 shr 2)) }, // 0011_1010
 { assertThat(29, equalTo(235 shr 3)) }, // 0001_1101

38 | Chapter 2: Basic Kotlin

 { assertThat(14, equalTo(235 shr 4)) }, // 0000_1110
 { assertThat(7, equalTo(235 shr 5)) }, // 0000_0111
 { assertThat(3, equalTo(235 shr 6)) }, // 0000_0011
 { assertThat(1, equalTo(235 shr 7)) } // 0000_0001
)
}

The ushr function is needed when you want to shift a value and not preserve its sign.
Both shr and ushr behave the same for positive values. But for negative values, shr
fills in from the left with 1s so that the resulting value is still negative, as shown in
Example 2-32.

Example 2-32. Using the ushr function versus shr

val n1 = 5
val n2 = -5
println(n1.toString(2)) // 0b0101
println(n2.toString(2)) // -0b0101

assertThat(n1 shr 1, equalTo(0b0010)) // 2
assertThat(n1 ushr 1, equalTo(0b0010)) // 2

assertThat(n2 shr 1, equalTo(-0b0011)) // -3
assertThat(n2 ushr 1, equalTo(0x7fff_fffd)) // 2_147_483_645

The seemingly strange behavior of the last example comes from two’s complement
arithmetic. Because ushr fills in from the left with 0s, it does not preserve the nega‐
tive sign of –3. The result is the two’s complement of –3 for a 32-bit integer, giving the
value shown.

The ushr function comes up in many places. One interesting example occurs when
trying to find the midpoint of two large integers, as in Example 2-33.

Example 2-33. Finding the midpoint of two large integers

val high = (0.99 * Int.MAX_VALUE).toInt()
val low = (0.75 * Int.MAX_VALUE).toInt()

val mid1 = (high + low) / 2
val mid2 = (high + low) ushr 1

assertTrue(mid1 !in low..high)
assertTrue(mid2 in low..high)

Sum is greater than max Int, so result is negative

Unsigned shift ensures result inside desired range

2.7 Using Bitwise Shift Operators | 39

If both values are large, adding them together will produce a result larger than
Int.MAX_VALUE, so the sum will be negative. By doing an unsigned right shift to
divide by 2, the result is between the low and high values.

Many algorithms, like binary searches or sorts, require computing the mean of two
integers, each of which could potentially be very large. Using ushr in this way ensures
that the result is bounded in the way you want.

2.8 Using Bitwise Boolean Operators
Problem
You want to apply masks to bit values.

Solution
Use the bitwise and, or, xor, and inv operators supplied by Kotlin for that purpose.

Discussion
In addition to the shift operators defined on Int and Long, Kotlin defines masking
operations and, or, xor, and inv (rather than “not”).

Taking the last one first, the inv function flips all the bits on a number. As a simple
example, the number 4 in binary is 0b00000100. Flipping all the bits gives
0b11111011, which is 251 in decimal. When you invoke the inv function on 4, how‐
ever, you get –5, as shown in Example 2-34.

Precede a numeric literal with 0b to express it in binary.

Example 2-34. Inverse of 4

// 4 == 0b0000_0100 (in binary)
// Bitwise complement (flipping all the bits) is given by:
// 0b1111_1011 == 251 (in decimal)
assertEquals(-5, 4.inv())

You can add underscores (_) to numeric literals to make them
easier to read. They are ignored by the compiler.

40 | Chapter 2: Basic Kotlin

Why do you get –5 instead of 251? The system is doing two’s complement arithmetic.
For any integer n, the two’s complement of n is given by –(~n + 1), where ~n is the
one’s complement (i.e., flip all the bits) of n. Therefore:

0b1111_1011 -> -(0b0000_0100 + 1) -> -0b0000_0101 -> -5

Hence the two’s complement of 251 is –5.

The bitwise operations and, or, and xor are familiar to most developers. The only dif‐
ference between them and their logical counterparts is that they do not short-circuit.
As a trivial example, see Example 2-35.

Example 2-35. Simple example of and, or, and xor

@Test
fun `and, or, xor`() {
 val n1 = 0b0000_1100 // decimal 12
 val n2 = 0b0001_1001 // decimal 25

 val n1_and_n2 = n1 and n2
 val n1_or_n2 = n1 or n2
 val n1_xor_n2 = n1 xor n2

 assertThat(n1_and_n2, equalTo(0b0000_1000)) // 8
 assertThat(n1_or_n2, equalTo(0b0001_1101)) // 29
 assertThat(n1_xor_n2, equalTo(0b0001_0101)) // 21
}

For a more interesting example, consider the RGBA model for representing colors, as
exemplified by the java.awt.Color class in Java. A color can be represented as a 4-
byte integer, where 1 byte contains the values for red, green, blue, and alpha (a meas‐
ure of transparency). See Figure 2-1 for details.

Figure 2-1. 32-bit integer with 1 byte for each color

Given an instance of the Color class, the getRGB method documentation says that the
method returns an int for “the RGB value representing the color in the default sRGB
ColorModel (bits 24–31 are alpha, 16–23 are red, 8–15 are green, 0–7 are blue).”

That means that given the returned integer, Kotlin can extract the actual RGB and
alpha values by using a function like that in Example 2-36.

2.8 Using Bitwise Boolean Operators | 41

Example 2-36. Converting an integer to its individual RGB values

fun intsFromColor(color: Color): List<Int> {
 val rgb = color.rgb
 val alpha = rgb shr 24 and 0xff
 val red = rgb shr 16 and 0xff
 val green = rgb shr 8 and 0xff
 val blue = rgb and 0xff
 return listOf(alpha, red, green, blue)
}

Invokes Java’s getRGB method

Shifts right and applies mask to return the proper Int

The advantage to returning the individual values in a list is that you can use destruc‐
turing in a test, as in Example 2-37.

Example 2-37. Destructuring and testing

@Test
fun `colors as ints`() {
 val color = Color.MAGENTA
 val (a, r, g, b) = intsFromColor(color)

 assertThat(color.alpha, equalTo(a))
 assertThat(color.red, equalTo(r))
 assertThat(color.green, equalTo(g))
 assertThat(color.blue, equalTo(b))
}

Going in the other direction, from the RGB values as integers, you can build up the
overall Int value as shown in Example 2-38.

Example 2-38. Creating an Int from individual RGB and alpha values

fun colorFromInts(alpha: Int, red: Int, green: Int, blue: Int) =
 (alpha and 0xff shl 24) or
 (red and 0xff shl 16) or
 (green and 0xff shl 8) or
 (blue and 0xff)

This time, the values are shifted left rather than right. That’s easy enough to test as
well, as shown in Example 2-39.

42 | Chapter 2: Basic Kotlin

Example 2-39. Converting from RGB and alpha to an Int

@Test
fun `ints as colors`() {
 val color = Color.MAGENTA
 val intColor = colorFromInts(color.alpha,
 color.red, color.green, color.blue)
 val color1 = Color(intColor, true)
 assertThat(color1, equalTo(color))
}

Second constructor arg indicates alpha value is present

To end this recipe, consider the following xor joke: “An xor-cist eliminates one dae‐
mon or the other, but not both.” Sorry about that, but feel free to inflict that joke on
your friends.

2.9 Creating Pair Instances with to
Problem
You want to create instances of the Pair class (often as entries for a map).

Solution
Rather than instantiate the Pair class directly, use the infix to function.

Discussion
Maps are made up of entries, which are combinations of keys and values. To create a
map, Kotlin provides a handful of top-level functions, like mapOf, that allow you to
create a map from a list of Pair instances. The signature of the mapOf function in the
standard library is as follows:

fun <K, V> mapOf(vararg pairs: Pair<K, V>): Map<K, V>

Pair is a data class that holds two elements, called first and second. The signature
of the Pair class is shown here:

data class Pair<out A, out B> : Serializable

The Pair class properties first and second correspond to the generic values of A and
B.

Although you can create a Pair class by using the two-argument constructor, it is
more common to use the to function. The to function is defined as follows:

public infix fun <A, B> A.to(that: B): Pair<A, B> = Pair(this, that)

2.9 Creating Pair Instances with to | 43

The implementation of the to function is to instantiate the Pair class.

Putting all of these features together, Example 2-40 shows how to create a map with
pairs supplied by the to function.

Example 2-40. Using the to function to create pairs for mapOf

@Test
fun `create map using infix to function`() {
 val map = mapOf("a" to 1, "b" to 2, "c" to 2)
 assertAll(
 { assertThat(map, hasKey("a")) },
 { assertThat(map, hasKey("b")) },
 { assertThat(map, hasKey("c")) },
 { assertThat(map, hasValue(1)) },
 { assertThat(map, hasValue(2)) })
}

@Test
fun `create a Pair from constructor vs to function`() {
 val p1 = Pair("a", 1)
 val p2 = "a" to 1

 assertAll(
 { assertThat(p1.first, `is`("a")) },
 { assertThat(p1.second, `is`(1)) },
 { assertThat(p2.first, `is`("a")) },
 { assertThat(p2.second, `is`(1)) },
 { assertThat(p1, `is`(equalTo(p2)))}
)
}

Creates Pair using to

Creates Pair from constructor

The to function is an extension function added to any generic type A, with generic
argument B, that returns an instance of Pair combining the values supplied for A and
B. It is simply a way to create map literals with less noise.

Incidentally, because Pair is a data class, the individual elements can be accessed by
using destructuring, as in Example 2-41.

44 | Chapter 2: Basic Kotlin

Example 2-41. Destructuring Pair

@Test
fun `destructuring a Pair`() {
 val pair = "a" to 1
 val (x,y) = pair

 assertThat(x, `is`("a"))
 assertThat(y, `is`(1))
}

There is also a class in the standard library called Triple that rep‐
resents a triad of values. There are no convenient extension func‐
tions for creating Triple instances, however; you use the three-
argument constructor directly.

2.9 Creating Pair Instances with to | 45

CHAPTER 3

Object-Oriented Programming in Kotlin

Like Java, Kotlin is an object-oriented programming (OOP) language. As such, it uses
classes, both abstract and concrete, and interfaces in a way that is familiar to Java
developers.

Some aspects of OOP in Kotlin are worth spending additional time on, and this chap‐
ter does so. It includes recipes that involve initializing objects, providing custom get‐
ters and setters, performing late and lazy initialization, creating singletons, under‐
standing the Nothing class, and more.

3.1 Understanding the Difference Between const and val
Problem
You need to indicate that a value is a compile-time rather than a runtime constant.

Solution
Use the modifier const for compile-time constants. The keyword val indicates that a
variable cannot be changed once it is assigned, but that assignment can occur at
runtime.

Discussion
The Kotlin keyword val indicates a variable that cannot be changed. In Java, the key‐
word final is used for the same purpose. Given that, why does Kotlin also support
the modifier const?

Compile-time constants must be top-level properties or members of an object decla‐
ration or a companion object. They must be of type String or a primitive type

47

wrapper class (Byte, Short, Int, Long, Float, Double, Char, or Boolean), and they
cannot have a custom getter function. They must be assigned outside any function,
including main, because their values must be known at compile time.

As an example, consider defining a min and max priority for a task, as in
Example 3-1.

Example 3-1. Defining compile-time constants

class Task(val name: String, _priority: Int = DEFAULT_PRIORITY) {

 companion object {
 const val MIN_PRIORITY = 1
 const val MAX_PRIORITY = 5
 const val DEFAULT_PRIORITY = 3
 }

 var priority = validPriority(_priority)
 set(value) {
 field = validPriority(value)
 }

 private fun validPriority(p: Int) =
 p.coerceIn(MIN_PRIORITY, MAX_PRIORITY)
}

Compile-time constants

Property with custom setter

Private validation function

In this example, three constants are defined using the normal Kotlin (and Java) idiom
that suggests writing them in all uppercase letters. This example also takes advantage
of a custom setter operation to map any provided priority into the given range.

Note that val is a Kotlin keyword, but const is a modifier, like private, inline, and
so on. That’s why const must be used along with the keyword val rather than replac‐
ing it.

See also
Custom setter methods like the one shown in this recipe are covered in Recipe 3.2.

48 | Chapter 3: Object-Oriented Programming in Kotlin

3.2 Creating Custom Getters and Setters
Problem
You want to customize how a value is processed when assigned or returned.

Solution
Add get and set functions to properties in a Kotlin class.

Discussion
As in other object-oriented languages, Kotlin classes combine data with functions
that operate on that data, in a technique commonly known as encapsulation. Kotlin is
unusual in that everything is public by default, because this seems to violate the prin‐
ciple of data hiding, wherein the data structure associated with information is
assumed to be an implementation detail.

Kotlin resolves this dilemma in an unusual way: fields cannot be declared directly in
Kotlin classes. That sounds strange when you can define properties in a class that
look just like fields, as in Example 3-2.

Example 3-2. A class presenting a task

class Task(val name: String) {
 var priority = 3

 // ...
}

The Task class defines two properties, name and priority. One is declared in the pri‐
mary constructor, while the other is a top-level member of the class. Both could have
been defined in the constructor, of course, but this shows that you can use the alter‐
native syntax shown. The downside to declaring priority in this way is that you
won’t be able to assign it when instantiating the class, though you could still use an
apply block:

var myTask = Task().apply { priority = 4 }

The advantage to defining a property in this way is that you can easily add a custom
getter and setter. The full syntax for defining a property is shown here:

var <propertyName>[: <PropertyType>] [= <property_initializer]
 [<getter>]
 [<setter>]

3.2 Creating Custom Getters and Setters | 49

The initializer, getter, and setter are optional. The type is optional if it can be inferred
from the initialized value or the getter return type, though this is not true of proper‐
ties declared in the constructor.

Properties declared in constructors must include a type, even when
they are assigned default values.

Example 3-3 shows a custom getter being used to compute isLowPriority.

Example 3-3. A custom getter for a derived property

val isLowPriority
 get() = priority < 3

As stated, the type of isLowPriority is inferred from the return type of the get func‐
tion, which in this case is a boolean.

A custom setter is used every time a value is assigned to a property. To make sure that
priority is between 1 and 5, for example, a custom setter can be used as in
Example 3-4.

Example 3-4. A custom setter for priority

var priority = 3
 set(value) {
 field = value.coerceIn(1..5)
 }

Here, at last, we see the resolution of the public property / private field dilemma listed
previously. Normally, when a property needs a backing field, Kotlin provides it auto‐
matically. Here, however, in the custom setter, the field identifier is used to reference
the generated backing field. The field identifier can be used only in a custom getter
or setter.

A backing field is generated for a property if it uses the default generated getter or
setter or if a custom getter or setter references it through the field property. That
means that the derived property lowPriority will not have one.

In the literature, the terms getters and setters are formally referred
to as accessors and mutators, presumably because it’s hard to charge
large consulting fees for get and set.

50 | Chapter 3: Object-Oriented Programming in Kotlin

To complete this example, imagine that you want to be able to assign a priority by
using a constructor. One way to do that is to introduce a constructor parameter that
isn’t a property, by leaving out the var or val keyword. This then leads to the imple‐
mentation of Task, shown in Example 3-1 and repeated here for reference:

class Task(val name: String, _priority: Int = DEFAULT_PRIORITY) {

 companion object {
 const val MIN_PRIORITY = 1
 const val MAX_PRIORITY = 5
 const val DEFAULT_PRIORITY = 3
 }

 var priority = validPriority(_priority)
 set(value) {
 field = validPriority(value)
 }

 private fun validPriority(p: Int) =
 p.coerceIn(MIN_PRIORITY, MAX_PRIORITY)
}

The parameter _priority is not a property, but rather just an argument to the con‐
structor. It is used to initialize the actual priority property, and the custom setter is
evaluated to coerce it into the desired range every time it changes. Note the term
value here is just a dummy name; you can change it to anything you like, as with any
function parameter.

See Also
The constants used in the Task example are discussed in Recipe 3.1.

3.3 Defining Data Classes
Problem
You want to create a class representing an entity, complete with implementations of
equals, hashCode, toString, and more.

Solution
Use the keyword data when defining your class.

3.3 Defining Data Classes | 51

Discussion
Kotlin provides the keyword data to indicate that the purpose of a particular class is
to hold data. In Java, when such a class represents information from a database table,
it is known as an entity, and the concept of a data class is similar.

Adding the word data to a class definition causes the compiler to generate a whole
series of functions, including consistent equals and hashCode functions, a toString
function that shows the class and the property values, a copy function, and compo‐
nent functions used for destructuring.

For example, consider the Product class:

data class Product(
 val name: String,
 var price: Double,
 var onSale: Boolean = false
)

The compiler generates equals and hashCode functions based on the properties
declared in the primary constructor. The algorithm used is the same one described by
Joshua Bloch years ago in Effective Java (Addison-Wesley Professional). The tests in
Example 3-5 show that they work properly.

Example 3-5. Using the generated equals and hashCode implementations

@Test
fun `check equivalence`() {
 val p1 = Product("baseball", 10.0)
 val p2 = Product("baseball", 10.0, false)

 assertEquals(p1, p2)
 assertEquals(p1.hashCode(), p2.hashCode())
}

@Test
fun `create set to check equals and hashcode`() {
 val p1 = Product("baseball", 10.0)
 val p2 = Product(price = 10.0, onSale = false, name = "baseball")

 val products = setOf(p1, p2)
 assertEquals(1, products.size)
}

Duplicate not added

Since p1 and p2 are equivalent, when both are included in the setOf function, only
one is added to the actual result.

52 | Chapter 3: Object-Oriented Programming in Kotlin

https://oreil.ly/7vwGx

A toString implementation converts the product into a string:

Product(name=baseball, price=10.0, onSale=false)

The copy method is an instance method that creates a new object that starts with the
property values from the original and modifies only the supplied values, as the test in
Example 3-6 shows.

Example 3-6. Testing the copy function

@Test
fun `change price using copy`() {
 val p1 = Product("baseball", 10.0)
 val p2 = p1.copy(price = 12.0)
 assertAll(
 { assertEquals("baseball", p2.name) },
 { assertThat(p2.price, `is`(closeTo(12.0, 0.01))) },
 { assertFalse(p2.onSale) }
)
}

Changes only the price

The test verifies that using copy with the price parameter changes only that value.
Note that the Hamcrest matcher closeTo is used to compare prices, because using
equality checks with floating-point values is not considered a good idea.

Note that the copy function performs only a shallow copy, not a deep one. To demon‐
strate this, consider an additional data class called OrderItem, as shown in
Example 3-7.

Example 3-7. A class containing a Product

data class OrderItem(val product: Product, val quantity: Int)

The test shown in Example 3-8 instantiates an OrderItem and then makes a copy by
using the copy function.

Example 3-8. Test demonstrating shallow copy

@Test
fun `data copy function is shallow`() {
 val item1 = OrderItem(Product("baseball", 10.0), 5)
 val item2 = item1.copy()

 assertAll(
 { assertTrue(item1 == item2) },
 { assertFalse(item1 === item2) },

3.3 Defining Data Classes | 53

 { assertTrue(item1.product == item2.product) },
 { assertTrue(item1.product === item2.product) }
)
}

OrderItem produced by copy is a different object

Product inside both OrderItem instances is the same object

The test shows that although the two OrderItem instances are equivalent (by the
equals function invoked via ==), they are still two separate objects because the refer‐
ential equality operator === returns false. They both, however, share the same inter‐
nal Product instance, because === on both contained references returns true.

Invoking copy on a data class performs a shallow copy, not a deep
one.

In addition to the copy function, data classes add functions called component1, compo
nent2, and so on, that return the values of the properties. These functions are used
for destructuring, as shown in the test in Example 3-9.

Example 3-9. Destructuring a Product instance

@Test
fun `destructure using component functions`() {
 val p = Product("baseball", 10.0)

 val (name, price, sale) = p
 assertAll(
 { assertEquals(p.name, name) },
 { assertThat(p.price, `is`(closeTo(price, 0.01))) },
 { assertFalse(sale) }
)
}

Destructures the product

You are free to override any of these functions (equals, hashCode, toString, copy, or
any of the _componentN_ functions) if you wish. You can add other functions as well.

54 | Chapter 3: Object-Oriented Programming in Kotlin

If you don’t want a property to be included in the generated func‐
tions, add the property to the class body rather than the primary
constructor.

Data classes are a convenient way of representing classes whose primary purpose is to
hold data. The standard library includes two data classes, Pair and Triple, for hold‐
ing two or three properties of any generic types. If you need more than that, create
your own data class.

3.4 The Backing Property Technique
Problem
You have a property of a class that you want to expose to clients, but you need to con‐
trol how it is initialized or read.

Solution
Define a second property of the same type and use a custom getter and/or setter to
provide access to the property you care about.

Discussion
Say you have a class called Customer and you want to keep a list of messages or notes
you’ve saved regarding them. You don’t necessarily want to load all the messages
whenever you create an instance, however, so you create the class shown in
Example 3-10.

Example 3-10. Customer class, version 1

class Customer(val name: String) {
 private var _messages: List<String>? = null

 val messages: List<String>
 get() {
 if (_messages == null) {
 _messages = loadMessages()
 }
 return _messages!!
 }

 private fun loadMessages(): MutableList<String> =
 mutableListOf(
 "Initial contact",
 "Convinced them to use Kotlin",

3.4 The Backing Property Technique | 55

 "Sold training class. Sweet."
).also { println("Loaded messages") }
}

Nullable private property used for initialization

Property to be loaded

Private function

In this class, the property messages will hold the list of messages about that client. To
avoid initializing it immediately, the additional property _messages is added, which is
of the same type but nullable. The custom getter is used to check whether the mes‐
sages have been loaded yet, and if not, loads them. The test in Example 3-11 accesses
the messages.

Example 3-11. Accessing the messages in the customer

@Test
fun `load messages`() {
 val customer = Customer("Fred").apply { messages }
 assertEquals(3, customer.messages.size)
}

Loads messages the first time

Accesses the messages again, but already loaded

You can’t load the messages by using a constructor property, because _messages is
private. If you want the messages right away, as shown here, use the apply function.
In this test, that invokes the getter method, which both loads the messages and prints
the info message. The second time the property is accessed, the messages have already
been loaded, and no print is seen.

While this is a useful illustration, it implements lazy loading the hard way. Much eas‐
ier is the code in Example 3-12, which uses the built-in lazy delegate function.

Example 3-12. Lazy loading the messages by using lazy

class Customer(val name: String) {

 val messages: List<String> by lazy { loadMessages() }

 private fun loadMessages(): MutableList<String> =
 mutableListOf(
 "Initial contact",
 "Convinced them to use Kotlin",

56 | Chapter 3: Object-Oriented Programming in Kotlin

 "Sold training class. Sweet."
).also { println("Loaded messages") }
}

Uses the lazy delegate

Still, using a private backing field to enforce initialization of a property is a useful
technique.

A variation on this is to provide a constructor argument to set a value but still enforce
constraints on the property, as done in Example 3-1 and repeated here for simplicity:

class Task(val name: String, _priority: Int = DEFAULT_PRIORITY) {

 companion object {
 const val MIN_PRIORITY = 1
 const val MAX_PRIORITY = 5
 const val DEFAULT_PRIORITY = 3
 }

 var priority = validPriority(_priority)
 set(value) {
 field = validPriority(value)
 }

 private fun validPriority(p: Int) =
 p.coerceIn(MIN_PRIORITY, MAX_PRIORITY)
}

Note that the _priority property is not marked with val, indicating it is only a con‐
structor argument rather than an actual property of the class. The property you care
about, priority, has a custom setter to assign its value based on the constructor
argument.

The backing property technique shows up fairly often in Kotlin classes, so it’s worth
understanding how it works.

See Also
The lazy delegate is discussed further in Recipe 8.2.

3.4 The Backing Property Technique | 57

3.5 Overloading Operators
Problem
You want a client to be able to use operators such as + and * with classes defined in a
library.

Solution
Use Kotlin’s operator-overloading mechanism to implement the associated functions.

Discussion
Many operators, including addition, subtraction, and multiplication, are imple‐
mented in Kotlin as functions. When you use the +, -, or * symbols, you are delegat‐
ing to those functions. That means by supplying those functions, you allow a client to
use operators.

The classic example, given in the reference docs, is to provide a member function
unaryMinus for a Point class, as in Example 3-13.

Example 3-13. Overriding the unaryMinus operator on Point (from reference docs)

data class Point(val x: Int, val y: Int)

operator fun Point.unaryMinus() = Point(-x, -y)

val point = Point(10, 20)

fun main() {
 println(-point) // prints "Point(x=-10, y=-20)"
}

The operator keyword is necessary when overriding all operator
functions other than equals.

What if you want to add the relevant functions to a class that you didn’t write? You
can use extension functions to do the job.

For example, consider the Complex class in the (Java) library Apache Commons Math,
which represents a complex number (one with real and imaginary parts). If you
browse the Javadocs, you’ll see that the class includes methods like add, subtract,
and multiply. In Kotlin, the +, -, and * operators correspond to the functions plus,

58 | Chapter 3: Object-Oriented Programming in Kotlin

https://oreil.ly/TMhLd

minus, and times. If you add extension functions to Complex to delegate to the exist‐
ing functions, as in Example 3-14, you can then use the operators instead.

Example 3-14. Extension functions on Complex

import org.apache.commons.math3.complex.Complex

operator fun Complex.plus(c: Complex) = this.add(c)
operator fun Complex.plus(d: Double) = this.add(d)
operator fun Complex.minus(c: Complex) = this.subtract(c)
operator fun Complex.minus(d: Double) = this.subtract(d)
operator fun Complex.div(c: Complex) = this.divide(c)
operator fun Complex.div(d: Double) = this.divide(d)
operator fun Complex.times(c: Complex) = this.multiply(c)
operator fun Complex.times(d: Double) = this.multiply(d)
operator fun Complex.times(i: Int) = this.multiply(i)
operator fun Double.times(c: Complex) = c.multiply(this)
operator fun Complex.unaryMinus() = this.negate()

In each case, the extension function delegates to the existing method in the Java class.
The test in Example 3-15 illustrates how to use the delegated operator functions.

Example 3-15. Using the operators with Complex instances

import org.apache.commons.math3.complex.Complex
import org.apache.commons.math3.complex.Complex.*

import org.hamcrest.MatcherAssert.assertThat
import org.hamcrest.Matchers.`is`
import org.hamcrest.Matchers.closeTo
import org.junit.jupiter.api.Test

import org.junit.jupiter.api.Assertions.*
import java.lang.Math.*

internal class ComplexOverloadOperatorsKtTest {
 private val first = Complex(1.0, 3.0)
 private val second = Complex(2.0, 5.0)

 @Test
 internal fun plus() {
 val sum = first + second
 assertThat(sum, `is`(Complex(3.0, 8.0)))
 }

 @Test
 internal fun minus() {
 val diff = second - first
 assertThat(diff, `is`(Complex(1.0, 2.0)))
 }

3.5 Overloading Operators | 59

 @Test
 internal fun negate() {
 val minus1 = -ONE

 assertThat(minus1.real, closeTo(-1.0, 0.000001))
 assertThat(minus1.imaginary, closeTo(0.0, 0.000001))
 }

 @Test
 internal fun `Euler's formula`() {
 val iPI = I * PI

 assertTrue(Complex.equals(iPI.exp(), -ONE, 0.000001))
 }
}

Import of Complex.* allows ONE instead of Complex.ONE

Can use I and PI for Complex.I and Math.PI

In the last test, the exp function from Complex returns the value of e^{arg}, so the
test demonstrates Euler’s formula, e^{i * PI} == –1.

The tests illustrate many of the overloaded operators. If you are writing in Kotlin and
using the Complex class, a little bit of operator overloading with extension functions
lets you use the same operators you’ve used with regular numbers.

3.6 Using lateinit for Delayed Initialization
Problem
You don’t have enough information to initialize a property in a constructor, but you
don’t want to have to make the property nullable as a result.

Solution
Use the lateinit modifier on your property.

Discussion

Use this technique sparingly, only when necessary. Cases such as
the dependency injection described here are useful, but in general,
consider alternatives like the lazy evaluation in Recipe 8.2 where
possible.

60 | Chapter 3: Object-Oriented Programming in Kotlin

Properties of a class that are declared as non-null are supposed to be initialized in a
constructor. Sometimes, however, you don’t have enough information at that time to
give the property a value. This occurs in dependency injection frameworks, in which
the injection doesn’t happen until after all objects have been constructed, or in setup
methods in unit tests. For such cases, use the lateinit modifier on the property.

For example, the Spring framework uses the annotation @Autowired to assign values
to dependencies from the so-called application context. Again, since the value is set
after the instances have already been created, mark it as lateinit, as in the test case
shown in Example 3-16.

Example 3-16. Testing a Spring controller

@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
class OfficerControllerTests {
 @Autowired
 lateinit var client: WebTestClient

 @Autowired
 lateinit var repository: OfficerRepository

 @Before
 fun setUp() {
 repository.addTestData()
 }

 @Test
 fun `GET to route returns all officers in db`() {
 client.get().uri("/route")
 // ... get data and check values ...
 }

 // ... other tests ...
}

Initialized by autowiring

Uses repository in the setup function

Uses client in tests

The lateinit modifier can be used only on var properties declared inside the body
of a class, and only when the property does not have a custom getter or setter. Since
Kotlin 1.2, you can also use lateinit on top-level properties and even local variables.
The type must be non-null, and it cannot be a primitive type.

By adding lateinit, you are promising to initialize the variable before it is first used.
Otherwise, it throws an exception, as shown in Example 3-17.

3.6 Using lateinit for Delayed Initialization | 61

Example 3-17. Behavior of lateinit properties

class LateInitDemo {
 lateinit var name: String
}

class LateInitDemoTest {
 @Test
 fun `unitialized lateinit property throws exception`() {
 assertThrows<UninitializedPropertyAccessException> {
 LateInitDemo().name
 }
 }

 @Test
 fun `set the lateinit property and no exception is thrown`() {
 assertDoesNotThrow { LateInitDemo().apply { name = "Dolly" } }
 }
}

Accessing the name property before it has been initialized throws an Uninitialized
PropertyAccessException, as the test shows.

Inside the class, you can check whether one of its properties has been initialized by
using isInitialized on the property reference, as in Example 3-18.

Example 3-18. Using isInitialized on a property reference

class LateInitDemo {
 lateinit var name: String

 fun initializeName() {
 println("Before assignment: ${::name.isInitialized}")
 name = "World"
 println("After assignment: ${::name.isInitialized}")
 }
}

fun main() {
 LateInitDemo().initializeName()
}

The output from executing the initializeName function is as follows:

Before assignment: false
After assignment: true

62 | Chapter 3: Object-Oriented Programming in Kotlin

lateinit Versus lazy
The lateinit modifier is used on var properties with the restrictions discussed in
this recipe. The lazy delegate takes a lambda that is evaluated the first time a property
is accessed.

Use lazy if initialization is expensive and might never be done. Also, lazy can be
used only for val properties, whereas lateinit can be applied only to var properties.
Finally, lateinit properties can be initialized from anywhere the property is visible,
so, as in one of the preceding examples, from outside the object.

See Also
The lazy delegate is discussed in Recipe 8.2.

3.7 Using Safe Casting, Reference Equality, and Elvis to
Override equals
Problem
You want to provide a good implementation of the equals method in a class, so that
instances can be checked for equivalence.

Solution
Use the reference equality operator (===), the safe casting function (as?), and the
Elvis operator (?:) together.

Discussion
All object-oriented languages have the concept of object equivalence versus object
equality. In Java, the double equals operator (==), is used to check whether two refer‐
ences are assigned to the same object. By contrast, the equals method, as part of the
Object class, is intended to be overridden to check that two objects are equivalent.

In Kotlin, the == operator automatically invokes the equals function. The open class
Any declares the equals function, as shown in Example 3-19, along with hashCode
and toString.

3.7 Using Safe Casting, Reference Equality, and Elvis to Override equals | 63

Example 3-19. The declarations of equals, hashCode, and toString in Any

open class Any {
 open operator fun equals(other: Any?): Boolean

 open fun hashCode(): Int

 open fun toString(): String
}

The contract for equals requires that the implementation be reflexive, symmetric,
and transitive, as well as consistent, and handle nulls appropriately. The contract for
hashCode is that if two objects are equal by the equals function, they should have the
same hashCode as well. The hashCode function should be overridden whenever the
equals function is.

That said, how do you go about implementing a good equals function? One excellent
example from the library is provided by the KotlinVersion class, whose equals func‐
tion is shown in Example 3-20.

Example 3-20. The equals function in KotlinVersion

override fun equals(other: Any?): Boolean {
 if (this === other) return true
 val otherVersion = (other as? KotlinVersion) ?: return false
 return this.version == otherVersion.version
}

Note the simple elegance of this implementation, which takes advantage of several
Kotlin features:

• First, it checks reference equality by using ===.
• Then it uses the safe casting operator, as?, which either casts the argument as the

desired type or returns null.
• If the safe cast returns null, the Elvis operator (?:) then returns false because if

the instances aren’t of the same class, they can’t be equal.
• Finally, the last line checks whether the version property of the current instance

(not shown) is equivalent (using the == operator) to the same property in the
other object, and returns the result.

In three lines, this covers all the required cases. For completeness, the implementa‐
tion of hashCode is simply as follows:

override fun hashCode(): Int = version

64 | Chapter 3: Object-Oriented Programming in Kotlin

This is interesting, but not as directly relevant if you’re trying to understand how to
write your own equals function. Say, for example, that you have a simple class called
Customer with a string property called name. A consistent implementation of both
equals and hashCode is shown in Example 3-21.

Example 3-21. Implementing equals and hashCode in Customer

class Customer(val name: String) {

 override fun equals(other: Any?): Boolean {
 if (this === other) return true
 val otherCustomer = (other as? Customer) ?: return false
 return this.name == otherCustomer.name
 }

 override fun hashCode() = name.hashCode()
}

Incidentally, if you let IntelliJ IDEA generate an equals and hashCode implementa‐
tion for you, the result (using the Ultimate Edition version 2019.2) is shown in
Example 3-22.

