
Simon St. Laurent & J. David Eisenberg

 Introducing

 Elixir
GETTING STARTED IN FUNCTIONAL PROGRAMMING

2nd Edition

Covers Version 1.4

Simon St.Laurent and J. David Eisenberg

Introducing Elixir
Getting Started in Functional Programming

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95677-9

[LSI]

Introducing Elixir
by Simon St.Laurent and J. David Eisenberg

Copyright © 2017 Simon St.Laurent and J. David Eisenberg. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Heather Scherer and Susan Conant
Production Editor: Kristen Brown
Copyeditor: Rachel Head
Proofreader: Amanda Kersey

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

September 2014: First Edition
January 2017: Second Edition

Revision History for the Second Edition
2016-12-22: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491956779 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Introducing Elixir, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491956779

Table of Contents

Preface. ix

1. Getting Comfortable. 1
Installation 1

Installing Erlang 1
Installing Elixir 2

Firing It Up 2
First Steps 3

Moving Through Text and History 4
Moving Through Files 5

Doing Something 5
Calling Functions 6
Numbers in Elixir 7
Working with Variables in the Shell 9

2. Functions and Modules. 11
Fun with fn 11
And the & 13
Defining Modules 13
From Module to Free-Floating Function 17
Splitting Code Across Modules 17
Combining Functions with the Pipe Operator 19
Importing Functions 20
Default Values for Arguments 21
Documenting Code 22

Documenting Functions 23
Documenting Modules 25

iii

3. Atoms, Tuples, and Pattern Matching. 27
Atoms 27
Pattern Matching with Atoms 27
Atomic Booleans 29
Guards 30
Underscoring That You Don’t Care 33
Adding Structure: Tuples 35

Pattern Matching with Tuples 36
Processing Tuples 37

4. Logic and Recursion. 39
Logic Inside of Functions 39

Evaluating Cases 39
Adjusting to Conditions 42
if, or else 43
Variable Assignment in case and if Constructs 45

The Gentlest Side Effect: IO.puts 46
Simple Recursion 47

Counting Down 47
Counting Up 49
Recursing with Return Values 50

5. Communicating with Humans. 55
Strings 55
Multiline Strings 58
Unicode 58
Character Lists 58
String Sigils 59
Asking Users for Information 60

Gathering Characters 60
Reading Lines of Text 62

6. Lists. 67
List Basics 67
Splitting Lists into Heads and Tails 69
Processing List Content 70
Creating Lists with Heads and Tails 72
Mixing Lists and Tuples 74
Building a List of Lists 74

7. Name-Value Pairs. 79
Keyword Lists 79

iv | Table of Contents

Lists of Tuples with Multiple Keys 81
Hash Dictionaries 82
From Lists to Maps 83

Creating Maps 83
Updating Maps 84
Reading Maps 84

From Maps to Structs 84
Setting Up Structs 85
Creating and Reading Structs 85
Pattern Matching Against Structs 86
Using Structs in Functions 86
Adding Behavior to Structs 89
Adding to Existing Protocols 90

8. Higher-Order Functions and List Comprehensions. 93
Simple Higher-Order Functions 93
Creating New Lists with Higher-Order Functions 95

Reporting on a List 96
Running List Values Through a Function 96
Filtering List Values 97

Beyond List Comprehensions 98
Testing Lists 98
Splitting Lists 99
Folding Lists 100

9. Playing with Processes. 103
The Shell Is a Process 103
Spawning Processes from Modules 105
Lightweight Processes 108
Registering a Process 109
When Processes Break 110
Processes Talking Amongst Themselves 111
Watching Your Processes 114

Watching Messages Among Processes 115
Breaking Things and Linking Processes 117

10. Exceptions, Errors, and Debugging. 125
Flavors of Errors 125
Rescuing Code from Runtime Errors as They Happen 126
Logging Progress and Failure 128
Tracing Messages 129
Watching Function Calls 131

Table of Contents | v

11. Static Analysis, Typespecs, and Testing. 133
Static Analysis 133
Typespecs 135
Writing Unit Tests 138
Setting Up Tests 141
Embedding Tests in Documentation 142

12. Storing Structured Data. 145
Records: Structured Data Before Structs 145

Setting Up Records 146
Creating and Reading Records 147
Using Records in Functions 148

Storing Data in Erlang Term Storage 151
Creating and Populating a Table 152
Simple Queries 157
Overwriting Values 158
ETS Tables and Processes 158
Next Steps 160

Storing Records in Mnesia 161
Starting Up Mnesia 161
Creating Tables 162
Reading Data 166

13. Getting Started with OTP. 169
Creating Services with GenServer 170
A Simple Supervisor 175
Packaging an Application with Mix 178

14. Using Macros to Extend Elixir. 183
Functions Versus Macros 183
A Simple Macro 184
Creating New Logic 186
Creating Functions Programatically 187
When (Not) to Use Macros 189

15. Using Phoenix. 191
Skeleton Installation 191
Structuring a Basic Phoenix Application 194
Presenting a Page 194

Routing 195
A Simple Controller 197
A Simple View 198

vi | Table of Contents

Calculating 200
Sharing the Gospel of Elixir 206

A. An Elixir Parts Catalog. 209

B. Generating Documentation with ExDoc. 217

Index. 221

Table of Contents | vii

Preface

Elixir offers developers the functional power and concurrent resilience of Erlang,
with friendlier syntax, libraries, and metaprogramming. Elixir compiles to Erlang
byte code, and you can mix and match it with Erlang and Erlang tools. Despite a
shared foundation, however, Elixir feels very different: perhaps more similar to Ruby
than to Erlang’s ancestor Prolog.

Introducing Elixir will give you a gentle guide to this powerful language.

This release of Introducing Elixir covers version 1.3. We will update
it as the language evolves. If you find mistakes or things that have
broken, please let us know through the errata system.

Who This Book Is For
This book is mostly for people who’ve been programming in other languages but
want to look around. Maybe you’re being very practical, and a distributed model,
with its resulting scale and resilience advantages, appeals to you. Maybe you want to
see what this “functional programming” stuff is all about. Or maybe you’re just going
for a hike, taking your mind to a new place.

We suspect that functional programming is more approachable before you’ve learned
to program in other paradigms. However, getting started in Elixir—sometimes even
just installing it—requires a fair amount of computing skill. If you’re a complete new‐
comer to programming, welcome, but there will be a few challenges along the way.

ix

http://bit.ly/elixir-2e-errata

Who This Book Is Not For
This book is not for people in a hurry to get things done.

If you already know Elixir, you don’t likely need this book unless you’re looking for a
slow brush-up.

If you already know Erlang, this book will give you an opportunity to see how things
are different, but odds are good that you understand the key structures.

If you’re already familiar with functional languages, you may find the pacing of this
gentle introduction hopelessly slow. Definitely feel welcome to jump to another book
or online documentation that moves faster if you get bored.

What This Book Will Do For You
You’ll learn to write simple Elixir programs. You’ll understand why Elixir makes it
easier to build resilient programs that can scale up and down with ease. You’ll be able
to read other Elixir resources that assume a fair amount of experience and make sense
of them.

In more theoretical terms, you’ll get to know functional programming. You’ll learn
how to design programs around message passing and recursion, creating process-
oriented programs focused more on data flow.

Most importantly, the gates to concurrent application development will be opened.
Though this introduction only gets you started using the incredible powers of the
Open Telecom Platform (OTP), that foundation can take you to amazing places.
Once you’ve mastered the syntax and learned about Elixir’s expectations for structur‐
ing programs, your next steps should be creating reliable and scalable applications—
with much less effort than you would have needed with other approaches!

How This Book Works
This book tries to tell a story with Elixir. You’ll probably get the most out of it if you
read it in order at least the first time, though you’re always welcome to come back to
find whatever bits and pieces you need.

You’ll start by getting Elixir installed and running, and looking around its shell, IEx.
You’ll spend a lot of time in that shell, so get cozy. Next, you’ll start loading code into
the shell to make it easier to write programs, and you’ll learn how to call that code
and mix it up.

You’ll take a close look at numbers, because they’re an easy place to get familiar with
Elixir’s basic structures. Then you’ll learn about atoms, pattern matching, and guards

x | Preface

—the likely foundations of your program structure. After that you’ll learn about
strings, lists, and the recursion at the heart of much Elixir processing. Once you’ve
gone a few thousand recursions down and back, it’ll be time to look at processes, a
key part of Elixir that relies on the message-passing model to support concurrency
and resilience.

Once you have the foundation set, you can take a closer look at debugging and data
storage, and then have a quick look at a toolset that is likely at the heart of your long-
term development with Elixir: Erlang’s Open Telecom Platform, which is about much
much more than telephones.

Finally, you’ll learn about Elixir’s macro tools, features that give Elixir tremendous
flexibility by letting you extend the language.

Some people want to learn programming languages through a dictionary, smashing
together a list of operators, control structures, and datatypes. Those lists are here, but
they’re in Appendix A, not the main flow of the book.

The main point you should get from this book is that you can program in Elixir. If
you don’t get that, let us know!

Other Resources
This book may not be the best way for you to learn Elixir. It all depends on what you
want to learn and why. If you’re looking for a faster-flying introduction to the lan‐
guage, Programming Elixir (Pragmatic Publishers) jumps in more quickly and empha‐
sizes Elixir’s uniqueness more frequently. Elixir in Action (Manning) and The Little
Elixir & OTP Guidebook (Manning) are similarly faster and deeper. Metaprogramming
Elixir (Pragmatic Publishers) explores a key corner, and Programming Phoenix (Prag‐
matic Publishers) dives into a powerful Elixir-based framework.

If you like the pace of this book and want to try out your new knowledge, you might
like Études for Elixir (O’Reilly). That book provides descriptions of short programs
that you can write in Elixir, and they may ask you to stretch a bit beyond the exam‐
ples you find here. It is also designed so that its chapters are in parallel with this
book’s chapters.

The other books in the field all cover Erlang, not Elixir. Hopefully there will be more
Elixir-specific work soon. The main Elixir website includes a lot of tutorials, docu‐
mentation, and links to other resources.

If your primary interest in learning Elixir is to break out of a programming rut, you
should check out Bruce Tate’s wild tour of Seven Languages in Seven Weeks (Prag‐
matic Publishers), which explores Ruby, Io, Prolog, Scala, Erlang, Clojure, and Has‐
kell. Erlang gets only (an excellent) 37 pages, but that might be what you want.

Preface | xi

http://bit.ly/etudesForElixir
http://www.elixir-lang.org/

Erlang books can also help you understand what makes Elixir work so well.

For a simple introduction to Erlang that largely parallels this book, Introducing Erlang
(O’Reilly) will get you started with Erlang and functional programming.

For an online experience (now also in print from No Starch Books) with more snark
and funnier illustrations, you should explore Learn You Some Erlang for Great Good!

The two classic general books on Erlang are the similarly titled Programming Erlang
(Pragmatic Publishers) and Erlang Programming (O’Reilly). They cover a lot of simi‐
lar and overlapping terrain, and both may be good places to start if this book moves
too slowly or you need more reference material. Erlang Programming goes further
into what you can do with Erlang, whereas Programming Erlang provides a lot of
detail on setting up an Erlang programming environment.

On the more advanced side, Erlang and OTP in Action (Manning) opens with a high-
speed 72-page introduction to Erlang and then spends most of its time applying the
Open Telecom Platform, Erlang’s framework for building upgradeable and maintain‐
able concurrent applications. Designing for Scalability with Erlang/OTP (O’Reilly)
explores how OTP and Erlang make things that seem hugely difficult in other envi‐
ronments a normal day’s work in Erlang.

You’ll also want to visit the main Erlang website for updates, downloads, documenta‐
tion, and more.

Elixir Will Change You
Before you go deeper, you should know that working in Elixir may irrevocably
change the way you look at programs. Its combination of functional code, process
orientation, and distributed development may seem alien at first. However, once it
sinks in, Elixir can transform the way you solve problems (perhaps even beyond the
way Erlang does) and potentially make it difficult to return to other languages, envi‐
ronments, and programming cultures.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, statements, and keywords.

xii | Preface

http://shop.oreilly.com/product/0636920025818.do
http://learnyousomeerlang.com/
http://bit.ly/erlang-prog
http://shop.oreilly.com/product/0636920024149.do
http://www.erlang.org/

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
The examples in this book are meant to teach basic concepts in small bites, making it
easy to see what changed from one example to another. While you may certainly bor‐
row code and reuse it as you see fit, you won’t be able to take the code of this book
and build a stupendous application instantly (unless perhaps you have an unusual
fondness for calculating the speeds of falling objects). You should, however, be able to
figure out the steps you need to take to build a great application.

You can download the code from GitHub. (It will also be available from the Examples
link on the book’s catalog page.)

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you are reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Introducing Elixir, Second Edition,
by Simon St.Laurent and J. David Eisenberg (O’Reilly). Copyright 2017 Simon St.Lau‐
rent and J. David Eisenberg, 978-1-491-95677-9.”

Preface | xiii

https://github.com/simonstl/introducing-elixir
http://bit.ly/introducing_elixir_2e

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Help This Book Grow
While we hope that you will enjoy reading this book and learn from it, we also hope
that you can contribute to helping other readers learn Elixir here. You can help your
fellow readers in a number of ways:

• If you find specific technical problems, bad explanations, or things that can be
improved, please report them through the errata system.

• If you like (or don’t like) the book, please leave reviews. The most visible places to
do so are on Amazon.com (or its international sites) and at the O’Reilly page for
the book. Detailed explanations of what worked and what didn’t work for you
(and the broader target audience of programmers new to Erlang) are helpful to
other readers and to me.

• If you find you have much more you want to say about Elixir, please consider
sharing it, whether on the web, in a book of your own, in training classes, or in
whatever form you find easiest.

We’ll update the book for errata and try to address issues raised in reviews. Even once
the book is “complete,” we may still add some extra pieces to it. If you purchased it as
an ebook, you’ll receive these updates for free, at least up to the point where it’s time
for a whole new edition. We don’t expect that new edition declaration to come
quickly, however, unless the Elixir world changes substantially.

Hopefully this book will engage you enough to make you consider sharing.

Please Use It For Good
We’ll let you determine what “good” means, but think about it. Please try to use Elix‐
ir’s power for projects that make the world a better place, or at least not a worse place.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐

xiv | Preface

mailto:permissions@oreilly.com
http://bit.ly/elixir-2e-errata
http://bit.ly/introducing_elixir_2e
http://bit.ly/introducing_elixir_2e
http://oreilly.com/safari

sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/introducing_elixir_2e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
The Elixir community is amazing, open to questions and suggestions from a wide
range of perspectives. We’ve been lucky to be able to ask questions and get them
answered, and have enjoyed a rare community that treats “difficult to explain” as a
problem worth fixing in code.

José Valim’s leadership and explanations have helped us throughout the project. Our
competitor Dave Thomas confirmed that yes, Elixir is here and the world is waiting
for it. From the Erlang side, Francesco Cesarini encouraged us to pursue this new
language sibling. Reviewers Andrea Leopardi, Matt Mills, Bibek Pandey, Alexei
Sholik, David Lorenzetti, Bengt Kleberg, Mistral Contrastin, Augie De Blieck Jr., Arie
van Wingerden, Elias Carrillo, and Nicholas helped us find the errors of our ways.

Preface | xv

http://www.oreilly.com/safari
http://bit.ly/introducing_elixir_2e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Meghan Blanchette kept the first edition on track, and Maureen Spencer and Heather
Scherer kept us honest on the second.

Also, J. David Eisenberg’s commitment to the project saved Simon St.Laurent
repeatedly!

Thanks also to Simon, who made David’s first experience as a coauthor a pleasant
one.

xvi | Preface

CHAPTER 1

Getting Comfortable

The easiest place to start learning Elixir is in Interactive Elixir, IEx. This command-
line interface is a cozy place to get started and a good place to start figuring out what
works and what doesn’t work in Elixir. Its features will spare you headaches later, so
settle in!

Installation
Because Elixir runs on top of Erlang, you’ll need to install Erlang on your system first,
and then install Elixir.

Installing Erlang
If you’re on Windows, installing Erlang is easy. Download the Windows binary file,
run the installer, and you’re set. If you are a brave beginner tackling your first pro‐
gramming language, this is easily your best bet.

On Linux or macOS, you may be able to download the source file and compile it. On
macOS you should be able to unzip and untar it and then, from the directory created
by the untarring, run ./configure, make, and sudo make install. However, that
simple sequence works only if you have the right files installed, and it can give you
mysterious errors if they aren’t. In particular, Apple’s shift to the LLVM compiler in
newer versions of XCode instead of GCC makes it less likely that GCC will be on
newer macOS systems, and Erlang needs GCC.

You can ignore the error about FOP, which Erlang uses to generate PDF documenta‐
tion you can download elsewhere. Also, on newer Macs, you’ll get an error at the end
that wxWidgets doesn’t work on 64-bit macOS. For now, ignore this too.

1

http://www.erlang.org/download.html

If the compilation approach doesn’t work or isn’t for you, Erlang Solutions offers a
number of installs. Also, many different package managers (Debian, Ubuntu, Mac‐
Ports, Homebrew, and so on) include Erlang. It may not be the very latest version, but
having Erlang running is much better than not having Erlang running. They do tend
to make it run on the latest version of various operating systems, so if you have instal‐
lation problems, look closely at their requirements.

Erlang is increasingly part of the default installation on many sys‐
tems, including Ubuntu, largely thanks to the spread of CouchDB.

Installing Elixir
Once you have Erlang installed, you should be able to download a precompiled ver‐
sion of Elixir or the GitHub source. Some package managers are starting to support
Elixir, including Homebrew. The code in this book should work with Elixir 1.3.0.

Then you need to set your path so that it can find elixir/bin.

Elixir’s instructions for setup are organized into a tutorial.

Firing It Up
Go to the command line (or shell, or terminal) and type mix new first_app. This
will invoke Elixir’s Mix tool, which “provides tasks for creating, compiling, and test‐
ing Elixir projects, managing its dependencies, and more.” In this case, the command
you type creates a new, empty project in a directory named first_app:

$ mix new first_app
* creating README.md
* creating .gitignore
* creating mix.exs
* creating config
* creating config/config.exs
* creating lib
* creating lib/first_app.ex
* creating test
* creating test/test_helper.exs
* creating test/first_app_test.exs

Your Mix project was created successfully.
You can use "mix" to compile it, test it, and more:

 cd first_app
 mix test

2 | Chapter 1: Getting Comfortable

http://bit.ly/2gPCe6H
http://bit.ly/1lbMOnw
http://bit.ly/1lbMOnw
http://bit.ly/elixir-lang
http://bit.ly/elixir-install
http://bit.ly/2gKi01D

Run "mix help" for more commands.

$

Make sure that the directory containing the Elixir executable is in
your $PATH variable so that Mix can find it.

Rather than compiling and testing the empty project, go into the first_app directory
and start the IEx shell with these commands:

$ cd first_app
$ iex -S mix

You’ll see something like the following code sample, likely with a cursor next to the
iex(1)> prompt. Note that where necessary in the book, some of the longer lines
have been reformatted to fit on the page:

$ cd first_app
[david@localhost first_app]$ iex -S mix
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe]
 [kernel-poll:false]

Compiling 1 file (.ex)
Generated first_app app
Interactive Elixir (1.3.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

You’re in Elixir! (The first line about Erlang reflects that Elixir runs within Erlang.
Don’t worry about that part!)

First Steps
Before moving on to the excitement of programming Elixir, it’s always worth noting
how to quit. The shell suggests Ctrl+C, which will bring you to a menu. If you press
“a” in that menu, IEx will stop, and you’ll see whatever prompt you had before start‐
ing IEx:

iex(1)>
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
 (v)ersion (k)ill (D)b-tables (d)istribution
a
$

You can also ask iex (once you start it up again) for help, by entering h() or just h:

First Steps | 3

iex(1)> h()
IEx.Helpers

 IEx.Helpers

Welcome to Interactive Elixir. You are currently seeing the documentation for
the module IEx.Helpers which provides many helpers to make Elixir's shell more
joyful to work with.

This message was triggered by invoking the helper h(), usually referred to as
h/0 (since it expects 0 arguments).

You can use the h function to invoke the documentation for any Elixir module or
function:

┃ h Enum
┃ h Enum.map
┃ h Enum.reverse/1

You can also use the i function to introspect any value you have in the shell:

┃ i "hello"

There are many other helpers available:
...
:ok

So what have you done here? You’ve issued an iex command, calling a helper func‐
tion, h(), that provides you with some basic help information. It printed a lot of
information to the screen and then ended, returning :ok.

Moving Through Text and History
If you explore the shell, you’ll find that many things work the way they do in other
shells, or in Emacs. The left and right arrow keys move you backward and forward
through the line you’re editing. Some of the key bindings echo those of the Emacs
text editor. Ctrl+A will take you to the beginning of a line, while Ctrl+E will take you
back to the end of the line. If you get two characters in the wrong sequence, pressing
Ctrl+T will transpose them.

Also, as you type a closing parenthesis, square bracket, or curly brace, the cursor will
highlight the corresponding opening parenthesis, square bracket, or curly brace.

The up and down arrow keys run through the command history, making it easy to
reissue commands. You can reference a given result value with v(N), where N is the
line number.

4 | Chapter 1: Getting Comfortable

Moving Through Files
IEx does understand filesystems to some extent, because you may need to move
through them to reach the files that will become part of your program. The com‐
mands have the same names as Unix commands but are expressed as functions. IEx
starts wherever you opened the shell, and you can figure out where that is with pwd():

iex(1)> pwd()
/Users/elixir/code/first_app
:ok

To change directories, use the cd() function, but you’ll need to wrap the argument in
double quotes:

iex(2)> cd ".."
/Users/elixir/code
:ok
iex(3)> cd "first_app"
/Users/elixir/code/first_app
:ok

You can look around with the ls() command, which will list files in the current
directory if you give it no arguments, and list files in the specified directory if you
give it an argument.

Doing Something
One of the easiest ways to get started playing with Elixir is to use the shell as a calcu‐
lator. Unlike with your typical command line, you can enter mathematical expres‐
sions and get useful results:

iex(1)> 2 + 2
4
iex(2)> 27 - 14
13
iex(3)> 35 * 42023943
1470838005
iex(4)> 4 * (3 + 5)
32
iex(5)> 200 / 15
13.333333333333334

The first three operators are addition (+), subtraction (-), and multiplication (*),
which work the same way whether you’re working with integer values or floating
points. Parentheses let you modify the order in which operators are processed, as
shown on line 4. (The normal order of operations is listed in Appendix A.) The
fourth operator, /, supports division where you expect a floating-point result (a num‐
ber with a decimal part), as shown on line 5. You don’t have to put spaces around
operators, but it can make your code more readable.

Doing Something | 5

Calling Functions
Functions are bits of logic that accept arguments and return a value. Mathematical
functions are an easy place to start. For example, if you want an integer result (and
have integer arguments), use the div() function instead of the / operator, with rem()
to get the remainder, as shown on lines 6 and 7:

iex(6)> div(200,15)
13
iex(7)> rem(200, 15)
5
iex(8)> rem 200, 15
5

Line 8 demonstrates a feature of Elixir syntax: parentheses around
the arguments to a function are optional. If you think they make
your code clearer, use them. If you think they are just extra typing,
don’t.
Elixir will interpret a space after the function name as the equiva‐
lent of the opening of a set of parentheses, with the parentheses
assumed to close at the end of the line. When this produces unex‐
pected results, Elixir may ask in an error message that you “do not
insert spaces in between the function name and the opening paren‐
theses.”

Elixir will accept integers in place of floats, but floats are not always welcome where
integers are used. If you need to convert a floating-point number to an integer, you
can use the round() built-in function:

iex(9)> round 200/15
13

The round() function drops the decimal part of the number. If the decimal part was
greater than or equal to .5, it increases the integer part by 1, rounding up. If you’d
rather just drop the decimal part completely to get the integer part, use the trunc()
function.

You can also refer to a previous result by its line number using v(). For example:

iex(10)> 4*v(9)
52

The result on line 9 was 13, and 4*13 is 52.

6 | Chapter 1: Getting Comfortable

If you’re feeling adventurous, you can use negative numbers to ref‐
erence prior results. v(-1) is the previous result, v(-2) is the result
before that, and so on.

If you want to do more powerful calculations, Elixir lets you use Erlang’s math mod‐
ule, which offers pretty much the classic set of functions supported by a scientific cal‐
culator. These functions return floating-point values. The constant pi is available as a
function, :math.pi(). Trigonometric, logarithmic, exponential, square root, and
(except on Windows) even the Gauss error functions are readily available. (The trigo‐
nometric functions take their arguments in radians, not degrees, so be ready to con‐
vert if necessary.) Using these functions is a little verbose because of the need to
prefix them with :math., but it’s still reasonably sane.

For example, to get the sine of zero radians, you could write:

iex(11)> :math.sin(0)
0.0

Note that the result is 0.0, not just 0, indicating that the number is floating point.
(And yes, you could have written :math.sin 0 without the parentheses.)

To calculate the cosine of pi and 2pi radians, you’d write:

iex(12)> :math.cos(:math.pi())
-1.0
iex(13)> :math.cos(2 * :math.pi())
1.0

To calculate 2 taken to the 16th power, you’d use:

iex(14)> :math.pow(2,16)
65536.0

The full set of mathematical functions supported by Erlang’s math module and acces‐
sible through Elixir is listed in Appendix A.

Numbers in Elixir
Elixir recognizes two kinds of numbers: integers and floating-point numbers (often
called floats). It’s easy to think of integers as “whole numbers,” with no decimal point,
and floats as “decimal numbers,” with a decimal point and some value to the right of
the decimal. 1 is an integer, while 1.0 is a floating-point number.

