

Java Threads

Other Java™ resources from O’Reilly

Related titles Java™ in a Nutshell

Java™ Enterprise in a Nutshell

Java™ Examples in a Nutshell

Java™ Cookbook

Learning Java™

Head First Java™

Java™ 1.5 Tiger: A Developer’s
Notebook

Java Books
Resource Center

java.oreilly.com is a complete catalog of O’Reilly’s books on
Java and related technologies, including sample chapters and
code examples.

OnJava.com is a one-stop resource for enterprise Java develop-
ers, featuring news, code recipes, interviews, weblogs, and
more.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

The O’Reilly Network Safari® Bookshelf (safari.oreilly.com) is
the premier online reference library for programmers and IT
professionals. Search across thousands of electronic books si-
multaneously and zero in on the information you need in
seconds. Read the books on your Bookshelf from cover to cover
or simply flip to the page you need. You can even cut and paste
code and download chapters for offline viewing. Try it today for
free.

Java Threads
THIRD EDITION

Scott Oaks and Henry Wong

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Java™ Threads, Third Edition
by Scott Oaks and Henry Wong

Copyright © 2004, 1999, 1997 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Debra Cameron

Production Editor: Matt Hutchinson

Production Services: Octal Publishing, Inc.

Cover Designer: Emma Colby

Interior Designer: David Futato

Printing History:

January 1997: First Edition.

January 1999: Second Edition.

September 2004: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Java Threads, the image of a marine invertebrate, and related trade dress are
trademarks of O’Reilly Media, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O’Reilly Media, Inc. is independent of Sun
Microsystems, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 0-596-00782-5

ISBN13: 978-0-596-00782-9

[M] [03/07]

v

Table of Contents

Preface . ix

1. Introduction to Threads . 1
Java Terms 2
About the Examples 4
Why Threads? 6

2. Thread Creation and Management . 11
What Is a Thread? 11
Creating a Thread 14
The Lifecycle of a Thread 23
Two Approaches to Stopping a Thread 27
The Runnable Interface 31
Threads and Objects 35

3. Data Synchronization . 38
The Synchronized Keyword 38
The Volatile Keyword 41
More on Race Conditions 44
Explicit Locking 50
Lock Scope 53
Choosing a Locking Mechanism 55
Nested Locks 57
Deadlock 59
Lock Fairness 65

vi | Table of Contents

4. Thread Notification . 68
Wait and Notify 68
Condition Variables 76

5. Minimal Synchronization Techniques . 81
Can You Avoid Synchronization? 81
Atomic Variables 86
Thread Local Variables 106

6. Advanced Synchronization Topics . 110
Synchronization Terms 110
Synchronization Classes Added in J2SE 5.0 112
Preventing Deadlock 118
Deadlock Detection 124
Lock Starvation 138

7. Threads and Swing . 143
Swing Threading Restrictions 143
Processing on the Event-Dispatching Thread 144
Using invokeLater() and invokeAndWait() 145
Long-Running Event Callbacks 147

8. Threads and Collection Classes . 152
Overview of Collection Classes 152
Synchronization and Collection Classes 157
The Producer/Consumer Pattern 163
Using the Collection Classes 166

9. Thread Scheduling . 168
An Overview of Thread Scheduling 169
Scheduling with Thread Priorities 176
Popular Threading Implementations 178

10. Thread Pools . 185
Why Thread Pools? 185
Executors 188
Using a Thread Pool 190
Queues and Sizes 191
Thread Creation 195

Table of Contents | vii

Callable Tasks and Future Results 196
Single-Threaded Access 198

11. Task Scheduling . 201
Overview of Task Scheduling 201
The java.util.Timer Class 203
The javax.swing.Timer Class 209
The ScheduledThreadPoolExecutor Class 212

12. Threads and I/O . 220
A Traditional I/O Server 221
A New I/O Server 231
Interrupted I/O 240

13. Miscellaneous Thread Topics . 245
Thread Groups 245
Threads and Java Security 247
Daemon Threads 249
Threads and Class Loading 250
Threads and Exception Handling 252
Threads, Stacks, and Memory Usage 255

14. Thread Performance . 260
Overview of Performance 260
Synchronized Collections 262
Atomic Variables and Contended Synchronization 264
Thread Creation and Thread Pools 265

15. Parallelizing Loops for Multiprocessor Machines . 268
Parallelizing a Single-Threaded Program 269
Multiprocessor Scaling 295

Appendix: Superseded Threading Utilities . 309

Index . 329

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

ix

Preface

When Sun Microsystems released the alpha version of Java™ in the winter of 1995,
developers all over the world took notice. There were many features of Java that
attracted these developers, not the least of which were the set of buzzwords Sun used
to promote the language. Java was, among other things, robust, safe, architecture-neu-
tral, portable, object-oriented, simple, and multithreaded. For many developers,
these last two buzzwords seemed contradictory: how could a language that is multi-
threaded be simple?

It turns out that Java’s threading system is simple, at least relative to other threading
systems. This simplicity makes Java’s threading system easy to learn so that even
developers who are unfamiliar with threads can pick up the basics of thread pro-
gramming with relative ease.

In early versions of Java, this simplicity came with tradeoffs; some of the advanced
features that are found in other threading systems were not available in Java. Java 2
Standard Edition Version 5.0 (J2SE 5.0) changes all of that; it provides a large num-
ber of new thread-related classes that make the task of writing multithreaded pro-
grams that much easier.

Still, programming with threads remains a complex task. This book shows you how
to use the threading tools in Java to perform the basic tasks of threaded program-
ming and how to extend them to perform more advanced tasks for more complex
programs.

Who Should Read This Book?
This book is intended for programmers of all levels who need to learn to use threads
within Java programs. This includes developers who have previously used Java and
written threaded programs; J2SE 5.0 includes a wealth of new thread-related classes
and features. Therefore, even if you’ve written a threaded program in Java, this book
can help you to exploit new features of Java to write even more effective programs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

x | Preface

The first few chapters of the book deal with the issues of threaded programming in
Java, starting at a basic level; no assumption is made that the developer has had any
experience in threaded programming. As the chapters progress, the material becomes
more advanced, in terms of both the information presented and the experience of the
developer that the material assumes. For developers who are new to threaded pro-
gramming, this sequence should provide a natural progression of the topic.

This book is ideally suited to developers targeting the second wave of Java pro-
grams—more complex programs that fully exploit the power of Java’s threading sys-
tem. We make the assumption that readers of the book are familiar with Java’s
syntax and features. In a few areas, we present complex programs that depend on
knowledge of other Java features: AWT, Swing, NIO, and so on. However, the basic
principles we present should be understandable by anyone with a basic knowledge of
Java. We’ve found that books that deal with these other APIs tend to give short shrift
to how multiple threads can fully utilize these features of Java (though doubtless the
reverse is true; we make no attempt to explain nonthread-related Java APIs).

Though the material presented in this book does not assume any prior knowledge of
threads, it does assume that the reader has knowledge of other areas of the Java API
and can write simple Java programs.

Versions Used in This Book
Writing a book on Java in the age of Internet time is hard—the sand on which we’re
standing is constantly shifting. But we’ve drawn a line in that sand, and the line
we’ve drawn is at the Java 2 Standard Edition (J2SE) Version 5.0 from Sun Microsys-
tems. This software was previously known as J2SE Version 1.5.

It’s likely that versions of Java that postdate this version will contain some changes
to the threading system not discussed in this edition of the book. We will also point
out the differences between J2SE 5.0 and previous versions of Java as we go so that
developers using earlier releases of Java will also be able to use this book.

Most of the new threading features in J2SE 5.0 are available (with different APIs)
from third-parties for earlier versions of Java (including classes we developed in ear-
lier editions of this book). Therefore, even if you’re not using J2SE 5.0, you’ll get full
benefit from the topics covered in this book.

What’s New in This Edition?
This edition includes information about J2SE 5.0. One of the most significant
changes in J2SE 5.0 is the inclusion of Java Specification Request (JSR) 166, often
referred to as the “concurrency utilities.” JSR-166 specifies a number of thread-
related enhancements to existing APIs as well as providing a large package of new
APIs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xi

These new APIs include:

Atomic variables
A set of classes that provide threadsafe operations without synchronization

Explicit locks
Synchronization locks that can be acquired and released programmatically

Condition variables
Variables that can be the subject of a targeted notification when certain condi-
tions exist

Queues
Collection classes that are thread-aware

Synchronization primitives
New classes that perform complex types of synchronization

Thread pools
Classes that can manage a pool of threads to run certain tasks

Thread schedulers
Classes that can execute tasks at a particular point in time

We’ve fully integrated the new features of J2SE 5.0 throughout the text of this edi-
tion. The new features can be split into three categories:

New implementations of existing features
The Java language has always had the capability to perform data synchroniza-
tion and thread notification. However, implementation of these features was
somewhat limited; you could, for example, synchronize blocks of code or entire
methods but synchronizing across methods and classes required extra program-
ming. In J2SE 5.0, explicit locks and condition variables allow you more flexibil-
ity when using these features.

These new implementations do not introduce new concepts for a developer. A
developer who wants to write a threadsafe program must ensure that her data is
correctly synchronized, whether she uses J2SE 5.0’s explicit locks or the more
basic synchronized keyword. Therefore, both are presented together when we
talk about data synchronization. The same is true of condition variables, which
provide thread notification and are discussed alongside Java’s wait() and
notify() methods, and of queues, which are discussed along with Java’s other
collection classes.

Important thread utilities
At some point in time, virtually all developers who write threaded programs will
need to use basic thread utilities such as a pool or a scheduler; many of them will
also need to use advanced synchronization primitives. A recognition of this fact is
one thing that drove JSR-166—it was certainly possible in previous versions of
Java to develop your own thread pools and schedulers. But given the importance

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xii | Preface

of threading in the Java platform, adding these basic utilities greatly increases pro-
grammer productivity.

Minimal synchronization utilities
Java’s new atomic classes provide a means by which developers can, when neces-
sary, write applications that avoid synchronization. This can lead to programs
that are highly concurrent.

If you’ve read previous editions of this book, the concepts presented in the first two
categories will be familiar. In previous editions, we developed our own data synchro-
nization classes, thread pools, and so on. In those editions, we explained in detail
how our implementations worked and then used them in several examples. In this
edition, we focus solely on how to use these classes effectively.

The information that falls into the third category is completely new to this edition.
The classes that perform minimal synchronization require new support from the vir-
tual machine itself and could not be developed independent of those changes.

Organization of This Book
Here’s an outline of the book, which includes 15 chapters and 1 appendix:

Chapter 1, Introduction to Threads
This chapter forms a basic introduction to the topic of threads: why they are use-
ful and our approach to discussing them.

Chapter 2, Thread Creation and Management
This chapter shows you how to create threads and runnable objects while
explaining the basic principles of how threads work.

Chapter 3, Data Synchronization
This chapter discusses the basic level at which threads share data safely—coordi-
nating which thread is allowed to access data at any time. Sharing data between
threads is the underlying topic of our next four chapters.

Chapter 4, Thread Notification
This chapter discusses the basic technique threads use to communicate with
each other when they have changed data. This allows threads to respond to data
changes instead of polling for such changes.

Chapter 5, Minimal Synchronization Techniques
This chapter discusses classes and programming methods that achieve data
safety while using a minimal amount of synchronization.

Chapter 6, Advanced Synchronization Topics
In this chapter, we complete our examination of data sharing and synchroniza-
tion with an examination of deadlock, starvation, and miscellaneous locking
classes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xiii

Chapter 7, Threads and Swing
Swing classes are not threadsafe. This chapter discusses how multithreaded pro-
grams can take full advantage of Swing.

Chapter 8, Threads and Collection Classes
Java collection classes are written for a variety of circumstances. Some are
threadsafe and some are not, and J2SE 5.0 introduces new collection classes for
use specifically with thread utilities. We sort all that out in this chapter.

Chapter 9, Thread Scheduling
Scheduling is the process whereby a single CPU selects a thread to run. Thread
scheduling is more a property of an operating system (OS) than a Java program,
and this chapter discusses the relationship between the virtual machine and the
OS in this area.

Chapter 10, Thread Pools
This chapter discusses thread pools—a collection of threads that can be used to
run arbitrary tasks. We use the thread pool implementation of J2SE 5.0 for dis-
cussion of the general principles of using thread pools.

Chapter 11, Task Scheduling
Task schedulers execute a task one or more times at some point in the future.
This set of classes includes timers (Java has had timer classes since JDK 1.3) and
a general task scheduler available in J2SE 5.0.

Chapter 12, Threads and I/O
Dealing with I/O is one of the primary reasons why developers use threads in
Java. In this chapter, we use all of Java’s threading features to show you how to
handle I/O effectively in multithreaded programs.

Chapter 13, Miscellaneous Thread Topics
In this chapter, we complete our examination of thread-related features of Java
by examining thread security, thread groups, thread stacks, and other topics.

Chapter 14, Thread Performance
Performance of thread-related features—and particularly synchronization con-
structs—is key to writing multithreaded programs. In this chapter, we test vari-
ous low-level programming features and explore some truths and myths about
thread performance.

Chapter 15, Parallelizing Loops for Multiprocessor Machines
In this chapter, we show a process for exploiting the power of multiprocessor
machines to calculate CPU-intensive loops in parallel.

Appendix, Superseded Threading Utilities
J2SE 5.0 introduces a number of thread-related classes. Many of these classes
are similar to classes developed in previous editions of this book; we list
those classes in this appendix as an aid to developers who cannot yet upgrade to
J2SE 5.0.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xiv | Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates URLs and filenames, and is used to introduce new terms. Sometimes
we explain thread features using a question-and-answer format. Questions posed
by the reader are rendered in italic.

Constant width
Indicates code examples, methods, variables, parameters, and keywords within
the text.

Constant width bold
Indicates user input, such as commands that you type on the command line.

Code Examples
All examples presented in the book are complete, running applications. However,
many of the program listings are shortened because of space and readability consid-
erations. The full examples may be retrieved online from http://www.oreilly.com/
catalog/jthreads3.

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Java Threads, Third Edition, by
Scott Oaks and Henry Wong. Copyright 2004 O’Reilly Media, 0-596-00782-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xv

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

O’Reilly maintains a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://www.oreilly.com/catalog/jthreads3

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about O’Reilly books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari Enabled
When you see the Safari® Enabled icon on the back cover of your favor-
ite technology book, that means the book is available online through
the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top technology books, cut and paste code samples, down-
load chapters, and find quick answers when you need the most accurate, current
information.

Try it for free at http://safari.oreilly.com.

Acknowledgments
As readers of prefaces are well aware, writing a book is never an effort undertaken
solely by the authors who get all the credit on the cover. We are deeply indebted to
the following people for their help and encouragement: Michael Loukides, who
believed us when we said that this was an important topic and who shepherded us
through the creative process; David Flanagan, for valuable feedback on the drafts;
Deb Cameron, for editing sometimes rambling text into coherency; Hong Zhang, for
helping us with Windows threading issues; and Reynold Jabbour, Wendy Talmont,
Steve Wilson, and Tim Cramer for supporting us in our work over the past six years.

Mostly, we must thank our respective families. To James, who gave Scott the sup-
port and encouragement necessary to see this book through (and to cope with his
continual state of distraction), and to Nini, who knew to leave Henry alone for the
ten percent of the time when he was creative, and encouraged him the rest of the
time—thank you for everything!

®

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xvi | Preface

Finally, we must thank the many readers of the earlier editions of this book who sent
us invaluable feedback. We have tried our best to answer every concern that they
have raised. Keep those cards and letters coming!

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Introduction to Threads

This is a book about using threads in the Java programming language and the Java
virtual machine. The topic of threads is very important in Java—so important that
many features of the threading system are built into the Java language itself while
other features of the threading system are required by the Java virtual machine.
Threading is an integral part of using Java.

The concept of threads is not a new one: for some time, many operating systems
have had libraries that provide the C programmer a mechanism to create threads.
Other languages, such as Ada, have support for threads embedded into the lan-
guage, much as support for threads is built into the Java language. Nonetheless, until
Java came along, the topic of threads was usually considered a peripheral program-
ming topic, one that was only needed in special programming cases.

With Java, things are different: it is impossible to write any but the simplest Java pro-
gram without introducing the topic of threads. And the popularity of Java ensures
that many developers, who might never have considered learning about threading
possibilities in a language such as C or C++, need to become fluent in threaded pro-
gramming.

Futhermore, the Java platform has matured throughout the years. In Java 2 Standard
Edition Version 5.0 (J2SE 5.0), the classes available for thread-related programming
rival many professional threading packages, mitigating the need to use any commer-
cial library (as was somewhat common in previous releases of Java). So Java develop-
ers not only need to become knowledgeable in threaded programming to write basic
applications but will want to learn the complete, rich set of classes available for writ-
ing complex, commercial-grade applications.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Introduction to Threads

Java Terms
Let’s start by defining some terms used throughout this book. Many Java-related
terms are used inconsistently in various sources; we endeavor to be consistent in our
usage of these terms throughout the book.

Java
First, is the term Java itself. As you know, Java started out as a programming
language, and many people today still think of Java as being simply a program-
ming language. But Java is much more than just a programming language: it’s
also an API specification and a virtual machine specification. So when we say
Java, we mean the entire Java platform: the programming language, its APIs, and
a virtual machine specification that, taken together, define an entire program-
ming and runtime environment. Often when we say Java, it’s clear from the con-
text that we’re talking specifically about the programming language, or parts of
the Java API, or the virtual machine. The point to remember is that the thread-
ing features we discuss in this book derive their properties from all the compo-
nents of the Java platform taken as a whole. While it’s possible to take the Java
programming language, directly compile it into assembly code, and run it out-
side of the virtual machine, such an executable may not necessarily behave the
same as the programs we describe in this book.

Virtual machine, interpreters, and browsers
The Java virtual machine is the code that actually runs a Java program. Its pur-
pose is to interpret the intermediate bytecodes that Java programs are compiled
into; the virtual machine is sometimes called the Java interpreter. However,
modern virtual machines usually compile the majority of the code they run into
native instructions as the program is executing; the result is that the virtual
machine does little actual interpretation of code.

Browsers such as Mozilla, Netscape Navigator, Opera, and Internet Explorer all
have the capability to run certain Java programs (applets). Historically, these
browsers had an embedded virtual machine; today, the standard Java virtual
machine runs as a plug-in to these browsers. That means that the threading
details of Java-capable browsers are essentially identical to those of a standard
Java virtual machine. The one significant area of difference lies in some of the
default thread security settings for browsers (see Chapter 13).

Virtual machine implementations are available from many different vendors and
for many different operating systems. For the most part, virtual machines are
indistinguishable—at least in theory. However, because threads are tied to the
operating system on which they run, platform-specific differences in thread
behavior do crop up. These differences are important in relatively few circum-
stances, and we discuss them in Chapter 9.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Java Terms | 3

Programs, applications, applets, and other code
This leads us to the terms that we use for things written in the Java language.
Like traditional programming models, Java supports the idea of a standalone
application, which in the case of Java is run from the command line (or through
a desktop chooser or icon). The popularity of Java has led to the creation of
many new types of Java-enabled containers that run pieces of Java code called
components. Web server containers allow you to write components (servlets and
Java Server Page or JSP classes) that run inside the web server. Java-enabled
browsers allow you to write applets: classes that run inside the Java plug-in.
Java 2 Enterprise Edition (J2EE) application servers execute Enterprise Java
Beans (EJBs), servlets, JSPs, and so on. Even databases now provide the ability to
use server-side Java components.

As far as Java threads are concerned, the distinction between the different types
of containers is usually only the location of the objects to be executed. Certain
containers place restrictions on threaded operations (which we discuss in
Chapter 13), and in that case, we discuss specific components. Apart from the
rare case where we specifically mention a type of component, we just use the
term program since the concepts discussed apply to all of the Java code you
might write.

Concurrency and threads
J2SE 5.0 includes a package known as the “concurrency utilities,” or JSR-166.
Concurrency is a broad term. It includes the ability to perform multiple tasks at
the same time; we generally refer to that ability as parallelism. As we’ll see
throughout this book, threaded programming is about more than parallelism:
it’s also about simpler program design and coping with certain implementation
features of the Java platform. The features of Java (including those of JSR-166)
help us with these tasks as well.

Concurrency also includes the ability to access data at the same time in two or
more threads. These are issues of data synchronization, which is the term we use
when discussing those aspects of concurrency.

Java Versions, Tools, and Code
We also need to be concerned with specific versions of Java itself. This is an artifact
of the popularity of Java, which has led to several major enhancements in the plat-
form. Each version supplements the thread-related classes available to developers,
allowing them to work with new features or no longer to rely on externally devel-
oped classes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Introduction to Threads

We focus in this book on J2SE 5.0.* This version contains a wealth of new thread-
related classes and features. These classes greatly simplify much of the work in devel-
oping threaded applications since they provide basic implementations of common
threading paradigms.

The new features of J2SE 5.0 are integrated throughout the Java platform; we’ve inte-
grated the new features throughout our discussion as well. When we discuss J2SE 5.0,
we clearly identify the new features as such. If you’re unable to use those features
because you cannot yet upgrade the version of Java you’re using, you’ll find similar
functionality to almost all J2SE 5.0 features in the classes provided in the Appendix,
which contains implementations of common threading utilities that were developed
in previous versions of this book; these utilities use an earlier version of Java.

About the Examples
Full code to run all the examples in this book can be downloaded from http://
www.oreilly.com/catalog/jthreads3.

Code is organized by packages in terms of chapter number and example number.
Within a chapter, certain classes apply to all examples and are in the chapter-related
package (e.g., package javathreads.examples.ch02). The remaining classes are in an
example-specific package (e.g., package javathreads.examples.ch02.example1). Pack-
age names are shown within the text for all classes.

Examples within a chapter (and often between chapters) tend to be iterative, each
one building on the classes of previous examples. Within the text, we use ellipses in

* Note the version number change or perhaps we should say leap. The predecessor to J2SE 5.0 was J2SE 1.4.
In beta, J2SE 5.0 was also known as J2SE 1.5. In this book, we refer to earlier versions using the more com-
monly used phrase JDK 1.x rather than J2SE 1.x.

All Things Just Keep Getting Better
It’s interesting to note the differences between this edition of Java Threads and the pre-
vious editions. In earlier editions of this book, we developed classes to perform explicit
locks, condition variables, thread pooling, task scheduling, and so on. All that func-
tionality and more is now included in the core J2SE 5.0 platform. In Chapter 14, we
look at thread performance; the performance of basic thread-related operations (and
especially uncontended lock acquisition) has greatly improved since we first looked at
this in JDK 1.1. And in order to obtain meaningful, long-running results for our paral-
lelism tests in Chapter 15, we had to increase the number of calculations by a signifi-
cant factor.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About the Examples | 5

code samples to indicate that the code is unchanged from previous examples. For
instance, consider this partial example from Chapter 2:

package javathreads.examples.ch02.example2;
...
public class SwingTypeTester extends JFrame {
 ...
 private JButton stopButton;
 ...
 private void initComponents() {
 ...
 stopButton = new JButton();

The package name tells us that this is the second example in Chapter 2. Following
the ellipses, we see that there is a new instance variable (stopButton) and some new
code added to the initComponents() method.

For reference purposes, we list the examples and their main class at the end of each
chapter.

Compiling and Running the Examples
The code examples are written to be compiled and run on J2SE 5.0. We use several
new classes of J2SE 5.0 throughout the examples and occasionally use new language
features of J2SE 5.0 as well. This means that classes must be compiled with a -source
argument:

piccolo% java -source 1.5 javathreads/examples/ch02/example1/*.java

While the -source argument is not needed for a great many of our examples, we
always use it for consistency.

Running the examples requires using the entire package name for the main class:

piccolo% java javathreads.examples.ch02.example1.SwingTypeTester

It is always possible to run each example in this fashion: first compile all the files in
the example directory and then run the specific class. This can lead to a lot of typ-
ing. To make this easier, we’ve also supplied an Ant build file that can be used to
compile and run all examples.

The ant build file we supply has a target for each example that you can run; these
targets are named by chapter and example number. For instance, to run the first
example from Chapter 2, you can execute this command:

piccolo% ant ch2-ex1

The ant target for each example is also listed at the end of each chapter. Some exam-
ples require a command-line argument. When using ant, these arguments have a
default value (specified in the build.xml file) and can be overridden on the command
line. For example, to specify the number of threads for a particular example in
Chapter 5, you can run the example like this:

piccolo% ant -DCalcThreadCount=5 ch5-ex4

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Introduction to Threads

The properties and their defaults are listed at the end of the chapter, like this:

<property name="CalcThreadCount" value="10"/>

Why Threads?
The notion of threading is so ingrained in Java that it’s almost impossible to write
even the simplest programs in Java without creating and using threads. And many of
the classes in the Java API are already threaded, so often you are using multiple
threads without realizing it.

Historically, threading was first exploited to make certain programs easier to write: if
a program can be split into separate tasks, it’s often easier to program the algorithm
as separate tasks or threads. Programs that fall into this category are typically special-
ized and deal with multiple independent tasks. The relative rareness of these types of
programs makes threading in this category a specialized skill. Often, these programs
were written as separate processes using operating system–dependent communica-
tion tools such as signals and shared memory spaces to communicate between pro-
cesses. This approach increased system complexity.

The popularity of threading increased when graphical interfaces became the stan-
dard for desktop computers because the threading system allowed the user to per-
ceive better program performance. The introduction of threads into these platforms
didn’t make the programs any faster, but it created an illusion of faster performance
for the user, who now had a dedicated thread to service input or display output.

In the 1990s, threaded programs began to exploit the growing number of computers
with multiple processors. Programs that require a lot of CPU processing are natural
candidates for this category since a calculation that requires one hour on a single-
processor machine could (at least theoretically) run in half an hour on a two-

Ant
On its home page, http://ant.apache.org, the authors describe Ant as “a Java-
based build tool. In theory, it is kind of like Make, but without Make’s wrin-
kles.” Because it’s written in Java, it is portable; its design makes it extensible
as well.

To use Ant, you must download it from http://ant.apache.org/. Unzip the
downloaded archive, and add the ant binary directory to your path.

You don’t need to know anything about how ant works in order to use it for
our examples, but if you’re planning on doing serious Java development, learn-
ing about ant is well worth the (rather minimal) effort.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Why Threads? | 7

processor machine or 15 minutes on a four-processor machine. All that is required is
that the program be written to use multiple threads to perform the calculation.

Although computers with multiple processors have been around for a long time,
we’re now seeing these machines become cheap enough to be very widely available.
The advent of less expensive machines with multiple processors, and of operating
systems that provide programmers with thread libraries to exploit those processors,
has made threaded programming a hot topic as developers move to extract every
benefit from these machines. Until Java, much of the interest in threading centered
on using threads to take advantage of multiple processors on a single machine.

However, threading in Java often has nothing at all to do with multiprocessor
machines and their capabilities; in fact, the first Java virtual machines were unable to
take advantage of multiple processors on a machine. Modern Java virtual machines
no longer suffer from this limitation, and a multithreaded Java program takes advan-
tage of all the CPUs available on its host machine. However, even if your Java pro-
gram is destined to be run on a machine with a single CPU, threading is still very
important.

One reason that threading is important in Java is that, until JDK 1.4, Java had no
concept of asynchronous behavior for I/O. This meant that many of the program-
ming techniques you’ve become accustomed to using in typical programs were not
applicable in Java; instead, until recently, Java programmers had to use threading
techniques to handle asynchronous behavior. Another reason is the graphical nature
of Java; since the beginning, Java was intended to be used in browsers, and it is used
widely in environments with graphical user interfaces. Programmers need to under-
stand threads merely to be able to use the asynchronous nature of the GUI library.

This is not to say there aren’t other times when threads are a handy programming
technique in Java; certainly it’s easy to use Java for a program that implements an
algorithm that naturally lends itself to threading. And many Java programs imple-
ment multiple independent behaviors. The next few sections cover some of the cir-
cumstances in which Java threads are a needed component of the program—either
directly using threads or using Java libraries that make heavy use of threads. Many of
these circumstances are due to the need for asynchronous behavior or the elegance
that threading lends to the program.

Nonblocking I/O
In Java, as in most programming languages, when you try to get input from the user,
you execute a read() method specifying the user’s terminal (System.in in Java).
When the program executes the read() method, the program typically waits until
the user types at least one character before it continues and executes the next state-
ment. This type of I/O is called blocking I/O: the program blocks until some data is
available to satisfy the read() method.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Introduction to Threads

This type of behavior is often undesirable. If you’re reading data from a network
socket, that data is often not available when you want to read it: the data may have
been delayed in transit over the network, or you may be reading from a network
server that sends data only periodically. If the program blocks when it tries to read
from the socket, it’s unable to do anything else until the data is actually available. If
the program has a user interface that contains a button and the user presses the but-
ton while the program is executing the read() method, nothing happens: the pro-
gram is unable to handle the mouse events and execute the event processing method
associated with the button. This can be very frustrating for the user, who thinks the
program has hung.

Traditionally, three techniques are available to handle this situation:

I/O Multiplexing
Developers often take all input sources and use a system call like select() to
notify them when data is available from a particular source. This allows input to
be handled much like an event from the user (in fact, many graphical toolkits use
this method transparently to the developer, who simply registers a callback func-
tion that is called whenever data is available from a particular source).

Beginning with JDK 1.4, this feature is provided with the NIO library—a library
that allows a programmer to deal with I/O in an asynchronous manner.

Polling
Polling allows a developer to test if data is available from a particular source. If
data is available, the data can be read and processed: if it is not, the program can
perform another task. Polling can be done either explicitly—with a system call
like poll()—or, in some systems, by making the read() function return an indi-
cation that no data is immediately available.

Polling is also supported by the NIO library of JDK 1.4. In the traditional I/O
library, there is only limited support for polling via the available() method of
the FilterInputStream class. Unfortunately, this method does not have the rich
semantics that polling typically has in most operating systems and is not recom-
mended as a reliable technique to determine whether data is actually available.

Signals
A file descriptor representing the input source can often be set so that an asyn-
chronous signal is delivered to the program when data is available on that input
source. This signal interrupts the program, which processes the data and then
returns to whatever task it had been doing. Java does not support this technique.

While the issue of blocking I/O can conceivably occur with any data source, it occurs
most frequently with network sockets. If you’re used to programming sockets,
you’ve probably used one of these techniques to read from a socket, but perhaps not
to write to one. Many developers, used to programming on a local area network
(LAN), are vaguely aware that writing to a socket may also block, but it’s a possibil-
ity that many of them ignore because it happens only under certain circumstances,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Why Threads? | 9

such as a backlog in getting data onto the network. This backlog rarely happens on a
fast LAN, but if you’re using Java to program sockets over the Internet, the chances
of this backlog happening are greatly increased, thus increasing the chance of block-
ing while attempting to write data onto the network. In Java, you may need two
threads to handle the socket: one to read from the socket and one to write to it.

As a result, writing a program that uses I/O means either using multiple threads to
handle traditional (blocking) I/O or using the NIO library (or both). The NIO library
itself is very complex—much more complex than the thread library. Consequently, it
is still often easier to set up a separate thread to read the data (using traditional I/O)
from a blocking data source. This separate thread can block when data isn’t avail-
able, and the other thread(s) in the Java program can process events from the user or
perform other tasks.

On the other hand, there are many times when the added complexity of the NIO
library is worthwhile and where the proliferation of threads required to process thou-
sands of data sources would be untenable. But using the NIO library doesn’t remove
all threading complexities; that library has its own thread-related issues.

We examine the threading issues related to I/O in depth in Chapter 12.

Alarms and Timers
Traditional operating systems typically provide some sort of timer or alarm call: the
program sets the timer and continues processing. When the timer expires, the pro-
gram receives some sort of asynchronous signal that notifies the program of the
timer’s expiration.

In early versions of Java, the programmer had to set up a separate thread to simulate
a timer. That thread slept for the duration of a specified time interval and then noti-
fied other threads when the timer expired. As Java matured, multiple new classes
that provide this functionality were added. These new classes use the exact same
technique to provide the functionality, but they hide (at least some of) the threading
details from the developer. For complete details on these timers, see Chapter 11.

Independent Tasks
A Java program is often called on to perform independent tasks. In the simplest case,
a single applet may perform two independent animations for a web page. A more
complex program would be a calculation server that performs calculations on behalf
of several clients simultaneously. In either case, while it is possible to write a single-
threaded program to perform multiple tasks, it’s easier and more elegant to place
each task in its own thread.

The complete answer to the question “Why threads?” really lies in this category. As
programmers, we’re trained to think linearly and often fail to see simultaneous paths

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Introduction to Threads

that our program might take. But there’s no reason why processes that we’ve conven-
tionally thought of in a single-threaded fashion need necessarily remain so: when the
Save button in a word processor is pressed, we typically have to wait a few seconds
until we can continue. Worse yet, the word processor may periodically perform an
autosave, which invariably interrupts the flow of typing and disrupts the thought
process. In a threaded word processor, the save operation would be in a separate
thread so that it didn’t interfere with the work flow. As you become accustomed to
writing programs with multiple threads, you’ll discover many circumstances in
which adding a separate thread makes your algorithms more elegant and your pro-
grams more responsive.

Parallelizable Algorithms
With the advent of virtual machines that can use multiple CPUs simultaneously, Java
has become a useful platform for developing programs that use algorithms that can
be parallelized; that is, running one iteration of the loop on one CPU while another
iteration of the loop is simultaneously running on another CPU. Dependencies
between the data that each iteration of the loop needs may prohibit a particular loop
from being parallelized, and there may be other reasons why a loop should not be
parallelized. But for many programs with CPU-intensive loops, parallelizing the loop
greatly speeds up the execution of the program when it is run on a machine with
multiple processors.

Many languages have compilers that support automatic parallelization of loops, but
as yet, Java does not. However, as we’ll see in Chapter 15, parallelizing a loop by
hand is often not a difficult task.

Summary
In this chapter, we’ve provided a basic overview of where we’re going in our explora-
tion of threaded programs. Threading is a basic feature of Java, and we’ve seen some
of the reasons why it’s more important to Java than to other programming platforms.

In the next few chapters, we look into the basics of thread programming. We start by
looking at how threads are created and used in an application.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11

Chapter 2 CHAPTER 2

Thread Creation and Management

In this chapter, we cover all the basics about threads: what a thread is, how threads
are created, and some details about the lifecycle of a thread. If you’re new to thread-
ing, this chapter gives you all the information you need to create some basic threads.
Be aware, however, that we take some shortcuts with our examples in this chapter:
it’s impossible to write a good threaded program without taking into account the
data synchronization issues that we discuss in Chapter 3. This chapter gets you
started on understanding how threads work; coupled with the next chapter, you’ll
have the ability to start using threads in your own Java applications.

What Is a Thread?
Let’s start by discussing what a thread actually is. A thread is an application task that
is executed by a host computer. The notion of a task should be familiar to you even if
the terminology is not. Suppose you have a Java program to compute the factorial of
a given number:

package javathreads.examples.ch02.example1;

public class Factorial {
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.print(n + "! is ");
 int fact = 1;
 while (n > 1)
 fact *= n--;
 System.out.println(fact);
 }
}

When your computer runs this application, it executes a sequence of commands. At
an abstract level, that list of commands looks like this:

• Convert args[0] to an integer.

• Store that integer in a location called n.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 2: Thread Creation and Management

• Print some text.

• Store 1 in a location called fact.

• Test if n is greater than 1.

• If it is, multiply the value stored in fact by the value stored in n and decrement n
by 1.

• If it isn’t, print out the value stored in fact.

Behind the scenes, what happens is somewhat more complicated since the instruc-
tions that are executed are actually machine-level assembly instructions; each of our
logical steps requires many machine instructions to execute. But the principle is the
same: an application is executed as a series of instructions. The execution path of
these instructions is a thread.*

Consequently, every computer program has at least one thread: the thread that exe-
cutes the body of the application. In a Java application, that thread is called the main
thread, and it begins executing statements with the first statement of the main()
method of your class. In other programming languages, the starting point may be dif-
ferent, and the terminology may be different, but the basic idea is the same.

In a Java program, it turns out that every program has more than one thread. Many
of these are threads that developers are unaware of, such as threads that perform gar-
bage collection and compile Java bytecodes into machine-level instructions. In a
graphical application, other threads handle input from the mouse and keyboard and
play audio. Your Java application is highly threaded, whether you program addi-
tional threads into it or not.

* Don’t get hung up on the strict sequential ordering of the list. As a concept, thinking of a thread as an ordered
list of instructions makes a lot of sense, but the ordering can change under certain circumstances (see
Chapter 5).

Starting a Program
For Java applications, execution begins with the main() method of the class being run.
What about other Java programs?

In applets, servlets, and other J2EE programs, execution still begins with the main()
method of the program, but in this case, the main() method belongs to the Java plug-
in or J2EE container. Those containers then call your code through predetermined,
well-known locations. An applet is called via its init() and start() methods; a serv-
let is called through its doGet() and doPost() methods, and so on.

In any case, the procedure is the same: execution of your code begins with the first
statements and proceeds by a single thread sequentially.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

What Is a Thread? | 13

Returning to our example, let’s suppose that we wrote a program that performed two
tasks: one calculated the factorial of a number and one calculated the square root of
that number. These are two separate tasks, and so you could choose to write them as
two separate threads. Now how would your application run?

The answer to that depends on the conditions under which the application is run.
The Java virtual machine now has two distinct lists of instructions to execute. One
list calculates the factorial of a number (as we outlined earlier), and the other list cal-
culates the square root of the number. The Java virtual machine executes both of
these lists almost simultaneously.

Although you may not have thought about it in these terms, this situation should
also be familiar to you from the computer on which you normally do your work. The
program you use to read your email is a list of instructions that the computer exe-
cutes. So too is the program that you use to listen to music. You’re able to read email
and listen to music at the same time because the computer executes both lists of
instructions at about the same time.

In fact, what happens is that the computer executes a handful of instructions from
the email application and then executes a handful of instructions from the music
program. It continues this procedure, switching back and forth between lists of
instructions, and it does that quickly enough so that both programs appear to be exe-
cuting at the same time. Quickly enough, in fact, that there are no gaps in the music.

If you happen to have more than one CPU on your computer, the lists of instruc-
tions can execute at exactly the same time: one list can execute on each CPU. But
multiple CPUs aren’t necessary to give the appearance of simultaneous execution or
to exploit the power of threading. A single CPU can appear to execute both lists of
instructions in parallel, letting you read your email and listen to music simulta-
neously.

Threads behave exactly the same way. In our case, the Java virtual machine executes
a handful of the instructions to calculate the factorial and then executes a handful of
instructions to calculate the square root, and so on.

So threads are simply tasks that you want to execute at roughly the same time. Why,
then, write an application with multiple threads? Why not just write multiple appli-
cations? The answer lies in the fact that because threads are running in the same
application, they share the same memory space in the computer. This allows them to
share information seamlessly. Your email program and your music application don’t
communicate very well. At best, you can copy and paste some data (like the name of
a file) between the two. That allows you to double-click on an MP3 attachment in
your email and play it in your music application, but the only information that is
shared between the two is the name of the MP3 file. This type of cooperation is
shown in Figure 2-1.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 2: Thread Creation and Management

In a multitasking environment, data in the programs is separated by default: each has
its own stack for local variables, and each has its own area for objects and other data.
All the programs can access various types of shared memory (including the name of
the MP3 file that you clicked on in your email program). The shared memory is
restricted to information put there by other programs, and the APIs to access it are
usually quite different than the APIs used to access other data in the program.

This type of data sharing is fine for dissimilar programs, but it is inadequate for other
programs. Consider a network server that sends stock quotes to multiple clients.
Sending a quote to a client is a discrete task and may be done in a separate thread. In
fact, if the client must acknowledge the quote, then sending the data in separate
threads is highly recommended: you don’t want all clients to wait for a particularly
slow client to respond. Here the data to be sent to the clients is the same; you don’t
want each client to require a separate server process which must then replicate all the
data held by every other server process. Instead, you want multiple threads in one
program so that they may share data and each perform discrete tasks on that data.
That type of sharing is shown in Figure 2-2.

Conceptually, the threads seem to be the same as programs. The key difference here
is that the global memory is the entire Java heap: threads can transparently share
access between any object in the heap. Each thread still has its own space for local
variables (variables specific to the method the thread is executing). But objects are
shared automatically and transparently.

A thread, then, is a discrete task that operates on data shared with other threads.

Creating a Thread
Threads can be created in two ways: using the Thread class and using the Runnable
interface. The Runnable interface (generally) requires an instance of a thread, so we
begin with the Thread class.

Figure 2-1. Processes in a multitasking environment

Multitasking Paradigm

Operating System

Application #1

Application #2

Application #3

Local Memory

Local Memory

Local Memory

Shared Memory

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating a Thread | 15

In this section, we start developing a typing game. The idea of this game is that char-
acters are displayed and the user must type the key corresponding to the character.
Through the next few chapters, we add enough logic to score the user’s accuracy and
timing and provide enough feedback so that the user can improve her typing skills.

For now, we are content to display a random character and display the character the
user types in response. This application has two tasks: one task must continually dis-
play a random character and then pause for some random period of time. The sec-
ond task must display characters typed on the keyboard.

The Example Architecture
Before we delve into the threading aspects of our code, let’s look at a few utility
classes used in this and subsequent examples. The typing game has two sources for
characters: characters that the user types at the keyboard and characters that are ran-
domly generated. Both sources of characters are represented by this interface:

package javathreads.examples.ch02;

public interface CharacterSource {
 public void addCharacterListener(CharacterListener cl);
 public void removeCharacterListener(CharacterListener cl);
 public void nextCharacter();
}

We want to use the standard Java pattern of event listeners to handle these characters:
a listener can register with a particular source and be notified when a new character is

Figure 2-2. Threads in a multithreaded environment

Multithreading Paradigm

Thread #1

Thread #2

Thread #3

Operating System

Application #1

Application #2

Java Virtual Machine Local Variables

Global Memory

Local Variables

Local Variables

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 2: Thread Creation and Management

available. That requires the typical set of Java classes for a listener pattern, starting with
the listener interface:

package javathreads.examples.ch02;

public interface CharacterListener {
 public void newCharacter(CharacterEvent ce);
}

The events themselves are objects of this class:

package javathreads.examples.ch02;

public class CharacterEvent {
 public CharacterSource source;
 public int character;

 public CharacterEvent(CharacterSource cs, int c) {
 source = cs;
 character = c;
 }
}

And finally, we need a helper class that fires the events when appropriate:

package javathreads.examples.ch02;

import java.util.*;

public class CharacterEventHandler {
 private Vector listeners = new Vector();

 public void addCharacterListener(CharacterListener cl) {
 listeners.add(cl);
 }

 public void removeCharacterListener(CharacterListener cl) {
 listeners.remove(cl);
 }

 public void fireNewCharacter(CharacterSource source, int c) {
 CharacterEvent ce = new CharacterEvent(source, c);
 CharacterListener[] cl = (CharacterListener[])
 listeners.toArray(new CharacterListener[0]);
 for (int i = 0; i < cl.length; i++)
 cl[i].newCharacter(ce);
 }
}

In our graphical display, one canvas registers to be notified when the user types a
character; that canvas displays the character. A second canvas registers to be notified
when a random character is generated; it displays the new characters as they are gen-
erated. We’ve chosen this design pattern since, in later examples, multiple objects
will be interested in knowing when new characters are generated.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating a Thread | 17

Here’s a utility class that can display a given character:

package javathreads.examples.ch02;

import java.awt.*;
import javax.swing.*;

public class CharacterDisplayCanvas extends JComponent implements CharacterListener {
 protected FontMetrics fm;
 protected char[] tmpChar = new char[1];
 protected int fontHeight;

 public CharacterDisplayCanvas() {
 setFont(new Font("Monospaced", Font.BOLD, 18));
 fm = Toolkit.getDefaultToolkit().getFontMetrics(getFont());
 fontHeight = fm.getHeight();
 }

 public CharacterDisplayCanvas(CharacterSource cs) {
 this();
 setCharacterSource(cs);
 }

 public void setCharacterSource(CharacterSource cs) {
 cs.addCharacterListener(this);
 }

 public Dimension preferredSize() {
 return new Dimension(fm.getMaxAscent() + 10,
 fm.getMaxAdvance() + 10);
 }

 public synchronized void newCharacter(CharacterEvent ce) {
 tmpChar[0] = (char) ce.character;
 repaint();
 }

 protected synchronized void paintComponent(Graphics gc) {
 Dimension d = getSize();
 gc.clearRect(0, 0, d.width, d.height);
 if (tmpChar[0] == 0)
 return;
 int charWidth = fm.charWidth((int) tmpChar[0]);
 gc.drawChars(tmpChar, 0, 1,
 (d.width - charWidth) / 2, fontHeight);
 }
}

Although this class has no references to threads, it still has thread-related issues:
namely, we had to use the synchronized keyword for some of the methods. This is
because of something known as a race condition (see Chapter 3).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 2: Thread Creation and Management

The Thread Class
Now we can program our first task (and our first thread): a thread that periodically
generates a random character. In Java, threads are represented by instances of the
java.lang.Thread class. They are created just like any other Java object, but they con-
tain a special method that tells the virtual machine to begin executing the code of the
thread as a separate “list.” Here’s a partial API of the Thread class, showing its con-
structors and its execution-related methods:

package java.lang;
public class Thread implements Runnable {
 public Thread();
 public Thread(Runnable target);
 public Thread(ThreadGroup group, Runnable target);
 public Thread(String name);
 public Thread(ThreadGroup group, String name);
 public Thread(Runnable target, String name);
 public Thread(ThreadGroup group, Runnable target, String name);
 public Thread(ThreadGroup group, Runnable target, String name,
 long stackSize);
 public void start();
 public void run();
}

As you see, threads are created with four pieces of information:

Thread name
The name of a thread is part of the information shown when a thread object is
printed. Otherwise, it has no significance, so give your threads names that make
sense to you when you see them printed. The default name for a thread is
Thread-N, where N is a unique number.

Real-Life Race Conditions
In order to understand threaded programming fully, you must understand how threads
run and are created (the topic of this chapter) as well as how they interact with data
(the topic of the next chapter). Any interesting threaded program uses both features.

This means that a forward reference to some details (like the synchronized keyword)
is unavoidable. This is the essence of a race condition: two things need to complete
sequentially in order to end up in a coherent state.

This race condition also applies to Swing programming. We use Swing components in
our examples because they make the applications more relevant and interesting. Swing
components have some special thread programming considerations, as we’ll see over
the next few chapters, but we won’t be able to explain them fully until we understand
more about how multiple threads work.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating a Thread | 19

Runnable target
We discuss runnables in depth later in this chapter. A runnable object is the list
of instructions that the thread executes. By default, this is the information in the
run() method of the thread itself. Note that the Thread class itself implements
the Runnable interface.

Thread group
Thread groups are an advanced topic (see Chapter 13). For the vast majority of
applications, thread groups are unimportant. By default, a thread is assigned to
the same thread group as the thread that calls the constructor.

Stack size
Every thread has a stack where it stores temporary variables as it executes meth-
ods. Everything related to the stack size of a thread is platform-dependent: its
default stack size, the range of legal values for the stack size, the optimal value
for the stack size, and so on. Use of the stack size in portable programs is highly
discouraged. For more information, see Chapter 13.

We can use these methods of the Thread class to create our first thread:

package javathreads.examples.ch02.example2;

import java.util.*;
import javathreads.examples.ch02.*;

public class RandomCharacterGenerator extends Thread implements CharacterSource {
 static char[] chars;
 static String charArray = "abcdefghijklmnopqrstuvwxyz0123456789";
 static {
 chars = charArray.toCharArray();
 }

 Random random;
 CharacterEventHandler handler;

 public RandomCharacterGenerator() {
 random = new Random();
 handler = new CharacterEventHandler();
 }

 public int getPauseTime() {
 return (int) (Math.max(1000, 5000 * random.nextDouble()));
 }

 public void addCharacterListener(CharacterListener cl) {
 handler.addCharacterListener(cl);
 }

 public void removeCharacterListener(CharacterListener cl) {
 handler.removeCharacterListener(cl);
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 2: Thread Creation and Management

 public void nextCharacter() {
 handler.fireNewCharacter(this,
 (int) chars[random.nextInt(chars.length)]);
 }

 public void run() {
 for (;;) {
 nextCharacter();
 try {
 Thread.sleep(getPauseTime());
 } catch (InterruptedException ie) {
 return;
 }
 }
 }
}

The first thing to note about this example is that it extends the Thread class. The
class itself is constructed simply by calling its (only) constructor, and the actual list
of instructions we want to execute is in the run() method. The run() method is
a standard method of the Thread class; it is the place where the thread begins its
execution.

In a sense, the run() method is similar to the main() method of a standalone Java
application: the main() method is where your first thread starts executing. Subse-
quent threads start executing with the run() method of the thread. Though some
subtle differences between run() and main() exist, this is the best way to think of the
relationship between them.

So when the run() method of this class is eventually called, it fires off a new charac-
ter to its listeners, sleeps for a random period of time between 1 and 5 seconds, and
then repeats the process (forever, as the loop never terminates).

The second task of our application is responsible for displaying the characters typed
at the keyboard. It is also responsible for creating and starting our second thread.
That code looks like this:

package javathreads.examples.ch02.example2;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javathreads.examples.ch02.*;

public class SwingTypeTester extends JFrame implements CharacterSource {

 protected RandomCharacterGenerator producer;
 private CharacterDisplayCanvas displayCanvas;
 private CharacterDisplayCanvas feedbackCanvas;
 private JButton quitButton;
 private JButton startButton;
 private CharacterEventHandler handler;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating a Thread | 21

 public SwingTypeTester() {
 initComponents();
 }

 private void initComponents() {
 handler = new CharacterEventHandler();
 displayCanvas = new CharacterDisplayCanvas();
 feedbackCanvas = new CharacterDisplayCanvas(this);
 quitButton = new JButton();
 startButton = new JButton();
 add(displayCanvas, BorderLayout.NORTH);
 add(feedbackCanvas, BorderLayout.CENTER);
 JPanel p = new JPanel();
 startButton.setLabel("Start");
 quitButton.setLabel("Quit");
 p.add(startButton);
 p.add(quitButton);
 add(p, BorderLayout.SOUTH);

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent evt) {
 quit();
 }
 });

 feedbackCanvas.addKeyListener(new KeyAdapter() {
 public void keyPressed(KeyEvent ke) {
 char c = ke.getKeyChar();
 if (c != KeyEvent.CHAR_UNDEFINED)
 newCharacter((int) c);
 }
 });
 startButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 producer = new RandomCharacterGenerator();
 displayCanvas.setCharacterSource(producer);
 producer.start();
 startButton.setEnabled(false);
 feedbackCanvas.setEnabled(true);
 feedbackCanvas.requestFocus();
 }
 });
 quitButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 quit();
 }
 });
 pack();
 }

 private void quit() {
 System.exit(0);
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 2: Thread Creation and Management

 public void addCharacterListener(CharacterListener cl) {
 handler.addCharacterListener(cl);
 }

 public void removeCharacterListener(CharacterListener cl) {
 handler.removeCharacterListener(cl);
 }

 public void newCharacter(int c) {
 handler.fireNewCharacter(this, c);
 }

 public void nextCharacter() {
 throw new IllegalStateException("We don't produce on demand");
 }

 public static void main(String args[]) {
 new SwingTypeTester().show();
 }
}

Most of this code is, of course, GUI code. The lines to note with respect to the Thread
class are in the actionPerformed() method associated with the Start button. In
the event callback, we construct a thread object (i.e., the instance of the
RandomCharacterGenerator class) like any other Java object, and then we call the
start() method on that object. Note that we did not call the
RandomCharacterGenerator object’s run() method. The start() method of the Thread
class calls the run() method (see the section “The Lifecycle of a Thread”).

Other threads are involved in this example, even though you don’t see references to
them. First, there is the main thread of the application. This thread starts when you
begin execution of the program (i.e., when you type the java command). That thread
calls the main() method of your application.

The second thread of the application is the instance of the RandomCharacterGenerator
class. It is created the first time the Start button is pressed.

A third thread in the application is the event-processing thread. That thread is
started by the Swing toolkit when the first GUI element of the application is created.
That thread is significant to us because that’s the thread that executes the
actionPerformed() and keyPressed() methods of the application. There are many
other threads in the virtual machine that we don’t interact with; for now, we’re con-
cerned about the three threads we’ve just discussed.

At this point, you can compile and run the application. Using our master ant script,
execute this command:

piccolo% ant ch2-ex2

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Lifecycle of a Thread | 23

The GUI window shown in Figure 2-3 appears. After you press the Start button,
characters appear at random intervals in the top half of the window; as you type
characters, they appear in the bottom half of the window.

At this point, we can’t do much about scoring what the user types. That would
require communication between the two threads of the program, which is the topic
of the next chapter. However, we can clear up a few things in the display as we dis-
cuss how the RandomCharacterGenerator thread runs.

The Lifecycle of a Thread
In our example, we gloss over some of the details of how the thread is actually
started. We’ll discuss that in more depth now and also give details on other lifecycle
events of a thread. The lifecycle itself is shown in Figure 2-4. The methods of the
Thread class that affect the thread’s lifecycle are:

package java.lang;
public class Thread implements Runnable {
 public void start();
 public void run();
 public void stop(); // Deprecated, do not use
 public void resume(); // Deprecated, do not use
 public void suspend(); // Deprecated, do not use
 public static void sleep(long millis);
 public static void sleep(long millis, int nanos);
 public boolean isAlive();
 public void interrupt();
 public boolean isInterrupted();
 public static boolean interrupted();
 public void join() throws InterruptedException;
}

Creating a Thread
The first phase in this lifecycle is thread creation. Threads are represented by
instances of the Thread class, so creating a thread is done by calling a constructor of

Figure 2-3. The SwingTypeTester window

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 2: Thread Creation and Management

that class. In our example, we use the simplest constructor available to us. Addi-
tional constructors of the Thread class allow you to specify the thread’s name or a
Runnable object to serve as the thread’s target.

All threads have names that serve to identify them in the virtual machine. By default,
that name consists of information about the thread: its priority, its thread group, and
other thread information we discuss in later chapters. If you like, you can give a
thread a different name, perhaps one that will have meaning to you if you print it out.

We discuss the Runnable interface later in this chapter.

Starting a Thread
A thread exists once it has been constructed, but at that point it is not executing any
code. The thread is in a waiting state.

In this waiting state, other threads can interact with the existing thread object. Vari-
ous attributes of the waiting thread can be set: its priority, its name, its daemon sta-
tus, and so on. We’ll see examples of these throughout the book, but each of these
attributes is set simply by calling a method on the waiting thread. Therefore, even
though the thread is waiting, its state may be changed by other threads.

When you’re ready for the thread to begin executing code, you call its start()
method. This method performs some internal housekeeping and calls the thread’s
run() method. When the start() method returns, two threads are now executing in
parallel: the original thread (which has returned from calling the start() method)
and the newly started thread (which is now executing its run() method).

After its start() method has been called, the new thread is said to be alive. In fact,
the Thread class has an isAlive() method that tells you the state of the thread: if the

Figure 2-4. Lifecycle of a thread

Time

St
at

e/
St

at
us

Not Running

Period during the start() method

Running

Period during the stop() method

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Lifecycle of a Thread | 25

isAlive() method returns true, the thread has been started and is executing its run()
method. If the isAlive() method returns false, however, the thread may not be
started yet or may be terminated.

Terminating a Thread
Once started, a thread executes only one method: the run() method. The run()
method may be very complicated, it may execute forever, and it may call millions of
other methods. Regardless, once the run() method finishes executing, the thread has
completed its execution. Like all Java methods, the run() method finishes when it
executes a return statement, when it executes the last statement in its method body,
or when it throws an exception (or fails to catch an exception thrown to it).

As a result, the only way to terminate a thread is to arrange for its run() method to
complete. If you look at the documentation of the Thread class, you notice that the
class contains a stop() method which seems like it might be used to terminate a
thread. It turns out that the stop() method has an inherent problem (an internal race
condition, see Chapter 3). As a result, the stop() method is deprecated and should
not be used. Some Java implementations prohibit its use directly, and the security
manager can also be used to prohibit programs from calling it.

There are many threads that you don’t need to stop. Often, threads are performing a
fixed task, and you always want the task to run to completion. In other cases, such as
our example, the thread can run until the application exits (e.g., when we call the
System.exit() method in response to the user pressing the Quit button).

Often, however, you want a thread to continue to execute until some other condi-
tion is met. In our typing game, we might want one RandomCharacterGenerator thread
to terminate so that we can start a different one (perhaps one with a different set of
characters available to it). We explore some basic ways to arrange for a thread to
stop later in this chapter.

The run() method cannot throw a checked exception, but like all Java methods, it
can throw an unchecked exception. Throwing an unchecked exception (an excep-
tion that extends the RuntimeException class)—or failing to catch a runtime excep-
tion thrown by something the run() method has called—also causes a thread to
stop. Threads can arrange for special exception processing in their termination; for
details, see Chapter 13.

Pausing, Suspending, and Resuming Threads
Once a thread begins executing its run() method, it continues execution until the
run() method completes. If you’re familiar with other thread models, you may know
of a concept called thread suspension, where a thread is told to pause its execution.
Later, the thread is resumed, which is to say that it is told to continue its execution.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 2: Thread Creation and Management

The Thread class contains suspend() and resume() methods, but they suffer from the
same race condition problem as the stop() method, and they, too, are deprecated.

It is possible for a thread to suspend its own execution for a specific period of time
by calling the sleep() method. We use that method in our RandomCharacterGenerator
thread. When a thread executes the sleep() method, it pauses for a given number of
milliseconds (or milliseconds plus nanoseconds), during which it is said to be asleep.
When the pause time has elapsed, the thread wakes up and continues execution with
the statements immediately following the sleep() method.

Strictly speaking, sleeping is not the same thing as thread suspension. One impor-
tant difference is that with true thread suspension, one thread would suspend (and
later resume) another thread. Conversely, the sleep() method affects only the thread
that executes it; it’s not possible to tell another thread to go to sleep.

Threads can use the wait and notify mechanism discussed in Chapter 4 to achieve
the functionality of thread suspension and resumption. The difference is that the
threads must be coded to use that technique (rather than a generic suspend/resume
mechanism that could be imposed from other threads).

Thread Cleanup
A thread that has completed its run() method has terminated. It is no longer active
(the isAlive() method returns false). However, the thread object itself may be hold-
ing interesting information. As long as some other active object holds a reference to

Sleep Time Resolution
The Thread class provides a version of the sleep() method that allows the developer
to specify the time in nanoseconds. Most Java virtual machines do not support this sort
of precise timing. When the sleep() method executes, it rounds the nanosecond argu-
ment to the nearest millisecond. In fact, most operating systems then further adjust the
millisecond argument so that it is a multiple of some number: e.g., 20 or 50 millisec-
onds. Consequently, the least amount of time that you can sleep on most Java imple-
mentations is 20 or 50 milliseconds.

Note that this is true even in J2SE 5.0, which introduces other nanosecond time func-
tionality (e.g., the System.nanoTime() method). The resolution of the sleep() method
is still only good to a few milliseconds.

Ongoing projects within the Java Community Process are working on a real-time Java
implementation; on such an implementation, the precise resolution specified in the
sleep() method may eventually be realized. For most platforms, developers cannot
design applications that require support of nanoseconds (or even exact milliseconds).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Two Approaches to Stopping a Thread | 27

the terminated thread object, other threads can execute methods on the terminated
thread and retrieve that information. If the thread object representing the terminated
thread goes out of scope, the thread object is garbage collected. On some platforms,
this also has the effect of cleaning up system resources associated with the thread.

In general, then, you should not hold onto thread references so that they may be col-
lected when the thread terminates.

One reason to hold onto a thread reference is to determine when it has completed its
work. That can be accomplished with the join() method. The join() method is
often used when you have started threads to perform discrete tasks and want to
know when the tasks have completed. You’ll see that technique in use in the exam-
ples in Chapter 15.

The join() method blocks until the thread has completed its run() method. If the
thread has already completed its run() method, the join() method returns immedi-
ately. This means that you may call the join() method any number of times to see
whether a thread has terminated. Be aware, though, that the first time you call the
join() method, it blocks until the thread has actually completed. You cannot use the
join() method to poll a thread to see if it’s running (instead, use the isAlive()
method just discussed).

Two Approaches to Stopping a Thread
When you want a thread to terminate based on some condition (e.g., the user has
quit the game), you have several approaches available. Here we offer the two most
common.

Setting a Flag
The most common way of stopping a thread is to set some internal flag to signal that
the thread should stop. The thread can then periodically query that flag to deter-
mine if it should exit.

We can rewrite our RandomCharacterGenerator thread to follow this approach:

package javathreads.examples.ch02.example3;
...
public class RandomCharacterGenerator extends Thread implements CharacterSource {
 ...
 private volatile boolean done = false;
 ...
 public void run() {
 while (!done) {
 ...

}
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 2: Thread Creation and Management

 public void setDone() {
 done = true;
 }
}

Here we’ve created the boolean flag done to signal the thread that it should quit.
Now instead of looping forever, the run() method examines the state of that vari-
able on every loop and returns when the done flag has been set. That terminates the
thread.*

We must now modify our application to set this flag:

package javathreads.examples.ch02.example3;
...
public class SwingTypeTester extends JFrame implements CharacterSource {
 ...
 private JButton stopButton;
 ...
 private void initComponents() {
 ...
 stopButton = new JButton();
 stopButton.setLabel("Stop");
 p.add(stopButton);
 ...
 stopButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 startButton.setEnabled(true);
 stopButton.setEnabled(false);
 producer.setDone();
 feedbackCanvas.setEnabled(false);
 }
 });
 ...
 }
 ...
}

Now we have two buttons: a Start and a Stop button. When the Stop button is pressed,
the setDone() method is called, and the next time the RandomCharacterGenerator thread
executes the top of its loop, that thread exits. This process also reenables the Start but-
ton: we can start a new thread at any time.

This raises an interesting design question: is it better to create a new thread like this,
or would it be better somehow to suspend the existing thread and resume it when
we’re ready? Of course, we don’t yet have the tools necessary to program the suspen-
sion and resumption of the thread, so that’s the reason we’ve done it this way. It
would be more natural simply to suspend and resume the thread, as we do in
Chapter 4.

* We’ve also introduced the use of the Java keyword volatile for that variable. Like the synchronized key-
word, it is intrinsically related to thread programming (see Chapter 3).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Two Approaches to Stopping a Thread | 29

However, in a case like this, it actually does not matter. In our experience, develop-
ers become too hung up on the perceived performance penalties they attribute to cre-
ating a thread. If you’re writing a program and it is easier to abandon a thread and
create a new one rather than reusing an existing one, in most cases that’s what you
should do. We revisit this topic in more depth when we discuss thread pools in
Chapter 10 and thread performance in Chapter 14.

Calling the setDone() method is a simple way for threads to communicate with each
other. Threads must use special rules for communication like this (see Chapter 3). In
general, though, threads can call methods on each other, as well as accessing the
same objects, to pass information between themselves.

Interrupting a Thread
The last example has a delay between when the actionPerformed() method called
the setDone() method and the RandomCharacterGenerator thread exited. Delays of
some sort when arranging for a thread to terminate are inevitable, but sometimes the
delay needs to be minimized.

In our example, the delay occurs because the RandomCharacterGenerator thread exe-
cutes some number of statements after the setDone() method is called and before it
checks the value of the done variable. In the worst case, the event thread executing
the actionPerformed() method calls the setDone() method just after the
RandomCharacterGenerator thread checks the value of the done variable. Then, even
though it’s done, the loop gets a new character out of the array, prints it to the
screen, and goes to sleep for some amount of time. Finally it wakes up, returns to the
top of the loop, sees that the done variable has been set to true, and returns.

The delay in this case is minimal, but it’s likely to be close to the amount of time that
the RandomCharacterGenerator thread is sleeping (since the other operations are very
short). If we originally specify a 15-second delay, we probably won’t want to wait the
entire 15 seconds before the thread terminates.

In other cases, the delay can be worse: if the thread is executing a read() method to
obtain data from a socket, the data may never come. Or the thread may be executing
the wait() method (see Chapter 4) and waiting for an event that may never come.
Methods like these are called blocking methods because they block execution of the
thread until something happens (e.g., the expiration of the sleep() method).

When you arrange for a thread to terminate, you often want it to complete its block-
ing method immediately: you don’t want to wait for the data (or whatever) anymore
because the thread is going to exit anyway. You can use the interrupt() method of
the Thread class to interrupt any blocking method.

The interrupt() method has two effects. First, it causes any blocked method to
throw an InterruptedException. In our example, the sleep() method is a blocking
method. If the event-processing thread interrupts the RandomCharacterGenerator

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 2: Thread Creation and Management

thread while that thread is executing the sleep() method, the sleep method immedi-
ately wakes up and throws an InterruptedException. Other methods that behave this
way include the wait() method, the join() method, and methods that read I/O
(though there are complications when handling I/O, as we discuss Chapter 12).

The second effect is to set a flag inside the thread object that indicates the thread has
been interrupted. To query this flag, use the isInterrupted() method. That method
returns true if the thread has been interrupted (even if it was not blocked).

Here’s how a thread uses this information to determine whether or not it should
terminate:

package javathreads.examples.ch02.example4;

...
public class RandomCharacterGenerator extends Thread {
 ...
 // Note: the done instance variable and setDone() method are removed from
 // example 2

 public void run() {
 while (!isInterrupted()) {
 ...
 }
 }
}

This example is almost exactly the same as the one in which we use a done flag to
signal that the thread should return. In this case, we use the interrupted flag instead.
That means we no longer need the setDone() method. Instead of calling the
setDone() method, the actionPerformed() method associated with the Stop button
in our application now does this:

producer.interrupt();

If the main thread executes this statement while the RandomCharacterGenerator
thread is sleeping, the RandomCharacterGenerator thread gets the interrupted excep-
tion and immediately returns from the run() method. Otherwise, when the charac-
ter-feeding thread next gets to the top of its loop, it sees that the interrupted flag has
been set and returns from its run() method then. Either way, the random character
generator thread completes its task.

Note that this technique does not completely eliminate the possibility that we sleep
for some amount of time after the thread is asked to stop. It’s possible for the main
thread to call the interrupt() method just after the RandomCharacterGenerator has
called the isInterrupted() method. The character-reading thread still executes the
sleep() method, which won’t be interrupted (since the main thread has already
completed the interrupt() method). This is another example of a race condition
that we solve in the next chapter. Since the race condition in this case is benign (it
just means we sleep one more time than we’d like), this is sufficient for our purposes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Runnable Interface | 31

The Runnable Interface
When we talked about creating a thread, we mentioned the Runnable interface (java.
lang.Runnable). The Thread class implements this interface, which contains a single
method:

package java.lang;
public interface Runnable {
 public void run();
}

The Runnable interface allows you to separate the implementation of a task from the
thread used to run the task. For example, instead of extending the Thread class, our
RandomCharacterGenerator class might have implemented the Runnable interface:

package javathreads.examples.ch02.example5;
...
// Note: Use Example 3 as the basis for comparison
public class RandomCharacterGenerator implements Runnable {
 ...
}

This changes the way in which the thread that runs the RandomCharacterGenerator
object must be constructed:

package javathreads.examples.ch02.example5;
...
public class SwingTypeTester extends JFrame implements CharacterSource {
 ...
 private void initComponents() {
 ...
 startButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 producer = new RandomCharacterGenerator();
 displayCanvas.setCharacterSource(producer);
 Thread t = new Thread(producer);
 t.start();
 startButton.setEnabled(false);
 stopButton.setEnabled(true);
 feedbackCanvas.setEnabled(true);
 feedbackCanvas.requestFocus();
 }
 });
 ...
 }
 ...
}

Now we must construct the thread directly and pass the runnable object (producer)
to the thread’s constructor. Then we start the thread (instead of starting the runna-
ble object).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 2: Thread Creation and Management

This leads to the question of whether you should use the Runnable interface or the
Thread class when designing your own application. The answer is yes.

The truth is that sometimes it makes sense to use the Runnable interface and some-
times it makes sense to use the Thread class. The answer depends on whether you
would like your new class to inherit behavior from the Thread class or if your class
needs to inherit from other classes.

If you extend the Thread class as we do in our first examples, then you inherit the
behavior and methods of the Thread class. That is very important in example 4,
where we used the interrupt() method to signal that the RandomCharacterGenerator
should cease operations. The interrupt() method is part of the Thread class, and the
reason why we are able to interrupt the RandomCharacterGenerator thread is because
it extends the Thread class.

In fact, we should point out that the full source code for example 5 is based on
example 3, not example 4. We have to use the setDone() method to signal that the
random character generator’s run() method should terminate because that class no
longer has an interrupt() method. If we still want to interrupt the sleep() method
of the RandomCharacterGenerator class, then we must write the SwingTypeTester class
like this:

package javathreads.examples.ch02.example6;
...
public class SwingTypeTester extends JFrame implements CharacterSource {
 ...
 private void initComponents() {
 ...
 stopButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 ...
 displayThread.interrupt();
 }
 });
 ...
}

A similar example can be used to show why it is sometimes preferable to use the
Runnable interface. Let’s suppose that we want the character in our display canvas to
move across the screen until the user types in the matching character. This requires
another thread, one that controls the animation of the character. Every few millisec-
onds, the character needs to be redisplayed on the canvas just slightly to the right of
where it was previously displayed. This makes the character appear to be moving.

We could develop a brand new class to do this, but it shares most of the logic of the
existing CharacterDisplayCanvas class. The newChar() method is somewhat different
and there’s now some animation logic to deal with, but clearly it’s better in this
example if we extend CharacterDisplayCanvas (and inherit the methods that set up

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Runnable Interface | 33

the canvas size and font) than if we extend the Thread class. This is a case that calls
for the Runnable interface:

package javathreads.examples.ch02.example7;

import java.awt.*;
import javax.swing.*;
import javathreads.examples.ch02.*;

public class AnimatedCharacterDisplayCanvas extends CharacterDisplayCanvas
 implements CharacterListener, Runnable {

 private volatile boolean done = false;
 private int curX = 0;

 public AnimatedCharacterDisplayCanvas() {
 }

 public AnimatedCharacterDisplayCanvas(CharacterSource cs) {
 super(cs);
 }

 public synchronized void newCharacter(CharacterEvent ce) {
 curX = 0;
 tmpChar[0] = (char) ce.character;
 repaint();
 }

 protected synchronized void paintComponent(Graphics gc) {
 Dimension d = getSize();
 gc.clearRect(0, 0, d.width, d.height);
 if (tmpChar[0] == 0)
 return;
 int charWidth = fm.charWidth(tmpChar[0]);
 gc.drawChars(tmpChar, 0, 1,
 curX++, fontHeight);
 }

 public void run() {
 while (!done) {
 repaint();
 try {
 Thread.sleep(100);
 } catch (InterruptedException ie) {
 return;
 }
 }
 }

 public void setDone(boolean b) {
 done = b;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 2: Thread Creation and Management

This class demonstrates the canonical technique to handle animation in Java: a
thread makes successive calls to the repaint() method, which in turn calls the
paintComponent() method. Every time the paintComponent() method is called, we
display the character with a new X coordinate that is slightly shifted to the right.

The thread that controls the animation in this canvas is created just as before: the
actionPerformed() method of the Start button needs to create a new thread, passing
in the AnimatedCharacterCanvas as its runnable target. It also needs to start that
thread. The stop() method, on the other hand, calls the setDone() method to termi-
nate the animation. Here’s how it looks:

package javathreads.examples.ch02.example7;
...
public class SwingTypeTester extends JFrame implements CharacterSource {
 ...
 private void initComponents() {
 ...
 startButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 ...
 displayCanvas.setDone(false);
 Thread t = new Thread(displayCanvas);
 t.start();
 ...
 }
 });
 stopButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 displayCanvas.setDone(true);
 ...
 }
 });
 ...
 }
 ...
}

We began this section by wondering whether it was preferable to program a task
using the Runnable interface or the Thread class. We’ve seen examples of why you
would need each. There’s an additional advantage to the Runnable interface, how-
ever. With Runnable, Java provides a number of classes that handle threading issues
for you. These classes handle thread pooling, task scheduling, or timing issues. If
you’re going to use such a class, your task must be a Runnable object (or, in some
cases, an object that has an embedded Runnable object).

If you do a thorough program design and Unified Modeling Language (UML) model
of your application, the resulting object hierarchy tells you pretty clearly whether
your task needs to subclass another class (in which case you must use the Runnable
interface) or whether you need to use the methods of the Thread class within your
task. But if your object hierarchy is silent on the parent class for your task, or if you

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Threads and Objects | 35

do a lot of prototyping or extreme programming, then what? Then the choice is
yours: you can use the Runnable interface, which gives you a little more flexibility at
the cost of the overhead of keeping track of the thread objects separately, or you can
trade that flexibility for simplicity and subclass the Thread class.

Threads and Objects
Let’s talk a little more about how threads interact. Consider the
RandomCharacterGenerator thread. We saw how another class (the SwingTypeTester
class) kept a reference to that thread and how it continued to call methods on that
object.

Although those methods are defined in the RandomCharacterGenerator class, they are
not executed by that thread. Instead, methods like the setDone() method are exe-
cuted by the Swing event-dispatching thread as it executes the actionPerformed()
method within the SwingTypeTester class. As far as the virtual machine is concerned,
the setDone() method is just a series of statements; those statements do not “belong”
to any particular thread. Therefore, the event-dispatching thread executes the
setDone() method in exactly the same way in which it executes any other method.

This point is often confusing to developers who are new to threads; it can be confus-
ing as well to developers who understand threads but are new to object-oriented pro-
gramming. In Java, an instance of the Thread class is just an object: it may be passed
to other methods, and any thread that has a reference to another thread can execute
any method of that other thread’s Thread object. The Thread object is not the thread
itself; it is instead a set of methods and data that encapsulates information about the
thread. And that method and data can be accessed by any other thread.

For a more complex example, examine the AnimatedCharacterCanvas class and
determine how many threads execute some of its methods. You should be
comfortable with the fact that four different threads use this object. The
RandomCharacterGenerator thread invokes the newChar() method on that object.
The timing thread invokes the run() method. The setDone() method is invoked
by the Swing event-dispatching thread. And the constructor of the class (i.e., the
default constructor) is invoked by the main method of the application as it con-
structs the GUI.

The upshot of this is that you cannot look at any object source code and know which
thread is executing its methods or examining its data. You may be tempted to look at
a class or an object and wonder which thread is running the code. The answer—
even if the code is with a class that extends the Thread class—is that any of poten-
tially thousands of threads could be executing the code.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 2: Thread Creation and Management

Determining the Current Thread
Sometimes, you need to find out what the current thread is. In the most common
case, code that belongs to an arbitrary object may need to invoke a method of the
thread class. In other circumstances, code within a thread object may want to see if
the code is being executed by the thread represented by the object or by a com-
pletely different thread.

You can retrieve a reference to the current thread by calling the currentThread()
method (a static method of the Thread class). Therefore, to see if code is being exe-
cuted by an arbitrary thread (as opposed to the thread represented by the object),
you can use this pattern:

public class MyThread extends Thread {
 public void run() {
 if (Thread.currentThread() != this)
 throw new IllegalStateException(
 "Run method called by incorrect thread");
 ... main logic ...
 }
}

Similarly, within an arbitrary object, you can use the currentThread() method to
obtain a reference to a current thread. This technique can be used by a Runnable
object to see whether it has been interrupted:

public class MyRunnable implements Runnable {
 public void run() {
 while (!Thread.currentThread().isInterrupted()) {
 ... main logic ...
 }
 }
}

In fact, the Thread class includes a static method interrupted() that simply returns
the value of Thread.currentThread().isInterrupted(), but you’ll often see both uses
within threaded programs. In examples in later chapters, we use the currentThread()
method to obtain a thread reference in order to invoke other methods of the Thread
class that we haven’t yet examined.

Summary
In this chapter, we’ve had our first taste of threads. We’ve learned that threads are
separate tasks executed by a single program. This is the key to thinking about how to
design a good multithreaded program: what logical tasks make up your program?
How can these tasks be separated to make the program logic easier, or benefit your
program by running in parallel? In our case, we have two simple tasks: display a ran-
dom character and display the key that a user types in response. In later chapters, we
add more tasks (and more threads) to this list.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Summary | 37

At a programming level, we’ve learned how to construct, start, pause, and stop
threads. We’ve also learned about the Runnable interface and how that interface
allows us a great degree of flexibility in how we develop the class hierarchy for our
objects. Tasks can be either Thread objects or Runnable objects associated with a
thread. Using the Runnable interface allows more flexibility in how you define your
tasks, but both approaches have merit in different situations.

We’ve also touched on how threads interoperate by calling methods on the same
object. The ability of threads to interoperate in this manner includes the ability for
them to share data as well as code. That data sharing is key to the benefits of a multi-
threaded program, but it carries with it some pitfalls. This is covered in the next
chapter.

Example Classes
Here are the class names and Ant targets for the examples in this chapter:

The factorial program accepts a command-line argument to indicate the integer
whose factorial should be calculated; that can be set with this Ant property:

<property name="FactorialArg" value="10"/>

Description Main Java class Ant target

Factorial Example javathreads.examples.ch02.example1.
Factorial number

ch2-ex1

First Swing Type Tester javathreads.examples.ch02.example2.
SwingTypeTester

ch2-ex2

Type Tester (with Stop button) javathreads.examples.ch02.example3.
SwingTypeTester

ch2-ex3

Type Tester (uses interrupt() method) javathreads.examples.ch02.example4.
SwingTypeTester

ch2-ex4

Type Tester (uses Runnable interface) javathreads.examples.ch02.example5.
SwingTypeTester

ch2-ex5

Type Tester (Runnable and interrupt()) javathreads.examples.ch02.example6.
SwingTypeTester

ch2-ex6

Type Tester (animated display) javathreads.examples.ch02.example7.
SwingTypeTester

ch2-ex7

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

38

Chapter 3CHAPTER 3

Data Synchronization

In the previous chapter, we covered a lot of ground: we examined how to create and
start threads, how to arrange for them to terminate, how to name them, how to mon-
itor their lifecycles, and so on. In the examples of that chapter, however, the threads
that we examined were more or less independent: they did not need to share data
between them.