Example 3-22. Generated equals and hashCode functions by IntelliJ IDEA

class Customer(val name: String) {
 override fun equals(other: Any?): Boolean {
 if (this === other) return true
 if (javaClass != other?.javaClass) return false

 other as Customer

 if (name != other.name) return false

 return true
 }

 override fun hashCode(): Int {
 return name.hashCode()
 }
}

The difference is that the generated equals function checks that the javaClass prop‐
erties on the KClass are equivalent before casting, using the as operator, and then
relies on the resulting smart cast to check the name properties. This is essentially
equivalent to the procedure described previously, only a bit more verbose.

3.7 Using Safe Casting, Reference Equality, and Elvis to Override equals | 65

Data classes have their own autogenerated implementations of equals and hashCode
(as well as toString, copy, and component methods). Here, however, you can see
how easy it is to implement your own versions.

See Also
Data classes are discussed in Recipe 3.3. The KotlinVersion class is shown in Recipe
11.1.

3.8 Creating a Singleton
Problem
You want to ensure that only one instance of a class is available.

Solution
Use the object keyword instead of class.

Discussion
The Singleton design pattern defines a mechanism for guaranteeing there is only one
instance for a particular class. To define a singleton:

1. Declare all constructors of a class to be private.
2. Provide a static factory method that returns a reference to the class, instantiat‐

ing it if necessary.

The Singleton pattern is controversial, because it is sometimes used in cases where a
small number of instances could be used rather than one. Nevertheless, it is one of the
fundamental design patterns defined in Design Patterns by Erich Gamma et al.
(Addison-Wesley Professional), and it can be quite helpful in certain cases.

An example of a singleton in the Java standard library is given by the Runtime class.
Say you want to know how many processors are available on a given platform. In
Java, you can find out with the code in Example 3-23.

Example 3-23. Finding the number of processors

fun main() {
 val processors = Runtime.getRuntime().availableProcessors()
 println(processors)
}

66 | Chapter 3: Object-Oriented Programming in Kotlin

The getRuntime method is the static method used to return the singleton instance
of the class. Example 3-24 shows the relevant portion of the java.lang.Runtime
class.

Example 3-24. Runtime implemented to use the Singleton pattern

public class Runtime {
 private static final Runtime currentRuntime = new Runtime();

 public static Runtime getRuntime() {
 return currentRuntime;
 }

 /** Don't let anyone else instantiate this class */
 private Runtime() {}

// ...
}

The Runtime class contains a private, static, final instance of the class, which is eagerly
instantiated where the currentRuntime attribute is declared. The only constructor is
declared to be private, and the static factory method is getRuntime, as used in
Example 3-24.

To implement a singleton in Kotlin, simply use the object keyword instead of class,
as in Example 3-25. This is known as an object declaration.

Example 3-25. Defining a singleton in Kotlin

object MySingleton {
 val myProperty = 3

 fun myFunction() = "Hello"
}

If you decompile the generated bytecodes, you get a result similar to Example 3-26.

Example 3-26. Decompiled code for a singleton from object

public final class MySingleton {
 private static final int myProperty = 3;
 public static final MySingleton INSTANCE;

 private MySingleton() {
 }

 public final int getMyProperty() {
 return myProperty;

3.8 Creating a Singleton | 67

 }

 public final void myFunction() {
 return "Hello";
 }

 static {
 MySingleton var0 = new MySingleton();
 INSTANCE = var0;
 myProperty = 3;
 }
}

Generated INSTANCE property

Private constructor

Eager instantiation of singleton

When invoking code in the singleton, you can access the members from the object
name, as you would for static members in Java. The member function and property
become static final methods and attributes in the decompiled Java class, along
with any required getter methods, and the properties are initialized in a static block,
along with the class itself. Kotlin code to access the members is in Example 3-27.

Example 3-27. Accessing members of a singleton from Kotlin

MySingleton.myFunction()
MySingleton.myProperty

Accessing the singleton from Java uses the generated INSTANCE property and is shown
in Example 3-28.

Example 3-28. Accessing members of a singleton from Java

MySingleton.INSTANCE.myFunction();
MySingleton.INSTANCE.getMyProperty();

A complication arises if you want your singleton to be instantiated with an argument.
Say, for example, you’re writing a database connection pool, which would be a natural
singleton. The initial size of the pool would be a reasonable input parameter when
generating the singleton. Unfortunately, a Kotlin object can’t have a constructor, so
there’s no easy way to pass an argument to it.

68 | Chapter 3: Object-Oriented Programming in Kotlin

The blog post “Kotlin Singletons with Argument” by Christophe
Beyls discusses ways to handle arguments based on the implemen‐
tation of the lazy delegate in the Kotlin library.

The referenced article gets into the complexities associated with making the singleton
instantiation thread-safe, based on double-checked locking and @Volatile. See the
article for details.

3.9 Much Ado About Nothing
Problem
You want to use the Nothing class idiomatically.

Solution
Use Nothing when a function never returns.

Discussion
You know Nothing, Jon Snow.

—Ygritte in Game of Thrones, praising
Jon Snow for reading this recipe

There is a class in Kotlin called Nothing, whose entire implementation is given in
Example 3-29.

Example 3-29. The Nothing implementation

package kotlin

public class Nothing private constructor()

The private constructor means the class cannot be instantiated outside the class, and
as you can see, it isn’t instantiated inside the class either. Therefore, there are no
instances of Nothing. The documentation states that “you can use Nothing to repre‐
sent a value that never exists.”

The Nothing class arises naturally in two circumstances. The first occurs when a
function body consists entirely of throwing an exception, as in Example 3-30.

Example 3-30. Throwing an exception in Kotlin

fun doNothing(): Nothing = throw Exception("Nothing at all")

3.9 Much Ado About Nothing | 69

https://oreil.ly/P8QCv
https://oreil.ly/P8QCv

The return type must be stated explicitly, and since the method never returns (it
throws an exception instead), the return type is Nothing.

That is virtually guaranteed to be a source of confusion for existing Java developers.
In Java, if a method throws an exception of any type, the return type on the method
doesn’t change. Exception handling is completely outside the normal flow of execu‐
tion, but you don’t have to change the return type on a method to account for it. The
type system in Kotlin, however, has different requirements.

The other context in which Nothing arises occurs when you assign a variable to null
and don’t give it an explicit type, as in Example 3-31.

Example 3-31. A variable assigned to null without an explicit type

val x = null

The type of x is inferred to be Nothing?, because it’s obviously nullable (it was
assigned null, after all) and the compiler has no other information about it.

To really make matters interesting, consider this fact: in Kotlin, the Nothing class is
actually a subtype of every other type.

To see why that is necessary, consider an if statement that can throw an exception, as
in Example 3-32.

Example 3-32. An if statement that can throw an exception

val x = if (Random.nextBoolean()) "true" else throw Exception("nope")

The type of x is inferred to be either String, Comparable<String>, CharSequence,
Serializable, or even Any, based on the string assigned when a true boolean is gen‐
erated by the Random.nextBoolean function. The else clause returns a value of type
Nothing, and since Nothing is a subtype of every type, performing a Boolean “and”
with it and any other type is the other type.

Perhaps the following example will be clearer. The remainder of any number when
divided by 3 must be either 0, 1, or 2. Therefore, the when statement in Example 3-33
shouldn’t need an else clause, but the compiler doesn’t know that.

Example 3-33. Remainder modulo 3

for (n in 1..10) {
 val x = when (n % 3) {
 0 -> "$n % 3 == 0"
 1 -> "$n % 3 == 1"
 2 -> "$n % 3 == 2"
 else -> throw Exception("Houston, we have a problem...")

70 | Chapter 3: Object-Oriented Programming in Kotlin

 }
 assertTrue(x is string)
}

The when construct returns a value, so the compiler requires it to be exhaustive. The
else condition should never happen, so it makes sense to throw an exception in that
case. The return type on throwing an exception is Nothing, and since String is
String, the compiler knows that the type of x is String.

The TODO function (discussed in Recipe 11.9) returns Nothing,
which makes sense because its implementation is to throw a
NotImplementedError.

The Nothing class can be confusing, but once you know the use cases for it, it makes
sense in context.

3.9 Much Ado About Nothing | 71

CHAPTER 4

Functional Programming

The term functional programming refers to a style of coding that favors immutability,
is easy to make concurrent when using pure functions, uses transformations over
looping, and uses filters over conditional statements. This book uses functional
approaches throughout, especially in Chapters 5, 6, and 13. Many of the functions
used by Kotlin in functional programming, like map and filter, are discussed where
they arise in individual recipes of those chapters and others.

This chapter contains recipes that involve functional features that are either unique to
Kotlin (as opposed to Java), like tail recursion, or are implemented somewhat differ‐
ently, like the fold and reduce functions.

4.1 Using fold in Algorithms
Problem
You want to implement an iterative algorithm in a functional way.

Solution
Use the fold function to reduce a sequence or collection to a single value.

Discussion
The fold function is a reduction operation that can be applied to arrays or iterables.
The syntax of the function is given by the following:

inline fun <R> Iterable<T>.fold(
 initial: R,
 operation: (acc: R, T) -> R
): R

73

The same function is defined on Array, as well as all the typed arrays, like IntArray,
DoubleArray, and so on.

The idea is that fold takes two parameters: an initial value for the accumulator, and a
function of two arguments that returns a new value for the accumulator. The classic
example of a fold operation is a sum. See Example 4-1.

Example 4-1. Summing integers by using fold

fun sum(vararg nums: Int) =
 nums.fold(0) { acc, n -> acc + n }

In this case, the initial value is 0, and the supplied lambda takes two arguments, the
first of which is an accumulator. The second iterates over each value in the parameter
list. The test in Example 4-2 shows that the result is correct.

Example 4-2. Testing the sum operation

@Test
fun `sum using fold`() {
 val numbers = intArrayOf(3, 1, 4, 1, 5, 9)
 assertEquals(numbers.sum(), sum(*numbers))
}

The result from the provided sum function is compared to using the direct sum func‐
tion defined on IntArray. Although this shows that the operation works, it doesn’t
give much insight into how. For that, add a print statement to see the values as they
go by, as in Example 4-3.

Example 4-3. The sum function that prints each value

fun sumWithTrace(vararg nums: Int) =
 nums.fold(0) { acc, n ->
 println("acc = $acc, n = $n")
 acc + n
 }

Invoking a test similar to the preceding one results in this:

acc = 0, n = 3
acc = 3, n = 1
acc = 4, n = 4
acc = 8, n = 1
acc = 9, n = 5
acc = 14, n = 9

74 | Chapter 4: Functional Programming

The acc variable is initialized to the first argument in fold, the n variable takes on
each element of the collection, and the result of the lambda, acc + n, is the new value
of acc on each iteration.

The lambda itself is a binary operator, because the data types of the accumulator, each
element of the collection, and the return value are all the same.

Although the first argument to fold is called initial and initial‐
izes the accumulator, technically it should be the identity value for
the lambda operation.

As a more interesting example, consider computing the factorial of an integer. The
factorial operation is easily expressed as a recursive operation, which you’ll see again
in Example 4-10:

fun recursiveFactorial(n: Long): BigInteger =
 when (n) {
 0L, 1L -> BigInteger.ONE
 else -> BigInteger.valueOf(n) * recursiveFactorial(n - 1)
 }

This operation can be rewritten as an iterative operation using fold, as shown in
Example 4-4.

Example 4-4. Implementing the factorial by using fold

fun factorialFold(n: Long): BigInteger =
 when(n) {
 0L, 1L -> BigInteger.ONE
 else -> (2..n).fold(BigInteger.ONE) { acc, i ->
 acc * BigInteger.valueOf(i) }
 }

The when condition checks the input argument for 0 or 1, and returns BigIn
teger.ONE in those cases. The else condition uses a range from 2 to the input num‐
ber and applies a fold operation that starts at BigInteger.ONE. The accumulator in
the lambda is set to the product of the previous accumulator and each value as it goes
by. Again, although BigInteger.ONE is the initial value of the accumulator, it’s also
the identity value of the multiplication (binary) operation.

To give one more fascinating example of fold, consider computing Fibonacci num‐
bers, where each value is the sum of the previous two. Example 4-5 shows how to
implement that algorithm by using fold.

4.1 Using fold in Algorithms | 75

Example 4-5. Computing Fibonacci numbers by using fold

fun fibonacciFold(n: Int) =
 (2 until n).fold(1 to 1) { (prev, curr), _ ->
 curr to (prev + curr) }.second

In this case, the initial value of the accumulator is a Pair whose first and second
values are both 1. Then the lambda is able to create a new value for the accumulator
without caring which particular index is being computed, which is why an under‐
score (_) is used as a placeholder for that value. The lambda creates a new Pair by
assigning the current value to the previous one, and making the new value of curr
equal to the sum of the existing previous and current values. This process is repeated
from 2 up to the desired index. In the end, the output value is the second property of
the final Pair.

Another interesting feature of this example is that the accumulator is of a different
type than the elements in the range. The accumulator is a Pair, while the elements
are Int values.

Using fold like this shows it is far more powerful than as demonstrated in the typical
sum example.

See Also
The factorial problem is also addressed in Recipe 4.3. Using reduce instead of fold is
part of Recipe 4.2.

4.2 Using the reduce Function for Reductions
Problem
You want to perform a reduction on a non-empty collection of values, but don’t need
to set an initial value for the accumulator.

Solution
Use the reduce operation rather than fold.

Discussion
The reduce function is similar to the fold function discussed in Recipe 4.1. Its signa‐
ture on Iterable is as follows:

inline fun <S, T : S> Iterable<T>.reduce(
 operation: (acc: S, T) -> S
): S

76 | Chapter 4: Functional Programming

The reduce function is almost exactly the same as the fold function, and it’s used for
the same purpose. Its biggest difference is that it does not have an argument that pro‐
vides an initial value for the accumulator. The accumulator is therefore initialized
with the first value from the collection.

Example 4-6 shows an implementation of reduce in the standard library.

Example 4-6. Implementation of the reduce function

public inline fun IntArray.reduce(
 operation: (acc: Int, Int) -> Int): Int {
 if (isEmpty())
 throw UnsupportedOperationException(
 "Empty array can't be reduced.")
 var accumulator = this[0]
 for (index in 1..lastIndex) {
 accumulator = operation(accumulator, this[index])
 }
 return accumulator
}

Empty collections result in an exception

Accumulator initialized to first element of collection

The reduce function can therefore be used only when it is appropriate to initialize the
accumulator with the first value of the collection. An example is an implementation
of the sum operation, similar to that shown previously in Example 4-1, and shown
here in Example 4-7.

Example 4-7. Implementing sum using reduce

fun sumReduce(vararg nums: Int) =
 nums.reduce { acc, i -> acc + i }

If this function is invoked with several arguments, the first argument initializes the
accumulator, and the other values are added to it one by one. If this function is
invoked with no arguments, it would throw an exception, as shown in Example 4-8.

Example 4-8. Testing the sum function implemented with reduce

@Test
fun `sum using reduce`() {
 val numbers = intArrayOf(3, 1, 4, 1, 5, 9)
 assertAll(
 { assertEquals(numbers.sum(), sumReduce(*numbers)) },
 { assertThrows<UnsupportedOperationException> {

4.2 Using the reduce Function for Reductions | 77

 sumReduce()
 }
 })
}

Validation for array of Int

Throws exception for no arguments

There is another way that using reduce can go wrong. Say you want to modify all the
input values before adding them together. For example, if you want to double each
number before adding it to the sum, you might implement the function as in
Example 4-9.

Example 4-9. Doubling values before adding

fun sumReduceDoubles(vararg nums: Int) =
 nums.reduce { acc, i -> acc + 2 * i }

Summing the values {3, 1, 4, 1, 5, 9}, while printing out the values of the accumulator
and the i variable along the way, results in the following:

acc=3, i=1
acc=5, i=4
acc=13, i=1
acc=15, i=5
acc=25, i=9

org.opentest4j.AssertionFailedError:
Expected :46
Actual :43

The result is off because the first value in the list, 3, was used to initialize the accumu‐
lator and therefore wasn’t doubled. For this operation, it would be more appropriate
to use fold rather than reduce.

Use reduce only when it is acceptable to initialize the accumulator
with the first value of the collection and no additional processing is
done on the other values.

In Java, streams have a method called reduce that has two overloads—one that takes
just a binary operator (a lambda is used here), and one that includes an initial value
as provided to fold. Also, when you call the overload that does not have an initial
value, the return type is Optional, so rather than throwing an exception on an empty
stream, Java returns an empty Optional.

78 | Chapter 4: Functional Programming

The designers of the Kotlin library decided to implement those capabilities as sepa‐
rate functions, and the reduce operation throws an exception on an empty collection.
If you come from a Java background, keep those differences in mind when deciding
which function to use.

See Also
Recipe 4.1 discusses the fold function.

4.3 Applying Tail Recursion
Problem
You have a recursive process and want to minimize the memory required to execute
it.

Solution
Express your algorithm by using tail recursion and add the tailrec keyword to your
function.

Discussion
Developers tend to favor iterative algorithms when implementing a function, because
they often are easier to understand and code. Some procedures, however, are most
easily expressed recursively. As a trivial example, consider computing the factorial of
a number, as in Example 4-10.

Example 4-10. Implementing a factorial as a recursive function

fun recursiveFactorial(n: Long): BigInteger =
 when (n) {
 0L, 1L -> BigInteger.ONE
 else -> BigInteger.valueOf(n) * recursiveFactorial(n - 1)
 }

The idea is pretty simple: the factorials of 0 and 1 are both equal to 1(0! == 1, 1!
== 1) and for every number greater than 1, the factorial is equal to the product of that
number times the factorial of one less than the number. Since the result is going to
grow quickly, the code here uses the BigInteger class for the return type, even
though the argument is a long value.

Each new recursive call adds a new frame to the call stack, so eventually the process
exceeds available memory. A sample test case to demonstrate this is given in
Example 4-11.

4.3 Applying Tail Recursion | 79

Example 4-11. Testing the recursive factorial implementation

@Test
fun `check recursive factorial`() {
 assertAll(
 { assertThat(recursiveFactorial(0), `is`(BigInteger.ONE)) },
 { assertThat(recursiveFactorial(1), `is`(BigInteger.ONE)) },
 { assertThat(recursiveFactorial(2), `is`(BigInteger.valueOf(2))) },
 { assertThat(recursiveFactorial(5), `is`(BigInteger.valueOf(120))) },
 { assertThrows<StackOverflowError> { recursiveFactorial(10_000) }}
)
}

High-enough number results in a StackOverflowError

The JVM crashes with a StackOverflowError once the process hits the stack size
limit (which defaults to 1,024 kilobytes on OpenJDK 1.8).

The approach known as tail recursion is a special case of recursion that can be imple‐
mented without adding a new stack frame to the call stack. To do this, rewrite the
algorithm so that the recursive call is the last operation performed. That way, the cur‐
rent stack frame can be reused.

In Kotlin, a factorial version suitable for tail recursion is shown in Example 4-12.

Example 4-12. Implementing a factorial with a tail call algorithm

@JvmOverloads
tailrec fun factorial(n: Long,
 acc: BigInteger = BigInteger.ONE): BigInteger =
 when (n) {
 0L -> BigInteger.ONE
 1L -> acc
 else -> factorial(n - 1, acc * BigInteger.valueOf(n))
 }

Annotation allows invoking the function from Java with only one argument

Uses the tailrec keyword

Tail-recursive call

In this case, the factorial function needs a second argument that acts as the accumula‐
tor for the factorial computation. That way, the last evaluated expression can call itself
with a smaller number and an increased accumulator.

The second argument is assigned a default value of BigInteger.ONE, and since it is a
default value, the factorial function can be called without it. Because Java doesn’t

80 | Chapter 4: Functional Programming

have default function arguments, adding the @JvmOverloads annotation means the
process works when invoked from Java too.

The key piece of the puzzle, however, is the addition of the tailrec keyword.
Without that, the compiler would not know to optimize the recursion. With the key‐
word applied, the function becomes a fast and efficient loop-based version instead.

The tailrec keyword tells the compiler to optimize away the
recursive call. The same algorithm expressed in Java will still be
recursive, with the same memory limitations.

The tests in Example 4-13 show that the function can now be called for numbers so
large that the test just verifies the number of digits in the answer.

Example 4-13. Testing the tail-recursion implementation

@Test
fun `factorial tests`() {
 assertAll(
 { assertThat(factorial(0), `is`(BigInteger.ONE)) },
 { assertThat(factorial(1), `is`(BigInteger.ONE)) },
 { assertThat(factorial(2), `is`(BigInteger.valueOf(2))) },
 { assertThat(factorial(5), `is`(BigInteger.valueOf(120))) },
 // ...
 { assertThat(factorial(15000).toString().length, `is`(56130)) },
 { assertThat(factorial(75000).toString().length, `is`(333061)) }
)
}

Checks number of digits in result

If you generate the bytecodes from the Kotlin implementation and decompile them
back to Java, the result is similar to Example 4-14.

Example 4-14. Decompiled Java from the Kotlin bytecodes (rewritten)

public static final BigInteger factorial(long n, BigInteger acc) {
 while(true) {
 BigInteger result;
 if (n == 0L) {
 result = BigInteger.ONE;
 } else {
 if (n != 1L) {
 result = result.multiply(BigInteger.valueOf(n));
 n = n - 1L;
 continue;

4.3 Applying Tail Recursion | 81

 }
 }
 return result;
 }
 }

The recursive call has been refactored by the compiler into an iterative algorithm
using a while loop.

To summarize, the requirements for a function to be eligible for the tailrec modifier
are as follows:

• The function must call itself as the last operation it performs.
• You cannot use tailrec inside try/catch/finally blocks.
• Tail recursion is supported only on the JVM backend.

82 | Chapter 4: Functional Programming

CHAPTER 5

Collections

As in Java, Kotlin uses typed collections to hold multiple objects. Unlike Java, Kotlin
adds many interesting methods directly to the collection classes, rather than going
through a stream intermediary.

Recipes in this chapter discuss ways to process both arrays and collections, ranging
from sorting and searching, to providing read-only views, to accessing windows of
data, and more.

5.1 Working with Arrays
Problem
You want to create and populate arrays in Kotlin.

Solution
Use the arrayOf function to create them, and the properties and methods inside the
Array class to work with the contained values.

Discussion
Virtually every programming language has arrays, and Kotlin is no exception. This
book focuses on Kotlin running on the JVM, and in Java arrays are handled a bit dif‐
ferently than they are in Kotlin. In Java you instantiate an array using the keyword
new and dimensioning the array, as in Example 5-1.

83

Example 5-1. Instantiating an array in Java

String[] strings = new String[4];
strings[0] = "an";
strings[1] = "array";
strings[2] = "of";
strings[3] = "strings";

// or, more easily,
strings = "an array of strings".split(" ");

Kotlin provides a simple factory method called arrayOf for creating arrays, and while
it uses the same syntax for accessing elements, in Kotlin Array is a class. Example 5-2
shows how the factory method works.

Example 5-2. Using the arrayOf factory method

val strings = arrayOf("this", "is", "an", "array", "of", "strings")

You can also use the factory method arrayOfNulls to create (as you might guess) an
array containing only nulls, as in Example 5-3.

Example 5-3. Creating an array of nulls

val nullStringArray = arrayOfNulls<String>(5)

It’s interesting that even though the array contains only null values, you still have to
choose a particular data type for it. After all, it may not contain nulls forever, and the
compiler needs to know what type of reference you plan to add to it. The factory
method emptyArray works the same way.

There is only one public constructor in the Array class. It takes two arguments:

• size of type Int
• init, a lambda of type (Int) -> T

The lambda is invoked on each index when creating the array. For example, to create
an array of strings containing the first five integers squared, see Example 5-4.

Example 5-4. Array of strings containing the squares of 0 through 4

val squares = Array(5) { i -> (i * i).toString() }

Resulting array is {"0", "1", "4", "9", "16"}

84 | Chapter 5: Collections

The Array class declares public operator methods get and set, which are invoked
when you access elements of the array using square brackets, as in squares[1].

Kotlin has specialized classes to represent arrays of primitive types to avoid the cost
of autoboxing and unboxing. The functions booleanArrayOf, byteArrayOf, shortAr
rayOf, charArrayOf, intArrayOf, longArrayOf, floatArrayOf, and doubleArrayOf
create the associated types (BooleanArray, ByteArray, ShortArray, etc.) exactly the
way you would expect.

Even though Kotlin doesn’t have explicit primitives, the generated
bytecodes use Java wrapper classes like Integer and Double when
the values are nullable, and primitive types like int and double if
not.

Many of the extension methods on arrays are the same as their counterparts on col‐
lections, which are discussed in the rest of this chapter. A couple are unique to arrays,
however. For example, if you want to know the valid index values for a given array,
use the property indices, as in Example 5-5.

Example 5-5. Getting the valid index values from an array

@Test
fun `valid indices`() {
 val strings = arrayOf("this", "is", "an", "array", "of", "strings")
 val indices = strings.indices
 assertThat(indices, contains(0, 1, 2, 3, 4, 5))
}

Normally you iterate over an array using the standard for-in loop, but if you want the
index values as well, use the function withIndex.

fun <T> Array<out T>.withIndex(): Iterable<IndexedValue<T>>

data class IndexedValue<out T>(public val index: Int,
 public val value: T)

The class IndexedValue is the data class shown, with properties called index and
value. Use it as shown in Example 5-6.

Example 5-6. Accessing array values using withIndex

@Test
fun `withIndex returns IndexValues`() {
 val strings = arrayOf("this", "is", "an", "array", "of", "strings")
 for ((index, value) in strings.withIndex()) {
 println("Index $index maps to $value")
 assertTrue(index in 0..5)

5.1 Working with Arrays | 85

 }
}

Call withIndex

Access individual indices and values

The results printed to standard output are:

Index 0 maps to this
Index 1 maps to is
Index 2 maps to an
Index 3 maps to array
Index 4 maps to of
Index 5 maps to strings

In general, Kotlin arrays behave the same way arrays in other languages do.

5.2 Creating Collections
Problem
You want to generate a list, set, or map.

Solution
Use one of the functions designed to produce either an unmodifiable collection, like
listOf, setOf, and mapOf, or their mutable equivalents, mutableListOf, mutableSe
tOf, and mutableMapOf.

Discussion
If you want an immutable view of a collection, the kotlin.collections package provides
a series of utility functions for doing so.

One example is listOf(vararg elements: T): List<T>, whose implementation is
shown in Example 5-7.

Example 5-7. Implementation of the listOf function

public fun <T> listOf(vararg elements: T): List<T> =
 if (elements.size > 0) elements.asList() else emptyList()

The referenced asList function is an extension function on Array that returns a List
that wraps the specified array. The resulting list is called immutable, but should more
properly be considered read-only: you cannot add to nor remove elements from it,
but if the contained objects are mutable, the list will appear to change.

86 | Chapter 5: Collections

The implementation of asList delegates to Java’s Arrays.asList,
which returns a read-only list.

Similar functions in the same package include the following:

• listOf

• setOf

• mapOf

Example 5-8 shows how to create lists and sets.

Example 5-8. Creating “immutable” lists, sets, and maps

var numList = listOf(3, 1, 4, 1, 5, 9)
var numSet = setOf(3, 1, 4, 1, 5, 9)
// numSet.size == 5
var map = mapOf(1 to "one", 2 to "two", 3 to "three")

Creates an unmodifiable list

Creates an unmodifiable set

Set does not contain duplicates

Creates a map from Pair instances

By default, Kotlin collections are “immutable,” in the sense that they do not support
methods for adding or removing elements. If the elements themselves can be modi‐
fied, the collection can appear to change, but only read-only operations are supported
on the collection itself.

Methods to modify collections are in the “mutable” interfaces, provided by the fac‐
tory methods:

• mutableListOf

• mutableSetOf

• mutableMapOf

Example 5-9 shows the analogous mutable examples.

5.2 Creating Collections | 87

Example 5-9. Creating mutable lists, sets, and maps

var numList = mutableListOf(3, 1, 4, 1, 5, 9)
var numSet = mutableSetOf(3, 1, 4, 1, 5, 9)
var map = mutableMapOf(1 to "one", 2 to "two", 3 to "three")

The implementation of the mapOf function in the standard library is shown here:

public fun <K, V> mapOf(vararg pairs: Pair<K, V>): Map<K, V> =
 if (pairs.size > 0)
 pairs.toMap(LinkedHashMap(mapCapacity(pairs.size)))
 else emptyMap()

The argument to the mapOf function is a variable argument list of Pair instances, so
the infix to operator function is used to create the map entries. A similar function is
used to create mutable maps.

You can also instantiate classes that implement the List, Set, or Map interfaces
directly, as shown in Example 5-10.

Example 5-10. Instantiating a linked list

@Test
internal fun `instantiating a linked list`() {
 val list = LinkedList<Int>()
 list.add(3)
 list.add(1)
 list.addLast(999)
 list[2] = 4
 list.addAll(listOf(1, 5, 9, 2, 6, 5))
 assertThat(list, contains(3, 1, 4, 1, 5, 9, 2, 6, 5))
}

The add method is an alias for addLast

Array-type access invokes get or set

88 | Chapter 5: Collections

5.3 Creating Read-Only Views from Existing Collections
Problem
You have an existing mutable list, set, or map, and you want to create a read-only ver‐
sion of it.

Solution
To make a new, read-only collection, use the toList, toSet, or toMap methods. To
make a read-only view on an existing collection, assign it to a variable of type List,
Set, or Map.

Discussion
Consider a mutable list created with the mutableList factory method. The resulting
list has methods like add, remove, and so on that allow the list to grow or shrink as
desired:

val mutableNums = mutableListOf(3, 1, 4, 1, 5, 9)

There are two ways to create a read-only version of a mutable list. The first is to
invoke the toList method, which returns a reference of type List:

@Test
fun `toList on mutableList makes a readOnly new list`() {
 val readOnlyNumList: List<Int> = mutableNums.toList()
 assertEquals(mutableNums, readOnlyNumList)
 assertNotSame(mutableNums, readOnlyNumList)
}

Explicit type shows result is a List<T>

The test shows that the return type from the toList method is List<T>, which repre‐
sents an immutable list, so methods like add or remove are not available. The rest of
the test shows that the method is creating a separate object, however, so while it has
the same contents as the original, it doesn’t represent the same objects anymore:

@Test
internal fun `modify mutable list does not change read-only list`() {
 val readOnly: List<Int> = mutableNums.toList()
 assertEquals(mutableNums, readOnly)

 mutableNums.add(2)
 assertThat(readOnly, not(contains(2)))
}

If you want a read-only view of the same contents, assign the mutable list to a refer‐
ence of type List, as shown in Example 5-11.

5.3 Creating Read-Only Views from Existing Collections | 89

Example 5-11. Creating a read-only view of the mutable list

@Test
internal fun `read-only view of a mutable list`() {
 val readOnlySameList: List<Int> = mutableNums
 assertEquals(mutableNums, readOnlySameList)
 assertSame(mutableNums, readOnlySameList)

 mutableNums.add(2)
 assertEquals(mutableNums, readOnlySameList)
 assertSame(mutableNums, readOnlySameList)
}

Assigns mutable to reference of type List

Still the same underlying object

This time, the mutable list is assigned to a reference of type List. Not only is the
result still the same object, but if the underlying mutable list is modified, the read-
only view shows the updated values. You can’t modify the list from the read-only ref‐
erence, but it is attached to the same object as the original.

As you might expect, the toSet and toMap functions work the same way, as does
assigning mutable sets and maps to references of type Set or Map.

5.4 Building a Map from a Collection
Problem
You have a list of keys and want to build a map by associating each key with a gener‐
ated value.

Solution
Use the associateWith function by supplying a lambda to be executed for each key.

Discussion
Say you have a set of keys and want to map each of them to a generated value. One
way to do that is to use the associate function, as in Example 5-12.

Example 5-12. Using associate to generate values

val keys = 'a'..'f'
val map = keys.associate { it to it.toString().repeat(5).capitalize() }
println(map)

90 | Chapter 5: Collections

Executing this snippet results in the following:

{a=Aaaaa, b=Bbbbb, c=Ccccc, d=Ddddd, e=Eeeee}

The associate function is an inline extension function on Iterable<T> that takes a
lambda that transforms T into a Pair<K,V>. In this example, the to function is an
infix function that produces a Pair from the left- and right-side arguments.

This works, but in Kotlin 1.3 a new function was added called associateWith that
simplifies the code. Example 5-13 shows the previous code reworked with associate
With.

Example 5-13. Using associateWith to generate values

val keys = 'a'..'f'
val map = keys.associateWith { it.toString().repeat(5).capitalize() }
println(map)

The result is the same, but the argument now is a function that produces a String
value rather than a Pair<Char, String>.

Both examples produce the same result, but the associateWith function is slightly
simpler to write and understand.

5.5 Returning a Default When a Collection Is Empty
Problem
As you are processing a collection, you filter out all the elements but want to return a
default response.

Solution
Use the ifEmpty and ifBlank functions to return a default when a collection is empty
or a string is blank.

Discussion
Say you have a data class called Product that wraps a name, a price, and a boolean
field to indicate whether the product is on sale, as in Example 5-14.

Example 5-14. Data class for a product

data class Product(val name: String,
 var price: Double,
 var onSale: Boolean = false)

5.5 Returning a Default When a Collection Is Empty | 91

If you have a list of products and you want the names of the products that are on sale,
you could do a simple filtering operation, as follows:

fun namesOfProductsOnSale(products: List<Product>) =
 products.filter { it.onSale }
 .map { it.name }
 .joinToString(separator = ", ")

The idea is to take a list of products, filter them by the boolean onSale property, and
map them to just the names, which then are joined into a single string. The problem
is that if no products are on sale, the filter will return an empty collection, which will
then be converted into an empty string.