However, it’s a little trickier than that. Elixir stores integers and floats in a very differ‐
ent way. Elixir lets you store massive integers, but whether they’re big or small, they
are always precise. You don’t need to worry about their values being off by just a little.

Numbers in Elixir | 7

Floats, on the other hand, cover a wide range of numbers but with limited precision.
Elixir uses the 64-bit IEEE 754-1985 “double precision” representation. This means
that it keeps track of about 15 decimal digits, plus an exponent. It can also represent
some large numbers—powers up to positive or negative 308 are available—but
because it tracks only a limited number of digits, results will vary a little more than
may seem convenient, especially when you want to do comparisons:

iex(1)> 3487598347598347598437583475893475843749245.0
3.4875983475983474e42
iex(2)> 2343243.345435893850234543339545
2343243.3454358936
iex(3)> 0.0000000000000000000000000000023432432432432234232324
2.3432432432432235e-30

As you can see, some digits get left behind, and the overall magnitude of the number
is represented with an exponent.

When you enter floating-point numbers, you must always also have at least one num‐
ber to the left of the decimal point, even if it’s zero. Otherwise, Elixir reports a syntax
error—it doesn’t understand what you’re doing:

iex(4)> .0000000000000000000000000000023432432432432234232324
** (SyntaxError) iex:4: syntax error before: '.'

You can also write floats using the digits-plus-exponent notation:

iex(4)> 2.923e127
2.923e127
iex(5)> 7.6345435e-231
7.6345435e-231

Floats’ lack of precision can cause anomalous results. For example, the sine of zero is
zero, and the sine of pi is also zero. However, if you calculate this in Elixir, you won’t
quite get to zero with the float approximation Elixir provides for pi:

iex(6)> :math.sin(0)
0.0
iex(7)> :math.sin(:math.pi())
1.2246467991473532e-16

If Elixir’s representation of pi went further, and its calculations of pi went further, the
result for line 7 would be closer to zero.

If you need to keep track of money, integers are going to be a better bet. Use the
smallest available unit—cents for US dollars, for instance—and remember that those
cents are 1/100 of a dollar. (Financial transactions can go to much smaller fractions,
but you’ll still want to represent them as integers with a known multiplier.) For more
complex calculations, though, you’ll want to use floats, and just be aware that results
will be imprecise.

8 | Chapter 1: Getting Comfortable

Elixir supports integers in a few bases other than 10. For example, if you wanted to
specify the binary value of 1010111, you could write:

iex(8)> 0b01010111
87

Elixir reports back with the base-10 value of the number. Similarly, you can specify
hexadecimal (base-16) numbers by using x instead of b:

iex(9)> 0xcafe
51966

To make any of these numbers negative, just put a minus sign (-) in front of them.
This works with integers, numbers in hex or binary, and floats:

iex(10)> -1234
-1234
iex(11)> -0xcafe
-51966
iex(12)> -2.045234324e6
-2045234.324

Working with Variables in the Shell
The v() function lets you refer to the results of previous expressions, but it’s not
exactly convenient to keep track of result numbers, and the v() function works only
in the shell. It isn’t a general-purpose mechanism. A more reasonable solution stores
values with textual names, creating variables.

Elixir variable names begin with a lowercase letter or an underscore. Normal vari‐
ables start with a lowercase letter, whereas “don’t care” variables start with an under‐
score (see “Underscoring That You Don’t Care” on page 33). For now, stick with
normal variables. You assign a value to a variable using a syntax that should be famil‐
iar from algebra or other programming languages, here with n as the variable:

iex(1)> n=1
1

To see the value of a variable, just type its name:

iex(2)> n
1

Elixir, unlike many other functional programming languages (including Erlang), will
let you assign n a new value:

iex(3)> n=2
2
iex(4)> n=n+1
3

Working with Variables in the Shell | 9

Elixir makes the righthand side of an expression, after the =, match the lefthand side.
It will assign a new value to n if you ask it to do so, and will even use the old value of n
on the righthand side to calculate a new value for n. n=n+1 means “assign the value
n+1, which is 3, to n.”

When you assign a value to a variable, you should make sure that all the calculations
are on the right side of the equals sign. Even though we know that m should be 6 when
2*m = 3*4, Elixir doesn’t:

iex(5)> 2*m=3*4
** (CompileError) iex:12: illegal pattern

IEx will remember your variables until you quit or tell it to forget them.

You can also put multiple statements on a line with a semicolon (;). Syntactically, it
acts just like a line break:

iex(6)> distance = 20; gravity = 9.8
9.8
iex(7)> distance
20
iex(8)> gravity
9.8

IEx will only report the value of the last statement, but as you can see on lines 19 and
20, all the values were assigned.

If it’s all getting too messy, call clear. It will just clear the screen for you.

Before moving on to the next chapter, which will introduce modules and functions,
spend some time playing in IEx. The experience, even at this simple level, will help
you move forward. Use variables, and see what happens with large integers. Elixir
supports large numbers very well. Try mixing numbers with decimal values (floats)
and integers in calculations, and see what happens. Nothing should be difficult yet.

10 | Chapter 1: Getting Comfortable

CHAPTER 2

Functions and Modules

Like most programming languages, Elixir lets you define functions to help you repre‐
sent repeated calculations. While Elixir functions can become complicated, they start
out reasonably simple.

Fun with fn
You can create functions in IEx using the keyword fn. For example, to create a func‐
tion that calculates the velocity of a falling object based on the distance it drops in
meters, you could do the following:

iex(1)> fall_velocity = fn (distance) -> :math.sqrt(2 * 9.8 * distance) end
#Function<6.6.111823515/1 in :erl_eval.expr/5>

That binds the variable fall_velocity to a function that takes an argument of
distance. (Parentheses are optional around the argument.) The function returns (we
like to read the -> as “yields”) the square root of 2 times a gravitational constant for
Earth of 9.8 m/s2, times distance (in meters). Then the function comes to an end.

The return value in the shell, #Function<6.6.111823515/1 in :erl_eval.expr/5>,
isn’t especially meaningful by itself, but it tells you that you’ve created a function and
didn’t just get an error. (The exact format of that return value changes with Elixir ver‐
sions, so it may look a bit different.)

Conveniently, binding the function to the variable fall_velocity lets you use that
variable to calculate the velocity of objects falling to Earth:

iex(2)> fall_velocity.(20)
19.79898987322333
iex(3)> fall_velocity.(200)
62.609903369994115

11

iex(4)> fall_velocity.(2000)
197.9898987322333

If you need to do something more complex, you can separate pieces of your function
with newlines. IEx will keep the line open until you type end, as in this more verbose
version:

iex(5)> f = fn (distance) ->
...(5)> :math.sqrt(2 * 9.8 * distance)
...(5)> end
#Function<6.54118792/1 in :erl_eval.expr/5>
iex(6)> f.(20)
19.79898987322333

This can be useful when you want to include multiple statements in a function.

You need the period between the variable name and the argument when you call a
function that is stored in a variable. You won’t need it for functions declared in mod‐
ules, coming later in this chapter.

If you want those meters per second in miles per hour, just create another function.
You can copy and paste the earlier results into it (as we did here), or pick shorter
numbers:

iex(7)> mps_to_mph = fn mps -> 2.23693629 * mps end
#Function<6.54118792/1 in :erl_eval.expr/5>
iex(8)> mps_to_mph.(19.79898987322333)
44.289078952755766
iex(9)> mps_to_mph.(62.609903369994115)
140.05436496173314
iex(10)> mps_to_mph.(197.9898987322333)
442.89078952755773

Probably best to stay away from 2,000-meter drops.

Prefer the fall speed in kilometers per hour?

iex(11)> mps_to_kph = fn(mps) -> 3.6 * mps end
#Function<6.54118792/1 in :erl_eval.expr/5>
iex(12)> mps_to_kph.(19.79898987322333)
71.27636354360399
iex(13)> mps_to_kph.(62.60990336999411)
225.39565213197878
iex(14)> mps_to_kph.(197.9898987322333)
712.76363543604

You can also go straight to your preferred measurement by nesting the following calls:

iex(15)> mps_to_kph.(fall_velocity.(2000))
712.76363543604

However you represent it, that’s really fast, though air resistance will in reality slow
the objects down a lot.

12 | Chapter 2: Functions and Modules

This is handy for repeated calculations, but you probably don’t want to push this kind
of function use too far in IEx, as quitting the shell session makes your functions van‐
ish. This style of function is called an anonymous function because the function itself
doesn’t have a name. (The variable name isn’t a function name.) Anonymous func‐
tions are useful for passing functions as arguments to other functions, and for return‐
ing functions as results. Within modules, though, you can define named functions
that are accessible from anywhere.

And the &
Elixir offers a shortcut style for defining anonymous functions using &, the capture
operator. Instead of fn, you’ll use &; and instead of naming the parameters, you’ll use
numbers, like &1 and &2.

Previously, you defined fall_velocity as:

iex(1)> fall_velocity= fn (distance) -> :math.sqrt(2 * 9.8 * distance) end
#Fun<erl_eval.6.111823515>

If that is too verbose for you, you could use the &:

iex(2)> fall_velocity= &(:math.sqrt(2 * 9.8 * &1))
#Function<6.17052888/1 in :erl_eval.expr/5>
iex(3)> fall_velocity.(20)
19.79898987322333

When getting started, it’s probably easier to use parameter names, but as impatience
sets in, the capture operator is there. Its value will become clearer when you do more
complex things with functions, as shown in Chapter 8.

Defining Modules
Most Elixir programs, except things like the preceding simple calculations, define
their functions in compiled modules rather than in the shell. Modules are a more for‐
mal place to put programs, and they give you the ability to store, encapsulate, share,
and manage your code more effectively.

Each module should go in its own file, with an extension of .ex. (You can put more
than one module in a file, but keep it simple while getting started.) You should use
name_of_module.ex, where name_of_module is the lowercase version of the module
name you specify inside of the module file. The Mix tool will help you with this. We
created Example 2-1, which you can find in the examples archive at ch02/ex1-drop, by
typing this at the command line:

$ mix new ch02/ex1-drop --app drop

And the & | 13

https://github.com/simonstl/introducing-elixir/tree/master/code

ch02/ex1-drop is the pathname of the directory to create. Mix took the application
name drop and created a lib subdirectory with a file named drop.ex. That file looked
like this when it was created:

defmodule Drop do
end

We then inserted the previously defined functions, with the result seen in
Example 2-1.

Example 2-1. Module for calculating and converting fall velocities

defmodule Drop do
 def fall_velocity(distance) do
 :math.sqrt(2 * 9.8 * distance)
 end

 def mps_to_mph(mps) do
 2.23693629 * mps
 end

 def mps_to_kph(mps) do
 3.6 * mps
 end
end

defmodule contains the functions that the module will export. It takes the name of
the module—this time starting with a capital letter—and contains function defini‐
tions. These begin with def, using a slightly different structure than you used when
defining functions with fn, and you don’t need to assign the functions to variables.

Function definitions inside of a module must use the longer
do...end syntax rather than the shortcut -> syntax. If your func‐
tion definition is very short, you may put it all on one line like this:

def mps_to_mph(mps), do: 2.23693629 * mps

You may see this “one-liner” version in other people’s code, but for
consistency and readability, we recommend that you use the full
do...end syntax for all your functions.

Any functions you declare with def will be visible outside of the module and can be
called by other code. If you want keep some functions accessible only within the
module, you can use defp instead of def, and they will be private.

Usually the code inside of the module will be contained in functions.

But how do you make your module actually do something?

14 | Chapter 2: Functions and Modules

It’s time to start compiling Elixir code. The shell will let you compile modules and
then use them immediately. If you are using a Mix project (as we are doing here), you
start IEx from the same directory as your project:

$ iex -S mix
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe]
 [kernel-poll:false]

Compiling 1 file (.ex)
Generated drop app
Interactive Elixir (1.3.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

Mix will create a _build directory; if you were to look in _build/dev/lib/drop/ebin, you
would find a file named Elixir.Drop.beam.

If you make a change to a source file in a text editor and want to recompile without
exiting and reentering IEx, you can use the recompile command. In the following
example, we added a blank line to the drop.ex file to show a recompile in action:

iex(2)> recompile
Compiling 1 file (.ex)
:ok

If everything is up to date, you will see a response of :noop (no operation) instead
of :ok.

If you are not using Mix, which we do not recommend, you need to start IEx from the
same directory as the file you want to compile, and then use the c command with the
filename:

iex(1)> c("drop.ex")
[Drop]

If you were to look at the directory where your drop.ex file is, you would now see a
new file named Elixir.Drop.beam.

Once compiled, you can use the functions in your module:

iex(2)> Drop.fall_velocity(20)
19.79898987322333
iex(3)> Drop.mps_to_mph(Drop.fall_velocity(20))
44.289078952755766

They work the same way as the functions you defined earlier, but now you can quit
the shell, return, and still use the compiled functions:

iex(4)>
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
 (v)ersion (k)ill (D)b-tables (d)istribution
a
$ iex -S mix
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe]

Defining Modules | 15

 [kernel-poll:false]

Interactive Elixir (1.3.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> Drop.mps_to_mph(Drop.fall_velocity(20))
44.289078952755766

Most Elixir programming involves creating functions in modules and connecting
them into larger programs.

If you aren’t sure which directory you are in, you can use the pwd()
shell command to find out. If you need to change to a different
directory, use cd(pathname). In the following example, the
cd("..") returns you to the directory you started from:

iex(1)> pwd()
/Users/elixir/code/ch02/ex1-drop
iex(2)> cd("lib")
/Users/elixir/code/ch02/ex1-drop/lib
iex(3)> pwd()
/Users/elixir/code/ch02/ex1-drop/lib
iex(4)> cd("..")
/Users/elixir/code/ch02/ex1-drop
iex(5)>

If you find yourself repeating yourself all the time in IEx, you can
also use c to “compile” a series of IEx commands. Instead of defin‐
ing a module in an .ex file, you put a series of commands for IEx in
an .exs (for Elixir script) file. When you call the c function with
that file as its argument, Elixir will execute all of the commands
in it.

Elixir Compilation and the Erlang Runtime System
When you write Elixir in the shell, it has to interpret every command, whether or not
you’ve written it before. When you tell Elixir to compile a file, it converts your text
into something it can process without having to reinterpret all of it, tremendously
improving efficiency when you run the code.

That “something it can process,” in Elixir’s case, is an Erlang BEAM file. It contains
code that the BEAM processor, a key piece of the Erlang Runtime System (ERTS), can
run. BEAM is Bogdan’s Erlang Abstract Machine, a virtual machine that interprets
optimized BEAM code. This may sound slightly less efficient than the traditional
compilation to machine code that runs directly on the computer, but it resembles
other virtual machines. (Oracle’s Java Virtual Machine, or JVM, and Microsoft’s .NET
Framework are the two most common virtual machines.)

Erlang’s virtual machine optimizes some key things, making it easier to build applica‐
tions that scale reliably. Its process scheduler simplifies distributing work across

16 | Chapter 2: Functions and Modules

multiple processors in a single computer. You don’t have to think about how many
processors your application might get to use—you just write independent processes,
and Erlang spreads them out. Erlang also manages input and output in its own way,
avoiding connection styles that block other processing. And the virtual machine uses
a garbage collection strategy that fits its style of processing, allowing for briefer pauses
in program execution. (Garbage collection releases memory that processes needed at
one point but are no longer using.)

When you create and deliver Elixir programs, you will be distributing them as a set of
compiled BEAM files. You don’t need to compile each one from the shell as we’re
doing here, though. elixirc will let you compile Elixir files directly and combine that
compilation into make tasks and similar things, and calling elixir on .exs files will let
you run Elixir code as scripts outside of the IEx environment.

From Module to Free-Floating Function
If you like the style of code that fn allows but also want your code stored more relia‐
bly in modules where it’s easier to debug, you can get the best of both worlds by using
&, the capture operator, to refer to a function you’ve already defined. You can specify
the function to retrieve with a single argument in the form Module_name.func
tion_name/arity. Arity is the number of arguments a function takes—1 in the case
of Drop.fall_velocity:

iex(1)> fun=&Drop.fall_velocity/1
&Drop.fall_velocity/1
iex(2)> fun.(20)
19.79898987322333

You can also do this within code in a module. If you’re referring to code in the same
module, you can leave off the module name preface. In this case, that would mean
leaving off Drop. and just using &fall_velocity/1.

Splitting Code Across Modules
The Drop module mixes two different kinds of functions. The function fall_veloc
ity() fits the name of the module, Drop, very well, providing a calculation based on
the height from which an object falls. The mps_to_mph and mps_to_kph functions,
however, aren’t about dropping. They are generic measurement-conversion functions
that are useful in other contexts and really belong in their own module. Examples 2-2
and 2-3, both in ch02/ex2-split, show how this might be done.

From Module to Free-Floating Function | 17

Example 2-2. Module for calculating fall velocities

defmodule Drop do
 def fall_velocity(distance) do
 :math.sqrt(2 * 9.8 * distance)
 end
end

Example 2-3. Module for converting fall velocities

defmodule Convert do
 def mps_to_mph(mps) do
 2.23693629 * mps
 end

 def mps_to_kph(mps) do
 3.6 * mps
 end
end

Next you can compile them, and then the separated functions will be available for
use:

$ iex -S mix
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe]
 [kernel-poll:false]

Compiling 2 files (.ex)
Generated drop app
Interactive Elixir (1.3.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> Drop.fall_velocity(20)
19.79898987322333
iex(2)> Convert.mps_to_mph(Drop.fall_velocity(20))
44.289078952755766

That reads more neatly, but how might this code work if a third module needed to
call those functions? Modules that call code from other modules need to specify that
explicitly. Example 2-4, in ch02/ex3-combined, shows a module that uses functions
from both the drop and convert modules.

Example 2-4. Module for combining drop and convert logic

defmodule Combined do
 def height_to_mph(meters) do
 Convert.mps_to_mph(Drop.fall_velocity(meters))
 end
end

18 | Chapter 2: Functions and Modules

This will only work if the Combined module has access to the Convert and Drop mod‐
ules, typically by being in the same directory, but it’s quite similar to what worked
directly in IEx.

The combined function lets you do much less typing:

$iex -S mix
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe]
[kernel-poll:false]

Compiling 3 files (.ex)
Generated combined app
Interactive Elixir (1.3.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> Combined.height_to_mph(20)
44.289078952755766

If you’re coming from Erlang, you’re probably used to the disci‐
pline of thick module walls and functions that only become accessi‐
ble through explicit -export and -import directives. Elixir goes the
opposite route, making everything accessible from the outside
except for functions explicitly declared private with defp.

Combining Functions with the Pipe Operator
There’s another way to combine functions: using Elixir’s |> operator, called the pipe
operator. The pipe operator, sometimes called pipe forward, lets you pass an expres‐
sion into the first argument of the next function. Example 2-5, in ch02/ex4-pipe,
shows the operator in use.

Example 2-5. Using the pipe operator

defmodule Combined do
 def height_to_mph(meters) do
 Drop.fall_velocity(meters) |> Convert.mps_to_mph
 end
end

Note that the order is reversed from Example 2-4, with Drop.fall_velocity
(meters) appearing before Convert.mps_to_mph. If you read |> as “goes into,” the
logic may be clearer. You can have several of these in a row, converting functions that
used to be deeply nested into (hopefully) clearer sequences.

The pipe operator only passes one result into the next function, as
its first parameter. If you need to use a function that takes multiple
parameters, just specify the additional parameters as if the first one
weren’t there.

Combining Functions with the Pipe Operator | 19

Importing Functions
As long as you fully specify the name of the function, Elixir does a great job of seek‐
ing out the code. However, if you’re working with code that constantly relies on code
in a particular module, it may be appealing to reduce your typing by formally import‐
ing it.

Example 2-6, in ch02/ex5-import, shows a simple use of import to bring in all the
functions (and macros, though there aren’t any yet) in the Convert module.

Example 2-6. Module for combining drop and convert logic, with imported Convert

defmodule Combined do
 import Convert

 def height_to_mph(meters) do
 mps_to_mph(Drop.fall_velocity(meters))
 end
end

The import Convert line tells Elixir that all of the functions and macros (except
those starting with underscore) in the Convert module should be available without
prefixes in this module.

Importing an Erlang module, as shown in Example 2-7, is much the same, except that
you prefix the module name with a colon and don’t start the name with an uppercase
letter.

Example 2-7. Importing the Erlang math module

defmodule Drop do
 import :math

 def fall_velocity(distance) do
 sqrt(2 * 9.8 * distance)
 end
end

Importing entire modules might create conflicts with function names you are already
using in your own module, so Elixir lets you specify which functions you want with
the only argument. For example, to get just the sqrt function with an arity of 1, you
could use:

defmodule Drop do
 import :math, only: [sqrt: 1]
 def fall_velocity(distance) do
 sqrt(2 * 9.8 * distance)

20 | Chapter 2: Functions and Modules

 end
end

If you just need to import a module for one function, you can place the import direc‐
tive inside of the def or defp for that function. It won’t apply beyond that function’s
scope:

defmodule Drop do
 def fall_velocity(distance) do
 import :math, only: [sqrt: 1]
 sqrt(2 * 9.8 * distance)
 end
end

If you want all of the functions except for some specific functions,
you can use the except argument:

import :math, except: [sin: 1, cos: 1]

Use import with caution. It certainly spares you typing, but it can also make it harder
to figure out where functions came from.

Default Values for Arguments
If you wanted to deal with astronomical bodies other than Earth (and you’ll be doing
a lot of that in subsequent chapters), you might want to create a fall_velocity/2
function that accepts both a distance and a gravity constant:

defmodule Drop do
 def fall_velocity(distance, gravity) do
 :math.sqrt(2 * gravity * distance)
 end
end

You can then calculate velocities from Earth, where the gravity constant is 9.8, and the
moon, where the gravity constant is 1.6:

$ iex -S mix
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe]
 [kernel-poll:false]

Compiling 1 file (.ex)
Generated drop app
Interactive Elixir (1.3.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> Drop.fall_velocity(20, 9.8)
19.79898987322333
iex(2)> Drop.fall_velocity(20, 1.6)
8.0

Default Values for Arguments | 21

If you anticipate dropping objects primarily on Earth, Elixir lets you specify a default
value for the gravity parameter by putting the default value after a pair of back‐
slashes, as in Example 2-8, which you can find in ch02/ex6-defaults.

Example 2-8. Function with a default value

defmodule Drop do
 def fall_velocity(distance, gravity \\ 9.8) do
 :math.sqrt(2 * gravity * distance)
 end
end

Now you can specify only the first argument for Earth, and both arguments for other
astronomical bodies:

iex(3)> recompile
Compiling 1 file (.ex)
:ok
iex(4)> Drop.fall_velocity(20)
19.79898987322333
iex(5)> Drop.fall_velocity(20, 1.6)
8.0

Documenting Code
Your programs can run perfectly well without documentation. Your projects, how‐
ever, will have a much harder time.

While programmers like to think they write code that anyone can look at and sort
out, the painful reality is that code even a little more complicated than that shown in
the previous examples can prove mystifying to other developers. If you step away
from code for a while, the understanding you developed while programming it may
fade, and even your own code can seem incomprehensible.

Elixir’s creators are well aware of these headaches and emphasize treating documenta‐
tion “as a first-class citizen”.

The simplest way to add more explicit explanations to your code is to insert com‐
ments. You can start a comment with #, and it runs to the end of the line. Some com‐
ments take up an entire line, while others are short snippets at the end of a line.
Example 2-9 shows both varieties of comments.

22 | Chapter 2: Functions and Modules

http://elixir-lang.org/docs/stable/elixir/writing-documentation

Example 2-9. Comments in action

convenience functions!
defmodule Combined do

 def height_to_mph(meters) do # takes meters, returns miles per hour
 Convert.mps_to_mph(Drop.fall_velocity(meters))
 end
end

The Elixir compiler will ignore all text between the # sign and the end of the line, but
humans exploring the code will be able to read it.

Informal comments like these are useful, but developers have a habit of including
comments that help them keep track of what they’re doing while they’re writing the
code. Those comments may or may not be what other developers need to understand
the code, or even what you need when you return to your own code after a long time
away. More formal comment structures may be more work than you want to take on
in the heat of a programming session, but they also force you to ask yourself who
might be looking at your code in the future and what they might want to know.

Elixir’s documentation support goes way beyond basic comments, offering a set of
tools for creating documentation you can explore through IEx or separately through a
web browser.

Documenting Functions
The Drop module contains one function: fall_velocity/1. You probably know that
it takes a distance in meters and returns a velocity in meters per second for an object
dropped in a vacuum on Earth, but the code doesn’t actually say that. Example 2-10
shows how to fix that with the @doc tag.

Example 2-10. Documented function for calculating fall velocities

defmodule Drop do
 @doc """
 Calculates the velocity of an object falling on Earth
 as if it were in a vacuum (no air resistance). The distance is
 the height from which the object falls, specified in meters,
 and the function returns a velocity in meters per second.
 """

 def fall_velocity(distance) do
 import :math, only: [sqrt: 1]

 sqrt(2 * 9.8 * distance)

Documenting Code | 23

 end
end

After you compile that, the h() function in IEx will now tell you useful information
about the function:

iex(1)> recompile
Compiling 1 file (.ex)
:ok
iex(2)> h Drop.fall_velocity
 def fall_velocity(distance)

Calculates the velocity of an object falling on Earth
as if it were in a vacuum (no air resistance). The distance is
the height from which the object falls, specified in meters,
and the function returns a velocity in meters per second.