There were some exceptions to that last point. In some examples, we needed the
ability for one thread to determine whether another was finished with its task (i.e.,
the done flag). In others, we needed to change a character variable that was used in
the animation canvas; this was done by a thread different than the Swing thread that
redraws the canvas. We glossed over the details at the time, which may have given
the implication that they are minor issues. However, we must understand that when
two threads share data, complexities arise. These complexities must be taken into
consideration whether we’re implementing a large shared database or simply sharing
a done flag.

In this chapter, we look at the issue of sharing data between threads. Sharing
data between threads can be problematic due to what is known as a race
condition between threads that attempt to access the same data more or less simulta-
neously (i.e., concurrently). In this chapter, we examine the concept of a race condi-
tion and mechanisms that solve the race condition. We will see how these
mechanisms can be used to coordinate access to data as well as solve some other
problems in thread communication.

The Synchronized Keyword
Let’s revisit our AnimatedDisplayCanvas class from the previous chapter:

package javathreads.examples.ch02.example7;
 private volatile boolean done = false;
 private int curX = 0;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Synchronized Keyword | 39

public class AnimatedCharacterDisplayCanvas extends CharacterDisplayCanvas
 implements CharacterListener, Runnable {
 ...
 public synchronized void newCharacter(CharacterEvent ce) {
 curX = 0;
 tmpChar[0] = (char) ce.character;
 repaint();
 }

 protected synchronized void paintComponent(Graphics gc) {
 Dimension d = getSize();
 gc.clearRect(0, 0, d.width, d.height);
 if (tmpChar[0] == 0)
 return;
 int charWidth = fm.charWidth(tmpChar[0]);
 gc.drawChars(tmpChar, 0, 1,
 curX++, fontHeight);
 }

 public void run() {
 while (!done) {
 repaint();
 try {
 Thread.sleep(100);
 } catch (InterruptedException ie) {
 return;
 }
 }
 }

 public void setDone(boolean b) {
 done = b;
 }
}

This example has multiple threads. The most obvious is the one that we created and
which executes the run() method. That thread is specifically created to wake up
every 0.1 seconds to send a repaint request to the system. To fulfill the repaint
request, the system—at a later time and in a different thread (the event-dispatching
thread, to be precise)—calls the paintComponent() method to adjust and redraw the
canvas. This constant adjustment and redrawing is what is seen as animation by the
user.

There is no race condition between these threads since no data in this object is
shared between them. However, as we mentioned at the end of the last chapter,
other threads invoke methods of this object. For example, the newCharacter()
method is called from the random character–generating thread (a character source)
whenever the character to be typed changes.

In this case, there is a race condition. The thread that calls the newCharacter()
method is accessing the same data as the thread that calls the paintComponent()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 3: Data Synchronization

method. The random character–generating thread may change the character while
the event-dispatching thread is using it. Both threads are also changing the X loca-
tion that specifies where the character is to be drawn.

A race condition exists because the paintComponent() and newCharacter() methods
are not atomic. It is possible for the newCharacter() method to change the values of
the tmpChar and curX variables while the paintComponent() method is using them. Or
for the newCharacter() and paintComponent() methods to leave the curX variable in a
state that depends on which individual instructions of the two threads are executed
first. We examine race conditions in more detail later; for now, we just have to
understand that race conditions can generate different results, including unexpected
results, that are dependent on execution order.

The Java specification provides certain mechanisms that deal specifically with this
problem. The Java language provides the synchronized keyword; in comparison with
other threading systems, this keyword allows the programmer access to a resource
that is very similar to a mutex lock. For our purposes, it simply prevents two or more
threads from calling the methods of the same object at the same time.

By declaring the newCharacter() and paintComponent() methods synchronized, we
eliminate the race condition. If one thread wants to call one of these methods while
another thread is already executing one of them, the second thread must wait: the
first thread gets to complete execution of its method before the second thread can
execute its method. Since only one thread gets to call either method at a time, only
one thread at a time accesses the data.

Under the covers, the concept of synchronization is simple: when a method is declared
synchronized, the thread that wants to execute the method must acquire a token,
which we call a lock. Once the method has acquired (or checked out or grabbed) this
lock, it executes the method and releases (or returns) the lock. No matter how the

Definition: Atomic
The term atomic is related to the atom, once considered the smallest possible unit of
matter, unable to be broken into separate parts. When computer code is considered
atomic, it cannot be interrupted during its execution. This can either be accomplished
in hardware or simulated in software. Generally, atomic instructions are provided in
hardware and are used to implement atomic methods in software.

In our case, we define atomic code as code that can’t be found in an intermediate state.
In our animated canvas example, if the acts of “resetting the variable” and “redrawing
one frame of the animation” were atomic, it would not be possible to set the variable
at the very moment that the character is being animated. The animation thread also
couldn’t find the variables in an intermediate state.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Volatile Keyword | 41

method returns—including via an exception—the lock is released. There is only one
lock per object, so if two separate threads try to call synchronized methods of the same
object, only one can execute the method immediately; the other has to wait until the
first thread releases the lock before it can execute the method.

The Volatile Keyword
There is still one more threading issue in this example, and it has to do with the
setDone() method. This method is called from the event-dispatching thread when
the Stop button is pressed; it is called by an event handler (an actionPerformed()
method) that is defined as an inner class to the SwingTypeTester class. The issue here
is that this method is executed by the event-dispatching thread and changes data that
is being used by another thread: the done flag, which is accessed by the thread of the
AnimatedDisplayCanvas class.

So, can’t we just synchronize the two methods, just as we did previously? Yes and
no. Yes, Java’s synchronized keyword allows this problem to be fixed. But no, the
techniques that we have learned so far will not work. The reason has to do with the
run() method. If we synchronized both the run() and setDone() methods, how
would the setDone() method ever execute? The run() method does not exit until the
done flag is set, but the done flag can’t be set because the setDone() method can’t exe-
cute until the run() method completes.

The problem at this point relates to the scope of the lock: the scope of the run()
method is too large. By synchronizing the run() method, the lock is grabbed and
never released. There is a way to shrink the scope of a lock by synchronizing only the
portion of the run() method that protects the done flag (which we examine later in
this chapter). However, there is a more elegant solution in this case.

The setDone() method performs only one operation with the done flag: it stores a
value into the flag. The run() method also performs one operation with the done flag:
it reads the value during each iteration of the loop. Furthermore, it does not matter if

Definition: Mutex Lock
A mutex lock is also known as a mutually exclusive lock. This type of lock is provided
by many threading systems as a means of synchronization. Only one thread can grab a
mutex at a time: if two threads try to grab a mutex, only one succeeds. The other thread
has to wait until the first thread releases the lock before it can grab the lock and con-
tinue operation.

In Java, every object has an associated lock. When a method is declared synchronized,
the executing thread must grab the lock associated with the object before it can con-
tinue. Upon completion of the method, the lock is automatically released.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 3: Data Synchronization

the value changes during the iteration of these methods, as each loop must complete
anyway.

The issue here is that we potentially have a race condition because one piece of data
is being shared between two different threads. In our first example, the race condi-
tion came about because the threads were accessing multiple pieces of data and there
was no way to update all of them atomically without using the synchronized key-
word. When only a single piece of data is involved, there is a different solution.

Java specifies that basic loading and storing of variables (except for long and double vari-
ables)isatomic.Thatmeansthevalueofthevariablecan’tbefoundinaninterimstatedur-
ing the store, nor can it be changed in the middle of loading the variable to a register. The
setDone()methodhasonlyonestoreoperation;therefore, it isatomic.Therun()method
has only one read operation. Since the rest of the run() method does not depend on the
value of the variable remaining constant, the race condition should not exist in this case.

Unfortunately, Java’s memory model is a bit more complex. Threads are allowed to
hold the values of variables in local memory (e.g., in a machine register). In that case,
when one thread changes the value of the variable, another thread may not see the
changed variable. This is particularly true in loops that are controlled by a variable
(like the done flag that we are using to terminate the thread): the looping thread may
have already loaded the value of the variable into a register and does not necessarily
notice when another thread changes the variable.

One way to solve this problem is to provide setter and getter methods for the vari-
able. We can then simply synchronize access by using the synchronized keyword on
these methods. This works because acquiring a synchronization lock means that all
temporary values stored in registers are flushed to main memory. However, Java pro-
vides a more elegant solution: the volatile keyword. If a variable is marked as
volatile, every time the variable is used it must be read from main memory. Simi-
larly, every time the variable is written, the value must be stored in main memory.
Furthermore, Java specifies that the load and store operations are atomic for volatile
variables, even for long and double variations. Hence, we can avoid the race condi-
tion in our example by marking our done flag as volatile.

Definition: Scope of a Lock
The scope of a lock is defined as the period of time between when the lock is grabbed
and released. In our examples so far, we have used only synchronized methods; this
means that the scope of these locks is the period of time it takes to execute the meth-
ods. This is referred to as method scope.

Later in this chapter, we’ll examine locks that apply to any block of code inside a
method or that can be explicitly grabbed and released; these locks have a different
scope. We’ll examine this concept of scope as locks of various types are introduced.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Volatile Keyword | 43

In most releases of the virtual machine prior to JDK 1.2, the actual implementation
of Java’s memory model made using volatile variables a moot point: variables were
always read from main memory. In subsequent iterations of Java, up to and includ-
ing J2SE 5.0, implementations of virtual machines became more sophisticated
and introduced new memory models and optimizations: this trend is expected to
continue in future versions of Java. With all modern virtual machine implementa-
tions, developers can not assume that variables will be accessed directly from main
memory.

So why is volatile necessary? Or even useful? Volatile variables solve only the prob-
lem introduced by Java’s memory model. They can be used only when the opera-
tions that use the variable are atomic, meaning the methods that access the variable
must use only a single load or store. If the method has other code, that code may not
depend on the variable changing its value during its operation. For example, opera-
tions like increment and decrement (e.g., ++ and --) can’t be used on a volatile vari-
able because these operations are syntactic sugar for a load, change, and a store.

As we mentioned, we could have solved this problem by using synchronized setter
and getter methods to access the variable. However, that would be fairly complex.
We must invoke another method, including setting up parameters and the return
variable. We must grab and release the lock necessary to invoke the method. And all
for a single line of code, with one atomic operation, that is called many times within
a loop. The concept of using a done flag is common enough that we can make a very
strong case for the volatile keyword.

The requirements of using volatile variables seem overly restrictive. Are they really
important? This question can lead to an unending debate. For now, it is better to
think of the volatile keyword as a way to force the virtual machine not to make tem-
porary copies of a variable. While we can agree that you might not use these types of
variables in many cases, they are an option during program design. In Chapter 5, we
examine similar variables (atomic variables) that are less restrictive: variables that are
not only atomic but can be built on using programming techniques. This allows us to
build complex atomic functionality.

How does volatile work with arrays? Declaring an array volatile makes the array
reference itself volatile. The elements within the array are not volatile; the virtual
machine may still store copies of individual elements in local registers. There is no
way to specify that the elements of an array should be treated as volatile. Conse-
quently, if multiple threads are going to access array elements, they must use syn-
chronization in order to protect the data. Atomic variables can also help in this
situation.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 3: Data Synchronization

More on Race Conditions
Let’s examine a more complex example; so far, we have looked at simple data inter-
action used either for loop control or for redrawing. In this next iteration of our typ-
ing game, we share useful data between the threads in order to calculate additional
data needed by the application.

Our application has a display component that presents random numbers and letters
and a component that shows what the user typed. While there are data synchroniza-
tion issues between the threads of this example, there is little interaction between
these two actions: the act of typing a letter does not depend on the animation letter
that is shown. But now we will develop a scoring system. Users see feedback on
whether they correctly typed what was presented. Our new code must make this
comparison, and it must make sure that no race condition exists when comparing
the data.

To accomplish this, we will introduce a new component, one that displays the user’s
score, which is based on the number of correct and incorrect responses:

package javathreads.examples.ch03.example1;

import javax.swing.*;
import java.awt.event.*;
import javathreads.examples.ch03.*;

public class ScoreLabel extends JLabel implements CharacterListener {

 private volatile int score = 0;
 private int char2type = -1;
 private CharacterSource generator = null, typist = null;

 public ScoreLabel (CharacterSource generator, CharacterSource typist) {
 this.generator = generator;
 this.typist = typist;

 if (generator != null)
 generator.addCharacterListener(this);
 if (typist != null)
 typist.addCharacterListener(this);
 }

 public ScoreLabel () {
 this(null, null);
 }

 public synchronized void resetGenerator(CharacterSource newGenerator) {
 if (generator != null)
 generator.removeCharacterListener(this);
 generator = newGenerator;
 if (generator != null)
 generator.addCharacterListener(this);
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

More on Race Conditions | 45

 public synchronized void resetTypist(CharacterSource newTypist) {
 if (typist != null)
 typist.removeCharacterListener(this);
 typist = newTypist;
 if (typist != null)
 typist.addCharacterListener(this);
 }

 public synchronized void resetScore() {
 score = 0;
 char2type = -1;
 setScore();
 }

 private synchronized void setScore() {
 // This method will be explained later in chapter 7
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 setText(Integer.toString(score));
 }
 });
 }

 public synchronized void newCharacter(CharacterEvent ce) {
 // Previous character not typed correctly: 1-point penalty
 if (ce.source == generator) {
 if (char2type != -1) {
 score--;
 setScore();
 }
 char2type = ce.character;
 }

 // If character is extraneous: 1-point penalty
 // If character does not match: 1-point penalty
 else {
 if (char2type != ce.character) {
 score--;
 } else {
 score++;
 char2type = -1;
 }
 setScore();
 }
 }
}

The heart of this class is the newCharacter() method, which is called from multiple
character sources. It is called, at random times, by the source (and thread) that gen-
erates random characters. It is also called by a character source every time the user
types a character (from the event dispatching thread). In our simple scoring system,
we increment the score every time a character is entered correctly and decrement the
score every time a character is entered incorrectly. We also penalize the user for

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 3: Data Synchronization

entering the same correct character more than once or for not entering the correct
character in time.

Interestingly, we don’t actually need to know which threads call this method (or the
other methods that access the same data). The conditional check in the method is
used to find out which source sent the character—not which thread. In terms of
threads, we just need to understand that this and other methods may be called by
different threads, potentially at the same time. We need to understand what is being
shared between the different methods—or even the same method if they are called
by different threads. For this class, the actual score, the character that needs to be
typed, and a few variables that hold the character sources for registration purposes
comprise the shared data. Solving the race conditions means synchronizing this data
at the correct scope.

In this case, synchronizing at the method level solves the problem, and making the
variables volatile would not solve the problem. Since it is easier to understand the
problem by examining a failure case, let’s quickly examine one such case: what could
happen if the newCharacter() method were not synchronized. Note that this is only
one case of many in which incorrect synchronization would lead to incorrect behav-
ior in this class.

• The user types a character, which happens to be correct. The event-dispatching
thread calls the newCharacter() method, which routes to the else statement
because the source is the typist. The character is determined to be correct
and the score is incremented. However, before the char2type variable can be set
to –1, indicating that the correct character has been typed, another thread starts
to run.

• The random character source calls the newCharacter() method, which routes to
the if statement. Since the char2type variable is not set to –1, the score is decre-
mented as a penalty for failure to type the character correctly.

• The random character thread stores the new character in the char2type variable,
the score is updated (via the setScore() method), and the method returns.

• The first thread sets the char2type variable to –1, updates the score, and returns
from the method.

This case is dependent on a scheduling change occurring at an unfortunate time. The
key to understanding this behavior is to realize that when multiple threads are exe-
cuting their own list of instructions, the operating system may switch from one list of
statements (i.e., one thread) to another list of statements (i.e., a different thread) at
any arbitrary point in time. In reality, a scheduling change may occur at more com-
plicated locations, such as in the middle of an instruction that is not atomic. In that
case, the symptoms may be very complicated. Even with this simple failure case, we
have many symptoms of failure:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

More on Race Conditions | 47

• Since the score is both incremented and decremented, the user is not given credit
for typing the character correctly.

• The new character from the random character generator is lost. It is actually set
correctly, but the event-dispatching thread incorrectly deletes it as soon as that
thread is allowed to execute.

• The character is lost only to the scoring component, not to the animation com-
ponent. The user is correctly informed of the new character to be typed but is
penalized again when the new character is typed correctly.

The resetScore() method also accesses the same common data and therefore also
needs to be synchronized. You may think this is not necessary since the method is
called only when the game is restarted: the other threads are not running then. The
resetScore(), resetGenerator(), and resetTypist() methods are all administrative
methods: they are all probably called only once and only during initialization. In this
case, they are being synchronized to make the class threadsafe—allowing the meth-
ods to be called at any time—should the programmer decide to use these methods
later in an unexpected manner.

This is an important point in designing classes for use in a multithreaded environ-
ment. Even if you believe that a race condition cannot occur based on the current use
of the class, defensive programming principles would argue that you make the entire
class safe for execution by multiple threads.

The setScore() method illustrates a few interesting points. First, the implemenation
of the setScore() method uses a utility method (the invokeLater() method) because
of threading issues related to Swing. Second, the setScore() method requires that
the score variable be declared volatile (again because of Swing-related threading
issues). The implementation of this method is explained in Chapter 7, but for now,
we’ll just point out that the method allows Swing code (e.g., setting the value of the
label in this example) to be executed in a threadsafe manner.

At this point, we may have introduced more questions than answers. So before we
continue, let’s try to answer some of those questions.

How can synchronizing two different methods prevent multiple threads calling those
methods from stepping on each other? As stated earlier, synchronizing a method has
the effect of serializing access to the method. This means that it is not possible to exe-
cute the same method in one thread while the method is already running in another
thread. The implementation of this mechanism is done by a lock that is assigned to
the object itself. The reason another thread cannot execute the same method at the
same time is that the method requires the lock that is already held by the first thread.
If two different synchronized methods of the same object are called, they also behave
in the same fashion because they both require the lock of the same object, and it is not
possible for both methods to grab the lock at the same time. In other words, even if
two or more methods are involved, they are never run in parallel in separate threads.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 3: Data Synchronization

This is illustrated in Figure 3-1. When thread 1 and thread 2 attempt to acquire the
same lock (L1), thread 2 must wait until thread 1 releases the lock before it can con-
tinue to execute.

When Is a Race Condition a Problem?
A race condition occurs when the order of execution of two or more threads may affect
some variable or outcome in the program. It may turn out that all the different possible
orders of thread execution have the same final effect on the program: the effect caused
by the race condition may be insignificant and may not even be relevant. For example,
if the animation thread draws the previous character instead of the new character, it is
not a problem if the character has already been typed since the new character is drawn
in the next repaint iteration. Alternatively, the timing of the threading system may be
such that the race condition never manifests itself, despite the fact that it exists in the
code.

Race conditions can be considered harmless (or benign) if you can prove that the result
of the race condition is always the same. This is a common technique in some of Java’s
core classes (most commonly, the atomic classes discussed in Chapter 5); we’ll see a
few examples of it in this book. But in general, a race condition is a problem that is
waiting to happen. Simple changes in the algorithm can cause race conditions to man-
ifest themselves in problematic ways. Since different virtual machines have different
ordering of thread execution, the developer should never let a race condition exist even
if it is currently not causing a problem on the development system.

Figure 3-1. Acquiring and releasing a lock

Ti
m

e

KEY

Waiting Thread

Runnable Thread

Thread 1

L1

Thread 2

L1

L1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

More on Race Conditions | 49

The point to remember here is that the lock is based on a specific instance of an object
and not on any particular method or class. Assume that we have two different scoring
components that score based on different formulas; we’ll call these two ScoreLabel
objects called objectA and objectB. One thread can execute the objectA.newCharacter()
method while another thread executes the objectB.resetGenerator() method. These
two methods can execute in parallel because the call to the objectA.newCharacter()
method grabs the lock associated with instance variable objectA, and the call to the
objectB.resetGenerator() method grabs the object lock associated with instance vari-
able objectB. Since the two objects are different objects, two different locks are grabbed
by the two threads: neither thread has to wait for the other.

How does a synchronized method behave in conjunction with an unsynchronized
method? To understand this, we must remember that all synchronizing does is to
grab an object lock. This, in turn, provides the means of allowing only one synchro-
nized method to run at a time, which in turn provides the data protection that solves
the race condition. Simply put, a synchronized method tries to grab the object lock,
and an unsynchronized method doesn’t. This means that unsynchronized methods
can execute at any time, by any thread, regardless of whether a synchronized method
is currently running. At any given moment on any given object, any number of
unsynchronized methods can be executing, but only one synchronized method can
be executing.

What does synchronizing static methods do? And how does it work? Throughout this
discussion, we keep talking about “obtaining the object lock.” But what about static
methods? When a synchronized static method is called, which object are we refer-
ring to? A static method does not have a concept of the this reference. It is not possi-
ble to obtain the object lock of an object that does not exist. So how does
synchronization of static methods work? To answer this question, we will introduce
the concept of a class lock. Just as there is an object lock that can be obtained for
each instance of a class (i.e., each object), there is a lock that can be obtained for
each class. We refer to this as the class lock. In terms of implementation, there is no
such thing as a class lock, but it is a useful concept to help us understand how all this
works.

When a static synchronized method is called, the program obtains the class lock
before calling the method. This mechanism is identical to the case in which the
method is not static; it is just a different lock. And this lock is used solely for static
methods. Apart from the functional relationship between the two locks, they are not
operationally related at all. These are two distinct locks. The class lock can be
grabbed and released independently of the object lock. If a nonstatic synchronized
method calls a static synchronized method, it acquires both locks.

As we mentioned, a class lock does not actually exist. The class lock is the object
lock of the Class object that models the class. Since there is only one Class object per
class, using this object achieves the synchronization for static methods. For the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 3: Data Synchronization

developer, it is best envisioned as follows. Only one thread can execute a synchro-
nized static method per class. Only one thread per instance of the class can execute a
nonstatic synchronized method. Any number of threads can execute nonsynchro-
nized methods—static or otherwise.

We have introduced the concept of “lock scope” but only touched on avoiding a
scope that is too large by locking only specific methods. What if we need to lock spe-
cific blocks of code? What if we need to lock only a few lines of code? Do we have to
create private methods that can contain as little as one line of code, just to keep one
line of code atomic? What if we want to do other tasks if we can’t obtain the lock?
What if we only want to wait for a specific period of time for a lock? What if we want
locks issued in a fashion that is fair? What does it mean to be fair? We answer these
questions in the remainder of this chapter.

Explicit Locking
The purpose of the synchronized keyword is to provide the ability to allow serialized
entrance to synchronized methods in an object. Although almost all the needs of
data protection can be accomplished with this keyword, it is too primitive when the
need for complex synchronization arises. More complex cases can be handled by
using classes that achieve similar functionality as the synchronized keyword. These
classes are available beginning in J2SE 5.0, but alternatives for use with earlier ver-
sions of Java are shown in the Appendix.

The synchronization tools in J2SE 5.0 implement a common interface: the Lock inter-
face. For now, the two methods of this interface that are important to us are lock()
and unlock(). Using the Lock interface is similar to using the synchronized keyword:
we call the lock() method at the start of the method and call the unlock() method at
the end of the method, and we’ve effectively synchronized the method.

The lock() method grabs the lock. The difference is that the lock can now be more
easily envisioned: we now have an actual object that represents the lock. This object
can be stored, passed around, and even discarded. As before, if another thread owns
the lock, a thread that attempts to acquire the lock waits until the other thread calls
the unlock() method of the lock. Once that happens, the waiting thread grabs the
lock and returns from the lock() method. If another thread then wants the lock, it
has to wait until the current thread calls the unlock() method. Let’s implement our
scoring example using this new tool:

package javathreads.examples.ch03.example2;
...
import java.util.concurrent.*;
import java.util.concurrent.locks.*;

public class ScoreLabel extends JLabel implements CharacterListener {
 ...
 private Lock scoreLock = new ReentrantLock();
 ...

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Explicit Locking | 51

 public void resetGenerator(CharacterSource newGenerator) {
 try {
 scoreLock.lock();
 if (generator != null)
 generator.removeCharacterListener(this);

 generator = newGenerator;
 if (generator != null)
 generator.addCharacterListener(this);
 } finally {
 scoreLock.unlock();
 }
 }

 public void resetTypist(CharacterSource newTypist) {
 try {
 scoreLock.lock();
 if (typist != null)
 typist.removeCharacterListener(this);

 typist = newTypist;
 if (typist != null)
 typist.addCharacterListener(this);
 } finally {
 scoreLock.unlock();
 }
 }

 public void resetScore() {
 try {
 scoreLock.lock();
 score = 0;
 char2type = -1;
 setScore();
 } finally {
 scoreLock.unlock();
 }
 }

 private void setScore() {
 // This method will be explained later in chapter 7
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 setText(Integer.toString(score));
 }
 });
 }

 public void newCharacter(CharacterEvent ce) {
 try {
 scoreLock.lock();
 // Previous character not typed correctly: 1-point penalty
 if (ce.source == generator) {
 if (char2type != -1) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 3: Data Synchronization

 score--;
 setScore();
 }
 char2type = ce.character;
 }

 // If character is extraneous: 1-point penalty
 // If character does not match: 1-point penalty
 else {
 if (char2type != ce.character) {
 score--;
 } else {
 score++;
 char2type = -1;
 }
 setScore();
 }
 } finally {
 scoreLock.unlock();
 }
 }
}

This new version of the ScoreLabel class is very similar to the previous version. The
implementation now declares an object that implements the Lock interface: the
scoreLock object which we’ll now use to synchronize the methods. We instantiate an
instance of the ReentrantLock class, a class that implements the Lock interface.
Instead of declaring methods as synchronized, those methods now call the lock()
method on entry and the unlock() method on exit. Finally, the method bodies are
now placed in try/finally clauses to handle possible runtime exceptions. With the
synchronized keyword, locks are automatically released when the method exits.
Using locks, we need to call the unlock() method: by placing the unlock() method
call in a finally clause, we guarantee the method is called when the method exits,
even if an unexpected runtime exception is thrown.

In terms of functionality, this example is exactly the same as the previous example.
In terms of possible enhancements, there is a difference. The difference is that by
using a lock class, we can now utilize other functionality—functionality, as we shall
see, that can’t be accomplished by just using the synchronized keyword.

Using a lock class, we can now grab and release a lock whenever desired. We can test
conditions before grabbing or releasing the lock. And since the lock is no longer
attached to the object whose method is being called, it is now possible for two
objects to share the same lock. It is also possible for one object to have multiple
locks. Locks can be attached to data, groups of data, or anything else, instead of just
the objects that contain the executing methods.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Lock Scope | 53

Lock Scope
Since we now have the lock-related classes available in our arsenal, many of our ear-
lier questions can now be addressed. Let’s begin looking at the issue of lock scope by
modifying our ScoreLabel class:

package javathreads.examples.ch03.example3;
...
public class ScoreLabel extends JLabel implements CharacterListener {
 ...
 public void newCharacter(CharacterEvent ce) {
 if (ce.source == generator) {
 try {
 scoreLock.lock();
 // Previous character not typed correctly: 1-point penalty
 if (char2type != -1) {
 score--;
 setScore();
 }
 char2type = ce.character;
 } finally {
 scoreLock.unlock();
 }
 }
 // If character is extraneous: 1-point penalty
 // If character does not match: 1-point penalty
 else {
 try {
 scoreLock.lock();
 if (char2type != ce.character) {
 score--;
 } else {
 score++;
 char2type = -1;
 }
 setScore();
 } finally {
 scoreLock.unlock();
 }
 }
 }
}

Since the lock() and unlock() method calls are explicit, we can move them any-
where, establishing any lock scope, from a single line of code to a scope that spans
multiple methods and objects. By providing the means of specifying the scope of the
lock, we can now move time-consuming and threadsafe code outside of the lock
scope. And we can now lock at a scope that is specific to the program design instead
of the object layout. In this example, we moved the source check outside of the lock,
and we also split the lock in two, one for each of the conditions.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 3: Data Synchronization

Synchronized Blocks
It is possible for the synchronized keyword to lock a block of code within a method.
It is also possible for the synchronized keyword to specify the object whose lock is
grabbed instead of using the lock of the object that contains the method. Much of
what we accomplish with the Lock interface can still be done with the synchronized
keyword. It is possible to lock at a scope that is smaller than a method, and it is pos-
sible to create an object just so that it can be used as an synchronization object. We
can implement our last example just by using the synchronized keyword:

package javathreads.examples.ch03.example4;
...
public class ScoreLabel extends JLabel implements CharacterListener {
 ...
 // Definition for score lock deleted
 ...
 public synchronized void resetGenerator(CharacterSource newGenerator) {
 ...
 }
 public synchronized void resetTypist(CharacterSource newTypist) {
 ...
 }
 public synchronized void resetScore() {
 ...
 }
 private synchronized void setScore() {
 ...
 }
 public void newCharacter(CharacterEvent ce) {
 // Previous character not typed correctly: 1-point penalty
 if (ce.source == generator) {
 synchronized(this) {
 if (char2type != -1) {
 score--;
 setScore();
 }
 char2type = ce.character;
 }
 }

 // If character is extraneous: 1-point penalty
 // If character does not match: 1-point penalty
 else {
 synchronized(this) {
 if (char2type != ce.character) {
 score--;
 } else {
 score++;
 char2type = -1;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Choosing a Locking Mechanism | 55

 }
 setScore();
 }
 }
 }
}

This syntax of the synchronized keyword requires an object whose lock is obtained.
This is similar to our scoreLock object in the previous example. For this example, we
are locking with the same object that was used for the synchronization of the
method: the this object. Using this syntax, we can now lock individual lines of code
instead of the whole method. We can also share data across multiple objects by lock-
ing on other objects instead, such as the data object to be shared.

Choosing a Locking Mechanism
If we compare our first implementation of the ScoreLabel class (using synchronized
methods) to our second (using an explicit lock), it’s easy to conclude that using the
explicit lock is not as easy as using the synchronized keyword. With the keyword, we
didn’t need to create the lock object, we didn’t need to call the lock object to grab
and release the lock, and we didn’t need to worry about exceptions (therefore, we
didn’t need the try/finally clause). So, which technique should you use? That is up
to you as a developer. It is possible to use explicit locking for everything. It is possi-
ble to code to just use the synchronized keyword. And it is possible to use a combina-
tion of both. For more complex thread programming, however, relying solely on the
synchronized keyword becomes very difficult, as we will see.

How are the lock classes related to static methods? For static methods, the explicit
locks are actually simpler to understand than the synchronized keyword. Lock
objects are independent of the objects (and consequently, methods) that use them.
As far as lock objects are concerned, it doesn’t matter if the method being executed is
static or not. As long as the method has a reference to the lock object, it can acquire
the lock. For complex synchronization that involves both static and nonstatic meth-
ods, it may be easier to use a lock object instead of the synchronized keyword.

Synchronized Methods Versus Synchronized Blocks
It is possible to use only the synchronized block mechanism even when we need to syn-
chronize the whole method. For clarity in this book, we synchronize the whole method
with the synchronized method mechanism and use the synchronized block mechanism
otherwise. It is the programmer’s personal preference to decide when to synchronize
on a block of code and when to synchronize the whole method—with the caveat that
it’s always better to establish as small a lock scope as possible.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 3: Data Synchronization

Synchronizing entire methods is the simplest technique, but as we have already men-
tioned, it is possible that doing so creates a lock whose scope is too large. This can
cause many problems, including creating a deadlock situation (which we examine
later in this chapter). It may also be inefficient to hold a lock for the section of code
where it is not actually needed.

Using the synchronized block mechanism may also be a problem if too many objects
are involved. As we shall see, it is also possible to have a deadlock condition if we
require too many locks to be acquired. There is also a slight overhead in grabbing
and releasing the lock, so it may be inefficient to free a lock just to grab it again a few
lines of code later. Synchronized blocks also cannot establish a lock scope that spans
multiple methods.

In the end, which technique to use is often a matter of personal preference. In this
book, we use both techniques. We tend to favor using explicit locks in the later
sections of this book, mainly because we use functionality that the Lock interface
provides.

The Lock Interface
Let’s look a little deeper into the Lock interface:

public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit)
 throws InterruptedException;
 void unlock();
 Condition newCondition();
}

What if we want to do other tasks if we can’t obtain the lock? The Lock interface pro-
vides an option to try to obtain the lock: the tryLock() method. It is similar to the
lock() method in that if it is successful, it grabs the lock. Unlike the lock() method,
if the lock is not available, it does not wait. Instead, it returns with a boolean value of
false. If the lock is obtained, the return value is a boolean value of true. By inspect-
ing the return value, we can route the thread to separate tasks: if the value returned is
false, for instance, we can route the thread to perform alternative tasks that do not
require obtaining the lock.

What if we want to wait only for a specific period of time for a lock? The tryLock()
method is overloaded with a version that lets you specify the maximum time to wait.
This method takes two parameters: one that specifies the number of time units and a
TimeUnit object that specifies how the first parameter should be interpreted. For
example, to specify 50 milliseconds, the long value is set to 50 and the TimeUnit value
is set to TimeUnit.MILLISECONDS. New in J2SE 5.0, the TimeUnit class specifies time in
units that are easier to understand. In previous versions of Java, most time-based

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Nested Locks | 57

functionality is either specified in nanoseconds or milliseconds (depending on the
method).

This method is similar to the lock() method in that it waits for the lock, but only for
a specified amount of time. It is similar to the tryLock() method in that it may return
without acquiring the lock: it returns with a value of true if the lock is acquired and
false if not.

What are the other methods of the Lock interface used for? We address them later in
this book, starting in Chapter 4. For now, we can already see that the functionality
offered by the Lock interface exceeds the functionality offered by the synchronized
keyword. By using explicit locks, the developer is free to address issues specific to his
program instead of being swamped with concurrency issues.

Nested Locks
Our implementation of the newCharacter() method could be refactored into multi-
ple methods. This isolates the generator and typist logic into separate methods, mak-
ing the code easier to maintain.

package javathreads.examples.ch03.example5;
 ...
 private synchronized void newGeneratorCharacter(int c) {
 if (char2type != -1) {
 score--;
 setScore();
 }
 char2type = c;
 }

 private synchronized void newTypistCharacter(int c) {
 if (char2type != c) {
 score--;
 } else {
 score++;
 char2type = -1;
 }
 setScore();
 }

 public synchronized void newCharacter(CharacterEvent ce) {
 // Previous character not typed correctly: 1-point penalty
 if (ce.source == generator) {
 newGeneratorCharacter(ce.character);
 }

 // If character is extraneous: 1-point penalty
 // If character does not match: 1-point penalty

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 3: Data Synchronization

 else {
 newTypistCharacter(ce.character);
 }
 }
}

The two new methods (newGeneratorCharacter() and newTypistCharacter()) are
synchronized because they access the shared state of the object. However, in this
case, synchronizing the methods is not technically necessary. Unlike the other meth-
ods that access the shared data, these methods are private; they can be called only
from other methods of the class. Within the class, they are called only from synchro-
nized methods. So, there is no reason for these methods to acquire the lock because
all calls to the method already own the lock. Yet it’s still a good idea to synchronize
methods like this. Developers who modify this class may not realize that their new
code needs to obtain the object lock before calling one of these new methods.

The reason this works is that Java does not blindly grab the lock when it enters syn-
chronized code. If the current thread owns the lock, there is no reason to wait for the
lock to be freed or even to grab the lock. Instead, the code in the synchronized sec-
tion just executes. Furthermore, the system is smart enough to not free the lock if it
did not initially grab it upon entering the synchronized section of code. This works
because the system keeps track of the number of recursive acquisitions of the lock,
finally freeing the lock upon exiting the first method (or block) that acquired the
lock. This functionality is called nested locking.

Nested locks are also supported by the ReentrantLock class—the class that imple-
ments the Lock interface that we have been using so far. If a lock request is made by
the thread that currently owns the lock, the ReentrantLock object just increments an
internal count of the number of nested lock requests. Calls to the unlock() method
decrement the count. The lock is not freed until the lock count reaches zero. This
implementation allows these locks to behave exactly like the synchronized keyword.
Note, however, that this is a specific property of the ReentrantLock class and not a
general property of classes that implement the Lock interface.

Why is Java’s support of nested locks important? This was a simple example. A more
complex—and very common—example is that of cross-calling methods. It is possi-
ble for a method of one class to call methods of another class, which in turn may call
methods of the original class. If Java did not support nested locks—and the methods
of both classes were synchronized—we could deadlock the program.

The deadlock occurs because the final method tries to grab a lock that the current
thread has already grabbed. This lock can’t be freed until the original method
unlocks it, but it can’t unlock it until it completes the execution of the original
method. And the original method can’t complete its execution because the final
method does not return: it is still waiting to grab the lock.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Deadlock | 59

Cross-calling methods are common and can be so complex that it may not be possi-
ble to even detect them, making fixing potential deadlocks very difficult. And there
are more complex cases as well. Our example uses a callback mechanism by using
character sources and listeners. In this case, character sources and listeners are con-
nected independently of either class: it can become very complex if the listeners are
being changed constantly during operation.

Cross-calling methods and callbacks are very prevalent in Java’s core library—partic-
ularly the windowing system, with its dependency on event handlers and listeners.
Developing threaded applications—or even just using Java’s standard classes—
would be very difficult if nested locks were not supported.

Is it possible to detect how many times a lock has been recursively acquired? It is not
possible to tell with the synchronized keyword, and the Lock interface does not pro-
vide a means to detect the number of nested acquisitions. However, that functional-
ity is implemented by the ReentrantLock class:

public class ReentrantLock implements Lock {
 public int getHoldCount();
 public boolean isLocked();
 public boolean isHeldByCurrentThread();
 public int getQueueLength();
}

The getHoldCount() method returns the number of acquisitions that the current
thread has made on the lock. A return value of zero means that the current thread
does not own the lock: it does not mean that the lock is free. To determine if the lock
is free—not acquired by any thread—the isLocked() method may be used.

Two other methods of the ReentrantLock class are also important to this discussion.
The isHeldByCurrentThread() method is used to determine if this lock is owned by
the current thread, and the getQueueLength() method can be used to get an estimate
of the number of threads waiting to acquire the lock. This value that is returned is
only an estimate due to the race condition that exists between the time that the value
is calculated and the time that the value is used after it has been returned.

Deadlock
We have mentioned deadlock a few times in this chapter, and we’ll examine the con-
cept in detail in Chapter 6. For now, we just need to understand what it is and why it
is a problem.

Simplistically, deadlock occurs when two or more threads are waiting for two or
more locks to be freed and the circumstances in the program are such that the locks
are never freed. Interestingly, it is possible to deadlock even if no synchronization
locks are involved. A deadlock situation involves threads waiting for conditions; this
includes waiting to acquire a lock and also waiting for variables to be in a particular

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 3: Data Synchronization

state. On the other hand, it is not possible to deadlock if only one thread is involved,
as Java allows nested lock acquisition. If a single user thread deadlocks, a system
thread must also be involved.

Let’s examine a simple example. To do this, we revisit and break one of our
classes—the AnimatedCharacterDisplayCanvas class. This class uses a done flag to
determine whether the animation should be stopped. The previous example of this
class declares the done flag as volatile. This step was necessary to allow atomic access
to the variable to function correctly. In this example, we incorrectly synchronize the
methods.

package javathreads.examples.ch03.example6;
...
public class AnimatedCharacterDisplayCanvas extends CharacterDisplayCanvas
 implements CharacterListener, Runnable {
 private boolean done = false;
 ...
 protected synchronized void paintComponent(Graphics gc) {
 ...
 }

 public synchronized void run() {
 while (!done) {
 repaint();
 try {
 Thread.sleep(100);
 } catch (InterruptedException ie) {
 return;
 }
 }
 }

 public synchronized void setDone(boolean b) {
 done = b;
 }
}

Two threads are involved here: the thread created by this class and the event-
dispatching thread that eventually calls the setDone() method. Only one lock is
shared between these threads: the lock attached to the object (the instance of the
AnimatedCharacterDisplayCanvas class) that is being synchronized. The done flag is
more interesting. It is a data variable that the run() method uses to determine
whether it should exit. In essence, the run() method is waiting for the done flag to be
set to true.

When the animation thread is started, the object lock is grabbed by the run()
method. The method does not release the object lock until it has completed—which
is determined by the done flag. Later, the user presses the Stop button; this generates
a call to the setDone() method. The setDone() method now tries to acquire the
object lock. The object lock can’t be acquired until the run() methods exits. The

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Deadlock | 61

run() method does not exit until the done flag is set. And the done flag can’t be set
until the setDone() method executes. This is obviously a catch-22 situation: a dead-
lock is created.

This example has other problems as well. When the system needs to draw the can-
vas, it calls the paintComponent() method from the event-dispatching thread. That
thread must acquire the lock on the canvas in order to execute the paintComponent()
method. Since that lock is already held by the animation thread itself, the
paintComponent() method never has the opportunity to execute. When you press the
Start button on the application, nothing happens (other than the application becom-
ing totally unresponsive—you’ll have to press Ctrl-C to quit).

To fix this problem, we reduce the scope of the lock used by the run() method. One
way to do that is by introducing a new synchronized method that accesses the done
flag:

package javathreads.examples.ch03.example7;
...
public class AnimatedCharacterDisplayCanvas extends CharacterDisplayCanvas
 implements CharacterListener, Runnable {
 ...
 public void run() {
 while (!getDone()) {
 ...
 }
 }
 public synchronized boolean getDone() {
 return done;
 }
 ...
}

Now that the run() method is synchronized only while it is executing the getDone()
method, the other methods have the opportunity to grab the object lock, and the
program executes as desired.

This is a simple example, but, as you can see, a deadlock can occur even with simple
examples. The reason that a deadlock is a problem is obvious—it prevents the appli-
cation from executing correctly. Unfortunately, there is another issue; deadlocks can
be very difficult to detect, particularly as a program gets more complex. Making the
example even slightly more complex can obscure the deadlock. To demonstrate, we
break our application further by using explicit locks within the ScoreLabel class.

package javathreads.examples.ch03.example8;
...
public class ScoreLabel extends JLabel implements CharacterListener {
 ...
 private Lock adminLock = new ReentrantLock();
 private Lock charLock = new ReentrantLock();
 private Lock scoreLock = new ReentrantLock();
 ...

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 3: Data Synchronization

 public void resetGenerator(CharacterSource newGenerator) {
 try {
 adminLock.lock();
 if (generator != null)
 generator.removeCharacterListener(this);

 generator = newGenerator;
 if (generator != null)
 generator.addCharacterListener(this);
 } finally {
 adminLock.unlock();
 }
 }

 public void resetTypist(CharacterSource newTypist) {
 try {
 adminLock.lock();
 if (typist != null)
 typist.removeCharacterListener(this);

 typist = newTypist;
 if (typist != null)
 typist.addCharacterListener(this);
 } finally {
 adminLock.unlock();
 }
 }
 ...
 public void newCharacter(CharacterEvent ce) {
 try {
 scoreLock.lock();
 charLock.lock();
 // Previous character not typed correctly: 1-point penalty
 if (ce.source == generator) {
 if (char2type != -1) {
 score--;
 setScore();
 }
 char2type = ce.character;
 }

 // If character is extraneous: 1-point penalty
 // If character does not match: 1-point penalty
 else {
 if (char2type != ce.character) {
 score--;
 } else {
 score++;
 char2type = -1;
 }
 setScore();
 }
 } finally {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Deadlock | 63

 scoreLock.unlock();
 charLock.unlock();
 }
 }

 public void resetScore() {
 try {
 charLock.lock();
 scoreLock.lock();
 score = 0;
 char2type = -1;
 setScore();
 } finally {
 charLock.unlock();
 scoreLock.unlock();
 }
 }
}

Upon examining our ScoreLabel class, we got a very good idea. We noticed that the
resetGenerator() and resetTypist() methods don’t change the score or the charac-
ter to be typed. In order to be more efficient, we create a lock just for these two
methods—a lock that is used only by the administration methods. We further cre-
ate a separate lock to distinguish the score and the character; this is just in case we
need to modify one variable without the other at a later date. This is a good idea
because it reduces contention for the locks, which can increase the efficiency of our
program.

Unfortunately, during implementation we created a problem. Like our previous
example, there is now a deadlock present in the code. Unlike the previous example,
it may not be detected in testing. In fact, it may not be detected at all, as the
resetScore() method is not called frequently enough for the problem to show up in
testing. In our previous example, the problem manifested itself as soon as the appli-
cation was started. In this example, the program can run correctly for millions of
iterations, only to fail in production when the user presses the Stop or Start buttons
in a certain way. Since this deadlock is dependent on the timing of the threads, it
may never fail on the testing system due to the timing of the test scripts and other
features of the underlying implementation. Our more complex example has a dead-
lock that is not consistent, making detection incredibly difficult.

So, where is the deadlock? It is related to the differences in lock acquisition between
the resetScore() and newCharacter() methods. The newCharacter() method grabs
the score lock first while the resetScore() method grabs the character lock first. It is
now possible for one method to be called which grabs one lock, but, before it can
grab the other lock, the other method is called which grabs the other lock. Both
methods are waiting to grab the other lock while holding one of the locks.

Let’s look at a possible run of this implementation as outlined in Figure 3-2. The
thread (thread 1) that generates the random characters calls the newCharacter()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 3: Data Synchronization

method. This method first grabs the score lock (L1) and then is about to grab the
character lock. At the same time, the user presses the Start button, generating a call
to the resetScore() method. The event-dispatching thread (thread 2) that handles
the buttons calls the resetScore() method. Thread 2 grabs the character lock (L2)
successfully but fails to grab the score lock (L1)—it then waits for the score lock to
be released. After thread 1 grabs the score lock, it then tries to grab the character
lock (L2). Since the character lock is already held, it waits for it to be released. The
first thread is waiting for the second thread to release the second lock while the sec-
ond thread is waiting for the first thread to release the first lock. Neither can release
their respective locks until they are able to acquire the other lock. This generates a
catch-22 situation: a deadlock has occurred.

Can the system somehow resolve this deadlock, just as it is able to avoid the potential
deadlock when a thread tries to grab the same lock again? Unfortunately, this prob-
lem is different. Unlike the case of the nested locks, where a single thread is trying to
grab a single lock multiple times, this case involves two separate threads trying to
grab two different locks. Since a thread owns one of the locks involved, it may have
already made changes that make it impossible for it to free the lock. To be able to fix
this problem at the system level, Java would need a system where the first lock can’t
be grabbed until it is safe from deadlock or provide a way for the deadlock to be
resolved once it occurs. Either case is very complex and may be more complex than
just having the developer design the program correctly.

In general, deadlocks can be very difficult to resolve. It is possible to have a deadlock
that developers can’t fix without a complete design overhaul. Given this complexity,

Figure 3-2. Deadlock in the ScoreLabel class

Ti
m

e

KEY

Waiting Thread

Runnable Thread L2

Thread 1

L1

L2

Thread 2

L1 blocks here
waiting for L1

blocks here
waiting for L2

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Lock Fairness | 65

it is not possible, or fair, to expect the underlying system to resolve deadlocks auto-
matically. As for the developer, we look at the design issues related to deadlock pre-
vention and even develop a tool that can be used to detect a deadlock in Chapter 6.

The technique used to fix the problem in Chapter 6 is to make sure that the
resetScore() method acquires the locks in the same order as the newCharacter()
method:

package javathreads.examples.ch03.example9;
...
public class ScoreLabel extends JLabel implements CharacterListener {
 ...
 public void resetScore() {
 try {
 scoreLock.lock();
 charLock.lock();
 score = 0;
 char2type = -1;
 setScore();
 } finally {
 charLock.unlock();
 scoreLock.unlock();
 }
 }
}

Lock Fairness
The last question we need to address is the question of lock fairness. What if we
want locks to be issued in a fair fashion? What does it mean to be fair? The
ReentrantLock class allows the developer to request that locks be granted fairly. This
just means that locks are granted in as close to arrival order as possible. While this is
fair for the majority of programs, the definition of “fair” can be much more complex.

Whether locks are granted fairly is subjective (i.e., it is measured by the user’s per-
ceptions or other relative means) and can be dependent on particular needs of the
program. This means that fairness is based on the algorithm of the program and only
minimally based on the synchronization construct that the program uses. In other
words, achieving total fairness is dependent on the needs of the program. The best
that the threading library can accomplish is to grant locks in a fashion that is speci-
fied and consistent.

How should locks be granted with explicit locks? One possibility is that locks should
be granted on a first-come-first-served basis. Another is they should be granted in an
order that permits servicing the maximum number of requests. For example, if we
have multiple requests to make a withdrawal from a bank account, perhaps the
smaller withdrawal requests should be accepted first or perhaps deposits should have
priority over withdrawals. A third view is that locks should be granted in a fashion

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 3: Data Synchronization

that is best for the platform—regardless of whether it is for a banking application, a
golfing application, or our typing application.

The behavior of synchronization (using the synchronized keyword or explicit locks)
is closest to the last view. Java synchronization primitives are not designed to grant
locks for a particular situation—they are part of a general purpose threads library.
So, there is no reason that the locks should be granted based on arrival order. Locks
are granted based on implementation-specific behavior of the underlying threading
system, but it is possible to base the lock acquisitions of the ReentrantLock class on
arrival order.

Let’s examine a slight variation to our examples. Typically, we’ve declared the lock
as follows:

private Lock scoreLock = new ReentrantLock();

We can declare the lock like this instead:

private Lock scoreLock = new ReentrantLock(true);

The ReentrantLock class provides an option in its constructor to specify whether to
issue locks in a “fair” fashion. In this case, the definition of “fair” is first-in-first-out.
This means that when many lock requests are made at the same time, they are
granted very close to the order in which they are made. At a minimum, this prevents
lock starvation from occurring.

This change is not actually needed for our example. We have only two threads that
access this lock. One thread is executed only once every second or so while the other
thread is dependent on the user typing characters. Since the operation of both meth-
ods is short, the chances of any thread waiting for a lock is small and the chances of
lock starvation is zero. It is up to the developer to decide whether or not to use this
option—the need to provide a consistent order in granting locks must be balanced
with the overhead of the extra code required to use this option.

What if your program has a different notion of fairness? In that case, it’s up to you to
develop a locking class that meets the needs of your application. Such a class needs
more features of the threading library than we’ve discussed so far; a good model for
the class would be the ReentrantReadWriteLock examined in Chapter 6.

Summary
In this chapter, we’ve introduced the synchronized keyword of the Java language.
This keyword allows us to synchronize methods and blocks of code. We’ve also
examined the basic synchronization classes provided by the Java class library—the
ReentrantLock class and the Lock interface. These classes allow us to lock objects
across methods and to acquire and release the lock at will based on external events.
They also provide features such as testing to see if the lock is available, placing time-
outs on obtaining the lock, or controlling the order on granting locks.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Summary | 67

We’ve also looked at a common way of handling synchronization of a single vari-
able: the volatile keyword. Using the volatile keyword is typically easier than set-
ting up needed synchronization around a single variable.

This concludes our first look at synchronization. As you can tell, it is one of the most
important aspects of threaded programming. Without these techniques, we would
not be able to share data correctly between the threads that we create. However,
we’ve just begun to look at how threads can share data. The simple synchronization
techniques of this chapter are a good start; in the next chapter, we look at how
threads can notify each other that data has been changed.

Example Classes
Here are the class names and Ant targets for the examples in this chapter:

Description Main Java class Ant target

Swing Type Tester with ScoreLabel javathreads.examples.ch03.example1.
SwingTypeTester

ch3-ex1

ScoreLabel with explicit lock javathreads.examples.ch03.example2.
SwingTypeTester

ch3-ex2

ScoreLabel with explicit locking at a
small scope

javathreads.examples.ch03.example3.
SwingTypeTester

ch3-ex3

ScoreLabel with synchronized block
locking

javathreads.examples.ch03.example4.
SwingTypeTester

ch3-ex4

ScoreLabel with nested locks javathreads.examples.ch03.example5.
SwingTypeTester

ch3-ex5

Deadlocking Animation Canvas javathreads.examples.ch03.example6.
SwingTypeTester

ch3-ex6

Deadlocking Animation Canvas (scope
corrected)

javathreads.examples.ch03.example7.
SwingTypeTester

ch3-ex7

Deadlocking ScoreLabel javathreads.examples.ch03.example8.
SwingTypeTester

ch3-ex8

Deadlocking ScoreLabel (deadlock
corrected)

javathreads.examples.ch03.example9.
SwingTypeTester

ch3-ex9

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

68

Chapter 4CHAPTER 4

Thread Notification

In the previous chapter, we discussed data synchronization. Using synchronization
and explicit locks, threads can interoperate and safely share data without any race
conditions that might corrupt the state of the data. However, as we shall see, syn-
chronization is more than avoiding race conditions: it includes a thread-based notifi-
cation system that we examine in this chapter.

Thread notification addresses a number of issues in our sample application. Two of
these relate to the random character generator and the animation canvas. The ran-
dom character generator is created when the user presses the Start button; it is
destroyed when the user presses the Stop button. Therefore, the listeners to the ran-
dom character generator are reconnected each time the Start button is pressed. In
fact, the entire initialization process is repeated every time that the Start button is
pressed.

A similar problem exists for the animation component. Although the component
itself is not destroyed every time the user restarts, the thread object that is used for
the animation is discarded and recreated. The component provides a mechanism that
allows the developer to set the done flag, but the component doesn’t use that data to
restart the animation: once the done flag is set to true, the run() method of the ani-
mation canvas exits. The reason for this has to do with efficiency. The alternative is
to loop forever, waiting for the done flag to be set to false. This consumes a lot of
CPU cycles. Fortunately, the mechanisms we explore in this chapter can solve all
these problems.

Wait and Notify
We’ve seen that every Java object has a lock. In addition, every object also provides a
mechanism that allows it to be a waiting area; this mechanism aids communication

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Wait and Notify | 69

between threads.* The idea behind the mechanism is simple: one thread needs a cer-
tain condition to exist and assumes that another thread will create that condition.
When another thread creates the condition, it notifies the first thread that has been
waiting for the condition. This is accomplished with the following methods of the
Object class:

void wait()
Waits for a condition to occur. This method must be called from within a syn-
chronized method or block.

void wait(long timeout)
Waits for a condition to occur. However, if the notification has not occurred in
timeout milliseconds, it returns anyway. This method must be called from a syn-
chronized method or block.

void wait(long timeout, int nanos)
Waits for a condition to occur. However, if the notification has not occurred in
timeout milliseconds and nanos nanoseconds, it returns anyway. This method
must be called from a synchronized method or block. Note that, just like the
sleep() method, implementations of this method do not actually support nano-
second resolution.

void notify()
Notifies a thread that is waiting that the condition has occurred. This method
must be called from within a synchronized method or block.

What is the purpose of the wait-and-notify mechanism, and how does it work? The
wait-and-notify mechanism is a synchronization mechanism. However, it is more of
a communication mechanism: it allows one thread to communicate to another

* With Solaris or POSIX threads, these are often referred to as condition variables; with Windows, they are
referred to as event variables.

wait(), notify(), and the Object Class
Just like the synchronized method, the wait-and-notify mechanism is available from
every object in the Java system. However, this mechanism is accomplished by method
invocations whereas the synchronized mechanism is handled by adding a keyword.

The wait() and notify() mechanism works because these are methods of the Object
class. Since all objects in the Java system inherit directly or indirectly from the Object
class, all objects are also instances of the Object class and therefore have support for
this mechanism.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 4: Thread Notification

thread that a particular condition has occurred. The wait-and-notify mechanism does
not specify what the specific condition is.

Can the wait-and-notify mechanism be used to replace the synchronized mechanism?
Actually, the answer is no; wait-and-notify does not solve the race condition prob-
lem that the synchronized mechanism solves. As a matter of fact, wait-and-notify
must be used in conjunction with the synchronized lock to prevent a race condition
in the wait-and-notify mechanism itself.

Let’s use this technique to solve the efficiency problem in our animation compo-
nent. In this fixed version, the animation thread does not exit when the done flag is
set. Instead, it simply waits for the done flag to be reset.

package javathreads.examples.ch04.example1;
...
public class AnimatedCharacterDisplayCanvas extends CharacterDisplayCanvas
 implements CharacterListener, Runnable {
 private boolean done = true;
 ...
 public synchronized void run() {
 while (true) {
 try {
 if (done) {
 wait();
 } else {
 repaint();
 wait(100);
 }
 } catch (InterruptedException ie) {
 return;
 }
 }
 }

 public synchronized void setDone(boolean b) {
 done = b;

 if (timer == null) {
 timer = new Thread(this);
 timer.start();
 }
 if (!done)
 notify();
 }
 }

In this new version, the done flag is no longer volatile. This is because we are doing
more than just setting the flag; we also need to send a notification atomically while
setting the flag. Therefore, access to the done flag is now protected by a synchro-
nized lock.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Wait and Notify | 71

The run() method now no longer exits when the done flag is set to false. Instead, it
calls the wait() method (with no arguments). The thread waits (or blocks) in that
method until another thread calls the notify method, at which point it restarts the
animation.

Also notice that instead of calling the sleep() method, the animation is achieved by
calling the wait() method with a 100 millisecond timeout. This is due to the differ-
ences between the wait() and sleep() methods. Unlike the sleep() method, the
wait() method requires that the thread own the synchronization lock of the object.
When the wait() method executes, the synchronization lock is released (internally
by the virtual machine itself). Upon receiving the notification, the thread needs to
reacquire the synchronization lock before returning from the wait() method.

This technique is needed due to a race condition that would otherwise exist between
setting and sending the notification and testing and getting the notification. If the
wait() and notify() mechanism were not invoked while holding the synchroniza-
tion lock, there would be no way to guarantee that the notification would be
received. And if the wait() method did not release the lock prior to waiting, it would
be impossible for the notify() method to be called (as it would be unable to obtain
the lock). This is also why we had to use the wait() method instead of the sleep()
method; if the sleep() method were used, the lock would never be released, the
setDone() method would never run, and notification could never be sent.

In the online examples, the random character generator’s restarting issue has also
been fixed. We’ll leave it up to you to examine the code at your leisure.

The Wait-and-Notify Mechanism and Synchronization
As we just mentioned, the wait-and-notify mechanism has a race condition that
needs to be solved with the synchronization lock. It is not possible to solve the race
condition without integrating the lock into the wait-and-notify mechanism. This is
why it is mandatory for the wait() and notify() methods to hold the locks for the
object on which they are operating.

The wait() method releases the lock prior to waiting and reacquires the lock prior to
returning from the wait() method. This is done so that no race condition exists. As
you recall, there is no concept of releasing and reacquiring a lock in the Java API.
The wait() method is actually tightly integrated with the synchronization lock, using
a feature not available directly from the synchronization mechanism. In other words,
it is not possible for us to implement the wait() method purely in Java: it is a native
method.

This integration of the wait-and-notify mechanism and the synchronization lock is
typical. In other systems, such as Solaris or POSIX threads, condition variables also
require that a mutex lock be held for the mechanism to work.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 4: Thread Notification

In our example, both the run() and the setDone() methods are synchronized. In the
previous chapter, this was not a recommended technique since the run() method
never completes—in fact, some of our examples showed how the application broke
as a result of synchronizing the run() method. However, because of the way the
wait() method works, there is no longer a danger of deadlock in the example we’ve
just shown. The wait() method releases the lock, which allows other threads to exe-
cute, including the thread that eventually executes the setDone() method. Before the
wait() method returns, it reacquires the lock. To the developer, it appears as if the
lock has been held the entire time.

What happens when notify() is called and no thread is waiting? This cannot happen
in our animation component. Since the run() method does not exit, it is not possi-
ble for the lock to be freed without the thread being in a wait() method call. How-
ever, in general this is not the case: it is not required that some thread be executing
the wait() method when another thread calls the notify() method. Since the wait-
and-notify mechanism does not know the condition about which it is sending notifi-
cation, it assumes that a notification goes unheard if no thread is waiting. In other
words, if the notify() method is called when no other thread is waiting, notify()
simply returns and the notification is lost. A thread that later executes the wait()
method has to wait for another notification to occur.

What are the details of the race condition that exists in the wait-and-notify mecha-
nism? In general, a thread that uses the wait() method confirms that a condition
does not exist (typically by checking a variable) and then calls the wait() method.
When another thread establishes the condition (typically by setting the same vari-
able), it calls the notify() method. A race condition occurs when:

1. The first thread tests the condition and confirms that it must wait.

2. The second thread sets the condition.

3. The second thread calls the notify() method; this goes unheard since the first
thread is not yet waiting.

4. The first thread calls the wait() method.

How does this potential race condition get resolved? This race condition is resolved by
the synchronization lock discussed earlier. In order to call the wait() or notify()
methods, we must have obtained the lock for the object on which we’re calling the
method. This is mandatory; the methods do not work properly and generate an
exception condition if the lock is not held. Furthermore, the wait() method also
releases the lock prior to waiting and reacquires the lock prior to returning from the
wait() method. The developer must use this lock to ensure that checking the condi-
tion and setting the condition is atomic, which typically means that the check or set
must be within the lock scope.

Is there a race condition during the period that the wait() method releases and reac-
quires the lock? The wait() method is tightly integrated with the lock mechanism.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Wait and Notify | 73

The object lock is not actually freed until the waiting thread is already in a state in
which it can receive notifications. This would have been difficult, if not impossible,
to accomplish if we had needed to implement the wait() and notify() methods our-
selves. The system prevents any race conditions from occurring in this mechanism.

If a thread receives a notification, is it guaranteed that the condition is set correctly?
Simply, no. Prior to calling the wait() method, a thread should always test the con-
dition while holding the synchronization lock. Upon returning from the wait()
method, the thread should always retest the condition to determine if it should wait
again. This is because another thread can also test the condition and determine that
a wait is not necessary—processing the valid data that was set by the notification
thread.

Let’s look into how that can happen. Our animated canvas example is very simple;
only one thread is actually waiting. In most programs, many threads are waiting and
sending notifications. A race condition exists when multiple threads are waiting for
notification. The race condition that is solved internally to the wait-and-notify mech-
anism prevents the loss of notifications, but it does not solve the following scenario
when multiple threads are waiting:

1. Thread 1 calls a method that acquires the synchronization lock.

2. Thread 1 examines a state flag and determines that the data is not in the desired
state.

3. Thread 1 calls the wait() method, which frees the lock.

4. Thread 2 calls a method that acquires the same synchronization lock.

5. Thread 3 calls a method that blocks waiting for the lock.

6. Thread 2 sets the state flag and calls the notify() method.

7. Thread 2 finishes its method and frees the lock.

8. Thread 3 acquires the lock and proceeds to process the data; it sees that the data
is in the desired state, so it processes the data and resets the state flag.

9. Thread 3 exits without needing to wait.

10. Thread 1 receives the notification and wakes up.

This is a common case when multiple threads are involved in the notifications. More
particularly, the threads that are processing the data can be thought of as consum-
ers; they consume the data produced by other threads. There is no guarantee that
when a consumer receives a notification that it has not been processed by another
consumer. As such, when a consumer wakes up, it cannot assume that the state it
was waiting for is still valid. It may have been valid in the past, but the state may
have been changed after the notify() method was called and before the consumer
thread woke up. Waiting threads must provide the option to check the state and to
return back to a waiting state in case the notification has already been handled. This
is why we always put calls to the wait() method in a loop.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 4: Thread Notification

Remember too that the wait() method can return early if its thread is interrupted. In
that case, processing is application-specific, depending on how the algorithm needs
to handle the interruption.

wait(), notify(), and notifyAll()
What happens when more than one thread is waiting for notification? Which threads
actually get the notification when the notify() method is called? It depends: the Java
specification doesn’t define which thread gets notified. Which thread actually
receives the notification varies based on several factors, including the implementa-
tion of the Java virtual machine and scheduling and timing issues during the execu-
tion of the program. There is no way to determine, even on a single processor
platform, which of multiple threads receives the notification.

Another method of the Object class assists us when multiple threads are waiting for a
condition:

void notifyAll()
Notifies all the threads waiting on the object that the condition has occurred.
This method must be called from within a synchronized method or block.

The notifyAll() method is similar to the notify() method except that all of the
threads that are waiting on the object are notified instead of a single arbitrary thread.
Just like the notify() method, the notifyAll() method does not allow us to decide
which thread gets the notification: they all get notified. When all the threads receive
the notification, it is possible to work out a mechanism for the threads to choose
among themselves which thread should continue and which thread(s) should call the
wait() method again.

Does the notifyAll() method really wake up all the threads? Yes and no. All of the
waiting threads wake up, but they still have to reacquire the object lock. So the
threads do not run in parallel: they must each wait for the object lock to be freed.
Thus, only one thread can run at a time, and only after the thread that called the
notifyAll() method releases its lock.

Why would you want to wake up all of the threads? There are a few reasons. For
example, there might be more than one condition to wait for. Since we cannot con-
trol which thread gets the notification, it is entirely possible that a notification wakes
up a thread that is waiting for an entirely different condition. By waking up all the
threads, we can design the program so that the threads decide among themselves
which thread should execute next.*

* Later in this chapter, we discuss options to allow multiple condition variables to coexist. This allows differ-
ent threads to wait for different conditions efficiently.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Wait and Notify | 75

Another option could be when producers generate data that can satisfy more than
one consumer. Since it may be difficult to determine how many consumers can be
satisfied with the notification, an option is to notify them all, allowing the consum-
ers to sort it out among themselves.

Wait-and-Notify Mechanism with Synchronized Blocks
In our example, we showed how the wait() and notify() methods are called within
a synchronized method. In that case, the lock that interacts with the wait() and
notify() methods is the object lock of the this object.

It is possible to use the wait() and notify() methods with a synchronized block. In
that case, the lock that the code holds is probably not the object lock of the code: it
is most likely the lock of some object explicitly specified in the synchronized block.
Therefore, you must invoke the wait() or notify() method on that same object, like
this:

package javathreads.examples.ch04.example2;
...
public class AnimatedCharacterDisplayCanvas extends CharacterDisplayCanvas
 implements CharacterListener, Runnable {
 ...
 private Object doneLock = new Object();

 public synchronized void newCharacter(CharacterEvent ce) {
 ...
 }

 protected synchronized void paintComponent(Graphics gc) {
 ...
 }

 public void run() {
 synchronized(doneLock) {
 while (true) {
 try {
 if (done) {
 doneLock.wait();
 } else {
 repaint();
 doneLock.wait(100);
 }
 } catch (InterruptedException ie) {
 return;
 }
 }
 }
 }

 public void setDone(boolean b) {
 synchronized(doneLock) {
 done = b;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 4: Thread Notification

 if (timer == null) {
 timer = new Thread(this);
 timer.start();
 }
 if (!done)
 doneLock.notify();
 }
 }
 }

In this example, we’ve separated the synchronization that protects the animation
(the tmpChar[] and curX variables) from the synchronization that protects the thread
state (the timer and done variables). In programs with a lot of contention for object
locks, this technique is useful since it allows more threads to access different meth-
ods at the same time (e.g., two threads can now simultaneously access the
paintComponent() and run() methods).

Now when the wait() and notify() methods are called, we’re holding the object
lock of the doneLock object. Consequently, we explicitly call the doneLock.wait() and
doneLock.notify() methods. That follows the same logic we outlined earlier; it’s
simply a different lock now.

It may help to remind yourself how Java objects work in this regard. In our first
example, we had this statement:

wait();

which is equivalent to this statement:

this.wait();

So the wait() and notify() methods are consistent: they are always called with an
object reference, even if that reference is the implied this object. The object refer-
ence must always be one that you hold the object lock for—and again, the synchro-
nized method grabs the object lock of the this object.

Condition Variables
Condition variables are a type of synchronization provided by many other threading
systems. A condition variable is very similar to Java’s wait-and-notify mechanism—
in fact, in most cases it is functionally identical. The four basic functions of a POSIX
condition variable—wait(), timed_wait(), signal(), and broadcast()—map
directly to the methods provided by Java (wait(), wait(long), notify(), and
notifyAll(), respectively). The implementations are also logically identical. The
wait() operation of a condition variable requires that a mutex lock be held. It
releases the lock while waiting and reacquires the lock prior to returning to the
caller. The signal() function wakes up one thread whereas the broadcast() func-
tion wakes up all the waiting threads. These functions also require that the mutex be

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Condition Variables | 77

held during the call. The race conditions of a condition variable are solved in the
same way as those of Java’s wait-and-notify mechanism.

There is one subtle difference, however. The wait-and-notify mechanism is highly
integrated with its associated lock. This makes the mechanism easier to use than its
condition variable counterpart. Calling the wait() and notify() methods from syn-
chronized sections of code is just a natural part of their use. Using condition vari-
ables, however, requires that you create a separate mutex lock, store that mutex, and
eventually destroy the mutex when it is no longer necessary.

Unfortunately, that convenience comes at a small price. A POSIX condition variable
and its associated mutex lock are separate synchronization entities. It is possible to
use the same mutex with two different condition variables, or even to mix and match
mutexes and condition variables in any scope. While the wait-and-notify mechanism
is much easier to use and is usable for most cases of signal-based synchronization, it
is not capable of assigning any synchronization lock to any notification object. When
you need to signal two different notification objects while requiring the same syn-
chronization lock to protect common data, a condition variable is more efficient.

J2SE 5.0 adds a class that provides the functionality of condition variables. This class
is used in conjunction with the Lock interface. Since this new interface (and, there-
fore, object) is separate from the calling object and the lock object, its usage is just as
flexible as the condition variables in other threading systems. In Java, condition vari-
ables are objects that implement the Condition interface. The Condition interface is
tied to the Lock interface, just as the wait-and-notify mechanism is tied to the syn-
chronization lock.

To create a Condition object from the Lock object, you call a method available on the
Lock object:

Lock lockvar = new ReentrantLock();
Condition condvar = lockvar.newCondition();

Using the Condition object is similar to using the wait-and-notify mechanism, with
the Condition object’s await() and signal() method calls replacing the wait() and
notify() methods. We’ll modify our typing program to use the condition variable
instead of the wait-and-notify methods. This time, we’ll show the implementation of
the random character generator; the code for the animation character class is similar
and can be found online.

package javathreads.examples.ch04.example3;
...
public class RandomCharacterGenerator extends Thread implements CharacterSource {
 ...
 private Lock lock = new ReentrantLock();
 private Condition cv = lock.newCondition();
 ...
 public void run() {
 try {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 4: Thread Notification

 lock.lock();
 while (true) {
 try {
 if (done) {
 cv.await();
 } else {
 nextCharacter();
 cv.await(getPauseTime(), TimeUnit.MILLISECONDS);
 }
 } catch (InterruptedException ie) {
 return;
 }
 }
 } finally {
 lock.unlock();
 }
 }

 public void setDone(boolean b) {
 try {
 lock.lock();
 done = b;

 if (!done) cv.signal();
 } finally {
 lock.unlock();
 }
 }
}

As we mentioned, a new Condition object is created by calling the newCondition()
method provided by the Lock interface. This new Condition object is bound to the
Lock instance whose method is called. This means that the lock of the Lock instance
must be held in order to use the Condition object; it also means that the Condition
object releases and reacquires the lock similar to the way Java’s wait-and-notify
mechanism works with synchronization locks.

Therefore, our new random character generator now uses a Lock object as its syn-
chronization lock. We instantiate a Condition object, cv, which is set to the value
returned by the newCondition() method of the lock object. Furthermore, calls to the
wait() and notify() method are replaced by the condition object’s await() and
signal() method.

In this example, it doesn’t look like we accomplished anything: all we do is use dif-
ferent methods to accomplish what we were previously able to accomplish using the
wait-and-notify mechanism. In general, condition variables are necessary for several
reasons.

First, condition variables are needed when you use Lock objects. Using the wait()
and notify() methods of the Lock object will not work since these methods are
already used internally to implement the Lock object. More importantly, just because

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Condition Variables | 79

you hold the Lock object doesn’t mean you hold the synchronization lock of that
object. In other words, the lock represented by the Lock object and the synchroniza-
tion lock associated with the object are distinct. We need a condition variable mech-
anism that understands the locking mechanism provided by the Lock object. This
condition variable mechanism is provided by the Condition object.

The second reason is the creation of the Condition object. Unlike the Java wait-and-
notify mechanism, Condition objects are created as separate objects. It is possible to
create more than one Condition object per lock object. That means we can target
individual threads or groups of threads independently. With the standard Java mech-
anism, all waiting threads that are synchronizing on the same object are also waiting
on the same condition.

Here are all the methods of the Condition interface. These methods must be called
while holding the lock of the object to which the Condition object is tied:

void await()
Waits for a condition to occur.

void awaitUninterruptibly()
Waits for a condition to occur. Unlike the await() method, it is not possible to
interrupt this call.

long awaitNanos(long nanosTimeout)
Waits for a condition to occur. However, if the notification has not occurred in
nanosTimeout nanoseconds, it returns anyway. The return value is an estimate of
the timeout remaining; a return value equal or less than zero indicates that the
method is returning due to the timeout. As usual, the actual resolution of this
method is platform-specific and usually takes milliseconds in practice.

boolean await(long time, TimeUnit unit)
Waits for a condition to occur. However, if the notification has not occurred in
the timeout specified by the time and unit pair, it returns with a value of false.

boolean awaitUntil(Date deadline)
Waits for a condition to occur. However, if the notification has not occurred by
the absolute time specified, it returns with a value of false.

void signal()
Notifies a thread that is waiting using the Condition object that the condition has
occurred.

void signalAll()
Notifies all the threads waiting using the Condition object that the condition has
occurred.

Basically, the methods of the Condition interface duplicate the functionality of the
wait-and-notify mechanism. A few convenience methods allow the developer to
avoid being interrupted or to specify a timeout based on relative or absolute times.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 4: Thread Notification

Summary
In this chapter, we introduced the methods of the wait-and-notify mechanism. We
also examined the Condition interface, which provides a notification counterpart for
the Lock interface.

With these methods of the Object class and Condition interface, threads are able to
interoperate efficiently. Instead of just providing protection against race conditions,
we now have ways for threads to inform each other about events or conditions with-
out resorting to polling and timeouts.

In later chapters, we examine classes and techniques that provide even higher level
support for data synchronization and thread communication.

Example Classes
Here are the class names and Ant targets for the examples in this chapter:

Description Main Java class Ant target

Swing Type Tester with wait-and-notify
mechanism

javathreads.examples.ch04.example1.
SwingTypeTester

ch4-ex1

Swing Type Tester with wait-and-notify
mechanism in synchronized blocks

javathreads.examples.ch04.example2.
SwingTypeTester

ch4-ex2

Swing Type Tester with condition variables javathreads.examples.ch04.example3.
SwingTypeTester

ch4-ex3

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

81

Chapter 5 CHAPTER 5

Minimal Synchronization Techniques

In the previous two chapters, we discussed ways of making objects threadsafe, allow-
ing them to be used by two or more threads at the same time. Thread safety is the
most important aspect of good thread programming; race conditions are extremely
difficult to reproduce and fix.

In this chapter, we complete our discussion of data synchronization and thread
safety by examining two related topics. We begin with a discussion of the Java mem-
ory model, which defines how variables are actually accessed by threads. This model
has some surprising ramifications; one of the issues that we’ll clear up from our pre-
vious chapters is just what it means for a thread to be modeled as a list of instruc-
tions. After explaining the memory model, we discuss how volatile variables fit into
it and why they can be used safely among multiple threads. This topic is all about
avoiding synchronization.

We then examine another approach to data synchronization: the use of atomic
classes. This set of classes, introduced in J2SE 5.0, allows certain operations on cer-
tain types of data to be defined atomically. These classes provide a nice data abstrac-
tion for the operations while preventing the race conditions that would otherwise be
associated with the operation. These classes are also interesting because they take a
different approach to synchronization: rather than explicitly synchronizing access to
the data, they use an approach that allows race conditions to occur but ensures that
the race conditions are all benign. Therefore, these classes automatically avoid
explicit synchronization.

Can You Avoid Synchronization?
Developers of threaded programs are often paranoid about synchronization. There
are many horror stories about programs that performed poorly because of excessive

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 5: Minimal Synchronization Techniques

or incorrect synchronization. If there is a lot of contention for a particular lock,
acquiring the lock becomes an expensive operation for two reasons:

• The code path in many virtual machine implementations is different for acquir-
ing contended and uncontended locks. Acquiring a contended lock requires
executing more code at the virtual machine level. The converse of this statement
is also true, however: acquiring an uncontended lock is a fairly inexpensive
operation.

• Before a contended lock can by acquired, its current holder must release it. A
thread that wants to acquire a contended lock must always wait for the lock to
be released.

In practical terms, the second point here is the most salient: if someone else holds the
lock, you have to wait for it, which can greatly decrease the performance of your pro-
gram. We discuss the performance of thread-related operations in Chapter 14.

This situation leads programmers to attempt to limit synchronization in their pro-
grams. This is a good idea; you certainly don’t want to have unneeded synchroniza-
tion in your program any more than you want to have unneeded calculations. But are
there times when you can avoid synchronization altogether?

We’ve already seen that in one case the answer is yes: you can use the volatile key-
word for an instance variable. Those variables cannot be partially stored, so when
you read them, you know that you’re reading a valid value: the last value that was
stored into the variable. Later in this chapter, we’ll see another case where allowing
unsychronized access to data is acceptable by certain classes.

But these are really the only cases in which you can avoid synchronization. In all
other cases, if multiple threads access the same set of data, you must explicitly syn-
chronize all access to that data in order to prevent various race conditions.

Contended and Uncontended Locks
The terms contended and uncontended refer to how many threads are operating on a
particular lock. A lock that is not held by any thread is an uncontended lock: the first
thread that attempts to acquire it immediately succeeds.

When a thread attempts to acquire a lock that is already held by another thread, the
lock becomes a contended lock. A contended lock has at least one thread waiting for
it; it may have many more. Note that a contended lock becomes an uncontended one
when threads are no longer waiting to acquire it.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Can You Avoid Synchronization? | 83

The reasons for this have to do with the way in which computers optimize pro-
grams. Computers perform two primary optimizations: creating registers to hold
data and reordering statements.