If you would rather return a specific string when the result is empty, you can use a
function called ifEmpty on both Collection and String. Example 5-15 shows how
to use either one.

Example 5-15. Using ifEmpty on Collection and String

fun onSaleProducts_ifEmptyCollection(products: List<Product>) =
 products.filter { it.onSale }
 .map { it.name }
 .ifEmpty { listOf("none") }
 .joinToString(separator = ", ")

fun onSaleProducts_ifEmptyString(products: List<Product>) =
 products.filter { it.onSale }
 .map { it.name }
 .joinToString(separator = ", ")
 .ifEmpty { "none" }

Supplies default on empty collection

Supplies default on empty string

In either case, a collection of products that are not on sale will return the string
"none" as shown in the tests in Example 5-16.

Example 5-16. Testing products

class IfEmptyOrBlankKtTest {
 private val overthruster = Product("Oscillation Overthruster", 1_000_000.0)
 private val fluxcapacitor = Product("Flux Capacitor", 299_999.95, onSale = true)
 private val tpsReportCoverSheet = Product("TPS Report Cover Sheet", 0.25)

 @Test
 fun productsOnSale() {
 val products = listOf(overthruster, fluxcapacitor, tpsReportCoverSheet)

92 | Chapter 5: Collections

 assertAll("On sale products",
 { assertEquals("Flux Capacitor",
 onSaleProducts_ifEmptyCollection(products)) },
 { assertEquals("Flux Capacitor",
 onSaleProducts_ifEmptyString(products)) })
 }

 @Test
 fun productsNotOnSale() {
 val products = listOf(overthruster, tpsReportCoverSheet)

 assertAll("No products on sale",
 { assertEquals("none", onSaleProducts_ifEmptyCollection(products)) },
 { assertEquals("none", onSaleProducts_ifEmptyString(products)) })
 }
}

Java in version 8 added a class called Optional<T>, which is often used as a return
type wrapper when a query may legitimately return a null or empty value. Kotlin sup‐
ports this as well, but it’s easy enough to return a specific value instead by using the
ifEmpty function.

5.6 Restricting a Value to a Given Range
Problem
Given a value, you want to return it if it is contained in a specified range, or return
the minimum or maximum of the range if not.

Solution
Use the coerceIn function on ranges, either with a range argument or specified min
and max values.

Discussion
There are two overloads of the coerceIn function for ranges: one that takes a closed
range as an argument, and one that takes min and max values.

For the first variation, consider an integer range from 3 to 8, inclusive. The test in
Example 5-17 shows that coerceIn returns the value if it is contained in the range, or
the boundaries if not.

5.6 Restricting a Value to a Given Range | 93

Example 5-17. Coercing a value into a range

@Test
fun `coerceIn given a range`() {
 val range = 3..8

 assertThat(5, `is`(5.coerceIn(range)))
 assertThat(range.start, `is`(1.coerceIn(range)))
 assertThat(range.endInclusive, `is`(9.coerceIn(range)))
}

range.start is 3

range.endInclusive is 8

Likewise, if you have the min and max values you want, you don’t have to create a
range to use the coerceIn function, as Example 5-18 shows.

Example 5-18. Coercing a value with a min and max

@Test
fun `coerceIn given min and max`() {
 val min = 2
 val max = 6

 assertThat(5, `is`(5.coerceIn(min, max)))
 assertThat(min, `is`(1.coerceIn(min, max)))
 assertThat(max, `is`(9.coerceIn(min, max)))
}

This version returns the value if it is between min and max, and the boundary values
if not.

5.7 Processing a Window on a Collection
Problem
Given a collection of values, you want to process them by using a small window that
traverses the collection.

Solution
Use the chunked function if you want to divide the collection into equal parts, or the
windowed function if you want a block that slides along the collection by a given
interval.

94 | Chapter 5: Collections

Discussion
Given an iterable collection, the chunked function splits it into a list of lists, where
each has the given size or smaller. The function can return the list of lists, or you can
also supply a transformation to apply to the resulting lists. The signatures of the
chunked function are as follows:

fun <T> Iterable<T>.chunked(size: Int): List<List<T>>

fun <T, R> Iterable<T>.chunked(
 size: Int,
 transform: (List<T>) -> R
): List<R>

This all sounds more complicated than it is in practice. For example, consider a sim‐
ple range of integers from 0 to 10. The test in Example 5-19 breaks it into groups of
three consecutive numbers, or computes their sums or averages.

Example 5-19. Breaking a list into sections and processing them

@Test
internal fun chunked() {
 val range = 0..10

 val chunked = range.chunked(3)
 assertThat(chunked, contains(listOf(0, 1, 2), listOf(3, 4, 5),
 listOf(6, 7, 8), listOf(9, 10)))

 assertThat(range.chunked(3) { it.sum() }, `is`(listOf(3, 12, 21, 19)))
 assertThat(range.chunked(3) { it.average() }, `is`(listOf(1.0, 4.0, 7.0, 9.5)))
}

The first call simply returns the List<List<Int>> consisting of [[0, 1, 2], [3, 4,
5], [6, 7, 8], [9, 10]]. The second and third calls provide a lambda to compute
the sums of each list or the average of each list, respectively.

The chunked function is actually a special case of the windowed function.
Example 5-20 shows how the implementation of chunked delegates to windowed.

Example 5-20. Implementation of chunked in the standard library

public fun <T> Iterable<T>.chunked(size: Int): List<List<T>> {
 return windowed(size, size, partialWindows = true)
}

The windowed function takes three arguments, two of which are optional:

size

The number of elements in each window

5.7 Processing a Window on a Collection | 95

step

The number of elements to move forward on each step (defaults to 1)

partialWindows

A boolean that defaults to false and tells whether to keep the last section if it
doesn’t have the required number of elements

The chunked function calls windowed with both the size and step parameters equal
to the chunked argument, so it moves the window forward by exactly that size each
time. You can use windowed directly, however, to change that.

An example is to compute a moving average. Example 5-21 shows how to use win
dowed both to behave the same way as chunked and to move the window forward by
only one element each time.

Example 5-21. Computing a moving average in each window

@Test
fun windowed() {
 val range = 0..10

 assertThat(range.windowed(3, 3),
 contains(listOf(0, 1, 2), listOf(3, 4, 5), listOf(6, 7, 8)))

 assertThat(range.windowed(3, 3) { it.average() },
 contains(1.0, 4.0, 7.0))

 assertThat(range.windowed(3, 1),
 contains(
 listOf(0, 1, 2), listOf(1, 2, 3), listOf(2, 3, 4),
 listOf(3, 4, 5), listOf(4, 5, 6), listOf(5, 6, 7),
 listOf(6, 7, 8), listOf(7, 8, 9), listOf(8, 9, 10)))

 assertThat(range.windowed(3, 1) { it.average() },
 contains(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)

The chunked and windowed functions are useful for processing time-series data in
stages.

5.8 Destructuring Lists
Problem
You want to use destructuring to access elements of a list.

Solution
Assign the list to a group of at most five elements.

96 | Chapter 5: Collections

Discussion
Destructuring is the process of extracting values from an object by assigning them to a
collection of variables.

Example 5-22 shows how you can assign the first few elements of a list to defined
variables in one step.

Example 5-22. Destructuring elements from a list

val list = listOf("a", "b", "c", "d", "e", "f", "g")
val (a, b, c, d, e) = list
println("$a $b $c $d $e")

This code prints the string a b c d e, because the first five elements of the created
list are assigned to the variables of the same name. This works because the List class
has extension functions defined in the standard library called componentN, where N
goes from 1 to 5, as shown in Example 5-23.

Example 5-23. The component1 extension function on List (from the standard library)

/**
 * Returns 1st *element* from the collection.
 */
@kotlin.internal.InlineOnly
public inline operator fun <T> List<T>.component1(): T {
 return get(0)
}

Destructuring relies on the existence of componentN functions. The List class con‐
tains implementations for component1, component2, component3, component4, and
component5, so the preceding code works.

Data classes automatically add the associated component methods for all of their
defined attributes. If you define your own class (and don’t make it a data class), you
can manually define any needed component methods as well.

Destructuring is a convenient way to extract multiple elements from an object. At the
moment, the List class defines component functions for the first five elements. That
may change in later Kotlin versions.

5.8 Destructuring Lists | 97

5.9 Sorting by Multiple Properties
Problem
You want to sort a class by one property, and then equal values by a second property,
and so on.

Solution
Use the sortedWith and compareBy functions.

Discussion
Say we have a simple data class called Golfer, with a sample collection shown in
Example 5-24.

Example 5-24. A data class and some sample data

data class Golfer(val score: Int, val first: String, val last: String)

val golfers = listOf(
 Golfer(70, "Jack", "Nicklaus"),
 Golfer(68, "Tom", "Watson"),
 Golfer(68, "Bubba", "Watson"),
 Golfer(70, "Tiger", "Woods"),
 Golfer(68, "Ty", "Webb")
)

If you would like to sort the golfers by score, then sort equal scores by last name, and
finally sort those equal scores and last names by first name, you can use the code in
Example 5-25.

Example 5-25. Sorting the golfers by successive properties

val sorted = golfers.sortedWith(
 compareBy({ it.score }, { it.last }, { it.first })
)

sorted.forEach { println(it) }

The result is as follows:

Golfer(score=68, first=Bubba, last=Watson)
Golfer(score=68, first=Tom, last=Watson)
Golfer(score=68, first=Ty, last=Webb)
Golfer(score=70, first=Jack, last=Nicklaus)
Golfer(score=70, first=Tiger, last=Woods)

98 | Chapter 5: Collections

The three golfers who shot a 68 appear before the two who scored 70. Within the 68s,
both Watsons appear ahead of Webb, and in the 70s, Nicklaus is before Woods. For
the golfers named Watson who both scored 68s, Bubba appears before Tom.

The full signatures of the sortedWith and compareBy functions are given by
Example 5-26.

Example 5-26. The signature of sortedWith in the standard library

fun <T> Iterable<T>.sortedWith(
 comparator: Comparator<in T>
): List<T>

fun <T> compareBy(
 vararg selectors: (T) -> Comparable<*>?
): Comparator<T>

So the sortedWith function takes a Comparator, and the compareBy function pro‐
duces a Comparator. What’s interesting about compareBy is that you can provide a list
of selectors, each of which extracts a Comparable property (note that the property’s
class has to implement the Comparable interface), and the function will create a Compa
rator that sorts by them in turn.

The sortBy and sortWith functions sort their elements in place,
and therefore require mutable collections.

Another way to solve the same problem is to build the Comparator by using the
thenBy function, which applies a comparison after the previous one. The same collec‐
tion is sorted in this manner in Example 5-27.

Example 5-27. Chaining comparators together

val comparator = compareBy<Golfer>(Golfer::score)
 .thenBy(Golfer::last)
 .thenBy(Golfer::first)

golfers.sortedWith(comparator)
 .forEach(::println)

The result is the same as in the previous example.

5.9 Sorting by Multiple Properties | 99

5.10 Defining Your Own Iterator
Problem
You have a class that wraps a collection and you would like to iterate over it easily.

Solution
Define an operator function that returns an iterator, which implements both a next
and a hasNext function.

Discussion
The Iterator design pattern has an implementation in Java by defining the Iterator
interface. Example 5-28 provides the corresponding definition in Kotlin.

Example 5-28. Iterator interface in kotlin.collections

interface Iterator<out T> {
 operator fun next(): T
 operator fun hasNext(): Boolean
}

In Java, the for-each loop lets you iterate over any class that implements Iterable. In
Kotlin, a similar constraint works on the for-in loop. Consider a data class called
Player and a class called Team, as given in Example 5-29.

Example 5-29. Player and Team classes

data class Player(val name: String)
class Team(val name: String,
 val players: MutableList<Player> = mutableListOf()) {

 fun addPlayers(vararg people: Player) =
 players.addAll(people)

 // ... other functions as needed ...
}

A Team contains a mutable list of Player instances. If you have a team with several
players and you want to iterate over the players, you need to access the players prop‐
erty, as in Example 5-30.

100 | Chapter 5: Collections

Example 5-30. Iterating over a team of players

val team = Team("Warriors")
team.addPlayers(Player("Curry"), Player("Thompson"),
 Player("Durant"), Player("Green"), Player("Cousins"))

for (player in team.players) {
 println(player)
}

Accesses players property in loop

This can be (slightly) simplified by defining an operator function called iterator on
the Team. Example 5-31 shows how to do this as an extension function, and the
resulting simplified loop.

Example 5-31. Iterating over the team directly

operator fun Team.iterator() : Iterator<Player> = players.iterator()

for (player in team) {
 println(player)
}

Can iterate over team

Either way, the output is as follows:

Player(name=Curry)
Player(name=Thompson)
Player(name=Durant)
Player(name=Green)
Player(name=Cousins)

In reality, the idea is to make the Team class implement the Iterable interface, which
includes the abstract operator function iterator. That means the alternative to
writing the extension function is to modify Team, as shown in Example 5-32.

Example 5-32. Implementing the Iterable interface

class Team(val name: String,
 val players: MutableList<Player> = mutableListOf()) : Iterable<Player> {

 override fun iterator(): Iterator<Player> =
 players.iterator()

 // ... other functions as needed ...
}

5.10 Defining Your Own Iterator | 101

The result is the same, except that now all the extension functions on Iterable are
available on Team, so you can write code like that in Example 5-33.

Example 5-33. Using Iterator extension functions on Team

assertEquals("Cousins, Curry, Durant, Green, Thompson",
 team.map { it.name }.joinToString())

The map function here iterates over the players, so it.name represents each player’s
name. Other extension functions can be used in the same way.

5.11 Filtering a Collection by Type
Problem
You want to create a new collection of elements of a specified type from an existing
group of mixed types.

Solution
Use the extension functions filterIsInstance or filterIsInstanceTo.

Discussion
Collections in Kotlin include an extension function called filter that takes a predi‐
cate, which can be used to extract elements satisfying any boolean condition, as in
Example 5-34.

Example 5-34. Filtering a collection by type, with erasure

val list = listOf("a", LocalDate.now(), 3, 1, 4, "b")
val strings = list.filter { it is String }

for (s in strings) {
 // s.length // does not compile; type is erased
}

Although the filtering operation works, the inferred type of the strings variable is
List<Any>, so Kotlin does not smart cast the individual elements to type String.

You could add an is check or simply use the filterIsInstance function instead, as
in Example 5-35.

102 | Chapter 5: Collections

Example 5-35. Using reified types

val list = listOf("a", LocalDate.now(), 3, 1, 4, "b")

val all = list.filterIsInstance<Any>()
val strings = list.filterIsInstance<String>()
val ints = list.filterIsInstance<Int>()
val dates = list.filterIsInstance(LocalDate::class.java)

assertThat(all, `is`(list))
assertThat(strings, containsInAnyOrder("a", "b"))
assertThat(ints, containsInAnyOrder(1, 3, 4))
assertThat(dates, contains(LocalDate.now()))

In this case, the filterIsInstance function uses reified types, so the resulting collec‐
tions are of a known type, and you don’t have to check the type before using its
properties. The implementation of the filterIsInstance function in the library is
shown here:

public inline fun <reified R> Iterable<*>.filterIsInstance(): List<R> {
 return filterIsInstanceTo(ArrayList<R>())
}

The reified keyword applied to an inline function preserves the type, so the
returned type is List<R>.

The implementation calls the function filterIsInstanceTo, which takes a collection
argument of a particular type and populates it with elements of that type from the
original. That function can also be used directly, as in Example 5-36.

Example 5-36. Using reified types to populate a provided list

val list = listOf("a", LocalDate.now(), 3, 1, 4, "b")

val all = list.filterIsInstanceTo(mutableListOf())
val strings = list.filterIsInstanceTo(mutableListOf<String>())
val ints = list.filterIsInstanceTo(mutableListOf<Int>())
val dates = list.filterIsInstanceTo(mutableListOf<LocalDate>())

assertThat(all, `is`(list))
assertThat(strings, containsInAnyOrder("a", "b"))
assertThat(ints, containsInAnyOrder(1, 3, 4))
assertThat(dates, contains(LocalDate.now()))

The argument to the filterIsInstanceTo function is a MutableCollection<in R>,
so by specifying the type of the desired collection, you populate it with the instances
of that type.

5.11 Filtering a Collection by Type | 103

5.12 Making a Range into a Progression
Problem
You want to iterate over a range, but the range does not contain simple integers, char‐
acters, or longs.

Solution
Create a progression of your own.

Discussion
In Kotlin, a range is created when you use the double dot operator, as in 1..5, which
instantiates an IntRange. A range is a closed interval, defined by two endpoints that
are both included in the range.

The standard library adds an extension function called rangeTo to any generic type T
that implements the Comparable interface. Example 5-37 provides its
implementation.

Example 5-37. Implementation of the rangeTo function for Comparable types

operator fun <T : Comparable<T>> T.rangeTo(that: T): ClosedRange<T> =
 ComparableRange(this, that)

The class ComparableRange simply extends Comparable, defines start and endInclu
sive properties of type T, and overrides equals, hashCode, and toString functions
appropriately. The return type on rangeTo is ClosedRange, which is a simple interface
defined in Example 5-38.

Example 5-38. The ClosedRange interface

interface ClosedRange<T: Comparable<T>> {
 val start: T
 val endInclusive: T
 operator fun contains(value: T): Boolean =
 value >= start && value <= endInclusive
 fun isEmpty(): Boolean = start > endInclusive
}

The operator function contains lets you use the in infix function to check whether a
value is contained inside the range.

104 | Chapter 5: Collections

All this means that you can create a range based on any class that implements Compa
rable, and the infrastructure to support it is already there. As an example, for
java.time.LocalDate, see Example 5-39.

Example 5-39. Using LocalDate in a range

@Test
fun `LocalDate in a range`() {
 val startDate = LocalDate.now()
 val midDate = startDate.plusDays(3)
 val endDate = startDate.plusDays(5)

 val dateRange = startDate..endDate

 assertAll(
 { assertTrue(startDate in dateRange) },
 { assertTrue(midDate in dateRange) },
 { assertTrue(endDate in dateRange) },
 { assertTrue(startDate.minusDays(1) !in dateRange) },
 { assertTrue(endDate.plusDays(1) !in dateRange) }
)
}

That’s all well and good, but the surprising part comes when you try to iterate over
the range:

for (date in dateRange) println(it) // compiler error!
(startDate..endDate).forEach { /* ... */ } // compiler error!

The problem is that a range is not a progression. A progression is simply an ordered
sequence of values. Custom progressions implement the Iterable interface, just as
the existing progressions IntProgression, LongProgression, and CharProgression
in the standard library do.

To demonstrate how to create a progression, consider the classes in Example 5-40 and
Example 5-41.

The code in this example is based on the 2017 DZone article by
Grzegorz Ziemoński entitled, “What Are Kotlin Progressions and
Why Should You Care?”

First, here is the LocalDateProgression class, which implements both Itera
ble<LocalDate> and ClosedRange<LocalDate> interfaces.

5.12 Making a Range into a Progression | 105

https://oreil.ly/-NqqW
https://oreil.ly/-NqqW

Example 5-40. A progression for LocalDate

import java.time.LocalDate

class LocalDateProgression(
 override val start: LocalDate,
 override val endInclusive: LocalDate,
 val step: Long = 1
) : Iterable<LocalDate>, ClosedRange<LocalDate> {

 override fun iterator(): Iterator<LocalDate> =
 LocalDateProgressionIterator(start, endInclusive, step)

 infix fun step(days: Long) = LocalDateProgression(start, endInclusive, days)
}

From the Iterator interface, the only function that must be implemented is itera
tor. Here it instantiates the class LocalDateProgressionIterator, shown next. The
infix step function instantiates the class with the proper increment in days. The
ClosedRange interface, as shown in the preceding code, defines the start and endIn
clusive properties, so they are overridden here in the primary constructor.

Example 5-41. The iterator for the LocalDateProgression class

import java.time.LocalDate

internal class LocalDateProgressionIterator(
 start: LocalDate,
 val endInclusive: LocalDate,
 val step: Long
) : Iterator<LocalDate> {

 private var current = start

 override fun hasNext() = current <= endInclusive

 override fun next(): LocalDate {
 val next = current
 current = current.plusDays(step)
 return next
 }
}

The Iterator interface requires overriding next and hasNext, as shown.

Finally, use an extension function to redefine the rangeTo function to return an
instance of the progression:

operator fun LocalDate.rangeTo(other: LocalDate) =
 LocalDateProgression(this, other)

106 | Chapter 5: Collections

Now LocalDate can be used to create a range that can be iterated over, as shown in
the tests in Example 5-42.

Example 5-42. Tests for the LocalDate progression

@Test
fun `use LocalDate as a progression`() {
 val startDate = LocalDate.now()
 val endDate = startDate.plusDays(5)

 val dateRange = startDate..endDate
 dateRange.forEachIndexed { index, localDate ->
 assertEquals(localDate, startDate.plusDays(index.toLong()))
 }

 val dateList = dateRange.map { it.toString() }
 assertEquals(6, dateList.size)
}

@Test
fun `use LocalDate as a progression with a step`() {
 val startDate = LocalDate.now()
 val endDate = startDate.plusDays(5)

 val dateRange = startDate..endDate step 2
 dateRange.forEachIndexed { index, localDate ->
 assertEquals(localDate, startDate.plusDays(index.toLong() * 2))
 }

 val dateList = dateRange.map { it.toString() }
 assertEquals(3, dateList.size)
}

Using the double dot operator creates a range, which in this case supports iteration,
which is used by the forEachIndexed function. In this example, creating a progres‐
sion requires two classes and an extension function, but the pattern is easy enough to
replicate for your own classes.

5.12 Making a Range into a Progression | 107

1 The most famous example of an explanation like that is, “Monads are just monoids in the category of endo‐
functors,” which may be true but is almost, but not quite, a completely useless statement.

CHAPTER 6

Sequences

This chapter looks at Kotlin sequences, which are just like the streams introduced in
Java version 1.8. Admittedly that’s a useful statement only if you already know how
Java streams work,1 but the recipes in this chapter will highlight both their similarities
and their differences.

With collections, processing is eager: when you invoke map or filter on a collection,
every element in the collection is processed. Sequences, however, are lazy: when you
use a sequence to process data, each element completes the entire pipeline before the
next element is processed. This helps when you have a lot of data or if a short-
circuiting operation, like first, lets you exit the sequence when a desired value is
found.

6.1 Using Lazy Sequences
Problem
You want to process the minimum amount of data necessary to satisfy a certain
condition.

Solution
Use a Kotlin sequence with a short-circuiting function.

109

Discussion
Kotlin adds extension functions to basic collections, so that List has functions like
map and filter. Those functions are eager, however, meaning that they process every
element in the collection.

Consider the following admittedly highly contrived problem: you want to take the
numbers from 100 to 200 and double each one, and then find the first double that’s
evenly divisible by 3. One way to solve that problem is to use the function in
Example 6-1.

Example 6-1. Finding the first double divisible by 3 (version 1)

(100 until 200).map { it * 2 }
 .filter { it % 3 == 0 }
 .first()

100 computations

Another 100 (bad design—can be improved)

The problem with this approach is that it’s horribly inefficient. First, you double all
100 numbers in the range, then you perform the modulus operation on all 100
results, and then grab just the first element. Fortunately, there is an overload of the
first function that takes a predicate (a lambda of one argument that returns a
boolean), as shown in Example 6-2.

Example 6-2. Finding the first double divisible by 3 (version 2)

(100 until 200).map { it * 2 }
 .first { it % 3 == 0 }

100 computations

Only 3 computations

This version of the first method uses a loop to process each element of the collec‐
tion, but stops when it hits the first one that satisfies the predicate. That process is
known as short-circuiting—processing only as much data as needed until a condition
is reached. If you forget to use the overloaded version of first, however, you’re back
to doing much more work than needed.

Kotlin sequences process data differently. Example 6-3 is much better still.

110 | Chapter 6: Sequences

Example 6-3. Finding the first double divisible by 3 (best)

(100 until 2_000_000).asSequence()
 .map { println("doubling $it"); it * 2 }
 .filter { println("filtering $it"); it % 3 == 0 }
 .first()

Converts the range into a sequence

The function this time executes only six operations before returning the right answer:

doubling 100
filtering 200
doubling 101
filtering 202
doubling 102
filtering 204

For sequences, it doesn’t matter whether you use the filter function shown or the
other overload of first. The latter may be simpler, but either way, only six calcula‐
tions are done, because each element of the sequence is processed by the entire pipe‐
line completely before moving to the next one. Note that just to prove a point, the
upper limit of the sequence this time was changed to two million, which didn’t affect
the resulting behavior at all.

Incidentally, the first function used here throws an exception if the sequence is
empty. If that might happen, consider using firstOrNull instead.

The API for Sequence contains the same functions as that for Collection, but the
operations fall into two categories: intermediate and terminal. Intermediate opera‐
tions, like map and filter, return a new sequence. Terminal operations, like first or
toList, return anything else. The key is that without a terminal operation, a sequence
will not process any data.

A sequence processes data only if the pipeline of chained functions
called on it ends with a terminal operation.

Unlike Java streams, Kotlin sequences can be iterated multiple times, though some
cannot and are documented as such.

6.1 Using Lazy Sequences | 111

6.2 Generating Sequences
Problem
You want to generate a sequence of values.

Solution
Use sequenceOf if you already have the elements, use asSequence if you already have
an Iterable, or use a sequence generator otherwise.

Discussion
The first two options are trivial. The sequenceOf function works the same way
arrayOf, listOf, or any of the other related functions work. The asSequence func‐
tion converts an existing Iterable (most likely a list or other collection) into a
Sequence. Both of those options are shown in Example 6-4.

Example 6-4. Creating sequences when you already have the values

val numSequence1 = sequenceOf(3, 1, 4, 1, 5, 9)
val numSequence2 = listOf(3, 1, 4, 1, 5, 9).asSequence()

Both of these statements produce a Sequence<Int>, either from the given values or
from the provided list.

Life gets interesting when you have to generate the elements in the sequence, which
may even be infinite. To see that in action, first consider Example 6-5, which is an
extension function on Int that determines whether a number is prime by dividing by
each number from 2 up to the square root of the number, looking for any value that
divides it evenly.

Example 6-5. Checking whether an Int is prime

import kotlin.math.ceil
import kotlin.math.sqrt

fun Int.isPrime() =
 this == 2 || (2..ceil(sqrt(this.toDouble())).toInt())
 .none { divisor -> this % divisor == 0 }

This function first checks to see whether the number is 2. If not, it creates a range
from 2 up to the square root of the given number, rounded up to the next integer. For
each number in that range, the none function returns true only if none of the values
evenly divide the original number.

112 | Chapter 6: Sequences

Test cases to verify the behavior of the isPrime function are
included in the source code repository for this book.

Now say you have a particular integer and you want to know the next prime number
that comes after it. As an example, given 6, the next prime is 7. Given 182, the next
prime after that is 191. For 9,973, the next prime number is 10,007. What makes that
problem interesting is that there’s no way to know how many numbers you’re going to
need to check before you find the next prime. That makes a natural application for a
sequence. An implementation of the nextPrime function is shown in Example 6-6.

Example 6-6. Finding the next prime after a given integer

fun nextPrime(num: Int) =
 generateSequence(num + 1) { it + 1 }
 .first(Int::isPrime)

Starts one past the given number and iterates by 1

Returns the first prime value

The generateSequence function takes two arguments: an initial value, and a function
to produce the next value in the sequence. Its signature is given by the following:

fun <T : Any> generateSequence(
 seed: T?,
 nextFunction: (T) -> T?
): Sequence<T>

The seed in this case is the integer right after the provided one, and the function sim‐
ply increments by one. By the normal Kotlin idiom, the lambda is placed after the
parentheses in the generateSequence function. The first function on a sequence
returns the first value that satisfies the supplied lambda, which in this case is a refer‐
ence to the isPrime extension function.

In this case, the nextPrime function generates an infinite sequence of integers, evalu‐
ating them one by one until it finds the first prime. The first function returns a
value rather than a sequence, so it is a terminal operation. Without a terminal opera‐
tion, no values are processed by the sequence. In this case, the first operation is
given a lambda known as a predicate (because it returns a boolean value), and the
sequence keeps producing values until the predicate is satisfied.

See Also
Infinite sequences are also examined in Recipe 6.3.

6.2 Generating Sequences | 113

6.3 Managing Infinite Sequences
Problem
You need a portion of an infinite sequence.

Solution
Use a sequence generator that returns a null, or use one of the sequence functions
such as takeWhile.

Discussion
Sequences, like Java streams, have intermediate operations and terminal operations.
An intermediate operation returns a new sequence, and a terminal operation returns
anything else. When you create a pipeline of function calls on a sequence, no data is
pulled through the sequence until you have a terminal operation.

The function firstNPrimes, shown in Example 6-7, calculates the first N prime num‐
bers, starting from 2. The sample shown here leverages the nextPrime function given
in Example 6-6 and described in Recipe 6.2, and repeated here for convenience:

fun nextPrime(num: Int) =
 generateSequence(num + 1) { it + 1 }
 .first(Int::isPrime)

This sequence uses the isPrime extension function from the same recipe.

Once again, there’s no way to know ahead of time how many numbers need to be
examined in order to find that many primes, so a sequence is a natural way to solve
the problem.

Example 6-7. Finding the first N prime numbers

fun firstNPrimes(count: Int) =
 generateSequence(2, ::nextPrime)
 .take(count)
 .toList()

Infinite sequence of primes, starting from 2

Intermediate operation to retrieve only the count requested

Terminal operation

The sequence generated is infinite. The take function is a stateless, intermediate
operation that returns a sequence consisting of only the first count values. If you

114 | Chapter 6: Sequences

simply execute this function without the toList function at the end, no primes are
computed. All you have is a sequence, but no values. The terminal operation, toList,
is used to actually compute values and return them all in a list.

On a 2017 MacBook Pro, even this nonoptimized algorithm gener‐
ated 10,000 prime numbers in just under 50 milliseconds. Comput‐
ers are fast now. FYI, the 10,000th prime is 104,729.

Another way of truncating an infinite sequence is to use a generation function that
eventually returns null. Instead of asking for the first N primes, say you want all the
prime numbers less than a particular limit. The primesLessThan function is shown in
Example 6-8.

Example 6-8. Primes less than a given value (version 1)

fun primesLessThan(max: Int): List<Int> =
 generateSequence(2) { n -> if (n < max) nextPrime(n) else null }
 .toList().dropLast(1)

The function used in the generateSequence call in this case checks whether the cur‐
rent value is less than the supplied limit. If so, it computes the next prime. Otherwise,
it returns null, and returning null terminates the sequence.

Of course, there’s no way to know whether the next prime will be greater than the
limit, so this function actually produces a list that includes the first prime above the
limit. The dropLast function then truncates the resulting list before returning it.

Most of the time, there’s an easier way to solve the same problem. In this case, rather
than cause the generating function to return null, it’s arguably easier to use take
While on the sequence, as in Example 6-9.

Example 6-9. Primes less than a given value (version 2)

fun primesLessThan(max: Int): List<Int> =
 generateSequence(2, ::nextPrime)
 .takeWhile { it < max }
 .toList()

The takeWhile function pulls values from the sequence as long as the supplied predi‐
cate returns true.

Either of these approaches work, so which to use is a matter of personal preference.

6.3 Managing Infinite Sequences | 115

6.4 Yielding from a Sequence
Problem
You want to produce values in a sequence, but at specified intervals.

Solution
Use the sequence function along with the yield suspend function.

Discussion
Another function associated with sequences is sequence, which has the signature
shown in Example 6-10.

Example 6-10. The signature of the sequence function

fun <T> sequence(
 block: suspend SequenceScope<T>.() -> Unit
): Sequence<T>

The sequence function produces a sequence by evaluating the given block. The block
is a lambda function of no arguments that returns void, acting on the receiver of type
SequenceScope.

That all sounds complicated until you see how it is used. Normally, to generate a
sequence, you produce one from existing data using sequenceOf, you transform a
collection into a sequence using asSequence, or you produce values with a function
supplied to generateSequence. In this case, however, you supply a lambda that pro‐
duces a value, which you yield whenever you like.

A good example is generating Fibonacci numbers, as shown in Example 6-11, based
on an example from the library documentation.

Example 6-11. Generating Fibonacci numbers as a sequence

fun fibonacciSequence() = sequence {
 var terms = Pair(0, 1)

 while (true) {
 yield(terms.first)
 terms = terms.second to terms.first + terms.second
 }
}

116 | Chapter 6: Sequences

The lambda provided to the sequence function starts off with a Pair containing the
first two Fibonacci numbers, 0 and 1. Then it uses an infinite loop to produce the
subsequent values. Each time a new element is produced, the yield function returns
the first element of the resulting pair.

The yield function is one of two similar functions that are part of SequenceScope,
the receiver of the lambda provided to the sequence operation. The signatures of
both yield and yieldAll are shown in Example 6-12, along with their overloaded
versions.

Example 6-12. The yield and yieldAll functions from SequenceScope

abstract suspend fun yield(value: T)

abstract suspend fun yieldAll(iterator: Iterator<T>)
suspend fun yieldAll(elements: Iterable<T>)
suspend fun yieldAll(sequence: Sequence<T>)

The job of the yield function is to provide a value to an iterator and suspend until
the next value is requested. Therefore, in the sequence generated by the suspend
function, yield is used to output individual values. The fact that yield is a suspend
function means it plays nicely with coroutines. In other words, the Kotlin runtime
can provide a value and then put the current coroutine on hold until the next value is
requested. That’s why the infinite loop—the while(true) loop in Example 6-11—
provides values one by one when invoked by the take operation in Example 6-13.