That’s a major improvement, but what if a user specifies “twenty” meters instead of
“20” meters? Because Elixir doesn’t worry much about types, the code doesn’t say that
the value for distance has to be a number or the function will return an error.

You can add a tag, @spec, to add that information. It’s a little strange, as in some ways
it feels like a duplicate of the method declaration. In this case, it’s simple, as shown in
Example 2-11.

Example 2-11. Documented function for calculating fall velocities

defmodule Drop do

@doc """
Calculates the velocity of an object falling on Earth
as if it were in a vacuum (no air resistance). The distance is
the height from which the object falls, specified in meters,
and the function returns a velocity in meters per second.
"""

 @spec fall_velocity(number()) :: float()

 def fall_velocity(distance) do
 import :math, only: [sqrt: 1]

 sqrt(2 * 9.8 * distance)
 end
end

This specification says that the function can take any kind of number() as input
(either integer or floating point), but the result will always be a float() (floating-
point) value.

24 | Chapter 2: Functions and Modules

Now you can use the s() function to see type information about your function from
IEx:

iex(1)> s(Drop.fall_velocity)
@spec fall_velocity(number()) :: float()

You can also use s(Drop) to see all the specs defined in the Drop module.

This chapter has demonstrated only the float() type and the
number() type, which combines the integer() and float() types.
Appendix A includes a full list of types.

Documenting Modules
The modules in this chapter have been very simple so far, but there is enough there to
start documenting, as shown in the files at ch02/ex7-docs. Example 2-12 presents the
Drop module with more information about what version it is (@vsn), who created it,
and why.

Example 2-12. Documented module for calculating fall velocities

defmodule Drop do
 @moduledoc """
 Functions calculating velocities achieved by objects dropped in a vacuum.

 from *Introducing Elixir*, Second Edition, O'Reilly Media, Inc., 2017.
 Copyright 2017 by Simon St.Laurent and J. David Eisenberg.
 """
 @vsn 0.1

 @doc """
 Calculates the velocity of an object falling on Earth
 as if it were in a vacuum (no air resistance). The distance is
 the height from which the object falls, specified in meters,
 and the function returns a velocity in meters per second.
 """

 @spec fall_velocity(number()) :: number()

 def fall_velocity(distance) do
 import :math, only: [sqrt: 1]

 sqrt(2 * 9.8 * distance)
 end
end

Documenting Code | 25

You can now use h to learn more about the module:

iex(1)> h Drop

 Drop

Functions calculating velocities achieved by objects dropped in a vacuum.

from *Introducing Elixir*, Second Edition, O'Reilly Media, Inc., 2017.
Copyright 2017 by
Simon St.Laurent and J. David Eisenberg.

Having good documentation is useful for anyone else who is reading your code (and
if you are away from your code for a few months, when you return, you will be that
“anyone else”). You can also use this documentation to create web pages that summa‐
rize your modules and functions. To do this, you need the ExDoc tool. ExDoc recog‐
nizes Markdown formatting in your documentation, so your documentation can
include emphasized text, lists, and links, among other things. For more details on
using ExDoc, see Appendix B.

26 | Chapter 2: Functions and Modules

http://bit.ly/df-markdown

CHAPTER 3

Atoms, Tuples, and Pattern Matching

Elixir programs are at heart a set of message requests and tools for processing them.
Elixir provides tools that simplify the efficient handling of those messages, letting you
create code that is readable (to programmers at least) while still running efficiently
when you need speed.

Atoms
Atoms are a key component of Elixir. Technically they’re just another type of data, but
it’s hard to overstate their impact on Elixir programming style.

Usually, atoms are bits of text that start with a colon, like :ok or :earth or :Today.
They can also contain underscores (_) and at symbols (@), like :this_is_a_
short_sentence or :me@home. If you want more freedom to use spaces, you can start
with the colon and then put them in single or double quotes, like :'Today is a good
day'. Generally, the one-word lowercase form is easier to read.

Atoms have a value—it’s the same as their text:

iex(1)> :test
:test

That’s not very exciting in itself. What makes atoms exciting is the way that they can
combine with other types and Elixir’s pattern-matching techniques to build simple
but powerful logical structures.

Pattern Matching with Atoms
Elixir used pattern matching to make the examples in Chapter 2 work, but it was very
simple. The name of the function was the one key piece that varied, and as long as
you provided a numeric argument, Elixir knew what you meant. Elixir’s pattern

27

matching offers much more sophisticated possibilities, however, allowing you to
match on arguments as well as on function names.

For example, suppose you want to calculate the velocity of falling objects not just on
Earth, where the gravitational constant is 9.8 meters per second squared, but on
Earth’s moon, where it is 1.6 meters per second squared, and on Mars, where it is 3.71
meters per second squared. Example 3-1, which you can find in ch03/ex1-atoms,
shows one way to build code that supports this.

Example 3-1. Pattern matching on atoms as well as function names

defmodule Drop do

 def fall_velocity(:earth, distance) do
 :math.sqrt(2 * 9.8 * distance)
 end

 def fall_velocity(:moon, distance) do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) do
 :math.sqrt(2 * 3.71 * distance)
 end

end

It looks like the fall_velocity function gets defined three times here, and it cer‐
tainly provides three processing paths for the same function. However, because Elixir
will choose which version of the function to call by pattern matching, they aren’t
duplicate definitions. As in English, these pieces are called clauses. All of the clauses
for a given function name must be grouped together in the module.

Once you have this, you can calculate velocities for objects falling a given distance on
Earth, the Earth’s moon, and Mars. Rather than using recompile, which compiles all
the .ex files in your project, you can also reload a single module with IEx’s r()
command:

iex(1)> r(Drop)
warning: redefining module Drop (current version loaded from
 _build/dev/lib/drop/ebin/Elixir.Drop.beam)
 lib/drop.ex:1

{:reloaded, Drop, [Drop]}
iex(2)> Drop.fall_velocity(:earth, 20)
19.79898987322333
iex(3)> Drop.fall_velocity(:moon, 20)
8.0

28 | Chapter 3: Atoms, Tuples, and Pattern Matching

iex(4)> Drop.fall_velocity(:mars, 20)
12.181953866272849

If you try to find the velocity for a pattern that doesn’t have a matching clause, you get
an error:

iex(5)> Drop.fall_velocity(:jupiter, 20)
** (FunctionClauseError) no function clause matching in Drop.fall_velocity/2
 drop.ex:3: Drop.fall_velocity(:jupiter, 20)

You’ll quickly find that atoms are a critical component for writing readable Elixir
code.

If you want to do a pattern match against a value stored in a vari‐
able, you’ll need to put a ^ in front of the variable name.

Atomic Booleans
Elixir uses the values true and false to represent the Boolean logic values of the
same names. Although underneath these are atoms, :true and :false, they are com‐
mon enough that you don’t need to use the colons. Elixir will return these values if
you ask it to compare something:

iex(1)> 3 < 2
false
iex(2)> 3 > 2
true
iex(3)> 10 == 10
true
iex(4)> :true == true
true
iex(5)> :false == false
true

Elixir also has special operators that work on these atoms (and on comparisons that
resolve to these atoms):

iex(6)> true and true
true
iex(7)> true and false
false
iex(8)> true or false
true
iex(9)> false or false
false
iex(10)> not true
false

Atomic Booleans | 29

The and and or operators both take two arguments. For and, the result is true if and
only if the two arguments are true. For or, the result is true if at least one of the
arguments is true. If you’re comparing expressions more complicated than true and
false, it’s wise to put them in parentheses.

Elixir will automatically take shortcuts on its logic. If it finds, for example, that the
first argument in an and is false, it won’t evaluate the second argument and will
return false. Likewise, if the first argument in an or is true, it won’t evaluate the sec‐
ond argument and will return true.

The not operator is simpler, taking just one argument. It turns true into false and
false into true. Unlike the other Boolean operators, which go between their argu‐
ments, not goes before its single argument.

If you try to use these operators with any other atoms, you’ll get an argument error:

iex(11)> not :bonkers
** (ArgumentError) argument error
 :erlang.not(:bonkers)

Like true and false, Elixir lets you write the atom :nil as nil.
There are other atoms that often have an accepted meaning,
like :ok and :error, but those are more conventions than a formal
part of the language and don’t get special treatment. Their colons
are required.

Guards
The fall_velocity calculations work fairly well, but there’s still one glitch. If the
function gets a negative value for distance, the square root (sqrt) function in the
calculation will be unhappy:

iex(1)> Drop.fall_velocity(:earth, -20)
** (ArithmeticError) bad argument in arithmetic expression
 (stdlib) :math.sqrt(-392.0)
 drop.ex:4: Drop.fall_velocity/2

Since you can’t dig a hole 20 meters down, release an object, and marvel as it acceler‐
ates to the surface, this isn’t a terrible result. However, it might be more elegant to at
least produce a different kind of error.

In Elixir, you can specify which data a given function will accept with guards. Guards,
indicated by the when keyword, let you fine-tune the pattern matching based on the
content of arguments, not just their shape. Guards have to stay simple, can use only a
very few built-in functions, and are limited by a requirement that they evaluate only
data without any side effects—but they can still transform your code.

30 | Chapter 3: Atoms, Tuples, and Pattern Matching

You can find a list of functions that can safely be used in guards in
Appendix A.

Guards evaluate their expressions to true or false, as previously described, and the
first one with a true result wins. That means that you can write when true for a
guard that always gets called if it is reached, or block out some code you don’t want to
call (for now) with when false.

In this simple case, you can keep negative numbers away from the square root func‐
tion by adding guards to the fall_velocity clauses, as shown in Example 3-2, which
you can find in ch03/ex2-guards.

Example 3-2. Adding guards to the function clauses

defmodule Drop do

 def fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

 def fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end

end

The when expression describes a condition or set of conditions in the function head.
In this case, the condition is simple: the distance must be greater than or equal to
zero. In Elixir, greater than or equal to is written >=, and less than or equal to is writ‐
ten <=, just as they’re described in English. If you compile that code and ask for the
result of a positive distance, the result is the same. Ask for a negative distance, and the
result is different:

iex(1)> recompile
Compiling 1 file (.ex)
:ok
iex(2)> Drop.fall_velocity(:earth, 20)
19.79898987322333
iex(3)> Drop.fall_velocity(:earth, -20)
** (FunctionClauseError) no function clause matching in Drop.fall_velocity/2
 drop.ex:3: Drop.fall_velocity(:earth, -20)

Guards | 31

Because of the guard, Elixir doesn’t find a function clause that works with a negative
argument. The error message may not seem like a major improvement, but as you
add layers of code, “not handled” may be a more appealing response than “broke my
formula.”

A clearer, though still simple, use of guards might be code that returns an absolute
value. Yes, Elixir has a built-in function, abs(), for this, but Example 3-3 makes clear
how this works.

Example 3-3. Calculating absolute value with guards

defmodule MathDemo do

 def absolute_value(number) when number < 0 do
 -number
 end

 def absolute_value(number) when number == 0 do
 0
 end

 def absolute_value(number) when number > 0 do
 number
 end

end

When Mathdemo.absolute_value() is called with a negative (less than zero) argu‐
ment, Elixir calls the first clause, which returns the negation of that negative argu‐
ment, making it positive. When the argument equals (==) zero, Elixir calls the second
clause, returning 0. Finally, when the argument is positive (greater than zero), Elixir
calls the third clause, just returning the number. (The first two clauses have processed
everything that isn’t positive, so the guard on the last clause is unnecessary and will
go away in Example 3-4.)

All the examples from this point forward are built using Mix and
started with iex -S mix. This will automatically compile the code
if necessary. To save space and avoid needless repetition, we will
generally omit the IEx startup and initial compilation messages.

Here are a few examples:

iex(1)> MathDemo.absolute_value(-20)
20
iex(2)> MathDemo.absolute_value(0)
0

32 | Chapter 3: Atoms, Tuples, and Pattern Matching

iex(3)> MathDemo.absolute_value(20)
20

This may seem like an unwieldy way to calculate. Don’t worry—Elixir has simpler
logic switches you can use inside of functions. However, guards are critically impor‐
tant to choosing among function clauses, which will be especially useful as you start
to work with recursion in Chapter 4.

Elixir runs through the function clauses in the order you list them and stops at the
first one that matches. If you find your information is heading to the wrong clause,
you may want to reorder your clauses or fine-tune your guard conditions.

Also, when your guard clause is testing for just one value, you can easily switch to
using pattern matching instead of a guard. The absolute_value() function in
Example 3-4 does the same thing as the one in Example 3-3.

Example 3-4. Calculating absolute value with guards and pattern matching

defmodule MathDemo do

 def absolute_value(number) when number < 0 do
 -number
 end

 def absolute_value(number) do
 number
 end

end

In this case, it’s up to you whether you prefer the simpler form or preserving a parallel
approach.

You can also have multiple comparisons in a single guard. If you
separate them with the or operator, it succeeds if any of the com‐
parisons succeeds. If you separate them with the and operator, they
all have to succeed for the guard to succeed.

Underscoring That You Don’t Care
Guards let you specify more precise handling of incoming arguments. Sometimes you
may actually want handling that is less precise, though. Not every argument is essen‐
tial to every operation, especially when you start passing around complex data struc‐
tures. You could create variables for arguments and then never use them, but you’ll
get warnings from the compiler (which suspects you must have made a mistake), and

Underscoring That You Don’t Care | 33

you may confuse other people using your code who are surprised to find your code
cares about only half of the arguments they sent.

You might, for example, decide that you’re not concerned with what planemo (for
planetary mass object, including planets, dwarf planets, and moons) a user of your
velocity function specifies, and you’re just going to use Earth’s value for gravity. Then
you might write something like Example 3-5, found in ch03/ex3-underscore.

Example 3-5. Declaring a variable and then ignoring it

defmodule Drop do

 def fall_velocity(planemo, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

end

This will compile, but you’ll get a warning, and if you try to use it for, say, Mars, you’ll
get the wrong answer:

iex(1)> r(Drop)
r(Drop)
warning: redefining module Drop (current version loaded from
 _build/dev/lib/drop/ebin/Elixir.Drop.beam)
 lib/drop.ex:1

warning: variable planemo is unused
 lib/drop.ex:3

{:reloaded, Drop, [Drop]}
iex(2)> Drop.fall_velocity(:mars,20)
19.79898987322333

On Mars, that should be more like 12 than 19, so the compiler was right to scold you.

Other times, though, you really only care about some of the arguments. In these
cases, you can use a simple underscore (_). The underscore accomplishes two things:
it tells the compiler not to bother you, and it tells anyone reading your code that
you’re not going to be using that argument. In fact, Elixir won’t let you. You can try to
assign values to the underscore, but Elixir won’t give them back to you. It considers
the underscore permanently unbound:

iex(3)> _ = 20
20
iex(4)> _
** (CompileError) iex:4 unbound variable _

If you really wanted your code to be Earth-centric and ignore any suggestions of
other planemos, you could instead write something like Example 3-6.

34 | Chapter 3: Atoms, Tuples, and Pattern Matching

Example 3-6. Deliberately ignoring an argument with an underscore

defmodule Drop2 do

 def fall_velocity(_, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

end

This time there will be no compiler warning, and anyone who looks at the code will
know that first argument is useless:

iex(4)> r(Drop2)
warning: redefining module Drop2 (current version loaded from
 _build/dev/lib/drop/ebin/Elixir.Drop2.beam)
 lib/drop2.ex:1

{:reloaded, Drop2, [Drop2]}
iex(5)> Drop2.fall_velocity(:you_dont_care, 20)
19.79898987322333

You can use the underscore multiple times to ignore multiple arguments. It matches
anything for the pattern match and never binds, so there’s never a conflict.

You can also start variable names with underscores—like _planemo
—and the compiler won’t warn if you never use those variables.
Those variables do get bound, though, and you can reference them
later in your code if you change your mind. Consequently, if you
use the same variable name more than once in a set of arguments,
even if one of the names starts with an underscore, you’ll get an
error from the compiler for trying to bind twice to the same name.

Adding Structure: Tuples
Elixir’s tuples let you combine multiple items into a single composite datatype. This
makes it easier to pass messages between components, letting you create your own
complex datatypes as needed. Tuples can contain any kind of Elixir data, including
numbers, atoms, other tuples, and the lists and strings you’ll encounter in later
chapters.

Tuples themselves are simple—a group of items surrounded by curly braces:

iex(1)> {:earth, 20}
{:earth, 20}

Tuples might contain one item, or they might contain a hundred. Two to five seems
typical (and useful, and readable). Often (but not always) an atom at the beginning of

Adding Structure: Tuples | 35

the tuple indicates what it’s really for, providing an informal identifier of the complex
information structure stored in the tuple.

Elixir includes built-in functions that give you access to the contents of a tuple on an
item-by-item basis. You can retrieve the values of items with the elem function, set
values in a new tuple with the put_elem function, and find out how many items are in
a tuple with the tuple_size function. Elixir (unlike Erlang) counts from zero, so the
first item in a tuple is referenced as 0, the second as 1, and so on:

iex(2)> tuple={:earth,20}
{:earth,20}
iex(3)> elem(tuple,1)
20
iex(4)> new_tuple=put_elem(tuple,1,40)
{:earth,40}
iex(5)> tuple_size(new_tuple)
2

If you can stick with pattern matching tuples, however, you’ll likely create more read‐
able code.

Pattern Matching with Tuples
Tuples make it easy to package multiple arguments into a single container and let the
receiving function decide what to do with them. Pattern matching on tuples looks
much like pattern matching on atoms, except that there is, of course, a pair of curly
braces around each set of arguments, as Example 3-7 (which you’ll find in ch03/ex4-
tuples) demonstrates.

Example 3-7. Encapsulating arguments in a tuple

defmodule Drop do

 def fall_velocity({:earth, distance}) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

 def fall_velocity({:moon, distance}) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity({:mars, distance}) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end

end

The arity changes: this version is fall_velocity/1 instead of fall_velocity/2
because the tuple counts as only one argument. The tuple version works much like

36 | Chapter 3: Atoms, Tuples, and Pattern Matching

the atom version but requires the extra curly braces when you call the function as
well:

iex(1)> Drop.fall_velocity({:earth, 20})
19.79898987322333
iex(2)> Drop.fall_velocity({:moon, 20})
8.0
iex(3)> Drop.fall_velocity({:mars, 20})
12.181953866272849

Why would you use this form when it requires a bit of extra typing? Using tuples
opens more possibilities. Other code could package different things into tuples—
more arguments, different atoms, even functions created with fn(). The ability to
pass a single tuple rather than a pile of arguments is what gives Elixir much of its flex‐
ibility, especially when you get to passing messages between different processes.

Processing Tuples
There are many ways to process tuples, not just the simple pattern matching shown in
Example 3-7. If you receive the tuple as a single variable, you can do many different
things with it. A simple place to start is using the tuple as a pass-through to a private
version of the function. That part of Example 3-8, which you can find in ch03/ex5-
tuplesMore, may look familiar, as it’s the same as the fall_velocity/2 function in
Example 3-1.

Example 3-8. Encapsulating arguments in a tuple and passing them to a private
function

defmodule Drop do

 def fall_velocity({planemo, distance}) when distance >= 0 do
 fall_velocity(planemo, distance)
 end

 defp fall_velocity(:earth, distance) do
 :math.sqrt(2 * 9.8 * distance)
 end

 defp fall_velocity(:moon, distance) do
 :math.sqrt(2 * 1.6 * distance)
 end

 defp fall_velocity(:mars, distance) do
 :math.sqrt(2 * 3.71 * distance)
 end

end

Adding Structure: Tuples | 37

The use of defp for the private versions means that only fall_velocity/1, the tuple
version, is public. The fall_velocity/2 function is available within the module,
however. It’s not especially necessary here, but this “make one version public, keep
another version with different arity private” approach is common in situations where
you want to make a function accessible but don’t necessarily want its inner workings
directly available.

If you call this function—the tuple version, so curly braces are necessary—
fall_velocity/1 calls the private fall_velocity/2, which returns the proper value
to fall_velocity/1, which will return it to you. The results should look familiar:

iex(1)> Drop.fall_velocity({:earth, 20})
19.79898987322333
iex(2)> Drop.fall_velocity({:moon, 20})
8.0
iex(3)> Drop.fall_velocity({:mars, 20})
12.181953866272849

There are a few different ways to extract the data from the tuple. You could reference
the components of the tuple by number using the built-in Kernel macro elem/2,
which takes a tuple and a numeric position as its arguments. The first component of a
tuple can be reached at position 0, the second at position 1, and so on:

 def fall_velocity(where) do
 fall_velocity(elem(where,0), elem(where,1))
 end

You could also break things up a bit and do pattern matching after getting the
variable:

 def fall_velocity(where) do
 {planemo, distance} = where
 fall_velocity(planemo,distance)
 end

The result of that last line will be the value the fall_velocity/1 function returns.

The pattern matching is a little different from that in Example 3-8. The function
accepted a tuple as its argument and assigned it to the variable where. (If where is not
a tuple, the {planemo, distance} = where will fail with an error.) Extracting the
contents of that tuple, since we know its structure, can be done with a pattern match
inside the function. The planemo and distance variables will be bound to the values
contained in the where tuple and can then be used in the call to fall_velocity/2.

38 | Chapter 3: Atoms, Tuples, and Pattern Matching

CHAPTER 4

Logic and Recursion

So far, Elixir seems logical but fairly simple. Pattern matching controls the flow
through a program, and requests that match a form return certain responses. While
this is enough to get many things done, sometimes you’ll want more powerful
options, especially as you start working with larger and more complicated data
structures.

Logic Inside of Functions
Pattern matching and guards are powerful tools, but there are times when it’s much
easier to do some comparisons inside of a function clause instead of creating new
functions. Elixir’s designers agreed and created two constructs for evaluating condi‐
tions inside of functions: the case expression and the less frequently used cond and
if expressions.

The case construct lets you use pattern matching and guards inside of a function
clause. It reads most clearly when a single value (or set of values) needs to be com‐
pared with multiple possibilities. The cond construct evaluates only a series of expres‐
sions, without pattern matching. The cond construct tends to produce more readable
code in situations where the multiple possibilities are specified by combinations of
different values. The if construct evaluates only a single expression.

All these constructs return a value your code can capture.

Evaluating Cases
The case construct lets you perform pattern matching inside of your function clause.
If you found the multiple function clauses of Example 3-2 hard to read, you might

39

prefer to create a version that looks like Example 4-1, which you can find in ch04/ex1-
case.

Example 4-1. Moving pattern matching inside the function with case

defmodule Drop do

 def fall_velocity(planemo, distance) when distance >= 0 do
 case planemo do
 :earth -> :math.sqrt(2 * 9.8 * distance)
 :moon -> :math.sqrt(2 * 1.6 * distance)
 :mars -> :math.sqrt(2 * 3.71 * distance)
 end
 end

end

The case construct will compare the atom in planemo to the values listed, going
down the list in order. It won’t process beyond the first match it finds. Each matching
value is followed by a ->, which you can read as “yields.” The case construct will
return the result of different calculations based on which atom is used, and because
the case construct returns the last value in the function clause, the function will
return that value as well.

You can use the underscore (_) for your pattern match if you want
a choice that matches “everything else.” However, you should
always put that last—nothing that comes after it will ever be
evaluated.

The results should look familiar:

iex(1)> Drop.fall_velocity(:earth, 20)
19.79898987322333
iex(2)> Drop.fall_velocity(:moon, 20)
8.0
iex(3)> Drop.fall_velocity(:mars, -20)
** (FunctionClauseError) no function clause matching in Drop.fall_velocity/2
 (drop) lib/drop.ex:3: Drop.fall_velocity(:mars, -20)

The case construct switches among planemos, while the guard clause on the function
definition keeps out negative distances, producing (rightly) the error on line 3. This
way the guard needs to appear only once.

You can also use the return value from the case construct to reduce duplicate code
and make the logic of your program clearer. In this case, the only difference between
the calculations for earth, moon, and mars is a gravitational constant. Example 4-2,

40 | Chapter 4: Logic and Recursion

which you can find in ch04/ex2-case, shows how to make the case construct return
the gravitational constant for use in a single calculation at the end.

Example 4-2. Using the return value of the case construct to clean up the function

defmodule Drop do

 def fall_velocity(planemo, distance) when distance >= 0 do
 gravity = case planemo do
 :earth -> 9.8
 :moon -> 1.6
 :mars -> 3.71
 end
 :math.sqrt(2 * gravity * distance)
 end

end

This time, the gravity variable is set to the return value of the case construct. The
now more readable formula math:sqrt(2 * gravity * distance) is the last line of
the function, and the value it produces will be the return value.

You can also use guards with a case statement, as shown, perhaps less than elegantly,
in Example 4-3, which is in ch04/ex3-case. This might make more sense if there were
different planemos with different rules about distances.

Example 4-3. Moving guards into the case statement

defmodule Drop do

 def fall_velocity(planemo, distance) do
 gravity = case planemo do
 :earth when distance >= 0 -> 9.8
 :moon when distance >= 0 -> 1.6
 :mars when distance >= 0 -> 3.71
 end
 :math.sqrt(2 * gravity * distance)
 end

end

This produces similar results, except that the error message at the end changes from a
FunctionClauseError to a CaseClauseError:

iex(3)> r(Drop)
warning: redefining module Drop (current version defined in memory)
 lib/drop.ex:1

{:reloaded, Drop, [Drop]}
iex(4)> Drop.fall_velocity(:earth, 20)

Logic Inside of Functions | 41

19.79898987322333
iex(5)> Drop.fall_velocity(:moon, 20)
8.0
iex(6)> Drop.fall_velocity(:mars, -20)
** (CaseClauseError) no case clause matching: :mars
 (drop) lib/drop.ex:4: Drop.fall_velocity/2

The error is correct, in that the case construct is trying to match :mars, but mislead‐
ing because the problem isn’t with :mars but rather with the guard that’s checking the
distance variable. If Elixir tells you that your case doesn’t match, but a match is
obviously right there in front of you, check your guard statements.