The Effect of Registers
Your computer has a certain amount of main memory in which it stores the data
associated with your program. When you declare a variable (such as the done flag
used in several of our classes), the computer sets aside a particular memory location
that holds the value of that variable.

Most CPUs are able to operate directly on the data that’s held in main memory.
Other CPUs can only read and write to main memory locations; these computers
must read the data from main memory into a register, operate on that register, and
then store the data to main memory. Yet even CPUs that can operate on data directly
in main memory usually have a set of registers that can hold data, and operating on
the data in the register is usually much faster than operating on the data in main
memory. Consequently, register use is pervasive when the computer executes your
code.

From a logical perspective, every thread has its own set of registers. When the oper-
ating system assigns a particular thread to a CPU, it loads the CPU registers with
information specific to that thread; it saves the register information before it assigns
a different thread to the CPU. So, threads never share data that is held in registers.

Let’s see how this applies to a Java program. When we want to terminate a thread,
we typically use a done flag. The thread (or runnable object) contains code, such as:

public void run() {
 while (!done) {
 foo();
 }
}
public void setDone() {
 done = true;
}

Suppose we declare done as:

private boolean done = false;

This associates a particular memory location (e.g., 0xff12345) with the variable done
and sets the value of that memory location to 0 (the machine representation of the
value false).

The run() method is then compiled into a set of instructions:

Begin method run
Load register r1 with memory location 0Xff12345
Label L1:
Test if register r1 == 1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 5: Minimal Synchronization Techniques

If true branch to L2
Call method foo
Branch to L1
Label L2:
End method run

Meanwhile, the setDone() method looks something like this:

Begin method setDone
Store 1 into memory location 0xff12345
End method setDone

You can see the problem: the run() method never reloads register r1 with the con-
tents of memory location 0xff12345. Therefore, the run() method never terminates.

However, suppose we define done as:

private volatile boolean done = false;

Now the run() method logically looks like this:

Begin method run
Label L1:
Test if memory location 0xff12345 == 1
If true branch to L2
Call method foo
Branch to L1
Label L2:
End method

Using the volatile keyword ensures that the variable is never kept in a register. This
guarantees that the variable is truly shared between threads.*

Remember that we might have implemented this code by synchronizing around
access to the done flag (rather than making the done flag volatile). This works
because synchronization boundaries signal to the virtual machine that it must invali-
date its registers. When the virtual machine enters a synchronized method or block,
it must reload data it has cached in its local registers. Before the virtual machine exits
a synchronization method or block, it must store its local registers to main memory.

The Effect of Reordering Statements
Developers often hope that they can avoid synchronization by depending on the
order of execution of statements. Suppose that we decide to keep track of the total
score among a number of runs of our typing game. We might then write the
resetScore() method like this:

public int currentScore, totalScore, finalScore
public void resetScore(boolean done) {

* The virtual machine can use registers for volatile variables as long as it obeys the semantics we’ve outlined.
It’s the principle that must be obeyed, not the actual implementation.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Can You Avoid Synchronization? | 85

 totalScore += currentScore;
 if (done) {
 finalScore = totalScore;
 currentScore = 0;
 }
}

public int getFinalScore() {
 if (currentScore == 0)
 return finalScore;
 return -1;
}

A race condition exists because we can have this order of execution by threads t1 and
t2:

Thread1: Update total score
Thread2: See if currentScore == 0
Thread2: Return -1
Thread1: Update finalScore
Thread1: Set currentScore = 0

That’s not necessarily fatal to our program logic. If we’re periodically checking the
score, we’ll get –1 this time, but we’ll get the correct answer next time. Depending
on our program, that may be perfectly acceptable.

However, you cannot depend on the ordered execution of statements like this. The
virtual machine may decide that it’s more efficient to store 0 in currentScore before it
assigns the final score. This decision is made at runtime based on the particular hard-
ware running the program. In that case, we’re left with this sequence:

Thread1: Update total score
Thread1: Set currentScore == 0
Thread2: See if currentScore = 0
Thread2: Return finalScore
Thread1: Update finalScore

Now the race condition has caused a problem: we’ve returned the wrong final score.
Note that it doesn’t make any difference whether the variables are defined as
volatile: statements that include volatile variables can be reordered just like any
other statements.

The only thing that can help us here is synchronization. If the resetScore() and
getFinalScore() methods are synchronized, it doesn’t matter whether the state-
ments within methods are reordered since the synchronization prevents us from
interleaving the thread execution of the methods.

Synchronized blocks also prevent the reordering of statements. The virtual machine
cannot move a statement from inside a synchronized block to outside a synchro-
nized block. Note, however, that the converse is not true: a statement before a syn-
chronized block may be moved into the block, and a statement after a synchronized
block may be moved into the block.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 5: Minimal Synchronization Techniques

Double-Checked Locking
This design pattern gained a fair amount of attention when it was first proposed, but
it has been pretty thoroughly discredited by now. Still, it pops up every now and
then, so here are the details for the curious.

One case where developers are tempted to avoid synchronization deals with lazy ini-
tialization. In this paradigm, an object contains a reference that is time-consuming to
construct, so the developer delays construction of the object:

Foo foo;
public void useFoo() {
 if (foo == null) {
 synchronized(this) {
 if (foo == null)
 foo = new Foo();
 }
 }
 foo.invoke();
}

The developer’s goal here is to prevent synchronization once the foo object has been
initialized. Unfortunately, this pattern is broken because of the reasons we’ve just
examined. In particular, the value for foo can be stored before the constructor for foo
is called; a second thread entering the useFoo() method would then call foo.invoke()
before the constructor for foo has completed. If foo is a volatile primitive (but not a
volatile object), this can be made to work if you don’t mind the case where foo is ini-
tialized more than once (and where multiple initializations of foo are guaranteed to
produce the same value).

For more information on the double-checked locking pattern as well as an extensive
treatement of the Java memory model, see http://www.cs.umd.edu/~pugh/java/
memoryModel/.

Atomic Variables
The purpose of synchronization is to prevent the race conditions that can cause data
to be found in either an inconsistent or intermediate state. Multiple threads are not
allowed to race during the sections of code that are protected by synchronization.
This does not mean that the outcome or order of execution of the threads is deter-
ministic: threads may be racing prior to the synchronized section of code. And if the
threads are waiting on the same synchronization lock, the order in which the threads
execute the synchronized code is determined by the order in which the lock is
granted (which, in general, is platform-specific and nondeterministic).

This is a subtle but important point: not all race conditions should be avoided. Only
the race conditions within thread-unsafe sections of code are considered a problem.
We can fix the problem in one of two ways. We can synchronize the code to prevent

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Atomic Variables | 87

the race condition from occurring, or we can design the code so that it is threadsafe
without the need for synchronization (or with only minimal synchronization).

We are sure that you have tried both techniques. In the second case, it is a matter of
shrinking the synchronization scope to be as small as possible and reorganizing code
so that threadsafe sections can be moved outside of the synchronized block. Using
volatile variables is another case of this; if enough code can be moved outside of the
synchronized section of code, there is no need for synchronization at all.

This means that there is a balance between synchronization and volatile variables. It
is not a matter of deciding which of two techniques can be used based on the algo-
rithm of the program; it is actually possible to design programs to use both tech-
niques. Of course, the balance is very one sided; volatile variables can be safely used
only for a single load or store operation. This restriction makes the use of volatile
variables uncommon.

J2SE 5.0 provides a set of atomic classes to handle more complex cases. Instead of
allowing a single atomic operation (like load or store), these atomic classes allow
multiple operations to be treated atomically. This may sound like an insignificant
enhancement, but a simple compare-and-set operation that is atomic makes it possi-
ble for a thread to “grab a flag.” In turn, this makes it possible to implement a lock-
ing mechanism: in fact, the ReentrantLock class implements much of its functionality
with only atomic classes. In theory, it is possible to implement everything we have
done so far without Java synchronization at all.

In this section, we examine these atomic classes. The atomic classes have two uses.
Their first, and simpler, use is to provide classes that can perform atomic operations
on single pieces of data. A volatile integer, for example, cannot be used with the ++
operator because the ++ operator contains multiple instructions. The AtomicInteger
class, however, has a method that allows the integer it holds to be incremented atom-
ically (yet still without using synchronization).

The second, and more complex, use of the atomic classes is to build complex code
that requires no synchronization at all. Code that needs to access two or more
atomic variables (or perform two or more operations on a single atomic variable)
would normally need to be synchronized in order for both operations to be consid-
ered an atomic unit. However, using the same sort of coding techniques as the
atomic classes themselves, you can design algorithms that perform these multiple
operations and still avoid synchronization.

Overview of the Atomic Classes
Four basic atomic types, implemented by the AtomicInteger, AtomicLong,
AtomicBoolean, and AtomicReference classes, handle integers, longs, booleans, and
objects, respectively. All these classes provide two constructors. The default con-
structor initializes the object with a value of zero, false, or null, depending on the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 5: Minimal Synchronization Techniques

data type. The other constructor creates the variable with an initial value that is spec-
ified by the programmer. The set() and get() methods provide functionality that is
already available with volatile variables: the ability to atomically set or get the value.
The get() and set() methods also ensure that the data is read from or written to
main memory.

The getAndSet() method of these classes provides new functionality. This method
atomically sets the variable to a new value while returning the previous value, all
without acquiring any synchronization locks. Understand that it is not possible to
simulate this functionality atomically using only get and set operators at the Java
level without the use of synchronization. If it is not possible, then how is it imple-
mented? This functionality is accomplished through the use of native methods not
accessible to user-level Java programs. You could write your own native methods to
accomplish this, but the platform-specific issues are fairly daunting. Furthermore,
since the atomic classes are core classes in Java, they don’t have the security issues
related to user-defined native methods.

The compareAndSet() and weakCompareAndSet() methods are conditional modifier
methods. Both of these methods take two arguments—the value the data is expected
to have when the method starts, and a new value to set the data to. The methods set
the variable to the new value only if the variable has the expected value. If the cur-
rent value is not equal to the expected value, the variable is not changed and the
method returns false. A boolean value of true is returned if the current value is equal
to the expected value, in which case, the value is also set to the new value. The weak
form of this method is basically the same, but with one less guarantee: if the value
returned by this method is false, the variable has not been updated, but that does not
mean that the existing value is not the expected value. This method can fail to
update the value regardless of whether the initial value is the expected value.

The AtomicInteger and AtomicLong classes provide additional methods to support
integer and long data types. Interestingly, these methods are all convenience meth-
ods implemented internally using the compare-and-set functionality provided. How-
ever, these methods are important and frequently used.

The incrementAndGet(), decrementAndGet(), getAndIncrement(), and getAndDecrement()
methods provide the functionality of the pre-increment, pre-decrement, post-incre-
ment, and post-decrement operators. They are needed because Java’s increment and
decrement operators are syntactic sugar for multiple load and store operations; these
operations are not atomic with volatile variables. Using an atomic class allows you to
treat the operations atomically.

The addAndGet() and getAndAdd() methods provide the pre- and post-operators for
the addition of a specific value (the delta value). These methods allow the program to
increment or decrement a variable by an arbitrary value—including a negative value,
making a subtraction counterpart to these methods unnecessary.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Atomic Variables | 89

Does the atomic package support more complex variable types? Yes and no. There is
currently no implementation of atomic character or floating-point variables. You can
use an AtomicInteger to hold a character, but using atomic floating-point numbers
requires atomically managed objects with read-only floating-point values. We exam-
ine that case later in this chapter.

Some classes support arrays and variables that are already part of other objects.
However, no extra functionality is provided by these classes, so support of complex
types is minimal. For arrays, only one indexed variable can be modified at a time;
there is no functionality to modify the whole array atomically. Atomic arrays are
modelled using the AtomicIntegerArray, AtomicLongArray, and AtomicReferenceArray
classes. These classes behave as arrays of their constituent data type, but an array size
must be specified during construction and an index must be provided during opera-
tion. No class implements an array of booleans. This is only a minor inconvenience,
as such an array can be simulated using the AtomicIntegerArray class.

Volatile variables (of certain types) that are already defined in other classes can be
updated by using the AtomicIntegerFieldUpdater, AtomicLongFieldUpdater, and
AtomicReferenceFieldUpdater classes. These classes are abstract. To use a field
updater, you call the static newUpdater() method of the class, passing it the class and
field names of the volatile instance variable within the class you wish to update. You
can then perform the same atomic operations on the volatile field (e.g., post-incre-
ment via the getAndIncrement() method) as you can perform on other atomic
variables.

Two classes complete our overview of the atomic classes. The AtomicMarkableReference
class and the AtomicStampedReference class allow a mark or stamp to be attached to any
object reference. To be exact, the AtomicMarkableReference class provides a data struc-
ture that includes an object reference bundled with a boolean, and the
AtomicStampedReference class provides a data structure that includes an object refer-
ence bundled with an integer.

The basic methods of these classes are essentially the same, with slight modifications
to allow for the two values (the reference and the stamp or mark). The get() method
now requires an array to be passed as an argument; the stamp or mark is stored as
the first element of the array and the reference is returned as normal. Other get meth-
ods return just the reference, mark, or stamp. The set() and compareAndSet() meth-
ods require additional parameters representing the mark or stamp. And finally, these
classes contain an attemptMark() or attemptStamp() method, used to set the mark or
stamp based on an expected reference.

Using the Atomic Classes
As we mentioned, it is possible (in theory) to implement every program or class that we
have implemented so far using only atomic variables. In truth, it is not that simple. The

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 5: Minimal Synchronization Techniques

atomic classes are not a direct replacement of the synchronization tools—using them
may require a complex redesign of the program, even in some simple classes. To
understand this better, let’s modify our ScoreLabel class* to use only atomic variables:

package javathreads.examples.ch05.example1;

import javax.swing.*;
import java.awt.event.*;
import java.util.concurrent.*;
import java.util.concurrent.atomic.*;
import javathreads.examples.ch05.*;

public class ScoreLabel extends JLabel implements CharacterListener {
 private AtomicInteger score = new AtomicInteger(0);
 private AtomicInteger char2type = new AtomicInteger(-1);
 private AtomicReference<CharacterSource> generator = null;
 private AtomicReference<CharacterSource> typist = null;

 public ScoreLabel (CharacterSource generator, CharacterSource typist) {
 this.generator = new AtomicReference(generator);
 this.typist = new AtomicReference(typist);

 if (generator != null)
 generator.addCharacterListener(this);
 if (typist != null)
 typist.addCharacterListener(this);
 }

 public ScoreLabel () {
 this(null, null);
 }

 public void resetGenerator(CharacterSource newGenerator) {
 CharacterSource oldGenerator;

 if (newGenerator != null)
 newGenerator.addCharacterListener(this);

 oldGenerator = generator.getAndSet(newGenerator);
 if (oldGenerator != null)
 oldGenerator.removeCharacterListener(this);
 }

 public void resetTypist(CharacterSource newTypist) {
 CharacterSource oldTypist;

 if (newTypist != null)
 newTypist.addCharacterListener(this);

* The ScoreLabel class also marks our first example using the J2SE 5.0 generics feature. You’ll begin to see
parameterized code in angle brackets; in this class <CharacterSource> is a generic reference. For more details,
see Java 1.5 Tiger: A Developer’s Notebook by David Flanagan and Brett McLaughlin (O’Reilly).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Atomic Variables | 91

 oldTypist = typist.getAndSet(newTypist);
 if (oldTypist != null)
 oldTypist.removeCharacterListener(this);
 }

 public void resetScore() {
 score.set(0);
 char2type.set(-1);
 setScore();
 }

 private void setScore() {
 // This method will be explained in Chapter 7
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 setText(Integer.toString(score.get()));
 }
 });
 }

 public void newCharacter(CharacterEvent ce) {
 int oldChar2type;

 // Previous character not typed correctly: 1-point penalty
 if (ce.source == generator.get()) {
 oldChar2type = char2type.getAndSet(ce.character);

 if (oldChar2type != -1) {
 score.decrementAndGet();
 setScore();
 }
 }
 // If character is extraneous: 1-point penalty
 // If character does not match: 1-point penalty
 else if (ce.source == typist.get()) {
 while (true) {
 oldChar2type = char2type.get();

 if (oldChar2type != ce.character) {
 score.decrementAndGet();
 break;
 } else if (char2type.compareAndSet(oldChar2type, -1)) {
 score.incrementAndGet();
 break;
 }
 }

 setScore();
 }
 }
}

When you compare this class to previous implementations, you’ll see that we’ve
made more changes here than simply substituting atomic variables for variables that

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 5: Minimal Synchronization Techniques

were previously protected by synchronization. Removing the synchronization has
affected our algorithms in different ways. We’ve made three kinds of modifications:
simple variable substitution, changing algorithms, and retrying operations.

The point of each modification is to preserve the full semantics of the synchronized
version of the class. The semantics of synchronized code are dependent upon realiz-
ing all the effects of the code. It isn’t enough to make sure that the variables used by
the code are updated atomically: you must ensure that the end effect of the code is
the same as the synchronized version. We’ll look at the different kinds of modifica-
tions we made to see the implication of this requirement.

Variable substitution

The simplest kind of modification you may have to make is simply substituting
atomic variables for the variables used in a previously synchronized method. That’s
what happens in our new implementation of the resetScore() method: The score
and char2type variables have been changed to atomic variables, and this method just
reinitializes them.

Interestingly, changing both variables together is not done atomically: it is possible
for the score to be changed before the change to the char2type variable is completed.
This may sound like a problem, but it actually isn’t because we’ve preserved the
semantics of the synchronized version of the class. Our previous implementations of
the ScoreLabel class had a similar race condition that could cause the score to be
slightly off if the resetScore() method is called while the listeners are still attached
to the source.

In previous implementations, the resetScore() and newCharacter() methods are
synchronized, but that only means they do not run simultaneously. A pending call to
the newCharacter() method can still run out of order (with respect to the
resetScore() method) due to arrival order or lock acquisition ordering. So a typist
event may wait to be delivered until the resetScore() method completes, but when
it is delivered it will be for an event that is now out of date. That’s the same issue
we’ll see with this implementation of the class, where changing both variables in the
resetScore() method is not handled atomically.

Remember that the purpose of synchronization is not to prevent all race conditions;
it is to prevent problem race conditions. The race condition with this implementa-
tion of the resetScore() method is not considered a problem. In any case, we create
a version of this typing game that atomically changes both the score and character
later in this chapter.

Changing algorithms

The second type of change is embodied within our new implementation of the
resetGenerator() and resetTypist() methods. Our earlier attempt at having a separate

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Atomic Variables | 93

synchronization lock for the resetGenerator() and resetTypist() methods was actu-
ally a good idea. Neither method changed the score or the char2type variables. In fact,
they don’t even change variables that are shared with each other—the synchronization
lock for the resetGenerator() method is used only to protect the method from being
called simultaneously by multiple threads. This is also true for the resetTypist()
method; in fact, the issues for both methods are the same, so we discuss only the
resetGenerator() method. Unfortunately, making the generator variable an
AtomicReference has introduced multiple potential problems that we’ve had to address.

These problems arise because the state encapsulated by the resetGenerator()
method is more than just the value of the generator variable. Making the generator
variable an AtomicReference means that we know operations on that variable will
occur atomically. But when we remove the synchronization from the
resetGenerator() method completely, we must be sure that the entire state encapsu-
lated by that method is still consistent.

In this case, the state includes the registration of the ScoreLabel object (the this
object) with the character source generators. After the method completes, we want to
ensure that the this object is registered with only one and only one generator (the
one assigned to the generator instance variable).

Consider what would happen when two threads simultaneously call the
resetGenerator() method. In this discussion, the existing generator is generatorA;
one thread is calling the resetGenerator() method with a generator of generatorB;
and another thread is calling the method with a generator called generatorC.

Our previous example looked like this:

if (generator != null)
 generator.removeCharacterListener(this);
generator = newGenerator;
if (newGenerator != null)
 newGenerator.addCharacterListener(this);

In this code, the two threads simultaneously ask generatorA to remove the this
object: in effect, it would be removed twice. The ScoreLabel object would also be
added to both generatorB and generatorC. Both of those effects are errors.

Because our previous example was synchronized, these errors were prevented. In our
unsynchronized code, we must do this:

if (newGenerator != null)
 newGenerator.addCharacterListener(this);
oldGenerator = generator.getAndSet(newGenerator);
if (oldGenerator != null)
 oldGenerator.removeCharacterListener(this);

The effects of this code must be carefully considered. When called by our two
threads simultaneously, the ScoreLabel object is registered with both generatorB and
generatorC. The threads then set the current generator atomically. Because they’re

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 5: Minimal Synchronization Techniques

executing at the same time, different outcomes are possible. Suppose that the first
thread executes first: it gets generatorA back from the getAndSet() method and then
removes the ScoreLabel object from the listeners of generatorA. The second thread
gets generatorB back from the getAndSet() method and removes the ScoreLabel from
the listeners to generatorB. If the second thread executes first, the variables are
slightly different, but the outcome is always the same: whichever object is assigned to
the generator instance variable is the one (and only one) object that the ScoreLabel
object is listening to.

There is one side effect here that affects another method. Since the listener is
removed from the old data source after the exchange, and the listener is added to the
new data source before the exchange, it is now possible to receive a character event
that is neither from the current generator or typist source. The newCharacter()
method previously checked to see whether the source is the generator source, and if
not, assumes it is the typist source. This is no longer valid. The newCharacter()
method now needs to confirm the source of the character before processing it; it
must also ignore characters from spurious listeners.

Retrying operations

The newCharacter() method contains the most extensive changes in this example. As
we mentioned, the first change is to separate events based on the different character
sources. This method can no longer assume that the source is the typist if the source
is not the generator: it must also throw away any event that is from neither of the
attached sources.

The handling of the generator event has only minor changes. First, the getAndSet()
method is used to exchange the character with the new value atomically. Second, the
user can’t be penalized until after the exchange. This is because there is no way to be
sure what the previous character was until after the exchange of the getAndSet()
method completes. Furthermore, the score must also be decremented atomically
since it could be changed simultaneously by multiple arriving events. Updates to the
character and score are not handled atomically: a race condition still exists. How-
ever, once again it is not a problem. We need to update the score to credit or penal-
ize the user correctly. It is not a problem if the user sees a very short delay before the
score is updated.

The handling of the typist event is more complicated. We need to check to see if the
character is typed correctly. If it isn’t, the user is penalized. This is accomplished by
decrementing the score atomically. If the character is typed correctly, the user can’t
be given credit immediately. Instead, the char2type variable has to be updated first.
The score is updated only if char2type has been updated correctly. If the update
operation fails, it means that another event has been processed (in another thread)
while we were processing this event—and that the other operation was successful.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Atomic Variables | 95

What does it mean that the other thread was successful in processing another event? It
means that we must start our event processing over from the beginning. We made
certain assumptions as we went along: assumptions that the value of variables we
were using wouldn’t change and that when our code was completed, all the vari-
ables we had set to have a particular value would indeed have that value. Because of
the conflict with the other thread, those assumptions are violated. By retrying the
event processing from the beginning, it’s as if we never ran in the first place.

That’s why this section of code is wrapped in an endless loop: the program does not
leave the loop until the event is processed successfully. Obviously, there is a race
condition between multiple events; the loop ensures that none of the events are
missed or processed more than once. As long as we process all valid events exactly
once, the order in which the events are processed doesn’t matter: after processing
each event, the data is left in a consistent state. Note that even when we use synchro-
nization, the same situation applies: multiple events are not processed in a specific
order; they are processed in the order that the locks are granted.

The purpose of atomic variables is to avoid synchronization for the sake of perfor-
mance. However, how can atomic variables be faster if we have to place the code in
an endless loop? The answer, of course, is that technically it is not an endless loop.
Extra iterations of the loop occur only if the atomic operation fails, which in turn is
due to a conflict with another thread. For the loop to be truly endless, we would
need an endless number of conflicts. That would also be a problem if we used syn-
chronization: an endless number of threads accessing the lock would also prevent the
program from operating correctly. On the other hand, as discussed in Chapter 14,
the difference in performance between atomic classes and synchronization is often
not that large to begin with.

As we can tell from this example, it’s necessary to balance the usage of synchroniza-
tion and atomic variables. When we use synchronization, threads are blocked from
running until they acquire a lock. This allows the code to execute atomically since
other threads are barred from running that code. When we use atomic variables,
threads are allowed to execute the same code in parallel. The purpose of atomic vari-
ables is not to remove race conditions that are not threadsafe; their purpose is to
make the code threadsafe so that the race condition does not have to be prevented.

Notifications and Atomic Variables
Is it possible to use atomic variables if we also need the functionality of condition vari-
ables? Implementing condition variable functionality using atomic variables is possi-
ble but not necessarily efficient. Synchronization—and the wait and notify
mechanism—is implemented by controlling the thread states. Threads are blocked
from running if they are unable to acquire the lock, and they are placed into a wait
state until a particular condition occurs. Atomic variables do not block threads from
running. In fact, code executed by unsynchronized threads may have to be placed

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 5: Minimal Synchronization Techniques

into a loop for more complex operations in order to retry attempts that fail. In other
words, it is possible to implement the condition variable functionality using atomic
variables, but threads will be spinning as they wait for the desired condition.

This does not mean that you should avoid atomic variables if you need condition
variable functionality. Once again, a balance must be found. It is possible to use
atomic variables for portions of a program that do not entail notifications and to use
synchronization elsewhere. It is possible to implement all of a program with atomic
variables and use a separate library to send such notifications—a library that is inter-
nally using condition variables. Of course, in some situations, it is not a problem to
allow the threads to spin while waiting.

This last alternative is the case with our typing game. First, only two threads—the
animation component thread and the character generator thread—need to wait for a
condition. Second, the waiting process occurs only when the game is stopped. The
program is already waiting between frames of the animation; using this same loop
and interval to wait for the user to restart the game does not add a significant perfor-
mance penalty. Third, waiting for about 100 milliseconds (the interval period
between frames of the animation) should not be noticeable to the user when the Start
button is pressed; any user who notices that delay will also notice the delays in the
animation itself.

Here is an implementation of our animation component using only atomic variables; it
spins while the user has stopped the game. A similar implementation of the random-
character generator is available in the online examples.

package javathreads.examples.ch05.example2;

import java.awt.*;
import javax.swing.*;
import java.util.concurrent.*;
import java.util.concurrent.atomic.*;
import javathreads.examples.ch05.*;

public class AnimatedCharacterDisplayCanvas extends CharacterDisplayCanvas
 implements CharacterListener, Runnable {

 private AtomicBoolean done = new AtomicBoolean(true);
 private AtomicInteger curX = new AtomicInteger(0);
 private AtomicInteger tempChar = new AtomicInteger(0);
 private Thread timer = null;

 public AnimatedCharacterDisplayCanvas() {
 startAnimationThread();
 }

 public AnimatedCharacterDisplayCanvas(CharacterSource cs) {
 super(cs);
 startAnimationThread();
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Atomic Variables | 97

 private void startAnimationThread() {
 if (timer == null) {
 timer = new Thread(this);
 timer.start();
 }
 }

 public void newCharacter(CharacterEvent ce) {
 curX.set(0);
 tempChar.set(ce.character);
 repaint();
 }

 protected void paintComponent(Graphics gc) {
 char[] localTmpChar = new char[1];
 localTmpChar[0] = (char) tempChar.get();
 int localCurX = curX.get();

 Dimension d = getSize();
 int charWidth = fm.charWidth(localTmpChar[0]);
 gc.clearRect(0, 0, d.width, d.height);
 if (localTmpChar[0] == 0)
 return;

 gc.drawChars(localTmpChar, 0, 1,
 localCurX, fontHeight);
 curX.getAndIncrement();
 }

 public void run() {
 while (true) {
 try {
 Thread.sleep(100);
 if (!done.get()) {
 repaint();
 }
 } catch (InterruptedException ie) {
 return;
 }
 }
 }

 public void setDone(boolean b) {
 done.set(b);
 }
}

As with our previous example, using atomic variables is not simply a matter of
replacing the variables protected by synchronization with atomic variables: the algo-
rithm also needs to be adjusted in a fashion that allows any race conditions to be
threadsafe. In our animation component, this is especially true for the code that cre-
ates the animation thread. Our previous examples created this thread when the
setDone() method was called. We could have left the code in that method and used

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 5: Minimal Synchronization Techniques

an atomic reference variable to store the thread object; only the thread that success-
fully stored the atomic reference would actually call the start method of the new
thread. However, it’s much easier to implement this functionality by creating and
starting the thread in a private method that is called only by the constructor of the
object (since the constructor can never be called by multiple threads).

The newCharacter() method is only partially atomic. The individual variable opera-
tions, assignments of curX and tempChar, are atomic since they are using atomic vari-
ables. However, both assignments together are not atomic. This is not a problem if
another thread simultaneously calls the newCharacter() method; both method calls
set the curX variable to zero, and the character variable is assigned to the character
requested by the second thread to execute the method. There is also a race condition
between this method and the paintComponent() method, but it is probably not even
noticeable. The race condition here results in a spurious increment by the
paintComponent() method. This means that the new character is drawn starting with
the second animation frame—the first animation frame is skipped—an effect that is
unlikely to be noticed by the user.

The paintComponent() method is also not completely atomic, but as with the
newCharacter() method, all its race conditions are acceptable. It is not possible for
the paintComponent() method to have a conflict with itself, as the paintComponent()
method is called only by the windowing system and only then from a single thread.
So, there is no reason to protect the variables that are used only by the
paintComponent() method. The paintComponent() method loads into temporary vari-
ables data that it has in common with the newCharacter() method. If those variables
happen to change during the paintComponent() method call, it is not a problem since
another repaint() request will also be sent by the newCharacter() method. The
result again is just a spurious animation frame.

The run() method is similar to our previous versions in that it calls the repaint()
method every 100 milliseconds while the done flag is false. However, if the done flag is
set to true, the thread still wakes up every 100 milliseconds. This means that the pro-
gram does a “nothing” task every 100 milliseconds. This thread always executes
every 100 milliseconds when the animation is running; it now still executes when the
game is stopped. On the other hand, resuming the animation is no longer instanta-
neous: the user could wait as much as 100 milliseconds to see a restart of the anima-
tion. This could be solved by calling the repaint() method from the setDone()
method, but that is not necessary for this example. The delay between the frames of
the animation is 100 milliseconds. If a 100-millisecond delay to start the animation is
noticeable, the 100-millisecond delay between the frames will be just as noticeable.

The implementation of the setDone() method is now much simpler. It no longer
needs to create the animation thread since that is now done during construction of
the component. And it no longer needs to inform the animation thread that the done
flag has changed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Atomic Variables | 99

The major benefit of this implementation is that there is no longer any synchroniza-
tion in this component. There is a slight threading overhead when the game is not
running, but it is still less than when the game is running. Other programs may have
a different profile. As we mentioned, developers do not just face a choice of using
synchronization techniques or atomic variables; they must strike a balance between
the two. In order to understand the balance, it is beneficial to use both techniques
for many cases.

Summary of Atomic Variable Usage
These examples show a number of canonical uses of atomic variables; we’ve used
many techniques to extend the atomic operations provided by atomic variables. Here
is a summary of those techniques.

Data exchange

Data exchange is the ability to set a value atomically while obtaining the previous
value. This is accomplished with the getAndSet() method. Using this method guar-
antees that only a single thread obtains and uses a value.

What if the data exchange is more complex? What if the value to be set is dependent on
the previous value? This is handled by placing the get() and the compareAndSet()
methods in a loop. The get() method is used to get the previous value, which is used
to calculate the new value. The variable is set to the new value using the
compareAndSet() method—which sets the new value only if the value of the variable
has not changed. If the compareAndSet() method fails, the entire operation can be
retried because the current thread has not changed any data up to the time of the
failure. Although the get() method call, the calculation of the new value, and the

Optimistic Synchronization
What’s happening in our examples with atomic variables is that there is no free lunch:
the code avoids synchronization, but it pays a potential penalty in the amount of work
it performs. You can think of this as “optimistic synchronization” (to modify a term
from database management): the code grabs the value of the protected variable assum-
ing that no one else is modifying it at the moment. The code then calculates a new
value for the variable and attempts to update the variable. If another thread modified
the variable in the meantime, the update fails and the code must restart its procedure
(using the newly modified value of the variable).

The atomic classes use this technique internally in their implementation, and we use
this technique in our examples when we have multiple operations on an atomic
variable.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 5: Minimal Synchronization Techniques

exchange of data may not be individually atomic, the sequence is considered atomic
if the exchange is successful since it can succeed only if no other thread has changed
the value.

Compare and set

Comparing and setting is the ability to set a value atomically only if the current value
is an expected value. The compareAndSet() method handles this case. This important
method provides the ability to have conditional support at an atomic level. This
basic functionality can even be used to implement the synchronization ability pro-
vided by mutexes.

What if the comparison is more complex? What if the comparison is dependent on the
previous or external values? This case can be handled as before by placing the get()
and the compareAndSet() methods in a loop. The get() method is used to get the
previous value, which can be used either for comparison or just to allow an atomic
exchange. The complex comparison is used to see if the operation should proceed.
The compareAndSet() method is then used to set the value if the current value has not
changed. The whole operation is retried if the operation fails. As before, the whole
operation is considered atomic because the data is changed atomically and changed
only if it matches the value at the start of the operation.

Advanced atomic data types

Although the list of data types for which atomic classes are available is pretty exten-
sive, it is not complete. The atomic package doesn’t support character and floating-
point types. While it does support generic object types, it doesn’t support the opera-
tions needed for more complex types of objects, such as strings. However, we can
implement atomic support for any new type by simply encapsulating the data type
into a read-only data object. The data object can then be changed atomically by
changing the atomic reference to a new data object. This works only if the values
embedded within the data object are not changed in any way. Any change to the data
object must be accomplished only by changing the reference to a different object—
the previous object’s values are not changed. All values encapsulated by the data
object, directly and indirectly, must be read-only for this technique to work.

As a result, it may not be possible to change a floating-point value atomically, but it
is possible to change an object reference atomically to a different floating-point
value. As long as the floating-point values are read-only, this technique is threadsafe.
With this in mind, we can implement an atomic class for floating-point values:

package javathreads.examples.ch05;

import java.lang.*;
import java.util.concurrent.atomic.*;

public class AtomicDouble extends Number {
 private AtomicReference<Double> value;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Atomic Variables | 101

 public AtomicDouble() {
 this(0.0);
 }

 public AtomicDouble(double initVal) {
 value = new AtomicReference<Double>(new Double(initVal));
 }

 public double get() {
 return value.get().doubleValue();
 }

 public void set(double newVal) {
 value.set(new Double(newVal));
 }

 public boolean compareAndSet(double expect, double update) {
 Double origVal, newVal;

 newVal = new Double(update);
 while (true) {
 origVal = value.get();

 if (Double.compare(origVal.doubleValue(), expect) == 0) {
 if (value.compareAndSet(origVal, newVal))
 return true;
 } else {
 return false;
 }
 }
 }

 public boolean weakCompareAndSet(double expect, double update) {
 return compareAndSet(expect, update);
 }

 public double getAndSet(double setVal) {
 Double origVal, newVal;

 newVal = new Double(setVal);
 while (true) {
 origVal = value.get();

 if (value.compareAndSet(origVal, newVal))
 return origVal.doubleValue();
 }
 }

 public double getAndAdd(double delta) {
 Double origVal, newVal;

 while (true) {
 origVal = value.get();
 newVal = new Double(origVal.doubleValue() + delta);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 5: Minimal Synchronization Techniques

 if (value.compareAndSet(origVal, newVal))
 return origVal.doubleValue();
 }
 }

 public double addAndGet(double delta) {
 Double origVal, newVal;

 while (true) {
 origVal = value.get();
 newVal = new Double(origVal.doubleValue() + delta);
 if (value.compareAndSet(origVal, newVal))
 return newVal.doubleValue();
 }
 }

 public double getAndIncrement() {
 return getAndAdd((double) 1.0);
 }

 public double getAndDecrement() {
 return getAndAdd((double) -1.0);
 }

 public double incrementAndGet() {
 return addAndGet((double) 1.0);
 }

 public double decrementAndGet() {
 return addAndGet((double) -1.0);
 }

 public double getAndMultiply(double multiple) {
 Double origVal, newVal;

 while (true) {
 origVal = value.get();
 newVal = new Double(origVal.doubleValue() * multiple);
 if (value.compareAndSet(origVal, newVal))
 return origVal.doubleValue();
 }
 }

 public double multiplyAndGet(double multiple) {
 Double origVal, newVal;

 while (true) {
 origVal = value.get();
 newVal = new Double(origVal.doubleValue() * multiple);
 if (value.compareAndSet(origVal, newVal))
 return newVal.doubleValue();
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Atomic Variables | 103

In our new AtomicDouble class, we use an atomic reference object to encapsulate a
double floating-point value. Since the Double class already encapsulates a double
value, there is no need to create a new class; the Double class is used to hold the dou-
ble value.

The get() method now has to use two method calls to get the double value—it must
now get the Double object, which in turn is used to get the double floating-point
value. Getting the Double object type is obviously atomic because we are using an
atomic reference object to hold the object. However, the overall technique works
because the data is read-only: it can’t be changed. If the data were not read-only,
retrieval of the data would not be atomic, and the two methods when used together
would also not be considered atomic.

The set() method is used to change the value. Since the encapsulated value is read-
only, we must create a new Double object instead of changing the previous value. As
for the atomic reference itself, it is atomic because we are using an atomic reference
object to change the value of the reference.

The compareAndSet() method is implemented using the complex compare-and-set
technique already mentioned. The getAndSet() method is implemented using the
complex data exchange technique already mentioned. And as for all the other
methods—the methods that add, multiply, etc.—they too, are implemented using
the complex data exchange technique. We don’t explicitly show an example in this
chapter for this class, but we’ll use it in Chapter 15. For now, this class is a great
framework for implementing atomic support for new and complex data types.

Bulk data modification

In our previous examples, we have set only individual variables atomically; we
haven’t set groups of variables atomically. In those cases where we set more than one
variable, we were not concerned that they be set atomically as a group. However,
atomically setting a group of variables can be done by creating an object that encap-
sulates the values that can be changed; the values can then be changed simulta-
neously by atomically changing the atomic reference to the values. This works
exactly like the AtomicDouble class.

Once again, this works only if the values are not directly changed in any way. Any
change to the data object is accomplished by changing the reference to a different
object—the previous object’s values must not be changed. All values, encapsulated
either directly and indirectly, must be read-only for this technique to work.

Here is an atomic class that protects two variables: a score and a character variable.
Using this class, we are able to develop a typing game that modifies both the score
and character variables atomically:

package javathreads.examples.ch05.example3;

import java.util.concurrent.atomic.*;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 5: Minimal Synchronization Techniques

public class AtomicScoreAndCharacter {
 public class ScoreAndCharacter {
 private int score, char2type;

 public ScoreAndCharacter(int score, int char2type) {
 this.score = score;
 this.char2type = char2type;
 }

 public int getScore() {
 return score;
 }

 public int getCharacter() {
 return char2type;
 }
 }

 private AtomicReference<ScoreAndCharacter> value;

 public AtomicScoreAndCharacter() {
 this(0, -1);
 }

 public AtomicScoreAndCharacter(int initScore, int initChar) {
 value = new AtomicReference<ScoreAndCharacter>
 (new ScoreAndCharacter(initScore, initChar));
 }

 public int getScore() {
 return value.get().getScore();
 }

 public int getCharacter() {
 return value.get().getCharacter();
 }

 public void set(int newScore, int newChar) {
 value.set(new ScoreAndCharacter(newScore, newChar));
 }

 public void setScore(int newScore) {
 ScoreAndCharacter origVal, newVal;

 while (true) {
 origVal = value.get();
 newVal = new ScoreAndCharacter
 (newScore, origVal.getCharacter());
 if (value.compareAndSet(origVal, newVal)) break;
 }
 }

 public void setCharacter(int newCharacter) {
 ScoreAndCharacter origVal, newVal;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Atomic Variables | 105

 while (true) {
 origVal = value.get();
 newVal = new ScoreAndCharacter
 (origVal.getScore(), newCharacter);
 if (value.compareAndSet(origVal, newVal)) break;
 }
 }

 public void setCharacterUpdateScore(int newCharacter) {
 ScoreAndCharacter origVal, newVal;
 int score;

 while (true) {
 origVal = value.get();
 score = origVal.getScore();
 score = (origVal.getCharacter() == -1) ? score : score-1;

 newVal = new ScoreAndCharacter (score, newCharacter);
 if (value.compareAndSet(origVal, newVal)) break;
 }
 }

 public boolean processCharacter(int typedChar) {
 ScoreAndCharacter origVal, newVal;
 int origScore, origCharacter;
 boolean retValue;

 while (true) {
 origVal = value.get();
 origScore = origVal.getScore();
 origCharacter = origVal.getCharacter();

 if (typedChar == origCharacter) {
 origCharacter = -1;
 origScore++;
 retValue = true;
 } else {
 origScore--;
 retValue = false;
 }

 newVal = new ScoreAndCharacter(origScore, origCharacter);
 if (value.compareAndSet(origVal, newVal)) break;
 }
 return retValue;
 }
}

As in our AtomicDouble class, the getScore() and getCharacter() methods work
because the encapsulated values are treated as read-only. The set() method has to
create a new object to encapsulate the new values to be stored.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 5: Minimal Synchronization Techniques

The setScore() and setCharacter() methods are implemented using the advance
data exchange technique. This is because the implementation is technically exchang-
ing data, not just setting the data. Even though we are changing only one part of the
encapsulated data, we still have to read the data that is not supposed to change (in
order to make sure that, in fact, it hasn’t). And since we have to change the whole set
of data atomically—guaranteeing that the data that isn’t supposed to change did not
change—we have to implement the code as a data exchange.

The setCharacterUpdateScore() and processCharacter() methods implement the
core of the scoring system. The first method sets the new character to be typed while
penalizing the user if the previous character has not been typed correctly. The sec-
ond method compares the typed character with the current generated character. If
they match, the character is set to a noncharacter value, and the score is incre-
mented. If they do not match, the score is simply decremented. Interestingly, as com-
plex as these two methods are, they are still atomic, because all calculations are done
with temporary variables and all of the values are atomically changed using a data
exchange.

Performing bulk data modification, as well as using an advanced atomic data type,
may use a large number of objects. A new object needs to be created for every trans-
action, regardless of how many variables need to be modified. A new object also
needs to be created for each atomic compare-and-set operation that fails and has to
be retried. Once again, using atomic variables has to be balanced with using synchro-
nization. Is the creation of all the temporary objects acceptable? Is this technique bet-
ter than synchronization? Or is there a compromise? The answer depends on your
particular program.

As these techniques demonstrate, using atomic variables is sometimes complex. The
complexity occurs when you use multiple atomic variables, multiple operations on a
single atomic variable, or both techniques within a section of code that must be
atomic. In many cases, atomic variables are simple to use because you just want to
use them for a single operation, such as updating a score.

In many cases, using this kind of minimal synchronization is not a good idea. It can
get very complex, making it difficult for the code to be maintained or transferred
between developers. With a high volume of method calls where synchronization can
be a problem, the benefit to minimal synchronization is still debatable. For those
readers that find a class or subsystem where they believe synchronization is causing a
problem, it may be a good idea to revisit this topic—if just to get a better comfort
level in using minimal synchronization.

Thread Local Variables
Any thread can, at any time, define a thread local variable that is private to that par-
ticular thread. Other threads that define the same variable create their own copy of

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Thread Local Variables | 107

the variable. This means that thread local variables cannot be used to share state
between threads; changes to the variable in one thread are private to that thread and
not reflected in the copies held by other threads. But it also means that access to the
variable need never be synchronized since it’s impossible for multiple threads to
access the variable. Thread local variables have other uses, of course, but their most
common use is to allow multiple threads to cache their own data rather than con-
tend for synchronization locks around shared data.

A thread local variable is modeled by the java.lang.ThreadLocal class:

public class ThreadLocal<T> {
 protected T initialValue();
 public T get();
 public void set(T value);
 public void remove();
}

In typical usage, you subclass the ThreadLocal class and override the initialValue()
method to return the value that should be returned the first time a thread accesses
the variable. The subclass rarely needs to override the other methods of the
ThreadLocal class; instead, those methods are used as a getter/setter pattern for the
thread-specific value.

One case where you might use a thread local variable to avoid synchronization is in a
thread-specific cache. Consider the following class:

package javathreads.examples.ch05.example4;

import java.util.*;

public abstract class Calculator {

 private static ThreadLocal<HashMap> results = new ThreadLocal<HashMap>() {
 protected HashMap initialValue() {
 return new HashMap();
 }
 };

 public Object calculate(Object param) {
 HashMap hm = results.get();
 Object o = hm.get(param);
 if (o != null)
 return o;
 o = doLocalCalculate(param);
 hm.put(param, o);
 return o;
 }

 protected abstract Object doLocalCalculate(Object param);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 5: Minimal Synchronization Techniques

Thread local objects are declared static so that the object itself (that is, the results
variable in this example) is shared among all threads. When the get() method of the
thread local variable is called, the internal mechanism of the thread local class
returns the specific object assigned to the specific thread. The initial value of that
object is returned from the initialValue() method of the class extending
ThreadLocal; when you create a thread local variable, you are responsible for imple-
menting that method to return the appropriate (thread-specific) object.

When the calculate() method in our example is called, the thread local hash map is
consulted to see if the value has previously been calculated. If so, that value is
returned; otherwise, the calculation is performed and the new value stored in the
hash map. Since access to the map is from only a single thread, we’re able to use a
HashMap object rather than a Hashtable object (or otherwise synchronizing the hash
map).

This approach is worthwhile only if the calculation is very expensive since obtaining
the hash map itself requires synchronizing on all the threads. If the reference
returned from the thread-local get() method is held a long time, it may be worth
exploring this type of design since otherwise that reference would need to be syn-
chronized for a long time. Otherwise, you’re just trading one synchronization call for
another. And in general, the performance of the ThreadLocal class has been fairly dis-
mal, though this situation improved in JDK 1.4 and even more in J2SE 5.0.

Another case where this technique is useful is dealing with thread-unsafe classes. If
each thread instantiates the necessary object in a thread local variable, it has its own
copy that it can safely access.

Inheritable Thread Local Variables
Values stored by threads in thread local variables are unrelated. When a new thread
is created, it gets a new copy of the thread local variable, and the value of that vari-
able is what’s returned by the initialValue() method of the thread local subclass.

An alternative to this idea is the InheritableThreadLocal class:

package java.lang;
public class InheritableThreadLocal extends ThreadLocal {
 protected Object childValue(Object parentValue);
}

This class allows a child thread to inherit the value of the thread local variable from
its parent; that is, when the get() method of the thread local variable is called by the
child thread, it returns the same value as when that method is called by the parent
thread.

If you like, you can use the childValue() method to further augment this behavior.
When the child thread calls the get() method of the thread local variable, the get()
method looks up the value associated with the parent thread. It then passes that

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Summary | 109

value to the childValue() method and returns that result. By default, the
childValue() method simply returns its argument, so no transformation occurs.

Summary
In this chapter, we’ve examined some advanced techniques for synchronization.
We’ve learned about the Java memory model and why it inhibits some synchroniza-
tion techniques from working as expected. This has led to a better understanding of
volatile variables as well as an understanding of why it’s hard to change the synchro-
nization rules imposed by Java.

We’ve also examined the atomic package that comes with J2SE 5.0. This is one way
in which synchronization can be avoided, but it comes with a price: the nature of the
classes in the atomic package is such that algorithms that use them often have to
change (particularly when multiple atomic variables are used at once). Creating a
method that loops until the desired outcome is achieved is a common way to imple-
ment atomic variables.

Example Classes
Here are the class names and Ant targets for the examples in this chapter:

The calculator test requires a command-line argument that sets the number of
threads that run simultaneously. In the Ant script, it is defined by this property:

<property name="CalcThreadCount" value="10"/>

Description Main Java class Ant target

Swing Type Tester using atomic
ScoreLabel

javathreads.examples.ch05.example1.
SwingTypeTester

ch5-ex1

Swing Type Tester using atomic animation
canvas

javathreads.examples.ch05.example2.
SwingTypeTester

ch5-ex2

Swing Type Tester using atomic score and
character class

javathreads.examples.ch05.example3.
SwingTypeTester

ch5-ex3

Calculation test using thread local variables javathreads.examples.ch05.example4.
CalculatorTest

ch5-ex4

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

110

Chapter 6CHAPTER 6

Advanced Synchronization Topics

In this chapter, we look at some of the more advanced issues related to data synchro-
nization—specifically, timing issues related to data synchronization. When you write
a Java program that makes use of several threads, issues related to data synchroniza-
tion are those most likely to create difficulties in the design of the program, and
errors in data synchronization are often the most difficult to detect since they depend
on events happening in a specific order. Often an error in data synchronization can
be masked in the code by timing dependencies. You may notice some sort of data
corruption in a normal run of your program, but when you run the program in a
debugger or add some debugging statements to the code, the timing of the program
is completely changed, and the data synchronization error no longer occurs.

These issues can’t be simply solved. Instead, developers need to design their pro-
grams with these issues in mind. Developers need to understand what the different
threading issues are: what are the causes, what they should look for, and the tech-
niques they should use to avoid and mitigate them. Developers should also consider
using higher-level synchronization tools—tools that provide the type of synchroniza-
tion needed by the program and that are known to be threadsafe. We examine both
of these ideas in this chapter.

Synchronization Terms
Programmers with a background in a particular threading system generally tend to
use terms specific to that system to refer to some of the concepts we discuss in this
chapter, and programmers without a background in certain threading systems may
not necessarily understand the terms we use. So here’s a comparison of particular
terms you may be familiar with and how they relate to the terms in this chapter:

Barrier
A barrier is a rendezvous point for multiple threads: all threads must arrive at the
barrier before any of them are permitted to proceed past the barrier. J2SE 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization Terms | 111

supplies a barrier class, and a barrier class for previous versions of Java can be
found in the Appendix.

Condition variable
A condition variable is not actually a lock; it is a variable associated with a lock.
Condition variables are often used in the context of data synchronization. Con-
dition variables generally have an API that achieves the same functionality as
Java’s wait-and-notify mechanism; in that mechanism, the condition variable is
actually the object lock it is protecting. J2SE 5.0 also supplies explicit condition
variables, and a condition variable implementation for previous versions of Java
can be found in the Appendix. Both kinds of condition variables are discussed in
Chapter 4.

Critical section
A critical section is a synchronized method or block. It is provided by Windows
as a lightweight version of a lock.

Event variable
Event variable is another term for a condition variable.

Lock
This term refers to the access granted to a particular thread that has entered a
synchronized method or block. We say that a thread that has entered such a
method or block has acquired the lock. As we discussed in Chapter 3, a lock is
associated with either a particular instance of an object or a particular class.

Monitor
A generic synchronization term used inconsistently between threading systems.
In some systems, a monitor is simply a lock; in others, a monitor is similar to the
wait-and-notify mechanism.

Mutex
Another term for a lock. Mutexes do not nest like synchronization methods or
blocks and generally can be used across processes at the operating system level.

Reader/writer locks
A lock that can be acquired by multiple threads simultaneously as long as the
threads agree to only read from the shared data or that can be acquired by a sin-
gle thread that wants to write to the shared data. J2SE 5.0 supplies a reader-
writer lock class, and a similar class for previous versions of Java can be found in
the Appendix.

Semaphores
Semaphores are used inconsistently in computer systems. Many developers use
semaphores to lock objects in the same way Java locks are used; this usage
makes them equivalent to mutexes. A more sophisticated use of semaphores is to
take advantage of a counter associated with them to nest acquisitions to the criti-
cal sections of code; Java locks are exactly equivalent to semaphores in this

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 6: Advanced Synchronization Topics

usage. Semaphores are also used to gain access to resources other than code.
Semaphore classes that implement most of these features are available in J2SE 5.0.

Synchronization Classes Added in J2SE 5.0
You probably noticed a strong pattern while reading this list of terms: beginning
with J2SE 5.0, almost all these things are included in the core Java libraries. We’ll
take a brief look into these J2SE 5.0 classes.

Semaphore
In Java, a semaphore is basically a lock with an attached counter. It is similar to the
Lock interface as it can also be used to prevent access if the lock is granted; the differ-
ence is the counter. In those terms, a semaphore with a counter of one is the same
thing as a lock (except that the semaphore would not nest, whereas the lock—
depending on its implementation—might).

The Semaphore class keeps track of the number of permits it can issue. It allows multi-
ple threads to grab one or more permits; the actual usage of the permits is up to the
developer. Therefore, a semaphore can be used to represent the number of locks that
can be granted. It could also be used to throttle the number of threads working in
parallel, due to resource limitations such as network connections or disk space.

Let’s take a look at the Semaphore interface:

public class Semaphore {
 public Semaphore(long permits);
 public Semaphore(long permits, boolean fair);
 public void acquire() throws InterruptedException;
 public void acquireUninterruptibly();
 public void acquire(long permits) throws InterruptedException;
 public void acquireUninterruptibly(long permits);
 public boolean tryAcquire();
 public boolean tryAcquire(long timeout, TimeUnit unit);
 public boolean tryAcquire(long permits);
 public boolean tryAcquire(long permits,
 long timeout, TimeUnit unit);
 public void release(long permits);
 public void release();
 public long availablePermits();
}

The Semaphore interface is very similar to the Lock interface. The acquire() and
release() methods are similar to the lock() and unlock() methods of the Lock inter-
face—they are used to grab and release permits, respectively. The tryAcquire()
methods are similar to the tryLock() methods in that they allow the developer to try
to grab the lock or permits. These methods also allow the developer to specify the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization Classes Added in J2SE 5.0 | 113

time to wait if the permits are not immediately available and the number of permits
to acquire or release (the default number of permits is one).

Semaphores have a few differences from locks. First, the constructor requires the
specification of the number of permits to be granted. There are also methods that
return the number of total and free permits. This class implements only a grant and
release algorithm; unlike the Lock interface, no attached condition variables are avail-
able with semaphores. There is no concept of nesting; multiple acquisitions by the
same thread acquire multiple permits from the semaphore.

If a semaphore is constructed with its fair flag set to true, the semaphore tries to
allocate the permits in the order that the requests are made—as close to first-come-
first-serve as possible. The downside to this option is speed: it takes more time for
the virtual machine to order the acquisition of the permits than to allow an arbitrary
thread to acquire a permit.

Barrier
Of all the different types of thread synchronization tools, the barrier is probably the
easiest to understand and the least used. When we think of synchronization, our first
thought is of a group of threads executing part of an overall task followed by a point
at which they must synchronize their results. The barrier is simply a waiting point
where all the threads can sync up either to merge results or to safely move on to the
next part of the task. This is generally used when an application operates in phases.
For example, many compilers make multiple passes between loading the source and
generating the executable, with many interim files. A barrier, when used in this
regard, can make sure that all of the threads are in the same phase.

Given its simplicity, why is the barrier not more commonly used? The functionality is
simple enough that it can be accomplished with the low-level tools provided by Java.
We can solve the coordination problem in two ways, without using a barrier. First,
we can simply have the threads wait on a condition variable. The last thread releases
the barrier by notifying all of the other threads. A second option is to simply await
termination of the threads by using the join() method. Once all threads have been
joined, we can start new threads for the next phase of the program.

However, in some cases it is preferable to use barriers. When using the join()
method, threads are exiting and we’re starting new ones. Therefore, the threads lose
any state that they have stored in their previous thread object; they need to store that
state prior to terminating. Furthermore, if we must always create new threads, logi-
cal operations cannot be placed together; since new threads have to be created for
each subtask, the code for each subtask must be placed in separate run() methods. It
may be easier to code all of the logic as one method, particularly if the subtasks are
very small.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 6: Advanced Synchronization Topics

Let’s examine the interface to the barrier class:

public class CyclicBarrier {
 public CyclicBarrier(int parties);
 public CyclicBarrier(int parties, Runnable barrierAction);
 public int await() throws InterruptedException, BrokenBarrierException;
 public int await(long timeout, TimeUnit unit) throws InterruptedException,
 BrokenBarrierException, TimeoutException;
 public void reset();
 public boolean isBroken();
 public int getParties();
 public int getNumberWaiting();
}

The core of the barrier is the await() method. This method basically behaves like the
conditional variable’s await() method. There is an option to either wait until the
barrier releases the thread or for a timeout condition. There is no need to have a
signal() method because notification is accomplished by the barrier when the cor-
rect number of parties are waiting.

When the barrier is constructed, the developer must specify the number of parties
(threads) using the barrier. This number is used to trigger the barrier: the threads are
all released when the number of threads waiting on the barrier is equal to the num-
ber of parties specified. There is also an option to specify an action—an object that
implements the run() method. When the trigger occurs, the run() method on the
barrierAction object is called prior to releasing the threads. This allows code that is
not threadsafe to execute; generally, it calls the cleanup code for the previous phase
and/or setup code for the next phase. The last thread that reaches the barrier—the
triggering thread—is the thread that executes the action.

Each thread that calls the await() method gets back a unique return value. This
value is related to the arrival order of the thread at the barrier. This value is needed
for cases when the individual threads need to negotiate how to divide up work dur-
ing the next phase of the process. The first thread to arrive is one less than the num-
ber of parties; the last thread to arrive will have a value of zero.

In normal usage, the barrier is very simple. All the threads wait until the number of
required parties arrive. Upon arrival of the last thread, the action is executed, the
threads are released, and the barrier can be reused. However, exception conditions
can occur and cause the barrier to fail. When the barrier fails, the CyclicBarrier class
breaks the barrier and releases all of the threads waiting on the await() method with
a BrokenBarrierException. The barrier can be broken for a number of reasons. The
waiting threads can be interrupted, a thread may break through the barrier due to a
timeout condition, or an exception could be thrown by the barrier action.

In every exception condition, the barrier simply breaks, thus requiring that the indi-
vidual threads resolve the matter. Furthermore, the barrier can no longer be reused
until it is reinitialized. That is, part of the complex (and application-specific) algo-
rithm to resolve the situation includes the need to reinitialize the barrier. To reinitial-

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization Classes Added in J2SE 5.0 | 115

ize the barrier, you use the reset() method. However, if there are threads already
waiting on the barrier, the barrier will not initialize; in fact, it will break. Reinitializa-
tion of the barrier is complex enough that it may be safer to create a new barrier.

Finally, the CyclicBarrier class provides a few operational support methods. These
methods provide informational data on the number of threads already waiting on the
barrier, or whether the barrier is already broken.

Countdown Latch
The countdown latch implements a synchronization tool that is very similar to a bar-
rier. In fact, it can be used instead of a barrier. It also can be used to implement a
functionality that some threading systems (but not Java) support with semaphores.
Like the barrier class, methods are provided that allow threads to wait for a condi-
tion. The difference is that the release condition is not the number of threads that are
waiting. Instead, the threads are released when the specified count reaches zero.

The CountDownLatch class provides a method to decrement the count. It can be called
many times by the same thread. It can also be called by a thread that is not waiting.
When the count reaches zero, all waiting threads are released. It may be that no
threads are waiting. It may be that more threads than the specified count are wait-
ing. And any thread that attempts to wait after the latch has triggered is immediately
released. The latch does not reset. Furthermore, later attempts to lower the count
will not work.

Here’s the interface of the countdown latch:

public class CountDownLatch {
 public CountDownLatch(int count);
 public void await() throws InterruptedException;
 public boolean await(long timeout, TimeUnit unit)
 throws InterruptedException;
 public void countDown();
 public long getCount();
}

This interface is pretty simple. The initial count is specified in the constructor. A
couple of overloaded methods are provided for threads to wait for the count to reach
zero. And a couple of methods are provided to control the count—one to decrement
and one to retrieve the count. The boolean return value for the timeout variant of the
await() method indicates whether the latch was triggered—it returns true if it is
returning because the latch was released.

Exchanger
The exchanger implements a synchronization tool that does not really have equiva-
lents in any other threading system. The easiest description of this tool is that it is a
combination of a barrier with data passing. It is a barrier in that it allows pairs of

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 6: Advanced Synchronization Topics

threads to rendezvous with each other; upon meeting in pairs, it then allow the pairs
to exchange one set of data with each other before separating.

This class is closer to a collection class than a synchronization tool—it is mainly used
to pass data between threads. It is also very specific in that threads have to be paired
up, and a specific data type must be exchanged. But this class does have its advan-
tages. Here is its interface:

public class Exchanger<V> {
 public Exchanger();
 public V exchange(V x) throws InterruptedException;
 public V exchange(V x, long timeout, TimeUnit unit)
 throws InterruptedException, TimeoutException;
}

The exchange() method is called with the data object to be exchanged with another
thread. If another thread is already waiting, the exchange() method returns with the
other thread’s data. If no other thread is waiting, the exchange() method waits for
one. A timeout option can control how long the calling thread waits.

Unlike the barrier class, this class is very safe to use: it will not break. It does not
matter how many parties are using this class; they are paired up as the threads come
in. Timeouts and interrupts also do not break the exchanger as they do in the
barrier class; they simply generate an exception condition. The exchanger contin-
ues to pair threads around the exception condition.

Reader/Writer Locks
Sometimes you need to read information from an object in an operation that may
take a fairly long time. You need to lock the object so that the information you read
is consistent, but you don’t necessarily need to prevent another thread from also
reading data from the object at the same time. As long as all the threads are only
reading the data, there’s no reason why they shouldn’t read the data in parallel since
this doesn’t affect the data each thread is reading.

In fact, the only time we need data locking is when data is being changed, that is,
when it is being written. Changing the data introduces the possibility that a thread
reading the data sees the data in an inconsistent state. Until now, we’ve been con-
tent to have a lock that allows only a single thread to access the data whether the
thread is reading or writing, based on the theory that the lock is held for a short time.

If the lock needs to be held for a long time, it makes sense to consider allowing mul-
tiple threads to read the data simultaneously so that these threads don’t need to com-
pete against each other to acquire the lock. Of course, we must still allow only a
single thread to write the data, and we must make sure that none of the threads that
were reading the data are still active while our single writer thread is changing the
internal state of the data.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization Classes Added in J2SE 5.0 | 117

Here are the classes and interfaces in J2SE 5.0 that implement this type of locking:

public interface ReadWriteLock {
 Lock readLock();
 Lock writeLock();
}

public class ReentrantReadWriteLock implements ReadWriteLock {
 public ReentrantReadWriteLock();
 public ReentrantReadWriteLock(boolean fair);
 public Lock writeLock();
 public Lock readLock();
}

You create a reader-writer lock by instantiating an object using the
ReentrantReadWriteLock class. Like the ReentrantLock class, an option allows the
locks to be distributed in a fair fashion. By “fair,” this class means that the lock is
granted on very close to a first-come-first-serve basis. When the lock is released, the
next set of readers/writer is granted the lock based on arrival time.

Usage of the lock is predictable. Readers should obtain the read lock while writers
should obtain the write lock. Both of these locks are objects of the Lock class—their
interface is discussed in Chapter 3. There is one major difference, however: reader-
writer locks have different support for condition variables. You can obtain a condi-
tion variable related to the write lock by calling the newCondition() method; calling
that method on a read lock generates an UnsupportedOperationException.

These locks also nest, which means that owners of the lock can repeatedly acquire
the locks as necessary. This allows for callbacks or other complex algorithms to exe-
cute safely. Furthermore, threads that own the write lock can also acquire the read
lock. The reverse is not true. Threads that own the read lock cannot acquire the write
lock; upgrading the lock is not allowed. However, downgrading the lock is allowed.
This is accomplished by acquiring the read lock before releasing the write lock.

Later in this chapter, we examine the topic of lock starvation in depth. Reader-writer
locks have special issues in this regard.

In this section, we’ve examined higher-level synchronization tools provided by J2SE
5.0. These tools all provide functionality that in the past could have been imple-
mented by the base tools provided by Java—either through an implementation by
the developer or by the use of third-party libraries. These classes don’t provide new
functionality that couldn’t be accomplished in the past; these tools are written totally
in Java. In a sense, they can be considered convenience classes; that is, they are
designed to make development easier and to allow application development at a
higher level.

There is also a lot of overlap between these classes. A Semaphore can be used to par-
tially simulate a Lock simply by declaring a semaphore with one permit. The write
lock of a reader-writer lock is practically the same as a mutually exclusive lock. A

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 6: Advanced Synchronization Topics

semaphore can be used to simulate a reader-writer lock, with a limited set of read-
ers, simply by having the reader thread acquire one permit while the writer thread
acquires all the permits. A countdown latch can be used as a barrier simply by hav-
ing each thread decrement the count prior to waiting.

The major advantage in using these classes is that they offload threading and data
synchronization issues. Developers should design their programs at as high a level as
possible and not have to worry about low-level threading issues. The possibility of
deadlock, lock and CPU starvation, and other very complex issues is mitigated some-
what. Using these libraries, however, does not remove the responsibility for these
problems from the developer.

Preventing Deadlock
Deadlock between threads competing for the same set of locks is the hardest prob-
lem to solve in any threaded program. It’s a hard enough problem, in fact, that it
cannot be solved in the general case. Instead, we try to offer a good understanding of
deadlock and some guidelines on how to prevent it. Preventing deadlock is com-
pletely the responsibility of the developer—the Java virtual machine does not do
deadlock prevention or deadlock detection on your behalf.

Let’s revisit the simple deadlock example from Chapter 3.

package javathreads.examples.ch03.example8;
...
public class ScoreLabel extends JLabel implements CharacterListener {
 ...
 private Lock adminLock = new ReentrantLock();
 private Lock charLock = new ReentrantLock();
 private Lock scoreLock = new ReentrantLock();
 ...
 public void resetScore() {
 try {
 charLock.lock();
 scoreLock.lock();
 score = 0;
 char2type = -1;
 setScore();
 } finally {
 charLock.unlock();
 scoreLock.unlock();
 }
 }

 public void newCharacter(CharacterEvent ce) {
 try {
 scoreLock.lock();
 charLock.lock();
 // Previous character not typed correctly: 1-point penalty
 if (ce.source == generator) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Deadlock | 119

 if (char2type != -1) {
 score--;
 setScore();
 }
 char2type = ce.character;
 }

 // If character is extraneous: 1-point penalty
 // If character does not match: 1-point penalty
 else {
 if (char2type != ce.character) {
 score--;
 } else {
 score++;
 char2type = -1;
 }
 setScore();
 }
 } finally {
 scoreLock.unlock();
 charLock.unlock();
 }
 }
}

To review, deadlock occurs if two threads execute the newCharacter() and
resetScore() methods in a fashion that each can grab only one lock. If the
newCharacter() method grabs the score lock while the resetScore() method grabs
the character lock, they both eventually wait for each other to release the locks. The
locks, of course, are not released until they can finish execution of the methods. And
neither thread can continue because each is waiting for the other thread’s lock. This
deadlock condition cannot be resolved automatically.

As we mentioned at the time, this example is simple, but more complicated condi-
tions of deadlock follow the same principles outlined here: they’re harder to detect,
but nothing more is involved than two or more threads attempting to acquire each
other’s locks (or, more correctly, waiting for conflicting conditions).

Deadlock is difficult to detect because it can involve many classes that call each
other’s synchronized sections (that is, synchronized methods or synchronized
blocks) in an order that isn’t apparently obvious. Suppose we have 26 classes, A to Z,
and that the synchronized methods of class A call those of class B, those of class B
call those of class C, and so on, until those of class Z call those of class A. If two
threads call any of these classes, this could lead us into the same sort of deadlock sit-
uation that we had between the newCharacter() and resetScore() methods, but it’s
unlikely that a programmer examining the source code would detect that deadlock.

Nonetheless, a close examination of the source code is the only option presently
available to determine whether deadlock is a possibility. Java virtual machines do not

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 6: Advanced Synchronization Topics

detect deadlock at runtime, and while it is possible to develop tools that examine
source code to detect potential deadlock situations, no such tools exist yet for Java.

The simplest way to avoid deadlock is to follow this rule. When a lock is held, never
call any methods that need other locks—i.e., never call a synchronized method of
another class from a synchronized method. This is a good rule that is often advo-
cated, but it’s not the ideal rule for two reasons:

• It’s impractical: many useful Java methods are synchronized, and you’ll want to
call them from your synchronized method. As an example, many of the collec-
tion classes discussed in Chapter 8 have synchronized methods. To avoid the
usage of collection classes from synchronized methods would prevent data from
being moved or results from being saved.

• It’s overkill: if the synchronized method you’re going to call does not in turn call
another synchronized method, there’s no way that deadlock can occur. Further-
more, if the class or library is accessed only through its class interface—with no
cross-calling—placing extra restrictions on using the library is silly.

Nonetheless, if you can manage to obey this rule, there will be no deadlocks in your
program.

Another frequently used technique to avoid deadlock is to lock some higher-order
object that is related to the many lower-order objects we need to use. In our example,

Virtual Machine–Level Deadlock Detection
In certain cases, the virtual machine can detect that two threads are dead-
locked. It’s possible to obtain a stack trace for all active threads in the virtual
machine through a platform-specific operation. On Solaris, Linux, and other
Unix systems, sending the virtual machine a –3 signal (via the kill command)
produces that output. On Windows systems, entering Ctrl-Break produces the
stack output.

If two or more threads are waiting for each other’s locks, the virtual machine
detects this and prints out that information in the thread dump. However, even
though the virtual machine has detected the deadlock, it does not take any
steps to resolve it.

The virtual machine cannot detect other kinds of deadlock, such as the first
case we examined in Chapter 3. In that example, the deadlock occurred
because the run() method never allowed any other method to grab the syn-
chronization lock. That kind of application-level deadlock is impossible for the
virtual machine to detect.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Deadlock | 121

that means removing the efficiency that causes this deadlock: to use only one lock to
protect the score and the character assignments.

Of course, this is only a simple example: we don’t need to lock everything. If we can
isolate the location of the deadlock, we can use a slightly higher order lock only to
protect the methods that are having problems. Or we can make a rule that adds the
requirement that an additional lock be held prior to acquiring the problem locks. All
these variations of locking multiple objects suffer from the same lock granularity
problem that we’re about to discuss.

The problem with this technique is that it often leads to situations where the lock
granularity is not ideal. By synchronizing with only one lock, we are preventing
access to variables we may not be changing or even using. The purpose of threaded
programming is to accomplish tasks simultaneously—not to have these threads wait-
ing on some global lock. Furthermore, if we’ve done our program design correctly,
there was probably a reason why we attempted to acquire multiple locks rather than
a single global lock. Solving deadlock issues by violating this design becomes some-
what counterproductive.

The most practical rule to avoid deadlock is to make sure that the locks are always
acquired in the same order. In our example, it means that either the score or charac-
ter lock must be acquired first—it doesn’t matter which as long as we are consistent.
This implies the need for a lock hierarchy—meaning that locks are not only protect-
ing their individual items but are also keeping an order to the items. The score lock
protects not only the values of the score, but the character lock as well. This is the
technique that we used to fix the deadlock in Chapter 3:

package javathreads.examples.ch03.example9;
...
public class ScoreLabel extends JLabel implements CharacterListener {
 ...
 public void resetScore() {
 try {
 scoreLock.lock();
 charLock.lock();
 score = 0;
 char2type = -1;
 setScore();
 } finally {
 charLock.unlock();
 scoreLock.unlock();
 }
 }
 ...
}

Since the resetScore() method now also grabs the score lock first, it is not possible
for any thread to be waiting for the score lock while holding the character lock. This

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 6: Advanced Synchronization Topics

means that the character lock may eventually be grabbed and released, followed by
the eventual release of the score lock. A deadlock does not occur.

Again, this is a very simple example. For much more complex situations, we may
have to do all of the following:

• Use only locking objects—things that implement the Lock interface—and avoid
use of the synchronized keyword. This allows the separation of the locks from
the objects in the application. We do this even with our simple example.

• Understand which locks are assigned to which subsystems and understand the
relationships between the subsystems. We define a subsystem as a class, group
of classes, or library that performs a relatively independent service. The sub-
system must have a documented interface that we can test or debug in our
search for deadlocks. This allows us to form groups of locks and map out poten-
tial deadlocks.

• Form a locking hierarchy within each subsystem. Unlike the other two steps, this
can actually hurt the efficiency of the application. The subsystem needs to be
studied. The relationship of the locks must be understood in order to be able to
form a hierarchy that will have minimal impact on the efficiency of the
application.

If you are developing a very complex Java program, it’s a good idea to develop a lock
hierarchy when the application is being designed. It may be very difficult to enforce a
lock hierarchy after much of the program has been developed. Finally, since there is
no mechanism to enforce a lock hierarchy, it is up to your good programming prac-
tices to make sure that the lock hierarchy is followed. Following a lock acquisition
hierarchy is the best way to guarantee that deadlock does not occur in your Java pro-
gram due to synchronization.

Deadlock and Automatic Lock Releases
There are a few more concerns about deadlock when using the Lock interface (or any
locking mechanism that is not the Java synchronized keyword). The first is illus-
trated by how we have used the Lock class in every example up to this point. Our
resetScore() method can be easier written (and understood) as follows:

public void resetScore() {
 scoreLock.lock();
 charLock.lock();
 score = 0;
 char2type = -1;
 setScore();
 charLock.unlock();
 scoreLock.unlock();
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Deadlock | 123

However, what happens if the thread that calls the resetScore() method encounters
a runtime exception and terminates? Under many threading systems, this leads to a
type of deadlock because the thread that terminates does not automatically release
the locks it held. Under those systems, another thread could wait forever when it
tries to change the score. In Java, however, locks associated with the synchronized
keyword are always released when the thread leaves the scope of the synchronized
block, even if it leaves that scope due to an exception. So in Java when using the
synchronized keyword, this type of deadlock never occurs.

But we are using the Lock interface instead of the synchronized keyword. It is not
possible for Java to figure out the scope of the explicit lock—the developer’s intent
may be to hold the lock even on an exception condition. Consequently, in this new
version of the resetScore() method, if the setScore() method throws a runtime
exception, the lock is never freed since the unlock() methods are never called.

There is a simple way around this: we can use Java’s finally clause to make sure that
the locks are freed upon completion, regardless of how the method exits. This is
what we’ve done in all our examples.

By the way, this antideadlock behavior of the synchronized keyword is not necessar-
ily a good thing. When a thread encounters a runtime exception while it is holding a
lock, there’s the possibility—indeed, the expectation—that it will leave the data it
was manipulating in an inconsistent state. If another thread is then able to acquire
the lock, it may encounter this inconsistent data and proceed erroneously.

When using explicit locks, you should not only use the finally clause to free the
lock, but you should also test for, and clean up after, the runtime exception condi-
tion. Unfortunately, given Java’s semantics, this problem is impossible to solve com-
pletely when using the synchronized keyword or by using the finally clause. In fact,
it’s exactly this problem that led to the deprecation of the stop() method: the stop()
method works by throwing an exception, which has the potential to leave key
resources in the Java virtual machine in an inconsistent state.

Since we cannot solve this problem completely, it may sometimes be better to use
explicit locks and risk deadlock if a thread exits unexpectedly. It may be better to
have a deadlocked system than to have a corrupted system.

Preventing Deadlock with Timeouts
Since the Lock interface provides options for when a lock can’t be grabbed; can we
use those options to prevent deadlock? Absolutely. Another way to prevent dead-
lock is not to wait for the lock—or at least, to place restrictions on the waiting
period. By using the tryLock() method to provide alternatives in the algorithm, the
chances of deadlock can be greatly mitigated. For example, if we need a resource but
have an alternate (maybe slower) resource available, using the alternate resource
allows us to complete the operation and ultimately free any other locks we may be

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 6: Advanced Synchronization Topics

holding. Alternatively, if we are unable to obtain the lock within a time limit, per-
haps we can clean up our state—including releasing the locks we are currently hold-
ing—and allow other conflicting threads to finish up and free their locks.

Unfortunately, using explicit locks in this fashion is more complex than using a lock
hierarchy. To develop a lock hierarchy, we simply have to figure out the order in
which the locks must be obtained. To use timeouts, we need to design the applica-
tion to allow alternative paths to completion, or the capability to “undo” operations
for a later “redo.” The advantage to timeouts is that there can be a greater degree of
parallelism. We are actually designing multiple pathways to completion to avoid
deadlock instead of placing restrictions on the algorithm in order to avoid deadlock.

You must decide whether these types of benefits outweigh the added complexity of
the code when you design your Java program. If you start by creating a lock hierar-
chy, you’ll have simpler code at the possible expense of the loss of some parallelism.
We think it is easier to write the simpler code first and then address the parallelism
problems if they become a performance bottleneck.

Deadlock Detection
The problem with deadlock is that it causes the program to hang indefinitely. Obvi-
ously, if a program hangs, deadlock may be the cause. But is deadlock always the
cause? In programs that wait for users, wait for external systems, or have complex
interactions, it can be very difficult to tell a deadlock situation from the normal oper-
ation of the program. Furthermore, what if the deadlock is localized? A small group
of threads in the program may deadlock with each other while other threads con-
tinue running, masking the deadlock from the user (or the program itself). While it is
very difficult to prevent deadlock, can we at least detect it? To understand how to
detect deadlock, we must first understand its cause.

Figure 6-1 shows two cases of threads and locks waiting for each other. The first case
is of locks waiting for the owner thread to free them. The locks are owned by the
thread so they can’t be used by any other thread. Any thread that tries to obtain
these locks is placed into a wait state. This also means that if the thread deadlocks, it
can make many locks unavailable to other threads.

The second case is of threads waiting to obtain a lock. If the lock is owned by
another thread, the thread must wait for it to be free. Technically, the lock does not
own the thread, but the effect is the same—the thread can’t accomplish any other
task until the lock is freed. Furthermore, a lock can have many threads waiting for it
to be free. This means that if a lock deadlocks, it can block many waiting threads.

We have introduced many new terms here—we’ll explain them before we move on.
We define a deadlocked lock as a lock that is owned by a thread that has dead-
locked. We define a deadlocked thread as a thread that is waiting for a deadlocked
lock. These two definitions are admittedly circular, but that is how deadlocks are

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Deadlock Detection | 125

caused. A thread owns a lock that has waiting threads that own a lock that has wait-
ing threads that own a lock, and so on. A deadlock occurs if the original thread needs
to wait for any of these locks. In effect, a loop has been created. We have locks wait-
ing for threads to free them, and threads waiting for locks to be freed. Neither can
happen because indirectly they are waiting for each other.