Example 6-13. Pulling values from the sequence operation

@Test
fun `first 10 Fibonacci numbers from sequence`() {
 val fibs = fibonacciSequence()
 .take(10)
 .toList()

 assertEquals(listOf(0, 1, 1, 2, 3, 5, 8, 13, 21, 34), fibs)
}

As you might expect, yieldAll yields several values to the iterator. The example
given in the Kotlin documentation is shown in Example 6-14.

Example 6-14. The yieldAll function inside a sequence

vale sequence = sequence {
 val start = 0
 yield(start)
 yield(1..5 step 2)

6.4 Yielding from a Sequence | 117

 yield(generateSequence(8) { it * 3 })
}

Yields a single value (0)

Yields an iterable over the range (1, 3, 5)

Yields an infinite sequence that starts at 8 and multiplies each value by 3

The result of this code is the sequence 0, 1, 3, 5, 8, 24, 72.… When the sequence is
accessed with a take function, it returns as many elements as are requested, using the
given pattern.

The combination of yield and yieldAll inside suspend makes it easy to customize a
sequence to any desired set of generated values.

See Also
The suspend keyword is covered in more detail in the section on coroutines in
Chapter 13.

118 | Chapter 6: Sequences

CHAPTER 7

Scope Functions

The Kotlin standard library contains several functions whose purpose is to execute a
block of code in the context of an object. Specifically, this chapter discusses the scope
functions let, run, apply, and also.

7.1 Initializing Objects After Construction with apply
Problem
You need to initialize an object before using it, beyond what you can do by supplying
constructor arguments.

Solution
Use the apply function.

Discussion
Kotlin has several scoping functions that you can apply to objects. The apply function
is an extension function that sends this as an argument and returns it as well.
Example 7-1 shows the definition of apply.

Example 7-1. Definition of the apply function

inline fun <T> T.apply(block: T.() -> Unit): T

The apply function is thus an extension function on any generic type T, which calls
the specified block with this as its receiver and returns this when it completes.

119

As a practical example, consider the problem of saving an object to a relational data‐
base by using the Spring framework. Spring provides a class called SimpleJdbcIn
sert, based on JdbcTemplate, which removes the boilerplate from normal JDBC
code in Java.

Say we have an entity called Officer that maps to a database table called OFFICERS.
Writing the SQL INSERT statement for such a class is straightforward, except for one
complication: if the primary key is generated by the database during the save, then
the supplied object needs to be updated with the new key. For this purpose, the Sim
pleJdbcInsert class has a convenient method called executeAndReturnKey, which
takes a map of column names to values and returns the generated value.

Using the apply function, the save function can receive an instance to be saved and
update it with the new key all in one statement, as in Example 7-2.

Example 7-2. Inserting a domain object and updating the generated key

@Repository
class JdbcOfficerDAO(private val jdbcTemplate: JdbcTemplate) {

 private val insertOfficer = SimpleJdbcInsert(jdbcTemplate)
 .withTableName("OFFICERS")
 .usingGeneratedKeyColumns("id")

 fun save(officer: Officer) =
 officer.apply {
 id = insertOfficer.executeAndReturnKey(
 mapOf("rank" to rank,
 "first_name" to first,
 "last_name" to last))
 }

// ...

}

The Officer instance is passed into the apply block as this, so it can be used to
access the properties rank, first, and last. The id property of the officer is updated
inside the apply block, and the officer instance is returned. Additional initialization
could be chained to this block if necessary or desired.

The apply block is useful if the result needs to be the context object (the officer in
this example). It is most commonly used to do additional configuration of objects
that have already been instantiated.

120 | Chapter 7: Scope Functions

7.2 Using also for Side Effects
Problem
You want to print a message or other side effect without interrupting the flow of your
code.

Solution
Use the also function to perform the action.

Discussion
The function also is an extension function in the standard library, whose implemen‐
tation is shown in Example 7-3.

Example 7-3. The extension function also

public inline fun <T> T.also(
 block: (T) -> Unit
): T

As the code shows, also is added to any generic type T, which it returns after execut‐
ing the block argument. It is most commonly used to chain a function call onto an
object, as in Example 7-4.

Example 7-4. Printing and logging with also

val book = createBook()
 .also { println(it) }
 .also { Logger.getAnonymousLogger().info(it.toString()) }

Inside the block, the object is referenced as it.

Because also returns the context object, it’s easy to chain additional calls together, as
shown here, where the book was first printed to the console and then logged some‐
where.

While it’s useful to see that you can chain multiple also calls together, the function is
more typically added as part of a series of business logic calls. For example, consider a
test of a geocoder service, given by Example 7-5.

7.2 Using also for Side Effects | 121

Example 7-5. Testing a geocoder service

class Site(val name: String,
 val latitude: Double,
 val longitude: Double)

// ... inside test class ...

@Test
fun `lat,lng of Boston, MA`() = service.getLatLng("Boston", "MA")
 .also { logger.info(it.toString()) }
 .run {
 assertThat(latitude, `is`(closeTo(42.36, 0.01)))
 assertThat(longitude, `is`(closeTo(-71.06, 0.01)))
 }

Logging as a side effect

This test could be organized in many ways, but using also in this way implies that the
point of this code is to run the tests, but also to print the site. Note that using the
scope functions converts the entire test into a single expression, allowing for the
shorter syntax.

The also call has to come before the run call in the test, because
run returns the value of the lambda rather than the context object.

Incidentally, although you could replace the run call with apply, JUnit tests are sup‐
posed to return Unit. The run call in Example 7-5 does that (because the assertions
don’t return anything), while apply would return the context object.

See Also
Recipe 7.1 discusses the apply function.

122 | Chapter 7: Scope Functions

7.3 Using the let Function and Elvis
Problem
You want to execute a block of code only on a non-null reference, but return a default
otherwise.

Solution
Use the let scope function with a safe call, combined with the Elvis operator.

Discussion
The let function is an extension function on any generic type T, whose implementa‐
tion in the standard library is given by Example 7-6.

Example 7-6. Implementation of let in the standard library

public inline fun <T, R> T.let(
 block: (T) -> R
): R

The key fact to remember about let is that it returns the result of the block, rather
than the context object. It therefore acts like a transformation of the context object,
sort of like a map for objects. Say you want to take a string and capitalize it, but
require special handling for empty or blank strings, as in Example 7-7.

Example 7-7. Capitalizing a string with special cases

fun processString(str: String) =
 str.let {
 when {
 it.isEmpty() -> "Empty"
 it.isBlank() -> "Blank"
 else -> it.capitalize()
 }
 }

Normally, you would just call the capitalize function, but on empty or blank strings
this wouldn’t give back anything useful. The let function allows you to wrap the when
conditional inside a block that handles all the required cases, and returns the “trans‐
formed” string.

This really becomes interesting, however, when the argument is nullable, as in
Example 7-8.

7.3 Using the let Function and Elvis | 123

Example 7-8. Same process, but with a nullable string

fun processNullableString(str: String?) =
 str?.let {
 when {
 it.isEmpty() -> "Empty"
 it.isBlank() -> "Blank"
 else -> it.capitalize()
 }
 } ?: "Null"

Safe call with a let

Elvis operator to handle the null case

The return type on both functions is String, which is inferred from the execution.

In this case, the combination of the safe call operator ?., the let function, and the
Elvis operator ?: combine to handle all cases easily. This is a common idiom in Kot‐
lin, as it lets (sorry) you handle both the null and non-null cases easily.

Many Java APIs (like Spring’s RestTemplate or WebClient) return nulls when there is
no result, and the combination of a safe call, a let block, and an Elvis operator is an
effective means of handling them.

See Also
The also block is discussed in Recipe 7.2. Using let as a replacement for temporary
variables is shown in Recipe 7.4.

7.4 Using let with a Temporary Variable
Problem
You want to process the result of a calculation without needing to assign the result to
a temporary variable.

Solution
Chain a let call to the calculation and process the result in the supplied lambda or
function reference.

124 | Chapter 7: Scope Functions

Discussion
The documentation pages for scope functions at the Kotlin website show an interest‐
ing use case for the let function. Their example (repeated in Example 7-9) creates a
mutable list of strings, maps them to their lengths, and filters the result.

Example 7-9. let example from online docs, before refactoring

// Before
val numbers = mutableListOf("one", "two", "three", "four", "five")
val resultList = numbers.map { it.length }.filter { it > 3 }
println(resultList)

Assigns calculation to temp variable for printing

After refactoring to use a let block, the code looks like Example 7-10.

Example 7-10. After refactoring to use let

// After
val numbers = mutableListOf("one", "two", "three", "four", "five")
numbers.map { it.length }.filter { it > 3 }.let {
 println(it)
 // and more function calls if needed
}

The idea is that rather than assign the result to a temporary variable, the chained let
call uses the result as its context variable, so it can be printed (or more) in the pro‐
vided block. If all that is required is to print the result, this can even be reduced fur‐
ther, to the form in Example 7-11.

Example 7-11. Using a function reference in the let block

val numbers = mutableListOf("one", "two", "three", "four", "five")
numbers.map { it.length }.filter { it > 3 }.let(::println)

As a slightly more interesting example, consider a class that accesses a remote service
at Open Notify that returns the number of astronauts in space, as described in Recipe
11.6 later. The service returns JavaScript Object Notation (JSON) data and transforms
the result into instances of classes that you’ll see again in Example 11-17:

data class AstroResult(
 val message: String,
 val number: Number,
 val people: List<Assignment>
)

data class Assignment(

7.4 Using let with a Temporary Variable | 125

https://oreil.ly/5S_Xv

 val craft: String,
 val name: String
)

Example 7-12 uses the extension method URL.readText and Google’s Gson library to
convert the received JSON into an instance of AstroResult.

Example 7-12. Printing the names of astronauts currently in space

Gson().fromJson(
 URL("http://api.open-notify.org/astros.json").readText(),
 AstroResult::class.java
).people.map { it.name }.let(::println)

Uses let (or also) to print the List<String>

In this case, the basic code in the Gson().fromJson call converts the JSON data into
an instance of AstroResult. The map function then transforms the Assignment
instances into a list of strings representing the astronaut names.

As of August 2019, the output from this program is (all on one line):

[Alexey Ovchinin, Nick Hague, Christina Koch,
 Alexander Skvortsov, Luca Parmitano, Andrew Morgan]

In this case, the let in Example 7-12 could be replaced with an also. The difference
is that let returns the result of the block (Unit in the case of println) while also
would return the context object (the List<String>). Neither is used after the print, so
the difference in this case doesn’t matter. It might be more idiomatic to use also,
since that is typically used for side effects like printing. Either way works, though.

See Also
See Recipe 7.3 for how to use let with a safe call and Elvis operator in the case of
nullable values. The also function is discussed in Recipe 7.2.

126 | Chapter 7: Scope Functions

CHAPTER 8

Kotlin Delegates

This chapter talks about delegates in Kotlin. You’ll learn how to use delegates in the
standard library, including lazy, observable, vetoable, and notNull, as well as cre‐
ate your own. Class delegates let you replace inheritance with composition, and prop‐
erty delegates replace the getters and setters for a property with those from another
class.

In addition to the basic demonstrations, this chapter also shows how some of the
standard delegates are implemented in the library, as examples of good idiomatic
usage.

8.1 Implementing Composition by Delegation
Problem
You want to create a class that contains instances of other classes and delegate behav‐
ior to them.

Solution
Create interfaces that contain the delegation methods, implement them in classes,
and build the wrapper class out of them using the keyword by.

127

1 Really bad joke alert: Beethoven’s parents wouldn’t give him the family money unless he gave up writing
music, yet he still chose composition over inheritance. (Rim shot. Also, to be honest, not true.)

Discussion
Modern object-oriented design tends to favor composition rather than inheritance1 as
a way to add functionality without strong coupling. In Kotlin, the keyword by allows
a class to expose all the public functions in a contained object through the container.

For example, a smartphone contains both a phone and a camera, among other com‐
ponents. If you think of the smartphone as a wrapper object, and the internal phone
and camera as contained objects, the goal is to write the smartphone class so that its
functions invoke the corresponding ones in the contained instances.

To do this in Kotlin, you need to create interfaces for the exposed methods in the
contained objects. Consider, therefore, the Dialable and Snappable interfaces that
are implemented by Phone and Camera in Example 8-1.

Example 8-1. Interfaces and classes for contained objects

interface Dialable {
 fun dial(number: String): String
}

class Phone : Dialable {
 override fun dial(number: String) =
 "Dialing $number..."
}

interface Snappable {
 fun takePicture(): String
}

class Camera : Snappable {
 override fun takePicture() =
 "Taking picture..."
}

Now a SmartPhone class can be defined that instantiates a phone and a camera
instance in the constructor and delegates all the public functions to them, as in
Example 8-2.

Example 8-2. The SmartPhone delegates to the contained instances

class SmartPhone(
 private val phone: Dialable = Phone(),

128 | Chapter 8: Kotlin Delegates

 private val camera: Snappable = Camera()
) : Dialable by phone, Snappable by camera

Delegation using the by keyword

Now instantiating a SmartPhone allows you to invoke all the methods in Phone or
Camera, as the test cases in Example 8-3 show.

Example 8-3. Tests for the SmartPhone

import org.junit.jupiter.api.Test
import org.junit.jupiter.api.Assertions.*

class SmartPhoneTest {
 private val smartPhone: SmartPhone = SmartPhone()

 @Test
 fun `Dialing delegates to internal phone`() {
 assertEquals("Dialing 555-1234...",
 smartPhone.dial("555-1234"))
 }

 @Test
 fun `Taking picture delegates to internal camera`() {
 assertEquals("Taking picture...",
 smartPhone.takePicture())
 }
}

Instantiates SmartPhone with no arguments

Invokes delegated functions

The contained objects themselves (the instances of phone and camera) are not
exposed through the smartphone; only their public functions are. The Phone and Cam
era classes could have many other functions, but only the ones declared in the corre‐
sponding interfaces Dialable and Snappable are available. The extra work of defin‐
ing the interfaces seems like overkill, but it does keep the relationships clean.

If you play the typical game in IntelliJ of showing the Kotlin bytecode and then
decompiling it, the corresponding Java code includes the snippet in Example 8-4.

Example 8-4. Part of the decompiled bytecode from SmartPhone

public final class SmartPhone implements Dialable, Snappable {
 private final Dialable phone;
 private final Snappable camera;

8.1 Implementing Composition by Delegation | 129

 public SmartPhone(@NotNull Dialable phone, @NotNull Snappable camera) {
 // ...
 this.phone = phone;
 this.camera = camera;
 }

 @NotNull
 public String dial(@NotNull String number) {
 return this.phone.dial(number);
 }

 @NotNull
 public String takePicture() {
 return this.camera.takePicture();
 }

 // ...
}

Fields of interface type

Delegation methods

Internally, the SmartPhone class defines the delegated properties as interface types.
The corresponding class instances are supplied in the constructor. Then the delega‐
tion methods invoke the corresponding methods on the fields.

See Also
Delegated properties are examined in Recipe 8.6.

8.2 Using the lazy Delegate
Problem
You want to wait to initialize a property until it is needed.

Solution
Use the lazy delegate in the standard library.

Discussion
Kotlin uses the by keyword on properties to imply that its getter and setter are imple‐
mented by a different object, called a delegate. Several delegate functions are in the
standard library. One of the most popular is called lazy.

130 | Chapter 8: Kotlin Delegates

To use it, provide a lambda initializer of the form () -> T whose purpose is to com‐
pute the value when it is first accessed, as shown in Example 8-5.

Example 8-5. Signatures of lazy function

fun <T> lazy(initializer: () -> T): Lazy<T>

fun <T> lazy(
 mode: LazyThreadSafetyMode,
 initializer: () -> T
): Lazy<T>

fun <T> lazy(lock: Any?, initializer: () -> T): Lazy<T>

Default, synchronized on itself

Specifies how the instance synchronizes initialization among multiple threads

Uses the provided object for the synchronization lock

The versions without the mode property default to LazyThreadSafetyMode.SYNCHRON
IZED. If the initialization lambda throws an exception, it will attempt to reinitialize
the value at the next access. See Example 8-6 for a trivial example.

Example 8-6. Waiting to initialize a property until it is first accessed

val ultimateAnswer: Int by lazy {
 println("computing the answer")
 42
}

The idea is that the value of ultimateAnswer is not computed until it is first accessed,
at which point the lambda expression is evaluated. In the implementation, lazy is a
function that takes a lambda and returns an instance of Lazy<Int> that will execute
the lambda when the property is first accessed.

So the following code prints the statement “computing the answer” only once:

println(ultimateAnswer)
println(ultimateAnswer)

The first call to ultimateAnswer executes the lambda and returns the value 42, which
is then saved in the variable. Internally, Kotlin generates a special property called
myAnswer$delegate of type Lazy, which is used to cache the value.

The argument of type LazyThreadSafetyMode takes an enum whose values can be as
follows:

8.2 Using the lazy Delegate | 131

SYNCHRONIZED

Locks are used to ensure that only a single thread can initialize the Lazy instance.

PUBLICATION

Initializer function can be called several times, but only the first returned value
will be used.

NONE

No locks are used.

If an object is provided as the lock argument, the delegate synchronizes on that
object when computing the value. Otherwise, it synchronizes on itself.

The lazy delegate is appropriate when the instantiation involves more complex
objects, but the principles are the same in any case.

As an aside, the implementation of lazy in the standard library does not follow the
same pattern as the rest of the delegates. The lazy function is a top-level function,
while most of the rest are part of the Delegates instance discussed in the other rec‐
ipes in this chapter.

8.3 Ensuring That a Value Is Not Null
Problem
You want to throw an exception if a value has not been initialized before first access.

Solution
Use the notNull function to provide a delegate that throws an exception if the value
has not been set.

Discussion
Normally, a property in a Kotlin class is initialized during construction. One way to
delay this is to use the notNull function, which provides a delegate that throws an
exception if the property is used before it is first accessed.

Example 8-7 declares a property called shouldNotBeNull that must be initialized
somewhere before it is used.

Example 8-7. Require initialization before access, without specifying how

var shouldNotBeNull: String by Delegates.notNull<String>()

132 | Chapter 8: Kotlin Delegates

The test cases in Example 8-8 show that if you try to access the property before giving
it a value, Kotlin will throw an IllegalStateException.

Example 8-8. Checking the behavior of the notNull delegate

@Test
fun `uninitialized value throws exception`() {
 assertThrows<IllegalStateException> { shouldNotBeNull }
}

@Test
fun `initialize value then retrieve it`() {
 shouldNotBeNull = "Hello, World!"
 assertDoesNotThrow { shouldNotBeNull }
 assertEquals("Hello, World!", shouldNotBeNull)
}

While this behavior is straightforward enough, the interesting part comes when you
look at the implementation in Delegates.kt in the standard library. An abbreviated
version of that file is shown in Example 8-9.

Example 8-9. Implementation in standard library

object Delegates {
 fun <T : Any> notNull(): ReadWriteProperty<Any?, T> = NotNullVar()

 // ... additional functions discussed in other recipes ...
}

private class NotNullVar<T : Any>() : ReadWriteProperty<Any?, T> {
 private var value: T? = null

 override fun getValue(thisRef: Any?, property: KProperty<*>): T {
 return value ?: throw IllegalStateException(
 "Property ${property.name} should be initialized before get.")
 }

 override fun setValue(thisRef: Any?, property: KProperty<*>, value: T) {
 this.value = value
 }
}

Delegates is a singleton (object rather than class)

Factory method that instantiates NotNullVar class

Private class that implements ReadWriteProperty

8.3 Ensuring That a Value Is Not Null | 133

2 Bad joke alert: The author lives in eastern Connecticut, so there IllegalStateException means New York.
(Sorry again.)

The keyword object is used to define a singleton instance of Delegates, so the
included notNull function acts as though it were static in Java. This factory method
then instantiates the private class NotNullVar, which implements the ReadWriteProp
erty interface.

As discussed in Recipe 8.6, when you write your own custom delegates, you don’t
have to implement this interface (or the associated interface ReadOnlyProperty used
when the property cannot be changed), but you do need to include the two methods
shown. In the case of NotNullVar, the setValue function simply stores the supplied
value, while the getValue function checks that it is not null and either returns it or
throws an IllegalStateException.2

This combination of a singleton class, a factory method, and a private implementa‐
tion class is a common idiom in Kotlin. If you provide your own custom delegate,
consider following this pattern.

8.4 Using the observable and vetoable Delegates
Problem
You want to intercept changes to a property and optionally veto them.

Solution
Use the observable function to detect changes, and the vetoable function with a
lambda to decide whether to implement them.

Discussion
As with Recipe 8.3, the observable and vetoable functions in the Delegates object
in the standard library are easy to use, but the implementations demonstrate a good
pattern for writing your own.

Before getting into that, however, consider how the functions are used. In the docu‐
mentation, the signatures for the two functions are given by Example 8-10.

Example 8-10. Signatures for the observable and vetoable functions

fun <T> observable(
 initialValue: T,
 onChange: (property: KProperty<*>, oldValue: T, newValue: T) -> Unit

134 | Chapter 8: Kotlin Delegates

): ReadWriteProperty<Any?, T>

fun <T> vetoable(
 initialValue: T,
 onChange: (property: KProperty<*>, oldValue: T, newValue: T) -> Boolean
): ReadWriteProperty<Any?, T>

Both factory functions take an initial value of type T and a lambda, and return an
instance of a class that implements the ReadWriteProperty interface. Using them is
straightforward, as the examples in Example 8-11 show.

Example 8-11. Using the observable and vetoable functions

var watched: Int by Delegates.observable(1) { prop, old, new ->
 println("${prop.name} changed from $old to $new")
}

var checked: Int by Delegates.vetoable(0) { prop, old, new ->
 println("Trying to change ${prop.name} from $old to $new")
 new >= 0
}

The watched variable is an Int that is initialized to 1, and whenever it is changed, a
message is printed showing the old and new values. The checked variable is also an
Int, initialized to 0, but this time only non-negative values are allowed. The lambda
argument returns true only if the new value is greater than or equal to 0.

A test for the watched variable in Example 8-12 shows the value changes as expected.

Example 8-12. Test for the watched variable

@Test
fun `watched variable prints old and new values`() {
 assertEquals(1, watched)
 watched *= 2
 assertEquals(2, watched)
 watched *= 2
 assertEquals(4, watched)
}

This test prints to the console:

watched changed from 1 to 2
watched changed from 2 to 4

For the vetoable checked variable, the test in Example 8-13 shows that only values
greater than or equal to 0 are accepted.

8.4 Using the observable and vetoable Delegates | 135

Example 8-13. Testing the vetoable changes for checked

@Test
fun `veto values less than zero`() {
 assertAll(
 { assertEquals(0, checked) },
 { checked = 42; assertEquals(42, checked) },
 { checked = -1; assertEquals(42, checked) },
 { checked = 17; assertEquals(17, checked) }
)
}

Changing the value of checked to 42 or 17 is fine, but –1 is rejected.

Using either function is pretty straightforward, but again the really interesting part is
the way they are implemented. As with notNull, both observable and vetoable are
factory functions in the singleton Delegates object, as in Example 8-14.

Example 8-14. Factory functions in Delegates

object Delegates {
 // ... others ...

 inline fun <T> observable(initialValue: T,
 crossinline onChange: (property: KProperty<*>,
 oldValue: T, newValue: T) -> Unit): ReadWriteProperty<Any?, T> =
 object : ObservableProperty<T>(initialValue) {
 override fun afterChange(property: KProperty<*>,
 oldValue: T, newValue: T) = onChange(property, oldValue, newValue)
 }

 inline fun <T> vetoable(initialValue: T,
 crossinline onChange: (property: KProperty<*>,
 oldValue: T, newValue: T) -> Boolean): ReadWriteProperty<Any?, T> =
 object : ObservableProperty<T>(initialValue) {
 override fun beforeChange(property: KProperty<*>,
 oldValue: T, newValue: T): Boolean =
 onChange(property, oldValue, newValue)
 }
}

Those look complicated, to say the least. The first thing to notice is that both func‐
tions return an object of type ObservableProperty. That class is shown in
Example 8-15.

136 | Chapter 8: Kotlin Delegates

Example 8-15. The ObservableProperty class used to provide a delegate

abstract class ObservableProperty<T>(initialValue: T) : ReadWriteProperty<Any?, T> {
 private var value = initialValue

 protected open fun beforeChange(property: KProperty<*>,
 oldValue: T, newValue: T): Boolean = true

 protected open fun afterChange(property: KProperty<*>,
 oldValue: T, newValue: T): Unit {}

 override fun getValue(thisRef: Any?, property: KProperty<*>): T {
 return value
 }

 override fun setValue(thisRef: Any?, property: KProperty<*>, value: T) {
 val oldValue = this.value
 if (!beforeChange(property, oldValue, value)) {
 return
 }
 this.value = value
 afterChange(property, oldValue, value)
 }
}

The class stores a property of any generic type T and implements the ReadWriteProp
erty interface. That means it needs to provide the getValue and setValue functions
with the signatures shown. In this case, getValue just returns the property.

Things get interesting in the setValue function. This function stores the current
value and then invokes the beforeChange method. If that function returns true (and
the default is true), then the property is changed and the afterChange function is
invoked, which defaults to doing nothing.

This is an abstract class, whose open functions are beforeChange and afterChange,
both of which are marked protected. They both have default implementations, but
subclasses are free to override those functions.

That’s where the implementations in Example 8-14 come in. The observable func‐
tion makes an object that extends ObservableProperty and overrides the after
Change function to do whatever the supplied onChange lambda specifies. Since it does
not override beforeChanged, that function simply returns true, ensuring that the
property will be updated.

The vetoable function, on the other hand, also creates an object from a class that
extends ObservableProperty, but in this case only the beforeChanged function is
overridden. The lambda implementation of that is supplied as an argument, and it
must return a boolean, which determines whether the property will be changed.

8.4 Using the observable and vetoable Delegates | 137

Again, the work done to create the ObservableProperty class to implement the Read
WriteProperty interface but with additional life cycle methods makes it trivially easy
to implement both the observable and vetoable functions.

inline Versus crossinline
The inline keyword tells the compiler to avoid creating a completely new object just
to call a function, but rather to replace the call site with the actual source code.

Sometimes inline functions are passed lambdas as parameters that need to be exe‐
cuted from another context, such as a local object or nested function. Such “nonlocal”
control flow is not allowed in lambdas. In the examples shown, the onChange lambda
is executed in relation to the observable or vetoable functions rather than the class
extending ObservableProperty, so the crossinline modifier is necessary.

The combination of factory functions inside a singleton object that configure an
instance of a delegate class is a powerful one.

8.5 Supplying Maps as Delegates
Problem
You want to supply a map of values to initialize an object.

Solution
Kotlin maps already implement the getValue and setValue functions necessary to be
a delegate.

Discussion
If the values you need to initialize an object are in a map, you can automatically dele‐
gate the class properties to that map. For example, say you have a Project class as in
Example 8-16.

Example 8-16. A Project data class

data class Project(val map: MutableMap<String, Any?>) {
 val name: String by map
 var priority: Int by map
 var completed: Boolean by map
}

Delegation to the map argument

138 | Chapter 8: Kotlin Delegates

In this case, the Project constructor takes a MutableMap as an argument, and all the
properties are initialized from its keys. Creating an instance of the Project type
requires a map, as in Example 8-17.

Example 8-17. Creating a Project instance from a map

@Test
fun `use map delegate for Project`() {
 val project = Project(
 mutableMapOf(
 "name" to "Learn Kotlin",
 "priority" to 5,
 "completed" to true))

 assertAll(
 { assertEquals("Learn Kotlin", project.name) },
 { assertEquals(5, project.priority) },
 { assertTrue(project.completed) }
)
}

This works because MutableMap has extension functions setValue and getValue with
the proper signatures, as required in order to be a ReadWriteProperty delegate.

You might wonder, however, why the extra layer of indirection was required. In other
words, why not just make the properties part of the constructor, rather than using a
map? The documentation suggests that this mechanism arises in applications “like
parsing JSON or doing other dynamic things.”

Fair enough. The test in Example 8-18 assumes that the required properties are in a
JSON string, hardcoded here for simplicity. Then Google’s Gson library is used to
parse the string, and the resulting map is used to create a Project instance.

Example 8-18. Parsing Project properties from a JSON string

private fun getMapFromJSON() =
 Gson().fromJson<MutableMap<String, Any?>>(
 """{ "name":"Learn Kotlin", "priority":5, "completed":true}""",
 MutableMap::class.java)

@Test
fun `create project from map parsed from JSON string`() {
 val project = Project(getMapFromJSON()) //
 assertAll(
 { assertEquals("Learn Kotlin", project.name) },
 { assertEquals(5, project.priority) },
 { assertTrue(project.completed) }
)
 }

8.5 Supplying Maps as Delegates | 139

Parses a map of properties from a JSON string

Uses the map to instantiate a Project instance

The fromJson function from Gson takes a string and a type, so with Kotlin you can
specify the generic type as shown. The resulting map is of the right type to provide
values as a delegate.

8.6 Creating Your Own Delegates
Problem
You want properties of a given class to use getters and setters from another class.

Solution
Write your own property delegates by creating a class that implements either
ReadOnlyProperty or ReadWriteProperty.

Discussion
Normally, a property of a class works with a backing field, but that’s not required.
Instead, the act of getting or setting a value can be delegated to another object. To
create your own property delegate, you need to provide the functions from either the
ReadOnlyProperty or the ReadWriteProperty interfaces.

The signatures for both interfaces are given in Example 8-19.

Example 8-19. The ReadOnlyProperty and ReadWriteProperty interfaces

interface ReadOnlyProperty<in R, out T> {
 operator fun getValue(thisRef: R, property: KProperty<*>): T
}

interface ReadWriteProperty<in R, T> {
 operator fun getValue(thisRef: R, property: KProperty<*>): T
 operator fun setValue(thisRef: R, property: KProperty<*>, value: T)
}

Interestingly enough, you don’t need to implement either of these interfaces to make
a delegate. Simply having the getValue and setValue functions with the signatures
shown is enough.

A trivial example of a delegate is given in the standard documentation for delegated
properties, which includes a class called Delegate; see Example 8-20.

140 | Chapter 8: Kotlin Delegates

https://oreil.ly/GG9yz

Example 8-20. The Delegate class from the standard documentation

class Delegate {
 operator fun getValue(thisRef: Any?, property: KProperty<*>): String {
 return "$thisRef, thank you for delegating '${property.name}' to me!"
 }

 operator fun setValue(thisRef: Any?, property: KProperty<*>, value: String) {
 println("$value has been assigned to '${property.name}' in $thisRef.")
 }
}

Using this delegate involves creating a class or variable that delegates to it and then
getting or setting that variable, as in Example 8-21.

Example 8-21. Using Delegate

class Example {
 var p: String by Delegate()
}

fun main() {
 val e = Example()
 println(e.p)
 e.p = "NEW"
}

This prints the following:

delegates.Example@4c98385c, thank you for delegating 'p' to me!
NEW has been assigned to 'p' in delegates.Example@4c98385c.

Creating a class property wasn’t strictly necessary. As of Kotlin 1.1,
you can delegate a local variable as well.

The standard library includes several delegates. Recipe 8.3 shows the code for the not
Null function, which instantiates the private class NotNullVar shown in Example 8-9,
for example.

As a completely different set of examples, the Gradle build tool now provides a Kotlin
DSL that lets you interact with containers via delegated properties. Gradle has two
main sources of properties. One is the set of properties associated with the project
itself (an instance of the org.gradle.api.Project class), and the others are called
extra properties that can be used throughout a project.

8.6 Creating Your Own Delegates | 141

Say you have a build file called build.gradle.kts. Then both types of properties can be
created and accessed as in Example 8-22.

Example 8-22. Creating and accessing project and extra properties in the Gradle Kotlin
DSL

val myProperty: String by project
val myNullableProperty: String? by project

val myNewProperty by extra("initial value")
val myOtherNewProperty by extra { "lazy initial value" }

Makes the project property called myProperty available

Makes a nullable property available

Creates and initializes a new extra property called myNewProperty

Creates a property that is initialized on first access

Project properties can be set on the command line, using the -PmyProperty=value
syntax, or they can be set in a gradle.properties file. Extra properties defined as shown
are also initialized either with the given argument or with a lambda that is evaluated
on first access.

Creating property delegates is reasonably straightforward, but as the rest of this chap‐
ter shows, you’re more likely to use existing ones, either from the library or supplied
by third parties like Gradle.

142 | Chapter 8: Kotlin Delegates

CHAPTER 9

Testing

9.1 Setting the Test Class Life Cycle
Problem
You want to instantiate a JUnit 5 test only once per class instance, rather than the
default once per test function.

Solution
Use the @TestInstance annotation, or set the life cycle default property in the junit-
platform.properties file.

Discussion

This recipe, as with many of the recipes in this chapter, is based on
a blog post and presentation entitled, “Best Practices for Unit Test‐
ing in Kotlin,” by Philipp Hauer.

JUnit 4 by default creates a new instance of the test class for each test method. This
ensures that the attributes of the test class are reinitialized each time, which makes
the tests themselves independent. The downside is that the initialization code is exe‐
cuted again and again for each test.

To avoid that in Java, any properties of the class can be marked static, and any initi‐
alization code can be put in a static method that is annotated with @BeforeClass,
which will be executed only once.

143

https://oreil.ly/v82OQ
https://oreil.ly/v82OQ

As an example, consider the following JUnit 4 test for java.util.List, shown in
Example 9-1.