Adjusting to Conditions
The cond construct is broadly similar to the case statement, but without the pattern
matching. If you would like, this allows you to write a catch-all clause—an expression
matching true at the end. This often makes it easier to express logic based on broader
comparisons than simple matching.

Suppose, for example, that the precision of the fall_velocity function is too great.
Instead of an actual speed, you’d like to describe the relative speed produced by drop‐
ping from a tower of a given height. You can add a cond construct that does that to
the earlier code from Example 4-2, as shown in Example 4-4 (in ch04/ex4-cond).

Example 4-4. Adding a cond construct to convert numbers into atoms

defmodule Drop do

 def fall_velocity(planemo, distance) when distance >= 0 do
 gravity = case planemo do
 :earth -> 9.8
 :moon -> 1.6
 :mars -> 3.71
 end

 velocity = :math.sqrt(2 * gravity * distance)

 cond do
 velocity == 0 -> :stable
 velocity < 5 -> :slow
 velocity >= 5 and velocity < 10 -> :moving
 velocity >= 10 and velocity < 20 -> :fast
 velocity >= 20 -> :speedy
 end
 end

end

42 | Chapter 4: Logic and Recursion

This time, the cond construct returns a value (an atom describing the velocity) based
on the many guards it includes. Because that value is the last thing returned within
the function, that becomes the return value of the function.

The results are a little different from our past trials:

iex(6)> r(Drop)
warning: redefining module Drop (current version defined in memory)
 lib/drop.ex:1

{:reloaded, Drop, [Drop]}
iex(7)> Drop.fall_velocity(:earth, 20)
:fast
iex(8)> Drop.fall_velocity(:moon, 20)
:moving
iex(9)> Drop.fall_velocity(:mars, 20)
:fast
iex(10)> Drop.fall_velocity(:earth, 30)
:speedy

If you want to capture the value produced by the cond construct in a variable, you
can. Just replace the cond do in the first line with something like description =
cond do.

Elixir evaluates the cond and if statements on the basis of truthi‐
ness. All values are considered to be true except nil and false.

if, or else
For simpler cases, Elixir also offers an if function that tests only a single clause, and
allows an else to follow if a failed test also requires action.

Example 4-5, in ch04/ex5-if, sends a warning to standard output (in this case IEx) if
you drop an object too fast. It uses the simpler cousin of cond, if, to decide whether
to put out the extra message.

Example 4-5. Sending an extra warning if the velocity is too high

defmodule Drop do

 def fall_velocity(planemo, distance) when distance >= 0 do
 gravity = case planemo do
 :earth -> 9.8
 :moon -> 1.6
 :mars -> 3.71
 end

Logic Inside of Functions | 43

 velocity = :math.sqrt(2 * gravity * distance)

 if velocity > 20 do
 IO.puts("Look out below!")
 else
 IO.puts("Reasonable...")
 end

 velocity

 end

end

The new if clause checks the velocity variable to see if it’s above 20. If it is, it calls
IO.puts, which creates a side effect: a message on the screen. If not, the else clause
puts a milder message on the screen (the velocity at the end makes sure that the cal‐
culated result is the return value):

iex(1)> Drop.fall_velocity(:earth, 50)
Look out below!
31.304951684997057
iex(2)> Drop.fall_velocity(:moon, 100)
Reasonable...
17.88854381999832

You can write if statements in a few different ways. If the if statement is compact
enough, it can be tempting to put it on a single line:

iex(3)> x=20
20
iex(4)> if x>10 do :large end
:large

That works well, and you can even add an else:

iex(5)> if x>10 do :large else :small end
:large

As an alternative, Elixir lets you put a colon after the do and then use a shorter form:

iex(6)> if x>10, do: :large, else: :small
:large

You may also find Elixir’s unless statement more readable than an if when you want
to test against an opposite:

iex(7)> unless x>10, do: :small, else: :large
:large

44 | Chapter 4: Logic and Recursion

Variable Assignment in case and if Constructs
Every possible path created in a case, cond, or if statement has the opportunity to
bind values to variables. This is usually a wonderful thing, but it can let you create
unstable programs by assigning different variables in different clauses. This might
look something like Example 4-6, which you can find in ch04/ex6-broken.

Example 4-6. A badly broken cond construct

defmodule Broken do

 def bad_cond(test_val) do

 cond do
 test_val < 0 -> x=1
 test_val >= 0 -> y=2
 end

 x+y

 end
end

The Elixir compiler warns you about this sort of questionable behavior and suggests
how you can rewrite it. The output has been reformatted to fit the page:

$ iex -S mix
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe]
 [kernel-poll:false]

Compiling 1 file (.ex)

warning: the variable "x" is unsafe as it has been set inside a
case/cond/receive/if/&&/||. Please explicitly return the variable value instead.
For example:

 case int do
 1 -> atom = :one
 2 -> atom = :two
 end

should be written as

 atom =
 case int do
 1 -> :one
 2 -> :two
 end

Unsafe variable found at:
 lib/broken.ex:10

Logic Inside of Functions | 45

;; similar warning for variable "y"
Generated broken app
Interactive Elixir (1.3.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

If you decide to ignore the warnings and insist upon using the broken function, you
will get an error at runtime:

iex(1)> Broken.bad_cond(20)
** (ArithmeticError) bad argument in arithmetic expression
 (broken) lib/broken.ex:10: Broken.bad_cond/1

Elixir also lifts Erlang’s tight rules on what can happen in the clause
being evaluated by if and cond. Erlang only lets you use the fea‐
tures available in guards, ensuring that there will be no side effects.
Elixir doesn’t have those limits.

The Gentlest Side Effect: IO.puts
Up until Example 4-5, all of our Elixir examples focused on a single path through a
group of functions. You put an argument or arguments in, and got a return value
back. That approach is the cleanest way to do things: you can count on things that
worked before to work again because there’s no opportunity to muck up the system
with leftovers of past processing.

Example 4-5 stepped outside of that model, creating a side effect that will linger after
the function is complete. The side effect is just a message that appears in the shell (or
in standard output when you start running Elixir outside of the shell). Applications
that share information with multiple users or keep information around for longer
than a brief processing cycle will need stronger side effects, like storing information
in databases.

Elixir best practice suggests using side effects only when you really need to. An appli‐
cation that presents an interface to a database, for example, really will need to read
from and write to that database. An application that interacts with users will need to
put information on the screen (or other interface) so that users can figure out what
they’re expected to do.

Side effects are also extremely useful for tracing logic when you are first starting out.
The simplest way to see what a program is doing, before you’ve learned how to use
the built-in tracing and debugging tools for processes, is to have the program report
its status at points you consider interesting. This is not a feature you want to leave in
shipping code, but when you’re getting started, it can give you an easily understanda‐
ble window into your code’s behavior.

46 | Chapter 4: Logic and Recursion

The IO.puts function lets you send information to the console, or, when you’re even‐
tually running code outside of the console, to other places. For now, you’ll just use it
to send messages from the program to the console. Example 4-5 showed the simplest
way to use IO.puts, just printing a message it takes in double quotes:

IO.puts("Look out below!")

IO.puts adds a newline to the end, telling the console to start any new messages it
sends at the beginning of the next line. This makes your results look a bit neater. If
you don’t want a newline, you can use IO.write instead. If you want to print a vari‐
able that isn’t a string, you can use IO.inspect.

Elixir flatly prohibits operations that could cause side effects in
guard expressions. If side effects were allowed in guards, then any
time a guard expression was evaluated—whether it returned true
or false—the side effect would happen. IO.puts wouldn’t likely do
anything terrible, but these rules mean that it too is blocked from
use in guard expressions.

Simple Recursion
The main tool you’ll use to repeat actions is recursion: having a function call itself
until it’s (hopefully) reached a conclusion. This can sound complicated, but it doesn’t
have to be.

There are two basic kinds of useful recursion. In some situations, you can count on
the recursion to reach a natural end. The process runs out of items to work on or rea‐
ches a natural limit. In other situations, there is no natural end, and you need to keep
track of the result so the process will end. If you can master these two basic forms,
you’ll be able to create many more complex variations.

There is a third form, in which the recursive calls never reach an
end. This is called an infinite loop and is best known as an error
you’ll want to avoid. As you’ll see in Chapter 9, though, even
unending recursion can be useful when you want to continually
receive messages from a process.

Counting Down
The simplest model of recursion with a natural limit is a countdown, like the one
used for rockets. You start with a large number and count down to zero. When you
reach zero, you’re done (and the rocket takes off, if there is one).

To implement this in Elixir, you’ll pass a starting number to an Elixir function. If the
number is greater than zero, it will then announce the number and call itself with the

Simple Recursion | 47

number minus one as the argument. If the number is zero (or less), it will announce
blastoff! and end. Example 4-7, found in ch04/ex7-countdown, shows one way to do
this.

Example 4-7. Counting down

defmodule Count do

 def countdown(from) when from > 0 do
 IO.inspect(from)
 countdown(from-1)
 end

 def countdown(from) do
 IO.puts("blastoff!")
 end

end

The last clause could have a guard—when from <= 0—but it would be useful only to
make it clear to human readers when the blastoff happens . Unnecessary guard clau‐
ses may lead to later confusion, so brevity is probably the best option here. However,
you’ll get a warning that from is unused in the final clause. Here’s a test run:

$ iex -S mix
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe]
 [kernel-poll:false]

Compiling 1 file (.ex)
warning: variable from is unused
 lib/count.ex:8

Generated count app
Interactive Elixir (1.3.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> Count.countdown(2)
2
1
blastoff!
:ok

The first time through, Elixir chose the first clause of countdown(from), passing it a
value of 2. That clause printed 2, plus a newline, and then it called the countdown
function again, passing it a value of 1. That triggered the first clause again. It printed
1, plus a newline, and then it called the countdown function again—this time passing
it a value of 0.

The value of 0 triggered the second clause, which printed blastoff! and ended. After
running three values through the same set of code, the function comes to a neat
conclusion.

48 | Chapter 4: Logic and Recursion

You could also implement this conclusion with an if statement
inside a single countdown(from) function clause, although this is
unusual in Elixir. We find guards more readable in these cases, but
you may see things differently.

Counting Up
Counting up is trickier because there’s no natural endpoint, so you can’t model your
code on Example 4-7. Instead, you can use an accumulator. An accumulator is an
extra argument that keeps track of the current result of past work, passing it back into
a recursive function. (You can have more than one accumulator argument if you
need, though one is often sufficient.) Example 4-8, which you can find in ch04/ex8-
countup, shows how to add a countup() function to the count module. This function
lets Elixir count up to a number.

Example 4-8. Counting up

defmodule Count do

 def countup(limit) do
 countup(1,limit)
 end

 defp countup(count, limit) when count <= limit do
 IO.inspect(count)
 countup(count+1, limit)
 end

 # use underscore to avoid "unused variable" warnings

 defp countup(_count, _limit) do
 IO.puts("finished!")
 end

end

It produces results like the following:

iex(1)> Count.countup(2)
1
2
finished!
:ok

The countup/2 function, which does most of the work, remains private and is not
exported. This isn’t mandatory—you might make it public if you wanted to support
counting between arbitrary values—but it’s a common practice. Keeping the recursive
internal functions private makes it less likely that someone will misuse them for

Simple Recursion | 49

purposes they’re not well suited to. In this case, it doesn’t matter at all, but it can make
a big difference in other more complex situations, especially when data is modified.

When you call countup/1, it calls countup/2 with an argument of 1 (for the current
count) and the limit value you provided for the upper limit.

If the current count is less than or equal to the upper limit, the first clause of the
countup/2 function reports the current count value with IO.puts. Then it calls itself
again, increasing the count by one but leaving the limit alone.

If the current count is greater than the upper limit, it fails the guard on the first
clause, so the second clause kicks in: it reports "Finished." and is done.

The guards here are sufficient to avoid infinite loops. You can enter
zero, negative numbers, or decimals as arguments to countup/1
and it will terminate neatly. You can get into serious trouble, how‐
ever, if your termination test relies on == or === for comparison to
a single value rather than >= or <= for comparison to a range.

Recursing with Return Values
The counting examples we’ve seen so far are simple—they demonstrate how recur‐
sion works, but just discard the return values. There are return values—the IO.puts
calls return the atom :ok—but they aren’t of much use. More typically, a recursive
function call will make use of the return value.

A classic recursive call calculates factorials. A factorial is the product of all positive
integers equal to or less than the argument. The factorial of 1 is 1; 1 by itself yields 1.
The factorial of 2 is 2; 2 × 1 yields 2. It starts to get interesting at 3, where 3 × 2 × 1 is
6. At 4, 4 × 3 × 2 × 1 is 24, and the results get rapidly larger with larger arguments.

There was a pattern to that, though. You can calculate the factorial of any integer by
multiplying the integer by the factorial of one less than that integer. That makes it a
perfect case for using recursion, using the results of smaller integers to calculate the
larger ones. This approach is similar to the countdown logic, but instead of just
counting, the program collects calculated results. That could look like Example 4-9,
which you’ll find in ch04/ex9-factorial-down.

Example 4-9. A factorial written with the counting-down approach

defmodule Fact do

 def factorial(n) when n > 1 do
 n * factorial(n - 1)
 end

50 | Chapter 4: Logic and Recursion

 def factorial(n) when n <= 1 do
 1
 end
end

The first clause of factorial, used for numbers greater than 1, uses the pattern previ‐
ously described. It returns a value that is the number, n, times the factorial of the next
integer down. The second clause returns the value 1 when n reaches 1. Using <= in
that comparison, rather than ==, gives the function more resilience against non-
integer or negative arguments, though the answers it returns aren’t quite right: facto‐
rials really only work for integers of 1 or higher. The results are as previously
suggested:

iex(1)> Fact.factorial(1)
1
iex(2)> Fact.factorial(3)
6
iex(3)> Fact.factorial(4)
24
iex(4)> Fact.factorial(40)
815915283247897734345611269596115894272000000000

This works, but it may not be clear why it works. Yes, the function counts down and
collects the values, but if you want to see the mechanism, you need to add some
IO.puts calls into the code, as shown in Example 4-10. (You can find this in ch04/
ex10-factorial-down-instrumented.)

Example 4-10. Looking into the factorial recursion calls

defmodule Fact do

 def factorial(n) when n > 1 do
 IO.puts("Calling from #{n}.")
 result = n * factorial(n - 1)
 IO.puts("#{n} yields #{result}.")
 result
 end

 def factorial(n) when n <= 1 do
 IO.puts("Calling from 1.")
 IO.puts("1 yields 1.")
 1
 end
end

There’s a bit more overhead here. To present the result of the recursive call and still
return that value to the next recursive call requires storing it in a variable, here called
result. The IO.puts call makes visible which value produced the result. Then,
because the last value expression in a function clause is the return value, result

Simple Recursion | 51

appears again. The second clause, for 1, is similar, except that it can report simply that
1 yields 1. because it always will.

When you compile this and run it, you’ll see something like the following:

iex(1)> Fact.factorial(4)
Calling from 4.
Calling from 3.
Calling from 2.
Calling from 1.
1 yields 1.
2 yields 2.
3 yields 6.
4 yields 24.
24

Although the calls count down the values, as the function logic would suggest, the
messages about results don’t appear until the countdown is complete, and then they
all appear in order, counting up.

The reason this happens is that the function calls don’t return values until the count‐
down is complete. Until then, Elixir builds a stack of frames corresponding to the
function calls. You can think of the frames as paused versions of the function logic,
waiting for an answer to come back. Once the call with an argument of 1 returns a
simple value, not calling any further, Elixir can unwind those frames and calculate the
result. That unwinding presents the results—“X yields Y.”—in the order that the
frames unwind.

That “unwinding” also means that the code in Examples 4-9 and 4-10 is not tail recur‐
sive. When Elixir encounters code that ends with a simple recursive call, it can opti‐
mize the handling to avoid keeping that stack of calls around. This probably doesn’t
matter for a one-time calculation, but it makes a huge difference when you write code
that will stay running for a long time.

You can achieve tail recursion for factorials by applying the counting-up approach to
factorials. You’ll get the same results—at least for integer values—but the calculations
will work a little differently, as shown in Example 4-11 (in ch04/ex11-factorial-up).

Example 4-11. A factorial written with the counting-up approach

defmodule Fact do

 def factorial(n) do
 factorial(1, n, 1)
 end

 defp factorial(current, n, result) when current <= n do
 new_result = result * current
 IO.puts("#{current} yields #{new_result}.")

52 | Chapter 4: Logic and Recursion

 factorial(current + 1, n, new_result)
 end

 defp factorial(_current, _n, result) do
 IO.puts("finished!")
 result
 end

end

As in the counting-up example, the main function call (here, factorial/1) calls a
private function, factorial/3. In this case, there are two accumulators. current
stores the current position in the count, whereas result is the answer from the previ‐
ous multiplication. When the value of current climbs past the limiting value n, the
first guard fails, the second clause is invoked, and the function is finished and returns
the result. (To avoid a compiler warning, we precede the accumulator variables
current and n with an underscore, because the final clause doesn’t use them.)

Because factorial/3’s last call in the recursive section is to itself, without any com‐
plications to track, it is tail recursive. Elixir can minimize the amount of information
it has to keep around while the calls all happen.

The calculation produces the same results, but does the math in a different order:

iex(1)> Fact.factorial(4)
1 yields 1.
2 yields 2.
3 yields 6.
4 yields 24.
finished!
24

Although the code is tracking more values, the runtime has less to do. When it finally
hits the final result, there’s no further calculation needed. That result is the result, and
it passes back through to the original call. This also makes it easier to structure the
IO.puts calls. If you remove them or comment them out, the rest of the code stays
the same.

Simple Recursion | 53

CHAPTER 5

Communicating with Humans

Elixir rebuilds the Erlang tools for working with strings from scratch, bringing them
up to speed for Unicode (UTF-8) and recognizing that strings deserve more focus
than just a list of characters. Chapter 4 showed you a bit of string handling and pre‐
sentation (IO.puts), but there are more pieces you’ll want to learn to handle commu‐
nications with people and sometimes with other applications. At the very least, this
chapter will let you build more convenient interfaces for testing your code than call‐
ing functions from IEx.

If you’re feeling completely excited about the recursion you learned
about in Chapter 4, you may want to jump ahead to Chapter 6,
where that recursion will once again be front and center.

Strings
Atoms are great for sending messages within a program, even messages that the pro‐
grammer can remember, but they’re not really designed for communicating outside
of the context of Erlang processes. If you need to be assembling sentences or even
presenting information, you’ll want something more flexible. Strings are the structure
you need. You’ve already used strings a little bit, as the double-quoted arguments to
IO.puts in Example 4-5:

IO.puts("Look out below!")

The double-quoted content (Look out below!) is a string. A string is a sequence of
characters. If you want to include a double quote within the string, you can escape it
with a backslash, like \". \n gives you a newline. To include a backslash, you have to
use \\. Appendix A includes a complete list of escapes and other options.

55

If you create a string in the shell, Elixir will report back the string with the escapes. To
see what it “really” contains, use IO.puts:

iex(1)> x= "Quote - \" in a string. \n Backslash, too: \\ . \n"
"Quote - \" in a string. \n Backslash, too: \\ . \n"
iex(2)> IO.puts(x)
Quote - " in a string.
 Backslash, too: \ .

:ok

If you start entering a string and don’t close the quotes, when you
press Enter IEx will just give you a newline with the same number.
This lets you include newlines in strings, but it can be very confus‐
ing. If you think you’re stuck, usually entering " will get you out of
it.

Elixir also provides operations for creating new strings. The simplest is concatenation,
where you combine two strings into one. Elixir uses the unusual-looking but func‐
tional <> operator:

iex(3)> "el" <> "ixir"
"elixir"
iex(4)> a="el"
"el"
iex(5)> a <> "ixir"
"elixir"

Elixir also has string interpolation, using {} as a wrapper around content to be added
to the string. You used this in Example 4-10 to see the value of variables:

IO.puts("#{n} yields #{result}.")

When Elixir encounters #{} in a string, it evaluates the expression in the braces to get
a value, converts it to a string if necessary, and combines the pieces into a single
string. That interpolation happens only once. Even if the variable used in the string
changes, the contents of the interpolated string will remain the same:

iex(6)> a = "this"
"this"
iex(7)> b = "The value of a is #{a}."
"The value of a is this."
iex(8)> a = "that"
"that"
iex(9)> b
"The value of a is this."

56 | Chapter 5: Communicating with Humans

You can put anything that returns a value in the interpolation: a variable, a function
call, or an operation on parts. We find it most readable to just have variables, but your
usage may vary. As with any other calculation, if the value to be interpolated can’t be
calculated, you’ll get an error.

Interpolation works only for values that are already strings or can naturally be con‐
verted to strings (such as numbers). If you want to interpolate any other sort of value,
you must wrap it in a call to the inspect function:

iex(10)> x = 7 * 5
35
iex(11)> "x is now #{x}"
"x is now 35"
iex(12)> y = {4, 5, 6}
{4,5,6}
iex(13)> "y is now #{y}"
** (Protocol.UndefinedError) protocol String.Chars not
implemented for {4, 5, 6}
 (elixir) lib/string/chars.ex:3:
 String.Chars.impl_for!/1
 (elixir) lib/string/chars.ex:17:
 String.Chars.to_string/1
iex(14)> "y is now #{inspect y}"
"y is now {4,5,6}"

Elixir also offers two options for comparing string equality, the == operator and the
=== (exact or strict equality) operator. The == operator is generally the simplest for
this, though the other produces the same results:

iex(15)> "el" == "el"
true
iex(16)> "el" == "ixir"
false
iex(17)> "el" === "el"
true
iex(18)> "el" === "ixir"
false

Elixir doesn’t offer functions for changing strings in place, as that would work badly
with a model where variable contents don’t change. However, it does offer a set of
functions for finding content in strings and dividing or padding those strings, which
together let you extract information from a string (or multiple strings) and recom‐
bine it into a new string.

If you want to do more with your strings, you should definitely explore the documen‐
tation for the String and Regex (regular expressions) Elixir modules.

Strings | 57

Multiline Strings
Multiline strings, sometimes called heredocs, let you create strings containing new‐
lines. Chapter 2 mentioned them briefly, as a convenience for creating documenta‐
tion, but you can use them for other purposes as well.

Unlike regular strings, multiline strings open and close with three double quotes:

iex(1)> multi = """
...(1)> This is a multiline
...(1)> string, also called a heredoc.
...(1)> """
"This is a multiline\nstring, also called a heredoc.\n"
iex(2)> IO.puts(multi)
This is a multiline
string, also called a heredoc.

:ok

Apart from the different way you enter them, you process multiline strings the same
way as any other strings.

Unicode
Elixir works well with Unicode (UTF-8) strings. The String.length/1 function
returns the number of Unicode graphemes in its argument. This is not necessarily the
same as the number of bytes in the string, as more than one byte is needed to repre‐
sent many Unicode characters. If you do need to know the number of bytes, you can
use the byte_size/1 function:

iex(1)> str="서울 - 대한민국" # Seoul, Republic of Korea
"서울 - 대한민국"
iex(2)> String.length(str)
9
iex(3)> byte_size(str)
21

Character Lists
Elixir’s string handling is a major change from Erlang’s approach. In Erlang, all the
strings are lists of characters; the same kind of lists you’ll learn about in Chapter 6. As
many Elixir programs will need to work with Erlang libraries, Elixir provides support
for character lists as well as strings.

58 | Chapter 5: Communicating with Humans

Character lists are slower to work with and take up more memory
than strings, so they shouldn’t be your first choice.

To create a character list, you use single quotes instead of double quotes:

iex(1)> x = 'ixir'
'ixir'

You concatenate character lists with ++ instead of <>:

iex(2)> 'el' ++ 'ixir'
'elixir'

You can convert character lists to strings with List.to_string/1 and strings to char‐
acter lists with String.to_char_list/1:

iex(3)> List.to_string('elixir')
"elixir"
iex(4)> String.to_char_list("elixir")
'elixir'

For purposes other than working with Erlang libraries, you should probably stick
with strings. (Chapter 6 will explain more about working with lists, and these may be
helpful if you have data that you want to treat explicitly as a list of characters.)

String Sigils
Elixir offers another way to create strings, character lists, and regular expressions you
can apply to the other two formats. String sigils tell the interpreter, “This is going to
be this kind of content.”

Sigils start with a ~ (tilde), then one of the letters s (for binary string), c (for character
list), r (for regular expression), or w (to produce a list split into words by whitespace).
If the letter is lowercase, then interpolation and escaping happen as usual. If the letter
is uppercase (S, C, R, or W), then the string is created exactly as shown, with no escap‐
ing or interpolation. After the letter, in addition to quotes, you can use slashes, square
brackets, pipe symbols (|), parentheses, braces, or angle brackets to start and end the
string.

This sounds complicated, but it works pretty easily. For example, if you needed to
create a string that contained escapes that some other tool was going to process, you
might write:

iex(1)> pass_through = ~S"This is a {#msg}, she said.\n This is only a {#msg}."
"This is a {#msg}, she said.\\n This is only a {#msg}."
iex(2)> IO.puts(pass_through)

String Sigils | 59

This is a {#msg}, she said.\n This is only a {#msg}.
:ok

Elixir also offers w and W, for lists of words. This sigil takes a binary string and splits it
into a list of strings separated by whitespace:

iex(3)> ~w/Elixir is great!/
["Elixir", "is", "great!"]