We define a hard wait as a thread trying to acquire a lock by waiting indefinitely. We
call it a soft wait if a timeout is assigned to the lock acquisition. The timeout is the
exit strategy if a deadlock occurs. Therefore, for deadlock detection situations, we
need only be concerned with hard waits. Interrupted waits are interesting in this
regard. If the wait can be interrupted, is it a hard wait or a soft wait? The answer is
not simple because there is no way to tell if the thread that is implemented to call the
interrupt() method at a later time is also involved in the deadlock. For now, we will
simply not allow the wait for the lock to be interrupted. We will revisit the issue of
the delineation between soft and hard waits later in this chapter. However, in our
opinion, interruptible waits should be considered hard waits since using interrupts is
not common in most programs.

Assuming that we can keep track of all of the locks that are owned by a thread and
keep track of all the threads that are performing a hard wait on a lock, is detecting a
potential deadlock possible? Yes. Figure 6-2 shows a potential tree that is formed by
locks that are owned and formed by hard waiting threads. Given a thread, this figure
shows all the locks that are owned by it, all the threads that are hard waiting on
those locks in turn, and so on. In effect, each lock in the diagram is already waiting,
whether directly or indirectly, for the root thread to eventually allow it to be free. If
this thread needs to perform a hard wait on a lock, it can’t be one that is in this tree.
Doing so creates a loop, which is an indication of a deadlock situation. In summary,
we can detect a deadlock by simply traversing this tree. If the lock is already in this
tree, a loop is formed, and a deadlock condition occurs.

Using this algorithm, here is an implementation of a deadlock-detecting lock:

package javathreads.examples.ch06;

public class DeadlockDetectedException extends RuntimeException {
 public DeadlockDetectedException(String s) {

Figure 6-1. Lock trees

Locks owned by thread Threads waiting for lock

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 6: Advanced Synchronization Topics

 super(s);
 }
}

package javathreads.examples.ch06;

import java.util.*;
import java.util.concurrent.*;
import java.util.concurrent.locks.*;

public class DeadlockDetectingLock extends ReentrantLock {
 private static List deadlockLocksRegistry = new ArrayList();

 private static synchronized void registerLock(DeadlockDetectingLock ddl) {
 if (!deadlockLocksRegistry.contains(ddl))
 deadlockLocksRegistry.add(ddl);
 }

 private static synchronized void unregisterLock(DeadlockDetectingLock ddl) {
 if (deadlockLocksRegistry.contains(ddl))
 deadlockLocksRegistry.remove(ddl);
 }

 private List hardwaitingThreads = new ArrayList();

 private static synchronized void markAsHardwait(List l, Thread t) {
 if (!l.contains(t)) l.add(t);
 }

 private static synchronized void freeIfHardwait(List l, Thread t) {
 if (l.contains(t)) l.remove(t);
 }

Figure 6-2. Completed thread wait tree

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Deadlock Detection | 127

 private static Iterator getAllLocksOwned(Thread t) {
 DeadlockDetectingLock current;
 ArrayList results = new ArrayList();

 Iterator itr = deadlockLocksRegistry.iterator();
 while (itr.hasNext()) {
 current = (DeadlockDetectingLock) itr.next();
 if (current.getOwner() == t) results.add(current);
 }
 return results.iterator();
 }

 private static Iterator getAllThreadsHardwaiting(DeadlockDetectingLock l) {
 return l.hardwaitingThreads.iterator();
 }

 private static synchronized
 boolean canThreadWaitOnLock(Thread t, DeadlockDetectingLock l) {
 Iterator locksOwned = getAllLocksOwned(t);
 while (locksOwned.hasNext()) {
 DeadlockDetectingLock current =
 (DeadlockDetectingLock) locksOwned.next();

 if (current == l) return false;

 Iterator waitingThreads = getAllThreadsHardwaiting(current);
 while (waitingThreads.hasNext()) {
 Thread otherthread = (Thread) waitingThreads.next();

 if (!canThreadWaitOnLock(otherthread, l)) {
 return false;
 }
 }
 }
 return true;
 }

 public DeadlockDetectingLock() {
 this(false, false);
 }

 public DeadlockDetectingLock(boolean fair) {
 this(fair, false);
 }

 private boolean debugging;
 public DeadlockDetectingLock(boolean fair, boolean debug) {
 super(fair);
 debugging = debug;
 registerLock(this);
 }

 public void lock() {
 if (isHeldByCurrentThread()) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 6: Advanced Synchronization Topics

 if (debugging) System.out.println("Already Own Lock");
 super.lock();
 freeIfHardwait(hardwaitingThreads, Thread.currentThread());
 return;
 }

 markAsHardwait(hardwaitingThreads, Thread.currentThread());
 if (canThreadWaitOnLock(Thread.currentThread(), this)) {
 if (debugging) System.out.println("Waiting For Lock");
 super.lock();
 freeIfHardwait(hardwaitingThreads, Thread.currentThread());
 if (debugging) System.out.println("Got New Lock");
 } else {
 throw new DeadlockDetectedException("DEADLOCK");
 }
 }

 public void lockInterruptibly() throws InterruptedException {
 lock();
 }

 public class DeadlockDetectingCondition implements Condition {
 Condition embedded;
 protected DeadlockDetectingCondition(ReentrantLock lock, Condition e) {
 embedded = e;
 }

 public void await() throws InterruptedException {
 try {
 markAsHardwait(hardwaitingThreads, Thread.currentThread());
 embedded.await();
 } finally {
 freeIfHardwait(hardwaitingThreads, Thread.currentThread());
 }
 }

 public void awaitUninterruptibly() {
 markAsHardwait(hardwaitingThreads, Thread.currentThread());
 embedded.awaitUninterruptibly();
 freeIfHardwait(hardwaitingThreads, Thread.currentThread());
 }

 public long awaitNanos(long nanosTimeout) throws InterruptedException {
 try {
 markAsHardwait(hardwaitingThreads, Thread.currentThread());
 return embedded.awaitNanos(nanosTimeout);
 } finally {
 freeIfHardwait(hardwaitingThreads, Thread.currentThread());
 }
 }

 public boolean await(long time, TimeUnit unit)
 throws InterruptedException {
 try {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Deadlock Detection | 129

 markAsHardwait(hardwaitingThreads, Thread.currentThread());
 return embedded.await(time, unit);
 } finally {
 freeIfHardwait(hardwaitingThreads, Thread.currentThread());
 }
 }

 public boolean awaitUntil(Date deadline) throws InterruptedException {
 try {
 markAsHardwait(hardwaitingThreads, Thread.currentThread());
 return embedded.awaitUntil(deadline);
 } finally {
 freeIfHardwait(hardwaitingThreads, Thread.currentThread());
 }
 }

 public void signal() {
 embedded.signal();
 }

 public void signalAll() {
 embedded.signalAll();
 }
 }

 public Condition newCondition() {
 return new DeadlockDetectingCondition(this, super.newCondition());
 }
}

Before we go into detail on this deadlock-detecting lock, it must be noted that this
listing has been cut down for this book. For the latest, fully commented version,
including testing tools, please see the online examples, which include (as example 1)
a class that can be used to test this implementation.

In terms of implementation, this class inherits from the Lock interface, so it may be
used anywhere that a Lock object is required. Furthermore, deadlock detection
requires the registration of all locks involved in the deadlock. Therefore, to detect a
deadlock, replace all the locks with this class, even the locks provided by
the synchronized keyword. It may not be possible to detect a loop if any of the locks
are unregistered.

To use this class, replace all instances of ReentrantLock with DeadlockDetectingLock.
This slows down your program, but when a deadlock is detected, a
DeadlockDetectedException is immediately thrown. Because of the performance
implications of this class, we do not recommend using it in a production environ-
ment: use it only to diagnose occurrences of deadlock. The advantage of using this
class is that it detects the deadlock immediately when it occurs instead of waiting for
a symptom of the deadlock to occur and diagnosing the problem then.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 6: Advanced Synchronization Topics

The DeadlockDetectingLock class maintains two lists—a deadlockLocksRegistry and a
hardwaitingThreads list. Both of these lists are stored in thread-unsafe lists because
external synchronization will be used to access them. In this case, the external syn-
chronization is the class lock; all accesses to these lists come from synchronized
static methods. A single deadlockLocksRegistry list holds all deadlock-detecting
locks that have been created. One hardwaitingThreads list exists for each deadlock-
detecting lock. This list is not static; it holds all the thread objects that are perform-
ing a hard wait on the particular lock.

The deadlock locks are added and removed from the registry by using the
registerLock() and unregisterLock() methods. Threads are added and removed
from the hard waiting list using the markAsHardwait() and freeIfHardwait() meth-
ods respectively. Since these methods are static—while the list is not—the list must
be passed as one of the parameters to these methods. In terms of implementation,
they are simple; the objects are added and removed from a list container.

The getAllLocksOwned() and getAllThreadsHardwaiting() methods are used to get the
two types of waiting subtrees we mentioned earlier. Using these subtrees, we can build
the complete wait tree that needs to be traversed. The getAllThreadsHardwaiting()
method simply returns the list of hard waiting threads already maintained by the dead-
lock-detecting lock. The list of owned locks is slightly more difficult. The
getAllLocksOwned() method has to traverse all registered deadlock-detecting locks,
looking for locks that are owned by the target thread. In terms of synchronization, both
of these methods are called from a method that owns the class lock; as a result, there is
no need for these private methods to be synchronized.

The canThreadWaitOnLock() method is used to traverse the wait tree, looking to see if
a particular lock is already in the tree. This is the primary method that is used to
detect potential deadlocks. When a thread is about to perform a hard wait on a lock,
it calls this method. A deadlock is detected if the lock is already in the wait tree. Note
that the implementation is recursive. The method examines all of the locks owned to
see if the lock is in the first level of the tree. It also traverses each owned lock to get
the hard waiting threads; each hard waiting thread is further examined recursively.
This method uses the class lock for synchronization.

With the ability to detect deadlocks, we can now override the lock() method of the
ReentrantLock class. This new implementation is actually not that simple. The
ReentrantLock class is incredibly optimized—meaning it uses minimal synchroniza-
tion. In that regard, our new lock() method is also minimally synchronized.

The first part of the lock() method is for nested locks. If the lock is already owned
by this thread, there is no reason to check for deadlocks. Instead, we can just call the
original lock() method. There is no race condition for this case: only the owner
thread can succeed in the test for nested locks and call the original lock() method.
And since there is no chance that the owner of the lock will change if the owner is

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Deadlock Detection | 131

the currently executing thread, there is no need to worry about the potential race
condition between the isHeldByCurrentThread() and super.lock() method calls.

The second part of the lock() method is used to obtain new locks. It first checks for
deadlocks by calling the canThreadWaitOnLock() method. If a deadlock is detected, a
runtime exception is thrown. Otherwise, the thread is placed on the hard wait list for
the lock, and the original lock() method is called. Obviously, a race condition exists
here since the lock() method is not synchronized. To solve this, the thread is placed
on the hard wait list before the deadlock check is done. By simply reversing the tasks,
it is no longer possible for a deadlock to go undetected. In fact, a deadlock may be
actually detected before it happens due to the race condition.

There is no reason to override the lock methods that accept a timeout since these are
soft locks. The interruptible lock request is disabled by routing it to the uninterrupt-
ible version of the lock() method.

Unfortunately, we are not done yet. Condition variables can also free and reacquire
the lock and do so in a fashion that makes our deadlock-detecting class much more
complex. The reacquisition of the lock is a hard wait since the await() method can’t
return until the lock is acquired. This means that the await() method needs to
release the lock, wait for the notification from the signal() method to arrive, check
for a potential deadlock, perform a hard wait for the lock, and eventually reacquire
the lock.

If you’ve already examined the code, you’ll notice that the implementation of the
await() method is simpler than we just discussed. It doesn’t even check for the dead-
lock. Instead, it simply performs a hard wait prior to waiting for the signal. By per-
forming a hard wait before releasing the lock, we keep the thread and lock
connected. This means that if a later lock attempt is made, a loop can still be
detected, albeit by a different route. Furthermore, since it is not possible to cause a
deadlock simply by using condition variables, there is no need to check for deadlock
on the condition variable side. The condition variable just needs to allow the dead-
lock to be detected from the lock() method side. The condition variable also must
place the thread on the hard wait list prior to releasing the lock due to a race condi-
tion with the lock() method—it is possible to miss detection of the deadlock if the
lock is released first.

At this point, we are sure many readers have huge diagrams on their desk—or maybe
on the floor—with thread and lock scenarios drawn in pencil. Deadlock detection is
a very complex subject. We have tried to present it as simply as possible, but we are
sure many readers will not be convinced that this class actually works without a few
hours of playing out different scenarios. To help with this, the latest online copy of
this class contains many simple test case scenarios (which can easily be extended).

To help further, here are answers to some possible questions. If you are not con-
cerned with these questions, feel free to skip or skim the next section as desired. As a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 6: Advanced Synchronization Topics

warning, some of these questions are very obscure, so obscure that some questions
may not even be understood without a few hours of paper and pencil work. The goal
is to work out the scenarios to understand the questions, which can hopefully be
answered here.

We have stated that a deadlock condition is detected when a loop in the wait tree is
detected. Is it really a loop? The answer is yes. This means that we have to be careful
in our search or we can recursively search forever. Let’s examine how the loop is
formed from another point of view. Any waiting thread node can have only one par-
ent lock node. That’s because a thread can’t perform a hard wait on more than one
lock at a time. Any owned lock node can have only one parent thread node. That’s
because a lock can’t be owned by more than one thread at a time. In this direction,
only nodes connected to the top node can form the loop. As long as none of the
owned lock nodes are connected to the top thread node, we don’t have a loop. It is
slightly more complicated than this, but we will address it with the next question.

Why are we using only the thread tree? What about the lock tree? These questions
introduce a couple of definitions, so let’s back up a few steps. To begin, we are try-
ing to determine whether a thread can perform a hard wait on a particular lock. We
then build a wait tree using this thread object as the top node; that’s what we mean
by the thread tree. However, the lock isn’t independent. It is also possible to build a
wait tree using the lock object as the top node, which we define as the lock tree.
There may be other locks in the lock tree that could be in the thread tree, possibly
forming a deadlock condition.

Fortunately, we don’t have to traverse the lock tree because the thread tree is guaran-
teed to contain a root node as the top node. The top node of the thread tree is the
currently running thread. It is not possible for this thread to be currently waiting on
a lock since it wouldn’t be executing the lock request. The top node of the lock tree
is only the root node if the lock is not owned. For a loop to form, either the lock tree
or the thread tree must be a subtree of the other. Since we know that the thread tree
definitely contains the root node, only the lock node can be the subtree. To test for a
subtree, we just need to test the top node.

Isn’t marking the hard wait prior to checking for the deadlock condition a problem?
Can it cause spurious deadlock exceptions? The answer is no. The deadlock condition
will definitely occur since the thread will eventually perform the hard wait. It is just
being detected slightly before it actually happens. On the other hand, our class may
throw more than one deadlock exception once the deadlock has been detected. It
must be noted that the purpose of this class is not to recover from the deadlock. In
fact, once a deadlock exception is thrown, the class does not clean up after it. A retry
attempt throws the same exception.

Can marking the hard wait first interfere with the deadlock check? By marking first, we
are making a connection between the thread and the lock. In theory, this connection
should be detected as a deadlock condition by the deadlock check. To determine if

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Deadlock Detection | 133

we’re interfering with the deadlock check, we have to examine where the connection
is made. We are connecting the lock node to the top thread node—the connection is
actually above the top thread node. Since the search starts from the top thread node,
it isn’t able to detect the deadlock unless the lock node can be reached first. This
connection is seen from the lock tree but is not a problem because that tree is not tra-
versed. Traversals by other threads will be detected early as a deadlock condition
since the hard wait will eventually be performed.

Can marking the hard wait first cause an error condition in other threads? Will it cause
a loop in the trees? We need to avoid a loop in the wait trees for two reasons. First,
and obviously, is because it is an indication of a deadlock condition. The second rea-
son is because we will be searching through the wait trees. Recursively searching
through a tree that has a loop causes an infinite search (if the lock being sought is not
within the loop).

The answer to this question is no, it can’t cause an error condition. First, there is no
way to enter the loop from a thread node that is not within the loop. All thread
nodes within the loop are performing a hard wait on locks within the loop. And all
lock nodes within the loop are owned by thread nodes within the loop. Second, it is
not possible to start from a thread node that is within the loop. With the exception
of the top thread node, all the thread nodes are performing a hard wait. To be able to
perform the deadlock check, a thread cannot be in a wait state and therefore can’t be
in the wait tree. If a loop is formed, only the thread represented by the top thread
node can detect the deadlock.

This answer assumes that a deadlock-detected exception has never been thrown; this
class is not designed to work once such an exception is thrown. For that functional-
ity, consider using the alternate deadlock-detecting class that is available online.

How can the simple solution of switching the “thread owns the lock” to the “thread
hard waiting for lock” work for condition variables? Admittedly, we did a bit of hand
waving in the explanation. A better way to envision it is to treat the operations as
being separate entities—as if the condition variable is releasing and reacquiring the
lock. Since the reacquisition is mandatory (i.e., it will eventually occur), we mark the
thread for reacquisition before we release the lock. We can argue that switching the
ownership state to a hard wait state removes the connection from the thread tree,
making detection impossible. This is just an artifact of examining the wait tree from
the condition variable’s perspective. When the lock() method is called at a later
time, we will be using a different thread object as the top node, forming a different
wait tree. From that perspective, we can use either the ownership state or hard wait
state for the detection of the deadlock.

Why don’t we have to check for potential deadlocks on the condition variable side? It is
not necessary. Marking for the wait operation prior to unlocking works in a pseudo
atomic manner, meaning that it is not possible for another thread to miss the detection
of the deadlock when using the lock() method. Since it is not possible to create a new

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 6: Advanced Synchronization Topics

deadlock just by using condition variables, we don’t need to check on this end.
Another explanation is that there is no need to check because we already know the
answer: the thread is capable of performing a hard wait because it has previously
owned the lock and has not had a chance to request additional locks.

Isn’t marking for the hard wait prior to performing the await() operation a problem?
Can it cause spurious deadlock exceptions? Can it cause an error condition in other
threads? Two of these questions are very similar to the questions for the lock()
method side. The extra question here addresses the issue of interfering with the
deadlock check. That question doesn’t apply on the lock() method side because we
do not perform a deadlock check on the condition variable side.

However, the answers to the other questions are not exactly the same as before. In
this case, the thread is performing a hard wait on the lock before the thread releases
ownership of the lock. We are creating a temporary loop—a loop that is created even
though the deadlock condition does not exist. This is not a case of detecting the
deadlock early—if the loop were detected, the deadlock detected would be incorrect.

These three questions can be answered together. As with the error question on the
lock() method side, it is not possible to enter the loop from a thread node outside of
the loop. Second, the one thread node that is within this small loop is not perform-
ing a deadlock check. And finally, any deadlock check does not traverse the lock
tree. This means that an error condition can’t occur in another thread and that
detecting a false deadlock condition also can’t occur in another thread. Of course,
eventually it would be possible to get to the lock node externally, but by then, the
loop would have been broken. It is not possible for another thread to own the lock
unless the condition variable thread releases it first.

To review, we are traversing the thread tree to check whether the lock tree is a subtree.
Instead of recursively traversing from the thread tree, isn’t it easier to traverse upward
from the lock tree? Our answer is maybe. We simply list the pluses and minuses and
let the reader decide. Two good points can be made for traversing from the lock tree.
First, the search is not recursive. Each node of the lock tree has only one parent, so
going upward can be done iteratively. Second, moving upward from lock node to
parent thread node does not need any iterations—the owner thread object is already
referenced by the lock object. On the other hand, moving downward from the thread
node to the lock node requires iteration through the registered locks list.

Unfortunately, there are two bad points to traversing upward from the lock tree.
First, moving upward from the thread node to the lock node on which it is perform-
ing the hard wait is incredibly time-consuming. We need to iterate through the regis-
tered locks list to find the hard wait lists, which we must, in turn, iterate through to
find the lock node. In comparison, moving downward from the lock node to the
thread node is done by iterating through one hard wait list. And it gets worse. We
need to iterate through all of the hard wait lists. By comparison, we need to iterate

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Deadlock Detection | 135

only through the hard wait lists in the wait tree in our existing implementation. This
one point alone may outweigh the good points.

The second bad point stems from the techniques that we use to solve the race condi-
tions in the lock class. The class allows loops to occur—even temporarily creating
them when a deadlock condition does not exist. Searching from a lock node that is
within a loop—whether recursively downward or iteratively upward—does not ter-
minate if the top thread node is not within the loop. Fortunately, this problem can be
easily solved. We just need to terminate the search if the top lock node is found. Also
note that finding the top lock node is not an indication of a deadlock condition since
some temporary loops are formed even without a deadlock condition.

To review, we are traversing the thread tree instead of the lock tree because the top
thread node is definitely the root node. The top lock node may not be the root node.
However, what if the top lock node is also the root node? Isn’t this a shortcut in the
search for a deadlock? Yes. It is not possible for the lock tree to be a subtree of the
thread tree if the top lock node is a root node. This means we can remove some calls
to the deadlock check by first checking to see if the lock is already owned. This is an
important improvement since the deadlock check is very time-consuming.

However, a race condition exists when a lock has no owner. If the lock is unowned,
there is no guarantee that the lock will remain unowned during the deadlock check.
This race condition is not a problem since it is not possible for any lock in the wait
tree to be unowned at any time during the deadlock check; the deadlock check may
be skipped whether or not the lock remains unowned.

This shortcut is mostly for locks that are infrequently used. For frequently used
locks, this shortcut is highly dependent on the thread finding the lock to be free,
which is based on the timing of the application.

The modification with some deadlock checking removed is available online in our
alternate deadlock-detecting lock.

The deadlock-detecting lock disallows interruptible locking requests. What if we do not
agree with this compromise? There are only a few options. Disallowing the interrupt
was the easiest compromise that works for the majority of the cases. For those read-
ers who believe an interruptible lock should be considered a soft lock, the change is
simple—just don’t override the lockInterruptibly() method. And for those readers
who believe that an interruptible lock should be considered a hard lock while still
not compromising interrupt capability, here is a modified version of the method:

public void lockInterruptibly() throws InterruptedException {
 if (isHeldByCurrentThread()) {
 if (debugging) System.out.println("Already Own Lock");
 try {
 super.lockInterruptibly();
 } finally {
 freeIfHardwait(hardwaitingThreads,
 Thread.currentThread());

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 6: Advanced Synchronization Topics

 }
 return;
 }

 markAsHardwait(hardwaitingThreads, Thread.currentThread());
 if (canThreadWaitOnLock(Thread.currentThread(), this)) {
 if (debugging) System.out.println("Waiting For Lock");
 try {
 super.lockInterruptibly();
 } finally {
 freeIfHardwait(hardwaitingThreads,
 Thread.currentThread());
 }
 if (debugging) System.out.println("Got New Lock");
 } else {
 throw new DeadlockDetectedException("DEADLOCK");
 }
}

This change is also provided online in our alternate deadlock-detecting lock class. In
terms of implementation, it is practically identical to that of the lock() method. The
difference is that we now place all lock requests within a try-finally clause. This
allows the method to clean up after the request, regardless of whether it exits nor-
mally or by exception.

The deadlock-detecting lock regards all lock requests with a timeout as soft locks. What
if we do not agree with this premise? This topic is open to debate. While an applica-
tion that uses timeouts should have an exit strategy when the timeout occurs, what if
the exit strategy is to inform the user and then simply retry? In this case, deadlock
could occur. Furthermore, at what point is retrying no longer tolerable? When the
timeout period is more than an hour? A day? A month? Obviously, these issues are
design-specific.

Here is an implementation of the tryLock() method that treats the request as a soft
wait—but only if it is less than a minute:

public boolean tryLock(long time, TimeUnit unit)
 throws InterruptedException {
 // Perform operation as a soft wait
 if (unit.toSeconds(time) < 60) {
 return super.tryLock(time, unit);
 }

 if (isHeldByCurrentThread()) {
 if (debugging) System.out.println("Already Own Lock");
 try {
 return super.tryLock(time, unit);
 } finally {
 freeIfHardwait(hardwaitingThreads,
 Thread.currentThread());
 }
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Deadlock Detection | 137

 markAsHardwait(hardwaitingThreads, Thread.currentThread());
 if (canThreadWaitOnLock(Thread.currentThread(), this)) {
 if (debugging) System.out.println("Waiting For Lock");
 try {
 return super.tryLock(time, unit);
 } finally {
 freeIfHardwait(hardwaitingThreads,
 Thread.currentThread());
 if (debugging) System.out.println("Got New Lock");
 }
 } else {
 throw new DeadlockDetectedException("DEADLOCK");
 }
}

This change is also provided in the online examples as an alternative to the deadlock-
detecting lock class (including a testing program, which is example 2 in this chap-
ter). Its implementation is practically identical to that of the lock() method. Again,
the difference is that we now place all lock requests within a try-finally clause. This
allows the method to clean up after the request, regardless if it exits normally or by
exception. This example treats the operation as a soft wait for requests that are under
a minute. The request is treated as a hard wait otherwise. We leave it up to you to
modify the code to suit your needs. One alternate solution could be to use a differ-
ent time period to separate soft and hard wait lock operations; this time period could
also be calculated depending on conditions in the program. Another alternate
solution could be for the trylock() method to return false instead of throwing the
deadlock-detected exception.

While the deadlock-detecting lock is well-designed for detecting the deadlock condition,
the design for reporting the condition is pretty weak. Are there better options? This is
actually intentional. This class is not designed to be used in a production environ-
ment. Searching for deadlocks can be very inefficient—this class should be used only
during development. In fact, most readers will probably not use this class at all. The
main purpose of this class is so that we can understand deadlocks—how to detect
them and, eventually, how to prevent them.

For those who insist on using the deadlock-detecting lock in a production environ-
ment, there are a few options. The class can be designed to fail fast—meaning that if
a deadlock is detected, the class could throw the exception for every invocation,
regardless of whether the request is involved in the deadlock or not. Another option
is for the class to report the condition in a manner that allows the program to shut
down properly. A third, and not recommended, option is to allow the class to con-
tinue functioning. The first and third options are provided as conditional code in the
alternate online example.

This topic of deadlock detection seems to be incredibly complex. In fact, the discussion
on the theory and implementation is more than twice as long as the code itself. Is this
topic really that complex? The concept of deadlock detection is complex, but there is

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 6: Advanced Synchronization Topics

another reason why this class is even more complex. The implementation of this
class is accomplished by minimal synchronization. This is mainly because the
ReentrantLock class is implemented with minimal synchronization, making the class
implementation more complex.

Lock Starvation
Whenever multiple threads compete for a scarce resource, there is the danger of star-
vation, a situation in which the thread never gets the resource. In Chapter 9, we dis-
cuss the concept in the context of CPU starvation: with a bad choice of scheduling
options, some threads never have the opportunity to become the currently running
thread and suffer from CPU starvation.

Lock starvation is similar to CPU starvation in that the thread is unable to execute. It
is different from CPU starvation in that the thread is given the opportunity to exe-
cute; it is just not able to because it is unable to obtain the lock. Lock starvation is
similar to a deadlock in that the thread waits indefinitely for a lock. It is different in
that it is not caused by a loop in the wait tree. Its occurrence is somewhat rare and is
caused by a very complex set of circumstances.

Lock starvation occurs when a particular thread attempts to acquire a lock and never
succeeds because another thread is already holding the lock. Clearly, this can occur
on a simple basis if one thread acquires the lock and never releases it: all other
threads that attempt to acquire the lock never succeed and starve. Lock starvation
can also be more subtle; if six threads are competing for the same lock, it’s possible
that five threads will hold the lock for 20% of the time, thus starving the sixth
thread.

Lock starvation is not something most threaded Java programs need to consider. If
our Java program is producing a result in a finite period of time, eventually all
threads in the program will acquire the lock, if only because all the other threads in
the program have exited. Lock starvation also involves the question of fairness: at
certain times we want to make sure that threads acquire the locks in a reasonable
order so that one thread won’t have to wait for all other threads to exit before it has
its chance to acquire the lock.

Consider the case of two threads competing for a lock. Assume that thread A
acquires the object lock on a fairly periodic basis, as shown in Figure 6-3.

Here’s what happens at various points on the graph:

T0 At time T0, both thread A and thread B are able to run, and thread A is the cur-
rently running thread.

T1 Thread A is still the currently running thread, and it acquires the object lock
when it enters the synchronized block.

T2 A timeslice occurs; this causes thread B to become the currently running thread.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Lock Starvation | 139

T3 Very soon after becoming the currently running thread, thread B attempts to
enter the synchronized block. This causes thread B to block. That allows thread
A to continue to run; thread A continues executing in the synchronized block.

T4 Thread A exits the synchronized block. Thread B could obtain the lock now, but
it is still not running on any CPU.

T5 Thread A once again enters the synchronized block and acquires the lock.

T6 Thread B once again is assigned to a CPU. It immediately tries to enter the syn-
chronized block, but the lock for the synchronized block is once again held by
thread A. So, thread B blocks again. Thread A then gets the CPU, and we’re now
in the same state as we were at time T3.

It’s possible for this cycle to continue forever such that thread B can never acquire
the lock and actually do useful work.

Clearly, this example is a pathological case: CPU scheduling must occur only during
those time periods when thread A holds the lock for the synchronized block. With
two threads, that’s extremely unlikely and generally indicates that thread A is hold-
ing the lock almost continuously. With several threads, however, it’s not out of the
question that one thread may find that every time it is scheduled, another thread
holds the lock it wants.

Synchronized blocks within loops often have this problem:

while (true) {
 synchronized (this) {
 // execute some code
 }
}

At first glance, we might expect this not to be a problem; other threads can’t starve
because the lock is freed often, with each iteration of the loop. But as we’ve seen, this

Figure 6-3. Call graph of synchronized methods

Time

Out of
synchronized

block

T6T5T4T3T2

In
synchronized

block

T1T0

500 ms 500 ms

Thread A

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 6: Advanced Synchronization Topics

is not the case: unless another thread runs during the short interval between the end
of the synchronized block (when the lock is released) and the beginning of the next
iteration of the loop (when the lock is reacquired), no other thread will be able to
acquire the lock.

There are two points to take away from this:

Acquisition of locks does not queue. When a thread attempts to acquire a lock, it
does not check to see if another thread is already attempting to acquire the lock
(or, more precisely, if another thread has tried to acquire the lock and blocked
because it was already held). In pseudocode, the process looks like this:

while (lock is held)
 wait for a while
acquire lock

For threads of equal priority, there’s nothing in this process that prevents a lock
from being granted to one thread even if another thread is waiting.

Releasing a lock does not affect thread scheduling. When a lock is released, any
threads that were blocked waiting for that lock could run. However, no actual
scheduling occurs, so none of the threads that have just moved into the runna-
ble state are assigned to the CPU; the thread that has just released the lock keeps
access to the CPU. This can be different if the threads have different priorities or
are on a multiprocessor machine (where a different CPU might be idle).

Nonetheless, lock starvation remains, as might be guessed from our example, some-
thing that occurs only in rare circumstances. In fact, each of the following circum-
stances must be present for lock starvation to occur:

Multiple threads are competing for the same lock. This lock becomes the scarce
resource for which some threads may starve.

The results that occur during this period of contention must be interesting to us. If,
for example, we’re calculating a big matrix, there’s probably a point in time at
the beginning of our calculation during which multiple threads are competing
for the same lock and CPU. Since all we care about is the final result of this cal-
culation, it doesn’t matter to us that some threads are temporarily starved for the
lock: we still get the final answer in the same amount of time.We’re concerned
about lock starvation only if there’s a period of time during which it matters
whether the lock is allocated fairly.

All of the properties of lock starvation stem from the fact that a thread attempting to
acquire a lock checks only to see if another thread is holding the lock—the thread
knows nothing about other threads that are also waiting for the lock. This behavior
in conjunction with properties of the program such as the number of threads, their
priorities, and how they are scheduled manifests itself as a case of lock starvation.

Fortunately, this problem has already been solved by the ReentrantLock class. If
we’re in one of the rare situations where lock starvation can occur, we just need to

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Lock Starvation | 141

construct a ReentrantLock object where the fairness flag is set to true. Since the
ReentrantLock class with its fairness flag set grants the lock on very close to a first-
come, first-served basis, it is not possible for any thread to be starved for a lock
regardless of the number of threads or how they’re written.

Unfortunately, the downside to using the ReentrantLock class in this manner is that
we are affecting the scheduling. We discuss how threads are scheduled in Chapter 9,
but in general, threads have a priority, and the higher-priority threads are given the
CPU more often than low-priority threads. However, the ReentrantLock class does
not take that into account when issuing locks: locks are issued first-come, first-
served regardless of the thread’s priority.

Programs that set thread priorities do so for a reason. The reason could be because
the developer wanted to have the scheduler behave in a certain manner. While using
the fair flag in the ReentrantLock class may prevent lock starvation, it may also
change the desired scheduling behavior.

Lock starvation is a rare problem; it happens only under very distinct circumstances.
While it can be easily fixed with the ReentrantLock class, it may also change some of
these desired circumstances. On the other hand, if priorities and scheduling are not a
concern, the ReentrantLock class provides a very simple and quick fix.

Lock Starvation and Reader/Writer Locks
Generally, reader/writer locks are used when there are many more readers than writ-
ers; readers also tend to hold onto the lock for a longer period of time than they
would a simple lock. This is why the reader/writer lock is needed—to share data
access during the long periods of time when only reading is needed. Unfortunately,
readers can’t just grab the lock if the lock is held for reading by another thread. If
many readers were holding the lock, it would be possible for many more readers to
grab the lock before the first set of readers finished. Many more readers could then
obtain the lock before the second set of readers finished. This would prevent the
writer from ever obtaining the lock.

To solve this, the reader/writer lock does not grant the read lock to a new thread if
there is a writer waiting for the lock. Instead it places the reader into a wait state
until the first set of readers frees the lock. Once the first set of readers have com-
pleted, the first writer is given exclusive access to the lock. When that writer com-
pletes, the ReentrantReadWriteLock class consults its fairness flag to see what to do
next. If the fairness flag is true, the thread waiting longest—whether a reader or a
writer—is granted the lock (and multiple readers can get the lock in this case). If the
fairness flag is false, locks are granted arbitrarily.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 6: Advanced Synchronization Topics

Summary
The strong integration of locks into the Java language and API is very useful for pro-
gramming with Java threads. Java also provides very strong tools to allow thread pro-
gramming at a higher level. With these tools, Java provides a comprehensive library
to use for your multithreaded programs.

Even with this library, threaded programming is not easy. The developer needs to
understand the issues of deadlock and starvation, in order to design applications in a
concurrent fashion. While it is not possible to have a program threaded automati-
cally—with a combination of using the more advanced tools and development prac-
tices, it can be very easy to design and debug threaded programs.

Example Classes
Here are the class names and Ant targets for the examples in this chapter:

Three tests are available for each example. The first test uses two threads and two
competing locks. The second test uses three threads and three competing locks. The
third test uses condition variables to cause the deadlock. Test numbers are selected
with this property:

<property name="DeadlockTestNumber" value="2"/>

Description Main Java class Ant target

Deadlock-detecting Lock (example 1) javathreads.examples.ch06.
DeadlockDetectingLock

ch6-ex1

Alternate Deadlock-detecting Lock
(example 2)

javathreads.examples.ch06.
AlternateDeadlockDetectingLock

ch6-ex2

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

143

Chapter 7 CHAPTER 7

Threads and Swing

The Swing classes in Java are not threadsafe; if you access a Swing object from multi-
ple threads, you run the chance of data corruption, hung GUIs, and other undesir-
able effects. To deal with this situation, you must make sure that you access Swing
objects only from one particular thread. We saw some examples of this in previous
chapters; this chapter explains the details of how threads interact with Swing. The
general principles of this chapter apply to other thread-unsafe objects: you can han-
dle any thread-unsafe class by accessing it in a single thread in much the same way as
Swing objects must be accessed from a special thread.

We’ll start with a general discussion of the threads that Swing creates automatically
for you, and then we’ll see how your own threads can interact with those threads
safely. In doing so, we’ll (finally) explain the last pieces of our typing program.

If you’re interested in the general case of how to deal with a set of classes that are not
threadsafe, you can read through the first section of this chapter for the theory of
how this is handled, then review our example in Chapter 10 to see the theory put
into practice.

Swing Threading Restrictions
A GUI program has several threads. One of these threads is called the event-
dispatching thread. This thread executes all the event-related callbacks of your
program (e.g., the actionPerformed() and keyPressed() methods in our typing test
program). Access to all Swing objects must occur from this thread.

The reason for this is that Swing objects have complex inner state that Swing itself
does not synchronize access to. A JSlider object, for example, has a single value that
indicates the position of the slider. If the user is in the middle of changing the posi-
tion of the slider, that value may be in an intermediate or indeterminate state; all of
that processing occurs on the event-dispatching thread. A second thread that
attempts to read the value of the slider cannot read that value directly since by doing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 7: Threads and Swing

so the thread may read the value while the value is in its intermediate state. There-
fore, the second thread must arrange for the event-dispatching thread to read the
value and pass the value back to the thread.

Note that it’s not enough for our second thread simply to synchronize access to the
JSlider object. The internal Swing mechanisms aren’t synchronizing access, so the
two threads still simultaneously access the internal state of the slider. Remember that
locks are cooperative: if all threads do not attempt to acquire the lock, race condi-
tions can still occur.

It may seem like this restriction is overkill: the value of a JSlider is a single variable
and could simply be made volatile. Actually, that’s not the case. The value of things
within Swing components can be very complex. Many Swing components follow a
model-view-controller design pattern, and accessing those components from one
thread while the model is being updated on the event-dispatching thread would be
very dangerous. Even the simplest of Swing components contain complex state; it’s
never acceptable to call any of their methods from a thread other than the event-
dispatching thread.

Consequently, all calls to Swing objects must be made on the event-dispatching
thread. That’s the thread that Swing uses internally to change the state of its objects;
as long as you make calls to Swing objects from that thread, no race condition can
occur. Four exceptions to this rule are:

• Swing objects that have not been displayed can be created and manipulated by
any thread. That means you can create your GUI objects in any thread but once
they’ve been displayed, they can be accessed only on the event-dispatching
thread. A GUI object is displayed when the show() method of its parent frame is
called.

• The repaint() method can be called from any thread.

• The invokeLater() method can be called from any thread.

• The invokeAndWait() method can be called from any thread other than the
event-dispatching thread.

Processing on the Event-Dispatching Thread
As we mentioned, all the event callbacks of your program occur on the event-
dispatching thread. This is good news since it means that most of the code that needs
to access Swing components is automatically called on the event-dispatching thread.

In our sample typing program, we access Swing components from these methods:

• CharacterDisplayCanvas()

• CharacterDisplayCanvas.preferredSize()

• CharacterDisplayCanvas.newCharacter()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using invokeLater() and invokeAndWait() | 145

• CharacterDisplayCanvas.paintComponent()

• SwingTypeTester.initComponents()

• The actionPerformed() methods of the SwingTypeTester button objects

• The keyPressed() method of the SwingTypeTester canvas

• ScoreLabel.setScore()

• AnimatedCharacterDisplayCanvas()

• AnimatedCharacterDisplayCanvas.newCharacter()

• AnimatedCharacterDisplayCanvas.paintComponent()

To write a threadsafe Swing program, we must make sure that the methods listed
above are accessed only from within the event-dispatching thread. Note that this list
includes the constructor for the AnimatedCharacterDisplayCanvas class; remember
that the constructor calls the constructor of its superclass.

The Swing classes have already made sure that all callbacks occur on the event-
dispatching thread. The preferredSize(), paintComponent(), keyPressed(), and
actionPerformed() methods are all callbacks, so we don’t need to worry about those.
The initComponents() method is called from the main thread of the program, which
is not the event-dispatching thread. The constructor for the display canvases is called
from the same thread. However, the initComponents() method and its constructors
create the Swing objects; they have not yet been displayed. That falls into the first
exception case that we listed earlier. The newCharacter() method calls only the
repaint() method, so that falls into the second exception we listed above. Finally,
the setScore() method accesses Swing components only within the invokeLater()
method, so that falls into our third category. All access to Swing classes within our
application is handled correctly.

The first two exceptions in our list are self-explanatory. In the next section, we
explain the last two exceptions in our list.

Using invokeLater() and invokeAndWait()
In the CharacterDisplayCanvas class, we were able to work around Swing’s threading
restrictions because all the calls that manipulated Swing objects could go into an
event callback method (the paintComponent() method). That’s not always conve-
nient (or even possible). So Swing provides another mechanism that allows you to
run code on the event-dispatching thread: the invokeLater() and invokeAndWait()
methods.

The invokeLater() and invokeAndWait() methods allow you to define a task and ask
the event-processing thread to perform that task. If you have a non-GUI thread that
needs to read the value of a slider, for instance, you put the code to read the slider

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 7: Threads and Swing

into a Runnable object and pass that Runnable object to the invokeAndWait() method,
which returns the value the thread needs to read.

Let’s look again at our score label class. The setScore() method of that class can be
called when the user types a character (in which case it is running on the event-
dispatching thread). It can also be called when the random character generator sends
a new character. Therefore, the setScore() method must use the invokeLater()
method to make that call:

package javathreads.examples.ch07.example1;
...
public class ScoreLabel extends JLabel implements CharacterListener {
 ...
 private void setScore() {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 setText(Integer.toString(score));
 }
 });
 }
}

The invokeLater() method takes a Runnable object as its parameter. It sends that
object to the event-dispatching thread, which executes the run() method. This is
why it’s always safe for the run() method to execute Swing code.

Note that the run() method is in its own object. This is why we made the score vari-
able volatile rather than protecting it by using synchronization. Synchronizing the
run() method grabs the lock of the anonymous inner class object, not the lock of the
ScoreLabel object. It’s much easier to use a volatile variable.

For the most part, the invokeAndWait() method looks similar, but it has three impor-
tant semantic differences. First, the invokeLater() method runs asynchronously at
some time in the future. You don’t know when it will actually run. On the other
hand, the invokeAndWait() method is synchronous: it does not return until its target
has completed execution. As a rule of thumb, then, you should use the
invokeAndWait() method to read the value of Swing components or to ensure that

Which invokeLater()? Which invokeAndWait()?
Java defines the invokeLater() and invokeAndWait() methods in two different
classes: javax.swing.SwingUtilities and java.awt.EventQueue. This is due to his-
torical reasons, and you can use whichever class you like. The methods are identical.
The invokeLater() method of the SwingUtilities class simply calls the
invokeLater() method of the EventQueue class, so they are functionally identical; the
same is true of the two invokeAndWait() methods.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Long-Running Event Callbacks | 147

something is displayed on the screen before you continue program execution. Other-
wise, you can use the invokeLater() method.

The second difference is that the invokeAndWait() method cannot itself be called
from the event-dispatching thread. The thread running the invokeAndWait() method
must wait for the event-dispatching thread to execute some code. No thread, includ-
ing the event-dispatching thread, can wait for itself to do something else. Conse-
quently, if you execute the invokeAndWait() method from the event-dispatching
thread, it throws a java.lang.Error. That causes the event-dispatching thread to exit
(unless you’ve taken the unusual step of catching Error objects in your code); in
turn, your entire program becomes disabled.

The third difference is that the invokeAndWait() method can throw an
InterruptedException if the thread is interrupted before the event-dispatching thread
runs the target, or an InvocationTargetException if the Runnable object throws a
runtime exception or error.

If you have code that you want to take effect immediately and that might be called from
the event-dispatching thread, you can use the SwingUtilities.isEventDispatchThread()
method to check the thread your code is executing on. You can then either call
invokeAndWait() (if you’re not on the event-dispatching thread) or call the Swing meth-
ods directly.

We could use that method in our ScoreLabel class like this:

package javathreads.examples.ch07.example2;
...
public class ScoreLabel extends JLabel implements CharacterListener {
 ...
 private void setScore() {
 if (SwingUtilities.isEventDispatchThread())
 setText(Integer.toString(score));
 else try {
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run() {
 setText(Integer.toString(score));
 }
 });
 } catch (InterruptedException ie) {
 } catch (InvocationTargetException ite) {}
 }
}

Long-Running Event Callbacks
There’s another case when Swing programs and threads interact: a long-running
event callback. While an event callback is executing, the rest of the GUI is unrespon-
sive. If this happens for a long period of time, it can be very frustrating to users, who

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 7: Threads and Swing

often assume that the program has hung. It’s far better to execute the long-running
task in a separate thread, providing GUI feedback as appropriate.

This task can be accomplished in a few ways. By now, you should be familiar enough
with thread programming to spawn your own thread and execute the task, and that’s
often the simplest route to take. A utility class called the SwingWorker class, available
on Sun’s java.sun.com web site, can handle many of the threading details for you
(but, in the end, it is not really any easier than spawning your own thread).

If you’re going to have a lot of tasks like this, though, the easiest thing to do is use a
thread pool or a task scheduler. If you have a lot of tasks to execute in parallel, you
can use a thread pool (see Chapter 10). If you have only a single task to execute every
now and then, you can use a task scheduler (see Chapter 11).

Here’s an example of how to take the first path and set up a thread in a long-run-
ning callback. Suppose that in our type tester, the start method must log into a server
in order to get the data it is to display. You want to perform that operation in a sepa-
rate thread because it may take a long time, during which you don’t want the GUI to
be unresponsive. In fact, you want to give the user an option to cancel that opera-
tion in case communicating with the server takes too long.

Here’s a class that simulates connecting to the server. While it’s at it, the frame dis-
plays some progress messages:

package javathreads.examples.ch07.example3;

import java.lang.reflect.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class FeedbackFrame extends JFrame implements Runnable {

 private SwingTypeTester stt;
 private Thread t;
 private JLabel label;
 private int state;

 static String[] stateMessages = {
 "Connecting to server...",
 "Logging into server...",
 "Waiting for data...",
 "Complete"
 };

 public FeedbackFrame(SwingTypeTester stt) {
 this.stt = stt;
 setupFrame();
 t = new Thread(this);
 t.start();
 pack();
 show();
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Long-Running Event Callbacks | 149

 private void setupFrame() {
 label = new JLabel();
 label.setPreferredSize(new Dimension(200, 200));
 Container c = getContentPane();
 JButton stopButton = new JButton("Stop");
 stopButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 error();
 }
 });
 c.add(label, BorderLayout.NORTH);
 c.add(stopButton, BorderLayout.SOUTH);
 }

 private void setText(final String s) {
 try {
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run() {
 label.setText(s);
 }
 });
 } catch (InterruptedException ie) {
 error();
 } catch (InvocationTargetException ite) {
 error();
 }
 }

 private void error() {
 t.interrupt();
 if (SwingUtilities.isEventDispatchThread())
 closeDown();
 else SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 closeDown();
 }
 });
 }

 private void closeDown() {
 stt.setupCancelled();
 hide();
 dispose();
 }

 public void run() {
 // Simulate connecting to server
 for (int i = 0; i < stateMessages.length; i++) {
 setText(stateMessages[i]);
 try {
 Thread.sleep(5 * 1000);

 } catch (InterruptedException ie) {}
 if (Thread.currentThread().isInterrupted())
 return;

 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 7: Threads and Swing

 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 stt.setupDone();
 hide();
 dispose();
 }
 });
 }
}

We’ve used all our Swing utilities and techniques in this example. The component
itself is a frame, and it starts a new thread. Every few seconds, that thread displays a
new status message in the frame by calling the setText() method. That method isn’t
executing on the event-dispatching thread, so it must use the invokeAndWait()
method to pass the text to the label. When the thread has finished displaying status
messages (meaning that in the real world, it has connected to the server), it informs
the SwingTypeTester class that setup is complete—and since that class expects every-
thing to run on the event-dispatching thread, the setupDone() method must be called
from an invokeLater() method.

When the server gets an error or the user presses the Stop button, we need to tell the
SwingTypeTester component that setup was cancelled. The code is the same, but the
context is different: the actionPerformed() method runs on the event-dispatching
thread while the exception in the run() method runs on a separate thread. So we
must use the isEventDispatchThread() method to determine how to call the Swing
components.

Summary
The Swing classes comprise one of the largest set of classes in the Java API. While
threads are an integral part of Java, the Swing classes themselves are not threadsafe.
This places a responsibility on the developer, who must make sure that she follows
the appropriate access patterns for Swing classes. Methods on Swing objects (with a
few exceptions) can be invoked only on the event-dispatching thread.

Swing’s use of the invokeLater() method gives us a hint about how we might han-
dle thread-unsafe libraries in general: as long as access to those libraries occurs only
on a single thread, we will not run into any threading problems. Passing a Runnable
object to a thread pool that contains a single thread is precisely analogous to the
technique used by the Swing classes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Summary | 151

Example Classes
Here are the class names and Ant targets for the examples in this chapter:

Description Main Java class Ant target

Swing Type Tester (all components thread-
safe)

javathreads.examples.ch07.example1.
SwingTypeTester

ch7-ex1

Swing Type Tester (uses invokeAndWait) javathreads.examples.ch07.example2.
SwingTypeTester

ch7-ex2

Swing Type Tester with simulated server
connection

javathreads.examples.ch07.example3.
SwingTypeTester

ch7-ex3

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

152

Chapter 8CHAPTER 8

Threads and Collection Classes

In this chapter, we’ll look at how threads interact with the collection classes pro-
vided by Java. We’ll examine some synchronization issues and how they affect our
choice and usage of collection classes.

The collection classes comprise many of the classes in the java.util package (and, in
J2SE 5.0, some of the classes in the java.util.concurrent package). Collection
classes are used to store objects in some data structure: a hashtable, an array, a
queue, and so on. Collection classes interact with Java threads in a few areas:

• Collection classes may or may not be threadsafe, so threads that use those
classes must understand their synchronization requirements.

• Not all collections have the same performance with regard to thread synchroni-
zation, so threads that use them must understand the conditions in which they
can be used optimally.

• Newer collection classes automatically provide some threading semantics (such
as using thread notification when their data changes).

• Threads commonly use collection classes to share data.

We begin this chapter with an overview of the collection classes; the overview
addresses the thread-safety of the various classes. Next, we show how some of the
newer collection classes interact with threads. And finally, we show a common
design pattern in which multiple threads use the collections: the producer-consumer
model.

Overview of Collection Classes
In the beginning, Java provided only a few collection classes. In fact, in the first ver-
sion of Java, these classes weren’t even referred to as collection classes; they were
simply utility classes that Java provided. For the most part, these classes were all
threadsafe; the early collection classes were designed to prevent developers from

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Overview of Collection Classes | 153

inadvertently corrupting the data structures by using them in different threads with-
out appropriate data synchronization.

JDK 1.2 introduced the formal idea of collection classes. The few existing data col-
lection classes from JDK 1.0 and 1.1 were integrated into this framework, which was
expanded to include new classes and new interfaces. Defining the collection classes
in terms of interfaces made it possible to write programs that could use different col-
lection implementations at runtime.

The controversial change introduced in JDK 1.2 is that most of the collection classes
are now, by default, not threadsafe. Threadsafe versions of the classes exist, but the
decision was made to allow the developer to manage the thread-safety of the classes.
Two factors inform this decision: the performance of synchronization and the
requirements of algorithms that use the collection. We’ll have more to say on those
issues in the next section. JDK 1.3 and 1.4 added some minor extensions to these
collection classes.

J2SE 5.0 introduces a number of new collection classes. Some of these classes are
simple extensions to the existing collections framework, but many of them have two
distinguishing features. First, their internal implementation makes heavy use of the
new J2SE 5.0 synchronization tools (in particular, atomic variables). Second, most of
these classes are designed to be used by multiple threads and support the idea of
thread notification when data in the collection becomes available.

Collection Interfaces
As we mentioned, the collection classes are based around a set of interfaces intro-
duced in JDK 1.2:

java.util.List
A list is an ordered set of data (e.g., an array). Unlike actual arrays, lists are not
fixed in size; they can grow as more data is added. Lists provide methods to get
and set data elements by index and also to insert or remove data at arbitrary
points (expanding or shrinking the list as necessary). Therefore, they can also be
thought of as linked lists.

java.util.Map
A map associates values with keys. Duplicate keys are not allowed; each key
maps to at most one value. The java.util.SortedMap interface extends this to
provide maps that are sorted based on a collection-specific definition. The java.
util.Dictionary interface provides essentially the same interface as a map but is
“obsolete” (unofficially deprecated).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 8: Threads and Collection Classes

java.util.Set
A set is a collection of elements that are stored in no particular order. Duplicate
elements are not allowed. The java.util.SortedSet interface extends this to pro-
vide a sorted set of objects.

java.util.Queue
A queue is an ordered set of data that is operated on in either last-in-first-out
(LIFO) or first-in-first-out (FIFO) order (although no implementations presently
support a LIFO ordering). Previously, queues could be simulated by lists, but the
new queue implementations are more efficient. This interface was introduced in
J2SE 5.0.

Threadsafe Collection Classes
Only a few collection classes are threadsafe. As we’ll see later, being threadsafe does
not necessarily mean that you can safely use them in every multithreaded program;
programs must still be designed in a fashion that allows the collection to be used by
multiple threads. Here are some of the more common threadsafe collection classes:

java.util.Vector (a List)
A simple array, allowing index-based operations and random insertion and
deletion.

java.util.Stack (a List)
The Stack class extends the Vector class to provide the ability to treat the vector
as a stack. Objects can be pushed onto the stack or popped from the stack,
providing a LIFO ordering (however, this class does not implement the Queue
interface).

java.util.Hashtable (a Map)
A simple, unordered map of keys to values.

java.util.concurrent.ConcurrentHashMap (a Map)
A class that implements an unordered map. It uses less synchronization than the
Hashtable class.

java.util.concurrent.CopyOnWriteArrayList (a List)
A simple array list that provides safe semantics for unsynchronized iterator
access.

java.util.concurrent.CopyOnWriteArraySet (a Set)
A simple set that provides safe semantics for unsynchronized iterator access.

java.util.concurrent.ConcurrentLinkedQueue (a Queue)
An unbounded FIFO queue. It is optimized for multiple threads inserting and
removing items from the collection.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Overview of Collection Classes | 155

Thread-Unsafe Collection Classes
The majority of collection classes are not threadsafe. When used in multithreaded pro-
grams, access to them must always be controlled by some synchronization. This syn-
chronization can be accomplished either by using a “wrapper” class that synchronizes
every access operation (using the Collections class, which we’ll show later) or by using
explicit synchronization:

java.util.BitSet
A bit set stores an array of boolean (1-bit) values. The size of the array can grow
at will. A BitSet saves space compared to an array of booleans since the bit set
can store multiple values in one long variable. Despite its name, it does not
implement the Set interface.

java.util.HashSet (a Set)
A class that implements an unordered set collection.

java.util.TreeSet (a SortedSet)
A class that implements a sorted (and ordered) set collection.

java.util.HashMap (a Map)
A class that implements an unordered map collection.

java.util.WeakHashMap (a Map)
This class is similar to the HashMap class. The difference is that the key is a weak
reference—it is not counted as a reference by the garbage collector. The class
therefore deletes key-value pair entries from the map when the key has been gar-
bage collected.

java.util.TreeMap (a SortedMap)
A class that implements a sorted (and ordered) map collection. This map is
based on binary trees (so operations require log(n) time to perform).

java.util.ArrayList (a List)
A class that implements a list collection. Internally, it is implemented using
arrays.

java.util.LinkedList (a List and a Queue)
A class that implements a list and a queue collection, providing a doubly linked
list.

java.util.LinkedHashSet (a Set)
A set collection that sorts its items based on the order in which they are added to
the set.

java.util.LinkedHashMap (a Map)
A map collection that sorts its items based on the order in which they are added
to the map.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 8: Threads and Collection Classes

java.util.IdentityHashMap (a Map)
A map collection. Unlike all other maps, this class uses == for key comparison
instead of the equals() method.

java.util.EnumSet (a Set)
A specialized set collection that holds only Enum values.

java.util.EnumMap (a Map)
A specialized map collection that uses only Enum values as keys.

java.util.PriorityQueue (a Queue)
An unbounded queue in which retrieval is not based on order (LIFO or FIFO);
instead, objects are removed according to which is the smallest (as determined
by the Comparable or Comparator interface).

Thread-Notification Collection Classes
A number of classes in the java.util.concurrent package are designed to provide
thread notification when their contents change. They are inherently threadsafe since
they are expected to be used by multiple threads simultaneously. They simplify usage
of collections by providing semantics to handle out-of-space and out-of-data condi-
tions within the collection. We’ll see examples of this later in the chapter.

java.util.concurrent.ArrayBlockingQueue (a Queue)
A bounded FIFO queue. This collection supports the blocking interface, an
interface that allows threads to wait either for space to be available (while stor-
ing data) or data to be available (while retrieving data).

java.util.concurrent.LinkedBlockingQueue (a Queue)
A FIFO queue that can be either bounded or unbounded. This collection sup-
ports the blocking interface.

java.util.concurrent.SynchronousQueue (a Queue)
A bounded FIFO queue. The bound on this queue is one (no elements are actu-
ally held in the collection), and multiple threads operate on it synchronously.

java.util.concurrent.PriorityBlockingQueue (a Queue)
A threadsafe implementation of the PriorityQueue class. This class also supports
the blocking interface.

java.util.concurrent.DelayQueue (a Queue)
A class that implements an unbounded queue with a time-based order. Retrieval
from the queue is based on the object whose getDelay() method has expired
earliest: elements whose time expiration has not occurred can’t be retrieved from
the queue.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization and Collection Classes | 157

Synchronization and Collection Classes
When writing a multithreaded program, the most important question when using a
collection class is how to manage its synchronization. Synchronization can be man-
aged by the collection class itself or managed explicitly in your program code. In the
examples in this section, we’ll explore both of these options.

Simple Synchronization
Let’s take the simple case first. In the simple case, you’re going to use the collection
class to store shared data. Other threads retrieve data from the collection, but there
won’t be much (if any) manipulation of the data.

In this case, the easiest object to use is a threadsafe collection (e.g., a Vector or
Hashtable). That’s what we’ve done all along in our CharacterEventHandler class:

package javathreads.examples.ch08.example1;

import java.util.*;

public class CharacterEventHandler {
 private Vector listeners = new Vector();

 public void addCharacterListener(CharacterListener cl) {
 listeners.add(cl);
 }

 public void removeCharacterListener(CharacterListener cl) {
 listeners.remove(cl);
 }

 public void fireNewCharacter(CharacterSource source, int c) {
 CharacterEvent ce = new CharacterEvent(source, c);
 CharacterListener[] cl = (CharacterListener[])
 listeners.toArray(new CharacterListener[0]);
 for (int i = 0; i < cl.length; i++)
 cl[i].newCharacter(ce);
 }
}

In this case, using a vector is sufficient for our purposes. If multiple threads call
methods of this class at the same time, there is no conflict. Because the listeners
collection is threadsafe, we can call its add(), remove(), and toArray() methods at
the same time without corrupting the internal state of the Vector object. Strictly
speaking, there is a race condition here in our use of the toArray() method; we’ll
talk about that a little more in the next section. But the point is that none of the
methods on the vector see data in an inconsistent state because the Vector class itself
is threadsafe.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 8: Threads and Collection Classes

A second option would be to use a thread-unsafe class (e.g., the ArrayList class) and
manage the synchronization explicitly:

package javathreads.examples.ch08.example2;
...
public class CharacterEventHandler {
 private ArrayList listeners = new ArrayList();
 public synchronized void addCharacterListener(CharacterListener cl) {
 ...
 }
 public synchronized void removeCharacterListener(CharacterListener cl) {
 ...
 }
 public synchronized void fireNewCharacter(CharacterSource source, int c) {
 ...
 }
}

Or we could have synchronized the class like this:

package javathreads.examples.ch08.example3;
...
public class CharacterEventHandler {
 private ArrayList listeners = new ArrayList();

 public void addCharacterListener(CharacterListener cl) {
 synchronized(listeners) {
 listeners.add(cl);
 }
 }

 public void removeCharacterListener(CharacterListener cl) {
 synchronized(listeners) {
 listeners.add(cl);
 }
 }
 public void fireNewCharacter(CharacterSource source, int c) {
 CharacterEvent ce = new CharacterEvent(source, c);
 CharacterListener[] cl;
 synchronized(listeners) {
 cl = (CharacterListener[])
 listeners.toArray(new CharacterListener[0]);
 }
 for (int i = 0; i < cl.length; i++)
 cl[i].newCharacter(ce);
 }
}

In this example, it doesn’t matter whether we synchronize on the collection object or
the event handler object (this); either one ensures that two threads are not simulta-
neously calling methods of the ArrayList class.

Our third option is to use a synchronized version of the thread-unsafe collection
class. Most thread-unsafe collection classes have a synchronized counterpart that is

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization and Collection Classes | 159

threadsafe. The threadsafe collections are constructed by calling one of these static
methods of the Collections class:

Set s = Collections.synchronizedSet(new HashSet(...));
Set s = Collections.synchronizedSet(new LinkedHashSet(...));
SortedSet s = Collections.synchronizedSortedSet(new TreeSet(...));
Set s = Collections.synchronizedSet(EnumSet.noneOf(obj.class));
Map m = Collections.synchronizedMap(new HashMap(...));
Map m = Collections.synchronizedMap(new LinkedHashMap(...));
SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));
Map m = Collections.synchronizedMap(new WeakHashMap(...));
Map m = Collections.synchronizedMap(new IdentityHashMap(...));
Map m = Collections.synchronizedMap(new EnumMap(...));
List list = Collections.synchronizedList(new ArrayList(...));
List list = Collections.synchronizedList(new LinkedList(...));

Any of these options protect access to the data held in the collection. This is accom-
plished by wrapping the collection in an object that synchronizes every method of
the collection interface: it is not designed as an optimally synchronized class. Also
note that the queue collection is not supported: the Collections class supplies only
wrapper classes that support the Set, Map, and List interfaces. This is not a problem
in most cases since the majority of the queue implementations are synchronized (and
synchronized optimally).

Complex Synchronization
A more complex case arises when you need to perform multiple operations atomi-
cally on the data held in the collection. In the previous section, we were able to use
simple synchronization because the methods that needed to access the data in the
collection performed only a single operation. The addCharacterListener() method
has only a single statement that uses the listeners vector, so it doesn’t matter if the
data changes after the addCharacterListener() method calls the listeners.add()
method. As a result, we could rely on the container to provide the synchronization.

We alluded to a race condition in the fireNewCharacter() method. After we call the
listeners.toArray() method, we cycle through the listeners to call each of them. It’s
entirely possible that another thread will call the removeCharacterListener() method
while we’re looping through the array. That won’t corrupt the array or the listeners
vector, but in some algorithms, it could be a problem: we’d be operating on data that
has been removed from the vector. In our program, that’s okay: we have a benign
race condition. In other programs, that may not necessarily be the case.

Suppose we want to keep track of all the characters that players typed correctly (or
incorrectly). We could do that with the following:

package javathreads.examples.ch08.example4;

import java.util.*;
import javax.swing.*;
import javax.swing.table.*;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 8: Threads and Collection Classes

public class CharCounter {
 public HashMap correctChars = new HashMap();
 public HashMap incorrectChars = new HashMap();
 private AbstractTableModel atm;

 public void correctChar(int c) {
 synchronized(correctChars) {
 Integer key = new Integer(c);
 Integer num = (Integer) correctChars.get(key);
 if (num == null)
 correctChars.put(key, new Integer(1));
 else correctChars.put(key, new Integer(num.intValue() +1));
 if (atm != null)
 atm.fireTableDataChanged();
 }
 }

 public int getCorrectNum(int c) {
 synchronized(correctChars) {
 Integer key = new Integer(c);
 Integer num = (Integer) correctChars.get(key);
 if (num == null)
 return 0;
 return num.intValue();
 }
 }

 public void incorrectChar(int c) {
 synchronized(incorrectChars) {
 Integer key = new Integer(c);
 Integer num = (Integer) incorrectChars.get(key);
 if (num == null)
 incorrectChars.put(key, new Integer(-1));
 else incorrectChars.put(key, new Integer(num.intValue() -1));
 if (atm != null)
 atm.fireTableDataChanged();
 }
 }

 public int getIncorrectNum(int c) {
 synchronized(incorrectChars) {
 Integer key = new Integer(c);
 Integer num = (Integer) incorrectChars.get(key);
 if (num == null)
 return 0;
 return num.intValue();
 }
 }

 public void addModel(AbstractTableModel atm) {
 this.atm = atm;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronization and Collection Classes | 161

Here we use thread-unsafe collections to hold the data and explicitly synchronize
access around the code that uses the collections. It would be insufficient to use
Hashtable collections in this code without also synchronizing as we did earlier.
Although retrieving a value from a hashtable is threadsafe, and replacing an element
in a hashtable is also threadsafe, the overall operation is not threadsafe: both collec-
tion operations must be atomic for the algorithm to succeed. Otherwise, two threads
could simultaneously retrieve the stored value, increment it, and store it; the net
result would be a score that is one less than it should be.

The moral of the story is that using a threadsafe collection does not guarantee the cor-
rectness of your program. Because of the explicit synchronization required in this
example, we were able to use a thread-unsafe collection (although, as we’ll see in
Chapter 14, if you use a threadsafe collection, it’s unlikely you’ll see much difference.)

Iterators and Enumerations
Many situations call for using each element of a collection. Such is the case in our
example. We called the toArray() method, which returns an array containing every
element in the vector. The Vector and Hashtable classes also have methods that
return a java.util.Enumeration object that contains every element in the collection.
More generally, all collection classes implement one or more methods that return a
java.util.Iterator object. The iterator also contains every element in the collection.

Each of these techniques presents special synchronization concerns. We’ve already
seen that looping through the array returned by the toArray() method can lead to a
situation where we’re accessing an element in the array that no longer appears in the
collection. That may or may not be a problem for your program; if it is a problem,
the solution is to synchronize access around the loop that uses the array.

Enumeration objects are difficult to use without explicit synchronization. The enu-
meration keeps state information about the collection; if the collection is modified
while the enumeration is active, the enumeration may become confused. The enu-
meration fails in some random way, possibly through an unexpected runtime excep-
tion (e.g., a NullPointerException).

To use an enumeration of a collection that may also be used by multiple threads, you
should synchronize on the collection object itself:

package javathreads.examples.ch08.example5;
...
 public void fireNewCharacter(CharacterSource source, int c) {
 CharacterEvent ce = new CharacterEvent(source, c);
 Enumeration e;
 synchronized(listeners) {
 e = listeners.elements();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 8: Threads and Collection Classes

 while (e.hasMoreElements()) {
 ((CharacterListener) e.nextElement()).newCharacter(ce);
 }
 }
 }
}

You could synchronize the method instead, as long as your collection is not used in
any unsynchronized method. The point is that the enumeration and all uses of the
collection must be locked by the same synchronization object.

Iterators behave somewhat differently. If the underlying collection of an iterator is
modified while the iterator is active, the next access to the iterator throws a
ConcurrentModificationException, which is also a runtime exception. Unlike enu-
merations, if the iterator fails, the underlying collection can still be used. The way in
which iterators fail immediately after a modify operation is called “fail-fast.”

The safest way to use an iterator is to make sure its use is synchronized by its under-
lying collection (just as we did with the enumeration)—or to make sure that it and
the collection are protected by the same synchronization lock.

You can’t rely upon the fail-fast nature of iterators. Iterators make a best effort at
determining when the underlying collection has changed, but in the absence of syn-
chronization, it’s impossible to predict when the failure occurs. Once a failure has
occurred, the iterator is not useful for further processing. Therefore, you’re left with
a situation where some elements of the collection have been processed and others
have not.

Two classes—CopyOnWriteArrayList and CopyOnWriteArraySet—provide special itera-
tion semantics. These classes are designed to copy the underlying collection when
necessary so that iterators operate on a snapshot of the data from the time the itera-
tor was created. Modifying the collection while the iterator is active creates a copy of
the collection for the iterator.

This is an expensive operation, both in terms of time and memory usage. However, it
ensures that iterators can be used from unsynchronized code because the iterators
end up operating on old copies of the data. So, the iterators never throw a concur-
rent modification exception.

These classes are designed for cases where modifications to the collection are rare
and the iterator of the collection is used frequently by multiple threads. This allows
the iterators to be unsynchronized and still be threadsafe; as long as the updates are
rare enough, this yields better overall performance. Note, however, that race condi-
tions are still possible with this technique; it’s essentially the same type of operation
as we saw earlier with the toArray() method. The difference is when the copying
occurs: when you call the toArray() method, a copy of the collection is made at that
time. With the copy-on-write classes, the copy is made whenever the collection is
modified.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Producer/Consumer Pattern | 163

Thread-Aware Classes
Many collection classes are what we would term “thread-aware.” They have many
internal and subtle features that were designed specifically for threads:

• Some collections have an implementation that minimizes the need for synchroni-
zation by segmenting the collection. It is possible for threads to modify the col-
lection simultaneously, without any synchronization, when they are operating
on different segments.

• Some provide special services—such as iterator handling—that are specifically
designed for multithreaded environments. The main reason for copy-on-write
iterators is to balance the performance issues of many simultaneous threads iter-
ating through the collection against a few updates to the collection.

• Interfaces have been enhanced to handle issues related to threads better. For
example, the concurrent hashmap has the ability to add a key only if the key is
not in the map; this simple enhancement removes the need for explicit synchro-
nization for parallel writes of new elements.

The Producer/Consumer Pattern
One of the more common patterns in threaded programming is the producer/con-
sumer pattern. The idea is to process data asynchronously by partitioning requests
among different groups of threads. The producer is a thread (or group of threads)
that generates requests (or data) to be processed. The consumer is a thread (or group
of threads) that takes those requests (or data) and acts upon them. This pattern pro-
vides a clean separation that allows for better thread design and makes development
and debugging easier. This pattern is shown in Figure 8-1.

The producer/consumer pattern is common for threaded programs because it is easy
to make threadsafe. We just need to provide a safe way to pass data from the pro-
ducer to the consumer. Data needs to be synchronized only during the small period
of time when it is being passed between producer and consumer. We can use simple
synchronization since the acts of inserting and removing from the collection are sin-
gle operations. Therefore, any threadsafe vector, list, or queue can be used.

Figure 8-1. The producer/consumer pattern

Producer threads

Queue

Consumer threads

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 8: Threads and Collection Classes

The queue-based collection classes added to J2SE 5.0 were specifically designed for
this model. The queue data type is perfect to use for this pattern since it has the sim-
ple semantics of adding and removing a single element (with an optional ordering of
the requests). Furthermore, blocking queues provide thread-control functionality:
this allows you to focus on the functionality of your program while the queue takes
care of thread and space management issues. Of course, if you need control over
such issues, you can use a nonblocking queue and use your own explicit synchroni-
zation and notification.

Here’s a simple producer that uses a blocking queue:

package javathreads.examples.ch08.example6;

import java.util.*;
import java.util.concurrent.*;

public class FibonacciProducer implements Runnable {
 private Thread thr;
 private BlockingQueue<Integer> queue;

 public FibonacciProducer(BlockingQueue<Integer> q) {
 queue = q;
 thr = new Thread(this);
 thr.start();
 }

 public void run() {
 try {
 for(int x=0;;x++) {
 Thread.sleep(1000);
 queue.put(new Integer(x));
 System.out.println("Produced request " + x);
 }
 } catch (InterruptedException ex) {
 }
 }
}

The producer is implemented to run in a separate thread; it uses the queue to store
requests to be processed. We’re using a blocking queue because we want the queue
to handle the case where the producer gets too far ahead of the consumer. When that
happens, we want the producer to block (so that it does not produce any more
requests until the consumer catches up).

Here’s the consumer:

package javathreads.examples.ch08.example6;

import java.util.concurrent.*;

public class FibonacciConsumer implements Runnable {
 private Fibonacci fib = new Fibonacci();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Producer/Consumer Pattern | 165

 private Thread thr;
 private BlockingQueue<Integer> queue;

 public FibonacciConsumer(BlockingQueue<Integer> q) {
 queue = q;
 thr = new Thread(this);
 thr.start();
 }

 public void run() {
 int request, result;
 try {
 while (true) {
 request = queue.take().intValue();
 result = fib.calculateWithCache(request);
 System.out.println(
 "Calculated result of " + result + " from " + request);
 }
 } catch (InterruptedException ex) {
 }
 }
}

The consumer also runs in its own thread. It blocks until a request is in the queue, at
which point it calculates a Fibonacci number based on the request. The actual calcu-
lation is performed by the Fibonacci class available in the online examples (along
with a testing program).

Notice that the producer and consumer threads are decoupled: the producer never
directly calls the consumer (and vice versa). This allows us to interchange different
producers without affecting the consumer. It also allows us to have multiple produc-
ers serviced by a single consumer, or multiple consumers servicing a single producer.
More generally, we can vary the number of either based on performance needs or
user requirements.

The queue has also hidden all of the interesting thread code. When the queue is full,
the producer blocks: it waits on a condition variable. Later, when the consumer takes
an element from the queue, it notifies the waiting producer. A similar situation arises
when the consumer calls the take() method on an empty queue. You could write all
the condition variable code to handle this, but it’s far easier to allow the queue to do
it for you.

We chose to calculate a Fibonacci number in our test program because we used a
recursive algorithm that takes an increasingly long time to compute. It’s interesting
to watch how the producer and consumer interact in this case. In the beginning, the
consumer is blocked a lot of the time because it can calculate the Fibonacci number
in less than one second (the time period between requests from the producer). Later,
the producer spends most of its time blocked because it has overwhelmed the con-
sumer and filled the queue.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 8: Threads and Collection Classes

If you have a multiprocessor machine, you can run the example with multiple con-
sumer threads, but eventually the result is the same: the calculations take too long
for the consumers to keep up.

Using the Collection Classes
So, which are the best collections to use? Obviously, no single answer fits all cases.
However, here are some general suggestions. By adhering to these suggestions, we
can narrow the choice of which collection to use.

When working with collection classes, work through interfaces. As with all Java
programming, interfaces isolate implementation details. By using interfaces, the
programmer can easily refactor a program to use a different collection imple-
mentation by changing only the initialization code.

There is little performance benefit in using a nonsynchronized collection. This may
be surprising to many developers—for an understanding of the performance
issues around lock acquisition, see Chapter 14. In brief, performance issues with
lock acquisitions occur only when there is contention for the lock. However, a
nonsynchronized collection should have no contention for the lock. If there is
contention, having race conditions is a more problematic issue than
performance.

For algorithms with a lot of contention, consider using the concurrent collections.

The set, hashmap, and list collections that were added in J2SE 5.0 are highly
optimized. If a program’s algorithm fits into one of these interfaces, consider
choosing a J2SE 5.0 collection over a synchronized version of a JDK 1.2 collec-
tion. The concurrent collections are much better optimized for multithreaded
access.

For producer/consumer-based programs, consider using a queue as the collection.

Queues are best for the producer/consumer model for many reasons. First,
queues provide an ordering of requests, preventing data starvation. Second,
queues are highly optimized, having minimal synchronization, atomic accesses,
and even safe parallel access in many cases. With these collections, a huge num-
ber of threads can work in parallel with little bottlenecking at the queue’s access
points.

When possible, try to minimize the use of explicit synchronization. Iterators and
other support methods that require tranversal of an entire collection may need
more synchronization than the collection provides alone. This can be a problem
when many threads are involved.

Limit your use of iterators from the copy-on-write collections. First, use these
classes only when the number of elements in the collection is small. This is
because of the time and size requirements of the copy-on-write operation. Sec-
ond, your program must not require that the collection have the most up-to-date

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Summary | 167

information. The iterator contains only the information of the collection at the
time that it is created.

Consider using multiple collections. While some of these collections have minimal
synchronization, these synchronization periods can still be an issue when many
threads are involved. Consider having an algorithm that uses segmented collec-
tions instead of a generic implementation in which all threads use the same
collection.

There is little difference between a set and a map. Theoretically, a set and a map
are different in a number of ways, but in terms of implementation, there is little
difference. Many of the set collections are just implemented by using the map
collection. This means that the choice is not actually a choice: an item stored in
a set is merely stored as a key in a map.

Summary
In this chapter, we have examined how threads interact with Java’s collection classes.
We’ve seen the synchronization requirements imposed by different classes and how
to handle those requirements effectively. We’ve also examined how these classes can
be used for the common design pattern known as the producer/consumer pattern.

Example Classes
Here are the class names and Ant targets for the examples in this chapter. The online
examples also include test code for the producer/consumer pattern.

In the Ant script, the number of consumer threads is defined by this property:

<property name="nConsumers" value="1"/>

Description Main Java class Ant target

Swing Type Tester javathreads.examples.ch08.example1.
SwingTypeTester

ch8-ex1

Swing Type Tester (uses array lists) javathreads.examples.ch08.example2.
SwingTypeTester

ch8-ex2

Swing Type Tester (uses synchronized
blocks)

javathreads.examples.ch08.example3.
SwingTypeTester

ch8-ex3

SwingTypeTester (counts character
success/failures)

javathreads.examples.ch08.example4.
SwingTypeTester

ch8-ex4

SwingTypeTester (uses enumeration) javathreads.examples.ch08.example5.
SwingTypeTester

ch8-ex5

Producer/Consumer Model javathreads.examples.ch08.example6.
FibonacciTest nConsumers

ch8-ex6

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

168

Chapter 9CHAPTER 9

Thread Scheduling

The term “thread scheduling” covers a variety of topics. This chapter examines one
of those topics, which is how a computer selects particular threads to run. The infor-
mation in this chapter provides a basic understanding of when threads run and how
computers handle multiple threads. There’s little programming in this chapter, but
the information we present is an important foundation for other topics of thread
scheduling. In particular, the next few chapters discuss task scheduling and thread
pools, which are the programmatic techniques you use to manage large numbers of
threads and jobs.