Example 9-1. JUnit 4 test for a list

public class JUnit4ListTests {
 private static List<String> strings =
 Arrays.asList("this", "is", "a", "list", "of", "strings");

 private List<Integer> modifiable = new ArrayList<>();

 @BeforeClass
 public static void runBefore() {
 System.out.println("BeforeClass: " + strings);
 }

 @Before
 public void initialize() {
 System.out.println("Before: " + modifiable);
 modifiable.add(3);
 modifiable.add(1);
 modifiable.add(4);
 modifiable.add(1);
 modifiable.add(5);
 }

 @Test
 public void test1() {
 // ...
 }

 @Test
 public void test2() {
 // ...
 }

 @Test
 public void test3() {
 // ...
 }

 @After
 public void finish() {
 System.out.println("After: " + modifiable);
 }

 @AfterClass
 public static void runAfter() {
 System.out.println("AfterClass: " + strings);
 }
}

144 | Chapter 9: Testing

Runs only once for the entire class

Runs once per test method

The test class has two attributes, strings and modifiable. The modifiable list is
structured to demonstrate the life cycle. It is initialized as an empty list where the
attribute is declared, and then populated in the @Before method, initialize. This is
to show that the list is empty each time that method is entered, and then populated. It
is also printed in the @After method, finish, to show that it now contains the desired
elements.

The strings list is also created and initialized each time, as part of the attribute dec‐
laration. To prevent this redundant work from being done before each test method, it
is marked static. The @BeforeClass and @AfterClass life cycle methods are used to
show that the strings collection is correctly populated.

To get the same behavior in Kotlin, you immediately encounter the problem that Kot‐
lin does not have the static keyword. A simple port to Kotlin to get the same behav‐
ior would use the companion object, as shown in Example 9-2.

Example 9-2. JUnit 4 list tests in Kotlin (see JUnit 5 for better approach)

class JUnit4ListTests {
 companion object {
 @JvmStatic
 private val strings = listOf("this", "is", "a", "list", "of", "strings")

 @BeforeClass
 @JvmStatic
 fun runBefore() {
 println("BeforeClass: $strings")
 }

 @AfterClass
 @JvmStatic
 fun runAfter() {
 println("AfterClass: $strings")
 }
 }

 private val modifiable = ArrayList<Int>()

 @Before
 fun initialize() {
 println("Before: $modifiable")
 modifiable.add(3)
 modifiable.add(1)
 modifiable.add(4)

9.1 Setting the Test Class Life Cycle | 145

 modifiable.add(1)
 modifiable.add(5)
 }

 @Test
 fun test1() {
 // ...
 }

 @Test
 fun test2() {
 // ...
 }

 @Test
 fun test3() {
 // ...
 }

 @After
 fun finish() {
 println("After: $modifiable")
 }
}

Uses companion object to run once per class

Ensures generated Java bytecodes use static modifier

The companion object is used to ensure that the strings collection is instantiated
and populated only once for the entire class. The @BeforeClass and @AfterClass
methods are also used inside the companion object, for the same purpose. Note that if
the instantiation of the list was also done in the initialize method, the strings
attribute would need to be declared with lateinit and as a var type rather than val:

class JUnit4ListTests {
 companion object {
 @JvmStatic
 private lateinit var strings

 @BeforeClass
 @JvmStatic
 fun runBefore() {
 strings = listOf("this", "is", "a", "list", "of", "strings")
 }
// ...
}

146 | Chapter 9: Testing

If this were necessary (i.e., if we were testing a more complex object than a simple list,
which needed additional configuration), then the use of var makes this even less
idiomatic Kotlin.

Fortunately, JUnit 5 provides a simpler approach. JUnit 5 allows you to specify the life
cycle of the test class itself, using the @TestInstance annotation. A better restatement
of the list tests is shown in Example 9-3.

Example 9-3. JUnit 5 list tests in Kotlin (preferred)

import org.junit.jupiter.api.*
import org.junit.jupiter.api.Assertions.assertEquals

@TestInstance(TestInstance.Lifecycle.PER_CLASS)
class JUnit5ListTests {
 private val strings =
 listOf("this", "is", "a", "list", "of", "strings")

 private lateinit var modifiable : MutableList<Int>

 @BeforeEach
 fun setUp() {
 modifiable = mutableListOf(3, 1, 4, 1, 5)
 println("Before: $modifiable")
 }

 @AfterEach
 fun finish() {
 println("After: $modifiable")
 }

 @Test
 fun test1() {
 // ...
 }

 @Test
 fun test2() {
 // ...
 }

 @Test
 fun test3() {
 // ...
 }

Only one test class instance for all tests

Instantiated and populated only once

9.1 Setting the Test Class Life Cycle | 147

Reinitialized before each test

This is far more idiomatic. By setting the test instance life cycle to PER_CLASS, only
one instance of the test is created regardless of how many test functions are included.
That means the strings attribute can be created and populated in the normal way,
using a val modifier as well.

A complication still arises if an attribute needs to be reinitialized between tests. The
test class shows that you can still use @BeforeEach and @AfterEach as necessary,
though in this case the attribute needs to use the lateinit and var modifiers. That is
a quirk of this particular class, however, because we’re using the mutableList func‐
tion to instantiate and populate the list rather than instantiating it ourselves. For
more complex (and more interesting) objects, you can instantiate them and then use
the apply method to configure them, as shown in the next recipe.

JUnit 5 allows you to set the test life cycle for all tests in a properties file, rather than
having to repeat the @TestInstance annotation on each test. If you create a file called
junit-platform.properties in the classpath (normally in the src/test/resources folder),
add the single line shown in Example 9-4.

Example 9-4. Setting the test life cycle for all tests in the project

junit.jupiter.testinstance.lifecycle.default = per_class

The only downside is that someone reading the test class has to know to check this
file, because the default behavior in JUnit 5 is still to instantiate the class for each test
function.

9.2 Using Data Classes for Tests
Problem
You want to check multiple properties of an object without bloating your code.

Solution
Create a data class that encapsulates all the desired properties.

Discussion
Data classes in Kotlin automatically include overrides for equals, toString, hash
Code, copy, and component methods for destructuring. This makes them ideal for
wrapping properties for tests.

148 | Chapter 9: Testing

Say you have a service that returns books based on ISBN numbers. The Book class is a
data class given in Example 9-5.

Example 9-5. A Book data class

data class Book(
 val isbn: String,
 val title: String,
 val author: String,
 val published: LocalDate
)

For a given book, you could manually test it by checking all the properties, as in
Example 9-6.

Example 9-6. Manually test all properties of a book (tedious)

@Test
internal fun `test book the hard way`() {
 val book = service.findBookById("1935182943")
 assertThat(book.isbn, `is`("1935182943"))
 assertThat(book.title, `is`("Making Java Groovy"))
 assertThat(book.author, `is`("Ken Kousen"))
 assertThat(book.published, `is`(LocalDate.of(2013, Month.SEPTEMBER, 30)))
}

This would work, but requires you to write out all the property assertions explicitly.
The other problem is that if the first assertion fails, it will cause the whole test to fail,
so some properties may not get checked at all. Fortunately, JUnit 5 adds the
assertAll method that takes a vararg list of Executable instances, where
Executable is a functional interface defined in Java that takes zero arguments and
returns nothing. The advantage of the assertAll function is that it will execute all
the Executable instances even if one or more fail.

Example 9-7 rewrites the previous example to take advantage of this capability.

Example 9-7. Using assertAll from JUnit 5 to test all properties

@Test
fun `use JUnit 5 assertAll`() {
 val book = service.findBookById("1935182943")
 assertAll("check all properties of a book",
 { assertThat(book.isbn, `is`("1935182943")) },
 { assertThat(book.title, `is`("Making Java Groovy")) },
 { assertThat(book.author, `is`("Ken Kousen")) },
 { assertThat(book.published,
`is`(LocalDate.of(2013, Month.SEPTEMBER, 30))) })
}

9.2 Using Data Classes for Tests | 149

Note the use of Kotlin lambdas to represent instances of Executable. The provided
lambdas match because they each take no arguments and the assertThat function
returns void.

Still, you have to write all the individual tests, and that’s annoying. Since Kotlin data
classes already have an equals method implemented correctly, this process can be
simplified, as in Example 9-8.

Example 9-8. Using the Book data class for testing

@Test
internal fun `use data class`() {
 val book = service.findBookById("1935182943")
 val expected = Book(isbn = "1935182943",
 title = "Making Java Groovy",
 author = "Ken Kousen",
 published = LocalDate.of(2013, Month.SEPTEMBER, 30))

 assertThat(book, `is`(expected))
}

Single assertion does all the work

Now the assertion takes advantage of the data class override of the equals method.

If you have a collection of instances, you can take advantage of methods provided in
the Hamcrest matchers to check all the elements, as in Example 9-9.

Example 9-9. Testing all returned books

@Test
internal fun `check all elements in list`() {
 val found = service.findAllBooksById(
 "1935182943", "1491947020", "149197317X")

 val expected = arrayOf(
 Book("1935182943", "Making Java Groovy",
 "Ken Kousen", LocalDate.parse("2013-09-30")),
 Book("1491947020", "Gradle Recipes for Android",
 "Ken Kousen", LocalDate.parse("2016-06-17")),
 Book("149197317X", "Modern Java Recipes",
 "Ken Kousen", LocalDate.parse("2017-08-26")))

 assertThat(found, arrayContainingInAnyOrder(*expected))
}

The Hamcrest method arrayContainingInAnyOrder takes a vararg list of individual
elements, so this example uses the spread operator on the array, *expected, to expand
the array into individual entries.

150 | Chapter 9: Testing

9.3 Using Helper Functions with Default Arguments
Problem
You want to rapidly create test objects.

Solution
Provide a helper function with default arguments, rather than use copy or specifying
default constructor arguments where they aren’t necessarily warranted.

Discussion
Creating test objects can be tedious. Kotlin allows you to specify default values for the
arguments in the primary constructor of a class, but sometimes there are no obvious
values. For example, consider the Book class shown in Example 9-5, repeated here for
reference:

data class Book(
 val isbn: String,
 val title: String,
 val author: String,
 val published: LocalDate
)

Rather than modifying the class to give default values for each argument, add a fac‐
tory function to produce a default, as in Example 9-10.

Example 9-10. Factory function for Book

fun createBook(
 isbn: String = "149197317X",
 title: String = "Modern Java Recipes",
 author: String = "Ken Kousen",
 published: LocalDate = LocalDate.parse("2017-08-26")
) = Book(isbn, title, author, published)

Using the factory function is as simple as Example 9-11.

Example 9-11. Creating books from the factory function

val modern_java_recipes = createBook()
val making_java_groovy = createBook(isbn = "1935182943",
 title = "Making Java Groovy",
 published = LocalDate.parse("2013-09-30"))

All defaults from factory

9.3 Using Helper Functions with Default Arguments | 151

Same author

The default arguments are being used only to create test data, so there’s no need to
add them to the domain class itself.

In principle, you could use the copy function provided on data classes to do the same
thing, but extensive use of copy can be difficult to read, particularly on nested struc‐
tures. The factory function in Example 9-12 shows that the function approach stays
simple.

Example 9-12. A multiauthor book class and usage

data class MultiAuthorBook(
 val isbn: String,
 val title: String,
 val authors: List<String>,
 val published: LocalDate
)

fun createMultiAuthorBook(
 isbn: String = "9781617293290",
 title: String = "Kotlin in Action",
 authors: List<String> = listOf("Dimitry Jeremov",
 "Svetlana Isakova"),
 published: LocalDate = LocalDate.parse("2017-08-26")
) = MultiAuthorBook(isbn, title, authors, published)

val kotlin_in_action = createMultiAuthorBook()

If you put all the factory functions in a top-level utility class, you can reuse them in
the tests.

9.4 Repeating JUnit 5 Tests with Different Data
Problem
You want to execute a JUnit 5 test with a given set of data values.

Solution
Use JUnit 5’s parameterized tests and dynamic tests.

Discussion
Say you want to test a function by using different sets of data. JUnit 5 includes para‐
meterized tests, which allow you to specify the source of that data, with options
including comma-separated values (CSV) and factory methods. Even though JUnit is

152 | Chapter 9: Testing

1 Mandatory joke: This year’s Fibonacci conference is going to be as good as the last two combined!

a Java library, tests can be written in Kotlin and used to test Kotlin code (as was done
in much of this book).

Consider a function that computes Fibonacci numbers, as implemented using a tail-
recursive algorithm in Example 9-13.

Tail recursion is discussed in Recipe 4.3.

Example 9-13. A tail-recursive function to compute the nth Fibonacci number

@JvmOverloads
tailrec fun fibonacci(n: Int, a: Int = 0, b: Int = 1): Int =
 when (n) {
 0 -> a
 1 -> b
 else -> fibonacci(n - 1, b, a + b)
 }

A Fibonacci number is defined as being the sum of the previous two Fibonacci num‐
bers, where fibonacci(0) == 0 and fibonacci(1) == 1.1 The numbers form a ser‐
ies: 1, 1, 2, 3, 5, 8, 11, and so on.

Clearly, this has to be tested. An explicit test that simply calls the function multiple
times is shown in Example 9-14.

Example 9-14. Explicitly calling the Fibonacci function

@Test
fun `Fibonacci numbers (explicit)`() {
 assertAll(
 { assertThat(fibonacci(4), `is`(3)) },
 { assertThat(fibonacci(9), `is`(34)) },
 { assertThat(fibonacci(2000), `is`(1392522469)) }
)
}

JUnit 5 defines an assertAll function to ensure that all the included tests are exe‐
cuted, even if some fail, so this works. As an alternative, you can reformulate the test
as a parameterized test by using a CSV source, as in Example 9-15.

9.4 Repeating JUnit 5 Tests with Different Data | 153

Example 9-15. Using CSV data to perform a parameterized test

@ParameterizedTest
@CsvSource("1, 1", "2, 1", "3, 2",
 "4, 3", "5, 5", "6, 8", "7, 13",
 "8, 21", "9, 34", "10, 55")
fun `first 10 Fibonacci numbers (csv)`(n: Int, fib: Int) =
 assertThat(fibonacci(n), `is`(fib))

The @CsvSource annotation takes as its argument a list of strings that are the input
data for the function. Each string provides all the needed arguments to the function,
which are separated by commas. This example checks the first 10 Fibonacci numbers,
and the result is as follows:

 [1] 1, 1 first 10 Fibonacci numbers (csv)(int, int)[1] 0s passed
 [2] 2, 1 first 10 Fibonacci numbers (csv)(int, int)[2] 0s passed
 [3] 3, 2 first 10 Fibonacci numbers (csv)(int, int)[3] 0s passed
 [4] 4, 3 first 10 Fibonacci numbers (csv)(int, int)[4] 0s passed
 [5] 5, 5 first 10 Fibonacci numbers (csv)(int, int)[5] 0s passed
 [6] 6, 8 first 10 Fibonacci numbers (csv)(int, int)[6] 0s passed
 [7] 7, 13 first 10 Fibonacci numbers (csv)(int, int)[7] 0s passed
 [8] 8, 21 first 10 Fibonacci numbers (csv)(int, int)[8] 0s passed
 [9] 9, 34 first 10 Fibonacci numbers (csv)(int, int)[9] 0s passed
[10] 10, 55 first 10 Fibonacci numbers (csv)(int, int)[10] 0s passed

JUnit 5 also can use factory methods to generate the test data. In Java, a factory
method in the test class must be static unless the test is annotated with @TestIn
stance(Lifecycle.PER_CLASS), and if it is defined in an external class, it must
always be static. It also cannot accept any arguments. Finally, the return type must
be something the library knows how to iterate over, which includes streams, collec‐
tions, iterables, iterators, or arrays.

If the life cycle is Lifecycle.PER_CLASS, as earlier recipes in this chapter use, then
you can simply add a function to produce the data and reference it with @Method
Source, as in Example 9-16.

Example 9-16. Accessing an instance function as a parameter source

private fun fibnumbers() = listOf(
 Arguments.of(1, 1), Arguments.of(2, 1),
 Arguments.of(3, 2), Arguments.of(4, 3),
 Arguments.of(5, 5), Arguments.of(6, 8),
 Arguments.of(7, 13), Arguments.of(8, 21),
 Arguments.of(9, 34), Arguments.of(10, 55))

@ParameterizedTest(name = "fibonacci({0}) == {1}")
@MethodSource("fibnumbers")
fun `first 10 Fibonacci numbers (instance method)`(n: Int, fib: Int) =
 assertThat(fibonacci(n), `is`(fib))

154 | Chapter 9: Testing

JUnit provides the Arguments class with a factory method called of to put both input
arguments together. The return type is List<Arguments>, where each element holds
the two input arguments for the test method.

If the life cycle is the default Lifecycle.PER_METHOD you need to put the source func‐
tion inside a companion object, as in Example 9-17.

Example 9-17. Using a companion object to hold the parameter source function

companion object {
// needed if parameterized test done with Lifecycle.PER_METHOD
 @JvmStatic
 fun fibs() = listOf(
 Arguments.of(1, 1), Arguments.of(2, 1),
 Arguments.of(3, 2), Arguments.of(4, 3),
 Arguments.of(5, 5), Arguments.of(6, 8),
 Arguments.of(7, 13), Arguments.of(8, 21),
 Arguments.of(9, 34), Arguments.of(10, 55))
}

@ParameterizedTest(name = "fibonacci({0}) == {1}")
@MethodSource("fibs")
fun `first 10 Fibonacci numbers (companion method)`(n: Int, fib: Int) =
 assertThat(fibonacci(n), `is`(fib))

Needed so the JUnit library (Java) will see fun as static

The only quirk here is that you need to add the @JvmStatic annotation so that the
Java library JUnit will see the method source as a static method.

Finally, note that the @ParameterizedTest annotation takes a string argument that
allows you to format the tests on the test report. The result for either set resembles
this:

fibonacci(1) == 1 first 10 Fibonacci numbers (method)(int, int)[1]
fibonacci(2) == 1 first 10 Fibonacci numbers (method)(int, int)[2]
fibonacci(3) == 2 first 10 Fibonacci numbers (method)(int, int)[3]
fibonacci(4) == 3 first 10 Fibonacci numbers (method)(int, int)[4]
fibonacci(5) == 5 first 10 Fibonacci numbers (method)(int, int)[5]
fibonacci(6) == 8 first 10 Fibonacci numbers (method)(int, int)[6]
fibonacci(7) == 13 first 10 Fibonacci numbers (method)(int, int)[7]
fibonacci(8) == 21 first 10 Fibonacci numbers (method)(int, int)[8]
fibonacci(9) == 34 first 10 Fibonacci numbers (method)(int, int)[9]
fibonacci(10) == 55 first 10 Fibonacci numbers (method)(int, int)[10]

See Also
For more complex data, you can create a data class to hold it, which is discussed in
Recipe 9.5.

9.4 Repeating JUnit 5 Tests with Different Data | 155

9.5 Using Data Classes for Parameterized Tests
Problem
You want to produce easily readable test output for parameterized tests.

Solution
Create a data class that wraps the inputs and expected values, and use a function as a
method source to generate the test data.

Discussion
JUnit 5 includes a capability known as parameterized tests: the test data is supplied by
a method or a file, and each sample is run through the same test. Recipe 9.4 discusses
that facility in detail. Each test in those examples, however, came down to an asser‐
tion that a processed value was equal to an expected one.

Consider the fibonacci function defined in Example 9-13, repeated here for
simplicity:

@JvmOverloads
tailrec fun fibonacci(n: Int, a: Int = 0, b: Int = 1): Int =
 when (n) {
 0 -> a
 1 -> b
 else -> fibonacci(n - 1, b, a + b)
 }

The additional parameters a and b in this calculation are there to implement tail
recursion and are given the appropriate default values. That means invoking the func‐
tion is normally done with a single integer, and an integer is returned. Therefore,
define a data class to hold the input and expected output, as in Example 9-18.

Example 9-18. Data class to hold input and expected output

data class FibonacciTestData(val number: Int, val expected: Int)

Because Kotlin data classes have a toString override already, you can build a test
method for parameterized tests that instantiates the data class for each pair of inputs
and outputs. See Example 9-19.

Example 9-19. Parameterized test using the data class

@ParameterizedTest
@MethodSource("fibonacciTestData")
fun `check fibonacci using data class`(data: FibonacciTestData) {

156 | Chapter 9: Testing

 assertThat(fibonacci(data.number), `is`(data.expected))
}

private fun fibonacciTestData() = Stream.of(
 FibonacciTestData(number = 1, expected = 1),
 FibonacciTestData(number = 2, expected = 1),
 FibonacciTestData(number = 3, expected = 2),
 FibonacciTestData(number = 4, expected = 3),
 FibonacciTestData(number = 5, expected = 5),
 FibonacciTestData(number = 6, expected = 8),
 FibonacciTestData(number = 7, expected = 13)
)

For JUnit tests that use a method source, the function must be
static (in the Java sense) unless the test life cycle has been set to
TestInstance.Lifecycle.PER_CLASS. Otherwise, move the private
function into a companion object and mark it with @JvmStatic
(see Recipe 9.1 for details).

The output from the test is as follows:

check fibonacci using data class(FibonacciTestData)
 [1] FibonacciTestData(number=1, expected=1)
 [2] FibonacciTestData(number=2, expected=1)
 [3] FibonacciTestData(number=3, expected=2)
 [4] FibonacciTestData(number=4, expected=3)
 [5] FibonacciTestData(number=5, expected=5)
 [6] FibonacciTestData(number=6, expected=8)
 [7] FibonacciTestData(number=7, expected=13)

The data class FibonacciTestData automatically defines a toString method that
makes the results easy to read.

See Also
Parameterized tests in JUnit 5 are the subject of Recipe 9.4.

9.5 Using Data Classes for Parameterized Tests | 157

CHAPTER 10

Input/Output

Kotlin makes doing input/output (I/O) operations easy, but the style is different from
what a Java developer may expect. Resources in Kotlin are frequently closed by
employing a use function that does so on the user’s behalf. This chapter includes a
couple of recipes that focus on that approach, specifically for files, but that can be
generalized to other resources.

10.1 Managing Resources with use
Problem
You want to process a resource such as a file and be sure that it is closed when you are
finished, but Kotlin does not support Java’s try-with-resources construct.

Solution
Use the extension functions use or useLines on readers or input/output streams.

Discussion
Java 1.7 introduced the try-with-resources construct, which allows a developer to
open a resource inside parentheses between the try keyword and its corresponding
block; the JVM will automatically close the resource when the try block ends. The
only requirement is that the resource come from a class that implements the Closea
ble interface. File, Stream, and many other classes implement Closeable, as the
example in Example 10-1 shows.

159

Example 10-1. Using try-with-resources from Java

package io;

import java.io.*;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.stream.Stream;

public class TryWithResourcesDemo {
 public static void main(String[] args) throws IOException {
 String path = "src/main/resources/book_data.csv";

 File file = new File(path);
 String line = null;
 try (BufferedReader reader = new BufferedReader(new FileReader(file))) {
 while ((line = reader.readLine()) != null) {
 System.out.println(line);
 }
 }

 try (Stream<String> lines = Files.lines(Paths.get(path))) {
 lines.forEach(System.out::println);
 }
 }
}

BufferedReader implements Closeable

Stream implements Closeable

Both the BufferedReader class and Stream interface implement Closeable, so each
has a close method that is automatically invoked when the try block completes.

A few interesting features are worth noting:

• In Java 10 or above, the declaration of BufferedReader and Stream could be
replaced by the reserved word var. In fact, this is one of the primary use cases for
local variable type inference. It is not used here to avoid confusion with Kotlin’s
var keyword.

• In Java 9 or above, you no longer have to create the Closeable variable inside the
parentheses. It can be supplied from outside. Again, there is no benefit to doing
so here.

• Since the main method signature was modified to throw IOException, the result
is one of those rare moments when you have a try block without either a catch
or a finally.

160 | Chapter 10: Input/Output

This is all well and good, but unfortunately the try-with-resources construct is not
supported by Kotlin. Instead, Kotlin adds the extension functions use to Closeable
and useLines to Reader and File.

The signature of useLines is given by the following:

inline fun <T> File.useLines(
 charset: Charset = Charsets.UTF_8,
 block: (Sequence<String>) -> T
): T

The optional first argument is a character set, which defaults to UTF-8. The second
argument is a lambda that maps a Sequence of lines from the file into a generic argu‐
ment, T. The implementation of the useLines function automatically closes the
reader after the processing is complete.

As an example, on Unix systems ultimately based on BSD (which include macOS),
there is a file containing all the words from Webster’s Second International Dictio‐
nary, which is out of copyright. On a Mac, the file is located in the directory /usr/
share/dict/words, and contains 238,000 words, one per line. Example 10-2 returns the
10 longest words in the dictionary.

Example 10-2. Finding the 10 longest words in the dictionary

fun get10LongestWordsInDictionary() =
 File("/usr/share/dict/words").useLines { line ->
 line.filter { it.length > 20 }
 .sortedByDescending(String::length)
 .take(10)
 .toList()
 }

The function filters out any line shorter than 20 characters (and since each line has a
single word, that’s any word shorter than 20 characters), sorts them by length in
descending order, selects the first 10, and returns them in a list.

To call this function, use the following:

get10LongestWordsInDictionary().forEach { word ->
 println("$word (${word.length})")

This prints the following:

formaldehydesulphoxylate (24)
pathologicopsychological (24)
scientificophilosophical (24)
tetraiodophenolphthalein (24)
thyroparathyroidectomize (24)
anthropomorphologically (23)
blepharosphincterectomy (23)
epididymodeferentectomy (23)

10.1 Managing Resources with use | 161

formaldehydesulphoxylic (23)
gastroenteroanastomosis (23)

The implementation of File.useLines in the standard library is given by
Example 10-3.

Example 10-3. Implementation of useLines as an extension function on File

inline fun <T> Reader.useLines(
 block: (Sequence<String>) -> T): T =
 buffered().use { block(it.lineSequence()) }

Note that the implementation creates a buffered reader (returned by the buffered
function) and delegates to its use function.

The corresponding signature of the use function is given by Example 10-4.

Example 10-4. Signature of the use extension function on Closeable

inline fun <T : Closeable?, R> T.use(block: (T) -> R): R

The implementation is complicated by the need for exception handling, but at its base
it is similar to this:

try {
 return block(this)
} catch (e: Throwable) {
 // save the exception to be used later
 throw e
} finally {
 close() // requires another try/catch block
}

The use block is an example of the Execute Around Method design pattern, where
the infrastructure code is built into the library, and a provided lambda does the actual
work. This separation of infrastructure from business logic makes it easier to focus on
the task at hand.

The use function in this recipe is defined on Closeable, which is
available in Java 6. If you require the underlying JDK to support
Java 8, the same function is defined in AutoCloseable as well.

See Also
Recipe 10.2 shows how to code with the use block directly. The use function is also
employed to shut down a Java thread pool in Recipe 13.4.

162 | Chapter 10: Input/Output

10.2 Writing to a File
Problem
You want to write to a file.

Solution
In addition to the normal Java input/output (I/O) methods, extension functions to
the File class return output streams and writers.

Discussion
Several extension functions have been added to Java’s java.io.File class. You can
iterate through a file by using the forEachLine function. You can call readLines on a
file to get a collection containing all the lines in the file, which is useful if the file is
not very large. The useLines function, described in Recipe 10.1, allows you to supply
a function that will be invoked on each line. If the file is small enough, you can use
readText or readBytes to read the entire contents into a string or a byte array,
respectively.

If you want to write to a file and replace all of its existing contents, use the writeText
function, as in Example 10-5.

Example 10-5. Replacing all the text in a file

File("myfile.txt").writeText("My data")

It’s hard to be much simpler than that. The writeText function takes an optional
parameter to represent the character set, whose default value is UTF-8.

The File class also has an extension function called appendText, which can add data
to a given file.

The writeText and appendText functions delegate to writeBytes and appendBytes,
each of which takes advantage of the use function to ensure that the file is closed
when writing is finished.

You can also use the writer (or printWriter) and bufferedWriter functions, which
return an OutputStreamWriter and a BufferedWriter, as you might expect. With
either of them, you can add a use block to do the actual writing, as in Example 10-6.

Example 10-6. Writing with the use function

File(fileName).printWriter().use { writer ->
 writer.println(data) }

10.2 Writing to a File | 163

Using bufferedWriter with a use block works exactly the same way.

See Also
Recipe 10.1 goes into detail about the use and useLines functions.

164 | Chapter 10: Input/Output

CHAPTER 11

Miscellaneous

This chapter consists of recipes that don’t fit any of the other headings. Here you’ll
find how to make the when function exhaustive, how to measure the elapsed time of a
function, and how to use the TODO function from the standard library, among many
others.

11.1 Working with the Kotlin Version
Problem
You want to find out programmatically which version of Kotlin you are currently
using.

Solution
Use the CURRENT property in the companion object of the KotlinVersion class.

Discussion
Since version 1.1, the kotlin package includes a class called KotlinVersion that wraps
the major, minor, and patch values for the version number. Its toString method
returns the combination as major.minor.patch given an instance of this class. The cur‐
rent instance of the class is contained in a public field called CURRENT in the compan‐
ion object.

It’s therefore trivially easy to return the current Kotlin version. Just access the field
KotlinVersion.CURRENT, as in Example 11-1.

165

Example 11-1. Printing the current Kotlin version

fun main(args: Array<String>) {
 println("The current Kotlin version is ${KotlinVersion.CURRENT}")
}

The result is the major/minor/patch version of the Kotlin compiler, such as 1.3.41.
All three parts of this quantity are integers between 0 and MAX_COMPONENT_VALUE,
which has the value 255.

The CURRENT property is annotated as a public @JvmField in the
source code, so it is available from Java as well.

The KotlinVersion class implements the Comparable interface. That means you can
use operators like < or > with it. The class also implements both equals and hash
Code. Finally, the constructors for KotlinVersion allow you to supply either a major
and a minor value, or a major, a minor, and a patch value.

As a result, you can do any of the following shown in Example 11-2.

Example 11-2. Comparing Kotlin versions

@Test
fun `comparison of KotlinVersion instances work`() {
 val v12 = KotlinVersion(major = 1, minor = 2)
 val v1341 = KotlinVersion(1, 3, 41)
 assertAll(
 { assertTrue(v12 < KotlinVersion.CURRENT) },
 { assertTrue(v1341 <= KotlinVersion.CURRENT) },
 { assertEquals(KotlinVersion(1, 3, 41),
 KotlinVersion(major = 1, minor = 3, patch = 41)) }
)
}

The isAtLeast function is also available, to check whether a particular version of
Kotlin is not less than major, minor, and patch values, as shown in Example 11-3.

Example 11-3. Checking that a version is above given values

@Test
fun `current version is at least 1_3`() {
 assertTrue(KotlinVersion.CURRENT.isAtLeast(major = 1, minor = 3))
 assertTrue(KotlinVersion.CURRENT.isAtLeast(major = 1, minor = 3, patch = 40))
}

166 | Chapter 11: Miscellaneous

It is therefore easy enough to check the Kotlin version and work with it directly.

11.2 Executing a Lambda Repeatedly
Problem
You want to execute a given lambda expression multiple times.

Solution
Use the built-in repeat function.

Discussion
The repeat function is in the standard library. It is an inline function that takes two
arguments: an Int representing the number of times to iterate, and a function of the
form (Int) -> Unit to execute.

The current implementation looks like Example 11-4.

Example 11-4. Definition of the repeat function

@kotlin.internal.InlineOnly
public inline fun repeat(times: Int, action: (Int) -> Unit) {
 contract { callsInPlace(action) }

 for (index in 0 until times) {
 action(index)
 }
}

The function executes a provided lambda a specified number of times, providing a
zero-based index of the current iteration as a parameter.

A trivial example is shown in Example 11-5.

Example 11-5. Using repeat

fun main(args: Array<String>) {
 repeat(5) {
 println("Counting: $it")
 }
}

11.2 Executing a Lambda Repeatedly | 167

The output is simply this:

Counting: 0
Counting: 1
Counting: 2
Counting: 3
Counting: 4

Using repeat rather than a loop is an illustration of an internal iterator, where the
actual looping process is handled by the library.

11.3 Forcing when to Be Exhaustive
Problem
You want the compiler to force the when statement to have a clause for every
possibility.

Solution
Add a simple extension property called exhaustive to a generic type that returns a
value, and chain it to the when block.

Discussion
Like the if statement, a notable feature of the when clause is that it returns a value. It
behaves similarly to Java’s switch statement, but unlike Java, you don’t need to break
out of each section, nor do you need to declare a variable outside it if you want to
return a value.

For example, say you want to print out the remainder when a number is divided by 3,
as in Example 11-6.

Example 11-6. Remainder when a number is divided by 3

fun printMod3(n: Int) {
 when (n % 3) {
 0 -> println("$n % 3 == 0")
 1 -> println("$n % 3 == 1")
 2 -> println("$n % 3 == 2")
 }
}

If a when expression does not return a value, Kotlin does not require it to be exhaus‐
tive, and this is an example where that is useful. Mathematically, we know that the
remainder can be only 0, 1, or 2, so this is in fact an exhaustive check, but the

168 | Chapter 11: Miscellaneous

compiler can’t make that leap. If this simple function is converted into an expression,
as in Example 11-7, that becomes clear.

Example 11-7. Using when to return a value

fun printMod3SingleStatement(n: Int) = when (n % 3) {
 0 -> println("$n % 3 == 0")
 1 -> println("$n % 3 == 1")
 2 -> println("$n % 3 == 2")
 else -> println("Houston, we have a problem...")
}

Does not compile without else clause

The compiler requires the else clause in this expression, even though the println
function does not return anything. The presence of the equals sign means there’s an
assignment, which means Kotlin requires an exhaustive conditional expression.

Since Kotlin interprets any return as forcing an else block, you can take advantage of
that to force all when blocks to be exhaustive by making them automatically return a
value. To do so, create an extension property called exhaustive, as shown in
Example 11-8.

Example 11-8. Adding an exhaustive property to any object

val <T> T.exhaustive: T
 get() = this

This block adds the exhaustive property to any generic type T, with a custom getter
method that returns the current object.

Now this property can be added to anything, including a when block, to force an arti‐
ficial return. Example 11-9 shows how this is done.