You can also create your own sigils for your own formats. See the
Elixir website for more on these possibilities.

Asking Users for Information
Many Elixir applications run kind of like wholesalers—in the background, providing
goods and services to retailers who interact directly with users. Sometimes, however,
it’s nice to have a direct interface to code that is a little more customized than the IEx
command line. You probably won’t write many Elixir applications whose primary
interface is the command line, but you may find that interface very useful when you
first try out your code. (Odds are good that if you’re working with Elixir, you don’t
mind using a command-line interface, either.)

You can mix input and output with your program logic, but for this kind of simple
facade, it probably makes better sense to put it in a separate module. In this case, the
Ask module will work with the Drop module from Example 3-8.

Gathering Characters
The IO.getn function will let you get just a few characters from the user. This seems
like it should be convenient if, for example, you have a list of options: present the
options to the user, and wait for a response. In Example 5-1, which you can find in
ch05/ex1-ask, the options are the list of planemos, which are numbered 1 through 3.
That means you just need a single-character response.

Example 5-1. Presenting a menu and waiting for a single-character response

defmodule Ask do

 def chars() do
 IO.puts("""
 Which planemo are you on?
 1. Earth
 2. Moon
 3. Mars

60 | Chapter 5: Communicating with Humans

http://bit.ly/1lbMOnw
http://bit.ly/1lbMOnw

 """)

 IO.getn("Which? > ")

 end
end

Most of that code is presenting the menu. The key piece is the IO.getn call at the end.
The first argument is a prompt, and the second is the number of characters you want
returned, with a default value of 1. The function still lets users enter whatever they
want until they press Enter, but it will tell you only the first character (or however
many characters you specified), and it will return it as a string:

iex(1)> c("ask.ex")
[Ask]
iex(2)> Ask.chars
Which planemo are you on?
1. Earth
2. Earth's Moon
3. Mars

Which? > 3
"3"
iex(3)>
nil
iex(4)>

The IO.getn function returns the string "3", the character the user entered before
pressing Enter. However, as you can tell by the nil and the duplicated command
prompt, the Enter still gets reported to IEx. This can get stranger if users enter more
content than is needed:

iex(5)> Ask.chars
Which planemo are you on?
1. Earth
2. Earth's Moon
3. Mars

Which? > 23456
"2"
iex(6)> 3456
3456
iex(7)>

There may be times when IO.getn is exactly what you want, but odds are good, at
least when working within IEx, that you’ll get cleaner results by taking in a complete
line of user input and picking what you want from it.

Asking Users for Information | 61

Reading Lines of Text
Elixir offers a few different functions that pause to request information from users.
The IO.gets function waits for the user to enter a complete line of text terminated by
a newline. You can then process the line to extract the information you want, and
nothing will be left in the buffer. Example 5-2, in ch05/ex2-ask, shows how this could
work, though extracting the information is somewhat more complicated than we
might like.

Example 5-2. Collecting user responses a line at a time

defmodule Ask do

 def line() do
 planemo=get_planemo()
 distance=get_distance()
 Drop.fall_velocity({planemo, distance})
 end

 defp get_planemo() do
 IO.puts("""
 Which planemo are you on?
 1. Earth
 2. Earth's Moon
 3. Mars
 """)

 answer = IO.gets("Which? > ")
 value=String.first(answer)
 char_to_planemo(value)
 end

defp get_distance() do
 input = IO.gets("How far? (meters) > ")
 value = String.strip(input)
 String.to_integer(value)
end

defp char_to_planemo(char) do
 case char do
 "1" -> :earth
 "2" -> :moon
 "3" -> :mars
 end
 end

end

The line function just calls three other functions. It calls get_planemo to present a
menu to the user and get a reply, and it similarly calls get_distance to ask the user

62 | Chapter 5: Communicating with Humans

the distance of the fall. Then it calls Drop.fall_velocity to return the velocity at
which a frictionless object will hit the ground when dropped from that height at that
location.

The get_planemo function uses IO.puts and a multiline string to present informa‐
tion and an IO.gets call to retrieve information from the user. Unlike IO.getn,
IO.gets returns the entire value the user entered as a string, including the newline,
and leaves nothing in the buffer:

defp get_planemo() do
 IO.puts("""
 Which planemo are you on?
 1. Earth
 2. Earth's Moon
 3. Mars
 """)

 answer = IO.gets("Which? > ")
 value=String.first(answer)
 char_to_planemo(value)
end

The last two lines process the result. The only piece of the response that matters to
this application is the first character of the response. The easy way to grab that is with
the built-in function String.first, which pulls the first character from a string.

The Drop.fall_velocity() function won’t know what to do with a planemo listed as
1, 2, or 3; it expects an atom of :earth, :moon, or :mars. The get_planemo function
concludes by returning the value of that conversion, performed by the function
char_to_planemo():

defp char_to_planemo(char) do
 case char do
 "1" -> :earth
 "2" -> :moon
 "3" -> :mars
 end
end

The case statement matches against the string. The atom returned by the case state‐
ment will be returned to the get_planemo/0 function, which will in turn return it to
the line/0 function for use in the calculation.

Getting the distance is somewhat easier:

defp get_distance() do
 input = IO.gets("How far? (meters) > ")
 value = String.strip(input)
 String.to_integer(value)
end

Asking Users for Information | 63

The input variable collects the user’s response to the question, “How far?” The pro‐
cessing for value uses String.strip to remove any surrounding whitespace from
input, including the newline at the end. Finally, the String.to_integer function
extracts an integer from value. Using String.to_integer isn’t perfect, but for these
purposes, it’s probably acceptable.

A sample run demonstrates that it produces the right results given the right input:

iex(1)> c("ask.ex")
[Ask]
iex(2)> c("drop.ex")
[Drop]
iex(3)> Ask.line
Which planemo are you on?
1. Earth
2. Earth's Moon
3. Mars

Which? > 1
How far? (meters) > 20
19.79898987322333
iex(4)> Ask.line
Which planemo are you on?
1. Earth
2. Earth's Moon
3. Mars

Which? > 2
How far? (meters) > 20
8.0

Chapter 10 will return to this code, looking at better ways to handle the errors users
can provoke by entering unexpected answers.

64 | Chapter 5: Communicating with Humans

The get_planemo() function works, but it is possible to write it in
a more idiomatc form. First, you can change the case to three sep‐
arate functions, each written on a single line with do:

defp char_to_planemo("1"), do: :earth
defp char_to_planemo("2"), do: :moon
defp char_to_planemo("3"), do: :mars

Also, instead of using intermediate variables in get_planemo and
get_distance/1, you can use the |> pipe operator:

 defp get_planemo() do
 IO.puts("""elixir enum.unzip
 Which planemo are you on?
 1. Earth
 2. Earth's Moon
 3. Mars
 """)

 IO.gets("Which? > ")
 |> String.first()
 |> char_to_planemo()
 end

defp get_distance() do
 IO.gets("How far? (meters) > ")
 |> String.strip()
 |> String.to_integer()
end

This updated version is in ch05/ex3-ask. If you do not feel comfort‐
able writing the one-line functions or using |>, you don’t have to,
but you should recognize it when you see such code in other peo‐
ple’s programs, as these techniques are very commonly used.

Asking Users for Information | 65

CHAPTER 6

Lists

Elixir is great at handling lists, long series of similar (or not) values. List processing
makes it easy to see the value of recursion and offers opportunities to get a lot of
work done for very little effort.

List Basics
An Elixir list is an ordered set of elements. Generally you will process a list in order,
from the first item (the head) to the last item, though there are times when you may
want to grab a particular item from the list. Elixir also provides built-in functions for
manipulating lists when you don’t want to go through the entire sequence.

Elixir syntax encloses lists in square brackets and separates elements with commas. A
list of numbers might look like the following:

[1,2,4,8,16,32]

The elements can be of any type, including numbers, atoms, tuples, strings, and other
lists. When you’re starting out, it’s definitely easiest to work with lists that contain
only a single type of element, rather than mixing all the possibilities, but Elixir itself
has no such constraint. There is also no limit on the number of items a list can con‐
tain, though eventually you may find practical limits of memory.

You can pattern match with lists just as you can with other Elixir data structures:

iex(1)> [1, x, 4, y] = [1, 2, 4, 8]
[1, 2, 4, 8]
iex(2)> x
2
iex(3)> y
8

67

Your code will usually make more sense if you use tuples to handle
data structures containing various kinds of data in a known
sequence, and lists to handle structures containing less-varied data
in unknown quantities. Tuples are expected to come in a certain
order and can also contain lists, so if you have a data structure
that’s mostly known except for an expanding part or two, including
a list inside of a tuple can be a workable solution.

Lists can contain lists, and sometimes this can produce surprising results. If, for
example, you want to add a list to a list, you may end up with more levels of list than
you planned:

iex(4)> insert = [2, 4, 8]
[2, 4, 8]
iex(5)> full = [1, insert, 16, 32]
[1, [2, 4, 8], 16, 32]

You can fix that (if you want to) with the List.flatten/1 function:

iex(6)> neat = List.flatten(full)
[1, 2, 4, 8, 16, 32]

This also means that if you want to append lists, you need to decide whether you’re
creating a list of lists or a single list containing the contents of the component lists. To
create a list of lists, you just put lists into lists:

iex(7)> a = [1, 2, 4]
[1, 2, 4]
iex(8)> b = [8, 16, 32]
[8, 16, 32]
iex(9)> list_of_lists = [a, b]
[[1, 2, 4], [8, 16, 32]]

To create a single list from multiple lists, you can use the Enum.concat/2 function or
the equivalent ++ operator:

iex(10)> combined = Enum.concat(a, b)
[1, 2, 4, 8, 16, 32]
iex(11)> combined2 = a ++ b
[1, 2, 4, 8, 16, 32]

Both produce the same result: a combined and flattened list.

The ++ operator is right associative, which can change the order of
the resulting list when you append multiple lists.

68 | Chapter 6: Lists

If you have a set of lists you’d like combined, you can use the Enum.concat/1 func‐
tion, which takes a list of lists as its argument and returns a single list containing their
contents:

iex(12)> c = [64, 128, 256]
[64, 128, 256]
iex(13)> combined3 = Enum.concat([a, b, c])
[1, 2, 4, 8, 16, 32, 64, 128, 256]

Splitting Lists into Heads and Tails
Lists are a convenient way to hold piles of similar data, but their great strength in
Elixir is the way they make it easy to do recursion. Lists are a natural fit for the
counting-down style of logic explored in “Counting Down” on page 47: you can run
through a list until you run out of items. In many languages, running through a list
means finding out how many items it contains and going through them sequentially.
Elixir takes a different approach, letting you process the first item in a list, the head,
while extracting the rest of the list, the tail, so that you can pass it to another call
recursively.

To extract the head and the tail, you use pattern matching, with a special form of the
list syntax on the left:

[head | tail] = [1,2,4]

The two variables separated by a vertical bar (|), or cons, for list constructor, will be
bound to the head and tail of the list on the right. In the console, Elixir will just report
the contents of the right side of the expression, not the fragments created by the pat‐
tern match, but if you work through a list you can see the results:

iex(1)> list = [1, 2, 4]
[1, 2, 4]
iex(2)> [h1 | t1] = list
[1, 2, 4]
iex(3)> h1
1
iex(4)> t1
[2, 4]
iex(5)> [h2 | t2] = t1
[2, 4]
iex(6)> h2
2
iex(7)> t2
[4]
iex(8)> [h3 | t3] = t2
[4]
iex(9)> h3
4
iex(10)> t3
[]

Splitting Lists into Heads and Tails | 69

iex(11)> [h4 | t4] = t3
** (MatchError) no match of right hand side value: []

Line 2 copies the initial list into two smaller pieces. h1 will contain the first item of
the list, whereas t1 will contain a list that has everything except the first element. Line
5 repeats the process on the smaller list, breaking t1 into an h2 and a t2. This time t2
is still a list, as shown on line 7, but it contains only one item. Line 8 breaks that
single-item list again, putting the value into h3 and an empty list into t3.

What happens when you try to split an empty list, as shown on line 11? Elixir reports
an error, "no match...". This fortunately does not mean that recursion on lists is
doomed to produce errors. That lack of a match will naturally stop the recursive pro‐
cess, which is probably what you want.

Since extracting the head and tail gives you the first and remaining
elements in a list, you use them when you want to move forward
through a list. If order matters and you really need to go through a
list backward, you’ll need to use the Enum.reverse function and
then walk through the reversed list.

Processing List Content
The head-and-tail notation was built for recursive processing. Actually making that
work typically follows a pattern in which a list arrives as an argument and is then
passed to another (usually private) function with an accumulator argument. A simple
case might perform a calculation on the contents of the list. Example 6-1, in ch06/ex1-
product, shows this pattern in use, multiplying the values of a list together.

Example 6-1. Calculating the product of values in a list

defmodule Overall do
 def product([]) do
 0
 end

 def product(list) do
 product(list, 1)
 end

 def product([], accumulated_product) do
 accumulated_product
 end

 def product([head | tail], accumulated_product) do
 product(tail, head * accumulated_product)
 end
end

70 | Chapter 6: Lists

In this module, the product/1 function is the gateway, passing the list (if the list has
content) plus an accumulator to product/2, which does the real work. If you wanted
to test the arriving list to make sure it meets your expectations, it would probably
make the most sense to do that work in product/1, and let product/2 focus on recur‐
sive processing.

Is the product of an empty list really zero? It might make more
sense for an empty list to fail and produce a crash. Elixir’s “let it
crash” philosophy is, as you’ll see later, pretty calm about such
things. In the long run, you’ll have to decide which cases are better
left to crash and which shouldn’t.

The product/2 function has two clauses. The first matches the empty list and will get
called at the end of the recursive process when there are no more entries to process,
or if the list arrives empty. It returns its second argument, the accumulator.

The second clause does more work if the arriving list is not empty. First, the pattern
match ([head|tail]) splits off the first value in the list from the rest of the list. Next,
it calls product/2 again, with the remaining (if any) portion of the list and a new
accumulator that is multiplied by the value of the first entry in the list. The result will
be the product of the values included in the list:

iex(1)> Overall.product([1, 2, 3, 5])
30

That went smoothly, but what happened? After product/1 called product/2, it made
five iterations over the list, concluding with an empty list, as shown in Table 6-1.

Table 6-1. Recursive processing of a simple list in product/2

Arriving list Arriving product Head Tail

[1, 2, 3, 5] 1 1 [2, 3, 5]

[2, 3, 5] 1 (1*1) 2 [3, 5]

[3, 5] 2 (1*2) 3 [5]

[5] 6 (2*3) 5 []

[] 30 (6*5) None None

The last arriving accumulated_product, 30, will be handled by the clause for the
empty list and reported as the return value for product/2. When product/1 receives
that value, it will also report 30 as its return value and exit.

Processing List Content | 71

Because strings in single quotes are lists, you can do strange things
like enter Overall.product('funny'). product/1 will interpret
the character values as numbers and return 17472569400.

Creating Lists with Heads and Tails
While there are times you want to calculate a single value from a list, much list pro‐
cessing involves modifying lists or converting a list into another list. Because you
can’t actually change a list, modifying or converting a list means creating a new list.
To do that, you use the same vertical bar head/tail syntax, but on the right side of the
pattern match instead of the left. You can try this out in the console, though it’s more
useful in a module:

iex(1)> x = [1 | [2, 3]]
[1, 2, 3]

Elixir interprets [1|[2,3]] as creating a list. If the value to the right of the vertical bar
is a list, the head gets prepended to that list (put on the front of it). In this case, the
result is a neat list of numbers. There are a few other forms you should be aware of:

iex(2)> y = [1, 2 | [3]]
[1, 2, 3]
iex(3)> z = [1, 2 | 3]
[1, 2 | 3]

In line 2, there isn’t a list wrapped around the now two items in the head, but the
constructor still blends the head and the tail together seamlessly. (If you do wrap
them in square brackets, the list constructor assumes that you want a list as the first
item in the list, so [[1,2] | [3]] will produce [[1,2],3].)

However, line 3 demonstrates what happens if you don’t wrap the tail in square brack‐
ets—you get a list, called an improper list, that still contains a constructor, with a
strange tail. Until you’ve learned your way quite thoroughly around Elixir, you defi‐
nitely should avoid this, as it will create runtime errors if you try to process it as a
normal list. Eventually you may find rare reasons to do this or encounter code that
uses it.

More typically, you’ll use list constructors to build lists inside recursive functions.
Example 6-2, which you can find in ch06/ex2-drop, starts from a set of tuples repre‐
senting planemos and distances. With the help of the Drop module from Example 3-8,
it creates a list of velocities for the corresponding falls.

Example 6-2. Calculating a series of drop velocities, with an error

defmodule ListDrop do
 def falls(list) do

72 | Chapter 6: Lists

 falls(list, [])
 end

 def falls([], results) do
 results
 end

 def falls([head|tail], results) do
 falls(tail, [Drop.fall_velocity(head) | results])
 end
end

Much of this is familiar, except that the results variable gets a list instead of a num‐
ber, and the last line of falls/2 creates a list instead of a single value. If you run it,
however, you’ll see one minor problem:

$ iex -S mix
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe]
 [kernel-poll:false]

Compiling 2 files (.ex)
Generated list_drop app
Interactive Elixir (1.3.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>> ListDrop.falls([{:earth, 20}, {:moon, 20}, {:mars, 20}])
[12.181953866272849, 8.0, 19.79898987322333]

The resulting velocities are reversed: the Earth has more gravity than Mars, and
objects should fall faster on Earth. What happened? That last key line in falls/2 is
reading a list from the beginning to the end and creating a list from the end to the
beginning. That puts the values in the wrong order. Fortunately, as Example 6-3 (in
ch06/ex3-drop) demonstrates, this is easy to fix. You need to call Enum.reverse/1 in
the clause of the falls/2 function that handles the empty list.

Example 6-3. Calculating a series of drop velocities, with the error fixed

defmodule ListDrop do
 def falls(list) do
 falls(list, [])
 end

 def falls([], results) do
 Enum.reverse(results)
 end

 def falls([head|tail], results) do
 falls(tail, [Drop.fall_velocity(head) | results])
 end
end

Creating Lists with Heads and Tails | 73

Now it works:

iex(2)> r(ListDrop)
warning: redefining module ListDrop (current version loaded from
 _build/dev/lib/list_drop/ebin/Elixir.ListDrop.beam)
 lib/list_drop.ex:1
iex(3)> ListDrop.falls([{:earth, 20}, {:moon, 20}, {:mars, 20}])
[19.79898987322333, 8.0, 12.181953866272849]

You could instead have put the Enum.reverse/1 call in the falls/1
gateway function. Either way is fine, though we prefer to have
falls/2 return a finished result.

Mixing Lists and Tuples
As you get deeper into Elixir and pass around more complex data structures, you may
find that you’re processing lists full of tuples, or that it would be more convenient to
rearrange two lists into a single list of tuples or vice versa. The Enum module includes
easy solutions to these kinds of transformations and searches.

The simplest tools are the Enum.zip/2 and Enum.unzip/1 functions. They can turn
two lists of the same size into a list of tuples or a list of tuples into a tuple of two lists:

iex(1)> list1 = ["Hydrogen", "Helium", "Lithium"]
["Hydrogen", "Helium", "Lithium"]
iex(2)> list2 = ["H", "He", "Li"]
["H", "He", "Li"]
iex(3)> element_list = Enum.zip(list1, list2)
[{"Hydrogen", "H"}, {"Helium", "He"}, {"Lithium", "Li"}]
iex(4)> separate_lists = Enum.unzip(element_list)
{["Hydrogen", "Helium", "Lithium"], ["H", "He", "Li"]}

The two lists, list1 and list2, have different contents but the same number of items.
The List.zip/1 function returns a list containing a tuple for each of the items in the
original lists. The List.unzip/1 function takes that list of two-component tuples and
splits it out into a tuple containing two lists.

Building a List of Lists
While simple recursion isn’t too complicated, list processing has a way of turning into
lists of lists in various stages. Pascal’s triangle, a classic mathematical tool, is relatively
simple to create but demonstrates more intricate work with lists. It starts with a 1 at
the top, and then each new row is composed of the sum of the two numbers above it:

74 | Chapter 6: Lists

 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
...

If those numbers seem familiar, it’s probably because they’re the binomial coefficents
that appear when you put (x+y) to a power. That’s just the beginning of this mathe‐
matical marvel!

Pascal’s triangle is easily calculated with Elixir in a number of ways. You can apply the
list techniques already discussed in this chapter by treating each row as a list, and the
triangle as a list of lists. The code will be seeded with the first row—the top 1—repre‐
sented as [0,1,0]. The extra zeros make the addition much simpler.

This is not intended to be an efficient, elegant, or maximally com‐
pact implementation. At this point, a naive implementation likely
explains more about lists.

For a first step, Example 6-4, found in ch06/ex4-pascal, calculates rows individually.
This is a simple recursive process, walking over the old list and adding its contents to
create a new list.

Example 6-4. Calculating a row

defmodule Pascal do
 def add_row(initial) do
 add_row(initial, 0, [])
 end

 def add_row([], 0, final) do
 [0 | final]
 end

 def add_row([h | t], last, new) do
 add_row(t, h, [last + h | new])
 end
end

The add_row/1 function sets things up, sending the current row a 0 to get the math
started and an empty list you can think of as “where the results go,” though it is really
an accumulator. The add_row/3 function has two clauses. The first checks to see if the
list being added is empty. If it is, then the function reports back the final row, adding
a 0 at the front.

Building a List of Lists | 75

Most of the work gets done in the second clause of add_row/3. When it receives its
arguments, the [h | t] pattern match splits the head of the list into the h value (a
number) and the tail into t (a list, which may be empty if that was the last number). It
also gets values for the last number processed and the current new list being built.

It then makes a recursive call to add_row/3. In that new call, the tail of the old list, t,
is the new list to process; the h value becomes the last number processed; and the
third argument, the list, opens with the actual addition being performed, which is
then combined with the rest of the new list being built.

Because the lists in the triangle are symmetrical, there is no need to
use Enum.reverse/1 to flip them. You can, of course, if you want
to.

You can test this easily from the console, but remember that your test lists need to be
wrapped in zeros:

iex(1)> Pascal.add_row([0, 1, 0])
[0, 1, 1, 0]
iex(2)> Pascal.add_row([0, 1, 1, 0])
[0, 1, 2, 1, 0]
iex(3)> Pascal.add_row([0, 1, 2, 1, 0])
[0, 1, 3, 3, 1, 0]

Now that you can create a new row from an old one, you need to be able to create a
set of rows from the top of the triangle, as shown in Example 6-5, which you can find
in ch06/ex4-pascal. The add_row/3 function effectively counted down to the end of
the list, but triangle/3 will need to count up to a given number of rows. The trian
gle/1 function sets things up, defining the initial row, setting the counter to 1
(because that initial row is the first row), and passing on the number of rows to be
created.

The triangle/3 function has two clauses. The first, the stop clause, halts the recur‐
sion when enough rows have been created and reverses the list. (The individual rows
may be symmetrical, but the triangle itself is not.) The second clause does the actual
work of generating new rows. It gets the previous row generated from the list, and
then it passes that to the add_row/1 function, which will return a new row. Then it
calls itself with the new list, an incremented count, and the rows value the stop clause
needs.

76 | Chapter 6: Lists

Example 6-5. Calculating the whole triangle with both functions

defmodule Pascal do
 def triangle(rows) do
 triangle([[0,1,0]], 1, rows)
 end

 def triangle(list, count, rows) when count >= rows do
 Enum.reverse(list)
 end

 def triangle(list, count, rows) do
 [previous | _] = list
 triangle([add_row(previous) | list], count + 1, rows)
 end

 def add_row(initial) do
 add_row(initial, 0, [])
 end

 def add_row([], 0, final) do
 [0 | final]
 end

 def add_row([h | t], last, new) do
 add_row(t, h, [last + h | new])
 end
end

Happily, this works:

iex(4)> r(Pascal)
warning: redefining module Pascal (current version loaded from
 _build/dev/lib/pascal/ebin/Elixir.Pascal.beam)
 lib/pascal.ex:1

{:reloaded, Pascal, [Pascal]}
iex(5)> Pascal.triangle(4)
[[0, 1, 0], [0, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 3, 3, 1, 0]]
iex(6)> Pascal.triangle(6)
[[0, 1, 0], [0, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 3, 3, 1, 0],
[0, 1, 4, 6, 4, 1, 0], [0, 1, 5, 10, 10, 5, 1, 0]]

Pascal’s triangle may be a slightly neater set of lists than most you will process, but
this kind of layered list processing is a very common tactic for processing and gener‐
ating lists of data.

Building a List of Lists | 77

CHAPTER 7

Name-Value Pairs

Tuples and lists are powerful tools for creating complex data structures, but there are
two key pieces missing from the story so far. Tuples are relatively anonymous struc‐
tures. Relying on a specific order and number of components in tuples can create
major maintenance headaches. Lists have similar problems: the usual approaches to
list processing in Elixir assume that lists are just sequences of (often) similar parts.

Sometimes you want to call things out by name instead of number, or pattern match
to a specific location. Elixir has many different options for doing just that.

Maps and structs appeared late in Elixir’s development. They layer
directly on features Erlang introduced in R17. In the long run,
maps and structs will probably become the key pieces to know, but
you may need the rest for compatibility with older Erlang code.