The key to understanding Java thread scheduling is to realize that a CPU is a scarce
resource. When two or more threads want to run on a single-processor machine,
they end up competing for the CPU, and it’s up to someone—either the program-
mer, the Java virtual machine, or the operating system—to make sure that the CPU
is shared among these threads. The same is true whenever a program has more
threads than the machine hosting the program has CPUs. The essence of this chap-
ter is to understand how CPUs are shared among threads that want to access them.

In earlier examples, we didn’t concern ourselves with this topic because, in those
cases, the details of thread scheduling weren’t important to us. This was because the
threads we were concerned with didn’t normally compete for a CPU: they had spe-
cific tasks to do, but the threads themselves were usually short-lived or only periodi-
cally needed a CPU in order to accomplish their task. Consider the event-processing
thread in our typing program. Most of the time, this thread isn’t using a CPU
because it’s waiting for the user to do something. When the user types a character or
moves the mouse, the thread quickly processes the event and waits for the next
event; since the thread doesn’t need a CPU very often, we didn’t need to concern
ourselves with the thread’s scheduling.

The topic of thread scheduling is a difficult one to address because the Java specifica-
tion does not require implementations to schedule threads in a particular manner. It
provides guidelines that threads should be scheduled based on a thread’s priority,
but they are not absolute, and different implementations of the Java virtual machine

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An Overview of Thread Scheduling | 169

follow the guidelines differently. You cannot guarantee the order of execution of
threads across all Java virtual machines.

An Overview of Thread Scheduling
We’ll start by looking at the basic principles of how threads are scheduled. Any par-
ticular virtual machine (and underlying operating system) may not follow these prin-
ciples exactly, but the principles form the basis for our understanding of thread
scheduling.

Let’s start by looking at an example with some CPU-intensive threads. In this and
subsequent chapters, we’ll consume CPU resources with a recursive Fibonacci num-
ber generator, which has the advantage (for our purposes) of being an elegant and
very slow program:

package javathreads.examples.ch09;

import java.util.*;
import java.text.*;

public class Task implements Runnable {
 long n;
 String id;

 private long fib(long n) {
 if (n == 0)
 return 0L;
 if (n == 1)
 return 1L;
 return fib(n - 1) + fib(n - 2);
 }

 public Task(long n, String id) {
 this.n = n;
 this.id = id;
 }

 public void run() {
 Date d = new Date();
 DateFormat df = new SimpleDateFormat("HH:mm:ss:SSS");
 long startTime = System.currentTimeMillis();
 d.setTime(startTime);
 System.out.println("Starting task " + id + " at " + df.format(d));
 fib(n);
 long endTime = System.currentTimeMillis();
 d.setTime(endTime);
 System.out.println("Ending task " + id + " at " + df.format(d) +
 " after " + (endTime - startTime) + " milliseconds");
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 9: Thread Scheduling

We’ve made this class a Runnable object so that we can run multiple instances of it in
multiple threads:

package javathreads.examples.ch09.example1;

import javathreads.examples.ch09.*;

public class ThreadTest {

 public static void main(String[] args) {
 int nThreads = Integer.parseInt(args[0]);
 long n = Long.parseLong(args[1]);
 Thread t[] = new Thread[nThreads];

 for (int i = 0; i < t.length; i++) {
 t[i] = new Thread(new Task(n, "Task " + i));
 t[i].start();
 }
 for (int i = 0; i < t.length; i++) {
 try {
 t[i].join();
 } catch (InterruptedException ie) {}
 }
 }
}

Running this code with three threads produces this kind of output:

Starting task Task 2 at 00:04:30:324
Starting task Task 0 at 00:04:30:334
Starting task Task 1 at 00:04:30:345
Ending task Task 1 at 00:04:38:052 after 7707 milliseconds
Ending task Task 2 at 00:04:38:380 after 8056 milliseconds
Ending task Task 0 at 00:04:38:502 after 8168 milliseconds

Let’s look at this output. Notice that the last thread we created and started (Task 2)
was the first one that printed its first output. However, all threads started within 20
milliseconds of each other. The actual calculation took about eight seconds for each
thread, and the threads ended in a different order than they started in. In particular,
even though Task 2 started first, it took 349 milliseconds longer to perform the same
calculation as Task 1 and finished after Task 1.

Generally, we’d expect to see similar output on almost any Java virtual machine run-
ning on almost any platform: the threads would start at almost the same time in
some random order, and they would end in a (different) random order after having
run for about the same amount of time.

Certain virtual machines and operating systems, however, would produce this
output:

Starting task Task 0 at 00:04:30:324
Ending task Task 0 at 00:04:33:052 after 2728 milliseconds
Starting task Task 1 at 00:04:33:062

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An Overview of Thread Scheduling | 171

Ending task Task 1 at 00:04:35:919 after 2857 milliseconds
Starting task Task 2 at 00:04:35:929
Ending task Task 2 at 00:04:37:720 after 2791 milliseconds

The total here takes about the same amount of time, but now they have run sequen-
tially: the second task did not begin to execute until the first task was finished.
Another interesting fact about this output is that each individual task took less time
than it did previously. That’s a topic we’ll cover in Chapter 10.

Priority-Based Scheduling
In each of these examples, multiple threads compete for time on the CPU. When
multiple threads want to execute, it is up to the underlying operating system to
determine which of those threads are placed on a CPU. Java programs can influence
that decision in some ways, but the decision is ultimately up to the operating system.

A Java virtual machine is required to implement a preemptive, priority-based sched-
uler among its various threads. This means that each thread in a Java program is
assigned a certain priority, a positive integer that falls within a well-defined range.
This priority can be changed by the developer. The Java virtual machine never
changes the priority of a thread, even if the thread has been running for a certain
period of time.

The priority value is important because the contract between the Java virtual
machine and the underlying operating system is that the operating system must gen-
erally choose to run the Java thread with the highest priority. That’s what we mean
when we say that Java implements a priority-based scheduler. This scheduler is
implemented in a preemptive fashion, meaning that when a higher-priority thread
comes along, that thread interrupts (preempts) whatever lower-priority thread is run-
ning at the time. The contract with the operating system, however, is not absolute,
which means that the operating system can sometimes choose to run a lower-priority
thread.

Java’s requirement for a priority-based, preemptive scheduling mechanism maps well
to many operating systems. Solaris, the various Windows operating systems, Linux,
and most other operating systems on desktop computers and servers all provide the
support for that kind of thread scheduling. Certain operating systems, particularly
those on specialized devices and on smaller, handheld devices, do not provide that
level of scheduling support; Java virtual machine implementations for those operat-
ing systems must perform the necessary thread scheduling on their own.

Our first example, where the threads all complete at about the same time, is exe-
cuted on a standard operating system (Solaris) where the thread scheduling is han-
dled by the operating system. Our second example, where the threads run
sequentially, is from a system where the Java virtual machine itself handles the
thread scheduling. Both implementations are valid Java virtual machines.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 9: Thread Scheduling

The Scheduling Process
Let’s examine how the scheduling process works in a little more detail. At a concep-
tual level, every thread in the Java virtual machine can be in one of four states:

Initial
A thread object is in the initial state from the period when it is created (that is,
when its constructor is called) until the start() method of the thread object is
called.

Runnable
A thread is in the runnable state once its start() method has been called. A
thread leaves the runnable state in various ways, but the runnable state can be
thought of as a default state: if a thread isn’t in any other state, it’s in the runna-
ble state.

A thread that is in the runnable state may not actually be running; it may be
waiting for a CPU. A thread that is running on a CPU is called a currently run-
ning thread.

Blocked
A thread that is blocked is one that cannot be run because it is waiting for some
specific event to occur. Threads block for many reasons: they attempt to read
data (e.g., from a socket) when no data is available; they execute a thread-
blocking method (e.g., the sleep(), wait(), or join() methods); or they attempt
to acquire a synchronization lock that another thread already holds. We’ve seen
APIs that also block, but internally those methods are all executing the wait()
method.

Exiting
A thread is in the exiting state once its run() method returns (or its deprecated
stop() method has been called).

The basic process of thread scheduling is essentially the same whether it’s performed
by the Java virtual machine or the underlying operating system. Our intent here is to
provide an illustration of how thread scheduling works, not to provide a blueprint of
how any particular thread scheduler is actually implemented.

We can conceive that a thread scheduler keeps track of all the threads on which it
operates by using linked lists; every thread is on a list that represents the state of the
thread. A Java thread can have one of 11 priorities, so we conceive of 14 linked lists:
one for all threads in the initial state, one for all threads in the blocked state, one for
all threads in the exiting state, and one for each priority level. The list of threads at a
given priority level represents only those threads that are currently in the runnable
state: a thread in the runnable state at priority 7 is placed on the priority 7 list, but
when the thread blocks, it moves to the blocked linked list. We’re speaking here of
having 11 priorities, but that number is a Java abstraction: an operating system may

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An Overview of Thread Scheduling | 173

have more or fewer priorities than that (but conceptually, each would still have its
own linked list).

For simplicity, we conceive of these threads as being on an ordered list; in reality,
they may be held in simple pools. Keeping the threads in a linked list implies that
threads will be selected to run in a particular order. While that is a useful way of
thinking about the process, it is not necessarily the way an implementation may
work.

Let’s see how this scheduling will occur with the example we show at the beginning
of the chapter. That example has a total of four threads: the initial thread (which
executes the main() method) and the three task threads we started. In fact, as we’ve
mentioned, there are more threads because the virtual machine starts various back-
ground threads (like the garbage collection thread). But for our discussion, we’ll con-
sider only the four threads that are executing our code.

The threads that calculate a Fibonacci number never block: they move from the ini-
tial state to the runnable state to the executing state. The main thread is in the run-
nable state and then enters the blocking state when it executes the join() method to
wait for the other threads.

The second time that we run the program, the state of the threads follows the transi-
tion path shown in Figure 9-1. The main thread is the currently running thread until
it blocks at time T1. At that point, one of the task threads becomes the currently run-
ning thread; it remains the currently running thread until time T2 when it finishes
and transitions to the exiting state. Another task thread becomes the currently run-
ning thread, and the cycle continues until all threads have completed.

Figure 9-1. A simple thread-state diagram

T1 T6T5T4T3T2

KEY

Waiting for CPU

Currently running thread Time

Th
re

ad
s

Task #2

Task #1

Main thread

Exited
Blocked

Task #3

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 9: Thread Scheduling

That explains the output that we see when we run the program for a second time:
everything (including the output) proceeds sequentially. So why is the output differ-
ent the first time we run the example?

The first time we run the example, we do so on a typical operating system. The
thread scheduler on that OS, in addition to being priority-based and preemptive, is
also time-slicing. That means when threads are waiting for the CPU, the operating
system allows one of them to run for a very short time. It then interrupts that thread
and allows a second thread to run for a very short time, and so on. A portion of the
thread transitions on such an operating system is shown in Figure 9-2.

Java does not mandate that its threads be time-sliced, but most operating systems do
so. There is often some confusion in terminology here: preemption is often confused
with time-slicing. In fact, preemption means only that a higher-priority thread runs
instead of a lower-priority one, but when threads have the same priority, they do not
preempt each other. They are typically subject to time-slicing, but that is not a
requirement of Java.

There’s one other important point about these two figures. In our first figure, the
time points (T1, T2, and so on) are relatively far apart. The time transitions in that
case are determined when a particular thread changes state: when the main thread
changes to the blocked state, a task thread changes to become the currently running
thread. When that thread changes to the exiting state, a second task thread changes
to become the currently running thread and so on.

In the second case, the time transitions occur at a much shorter interval, on the order
of a few hundred milliseconds or so. In this case, the transitions of the threads

Figure 9-2. Thread states with OS scheduling

T1 T6T5T4T3T2

KEY

Waiting for CPU

Currently running thread Time

Th
re

ad
s

Task #2

Task #1

Main thread

Exited
Blocked

Task #3

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

An Overview of Thread Scheduling | 175

between currently running and waiting for CPU are imposed by the operating sys-
tem and not as a result of anything the thread itself has done. Of course, if a thread
voluntarily changes to the exiting or waiting state, a transition occurs at that point as
well.

Priority Exceptions
When an operating system schedules Java threads, it may choose to run a lower-
priority thread instead of a higher-priority thread in two instances, described next.

Priority inversion

In a typical priority-based threading system, something unusual occurs when a
thread attempts to acquire a lock that is held by a lower-priority thread: because the
higher-priority thread becomes blocked, it temporarily runs with an effective priority
of the lower-priority thread. Suppose that we have a thread with a priority of 8 that
wants to acquire a lock that is held by a thread with a priority of 2. Because the prior-
ity 8 thread is waiting for the priority 2 thread to release the lock, it ends up running
with an effective priority of 2. This is known as priority inversion.

Priority inversion is often solved by priority inheritance. With priority inheritance, a
thread that holds a lock that is wanted by a thread with a higher priority has its pri-
ority temporarily and silently raised: its new priority becomes the same as the prior-
ity of the thread that it is causing to block. When the thread releases the lock, its
priority is lowered to its original value.

The goal of priority inheritance is to allow the high-priority thread to run as soon as
possible. It is a common feature of operating systems, and Java virtual machines run-
ning on those operating systems are subject to it. However, it is not a requirement of
the Java specification.

Complex priorities

The second case involves the priority assigned to threads by the operating system.
We mentioned that Java has 11 priority levels (10 of which are available to develop-
ers), but this is an abstraction of the Java language. Operating systems usually have
many more priorities. More important, though, is that the priority that the operating
system assigns to a thread is a complex formula that takes many pieces of informa-
tion into account.

A simple version of this formula might be this:

RealPriority = JavaPriority + SecondsWaitingForCPU

This type of formula accounts for the length of time that the thread has been waiting
for a CPU. After a sufficient amount of time has passed, a thread with a Java priority of
3 has a real priority that is higher than a currently running Java thread with a priority

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 9: Thread Scheduling

of 5. This gives the priority 3 thread an opportunity to run, even though it has a lower
priority than other unblocked threads.

Complex priorities are advantageous because they help to prevent thread starvation.
Without such a model, a low-priority thread would have to wait for all other high-
priority threads to block before it is given a chance to execute; it’s likely that it might
have to wait forever. With complex priorities, it can still run much less often than its
higher-priority peers, but at least it will run sometimes.

On the other hand, complex priorities mean that you cannot guarantee thread sched-
uling. In particular, you cannot use thread priorities to try and prevent race condi-
tions in data access: a lower-priority thread can interrupt a higher-priority thread
while it is in the process of updating shared data. You also cannot use thread priori-
ties to ensure a certain order of execution between tasks.

Scheduling with Thread Priorities
The Thread class contains a number of methods and variables related to thread
priorities:

package java.lang;
public class Thread implements Runnable {
 public static final int Thread.MAX_PRIORITY;
 public static final int Thread.MIN_PRIORITY;
 public static final int Thread.NORM_PRIORITY;
 public void setPriority(int priority);
 public int getPriority();
}

The setPriority() method changes the priority of a particular thread. This method
can be called at any time (subject to security restrictions, which we discuss in
Chapter 13). As we’ll see later in this chapter, using priorities to give preference to
certain threads may or may not give you the effect you expect. In general, attempt-
ing to influence scheduling behavior using priorities offers limited benefit.

In the Java Thread class, three static final variables define the allowable range of
thread priorities:

Thread.MIN_PRIORITY
The minimum priority a thread can have (although the virtual machine is
allowed to have lower-priority threads than this one)

Thread.MAX_PRIORITY
The maximum priority a thread can have

Thread.NORM_PRIORITY
The default priority for a thread

The symbolic definition of priority constants is not necessarily useful. Typically, we
like to think of constant values like these in terms of symbolic names, which allows

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Scheduling with Thread Priorities | 177

us to believe that the actual values are irrelevant. Using symbolic names also allows
us to change the variables and have that change reflected throughout our code.

Unfortunately, that logic doesn’t apply in the case of thread priorities: if we have to
manipulate the individual priorities of threads, we sometimes have to know what the
range of those values actually is. Because of the way in which these values map to
thread priorities of operating systems, threads with different Java priorities may end
up with the same operating system priority. When you write an applet, the thread
that the applet runs in is given a priority of NORM_PRIORITY + 1. It’s interesting
to wonder how far you can take this: NORM_PRIORITY + 2, + 3, and so on until
you get to MAX_PRIORITY. If you really want to work with Java’s full range of pri-
orities, the symbolic values don’t help you: you have to know that the minimum pri-
ority available to developers is 1, the maximum is 10, and the default is 5. This yields
10 distinct priorities that you can assign to a a thread; the 11th priority (priority 0) is
reserved for the virtual machine.

On the other hand, not all operating systems support 10 distinct levels of thread pri-
orities, so NORM_PRIORITY – 2 and NORM_PRIORITY – 3 may be the same
thing on your particular machine. Working with numeric values doesn’t really pro-
vide a full range either. The best we can do for portable applications is to use the
three symbolic priorities and realize that they’re really just a hint to the virtual
machine anyway.

Let’s see what happens when we use these calls. We’ll modify our Fibonacci calcula-
tor so that each of the task threads is started with a different priority:

for (int i = 0; i < t.length; i++) {
 t[i] = new Thread(new Task(n, "Task " + i));
 t[i].setPriority((i % 10) + 1);
 t[i].start();
}

What happens when we run this program is very dependent on the operating system
hosting the program. We’ll discuss that effect for several popular platforms in the
next section.

Other Thread-Scheduling Methods
Other methods in the Thread class also affect scheduling. For the most part, we do
not recommend that you use these methods. The suspend() and resume() methods
directly affect scheduling; a thread that is suspended is in the blocked state. How-
ever, as we discussed in Chapter 2, these methods are deprecated.

The Thread class also includes a yield() method, which asks the host operating sys-
tem to select another thread to run. Its effect is very dependent on the operating sys-
tem hosting the virtual machine; much of the time, the yield() method turns out to
be a no-op. On the green thread model (see the next section), the yield() method

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 9: Thread Scheduling

can be very useful, but as the Java platform has evolved to support native threads of
an operating system, the yield() method has lost its value.

Popular Threading Implementations
We’ll now look at how all of this plays out in the implementation of the Java virtual
machine on several popular platforms. In many ways, this is a section that we’d
rather not have to write: Java is a platform-independent language and to have to pro-
vide platform-specific details of its implementations certainly violates that precept.
But we stress that these details actually matter in very few cases. This section is
strictly for informational purposes.

Green Threads
The first model that we’ll look at is the simplest. In this model, the operating system
doesn’t know anything about Java threads at all; it is up to the virtual machine to
handle all the details of the threading API. From the perspective of the operating sys-
tem, there is a single process and a single thread.

Each thread in this model is an abstraction within the virtual machine: the virtual
machine must hold within the thread object all information related to that thread.
This includes the thread’s stack, a program counter that indicates which Java
instruction the thread is executing, and other bookkeeping information about the
thread. The virtual machine is then responsible for switching thread contexts: that is,
saving this information for one particular thread, loading it from another thread, and
then executing the new thread. As far as the operating system is concerned, the vir-
tual machine is just executing arbitrary code; the fact that the code is emulating
many different threads is unknown outside of the virtual machine.

This model is known in Java as the green thread model. In other circles, these
threads are often called user-level threads because they exist only within the user
level of the application: no calls into the operating system are required to handle any
thread details.

In the early days of Java, the green thread model was fairly common, particularly on
most Unix platforms. Some specialized operating systems today use this model, but
most computers use a native, system-level model.

The green thread model is completely deterministic with respect to scheduling. Run-
ning our priority calculation above, we see this output:

Starting task Task 5 at 07:23:12:074
Ending task Task 5 at 07:23:12:995 after 921 milliseconds
Starting task Task 4 at 07:23:13:111
Starting task Task 6 at 07:23:13:281
Ending task Task 6 at 07:23:14:256 after 975 milliseconds
Starting task Task 7 at 07:23:14:386

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Popular Threading Implementations | 179

Ending task Task 7 at 07:23:15:398 after 1012 milliseconds
Starting task Task 8 at 07:23:15:504
Ending task Task 8 at 07:23:16:567 after 963 milliseconds
Starting task Task 9 at 07:23:16:624
Ending task Task 9 at 07:23:17:699 after 1075 milliseconds
Ending task Task 4 at 07:23:18:912 after 5801 milliseconds
Starting task Task 3 at 07:23:19:114
Ending task Task 3 at 07:23:20:177 after 1063 milliseconds
Starting task Task 2 at 07:23:20:301
Ending task Task 2 at 07:23:21:305 after 1004 milliseconds
Starting task Task 1 at 07:23:21:486
Ending task Task 1 at 07:23:22:449 after 963 milliseconds

As soon as the thread with priority 6 (task 5) becomes runnable, the green thread
scheduler runs it, and all threads must wait. That includes the main thread, which
cannot go on to create a higher-priority thread. This is why the priority 9 thread runs
after the priority 6–8 threads have finished: the main thread cannot create the prior-
ity 9 thread because it runs at a priority of 5 and is blocked by the threads at priority
6–8. Task 4 gets to run occasionally when the main thread is blocked, and it eventu-
ally completes after very high-priority task 9.

Windows Native Threads
In the native-threading model used on 32-bit Windows operating systems, the OS is
fully cognizant of the multiple threads that the virtual machine uses, and there is a
one-to-one mapping between Java threads and operating system threads. Therefore,
the scheduling of Java threads is subject to the underlying scheduling of threads by
the operating system.

User- and System-Level Threads
In most operating systems, the operating system is logically divided into two pieces:
user and system level. The operating system itself—that is, the operating system
kernel—lies at the system level. The kernel is responsible for handling system calls on
behalf of programs run at the user level.

When a program running at user level wants to read a file; for example, it must call (or
trap) into the operating system kernel, which reads the file and returns the data to the
program. This separation has many advantages, not the least of which is that it allows
for a more robust system: if a program performs an illegal operation, it can be termi-
nated without affecting other programs or the kernel itself. Only when the kernel exe-
cutes an illegal operation does the entire machine crash.

Because of this separation, it is possible to have support for threads at the user level,
the system level, or at both levels independently.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 9: Thread Scheduling

This model is usually simple to understand because every thread can be thought of as
a process. The OS scheduler makes no real distinction in this case between a process
and a thread: it treats each thread like a process. Of course, there are still other dif-
ferences in the OS between a thread and a process, but not as far as the scheduler is
concerned.

Windows operating systems use a complex priority calculation to determine which
thread should be the currently running thread. That calculation takes into account
the Windows thread priority. This is very similar to the Java-level thread priority
between 0 and 10, except that Windows provides only 7 priorities. Therefore, some
overlap occurs as Java’s 11 logical priorities are mapped to Windows 7 actual priori-
ties. Different implementations of the virtual machine do this differently, but one
common implementation performs the mapping listed in Table 9-1.

On this implementation, a thread with a Java priority of 3 and one with a Java prior-
ity of 4 have the same effective priority.

In addition to 7 priority levels, Windows operating systems also have 5 scheduling
classes, and a thread is actually scheduled as a combination of its priority and its
scheduling class. However, scheduling classes are not easy to change, so they do not
factor into a discussion of Java threads.

Windows operating systems also use a complex priority calculation that includes the
following:

• Threads are subject to priority inheritance.

• The actual priority of a thread is based on its programmed (or inverted) priority
minus a value that indicates how recently the thread has actually run. This value
is subject to continual adjustment: the more time passes, the closer to zero that

Table 9-1. Mapping of Java thread priorities on Win32 platforms

Java priority Win32 priority

0 THREAD_PRIORITY_IDLE

1 (Thread.MIN_PRIORITY) THREAD_PRIORITY_LOWEST

2 THREAD_PRIORITY_LOWEST

3 THREAD_PRIORITY_BELOW_NORMAL

4 THREAD_PRIORITY_BELOW_NORMAL

5 (Thread.NORM_PRIORITY) THREAD_PRIORITY_NORMAL

6 THREAD_PRIORITY_ABOVE_NORMAL

7 THREAD_PRIORITY_ABOVE_NORMAL

8 THREAD_PRIORITY_HIGHEST

9 THREAD_PRIORITY_HIGHEST

10 (Thread.MAX_PRIORITY) THREAD_PRIORITY_TIME_CRITICAL

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Popular Threading Implementations | 181

value becomes. This primarily distinguishes between threads of the same prior-
ity, and it leads to round-robin scheduling of threads of the same priority.

• On another level, a thread that has not run for a very long time is given a tempo-
rary priority boost. The value of this boost decays over time as the thread has a
chance to run. This prevents threads from absolute starvation while still giving
preference to higher-priority threads over lower-priority threads. The effect of
this priority boost depends on the original priority of the thread.

• Threads running in a program that has keyboard and mouse focus are given a
priority boost over threads in other programs.

The upshot of all this is that it’s very difficult to guarantee explicitly ordered thread
execution on Windows platforms, but the complex priority calculation ensures that
threads do not starve.

On Windows operating systems, the output of our priority-based thread calculation
looks something like this:

Starting task Task 9 at 21:19:23:590
Starting task Task 8 at 21:19:23:590
Starting task Task 7 at 21:19:23:590
Ending task Task 9 at 21:19:28:750 after 5160 milliseconds
Starting task Task 4 at 21:19:29:470
Ending task Task 8 at 21:19:30:180 after 6590 milliseconds
Starting task Task 2 at 21:19:30:180
Starting task Task 0 at 21:19:30:460
Ending task Task 7 at 21:19:32:050 after 8460 milliseconds
Starting task Task 6 at 21:19:23:590
Starting task Task 5 at 21:19:23:590
Starting task Task 3 at 21:19:30:180
Ending task Task 5 at 21:19:35:950 after 12360 milliseconds
Ending task Task 6 at 21:19:35:950 after 12360 milliseconds
Starting task Task 1 at 21:19:30:180
Ending task Task 4 at 21:19:37:820 after 8350 milliseconds
Ending task Task 2 at 21:19:41:610 after 11430 milliseconds
Ending task Task 3 at 21:19:41:720 after 11540 milliseconds
Ending task Task 0 at 21:19:45:120 after 14660 milliseconds
Ending task Task 1 at 21:19:45:120 after 14940 milliseconds

On this platform, the complex priority calculation places a great deal of emphasis on
the Java priority level. In fact, the highest priority tasks finish before some of the
lower-priority tasks even have a chance to start. Note also that several Java priority
levels map to the same Windows priority level: priorities 6 and 7 (tasks 5 and 6) are
given the same priority by the operating system, as are priorities 1 and 2 (tasks 0
and 1).

Solaris Native Threads
Recent versions of the Solaris Operating Environment have had two different thread-
ing models. Solaris 7 featured a complex, two-level threading system, with user-level

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 9: Thread Scheduling

threads and system-level lightweight processes (LWPs). Java threads were equivalent
to Solaris user-level threads, and there is an M-to-N mapping between the user-level
threads and LWPs. Much of the flexibility of this model is lost on the Java devel-
oper, who can directly influence only the priority (and number) of the user-level
threads but not the underlying LWPs.

In Solaris 9, a new one-to-one threading model is used. That makes it conceptually
similar to the models on Windows operating systems, though its implementation
details are quite different.

In Solaris 8, both models are available, and the user picks a model when the Java
program (or any other program) is executed.

For Java programs, the one-to-one model is highly preferable, particularly when the
machine has multiple CPUs and the Java threads are CPU-intensive. In other cases,
the one-to-one threading model is still preferred, though the difference in threading
models is not as significant. For this reason, many Java programs run better on
Solaris 9 than on Solaris 7. On Solaris 8, you specify the new threading model by set-
ting the environment variable LD_LIBRARY_PATH=/usr/lib/lwp in the shell (or script) in
which the Java executable is started.

On Solaris 7, you can mimic some of the benefits of Solaris’ new threading model
by including these two flags in your Java command line: -Xboundthreads -XX:
+UseLWPSynchronization.

The complex priority of a Solaris thread is determined by the following:

• Solaris native threads are subject to priority inheritance.

• The actual priority of a thread is a value from 0 to 59. That value is primarily
determined by how long it’s been since the thread has run. Though the calcula-
tion includes the Java-level priority, other factors dominate the calculation.

• Solaris also includes a variety of scheduling classes. All threads in a single pro-
gram belong to the same scheduling class, so there is no variability in scheduling
among them.

Running our priority-based calculator on Solaris produces this sort of output:

Starting task Task 7 at 21:26:33:040
Starting task Task 0 at 21:26:33:040
Starting task Task 6 at 21:26:33:039
Starting task Task 9 at 21:26:33:039
Starting task Task 4 at 21:26:33:039
Starting task Task 2 at 21:26:33:040
Starting task Task 5 at 21:26:33:039
Starting task Task 3 at 21:26:33:039
Starting task Task 8 at 21:26:33:039
Starting task Task 1 at 21:26:33:039
Ending task Task 6 at 21:27:02:580 after 29541 milliseconds
Ending task Task 1 at 21:27:02:802 after 29763 milliseconds
Ending task Task 4 at 21:27:03:618 after 30579 milliseconds

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Popular Threading Implementations | 183

Ending task Task 7 at 21:27:04:173 after 31133 milliseconds
Ending task Task 0 at 21:27:04:259 after 31219 milliseconds
Ending task Task 9 at 21:27:04:375 after 31336 milliseconds
Ending task Task 3 at 21:27:04:457 after 31418 milliseconds
Ending task Task 5 at 21:27:05:050 after 32011 milliseconds
Ending task Task 8 at 21:27:05:159 after 32120 milliseconds
Ending task Task 2 at 21:27:05:287 after 32247 milliseconds

The lower-priority threads tend to start later than the higher-priority threads, but pri-
ority is no assurance of more CPU time: the thread at priority 8 finishes later than
almost any other thread. The complex priority calculation being performed by the
operating system ensures that all threads get adequate amounts of CPU time.

At an application level, threads on Solaris can have any of 128 priorities (though, as
we mentioned, that priority is factored into a complex equation that yields 60 differ-
ent runnable priorities). These priorities run from 0 to 127, and in C and C++ pro-
grams, the default priority for a thread is 127. In Java versions up to and including
JDK 1.4, Java thread priorities were mapped to the full range of 128 priorities (0, 12,
24, and so on). This meant that the default priority for a Java thread was in the mid-
dle of this range and hence less than the default priority for a C or C++ thread.
When a Solaris machine ran a CPU-intensive C program along with a CPU-intensive
Java program, the Java program was at a disadvantage and received less than 50% of
the available CPU time.

In J2SE 5.0, the mapping was changed and all Java threads with a priority of
NORM_PRIORITY and higher are now mapped to a Solaris thread priority of 127.
This allows Java and C programs to run at parity.

Linux Native Threads
Until JDK 1.3, Linux-based virtual machines tended to use a green thread model.
Some used Linux’s native threads, but the kernel support for those threads did not
support a large number of concurrent threads. JDK 1.3 added support for Linux
native threads. However, the Linux kernel at the time was not optimal for threaded
applications; in particular, the ps command listed all threads as if they were different
processes.

New Linux kernels use the Native Posix Thread Library (NPTL), which provides the
same one-to-one mapping of Java threads to kernel threads that we’ve seen in other
operating systems. The complex priority calculation for those threads is similar to
what we saw on Solaris, where the Java priority is only a small factor in the calcula-
tion. JDK 1.4.2 is the first version of Java to support this new kernel.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 9: Thread Scheduling

Summary
Thread scheduling is a gray area of Java programming because actual scheduling
models are not defined by the Java specification. As a result, scheduling behavior can
(and does) vary on different machines.

In a general sense, threads have a priority, and threads with a higher-priority tend to
run more often that threads with a lower priority. The degree to which this is true
depends on the underlying operating system; Windows operating systems give more
precedence to the thread priority while Unix-style operating systems give more pre-
cedence to letting all threads have a significant amount of CPU time.

For the most part, this thread scheduling doesn’t matter: the information we’ve
looked at in this chapter is important for understanding what’s going on in your pro-
gram, but there’s not much you can do to change the way it works. In the next two
chapters, we’ll look at other kinds of thread scheduling and, using the information
we’ve just learned, see how to make optimal use of multiple threads on multiple
CPUs.

Example Classes
Here is the class name and Ant target for the example in this chapter:

The Fibonacci test requires command-line arguments that specify the number of
threads to run simultaneously and the value to calculate. In the Ant script, those
arguments are defined by these properties:

<property name="nThreads" value="10"/>
<property name="FibCalcValue" value="20"/>

Description Main Java class Ant target

Recursive Fibonacci Calculator javathreads.examples.ch09.example1.
ThreadTest nThreads FibCalcValue

ch9-ex1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

185

Chapter 10 CHAPTER 10

Thread Pools

For various reasons, thread pools are a very common tool in a multithreaded devel-
oper’s toolkit. Most programs that use a lot of threads benefit in some way from
using a thread pool.

J2SE 5.0 comes with its own thread pool implementation. Prior to this release, devel-
opers were left to write their own thread pool or use any number of commonly avail-
able implementations (including one we developed in earlier editions of this book
and which is discussed in the Appendix). In this chapter, we discuss the thread pool
implementation that comes with J2SE 5.0. If you can’t use that implementation yet,
the information in this chapter is still useful: you’ll find out how and when using a
thread pool can be advantageous. With that understanding, it’s simple to use any
thread pool implementation in your own program.

Why Thread Pools?
The idea behind a thread pool is to set up a number of threads that sit idle, waiting
for work that they can perform. As your program has tasks to execute, it encapsu-
lates those tasks into some object (typically a Runnable object) and informs the thread
pool that there is a new task. One of the idle threads in the pool takes the task and
executes it; when it finishes the task, it goes back and waits for another task.

Thread pools have a maximum number of threads available to run these tasks. Con-
sequently, when you add a task to a thread pool, it might have to wait for an avail-
able thread to run it. That may not sound encouraging, but it’s at the core of why
you would use a thread pool.

Reasons for using thread pools fall into three categories.

The first reason thread pools are often recommended is because it’s felt that the over-
head of creating a thread is very high; by using a pool, we can gain some perfor-
mance when the threads are reused. The degree to which this is true depends a lot on
your program and its requirements. It is true that creating a thread can take as much

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 10: Thread Pools

as a few hundred microseconds, which is a significant amount of time for some pro-
grams (but not others; see Chapter 14).

The second reason for using a thread pool is very important: it allows for better pro-
gram design. If your program has a lot of tasks to execute, you can perform all the
thread management for those tasks yourself, but, as we’ve started to see in our exam-
ples, this can quickly become tedious; the code to start a thread and manage its life-
cycle isn’t very interesting. A thread pool allows you to delegate all the thread
management to the pool itself, letting you focus on the logic of your program. With a
thread pool, you simply create a task and send the task to the pool to be executed;
this leads to much more elegant programs (see Chapter 11).

The primary reason to use a thread pool is that they carry important performance
benefits for applications that want to run many threads simultaneously. In fact, any-
time you have more active threads than CPUs, a thread pool can play a crucial role in
making your program seem to run faster and more efficiently.

If you read that last sentence carefully, in the back of your mind you’re probably
thinking that we’re being awfully weasely: what does it mean that your program
“seems” to run faster? What we mean is that the throughput of your CPU-bound
program running multiple calculations will be faster, and that leads to the percep-
tion that your program is running faster. It’s all a matter of throughput.

Thread Pools and Throughput
In Chapter 9, we showed an example of what happens when a system has more
threads than CPU resources. The way in which the threads perform the calculation
has a big effect on the output. In particular, our first example produces this output:

Starting task Task 2 at 00:04:30:324
Starting task Task 0 at 00:04:30:334
Starting task Task 1 at 00:04:30:345
Ending task Task 1 at 00:04:38:052 after 7707 milliseconds
Ending task Task 2 at 00:04:38:380 after 8056 milliseconds
Ending task Task 0 at 00:04:38:502 after 8168 milliseconds

In this case, we have three threads and one CPU. The three threads run at the same
time, are time-sliced by the operating system, and all completed execution in around
eight seconds. Imagine that we have written this program as a server where each time
a client connects, it is given a separate thread. When the three clients each request
the service (that is, the calculation of the Fibonacci number), each will wait eight sec-
onds for its answer.

In our second example, we run the threads sequentially and see this output:

Starting task Task 0 at 00:04:30:324
Ending task Task 0 at 00:04:33:052 after 2728 milliseconds
Starting task Task 1 at 00:04:33:062
Ending task Task 1 at 00:04:35:919 after 2857 milliseconds

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Why Thread Pools? | 187

Starting task Task 2 at 00:04:35:929
Ending task Task 2 at 00:04:38:720 after 2791 milliseconds

In this case, the total time to complete the calculation is still about 8 seconds, but
each thread completes its execution in about 2.7 seconds. A server that runs the cal-
culations sequentially will provide its first answer in 2.7 seconds, and the average
waiting time for the clients will be 5.4 seconds.

This is what we mean by the throughput of the program. In both cases, we’ve done
the same amount of work, but in the second case, users of the program are generally
happier with the performance.

Now consider what happens if additional requests come in while the server is execut-
ing. If we create a new thread for every client, the server could quickly become over-
loaded: the more threads it starts, the slower it provides an answer for each request.
With three simultaneous threads, our calculation takes eight seconds. If a new
request arrives every 2.7 seconds or so, we never finish. The server starts more and
more threads, each thread gets less and less CPU time, and none ever finish.

On the other hand, if we run the requests sequentially using only one thread, the
server reaches a steady state. With three requests in the queue, each subsequent
request arrives as another one finishes. We can supply an endless number of answers
to the clients; each client waits about eight seconds for a response.

This reasoning applies to programs other than servers. For instance, an image pro-
cessing application may nicely partition its image and be able to work on each parti-
tion in a separate thread. If a user is watching the image on screen, you might want
to display the results of one partition while another one is being manipulated.

The similarity to programs like this and servers is that the results of each thread are
interesting. The result of a single calculation is interesting to the client that requested
it, the result of a partition of the image is interesting to the user viewing the screen,
and so on. In these cases, throttling the number of threads provides a better experi-
ence for the users of the application.

Clearly, parts of this discussion are contrived; we’ve selected the numbers in the best
way possible to make our point, and we’ve used a calculation that needs only CPU
resources to complete. In the real world, requests arrive at the server in random
bursts, and processing the request involves making database calls or something else
that is likely to block. Those things complicate using a thread pool, but they do not
eliminate its benefits.

The fact that threads may block means that we need to have more threads than CPUs
in our pool. So far, we’ve considered cases where there is one CPU and have seen
that one CPU-intensive thread gives us the best throughput. If the thread spends
50% of its time blocked, you want two threads per CPU; if the thread blocks 66% of
the time, you want three threads per CPU, and so on.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 10: Thread Pools

Of course, you’re unlikely to be able to model your program in such detail. And any
model becomes far harder to calculate once you start to account for random bursts in
traffic. In the end, you’ll need to run some tests to determine an appropriate size for
your thread pool. But if CPU resources are sometimes scarce, throttling the number
of threads (while still keeping the CPUs utilized) increases the throughput of your
application.

Why Not Thread Pools?
If your program is doing batch processing, or simply providing a single answer or
report, it doesn’t really matter if you use as many threads as possible or a thread
pool: if no one is interested in the results given by each thread, it doesn’t matter if
some of them finish before others. That doesn’t mean that you can expect to create
thousands of threads with impunity: threads take memory, and the more memory
you use, the more impact you’ll have on your system performance. Additionally,
there is some slight overhead when the operating system manages thousands of
threads instead of just a few. Still, if your program design nicely separates into multi-
ple threads and you’re interested only in the end result of all those threads, a thread
pool isn’t necessary.

Thread pools are also not necessary when available CPU resources are adequate to
handle all the work the program needs to do. In fact, in this case a thread pool may
do more harm than good. Obviously, if your system has eight CPUs and you have
only four threads in your thread pool, tasks wait for a thread even though four CPUs
are idle. With a thread pool, you want to throttle the total number of threads so that
they don’t overwhelm your system, but you never want to have fewer runnable
threads than CPUs.

Executors
Java’s implementation of thread pools is based on an executor. An executor is a
generic concept modelled by this interface:

package java.util.concurrent;
public interface Executor {
 public void execute(Runnable task);
}

Executors are a useful design pattern for multithreaded programs because they allow
you to model your program as a series of tasks. You don’t need to worry about the
thread details associated with the task: you simply create the task and pass it to the
execute() method of an appropriate executor.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Executors | 189

J2SE 5.0 comes with two kinds of executors. It comes with a thread pool executor,
which we’ll show next. It also provides a task scheduling executor, which we exam-
ine in Chapter 11. Both of these executors are defined by this interface:

package java.util.concurrent;
public interface ExecutorService extends Executor {
 void shutdown();
 List shutdownNow();
 boolean isShutdown();
 boolean isTerminated();
 boolean awaitTermination(long timeout, TimeUnit unit)
 throws InterruptedException;
 <T> Future<T> submit(Callable<T> task);
 <T> Future<T> submit(Runnable task, T result);
 Future<?> submit(Runnable task);
 <T> List<Future<T>> invokeAll(Collection<Callable<T>> tasks)
 throws InterruptedException;
 <T> List<Future<T>> invokeAll(Collection<Callable<T>> tasks,
 long timeout, TimeUnit unit)
 throws InterruptedException;
 <T> T invokeAny(Collection<Callable<T>> tasks)
 throws InterruptedException, ExecutionException;
 <T> T invokeAny(Collection<Callable<T>> tasks, long timeout, TimeUnit unit)
 throws InterruptedException, ExecutionException, TimeoutException;
}

This interface provides a means for you to manage the executor and its tasks. The
shutdown() method gracefully terminates the executor: any tasks that have already
been sent to the executor are allowed to run, but no new tasks are accepted. When
all tasks are completed, the executor stops its thread(s). The shutdownNow() method
attempts to stop execution sooner: all tasks that have not yet started are not run and
are instead returned in a list. Still, existing tasks continue to run: they are inter-
rupted, but it’s up to the runnable object to check its interrupt status and exit when
convenient.

So there’s a period of time between calling the shutdown() or shutdownNow() method
and when tasks executing in the executor service are all complete. When all tasks are
complete (including any waiting tasks), the executor service enters a terminated
state. You can check to see if the executor service is in the terminated state by calling
the isTerminated() method (or you can wait for it to finish the pending tasks by call-
ing the awaitTerminated() method).

An executor service also allows you to handle many tasks in ways that the simple
Executor interface does not accommodate. Tasks can be sent to an executor service
via a submit() method, which returns a Future object that can be used to track the
progress of the task. The invokeAll() methods execute all the tasks in the given col-
lection. The invokeAny() methods execute the tasks in the given collection, but when
one task has completed, the remaining tasks are subject to cancellation. We’ll dis-
cuss Future objects and cancellation later in this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 10: Thread Pools

Using a Thread Pool
To use a thread pool, you must do two things: you must create the tasks that the
pool is to run, and you must create the pool itself. The tasks are simply Runnable
objects, so that meshes well with a standard approach to threading (in fact, the task
that we’ll use for this example is the same Runnable task we use in Chapter 9 to cal-
culate a Fibonacci number). You can also use Callable objects to represent your
tasks (which we’ll do later in this chapter), but for most simple uses, a Runnable
object is easier to work with.

The pool is an instance of the ThreadPoolExecutor class. That class implements the
ExecutorService interface, which tells us how to feed it tasks and how to shut it
down. We’ll look at the other aspects of that class in this section, beginning with
how to construct it.

package java.util.concurrent;
public class ThreadPoolExecutor implements ExecutorService {
 public ThreadPoolExecutor(int corePoolSize,
 int maximumPoolSize,
 long keepAliveTime,
 TimeUnit unit,
 BlockingQueue<Runnable> workQueue);
 public ThreadPoolExecutor(int corePoolSize,
 int maximumPoolSize,
 long keepAliveTime,
 TimeUnit unit,
 BlockingQueue<Runnable> workQueue,
 ThreadFactory threadFactory);
 public ThreadPoolExecutor(int corePoolSize,
 int maximumPoolSize,
 long keepAliveTime,
 TimeUnit unit,
 BlockingQueue<Runnable> workQueue,
 RejectedExecutionHandler handler);
 public ThreadPoolExecutor(int corePoolSize,
 int maximumPoolSize,
 long keepAliveTime,
 TimeUnit unit,
 BlockingQueue<Runnable> workQueue,
 ThreadFactory threadFactory,
 RejectedExecutionHandler handler);
}

The core pool size, maximum pool size, keep alive times, and so on control how the
threads within the pool are managed. We describe each of these concepts in our next
section.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Queues and Sizes | 191

For now, we can use a constructor to create the tasks and put them in the thread
pool:

package javathreads.examples.ch10.example1;

import java.util.concurrent.*;
import javathreads.examples.ch10.*;

public class ThreadPoolTest {

 public static void main(String[] args) {
 int nTasks = Integer.parseInt(args[0]);
 long n = Long.parseLong(args[1]);
 int tpSize = Integer.parseInt(args[2]);

 ThreadPoolExecutor tpe = new ThreadPoolExecutor(
 tpSize, tpSize, 50000L, TimeUnit.MILLISECONDS,
 new LinkedBlockingQueue<Runnable>());

 Task[] tasks = new Task[nTasks];
 for (int i = 0; i < nTasks; i++) {
 tasks[i] = new Task(n, "Task " + i);
 tpe.execute(tasks[i]);
 }
 tpe.shutdown();
 }
}

In this example, we’re using the tasks to calculate Fibonacci numbers as we do in
Chapter 9. Once the pool is constructed, we simply add the tasks to it (using the
execute() method). When we’re done, we gracefully shut down the pool; the exist-
ing tasks run to completion, and then all the existing threads exit. As you can see,
using the thread pool is quite simple, but the behavior of the pool can be complex
depending on the arguments used to construct it. We’ll look into that in the next
section.

Queues and Sizes
The two fundamental things that affect a thread pool are its size and the queue used
for the tasks. These are set in the constructor of the thread pool; the size can change
dynamically while the queue must remain fixed. In addition to the constructor, these
methods interact with the pool’s size and queue:

package java.util.concurrent;
public class ThreadPoolExecutor implements ExecutionService {
 public boolean prestartCoreThread();
 public int prestartAllCoreThreads();
 public void setMaximumPoolSize(int maximumPoolSize);
 public int getMaximumPoolSize();
 public void setCorePoolSize(int corePoolSize);
 public int getCorePoolSize();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 10: Thread Pools

 public int getPoolSize();
 public int getLargestPoolSize();

 public int getActiveCount();
 public BlockingQueue<Runnable> getQueue();

 public long getTaskCount();
 public long getCompletedTaskCount();
}

The first set of methods deal with the thread pool’s size, and the remaining methods
deal with its queue.

Size
The size of the thread pool varies between a given minimum (or core) and maxi-
mum number of threads. In our example, we use the same parameter for both
values, making the thread pool a constant size.

If you specify different numbers for the minimum and maximum number of
threads, the thread pool dynamically alters the number of threads it uses to run
its tasks. The current size (returned from the getPoolSize() method) falls
between the core size and the maximum size.

Queue
The queue is the data structure used to hold tasks that are awaiting execution.
The choice of queue affects how certain tasks are scheduled. In this case, we’ve
used a linked blocking queue, which places the least constraints on how tasks
are added to the queue. Once you’ve passed this queue to the thread pool, you
should not call any methods on it directly. In particular, do not add items
directly to the queue; add them through the execute() method of the thread
pool. The getQueue() method returns the queue, but you should use that for
debugging purposes only; don’t execute methods directly on the queue or the
internal workings of the thread pool become confused.

These parameters allow considerable flexibility in the way the thread pool operates.
The basic principle is that the thread pool tries to keep its minimum number of
threads active. If it gets too busy (where busy is a property of the particular queue
that the thread pool uses), it adds threads until the maximum number of threads is
reached, at which point it does not allow any more tasks to be queued.

There are some nuances in this, particularly in how the queue interacts with the
number of threads. Let’s take it step by step:

1. The thread pool is constructed with M core threads and N maximum threads. At
this point, no threads are actually created (though you can specify that the pool
create the M core threads by calling the thread pool’s prestartAllCoreThreads()
method or that it preallocate one core thread by calling the prestartCoreThread()
method).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Queues and Sizes | 193

2. A task enters the pool (via the thread pool’s execute() method). Now one of five
things happens:

— If the pool has created fewer than M threads, it starts a new thread and runs
the new task immediately. Even if some of the existing threads are idle, a
new thread is created in the pool’s attempt to reach M threads.

— If the pool has between M and N threads and one of those threads is idle,
the task is run by an idle thread.

— If the pool has between M and N threads and all the threads are busy, the
thread pool examines the existing work queue. If the task can be placed on
the work queue without blocking, it’s put on the queue and no new thread
is started.

— If the pool has between M and N threads, all threads are busy, and the task
cannot be added to the queue without blocking, the pool starts a new thread
and runs the task on that thread.

— If the pool has N threads and all threads are busy, the pool attempts to place
the new task on the queue. If the queue has reached its maximum size, this
attempt fails and the task is rejected. Otherwise, the task is accepted and run
when a thread becomes idle (and all previously queued tasks have run).

3. A task completes execution. The thread running the task then runs the next task
on the queue. If no tasks are on the queue, one of two things happens:

— If the pool has more than M threads, the thread waits for a new task to be
queued. If a new task is queued within the timeout period, the thread runs it.
If not, the thread exits, reducing the total number of threads in the pool. The
timeout period is a parameter used to construct the thread pool; in our exam-
ple, we specified 50 seconds (50000L time units of TimeUnit.MILLISECONDS).
Note that if the specified timeout is 0, the thread always exits, regardless of
the requested minimum thread pool size.

— If the pool has M or fewer threads, the thread blocks indefinitely waiting for
a new task to be queued (unless the timeout was 0, in which case it exits). It
runs the new task when available.

What are the implications of all this? It means that the choice of pool size and queue
are important to getting the behavior you want. For a queue, you have three choices:

• A SynchronousQueue, which effectively has a size of 0. In this case, whenever the
pool tries to queue a task, it fails. The implication of this is tasks are either run
immediately (because the pool has an idle thread or is below its threshold and,
therefore, creates a new thread) or are rejected immediately. Note that you can
prevent rejection of a task if you specify an unlimited maximum number of
threads, but this prevents the throttling benefit of using a thread pool in the first
place.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 10: Thread Pools

• An unbounded queue, such as a LinkedBlockingQueue with an unlimited capac-
ity. In this case, adding a task to the queue always succeeds, which means that
the thread pool never creates more than M threads and never rejects a task.

• A bounded queue, such as a LinkedBlockingQueue with a fixed capacity or an
ArrayBlockingQueue. Let’s suppose that the queue has a bounds of P. As tasks are
added to the pool, it creates threads until it reaches M threads. At that point, it
starts queueing tasks until the number of waiting tasks reaches P. As more tasks
are added, the pool starts adding threads until it reaches N threads. If we reach a
state where N threads are active and P tasks are queued, additional tasks are
rejected.

In our example, we used a LinkedBlockingQueue with an unbounded capacity and a
fixed pool size. This is perhaps the most common configuration of thread pools: it
allows tasks to wait for an available thread, and a fixed number of threads is easier to
monitor than a variable number of threads. A good alternative to this is to use a
bounded queue with a fixed number of threads. In this model, if tasks start to arrive
faster than they can be processed, they queue. Unlike the unbounded case, however,
at some point the queue threshold is reached and your program must take appropri-
ate action: if it’s a server, it can reject future requests from clients, telling them that
it’s too busy right now and they should try again later.

If you use a thread pool, there is no magic formula that you can use to determine its
optimal size and queuing strategy. When the operations are strictly CPU-bound, use
only as many threads as there are CPUs. For more complex operations, choosing a
thread pool size is a matter of testing different values to see which gives you the best
program performance.

Rejected Tasks
Depending on the type of queue you use in the thread pool, a task may be rejected by
the execute() method. Tasks are rejected if the queue is full or if the shutdown()
method has been called on the thread pool.

When a task is rejected, the thread pool calls the rejected execution handler associ-
ated with the thread pool. These APIs deal with the rejected execution handler:

package java.util.concurrent;
public interface RejectedExecutionHandler {
 public void rejectedExecution(Runnable r, ThreadPoolExecutor executor);
}

package java.util.concurrent;
public class ThreadPoolExecutor implements ExecutorService {
 public void setRejectedExecutionHandler(RejectedExecutionHandler handler);
 public RejectedExecutionHandler getRejectedExecutionHandler();
 public static class AbortPolicy implements RejectedExecutionHandler;
 public static class CallerRunsPolicy implements RejectedExecutionHandler;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Thread Creation | 195

 public static class DiscardPolicy implements RejectedExecutionHandler;
 public static class DiscardOldestPolicy implements RejectedExecutionHandler;
}

There is one rejected execution handler for the entire pool; it applies to all potential
tasks. You can write your own rejected execution handler, or you can use one of four
predefined handlers. By choosing a predefined rejected execution handler—or by
creating your own handler—your program can take appropriate action when a task
is rejected.

Here are the predefined handlers:

AbortPolicy
This handler does not allow the new task to be scheduled when the queue is full
(or the pool has been shut down); in that case, the execute() method throws a
RejectedExecutionException. That exception is a runtime exception, so when
using this policy, it’s up to the program to catch the exception. Otherwise, the
exception is propagated up the stack.

This is the default policy for rejected tasks.

CallerRunsPolicy
This handler executes the new task independently of the thread pool if the queue
is full. That is, rather than queuing the task and executing it in another thread,
the task is immediately executed by calling its run() method, and the execute()
method does not return until the task has completed. If the task is rejected
because the pool has been shut down, the task is silently discarded.

DiscardPolicy
This handler silently discards the task. No exception is thrown.

DiscardOldestPolicy
This handler silently discards the oldest task in the queue and then queues the
new task. When used with a LinkedBlockingQueue or ArrayBlockingQueue, the
oldest task is the one that is first in line to execute when a thread becomes idle.
When used with a SynchronousQueue, there are never waiting tasks and so the
execute() method silently discards the submitted task.

If the pool has been shut down, the task is silently discarded.

To create your own rejected task handler, create a class that implements the
RejectedExecutionHandler interface. Your handler (just like a predefined handler) can
then be set using the setRejectedExecutionHandler() method of the thread pool
executor.

Thread Creation
The thread pool dynamically creates threads according to the size policies in effect
when a task is queued and terminates threads when they’ve been idle too long.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 10: Thread Pools

Those policies are set when the pool is constructed, and they can be altered with
these methods:

package java.util.concurrent;
public interface ThreadFactory {
 public Thread newThread(Runnable r);
}

package java.util.concurrent;
public class ThreadPoolExecutor implements ExecutorService {
 public void setThreadFactory(ThreadFactory threadFactory);
 public ThreadFactory getThreadFactory();
 public void setKeepAliveTime(long time, TimeUnit unit);
 public long getKeepAliveTime(TimeUnit unit);
}

When the pool creates a thread, it uses the currently installed thread pool factory to
do so. Creating and installing your own thread factory allows you to set up a custom
scheme to create threads so that they are created with special names, priorities, dae-
mon status, thread group, and so on.

The default thread factory creates a thread with the following characteristics:

• New threads belong to the same thread group as the thread that created the
executor. However, the security manager policy can override this and place the
new thread in its own thread group (see Chapter 13).

• The name of the thread reflects its pool number and its thread number within the
pool. Within a pool, threads are numbered consecutively beginning with 1;
thread pools are globally assigned a pool number consecutively beginning with 1.

• The daemon status of the thread is the same as the status of the thread that cre-
ated the executor.

• The priority of the thread is Thread.NORM_PRIORITY.

Callable Tasks and Future Results
Executors in general operate on tasks, which are objects that implement the Runnable
interface. In order to provide more control over tasks, Java also defines a special run-
nable object known as a callable task:

package java.util.concurrent;
public interface Callable<V> {
 public <V> call() throws Execption;
}

Unlike a runnable object, a callable object can return a result or throw a checked
exception. Callable objects are used only by executor services (not simple execu-
tors); the services operate on callable objects by invoking their call() method and
keeping track of the results of those calls.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Callable Tasks and Future Results | 197

When you ask an executor service to run a callable object, the service returns a
Future object that allows you to retrieve those results, monitor the status of the task,
and cancel the task. The Future interface looks like this:

public interface Future<V> {
 V get() throws InterruptedException, ExecutionException;
 V get(long timeout, TimeUnit unit)
 throws InterruptedException, ExecutionException, TimeoutException;
 boolean isDone();
 boolean cancel(boolean mayInterruptIfRunning);
 boolean isCancelled();
}

Callable and future objects have a one-to-one correspondence: every callable object
that is sent to an executor service returns a matching future object. The get()
method of the future object returns the results of its corresponding call() method.
The get() method blocks until the call() method has returned (or until the
optional timeout has expired). If the call() method throws an exception, the get()
method throws an ExecutionException with an embedded cause, which is the excep-
tion thrown by the call() method.

The future object keeps track of the state of an embedded Callable object. The state
is set to cancelled when the cancel() method is called. When the call() method of a
callable task is called, the call() method checks the state: if the state is cancelled,
the call() method immediately returns.

When the cancel() method is called, the corresponding callable object may be in
one of three states. It may be waiting for execution, in which case its state is set to
cancelled and the call() method is never executed. It may have completed execu-
tion, in which case the cancel() method has no effect. The object may be in the pro-
cess of running. In that case, if the mayInterruptIfRunning flag is false, the cancel()
method again has no effect.

If the mayInterruptIfRunning flag is true, however, the thread running the callable
object is interrupted. The callable object must still pay attention to this, periodically
calling the Thread.interrupted() method to see if it should exit.

When an object in a thread pool is cancelled, there is no immediate effect: the object
still remains queued for execution. When the thread pool is about to execute the
object, it checks the object’s internal state, sees that it has been cancelled, and skips
execution of the object. So, cancelling an object on a thread pool queue does not
immediately make space in the thread pool’s queue. Future calls to the execute()
method may still be rejected, even though cancelled objects are on the thread pool’s
queue: the execute() method does not check the queue for cancelled objects.

One way to deal with this situation is to call the purge() method on the thread pool.
The purge() method looks over the entire queue and removes any cancelled objects.
One caveat applies: if a second thread attempts to add something to the pool (using
the execute() method) at the same time the first thread is attempting to purge the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 10: Thread Pools

queue, the attempt to purge the queue fails and the canceled objects remain in the
queue.

A better way to cancel objects with thread pools is to use the remove() method of the
thread pool, which immediately removes the task from the thread pool queue. The
remove() method can be used with standard runnable objects.

The FutureTask Class
You can associate a Runnable object with a future result using the FutureTask class:

public class FutureTask<V> implements Future<V>, Runnable {}

This class is used internally by the executor service: the object returned from the
submit() method of an executor service is an instance of this class. However, you can
use this class directly in programs as well. This makes sense when you need to moni-
tor the status of a runnable object within an executor: you can construct a future
task with an embedded runnable object and send the future task to the execute()
method of an executor (or an executor service). You can then use the methods of the
Future interface to monitor the status of the run() method of the embedded runna-
ble object.

A FutureTask object can hold either an embedded runnable or callable object,
depending on which constructor is used to instantiate the object:

public FutureTask(Callable<V> task);
public FutureTask(Runnable task, V result);

The get() method of a future task that embeds a callable task returns whatever is
returned by the call() method of that embedded object. The get() method of a
future task that embeds a runnable object returns whatever object was used to con-
struct the future task object itself.

We use this class in our next example and also in our examples in Chapter 15.

Single-Threaded Access
In Chapter 7, we saw the threading restrictions placed on developers using the Swing
library. Swing classes are not threadsafe, so they must always be called from a single
thread. In the case of Swing, that means that they must be called from the event-
dispatching thread, using the invokeLater() and invokeAndWait() methods of the
SwingUtilities class.

What if you have a different library that isn’t threadsafe and want to use the library
in your multithreaded programs? As long as you access that library from a single
thread, your program won’t run into any problems with data synchronization.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Summary | 199

Here’s a class you can use to accomplish that:

package javathreads.examples.ch10;

import java.util.concurrent.*;
import java.io.*;

public class SingleThreadAccess {

 private ThreadPoolExecutor tpe;

 public SingleThreadAccess() {
 tpe = new ThreadPoolExecutor(
 1, 1, 50000L, TimeUnit.SECONDS,
 new LinkedBlockingQueue<Runnable>());
 }

 public void invokeLater(Runnable r) {
 tpe.execute(r);
 }

 public void invokeAndWait(Runnable r)
 throws InterruptedException, ExecutionException {
 FutureTask task = new FutureTask(r, null);
 tpe.execute(task);
 task.get();
 }

 public void shutdown() {
 tpe.shutdown();
 }
}

The methods of this class function exactly like their counterparts in the
SwingUtilities class: the invokeLater() method runs its task asynchronously and
the invokeAndWait() method runs it synchronously. Because the thread pool has only
a single thread, all tasks passed to the SingleThreadAccess object are executed by a
single thread, regardless of how many threads use the access object: the tasks run by
the SingleThreadAccess object can call thread-unsafe classes.

In Chapter 9, we show the effect of running our Fibonacci calculations when the
threads are serialized; our online examples for this chapter show (as example 2) how
to use the SingleThreadAccess class to achieve that same behavior.

Summary
In this chapter, we began exploration of executors: utilities that process Runnable
objects while hiding threading details from the developer. Executors are very useful
because they allow programs to be written as a series of tasks; programmers can

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 10: Thread Pools

focus on the logic of their program without getting bogged down in details about
how threads are created or used.

The thread pool executor is one of two key executors in Java. In addition to the pro-
gramming benefits common to all executors, thread pools can also benefit programs
that have lots of simultaneous tasks to execute. Using a thread pool throttles the
number of threads. This reduces competition for the CPU and allows CPU-intensive
programs to complete individual tasks more quickly.

The combination of individual tasks and a lack of CPU resources is key to when to
use a thread pool. Thread pools are often considered important because reusing
threads is more efficient than creating threads, but that turns out to be a red herring.
From a performance perspective, you’ll see a benefit from thread pools because when
there is less competition for the CPU (because of fewer threads), the average time to
complete an individual task is less than otherwise.

The key to effectively using Java’s thread pool implementation is to select an appro-
priate size and queueing model for the pool. Selecting a queuing model is a factor of
how you want to handle many requests: an unbounded queue allows the requests to
accumulate while other models possibly result in rejected tasks that must be handled
by the program. A little bit of work is required to get the most out of a thread pool.
But the rewards—both in terms of the simplification of program logic and in terms of
potential throughput—make thread pools very useful.

Example Classes
Here are the class names and Ant targets for the examples in this chapter:

The properties for the Ant tasks are:

<property name="nThreads" value="10"/>
<property name="FibCalcValue" value="20"/>
<property name="ThreadPoolSize" value="5"/>

Description Main Java class Ant target

Fibonacci Calculator with Thread Pool javathreads.examples.ch10.example1.
ThreadPoolTest nRequests
NumberToCalculate ThreadPoolSize

ch10-ex1

Fibonacci Calculator using
SingleThreadAccess

javathreads.examples.ch10.example2.
SingleThreadTest nRequests
NumberToCalculate

ch10-ex2

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

201

Chapter 11 CHAPTER 11

Task Scheduling

In the previous chapter, we examined an interesting aspect of threads. Before we
used a thread pool, we were concerned with creating, controlling, and communicat-
ing between threads. With a thread pool, we were concerned with the task that we
wanted to execute. Using an executor allowed us to focus on our program’s logic
instead of writing a lot of thread-related code.

In this chapter, we examine this idea in another context. Task schedulers give us the
opportunity to execute particular tasks at a fixed point in time in the future (or, more
correctly, after a fixed point in time in the future). They also allow us to set up
repeated execution of tasks. Once again, they free us from many of the low-level
details of thread programming: we create a task, hand it off to a task scheduler, and
don’t worry about the rest.

Java provides different kinds of task schedulers. Timer classes execute tasks (per-
haps repeatedly) at a point in the future. These classes provide a basic task schedul-
ing feature. J2SE 5.0 has a new, more flexible task scheduler that can be used to
handle many tasks more effectively than the timer classes. In this chapter, we’ll look
into all of these classes.

Overview of Task Scheduling
Interestingly, this is not the first time that we have been concerned with when a task
is to be executed. Previously, we’ve just considered the timing as part of the task.
We’ve seen tools that allow threads to wait for specific periods of time. Here is a
quick review:

The sleep() method
In our discussion of the Thread class, we examined the concept of a thread wait-
ing for a specific period of time. The purpose was either to allow other threads to
accomplish related tasks, to allow external events to happen during the sleeping
period, or to repeat a task periodically. The tasks that are listed after the sleep()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 11: Task Scheduling

method are executed at a later time period. In effect, the sleep() method con-
trols when those tasks are executed.

The join() method
Our discussion of this method of the Thread class represents the first time that
we examined alternate tasks to be executed at a later time. The goal of this
method is to wait for a specific event—a thread termination. However, the
expected thread termination event may not arrive, at least not within the desired
time period, so the join() method provides a timeout. This allows the method
to return—either by the termination of the thread or by the expiration of the
timeout—thus allowing the program to execute an alternate task at a specific
time and in a particular situation.

The wait() method
The wait() method of the Object class allows a thread to wait for any event.
This method also provides the option to return if a specific time period passes.
This allows the program to execute a task at a later time if the event occurs or to
specify the exact time to execute an alternate task if the event does not occur.
This functionality is also emulated with condition variables using the await()
method.

The TimeUnit class
This class is used to define a time period, allowing methods to specify a time
period in units other than milliseconds or nanoseconds. This class is used by
many of the classes added in J2SE 5.0 to specify a time period for a timeout. This
class also provides convenience methods to support certain periodic requests—
specifically, it provides alternate implementations of the sleep(), join(), and
wait() methods that use a TimeUnit object as their timeout argument.

The DelayQueue class
Our discussion of the DelayQueue class in Chapter 8 is the first time we encoun-
ter a class that allows data to be processed at a specific time. When a producer
places data in a delay queue, it is not readable by consumers until after a specific
period passes. In effect, the task to process the data is to be executed at a later
time—a time period that is specified by the data itself.

As these examples show, in some cases, a program needs to execute code only after a
specific event or after a period of time. Much of the time, the functionality is indirect
in that the timeout is not expected to occur. Java also supports timeout functions
directly by providing tools that allow the program to execute specific tasks at a spe-
cific time.

We’ve used these methods in our examples when a program needs to execute code
only after a specific event or after a period of time. The timing in these cases has always
been provided as a timeout value: after a certain period of time, the thread would
regain control and be able to execute the appropriate task. However, in this case con-
trol always resides with the thread: execution of the appropriate task is synchronous

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The java.util.Timer Class | 203

with respect to the code being executed. Java also supports asynchronous task execu-
tion in alternate threads; it’s that type of execution that we’ll examine in the remainder
of this chapter.

The java.util.Timer Class
The java.util.Timer class was added to JDK 1.3 specifically to provide a convenient
way for tasks to be executed asynchronously. This class allows an object (of a spe-
cific class we’ll look at) to be executed at a later time. The time can be specified
either relative to the current time or as an absolute time. This class also supports the
repeated execution of the task.

The Timer class executes tasks with a specific interface:

public abstract class TimerTask implements Runnable {
 protected TimerTask();
 public abstract void run();
 public boolean cancel();
 public long scheduledExecutionTime();
}

Tasks to be executed by the Timer class must inherit from the TimerTask class. As in
the Thread class, the task to be executed is the run() method. In fact, the TimerTask
class actually implements the Runnable interface. The Timer class requires a TimerTask
object so that two methods can be attached to the task; these methods can be used to
maintain the task. These methods do not have to be implemented; the TimerTask
class provides a default implementation for them. A class that inherits from the
TimerTask class need only implement the run() method.

The downside of this technique is that the task can’t inherit from other classes. Since
the TimerTask class is not an interface, it means that tasks have to either be created
from classes that don’t already inherit from other classes, or wrapper classes have to
be created to forward the request.

The cancel() method is used to stop the class from being executed. A task that is
already executing is unaffected when this method is called. However, if the task is
repeating, calling the cancel() method prevents further execution of the class. For
tasks that are executed only once, the cancel() method returns whether the task has
been cancelled: if the task is currently running, has already run, or has been previ-
ously cancelled, it returns a boolean value of false. For repeating tasks, this method
always returns a boolean value of true.

The scheduledExecutionTime() method is used to return the time at which the previ-
ous invocation of a repeating task occurred. If the task is currently running, it is the
time at which the task began. If the task is not running, it is the time at which the
previous execution of the task began. Its purpose is a bit obscure but it will make
more sense after we discuss the Timer class.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 11: Task Scheduling

Here is the interface of the Timer class:

public class Timer {
 public Timer();
 public Timer(boolean isDaemon);
 public Timer(String name);
 public Timer(String name, boolean isDaemon);

 public void schedule(TimerTask task, long delay);
 public void schedule(TimerTask task, Date time);
 public void schedule(TimerTask task, long delay, long period);
 public void schedule(TimerTask task, Date firstTime, long period);

 public void scheduleAtFixedRate(TimerTask task, long delay, long period);
 public void scheduleAtFixedRate(TimerTask task, Date firstTime, long period);

 public void cancel();
 public int purge();
}

The Timer class provides the means to execute tasks at a later time. The tasks that are
scheduled are placed in an ordered queue and are executed sequentially by a single
thread.

Four constructors are provided to create different versions of the Timer class. The
most important parameter of these constructors allows the definition of whether the
created thread is a daemon thread (see Chapter 13). This is useful for tasks which are
needed only if the user is still interacting with the program. If the timer thread is a
daemon thread, the program can exit when all the user threads terminate. The other
parameter is used to name the thread; this is important if the threads are to be moni-
tored by a debugger.

The first two overloaded versions of the schedule() method are used to schedule
one-time tasks. The first allows for the specification of a delay: a time period in milli-
seconds relative to the current time. The second allows for the specification of an
absolute time.

The last two overloaded versions of the schedule() method are used to schedule
repeating tasks. The third parameter is used to specify the period in milliseconds
between invocations of the repeated tasks.

There are a few important issues in the timer implementation, particularly for
repeated tasks. First, only a single thread executes the tasks. While it is recom-
mended that the tasks executed by the Timer class be short-lived, no check ensures
that this is so. This means that if the Timer object is overwhelmed, a task may be exe-
cuted at a time much later than the specified time. For repeated tasks, the schedule()
method does not take this into account. The schedule time is allowed to drift, mean-
ing that the next iteration of the task is based on the previous iteration. This is not
very useful if the task is used to maintain a clock or other time-critical task.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The java.util.Timer Class | 205

Two mechanisms can be used to resolve this. The first mechanism is the two over-
loaded scheduleAtFixedRate() methods. The schedule() method schedules the next
execution of the task based on when the previous execution actually occurred. The
next iteration of the task scheduled by the scheduleAtFixedRate() method is calcu-
lated from when the previous iteration was supposed to execute—not when the previ-
ous iteration actually executes.

The second mechanism is the scheduledExecutionTime() method of the TimerTask
class. This method can be used by the task itself to determine when the task is sup-
posed to run. Based on the comparison to the current time, the task can adjust its
behavior. This is even more important when the scheduleAtFixedRate() method is
used to schedule the task. Since the tasks are not allowed to drift, more than one iter-
ation of the repeated task may be waiting to execute. As a result, a timer task may
want to skip a particular execution if it knows that another execution is pending in
the queue. For example, a task that runs every five seconds can tell if it has missed an
execution by using this code:

public class MyTimerTask extends TimerTask {
 public void run() {
 if (System.currentTimeMillis() - scheduledExecutionTime() > 5000) {
 // We're more than five seconds off; skip this because another task
 // will already have been scheduled.
 return;
 }
 ...
 }
}

Table 11-1 shows when tasks would be executed under different scheduling models
of the Timer class. In this example, we’re assuming that the task is to be run every
second, executes for .1 seconds, and the system becomes bogged down for .5 sec-
onds between the second and third iteration. The schedule() method drifts by .5
seconds on subsequent executions. The scheduleAtFixedRate() method runs the
delayed iteration .5 seconds late but still executes the remaining iterations according
to the original schedule. Neither takes into account the time required to execute the
task.

The cancel() method is provided by the Timer class to destroy the timer. All the
tasks in the timer are simply cancelled, and no new tasks are allowed to be sched-
uled. The Timer object can no longer be used to schedule any more tasks. If a task is

Table 11-1. Execution time of java.util.Timer tasks

Execution start time

Method Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

schedule() 1 seconds 2 seconds 3.5 seconds 4.5 seconds 5.5 seconds

scheduleAtFixedRate() 1 seconds 2 seconds 3.5 seconds 4 seconds 5 seconds

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 11: Task Scheduling

currently executing, it is allowed to finish; currently executing tasks are not
interrupted.

The purge() method is used for maintenance. The task’s cancel() method does not
actually delete the task from the task queue; the task is simply marked as cancelled.
The task is deleted from the queue by the timer when it is time for the task to exe-
cute: because the task is marked as cancelled, the task is skipped and deleted from
the queue at that time. The purge() method is important only when a large number
of tasks are being cancelled (or the tasks themselves consume a lot of memory). By
purging the timer, the task objects are removed from the queue, allowing them to be
garbage collected.

Using the Timer
Here’s an example that uses the Timer class. The example program allows you to
monitor the reachability of one or more web sites: it periodically attempts to retrieve
a URL from each web site. Web sites that are reachable are displayed in green; web
sites that are down are displayed in red.

We start with the timer task that contacts the web site:

package javathreads.examples.ch11.example1;

import java.util.*;
import java.net.*;

public class URLPingTask extends TimerTask {

 public interface URLUpdate {
 public void isAlive(boolean b);
 }

 URL url;
 URLUpdate updater;

 public URLPingTask(URL url) {
 this(url, null);
 }

 public URLPingTask(URL url, URLUpdate uu) {
 this.url = url;
 updater = uu;
 }

 public void run() {
 if (System.currentTimeMillis() - scheduledExecutionTime() > 5000) {
 // Let the next task do it
 return;
 }
 try {
 HttpURLConnection huc = (HttpURLConnection) url.openConnection();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The java.util.Timer Class | 207

 huc.setConnectTimeout(1000);
 huc.setReadTimeout(1000);
 int code = huc.getResponseCode();
 if (updater != null)
 updater.isAlive(true);
 } catch (Exception e) {
 if (updater != null)
 updater.isAlive(false);
 }
 }
}

The run() method periodically contacts the given URL and then updates the status
watcher depending on whether or not reading the URL was successful. Note that if
more than five seconds have elapsed since the last time the task runs, the task skips
itself.

The program that sets up the task looks like this:

package javathreads.examples.ch11.example1;

import java.awt.*;
import java.awt.event.*;
import java.net.*;
import javax.swing.*;
import java.util.Timer;

public class URLMonitorPanel extends JPanel implements URLPingTask.URLUpdate {

 Timer timer;
 URL url;
 URLPingTask task;
 JPanel status;
 JButton startButton, stopButton;

 public URLMonitorPanel(String url, Timer t) throws MalformedURLException {
 setLayout(new BorderLayout());
 timer = t;
 this.url = new URL(url);
 add(new JLabel(url), BorderLayout.CENTER);
 JPanel temp = new JPanel();
 status = new JPanel();
 status.setSize(20, 20);
 temp.add(status);
 startButton = new JButton("Start");
 startButton.setEnabled(false);
 startButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 makeTask();
 startButton.setEnabled(false);
 stopButton.setEnabled(true);
 }
 });
 stopButton = new JButton("Stop");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 11: Task Scheduling

 stopButton.setEnabled(true);
 stopButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 task.cancel();
 startButton.setEnabled(true);
 stopButton.setEnabled(false);
 }
 });
 temp.add(startButton);
 temp.add(stopButton);
 add(temp, BorderLayout.EAST);
 makeTask();
 }

 private void makeTask() {
 task = new URLPingTask(url, this);
 timer.schedule(task, 0L, 5000L);
 }

 public void isAlive(final boolean b) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 status.setBackground(b ? Color.GREEN : Color.RED);
 status.repaint();
 }
 });
 }

 public static void main(String[] args) throws Exception {
 JFrame frame = new JFrame("URL Monitor");
 Container c = frame.getContentPane();
 c.setLayout(new BoxLayout(c, BoxLayout.Y_AXIS));
 Timer t = new Timer();
 for (int i = 0; i < args.length; i++) {
 c.add(new URLMonitorPanel(args[i], t));
 }
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent evt) {
 System.exit(0);
 }
 });
 frame.pack();
 frame.show();
 }
}

Each individual panel monitors a single URL. Note that the isAlive() method runs
from the timer thread, so its invocation of Swing methods is placed within a call to
the invokeLater() method. Also note that since a task cannot be reused, the
actionPerformed() method associated with the Start button must set up a new task.

This application points out the basic shortcomings of the Timer class. We’ve set it up
so that all the panels share a single instance of the timer, which means a single

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The javax.swing.Timer Class | 209

thread. Although our task uses timeouts to talk to the web server, it’s conceivable
that a single execution of the run() method of the task could take almost two sec-
onds (though it’s more likely to take only one second if the site is down). If you mon-
itor 10 sites and your ISP goes down, the single timer thread ends up with a backlog
of tasks. That’s the reason we put logic into the run() method of the task to check to
see whether it missed its scheduled execution time.

The alternative is to create a new timer for each panel. In that case, we don’t have to
worry about a backlog of tasks. The downside is that we now have one thread for
every site we’re monitoring. That’s not a big deal unless we’re monitoring thousands
of sites, but it’s not optimal either. We’ll revisit this later in this chapter.

The javax.swing.Timer Class
As we’ve discussed, Swing objects cannot be accessed from arbitrary threads—which
includes the threads from the Timer class (and the threads in the thread pool of the
ScheduledThreadPoolExecutor class that we discuss later in this chapter). We know
that we can use the invokeLater() and invokeAndWait() methods of the
SwingUtilities class to overcome this, but Java also provides a Timer class just for
Swing objects. The javax.swing.Timer class provides the ability to execute actions at
a particular time, and those actions are invoked on the event-dispatching thread.