Example 11-9. Remainder when a number is divided by 3 (exhaustive)

fun printMod3Exhaustive(n: Int) {
 when (n % 3) {
 0 -> println("$n % 3 == 0")
 1 -> println("$n % 3 == 1")
 2 -> println("$n % 3 == 2")
 else -> println("Houston, we have a problem...")
 }.exhaustive
}

Property forces the compiler to require else clause

11.3 Forcing when to Be Exhaustive | 169

The exhaustive property at the end of the when block returns the current object, so
the Kotlin compiler requires it to be exhaustive.

While the purpose of this example was to force when to be exhaustive, it is also a nice
example of how adding a simple extension property to a generic type can be useful as
well.

11.4 Using the replace Function with Regular Expressions
Problem
You want to replace all instances of a substring with a given value.

Solution
Use the replace function on String, which is overloaded to take either a String
argument or a regular expression.

Discussion
The String class implements the CharSequence interface, which means there are
actually two versions of the replace function defined for it, as shown in
Example 11-10.

Example 11-10. Two overloads for replace

fun String.replace(
 oldValue: String,
 newValue: String,
 ignoreCase: Boolean = false
): String

fun CharSequence.replace(
 regex: Regex,
 replacement: String
): String

Each of these replaces all the occurrences of the matching string or regular expression
with the supplied value. The replace function defined on String takes an optional
argument about case sensitivity, which defaults to not ignoring case.

These two overloads can be confusing, because a user might assume that the first one
(which takes a String argument) will treat the string as though it were a regular
expression, but that turns out not to be the case. The test in Example 11-11 shows the
differences between the two functions.

170 | Chapter 11: Miscellaneous

Example 11-11. Using replace with the two overloads

@Test
fun `demonstrate replace with a string vs regex`() {
 assertAll(
 { assertEquals("one*two*", "one.two.".replace(".", "*")) },
 { assertEquals("********", "one.two.".replace(".".toRegex(), "*")) }
)
}

The first example replaces the (literal) dots with an asterisk, while the second exam‐
ple treats the dots as they would be handled by regular expressions, meaning any sin‐
gle character. The first option therefore replaces only the two dots with asterisks,
while the second one replaces all the individual characters with asterisks.

In fact, two potential traps exist for Java developers here:

• The replace function replaces all occurrences, not just the first one. In Java, the
equivalent method is called replaceAll.

• The overload with a string as the first argument does not interpret that string as a
regular expression. Again, this is unlike the Java method behavior. If you meant
for your string to be interpreted as a regular expression, first convert it by using
the toRegex function.

To give a more interesting example, consider checking whether a string is a palin‐
drome. Palindromes are defined as strings that are the same forward and backward,
ignoring both case and punctuation. Note that you can implement the function in a
Java style (i.e., “speaking Kotlin with a Java accent”), as in Example 11-12.

Example 11-12. Palindrome checker, written in Java style

fun isPal(string: String): Boolean {
 val testString = string.toLowerCase().replace("""[\W+]""".toRegex(), "")
 return testString == testString.reversed()
}

There is nothing wrong with this approach, and it works just fine. It changes the
string to lowercase and then uses the regular expression version of replace to replace
all “nonword characters” with empty strings. In a regular expression, \w would repre‐
sent any word character, meaning lowercase a–z, uppercase A–Z, the numbers 0–9,
and underscores. The capitalized version of \w is \W, which is the opposite of \w.

An arguably more idiomatic version of this same function is shown in
Example 11-13.

11.4 Using the replace Function with Regular Expressions | 171

Example 11-13. Palindrome checker, Kotlin style

fun String.isPalindrome() =
 this.toLowerCase().replace("""[\W+]""".toRegex(), "")
 .let { it == it.reversed() }

The differences are as follows:

• In this case, isPalindrome is added as an extension function to String, so no
argument is needed. Inside the implementation, the current string is referenced
as this.

• The let function allows you to write the entire test as a single expression on the
generated test string. The local variable testString is no longer needed.

• Because now the body is a single expression, the braces have been replaced with
an equals sign, as often happens in Kotlin functions.

The two approaches work the same way, but you’re more likely to encounter the sec‐
ond approach from more experienced Kotlin developers. It’s no doubt best to be
familiar with both techniques. Either way, the implementation uses the overload of
replace that takes a regular expression as its first argument.

See Also
The let function is discussed in Recipes 7.3 and 7.4.

11.5 Converting to Binary String and Back
Problem
You want to convert a number to a binary string (or some other base), or parse such a
string to an integer.

Solution
Use the toString or toInt function overloads that take a radix as an argument.

Discussion
The StringsKt class contains an inline extension function on Int called toString
that takes a radix. Likewise, the same class contains an extension function on Int to
go the other way. That means you can convert from an Int into a binary string (i.e., a
string composed of 1s and 0s) by invoking that method, as in Example 11-14.

172 | Chapter 11: Miscellaneous

Example 11-14. Converting an Int to a binary string

@Test
internal fun toBinaryStringAndBack() {
 val str = 42.toString(radix = 2)
 assertThat(str, `is`("101010"))

 val num = "101010".toInt(radix = 2)
 assertThat(num, `is`(42))
}

The string produced by toString(Int) will truncate any leading zeros. If you don’t
want to do that, you can postprocess the string by using the padStart function.

Say that you need to encode data by a single binary property. For example, playing
cards come in red and black colors, and you want all permutations of four consecu‐
tive cards. That’s a simple matter of counting from 0 to 15 in binary (with 0 repre‐
senting red and 1 for black, or the other way around), but you don’t want to lose the
leading zeros in that case. You can solve that problem as shown in Example 11-15.

Example 11-15. Padding binary strings

@Test
internal fun paddedBinaryString() {
 val strings = (0..15).map {
 it.toString(2).padStart(4, '0')
 }

 assertThat(strings, contains(
 "0000", "0001", "0010", "0011",
 "0100", "0101", "0110", "0111",
 "1000", "1001", "1010", "1011",
 "1100", "1101", "1110", "1111"))

 val nums = strings.map { it.toInt(2) }
 assertThat(nums, contains(
 0, 1, 2, 3,
 4, 5, 6, 7,
 8, 9, 10, 11,
 12, 13, 14, 15))
}

Because the toString and toInt functions work for all integer bases, you don’t have
to restrict yourself to binary, though that’s probably the most common use case. That
means a nice variation on the classic joke (mentioned in Example 2-27) is as follows:

val joke = """
 There are ${3.toString(3)} kinds of developers:
 - Those who know binary,
 - Those who don't, and

11.5 Converting to Binary String and Back | 173

 - Those who didn't realize this is actually a ternary joke"""

println(joke)

That prints the following:
There are 10 kinds of developers:

• Those who know binary,

• Those who don’t, and

• Those who didn’t realize this is actually a ternary joke.

11.6 Making a Class Executable
Problem
You have a class that contains a single function, and you want to make invoking that
function trivial.

Solution
Override the invoke operator function on the class to call the function.

Discussion
Many operators in Kotlin can be overridden. To do so, you only need to override the
function associated with that operator.

The Kotlin reference docs refer to this as operator overloading, but
the concept is the same.

To implement an operator, you provide a member function or an extension function
with the proper name and arguments. Any function that overloads operators needs to
include the operator modifier.

One particular function is special: invoke. The invoke operator function allows
instances of a class to be called as functions.

As an example, consider the free RESTful web service provided by Open Notify that
returns JSON data representing the number of astronauts in space at any given
moment. An example of the returned data is shown in Example 11-16.

174 | Chapter 11: Miscellaneous

https://oreil.ly/Bs7vn

Example 11-16. JSON data returned by the Open Notify service

{
 "people": [
 { "name": "Oleg Kononenko", "craft": "ISS" },
 { "name": "David Saint-Jacques", "craft": "ISS" },
 { "name": "Anne McClain", "craft": "ISS" }
],
 "number": 3,
 "message": "success"
}

The response shows that three astronauts are currently aboard the International
Space Station.

The nested JSON objects imply that to parse this structure, two Kotlin classes are
required, as shown in Example 11-17.

Example 11-17. Data classes modeling the returned JSON data

data class AstroResult(
 val message: String,
 val number: Number,
 val people: List<Assignment>
)

data class Assignment(
 val craft: String,
 val name: String
)

The Assignment class is the combination of astronaut name and craft. The AstroRe
sult class is used for the overall response, which includes (hopefully) the “success”
message, the number of astronauts, and their assignments.

If all you need is a simple HTTP GET request, Kotlin added an extension function
called readText to the java.net.URL class. Invoking the sample service is therefore as
simple as calling

var response = URL("http://...").readText()

and processing the resulting JSON string. Since the desired URL is a constant and
you can use any library, such as Google’s Gson, to parse the JSON data, a reasonable
class for accessing the service is given in Example 11-18.

Example 11-18. Accessing the RESTful service and parsing the result

import com.google.gson.Gson
import java.net.URL

11.6 Making a Class Executable | 175

class AstroRequest {
 companion object {
 private const val ASTRO_URL =
 "http://api.open-notify.org/astros.json"
 }

 // fun execute(): AstroResult {
 operator fun invoke(): AstroResult {
 val responseString = URL(ASTRO_URL).readText()
 return Gson().fromJson(responseString,
 AstroResult::class.java)
 }
}

Arbitrary name for included function

Operator function invoke makes class executable

In this class, the URL for the service is added to the companion object and specified
to be a constant. The single function is used to access the service and provide the
resulting string to Gson for parsing into an instance of AstroResult.

The function could be called anything. If it had been called execute, for instance,
then invoking it would be done as follows:

val request = AstroRequest()
val result = request.execute()
println(result.message)

And so on. There’s nothing wrong with that approach, but observe that the class
exists only to contain the single function. Kotlin is fine with using top-level functions,
but it seems appropriate to include the URL as a constant as well. In other words, it is
natural to create a class like AstroRequest as shown.

Since there is only one purpose for the class, changing the name of the function to
invoke and adding the keyword operator to it makes the class itself executable, as
Example 11-19 shows.

Example 11-19. Using the executable class

internal class AstroRequestTest {
 val request = AstroRequest()

 @Test
 internal fun `get people in space`() {
 val result = request()
 assertThat(result.message, `is`("success"))
 assertThat(result.number.toInt(),
 `is`(greaterThanOrEqualTo(0)))
 assertThat(result.people.size,

176 | Chapter 11: Miscellaneous

 `is`(result.number.toInt()))
 }
}

Instantiates the class

Invokes the class as a function (calls invoke)

Because AstroResult and Assignment are data classes, you can always just print the
result, which looks like this:

AstroResult(message=success, number=3,
 people=[Assignment(craft=ISS, name=Oleg Kononenko),
 Assignment(craft=ISS, name=David Saint-Jacques),
 Assignment(craft=ISS, name=Anne McClain)])

The tests verify the individual properties.

By supplying the invoke operator function, the instance can be executed directly by
adding parentheses to a reference. If desired, you can also add overloads of the
invoke function with any needed arguments.

See also
Recipe 3.5 discusses operator overloading in more detail.

11.7 Measuring Elapsed Time
Problem
You want to know how long a code block takes to run.

Solution
Use either the measureTimeMillis or measureNanoTime functions in the standard
library.

Discussion
The kotlin.system package includes the measureTimeMillis and measureNanoTime
functions. Using them to determine how long a block takes to run is quite simple, as
shown in Example 11-20.

Example 11-20. Measuring elapsed time for a code block

fun doubleIt(x: Int): Int {
 Thread.sleep(100L)

11.7 Measuring Elapsed Time | 177

 println("doubling $x with on thread ${Thread.currentThread().name}")
 return x * 2
}

fun main() {
 println("${Runtime.getRuntime().availableProcessors()} processors")

 var time = measureTimeMillis {
 IntStream.rangeClosed(1, 6)
 .map { doubleIt(it) }
 .sum()
 }
 println("Sequential stream took ${time}ms")

 time = measureTimeMillis {
 IntStream.rangeClosed(1, 6)
 .parallel()
 .map { doubleIt(it) }
 .sum()
 }
 println("Parallel stream took ${time}ms")
}

The output of this snippet resembles the following:

This machine has 8 processors
doubling 1 with on thread main
doubling 2 with on thread main
doubling 3 with on thread main
doubling 4 with on thread main
doubling 5 with on thread main
doubling 6 with on thread main
Sequential stream took 616ms
doubling 3 with on thread ForkJoinPool.commonPool-worker-11
doubling 4 with on thread main
doubling 5 with on thread ForkJoinPool.commonPool-worker-7
doubling 6 with on thread ForkJoinPool.commonPool-worker-3
doubling 2 with on thread ForkJoinPool.commonPool-worker-5
doubling 1 with on thread ForkJoinPool.commonPool-worker-9
Parallel stream took 110ms

Since the JVM reports eight processors, the parallel function on a stream splits the
work among them and each processor gets a single element to double. Thus the result
is that running the operation in parallel takes only about 100 milliseconds, while run‐
ning it sequentially takes about 600 milliseconds.

The implementation of the measureTimeMillis function in the standard library is
shown in Example 11-21.

178 | Chapter 11: Miscellaneous

Example 11-21. Implementation of the measureTimeMillis function

public inline fun measureTimeMillis(block: () -> Unit): Long {
 val start = System.currentTimeMillis()
 block()
 return System.currentTimeMillis() - start
}

Because it takes a lambda as an argument, this is a higher-order function, so as is typ‐
ical, it is inlined for efficiency. The implementation just delegates to Java’s System.cur
rentTimeMillis method before and after executing the block argument. The imple‐
mentation of measureNanoTime does the same thing, but delegates to System.nano
Time.

These two functions make it easy to do a simple profile of code performance. For a
better estimate, consider the Java Microbenchmark Harness (JMH) project at
OpenJDK.

11.8 Starting Threads
Problem
You want to run code blocks on concurrent threads.

Solution
Use the thread function in the kotlin.concurrent package.

Discussion
Kotlin provides a trivial extension function called thread that can be used to create
and start threads easily. The signature of thread is shown here:

fun thread(
 start: Boolean = true,
 isDaemon: Boolean = false,
 contextClassLoader: ClassLoader? = null,
 name: String? = null,
 priority: Int = -1,
 block: () -> Unit
): Thread

Because start defaults to true, this makes it easy to create and start multiple threads,
as in Example 11-22.

11.8 Starting Threads | 179

https://oreil.ly/N6BBv

Example 11-22. Starting multiple threads at random intervals

(0..5).forEach { n ->
 val sleepTime = Random.nextLong(range = 0..1000L)
 thread {
 Thread.sleep(sleepTime)
 println("${Thread.currentThread().name} for $n after ${sleepTime}ms")
 }
}

This code starts six threads, each of which sleeps for a random number of milli‐
seconds between 0 and 1,000, and then prints the name of the thread. The output
resembles this:

Thread-2 for 2 after 184ms
Thread-5 for 5 after 207ms
Thread-4 for 4 after 847ms
Thread-0 for 0 after 917ms
Thread-3 for 3 after 967ms
Thread-1 for 1 after 980ms

Note you don’t need to call start to start each thread, since the start parameter in
the thread function is true by default.

The isDaemon parameter lets you create daemon threads. If all the remaining threads
in an application are daemon threads, the application can shut down. In other words,
if the code in the previous example is replaced by that in Example 11-23, there will be
no output at all, because the main function will exit before any threads complete.

Example 11-23. Starting daemon threads

(0..5).forEach { n ->
 val sleepTime = Random.nextLong(range = 0..1000L)
 thread(isDaemon = true) {
 Thread.sleep(sleepTime)
 println("${Thread.currentThread().name} for $n after ${sleepTime}ms")
 }
}

Threads are daemon threads, so program exits before threads finish running

The required code block is a lambda that takes no arguments and returns Unit. This
is consistent with the Runnable interface, or simply the signature of the run method
in Thread. The implementation of the thread function is shown in Example 11-24.

Example 11-24. Implementation of the thread function in the standard library

public fun thread(
 start: Boolean = true,

180 | Chapter 11: Miscellaneous

 isDaemon: Boolean = false,
 contextClassLoader: ClassLoader? = null,
 name: String? = null,
 priority: Int = -1,
 block: () -> Unit
): Thread {
 val thread = object : Thread() {
 public override fun run() {
 block()
 }
 }
 if (isDaemon)
 thread.isDaemon = true
 if (priority > 0)
 thread.priority = priority
 if (name != null)
 thread.name = name
 if (contextClassLoader != null)
 thread.contextClassLoader = contextClassLoader
 if (start)
 thread.start()
 return thread
}

The implementation creates an object of type Thread and overrides its run method to
invoke the supplied block. It then sets the various supplied properties and calls
start.

Because the function returns the created thread, you can make all the threads run
sequentially by invoking the join method on them, as in Example 11-25.

Example 11-25. Joining the threads together

(0..5).forEach { n ->
 val sleepTime = Random.nextLong(range = 0..1000L)
 thread {
 Thread.sleep(sleepTime)
 println("${Thread.currentThread().name} for $n after ${sleepTime}ms")
 }.join()
}

Causes each thread to join the previous one

The output will now resemble the following:

Thread-0 for 0 after 687ms
Thread-1 for 1 after 661ms
Thread-2 for 2 after 430ms
Thread-3 for 3 after 412ms
Thread-4 for 4 after 918ms
Thread-5 for 5 after 755ms

11.8 Starting Threads | 181

Of course, that obviates the need to run inside threads in the first place, but it demon‐
strates that you can invoke methods on the returned threads.

See Also
Chapter 13 discusses concurrency in much more detail.

11.9 Forcing Completion with TODO
Problem
You want to guarantee that you complete a particular function or test.

Solution
Use the TODO function (with an optional reason) that throws an exception if you don’t
complete a function.

Discussion
Developers often leave notes to themselves to complete a function that they’re not
ready to finish at the moment. In most languages, you add a “TODO” statement in a
comment, as in this example:

fun myCleverFunction() {
 // TODO: look up cool implementation
}

The Kotlin standard library includes a function called TODO, the implementation of
which is shown in Example 11-26.

Example 11-26. Implementation of the TODO function

public inline fun TODO(reason: String): Nothing =
 throw NotImplementedError("An operation is not implemented: $reason")

The source is inlined for efficiency and throws a NotImplementedError when
invoked. In regular source code, it’s easy enough to use, as in Example 11-27.

Example 11-27. Using the TODO function in regular code

fun main() {
 TODO(reason = "none, really")
}

fun completeThis() {

182 | Chapter 11: Miscellaneous

 TODO()
}

The result of executing this script is as follows:

Exception in thread "main" kotlin.NotImplementedError:
 An operation is not implemented: none, really
 at misc.TodosKt.main(todos.kt:4)
 at misc.TodosKt.main(todos.kt)

The optional reason argument can explain what the developer intends.

The TODO function can also be used in a test, with an expected exception until the test
is completed, as in Example 11-28.

Example 11-28. Using TODO in a test

fun `todo test`() {
 val exception = assertThrows<NotImplementedError> {
 TODO("seriously, finish this")
 }
 assertEquals("An operation is not implemented: seriously, finish this",
 exception.message)
}

The TODO function is one of those convenient additions to the library that are easy to
overlook until someone points it out to you. Hopefully, you can find ways to take
advantage of it.

11.10 Understanding the Random Behavior of Random
Problem
You want to generate a random number.

Solution
Use one of the functions in the Random class.

Discussion
The basics of kotlin.random.Random are straightforward, but the implementation is
quite subtle. First, the easy part. If you want a random Int, use one of the overloads
of nextInt. The documentation for kotlin.random.Random states that it is an
abstract class, but includes the methods in Example 11-29.

11.10 Understanding the Random Behavior of Random | 183

Example 11-29. Declarations in the abstract Random class

open fun nextInt(): Int
open fun nextInt(until: Int): Int
open fun nextInt(from: Int, until: Int): Int

All three of these functions are given a default implementation. Using them is easy
enough, as shown in Example 11-30.

Example 11-30. The overloads of the nextInt function

@Test
fun `nextInt with no args gives any Int`() {
 val value = Random.nextInt()
 assertTrue(value in Int.MIN_VALUE..Int.MAX_VALUE)
}

@Test
fun `nextInt with a range gives value between 0 and limit`() {
 val value = Random.nextInt(10)
 assertTrue(value in 0..10)
}

@Test
fun `nextInt with min and max gives value between them`() {
 val value = Random.nextInt(5, 10)
 assertTrue(value in 5..10)
}

@Test
fun `nextInt with range returns value in range`() {
 val value = Random.nextInt(7..12)
 assertTrue(value in 7..12)
}

That last example, however, is not listed as one of the functions in the Random class.
Instead, it’s an extension function, whose signature is shown here:

fun Random.nextInt(range: IntRange): Int

The result is that if you look at the import statements in the previous test cases, you’ll
see that they import both kotlin.random.Random and kotlin.random.nextInt, the
latter being the extension function.

The implementation of the Random class is quite interesting. The methods listed in
Example 11-29 are provided, followed by a companion object of type Random. A snip‐
pet from the implementation is shown in Example 11-31.

184 | Chapter 11: Miscellaneous

Example 11-31. Companion object inside Random

companion object Default : Random() {
 private val defaultRandom: Random = defaultPlatformRandom()

 override fun nextInt(): Int = defaultRandom.nextInt()
 override fun nextInt(until: Int): Int = defaultRandom.nextInt(until)
 override fun nextInt(from: Int, until: Int): Int =
 defaultRandom.nextInt(from, until)

// ...
}

The companion object gets the default implementation, and overrides all the declared
methods to delegate to the default. The implementation of the defaultPlatformRan
dom function is internal.

The same pattern is included for other types, like Boolean, Byte, Float, Long, and
Double, as well as the unsigned types UBytes, UInt, and ULong.

To make things even more fun, there is also a function called Random that takes an Int
or Long seed, which returns a repeatable random number generator seeded with the
argument. See Example 11-32.

Example 11-32. Using a seeded random number generator

@Test
fun `Random function produces a seeded generator`() {
 val r1 = Random(12345)
 val nums1 = (1..10).map { r1.nextInt() }

 val r2 = Random(12345)
 val nums2 = (1..10).map { r2.nextInt() }

 assertEquals(nums1, nums2)
}

Given the same seed, the calls to nextint provide the same sequence of random
numbers.

Using the random number generators in Kotlin is straightforward, but examining the
implementation of the methods (using an abstract class whose methods are overrid‐
den inside its own companion object) may give you ideas about how to design your
own classes in the future.

11.10 Understanding the Random Behavior of Random | 185

11.11 Using Special Characters in Function Names
Problem
You want to write function names that are easy to read.

Solution
You can use underscores or surround your function name in backticks, but only in
tests.

Discussion
Kotlin supports wrapping the names of functions inside backticks, as shown in
Example 11-33.

Example 11-33. Wrapping function names inside backticks

fun `only use backticks on test functions`() {
 println("This works but is not a good idea")
}

fun main() {
 `only use backticks on test functions`()
}

Wrapping the function name inside backticks allows you to put spaces in the name
for readability. If you do this in a regular function, IntelliJ IDEA will flag it, saying,
“Function name may only contain letters and digits.” So the function will compile and
run, as shown, but isn’t a good practice.

Another option is to use underscores, as in Example 11-34.

Example 11-34. Using underscores in function names

fun underscores_are_also_okay_only_on_tests() {
 println("Again, please don't do this outside of tests")
}

fun main() {
 underscores_are_also_okay_only_on_tests()
}

Again, this will compile and run, but the compiler will issue a warning like, “Function
name should not contain underscores.”

186 | Chapter 11: Miscellaneous

On the other hand, you can use either mechanism inside tests, and it counts as
idiomatic Kotlin (as shown in the Coding Conventions guide). So the example shown
in Example 11-35 is fine.

Example 11-35. Test function names can use either technique

class FunctionNamesTest {
 @Test
 fun `backticks make for readable test names`() {
 // ...
 }

 @Test
 fun underscores_are_fine_here_too() {
 // ...
 }
}

Even better, the provided readable names will show up on the test report, and any‐
thing that makes testing clearer and easier is a good thing.

11.12 Telling Java About Exceptions
Problem
Your Kotlin function throws what Java would consider a checked exception, but you
need to tell Java that.

Solution
Add a @Throws annotation to the function signature.

Discussion
All exceptions in Kotlin are considered unchecked, meaning the compiler does not
require you to handle them. It’s easy enough to add try/catch/finally blocks to a Kot‐
lin function if you wish to catch an exception, but you are not forced to do so.

Kotlin doesn’t have the throws keyword that Java uses to declare
that a method may throw an exception.

11.12 Telling Java About Exceptions | 187

https://oreil.ly/xIguq

That’s fine until you try to invoke that function from Java. If the Kotlin function
potentially throws an exception that Java would consider checked, you need to let
Java know about it if you want to catch it.

For example, say you have a Kotlin function that throws an IOException, which is a
checked exception in Java, shown in Example 11-36.

Example 11-36. A Kotlin function that throws an IOException

fun houstonWeHaveAProblem() {
 throw IOException("File or resource not found")
}

In Kotlin, this function does not need a try/catch block or a throws clause in order to
compile. The function throws an IOException, as shown.

This function can be called from Java, and an exception will result, as in
Example 11-37.

Example 11-37. Calling the Kotlin function from Java

public static void doNothing() {
 houstonWeHaveAProblem();
}

Crashes with an IOException

(The source code for this example includes a static import for the invoked function.)

The problem comes if you decide you want to prepare for the IOException by either
wrapping the call inside a try/catch block or adding a throws clause to the Java call, as
in Example 11-38.

Example 11-38. Trying to prepare for the expected exception

public static void useTryCatchBlock() {
 try {
 houstonWeHaveAProblem();
 } catch (IOException e) {
 e.printStackTrace();
 }
}

public static void useThrowsClause() throws IOException {
 houstonWeHaveAProblem();
}

Does not compile

188 | Chapter 11: Miscellaneous

Compiles, but compiler warns about “unnecessary” throws clause

Neither of these work the way you want. If you try to add an explicit try/catch block,
the code won’t compile because Java thinks the specified IOException in the catch
block is never thrown in the corresponding try block. In the second case, the code
will compile, but your IDE (and the compiler) will warn you that you have “unneces‐
sary” code.

The way to make either approach work is to add a @Throws annotation to the Kotlin
code, as in Example 11-39.

Example 11-39. Adding a @Throws annotation

@Throws(IOException::class)
fun houstonWeHaveAProblem() {
 throw IOException("File or resource not found")
}

Tells Java this function throws an IOException

Now the Java compiler knows you need to prepare for the IOException. Of course,
the doNothing function no longer compiles, because IOException is checked so you
need to prepare for it.

The @Throws annotation exists simply for Java/Kotlin integration. It solves a specific
problem, but it works exactly as advertised.

11.12 Telling Java About Exceptions | 189

CHAPTER 12

The Spring Framework

The Spring framework is one of the most popular open source frameworks in the Java
world. Spring is all about your project’s infrastructure. You focus on writing beans
that contain the business logic you need for your goals, and Spring provides services
like security, transactions, resource pooling, and more, based on metadata you
provide.

Spring has always been friendly with “alternative” languages on the JVM. Spring has
had support for Groovy since at least version 2.5. In the past few versions, the devel‐
opers of Spring have added capabilities unique to Kotlin as well.

This chapter contains a few select techniques you can use in Spring applications when
writing your code in Kotlin. Spring support for Kotlin is still evolving, but this chap‐
ter should give you a sense of how Kotlin figures into the Spring ecosystem.

12.1 Opening Spring-Managed Bean Classes for Extension
Problem
Spring needs to generate proxies by extending your classes, but Kotlin classes are
closed (final in Java) by default.

Solution
Add the Spring plug-in for Kotlin to your build file, which automatically opens the
needed Spring-managed classes for extension.

191

Discussion
Spring works by providing services to your system. It does so through the Proxy
design pattern. The Proxy design pattern, illustrated in UML class and sequence dia‐
grams, is shown in Figure 12-1.

Figure 12-1. UML diagram of the Proxy design pattern

The idea is that the proxy and the real subject both either implement the same inter‐
face or extend the same class. An incoming request is intercepted by the proxy, which
applies whatever services are desired, and then forwards the request to the real sub‐
ject. The proxy can also intercept the response and do more work if necessary. For
example, a Spring transactional proxy intercepts a call to a method, starts a transac‐
tion, invokes the method, and calls either commit or rollback depending on what
happened inside the real subject’s method.

Spring generates proxies during its start-up process. If the real subject is a class, it
needs to extend that class, and that’s where Kotlin has a problem. Kotlin is statically
bound by default, meaning you cannot override a method, or even extend a class,
unless it has been marked open for extension using the open keyword.

To handle problems like this, Kotlin has a plug-in called the all-open plug-in. This
plug-in makes classes marked with a specified annotation open, without explicitly
adding the open keyword to the class and the functions it contains.

While this is useful, the developers of the language have gone beyond this to create a
kotlin-spring plug-in, which is naturally suited to Spring. To use it, add the plug-in to
either your Gradle or Maven build file. The build snippet in Example 12-1 shows a
Gradle build file (that uses the Kotlin DSL) that includes the plug-in. The file is called
build.gradle.kts, and is generated by the Spring Initializr.

192 | Chapter 12: The Spring Framework

https://start.spring.io

Example 12-1. Adding the kotlin-spring plug-in

import org.jetbrains.kotlin.gradle.tasks.KotlinCompile

plugins {
 id("org.springframework.boot") version "2.1.8.RELEASE"
 id("io.spring.dependency-management") version "1.0.8.RELEASE"
 kotlin("jvm") version "1.2.71"
 kotlin("plugin.spring") version "1.2.71"
}

group = "com.mycompany"
version = "1.0"

java.sourceCompatibility = JavaVersion.VERSION_11

repositories {
 mavenCentral()
}

dependencies {
 implementation("org.springframework.boot:spring-boot-starter")
 implementation("org.jetbrains.kotlin:kotlin-reflect")
 implementation("org.jetbrains.kotlin:kotlin-stdlib-jdk8")
 testImplementation("org.springframework.boot:spring-boot-starter-test")
}

tasks.withType<KotlinCompile> {
 kotlinOptions {
 freeCompilerArgs = listOf("-Xjsr305=strict")
 jvmTarget = "1.8"
 }
}

Add the Kotlin JVM plug-in to the project

Requires the Kotlin Spring plug-in

Required if the project source code is written in Kotlin

Supports nullability annotations associated with JSR-305

The all-open plug-in lets you declare which annotations are used to open Kotlin
classes. The kotlin-spring plug-in is already configured to work with the following
Spring annotations:

• @Component

• @Async

• @Transactional

12.1 Opening Spring-Managed Bean Classes for Extension | 193

• @Cacheable

• @SpringBootTest

The @Component annotation is used in several other Spring-composed annotations,
including @Configuration, @Controller and @RestController, @Service, and
@Repository. All managed Spring beans marked with any of those annotations are
automatically open for extension, which is normally all you need.

If you need to go beyond that, you still add the all-open plug-in as well, but that’s typi‐
cally not necessary.

To see the Maven build that employs the same plug-in, generate a
Maven project by using the Initializr. The concepts are the same,
however.

See Also
The kotlin-jpa plugin is discussed in Recipe 12.2.

12.2 Persisting Kotlin Data Classes
Problem
You want to use the Java Persistence API (JPA) with Kotlin data classes.

Solution
Add the kotlin-jpa plug-in to your build file.

Discussion
Generally, when you define a Kotlin data class, you add any necessary properties to
the primary constructor, as in Example 12-2.

Example 12-2. A data class with a primary constructor

data class Person(val name: String,
 val dob: LocalDate)

There are two problems with this from a JPA perspective. First, JPA requires a default
constructor, and unless you give default values to all your properties, this class doesn’t
have one. Second, by making it a data class with val properties, this produces immut‐
able objects, and JPA isn’t designed to play nicely with immutable objects.

194 | Chapter 12: The Spring Framework

Treating the default constructor problem first, Kotlin provides two plug-ins to
address that issue. The no-arg plug-in lets you choose which classes should be given a
no argument constructor and lets you define annotations to invoke them. Second,
building on top of this, you have the kotlin-jpa plug-in. That plug-in automatically
configures Kotlin entities (e.g., classes annotated with @Entity, among others in this
recipe) with default constructors.

As with the kotlin-spring plug-in discussed in Recipe 12.1, you take advantage of these
plug-ins by adding the required syntax to your build file. The recipe on the kotlin-
spring plug-in showed a Gradle build file (using the Kotlin DSL). Building on that,
make the following additions to build.gradle.kts from Example 12-1, shown in
Example 12-3.

Example 12-3. Additional dependencies added for JPA entities

plugins {
 // ... as before ...
 kotlin("plugin.jpa") version "1.2.71"
}

// ... other settings as before ...

dependencies {
 // ... other dependencies from previous recipe ...
 implementation("org.springframework.boot:spring-boot-starter-data-jpa")
 implementation("com.fasterxml.jackson.module:jackson-module-kotlin")
}

The jackson-module-kotlin dependency shown is not necessary
for entities, but it helps serialize Kotlin classes into JSON form and
back by using the Jackson 2 library.

The no-arg compiler plug-in adds a synthetic default constructor to Kotlin classes,
meaning it cannot be invoked in Java or Kotlin, but Spring can call it using reflection.
You can use this plug-in if you want, but then you have to define which annotations
will be used to mark classes that need the no-arg constructor.

It’s easier to use the kotlin-jpa plug-in, as shown previously in Example 12-3. The
kotlin-jpa plug-in is built on top of the no-arg plug-in. It automatically adds default
constructors to any class annotated with the following:

• @Entity

• @Embeddable

12.2 Persisting Kotlin Data Classes | 195

• @MappedSuperclass

The other problem is that JPA doesn’t want to work with immutable classes for enti‐
ties. Therefore, the Spring team recommends that any Kotlin classes you want to use
as entities should be simple classes (instead of data classes) with var types for the
properties, so the field values can be changed. An example given in the Spring tutorial
on using Spring Boot with Kotlin is shown in Example 12-4.