Keyword Lists
Sometimes you need to process lists of tuples containing two elements that can be
considered as a “key and value” pair, where the key is an atom. Elixir displays them in
keyword list format, and you may enter them in that format as well:

iex(1)> planemo_list = [{:earth, 9.8}, {:moon, 1.6}, {:mars, 3.71}]
[earth: 9.8, moon: 1.6, mars: 3.71]
iex(2)> atomic_weights = [hydrogen: 1.008, carbon: 12.011, sodium: 22.99]
[hydrogen: 1.008, carbon: 12.011, sodium: 22.99]
iex(3)> ages = [david: 59, simon: 40, cathy: 28, simon: 30]
[david: 59, simon: 40, cathy: 28, simon: 30]

A keyword list is always sequential and can have duplicate keys. Elixir’s Keyword mod‐
ule lets you access, delete, and insert values via their keys.

79

Use Keyword.get/3 to retrieve the first value in the list with a given key. The optional
third argument to Keyword.get provides a default value to return in case the key is
not in the list. Keyword.fetch!/2 will raise an error if the key is not found.
Keyword.get_values/2 will return all the values for a given key:

iex(4)> Keyword.get(atomic_weights, :hydrogen)
1.008
iex(5)> Keyword.get(atomic_weights, :neon)
nil
iex(6)> Keyword.get(atomic_weights, :carbon, 0)
12.011
iex(7)> Keyword.get(atomic_weights, :neon, 0)
0
iex(8)> Keyword.fetch!(atomic_weights, :neon)
** (KeyError) key :neon not found in:
 [hydrogen: 1.008, carbon: 12.011, sodium: 22.99]
 (elixir) lib/keyword.ex:312: Keyword.fetch!/2
iex(8)> Keyword.get_values(ages, :simon)
[40,30]

You can use Keyword.has_key?/2 to see if a key exists in the list:

iex(9)> Keyword.has_key?(atomic_weights, :carbon)
true
iex(10)> Keyword.has_key?(atomic_weights, :neon)
false

To add a new value, use Keyword.put_new/3. If the key already exists, its value
remains unchanged:

iex(11)> weights2 = Keyword.put_new(atomic_weights, :helium, 4.0026)
[helium: 4.0026, hydrogen: 1.008, carbon: 12.011, sodium: 15.999]
iex(12)> weights3 = Keyword.put_new(weights2, :helium, -1)
[helium: 4.0026, hydrogen: 1.008, carbon: 12.011, sodium: 22.99]

To replace a value, use Keyword.put/3. If the key doesn’t exist, it will be created. If it
does exist, all entries for that key will be removed and the new entry added:

iex(13)> ages2 = Keyword.put(ages, :chung, 19)
[chung: 19, david: 59, simon: 40, cathy: 28, simon: 30]
iex(14)> ages3 = Keyword.put(ages2, :simon, 22)
[simon: 22, chung: 19, david: 59, cathy: 28]

All of these functions are copying lists or creating new modified
versions of a list. As you’d expect in Elixir, the original list remains
untouched.

If you want to delete all entries for a key, use Keyword.delete/2. To delete only the
first entry for a key, use Keyword.delete_first/2:

80 | Chapter 7: Name-Value Pairs

iex(15)> ages2
[chung: 19, david: 59, simon: 40, cathy: 28, simon: 30]
iex(16)> ages4 = Keyword.delete(ages2, :simon)
[chung: 19, david: 59, cathy: 28]

Lists of Tuples with Multiple Keys
If you create the list of atomic weights with tuples that include both the element name
and its chemical symbol, you can use either the first or the second element in the
tuple as a key:

iex(1)> atomic_info = [{:hydrogen, :H, 1.008}, {:carbon, :C, 12.011},
...(1)> {:sodium, :Na, 22.99}]
[{:hydrogen, :H, 1.008}, {:carbon, :C, 12.011}, {:sodium, :Na, 22.99}]

If you have data structured this way, you can use the List.keyfind/4, List.keymem
ber?/3, List.keyreplace/4, List.keystore/4, and List.keydelete/3 functions to
manipulate the list. Each of these functions takes the list as its first argument. The
second argument is the key you want to find, and the third argument is the position
within the tuple that should be used as the key, with 0 as the first element:

iex(2)> List.keyfind(atomic_info, :H, 1)
{:hydrogen, :H, 1.008}
iex(3)> List.keyfind(atomic_info, :carbon, 0)
{:carbon, :C, 12.011}
iex(4)> List.keyfind(atomic_info, :F, 1)
nil
iex(5)> List.keyfind(atomic_info, :fluorine, 0, {})
{}
iex(6)> List.keymember?(atomic_info, :Na, 1)
true
iex(7)> List.keymember?(atomic_info, :boron, 0)
false
iex(8)> atomic_info2 = List.keystore(atomic_info, :boron, 0,
...(8)> {:boron, :B, 10.081})
[{:hydrogen, :H, 1008}, {:carbon, :C, 12.011}, {:sodium, :Na, 22.99},
 {:boron, :B, 10.081}]
iex(9)> atomic_info3 = List.keyreplace(atomic_info2, :B, 1,
...(9)> {:boron, :B, 10.81})
[{:hydrogen, :H, 1008}, {:carbon, :C, 12.011}, {:sodium, :Na, 22.99},
 {:boron, :B, 10.81}]
iex(10)> atomic_info4 = List.keydelete(atomic_info3, :fluorine, 0)
[{:hydrogen, :H, 1008}, {:carbon, :C, 12.011}, {:sodium, :Na, 22.99},
 {:boron, :B, 10.81}]
iex(11)> atomic_info5 = List.keydelete(atomic_info3, :carbon, 0)
[{:hydrogen, :H, 1008}, {:sodium, :Na, 22.99}, {:boron, :B, 10.81}]

Lines 2 and 3 show that you can search the list by chemical name (position 0) or sym‐
bol (position 1). By default, trying to find a key that doesn’t exist returns nil (line 4),

Lists of Tuples with Multiple Keys | 81

but you may return any value you choose (line 5). Lines 6 and 7 show the use of
List.keymember?.

To add new values, you must give a complete tuple as the last argument, as shown in
line 8. The value for the atomic weight of boron was deliberately entered incorrectly.
Line 9 uses List.keyreplace to correct the error.

You can also use List.keyreplace to replace the entire tuple. If
you wanted to replace boron with zinc, you would have typed:

iex(9)> atomic_info3 = List.keyreplace(atomic_info2, :B,
...(9)> 1, {:zinc, :Zn, 65.38})

Lines 10 and 11 show what happens when you use List.keydelete on an entry that
is not in the list and on one that is in the list.

Hash Dictionaries
If you know that your keys will be unique, you can create a hash dictionary (Hash
Dict), which is an associative array. Hash dictionaries aren’t really lists, but we’re
including them in this chapter because all of the functions that you have used with a
keyword list will work equally well with a HashDict. The advantage of a HashDict
over a keyword list is that it works well for large amounts of data. In order to use a
hash dictionary, you must explicitly create it with the HashDict.new function:

iex(1)> planemo_hash = Enum.into([earth: 9.8, moon: 1.6, mars: 3.71],
...(1)> HashDict.new())
#HashDict<[earth: 9.8, mars: 3.71, moon: 1.6]>
iex(2)> HashDict.has_key?(planemo_hash, :moon)
true
iex(3)> HashDict.has_key?(planemo_hash, :jupiter)
false
iex(4)> HashDict.get(planemo_hash, :jupiter)
nil
iex(5)> HashDict.get(planemo_hash, :jupiter, 0)
0
iex(6)> planemo_hash2 = HashDict.put_new(planemo_hash, :jupiter, 99.9)
#HashDict<[moon: 1.6, mars: 3.71, jupiter: 99.9, earth: 9.8]>
iex(7)> planemo_hash3 = HashDict.put_new(planemo_hash2, :jupiter, 23.1)
#HashDict<[moon: 1.6, mars: 3.71, jupiter: 99.9, earth: 9.8]>
iex(8)> planemo_hash4 = HashDict.put(planemo_hash3, :jupiter, 23.1)
#HashDict<[moon: 1.6, mars: 3.71, jupiter: 23.1, earth: 9.8]>
iex(9)> planemo_hash5 = HashDict.delete(planemo_hash4,:saturn)
#HashDict<[moon: 1.6, mars: 3.71, jupiter: 23.1, earth: 9.8]>
iex(10)> planemo_hash6 = HashDict.delete(planemo_hash4, :jupiter)
#HashDict<[moon: 1.6, mars: 3.71, earth: 9.8]>

82 | Chapter 7: Name-Value Pairs

Line 6 deliberately sets Jupiter’s gravity to an incorrect value. Line 7 shows that Hash
Dict.put_new/2 will not update an existing value; line 8 shows that HashDict.put
will update existing values. Line 9 shows that attempting to delete a nonexistent key
from a hash dictionary leaves it unchanged.

Use of HashDicts is deprecated, and they will be removed from
Elixir in version 2.0. Instead, use maps, which are much faster.

From Lists to Maps
Keyword lists are a convenient way to address content stored in lists by key, but
underneath, Elixir is still walking through the list. That might be OK if you have
other plans for that list requiring walking through all of it, but it can be unnecessary
overhead if you’re planning to use keys as your only approach to the data.

The Erlang community, after dealing with these issues for years, added a new set of
tools to R17: maps. (The initial implementation is partial but will get you started.)
Elixir simultaneously added support for the new feature, with, of course, a distinctive
Elixir syntax.

Creating Maps
The simplest way to create a map is to use %{} to create an empty map:

iex(1)> new_map = %{}
%{}

Frequently, you’ll want to create maps with at least some initial values. Elixir offers
two ways to do this. You use the same %{} syntax, but put some extra declarations
inside:

iex(2)> planemo_map = %{:earth => 9.8, :moon => 1.6, :mars => 3.71}
%{earth: 9.8, mars: 3.71, moon: 1.6}

The map now has keys that are the atoms :earth, :moon, and :mars, pointing to the
values 9.8, 1.6, and 3.71, respectively. The nice thing about this syntax is that you can
use any kind of value as the key. It’s perfectly fine, for example, to use numbers for
keys:

iex(3)> number_map=%{2 => "two", 3 => "three"}
%{2 => "two", 3 => "three"}

However, atoms are probably the most common keys, and Elixir offers a more con‐
cise syntax for creating maps that use atoms as keys:

From Lists to Maps | 83

iex(4)> planemo_map_alt = %{earth: 9.8, moon: 1.6, mars: 3.71}
%{earth: 9.8, mars: 3.71, moon: 1.6}

The responses created by IEx in lines 2 and 4 are identical, and Elixir itself will use
the more concise syntax if appropriate.

Updating Maps
If the strength of a planemo’s gravitational field changes, you can easily fix that with:

iex(5)> altered_planemo_map = %{planemo_map | earth: 12}
%{earth: 12, mars: 3.71, moon: 1.6}

or:

iex(6)> altered_planemo_map = %{planemo_map | :earth => 12}
%{earth: 12, mars: 3.71, moon: 1.6}

You can update multiple key-value pairs if you want, with syntax like %{planemo_map
| earth: 12, mars:3} or %{planemo_map | :earth => 12, :mars => 3}. The |
notation will work only if a key already exists in the map. If it does not exist, you will
get a KeyError.

You may also want to add another key-value pair to a map. You can’t, of course,
change the map itself, but the Map.put_new library function can easily create a new
map that includes the original map plus an extra value:

iex(7)> extended_planemo_map = Map.put_new(planemo_map, :jupiter, 23.1)
%{earth: 9.8, jupiter: 23.1, mars: 3.71, moon: 1.6}

Reading Maps
Elixir lets you extract information from maps through pattern matching. The same
syntax works whether you’re matching in a variable line or in a function clause. Need
the gravity for Earth?

iex(8)> %{earth: earth_gravity} = planemo_map
%{earth: 9.8, mars: 3.71, moon: 1.6}
iex(9)> earth_gravity
9.8

If you ask for a value for a key that doesn’t exist, you’ll get an error. If you need to
pattern match “any map,” just use the empty map, %{}.

From Maps to Structs
One shortcoming of tuples, keyword lists, and maps is that they are fairly unstruc‐
tured. When you use tuples, you are responsible for remembering the order in which
the data items occur in the tuple. With keyword lists and maps, you can add a new
key at any time or misspell a key name, and Elixir will not complain. Elixir structs

84 | Chapter 7: Name-Value Pairs

overcome these problems. They are based on maps, so the order of key-value pairs
doesn’t matter, but a struct also keeps track of the key names and makes sure you
don’t use invalid keys.

Setting Up Structs
Using structs requires telling Elixir about them with a special declaration. You use a
defstruct declaration (actually a macro, as you’ll see later) inside of a defmodule
declaration:

defmodule Planemo do
 defstruct name: :nil, gravity: 0, diameter: 0, distance_from_sun: 0
end

That defines a struct named Planemo, containing fields named name, gravity,
diameter, and distance_from_sun with their default values. This declaration creates
structs for different towers for dropping objects:

defmodule Tower do
 defstruct location: "", height: 20, planemo: :earth, name: ""
end

Creating and Reading Structs
Find these in ch07/ex1-struct, compile them in IEx, and you can start using the structs
to store data. As you can see on line 1, creating a new struct with empty {} applies the
default values, while specifying values as shown on line 4 overrides all the defaults:

$ iex -S mix
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe]
 [kernel-poll:false]

Compiling 2 files (.ex)
Generated tower app
Interactive Elixir (1.3.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> tower1 = %Tower{}
%Tower{height: 20, location: "", name: "", planemo: :earth}
iex(2)> tower2 = %Tower{location: "Grand Canyon"}
%Tower{height: 20, location: "Grand Canyon", name: "", planemo: :earth}
iex(3)> tower3 = %Tower{location: "NYC", height: 241, name: "Woolworth Building"}
%Tower{height: 241, location: "NYC", name: "Woolworth Building",
 planemo: :earth}
iex(4)> tower4 = %Tower{location: "Rupes Altat 241", height: 500,
...(4)> planemo: :moon, name: "Piccolini View"}
%Tower{height: 500, location: "Rupes Altat 241", name: "Piccolini View",
 planemo: :moon}
iex(5)> tower5 = %Tower{planemo: :mars, height: 500,
...(5)> name: "Daga Vallis", location: "Valles Marineris"}
%Tower{height: 500, location: "Valles Marineris", name: "Daga Vallis",
 planemo: :mars}

From Maps to Structs | 85

iex(6)> tower5.name
"Daga Vallis"

These towers (or at least drop sites) demonstrate a variety of ways to use the record
syntax to create variables as well as interactions with the default values:

• Line 1 just creates tower1 with the default values. You can add real values later.
• Line 2 creates a tower2 with a location, but otherwise relies on default values.
• Line 3 overrides the default values for location, height, and name, but leaves the
planemo alone.

• Line 4 overrides all of the default values.
• Line 5 replaces all of the default values, and also demonstrates that it doesn’t mat‐

ter in what order you list the name-value pairs. Elixir will sort it out.

Once you have values in your structs, you can extract the values using the dot nota‐
tion shown on line 6, which may be familiar from other programming languages.

Pattern Matching Against Structs
Since structures are maps, pattern matches against structures work in exactly the
same way as they do for maps:

iex(7)> %Tower{planemo: p, location: where} = tower5
%Tower{height: 500, location: "Valles Marineris", name: "Daga Vallis",
 planemo: :mars}
iex(8)> p
:mars
iex(9)> where
"Valles Marineris"

Using Structs in Functions
You can pattern match against structures submitted as arguments. The simplest way
to do this is to just match against the struct, as shown in Example 7-1, which is in
ch07/ex2-struct-match.

Example 7-1. A method that pattern matches a complete record

defmodule StructDrop do

 def fall_velocity(t = %Tower{}) do
 fall_velocity(t.planemo, t.height)
 end

 def fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

86 | Chapter 7: Name-Value Pairs

1 It is possible to have a variable whose name is the same as a field name, as in this example.

 def fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end

end

This uses a pattern match that will match only Tower structs, and puts the matched
struct into a variable t. Then, like its predecessor in Example 3-8, it passes the indi‐
vidual arguments to fall_velocity/2 for calculations, this time using the struct
syntax:

iex(10)> r(StructDrop)
warning: redefining module StructDrop (current version loaded from
 _build/dev/lib/struct_drop/ebin/Elixir.StructDrop.beam)
 lib/struct_drop.ex:1

{:reloaded, StructDrop, [StructDrop]}
[StructDrop]
iex(11)> StructDrop.fall_velocity(tower5)
60.909769331364245
iex(12)> StructDrop.fall_velocity(tower1)
19.79898987322333

The StructDrop.fall_velocity/1 function shown in Example 7-2 pulls out the
planemo field and binds it to the variable planemo.1 It pulls out the height field and
binds it to distance. Then it returns the velocity of an object dropped from that
distance, just like earlier examples throughout this book.

You can also extract the specific fields from the structure in the pattern match, as
shown in Example 7-2, which is in ch07/ex3-struct-components.

Example 7-2. A method that pattern matches components of a structure

defmodule StructDrop do
 def fall_velocity(%Tower{planemo: planemo, height: distance}) do
 fall_velocity(planemo, distance)
 end

 def fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

From Maps to Structs | 87

 def fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end
end

You can take each of the Tower structures you have created and feed them into this
function, and it will tell you the velocity resulting from a drop from the top of that
tower to the bottom.

Finally, you can pattern match against both the fields and the structure as a whole.
Example 7-3, in ch07/ex4-struct-multi, demonstrates using this mixed approach to
create a more detailed response than just the fall velocity.

Example 7-3. A method that pattern matches the whole structure as well as components
of a structure

defmodule StructDrop do
 def fall_velocity(t = %Tower{planemo: planemo, height: distance}) do
 IO.puts("From #{t.name}'s elevation of #{distance} meters on #{planemo},")
 IO.puts("the object will reach #{fall_velocity(planemo, distance)} m/s")
 IO.puts("before crashing in #{t.location}")
 end

 def fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

 def fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end
end

If you pass a Tower structure to StructDrop.fall_velocity/1, it will match against
individual fields it needs to do the calculation and match the whole structure into t so
that it can produce a more interesting, if not necessarily grammatically correct,
report:

iex(1)> StructDrop.fall_velocity(tower5)
From Daga Vallis's elevation of 500 meters on mars,
the object will reach 60.90976933136424520399 m/s
before crashing in Valles Marineris
:ok

88 | Chapter 7: Name-Value Pairs

iex(2)> StructDrop.fall_velocity(tower3)
From Woolworth Building's elevation of 241 meters on earth,
the object will reach 68.72845116834803036454 m/s
before crashing in NYC
:ok

Adding Behavior to Structs
Elixir lets you attach behavior to structures (and, in fact, any type of data) with proto‐
cols. For example, you may want to test to see if a structure is valid or not. Clearly, the
test for what is a valid structure varies from one type of structure to another. For
example, you may consider a Planemo valid if its gravity, diameter, and distance from
the sun are nonnegative. A Tower is valid if its height is nonnegative and it has a non-
nil value for planemo.

Example 7-4 shows the definition of a protocol for testing validity. The files for this
example are in ch07/ex5-protocol.

Example 7-4. Defining a protocol for valid structures

defprotocol Valid do
 @doc "Returns true if data is considered nominally valid"
 def valid?(data)
end

The interesting line here is def valid?(data); it is, in essence, an incomplete func‐
tion definition. Every datatype whose validity you want to test will have to provide a
complete function with the name valid?, so let’s add some code to the definition of
the Planemo structure:

defmodule Planemo do
 defstruct name: nil, gravity: 0, diameter: 0, distance_from_sun: 0
end

defimpl Valid, for: Planemo do
 def valid?(p) do
 p.gravity >= 0 and p.diameter >= 0 and
 p.distance_from_sun >= 0
 end
end

Let’s test that out right now.

iex(1)> p = %Planemo{}
%Planemo{diameter: 0, distance_from_sun: 0, gravity: 0, name: nil}
iex(2)> Valid.valid?(p)
true
iex(3)> p2 = %Planemo{name: :weirdworld, gravity: -2.3}
%Planemo{diameter: 0, distance_from_sun: 0, gravity: -2.3, name: :weirdworld}
iex(4)> Valid.valid?(p2)

From Maps to Structs | 89

false
iex(5)> t = %Tower{}
%Tower{height: 20, location: "", name: "", planemo: :earth}
iex(6)> Valid.valid?(t)
** (Protocol.UndefinedError) protocol Valid not implemented for
 %Tower{height: 20, location: "", name: "", planemo: :earth}
 valid_protocol.ex:1: Valid.impl_for!/1
 valid_protocol.ex:3: Valid.valid?/1

Lines 1 and 2 show the creation and testing of a valid Planemo; lines 3 and 4 show the
results for an invalid one. Line 6 shows that you cannot test a Tower structure for val‐
idity yet, as the valid? function has not yet been implemented. Here is the updated
code for the Tower struct, which you can find in ch07/ex6-protocol:

defmodule Tower do
 defstruct location: "", height: 20, planemo: :earth, name: ""
end

defimpl Valid, for: Tower do
 def valid?(%Tower{height: h, planemo: p}) do
 h >= 0 and p != nil
 end
end

Here is the test:

iex(6)> r(Tower)
warning: redefining module Tower (current version loaded from
 _build/dev/lib/valid/ebin/Elixir.Tower.beam)
 lib/tower.ex:1

{:reloaded, Tower, [Tower]}
iex(7)> Valid.valid?(t)
true
iex(8)> t2 = %Tower{height: -2, location: "underground"}
%Tower{height: -2, location: "underground", name: "", planemo: :earth}
iex(9)> Valid.valid?(t2)
false

Adding to Existing Protocols
When you inspect a Tower, you get rather generic output:

iex(10)> t3 = %Tower{location: "NYC", height: 241, name: "Woolworth Building"}
%Tower{height: 241, location: "NYC", name: "Woolworth Building",
 planemo: :earth}
iex(11)> inspect t3
"%Tower{height: 241, location: \"NYC\", name: \"Woolworth Building\",
planemo: :earth}"

90 | Chapter 7: Name-Value Pairs

Wouldn’t it be nice to have better-looking output? You can enable this by implement‐
ing the Inspect protocol for Tower structures. Example 7-5 shows the code to add to
tower.ex; you will find the source in ch07/ex7-inspect.

Example 7-5. Implementing the Inspect protocol for the Tower structure

defimpl Inspect, for: Tower do
 import Inspect.Algebra
 def inspect(item, _options) do
 metres = concat(to_string(item.height), "m:")
 msg = concat([metres, break, item.name, ",", break,
 item.location, ",", break,
 to_string(item.planemo)])
 end
end

The Inspect.Algebra module implements “pretty printing” using an algebraic
approach (hence the name). In the simplest form, it puts together documents that may
be separated by optional line breaks (break) and connected with concat. Every place
that you put a break in a document is replaced by a space, or, if there is not enough
space for the next item on the line, a line break.

The inspect/2 function takes the item you want to inspect as its first argument. The
second argument is a structure that lets you specify options that give you greater con‐
trol over how inspect/2 produces its output.

The first concat puts the height and abbreviation for metres together without any
intervening space. The second concat connects all the items in the list, so the func‐
tion returns a string containing the pretty-printed document. Since Valid is a proto‐
col rather than a module, we have to compile the file:

iex(12)> c("lib/valid.ex")
warning: redefining module Valid (current version loaded from
 _build/dev/consolidated/Elixir.Valid.beam)
 lib/valid.ex:1

[Valid]
iex(13)> inspect t3
"241m: Woolworth Building, NYC, earth"

From Maps to Structs | 91

CHAPTER 8

Higher-Order Functions and
List Comprehensions

Higher-order functions, or functions that accept other functions as arguments, are a
key place where Elixir’s power really starts to shine. It’s not that you can’t do higher-
order functions in other languages—you can in many—but rather that Elixir treats
higher-order functions as a native and natural part of the language rather than an
oddity.

Simple Higher-Order Functions
Way back in Chapter 2, you saw how to use fn to create a function:

iex(1)> fall_velocity = fn(distance) -> :math.sqrt(2 * 9.8 * distance) end
#Function<6.106461118/1 in :erl_eval.expr/5>
iex(2)> fall_velocity.(20)
19.79898987322333
iex(3)> fall_velocity.(200)
62.609903369994115

Elixir not only lets you put functions into variables, it lets you pass functions as argu‐
ments. This means that you can create functions whose behavior you modify at the
time you call them, in much more intricate ways than is normally possible with
parameters. A very simple function that takes another function as an argument might
look like Example 8-1, which you can find in ch08/ex1-hof.

Example 8-1. An extremely simple higher-order function

defmodule Hof do
 def tripler(value, function) do
 3 * function.(value)

93

 end
end

The argument names are generic, but fit. tripler/2 will take a value and a function
as arguments. It runs the value through the function and multiplies the result by
three. In the shell, this might look like the following:

iex(1)> my_function = fn(value) -> 20 * value end
#Function<6.106461118/1 in :erl_eval.expr/5>
iex(2)> Hof.tripler(6, my_function)
360

Line 1 defines another simple function taking one argument (and returning that
number multiplied by 20) and stores it in the variable my_function. Then line 2 calls
the Hof.tripler/2 function with a value of 6 and the my_function function. In the
Hof.tripler/2 function, it feeds the value to the function, getting back 120. Then it
triples that, returning 360.

You can skip assigning the function to a variable if you want, and just include the fn
declaration inside the Hof.tripler/2 function call:

iex(3)> Hof.tripler(6, fn(value) -> 20 * value end)
360

That may or may not be easier to read, depending on the functions and your expecta‐
tions. This case is trivially simple, but demonstrates that it works.