Here is the interface to the javax.swing.Timer class:

public class Timer {
 public Timer(int delay, ActionListener listener);

 public void addActionListener(ActionListener listener);
 public void removeActionListener(ActionListener listener);
 public ActionListener[] getActionListeners();
 public EventListener[] getListeners(Class listenerType);

 public static void setLogTimers(boolean flag);
 public static boolean getLogTimers();

 public void setDelay(int delay);
 public int getDelay()
 public void setInitialDelay(int initialDelay);
 public int getInitialDelay();

 public void setRepeats(boolean flag);
 public boolean isRepeats();

 public void setCoalesce(boolean flag);
 public boolean isCoalesce();

 public void start();
 public boolean isRunning();
 public void stop();
 public void restart();
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 11: Task Scheduling

This class is not really a generic scheduler. In fact, even though multiple callbacks
(event listeners) can be attached to the timer, it has only one schedule: all the listen-
ers use the schedule defined by the Timer class itself (rather than the schedule defined
by particular tasks). Tasks that require a different schedule need a different instance
of the Swing timer. Most of the methods provided by this class are used to configure
the schedule and control the timer.

Unlike the java.util.Timer class, this Timer class uses the ActionListener interface.
This provides an interface that Swing developers are accustomed to: all Swing objects
use event listeners to execute callbacks. When a scheduled time is reached, it is
treated as any other event (such as a button press): the registered action listeners are
called.

The constructor to the class takes two parameters. The first is the delay in millisec-
onds. This value is used by the timer as both the initial time to wait to fire the first
action listener and the time to wait between repeated firings of the action listeners.
The second parameter is an action listener to fire. Both of these parameters can be
modified at a later time.

The addActionListener() and removeActionListener() methods are used to add lis-
teners to and remove listeners from the timer. The getActionListeners() method is
used to retrieve the listeners that have been registered to the timer. The
getListeners() method provides the added qualification of the event listener type.
This allows the developer to get specific types of listeners that are registered to the
timer. In most cases, this is probably not very useful, as the limitation of the timer as
a generic scheduler also limits the number of action listeners registered to each timer.

The getDelay() and setDelay() methods are used to retrieve and modify the time
between repeated events (which by default is set in the constructor). This allows it to
be different from the initial delay time. That delay time is handled by the
getInitialDelay() and setInitialDelay() methods.

The isRepeats() and setRepeats() methods are used to control whether events are
repeated. By default, the timer repeats events, as this Timer class was originally
designed for tasks such as a blinking cursor. The isCoalesce() and setCoalesce()
methods are used to handle repeated methods that are backlogged. For example, if a
method is to be called once every second, and three seconds have elapsed, then the
listener may have to be called three times. If the coalesce flag is set, the listener is
called only once. This is important for tasks such as blinking the cursor. If the timer
has already missed two blinks, blinking three times very fast does not fix the prob-
lem; it is better to just skip the missed blinks.

The getLogTimers() and setLogTimers() methods are used to control debugging of
the timer. If debugging is activated, messages are sent to standard output to report
the actions of the timer.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The javax.swing.Timer Class | 211

Finally, the timer must be activated upon completion of the registration of the listen-
ers (and, possibly, adjusting the initial delay and repeat times). This is accomplished
by the start() method. The timer can later be terminated by calling the stop()
method. The restart() method resets the timer: the timer then waits until its initial
delay time period has elapsed, at which point it starts calling its listeners. The
isRunning() method is used to determine whether the timer has been started.

Using the javax.swing.Timer Class
We can use the javax.swing.Timer class in our typing program. Previously, our ani-
mated canvas set up a thread to handle the animation; this thread periodically told
the animation canvas to repaint itself. Now, we’ll use a timer.

package javathreads.examples.ch11.example2;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.concurrent.*;
import java.util.concurrent.locks.*;
import javathreads.examples.ch11.*;

public class AnimatedCharacterDisplayCanvas extends CharacterDisplayCanvas
 implements ActionListener, CharacterListener {

 private int curX;
 private Timer timer;

 public AnimatedCharacterDisplayCanvas(CharacterSource cs) {
 super(cs);
 timer = new Timer(100, this);
 }

 public synchronized void newCharacter(CharacterEvent ce) {
 curX = 0;
 tmpChar[0] = (char) ce.character;
 repaint();
 }

 public synchronized void paintComponent(Graphics gc) {
 if (tmpChar[0] == 0)
 return;
 Dimension d = getSize();
 int charWidth = fm.charWidth(tmpChar[0]);
 gc.clearRect(0, 0, d.width, d.height);
 gc.drawChars(tmpChar, 0, 1, curX++, fontHeight);
 if (curX > d.width - charWidth)
 curX = 0;
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 11: Task Scheduling

 public void actionPerformed(ActionEvent ae) {
 repaint();
 }

 public void setDone(boolean b) {
 if (!b)
 timer.start();
 else timer.stop();
 }
}

Note that this implementation is much simpler than our previous implementations.
Previously, we set up a thread in the setDone() method; now, we simply call the
timer start() method.

Using the timer has also allowed us to simplify the locking around the calls to the
repaint() method. Knowing when the animation should run used to require a wait-
and-notify mechanism (or condition variable). Now we just defer that to the timer.
The Timer class itself has the waiting logic within it: operationally, we haven’t saved
anything. But in terms of development, using a timer has saved us some effort. This
is a clear example of why using higher-level thread constructs makes things simpler
for the developer.

The ScheduledThreadPoolExecutor Class
J2SE 5.0 introduced the ScheduledThreadPoolExecutor class, which solves many
problems of the Timer class. In many regards, the Timer class can be considered obso-
lete because of the ScheduledThreadPoolExecutor class. Why is this class needed?
Let’s examine some of the problems with the Timer class.

First, the Timer class starts only one thread. While it is more efficient than creating a
thread per task, it is not an optimal solution. The optimal solution may be to use a
number of threads between one thread for all tasks and one thread per task. In effect,
the best solution is to place the tasks in a pool of threads. The number of threads in
the pool should be assignable during construction to allow the program to deter-
mine the optimal number of threads in the pool.

Second, the TimerTask class is not necessary. It is used to attach methods to the task
itself, providing the ability to cancel the task and to determine the last scheduled
time. This is not necessary: it is possible for the timer itself to maintain this informa-
tion. It also restricts what can be considered a task. Classes used with the Timer class
must extend the TimerTask class; this is not possible if the class already inherits from
another class. It is much more flexible to allow any Runnable object to be used as the
task to be executed.

Finally, relying upon the run() method is too restrictive for tasks. While it is possi-
ble to pass parameters to the task—by using parameters in the constructor of the
task—there is no way to get any results or exceptions. The run() method has no

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The ScheduledThreadPoolExecutor Class | 213

return variable, nor can it throw any type of exceptions other than runtime excep-
tions (and even if it could, the timer thread wouldn’t know how to deal with it).

The ScheduledThreadPoolExecutor class solves all three of these problems. It uses a
thread pool (actually, it inherits from the thread pool class) and allows the developer
to specify the size of the pool. It stores tasks as Runnable objects, allowing any task
that can be used by the thread object to be used by the executor. Because it can work
with objects that implement the Callable interface, it eliminates the restrictive
behavior of relying solely on the Runnable interface.

Here’s the interface of the ScheduledThreadPoolExecutor class itself:

public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor {
 public ScheduledThreadPoolExecutor(int corePoolSize);
 public ScheduledThreadPoolExecutor(int corePoolSize,
 ThreadFactory threadFactory);
 public ScheduledThreadPoolExecutor(int corePoolSize,
 RejectedExecutionHandler handler);
 public ScheduledThreadPoolExecutor(int corePoolSize,
 ThreadFactory threadFactory,
 RejectedExecutionHandler handler);
 public <V> ScheduledFuture<V> schedule(Callable<V> callable,
 long delay, TimeUnit unit);

 public ScheduledFuture<V> scheduleAtFixedRate(Runnable command,
 long initialDelay, long period, TimeUnit unit);
 public ScheduledFuture<V> scheduleWithFixedDelay(
 Runnable command, long initialDelay,
 long delay, TimeUnit unit);

 public void execute(Runnable command);

 public void shutdown();
 public List shutdownNow();

 public void setContinueExistingPeriodicTasksAfterShutdownPolicy(
 boolean value);
 public boolean getContinueExistingPeriodicTasksAfterShutdownPolicy();
 public void setExecuteExistingDelayedTasksAfterShutdownPolicy(
 boolean value);
 public boolean getExecuteExistingDelayedTasksAfterShutdownPolicy();
}

The ScheduledThreadPoolExecutor class provides four constructors to create an
object. These parameters are basically the same parameters as the thread pool con-
structors since this executor inherits from the thread pool executor. Therefore, this
class is also a thread pool, meaning that some of the parameters assigned by these
constructors can also be retrieved and modified by the methods of the
ThreadPoolExecutor class.

Note, however, that the constructors have no parameter to specify the maximum
number of threads or the type of queue the thread pool should use. The scheduled

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 11: Task Scheduling

executor always uses an unbounded queue for its tasks, and the size of its thread
pool is always fixed to the number of core threads. The number of core threads,
however, can still be modified by calling the setCorePoolSize() method.

The schedule() method is used to schedule a one-time task. You can use the
ScheduledFuture object returned by this method to perform the usual tasks on the
callable object: you can retrieve its result (using the get() method), cancel it (using
the cancel() method), or see if it has completed execution (using the isDone()
method).

The scheduleAtFixedRate() method is used to schedule a repeated task that is not
allowed to drift. This is basically the same scheduling model as the
scheduleAtFixedRate() method of the Timer class.

The scheduleWithFixedDelay() method is used to schedule a repeated task where the
period between the tasks remains constant; this is useful when the delay between
iterations is to be fixed. For instance, this model is better for animation since there is
no reason to have animation cycles accumulate if the start times drift. If one cycle of
the animation runs late, there is no advantage to running the next cycle earlier.

Table 11-2 shows when tasks would be executed under different scheduling models
of the ScheduledThreadPoolExecutor class. In this example, we’re again assuming that
the task is to be run every second, executes for .1 seconds, and the system becomes
bogged down for .5 seconds between the second and third iteration. The
scheduleAtFixedRate() method runs the delayed iteration .5 seconds late but still
executes the remaining iterations according to the original schedule (exactly the
same as the java.util.Timer class). The scheduleWithFixedDelay() method takes
into account the execution time of the task; this is why each iteration drifts by .1 sec-
onds. It does not compensate for the .5-second delay, so it drifts over time.

The execute() and submit() methods are used to schedule a task to run immedi-
ately. These methods are present mainly because the Executor interface requires
them. Still, it may be useful for one task to add other tasks to be run in the pool
rather than execute them directly, because then the primary task doesn’t own the
thread in the pool for a huge period of time. It also allows the thread pool to assign
the subtasks to other threads in the pool if the pool is not busy.

The shutdown() and shutdownNow() methods are also part of the thread pool class.
The shutdown() method is used to shut down the executor but allows all pending

Table 11-2. Execution time of java.util.Timer tasks

Execution start time

Method Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

scheduleAtFixedRate() 1 seconds 2 seconds 3.5 seconds 4 seconds 5 seconds

scheduleWithFixedDelay() 1 seconds 2.1 seconds 3.7 seconds 4.8 seconds 5.9 seconds

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The ScheduledThreadPoolExecutor Class | 215

tasks to complete. The shutdownNow() method is used to try to cancel the tasks in the
pool in addition to shutting down the thread pool. However, this works differently
from a thread pool because of repeating tasks. Since certain tasks repeat, tasks could
technically run forever during a graceful shutdown.

To solve this, the task executor provides two policies. The
ExecuteExistingDelayedTasksAfterShutdownPolicy is used to determine whether the
tasks in the queue should be cancelled upon graceful shutdown. The
ContinueExistingPeriodicTasksAfterShutdownPolicy is used to determine whether
the repeating tasks in the queue should be cancelled upon graceful shutdown. There-
fore, setting both to false empties the queue but allows currently running tasks to
complete. This is similar to how the Timer class is shut down. The shutdownNow()
method cancels all the tasks and also interrupts any task that is already executing.

With the support of thread pools, callable tasks, and fixed delay support, you might
conclude that the Timer class is obsolete. However, the Timer class has some advan-
tages. First, it provides the option to specify an absolute time. Second, the Timer class
is simpler to use: it may be preferable if only a few tasks or repeated tasks are
needed.

Using the ScheduledThreadPoolExecutor Class
Here’s a modification of our URL monitor that uses a scheduled executor. Modifica-
tion of the task itself means a simple change to the interface it implements:

package javathreads.examples.ch11.example3;
...
public class URLPingTask implements Runnable {
 ...
}

Our Swing component has just a few changes:

package javathreads.examples.ch11.example3;
...
import java.util.concurrent.*;

public class URLMonitorPanel extends JPanel implements URLPingTask.URLUpdate {
 ScheduledThreadPoolExecutor executor;
 ScheduledFuture future;
 ...
 public URLMonitorPanel(String url, ScheduledThreadPoolExecutor se)
 throws MalformedURLException {
 executor = se;
 ...
 stopButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 future.cancel(true);
 startButton.setEnabled(true);
 stopButton.setEnabled(false);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 11: Task Scheduling

 }
 });
 ...
 }

 private void makeTask() {
 task = new URLPingTask(url, this);
 future = executor.scheduleAtFixedRate(
 task, 0L, 5L, TimeUnit.SECONDS);
 }

 public static void main(String[] args) throws Exception {
 ...
 ScheduledThreadPoolExecutor se = new ScheduledThreadPoolExecutor(
 (args.length + 1) / 2);
 for (int i = 0; i < args.length; i++) {
 c.add(new URLMonitorPanel(args[0], se));
 }
 ...
 }
}

The main enhancement that this change has bought us is the ability to specify a
number of threads for the executor. We’ve chosen half as many threads as the
machines we’re monitoring: in between the number of suboptimal choices we had
previously. In this case, it would have been even more ideal for the task executor to
be more flexible in its thread use.

Using the Future Interface
The other case when using a scheduled executor makes sense is when you want to
use the callable interface so that you can later check the status of the task. This is
logical equivalent to using the join() method to tell if a thread is done.

We’ll extend our example slightly to see how this works. Let’s suppose we want our
URL monitor to have a license; without a license, it runs in a demo mode for two
minutes. In the absence of a valid license, we can set up a callable task that runs after
a delay of two minutes. After that task has run, we know that the license period has
expired.

We’ll have to poll the license task periodically to see whether it has finished. Nor-
mally, we don’t like polling because of its inefficiencies, but in this case, we have a
perfect time to do it: because the status thread runs every five seconds, it can poll the
license task without wasting much CPU time at all. Since in this case we don’t have
to unnecessarily wake up a polling thread, we can afford the simple method call to
handle the poll.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The ScheduledThreadPoolExecutor Class | 217

First, we need a simple task.

package javathreads.examples.ch11.example4;

class TimeoutTask implements Callable {
 public Integer call() throws IOException {
 return new Integer(0);
 }
}

As required, we’ve implemented the Callable interface. In this simple example, we
don’t actually care about the return value: if the task has run, the license has expired.
In a more complicated case, the license task might check with a license server and
return a more interesting result. Checking with the license server might create an
IOException, which is why we’ve declared that this task throws that exception.

Now we must add this to our monitor:

package javathreads.examples.ch11.example4;

public class URLMonitorPanel extends JPanel implements URLPingTask.URLUpdate {

 static Future<Integer> futureTaskResult;
 static volatile boolean done = false;
 ...

 private void checkLicense() {
 if (done) return;
 try {
 Integer I = futureTaskResult.get(0L, TimeUnit.MILLISECONDS);
 // If we got a result, we know that the license has expired
 JOptionPane.showMessageDialog(null,
 "Evaluation time period has expired", "Expired",
 JOptionPane.INFORMATION_MESSAGE);
 done = true;
 } catch (TimeoutException te) {
 // Task hasn't run; just coninue
 } catch (InterruptedException ie) {
 // Task was externally interrupted
 } catch (ExecutionException ee) {
 // Task threw IOException, which can be obtained like
 IOException ioe = (IOException) ee.getCause();
 // Clean up after the exception
 }
 }

 public void isAlive(final boolean b) {
 try {
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run() {
 checkLicense();
 if (done) {
 future.cancel(true);
 startButton.setEnabled(false);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 11: Task Scheduling

 stopButton.setEnabled(false);
 return;
 }
 status.setBackground(b ? Color.GREEN : Color.RED);
 status.repaint();
 }
 });
 } catch (Exception e) {}
 }

 public static void main(String[] args) throws Exception {
 ...
 TimeoutTask tt = new TimeoutTask();
 futureTaskResult = se.schedule(tt, 120, TimeUnit.SECONDS);
 ...
 }
}

The checkLicense() method is called every time status is reported; it polls the time-
out task. When the poll succeeds, the checkLicense() method sets a done flag so that
other panels know that the license has expired (the done flag is static and shared
among all panels). Alternately, we could let each panel poll the futureTaskResult
object itself.

If you look carefully, you’ll notice that there’s no synchronization for the
checkLicense() method and that it appears that the option pane might get displayed
twice if two panels invoke that method at the same time. However, that’s not possi-
ble because the checkLicense() method is called via the invokeAndWait() method.
That blocks the event-dispatching thread so we are already assured that only one
thread at a time is executing the checkLicense() method.

Summary
In this chapter, we’ve looked at various ways in which tasks may be scheduled in the
future. The simplest way to do this is to use the java.util.Timer class, which can run
instances of a special class (the TimerTask class) at a point in the future, repeating the
task if necessary. Each instance of a timer is a single thread; that thread can handle
multiple tasks but long-running tasks may need their own thread (and consequently
their own timer).

The javax.swing.Timer class is functionally similar, except that it ensures that tasks
are run on the event-dispatching thread so that they may safely access Swing compo-
nents. However, the javax.swing.Timer class has a fixed time schedule for all the
tasks it runs; tasks that have different scheduling needs require different instances of
the timer.

Finally, the ScheduledThreadPoolExecutor class provides a more flexible (but more
complex) interface to task scheduling. Because it uses a thread pool, it can be more

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Summary | 219

efficient when running a lot of tasks simultaneously. It also allows you to poll for
task status or to use generic Runnable objects as your task.

The key benefit of task executors and timers is that they free you from having to
worry about thread-related programming for your tasks: you simply feed the task to
the timer or executor and let it worry about the necessary thread controls. This
makes the code that you write that much simpler.

Example Classes
Here are the class names and Ant targets for the examples in this chapter:

The ant property to specify the URL is:

<property name="hostlist" value="http://www.ora.com/"/>

Unfortunately, Ant offers no way to specify multiple hostnames. If you want to try a
URL monitor with more than one URL, you must execute the class directly.

Description Main Java class Ant target

URL Monitor with java.util.Timer
class

javathreads.examples.ch11.example1.
URLMonitor URL1 URL2 ...

ch11-ex1

Type Tester with Timer animation javathreads.examples.ch11.example2.
SwingTypeTester

ch11-ex2

URL Monitor with scheduled executor javathreads.examples.ch11.example3.
URLMonitor URL1 URL2 ...

ch11-ex3

URL Monitor with timeout javathreads.examples.ch11.example4.
URLMonitor URL1 URL2 ...

ch11-ex4

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

220

Chapter 12CHAPTER 12

Threads and I/O

If you’re not interested in parallel processing, the area where you’re most likely to
encounter threads in Java is in dealing with I/O—and particularly in dealing with
network I/O. That’s the topic we explore in this chapter.

In early versions of Java, all I/O was blocking. If your program attempted to read
data from a socket and no data was present, the read() method would block until at
least some data was available. That situation is also true of reading a file. For the
most part, delays in reading files aren’t noticeable; you may have to wait a few cycles
for the disk to rotate to the correct location and the operating system to transfer data
from the disk. In most programs, blocking for that amount of time makes little differ-
ence, but in those programs where it does make a difference, the concepts that apply
to network I/O are just as relevant to file I/O.

For network I/O, the delay can be quite significant. Networks are subject to delays at
various points (particularly if the network involves long distances or slow links).
Even if there’s no physical delay on the network lines, network I/O is done in the
context of a conversation between two peers, and a peer may not be ready to furnish
its output when its partner wants it. A database server reads commands from a user,
but the user may take a few minutes to type in the SQL to be executed. Once the
SQL has been sent to the database, the user is ready to read back the response, but it
may take the database a few minutes to obtain the results of the query.

Because early versions of Java did not have a way to handle nonblocking I/O, Java
servers would typically start a new thread for every client that connected to them.
Java clients would typically start a new thread to send requests to the server so that
the rest of the program would remain active while the client was waiting for a
response.

In JDK 1.4, this situation changed: Java introduced the NIO package, which allowed
developers to utilize nonblocking I/O in their programs. This changed the rule for
the way in which Java servers (and other I/O-intensive programs) are threaded,
though it does not eliminate all threading considerations from those programs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

A Traditional I/O Server | 221

In this chapter, we look at servers that employ each type of I/O and show common
techniques for handling the server’s threads.

A Traditional I/O Server
Let’s start with the simplest case, which is based on Java’s original (blocking) I/O
model. In this model, a network server must start a new thread for every client that
attaches to the server. We already know that by reading data from a socket in a sepa-
rate thread, we solve the problem of blocking while we’re waiting for data. Thread-
ing on the server side has an additional benefit: by having a thread associated with
each client, we no longer need to worry about other clients within any single thread.
This simplifies our server-side programming: we can code our classes as if we were
handling a single client at a time.

Before we show the code for the server, let’s review some networking basics.
Figure 12-1 shows the data connections between several clients and a server. The
server-side socket setup is implemented in two steps. First, an instance of the
ServerSocket class is used to listen on a port known to the client. The client con-
nects to this port as a means to negotiate a private connection with the server.

Once a data connection has been negotiated, the server and client communicate
through the private connection. In general, this process is generic: most developers
are concerned with the data sockets (the private connection). Furthermore, the data
sockets on the server side are usually self-contained to a particular client. While it’s
possible to have different mechanisms that deal with many data sockets at the same

Figure 12-1. Network connections between clients and a server

socket

Client 1 Server

socket (server)

socket

Client 2

socket

Client n
socket

socket (data)

socket (data)

socket (data)

socket (data)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 12: Threads and I/O

time, generally the same code is used to deal with each of the data sockets
independently.

Since the setup is generic, we can develop a generic TCPServer class that handles the
setup and defers the data processing to its subclasses. This TCPServer class creates the
server socket and accepts connections. For each connection, it spawns a new thread
(a clone of itself, so that the new thread has a copy of all the interesting data that the
server holds). Here’s the implementation of this class, which serves as the superclass
for many of the examples in this chapter:

package javathreads.examples.ch12;

import java.net.*;
import java.io.*;

public class TCPServer implements Cloneable, Runnable {
 Thread runner = null;
 ServerSocket server = null;
 Socket data = null;

 private boolean done = false;

 public synchronized void startServer(int port) throws IOException {
 if (runner == null) {
 server = new ServerSocket(port);
 runner = new Thread(this);
 runner.start();
 }
 }

 public synchronized void stopServer() {
 done = true;
 runner.interrupt();
 }

 protected synchronized boolean getDone() {
 return done;
 }

 public void run() {
 if (server != null) {
 while (!getDone()) {
 try {
 Socket datasocket = server.accept();
 TCPServer newSocket = (TCPServer) clone();

 newSocket.server = null;
 newSocket.data = datasocket;
 newSocket.runner =
 new Thread(newSocket);
 newSocket.runner.start();
 } catch (Exception e) {}
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

A Traditional I/O Server | 223

 } else {
 run(data);
 }
 }

 public void run(Socket data) {
 }
}

The TCPServer class implements the Runnable interface; it creates multiple threads
and copies of itself to run in each of those threads. Creating the copies requires that
the server implement the Cloneable interface as well. Since the first TCPServer object
operates on the server socket (while the clones operate on the data sockets), the
TCPServer class must be written to service both kinds of sockets.

The logic to handle the clients is contained within the run() method. The condi-
tional at the beginning of the run() method is what distinguishes between the type of
socket to be handled. When we first enter the run() method, the server variable is set
to the server socket, so we continue into the inner loop that accepts new connec-
tions. When a new connection has been accepted, we clone the TCPServer object and
set the server variable in the cloned object to null. The cloned object is then exe-
cuted in a new thread. When the cloned object executes the run() method, its server
variable is null and so it calls the run(Socket data) method. In the base class, that
method does nothing; to have a useful TCPServer, you must extend it (which we’ll do
next).

To start the server, you must call the startServer() method. That method creates a
thread that runs the server. By handling the server socket in this thread, the
startServer() method can return immediately, and the same program can instanti-
ate multiple servers. The stopServer() method is used to stop the server: it follows
our traditional pattern of setting a done flag and interrupting the target thread (the
runner thread). Note that the stopServer() method stops the server thread, which
prevents the server from accepting new client connections but all existing client con-
nections and threads remain running. This allows for a graceful shutdown. It’s a sim-
ple extension to the class to keep track of all client threads and interrupt them if you
want them to shut down as well.

One more point about this implementation: you’ll notice that the startServer() and
stopServer() methods are synchronized because they operate on shared data, but
that data appears to be accessed from the unsynchronized run() method. Appear-
ances here are deceiving. In every client thread, the client has a separate clone of the
object, so each thread is operating on its own private data. As a result, that data need
not be synchronized. If the client threads need to share data, they are responsible for
making sure that the data is properly synchronized.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 12: Threads and I/O

An Example Multithreaded Server
For our first example, we’ll subclass the TCPServer class to perform I/O within the
run(Socket data) method. For a complete example, we must provide the TCPServer
implementation and a client that can connect to that server. In this section, we’ll
develop the server; the client will be developed in the next section. We’ll develop a
server that can serve as the beginning of a multiplayer typing game: multiple clients
connect to the server, which sends the same string to each client and keeps track of
all their scores. We’ll develop only the first part of that server, the part that sends a
string to each client. The remaining logic contains no new information about thread-
ing, so we’ll leave it as an exercise for the reader.

Developing a server like this depends on establishing a protocol between the client
and server. For our example, we use a simple protocol where messages are a single
byte (the message type), optionally followed by data specific to the message type. We
define three types of messages:

package javathreads.examples.ch12;

public class TypeServerConstants {
 public final static byte WELCOME = 0;
 public final static byte GET_STRING_REQUEST = 1;
 public final static byte GET_STRING_RESPONSE = 2;
}

The WELCOME message must be sent by the server when it accepts a new client into the
game; it has no optional data. The GET_STRING_REQUEST message is sent by the client
when it wants a new string; it too has no optional data. Finally, the GET_STRING_RESPONSE
message is sent by the server when it has processed a GET_STRING_REQUEST; it must be fol-
lowed by a UTF-8–encoded string that the client is expected to type.

Here’s the implementation of our server:

package javathreads.examples.ch12.example1;

import java.io.*;
import java.net.*;
import javathreads.examples.ch12.*;

public class TypeServer extends TCPServer {
 public void run(Socket data) {
 try {
 DataOutputStream dos =
 new DataOutputStream(data.getOutputStream());
 dos.writeByte(TypeServerConstants.WELCOME);
 DataInputStream dis =
 new DataInputStream(data.getInputStream());
 while (true) {
 byte b = dis.readByte();
 if (b != TypeServerConstants.GET_STRING_REQUEST) {
 System.out.println("Client sent unknown request " + b);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

A Traditional I/O Server | 225

 continue;
 }
 dos.writeByte(TypeServerConstants.GET_STRING_RESPONSE);
 dos.writeUTF("Thisisateststring");
 dos.flush();
 }
 } catch (Exception e) {
 System.out.println("Client terminating: " + e);
 return;
 }
 }

 public static void main(String[] args) throws IOException {
 TypeServer ts = new TypeServer();
 ts.startServer(Integer.parseInt(args[0]));
 System.out.println("Server ready and waiting...");
 }
}

Remember that the run() method in this class is called after a new connection has
been made (and within a new thread). It writes out the welcome message and then
simply loops. Each time it executes the readByte() method, it blocks until the client
sends the actual request for a string. That’s the reason why we’re running the client
in a separate thread; other clients execute the readByte() method on completely sep-
arate sockets in separate threads. When a message is received, the string to type is
sent back in the proper UTF-8 encoded format. The string here is always the same,
but you could generate random strings in your server.

This class is also responsible for starting the server, which is a simple case of instanti-
ating the server object and calling its startServer() method. Note that the main
thread then exits, depending on the thread started by the startServer() method to
continue all the work. We’ve not provided any way to stop the server other than kill-
ing the entire process, although we’ll explore some ways to do that in later examples.

Using the multithreaded server

Now we must develop the client side of our first example. We use our standard typ-
ing program as the client and change its random-character generator to connect to our
server and send characters retrieved from that server. Here’s the random-character
generator that accomplishes that:

package javathreads.examples.ch12.example1;

import java.net.*;
import java.io.*;
import java.util.*;
import java.util.concurrent.*;
import java.util.concurrent.locks.*;
import javathreads.examples.ch12.*;

public class RandomCharacterGenerator extends Thread implements CharacterSource {
 private char[] chars;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 12: Threads and I/O

 private int curChar;
 private Random random = new Random();
 private CharacterEventHandler handler;
 private boolean done = true;
 private Lock lock = new ReentrantLock();
 private Condition cv = lock.newCondition();
 private Socket sock;
 private DataInputStream reader;
 private DataOutputStream writer;

 public RandomCharacterGenerator(String host, int port) throws IOException {
 handler = new CharacterEventHandler();
 sock = new Socket(host, port);
 reader = new DataInputStream(sock.getInputStream());
 reader.read(); // Welcome
 writer = new DataOutputStream(sock.getOutputStream());
 getString();
 }

 private synchronized void getString() throws IOException {
 byte b = TypeServerConstants.GET_STRING_REQUEST;
 writer.write(b);
 writer.flush();
 b = (byte) reader.readByte();
 if (b != TypeServerConstants.GET_STRING_RESPONSE)
 throw new IllegalStateException("Bad recv state " + b);
 String s = reader.readUTF();
 chars = s.toCharArray();
 curChar = 0;
 }

 public int getPauseTime(int minTime, int maxTime) {
 return (int) (minTime + ((maxTime-minTime)*random.nextDouble()));
 }

 public int getPauseTime() {
 return getPauseTime(2000, 5500);
 }

 public void addCharacterListener(CharacterListener cl) {
 handler.addCharacterListener(cl);
 }

 public void removeCharacterListener(CharacterListener cl) {
 handler.removeCharacterListener(cl);
 }

 public void nextCharacter() {
 handler.fireNewCharacter(this,
 (int) chars[curChar++]);
 if (curChar == chars.length) {
 try {
 getString();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

A Traditional I/O Server | 227

 } catch (IOException ioe) {
 // Put up a dialog box to alert user of error
 }
 }
 }

 public void run() {
 try {
 lock.lock();
 while (true) {
 try {
 if (done) {
 cv.await();
 } else {
 nextCharacter();
 cv.await(getPauseTime(), TimeUnit.MILLISECONDS);
 }
 } catch (InterruptedException ie) {
 return;
 }
 }
 } finally {
 lock.unlock();
 }
 }

 public void setDone(boolean b) {
 try {
 lock.lock();
 done = b;

 if (!done) cv.signal();
 } finally {
 lock.unlock();
 }
 }
}

The only thread here is the one we’ve always had, which sends out the next charac-
ter from the string retrieved from the server. A simple extension for your own prac-
tice would be to use the approach from Chapter 7 and show connection progress in
the main Swing application.

Scaling Using Traditional I/O
The primary issue when using the server we’ve just implemented is that it can han-
dle only a finite number of clients. Two factors limit the number of clients the server
can handle. First, the server can start only a certain number of threads. That number
depends on the operating system hosting the server, the amount of memory avail-
able to the server, and so on, but the number of threads that a typical server can han-
dle is far less than the number of sockets it could otherwise handle. The second limit

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 12: Threads and I/O

has to do with the throughput of the server; as we saw in Chapter 10, with too many
active threads, the total throughput of the program suffers. Even if you have enough
memory to handle thousands of threads, you don’t want them all to use the CPU at
the same time, or all requests take a very long time.

To address these concerns, let’s look at how to limit the number of threads that han-
dle I/O in the server. Using traditional I/O, we can set up a pool of threads to handle
requests; this places an upper limit on the number of simulataneous client requests
that we can handle. Our second example shows the server and client code to use
when you want to throttle the number of threads.

This approach works only for applications in which the client connections are short-
lived. It depends on the fact that the threads in the server do not block because they
do not read data from the client (other than the initial request, which is typically
available as soon as the client has made a connection). This approach can also work
if you don’t care whether new clients are not always able to connect. If you set an
upper limit of, say, 200 clients and don’t mind that client number 201 has to wait an
indeterminate amount of time for a previous client to exit, you can use the example
in this section. Otherwise, if the scaling issues of traditional I/O are a problem for
your application, look at the new I/O techniques described in the next section of this
chapter.

The design pattern of this example is known as the leader-follower pattern. It relies
on the fact that only one thread can execute the accept() method; that is, the inter-
nal implementation of the accept() method is synchronized. The thread that obtains
that lock can establish the connection with a client and obtain that client’s data
socket. It can then release the lock, and the next thread in line then obtains the lock
and processes the next client.

To use this pattern, we must extend our TCPServer class:

package javathreads.examples.ch12;

import java.net.*;
import java.io.*;

public abstract class TCPThrottledServer implements Runnable {
 ServerSocket server = null;
 Thread[] serverThreads;
 volatile boolean done = false;

 public synchronized void startServer(int port, int nThreads)
 throws IOException {
 server = new ServerSocket(port);

 serverThreads = new Thread[nThreads];
 for (int i = 0; i < nThreads; i++) {
 serverThreads[i] = new Thread(this);
 serverThreads[i].start();
 }
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

A Traditional I/O Server | 229

 public synchronized void setDone() {
 done = true;
 }

 public void run() {
 while (!done) {
 try {
 Socket data;
 data = server.accept();
 run(data);
 } catch (IOException ioe) {
 System.out.println("Accept error " + ioe);
 }
 }
 }

 public void run(Socket data) {
 }
}

Notice that our implementation is now much simpler because we no longer need to
create threads on the fly. We establish a fixed number of threads in the
startServer() method. Each thread executes the run() method, where each in turn
gets a client data socket. Because the thread itself operates on the socket, the server
object no longer needs to clone itself; it can simply call the run(Socket data) method.
The only other significant change is that the startServer() method must now keep
track of all the threads so that the stopServer() method can interrupt the threads.

Our actual TypeServer implementation is very similar to its previous incarnation,
except that it now can read only a single client request:

package javathreads.examples.ch12.example2;

import java.io.*;
import java.net.*;
import javathreads.examples.ch12.*;

public class TypeServer extends TCPThrottledServer {
 public void run(Socket data) {
 try {
 DataOutputStream dos =
 new DataOutputStream(data.getOutputStream());
 dos.writeByte(TypeServerConstants.WELCOME);
 DataInputStream dis =
 new DataInputStream(data.getInputStream());
 byte b = dis.readByte();
 if (b != TypeServerConstants.GET_STRING_REQUEST) {
 System.out.println("Client sent unknown request " + b);
 return;
 }
 dos.writeByte(TypeServerConstants.GET_STRING_RESPONSE);
 dos.writeUTF("Thisisateststring");
 dos.flush();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 12: Threads and I/O

 } catch (Exception e) {
 System.out.println("Client terminating: " + e);
 return;
 } finally {
 try {
 data.close();
 } catch (IOException ioe) {
 }
 }
 }

 public static void main(String[] args) throws IOException {
 TypeServer ts = new TypeServer();
 ts.startServer(Integer.parseInt(args[0]), Integer.parseInt(args[1]));
 System.out.println("Server ready and waiting...");
 }
}

Handling only a single request has simplified this implementation as well. There is
no free lunch however: the RandomCharacterGenerator class is now more complicated
because it can no longer keep its connection to the server open. Instead, each time it
wants a new string, it must make a new connection to the server:

package javathreads.examples.ch12.example2;
...
public class RandomCharacterGenerator extends Thread implements CharacterSource {
 ...
 public RandomCharacterGenerator(String host, int port) {
 handler = new CharacterEventHandler();
 this.host = host;
 this.port = port;
 }

 private synchronized void getString() throws IOException {
 Socket sock = new Socket(host, port);
 DataInputStream reader = new DataInputStream(sock.getInputStream());
 reader.read(); // Welcome
 DataOutputStream writer = new DataOutputStream(sock.getOutputStream());
 byte b = TypeServerConstants.GET_STRING_REQUEST;
 writer.write(b);
 writer.flush();
 b = (byte) reader.readByte();
 if (b != TypeServerConstants.GET_STRING_RESPONSE)
 throw new IllegalStateException("Bad recv state " + b);
 String s = reader.readUTF();
 chars = s.toCharArray();
 curChar = 0;
 sock.close();
 }
 ...
}

Continually making new connections to the server can be a nuisance, as well as hav-
ing performance implications: it takes a significant amount of time to set up a socket

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

A New I/O Server | 231

connection. If the protocol of your application is such that messages flow frequently
between client and server, this implementation is inefficient. For applications that
handle a large number of clients making single requests, however, this is a good way
to scale your server using traditional I/O.

A New I/O Server
When you need to handle a large number of clients making an arbitrary number of
requests, the examples we’ve seen so far are impractical. The traditional I/O server
cannot scale up to thousands of clients, and the traditional throttled I/O server is
suitable only for short-lived requests.

Because of this situation, Java introduced a new I/O package (java.nio) in JDK 1.4.
The I/O classes in this package allow you to use nonblocking I/O. This obviates the
need for a single thread for every I/O socket (or file); instead, you can have a single
thread that processes all client sockets. That thread can check to see which sockets
have data available, process that data, and then check again for data on all sockets.
Depending on the operations the server has to perform, it may need (or want) to
spawn some additional threads to assist with this processing, but the new I/O classes
allow you to handle thousands of clients in a single thread.

Given this efficiency, why would you ever use the traditional I/O patterns we looked
at earlier? As you’ll see, the answer lies in the complexity of the code. Dealing with
nonblocking I/O is much harder than dealing with blocking I/O. In those situations
where you have a known small number of clients, the ease of development with the
traditional I/O classes makes the job of developing and maintaining your code much
simpler. In other cases, however, the runtime efficiencies of the new I/O classes
make up for its initial programming complexity.

Nonblocking I/O
To understand the complexities we’re facing, let’s compare blocking and nonblock-
ing I/O. Our program reads a UTF-encoded string. That string is represented as a
series of bytes. The first four bytes make up an integer that indicates how much data
the string contains. The remaining data is character data, the representation of which
depends on the locale in which the data is produced. The data representation for the
string “Thisisateststring” appears in Figure 12-2. The first four bytes tell us that the
string has 17 characters, and the next 17 bytes are the ASCII representation of that
string.

An application that wants to read this string first requests 2 bytes, calculates the
length, and then requests 17 bytes.

As this data travels over the network, it may become fragmented. Data on a network
is sent in packets, and each packet has a maximum size that it can accomodate. It’s

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 12: Threads and I/O

possible, then, for the first part of the data to arrive much sooner than the second
part of the data. In the case of a network failure (or an extremely ill-timed computer
failure on the sending machine), the second part of the data may never arrive. There-
fore, when the application requests the 17 bytes, it may get back only the few bytes
that have already arrived (the same is true when it requests the 2 bytes). The applica-
tion must then request more data to complete reading the string.

The difference between blocking and nonblocking I/O is in how this situation is han-
dled. With blocking I/O, the readUTF() method can just request the additional data.
Requesting that data blocks until the data finally makes its way to the machine, at
which point the readUTF() method can complete its construction of the string and
return that string to the user.

With nonblocking I/O, that solution doesn’t work. When a method attempts to read
data and none is available, the method immediately returns with an indication that
no data was present. You can’t immediately retry reading the data because it still
may not be available, and you’d end up continually wasting CPU cycles as you
attempt to read the nonexistent data. Worse, you’d lose any benefit of nonblocking
I/O: if you’re going to read data until everything is ready, you may as well use tradi-
tional, blocking I/O.

When you use nonblocking I/O, then, it’s your responsibility to be prepared for this
situation and cope with the fact that all the data you need to process may not be
immediately available. It’s this programming that makes nonblocking I/O more diffi-
cult to use.

This situation isn’t limited to reading data from sockets. When you write data to
sockets, the data you’re writing is buffered in the operating system until the OS can
put the data on the network. If the network is very busy, the OS buffer may fill up,
and you won’t be able to write any data to it. Worse, you may attempt to write 100
bytes, but the OS buffers may have only 64 bytes available: you’ll end up writing the
first 64 bytes, but then you must go back later and write the remaining 36 bytes.

File I/O can have a similar problem. When you’re reading data from the disk, the
operating system may have to retrieve the actual data from many different locations

Figure 12-2. Byte representation of a UTF-encoded string

0 0x11

0x54 0x68 0x69 0x73 0x69

0x73 0x61 0x74 0x64 0x73

0x74 0x73 0x72 0x69

0x74

0x6E 0x67

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

A New I/O Server | 233

on the disk. As a result, some of the data may be available immediately while the
remaining data may not be available until the disk completes its rotation to the cor-
rect spot for the operating system to read it. In writing data, you may face the same
problem: you may write faster than the operating system can flush its buffers to disk,
in which case, you’ll have a partial write of your data.

The situations we’ve described here are very similar to a race condition; they depend
on a certain sequence of events occurring in a particular order. It turns out that they
are just as rare. It’s possible to write a server or other program using nonblocking I/O
and always assume when you read data that you’ll read everything you need and
when you write data that it will all get written correctly. Such a program will work
almost all the time. Almost.

A Single-Threaded NIO Server
Now we’ll develop our third example: a single-threaded network server that uses the
NIO classes. As before, we’ll develop a generic NIO server and the example server
that completes the implementation of the server. We do not need to develop a new
client to use this server, however. The TCP protocol is the same whether we use tra-
ditional I/O or NIO. As a result, we can use the client from example 1 to connect to
this server.

We’ll start with the generic NIO server:

package javathreads.examples.ch12;

import java.net.*;
import java.io.*;
import java.nio.channels.*;
import java.util.*;

public abstract class TCPNIOServer implements Runnable {
 protected ServerSocketChannel channel = null;
 private boolean done = false;
 protected Selector selector;
 protected int port = 8000;

 public void startServer() throws IOException {
 channel = ServerSocketChannel.open();
 channel.configureBlocking(false);
 ServerSocket server = channel.socket();
 server.bind(new InetSocketAddress(port));
 selector = Selector.open();
 channel.register(selector, SelectionKey.OP_ACCEPT);
 }

 public synchronized void stopServer() throws IOException {
 done = true;
 channel.close();
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 12: Threads and I/O

 protected synchronized boolean getDone() {
 return done;
 }

 public void run() {
 try {
 startServer();
 } catch (IOException ioe) {
 System.out.println("Can't start server: " + ioe);
 return;
 }
 while (!getDone()) {
 try {
 selector.select();
 } catch (IOException ioe) {
 System.err.println("Server error: " + ioe);
 return;
 }
 Iterator it = selector.selectedKeys().iterator();
 while (it.hasNext()) {
 SelectionKey key = (SelectionKey) it.next();
 if (key.isReadable() || key.isWritable()) {
 // Key represents a socket client
 try {
 handleClient(key);
 } catch (IOException ioe) {
 // Client disconnected
 key.cancel();
 }
 } else if (key.isAcceptable()) {
 try {
 handleServer(key);
 } catch (IOException ioe) {
 // Accept error; treat as fatal
 throw new IllegalStateException(ioe);
 }
 } else System.out.println("unknown key state");
 it.remove();
 }
 }
 }

 protected void handleServer(SelectionKey key) throws IOException {
 SocketChannel sc = channel.accept();
 sc.configureBlocking(false);
 sc.register(selector, SelectionKey.OP_READ);
 registeredClient(sc);
 }

 protected abstract void handleClient(SelectionKey key) throws IOException;
 protected abstract void registeredClient(SocketChannel sc) throws IOException;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

A New I/O Server | 235

Our intent here is not to explain in great detail the NIO classes themselves; for a
good reference, see Java NIO (O’Reilly). From a threading perspective, this is the
classic approach to a single-threaded server than handles multiple clients. The selec-
tor keeps track of two things: the rendezvous socket and all open client sockets.
When any of those sockets have data available, the selector is notified, and the set of
sockets with pending data is returned via the selectedKeys() method. Our server
iterates over each socket in that set. If the socket is the rendezvous socket, the
handleServer() method is called, a new client connection is made, and the client
socket is registered with the selector. Otherwise, the socket is a client data socket,
and the handleClient() method is called.

The reason we can do this all in a single thread is that the I/O that occurs in the
handleClient() and handleServer() methods never blocks. Consequently, our sin-
gle thread never blocks; even with thousands of client sockets with pending I/O,
each is handled in turn.

As before, we need to provide a subclass of this framework that handles the actual
client data. Here’s how we’d write a subclass based on our typing server protocol:

package javathreads.examples.chio.example3;

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;
import java.net.*;
import java.util.*;
import javathreads.examples.chio.*;

public class TypeServer extends TCPNIOServer {
 static String testString = "Thisisateststring";
 static class ClientInfo {
 ByteBuffer inBuf = ByteBuffer.allocateDirect(512);
 ByteBuffer outBuf = ByteBuffer.allocateDirect(512);
 boolean outputPending = false;
 SocketChannel channel;
 }
 Map allClients = new HashMap();
 Charset encoder = Charset.forName("UTF-8");

 protected void handleClient(SelectionKey key) throws IOException {
 SocketChannel sc = (SocketChannel) key.channel();
 ClientInfo ci = (ClientInfo) allClients.get(sc);
 if (ci == null)
 throw new IllegalStateException("Unknown client");
 if (key.isWritable())
 send(sc, ci);
 if (key.isReadable())
 recv(sc, ci);
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 12: Threads and I/O

 private void recv(SocketChannel sc, ClientInfo ci) throws IOException {
 ci.channel.read(ci.inBuf);
 ByteBuffer tmpBuf = ci.inBuf.duplicate();
 tmpBuf.flip();
 int bytesProcessed = 0;
 boolean doneLoop = false;
 while (!doneLoop) {
 byte b;
 try {
 b = tmpBuf.get();
 } catch (BufferUnderflowException bue) {
 // Processed all data in buffer
 ci.inBuf.clear();
 doneLoop = true;
 break;
 }
 switch(b) {
 case TypeServerConstants.WELCOME:
 bytesProcessed++;
 break;
 case TypeServerConstants.GET_STRING_REQUEST:
 bytesProcessed++;
 if (ci.outputPending) {
 // Client is backed up. We can't append to
 // the byte buffer because it's in the wrong
 // state. We could allocate another buffer
 // here and change our send method to know
 // about multiple buffers, but we'll just
 // assume that the client is dead
 break;
 }
 ci.outBuf.put(TypeServerConstants.GET_STRING_RESPONSE);
 ByteBuffer strBuf = encoder.encode(testString);
 ci.outBuf.putShort((short) strBuf.remaining());
 ci.outBuf.put(strBuf);
 ci.outBuf.flip();
 send(sc, ci);
 break;
 case TypeServerConstants.GET_STRING_RESPONSE:
 int startPos = tmpBuf.position();
 try {
 int nBytes = tmpBuf.getInt();
 byte[] buf = new byte[nBytes];
 tmpBuf.get(buf);
 bytesProcessed += buf.length + 5;
 String s = new String(buf);
 // Send the string to the GUI
 break;
 } catch (BufferUnderflowException bue) {
 // Processed all available data
 ci.inBuf.position(ci.inBuf.position() + bytesProcessed);
 doneLoop = true;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

A New I/O Server | 237

 }
 break;
 }
 }
 }

 private void send(SocketChannel sc, ClientInfo ci) throws IOException {
 int len = ci.outBuf.remaining();
 int nBytes = sc.write(ci.outBuf);
 if (nBytes != len) {
 // Client not ready to receive data
 ci.outputPending = true;
 ci.channel.register(selector,
 SelectionKey.OP_READ|SelectionKey.OP_WRITE);
 }
 else {
 ci.outBuf.clear();
 if (ci.outputPending) {
 ci.outputPending = false;
 ci.channel.register(selector, SelectionKey.OP_READ);
 }
 }
 }

 protected void registeredClient(SocketChannel sc) throws IOException {
 ClientInfo ci = new ClientInfo();
 ci.channel = sc;
 ci.outBuf.clear();
 ci.outBuf.put(TypeServer.WELCOME);
 ci.outBuf.flip();
 allClients.put(sc, ci);
 send(sc, ci);
 }

 public static void main(String[] args) throws Exception {
 TypeServer ts = new TypeServer();
 ts.port = Integer.parseInt(args[0]);
 Thread t = new Thread(ts);
 t.start();
 System.out.println("Type server ready...Type CTRL-D to exit");
 while (System.in.read() > 0)
 ;
 ts.stopServer();
 t.join();
 }
}

Note the greatly increased complexity in this example from our multithreaded block-
ing I/O example: that’s the price we have to pay to handle all the additional clients.
In the recv() method, we’re reading all the data available from a client. That is usu-
ally just a single request, but, in fact, nothing prevents the client from sending multi-
ple requests at the same time. Therefore, we must be ready to process all the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 12: Threads and I/O

available data, which is why we set up the outer loop that attempts to read a series of
requests.

Our requests are a single byte long, so when I/O is available, we know that
there’s at least one request. However, some messages have additional data. The
GET_STRING_RESPONSE message consists of the single byte indicating the mes-
sage type and the UTF-encoded string. Notice how we read this from a temporary
buffer in case all the data isn’t present: if in processing the data we find that it isn’t
all there, we can just discard the temporary buffer. The next time the recv() method
is called (which happens when we’ve received at least some of the remaining data),
that data is appended to the buffer and we try to process it again.

In the send() method, we also check to make sure that we’ve written all the data. If
not, we have to change our selection criteria. We’re not interesting in knowing
whether the socket can accept data unless we actually have pending data to send to
it, so that’s the only time we ask to be signaled for OP_WRITE.

A Multithreaded New I/O Server
Our new I/O server is very efficient at handling a large number of clients, but it may
not be making the best use of machine resources. If our server has multiple CPUs, we
use only one of them. In other cases, we might have a handleClient() method that
makes a database call, in which case the handleClient() method itself may need to
wait for a response (we could of course use nonblocking I/O to handle the database
call, but that would make our programming even more difficult). So occasionally you
want to use nonblocking I/O to handle a large number of clients but still multi-
thread your program for ease of development and optimal use of machine resources.

This situation is handled with a thread pool: as requests come into the server, the
handleClient() method places the requests on the thread pool queue. Threads in the
pool take the requests in order and execute them in parallel.

For our fourth example, we adapt our code from Chapter 10 and turn it into a server
that can satisfy a large number of client requests.

package javathreads.examples.ch12.example4;

import java.util.concurrent.*;
import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import javathreads.examples.ch12.*;

public class CalcServer extends TCPNIOServer {

 static ThreadPoolExecutor pool;

 class FibClass implements Runnable {
 long n;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

A New I/O Server | 239

 SocketChannel clientChannel;
 ByteBuffer buffer = ByteBuffer.allocateDirect(8);

 FibClass(long n, SocketChannel sc) {
 this.n = n;
 clientChannel = sc;
 }

 private long fib(long n) {
 if (n == 0)
 return 0L;
 if (n == 1)
 return 1L;
 return fib(n - 1) + fib(n - 2);

 }

 public void run() {
 try {
 long answer = fib(n);
 buffer.putLong(answer);
 buffer.flip();
 clientChannel.write(buffer);
 if (buffer.remaining() > 0) {
 Selector s = Selector.open();
 clientChannel.register(s, SelectionKey.OP_WRITE);
 while (buffer.remaining() > 0) {
 s.select();
 clientChannel.write(buffer);
 }
 s.close();
 }
 } catch (IOException ioe) {
 System.out.println("Client error " + ioe);
 }
 }
 }

 protected void handleClient(SelectionKey key) throws IOException {
 SocketChannel sc = (SocketChannel) key.channel();
 ByteBuffer buffer = ByteBuffer.allocateDirect(8);
 sc.read(buffer);
 buffer.flip();
 long n = buffer.getLong();
 FibClass fc = new FibClass(n, sc);
 pool.execute(fc);
 }

 protected void registeredClient(SocketChannel sc) {
 }

 public static void main(String[] args) throws Exception {
 CalcServer cs = new CalcServer();
 cs.port = Integer.parseInt(args[0]);
 int tpSize = Integer.parseInt(args[1]);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 12: Threads and I/O

 pool = new ThreadPoolExecutor(
 tpSize, tpSize, 50000L, TimeUnit.MILLISECONDS,
 new LinkedBlockingQueue<Runnable>());
 cs.run();
 System.out.println("Calc server waiting for requests...");
 }
}

From a threading perspective, the interesting thing to note here is that the handling
of nonblocking I/O is somewhat easier. Because there are now multiple threads, we
can afford to wait if one particular client is delayed in reading or writing data. One of
our threads might periodically block now (but only for 60 seconds), but that won’t
greatly affect the overall throughput of our server.

One point about using multiple threads and the new I/O classes: the buffers and
channels of these classes are typically not threadsafe. That’s not usually a problem
because the point of the exercise is to handle each channel in a separate thread (or
everything in a single thread).

Interrupted I/O
In Chapter 2, we introduced the interrupt() method, which interrupts a thread that
is blocked in a sleep(), wait(), join(), or similar method. The interrupt() method
also sets a flag in the thread that is frequently used as a signal to the thread that it
should terminate.

Traditional I/O methods in Java can also block: we’ve seen how reading from a
socket is a blocking method. The accept() method of the ServerSocket class is inher-
ently blocking; socket constructors may block while the connection is established,
and, under some circumstances, writing to a socket may block. File I/O can also
block, though much more rarely (although if the file is from a network file server,
blocking becomes more likely).

What is the effect of calling interrupt() on a thread that is blocked in I/O? The
answer to that is platform-dependent. On Unix operating systems such as Solaris and
Linux, the interrupt() method causes the blocked I/O method to throw an
InterruptedIOException. Unfortunately, Windows operating systems do not support
interruptible I/O, so on those platforms a thread blocked on an I/O method remains
blocked after it has been interrupted.

So what’s a programmer to do? The safest answer is not to rely on the interrupt()
method to unblock a thread that is waiting for I/O to complete: if you need to
unblock such a thread, you should close the input or output stream on which the
thread is blocked. If interruptible I/O as a generic feature is added to Java in the
future, it will likely have a different interface than the method throwing an
InterruptedIOException.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Interrupted I/O | 241

If you do rely on interruptible I/O, be aware that the I/O in question is not restart-
able: it’s impossible to determine the state of the I/O and know at which point it
should start again. The difficulty of dealing with the issue of restarting I/O that has
been interrupted is a prime reason why its implementation is inconsistent between
operating systems.

Under certain circumstances, you can still use the interrupt() method to close down
an I/O thread on all platforms. This can work if, when you call the interrupt()
method, you intend to close the input stream in question since closing the input
stream unblocks the thread on all platforms.

This abstract class demonstrates this principle:

package javathreads.examples.ch12;

import java.net.*;
import java.io.*;

public abstract class InterruptibleReader extends Thread {
 private Object lock = new Object();
 private InputStream is;
 private boolean done;
 private int buflen;

 protected void processData(byte[] b, int n) { }

 class ReaderClass extends Thread {
 public void run() {
 byte[] b = new byte[buflen];
 while (!done) {
 try {
 int n = is.read(b, 0, buflen);
 processData(b, n);
 } catch (IOException ioe) {
 done = true;
 }
 }
 synchronized(lock) {
 lock.notify();
 }
 }
 }

 public InterruptibleReader(InputStream is) {
 this(is, 512);
 }

 public InterruptibleReader(InputStream is, int len) {
 this.is = is;
 buflen = len;
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 12: Threads and I/O

 public void run() {
 ReaderClass rc = new ReaderClass();
 synchronized(lock) {
 rc.start();
 while (!done) {
 try {
 lock.wait();
 } catch (InterruptedException ie) {
 done = true;
 rc.interrupt();
 try {
 is.close();
 } catch (IOException ioe) {}
 }
 }
 }
 }
}

What we’ve done in this class is to start two threads: one that is reading the data and
one that is waiting for an interrupt to occur. When the waiting thread is interrupted,
it closes the input stream that the reading thread is blocked on, and both threads
then exit. This allows us to shut down the thread (and close the input stream associ-
ated with the thread) by interrupting the waiting thread:

InterruptibleReader ir = ...some concrete subclass of interruptible reader...;
... Do other things until we need to shut down the reader ...
ir.interrupt();

A concrete implementation of the interruptible reader might look like this:

package javathreads.examples.ch12.example5;

import java.net.*;
import java.io.*;
import javathreads.examples.ch12.*;

public class InterruptibleClient extends InterruptibleReader {

 public void processData(byte[] b, int n) {
 System.out.println("Got data " + new String(b, 0, n));
 }

 public InterruptibleClient(InputStream is) {
 super(is);
 }

 public static void main(String[] args) throws Exception {
 Socket s = new Socket(args[0], Integer.parseInt(args[1]));
 InputStream is = s.getInputStream();
 InterruptibleClient c = new InterruptibleClient(is);
 c.start();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Summary | 243

 System.out.println("Main thread sleeping");
 Thread.sleep(10000);
 System.out.println("Main thread woke up");
 c.interrupt();
 System.out.println("Main thread called interrupt");
 }
}

Rather than going to all this effort, we might simply have closed the input stream
directly. Similarly, we might have written a shutdown() method in the
InterruptibleReader class that closed the input stream (which would have saved us a
thread). The reason you might select this approach is that it keeps things consistent
among all threads: you can use the interrupt() method to stop all of them.
Chapter 13 describes how you can arrange to interrupt a group of threads at once,
which is another advantage to this approach.

Summary
Using multiple threads well is very important in any Java program that performs a lot
of I/O. In the simplest case, I/O (and particularly socket I/O) may block at any point
in time; if you want to make sure that your program remains responsive while per-
forming I/O, you must perform the I/O in another thread. For simple cases, this
means having a single thread for every I/O source you’re interested in.

That model does not scale completely as the number of I/O sources grows. At this
point, you must begin to look at other threading solutions. One solution is to con-
tinue to use blocking I/O but to limit the number of threads active at any time.
Although that solution has limited applicability, it’s a simple extension to a basic
idea.

In most other cases, you’ll need to use the nonblocking features of Java’s NIO
classes. Although these classes increase the complexity of your applications, they
allow you to handle many I/O sources with a single thread. The complexity of using
nonblocking I/O can be mitigated somewhat by using multiple threads with non-
blocking I/O; that solution is also appropriate when you have multiple CPUs avail-
able to process requests or when the requests themselves need to block for other
reasons.

Used judiciously, Java’s threading and I/O models allow you great flexibility in
developing complex programs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 12: Threads and I/O

Example Classes
Here are the class names and Ant targets for the examples in this chapter:

The single-threaded client (example 1) can be used with either single-threaded server
(examples 1 and 3). The interruptible client can be used with any type of server. To
change ports and hostnames for the Ant targets, use these properties:

<property name="TypeServerHost" value="localhost"/>
<property name="TypeServerPort" value="8003"/>
<property name="TypeServerNThreads" value="10"/>
<property name="CalcServerNThreads" value="5"/>
<property name="CalcClientNThreads" value="10"/>
<property name="CalcServerFibNumber" value="20"/>
<property name="CalcServerHost" value="localhost"/>
<property name="CalcServerPort" value="8003"/>

Description Main Java class Ant target

Single-Threaded Server javathreads.examples.ch12.example1.
TypeServer portNumber

ch12-ex1-server

Single-Threaded Client javathreads.examples.ch12.example1.
SwingTypeTester hostname portNumber

ch12-ex1-client

Throttled Server javathreads.examples.ch12.example2.
TypeServer portNumber

ch12-ex2-server

Throttled Client javathreads.examples.ch12.example2.
SwingTypeTester hostname portnumber

ch12-ex2-client

NIO Single-Threaded Server javathreads.examples.ch12.example3.
TypeServer portNumber

ch12-ex3-server

Multithreaded Calc Server javathreads.examples.ch12.example4.
CalcServer portNumber nServerThreads

ch12-ex4-server

Calc Client javathreads.examples.ch12.example4.
CalcServer nClientRequests FibNumber
hostname portNumber

ch12-ex4-client

Interruptible Client javathreads.examples.ch12.example5.
InterruptibleClient hostname port

ch12-ex5-client

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

245

Chapter 13 CHAPTER 13

Miscellaneous Thread Topics

Threads are a basic feature of the Java platform. As a result, threads interact with
several of Java’s other programming and runtime features. In this chapter, we’ll
briefly touch on some of these features (and issues), including thread groups, Java
security, daemon threads, class loading, exception handling, and memory usage.
Some of these topics are interrelated: in particular, the thread group class is used by
the security manager as the basis for its decisions. In general, the topics here will
complete your understanding of how threads permeate the Java platform.

Thread Groups
All threads belong to a thread group, which, as its name implies, is a group of
threads. Thread groups are defined by the java.lang.ThreadGroup class. Although we
haven’t yet mentioned them, thread groups have been around all along. Every thread
you create automatically belongs to a default thread group that the Java virtual
machine sets up on your behalf. Every thread we’ve looked at so far belongs to this
existing thread group, which is known as the “main” thread group.

The virtual machine also has a “system” thread group. This thread group contains
the threads that handle finalization and weak references. This group does not con-
tain all threads of the virtual machine: some system-level threads (such as the gar-
bage collection thread(s)) have no corresponding Java thread object and do not exist
in any Java thread group.

Thread groups are more than just arbitrary groupings of threads; they are related to
each other. Every thread group has a parent thread group, so thread groups exist in a
tree hierarchy. The obvious exception to this, of course, is the root of the tree, which
is known as the root thread group or the system thread group. Every Java program
has by default two thread groups: the system thread group contains the threads of

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 13: Miscellaneous Thread Topics

some system-level tasks.* The system thread group has one child, the main thread
group, which contains the thread that starts your program, the AWT event-
dispatching thread, any default thread you create, and any threads started by the
Java API. Figure 13-1 shows a sample thread hierarchy from a system running the
Java Plug-in. In this figure, each applet is given its own thread which is started in its
own thread group. Some of the applets have created additional thread groups to
complete the hierarchy shown.

You can create your own thread groups as well and make this hierarchy arbitrarily
complex. Thread groups are created just like any Java object; when you instantiate a
thread group object, you specify its parent thread group in the hierarchy (by default,
the parent thread group is the current thread group). When you instantiate a Thread
object, you may optionally specify the thread group to which it should belong. If you
don’t specify a thread group, one of two things happens:

• If a security manager has been installed, the getThreadGroup() method of the
security manager is called and the thread joins the group returned by that
method.

• Otherwise, the thread joins the current thread group (the thread group of the
instantiating thread).

* Not all virtual machine–level threads have a corresponding Java thread object, so the system group does not
contain all possible threads.

Figure 13-1. An (incomplete) thread group hierarchy

System thread group
Reference handler thread

Finalizer thread

Main thread group
Swing and awt event dispatching thread

Java 2D thread

Applet 1 thread group
Applet 1 main thread

Applet 2 thread group
Applet 2 main thread

Applet 2 created thread group
Applet 2 created thread

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Threads and Java Security | 247

Thread groups have two advantages. First, convenience methods of the thread group
class allow you to operate on all threads in the group. If, for example, you wanted to
interrupt all threads in a particular group, you could call the interrupt() method on
the thread group object, and it would call the interrupt() method of each of its
threads. The interrupt() method is really the only method of the ThreadGroup class
that can affect all the threads in the group; stop(), suspend(), and resume() meth-
ods operate in the same way, but they are, of course, deprecated.

The second advantage of thread groups relates to thread security. If you write cus-
tom security code for your application, decisions about whether one thread can
access and/or modify the state of another thread take into account the thread group
to which the threads belong. The Java Plug-in and appletviewer provide such cus-
tomization so that threads in one applet are prevented from modifying the threads in
another applet. To make security decisions in this way, however, requires that you
write a custom security manager.

Threads and Java Security
One of Java’s hallmarks is that it is designed from the ground up with security in
mind. It’s no surprise, then, that threads have a number of interesting security-
related properties.

In its default configuration, security in a Java program is enforced by the security
manager, an instance of the java.lang.SecurityManager class. When certain opera-
tions are attempted on threads or thread groups, the Thread and ThreadGroup classes
consult the security manager to determine if those operations are permitted.

There is one method in the SecurityManager class that handles security policies for
the Thread class and one that handles security policies for the ThreadGroup class.
These methods have the same name but different signatures:

void checkAccess(Thread t)
Checks if the current thread is allowed to modify the state of the thread t

void checkAccess(ThreadGroup tg)
Checks if the current thread is allowed to modify the state of the thread group tg

Like all methods in the SecurityManager class, these methods throw a SecurityException
if they determine that performing the operation would violate the security policy. As an
example, here’s a conflation of the code that the interrupt() method of the Thread class
implements:

public void interrupt() {
 SecurityManager sm = System.getSecurityManager();
 if (sm != null)
 sm.checkAccess(this);
 interrupt0();
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 13: Miscellaneous Thread Topics

This is canonical behavior for thread security: the checkAccess() method is called,
which generates a runtime exception if thread policy is violated by the operation.
Assuming that no exception is thrown, an internal method is called that actually per-
forms the logic of the method.

Because only one method in the SecurityManager class is used to check for security
information, thread security policy is an all-or-nothing proposition. If the security
manager determines that a particular thread is prevented from interrupting other
threads, that thread is also prevented from setting the priority of other threads.

The checkAccess() method itself looks to see which thread group the target thread
belongs to. If the thread is not a member of the root thread group, the checkAccess()
method immediately returns; all threads are allowed to modify the state of all other
threads that are not members of the root thread group. Otherwise, the security man-
ager consults the policy for the program.

Java security is normally determined via a series of policy files, including the files
$JAVAHOME/lib/security/java.policy and $HOME/.java.policy. The policy files used
by a program contain a mapping between the URLs where the application code was
loaded from and the permission granted to code loaded from those particular loca-
tions. When the checkAccess() method (or any other method of the security man-
ager) is called, the security manager looks at the stack of the current thread: every
class on the stack must have permission to execute the given method.

For thread access, code must be granted one of these two permissions:

permission java.security.AllPermission;
permission java.security.RuntimePermission "thread";

Security and the checkAccess() Method
Both the Thread and ThreadGroup classes have an internal method called
checkAccess(); this method, by default, calls the security manager’s checkAccess()
method, passing the appropriate thread or thread group object.

The checkAccess() method within the Thread and ThreadGroup classes is public, so
you can call it directly from any thread or thread group object if you want to check
what security policy is in place.

The checkAccess() method within the ThreadGroup class is final; it may not be over-
ridden. The checkAccess() method of the Thread class, however, is not final, meaning
that you could override it and effectively change the security model for your particular
Thread subclass. Remember, however, that this would affect only your class and not
other threads within the system.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Daemon Threads | 249

When the checkAccess() method is called and each method presently on the stack
has one of these permissions, no security exception is thrown. The security manager
is consulted whenever a program calls any of the methods listed in Table 13-1.

The stop() method is handled somewhat differently. In addition to calling the
checkAccess() method of the security manager, the stop() method also checks to see
if the classes on the stack have this permission:

permission java.lang.RuntimePermission "stopThread";

By default, this permission is granted to all code, and the other thread permissions
are not granted to any code. Users and system administrators may change their pol-
icy files at will to allow or disallow any of the thread access.

By default, then, threads can modify the state of any other thread (including itself)
unless the target thread belongs to the root thread group. Threads that are in the root
thread group cannot be modified unless the user has set up specific permissions to
allow that.

However, the security policy of the Java virtual machine is quite flexible and can be
overriden by applications at several levels. As we’ve mentioned, the Java Plug-in and
appletviewer provide their own implementation of the security manager. When the
checkAccess() method of that security manager is called, the security manager con-
sults the thread group of the calling thread: it is allowed to access or modify its own
threads and threads in any descendent thread groups, but nothing else.

For more details on how Java security works, including how you can override the
security manager, see Java Security (O’Reilly).

Daemon Threads
Java has two types of threads: daemon and user. The threads that we’ve looked at so
far have all been user threads. The implication of these names is that daemon threads
are threads created internally by the virtual machine and that user threads are those

Table 13-1. Thread and ThreadGroup methods affected by the security manager

Thread methods ThreadGroup methods

Thread() (calls checkAccess() on its thread group) ThreadGroup()

stop() stop()

suspend() suspend()

resume() resume()

interrupt() interrupt()

setPriority() setMaxPriority()

setDaemon() setDaemon()

setName() destroy()

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 13: Miscellaneous Thread Topics

that you create yourself, but this is not the case. Any thread can be a daemon thread
or a user thread.

A daemon thread is identical to a user thread in almost every way. The one excep-
tion occurs in determining when the virtual machine exits. The virtual machine auto-
matically exits when all of its nondaemon threads have exited. Daemon threads only
live to serve user threads; if there are no more user threads, there is nothing to serve
and no reason to continue.

The canonical daemon thread in Java is the garbage collection thread (and, in recent
virtual machines, multiple garbage collection threads). The garbage collector runs
from time to time and frees those Java objects that no longer have valid references. If
we don’t have any other threads running, however, there’s nothing for the garbage
collector to do: after all, garbage is not spontaneously created (at least not inside a
Java program). So if the garbage collector is the only thread left running in the Java
virtual machine, clearly there’s no more work for it to do, and the Java virtual
machine can exit.

The daemon mode of a thread is set by calling the setDaemon() method with either
true (set to daemon mode) or false (set to user mode). The setDaemon() method can
be called only before the thread has been started. While the thread is running, you
cannot cause a user thread to become a daemon thread (or vice versa); attempting to
do so generates an exception. To be completely correct, an exception is generated
any time the thread is alive and the setDaemon() method is called.

By default, a thread is a user thread if it is created by a user thread; it is a daemon
thread if it is created by a daemon thread.

Threads and Class Loading
Classes in Java are loaded by a classloader object, which consults the directories and
jar files in your classpath to find the class definitions. Applications can construct
their own classloaders to find class files in locations other than the classpath. For
example, the Java Plug-in constructs a classloader for each applet based on the code-
base specified in the applet’s tag; J2EE application servers construct a classloader for
each J2EE application they run.

Classloaders form a hierarchy. The root of the hierarchy is the bootstrap classloader,
which loads classes from rt.jar and other system jar files. Its immediate child is the
application classloader which loads classes from the classpath. From that point, the
class loading tree can become arbitrarily complicated. Figure 13-2 shows the class
loading hierarchy of a program that has started two different classloaders. Note that
two classes in this hierarchy have the same name: it’s an interesting property of the
virtual machine that classes loaded by different classloaders are considered com-
pletely different classes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Threads and Class Loading | 251

Despite the similarity of this hierarchy to the thread group hierarchy, the two are
unrelated. Threads can freely share classes that are loaded in other threads, no mat-
ter what classloader is used to load them.

Threads interact with the classloader in one particular case. Each thread is assigned a
specific classloader known as the context classloader. This classloader is retrieved
with the getContextClassLoader() method and set with the setContextClassLoader()
method.

The context classloader is used to load classes (and resources) only in certain spe-
cific cases. Developers often assume that the context classloader can be used to affect
where a thread loads things from in a general case, but that is not true. In the gen-
eral case, when a thread runs the code of class A and comes across a reference for
class B, it attempts to load the code for class B from the same classloader that loaded
class A (or one of that classloader’s ancestors in the classloading hierarchy). This
approach is taken irrespective of which threads or classloaders were originally
involved in loading class A. A classloader knows only about its ancestors, not its
descendants.

The context classloader only comes into play with certain internal classes in the vir-
tual machine. For example, when you pass serialized objects over IIOP, the ORB
classes consult the thread’s context classloader when it tries to retrieve the class defi-
nition for the classes it attempts to deserialize. Application servers typically take the
same approach when attempting to load resources specific to a J2EE application.

The reason a context classloader is needed in these circumstances is that the ORB
classes were loaded by the system classloader; they don’t know about any other
classloaders that exist in the class-loading hierarchy. When an ORB class derefer-
ences an object and needs to load a new class, it can consult only the system class-
loader. Clearly, the application classes it needs to deserialize the object won’t be

Figure 13-2. A classloader hierarchy

System classloader
java.lang.String
java.lang.Thread

Application classloader
javathreads.example.ch13.Main

URL classloader #1
com.acme.foo

URL classloader #2
com.acme.foo

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 13: Miscellaneous Thread Topics

defined in the system classloader; it must have a hook to get to the special class-
loader that the application wants to use to define its classes.

This hook is unrelated to threading issues: the context classloader can be set and
reset as often as you want in your application. The Thread class simply provides a
convenient location to put this hook.

The default context classloader for a thread is the classloader that loaded the class
defining the thread. For application threads, this is typically the application class-
loader (unless you’ve defined your own classloader within the application). So in the
vast majority of cases, you don’t need to worry about setting the context classloader.
If you’ve defined and used multiple classloaders in your application, however, you
need to set the context classloader of a thread before it calls into the ORB (or certain
other system resources).

Threads and Exception Handling
In Chapter 2, we examine how to create a thread and we mention that the start()
method performs some internal housekeeping and then calls the run() method. Let’s
examine that in a little more detail. The start() method does start another thread of
control, but the run() method is not really the “main” method of the new thread.
The run() method is executed inside a context that allows the virtual machine to
handle runtime exceptions thrown from the run() method. This process is shown in
Figure 13-3.

Figure 13-3. Flowchart of the main thread

yes

start()

Exception
occurred?

no

Initialization of
environment

run()

Exception
handler

Done

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Threads and Exception Handling | 253

All uncaught exceptions are handled by code outside of the run() method before the
thread terminates. The default exception handler is a Java method; it can be overrid-
den. This means that it is possible for a program to write a new default exception
handler.

The default exception handler is the uncaughtException() method of the ThreadGroup
class. It is called only when an exception is thrown from the run() method. The
thread is technically completed when the run() method returns, even though the
exception handler is still running the thread.

The default implementation of the uncaughtException() method is to print out the
stack trace of the Throwable object thrown by the run() method (unless that object is
an instance of the ThreadDeath class, discussed next). In most cases, this is sufficient:
the only exceptions that the run() method can throw are runtime exceptions or
errors. By the time the run() method has returned, it’s too late to recover from these
errors.

One case in which it’s useful to override the uncaughtException() method is to send
a priority notification to an administrator that an unusual, fatal error has occurred.
Here’s an example that does that when its thread eventually encounters an out-of-
memory error:

package javathreads.examples.ch13;

import java.util.*;

public class TestOverride implements Runnable {

 static class OverrideThreadGroup extends ThreadGroup {
 public OverrideThreadGroup() {
 super("Administrator Alert Group");
 }
 public void uncaughtException(Thread t, Throwable e) {
 alertAdministrator(e);
 }
 }

 public static void alertAdministrator(Throwable e) {
 // Use Java Mail to send the administrator's pager an email
 System.out.println("Adminstrator alert!");
 e.printStackTrace();
 }

 public static void main(String[] args) {
 ThreadGroup tg = new OverrideThreadGroup();

 Thread t = new Thread(tg, new TestOverride());
 t.start();
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 13: Miscellaneous Thread Topics

 public void run() {
 ArrayList al = new ArrayList();
 while (true) {
 al.add(new byte[1024]);
 }
 }
}

When the out of memory error occurs, the application prints a message alerting the
system administrator of this fact. In J2SE 5.0, this idea has been expanded, and it is
now possible to set an uncaught exception handler for each thread.

package java.lang;
public class Thread implements Runnable {
 public interface UncaughtExceptionHandler {
 void uncaughtException(Thread t, Throwable e);
 }
 public static setDefaultExceptionHandler(Thread.UncaughtExceptionHandler ueh);
 public static Thread.UncaughtExceptionHandler getDefaultExceptionHandler();
 public setExceptionHandler(Thread.UncaughtExceptionHandler ueh);
 public Thread.UncaughtExceptionHandler getExceptionHandler();
}

The static methods of the Thread class set or retrieve a default thread handler used by
all new threads. When a thread is constructed, its exception handler is set to the
default, so calling the setDefaultExceptionHandler() method does not affect any
threads that have already been constructed. The exception handler for a particular
thread can be set at any time.

By default, the exception handler for a thread is its thread group: the ThreadGroup
class implements the Thread.UncaughtExceptionHandler interface and calls the
uncaughtException() method, as we’ve already explained. Therefore, the changes to
J2SE 5.0 are fully backward-compatible with existing exception handling.

The ThreadDeath Class
The ThreadDeath class is a special Throwable class that was formerly used to stop a
thread. When the stop() method is called on a thread, that thread immediately throws
a ThreadDeath error. The ThreadDeath class extends the Error class and so is not usually
caught by application programming. It is possible, of course, to catch any Throwable
object, but it is not advisable to use this technique to prevent the death of the thread.
After all, if we didn’t want the thread to die, why was the stop() method called? And if
we prevent the thread from exiting, another thread executing the join() method never
completes.

The ThreadDeath class is what caused the stop() method to become deprecated.
Because it’s thrown immediately upon receipt of the stop() method, it has the
potential to leave shared data in an inconsistent state. And because it releases any

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Threads, Stacks, and Memory Usage | 255

locks on synchronized blocks or data that it holds, it has the potential to allow other
threads to access the inconsistent data, even if that data is correctly synchronized.

The uncaughtException() method handles the ThreadDeath class differently: while it
prints out a stack trace for all other errors and exceptions, the thread death errors are
silently swallowed.

This leads us to one limited circumstance in which the ThreadDeath class is useful as
a replacement for the stop() method. Suppose that a thread encounters an error and
wants to terminate itself, but the error is not egregious enough that it wants the user
to see the error. The normal way to do this is to return from the run() method, but it
may be difficult for the thread to unwind all of its methods in order to do that. A sec-
ond way is for the thread to call the stop() method on itself. The third and final way
is for the thread to throw a ThreadDeath error.