Example 12-4. Kotlin classes that map to database tables

@Entity
class Article(
 var title: String,
 var headline: String,
 var content: String,
 @ManyToOne var author: User,
 var slug: String = title.toSlug(),
 var addedAt: LocalDateTime = LocalDateTime.now(),
 @Id @GeneratedValue var id: Long? = null)

@Entity
class User(
 var login: String,
 var firstname: String,
 var lastname: String,
 var description: String? = null,
 @Id @GeneratedValue var id: Long? = null)

The Article and User classes shown use var on the properties, and even make the
generated primary key field nullable. In Hibernate parlance (and the most common
JPA provider is still Hibernate), a null primary key (annotated here with @Id) indi‐
cates that the instance is in the transient state, meaning there is no row in the corre‐
sponding database table associated with that instance. That happens either when you
first instantiate the class and haven’t yet saved it, or if you’ve deleted the row from the
database and the instance is still in memory.

The @GeneratedValue annotation indicates that the database itself is providing values
for the primary key.

As a Kotlin developer, the extensive use of var and the lack of automatically gener‐
ated toString, equals, and hashCode functions feels uncomfortable. That said, this
approach is more compatible with what JPA expects. If you use a different API based
on Spring Data, like Spring Data MongoDB or Spring Data JDBC, you are free to use
data classes instead.

196 | Chapter 12: The Spring Framework

https://oreil.ly/mO5ci

See Also
The kotlin-spring plug-in is discussed in Recipe 12.1.

12.3 Injecting Dependencies
Problem
You want to autowire beans together using dependency injection, and declare which
beans are required and which are not.

Solution
Kotlin provides constructor injection, but for field injection, use the lateinit var
structure. Declare optional beans by using nullable types.

Discussion
You wire beans together in Spring via a process known as dependency injection, which
sounds a lot more complicated than it is. The idea is that you add a reference of one
type to a class of another type, and Spring will find a way to provide an instance of
that type for you.

Spring favors constructor injection for dependencies wherever possible. In Kotlin,
you can use the @Autowired annotation directly on constructor arguments. If you
have only a single constructor in a class, you don’t even need the @Autowired annota‐
tion, because all arguments to the single constructor will be autowired automatically.

If you have only a single constructor in a Spring-managed bean,
Spring will inject all the arguments automatically.

Say you have a REST controller that works with an injected service. All the
approaches to autowiring shown in Example 12-5 will work.

Example 12-5. Autowiring a dependency into Spring

@RestController
class GreetingController(val service: GreetingService) { /* ... */ }

@RestController
class GreetingController(@Autowired val service: GreetingService) { /* ... */ }

@RestController

12.3 Injecting Dependencies | 197

class GreetingController @Autowired constructor(val service: GreetingService) {
 // ... (normal 4-space indent)
}

@RestController
class GreetingController {
 @Autowired
 lateinit var service: GreetingService

 // ... rest of class ...
}

Option 1: Class with a single constructor

Option 2: Explicit autowiring

Option 3: Autowiring constructor call, primarily for classes with multiple
dependencies

Option 4: Field injection (not preferred, but can be useful)

The example shows all the ways to perform dependency injection:

• Simply declare the dependencies, and a class with only a single constructor will
have its properties autowired automatically.

• Use the explicit @Autowired annotation, which works the same way, but the
explicit statement of @Autowired will continue to work even if you add a secon‐
dary constructor.

• Put @Autowired on the constructor function, which is normally a simplification
used when you have multiple dependencies to inject.

• Finally, if you must use field injection, use the lateinit var modifiers on the
field.

Because val properties must have a value when they are declared, you can’t initialize
one with a value supplied later. That’s why the lateinit keyword is used with var.
The downside is that var properties, by definition, can be changed at any subsequent
time, which may not be what you want. That’s one reason, among others, why con‐
structor injection is preferred.

If a property of a class is not required, you can declare it to be nullable. Kotlin will
take that to mean it is optional. For example, consider a function in the GreetingCon
troller that generates a greeting from an optional request parameter, as shown in
Example 12-6.

198 | Chapter 12: The Spring Framework

Example 12-6. Controller function with an optional parameter

@GetMapping("/hello")
fun greetUser(@RequestParam name: String?) =
 Greeting(service.sayHello(name?: "World")) else Greeting()

By declaring the parameter name to be nullable (e.g., of type String? rather than sim‐
ply String), Kotlin knows that the parameter is not required.

Spring also advocates the use of JUnit 5 for tests. Two features provided by JUnit 5
that are not available in JUnit 4 are as follows:

• You can have a nondefault constructor in JUnit 5 tests.
• You can set the life cycle of the test class to be one instance per class, rather than

reinstantiating it per method.

An example of this from the Kotlin/Spring tutorial shows a test that starts with the
code in Example 12-7.

Example 12-7. Injecting dependencies by using constructor arguments in JUnit 5

@DataJpaTest
class RepositoriesTests @Autowired constructor(
 val entityManager: TestEntityManager,
 val userRepository: UserRepository,
 val articleRepository: ArticleRepository) {

 // ... tests go here ...
}

// Another test, using the Spring RestTemplate class
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
class IntegrationTests(@Autowired val restTemplate: TestRestTemplate) {
 // ... tests go here ...
}

The use of the autowired constructor means you don’t need to use the lateinit var
approach. The first case, RepositoriesTests, autowires in classes created by the user.
The second example, IntegrationTests, starts a test server on a random port and
deploys the web application to it, then uses the TestRestTemplate class (which is
already configured with the proper port) to make REST requests using functions like
getForObject or getForEntity.

12.3 Injecting Dependencies | 199

https://oreil.ly/mO5ci

CHAPTER 13

Coroutines and Structured Concurrency

One of Kotlin’s most popular features is its support for coroutines, which allow devel‐
opers to write concurrent code as though it was synchronous. That support makes it
much easier to write concurrent code that employs coroutines than using other tech‐
niques, like callback methods or reactive streams.

Note that the key word in that sentence is easier, rather than easy. Managing concur‐
rency is always a challenge, especially when you try to coordinate multiple separate
activities, handle cancellations and exceptions, and more.

This chapter discusses the issues related to Kotlin coroutines. These issues include
working with coroutine scope and coroutine context, selecting the proper coroutine
builder and dispatchers, and coordinating their behavior.

The idea behind coroutines is that they can be suspended and resumed. By marking a
function with the suspend keyword, you’re telling the system that it can put the func‐
tion on hold temporarily, and resume it on another thread later, all without having to
write complex multithreading code yourself.

13.1 Choosing Coroutine Builders
Problem
You need to select the right function to create a coroutine.

Solution
Decide between the available builder functions.

201

Discussion
To create a new coroutine, you use one of the available builder functions: runBlock
ing, launch, or async. The first, runBlocking, is a top-level function, while launch
and async are extension functions on CoroutineScope.

Before looking at how they are used, be aware that there are also versions of launch
and async defined on GlobalScope, and their usage is highly discouraged, if not com‐
pletely deprecated. The problem with those functions is that they launch coroutines
that are not bound to any particular job, and they span the entire application life cycle
if not cancelled prematurely. So please don’t use them unless you have an overriding
reason to do so.

This section arguably could have been titled, “Choosing Coroutine
Builders, and GlobalScope.launch Is the Wrong Answer.”

The runBlocking builder

Returning to the recommended approaches, runBlocking is useful for command-line
demonstrations or for tests. As the name indicates, it blocks the current thread and
waits until all included coroutines have finished.

The signature of the runBlocking function is as follows:

fun <T> runBlocking(block: suspend CoroutineScope.() -> T): T

The runBlocking function is not itself a suspending function, so it can be called from
normal functions. It takes a suspending function as an argument, which it adds as an
extension function to CoroutineScope, executes it, and returns whatever value the
supplied function returns.

Using runBlocking is quite simple, as Example 13-1 shows.

Example 13-1. Using the runBlocking function

import kotlinx.coroutines.delay
import kotlinx.coroutines.runBlocking

fun main() {
 println("Before creating coroutine")
 runBlocking {
 print("Hello, ")
 delay(200L)
 println("World!")
 }

202 | Chapter 13: Coroutines and Structured Concurrency

 println("After coroutine is finished")
}

The output of this code is simply as follows:

Before creating coroutine
Hello, World!
After coroutine finished

Note, however, that there is a 200-millisecond delay between printing “Hello,” and
“World!”.

The launch builder
If you need to start a coroutine to execute a separate process but don’t need to return
a value from it, use the launch coroutine builder. The launch function is an extension
function on CoroutineScope, so it can be used only if a CoroutineScope is available.
It returns an instance of Job, which can be used to cancel the coroutine if necessary.

The signature of the launch function is shown here:

fun CoroutineScope.launch(
 context: CoroutineContext = EmptyCoroutineContext,
 start: CoroutineStart = CoroutineStart.DEFAULT,
 block: suspend CoroutineScope.() -> Unit
): Job

The CoroutineContext is used to share state with other coroutines. The
CoroutineStart parameter is an enumerated class, whose values can be only
DEFAULT, LAZY, ATOMIC, or UNDISPATCHED.

The supplied lambda must be a suspending function that takes no arguments and
does not return anything. Example 13-2 shows the use of launch.

Example 13-2. Using the launch function

import kotlinx.coroutines.delay
import kotlinx.coroutines.launch
import kotlinx.coroutines.runBlocking

fun main() {
 println("Before runBlocking")
 runBlocking {
 println("Before launch")
 launch {
 print("Hello, ")
 delay(200L)
 println("World!")
 }
 println("After launch")
 }

13.1 Choosing Coroutine Builders | 203

 println("After runBlocking")
}

Creates a coroutine scope

Launches a coroutine

The output is what you would expect:

Before runBlocking
Before launch
After launch
Hello, World!
After runBlocking

Again, the string “Hello,” is printed, and then, after a 200-millisecond delay, the string
“World!”.

Cancellation using the returned Job is discussed in Example 13-5.

The async builder

In the common situation where you need to return a value, use the async builder. It is
also an extension function on CoroutineScope, and its signature is as follows:

fun <T> CoroutineScope.async(
 context: CoroutineContext = EmptyCoroutineContext,
 start: CoroutineStart = CoroutineStart.DEFAULT,
 block: suspend CoroutineScope.() -> T
): Deferred<T>

Again, the CoroutineContext and CoroutineStart parameters have reasonable
defaults.

This time, the supplied suspending function does return a value, which the async
function then wraps inside a Deferred instance. A Deferred instance feels like a
promise in JavaScript, or a future in Java. The important function to know on
Deferred is await, which waits until a coroutine has completed before returning the
produced value.

A trivial example using async is shown in Example 13-3.

Example 13-3. Creating coroutines with async

import kotlinx.coroutines.async
import kotlinx.coroutines.coroutineScope
import kotlinx.coroutines.delay
import kotlin.random.Random

suspend fun add(x: Int, y: Int): Int {

204 | Chapter 13: Coroutines and Structured Concurrency

 delay(Random.nextLong(1000L))
 return x + y
}

suspend fun main() = coroutineScope {
 val firstSum = async {
 println(Thread.currentThread().name)
 add(2, 2)
 }
 val secondSum = async {
 println(Thread.currentThread().name)
 add(3, 4)
 }
 println("Awaiting concurrent sums...")
 val total = firstSum.await() + secondSum.await()
 println("Total is $total")
}

Random delay up to 1,000 ms

Another coroutine builder, discussed later in this recipe

Uses async to launch a coroutine

Invokes await to block until the coroutines finish

The add function delays executing for a random number of milliseconds less than
1,000, and then returns the sum. The two async calls invoke the add function and
return instances of Deferred. The calls to await then block until the coroutines com‐
plete.

The result is shown here:

DefaultDispatcher-worker-2
Awaiting concurrent sums...
DefaultDispatcher-worker-1
Total is 11

Note that the delay function is a suspending function that puts a coroutine on hold
without blocking the thread on which it is running.

The two async builders are using the default dispatcher, one of the dispatchers dis‐
cussed in Recipe 13.3. The runBlocking call will wait until everything has completed
before exiting the program. The order of the output lines depends on the randomly
generated delays.

13.1 Choosing Coroutine Builders | 205

The coroutineScope builder

Finally, the coroutineScope function is a suspending function that waits until all
included coroutines finish before exiting. It has the advantage of not blocking the
main thread (unlike runBlocking), but it must be called as part of a suspend func‐
tion.

This gets to one of the fundamental principles of using coroutines, which is to use
them inside a defined scope. The benefit of coroutineScope is that you don’t have to
poll to see whether coroutines are finished—it automatically waits for all child rou‐
tines to be done.

The signature of the coroutineScope function is as follows:

suspend fun <R> coroutineScope(
 block: suspend CoroutineScope.() -> R
): R

The function therefore takes a lambda (with receiver CoroutineScope) that has no
arguments and returns a generic value. The function is a suspending function, so it
must be called from a suspending function or other coroutine.

A simple example of how to use coroutineScope is shown directly on the Kotlin
home page and in Example 13-4.

Example 13-4. Using the coroutineScope builder

import kotlinx.coroutines.coroutineScope
import kotlinx.coroutines.delay
import kotlinx.coroutines.launch

suspend fun main() = coroutineScope {
 for (i in 0 until 10) {
 launch {
 delay(1000L - i * 10)
 print("❤$i ")
 }
 }
}

coroutineScope builder

Launches 10 coroutines

Delays each one by a decreasing amount

206 | Chapter 13: Coroutines and Structured Concurrency

http://kotlinlang.org
http://kotlinlang.org

The example launches 10 coroutines, each delayed by 10 milliseconds less than the
previous one. In other words, the printed output contains a heart emoji and a num‐
ber in descending order:

❤9 ❤8 ❤7 ❤6 ❤5 ❤4 ❤3 ❤2 ❤1 ❤0

This example shows a common pattern. In practice, start with coroutineScope to
establish the scope of the included coroutines, and inside the resulting block you can
use launch or async to handle individual tasks. The scope will then wait until all
coroutines are completed before exiting, and if any of the coroutines fails, will also
cancel the rest of them. This achieves a nice balance of control and error handling
without having to poll to see whether routines are done and prevents leaks in case a
routine fails.

The convention of running all coroutines inside coroutineScope
to ensure that if one fails, all will be cancelled, is known as struc‐
tured concurrency.

Coroutines can be confusing because there are so many moving parts and so many
possible combinations. Fortunately, only a handful of combinations appear in prac‐
tice, as shown in this recipe.

13.2 Replacing async/await with withContext
Problem
You want to simplify code that starts a coroutine with async and then immediately
waits for it to complete with await.

Solution
Replace the combination of async/await with withContext.

Discussion
The CoroutineScope class also defines an extension function called withContext. Its
signature is given by the following:

suspend fun <T> withContext(
 context: CoroutineContext,
 block: suspend CoroutineScope.() -> T
): T

13.2 Replacing async/await with withContext | 207

The documentation says that withContext “calls the specified suspending block with
a given coroutine context, suspends until it completes, and returns the result.” In
practice, use withContext to replace a combination of async with an immediate
await, as in Example 13-5.

Example 13-5. Replacing async and await with withContext

suspend fun retrieve1(url: String) = coroutineScope {
 async(Dispatchers.IO) {
 println("Retrieving data on ${Thread.currentThread().name}")
 delay(100L)
 "asyncResults"
 }.await()
}

suspend fun retrieve2(url: String) =
 withContext(Dispatchers.IO) {
 println("Retrieving data on ${Thread.currentThread().name}")
 delay(100L)
 "withContextResults"
 }

fun main() = runBlocking<Unit> {
 val result1 = retrieve1("www.mysite.com")
 val result2 = retrieve2("www.mysite.com")
 println("printing result on ${Thread.currentThread().name} $result1")
 println("printing result on ${Thread.currentThread().name} $result2")
}

The main function starts with runBlocking, again typical of a simple demo like this.
The two functions retrieve1 and retrieve2 do the same thing, which is to delay for
100 milliseconds and then return a string. The results are shown here (note the
ordering could be different):

Retrieving data on DefaultDispatcher-worker-2
Retrieving data on DefaultDispatcher-worker-2
printing result on main withContextResults
printing result on main asyncResults

Both are using the Dispatchers.IO dispatcher (discussed in Recipe 13.3), so the only
difference between the two functions is that one uses async/await and the other
replaces it with withContext. In fact, when IntelliJ IDEA sees you using async with
an immediate await, it will suggest replacing it with withContext as shown, and will
do it for you if you let it.

208 | Chapter 13: Coroutines and Structured Concurrency

13.3 Working with Dispatchers
Problem
You need to use a dedicated thread pool to do I/O or other tasks.

Solution
Use the proper dispatcher in the Dispatchers class.

Discussion
Coroutines execute in a context defined by a CoroutineContext type, which includes
a coroutine dispatcher represented by an instance of the CoroutineDispatcher class.
The dispatcher determines which thread or thread pool the coroutines use for their
execution.

When you use a builder like launch or async, you can specify the dispatcher you
want to use through an optional CoroutineContext parameter.

Built-in dispatchers provided by the library include the following:

• Dispatchers.Default

• Dispatchers.IO

• Dispatchers.Unconfined

The last one should not normally be used in application code.

The Default dispatcher uses a common pool of shared background threads. It is
appropriate for coroutines that consume extensive amounts of computation
resources.

The IO dispatcher uses a shared pool of on-demand created threads and is designed
for offloading I/O-intensive blocking operations, like file I/O or blocking networking
I/O.

Using either is quite simple. Just add them as an argument to launch, async, or with
Context as needed. See Example 13-6.

Example 13-6. Using the Default and I/O dispatchers

fun main() = runBlocking<Unit> {
 launchWithIO()
 launchWithDefault()
}

13.3 Working with Dispatchers | 209

suspend fun launchWithIO() {
 withContext(Dispatchers.IO) {
 delay(100L)
 println("Using Dispatchers.IO")
 println(Thread.currentThread().name)
 }
}

suspend fun launchWithDefault() {
 withContext(Dispatchers.Default) {
 delay(100L)
 println("Using Dispatchers.Default")
 println(Thread.currentThread().name)
 }
}

I/O dispatcher

Default dispatcher

The results are shown here (worker numbers may differ):

Using Dispatchers.IO
DefaultDispatcher-worker-3
Using Dispatchers.Default
DefaultDispatcher-worker-2

You can specify either dispatcher when the coroutines are launched.

Some tutorials refer to the functions newSingleThreadContext and
newFixedThreadPoolContext as functions to create dispatchers.
Both are considered obsolete and will be replaced in the future. To
get similar functionality, use the asCoroutineDispatcher function
on a Java ExecutorService, as described later in this recipe.

Android dispatchers
In addition to the dispatchers already discussed, the Android API includes a dis‐
patcher called Dispatchers.Main. This is typical of UI toolkits, where you want to do
all work updating the UI on Main, but any work that requires extra time or delays off
of Main.

To get the Android Main dispatcher, you need to include the kotlinx-coroutines-
android dependency. In a Gradle build file, that looks like this:

dependencies {
 implementation "org.jetbrains.kotlinx:kotlinx-coroutines-core:x.x.x"
 implementation "org.jetbrains.kotlinx:kotlinx-coroutines-android:x.x.x"
}

210 | Chapter 13: Coroutines and Structured Concurrency

Here, the x.x.x values should be replaced by the latest version.

The Android components library makes additional life-cycle dispatchers available as
well. See the details of the Android KTX library, specifically its lifecycle-viewmodel
implementation. In fact, Android often recommends launching coroutines on viewMo
delScope, which is defined by that library.

See Also
Using a Java executor service as a source of coroutine dispatchers is discussed in
Recipe 13.4. Android dispatchers are discussed further in Recipe 13.5.

13.4 Running Coroutines on a Java Thread Pool
Problem
You want to supply your own custom thread pool for coroutines to use.

Solution
Use the asCoroutineDispatcher function on Java’s ExecutorService.

Discussion
The Kotlin library adds an extension method on java.util.concurrent.Executor
Service called asCoroutineDispatcher. As the documentation says, the function
converts an instance of ExecutorService to an implementation of ExecutorCorouti
neDispatcher.

To use it, use the Executors class to define your thread pool and then convert it to be
used as a dispatcher, as in Example 13-7.

Example 13-7. Using a thread pool as a coroutine dispatcher

import kotlinx.coroutines.asCoroutineDispatcher
import kotlinx.coroutines.delay
import kotlinx.coroutines.runBlocking
import kotlinx.coroutines.withContext
import java.util.concurrent.Executors

fun main() = runBlocking<Unit> {
 val dispatcher = Executors.newFixedThreadPool(10)
 .asCoroutineDispatcher()

 withContext(dispatcher) {
 delay(100L)
 println(Thread.currentThread().name)

13.4 Running Coroutines on a Java Thread Pool | 211

 }

 dispatcher.close()
}

Creates a thread pool of size 10

Uses the pool as a dispatcher for coroutines

Shuts down the thread pool

The output prints pool-1-thread-2, indicating that the system chose to run the
coroutine on thread 2 of pool 1.

Note the last line in that example, which invokes the close function on the dis‐
patcher. This is necessary, because the executor service will continue to run without
it, meaning the main function will never exit.

While the preceding technique works, it’s also an interesting illustration of how Kot‐
lin goes about solving this sort of problem. Normally, to get a Java ExecutorService
to stop, you invoke the shutdown or shutdownNow method. Therefore, in principle you
could rewrite the example to keep a reference to the ExecutorService and shut it
down manually, as in Example 13-8.

Example 13-8. Shutting down the thread pool

val pool = ExecutorService.newFixedThreadPool(10)
withContext(pool.asCoroutineDispatcher()) {
 // ... same as before ...
}
pool.shutdown()

The problem with that approach is that a user might forget to call the shutdown
method. Java solves problems like that by implementing the AutoCloseable interface
with a close method, so that you can wrap the code in a try-with-resources block.
Unfortunately, the method you want to call here is shutdown, not close.

The developers of the Kotlin library therefore made a change to the underlying Execu
torCoroutineDispatcher class, an instance of which is created in the preceding code.
They refactored it to implement the Closeable interface, so that the new abstract
class is called CloseableCoroutineDispatcher, whose close method looks like this:

import java.util.concurrent.ExecutorService

abstract class ExecutorCoroutineDispatcher: CoroutineDispatcher(), Closeable {
 abstract override fun close()
 abstract val executor: Executor

212 | Chapter 13: Coroutines and Structured Concurrency

}

// Then, in subclasses:
override fun close() {
 (executor as? ExecutorService)?.shutdown()
}

That means that the dispatchers created using the executor service now have a close
function that will shut down the underlying executor service. The question then is
how do you ensure that the close function is called, given that Kotlin doesn’t support
a try-with-resources construct similar to Java? What Kotlin does have is a use func‐
tion. The definition of use is shown in Example 13-9.

Example 13-9. The use function

inline fun <T : Closeable?, R> T.use(block: (T) -> R): R

Therefore, use is defined as an extension function on Java’s Closeable interface. That
gives a straightforward solution to the problem of shutting down the Java executor
service, shown in Example 13-10.

Example 13-10. Closing the dispatcher with use

Executors.newFixedThreadPool(10).asCoroutineDispatcher().use {
 withContext(it) {
 delay(100L)
 println(Thread.currentThread().name)
 }
}

This will close the dispatcher when the use block ends, which will also close the
underlying thread pool.

See Also
The use function is described in Recipe 10.1.

13.4 Running Coroutines on a Java Thread Pool | 213

13.5 Cancelling Coroutines
Problem
You need to cancel an asynchronous process running in a coroutine.

Solution
Use the Job reference returned by the launch builder, or one of the functions such as
withTimeout or withTimeoutOrNull.

Discussion
The launch builder returns an instance of type Job, which can be used to cancel coro‐
utines. Example 13-11 is based on an example from the Kotlin reference guide.

Example 13-11. Cancelling a job

fun main() = runBlocking {
 val job = launch {
 repeat(100) { i ->
 println("job: I'm waiting $i...")
 delay(100L)
 }
 }
 delay(500L)
 println("main: That's enough waiting")
 job.cancel()
 job.join()
 println("main: Done")
}

The launch builder returns an instance of Job, which is assigned to a local variable.
Then 100 coroutines are launched using the repeat function.

Outside the launch block, the main function gets tired of waiting for them all, so it
cancels the job. The join function waits for the job to be completed, and then the
program exits. The output from the program is as follows:

job: I'm waiting 0...
job: I'm waiting 1...
job: I'm waiting 2...
job: I'm waiting 3...
job: I'm waiting 4...
main: That's enough waiting
main: Done

214 | Chapter 13: Coroutines and Structured Concurrency

There is also a cancelAndJoin function that combines cancel and
join calls.

If the reason you want to cancel a job is that it might be taking too long, you can also
use the withTimeout function. The signature for withTimeout is shown here:

suspend fun <T> withTimeout(
 timeMillis: Long,
 block: suspend CoroutineScope.() -> T
): T

The function runs a suspending block of code inside a coroutine and throws a Time
outCancellationException if the timeout is exceeded. An example of its use, again
based on an example from the reference manual, is given in Example 13-12.

Example 13-12. Using withTimeout

fun main() = runBlocking {
 withTimeout(1000L) {
 repeat(50) { i ->
 println("job: I'm waiting $i...")
 delay(100L)
 }
 }
}

The result now is as follows:

job: I'm waiting 0...
job: I'm waiting 1...
job: I'm waiting 2...
job: I'm waiting 3...
job: I'm waiting 4...
job: I'm waiting 5...
job: I'm waiting 6...
job: I'm waiting 7...
job: I'm waiting 8...
job: I'm waiting 9...
Exception in thread "main" kotlinx.coroutines.TimeoutCancellationException:
 Timed out waiting for 1000 ms
at kotlinx.coroutines.TimeoutKt.TimeoutCancellationException(Timeout.kt:126)
 // ... rest of stack trace ...

You can catch the exception if you want, or use withTimeoutOrNull, which returns a
null on timeout rather than throwing an exception.

13.5 Cancelling Coroutines | 215

Cancelling jobs in Android

Android provides an additional dispatcher called Dispatchers.Main, which operates
on the UI thread. A common implementation pattern is to make the MainActivity
implement CoroutineScope, provide a context when needed, and then close it if nec‐
essary. The technique is shown in Example 13-13.

Example 13-13. Using dispatchers in Android

class MainActivity : AppCompatActivity(), CoroutineScope {
 override val coroutineContext: CoroutineContext
 get() = Dispatchers.Main + job

 private lateinit var job: Job

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 job = Job()
 }

 override fun onDestroy() {
 job.cancel()
 super.onDestroy()
 }
}

Creates the context using the overloaded plus operator

Initializes a property when ready

Now it’s ready

Cancels the job if the activity is being destroyed

The use of the late initialized variable job provides access to it in case of cancellation.
To do the work, now simply launch coroutines as necessary, as in Example 13-14.

Example 13-14. Launching coroutines from Android

fun displayData() {
 launch {
 val data = async(Dispatchers.IO) {
 // ... get data over network ...
 }
 updateDisplay(data.await())
 }
}

216 | Chapter 13: Coroutines and Structured Concurrency

Launches using the coroutineContext property

Switches to Dispatchers.IO for networked call

Back to Dispatchers.Main to update the UI

As soon as the activity is destroyed, the task will get cancelled as well.

Recent versions of Android architecture components provide additional scopes, like
viewModelScope, that automatically cancel a job when the ViewModel is cleared. This
is part of the Android KTX library, so you need to add the proper dependency to
your build:

dependencies {
 // ... as before ...
 implementation "androidx.lifecycle:lifecycle-viewmodel-ktx:x.x.x"
}

This adds the viewModelScope property, which you can use to launch coroutines on
any dispatcher.

13.6 Debugging Coroutines
Problem
You need more information about executing coroutines.

Solution
On the JVM, run with the -Dkotlinx.coroutines.debug flag.

Discussion
Debugging asynchronous programs is always difficult, because multiple operations
can be running at the same time. Fortunately, the coroutines library includes a simple
debugging feature.

To execute coroutines in debug mode (on the JVM), use the system property kot
linx.coroutines.debug.

Alternatively, you can enable debugging with the -ea (enable asser‐
tions) flag on the Java command line.

13.6 Debugging Coroutines | 217

Debug mode attaches a unique name to every launched coroutine. Example 13-5,
reproduced here for convenience, shows two coroutines being launched in addition
to the main thread:

suspend fun retrieve1(url: String) = coroutineScope {
 async(Dispatchers.IO) {
 println("Retrieving data on ${Thread.currentThread().name}")
 delay(100L)
 "asyncResults"
 }.await()
}

suspend fun retrieve2(url: String) =
 withContext(Dispatchers.IO) {
 println("Retrieving data on ${Thread.currentThread().name}")
 delay(100L)
 "withContextResults"
 }

fun main() = runBlocking<Unit> {
 val result1 = retrieve1("www.mysite.com")
 val result2 = retrieve2("www.mysite.com")
 println("printing result on ${Thread.currentThread().name} $result1")
 println("printing result on ${Thread.currentThread().name} $result2")
}

If you execute this program with -Dkotlinx.coroutines.debug, the output is as
follows:

Retrieving data on DefaultDispatcher-worker-1 @coroutine#1
Retrieving data on DefaultDispatcher-worker-1 @coroutine#2
printing result on main @coroutine#1 withContextResults
printing result on main @coroutine#1 asyncResults

Each coroutine has been given a unique name (@coroutine#1, etc.) that is displayed
as part of the thread name.

While this is helpful, sometimes you want to supply names to the coroutines rather
than use the generated ones. The Kotlin library includes a class called CoroutineName
for this purpose. The CoroutineName constructor produces a context element that can
be used as the thread name, as in Example 13-15.

Example 13-15. Naming the coroutines

suspend fun retrieve1(url: String) = coroutineScope {
 async(Dispatchers.IO + CoroutineName("async")) {
 // ... as before ...
 }.await()
}

suspend fun retrieve2(url: String) =

218 | Chapter 13: Coroutines and Structured Concurrency

 withContext(Dispatchers.IO + CoroutineName("withContext")) {
 // ... as before ...
 }

Adds (literally) a coroutine name

The result now looks like this:

Retrieving data on DefaultDispatcher-worker-1 @withContext#1
Retrieving data on DefaultDispatcher-worker-1 @async#2
printing result on main @coroutine#1 withContextResults
printing result on main @coroutine#1 asyncResults

The words “async” and “withContext” now appear as the names of the coroutines.
This is also a nice example of the overloaded plus operator when used on Coroutine
Context. Another example of the plus operator being used is shown in Recipe 13.5
for Android applications.