Elixir gives you another way to specify the function: you can use & as the capture
operator, &1 to stand for the first argument, and so on. Using this notation, you can
make the previous examples even simpler:

iex(4)> ampersand_function = &(20 * &1)
#Function<6.106461118/1 in :erl_eval.expr/5>
iex(5)> Hof.tripler(6, ampersand_function)
360
iex(6)> Hof.tripler(6, &(20 * &1))
360

While this is a powerful technique, you can outsmart yourself with
it easily (speaking from experience!). Just as with normal code, you
need to make sure the number and sometimes the type of your
arguments line up. The extra flexibility and power can create new
problems if you aren’t careful.

fn has a few other tricks up its sleeve that you should know. You can use a fn to pre‐
serve context, even context that has since changed or vanished:

94 | Chapter 8: Higher-Order Functions and List Comprehensions

iex(7)> x = 20
20
iex(8)> my_function2 = fn(value) -> x * value end
#Function<6.106461118/1 in :erl_eval.expr/5>
iex(9)> x = 0
0
iex(10)> my_function2.(6)
120

Line 7 assigns a variable named x a value, and line 8 uses that variable in a fn. Line 9
changes the x variable, but line 10 shows that my_function2 still remembers that x
was 20. Even though the value of x has been changed, the fn preserves the value and
can act upon it. (This is called a closure.)

Again, you can use the ampersand notation:

iex(11)> x = 20
20
iex(12)> my_function3 = &(x * &1)
#Function<6.106461118/1 in :erl_eval.expr/5>
iex(13)> x = 0
0
iex(14)> Hof.tripler(6, my_function3)
360

You may also want to pass a function from a module, even a built-in module, to your
(or any) higher-order function. That’s simple, too:

iex(15)> Hof.tripler(:math.pi, &:math.cos(&1))
-3.0

In this case, the Hof.tripler function receives the value pi and a function, which is
the :math.cos/1 function from the built-in math module. Since the function has arity
1, you must indicate this with &1. Because the cosine of pi is –1, the tripler returns
-3.0.

Creating New Lists with Higher-Order Functions
Lists are one of the best and easiest places to apply higher-order functions. Applying a
function to all the components of a list to create a new list, sort a list, or break a list
into smaller pieces is popular work. You don’t need to do much difficult work to
make this happen, though: Elixir’s built-in List and Enum modules offer a variety of
higher-order functions, listed in Appendix A, that take a function and list and do
something with them. You can also use list comprehensions to do much of the same
work. The List and Enum modules may seem easier at first, but as you’ll see, list com‐
prehensions are powerful and concise.

Creating New Lists with Higher-Order Functions | 95

The functions in the Enum module will work on any collection of
data (for example, the individual lines in a file); the functions in
List make sense only for lists.

Reporting on a List
The simplest of these functions is Enum.each/2, which always returns the atom :ok.
That may sound strange, but Enum.each/2 is a function you’ll call if and only if you
want to do something to the list with side effects—like presenting the contents of a
list to the console. To do that, define a list and a simple function that applies
IO.puts/1, here stored in the variable print, and then pass them both to
Enum.each/2:

iex(1)> print = fn(value) -> IO.puts(" #{value}") end
#Function<6.106461118/1 in :erl_eval.expr/5>
iex(2)> list = [1, 2, 4, 8, 16, 32]
iex(3)> Enum.each(list, print)
 1
 2
 4
 8
 16
 32
:ok

The Enum.each/2 function walked through the list, in order, and called the function
in print with each item of the list as a value. The IO.puts function inside of print
presented the list item, slightly indented. When it reached the end of the list,
Enum.each/2 returned the value :ok, which the console also displayed.

Most of the demonstrations in this chapter will be operating on
that same list variable containing [1, 2, 4, 8, 16, 32].

Running List Values Through a Function
You might also want to create a new list based on what a function does with all of the
values in the original list. You can square all of the values in a list by creating a func‐
tion that returns the square of its argument and passing that to Enum.map/2. Instead
of returning :ok, it returns a new list reflecting the work of the function it was given:

iex(4)> square = &(&1 * &1)
#Function<6.106461118/1 in :erl_eval.expr/5>

96 | Chapter 8: Higher-Order Functions and List Comprehensions

iex(5)> Enum.map(list, square)
[1, 4, 16, 64, 256, 1024]

If you want to generate a list of sequential integers (or characters),
you can use the notation start..end. You normally use this nota‐
tion with integers, but you can also use it with characters, with
rather unusual results:

iex(6)> Enum.map(1..3, square)
[1, 4, 9]
iex(7)> Enum.map(-2..2, square)
[4, 1, 0, 1, 4]
iex(8)> Enum.map(?a..?d, square)
[9409, 9604, 9801, 10000]

There’s another way to accomplish the same thing that Enum.map/2 does, with what
Elixir calls a list comprehension:

iex(9)> for value <- list, do: value * value
[1, 4, 16, 64, 256, 1024]

That produces the same resulting list, with different (and more flexible) syntax.

You can read this list comprehension as “For each value in list list, create an entry
value * value in a new list.” You can also use ranges in a list comprehension: for
value <- 1..3, do: value * value.

Filtering List Values
The Enum module offers a few different functions for filtering the content of a list
based on a function you provide as a parameter. The most obvious, Enum.filter/2,
returns a list composed of the members of the original list for which the function
returned true. For example, if you wanted to filter a list of integers down to values
that could be represented as four binary digits—so, numbers 0 or greater but less than
16—you could define a function and store it in four_bits:

iex(10)> four_bits = fn(value) -> (value >= 0) and (value < 16) end
#Function<6.106461118/1 in :erl_eval.expr/5>

Then, if you apply it to the previously defined list of [1, 2, 4, 8, 16, 32], you’ll
get just the first four values:

iex(11)> Enum.filter(list, four_bits)
[1, 2, 4, 8]

Once again, you can create the same effect with a list comprehension. This time, you
don’t actually need to create a function, but instead use a guard-like construct (writ‐
ten without the when) on the right side of the comprehension:

Creating New Lists with Higher-Order Functions | 97

iex(12)> for value <- list, value >= 0, value < 16, do: value
[1, 2, 4, 8]

If you also want a list of the values that didn’t match, instead use
Enum.partition/2, which returns a tuple containing both the
matched and unmatched values as separate lists. See “Splitting
Lists” on page 99 for an example.

Beyond List Comprehensions
for comprehensions are concise and powerful, but they lack a few key features avail‐
able in other recursive processing. They return a list, but there will be many times
when you want to process a list and return something else, like a Boolean, a tuple, or
a number. List comprehensions also lack support for accumulators and don’t let you
suspend processing completely when certain conditions are met.

You could write your own recursive functions to process lists, but much of the time,
you’ll find that the Enum and List modules already offer a function that takes a func‐
tion you define and a list and returns what you need.

Testing Lists
Sometimes you just want to know if all the values—or any of the values—in a list
meet specific criteria. Are they all of a specific type, or do they meet certain condi‐
tions?

The Enum.all?/2 and Enum.any?/2 functions let you test a list against rules you spec‐
ify in a function. If your function returns true for all of the list values, both of these
functions will return true. Enum.any?/2 will also return true if one or more values in
the list results in your function return true. Both will return false if your function
consistently returns false:

iex(1)> int? = fn(value) -> is_integer(value) end
#Function<erl_eval.6.17052888>
iex(2)> Enum.all?(list, int?)
true
iex(3)> Enum.any?(list, int?)
true
iex(4)> greater_than_ten? = &(&1 > 10)
#Function<6.106461118/1 in :erl_eval.expr/5>
iex(5)> Enum.all?(list, greater_than_ten?)
false
iex(6)> Enum.any?(list, greater_than_ten?)
true

You can think of Enum.all?/2 as an and function applied to lists because it stops pro‐
cessing as soon as it encounters a false result. Similarly, Enum.any?/2 is like or, in

98 | Chapter 8: Higher-Order Functions and List Comprehensions

this case stopping as soon as it finds a true result. As long as you only need to test
individual values within lists, these two higher-order functions can save you writing a
lot of recursive code.

By convention, functions that return a Boolean value (also called
predicates) have names that end with a question mark. We have fol‐
lowed that convention in the preceding example. Functions whose
names begin with is_ (such as is_integer) are usually used for
guards.

Splitting Lists
Filtering lists is useful, but sometimes you want to know what didn’t go through the
filter, and sometimes you just want to separate items.

The Enum.partition/2 function returns a tuple containing two lists. The first list
contains the items from the original list that met the conditions specified in the func‐
tion you provided, while the second list contains the items that didn’t. If the compare
variable is defined as shown in line 4 of the previous demonstration, returning true
when a list value is greater than 10, then you can easily split a list into a list of items
greater than 10 and a list of items less than or equal to 10:

iex(7)> Enum.partition(list, compare)
{[16, 32], [1, 2, 4, 8]}

Sometimes you’ll want to split a list by starting from the beginning—the head—and
stopping when a list value no longer meets a condition. The Enum.take_while/2 and
Enum.drop_while/2 functions create a new list that contains the parts of an old list
before or after encountering a boundary condition. These functions aren’t filters, and
to make that clear, the examples use a different list than the rest in this chapter:

iex(8)> test = &(&1 < 4)
#Function<6.106461118/1 in :erl_eval.expr/5>
iex(9)> Enum.drop_while([1, 2, 4, 8, 4, 2, 1], test)
[4, 8, 4, 2, 1]
iex(10)> Enum.take_while([1, 2, 4, 8, 4, 2, 1], test)
[1, 2]

Both functions run through a list from head to tail and stop when they reach a value
for which the function you provide as the first argument returns false. The
Enum.drop_while/2 function returns what’s left of the list, including the value that
flunked the test. It does not, however, filter out later list entries that it might have
dropped if they had appeared earlier in the list. The Enum.take_while/2 function
returns what was already processed, not including the value that flunked the test.

Beyond List Comprehensions | 99

Folding Lists
Adding an accumulator to list processing lets you turn lists into much more than
other lists and opens the door to much more sophisticated processing. Elixir’s
List.foldl/3 and List.foldr/3 functions let you specify a function, an initial value
for an accumulator, and a list. Instead of the one-argument functions you’ve seen so
far, you need to create a two-argument function. The first argument is the current
value in the list traversal, and the second argument is an accumulator. The result of
that function will become the new value of the accumulator.

Defining a function that works within the folding functions looks a little different,
because of the two arguments:

iex(11)> sumsq = fn(value, accumulator) -> accumulator + value * value end
#Function<12.54118792/2 in :erl_eval.expr/5>

This function squares each value coming from a list and adds it to the accumulator
passed to it by the function doing the folding. You can use List.foldl/3 with this
function to get the sum of squares of a list of numbers, with zero as the starting value
of the accumulator:

iex(12)> List.foldl([2, 4, 6], 0, sumsq)
56

Folding has one other key twist. You can choose whether you want the function to
traverse the list from head to tail, with List.foldl/3, or from tail to head, with
List.foldr/3. If order doesn’t change the result, you should go with List.foldl/3,
as its implementation is tail recursive and more efficient in most situations. In the
preceding example, efficiency aside, it doesn’t matter if you use List.foldl/3 or
List.foldr/3, since addition is commutative.

Consider, however, this function to be used in a fold:

iex(13)> divide = fn(value, accumulator) -> value / accumulator end
#Function<12.106461118/2 in :erl_eval.expr/5>

This function divides its first argument, the value coming from the list, by the sec‐
ond, the accumulator passed to it by the function doing the folding.

The divide function is one of those cases that will produce very different results
depending on the direction in which you process the list (and the initial accumulator
value). In this case, folding also produces different results than you might expect in a
simple division. Given the usual list of [1, 2, 4, 8, 16, 32], it seems like going
from left to right will produce 1/2/4/8/16/32 and going from right to left will pro‐
duce 32/16/8/4/2/1, at least if you use an initial accumulator of 1. Those aren’t the
results produced, however:

iex(14)> divide = fn(value, accumulator) -> value / accumulator end
#Function<12.106461118/2 in :erl_eval.expr/5>

100 | Chapter 8: Higher-Order Functions and List Comprehensions

iex(15)> 1/2/4/8/16/32
3.0517578125e-5
iex(16)> List.foldl(list, 1, divide)
8.0
iex(17)> 32/16/8/4/2/1
0.03125
iex(18)> List.foldr(list, 1, divide)
0.125

This code seems too simple to have a bug, so what’s going on? Table 8-1 walks
through the calculations for List.foldl(list, 1, divide), and Table 8-2 walks
through List.foldr(list, 1, divide) step by step.

Table 8-1. Recursive division of a list forward with List.foldl/3

Value from list Accumulator Result of division

1 1 1

2 1 (1/1) 2

4 2 (2/1) 2

8 2 (4/2) 4

16 4 (8/2) 4

32 4 (16/4) 8

Table 8-2. Recursive division of a list backward with List.foldr/3

Value from list Accumulator Result of division

32 1 32

16 32 (32/1) 0.5

8 0.5 (16/32) 16

4 16 (8/0.5) 0.25

2 0.25 (4/16) 8

1 8 (2/0.25) 0.125

Moving through a list step by step produces very different values. In this case, the
simple divide function’s behavior changes drastically above and below the value 1,
and combining that with walking through a list item by item yields results that might
not be precisely what you expected.

The result of the List.foldl is the same as 32/(16/(8/(4/(2/
(1/1))))), while the result of the List.foldr is the same as
1/(2/(4/(8/(16/(32/1))))). The parentheses in those perform
the same restructuring as the fold, and the concluding 1 in each is
where the initial accumulator value fits in.

Beyond List Comprehensions | 101

Folding is an incredibly powerful operation. This simple if slightly weird example just
used a single value, a number, as an accumulator. If you use a tuple as the accumula‐
tor, you can store all kinds of information about a list as it passes by and even per‐
form multiple operations. You probably won’t want to try to define the functions you
use for that as one-liners, but the possibilities are endless.

102 | Chapter 8: Higher-Order Functions and List Comprehensions

CHAPTER 9

Playing with Processes

Elixir is a functional language, but Elixir programs are rarely structured around sim‐
ple functions. Instead, Elixir’s key organizational concept is the process, an independ‐
ent component (built from functions) that sends and receives messages. Programs are
deployed as sets of processes that communicate with each other. This approach makes
it much easier to distribute work across multiple processors or computers, and also
makes it possible to do things like upgrade programs in place without shutting down
the whole system.

Taking advantage of those features, though, means learning how to create (and end)
processes, how to send messages among them, and how to apply the power of pattern
matching to incoming messages.

The Shell Is a Process
You’ve been working within a single process throughout this book so far, the Elixir
shell. None of the previous examples sent or received messages, of course, but the
shell is an easy place to send and (for test purposes, at least) receive messages.

The first thing to explore is the process identifier, often called a pid. The easiest pid to
get is your own, so in the shell you can just try the self() function:

iex(1)> self()
#PID<0.26.0>

#PID<0.26.0> is the shell’s representation of a process identifier; the three integers
constitute a triple that provides a unique identifier for this process. You may get a dif‐
ferent set of numbers when you try it. This group of numbers is guaranteed to be
unique within this run of Elixir, not permanently the same in future use. Elixir uses
pids internally, but while you can read them in the shell, you can’t type pids directly
into the shell or into functions. Elixir much prefers that you treat pids as abstractions.

103

Pids can even identify processes running on different computers
within a cluster. You’ll need to do more work to set up a cluster, but
you won’t have to throw away code you wrote with pids and pro‐
cesses built on them when you get there.

Every process gets its own pid, and those pids function like addresses for mailboxes.
Your programs will send messages from one process to another by sending them to a
pid. When that process gets time to check its mailbox, it will be able to retrieve and
process the messages there.

Elixir, however, will never report that a message send failed, even if the pid doesn’t
point to a real process. It also won’t report that a message was ignored by a process.
You need to make sure your processes are assembled correctly.

The syntax for sending a message is pretty simple. You use the send/2 function with
two arguments, an expression containing the pid and the message:

iex(2)> send(self(), :test1)
:test1
iex(3)> pid = self()
#PID<0.26.0>
iex(4)> send(pid, :test2)
:test2

Line 2 sent a message to the shell containing the atom :test1. Line 3 assigned the pid
for the shell, retrieved with the self() function, to a variable named pid, and then
line 4 used that pid variable to send a message containing the atom :test2. (The
send/2 function always returns the message, which is why it appears right after the
sends in lines 2 and 4.)

Where did those messages go? What happened to them? Right now, they’re just wait‐
ing in the shell’s mailbox, doing nothing.

There’s a shell function—flush()—that you can use to see what’s in the mailbox, but
it also removes those messages from the mailbox. The first time you use it you’ll get a
report of what’s in the mailbox, but the second time the messages are gone, already
read:

iex(5)> flush()
:test1
:test2
:ok
iex(6)> flush()
:ok

The proper way to read the mailbox, which gives you a chance to do something with
the messages, is the receive...end construct. You can test this out in the shell. The

104 | Chapter 9: Playing with Processes

first of the following tests just reports what the message was, whereas the second
expects a number and doubles it:

iex(7)> send(self(), :test1)
:test1
iex(8)> receive do
...(8)> x -> x
...(8)> end
:test1
iex(9)> send(self(), 23)
23
iex(10)> receive do
...(10)> y -> 2 * y
...(10)> end
46

So far, so good. However, if you screw up—if there isn’t a message waiting, or if you
provide a pattern match that doesn’t work—the shell will just sit there, hung. Actually,
it’s waiting for something to arrive in the mailbox (in technical terms, receive blocks
until it receives a message), but you’ll be stuck. The easiest way out of that is to hit
Ctrl+G, and then type q. You’ll have to restart IEx. (x and y become bound variables,
and even though they are not immutable, it is considered in the spirit of functional
programming to not reuse them.)

Spawning Processes from Modules
While sending messages to the shell is an easy way to see what’s happening, it’s not
especially useful. Processes at their heart are just functions, and you know how to
build functions in modules. The receive...end statement is structured like a
case...end statement, so it’s easy to get started.

Example 9-1, which is in ch09/ex1-simple, shows a simple—excessively simple—mod‐
ule containing a function that reports messages it receives.

Example 9-1. An overly simple process definition

defmodule Bounce do
 def report do
 receive do
 msg -> IO.puts("Received #{msg}")
 end
 end
end

When the report/0 function receives a message, it will report that it received it. Set‐
ting this up means compiling the module and then using the spawn/3 function, which
turns the function into a freestanding process. The arguments are the module name,
the function name (as an atom), and a list of arguments for the function. Even if you

Spawning Processes from Modules | 105

don’t have any arguments, you need to include an empty list in square brackets. The
spawn/3 function will return the pid, which you should capture in a variable (here,
pid):

iex(1)> pid = spawn(Bounce, :report, [])
#PID<0.43.0>

Once you have the process spawned, you can send a message to that pid, and the pro‐
cess will report that it received the message:

iex(2)> send(pid, 23)
Received 23
23

However, there’s one small problem. The report process exited—it went through the
receive clause only once, and when it was done, it was done. If you try to send the
process another message, you’ll get back the message, and nothing will report an
error, but you also won’t get any notification that the message was received because
nothing is listening any longer:

iex(3)> send(pid, 23)
23

To create a process that keeps processing messages, you need to add a recursive call,
as shown in the receive statement in Example 9-2 (in ch09/ex2-recursion).

Example 9-2. A function that creates a stable process

defmodule Bounce do
 def report do
 receive do
 msg -> IO.puts("Received #{msg}")
 report()
 end
 end
end

That extra call to report() means that after the function shows the message that
arrived, it will run again, ready for the next message. If you recompile the bounce
module and spawn it to a new pid2 variable, you can send multiple messages to the
process, as shown here:

iex(4)> r(Bounce)
warning: redefining module Bounce (current version loaded from
 _build/dev/lib/bounce/ebin/Elixir.Bounce.beam)
 /Users/elixir/code/ch09/ex2-recursion/lib/bounce.ex:1

{:reloaded, Bounce, [Bounce]}
iex(5)> pid2 = spawn(Bounce, :report, [])
#PID<0.43.0>

106 | Chapter 9: Playing with Processes

iex(6)> send(pid2, 23)
Received 23
23
iex(7)> send(pid2, :message)
Received message
:message

Because processes are asynchronous, the output from send/2 may
appear before the output from report/0.

You can also pass an accumulator from call to call if you want, for a simple example,
to keep track of how many messages have been received by this process. Example 9-3
shows the addition of an argument, in this case just an integer that gets incremented
with each call. You can find it in ch09/ex3-counter.

Example 9-3. A function that adds a counter to its message reporting

defmodule Bounce do
 def report(count) do
 receive do
 msg -> IO.puts("Received #{count}: #{msg}")
 report(count + 1)
 end
 end
end

The results are pretty predictable, but remember that you need to include an initial
value in the arguments list in the spawn/3 call:

$ iex -S mix
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe]
 [kernel-poll:false]

Compiling 1 file (.ex)
Interactive Elixir (1.3.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> pid2 = spawn(Bounce, :report, [1])
#PID<0.43.0>
iex(2)> send(pid2, :test)
:test
Received 1: test
iex(3)> send(pid2, :test2)
:test2
Received 2: test2
iex(4)> send(pid2, :another)
:another
Received 3: another

Spawning Processes from Modules | 107

Whatever you do in your recursive call, keeping it simple (and preferably tail recur‐
sive) is best, as these functions can get called many, many times in the life of a
process.

If you want to create impatient processes that stop after waiting a
given amount of time for a message, you should investigate the
after construct of the receive clause.

You can write this function in a slightly different way that may make what’s happen‐
ing clearer and easier to generalize. Example 9-4, in ch09/ex4-state, shows how to use
the return value of the receive clause, here the count plus one, to pass state from one
iteration to the next.

Example 9-4. Using the return value of the receive clause as state for the next iteration

defmodule Bounce do
 def report(count) do
 new_count = receive do
 msg -> IO.puts("Received #{count}: #{msg}")
 count + 1
 end
 report(new_count)
 end
end

In this model, all (though there’s just one here) of the receive clauses return a value
that gets passed to the next iteration of the function. If you use this approach, you can
think of the return value of the receive clause as the state to be preserved between
function calls. That state can be much more intricate than a counter—it might be a
tuple, for instance, that includes references to important resources or work in
progress.

Lightweight Processes
If you’ve worked in other programming languages, you may be getting worried.
Threads and process spawning are notoriously complex and often slow in other con‐
texts, but Elixir expects an application to be a group of easily spawned processes?
That run recursively?

Yes, absolutely. Elixir was written specifically to support that model, and its processes
are more lightweight than those of pretty much any of its competitors. The Erlang
scheduler that Elixir uses gets processes started and distributes processing time
among them, as well as splitting them out across multiple processors.

108 | Chapter 9: Playing with Processes

It is certainly possible to write processes that perform badly and to structure applica‐
tions so that they wait a long time before doing anything. You don’t, though, have to
worry about those problems happening just because you’re using multiple processes.

Registering a Process
Much of the time, pids are all you need to find and contact a process. However, you
will likely create some processes that need to be more findable. Elixir provides a pro‐
cess registration system that is extremely simple: you specify an atom and a pid, and
then any process that wants to reach that registered process can just use the atom to
find it. This makes it easier, for example, to add a new process to a system and have it
connect with previously existing processes.

To register a process, just use the Process.register/2 built-in function. The first
argument is the pid of the process, and the second argument is an atom, effectively
the name you’re assigning the process. Once you have it registered, you can send it
messages using the atom instead of a pid:

iex(1)> pid1 = spawn(Bounce, :report, [1])
#PID<0.39.0>
iex(2)> Process.register(pid1, :bounce)
true
iex(3)> send(:bounce, :hello)
:hello
Received 1: hello
iex(4)> send(:bounce, "Really?")
Received 2: Really?
"Really?"

If you attempt to call a process that doesn’t exist (or one that has crashed), you’ll get a
bad arguments error:

iex(5)> send(:zingo, :test)
** (ArgumentError) argument error
 :erlang.send(:zingo, :test)

If you attempt to register a process to a name that is already in use, you’ll also get an
error, but if a process has exited (or crashed), the name is effectively no longer in use
and you can reregister it.

You can also use Process.whereis/1 to retrieve the pid for a registered process (or
nil, if there is no process registered with that atom), and unregister/1 to take a pro‐
cess out of the registration list without killing it. Remember that you must use an
atom for the process name:

iex(5)> get_bounce = Process.whereis(:bounce)
#PID<0.39.0>
iex(6)> Process.unregister(:bounce)
true

Registering a Process | 109

iex(7)> test_bounce = Process.whereis(:bounce)
nil
iex(8)> send(get_bounce, "Still there?")
Received 3: Still there?
"Still there?"

If you want to see which processes are registered, you can use the
Process.registered/0 function.

If you’ve worked in other programming languages and learned the gospel of “no
global variables,” you may be wondering why Elixir permits a systemwide list of pro‐
cesses like this. Most of the rest of this book, after all, has been about isolating change
and minimizing shared context.

If you think of registered processes as more like services than functions, however, it
may make more sense. A registered process is effectively a service published to the
entire system, something usable from multiple contexts. Used sparingly, registered
processes create reliable entry points for your programs—something that can be very
valuable as your code grows in size and complexity.

When Processes Break
Processes are fragile. If there’s an error, the function stops and the process goes away.
Example 9-5, in ch09/ex5-division, shows a report/0 function that can break if it gets
input that isn’t a number.