Even so, a thread that wants to terminate itself cannot simply throw a ThreadDeath
error willy-nilly: the thread must throw this object only when it is sure that it has not
left any data in a possibly inconsistent state. If you’ve programmed your thread very
carefully and are sure that the thread has left all data in a consistent state, it’s safe to
throw the ThreadDeath object to make your thread exit immediately. The only differ-
ence between this and the thread calling the stop() method on itself is that the com-
piler warns you about the deprecated method in the latter case (even if a thread
knows it’s safe to call stop() on itself). The compiler does not complain if you throw
a ThreadDeath object. Still, you have to be very careful only to do this when it’s abso-
lutely safe to do so.

Threads, Stacks, and Memory Usage
In Chapter 2, we mention that when you construct a thread, you can specify its stack
size. Using this particular constructor can lead to unportable Java programs because
the stack details of threads vary from platform to platform. We’ll explain the details
in this section.

The stack is where a thread keeps track of information about the methods it’s cur-
rently executing. Let’s look again at our class that calculates Fibonacci numbers:

package javathreads.examples.ch10;

import java.util.*;
import java.text.*;

public class Task implements Runnable {
 long n;
 String id;

 private long fib(long n) {
 if (n == 0)
 return 0L;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 13: Miscellaneous Thread Topics

 if (n == 1)
 return 1L;
 return fib(n - 1) + fib(n - 2);
 }

 public Task(long n, String id) {
 this.n = n;
 this.id = id;
 }

 public void run() {
 Date d = new Date();
 DateFormat df = new SimpleDateFormat("HH:mm:ss:SSS");
 long startTime = System.currentTimeMillis();
 d.setTime(startTime);
 System.out.println("Starting task " + id + " at " + df.format(d));
 fib(n);
 long endTime = System.currentTimeMillis();
 d.setTime(endTime);
 System.out.println("Ending task " + id + " at " +
 df.format(d) + " after " + (endTime - startTime) +
 " milliseconds");
 }
}

When a thread executes the run() method of this class, it creates a stack frame. The
stack frame has information specific to this execution of the run() method. That
means it has a place to store the local variables (d, df, startTime, and endTime) that
the method execution uses. When the run() method calls the fib() method, a new
stack frame representing the fib() method is placed on the stack. That stack frame
has storage for the local variable (n) of the fib() method. Successive calls to the
fib() method place a new frame on the stack, each with its own local copy of the
variable n. At some point, then, the stack resembles Figure 13-4: the run() method
has called the fib() method with a value of 2, and the fib() method has recursively
called itself. At this point, as the fib() method returns, frames are popped off the
stack, freeing memory for later use.

Stack frames contain more information than the local variables of a method: they
contain program counters that indicate which statement in the method the thread is
executing and other bookkeeping information for the thread. The size of the local
variables plus the size of this bookkeeping information determines the size of the
stack frame.

That size is platform dependent. Although the local variables must have the same
size (since Java defines the size of all variables), the space needed to store the local
variables may differ across platform. For example, certain CPUs work better if vari-
ables are aligned on an even-word boundary or an 8-byte boundary. Therefore, a
stack frame that defines four separate variables of type byte may be able to store
those variables in 4 bytes on some CPUs but require 16 or more bytes on other

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Threads, Stacks, and Memory Usage | 257

CPUs. In addition, the bookkeeping information for a stack is dependent on the Java
implementation; it may vary between different Java releases on the same platform (as
well as differing between platforms).

The size of the stack (and the frames it holds) impacts Java’s memory usage in two
ways: stack overflows occur when a stack is not big enough, and out-of-memory con-
ditions can occur when stacks are too big.

Stack Overflow Errors
Java stacks have a fixed size, say 1024 KB. Suppose that the size of a stack frame for
the fib() method is 16 bytes: 4 bytes for the variable n, and 12 bytes for other infor-
mation. If we attempt to calculate fib(65536), we’ll get a stack overflow error: all the
stack frames needed for the recursive calls to the fib() method won’t fit in the avail-
able memory.

This is one case where you might want to use the stack-size argument to the con-
structor of the thread object to allocate more space for the thread. If you specify a
stack size larger than 1024 KB, you’ll be able to calculate a larger Fibonacci number
without getting a stack overflow error. Note that the constructor that allows you to
specify the thread’s stack size is available only beginning with J2SE 5.0 and that the
number specified is only a hint to the virtual machine. The operating system picks a
size for the stack that meets any OS-level requirements (e.g., stack sizes often must
be a multiple of 128 KB).

The problem here is what value to pick for the stack size. The optimal value is depen-
dent on two things: the maximum number of frames you’ll need to store and the size
of each frame. You may be able to figure out the first value in advance, but the second
value is different on different platforms and with different Java implementations.
Allowing the user to specify the stack size for the thread through a command-line

Figure 13-4. A Java thread’s stack

n = 0 javathreads.examples.ch06.fib

n = 1 javathreads.examples.ch06.fib

n = 2 javathreads.examples.ch06.fib

d = new Date()
df = new Format()
starttime =
 currentTimeMillis()

javathreads.examples.ch06.run

javalang.Thread.run

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

258 | Chapter 13: Miscellaneous Thread Topics

argument (or some other mechanism) is a good compromise since the user could
change that number based on her particular circumstances.

Out of Memory Errors
In a number of cases, Java programs may throw an OutOfMemoryError. The common
case, of course, is when you attempt to create a new object and the Java heap has no
room to store that object.

It is also possible to get an out of memory error when you construct a thread. In that
case, the error might still be caused because your heap is too small to store the thread
object. But it’s far more likely that the system cannot allocate space for the thread’s
stack.

Java stacks are not stored in the Java heap; they are stored in the general memory of
the virtual machine. This effectively limits the number of threads that an application
can create.

Suppose again that a default Java stack is 1024 KB. On a Linux or Windows plat-
form, the maximum memory size of a program is 2 GB, but that size includes the
Java heap and all the shared libraries (DLLs) that the virtual machine uses. If we
specify a max heap size of 768 KB and assume that the shared libraries and execut-
able code take up 256 KB, that leaves us 1 GB in which to store thread stacks. In this
scenario, we’ll be able to create about 1024 threads with a 1024 KB stack size before
we get an out-of-memory error.

On SPARC systems running Solaris, the maximum size of a process is 4 GB, leaving
us that much more memory available for stacks (and/or a bigger heap). Most SPARC
systems, and some AMD and Intel systems, can run a 64-bit virtual machine, effec-
tively making this issue irrelevant.

So depending on the number of threads you need to create and the platform you’re
running on, you might need to specify a smaller stack size for at least some of the
threads in order to fit in the available memory.

Specifying Stack Sizes
We’ve already mentioned that the stack size for a thread can be specified when the
thread is constructed. That argument, available only in J2SE 5.0, allows you to have
a different stack size for different threads.

On many Java implementations, you can also specify the stack size for all threads
using a command-line argument—typically, the -Xss argument. For example, the fol-
lowing command would make all Java threads use a stack of 128 KB:

% java -Xss128k MyClass

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Summary | 259

This is a good technique to use when your application throws an out of memory
error when creating a new thread, since it doesn’t require changing your program
code. However, this argument is nonstandard, so it is not available in all Java
implementations.

Stack APIs
The Thread class has four miscellaneous methods that provide information about a
Java stack:

package java.lang;
public class Thread implements Runnable {
 public int countStackFrames(); // deprecated
 public static void dumpStack();
 public StackTraceElement[] getStackTrace();
 public static Map getAllStackTraces();
}

The countStackFrames() method can only be called on a thread that is suspended; its
use is deprecated since the suspend() method is deprecated. In J2SE 5.0, you can use
the getStackTrace() method instead, which returns all the methods on the stack of
the target thread. The getAllStackTraces() method calls the getStackTrace()
method for every thread in the virtual machine and returns a map containing the
stack traces for all the threads. The dumpStack() method is a utility method to dump
the current thread’s stack to System.err.

Summary
In this chapter, we’ve filled in a lot of the details about how threads work. Threads
belong to a thread group, and thread groups exist in a hierarchical format. Thread
groups serve a few purposes: they allow you to interrupt a group of threads with one
method call, and they allow a custom security manager to make sure that unrelated
threads cannot interfere with each other.

We’ve also looked at how threads handle uncaught exceptions: though they nor-
mally just print out the uncaught exception to System.err and exit, you can arrange
for the exiting thread to perform one final act. Finally, we’ve seen how threads inter-
act with the Java heap and memory systems and how you may need to adjust mem-
ory parameters in a program that handles a lot of threads.

Example Classes
Here are the class names and Ant targets for the examples in this chapter:

Description Main Java class Ant target

Uncaught Exception handler test javathreads.examples.ch13.TestOverride ch13-ex1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

260

Chapter 14CHAPTER 14

Thread Performance

In a few places in this book, we’ve referred to performance characteristics of thread-
related programming. We’ve glossed over a lot of that information; in this chapter,
we’ll look at these performance issues in more depth. In particular, we’ll look at
thread creation performance, the performance advantages of using a thread pool,
and the real costs of synchronization. However, we’ll start with an overview of fac-
tors that affect Java performance.

Overview of Performance
Most developers are concerned about the performance of their program. Even
though there are many programs for which performance doesn’t really matter, no
one wants to write a badly performing program. And there are many more programs
for which performance is crucial.

Performance, however, is not the most important aspect in developing good pro-
grams. We’ve frequently met developers who allow their concerns about performance
to complicate their program development: for example, believing that synchroniza-
tion is inherently expensive, they may spend days attempting to write a class that
doesn’t need synchronization. The resulting code is complex, difficult to maintain,
and more prone to bugs than a simpler (in this case, synchronized) version.

Without any prior knowledge of a program’s behavior, this is counterproductive.
Developer time is wasted, and support costs are increased. This observation leads us
to our first rule of performance: premature optimization is the root of much evil.*

Performance bottlenecks can be assessed only through actual observation. The risk
in doing otherwise is that you may spend a lot of time trying to make code run faster
with no measurable effect on your program while in the meantime ignoring the

* Tony Hoare is credited with originating the quote “Premature optimization is the root of all evil,” and
Donald Knuth has widely popularized that saying. We’re not prepared to go quite that far.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Overview of Performance | 261

program’s actual performance bottlenecks. Consequently, our second rule of
performance:

Make performance testing a regular part of the development cycle.

In an ideal situation, coding would go through a cycle shown in Figure 14-1. Regular
profiling of the application isolates those areas of the code that need optimization,
increasing the productivity of developers.

Measuring Java Performance
Measuring performance of a Java program presents certain difficulties, particularly
when attempting to measure isolated tasks (as we do in this chapter). If you’re inter-
ested in how quickly a program can perform a fixed set of tasks, measurement is easy
since the elapsed time to run the program is an adequate answer.

If you’re interested in measuring the performance of a long-running Java program
(and in particular, a Java server application), there are certain things you must
account for. Java virtual machines perform just-in-time compilation of the Java byte-
codes that make up an application. This means that the longer an application runs,
the more efficient the code becomes: more of it becomes compiled, more methods
become inlined, more loops become unrolled, and so on.

Measuring performance in this situation requires a ramp-up time that allows the
compiler a chance to perform a significant part of its optimizations. In truth, the
optimizations performed by the compiler are never completely over; performance of
a Java program continually improves. However, the bulk of the optimizations are
performed during the first few minutes of the program, so waiting just a short time
before timing performance is usually sufficient.

If you’re writing a benchmark to test performance of a particular operation, you
must take this into account. Your synthetic benchmark should run through the
major loops of your application a few thousand times to make sure that the code is
well-optimized before timing it.

Figure 14-1. The performance-aware development cycle

Design

Code

Debug

BenchmarkProfile/Analyze
Fails performance
requirements

Ship
Meets performance
requirements

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 14: Thread Performance

A second complication is introduced by Java’s garbage collector. Once again, if
you’re timing an actual task, the effect of the garbage collector doesn’t matter: the
garbage collector takes whatever time it takes as the task runs. But if you’re trying to
write a microbenchmark and time discrete operations, any time the garbage collec-
tor runs, it will throw off your timing.

In our tests (available in the online source), we execute certain methods a large num-
ber of times. We warm up the compiler by executing the method 10,000 times and
then time executing the method for a large number of iterations. This reduces the effect
of compilation on the test. We also call the System.gc() and System.runFinalization()
methods in between measurements, which limits the effect of garbage collection to that
which is directly attributable to the method being executed.

Many platform-specific factors affect the performance of Java programs. Different
operating systems show different performance for thread creation and synchroniza-
tion. Optimizations within the Java virtual machine itself mean that different virtual
machine implementations show different behavior. Faster chips affect timings as
well. All of this is to say that the conclusions we draw here are based on the data that
we produced on the given platforms, but your mileage may vary. This is yet another
reason why performing your own measurements is so important.

The tests reported in this chapter were run with the beta version of J2SE 5.0 on
machines with the following CPUs and memory:

Differences in heap size reflect the underlying support of the operating system for the
largest heap possible (which helps with the garbage collection issue). While we quote
numbers for specific tests, it’s best to consider them in terms of order-of-magnitude
approximations (rather than, for example, concluding that it takes exactly 184.5
nanoseconds to perform a synchronization operation on an UltraSPARC III CPU).

Synchronized Collections
Let’s look into some synchronization issues, starting with a question. When should
you use an unsynchronized collection class? We’re going to argue that the times
when you need to do that are very rare indeed.

CPUs Java virtual machine arguments Operating system

Sun Microsystems UltraSPARC III
Four CPUs, 750 MHz

-server -Xms3500m
-Xmx3500m

Solaris 9 Operating Environment

Intel Xeon
Two CPUs, 1400 MHz

-server -Xmn1800m
-Xms1800m

Red Hat Linux Advanced Server 3.0

Intel Xeon
Two CPUs, 3060 MHz

-server -Xmn1600m
-Xms1600m

Microsoft Windows Server 2003

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronized Collections | 263

To reach this conclusion, we looked at the performance of adding objects to four
kinds of lists: vectors, array lists, synchronized array lists, and a modified vector class
from which we removed synchronization. Specifically, we’re testing this method:

public void doTest(List l) {
 Integer n = new Integer(0);
 for (int i = 0; i < nLoops; i++)
 l.add(n);
}

For a sufficiently large value of nLoops, taking the time to execute this method when
the list is synchronized, subtracting the time required to execute the method when
the list is unsynchronized, and dividing by nLoops gives us a fair approximation of the
time required to synchronized the add() method (and in general, to obtain an uncon-
tended synchronization lock).

Although the Vector and ArrayList classes are conceptually similar, their implemen-
tation differs enough that they are not comparable for this test. Therefore, we com-
pare the Vector class to a modified version of that class, and we compare the
ArrayList class to the class returned from the Collections.synchronizedCollection()
method when given an array class. In both cases, the average time difference is about
the same and is shown in Table 14-1.

This is a single-threaded test, of course, since access to an array list (or our modified
vector class) is not threadsafe. So access to the synchronized methods of the Vector
class is always uncontended. Modern virtual machines (starting with Sun’s HotSpot
implementation for JDK 1.2, and improving after that) are written so that uncon-
tended lock acquisition is very fast indeed: depending on the speed of the underlying
CPU, as little as 65 nanoseconds.

The performance of contended locks is much different (as we’ll see in the next sec-
tion). But if you’re planning to use an unsynchronized collection class, access to the
synchronization lock is necessarily uncontended.

If you really know that a particular data structure won’t be accessed by more than
one thread, you can save a few nanoseconds and use an unsynchronized one. But in
general, there’s no real penalty for using a synchronized collection class, and doing
so can often prevent inadvertent race conditions from plaguing your program. For

Table 14-1. Time difference of synchronized versus unsynchronized method invocations

Test platform
Synchronized versus unsynchronized methods: time difference per
method invocation

SPARC/Solaris 185 nanoseconds

Intel/Linux 65 nanoseconds

Intel/Windows 92 nanoseconds

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 14: Thread Performance

that reason, we prefer to use synchronized collections almost all the time, which
allows our classes to be (re-)used in any program.

Atomic Variables and Contended
Synchronization
Next, let’s look at the difference between using classes in the java.util.concurrent.
atomic package versus regular synchronization. We mentioned in Chapter 5 that
using an atomic variable is one way in which synchronization can be avoided. We’ll
see the benefits of doing that in this section. Unlike our last test, we’ll look at con-
tended locks (since we already know that uncontended locks suffer little perfor-
mance penalty).

Atomic variables offer advantages other than performance: they neatly encapsulate
operations, and they prevent inadvertent access to data from unsynchronized code.
So quite apart from any performance benefit that they may or may not offer, their use
offers important contributions from a developer’s point of view.

For this test, we gauge the performance of incrementing an integer variable. In one
case, we write a synchronized method that increments the integer; in the second
case, we call the AtomicInteger.getAndIncrement() method. We test access to these
methods from a single thread and from multiple threads simultaneously, obtaining
the results in Table 14-2.

When there is only one thread running, the locks are uncontended, and we get simi-
lar results as our last example: there is a very, very slight benefit to using an atomic
variable. When there are two threads, contention for the lock is introduced. Now the
difference becomes much greater: as much as three microseconds. That’s a signifi-
cant difference for many programs.

Much more interesting is what happens when many threads are contending for the
lock (or the atomic variable). Now the difference has been cut in half on Unix sys-
tems. This is because the atomic variable methods loop until they achieve the desired
result (as we saw in our examples in Chapter 5).

It’s also interesting to note that this behavior is not observed on Windows Server
2003. That’s more a reflection of the greatly increased cost of the contention for the

Table 14-2. Time difference between using atomic variables versus synchronized methods

Time difference between atomic variables and synchronized methods

Test platform One thread Two threads Eight threads

SPARC/Solaris 92 nanoseconds 1400 nanoseconds 650 nanoseconds

Intel/Linux 20 nanoseconds 700 nanoseconds 400 nanoseconds

Intel/Windows 60 nanoseconds 3200 nanoseconds 5800 nanoseconds

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Thread Creation and Thread Pools | 265

synchronized lock on this platform. With eight threads contending for the single
lock, the increase in the operating system time to service the lock contention is much
greater than the increase in time spent within the loops within the class using atomic
variables. In both tests, the Windows Server 2003 platform spends a great deal more
time dealing with eight threads than two threads, but the proportion of time favors
using atomic variables.

If profiles of your program show a great deal of time spent waiting for particular
locks, refactoring the code to use atomic variables is, if possible, a good solution for
removing that bottleneck. But as we saw in Chapter 5, writing a class to use multiple
atomic variables can be complex; it may not be worth the effort unless you know
that you’re facing a performance bottleneck.

The ConcurrentHashMap Class
An interesting case arises with the ConcurrentHashMap class, which allows threads to
access a hashtable concurrently yet still provides thread-safety. Comparing opera-
tions that insert and retrieve values from a hashtable and a concurrent hashmap, we
see the differences in Table 14-3.

In the uncontended case (where you could use a HashMap rather than a Hashtable,
though we test only the latter case), there is little to no difference between implemen-
tations. In fact, as CPUs get faster, the simpler implementation of the Hashtable class
allows it to perform slightly better.

As we add contention, the Hashtable class pays the predictable penalty, and now the
concurrent hashmap is at least 1.5 microseconds faster (and more on other plat-
forms). Because of the “optimistic” nature of the concurrent hashmap, the advan-
tage is mitigated somewhat as we add more contention (except on Windows Server
2003 again, where the added lock contention in the operating system overwhelms
the added code executed by the concurrent hashmap).

Thread Creation and Thread Pools
The final performance aspect we’ll discuss is thread creation and the use of thread
pools. A common assumption is that creating a thread is an expensive operation and

Table 14-3. Time difference between ConcurrentHashMap and Hashtable

Time difference between ConcurrentHashMap and Hashtable

Test platform One thread Two threads Eight threads

SPARC/Solaris 100 nanoseconds 3500 nanoseconds 2000 nanoseconds

Intel/Linux –200 nanoseconds 1500 nanoseconds 1100 nanoseconds

Intel/Windows –25 nanoseconds 6000 nanoseconds 13,000 nanoseconds

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

266 | Chapter 14: Thread Performance

that this should be avoided by using a thread pool whenever possible. Is that actu-
ally a good idea?

To reiterate one of the points we make in Chapter 10: one of the determining factors
in using a thread pool is the design of your program. If the design of your program
more easily lends itself to starting new threads, you should do that; if it more easily
lends itself to creating tasks and feeding them to an executor, you should do that.
And the perceived performance of a program can often be improved by using a
thread pool to throttle the number of active threads on a machine.

That said, is it really more efficient to use a thread pool than to spawn a new thread?
The answer is yes, but not always to an extent that it affects your program. To reach
this conclusion, we have written a method that increments the value of an atomic
integer. We run this method three different ways: in a simple loop, in a Runnable
object feeding to a thread pool, and in a Runnable object being used to create a new
thread. Subtracting the time required to execute the method in a loop from the time
required to execute the method in a thread pool (or a new thread) allows us to obtain
the values shown in Table 14-4.

A few hundred microseconds is nothing to sneeze at in computer time. In an applica-
tion server, you might reasonably expect a quick answer from the server: maybe
something in a few microseconds. Starting a thread for those requests would indeed
cause a profound difference in the application response time.

In many programs this additional overhead does not make a big difference. On our
Solaris platform, this test took 38.5 seconds to run and created 100,000 threads com-
pared to .1 seconds to run with a thread pool: almost 400 times longer.

On the other hand, our program doesn’t do anything interesting at all. If the logic of
our target method took 20 milliseconds, creating threads for the tasks would take
only 2% longer. At some point, the added time to create the threads becomes lost in
the actual calculation time.

The moral of the story is if you need to spawn a few threads, don’t sweat it. If you
create a lot of threads, look at your program profiles and response times to see if a
thread pool makes sense. But overall, use what makes sense for your program design.

Table 14-4. Time difference between thread creation and thread pool

Test platform Time difference between thread creation and thread pool

SPARC/Solaris 400 microseconds

Intel/Linux 175 microseconds

Intel/Windows 190 microseconds

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Summary | 267

Summary
Performance is an overriding concern for many developers, and performance of
thread-related constructs occupies a prominent position in the mind of the
performance-oriented Java developer. In this chapter, we examined the basic perfor-
mance of simple thread constructs: thread creation and synchronization. We found
that thread creation is cheap enough so that it doesn’t matter in many cases, that
there’s no reason to use an unsynchronized collection instead of a synchronized one,
and that contended locks can become very expensive. The latter case can sometimes
be avoided by using atomic variables for data access.

It’s important to measure your particular program to see if these issues affect it. A
development cycle that includes frequent performance measurements can help you
narrow down the performance bottlenecks of your program and focus your efforts on
the more important spots of the program.

Example Classes
The online examples have our test code and can be run with the following classes or
Ant targets:

The Ant targets accept the following properties:

<property name="nLoops" value="100000"/>
<property name="nThreads" value="10"/>

Description Main Java class Ant target

Synchronized Collection Test javathreads.examples.ch14.CollectionTest
nLoops

ch14-ex1

Atomic Test javathreads.examples.ch14.AtomicTest
nLoops nThreads

ch14-ex2

Hashtable Test javathreads.examples.ch14.HashTest
nLoops nThreads

ch14-ex3

Thread Creation Test javathreads.examples.ch14.CreateTest
nLoops

ch14-ex4

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

268

Chapter 15CHAPTER 15

Parallelizing Loops for
Multiprocessor Machines

In previous chapters, we examined threading as a technique that allows us to sim-
plify programming: we used threading to achieve asynchronous behavior and per-
form independent tasks. Although we discussed how threads are scheduled on
machines with multiple processors, by and large the techniques that we’ve shown so
far are not affected by a machine with multiple processors nor do they exploit the
number of processors on a machine to make the program run faster.

Multithreaded programs have a special bond with multiprocessor systems. The sepa-
ration of threads provides a clear and simple separation for the multiprocessor
machine. Since the operating system can place different threads on different proces-
sors, the program runs faster.

In this chapter, we’ll look at how to parallelize Java programs so that they run faster
on a machine with multiple CPUs. The processes that we examine are beneficial not
only to newly developed Java programs but also to existing Java programs that have
a CPU-intensive loop, allowing us to improve the performance of those programs on
a multiprocessor system.

How does the Java threading system behave in a multiprocessor system? There are no
conceptual differences between a program running on a machine with one processor
and a machine with two or more processors; threads behave exactly the same in
either case. The real difference is that the threads actually do execute simulta-
neously. In Chapter 2, we discussed how the operating system switches between the
list of instructions for certain threads and how that switching gave the illusion of
simultaneity. On a multiprocessor system, the simultaneity is real.

For Java developers, threaded code running on multiple processors means that race
conditions that happen very infrequently on a single-processor system are much
more likely to occur. Hopefully, you have by now learned to write threadsafe pro-
grams. Testing those programs on a multiprocessor machine is one good way to be
more confident in the results.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parallelizing a Single-Threaded Program | 269

Parallelizing a Single-Threaded Program
Without redesigning a program, the best area to parallelize—that is, the area in
which to introduce multiple threads to increase the program’s performance—is
where the program is CPU-bound. After all, it doesn’t make sense to bring in more
processors if the first processor cannot stay busy. In many of the cases where the pro-
cess is CPU-bound—that is, the process is using all of the computer processors’
cycles while not using the disks or the network at full capacity—the program’s speed
increases with the addition of more processors. The process could be involved in a
long mathematical calculation or, more likely, in large iterations of shorter mathe-
matical calculations. Furthermore, these calculations probably involve a large con-
trol loop or even a large number of loops inside loops. These are the types of
common algorithms that we examine here. Consider the following calculation:

package javathreads.examples.ch15.example1;

public class SinTable {
 private float lookupValues[] = null;

 public synchronized float[] getValues() {
 if (lookupValues == null) {
 lookupValues = new float [360 * 100];
 for (int i = 0; i < (360 * 100); i++) {
 float sinValue = (float)Math.sin(
 (i % 360)*Math.PI/180.0);
 lookupValues[i] = sinValue * (float)i / 180.0f;
 }
 }
 return lookupValues;
 }
}

This code is the basis of our examples in the rest of this chapter. A single thread, and
therefore a single processor, executes the loop as specified in the code and stores the
results in the lookupValues array. Assuming that the calculation of the sinValue vari-
able is time-consuming, the whole loop may take a long time to execute. In some
cases, this is acceptable. However, on a 12-processor computer without any other
programs running, only one CPU is working while the other 11 are sitting idle. Con-
sidering the cost of a 12-processor machine, this is not acceptable.

Before we get started, let’s define some terminology. The variable sinValue has a few
special properties. Obviously, it exists only for the duration of the loop. It is a tem-
porary variable used to aid the calculation of the lookup table. It does not carry a
value in one iteration of the loop that is used in another iteration of the loop, and the
value of the variable is reassigned in the next iteration. We define sinValue as a loop-
private variable, that is, a variable that is initialized, calculated, and used entirely in a
single iteration of the loop.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

270 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

Furthermore, we can state that the index variable i is also a loop-private variable: it
is also used completely in an iteration of the loop. It can be considered a special type
of loop-private variable. Since it is never changed during an iteration and is directly
tied to the iteration index, we can actually treat it as a constant during the iteration
of a loop. However, for now, simply considering it as a loop-private variable is good
enough.

We may try to break the parts of this loop among many threads as follows:

package javathreads.examples.ch15.example2;

public class SinTable implements Runnable {
 private class SinTableRange {
 public int start, end;
 }

 private float lookupValues[];
 private Thread lookupThreads[];
 private int startLoop, endLoop, curLoop, numThreads;

 public SinTable() {
 lookupValues = new float [360 * 100];
 lookupThreads = new Thread[12];
 startLoop = curLoop = 0;
 endLoop = (360 * 100);
 numThreads = 12;
 }

 private synchronized SinTableRange loopGetRange() {
 if (curLoop >= endLoop)
 return null;

Auto-Parallelizing Compilers
The terminology used in this chapter is based on the terminology used by the auto-
parallelizing MP C compiler for the Solaris Operating Environment. Automatic paral-
lelization is the same technique that we are describing in this chapter, but it is accom-
plished by the compiler instead of by the programmer. Auto-parallelization is easier to
accomplish in a language such as FORTRAN than C. This is due to the aliasing prob-
lems with the C language: with pointers and other aliasing issues, it is very difficult to
classify the variables or the loop itself. Even with the current implementation,
#pragmas are needed to help the compiler classify variables used in the loop.

In this regard, Java is closer to FORTRAN than to C. All variable references are
tracked (for garbage collection), pointer arithmetic is not allowed, and variable types
are enforced. Java has fewer aliasing problems than C. This means that it should be
much easier to develop an auto-parallelizing compiler for Java than it is for C. Until one
exists, however, you need to apply these techniques by hand, as we’ve done in this
chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parallelizing a Single-Threaded Program | 271

 SinTableRange ret = new SinTableRange();
 ret.start = curLoop;
 curLoop += (endLoop-startLoop)/numThreads+1;
 ret.end = (curLoop<endLoop)?curLoop:endLoop;
 return ret;
 }

 private void loopDoRange(int start, int end) {
 for (int i = start; i < end; i += 1) {
 float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[i] = sinValue * (float)i / 180.0f;
 }
 }

 public void run() {
 SinTableRange str;
 while ((str = loopGetRange()) != null) {
 loopDoRange(str.start, str.end);
 }
 }

 public float[] getValues() {
 for (int i = 0; i < numThreads; i++) {
 lookupThreads[i] = new Thread(this);
 lookupThreads[i].start();
 }
 for (int i = 0; i < numThreads; i++) {
 try {
 lookupThreads[i].join();
 } catch (InterruptedException iex) {}
 }
 return lookupValues;
 }
}

The code in this new version is functionally the same as the previous version, albeit
with many modifications to its logic. First, instead of a loop that does the calcula-
tion, we now have a loop that starts off 12 (numThreads) different worker threads and
provides each worker thread with different parts of the mathematical loop to calcu-
late. The original mathematical calculation is moved to a new method, loopDoRange().
In this method, the loop has been modified to work on only part of the lookup table
instead of the whole table. Each different thread is responsible for calculating only its
portion of the table. Each thread must call the loopGetRange() method to determine
which portion it must calculate. The thread that started the 12 worker threads then
simply waits for all 12 worker threads to finish. Since the long calculation is now
accomplished by 12 threads instead of by a single thread, it is now possible for a
multiprocessor-based operating system to place the different threads on different
processors.

The calculation works for a number of reasons. First, the loop index variable i and
the sinValue variable, which were originally classified as loop private, are now stack

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

272 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

variables in each worker thread. The loopDoRange() method uses different copies of
these two variables in each thread executing the loop. This means that each of the 12
worker threads has its own copy of these variables while completing its portion of
the calculation.

Second, although the lookupTable array is not loop private, the individual members
of the array can be considered loop private. Each individual member of the array is
accessed only in a particular iteration. There is no race condition because each itera-
tion affects one and only one member of the array, and although the different worker
threads handle many iterations of the loop, no single iteration is handled by more
than one thread.

The only synchronization we need is in the assignment of the different ranges. To
prevent the worker threads from stepping on each other during this assignment, the
loopGetRange() method is synchronized. In this example, since the loop is parti-
tioned into only 12 ranges, there is little contention for this lock.

The code for this new version is more complicated than our first version. This new
code now has to start and track 12 separate threads. The worker threads had to be
modified to handle parts of the loop whose ranges they have to determine. Although
very little synchronization is needed in this case, we could easily have had a compli-
cated requirement for synchronization depending on the algorithm used in the math-
ematical calculation.

Given the complexity we introduced to handle this simple loop, it may become too
hard to handle more complex loops. To help with this complexity, we’ll move all the
logic related to loop management into a separate class. We can then implement the
loop by simply using the services provided by this class:

package javathreads.examples.ch15;

public class LoopHandler implements Runnable {
 protected class LoopRange {
 public int start, end;
 }
 protected Thread lookupThreads[];
 protected int startLoop, endLoop, curLoop, numThreads;

 public LoopHandler(int start, int end, int threads) {
 startLoop = curLoop = start;
 endLoop = end;
 numThreads = threads;
 lookupThreads = new Thread[numThreads];
 }

 protected synchronized LoopRange loopGetRange() {
 if (curLoop >= endLoop)
 return null;
 LoopRange ret = new LoopRange();
 ret.start = curLoop;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parallelizing a Single-Threaded Program | 273

 curLoop += (endLoop-startLoop)/numThreads+1;
 ret.end = (curLoop<endLoop) ? curLoop : endLoop;
 return ret;
 }

 public void loopDoRange(int start, int end) {
 }

 public void loopProcess() {
 for (int i = 0; i < numThreads; i++) {
 lookupThreads[i] = new Thread(this);
 lookupThreads[i].start();
 }
 for (int i = 0; i < numThreads; i++) {
 try {
 lookupThreads[i].join();
 lookupThreads[i] = null;
 } catch (InterruptedException iex) {}
 }
 }

 public void run() {
 LoopRange str;
 while ((str = loopGetRange()) != null) {
 loopDoRange(str.start, str.end);
 }
 }
}

In our new LoopHandler class, we have implemented the logic that we applied in our
SinTable class. The logic of creating, tracking, and joining back with the original
thread has been moved to the newly created loopProcess() method. The logic of
determining the ranges and processing the loop—originally coded in the run() and
loopGetRange() methods of the SinTable class—remains nearly unchanged. The loop
handler has also been modified to handle more generic loops and has a constructor
that assigns the start of the loop, the end of the loop, and the number of threads. Just
as in our earlier example, the algorithm calls the loopDoRange() method to handle
the processing. However, in this case, the LoopHandler class has an empty implemen-
tation for this method.

Now our implementation of the SinTable class is much simpler:

package javathreads.examples.ch15.example3;

import javathreads.examples.ch15.*;

public class SinTable extends LoopHandler {
 private float lookupValues[];

 public SinTable() {
 super(0, 360*100, 12);
 lookupValues = new float [360 * 100];
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

274 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

 public void loopDoRange(int start, int end) {
 for (int i = start; i < end; i++) {
 float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[i] = sinValue * (float)i / 180.0f;
 }
 }

 public float[] getValues() {
 loopProcess();
 return lookupValues;
 }
}

In this case, we simply configure the ranges needed by the loop handler, provide the
logic of the loop in the loopDoRange() method, and call the loopProcess() method to
process the loop in a multithreaded fashion. While this is still more complicated than
the first SinTable class implementation, it is now much more manageable and less
complex than the previous implementation.

Loop Scheduling and Load Balancing
We define the process of distributing the iterations of the loop to the individual
threads as loop scheduling. In our LoopHandler class, this is handled by the
loopGetRange() method. To maximize processor usage, we should distribute the
work to the threads as evenly as possible, with the least amount of overhead in deter-
mining this distribution. This is defined as load balancing.

The basic loop-scheduling types at our disposal include static or chunk scheduling,
self-scheduling, guided self-scheduling, and user-defined scheduling.

Static or chunk scheduling

Under static scheduling, each thread is assigned an equal number of iterations that
depends on the number of threads available. If 1000 loop iterations are to be distrib-
uted and 10 threads are assigned to the task, each thread is assigned 100 iterations of
the loop. This is the algorithm that is used by the LoopHandler class. The algorithm
also adds 1 to the size to make sure that the distribution is rounded up. Otherwise,
there might be an iteration left over and a worker thread would have to perform that
single iteration after already performing the original chunk.

The problem with this algorithm is that it assumes that each iteration of the loop
takes the same amount of time. If this is not true, one of the threads takes more time
than the other threads to complete. Since all the work is divided up at the beginning
of the loop, the other threads are idle while the final iterations are completed by the
last remaining thread.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parallelizing a Single-Threaded Program | 275

Self-scheduling

In self-scheduling, each worker thread grabs a small chunk of the iterations to exe-
cute. After completion of its assigned range, it grabs another small chunk. If 1000
loop iterations are to be distributed and 10 threads are assigned to the task, each
worker thread works on a small chunk—e.g., 20—until all 1000 iterations are
completed.

As with static scheduling, the different worker threads may not complete at the same
time. However, since the chunks are small in the self-scheduling model, the idle time
of the threads at the end of the process is also small. To make this idle time even
smaller, we can make the individual chunks smaller. However, there is an overhead
in obtaining the ranges to execute; this overhead increases as the chunks get smaller.

Here’s an implementation of this model:

package javathreads.examples.ch15;

public class SelfLoopHandler extends PoolLoopHandler {
 protected int groupSize;

 public SelfLoopHandler(int start, int end, int size, int threads) {
 super(start, end, threads);
 groupSize = size;
 }

 protected synchronized LoopRange loopGetRange() {
 if (curLoop >= endLoop)
 return null;
 LoopRange ret = new LoopRange();
 ret.start = curLoop;
 curLoop += groupSize;
 ret.end = (curLoop<endLoop)?curLoop:endLoop;
 return ret;
 }
}

Implementation of a self-scheduling loop handler is straightforward. Our current
LoopHandler class already has the logic of working until the loop completes. We sim-
ply need to modify the constructor to handle the chunk size requested and modify
the loopGetRange() method to return this fixed chunk size. In our implementation of
the self-scheduler, we simply subclass from the original loop handler and implement
only the changes.*

* Note that we’ve started extending the PoolLoopHandler class, which is functionally equivalent to the
LoopHandler class. We’ll discuss this change later in the chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

276 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

Guided self-scheduling

Guided self-scheduling is a compromise between the static scheduler and the self-
scheduler. In the beginning, the guided scheduler grabs a large number of iterations
of the loop, which becomes progressively smaller near the end of the loop. The
guided self-scheduler also uses a minimum chunk size. Thus, it basically behaves like
a static scheduler that slowly becomes a self-scheduler.

If 1000 iterations in the loop are to be distributed and 10 threads are assigned to the
task, the first worker thread gets one-tenth of the work—100 iterations. The second
thread gets one-tenth of the remaining work—90 iterations. This slowly gets smaller
and smaller until the minimum—e.g., 10—is assigned; the minimum is assigned
until all 1000 iterations are completed.

This algorithm seems to have the fewest problems. Unlike the self-scheduler, the
extra overhead appears only at the end of the loop. And unless the individual itera-
tions have drastically different execution periods from the longer-term iterations at
the beginning, it doesn’t have the problems that the static scheduler has.

Here’s how to implement guided self-scheduling:

package javathreads.examples.ch15;

public class GuidedLoopHandler extends PoolLoopHandler {
 protected int minSize;

 public GuidedLoopHandler(int start, int end, int min, int threads){
 super(start, end, threads);
 minSize = min;
 }

 protected synchronized LoopRange loopGetRange() {
 if (curLoop >= endLoop)
 return null;
 LoopRange ret = new LoopRange();
 ret.start = curLoop;
 int sizeLoop = (endLoop-curLoop)/numThreads;
 curLoop += (sizeLoop>minSize)?sizeLoop:minSize;
 ret.end = (curLoop<endLoop)?curLoop:endLoop;
 return ret;
 }
}

Implementation of a guided self-scheduling loop handler is also straightforward. We
simply need to modify the constructor to handle the minimum size required, and
modify the loopGetRange() method to return a portion of the remaining loop. In our
implementation of the guided self-scheduler, we also subclass the original loop han-
dler and implement only the changes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parallelizing a Single-Threaded Program | 277

User-defined scheduling

The implementation of the self-scheduler and the guided self-scheduler is simple for
a reason: it was designed to be so. The original loop handler was designed to be sub-
classed so that the scheduler algorithm could be modified. As good as the implemen-
tation of the guided self-scheduler may be, it is still designed for a generic loop. In
some cases, one scheduler works better than another. However, if enough informa-
tion concerning the loop is known and the effort is large enough, it may justify the
implementation of yet another scheduler. This entails figuring out the appropriate
logic and coding a new loopGetRange() method.

To use any of these other algorithms in our SinTable class, we simply subclass from
the appropriate handler class and modify our constructor to pass the minimum
chunk size.

Variable Classifications
In the implementation of the SinTable class, we classify the variables used in the origi-
nal unthreaded loop as loop-private variables, but other variable classifications exist.
The reason for classifying variables at all is that different types of variables require dif-
ferent types of handling within and between threads. Many loops have a data depen-
dency that occurs between iterations. By classifying the variables, we are able to
correctly update and modify them without any race conditions. Different types of vari-
able classifications can be determined by their usage, and these classifications deter-
mine how they are to be implemented or treated in the multithreaded loop handler.

Loop-private variables

A loop-private variable is a variable that does not pass its value from one iteration of
the loop to another. It can actually be a variable that is declared in the loop itself,
and it can also be an instance or publicly accessed variable that is accessed by only
one iteration of the loop. This is the case with the lookupValues array variable, where
each member of the array is accessed only by one iteration of the loop. Although the
whole array is not loop private to any iteration, specific members are loop private to
specific iterations.

As shown with the SinTable class, loop-private variables are often handled with a
local copy of the variable in each thread. Since each thread has a copy, no interfer-
ence between the threads is possible. In the case of the lookupValues array, the
threads will respect the privacy of the other threads by accessing only the loop-
private portions of the array.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

278 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

Read-only variables

Read-only variables are variables where values do not change during the execution of
the loop. They can be true constants or simply variables that are initialized and do
not change until after the loop is processed.

Read-only variables require no special treatment. The worker threads do not need to
have their own copies of the variables, and access to them does not require synchro-
nization of any type.

Storeback variables

Storeback variables are basically loop-private variables that are needed after the loop
has been completed. For example, suppose that the lookupValues array requires some
extra processing after the loop is finished:

public float[] getValues() {
 if (lookupValues == null) {
 float sinValue = 0;
 lookupValues = new float [360 * 100];
 for (int i = 0; i < (360*100); i++) {
 sinValue = (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[i] = sinValue * (float)i / 180.0f;
 }
 lookupValues[0] += sinValue;
 }
 return lookupValues;
}

In this slightly modified version of the SinTable loop, both the sinValue variable and
the individual members of the lookupValues array are still loop-private variables.
These two variables have no data dependency in different iterations of the loop.
However, in this case the sinValue variable is also a storeback variable. Since the
variable is important after the loop has completed, it must be set to the value it
would have had if the loop had run in the correct order. The members of the
lookupValues array were always considered as storeback variables, but since no indi-
vidual copies were kept, there was little need to make this extra distinction.

Here’s how we can handle the storeback variable:

package javathreads.examples.ch15.example4;

import javathreads.examples.ch15.*;

public class SinTable extends GuidedLoopHandler {
 private float lookupValues[];
 private float sinValue;

 public SinTable() {
 super(0, 360*100, 100, 12);
 lookupValues = new float [360 * 100];
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parallelizing a Single-Threaded Program | 279

 public void loopDoRange(int start, int end) {
 float sinValue = 0;
 for (int i = start; i < end; i++) {
 sinValue = (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[i] = sinValue * (float)i / 180.0f;
 }
 if (end == endLoop)
 this.sinValue = sinValue;
 }

 public float[] getValues() {
 loopProcess();
 lookupValues[0] += sinValue;
 return lookupValues;
 }
}

The sinValue variable is still treated as a loop-private variable. However, since this
variable is really a storeback variable, we need to store the “last” value of this vari-
able. Since the algorithm is now executed in a multithreaded manner, the last itera-
tion is not necessarily the last value assigned to the variable by a thread.

A thread must check that it has executed the last chunk of the loop before copying
the value of its loop-private copy to the global copy. Also note that no synchroniza-
tion is necessary. Since only the last iteration is copied, only one thread is executing
the code, and no race condition is possible.

Reduction variables

Obviously, it is not possible to make every variable a loop-private variable since there
are cases where real data dependencies exist between different iterations of the loop.
Because of these data dependencies, different threads executing different iterations
might interfere with each other during execution. We call these types of variables
shared variables since they are shared between iterations of the loop.

Shared variables have many problems. The first is the race conditions that exist when
different threads access the variable simultaneously. The second is that the value of a
variable may depend on the order in which it is processed. In the first case, we can
simply use synchronization techniques to prevent the race conditions from existing.
The second case poses a much greater problem.

However, what if the order does not matter? We will be able to process the loop in
any order and will simply have to synchronize access to the shared variable. For
example, assume that we also need to calculate the sum of our SinTable:

public float[] getValues() {
 for (int i = 0; i < (360*100); i++) {
 sinValue = (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[i] = sinValue * (float)i / 180.0f;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

280 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

 sumValue += lookupValues[i];
 }
 return lookupValues;
 }

In this case, the sumValue variable is clearly not a loop-private variable. The value of
sumValue is passed from one iteration to another, and the correct result requires
this dependency to exist. However, the sumValue variable is useful only after the
loop completes. The iterations simply add to the running total—subtotals or other
order-based requirements are not necessary. Furthermore, addition itself is order-
independent: it is possible to add a bunch of numbers in any order, and the final
result is the same.

The sumValue variable is a reduction variable. It must still be shared among the
threads, but since order does not matter, this sharing only requires synchronization
to prevent race conditions:

package javathreads.examples.ch15.example5;

import javathreads.examples.ch15.*;

public class SinTable extends GuidedLoopHandler {
 private float lookupValues[];
 public float sumValue;

 public SinTable() {
 super(0, 360*100, 100, 12);
 lookupValues = new float [360 * 100];
 }

 public void loopDoRange(int start, int end) {
 float sinValue = 0;
 for (int i = start; i < end; i++) {

Sometimes Order Does Matter
In the examples of this section, we assume that we can perform the addition in any
order that we like. Since addition is associative, this is supposed to work.

On a computer, however, addition is not necessarily associative. Because of the inter-
nal mechanism that the computer uses to store numbers of infinite precision in a fixed
number of bits, some rounding error occurs in every mathematical calculation. Nor-
mally, these errors are small enough that we don’t need to worry about them, and they
often cancel each other out. But in many cases the propagation of this error leads to
vastly different results when the order of the operations is changed.

If you’re performing sensitive numerical analysis, be aware that the tricks of this sec-
tion may lead to unacceptable error propagation and incorrect answers.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parallelizing a Single-Threaded Program | 281

 sinValue = (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[i] = sinValue * (float)i / 180.0f;
 synchronized (this) {
 sumValue += lookupValues[i];
 }
 }
 }

 public float[] getValues() {
 loopProcess();
 return lookupValues;
 }
}

Race conditions in this example are prevented by using the synchronization lock of
the SinTable instance. If we have many reduction variables that are not dependent on
each other and we cannot store them all at the same time, it might be a better idea to
have separate synchronization locks—or explicit instances of Lock interfaces—for
each reduction variable.

Furthermore, we are synchronizing with each iteration of the loop. This is not very
efficient. It is better to assign the value to loop-private variables and only synchro-
nize the final summed value of the range to the reduction variable. By doing this, we
are removing most of the need for synchronization, which can drastically add to the
parallelization of the threads:

package javathreads.examples.ch15.example6;

import javathreads.examples.ch15.*;

public class SinTable extends GuidedLoopHandler {
 private float lookupValues[];
 public float sumValue;

 public SinTable() {
 super(0, 360*100, 100, 12);
 lookupValues = new float [360 * 100];
 }

 public void loopDoRange(int start, int end) {
 float sinValue = 0.0f;
 float sumValue = 0.0f;
 for (int i = start; i < end; i++) {
 sinValue = (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[i] = sinValue * (float)i / 180.0f;
 sumValue += lookupValues[i];
 }
 synchronized (this) {
 this.sumValue += sumValue;
 }
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

282 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

 public float[] getValues() {
 loopProcess();
 System.out.println(sumValue);
 return lookupValues;
 }
}

In this new example, we are doing a two-stage reduction of the values. We are reduc-
ing the value of each iteration to the local copy of the sumValue variable, and then we
are reducing this local copy to the actual reduction variable. Since the local copy of
the sumValue variable is loop private, synchronization is not necessary. Synchroniza-
tion is still necessary when adding to the reduction variable. However, this is now
done once per range instead of once per iteration.

A reduction variable is a good candidate for an atomic variable. You could use the
AtomicDouble class from Chapter 5 to store the sumValue variable in this example.
We’ll test this later in the chapter, and you can consult the online source code to see
exactly how that works.

All reduction variables are storeback variables. There is no need to have special store-
back handling logic for reduction variables.

Shared variables

Originally, all variables in the loop are shared variables since all variables can be
accessed by all the threads that are executing the loop. As we parallelize the loop, we
can quickly classify the shared variables that are also read-only variables. We can
also reclassify those variables that are loop-private variables. Of the remaining shared
variables, it may be possible either to convert them to loop-private variables or to
classify them as reduction variables.

Unfortunately, in some cases a shared variable cannot be classified as anything but a
shared variable, and this is where our technique fails to work. As much as we would
like to convert any loop to run in a multithreaded environment, not all algorithms
can be redesigned to run in a parallel environment.

The other problem with shared variables is the side effect. For example, if we need to
save each of the subtotals of the sumValue variable, it cannot be treated as a reduc-
tion variable since the changes in the variable are also important. If we have to print
the subtotals during the loop, not only will the intermediate results be out of order,
but the intermediate results will be different.

When variable classification is not enough for parallelization, we have other tech-
niques that can help. They may not solve every case, but with experience, more and
more loops can be converted to run in a multithreaded environment.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parallelizing a Single-Threaded Program | 283

Loop Analysis and Transformations
To assist our parallelizing techniques, we can analyze the algorithms of the loop itself
instead of just analyzing the variables in the loop. In the majority of the cases, there
is little we can do without redesigning the algorithm, but in a few situations we can
quickly modify the code without a complete redesign. By implementing simple trans-
formations on the original code, we may be able to use the techniques discussed so
far to thread the loop.

Loop distribution

In many cases, only a small portion of a large complex loop contains code that must
be executed sequentially. It may be possible to separate the large complex loop into
two separate loops. Once the complex loop is separated into two loops—one loop
containing the code that can be parallelized, the other containing the sequential
code—we can then parallelize a portion of the original loop. We may even be able to
run the sequential loop in parallel with the loop that can be threaded.

Returning to our SinTable example, let’s assume that we need to generate a running
subtotal in addition to a total:

public float[] getValues() {
 for (int i = 0; i < (360*100); i++) {
 sinValue = (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[i] = sinValue * (float)i / 180.0f;
 if (i == 0) {
 sumValues[0] = lookupValues[0];
 } else {
 sumValues[i] = lookupValues[i] + lookupValues[i-1];
 }
 }
 return lookupValues;
}

The sumValues array variable is definitely a shared variable. The members of the
sumValues variable are also shared in that some of them are accessed by two different
threads. Furthermore, the order matters. It is not possible for one thread to start a
chunk before the thread that is working on the previous chunk is finished.

We can solve that problem like this:

package javathreads.examples.ch15.example7;

import javathreads.examples.ch15.*;

public class SinTable extends GuidedLoopHandler {
 private float lookupValues[];
 public float sumValues[];

 public SinTable() {
 super(0, 360*100, 100, 12);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

284 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

 lookupValues = new float [360 * 100];
 sumValues = new float [360 * 100];
 }

 public void loopDoRange(int start, int end) {
 float sinValue = 0.0f;
 for (int i = start; i < end; i++) {
 sinValue = (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[i] = sinValue * (float)i / 180.0f;
 }
 }

 public float[] getValues() {
 loopProcess();
 sumValues[0] = lookupValues[0];
 for (int i = 1; i < (360*100); i++) {
 sumValues[i] = lookupValues[i] + lookupValues[i-1];
 }
 return lookupValues;
 }
}

While it is not possible to parallelize the running subtotal without drastically chang-
ing the algorithm, we can quickly convert the loop into two separate loops. The first
loop contains the threadable code, and the second processes the subtotal. Once this
is accomplished, we can then thread the first loop without changing the second. In
the new SinTable class, we have moved the running subtotal code to a separate loop.
This separate loop runs on a single thread, only after the first loop is processed.

Consider the potential benefit before applying this technique. Since a large portion of
the loop may be running in a single thread, the performance gain may not justify the
effort involved. In most cases, calculations of the subtotal are small considering
the effort of the main calculation, and the performance penalty may be small in
comparison.

Loop isolation

Many programs do not contain a single large loop. Even if a particular loop is deter-
mined to be unparallelizable, there may be other loops in the program. Even if these
other loops cannot be parallelized, we may be able to run each separate loop in a dif-
ferent thread.

Although the many loops may be very complex, with large data dependencies
between iterations, there may be few data dependencies between the different loops.
It may be possible to isolate the individual loops themselves and run them each in a
separate thread. With this technique, load balancing is no longer possible. After all,
if the program contains four major loops and you were able to isolate them all, it is
still impossible to distribute these four loops among twelve processors.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parallelizing a Single-Threaded Program | 285

Loop interchange

Multilayered loops are a prime cause of CPU-bound applications that run for a long
period of time. This could be loops that are directly inside of other loops or, more
likely, loops that call methods that contain loops. This scenario is so common that
we examine inner-loop threading later in this chapter. For now, here is a simple case
to look for:

public float[][] getValues() {
 for (int i = 0; i < 360; i++) {
 lookupValues[0][i] = 0;
 }
 for (int j = 1; j < 1000; j++) {
 for (int i = 0; i < 360; i++) {
 float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[j][i] = sinValue * (float)i / 180.0f;
 lookupValues[j][i] += lookupValues[j-1][i]*(float)j/180.0f;
 }
 }
 return lookupValues;
 }

For multilayered loops, it is generally more profitable to thread the outer loop
instead of the inner one. It is not necessary to thread both the inner and outer loop
because threading either one should use all the processors. If the outer loop is
threaded, threading the inner loop does not provide any further speedup since there
are no more processors to run the extra threads (and vice versa). The reason we pre-
fer to thread the outer loop is that there is an overhead in creating, destroying, and
synchronizing among the many threads. By threading the outer loop, we create and
destroy the threads once and synchronize only at a coarse level—consequently, less
synchronization should be necessary.

In this new version of the table calculation, we are now working on a two-
dimensional table. Three loops are used during this calculation. However, the first
loop is merely setting the first row of values to zero. The next two loops are actually
a pair of multilayered loops. The algorithm is looping the processing from row to
row, executing the inner loop that is processing the values to be stored in the differ-
ent columns.

The problem in this case is a data dependency between the rows themselves. Because
the calculation at any row is dependent on the calculation of the previous row, the
members of any column in the lookupValues array cannot be considered—or made—
loop private. The inner loop can be parallelized with no problem since there are no
data dependencies between the iterations. The only requirement is that the inner
loop must assume that the outer loop ran in the correct order; this requirement is
fine since we are not threading the outer loop.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

286 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

However, we could also rewrite our original code as follows:

public float[][] getValues() {
 for (int i = 0; i < 360; i++) {
 lookupValues[0][i] = 0;
 }
 for (int i = 0; i < 360; i++) {
 for (int j = 1; j < 1000; j++) {
 float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[j][i] = sinValue * (float)i / 180.0f;
 lookupValues[j][i] += lookupValues[j-1][i]*(float)j/180.0f;
 }
 }
 return lookupValues;
}

In this example, the loops are interchanged. Instead of working from row to row, we
can work from column to column. The inner loop can then process the data from
row to row. By interchanging the loops, the inner loop is no longer threadable
because of the data dependency between the members of the columns in the
lookupValues array. However, the outer loop is now threadable. Once the outer loop
has been threaded, there is no longer a reason to thread the inner loop. Since it is
more profitable to thread an outer loop than an inner loop, this simple change prior
to multithreading gives us a better return on our development time investment.

Unfortunately, although loops within loops are common, this example may not be.
There is generally setup code for an inner loop, and there may be multiple loops that
are run sequentially within the outer loop, or the inner loop may be inside another
method that is called from the outer loop. The data dependencies may be such that a
loop interchange does not solve the problem.

Having an inner loop that is threadable in an outer loop that is not threadable is
common. We examine inner-loop threading in more detail later in this chapter.

Loop reimplementation

As you may have noticed, the loop handler that we have developed is fairly restric-
tive. It applies only to for loops, the range of the loop must be known prior to execu-
tion, it works only with integers as its index, and it has an interval of only one
between iterations. While some of these restrictions are because we have not imple-
mented support for certain features in the loop handler, the main cause is that it is
difficult, if not impossible, to implement an algorithm that can handle all generic
loops.

If all else fails during loop transformation, programming experience is still very use-
ful. A while or a do loop may be converted to a for loop. The start and end iterations
may be calculated prior to loop execution. Code may be moved from, into, or
between loops, to allow other loop transformations to occur. Code changes can also

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parallelizing a Single-Threaded Program | 287

cause variable classifications to change. A shared variable may be reclassified as loop
private or as a reduction variable because of how it is used in a loop.

Unfortunately, success is never guaranteed. The goal is to balance the effort of devel-
opment with the acceleration that may be gained. It may take days to implement a
change that achieves only one or two percent acceleration. After all, if unlimited
effort were allowed, we would redesign the whole program from scratch.

Inner-Loop Threading
The issues that we have discussed so far do not change when the loops are nested: if
you apply the techniques only to the inner loop, they work. However, some other,
very subtle issues may apply to inner loops. Let’s return to our two-dimensional
SinTable. As mentioned, a loop interchange should allow the outer loop to be
threaded. However, instead of the loop transformation, let’s try to thread the inner
loop:

public float[][] getValues() {
 for (int i = 0; i < 360; i++) {
 lookupValues[0][i] = 0;
 }
 for (int j = 1; j < 1000; j++) {
 for (int i = 0; i < 360; i++) {
 float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[j][i] = sinValue * (float)i / 180.0f;
 lookupValues[j][i] += lookupValues[j-1][i]*(float)j/180.0f;
 }
 }
 return lookupValues;
}

The first variable to classify is the outer-loop-index variable, j. We must classify this
variable since it is used inside the inner loop. In this case, j is classified as a read-only
variable. At first glance, this does not make sense: how could an index variable be
read-only? We must only look at the scope that we are attempting to thread. During
the execution of the inner loop, the variable has a single value that does not change
throughout the entire execution of the loop.

While the lookupValues array variable is a shared variable, the elements can be classi-
fied as loop private. Since each iteration of the loop accesses a different member of
the array based on the loop index and the read-only variable j, its members may be
considered loop private. The members of the lookupValues array are also considered
storeback variables. Since we are not creating a local copy of these variables, there is
no need to store the variables back.

The last two variables—sinValue and i—are simply classified as loop-private vari-
ables, and separate copies are created for each thread. Neither of these variables is
used after the loop has completed, so storeback handling is not necessary.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

288 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

The loop scheduler is chosen by examining the algorithm inside the inner loop itself.
In this case, there is nothing that should cause any iteration to execute longer than
any other iteration. Choosing the default—static or chunk—scheduler is probably
best. However, there should be no harm in choosing either the self- or guided self-
scheduler.

Once these tasks are completed, the loop is threaded by using the loop handler as
usual. However, a slight complication arises: compared with the outer loop, the
inner loop is executed many more times. This means many more times the thread
creation and destruction overhead. Furthermore, the loop handler is designed as a
“one use” object. A new loop handler must be created for each iteration of the outer
loop. Although using the loop handler works without any problems, the overhead
may be more significant than for threading a higher-level loop.

We can partially overcome this complication as follows:

package javathreads.examples.ch15;

import java.util.concurrent.*;

public class PoolLoopHandler implements Runnable {
 protected static class LoopRange {
 public int start, end;
 }

 protected static class PoolHandlerFactory implements ThreadFactory {
 public Thread newThread(Runnable r) {
 Thread t = new Thread(r);
 t.setDaemon(true);
 return t;
 }
 }

 static protected ThreadPoolExecutor threadpool;
 static protected int maxThreads = 1;
 protected int startLoop, endLoop, curLoop, numThreads;

 synchronized static void getThreadPool(int threads) {
 if (threadpool == null)
 threadpool = new ThreadPoolExecutor(
 1, 1,
 50000L, TimeUnit.MILLISECONDS,
 new LinkedBlockingQueue<Runnable>(),
 new PoolHandlerFactory());
 if (threads > maxThreads) {
 maxThreads = threads;
 threadpool.setMaximumPoolSize(maxThreads);
 threadpool.setCorePoolSize(maxThreads);
 }
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parallelizing a Single-Threaded Program | 289

 public PoolLoopHandler(int start, int end, int threads) {
 numThreads = threads;
 getThreadPool(numThreads);
 setRange(start, end);
 }

 public synchronized void setRange(int start, int end) {
 startLoop = start;
 endLoop = end;
 reset();
 }

 public synchronized void reset() {
 curLoop = startLoop;
 }

 protected synchronized LoopRange loopGetRange() {
 if (curLoop >= endLoop)
 return null;
 LoopRange ret = new LoopRange();
 ret.start = curLoop;
 curLoop += (endLoop-startLoop)/numThreads+1;
 ret.end = (curLoop<endLoop)?curLoop:endLoop;
 return ret;
 }

 public void loopDoRange(int start, int end) {
 }

 public void loopProcess() {
 reset();
 FutureTask t[] = new FutureTask[numThreads];
 for (int i = 0; i < numThreads; i++) {
 t[i] = new FutureTask(this, null);
 threadpool.execute(t[i]);
 }
 for (int i = 0; i < numThreads; i++) {
 try {
 t[i].get();
 } catch (ExecutionException ee) {
 throw new RuntimeException(ee.toString());
 } catch (InterruptedException ie) {
 throw new InterruptedException(ie.toString());
 }
 }
 }

 public void run() {
 LoopRange str;
 while ((str = loopGetRange()) != null) {
 loopDoRange(str.start, str.end);
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

The fact that our original LoopHandler class can be used only once is merely a design
flaw. The loop index can never be set back to the start of the loop nor can the range
of the loop be changed. To fix this, we simply add two new methods, reset() and
setRange(), that reset the index back to the start of the loop and specify new ranges
for the loop. To avoid creating a lot of threads, we use the thread pool executor we
looked at in Chapter 10. Instead of creating threads in the loopProcess() method,
this method now assigns the tasks to the threads in a thread pool. We can then sim-
ply wait for all the threads in the pool to complete their assigned tasks. This all helps
somewhat, but the synchronization that we have introduced into the calculation will
have an effect on the ultimate acceleration of our program.

We can implement other scheduling models in the pool handler quite easily:

package javathreads.examples.ch15;

public class PoolSelfLoopHandler extends PoolLoopHandler {
 private int groupSize;

 public PoolSelfLoopHandler(int start, int end,
 int size, int threads) {
 super(start, end, threads);
 setSize(size);
 }

 public synchronized void setSize(int size) {
 groupSize = size;
 reset();
 }

 protected synchronized LoopRange loopGetRange() {
 if (curLoop >= endLoop)
 return null;
 LoopRange ret = new LoopRange();

A Warning About Inner Loops
Prior to threading any loop, we should always examine that loop. We should not
thread the loop if it executes in a very short period of time. For these cases, the over-
head in the setup and teardown of the threaded loop may be greater than any speed
gained from threading the loop.

When moving from the outer loop to the inner loop, we must examine the inner loop.
Just because the outer loop is a candidate for threading does not mean the inner loop
is a candidate for threading. If the number of iterations in the outer loop is many times
higher than the inner loop, the inner loop may execute only for a short period of time.
There could also be method calls in the outer loop, and not in the inner loop, that are
taking a long period of time to execute.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parallelizing a Single-Threaded Program | 291

 ret.start = curLoop;
 curLoop += groupSize;
 ret.end = (curLoop<endLoop)?curLoop:endLoop;
 return ret;
 }
}

What’s interesting here is the similarity to our original SelfLoopHandler class. How-
ever, to be more configurable, we have modified the handler to allow the extra
parameters, such as the chunk size, to be changed.

Here’s how we use our new handler:

package javathreads.examples.ch15.example8;

import javathreads.examples.ch15.*;

public class SinTable extends PoolLoopHandler {
 private float lookupValues[][];
 private int j;

 public SinTable() {
 super(0, 360, 12);
 lookupValues = new float[1000][];
 for (int j = 0; j < 1000; j++) {
 lookupValues[j] = new float[360];
 }
 }

 public void loopDoRange(int start, int end) {
 float sinValue = 0.0f;
 for (int i = start; i < end; i++) {
 sinValue = (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[j][i] = sinValue * (float)i / 180.0f;
 lookupValues[j][i] += lookupValues[j-1][i]*(float)j/180.0f;
 }
 }

 public float[][] getValues() {
 for (int i = 0; i < 360; i++) {
 lookupValues[0][i] = 0;
 }
 for (j = 1; j < 1000; j++) {
 loopProcess();
 }
 return lookupValues;
 }
}

To implement the SinTable class, we place the code from the inner loop in the
loopDoRange() method and then call the loopProcess() method to process the inner
loop. Since the j index variable is a read-only shared variable, it is now an instance
variable of the SinTable class.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

Having a loop handler that can be used more than once is also very important. If we
use the earlier version of the loop handler, we will have to create a new instance of
the loop handler for each inner loop that we execute. This means that the code for
the outer loop and the inner loop cannot be in the same class. Furthermore, we will
need to pass a reference to the j variable and lookupValues array to each instance
since these are shared between the different inner loop handlers.

Loop Printing
The task of sending a string to a file or the display is an I/O-bound task. Using multi-
threaded techniques on a loop of output does not make sense. Since the operation is
I/O-bound, the threads spend most of their time waiting, and there is little differ-
ence in having 1 or 12 processors available to run waiting threads. Furthermore, the
order of the output is important. Data that is written to a file or the display is eventu-
ally read by a person or another program. The output must look the same whether
the calculation is done as a single- or multithreaded program.

However, what if the printing portion of the loop is small when compared with the
mathematical calculation? If enough of the loop is CPU-intensive, it might be silly to
abandon an attempt at parallelizing the loop just because it contains a println()
method call. The only problem that needs to be solved is the ordering of the output.
This can be done by a two-step printing process. Instead of printing directly to the
display or file, the program can print to a virtual, memory-based display along with
an index used to order the output. When the processing of the loop has completed,
the output can then be sent to the display or file, using the index information to
ensure that the data is sent in the correct order.

Let’s reexamine our SinTable loop:

public synchronized float[] getValues() {
 if (lookupValues == null) {
 for (int i = 0; i < (360*100); i++) {
 float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[i] = sinValue * (float)i / 180.0f;
 System.out.println(" " + i + " " + lookupValues[i]);
 }
 }
 return lookupValues;
}

In this new version of the getValues() method, we are also printing the table to stan-
dard output. Obviously, this simple example can be transformed with a loop distri-
bution to two separate loops, but let’s assume that the printing process is highly
integrated into the algorithm and the loop transformation is not possible.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parallelizing a Single-Threaded Program | 293

To solve this problem, we’ll use this class:

package javathreads.examples.ch15;

import java.util.*;
import java.io.*;

public class LoopPrinter {
 private Vector pStorage[];
 private int growSize;

 public LoopPrinter(int initSize, int growSize) {
 pStorage = new Vector[initSize];
 this.growSize = growSize;
 }

 public LoopPrinter() {
 this(100, 0);
 }

 private synchronized void enlargeStorage(int minSize) {
 int oldSize = pStorage.length;
 if (oldSize < minSize) {
 int newSize = (growSize > 0) ?
 oldSize + growSize : 2 * oldSize;
 if (newSize < minSize) {
 newSize = minSize;
 }
 Vector newVec[] = new Vector[newSize];
 System.arraycopy(pStorage, 0, newVec, 0, oldSize);
 pStorage = newVec;
 }
 }

 public synchronized void print(int index, Object obj) {
 if (index >= pStorage.length) {
 enlargeStorage(index+1);
 }
 if (pStorage[index] == null) {
 pStorage[index] = new Vector();
 }
 pStorage[index].addElement(obj.toString());
 }

 public synchronized void println(int index, Object obj) {
 print(index, obj);
 print(index, "\n");
 }

 public synchronized void send2stream(PrintStream ps) {
 for (int i = 0; i < pStorage.length; i++) {
 if (pStorage[i] != null) {
 Enumeration e = pStorage[i].elements();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

294 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

 while (e.hasMoreElements()) {
 ps.print(e.nextElement());
 }
 }
 }
 }
}

The loop printer is implemented using a two-dimensional vector. The first dimen-
sion is used to separate the output. This output index could be related to the index
of the actual loop, or to a chunk of the loop, or it could even be a combination of
multiple loop indices. In any case, an output index should not be assigned to more
than one thread since the ordering inside an indexed vector is based on it. The sec-
ond dimension holds the strings that are sent to the output. Since the indices have
already ordered the strings to be printed, this dimension is just used to store the
many strings that are sent to this index.*

Printing an object to the virtual display is done with the print() and println()
methods. Along with the object to be printed, the program must supply an index as a
reference of the printing order. These methods simply store a reference to the strings
so that they may be printed at a later time. The second phase of the printing process
is done by the send2stream() method. Once the loop has completed, a call to this
method prints the result to the output specified.

Here’s how to use the LoopPrinter class:

package javathreads.examples.ch15.example9;

import javathreads.examples.ch15.*;

public class SinTable extends GuidedLoopHandler {
 private float lookupValues[];
 private LoopPrinter lp;

 public SinTable() {
 super(0, 360*100, 100, 12);
 lookupValues = new float [360 * 100];
 lp = new LoopPrinter(360*100, 0);
 }

 public void loopDoRange(int start, int end) {
 for (int i = start; i < end; i++) {
 float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[i] = sinValue * (float)i / 180.0f;
 lp.println(i, " " + i + " " + lookupValues[i]);
 }
 }

* Technically, we could have done the same thing with a single-dimensional array of string buffers.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Multiprocessor Scaling | 295

 public float[] getValues() {
 loopProcess();
 lp.send2stream(System.out);
 return lookupValues;
 }
}

The loop printer is created prior to the loop, all printing that was previously sent to a
file or the display is sent to the loop printer, and the send2stream() method is called
upon completion of the loop. Since the loop printer sends all the information to one
target, multiple loop printers must be created if the loop prints to different streams.

Also note that we constructed the loop printer with the index size as its initial size.
The loop printer is written to expand to any size, so this extra definition is not neces-
sary. We want to avoid expanding the size because this operation not only requires
the method to be synchronized, but also, depending on the size, takes some time to
execute. The print() and println() methods must also be synchronized. This serves
two purposes: First, it allows the array size to be increased without a race condition.
Second, it allows the methods to work—although the print order is no longer guar-
anteed—if an index is assigned to two threads. If the loop printer is modified so as
not to allow the array to be enlarged, and if it is assumed that developers will not
assign two threads to the same index, synchronization at this level will no longer be
necessary.

Multiprocessor Scaling
Scaling is a term that is sometimes overused. It can apply to how many programs a
computer can execute simultaneously, how many disks can be written to simulta-
neously, or how many cream cheese bagel orders can be processed by the local bagel
shop’s crew. When the output cannot be increased no matter how many resources
are added, this limit is generally the value used to specify what something scales to. If
the oven cannot produce more bagels per hour, it does not matter how many people
are added to the assembly line: the rate of bagels cannot exceed the rate produced by
the oven. The scaling limit can also be controlled by many other factors, such as the
rate that the cream cheese can be produced, the size of the refrigerators, or even by
the suppliers for the bagel shop.

In this chapter, when we refer to the scalability of a multithreaded program, we are
referring to the limit on the number of processors we can add and still obtain an
acceleration. Adding more than this limit does not make the program run faster.
Obviously, how a program scales depends on many factors: the operating system,
the Java virtual machine implementation, the browser or application server, and the
Java program itself. The best a program can scale is based on the scalability limits of
all of these factors.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

296 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

For perfect CPU-bound programs in a perfect world, we could expect perfect scal-
ing: adding a second CPU would halve the amount of time that it takes the program
to run, adding another CPU would reduce the time by another third, and so on. Even
for the loop-based programs we’ve examined in this chapter, however, the amount of
scaling is also limited by these important constraints:

Setup time
A certain amount of time is required to execute the code outside of the loop that
is being parallelized. This amount of time is independent of the number of
threads and processors that are available because only a single thread executes
that code.

New synchronization requirements
In parallelizing the loops of this chapter, we’ve introduced some additional
bookkeeping code, some of which is synchronized. Because some of these are
contended locks, this increases the time required to execute the code.

Serialization of methods
Some methods in our parallelized code must run sequentially because they are
synchronized. Contention for the lock associated with these methods also affects
the scalability of our parallelized programs.

If we view the setup time, synchronization time, and time required to execute the
serialized methods as a percentage of the total running time, the remaining time is

The Effect of the Virtual Machine
One of the factors that can affect the scalability of a particular program is the imple-
mentation of the virtual machine itself. Obtaining a synchronization lock, for instance,
takes a certain amount of time, and the code in the virtual machine that actually imple-
ments the synchronization is often synchronized itself. Two threads attempting to
obtain different synchronization locks may still compete for a resource within the vir-
tual machine. And there are other examples where the virtual machine or operating
system affects the scalability of a program.

The results that we present in this chapter are based on the J2SE 5.0 Beta 1 release by
Sun Microsystems. They are drastically different (and better) than results we’ve pre-
sented in previous editions of this book. Most notably, in the first and second edition
of this book, results were based on the 1.1.6 production release of the Java virtual
machine from Sun Microsystems. In those results, the amount of scaling observed was
far less due to two factors: the overall slower execution of the code and the much
longer time required to obtain a synchronization lock (even in the uncontended case).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Multiprocessor Scaling | 297

the amount of code that is parallelized. The maximum amount of scaling that we’ll
see is given by Amdahl’s Law:

Here, S is the scaling we’ll see, assuming that F% of code is parallelized over N pro-
cessors. If 95% of the code is parallelized and we have eight processors available, the
code runs in 16.8% of the original time required (.05 +.95/8). However, when we
introduce code to calculate loop ranges (or any other code), we’ve actually increased
the amount of serialized code, so F could potentially be a negative number. In that
case, our parallelized code takes longer to run than our original code.

What sort of scaling can we expect from the techniques of this chapter? To answer
this question, we test several implementations of our sample double loop:

public float[][] getValues() {
 for (int i = 0; i < 360; i++) {
 lookupValues[0][i] = 0;
 }
 for (int j = 1; j < 1000; j++) {
 for (int i = 0; i < 360; i++) {
 float sinValue = (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[j][i] = sinValue * (float)i / 180.0f;
 lookupValues[j][i] += lookupValues[j-1][i]*(float)j/180.0f;
 }
 }
 return lookupValues;
}

To make testing easier, we use the following class and interface to build a system by
which we may test various loop handlers.

package javathreads.examples.ch15;

import java.util.*;
import java.text.*;
import java.io.*;

public class ScaleTest {
 private int nIter = 200;
 private int nRows = 2000;
 private int nCols = 200;
 private int nThreads = 8;
 Class target;

 ScaleTest(int nIter, int nRows, int nCols, int nThreads,
 String className) {
 this.nIter = nIter;
 this.nRows = nRows;
 this.nCols = nCols;
 this.nThreads = nThreads;
 try {

S 1 F–() F
N
----+=

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

 target = Class.forName(className);
 } catch (ClassNotFoundException cnfe) {
 System.out.println(cnfe);
 System.exit(-1);
 }
 }

 void chart() {
 long sumTime = 0;
 long startLoop = System.currentTimeMillis();
 try {
 ScaleTester st = (ScaleTester) target.newInstance();
 for (int i = 0; i < nIter; i++) {
 st.init(nRows, nCols, nThreads);
 System.gc();
 long then = System.currentTimeMillis();
 float ans[][] = st.doCalc();
 long now = System.currentTimeMillis();
 sumTime += (now - then);
 }
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(-1);
 }
 long endLoop = System.currentTimeMillis();
 long calcTime = endLoop - startLoop;
 System.err.println("Loop time " + sumTime +
 " (" + ((sumTime * 100) / calcTime) + "%)");
 System.err.println("Calculation time " + calcTime);
 }

 public static void main(String args[]) {
 if (args.length != 5) {
 System.out.println(
 "Usage: java ScaleTester nIter nRows nCols nThreads className");
 System.exit(-1);
 }
 ScaleTest sc = new ScaleTest(Integer.parseInt(args[0]),
 Integer.parseInt(args[1]),
 Integer.parseInt(args[2]),
 Integer.parseInt(args[3]),
 args[4]);
 sc.chart();
 }
}

When we use the ScaleTest class, we get two numbers: the number of milliseconds
required to run the entire program (including initialization, which is single-threaded)
and the number of milliseconds required to run just the loop calculation. We then
compare these numbers to determine the scalability of various implementations of
our loop-handling classes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Multiprocessor Scaling | 299

In the remainder of this section, we’ll develop examples that use this class to see the
effect of parallelization of our loop given the constraints we’ve discussed in this
chapter.

A Simple Loop Test
In this example, we’ll explore how various loop handlers affect parallelization. As a
baseline, we take the measurement of this class:

package javathreads.examples.ch15.example10;

import javathreads.examples.ch15.*;

public class Basic implements ScaleTester {
 private float lookupValues[][];
 int nCols, nRows;

 public void init(int nRows, int nCols, int nThreads) {
 this.nCols = nCols;
 this.nRows = nRows;
 lookupValues = new float[nRows][];
 for (int j = 0; j < nRows; j++) {
 lookupValues[j] = new float[nCols];
 }
 }

 public float[][] doCalc() {
 for (int i = 0; i < nCols; i++) {
 lookupValues[0][i] = 0;
 }
 for (int j = 1; j < nRows; j++) {
 for (int i = 0; i < nCols; i++) {
 float sinValue =
 (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[j][i] = sinValue * (float)i / 180.0f;
 lookupValues[j][i] +=
 lookupValues[j-1][i]*(float)j/180.0f;
 }
 }
 return lookupValues;
 }
}

This class contains no threading; it is the way that we would normally implement the
basic calculation we’re interested in testing. We compare this class with the follow-
ing loop handler class:

package javathreads.examples.ch15.example10;

import javathreads.examples.ch15.*;

public class GuidedLoopInterchanged implements ScaleTester {
 private float lookupValues[][];
 private int nRows, nCols, nThreads;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

 private class GuidedLoopInterchangedHandler
 extends GuidedLoopHandler {
 GuidedLoopInterchangedHandler(int nc, int nt) {
 super(0, nc, 10, nt);
 }

 public void loopDoRange(int start, int end) {
 for (int i = start; i < end; i++) {
 lookupValues[0][i] = 0;
 }
 for (int i = start; i < end; i++) {
 for (int j = 1; j < nRows; j++) {
 float sinValue =
 (float)Math.sin((i % 360)*Math.PI/180.0);
 lookupValues[j][i] = sinValue * (float)i / 180.0f;
 lookupValues[j][i] +=
 lookupValues[j-1][i]*(float)j/180.0f;
 }
 }
 }
 }

 public void init(int nRows, int nCols, int nThreads) {
 this.nRows = nRows;
 this.nCols = nCols;
 this.nThreads = nThreads;
 lookupValues = new float[nRows][];
 for (int j = 0; j < nRows; j++) {
 lookupValues[j] = new float[nCols];
 }
 }

 public float[][] doCalc() {
 GuidedLoopInterchangedHandler loop =
 new GuidedLoopInterchangedHandler(nCols, nThreads);
 loop.loopProcess();
 return lookupValues;
 }
}

This class uses our simple loop handler to process the loop; notice, however, that
we’ve interchanged the loops in order to make the outer loop threadable. The online
examples have similar handlers that perform a simple loop interchange and a self-
guided loop interchange.