13.6 Debugging Coroutines | 219

Index

Symbols
!! bang-bang, or not-null, assertion operator, 23
+ (plus) operator, 32

overloaded, use on CouroutineContext, 219
.. (double dot) operator, 107
0b preceding numeric literals, 40
== equality operator, 54, 63
=== reference equality operator, 54

using with as? and ?:, 63
? (question mark) on types, indicating nullable

types, 25
?. safe call operator, 21, 124
?: Elvis operator, 21

using with === and as?, 63
using with let function, 123-124

@Autowired annotation, 197
@BeforeClass and @AfterClass life cycle meth‐

ods, 145, 146
@Component annotation, 194
@CsvSource annotation, 154
@Entity annotation, 195
@GeneratedValue annotation, 196
@Id annotation, 196
@JvmField annotation, 166
@JvmOverloads annotation, 26-30
@JvmStatic annotation, 155, 157
@MethodSource annotation, 154
@Nonnull annotation, 25
@ParameterizedTest annotation, 153

string argument for formatting tests on
report, 155

@RestController annotation, 197
@TestInstance annotation, 143, 147
@TestInstance.Lifecycle.PER_CLASS, 157

@TestInstanceLifecycle.PER_CLASS), 154
@Throws annotation, 187-189
[] (square brackets), array operator, 85
_ (underscore)

adding to numeric literals, 40
using in function names, 186

`**` extension function, 36
`` (backticks), wrapping function names in, 186

A
accessors and mutators (see getters and setters)
accumulators

fold function vs. reduce function, 77
in fold function, 74

actual keyword, 34
afterChange method, 137
all-open plug-in, 192
also function, using for side effects, 121-122
and operator, 40
Android

cancelling jobs in, 216
dispatchers, 210
note to developers, xiv
using Kotlin plugin (Groovy DSL) in

Android projects, 13
Android KTX library, lifecycle-viewmodel, 211
Android Studio, EduTools plug-in, 3
annotations

enforcing JSR-305 nullability annotations in
Kotlin code, 24

in Java, 25
used to open Kotlin classes, 193

Any class, equals method, 63
appendBytes function, 163

221

appendText function, 163
apply function, 119-120, 148
Arguments class, of method, 155
arrayContainingInAnyOrder method, 150
arrays, 83-86

Array class get and set methods, 85
classes representing arrays of primitive

types, 85
creating using arrayOf method, 84
creating using arrayOfNulls, 84
fold function, 74
getting valid index value, 85
instantiating in Java, 83

as operator, 65
as? (safe cast) operator, 24

using with === and ?: operators, 63
asCoroutineDispatcher function (ExecutorSer‐

vice), 210, 211-213
asList function, 86
asSequence function, 112
assertAll function, 149, 153
assertThat function, 150
associate function, 90
associateWith function, 90-91
async function, 202, 204

adding dispatchers, 209, 209
specifying dispatcher through Coroutine‐

Context parameter, 209
async/await function combination, replacing

with withContext, 207-208
autoboxing in Java, 31
AutoCloseable interface, 212
autowiring a dependency into Spring, 197
await function (Deferred), 204

B
backing property technique, 55-57
bang-bang, or not-null, assertion operator (!!),

23
bases (numerical), printing to different, 33-35
beans, 191
beforeChange method, 137
BigInteger class, 79
binary strings, converting to and from, 172-174
binary, printing numbers to, 33
bitwise boolean operators, 40-43
bitwise shift operations, 38-40
BufferedReader class, 160
BufferedWriter class, 163

bufferedWriter function, 163
build.gradle files for Android projects, 13
build.gradle.kts file, 16, 192
by keyword, 128

C
cancelAndJoin function, 215
casting

safe casts with as? operator, 24
smart casts, 22

catch block (in try/catch), 189
chunked function, 95-96
class delegates, 127-130
ClassCastException, 24
classes

closed classes in Kotlin, 191
Kotlin classes used as entities with Spring

framework, 196
making executable, 174-177
opening Kotlin classes to Spring extensions,

192-194
close function, 212
Closeable interface

resources from classes that implement, 159
use function, 213
use function signature in standard library,

162
use method, 161

CloseableCoroutineDispatcher class, 212
ClosedRange interface, 104
closeTo matcher, 37, 53
Coding Conventions guide, 187
coerceIn function, overloads for ranges, 93
collections

building a map from, 90-91
creating, 86-88

classes implementing List, Set, or Map
interfaces directly, 88

immutable lists, sets, and maps, 87
methods to modify collections, 87

defining iterator for, 100-102
eager processing, 109
existing, creating read-only views from,

89-90
filtering by type, 102
processing a window on, 94-96
returning a default if collection is empty,

91-93
sorting by multiple properties, 98-99

222 | Index

using reduce function on, 77
command line, compiling and running Kotlin

from, 5
command-line compiler, installing, 4
Comparable interface, 99

KotlinVersion class implementing, 166
rangeTo for classes implementing, 104

Comparator class, 99
compareBy function, 99
compile-time constraints on objects, 47
compileKotlin task, 18
compileTestKotlin task, 18
completion, forcing with TODO, 182-183
Complex class, operator overloading with

extension functions, 58
component functions, 54

in data classes, 148
in List class, 97

composition, implementing by delegation,
127-130

concurrency
running code blocks on concurrent threads,

179-182
structured, 207
writing concurrent code with coroutines,

201
const and val, difference between, 47-48
constructors

argument setting property value and enforc‐
ing constraints, 57

calling from Java to instantiate a class, 29
data class with primary constructor, 194
default, required by JPA, 194
dependency injection with, 197
for singletons, 66
injecting dependencies using constructor

arguments in JUnit 5, 199
instantiating a class from Kotlin with, 29
Kotlin class with overloaded constructors,

28
putting @Autowired annotation on, 198
using to assign a property, 51

contained objects, 128
conversion functions in Kotlin, 32
conversions between types, explicit, 31-32
copy function, 52, 53

in data classes, 148, 151
limitations of, 152

CoroutineContext class, 203, 204, 216

dispatcher, 209
CoroutineDispatcher class, 209
coroutines, 201

cancelling, 214-217
choosing coroutine builders, 201-207

async function, 204
coroutineScope function, 206
launch function, 203
runBlocking function, 202

debugging, 217-219
dispatchers, 209-211
replacing async/await with withContext,

207-208
running on a Java thread pool, 211-213

CoroutineScope class, 216
launch and async extension functions, 202
withContext extension function, 207

coroutineScope function, 206
example of use, 206

CoroutineStart class, 203, 204
CouroutineName class, 218
CSV data, using for parameterized test, 153
CURRENT property, 165
custom getters and setters, creating, 49-51

D
daemon threads, starting, 180
data classes

defining, 51-55
implementing your own versions of auto‐

generated functions, 66
modeling returned JSON data, 175
persisting, 194-196
using for parameterized tests, 156-157
using for tests, 148-150

data keyword, 51
data types

filtering a collection by type, 102
Nothing class as subclass of every other

type, 70
random number generation for, 185

database tables, Kotlin classes mapped to, 196
debug mode, executing coroutines on JVM in,

217-219
Default dispatcher, 209
defaultPlatformRandom function, 185
Deferred object, 204
delay function, 205
Delegate class, 140

Index | 223

delegates in Kotlin, 127
creating your own, 140-142
ensuring a value is not null with notNull

function, 132-134
implementing composition by delegation,

127-130
lazy delegate function, 130-132
supplying maps as delegates, 138-140
using observable and vetoable delegate

functions, 134-138
Delegates object, implementation in standard

library, 133
depedencies

dependencies block for Gradle builds
implementation vs. compile configura‐

tion, 17
dependencies

adding Kotlin standard library to Maven
build, 19

additional, for JPA entities, adding to build
file, 195

dependencies block for Gradle builds
adding Kotlin JDK dependency, 17

Gradle sharing among subprojects, 13
dependency injection, 61, 197-199
design patterns

execute around method, 162
iterator, 100
proxy, 192
singleton, 66

destructuring objects, 42
accessing individual elements in Pair, 44
lists, 97
using component functions in data classes,

52, 54
dictionary, finding 10 longest words in, 161
directories, specifying for Kotlin builds in

Maven, 19
dispatchers

closing with use function, 213
using thread pool as coroutine dispatcher,

211
Dispatchers.Default dispatcher, 209
Dispatchers.IO dispatcher, 208, 209
Dispatchers.Main dispatcher, 210, 216
Dispatchers.Unconfined dispatcher, 209
domain-specific language (DSL)

Groovy DSL for Gradle, 12
Kotlin DSL for Gradle, 15

dropLast function, 115

E
-ea (enable assertions) flag, Java command line,

217
eager processing, 110
EduTools plug-in, 3
elapsed time, measuring, 177-179
else clause

if-else statement, returning Nothing, 70
when statement, 169

Elvis operator (?:), 21
using with as? and === operator, 63
using with let function, 123-124

emptyArray method, 84
encapsulation, 49
entities, configuration by kotlin-jpa plug-in,

195
equals function, 52

in data classes, 148, 150
in KotlinVersion class, 166
overriding, 63-66

exceptions, telling Java about, 187-189
executable classes, 174-177
Executable instances, 149
execute around method design pattern, 162
executeAndReturnKey method, SimpleJdbcIn‐

sert class, 120
executing Kotlin scripts, 8
ExecutorCoroutineDispatcher class, 212
ExecutorService (Java), asCoroutineDispatcher

function, 210, 211-213
exhaustive property for when statement,

168-170
explicit conversions between types, 31-32
exponentiation, 35-37

defining infix operation for, 36
using `**` as synthesized exponentiation

function, 36
extra properties, 141

F
factorials, recursive, 75, 79-82

implementing as recursive function, 79
implementing with tail recursion, 80
recursive function causing StackOverflo‐

wError, 79
rewriting as iterative operation using fold,

75

224 | Index

factory function producing default values for
class arguments, 151

Fibonacci numbers
computing using fold function, 75
computing with tail-recursive function, 153,

156
generating as a sequence, 116

FibonacciTestData class, 156
fields in Kotlin classes, 49

resolution of public property/private field
dilemma, 50

File class, 159
returning output streams and writers,

163-164
useLines method, 161

implementation in standard library, 162
filter function, using on sequences, 111
filterIsInstance function, 102
filterIsInstanceTo function, 102
first function, overloading, 110-111

lambda or predicate, 113
firstNPrimes function, 114
fold function, 73-76

reduce function versus, 77
reductive operation on arrays or iterables,

73
for-in loop, 100
forEachIndexed function, 107
functional programming

tail recursion, 79-82
using fold function in algorithms, 73-76
using reduce function for reductions, 76-79

functions
builder functions for coroutines, 201
generated for data classes, 52
Kotlin function with default arguments, 26
operators implemented as, 58
requirements for using tailrec modifier, 82
special characters in names of, 186-187

G
gcc, 10
generateSequence function, 113, 115
getters and setters

custom setter mapping priority into given
range, 48

custom, controlling property initialization,
55

custom, creating, 49-51

getValue and setValue functions, 137, 140
implemented by maps in Kotlin, 138

GitHub
repository for Kotlin current releases, 4
repository for this book, xi

glibc-devel file, 10
GraalVM

native-image tool, using to compile native
executable, 10

using to build a stand-alone application, 9
gradle build --dry-run command, 18
Gradle builds

adding Kotlin plug-in (Kotlin syntax), 15
adding Kotlin plug-in for Groovy, 12
adding kotlin-jpa plug-in, 195
adding kotlin-spring plug-in, 192
enforcing JSR-305 compatibility in Kotlin

DSL, 25
enforcing JSR-305 compatibility in Kotlin

Groovy DSL, 25
including kotlinx-coroutines-android

dependency, 210
Kotlin DSL for Gradle

interaction with containers via delegate
properties, 141

older syntax for adding plug-ins, 12
using Gradle to build Kotlin projects, 16
using Kotlin plugin (Groovy DSL) in

Android projects, 13
Groovy DSL for Gradle, Kotlin plug-in for, 12

using in Android projects, 13
Groovy, Elvis operator (?:), 24
Gson.fromJson function, 126, 140

H
Hamcrest matchers, methods provided by, 150
hashCode function, 52

equals function and, 64
generated by IntelliJ IDEA, 65
implementing equals and hashCode in Cus‐

tomer class, 65
in data classes, 148
in KotlinVersion class, 166

hasNext function, 106
helper functions with default arguments, using

in tests, 151-152
Hibernate, null primary key, 196

Index | 225

I
IDEs, using Kotlin REPL instead of, 8
if statement, throwing an exception, 70
ifBlank function, 91
ifEmpty function, 91
IllegalStateException, 134
immutable collections, 86
IndexedValue class, 85
infinite sequences, 114-115
infix keyword, 36
inheritance, replacing with composition, 128
inline functions

inline versus crossInline modifiers, 138
lambdas as parameters to execute in another

context, 138
input/output

managing with use or useLines, 159-162
writing to a file, 163-164

inspectClassesForKotlinIC task, 18
installing Kotlin locally, 3-5
integers

checking if an Int is prime, 112
converting between Int and binary string,

172
converting between RGBA colors and, 41
converting from Integer type to Long, 31
finding next prime after given integer, 113
generating random Ints, 183
raising an Int to a power, 36
summing using fold, 74

IntelliJ IDEA
EduTools plug-in, 3
flagging function names with backticks, 186
generated equals and hashCode functions,

65
interactive shell, running Kotlin in, 7
intermediate operations (sequences), 111, 114

take function, 114
inv operator, 40
invoke operator function, 174-177
IO dispatcher, 209
IOException, 188
isAtLeast function, 166
isInitialized, using on property reference, 62
isPrime function, 112, 114
Iterable interface, implementing, 101

progressions, 105
iterables

converting to a sequence, 112

fold function, 73
reduce function on, 76

Iterator interface, 100
iterators

defining your own, 100-102
for LocalDateProgression, 106
internal, using repeat rather than a loop, 167

J
jackson-module-kotlin dependency, 195
JAR files, creating executable Kotlin JAR file, 6
Java

adding nullability indicators to, 24-26
adding overloaded methods for, 26-30
compiling project containing both Kotlin

and Java code, 20
java.time package, 8
Kotlin JDK dependency, adding to Gradle

builds, 17
mixing Java sources with Kotlin sources in

same folder, 13
Java Persistence API (JPA), using with Kotlin

data classes, 194-196
java-library plug-in, 17
java.io.File class, 163
java.lang.Integer.toString function, 33
java.lang.Runtime class, 67
jcenter repository, 18
jobs, cancelling, 214

in Android, 216
join function, 214
joining threads together, 181
JSON

data returns by Open Notify service, 174
parsing map of properties from, 139
serializing Kotlin classes into, 195
transforming into class instances, 125

JSR-305 compatible annotations, 25
JUnit 5

assertAll method taking vararg list of Exe‐
cutable instances, 149

injecting dependencies using constructor
arguments, 199

JUnit5ListTests class, 147
parameterized tests and dynamic tests,

152-155
parameterized tests using data classes,

156-157
junit-platform.properties file, 148

226 | Index

JUnit4ListTests class
for java.util.List, 143
in Kotlin, 145

JVM
compiling and running Kotlin from, 5
running with -Dkotlinx.coroutines.debug

flag, 217-219

K
kotlin -version command, 5
kotlin command, 6
Kotlin Koans, 3
Kotlin Maven plug-in and standard library

dependencies, using for Maven builds, 19
Kotlin Playground, using to explore Kotlin, 1
Kotlin plug-in for Gradle Groovy, 12
kotlin-gradle-plugin, 12, 15
kotlin-jpa plug-in, 194-196
kotlin-jvm plug-in, 193
kotlin-native installer for Windows, 5
kotlin-spring plug-in, 191-194
kotlin-stdlib-jdk7 or kotlin-stdlib-jdk8, 19
kotlinc-jvm command, 5

-include-runtime argument, 6
using to compile scripts, 10

kotlininc -script command, 9
kotlininc command, 7
KotlinVersion class, 165

comparison of instances, 166
equals function, 64

kotlinx-coroutines-android dependency, 210
kotlinx.coroutines.debug system property, 217
.kts file extension, 8

L
lambdas

executing repeatedly, 167-168
first operation predicate, 113
initializer of the form () -> T, 131
mapping Sequence of lines from file to

generic argument T, 161
passed as parameters to inline functions

needing to be executed in another con‐
text, 138

use in creating arrays, 84
use to represent instances of Executable, 150
using in fold function, 74

lateinit modifier, using for delayed initializa‐
tion, 60-63, 146

lazy delegate versus, 63
lateinit var structure, 197, 198
launch function, 202, 203

Job reference returned by, 214
specifying dispatcher through Coroutine‐

Context parameter, 209
lazy delegate function, 56, 69

initializing a property when needed,
130-132

lateinit versus, 63
lazy sequences, 109-111
LazyThreadSafetyMode, 131
let function

using with a temporary variable, 124-126
using with Elvis operator (?:), 123-124

Lifecycle.PER_CLASS, 154, 157
Lifecycle.PER_METHOD, 155
LinkedList, instantiating, 88
listOf function, 86
lists

classes implement List interface directly, 88
destructuring to access elements, 96-97
from sequences, 115
iterable collection split into list of lists, 95
JUnit 4 test for java.util.List, 143
JUnit 4 test in Kotlin, 145
JUnit 5 list test in Kotlin, 147
mutable, creating, 87
mutable, creating read-only view of, 89
unmodifiable, creating, 86

local variable type inference, 160
LocalDateProgression class, 105
Long type, raising to a power, 36

M
Main dispatcher (Android), 210, 216
main function, 2

modified to throw IOException, 160
major.minor.patch version, 165
mapOf function, 88
maps

building from a collection, 90-91
classes implementing Map interface directly,

88
immutable, creating, 87
mutable, creating, 87
supplying as delegates, 138-140

Maven
enforcing JSR-305 compatibility in, 25

Index | 227

using with Kotlin, 19
measureNanoTime function, 177
measureTimeMillis function, 177
minus function, 59
moving average, computing, 96
mutableList function, 148

N
naming coroutines, 218
native-image tool (GraalVM), using to create

native binary from Kotlin source code, 9
next function, 106
nextInt function, 183

overloads of, 184
nextPrime function, 113, 114
no-arg plug-in, 195
non-nullable variables, 21
none function, 112
not-null, assertion operator (!!), 23
Nothing class, 69-71
NotImplementedError, 182
notNull function, 132-134, 141
NotNullVar class, 134, 141
nullability indicators, adding to Java, 24-26
nullable types, using in Kotlin, 21-24

combining safe call (?.) and Elvis operators
(?:), 23

declaring nullable variables, 22
nullable function arguments, 26
nullable string, capitalizing, 123
safe call operator (?.), 23
String? type for parameter name, 199

NullPointerException, 23
nulls

creating array of, 84
elimination by Kotlin, 21
ensuring a value is not null with notNull

function, 132-134
null primary key in Hibernate, 196
withTimeoutOrNull function, 215

numerical bases, printing to different, 33-35

O
object keyword, 67
object-oriented programming

backing property technique, 55-57
creating custom getters and setters, 49-51
creating singletons, 66-69
defining data classes, 51-55

difference between const and val, 47-48
favoring composition over inheritance, 128
Nothing class, using idiomatically, 69-71
using lateinit for delayed initialization,

60-63
objects

initializing after construction using apply,
119-120

object declaration, 67
observable function, 134-138
ObservableProperty class, 136
of method, Arguments class, 155
open keyword, 192
operator function, iterator, defining, 101
operator keyword, 58, 176
operators

overloading, 58-60, 174
type conversions with, 32

using bitwise boolean operators, 40-43
using bitwise shift operators, 38-40

Optional<T> class (Java), 93
or operator, 40
org.gradle.api.Project class, 141
OutputStreamWriter, 163
overloaded methods for Java, 26-30

P
package managers, using to install Kotlin, 4
padding binary strings, 173
Pair class, 55

creating instances with to function, 43-45
palindrome checker

written in Java style, 171
written in Kotlin style, 171

parallel function, 178
parameterized tests, 152-155

using data classes, 156-157
platforms

choosing to run Kotlin on, 2
platform type with unknown nullability, 26

plugins block
coming first in Gradle builds, 17
using to add Groovy DSL plug-in for Kotlin

to Gradle build, 12
using to add Kotlin DSL plug-in for Gradle,

15
plus function, 59
Point class, unaryMinus method, 58
pom.xml file (Maven), 19

228 | Index

pow function, 35
predicates, 113
primary key, 196
primesLessThan function, 115
primitive types

arrays of, 85
conversions in Java, 31
Kotlin and, 32

progressions, creating from a range, 104-107
Project class, 141
properties

backing fields generated for, 50
backing property technique, 55-57
declared in constructors, type for, 50
defining for a class, 49
excluding from generated functions for data

classes, 55
lazy initialization of, 130-132
observable and vetoable, 134-138
returning values for data classes, 54
sorting by multiple properties, 98-99
testing all using JUnit 5 assertAll function,

149
testing manually, 149
using lateinit on, 60-63
writing your own property delegates,

140-142
proxies, Spring generating by extending Kotlin

classes, 191-194
proxy design pattern, 192

R
radix values, checking and printing, 33
Random class

implementation, 184
methods declared in, 183

random numbers, generating, 183-185
Random.nextBoolean function, 70
ranges

converting to a sequence, 110
making into progressions, 104-107
restricting a value to a given range, 93-94

read-only views, creating from existing collec‐
tions, 89-90

readBytes function, 163
Reader class, useLines method, 161
readLines function, 163
ReadOnlyProperty interface, 134

creating class that implements, 140

readText function, 163
ReadWriteProperty interface, 134, 137

creating class that implements, 140
recursion

applying tail recursion, 79-82
recursiveFactorial function, 75

reduce function, 76-79
fold function versus, 77

reference equality operator (see === in Sym‐
bols section)

reflection, kotlin-reflect, 19
repeat function, 167-168, 214
REPL, running Kotlin in, 7
replace function, using with regular expres‐

sions, 170-172
repositories block, using to add plug-ins to

Gradle builds, 12
Kotlin DSL for Gradle, 15
Kotlin JDK plug-in, 17

resources, managing with use or useLines func‐
tion, 159-162

rest controller working with injected service,
197

REST requests, testing, 199
retrieve1 and retrieve2 functions, 208
RGBA colors, converting between integer val‐

ues and, 41
run method, Thread class, 180
runBlocking function, 202, 205, 208

using, 202
Runnable interface, 180
running Kotlin without a local compiler, 1
Runtime class, 66

S
safe call operator (?.), 21

using with let function and Elvis operator
(?:), 124

safe casts
as? operator, 24
using as? operator with === and ?: opera‐

tors, 63
save function, 120
Scoop, using to install Kotlin on Windows, 5
scope functions, 119

also function, using for side effects, 121-122
apply, 119-120
let function, using with Elvis operator,

123-124

Index | 229

let function, using with temporary variable,
124-126

scripts, writing and executing in Kotlin, 8
SDKMAN!

installing Kotlin with, 4
using to install GraalVM, 9

seeded random number generator, 185
sequenceOf function, 112
sequences

generating, 112-113
infinite, 114-115
lazy, using, 109-111
yielding from, 116-118

set functions (see getters and setters)
sets

classes implementing Set interface directly,
88

immutable, creating, 87
mutable, creating, 87

settings.gradle file, 13
settings.gradle.kts file, 16
shell, interactive, running Kotlin in, 7
shift operators defined as extension functions,

38
shl function, 38
short-circuiting functions, 110-111
shr function, 38

versus ushr function, 39
shutdown method, 212
shutdownNow method, 212
side effects, using also function for, 121-122
SimpleJdbcInsert class, executeAndReturnKey

method, 120
singletons, creating, 66-69

accessing singleton members from Java, 68
accessing singleton members from Kotlin,

68
implementing singleton in Kotlin with

object keyword, 67
instantiating a singleton with an argument,

68
smart casts, 22
sortedWith function, 99
sorting by multiple properties, 98-99
special characters, using in function names,

186-187
spread operator, 150
Spring framework, 191

enforcing JSR-305 compatibility, 25

injecting dependencies, 197-199
opening Spring-managed bean classes for

extension, 191-194
persisting Kotlin data classes, 194-196

static methods in singletons, 66
static modifier, 146

@JvmStatic annotation for test class meth‐
ods, 157

factory methods in test classes, 154
Stream interface, 160
strings

capitalizing and handling empty or blank
strings, 123

converting between number and binary
strings, 172-174

ifEmpty function, using on String, 92
JSON, parsing map of properties from, 139
non-nullable and nullable, 24
replace function on String, 170-172
strings attribute of JUnit4ListTests, 145

StringsKt class, 172
structured concurrency, 207
summing integers

using fold function, 74
using reduce function, 77

super, Java constructors calling parent with, 30
suspend functions, 201

coroutineScope, 206
delay, 205
yield function, 117

synthetic default constructor, adding to Kotlin
classes, 195

System.currentTimeMillis method, 179
System.measureNanoTime method, 177
System.measureTimeMillis method, 177

T
tail recursion, 79-82

function to compute Fibonacci numbers,
153, 156

requirements for functions to use tailrec
modifier, 82

tailrec keyword, 79
take function, sequence accessed by, 117
takeWhile function, 115
tasks for JVM-based Kotlin projects, 17
temporary variable, using let function with,

124-126
terminal operations (sequences), 111, 114

230 | Index

toList function, 115
testing

injecting dependencies using constructor
arguments in JUnit 5, 199

kotlin-test-junit in Maven builds, 19
repeating JUnit 5 tests with different data,

152-155
special characters in test function names,

187
test per class instance, 143-148
using data classes for parameterized tests,

156-157
using data classes for tests, 148-150
using helper functions with default argu‐

ments, 151-152
using TODO function, 183

thenBy function, 99
this, as argument and return for apply function,

119
thread function, 180
thread pool (Java), running coroutines on,

211-213
threads, concurrent, running code blocks on,

179-182
throwing exceptions, 187-189
time, elapsed, measuring, 177-179
TimeoutCancellationException, 215
times function, 59
to function, creating Pair instances with, 43-45
TODO function, 182-183
toInt function, 31

StringsKt class, 173
toLong function, 31
toString function, 33, 52

in data classes, 156
KotlinVersion class, 165
StringsKt class, 172

Triple class, 45, 55
try-with-resources construct (Java), 159
try/catch block, wrapping function calls in, 188
two's complement arithmetic, 38, 41

U
unaryMinus method, Point class, 58
Unconfined dispatcher, 209
UninitializedPropertyAccessException, 62
use function, 161, 213

signature on Closeable, 162
writing with, 163

useLines function, 161, 163
File.useLines implementation in standard

library, 162
ushr function, 38

finding midpoint between two large inte‐
gers, 39

versus shr function, 39

V
val keyword, 22, 51

difference between const and val, 47-48
val properties having value when declared,

198
var keyword, 22, 51

lateinit property on var variables, 61
lateinit var structure, 198
replacing BufferedReader or Stream in Java,

160
strings attribute of JUnit4ListTests, 146
using for properties in Kotlin entity classes,

196
varargs, 149
variables

delegation of local variables, 141
non-nullable, declaring, 21
nullable, declaring, 22

versions
finding Kotlin version programmatically,

165-167
specifying Kotlin version for Maven, 19

vetoable function, 134-138

W
when property (@Nonnull in JSR-305), 26
when statement

else clause, 70
forcing to be exhaustive, 168-170

window, processing on a collection, 94-96
windowed function, 94-96
Windows, installing Kotlin using Scoop, 5
withContext function

adding dispatchers, 209
replacing async/await with, 207-208

withIndex function, 85
withTimeout function, 215
withTimeoutOrNull function, 215
wrapper objects, 128
wrapper types, converting between, 31
writeBytes function, 163

Index | 231

writer function, 163
writeText function, 163

X
-Xjsr305=strict compile-time parameter, 24
xor operator, 40

Y
yield function, 117
yieldAll function, 117

Z
zlib-devel file, 10

232 | Index

About the Author
Ken Kousen is a Java Champion, Oracle Developer Champion, and Grails Rock Star
whose books include Modern Java Recipes, Gradle Recipes for Android, and Making
Java Groovy. He is also a JetBrains Certified Kotlin Training Partner.

Colophon
The animal on the cover of Kotlin Cookbook is a kinkajou (Potos flavus), a long-tailed
mammal native to Central and South America.

Kinkajous have golden-brown fur, small slightly webbed paws, and large black eyes—
the latter of which assist this nocturnal creature in seeing better at night. Reversible
hind feet and a prehensile, or gripping, tail aid the kinkajou’s arboreal (treetop-
dwelling) lifestyle. Although similar in appearance and behavior to primates, kinka‐
jous evolved separately from primates and are most closely related to raccoons.

While technically an omnivore, most of the kinkajou’s diet consists of fruit—particu‐
larly figs. Occasionally, they will dine on small vertebrates or bird eggs. Their curi‐
ously long tongue allows them to indulge in insects or nectar, earning these creatures
the nickname “honey bear.” In fact, captive populations are indeed fed honey, much
to their delight.

A troop of kinkajous participates in social grooming and nesting. They can be aggres‐
sive when startled or awoken during the day, attacking with sharp teeth and claws, or
emitting loud screeches and barks that echo through the surrounding canopy.

While the kinkajou’s conservation status is currently listed as of Least Concern, defor‐
estation is a potential threat to the kinkajou population. Many of the animals on
O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Lydekker’s Natural History. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com/online-learning

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	Who Should Read This Book
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Installing and Running Kotlin
	1.1 Running Kotlin Without a Local Compiler
	Problem
	Solution
	Discussion

	1.2 Installing Kotlin Locally
	Problem
	Solution
	Discussion
	See Also

	1.3 Compiling and Running Kotlin from the Command Line
	Problem
	Solution
	Discussion
	See Also

	1.4 Using the Kotlin REPL
	Problem
	Solution
	Discussion

	1.5 Executing a Kotlin Script
	Problem
	Solution
	Discussion

	1.6 Building a Standalone Application Using GraalVM
	Problem
	Solution
	Discussion

	1.7 Adding the Kotlin Plug-in for Gradle (Groovy Syntax)
	Problem
	Solution
	Discussion
	See Also

	1.8 Adding the Kotlin Plug-in for Gradle (Kotlin Syntax)
	Problem
	Solution
	Discussion
	See Also

	1.9 Using Gradle to Build Kotlin Projects
	Problem
	Solution
	Discussion

	1.10 Using Maven with Kotlin
	Problem
	Solution
	Discussion

	Chapter 2. Basic Kotlin
	2.1 Using Nullable Types in Kotlin
	Problem
	Solution
	Discussion

	2.2 Adding Nullability Indicators to Java
	Problem
	Solution
	Discussion

	2.3 Adding Overloaded Methods for Java
	Problem
	Solution
	Discussion

	2.4 Converting Between Types Explicitly
	Problem
	Solution
	Discussion

	2.5 Printing to Different Bases
	Problem
	Solution
	Discussion

	2.6 Raising a Number to a Power
	Problem
	Solution
	Discussion

	2.7 Using Bitwise Shift Operators
	Problem
	Solution
	Discussion

	2.8 Using Bitwise Boolean Operators
	Problem
	Solution
	Discussion

	2.9 Creating Pair Instances with to
	Problem
	Solution
	Discussion

	Chapter 3. Object-Oriented Programming in Kotlin
	3.1 Understanding the Difference Between const and val
	Problem
	Solution
	Discussion
	See also

	3.2 Creating Custom Getters and Setters
	Problem
	Solution
	Discussion
	See Also

	3.3 Defining Data Classes
	Problem
	Solution
	Discussion

	3.4 The Backing Property Technique
	Problem
	Solution
	Discussion
	See Also

	3.5 Overloading Operators
	Problem
	Solution
	Discussion

	3.6 Using lateinit for Delayed Initialization
	Problem
	Solution
	Discussion
	See Also

	3.7 Using Safe Casting, Reference Equality, and Elvis to Override equals
	Problem
	Solution
	Discussion
	See Also

	3.8 Creating a Singleton
	Problem
	Solution
	Discussion

	3.9 Much Ado About Nothing
	Problem
	Solution
	Discussion

	Chapter 4. Functional Programming
	4.1 Using fold in Algorithms
	Problem
	Solution
	Discussion
	See Also

	4.2 Using the reduce Function for Reductions
	Problem
	Solution
	Discussion
	See Also

	4.3 Applying Tail Recursion
	Problem
	Solution
	Discussion

	Chapter 5. Collections
	5.1 Working with Arrays
	Problem
	Solution
	Discussion

	5.2 Creating Collections
	Problem
	Solution
	Discussion

	5.3 Creating Read-Only Views from Existing Collections
	Problem
	Solution
	Discussion

	5.4 Building a Map from a Collection
	Problem
	Solution
	Discussion

	5.5 Returning a Default When a Collection Is Empty
	Problem
	Solution
	Discussion

	5.6 Restricting a Value to a Given Range
	Problem
	Solution
	Discussion

	5.7 Processing a Window on a Collection
	Problem
	Solution
	Discussion

	5.8 Destructuring Lists
	Problem
	Solution
	Discussion

	5.9 Sorting by Multiple Properties
	Problem
	Solution
	Discussion

	5.10 Defining Your Own Iterator
	Problem
	Solution
	Discussion

	5.11 Filtering a Collection by Type
	Problem
	Solution
	Discussion

	5.12 Making a Range into a Progression
	Problem
	Solution
	Discussion

	Chapter 6. Sequences
	6.1 Using Lazy Sequences
	Problem
	Solution
	Discussion

	6.2 Generating Sequences
	Problem
	Solution
	Discussion
	See Also

	6.3 Managing Infinite Sequences
	Problem
	Solution
	Discussion

	6.4 Yielding from a Sequence
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Scope Functions
	7.1 Initializing Objects After Construction with apply
	Problem
	Solution
	Discussion

	7.2 Using also for Side Effects
	Problem
	Solution
	Discussion
	See Also

	7.3 Using the let Function and Elvis
	Problem
	Solution
	Discussion
	See Also

	7.4 Using let with a Temporary Variable
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Kotlin Delegates
	8.1 Implementing Composition by Delegation
	Problem
	Solution
	Discussion
	See Also

	8.2 Using the lazy Delegate
	Problem
	Solution
	Discussion

	8.3 Ensuring That a Value Is Not Null
	Problem
	Solution
	Discussion

	8.4 Using the observable and vetoable Delegates
	Problem
	Solution
	Discussion

	8.5 Supplying Maps as Delegates
	Problem
	Solution
	Discussion

	8.6 Creating Your Own Delegates
	Problem
	Solution
	Discussion

	Chapter 9. Testing
	9.1 Setting the Test Class Life Cycle
	Problem
	Solution
	Discussion

	9.2 Using Data Classes for Tests
	Problem
	Solution
	Discussion

	9.3 Using Helper Functions with Default Arguments
	Problem
	Solution
	Discussion

	9.4 Repeating JUnit 5 Tests with Different Data
	Problem
	Solution
	Discussion
	See Also

	9.5 Using Data Classes for Parameterized Tests
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Input/Output
	10.1 Managing Resources with use
	Problem
	Solution
	Discussion
	See Also

	10.2 Writing to a File
	Problem
	Solution
	Discussion
	See Also

	Chapter 11. Miscellaneous
	11.1 Working with the Kotlin Version
	Problem
	Solution
	Discussion

	11.2 Executing a Lambda Repeatedly
	Problem
	Solution
	Discussion

	11.3 Forcing when to Be Exhaustive
	Problem
	Solution
	Discussion

	11.4 Using the replace Function with Regular Expressions
	Problem
	Solution
	Discussion
	See Also

	11.5 Converting to Binary String and Back
	Problem
	Solution
	Discussion

	11.6 Making a Class Executable
	Problem
	Solution
	Discussion
	See also

	11.7 Measuring Elapsed Time
	Problem
	Solution
	Discussion

	11.8 Starting Threads
	Problem
	Solution
	Discussion
	See Also

	11.9 Forcing Completion with TODO
	Problem
	Solution
	Discussion

	11.10 Understanding the Random Behavior of Random
	Problem
	Solution
	Discussion

	11.11 Using Special Characters in Function Names
	Problem
	Solution
	Discussion

	11.12 Telling Java About Exceptions
	Problem
	Solution
	Discussion

	Chapter 12. The Spring Framework
	12.1 Opening Spring-Managed Bean Classes for Extension
	Problem
	Solution
	Discussion
	See Also

	12.2 Persisting Kotlin Data Classes
	Problem
	Solution
	Discussion
	See Also

	12.3 Injecting Dependencies
	Problem
	Solution
	Discussion

	Chapter 13. Coroutines and Structured Concurrency
	13.1 Choosing Coroutine Builders
	Problem
	Solution
	Discussion

	13.2 Replacing async/await with withContext
	Problem
	Solution
	Discussion

	13.3 Working with Dispatchers
	Problem
	Solution
	Discussion
	See Also

	13.4 Running Coroutines on a Java Thread Pool
	Problem
	Solution
	Discussion
	See Also

	13.5 Cancelling Coroutines
	Problem
	Solution
	Discussion

	13.6 Debugging Coroutines
	Problem
	Solution
	Discussion

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