Table 15-1 lists the results of the ScaleTest program when run with different imple-
mentations of the interchanged loop: we’ve used chunk, self-scheduled, and guided
self-scheduling loop handlers in conjunction with the code we showed earlier. These
tests were run on a machine with eight CPUs, using an iteration count of 200, a row
count of 1500, and a column count of 3000. We’ve normalized the running time for
the baseline run to be 100 so that other numbers can be viewed as a percentage: the
best that we do is run in 20% of the time required for the original run.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Multiprocessor Scaling | 301

We can draw a few conclusions from this table:

• The overhead of setting up the thread and loop handling class itself is signifi-
cant: it requires 8% to 11% more time to execute that code when only a single
thread is available. We would not want to use this technique on a machine with
only one CPU.

• The scaling of the loop calculation itself is good. Since the original loop
accounted for 94% of the code, with eight CPUs the best that we can hope for
(using Amdahl’s law) is 17.8%. We’ve achieved 20%, which implies that 88.5%
of the code is now parallelized: the 5% difference is accounted for by the serial-
ized calls to the loopGetRange() method and the fact that each thread is proba-
bly not doing the same amount of work.

• Going past eight threads—that is, the number of CPUs available—yields a pen-
alty. This is partially because we now have threads competing for a CPU, but it is
also because of the synchronization around the additional calls to the
loopGetRange() method: there’s now a greater chance that the synchronization is
contended. However, note that while there is a penalty for 12 threads, the penalty

Table 15-1. Scalability of simple loop handlers

Number of threads Total time Loop time

Basic

javathreads.examples.ch15.example10.Basic

1 100%
(baseline)

94.0%

Chunk scheduling

javathreads.examples.ch15.example10.
LoopInterchanged

1 108.0% 101.8%

2 57.5% 51.4%

4 32.7% 26.7%

8 20.7% 14.6%

12 23.3% 17.0%

16 21.2% 14.9%

Self-scheduling

javathreads.examples.ch15.example10.
SelfLoopInterchanged

1 111.2% 105.0%

2 74.3% 68.2%

4 42.1% 35.9%

8 25.3% 19.1%

12 25.2% 19.0%

16 25.1% 18.9%

Guided self-scheduling

javathreads.examples.ch15.example10.
GuidedLoopInterchanged

1 108.0% 101.9%

2 58.7% 52.6%

4 32.7% 26.6%

8 20.0% 13.8%

12 21.9% 15.8%

16 21.3% 15.0%

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

302 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

for 16 threads is less. With 12 threads, at some points in time only 4 threads have
work left to do, which leaves 4 CPUs idle.

• The guided self-scheduler is the best choice in this example. This is not surpris-
ing: calculations based on sin values do not always require the same amount of
time, so the chunk scheduler can be penalized by having one particular thread
that requires too much time. That contributes to a loss of scaling since the
threads do not end up performing equal amounts of work.

All in all, though, we’ve achieved very good scalability.

A Reduction Variable Test
What effect does a reduction variable have in our testing? In our next series of tests
(example 11 in the online archive), we rewrite our tests so that every time we calcu-
late a lookup value, we add that value to a sumValue instance variable. Using the
reduction technique we showed earlier, the modified test generates the numbers
given in Table 15-2.

Table 15-2. Scalability of loop handlers with reduction variables

Number of threads Total time Loop time

Basic

javathreads.examples.ch15.example11.Basic

1 100%
(baseline)

93.8%

Chunk scheduling

javathreads.examples.ch15.example11.
LoopInterchanged

1 111.8% 105.5%

2 59.2% 52.9%

4 33.6% 27.3%

8 20.9% 14.6%

12 23.7% 17.3%

16 21.5% 15.0%

Guided self-scheduling

javathreads.examples.ch15.example11.
GuidedLoopInterchanged

1 110.0% 103.6%

2 58.0% 51.7%

4 32.7% 26.4%

8 20.1% 13.8%

12 22.1% 15.8%

16 21.5% 15.1%

Guided atomic self-scheduling

javathreads.examples.ch15.example11.
GuidedAtomicLoopnterchanged

1 114.2% 107.8%

2 60.4% 54.0%

4 33.8% 27.4%

8 21.2% 14.9%

12 24.0% 17.5%

16 21.8% 15.3%

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Multiprocessor Scaling | 303

Because there’s only one reduction variable, the effect on scaling is minor. In fact, in
some cases we did slightly better because the baseline now takes longer to execute.
However, the effect of many reduction variables could potentially aggregate into
something more noticeable.

We did no better—in fact, slightly worse—by replacing the synchronized call to the
sumValue with a call to our AtomicDouble class from Chapter 5. In this test, the over-
head comes almost entirely from the loop handling rather than the synchronization
after every loop completion.

A Small Inner-Loop Test
What if we had threaded only the inner loop? This question is interesting since it
demonstrates the effect of synchronization overhead versus the amount of savings we
obtain if the inner loop is small. As shown in example 12 in the online archive, we
rewrite our first test (with no reduction variable) so that no loop interchange is per-
formed and the inner loop is threaded instead, which produces the results in
Table 15-3.

In this test, we start out with some scaling, through about four CPUs. Even at four
CPUs, however, we’re not seeing the same scaling as in our previous tests. By the
time we get to eight CPUs, the inner loop has only 375 calculations, and the addi-
tional overhead of repeatedly calling the loopGetRange() method has overcome any
advantage we received by running the small loops in parallel. Things get worse as we
add more threads.

This effect becomes even more pronounced if we run with a smaller inner loop size.
With only 1000 columns, running with 4 threads requires 72.3% of the original time,
and running with 16 threads now requires 123.8% of the original time. The loop
itself runs so fast that the calls to loopGetRange() (and the contention for its lock)
make our program actually run slower.

Table 15-3. Scalability of inner loop handlers

Number of threads Total time Loop time

Basic

javathreads.examples.ch15.example12.Basic

1 100%
(baseline)

94.7%

Guided self-scheduling

javathreads.examples.ch15.example12.
GuidedLoopInterchanged

1 100% 94.6%

2 57.7% 52.0%

4 38.4% 32.4%

8 41.5% 35.5%

12 53.2% 47.1%

16 58.2% 52.0%

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

As we mentioned, threading of small loops—and particularly of small inner loops—
is not necessarily worthwhile.

A Printing Test
What if we add code to the loop that prints out the result of some calculations? We
can still thread such a case using the LoopPrinter class that we developed earlier.
However, remember that we ended our section on the LoopPrinter class with a dis-
cussion that would enable us to remove its synchronization. Because in this particu-
lar test we always know the size of the output array and we can ensure that the same
index is not used by two different threads, we can rewrite the LoopPrinter class like
this:

package javathreads.examples.ch15;

import java.util.*;
import java.io.*;

// Non-thread-safe version of a loop printer
public class LoopPrinterUnsafe {
 private Vector pStorage[];

 public LoopPrinterUnsafe(int size) {
 pStorage = new Vector[size];
 }

 public void print(int index, Object obj) {
 if (pStorage[index] == null) {
 pStorage[index] = new Vector();
 }
 pStorage[index].addElement(obj.toString());
 }

 public void println(int index, Object obj) {
 print(index, obj);
 print(index, "\n");
 }

 public void send2stream(PrintStream ps) {
 for (int i = 0; i < pStorage.length; i++) {
 if (pStorage[i] != null) {
 Enumeration e = pStorage[i].elements();
 while (e.hasMoreElements()) {
 ps.print(e.nextElement());
 }
 }
 }
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Multiprocessor Scaling | 305

This version of the loop printer eliminates the synchronization of our first implemen-
tation. There is still some synchronization when adding the string to the vector, but
if we set up the thread indices correctly, this is all uncontended synchronization and
has little effect on our time. It still takes longer to add strings to these vectors and
then dump them out than to simply call the ps.println() method. However, the dif-
ference between our threadsafe and thread-unsafe versions of this class is important.
Table 15-4 lists the results that we obtained for both cases cases (using the classes
from example 13 in the online archive).

The numbers in this table are obtained from printing out the result of every 20th cal-
culation. Even when the loop printer class is not synchronized, the extra overhead of
all the object manipulation within the printer class adds a lot of time to the overall
execution; printing the strings in the stored vectors (which is still a single-threaded
operation) takes over 40% of the execution time. In the synchronized case, conten-
tion for the locks prevents us from getting much scaling benefit at all. This is one
case where a careful design that allows you to avoid synchronization can have a
benefit.

It’s interesting to compare these results to a case in which we print out only every
1000th calculation. Now the printing time no longer dominates the calculation (see
Table 15-5).

Table 15-4. Scalability of loop printer handlers

Number of threads Total time Loop time

Basic

javathreads.examples.ch15.example13.Basic

1 100%
(baseline)

96.3%

Threadsafe loop printer

javathreads.examples.ch15.example13.
GuidedLoopInterchanged

1 106.7% 99.2%

2 90.2% 82.7%

4 83.9% 76.4%

8 86.0% 78.5%

12 89.3% 81.8%

16 86.5% 78%

Thread-unsafe loop printer

javathreads.examples.ch15.example13.
UnsafePrinterInterchanged

1 109.2% 101.7%

2 85.1% 77.6%

4 75.4% 67.9%

8 65.2% 57.7%

12 67.7% 60.2%

16 66.4% 58.9%

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

306 | Chapter 15: Parallelizing Loops for Multiprocessor Machines

We get better scalability here, though still clearly worse than when we had no print-
ing at all. The lesson here is clear: when you want to get the most benefit out of run-
ning code in parallel, reducing the amount of serial code makes a big difference in
the benefits you’ll see.

Summary
In this chapter, we examined techniques that allow us to utilize multiprocessor
machines so that our Java programs run faster on those machines. We examined
loops—the most common source of CPU-intensive code—and developed classes that
allow these loops to run in a multithreaded fashion. Along the way, we have classi-
fied variables, used various scheduling algorithms, and applied simple loop transfor-
mations to achieve this parallelization.

The goals here are to write fast programs from the start, to increase the performance
of old algorithms without redesigning them from scratch, and to provide a rich set of
options that can be used for cases where high performance is required.

Example Classes
The first nine SinTable classes we showed should mainly be used as a reference. They
contain testing code, but the printed output isn’t as interesting as the code itself.

Examples 10–13 are somewhat different from the examples from earlier chapters.
These examples are used for the tests that produced the tables in this chapter. These
tests are all run via the same class: the ScaleTest class. One of the arguments
required to run the scale test is the name of the target class to test. The classes that
are executed in those tests are listed in the tables shown earlier in this chapter.

Table 15-5. Scalability of loop printer handlers

Number of threads Total time Loop time

Basic
javathreads.examples.ch15.example13.Basic1000

1 100%
(baseline)

96.3%

Threadsafe loop printer
javathreads.examples.ch15.example13.
GuidedLoopInterchanged1000

1 131.5% 112.8%

4 54.7% 35.9%

8 42.3% 23.5%

Thread-unsafe loop printer
javathreads.examples.ch15.example13.
UnsafePrinterInterchanged1000

1 134.4% 115.7%

4 54.2% 35.4%

8 41.8% 23.0%

Description Main Java class Ant target

Table Generator (Single-threaded) javathreads.examples.ch15.example1.SinTable ch15-ex1

Table Generator (Multithreaded) javathreads.examples.ch15.example2.SinTable ch15-ex2

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Summary | 307

For the ScaleTest class, the class name argument appears in table listings earlier in
this chapter (e.g., the first test in Table 15-1 is the class javathreads.examples.ch15.
example10.Basic). In the ant target, the properties to use for the different parameters
are as follows:

<property name="nThreads" value="10"/>
<property name="scaleLoops" value="200"/>
<property name="nRows" value="1500"/>
<property name="nCols" value="2000"/>
<property name="classname" value="javathreads.examples.ch15.example10.Basic"/>

Table Generator (Using loop han-
dler)

javathreads.examples.ch15.example3.SinTable ch15-ex3

Table Generator (Handling store-
back variables)

javathreads.examples.ch15.example4.SinTable ch15-ex4

Table Generator (Handling reduc-
tion variables)

javathreads.examples.ch15.example5.SinTable ch15-ex5

Table Generator (Two-stage
reduction)

javathreads.examples.ch15.example6.SinTable ch15-ex6

Table Generator (Handling shared
variables)

javathreads.examples.ch15.example7.SinTable ch15-ex7

Table Generator (Threading inner
loops)

javathreads.examples.ch15.example8.SinTable ch15-ex8

Table Generator (Printing) javathreads.examples.ch15.example9.SinTable ch15-ex9

Scale Tester javathreads.examples.ch15.ScaleTest scaleLoops
nRows nColumns nThreads classname

ch15-scale

Description Main Java class Ant target

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

309

APPENDIX

Superseded Threading Utilities

Readers of previous editions of this book will have noticed that many of the classes
we developed for those editions have been replaced. The reason has to do with the
many new classes provided by J2SE 5.0. Prior to J2SE 5.0, developers were left to cre-
ate or purchase a library that provided the high-level threading support needed by
more complex programs. While these libraries can still be used, it is recommended
that programs migrate to the core J2SE 5.0 classes since that leaves one less library to
maintain, test, and download during execution.

While the examples in the previous edition of this book are now obsolete, there are a
few advantages to including them in this appendix (and in the online source). The
examples were designed to teach the subject of threading. They were designed to be
simplistic, not loaded with features, and specifically target a particular subject. Most
of those subjects are now discussed in relation to the new classes in J2SE 5.0, and the
rest of them are no longer necessary since we are no longer maintaining our own
library. Still, for research purposes, there is advantage in examining them.

As this book goes to press, J2SE 5.0 is only a beta release, so many developers can-
not yet use the new classes in J2SE 5.0. Those developers will also find these classes
useful.

So for those who may be interested, here is a quick review of our obsolete classes.
Obviously, learning the examples in this appendix is optional. Using these tools
should be considered only if you must use a virtual machine earlier than J2SE 5.0.

The BusyFlag Class
We’ll start with a BusyFlag class:

package javathreads.examples.appa;

public class BusyFlag {
protected Thread busyflag = null;
protected int busycount = 0;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

310 | Superseded Threading Utilities

public synchronized void getBusyFlag() {
while (tryGetBusyFlag() == false) {

try {
wait();

} catch (Exception e) {}
}

}

public synchronized boolean tryGetBusyFlag() {
if (busyflag == null) {

busyflag = Thread.currentThread();
busycount = 1;
return true;

}
if (busyflag == Thread.currentThread()) {

busycount++;
return true;

}
return false;

}

public synchronized void freeBusyFlag() {
if (getBusyFlagOwner() == Thread.currentThread()) {

busycount--;
if (busycount == 0) {

busyflag = null;
notify();

}
}

}

public synchronized Thread getBusyFlagOwner() {
return busyflag;

}
}

The BusyFlag class implements a basic, no-frills, mutually exclusive lock. It also
allows the locks to be nested—the owner thread can lock the busy flag multiple
times. It is much simpler than the ReentrantLock class. There is no internal support
for condition variables. There is no support for timeouts. There is no concept of fair-
ness in granting the busy flag. And our implementation does not attempt to mini-
mize synchronization.

Simplistically, the purpose of this class is to use Java’s basic synchronization mecha-
nism to achieve, well, synchronization. This allows the program to lock at any scope
or for any purpose.

The BusyFlag class contains four methods. The tryGetBusyFlag() class is used to
obtain a lock (a.k.a. the busyflag). It grabs the busy flag if it is available while return-
ing false if the flag is already owned by another thread. It also allows nested locks by
incrementing a counter if the current thread already owns the flag. The synchronized
keyword is used to protect against race conditions while grabbing this flag.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The CondVar Class | 311

The getBusyFlag() method uses the tryGetBusyFlag() method to repeatedly try
grabbing the flag until it is successful. If the flag is not available, it uses the wait-and-
notify mechanism to wait for the flag to be returned. The freeBusyFlag() method
decrements the counter. And if the counter is zero, this method declares that the flag
has no owner and notifies any threads that are waiting to grab the flag.

The getBusyFlagOwner() method is merely an administration method that allows a
thread to determine who is the owner of the busy flag. Also note that due to a race
condition, the result that is returned is only guaranteed not to change if the current
thread is returned as the owner of the busy flag.

The CondVar Class
Here is an implementation of the CondVar class:

package javathreads.examples.appa;

public class CondVar {
 private BusyFlag SyncVar;

 public CondVar() {
 this(new BusyFlag());
 }

 public CondVar(BusyFlag sv) {
 SyncVar = sv;
 }

 public void cvWait() throws InterruptedException {
 cvTimedWait(SyncVar, 0);
 }

 public void cvWait(BusyFlag sv) throws InterruptedException {
 cvTimedWait(sv, 0);
 }

 public void cvTimedWait(int millis) throws InterruptedException {
 cvTimedWait(SyncVar, millis);
 }

 public void cvTimedWait(BusyFlag sv, int millis)
 throws InterruptedException {
 int i = 0;
 InterruptedException errex = null;

 synchronized (this) {
 // You must own the lock in order to use this method
 if (sv.getBusyFlagOwner() != Thread.currentThread()) {
 throw new IllegalMonitorStateException(
 "current thread not owner");
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

312 | Superseded Threading Utilities

 // Release the lock (Completely)
 while (sv.getBusyFlagOwner() == Thread.currentThread()) {
 i++;
 sv.freeBusyFlag();
 }

 // Use wait() method
 try {
 if (millis == 0) {
 wait();
 } else {
 wait(millis);
 }
 } catch (InterruptedException iex) {
 errex = iex;
 }
 }

 // Obtain the lock (Return to original state)
 for (; i>0; i--) {
 sv.getBusyFlag();
 }

 if (errex != null) throw errex;
 return;
 }

 public void cvSignal() {
 cvSignal(SyncVar);
 }

 public synchronized void cvSignal(BusyFlag sv) {
 // You must own the lock in order to use this method
 if (sv.getBusyFlagOwner() != Thread.currentThread()) {
 throw new IllegalMonitorStateException(
 "current thread not owner");
 }
 notify();
 }

 public void cvBroadcast() {
 cvBroadcast(SyncVar);
 }

 public synchronized void cvBroadcast(BusyFlag sv) {
 // You must own the lock in order to use this method
 if (sv.getBusyFlagOwner() != Thread.currentThread()) {
 throw new IllegalMonitorStateException(
 "current thread not owner");
 }
 notifyAll();
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The CondVar Class | 313

The CondVar class implements a basic condition variable for use with the BusyFlag
class. There is no concept of fairness in notification. It is constructed separately from
the BusyFlag class—as compared to Condition objects, which are generated from the
Lock class via the newCondition() method. And like the BusyFlag class, the implemen-
tation doesn’t attempt to minimize synchronization.

The purpose of this class is to allow Java’s wait-and-notify mechanism to work with
explicit locking (locks at any scope). This allows the program to have condition vari-
able support for the BusyFlag class. It also allows a single lock to have more than one
condition variable, where the wait-and-notify mechanism needs a separate object for
every type of notification.

The CondVar class provides four methods for waiting for notification; three of these
methods can be considered convenience methods. The primary method is the
cvTimedWait() method. This method frees the ownership of the busy flag completely
and then uses the standard wait() method to perform the wait. If the time to wait is
zero, this method waits indefinitely for the notification. Otherwise, it uses the time-
out specified. Upon returning, it grabs the lock (note that it must do that as many
times as the lock was released to support the nesting semantics of our BusyFlag
class). Also note that it may still wait upon receiving notification as it can still block
while reacquiring the flag. In fact, that’s the case with all notification-based tech-
niques (the Condition class, the wait-and-notify mechanism); it’s just in this code
that you see the effect explicitly.

Two of the convenience methods allow the program to specify a timeout or wait
indefinitely. The last one allows you to specify an alternate busy flag class—a flag
that is different from the one specified during construction. Specifying an alternate
busy flag is not a feature supported by the Condition class—a Condition instance is
tightly bound to the Lock instance from which it was obtained. This feature allows
notification between two groups of threads that are operating on different locks. In
terms of functionality, this is a minor enhancement for a very rare need. Using the
Condition class, a common Lock object could be created just for notification between
the two groups of threads to achieve the same thing.

The cvSignal() method is used to send a single notification—using the notify()
method. As with the wait methods, it is overloaded to allow the program to specify
an alternate busy flag. The cvBroadcast() method is used to send notifications to all
the waiting threads—using the notifyAll() method. It, too, is overloaded to allow
the program to specify an alternate busy flag.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

314 | Superseded Threading Utilities

The Barrier Class
Here is an implementation of the Barrier class:

package javathreads.examples.appa;

public class Barrier {
 private int threads2Wait4;
 private InterruptedException iex;

 public Barrier (int nThreads) {
 threads2Wait4 = nThreads;
 }

 public synchronized int waitForRest()
 throws InterruptedException {
 int threadNum = --threads2Wait4;

 if (iex != null) throw iex;
 if (threads2Wait4 <= 0) {
 notifyAll();
 return threadNum;
 }
 while (threads2Wait4 > 0) {
 if (iex != null) throw iex;
 try {
 wait();
 } catch (InterruptedException ex) {
 iex = ex;
 notifyAll();
 }
 }
 return threadNum;
 }

 public synchronized void freeAll() {
 iex = new InterruptedException("Barrier Released by freeAll");
 notifyAll();
 }
}

The Barrier class is a basic, no-frills implementation of a barrier. Implementation of
the Barrier class with the basic synchronization techniques is straightforward. We
simply have each thread that arrives at the barrier (i.e., that calls the waitForRest()
method) call the wait() method while the last thread to arrive at the barrier has the
task of notifying all of the waiting threads. If any of the threads receives an interrup-
tion, all of the threads receive the same interruption. Another method, freeAll(), is
also provided to generate an interrupt on all of the threads. As an added benefit, a
thread number is assigned to the threads to help distinguish the waiting threads. The
last thread to reach the barrier is assigned the value of zero, and any thread that

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The RWLock Class | 315

reaches the barrier after the barrier has been released is assigned a negative value.
This indicates an error condition for the thread.

This implementation of the barrier is a single-use implementation. Once the barrier
reaches the thread limit as specified by the constructor, or an error is generated, the
barrier no longer blocks any threads.

The RWLock Class
Here is an implementation of the RWLock (reader/writer lock) class:

package javathreads.examples.appa;

import java.util.*;

class RWNode {
 static final int READER = 0;
 static final int WRITER = 1;
 Thread t;
 int state;
 int nAcquires;
 RWNode(Thread t, int state) {
 this.t = t;
 this.state = state;
 nAcquires = 0;
 }
}

public class RWLock {
 private Vector waiters;

 private int firstWriter() {
 Enumeration e;
 int index;
 for (index = 0, e = waiters.elements();
 e.hasMoreElements(); index++) {
 RWNode node = (RWNode) e.nextElement();
 if (node.state == RWNode.WRITER)
 return index;
 }
 return Integer.MAX_VALUE;
 }

 private int getIndex(Thread t) {
 Enumeration e;
 int index;
 for (index = 0, e = waiters.elements();
 e.hasMoreElements(); index++) {
 RWNode node = (RWNode) e.nextElement();
 if (node.t == t)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

316 | Superseded Threading Utilities

 return index;
 }
 return -1;
 }

 public RWLock() {
 waiters = new Vector();
 }

 public synchronized void lockRead() {
 RWNode node;
 Thread me = Thread.currentThread();
 int index = getIndex(me);
 if (index == -1) {
 node = new RWNode(me, RWNode.READER);
 waiters.addElement(node);
 }
 else node = (RWNode) waiters.elementAt(index);
 while (getIndex(me) > firstWriter()) {
 try {
 wait();
 } catch (Exception e) {}
 }
 node.nAcquires++;
 }
 public synchronized void lockWrite() {
 RWNode node;
 Thread me = Thread.currentThread();
 int index = getIndex(me);
 if (index == -1) {
 node = new RWNode(me, RWNode.WRITER);
 waiters.addElement(node);
 }
 else {
 node = (RWNode) waiters.elementAt(index);
 if (node.state == RWNode.READER)
 throw new IllegalArgumentException("Upgrade lock");
 node.state = RWNode.WRITER;
 }
 while (getIndex(me) != 0) {
 try {
 wait();
 } catch (Exception e) {}
 }
 node.nAcquires++;
 }

 public synchronized void unlock() {
 RWNode node;
 Thread me = Thread.currentThread();
 int index;
 index = getIndex(me);
 if (index > firstWriter())
 throw new IllegalArgumentException("Lock not held");

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The RWLock Class | 317

 node = (RWNode) waiters.elementAt(index);
 node.nAcquires--;
 if (node.nAcquires == 0) {
 waiters.removeElementAt(index);
 notifyAll();
 }
 }
}

The RWLock class implements a basic reader-writer lock. As with Java’s
ReentrantReadWriteLock class, this class is implemented in a way to prevent lock
starvation.

The interface to the reader-writer lock is very simple: there’s a lockRead() method to
acquire the read lock, a lockWrite() method to acquire the write lock, and an
unlock() method to release the lock. (only a single unlock() method is required, for
reasons we’ll explore in a moment). Threads that are attempting to acquire the lock
are held in a waiters vector. This is to allow the RWLock class to order the requests for
the purpose of preventing lock starvation. Furthermore, the Vector class is used,
instead of the more recent container classes, in order to allow the reader-writer lock
to be used with older versions of Java.

Because we need to keep track of how each thread wants to acquire the lock—
whether it wants to acquire the read lock or the write lock—we need to create a class
to encapsulate the information of the thread that made the request and the type of
request it made. This is the RWNode class; our waiters vector holds elements of type
RWNode.

Acquisition of the read lock is done in an orderly manner—the RWLock class doesn’t
just grant the read lock because another thread is also holding the read lock. In order
to obtain the read lock, a thread that wants the write lock must not already be in the
queue. If the nodes that are ahead of the current thread in the waiters queue want
only to acquire the read lock, we can go ahead and acquire the lock. Otherwise, we
must wait until all of the nodes that want to acquire the write lock—and are ahead in
the waiter vector—acquire and ultimately free the lock.

Acquisition of the write lock is stricter: we must be in position zero in the vector.
Only one thread may hold the write lock at a time.

This class also supports nested locks. This is accomplished by keeping track of the
number of acquisitions requested. Since the read lock can be granted to multiple
threads simultaneously, we can no longer use a simple instance variable (as we did in
the BusyFlag class); we must associate the nAcquires count with each particular
thread. Both acquisition methods must check to see if there is already a node associ-
ated with the calling thread.

This reader-writer lock class does not have the notion of “upgrading” the lock; that
is, if you hold the reader lock, you can’t acquire the writer lock. You must explicitly
release the reader lock before you attempt to acquire the writer lock, or you receive

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

318 | Superseded Threading Utilities

an IllegalArgumentException. If an upgrade feature were provided, the class itself
would also have to release the reader lock before acquiring the writer lock. A true
upgrade is not possible due to writer lock requests or possible upgrades requests
from threads that are also holding reader locks.

Finally, the reader-writer lock class contains some methods to search the waiters
vector for the first node in the queue that represents a thread attempting to acquire
the write lock (the firstWriter() method) and to find the index in the vector of the
node associated with the calling thread (the getIndex() method). We can’t use the
indexOf() method of the Vector class for this purpose because we’d have to pass the
indexOf() method an object of type RWNode, but all we have is a Thread object.*

The ThreadPool Class
Here is an implementation of the ThreadPool class:

package javathreads.examples.appa;

import java.util.*;

public class ThreadPool {

class ThreadPoolRequest {
Runnable target;
Object lock;

ThreadPoolRequest(Runnable t, Object l) {
target = t;
lock = l;

}
}

class ThreadPoolThread extends Thread {
ThreadPool parent;
boolean shouldRun = true;

ThreadPoolThread(ThreadPool parent, int i) {
super("ThreadPoolThread " + i);
this.parent = parent;

}

public void run() {
ThreadPoolRequest obj = null;
while (shouldRun) {

try {
parent.cvFlag.getBusyFlag();

* In J2SE 5.0, that’s no longer a problem, since the Vector class supports intrinsics. But in J2SE 5.0, you’ll be
using the ReadWriteLock class anyway.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The ThreadPool Class | 319

while (obj == null && shouldRun) {
try {

obj = (ThreadPoolRequest)
parent.objects.elementAt(0);

parent.objects.removeElementAt(0);
} catch (ArrayIndexOutOfBoundsException aiobe) {

obj = null;
} catch (ClassCastException cce) {

System.err.println("Unexpected data");
obj = null;

}
if (obj == null) {

try {
parent.cvAvailable.cvWait();

} catch (InterruptedException ie) {
return;

}
}

}
} finally {

parent.cvFlag.freeBusyFlag();
}
if (!shouldRun)

return;
obj.target.run();
try {

parent.cvFlag.getBusyFlag();
nObjects--;
if (nObjects == 0)

parent.cvEmpty.cvSignal();
} finally {

parent.cvFlag.freeBusyFlag();
}
if (obj.lock != null) {

synchronized(obj.lock) {
obj.lock.notify();

}
}
obj = null;

}
}

}

Vector objects;
int nObjects = 0;
CondVar cvAvailable, cvEmpty;
BusyFlag cvFlag;
ThreadPoolThread poolThreads[];
boolean terminated = false;

public ThreadPool(int n) {
cvFlag = new BusyFlag();
cvAvailable = new CondVar(cvFlag);
cvEmpty = new CondVar(cvFlag);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

320 | Superseded Threading Utilities

objects = new Vector();
poolThreads = new ThreadPoolThread[n];
for (int i = 0; i < n; i++) {

poolThreads[i] = new ThreadPoolThread(this, i);
poolThreads[i].start();

}
}

private void add(Runnable target, Object lock) {
try {

cvFlag.getBusyFlag();
if (terminated)

throw new IllegalStateException("Thread pool has shutdown");
objects.addElement(new ThreadPoolRequest(target, lock));
nObjects++;
cvAvailable.cvSignal();

} finally {
cvFlag.freeBusyFlag();

}
}

public void addRequest(Runnable target) {
add(target, null);

}

public void addRequestAndWait(Runnable target)
throws InterruptedException {

Object lock = new Object();
synchronized(lock) {

add(target, lock);
lock.wait();

}
}

public void waitForAll(boolean terminate) throws InterruptedException {
try {

cvFlag.getBusyFlag();
while (nObjects != 0)

cvEmpty.cvWait();
if (terminate) {

for (int i = 0; i < poolThreads.length; i++)
poolThreads[i].shouldRun = false;

cvAvailable.cvBroadcast();
terminated = true;

}
} finally {

cvFlag.freeBusyFlag();
}

}

public void waitForAll() throws InterruptedException {
waitForAll(false);

}
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The ThreadPool Class | 321

The ThreadPool class implements a thread pool—similar to the thread pool executor
discussed in Chapter 10. The inner class in this example performs most of the work.
Each thread waits for work; when it is signaled, it simply pulls the first object from
the vector and executes the object. When execution of that object is finished, the
thread must notify the lock associated with the object (if any) so that the
addRequestAndWait() method knows when to return; the thread must also notify the
thread pool itself so that the waitForAll() method checks to see if it is time for it to
return.

As a result, this code has three waiting points :

• Some request objects have an associated lock object (the Object created in the
addRequestAndWait() method). The addRequestAndWait() method uses the stan-
dard wait and notify technique to wait on this object; it receives notification
after the run() method has been executed by one of the ThreadPoolThread
objects.

• A CondVar object (i.e., a condition variable), cvAvailable, is associated with the
cvBusyFlag. This condition is used to signal that work is available to be per-
formed. Whenever the nObjects variable is incremented, work is available, so the
add() method signals a thread that a new object is available. Similarly, when
there are no objects in the vector to be processed, the ThreadPoolThread objects
wait on that condition variable.

• A CondVar object, cvEmpty, is also associated with the same cvBusyFlag. This con-
dition is used to signal that all pending work has been completed—that is, that
the nObjects variable has reached zero. The waitForAll() method waits for this
condition, which is signaled by a ThreadPoolThread when it sets nObjects to zero.

We use condition variables for the last two cases because they share the same lock
(the cvBusyFlag, which protects access to nObjects) even though they have different
values for their condition. If we had used the standard wait-and-notify mechanism to
signal the threads that are interested in the value of nObjects, we could not have con-
trolled notification as well: whenever nObjects was set to zero, we’d have to notify all
ThreadPoolThreads as well as notifying the thread that is executing the waitForAll()
method.

Note that objects that are to be run by the thread pool are expected to implement the
Runnable interface. This is similar to the thread pool executor. This doesn’t mean
that a new thread is created for each task. This interface allows us to take existing
code that uses threads and run those tasks via a thread pool instead.

Interestingly enough, there is no way to shut down a thread pool automatically. If
the thread pool object were to go out of scope, it would never be garbage collected.
The thread pool thread objects (like all thread objects) are held in an internal data
structure within the virtual machine, so they are not garbage collected until they exit.
And because they have a reference to the thread pool itself, the thread pool cannot be

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

322 | Superseded Threading Utilities

garbage collected until the thread pool threads are garbage collected. So we have to
have some way of signaling the thread pool to exit: we do that by passing a true
parameter to the waitForAll() method. Then, when the thread pool has run all of its
jobs, the waitForAll() method arranges for the thread pool threads to terminate and
marks the thread pool so that no more jobs can be added to it. The thread pool
threads then exit, and the thread pool can be garbage collected.

The JobScheduler Class
Here is an implementation of the JobScheduler class to execute a task:

package javathreads.examples.appa;

import java.util.*;

public class JobScheduler implements Runnable {
final public static int ONCE = 1;
final public static int FOREVER = -1;
final public static long HOURLY = (long)60*60*1000;
final public static long DAILY = 24*HOURLY;
final public static long WEEKLY = 7*DAILY;
final public static long MONTHLY = -1;
final public static long YEARLY = -2;

private class JobNode {
public Runnable job;
public Date executeAt;
public long interval;
public int count;

}
private ThreadPool tp;
private DaemonLock dlock = new DaemonLock();
private Vector jobs = new Vector(100);

public JobScheduler(int poolSize) {
tp = (poolSize > 0) ? new ThreadPool(poolSize) : null;
Thread js = new Thread(this);
js.setDaemon(true);
js.start();

}

private synchronized void addJob(JobNode job) {
dlock.acquire();
jobs.addElement(job);
notify();

}

private synchronized void deleteJob(Runnable job) {
for (int i=0; i < jobs.size(); i++) {

if (((JobNode) jobs.elementAt(i)).job == job) {
jobs.removeElementAt(i);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The JobScheduler Class | 323

dlock.release();
break;

}
}

}

private JobNode updateJobNode(JobNode jn) {
Calendar cal = Calendar.getInstance();
cal.setTime(jn.executeAt);
if (jn.interval == MONTHLY) {

// There is a minor bug. (see java.util.calendar)
cal.add(Calendar.MONTH, 1);
jn.executeAt = cal.getTime();

} else if (jn.interval == YEARLY) {
cal.add(Calendar.YEAR, 1);
jn.executeAt = cal.getTime();

} else {
jn.executeAt = new Date(jn.executeAt.getTime() + jn.interval);

}
jn.count = (jn.count == FOREVER) ? FOREVER : jn.count -1;
return (jn.count != 0) ? jn : null;

}

private synchronized long runJobs() {
long minDiff = Long.MAX_VALUE;
long now = System.currentTimeMillis();

for (int i=0; i < jobs.size();) {
JobNode jn = (JobNode) jobs.elementAt(i);
if (jn.executeAt.getTime() <= now) {

if (tp != null) {
tp.addRequest(jn.job);

} else {
Thread jt = new Thread(jn.job);
jt.setDaemon(false);
jt.start();

}
if (updateJobNode(jn) == null) {

jobs.removeElementAt(i);
dlock.release();

}
} else {

long diff = jn.executeAt.getTime() - now;
minDiff = Math.min(diff, minDiff);
i++;

}
}
return minDiff;

}

public synchronized void run() {
while (true) {

long waitTime = runJobs();
try {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

324 | Superseded Threading Utilities

wait(waitTime);
} catch (Exception e) {};

}
}

public void execute(Runnable job) {
executeIn(job, (long)0);

}

public void executeIn(Runnable job, long millis) {
executeInAndRepeat(job, millis, 1000, ONCE);

}
public void executeInAndRepeat(Runnable job, long millis, long repeat) {

executeInAndRepeat(job, millis, repeat, FOREVER);

}
public void executeInAndRepeat(Runnable job, long millis,

 long repeat, int count) {
Date when = new Date(System.currentTimeMillis() + millis);
executeAtAndRepeat(job, when, repeat, count);

}

public void executeAt(Runnable job, Date when) {
executeAtAndRepeat(job, when, 1000, ONCE);

}

public void executeAtAndRepeat(Runnable job, Date when, long repeat) {
executeAtAndRepeat(job, when, repeat, FOREVER);

}

public void executeAtAndRepeat(Runnable job, Date when,
 long repeat, int count) {

JobNode jn = new JobNode();
jn.job = job;
jn.executeAt = when;
jn.interval = repeat;
jn.count = count;
addJob(jn);

}

public void cancel(Runnable job) {
deleteJob(job);

}
}

The JobScheduler class implements a time-based execution system—similar to the
scheduled executor discussed in Chapter 11. Like the ScheduledThreadPoolExecutor
class, this class also uses a thread pool internally, allowing the tasks to execute in the
separate threads within the pool. However, this class also provides the option not to
use a thread pool, meaning that separate threads are started for every job. This
option is useful if the job is a long-term task or for a job that runs in the background

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The JobScheduler Class | 325

indefinitely. Assuming that the threading system doesn’t get overloaded, this also
allows the jobs to be executed as close to the requested time as possible.

The class is designed to be as simple—and as basic—as possible: the class just iter-
ates over the requested jobs (the elements in the jobs vector) and either adds the jobs
that need to be executed to a thread pool for processing or starts a new thread to exe-
cute the job. In addition, we need to find the time for the job that is due to run next,
and wait for this time to occur. The entire process is then repeated.

For completeness, we’ve added a little complexity in our JobScheduler class. In addi-
tion to accepting a runnable object that can be executed and a time at which to per-
form the job, we also accept a count of the number of times the job is to be
performed and the time to wait between executions of the job. Consequently, after a
job is executed, we need to calculate whether another iteration is necessary and
when to perform this iteration.

In our JobScheduler class, this is all handled by a single thread that calls the runJobs()
method. The task of deciding whether the job needs to be executed again is done by
the updateJobNode() method; adding jobs to and deleting jobs from the requested jobs
vector is accomplished by the addJob() and deleteJob() methods, respectively. Most
of the logic for the JobScheduler class is actually the implementation of the many
options and methods in the interface provided for the developer.

Our JobScheduler class provides eight methods:

public void execute(Runnable job)
Used for a job that is to be executed once; simply runs the job.

public void executeIn(Runnable job, long millis)
Used for a job that is to be executed once; runs the job after the specified num-
ber of milliseconds has elapsed.

public void executeAt(Runnable job, Date when)
Used for a job that is to be executed once; runs the job at the time specified.

public void executeInAndRepeat(Runnable job, long millis, long repeat)
public void executeInAndRepeat(Runnable job, long millis, long repeat, int
count)
public void executeAtAndRepeat(Runnable job, Date when, long repeat)
public void executeAtAndRepeat(Runnable job, Date when, long repeat, int
count)

Used for repeating jobs. These methods run the job after the number of millisec-
onds specified by the millis parameter has elapsed (or at the time specified by
the when parameter). They run the job again after the number of milliseconds
specified by the repeat parameter has elapsed. This process is repeated as speci-
fied by the count parameter. If no count is specified, the job is repeated forever.

The constants HOURLY, DAILY, WEEKLY, MONTHLY, and YEARLY may also be passed as
the repeat parameter. The HOURLY, DAILY, and WEEKLY parameters are provided for

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

326 | Superseded Threading Utilities

convenience. However, the MONTHLY and YEARLY parameters are processed differ-
ently by the job scheduler since the scheduler has to take into account the differ-
ent number of days in the month and the leap year.

public void cancel(Runnable job)
Cancels the specified job. No error is generated if the job is not in the requested
jobs vector since it is possible that the job has executed and been removed from
the vector before the cancel() method is called. If the same job is placed on the
list more than once, this method removes the first job that it finds on the list.

As rich as the set of methods provided by this class, it can be considered weak in fea-
tures by those who have used job schedulers provided by some operating systems. In
those systems, developers can specify criteria such as day of the week, day of the
month, week of the year, and so on. Compared to the ScheduledThreadPoolExecutor
class, it is also missing some of the control features for repeating jobs.

The DaemonLock Class
Our job scheduler class depends on the DaemonLock class. The purpose of the
DaemonLock class is to allow the job scheduler to shut down gracefully. The main
thread should exit without shutting down the job scheduler abruptly: if there are
scheduled tasks, we want them to complete. When the job scheduler has finished all
its tasks, we want the program to exit.

We accomplish this by making the threads in the job scheduler daemon threads; that
way they exit when no more user threads are active. The DaemonLock class protects
against premature exit: it makes sure that one user thread is active as long as the job
scheduler has tasks to run.

Note that the ScheduledThreadPoolExecutor class doesn’t need to use something like
this class since its shutdown() method accomplishes a graceful shutdown.

The DaemonLock class looks like this:

package javathreads.examples.appa;

public class DaemonLock implements Runnable {
private int lockCount = 0;

public synchronized void acquire() {
if (lockCount++ == 0) {

Thread t = new Thread(this);
t.setDaemon(false);
t.start();

}
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Summary | 327

public synchronized void release() {
if (--lockCount == 0) {

notify();
}

}

public synchronized void run() {
while (lockCount != 0) {

try {
wait();

} catch (InterruptedException ex) {};
}

}
}

Summary
In a way, this appendix is like a history lesson: we have just reviewed the major
classes developed in the previous editions of this book. These classes have been
superceded by the additions in J2SE 5.0. While the enhancements in J2SE 5.0 pro-
vide production quality support, they also make it more difficult for readers. The
new classes are designed to be used, not to be educational tools—therefore, their
code is written optimally rather than simply.

By reviewing these superceded classes, we accomplish two tasks. We provide edifica-
tion by showing classes that are simpler to understand. We also provide tools that
can be used by developers who have not yet upgraded to J2SE 5.0. For those devel-
opers, these classes, available in the online source for this book, could be used in the
interim.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

329

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
AbortPolicy exception handler, 195
accept() method, 228
access

checkAccess() method, 248
heaps, 14
pools, 198
Swing objects, 143, 144

acquiring locks, 48, 140
ActionListener interface, 210
actionPerformed() method, 22, 150
addActionListener() method, 210
advanced atomic data types, 100
alarms, 9
algorithms

collection classes, 166
modification, 92
parallelizable, 10
synchronization, 92

Amdahl’s Law, 297
analysis of loops, 283
Ant, 6
APIs (application programming interfaces)

JSR-166, x
(see also interfaces)

applets, 2
application programming interfaces (see

APIs)
applications, 3

compiling, 22
running, 22
tasks, 11–14

architecture examples, 15–17

ArrayBlockingQueue, 194
arrays

atomic, 89
lookup table, 272
volatile keyword, 43

asynchronous behavior, 7
atomic arrays, 89
atomic code, 40
atomic data types, 100
atomic variables, 86–106

data exchange, 99
notification, 95
performance, 264
substitution, 92

AtomicDouble class, 103, 105, 282
AtomicIntegerArray class, 89
AtomicIntegerFieldUpdater class, 89
AtomicInteger.getAndIncrement()

method, 264
AtomicLongArray class, 89
AtomicLongFieldUpdater class, 89
AtomicMarkableReference class, 89
AtomicReferenceArray class, 89
AtomicReferenceFieldUpdater class, 89
AtomicStampedReference class, 89
automatic lock releases, 122
auto-parallelization, 270
await() method, 78–79, 114–115, 131, 134,

202
deadlock, 134

awaitTerminated() method, 189

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

330 | Index

B
Barrier class, 314
barriers, 110, 113
behavior of unsynchronized methods, 49
blocks

critical sections, 111
I/O, 7, 231
locks, 111
scheduling, 172
synchronization, 75, 85, 139
synchronized keyword, 54
synchronized mechanisms, 55

bottlenecks, 260
browsers, 2
bulk data modification, 103, 106
BusyFlag class, 309

C
caches, 107
calculation of race conditions, 44–50
call graphs, synchronized methods, 139
callable tasks, pools, 196–198
callbacks, 59

events, 147–150
CallerRunsPolicy exception handler, 195
cancel() method, 203
canThreadWaitOnLock() method, 130
characters, 17
checkAccess() method, 248
childValue() method, 108
chunk scheduling, 274
classes

atomic, 86–106
collection (see collection classes)
helper, 16
J2SE 5.0, 112–118
Object, wait-and-notify mechanism, 69
RandomCharacterGenerator, 22
ReentrantLock, 58
ScoreLabel, 52

deadlock, 64
modifying, 53–55

semaphores, 112
Thread, 18–23

lifecycles, 23–27
Runnable interface, 31–35

thread-aware, 163
threadsafe, 154
utility, 15–17

classifications, variables, 277
classloader object, 250–252

cleanup, threads, 26
clients

connections, 221
tracking, 223

code, 3
architecture examples, 15–17
atomic, 40
atomic classes, 86–106
blocks, 54
deadlock, 63
examples of, 4–6
I/O servers, 221–231
permissions, 248
subclasses, 235
Swing object access, 144
transformations, 283

collection classes, 152
applying, 166
interfaces, 153–157
producer/consumer pattern, 163–166
synchronization, 157–163, 262

Collections.synchronizedCollection()
method, 263

commands, execution, 11
compareAndSet() method, 88, 100, 103
compilers, auto-parallelization, 270
compiling

applications, 22
code, 5

complex priorities, 175
components, 3, 144
concurrency utilities, x, 3
ConcurrentHashMap class, 265
Condition interface, 79
Condition objects, creating, 77
condition variables, 76–79, 111

deadlock, 133
conditions

notification, 73
(see also race condition)

CondVar class, 311
connections, 221
containers, 3
contended locks, 82
contended synchronization, 264
context classloaders, 251
copy-on-write operations, 166
CopyOnWriteArrayList class, 162
CopyOnWriteArraySet class, 162
countdown latches, 115
CountDownLatch class, 115
countStackFrames() method, 259

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 331

critical sections, 111
cross-calling methods, 58
currentThread() method, 36
CyclicBarrier class, 115

D
DaemonLock class, 326
daemons, 249
data exchange, atomic variables, 99
data sharing, 14
data sockets, 221
data types, advanced atomic, 100
deadlock, 58, 59–65

await() method, 134
checks, 133
condition variables, 133
detection of, 124–138
exceptions, 132
loops, 132
preventing, 118–124
searching, 137

DeadlockDetectedException, 129
DeadlockDetectingLock class, 130
declaration of locks, 66
DelayQueue class, 202
delays, 29
design, double-checked locking, 86
detection of deadlock, 119, 124–138
DiscardOldestPolicy exception handler, 195
DiscardPolicy exception handler, 195
distribution, 283
done flag, 43
Double class, 103
double-checked locking, 86

E
EJBs (Enterprise Java Beans), 3
Enterprise Java Beans (EJBs), 3
enumerations, 161
errors

deadlock, 133
out of memory, 258
stack overflow, 257
synchronization, 93

event-dispatching thread, 35, 143–144
events, 16

callbacks, 147–150
lifecycles, 23–27
processing, 95, 144
variables, 111

exceptions, 252–255
deadlock, 132
pools, 194
priority, 175
Swing objects, 144

exchange() method, 116
exchangers, 115
execute() method, 188
execution

java.util.Timer class, 205, 214
programs, 12
race condition, 48
statements, 84
thread class, 20
virtual machine, 13

executors, pools, 188–189
exiting state, scheduling, 172
explicit locks, 50–52, 61

deadlock, 124

F
fairness, locks, 65–66
firing events, 16
flags

BusyFlag class, 310
done, 43
mayInterruptIfRunning, 197
queries, 30
setting, 27

floating-point values, 100
floating-point variables, 89
freeIfHardwait() method, 130
functionality of condition variables, 95
Future interface, 197, 216
future results, pools, 196–198

G
garbage collection, 12, 27, 155, 173, 206,

245, 250, 262, 270, 321–322
generic NIO servers, 233
get() method, 88
getAllLocksOwned() method, 130
getAllStackTraces() method, 259
getAllThreadsHardwaiting() method, 130
getAndSet() method, 88, 94
getContextClassLoader() method, 251
getDelay() method, 210
getInitialDelay() method, 210
getListeners() method, 210
getLogTimers() method, 210

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

332 | Index

getStackTrace() method, 259
GET_STRING_REQUEST message, 224
GET_STRING_RESPONSE message, 224,

238
getter/setter pattern, 107
getThreadGroup() method, 246
green threads, 178
groups, 18, 245–247
guided self-scheduling, 276

H
handleClient() method, 235
handleServer() method, 235
hard waiting lists, 130
Hashtable class, 161
hashtables, 265
heaps, 14
helper classes, 16
hierarchies, 246

I
implementations

scheduling, 178–183
TCPServer class, 224

independent tasks, 9
InheritableThreadLocal class, 108
initial state, scheduling, 172
initialization of barriers, 115
initialValue() method, 107
inner loops, 287, 290

testing, 303
interaction, 35–36
interchanges, loops, 285
interfaces

ActionListener, 210
barriers, 114
collection classes, 153–157
Condition, 79
countdown latches, 115
exchangers, 116
executors, 188–189
Future, 197, 216
javax.swing.Timer class, 209
Lock, 50–52, 122
lock, 56
locks, 117
RejectedExecutionHandler, 195
Runnable, 14, 31–35
semaphores, 112
stacks, 259
Timer class, 203

Internet Explorer, 2
interpreters, 2
interrupt() method, 240, 247
interrupted I/O servers, 240–243
interruptible locking requests, deadlock

detection, 135
interrupting threads, 29
inversion, 175
invokeAll() methods, 189
invokeAndWait() method, 145–147
invokeAny() methods, 189
invokeLater() method, 145–147
I/O

asynchronous behavior, 7
multiplexing, 8
nonblocking, 7
servers, 221–231

interrupted, 240–243
JDK 1.4, 231–240

isAlive() method, 25
isCoalesce() method, 210
isEventDispatchThread() method, 150
isolation, loops, 284
isRepeats() method, 210
isRunning() method, 211
isTerminated() method, 189
iteration, loops, 270
iterators, 161

J
J2EE (Java 2 Enterprise Edition), 3
J2SE 5.0, 3–4, 56, 90, 183

categories of features added to, x
classes, 112–118

Java, 2
Java 2 Enterprise Edition (J2EE), 3
Java Specification Request (JSR), x
Java Thread class, 176
java.lang.SecurityManager class, 247–249
java.lang.ThreadGroup class, 245–247
java.lang.ThreadLocal class, 107
java.util.ArrayList (a List), 155
java.util.BitSet, 155
java.util.concurrent.ArrayBlockingQueue (a

Queue), 156
java.util.concurrent.ConcurrentHashMap (a

Map), 154
java.util.concurrent.ConcurrentLinkedQueue

(a Queue), 154
java.util.concurrent.CopyOnWriteArrayList

(a List), 154

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 333

java.util.concurrent.CopyOnWriteArraySet
(a Set), 154

java.util.concurrent.DelayQueue (a
Queue), 156

java.util.concurrent.LinkedBlockingQueue (a
Queue), 156

java.util.concurrent.PriorityBlockingQueue (a
Queue), 156

java.util.concurrent.SynchronousQueue (a
Queue), 156

java.util.EnumMap (a Map), 156
java.util.EnumSet (a Set), 156
java.util.HashMap (a Map), 155
java.util.HashSet (a Set), 155
java.util.Hashtable (a Map), 154
java.util.IdentityHashMap (a Map), 156
java.util.LinkedHashMap (a Map), 155
java.util.LinkedHashSet (a Set), 155
java.util.LinkedList (a List and a

Queue), 155
java.util.List, 153
java.util.Map, 153
java.util.PriorityQueue (a Queue), 156
java.util.Queue, 154
java.util.Set, 154
java.util.Stack (a List), 154
java.util.Timer class, 203–209
java.util.TreeMap (a SortedMap), 155
java.util.TreeSet (a SortedSet), 155
java.util.Vector (a List), 154
java.util.WeakHashMap (a Map), 155
javax.swing.Timer class, 209–212
JDK 1.4, I/O servers, 231–240
JobScheduler class, 322
join() method, 27, 202
JSR (Java Specification Request), x

K
keywords

blocks, 54
synchronized, xi, 17, 38–41, 42, 50, 52,

54–55, 57, 122–123, 129
volatile, 28, 41–43, 67, 82, 84

L
LAN (local area network), 8
lifecycles, 23–27
lightweight processes (LWPs), 182
LinkedBlockingQueue, 194
Linux native threads, 183
listeners.toArray() method, 159

load balancing, 274
loading classes, 250–252
local area network (LAN), 8
locations, memory, 83
lock() method, 50, 130
Lock interface, 50–52, 56

deadlock, 122
Lock object, 77
locks, 111

acquiring, 48
automatic releases, 122
condition variables, 111
deadlock, 59–65, 118–124

detection of, 124–138
double-checked locking, 86
explicit, 61
explicit locking, 50–52
fairness, 65–66
interfaces, 117
multiple objects, 121
mutex, 41
nested, 57–59
reader, 111, 116
releasing, 48
scope, 42, 53–55
selecting, 55–57
semaphores, 111, 112
starvation, 138–141
synchronization, 81–86
trees, 125, 132
writer, 111, 116

long-running event callbacks, 147–150
lookupTable arrays, 272
loopDoRange() method, 271, 273
loopGetRange() method, 271
LoopHandler class, 273, 290
LoopPrinter class, 294, 304
loop-private variables, 277
loopProcess() method, 273
loops

analysis, 283
deadlock, 132
distribution, 283
inner, 287, 290

testing, 303
interchange, 285
isolation, 284
iteration, 270
management, 272
parallelizable algorithms, 10, 268–307
printing, 292

testing, 304

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

334 | Index

loops (continued)
processing, 95
reimplementation, 286
scheduling, 274
synchronization, 281
synchronized blocks, 139
temporary, 134
testing, 297, 299
transformations, 283

LWPs (lightweight processes), 182

M
main() method, 12
main memory

registers, 83–84
volatile keyword, 43

management
loops, 272
security, 247–249

maps, 167
priorities (Win32), 180

markAsHardwait() method, 130
mayInterruptIfRunning flag, 197
measuring performance, 261
memory

registers, 83–84
stacks, 255–259
volatile keyword, 43

methods
accept(), 228
actionPerformed(), 22, 150
addActionListener(), 210
AtomicInteger.getAndIncrement(), 264
await(), 114

deadlock, 134
awaitTerminated(), 189
blocks, 54
cancel(), 203
canThreadWaitOnLock(), 130
checkAccess(), 248
childValue(), 108
Collections.synchronizedCollection(), 263
compareAndSet(), 88, 100, 103
countStackFrames(), 259
critical sections, 111
cross-calling, 58
currentThread(), 36
deadlock, 120
exchange(), 116
execute(), 188
freeIfHardwait, 130
get(), 88

getAllLocksOwned(), 130
getAllStackTraces(), 259
getAllThreadsHardwaiting(), 130
getAndSet(), 88, 94
getContextClassLoader(), 251
getDelay(), 210
getInitialDelay(), 210
getListeners(), 210
getLogTimers(), 210
getStackTraces(), 259
getThreadgroup(), 246
handleClient(), 235
handleServer(), 235
initialValue(), 107
interrupt(), 240, 247
invokeAll(), 189
invokeAny(), 189
isAlive(), 25
isCoalesce(), 210
isEventDispatch(), 150
isRepeats(), 210
isRunning(), 211
isTerminated(), 189
join(), 27, 202
listeners.toArray(), 159
lock(), 50, 130
locks, 111
loopDoRange(), 271, 273
loopGetRange(), 271
loopProcess(), 273
main(), 12
markAsHardWait(), 130
newCharacter(), 45, 94

synchronization, 46
newCondition(), 78, 117
newUpdater(), 89
notify(), 72, 74
notifyAll(), 74
print(), 295
println(), 292, 295
priorities, 176–178
purge(), 197
read(), 7
readByte(), 225
readUTF(), 232
registerLock(), 130
removeActionListener(), 210
removeCharacterListener(), 159
resetGenerator(), 93
resetTypist(), 93
restart(), 211
resume(), 26, 177

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 335

run(), 20
schedule(), 204
scheduleAtFixedRate(), 205
scheduledExecutionTime(), 203, 205
send2stream(), 294
set(), 88
setCoalesce(), 210
setContextClassLoader(), 251
setDaemon(), 250
setDelay(), 210
setDone(), 28, 97
setInitialDelay(), 210
setLogTimers(), 210
setPriority(), 176
setRejectedExecutionHandler(), 195
setRepeats(), 210
setScore(), 47
setText(), 150
setupDone(), 150
shutdown(), 189
shutdownNow(), 189
sleep(), 26, 201
start(), 24, 211
startServer(), 223, 225
static, 49
stop(), 25, 211
stopServer(), 223
submit(), 189
suspend(), 26, 177
Swing component access, 144
synchronization, 47
toArray(), 161
tryLock(), 56, 123
uncaughtException(), 253
unlock(), 50
unregisterLock(), 130
unsynchronized behavior, 49
void notify(), 69
void wait(), 69
wait(), 71, 202
weakCompareAndSet(), 88

modification
algorithms, 92
bulk data, 103, 106

monitoring reachability, 206
monitors, 111
Mozilla, 2
multiple collections, 167
multiple objects, locking, 121
multiple threads

competing for locks, 140
deadlock, 59–65

priority-based scheduling, 171
synchronization, 47

multiplexing, I/O, 8
multiprocessor scaling, 295–306
multiprocessor systems, 268
multitasking environment processes, 14
multithreaded servers, 224
mutexes, 41, 111

N
names, 18
Native Posix Thread Library (NPTL), 183
native threads

Linux, 183
Solaris, 181
Windows, 179

nested locks, 57–59
Netscape Navigator, 2
network connections, 221
newCharacter() method, 45, 94

synchronization, 46
newCondition() method, 78, 117
newUpdater() method, 89
nonblocking I/O, 7, 231
notification

atomic variables, 95
collection classes, 156
conditions, 73
waiting areas, 68–71
(see also wait-and-notify mechanism)

notify() method, 72, 74
notifyAll() method, 74
NPTL (Native Posix Thread Library), 183

O
Object class, 69
objects, 35–36

bulk data modification, 106
classloader, 250–252
Condition, 77
Lock, 77
locking, 121
Runnable, 190
semaphores, 111, 112
Swing

access, 144
invokeAndWait() method, 145–147
invokeLater() method, 145–147
long-running event callbacks, 147–150
restrictions, 143

Opera, 2

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

336 | Index

operating system (OS)
Linux native threads, 183
scheduling, 174
Solaris native threads, 181
Windows native threads, 179

operations, retrying, 94
optimistic synchronization, 99
ordering, statements, 84
OS (See operating system)
out of memory errors, 258
overflow errors, 257

P
parallelizable algorithms, 10
parallelization, 299
parallelizing single-threaded

programs, 269–295
patterns

double-checked locking, 86
getter/setter, 107
producer/consumer, 163–166
TCPServer class, 228

pausing threads, 25
performance, 260–262

atomic variables, 264
pools, 185–188, 265
synchronized collections, 262

permissions, 248
policies, security, 247–249
polling, 8
pools, 185–188

applying, 190–191
callable tasks/future results, 196–198
executors, 188–189
performance, 265
queues, 191–195
single-threaded access, 198
sizes, 191–195
thread creation, 195

preventing deadlock, 118–124
print() method, 295
printing

loops, 292
testing, 304

println() method, 292, 295
priority, 175

complex, 175
exceptions, 175
inversion, 175
scheduling, 176–178

priority-based scheduling, 171
private connections, 221

processing events, 95, 144
producer/consumer pattern, 163–166
programs, 3

deadlock, 120
starting, 12
tasks, 11–14

purge() method, 197

Q
queries, flags, 30
queues

collection classes, 166
lock acquisitions, 140
pools, 191–195
producer/consumer pattern, 164

R
race condition, 17, 18, 38, 39, 44–50

Swing objects, 144
wait-and-notify mechanism, 72
(see also synchronization)

random-character generators, 96, 225
RandomCharacterGenerator class, 22, 230
reachability, monitoring, 206
read() method, 7
readByte() method, 225
reader locks, 111, 116

starvation, 141
read-only variables, 278
readUTF() method, 232
reduction variables, 279

testing, 302
ReentrantLock class, 58, 117, 130

lock starvation, 140
ReentrantReadWriteLock class, 117
registered locks list, 134
registerLock() method, 130
registers, 83–84
reimplementation of loops, 286
reinitialization of barriers, 115
rejected tasks, pools, 194
RejectedExecutionException, 195
RejectedExecutionHandler interface, 195
releasing locks, 48, 140
removeActionListener() method, 210
removeCharacterListener() method, 159
removing synchronization, 92
reordering statements, 84
resetGenerator() method, 93
resetTypist() method, 93
resolution, sleep time, 26

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 337

restart() method, 211
results, pools, 196–198
resume() method, 26, 177
resuming threads, 25
retrying operations, 94
run() method, 20
Runnable interface, 14, 31–35
Runnable object, 190
runnable state, scheduling, 172
runnable targets, 18
running

applications, 22
code, 5

RWLock class, 315

S
scaling

I/O servers, 227
multiprocessor, 295–306

schedule() method, 204
scheduleAtFixedRate() method, 205
scheduledExecutionTime() method, 203,

205
ScheduledThreadPoolExecutor class, 209,

212–218
scheduling, 169–176

implementations, 178–183
loops, 274
priorities, 176–178
priority-based, 171
tasks, 201

java.util.Timer class, 203–209
javax.swing.Timer class, 209–212
ScheduledThreadPoolExecutor

class, 212–218
threads, 140

scope of locks, 42, 53–55
ScoreLabel class, 52

deadlock, 64
modifying, 53–55

searching deadlocks, 137
security, 247–249
selecting locks, 55–57
self-scheduling, 275
semaphores, 111, 112
send2stream() method, 294
serialization, multiprocessor scaling, 296
servers

connections, 221
I/O, 221–231

interrupted, 240–243
JDK 1.4, 231–240

multithreaded, 224
single-threaded NIO, 233

ServerSocket class, 240
servlets, 3
set() method, 88
setCoalesce() method, 210
setContextClassLoader() method, 251
setDaemon() method, 250
setDelay() method, 210
setDone() method, 28, 97
setInitialDelay() method, 210
setLogTimers() method, 210
setPriority() method, 176
setRejectedExecutionHandler() method, 195
setRepeats() method, 210
sets, 167
setScore() method, 47
setText() method, 150
setting

flags, 27
TimeUnit values, 56

setup time, multiprocessor scaling, 296
setupDone() method, 150
shared variables, 279, 282
sharing

access (heaps), 14
data, 14
race conditions, 44–50
thread local variables, 106–109

shutdown() method, 189
shutdownNow() method, 189
signals, 8, 27
simultaneous execution, 13
single-threaded access, pools, 198
single-threaded NIO servers, 233
single-threaded programs,

parallelizing, 269–295
sizes

pools, 191–195
stacks, 258

sleep() method, 26, 201
soft locks, 136
Solaris native threads, 181
stacks

memory, 255–259
size, 19

start() method, 24, 211
starting threads, 23
startServer() method, 223, 225
starvation, locks, 138–141
statements, reordering, 84
static method synchronization, 49

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

338 | Index

static scheduling, 274
stop() method, 25, 211
stopping threads, 27–30
stopServer() method, 223
storeback variables, 278
strings, UTF-encoded, 232
subclasses, 235
submit() method, 189
substitution, variables, 92
sumValue variable, 280
suspend() method, 26, 177
suspending threads, 25
Swing

access, 144
event-dispatching thread, 143–144
invokeAndWait() method, 145–147
invokeLater() method, 145–147
long-running event callbacks, 147–150
restrictions, 143

synchronization, xii, 81–86
accept() method, 228
atomic variables, 86–106
blocks, 85, 139

wait-and-notify mechanism, 75
classes, 112–118
collection classes, 157–163, 262
condition variables, 76–79
contended, 264
deadlock, 118–124

detection of, 124–138
explicit locking, 50–52
lock starvation, 138–141
loops, 281
multiple threads, 47
multiprocessor scaling, 296
newCharacter() method, 46
optimistic, 99
shared variables, 279
static methods, 49
terminology, 110
thread local variables, 106–109
wait-and-notify mechanism, 71–76

synchronized keyword, 17, 38–41, 123
blocks, 54

SynchronousQueue, 193
system-level threads, 179

T
tasks, 11–14

pools, 196–198
scheduling, 201

java.util.Timer class, 203–209
javax.swing.Timer class, 209–212
ScheduledThreadPoolExecutor

class, 212–218
TCPServer class, 222

patterns, 228
techniques, 283
temporary loops, 134
termination

delays, 29
threads, 25, 27–30

terminology, 2–4
testing

inner loops, 303
loops, 297, 299

printing, 304
performance, 261
reduction variables, 302

Thread class, 18–23
lifecycles, 23–27
Runnable interface, 31–35

thread-aware classes, 163
ThreadDeath class, 253, 254
ThreadLocal class, 107
Thread.MAX_PRIORITY, 176
Thread.MIN_PRIORITY, 176
Thread.NORM_PRIORITY, 176
ThreadPool class, 318
ThreadPoolExecutor class, 190
threads

cleanup, 26
creating, 14–23
creation, 265
event-dispatching, 35, 143–144
garbage collection, 12, 173, 245, 250
green, 178
interrupting, 29
lifecycles, 23–27
objects, 35–36
pausing, 25
resuming, 25
scheduling, 140
starting, 23
stopping, 27–30

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 339

suspending, 25
terminating, 25
trees, 134
use of, 6–10
wait trees, 126

threadsafe
classes, 154
unsafe collection classes, 155

throughput, pools, 186
time

java.util.Timer class, 203–209
javax.swing.Timer class, 209–212

timeouts
deadlock, 123
soft locks, 136

Timer class
ScheduledThreadPoolExecutor

class, 212–218
web sites, 206

TimerTask class, 203
TimeUnit class, 202
TimeUnit values, 56
toArray() method, 161
tools, 3

Ant, 6
Barrier class, 314
BusyFlag class, 309
CondVar class, 311
DaemonLock class, 326
JobScheduler class, 322
RWLock class, 315
ThreadPool class, 318

tracking clients, 223
transformations, loops, 283
traversing thread trees, 134
trees, 126

locks, 125, 132
threads, 134
wait, 126

tryLock() method, 56, 123

U
uncaughtException() method, 253
uncontended locks, 82
unlock() method, 50
unregisterLock() method, 130
unsafe collection classes, 155
UnsupportedOperationException, 117
unsynchronized method behavior, 49
user-defined scheduling, 277
user-level threads, 179
UTF-encoded strings, 232

utilities, xi, 3
(see also tools)

utility classes, 15–17

V
values

atomic variables, 88
data exchange, 99
floating-point, 100
sumValue variables, 280
TimeUnit, 56
variables, 83

variables
atomic, 86–106

bulk data modification, 103
data exchange, 99
notification, 95
performance, 264

classifications, 277
condition, 76–79, 111

deadlock, 133
event, 111
loop-private, 277
priorities, 176–178
read-only, 278
reduction, 279

testing, 302
shared, 279, 282
storeback, 278
substitution, 92
sumValue, 280
thread local, 106–109
values, 83
volatile, 89
volatile keyword, 42

Vector class, 161
versions, 3
virtual machine, 2

deadlock detection, 120
exceptions, 252–255
executing, 13
groups, 245–247
multiprocessor scaling, 296
scheduling, 169–176

implementations, 178–183
priorities, 176–178

void notify() method, 69
void wait() method, 69
volatile keyword, 28, 41–43, 67, 82, 84
volatile variables, 89

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

340 | Index

W
wait() method, 71, 202
wait trees, 126
wait-and-notify mechanism, 69

synchronization, 71–76
waiting areas, 68–71

weakCompareAndSet() method, 88
webs sites, Timer class, 206
WELCOME message, 224
Windows, native threads, 179
writer locks, 111, 116

starvation, 141

About the Authors
Scott Oaks is a senior software engineer for the Java Performance Engineering group
at Sun Microsystems. He has worked for Sun since 1987, specializing in many
disparate technologies, from the SunOS™ software kernel to network programming
and RPCs to the X Window System to threading.

He is the author of four books in the O’Reilly Java Series: Java Security, Java
Threads, Jini in a Nutshell (also with Henry Wong), and JXTA in a Nutshell. Around
the Internet, Mr. Oaks is best known as the author of olvwm, the OPEN LOOK
window manager. He holds a B.S. in mathematics and computer science from the
University of Denver and an M.S. in computer science from Brown University. Prior
to joining Sun, he worked in the research division of Bear, Stearns.

In his other life, Scott enjoys music (he plays flute and piccolo with community
bands in New York), cooking, theatre, and traveling with his husband, James.

Henry Wong is an independent consultant involved in various Java-related projects.
He previously worked as a computer engineer at Sun Microsystems from 1989 to
2003. Originally hired as a consultant to help customers with special device drivers,
kernel modifications, and DOS interoperability products, Henry has also worked on
Solaris ports, performance-tuning projects, and multithreaded design and implemen-
tations for benchmarks and demos. Since early 1995, Henry has been involved in
developing Java prototypes and supporting customers who are using Java.

In 1986, Henry joined a small software company working on SCSI device drivers,
image and audio data compression, and graphics tools used for a medical informa-
tion system. He earned a B.S. in chemical engineering from The Cooper Union in
1987.

When not in front of a computer, Henry is an instrument-rated private pilot who
also enjoys archery, cooking, scuba diving, and traveling to different places with his
wife, Nini.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Java Threads, Third Edition is a marine invertebrate.
Invertebrates, or animals without backbones, make up over 97 percent of all animal
species on the planet. Marine invertebrates are abundant in every ocean, and include
such diverse species as crabs, sea cucumbers, jellyfish, starfish, urchins, anemones,
and shrimps. One of the most intelligent animals in the sea, the octopus, is also an
invertebrate.

Many invertebrates have protective shells to shield them from hungry, razor-toothed
predators. You may think that invertebrates without shells would be particularly
vulnerable, but many have developed some effective defenses. Sea anemones bran-
dish tentacles that sting their enemies, urchins have sharp spikes that cover their
entire bodies, and sea slugs just don’t taste very good.

Though you may not realize it, marine invertebrates are quite beneficial to humans.
For one, they constitute a huge food source. Shrimps, crabs, octopuses, clams,
oysters, squids, lobsters, scallops, and crayfish are all tasty delicacies. Invertebrates
are also nature’s vacuum cleaners, taking in dead and discarded material and recy-
cling it through the food chain. And after millions of years, the bodies of
invertebrates settle on the sea floor and form oil deposits, a major source of the
world’s energy.

Matt Hutchinson was the production editor for Java Threads, Third Edition. Octal
Publishing, Inc. provided production services. Sarah Sherman, Marlowe Shaeffer,
and Claire Cloutier provided quality control.

Emma Colby designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial
Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe’s ITC Garamond font.

David Futato designed the interior layout. This book was converted by Joe Wizda to
FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIn-
tosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font
is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont’s TheSans Mono Condensed. The illustrations that appear in the book
were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand
9 and Adobe Photoshop 6. This colophon was written by Matt Hutchinson.

	Table of Contents
	Preface
	Who Should Read This Book?
	Versions Used in This Book
	What’s New in This Edition?
	Organization of This Book
	Conventions Used in This Book
	Code Examples
	How to Contact Us
	Safari Enabled
	Acknowledgments

	Introduction to Threads
	Java Terms
	Java Versions, Tools, and Code

	About the Examples
	Compiling and Running the Examples

	Why Threads?
	Nonblocking I/O
	Alarms and Timers
	Independent Tasks
	Parallelizable Algorithms

	Summary

	Thread Creation and Management
	What Is a Thread?
	Creating a Thread
	The Example Architecture
	The Thread Class

	The Lifecycle of a Thread
	Creating a Thread
	Starting a Thread
	Terminating a Thread
	Pausing, Suspending, and Resuming Threads
	Thread Cleanup

	Two Approaches to Stopping a Thread
	Setting a Flag
	Interrupting a Thread

	The Runnable Interface
	Threads and Objects
	Determining the Current Thread

	Summary
	Example Classes

	Data Synchronization
	The Synchronized Keyword
	The Volatile Keyword
	More on Race Conditions
	Explicit Locking
	Lock Scope
	Synchronized Blocks

	Choosing a Locking Mechanism
	The Lock Interface

	Nested Locks
	Deadlock
	Lock Fairness
	Summary
	Example Classes

	Thread Notification
	Wait and Notify
	The Wait-and-Notify Mechanism and Synchronization
	wait(��), notify(��), and notifyAll(��)
	Wait-and-Notify Mechanism with Synchronized Blocks

	Condition Variables
	Summary
	Example Classes

	Minimal Synchronization Techniques
	Can You Avoid Synchronization?
	The Effect of Registers
	The Effect of Reordering Statements
	Double-Checked Locking

	Atomic Variables
	Overview of the Atomic Classes
	Using the Atomic Classes
	Variable substitution
	Changing algorithms
	Retrying operations

	Notifications and Atomic Variables
	Summary of Atomic Variable Usage
	Data exchange
	Compare and set
	Advanced atomic data types
	Bulk data modification

	Thread Local Variables
	Inheritable Thread Local Variables

	Summary
	Example Classes

	Advanced Synchronization Topics
	Synchronization Terms
	Synchronization Classes Added in J2SE 5.0
	Semaphore
	Barrier
	Countdown Latch
	Exchanger
	Reader/Writer Locks

	Preventing Deadlock
	Deadlock and Automatic Lock Releases
	Preventing Deadlock with Timeouts

	Deadlock Detection
	Lock Starvation
	Lock Starvation and Reader/Writer Locks

	Summary
	Example Classes

	Threads and Swing
	Swing Threading Restrictions
	Processing on the Event-Dispatching Thread
	Using invokeLater(��) and invokeAndWait(��)
	Long-Running Event Callbacks
	Summary
	Example Classes

	Threads and Collection Classes
	Overview of Collection Classes
	Collection Interfaces
	Threadsafe Collection Classes
	Thread-Unsafe Collection Classes
	Thread-Notification Collection Classes

	Synchronization and Collection Classes
	Simple Synchronization
	Complex Synchronization
	Iterators and Enumerations
	Thread-Aware Classes

	The Producer/Consumer Pattern
	Using the Collection Classes
	Summary
	Example Classes

	Thread Scheduling
	An Overview of Thread Scheduling
	Priority-Based Scheduling
	The Scheduling Process
	Priority Exceptions
	Priority inversion
	Complex priorities

	Scheduling with Thread Priorities
	Other Thread-Scheduling Methods

	Popular Threading Implementations
	Green Threads
	Windows Native Threads
	Solaris Native Threads
	Linux Native Threads

	Summary
	Example Classes

	Thread Pools
	Why Thread Pools?
	Thread Pools and Throughput
	Why Not Thread Pools?

	Executors
	Using a Thread Pool
	Queues and Sizes
	Rejected Tasks

	Thread Creation
	Callable Tasks and Future Results
	The FutureTask Class

	Single-Threaded Access
	Summary
	Example Classes

	Task Scheduling
	Overview of Task Scheduling
	The java.util.Timer Class
	Using the Timer

	The javax.swing.Timer Class
	Using the javax.swing.Timer Class

	The ScheduledThreadPoolExecutor Class
	Using the ScheduledThreadPoolExecutor Class
	Using the Future Interface

	Summary
	Example Classes

	Threads and I/O
	A Traditional I/O Server
	An Example Multithreaded Server
	Using the multithreaded server

	Scaling Using Traditional I/O

	A New I/O Server
	Nonblocking I/O
	A Single-Threaded NIO Server
	A Multithreaded New I/O Server

	Interrupted I/O
	Summary
	Example Classes

	Miscellaneous Thread Topics
	Thread Groups
	Threads and Java Security
	Daemon Threads
	Threads and Class Loading
	Threads and Exception Handling
	The ThreadDeath Class

	Threads, Stacks, and Memory Usage
	Stack Overflow Errors
	Out of Memory Errors
	Specifying Stack Sizes
	Stack APIs

	Summary
	Example Classes

	Thread Performance
	Overview of Performance
	Measuring Java Performance

	Synchronized Collections
	Atomic Variables and Contended Synchronization
	The ConcurrentHashMap Class

	Thread Creation and Thread Pools
	Summary
	Example Classes

	Parallelizing Loops for Multiprocessor Machines
	Parallelizing a Single-Threaded Program
	Loop Scheduling and Load Balancing
	Static or chunk scheduling
	Self-scheduling
	Guided self-scheduling
	User-defined scheduling

	Variable Classifications
	Loop-private variables
	Read-only variables
	Storeback variables
	Reduction variables
	Shared variables

	Loop Analysis and Transformations
	Loop distribution
	Loop isolation
	Loop interchange
	Loop reimplementation

	Inner-Loop Threading
	Loop Printing

	Multiprocessor Scaling
	A Simple Loop Test
	A Reduction Variable Test
	A Small Inner-Loop Test
	A Printing Test

	Summary
	Example Classes

	Superseded Threading Utilities
	The BusyFlag Class
	The CondVar Class
	The Barrier Class
	The RWLock Class
	The ThreadPool Class
	The JobScheduler Class
	The DaemonLock Class

	Summary

	Index