Example 9-5. A fragile function

defmodule Bounce do
 def report do
 receive do
 x -> IO.puts("Divided to #{x / 2}")
 report()
 end
 end
end

If you compile and run this (deliberately) error-inviting code, you’ll find that it works
well so long as you only send it numbers. Send anything else, and you’ll see an error
report in the shell, and no more responses from that pid. It died:

iex(1)> pid3 = spawn(Bounce, :report, [])
#PID<0.50.0>
iex(2)> send(pid3, 38)
38

110 | Chapter 9: Playing with Processes

Divided to 19.0
iex(3)> send(pid3, 27.56)
Divided to 13.78
27.56
iex(4)> send(pid3, :seven)
:seven
iex(5)>
14:18:59.471 [error] Process #PID<0.65.0> raised an exception
** (ArithmeticError) bad argument in arithmetic expression
 bounce.ex:4: Bounce.report/0
iex(5)> send(pid3, 14)
14

As you get deeper into Elixir’s process model, you’ll find that “let it crash” is not an
unusual design decision in Elixir, though being able to tolerate such things and con‐
tinue requires some extra work. Chapter 10 will also show you how to find and deal
with errors of various kinds.

Processes Talking Amongst Themselves
Sending messages to Elixir processes is easy, but it’s hard for them to report back
responses if you don’t leave information about where they can find you again. Send‐
ing a message without including the sender’s pid is kind of like leaving a phone mes‐
sage without including your own number: it might trigger action, but the recipient
might not get back to you.

To establish process-to-process communications without registering lots of processes,
you need to include pids in the messages. Passing the pid requires adding an argu‐
ment to the message. It’s easy to get started with a test that calls back the shell.
Example 9-6, in ch09/ex6-talking, builds on the Drop module from Example 3-2,
adding a drop/0 function that receives messages and making the fall_velocity/2
function private.

Example 9-6. A process that sends a message back to the process that called it

defmodule Drop do
 def drop do
 receive do
 {from, planemo, distance} ->
 send(from, {planemo, distance, fall_velocity(planemo, distance)})
 drop()
 end
 end

 defp fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

Processes Talking Amongst Themselves | 111

 defp fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 defp fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end
end

To get started, it’s easy to test this from the shell:

iex(1)> pid1 = spawn(Drop, :drop, [])
#PID<0.43.0>
iex(2)> send(pid1, {self(), :moon, 20})
{#PID<0.26.0>,:moon,20}
iex(3)> flush()
{:moon,20,8.0}
:ok

Example 9-7, which you’ll find in ch09/ex7-talkingProcs, shows a process that calls
that process, just to demonstrate that this can work with more than just the shell. We
use IO.write/1 so that the code listing doesn’t stretch off the page, but the output
will all appear on one line.

Example 9-7. Calling a process from a process, and reporting the results

defmodule MphDrop do
 def mph_drop do
 drop_pid = spawn(Drop, :drop, [])
 convert(drop_pid)
 end

 def convert(drop_pid) do
 receive do
 {planemo, distance} ->
 send(drop_pid, {self(), planemo, distance})
 convert(drop_pid)
 {planemo, distance, velocity} ->
 mph_velocity = 2.23693629 * velocity
 IO.write("On #{planemo}, a fall of #{distance} meters ")
 IO.puts("yields a velocity of #{mph_velocity} mph.")
 convert(drop_pid)
 end
 end
end

The mph_drop/1 function spawns a Drop.drop/0 process when it is first set up, using
the same module you saw in Example 9-6, and stores the pid in drop_pid. Then it
calls convert/1, which will listen for messages recursively.

112 | Chapter 9: Playing with Processes

If you don’t separate the initialization from the recursive listener,
your code will work, but it will spawn new Drop.drop/0 processes
every time it processes a message instead of using the same one
repeatedly.

The receive clause relies on the call from the shell (or another process) including
only two arguments, while the Drop.drop/0 process sends back a result with three.
(As your code grows more complex, you will likely want to use more explicit flags
about the kind of information contained in a message.) When the receive clause gets
a message with two arguments, it sends a message to drop_pid, identifying itself as
the sender and passing on the arguments. When the drop_pid process returns a mes‐
sage with the result, the receive clause reports on the result, converting the velocity
to miles per hour. (Yes, it leaves the distance metric, but it makes the velocity more
intelligible to Americans.)

Using this from the shell looks like the following after invoking iex -S mix:

iex(1)> pid1 = spawn(MphDrop, :mph_drop, [])
#PID<0.47.0>
iex(2)> send(pid1, {:earth, 20})
On earth, a fall of 20 meters
yields a velocity of 44.289078952755766 mph.
{:earth,20}
iex(3)> send(pid1, {:mars, 20})
On mars, a fall of 20 meters
yields a velocity of 27.250254686571544 mph.
{:mars,20}

This simple example might look like it behaves as a more complex version of a func‐
tion call, but there is a critical difference. In the shell, with nothing else running, the
result will come back quickly—so quickly that it reports before the shell puts up the
message—but this was a series of asynchronous calls. Nothing held and waited specif‐
ically for a returned message.

The shell sent a message to pid1, the process identifier for MphDrop.convert/1. That
process sent a message to drop_pid, the process identifier for Drop.drop/0, which
MphDrop.mph_drop/0 set up when it was spawned. That process returned another
message to MphDrop.convert/1, which reported to standard output (in this case, the
shell). Those messages passed and were processed rapidly, but in a system with thou‐
sands or millions of messages in motion, those passages might have been separated by
many messages and come in later.

Processes Talking Amongst Themselves | 113

Watching Your Processes
Erlang provides a simple but powerful tool for keeping track of your processes and
seeing what’s happening. Observer, a tool that lets you observe and manage processes,
offers a GUI that lets you look into the current state of your processes and see what’s
happening. Depending on how you installed Erlang when you installed Elixir, you
may be able to start it from a toolbar, but you can always start it from the shell:

iex(4)> :observer.start
#PID<0.49.0>

In order to use Observer, you need wxwidgets installed and Erlang
compiled to support it.

When you click the Processes tab you’ll see something like Figure 9-1 appear. It’s a
long list of processes, more than you probably wanted to know about. If you click the
Current Function column header twice to sort the list in reverse order, you will see
the Elixir processes at the top, similar to Figure 9-2.

Figure 9-1. Observer’s process list when first loaded

114 | Chapter 9: Playing with Processes

Figure 9-2. Observer’s process list after sorting by Current Function

Observer will update the process list every 10 seconds. If you would prefer to control
the refresh yourself, choose Refresh Interval from the View menu, and uncheck Peri‐
odical Refresh.

Watching Messages Among Processes
The list of processes is useful, but Observer also lets you look inside of process activ‐
ity. This is a slightly more complex process, so take a deep breath!

1. Find the Elixir.MphDrop:mph_drop/0 process and right-click it.
2. Choose “Trace selected processes by name (all nodes)” and select all items in the

left of the dialog, as shown in Figure 9-3. Then click OK.
3. Click the Trace Overview tab.
4. Click Start Trace, and you will get a warning message as shown in Figure 9-4. You

may safely ignore that message.

Watching Your Processes | 115

Figure 9-3. Options in trace processes

Figure 9-4. Starting a trace

This will open up a new window, which may display a message like “Dropped 10 mes‐
sages.” Now make the process do something:

116 | Chapter 9: Playing with Processes

iex(5)> send(pid1, {:mars, 20})
On mars, a fall of 20 meters
yields a velocity of 27.25025468657154448238 mph.
{:mars,20}

The Observer window for that process will update to show messages and calls, as
shown in Figure 9-5. << means a message was received, whereas ! indicates a message
sent.

Figure 9-5. Tracing calls when you send mph_drop a message

Observer is generally the easiest place to turn when you’re having difficulty figuring
out what is happening among your processes.

Breaking Things and Linking Processes
When you send a message, you’ll always get back the message as the return value.
This doesn’t mean that everything went well and the message was received and pro‐
cessed correctly, however. If you send a message that doesn’t match a pattern at the
receiving process, nothing will happen (for now at least), with the message landing in
the mailbox but not triggering activity. Sending a message that gets through the pat‐
tern matching but creates an error will halt the process where the error occurred, pos‐
sibly even a few messages and processes down the line.

Messages that don’t match a pattern in the receive clause don’t
vanish; they just linger in the mailbox without being processed. It is
possible to update a process with a new version of the code that
retrieves those messages.

Breaking Things and Linking Processes | 117

Because processes are fragile, you often want your code to know when another pro‐
cess has failed. In this case, if bad inputs halt Drop.drop/0, it doesn’t make much
sense to leave the MphDrop.convert/1 process hanging around. You can see how this
works through the shell and Observer. First, start up Observer, go to the process win‐
dow, and then, from the command line, spawn MphDrop.mph_drop/0:

iex(1)> :observer.start()
:ok
iex(2)> pid1 = spawn(MphDrop, :mph_drop, [])
#PID<0.82.0>

You’ll see something like Figure 9-6 in Observer. Then, feed your process some bad
data, an atom (:zoids) instead of a number for the distance, and Observer will look
more like Figure 9-7:

iex(3)> send(pid1, {:moon, :zoids})

19:28:27.825 [error] Process #PID<0.83.0> raised an exception
** (ArithmeticError) bad argument in arithmetic expression
 (mph_drop) lib/drop.ex:15: Drop.fall_velocity/2
 (mph_drop) lib/drop.ex:5: Drop.drop/0

Figure 9-6. A healthy set of processes

118 | Chapter 9: Playing with Processes

Figure 9-7. Only the drop:drop/0 process is gone

Since the remaining MphDrop.convert/1 process is now useless, it would be better for
it to halt when Drop.drop/0 fails. Elixir lets you specify that dependency with a link.
The easy way to do that while avoiding potential race conditions is to use
spawn_link/3 instead of just spawn/3. Everything else in the module remains the
same. This is shown in Example 9-8, which you can find in ch09/ex8-linking.

Example 9-8. Calling a linked process from a process so failures propagate

defmodule MphDrop do
 def mph_drop do
 drop_pid = spawn_link(Drop, :drop, [])
 convert(drop_pid)
 end

 def convert(drop_pid) do
 receive do
 {planemo, distance} ->
 send(drop_pid, {self(), planemo, distance})
 convert(drop_pid)
 {planemo, distance, velocity} ->
 mph_velocity = 2.23693629 * velocity
 IO.write("On #{planemo}, a fall of #{distance} meters ")
 IO.puts("yields a velocity of #{mph_velocity} mph.")
 convert(drop_pid)
 end
 end
end

Now, if you recompile and test this out with Observer, you’ll see that both processes
vanish when drop:drop/0 fails, as shown in Figure 9-8:

Breaking Things and Linking Processes | 119

iex(1)> :observer.start()
:ok
iex(2)> pid1 = spawn(MphDrop, :mph_drop, [])
#PID<0.162.0>
iex(3)> send(pid1, {:moon, :zoids})
{:moon,:zoids}
iex(4)>

19:30:26.822 [error] Process #PID<0.163.0> raised an exception
** (ArithmeticError) bad argument in arithmetic expression
 (mph_drop) lib/drop.ex:15: Drop.fall_velocity/2
 (mph_drop) lib/drop.ex:5: Drop.drop/0

Figure 9-8. Both processes now depart when there is an error

Links are bidirectional. If you kill the the MphDrop.mph_drop/0
process—with, for example, Process.exit(pid1,:kill).—the
Drop.drop/0 process will also vanish. (:kill is the harshest reason
for an exit, and isn’t trappable because sometimes you really need
to halt a process.)

That kind of failure may not be what you have in mind when you think of linking
processes. It’s the default behavior for linked Elixir processes, and makes sense in
many contexts, but you can also have a process trap exits. When an Elixir process
fails, it sends an explanation, in the form of a tuple, to other processes that are linked
to it. The tuple contains the atom :EXIT, the pid of the failed process, and the error as
a complex tuple. If your process is set to trap exits, through a call to Process
.flag(:trap_exit, true), these error reports arrive as messages, rather than just
killing your process.

Example 9-9, in ch09/ex9-trapping, shows how the initial mph_drop/0 method
changes to include this call to set the process flag, and adds another entry to the
receive clause which will listen for exits and report them more neatly.

120 | Chapter 9: Playing with Processes

Example 9-9. Trapping a failure, reporting an error, and exiting

defmodule MphDrop do
 def mph_drop do
 Process.flag(:trap_exit, true)
 drop_pid = spawn_link(Drop, :drop, [])
 convert(drop_pid)
 end

 def convert(drop_pid) do
 receive do
 {planemo, distance} ->
 send(drop_pid, {self(), planemo, distance})
 convert(drop_pid)
 {:EXIT, pid, reason} ->
 IO.puts("Failure: #{inspect(pid)} #{inspect(reason)}")
 {planemo, distance, velocity} ->
 mph_velocity = 2.23693629 * velocity
 IO.write("On #{planemo}, a fall of #{distance} meters ")
 IO.puts("yields a velocity of #{mph_velocity} mph.")
 convert(drop_pid)
 end
 end
end

If you run this and feed it bad data, the convert/1 method will report an error mes‐
sage (mostly duplicating the shell) before exiting neatly:

iex(1)> pid1 = spawn(MphDrop, :mph_drop, [])
#PID<0.144.0>
iex(2)> send(pid1, {:moon, 20})
On moon, a fall of 20 meters
yields a velocity of 17.89549032 mph.
{:moon,20}
iex(3)> send(pid1, {:moon, :zoids})
Failure: #PID<0.145.0> {:badarith, [{Drop, :fall_velocity, 2,
 [file: 'lib/drop.ex', line: 15]},
 {Drop, :drop, 0, [file: 'lib/drop.ex', line: 5]}]}
 {:moon, :zoids}
iex(4)>
12:04:31.360 [error] Process #PID<0.145.0> raised an exception
** (ArithmeticError) bad argument in arithmetic expression
 (mph_drop) lib/drop.ex:15: Drop.fall_velocity/2
 (mph_drop) lib/drop.ex:5: Drop.drop/0

 nil
iex(5)>

A more robust alternative would set up a new drop_pid variable, spawning a new
process. That version, shown in Example 9-10, which you can find in ch09/ex10-
resilient, is much hardier. Its receive clause sweeps away failure, soldiering on with a
new copy (new_drop_pid) of the drop calculator if needed.

Breaking Things and Linking Processes | 121

Example 9-10. Trapping a failure, reporting an error, and setting up a new process

defmodule MphDrop do
 def mph_drop do
 Process.flag(:trap_exit, true)
 drop_pid = spawn_link(Drop, :drop, [])
 convert(drop_pid)
 end

 def convert(drop_pid) do
 receive do
 {planemo, distance} ->
 send(drop_pid, {self(), planemo, distance})
 convert(drop_pid)
 {:EXIT, _pid, _reason} ->
 new_drop_pid = spawn_link(Drop, :drop, [])
 convert(new_drop_pid)
 {planemo, distance, velocity} ->
 mph_velocity = 2.23693629 * velocity
 IO.write("On #{planemo}, a fall of #{distance} meters ")
 IO.puts("yields a velocity of #{mph_velocity} mph.")
 convert(drop_pid)
 end
 end
end

If you compile and run Example 9-10, you’ll see Figure 9-9 when you first start
Observer. If you feed it bad data, as shown on line 6 in the following code sample,
you’ll still get the error message from the shell, but the process will work just fine. As
you’ll see in Observer, as shown in Figure 9-10, it started up a new process to handle
the Drop.drop/0 calculations, and as line 7 shows, it works like its predecessor:

iex(1)> pid1 = spawn(MphDrop, :mph_drop, [])
#PID<0.145.0>
iex(2)> :observer.start()
:ok
iex(3)> send(pid1, {:moon, 20})
On moon, a fall of 20 meters
yields a velocity of 17.89549032 mph.
{:moon,20}
iex(4)> send(pid1, {:mars, 20})
On mars, a fall of 20 meters
yields a velocity of 27.250254686571544 mph.
{:mars, 20}
iex(5)> send(pid1, {:mars, :zoids})
{:mars, :zoids}
Failure: #PID<0.109.0> {:badarith, [{Drop, :fall_velocity, 2,
 [file: 'lib/drop.ex', line: 19]},
 {Drop, :drop, 0, [file: 'lib/drop.ex', line: 5]}]}
iex(6)>
15:59:49.713 [error] Process #PID<0.146.0> raised an exception
** (ArithmeticError) bad argument in arithmetic expression

122 | Chapter 9: Playing with Processes

 (mph_drop) lib/drop.ex:19: Drop.fall_velocity/2
 (mph_drop) lib/drop.ex:5: Drop.drop/0

nil
iex(7)> send(pid1, {:moon, 20})
On moon, a fall of 20 meters
yields a velocity of 17.89549032 mph.
{:moon,20}

Figure 9-9. Processes before an error—note the Pid on the top line

Figure 9-10. Processes after an error—note the top line Pid change

Elixir offers many more process management options. You can remove a link with
Process.unlink/1, or establish a connection for just watching a process with
Process.monitor/1. If you want to terminate a process, use Process.exit/2 to spec‐
ify a process and reason. You may specify another process’s pid or self().

Building applications that can tolerate failure and restore their functionality is at the
core of robust Elixir programming. Developing in that style is probably a larger leap
for most programmers than Elixir’s shift to functional programming, but it’s where
the true power of Elixir becomes obvious.

Breaking Things and Linking Processes | 123

CHAPTER 10

Exceptions, Errors, and Debugging

“Let it crash” is a brilliant insight, but one whose application you probably want to
control. While it’s possible to write code that constantly breaks and recovers, it can be
easier to write and maintain code that explicitly handles failure where it happens.
However you choose to deal with errors, you’ll definitely want to be able to track
them down in your application.

Flavors of Errors
As you’ve already seen, some kinds of errors will keep Elixir from compiling your
code, and the compiler will also give you warnings about potential issues, like vari‐
ables that are declared but never used. Two other kinds of errors are common: run‐
time errors, which turn up when code is operating and can actually halt a function or
process, and logic errors, which may not kill your program but can cause deeper
headaches.

Logic errors are often the trickiest to diagnose, requiring careful thought and perhaps
some time with the debugger, log files, or a test suite. Simple mathematical errors can
take a lot of work to untangle. Sometimes issues are related to timing, when the
sequence of operations isn’t what you expect. In severe cases, race conditions can
create deadlocks and halting, but more mild cases can produce bad results and
confusion.

Runtime errors can also be annoying, but they are much more manageable. In some
ways you can see handling runtime errors as part of the logic of your program,
though you don’t want to get carried away. In Elixir, unlike many other programs,
handling errors as errors may offer only minor advantages over letting an error kill a
process and then dealing with the problem at the process level, as Example 9-10
showed.

125

Rescuing Code from Runtime Errors as They Happen
If you want to catch runtime errors close to where they took place, the try...rescue
construct lets you wrap suspect code and handle problems (if any) that code creates.
It makes it clear to both the compiler and the programmer that something unusual is
happening, and lets you deal with any unfortunate consequences of that work.

For a simple example, look back to Example 3-1, which calculated fall velocity
without considering the possibility that it would be handed a negative distance.
The :math.sqrt/1 function will produce a badarith error if it has a negative argu‐
ment. Example 4-2 kept that problem from occurring by applying guards, but if you
want to do more than block, you can take a more direct approach with try and
rescue, as shown in Example 10-1. (You can find this and the following two varia‐
tions in ch10/ex1-tryCatch.)

Example 10-1. Using try and catch to handle a possible error

defmodule Drop do
 def fall_velocity(planemo, distance) do
 gravity = case planemo do
 :earth -> 9.8
 :moon -> 1.6
 :mars -> 3.71
 end
 try do
 :math.sqrt(2 * gravity * distance)
 rescue
 error -> error
 end
 end
end

The calculation itself is now wrapped in a try. If the calculation succeeds, the state‐
ment following the do will be used, and the return value will become the result of the
calculation.

If the calculation fails, in this case because of a negative argument, the pattern match
in the rescue clause comes into play. In this case, the variable error will contain the
exception type and message, and will return that as its value.

You can try the following on the command line:

iex(1)> Drop.fall_velocity(:earth, 20)
19.79898987322333
iex(2)> Drop.fall_velocity(:earth, -20)
%ArithmeticError{message: "bad argument in arithmetic expression"}

126 | Chapter 10: Exceptions, Errors, and Debugging

When the calculation is successful, you’ll just get the result. When it fails, you see the
exception. It’s not a complete solution, but it’s a foundation on which you can build.

You can have multiple statements in the try (much as you can in a case). At least
when you’re getting started, it’s easiest to keep the code you are trying simple so you
can see where failures happened. However, if you wanted to watch for requests that
provided an atom that didn’t match the planemos in the case, you could put it all into
the try:

defmodule Drop do
 def fall_velocity(planemo, distance) do
 try do
 gravity = case planemo do
 :earth -> 9.8
 :moon -> 1.6
 :mars -> 3.71
 end
 :math.sqrt(2 * gravity * distance)
 rescue
 error -> error
 end
 end
end

If you try an unsupported planemo, you’ll now see the code catch the problem (at
least, once you recompile the code to use the new version):

iex(3)> Drop.fall_velocity(:jupiter, 20)
** (CaseClauseError) no case clause matching: :jupiter
 drop.ex:3: Drop.fall_velocity/2
iex(3)> r(Drop)
warning: redefining module Drop (current version defined in memory)
 lib/drop.ex:1

{:reloaded, Drop, [Drop]}
iex(4)> Drop.fall_velocity(:jupiter, 20)
%CaseClauseError{term: :jupiter}

The CaseClauseError indicates that a case failed to match and tells you the actual
item that didn’t match.

You can also have multiple pattern matches in the rescue. If the error doesn’t match
any of the patterns in the rescue clause, it gets reported as a runtime error, as if the
try hadn’t wrapped it. The following example will provide different messages for each
type of error. The code doesn’t store the exception in a variable since it doesn’t use
information stored in the exception:

defmodule Drop do
 def fall_velocity(planemo, distance) do
 try do
 gravity = case planemo do

Rescuing Code from Runtime Errors as They Happen | 127

 :earth -> 9.8
 :moon -> 1.6
 :mars -> 3.71
 end
 :math.sqrt(2 * gravity * distance)
 rescue
 ArithmeticError -> {:error, "Distance must be non-negative"}
 CaseClauseError -> {:error, "Unknown planemo #{planemo}"}
 end
 end
end

And here is what it looks like in action:

iex(5)> r(Drop)
warning: redefining module Drop (current version defined in memory)
 lib/drop.ex:1

{:reloaded, Drop, [Drop]}
iex(6)> Drop.fall_velocity(:earth, -20)
{:error,"Distance must be non-negative"}
iex(7)> Drop.fall_velocity(:jupiter, 20)
{:error,"Unknown planemo jupiter"}

If you want to do the same actions for multiple exceptions, you can
write code like this:

[ArithmeticError, CaseClauseError] -> "Generic Error"
err in [ErlangError, RuntimeError] -> {:error, err}

If the code that might fail can create a mess, you may want to include an after clause
after the rescue clause and before the closing end. The code in an after clause is
guaranteed to run whether the attempted code succeeds or fails and can be a good
place to address any side effects of the code. It doesn’t affect the return value of the
clause.

Logging Progress and Failure
The IO.puts function is useful for simple communications with the shell, but as your
programs grow (and especially as they become distributed processes), hurling text
toward standard output is less likely to get you the information you need. Elixir offers
a set of functions for more formal logging. They can hook into more sophisticated
logging systems, but it’s easy to get started with them as a way to structure messages
from your application.

These functions in Elixir’s Logger module give you four levels of reporting:

:info

For information of any kind.

128 | Chapter 10: Exceptions, Errors, and Debugging

:debug

For debug-related messages.

:warn

For news that’s worse. Someone should do something eventually.

:error

For when something is just plain broken and needs to be looked at.

As you can see, these calls produce reports that are visually distinctive. If you run IEx
and enter these statements, you will see that the messages also appear in different
colors:

iex(1)> require Logger
Logger
iex(2)> counter=255
255
iex(3)> Logger.info("About to begin test")

18:57:36.846 [info] About to begin test
:ok
iex(4)> Logger.debug("Current value of counter is #{counter}")

18:58:06.526 [debug] Current value of counter is 255
:ok
iex(5)> Logger.warn("Connection lost; will retry.")

18:58:21.759 [warn] Connection lost; will retry.
:ok
iex(6)> Logger.error("Unable to read database.")

18:58:37.008 [error] Unable to read database.
:ok

These functions produce only a mild improvement over IO.puts, so why would you
use them? Because there is much, much more lurking under the surface. By default,
when Elixir starts up, it sets up the Logger module to report to the shell. However,
you can design a custom backend to log information to any destination you please.

While logging information is useful, it’s not unusual to write code with subtle errors
where you’re not positive what to log where. You could litter the code with reporting,
or you could use the Erlang debugging tools that are also available in Elixir.

Tracing Messages
Elixir offers a wide variety of tools for tracing code, both with other code (using
Erlang’s trace and trace_pattern built-in functions) and with a text-based debug‐
ger/reporter. The dbg module is the easiest place to start into this toolset, letting you
specify what you want traced and showing you the results in the shell.

Tracing Messages | 129

The :dbg module is an Erlang module, but if you are getting tired
of typing the leading : every time you use an Erlang function, you
can make things feel more Elixir-like by typing this command:

iex(1)> alias :dbg, as: Dbg
:dbg

For now, we will continue to use :dbg.

An easy place to get started is tracing messages sent between processes. You can
use :dbg.p to trace the messages sent between the mph_drop process defined in
Example 9-8 and the drop process from Example 9-6. After compiling the modules,
you call :dbg.tracer() to start reporting trace information to the shell. Then you
spawn the mph_drop process as usual and pass that pid to the :dbg.p/2 process. The
second argument here will be :m, meaning that the trace should report the messages.
The code from Example 9-8 is duplicated in ch10/ex2-debug and is started here via
iex -S mix:

iex(1)> :dbg.tracer()
{:ok,#PID<0.71.0>}
iex(2)> pid1 = spawn(MphDrop, :mph_drop, [])
#PID<0.148.0>
iex(3)> :dbg.p(pid1, :m)
{:ok, [{:matched, :nonode@nohost, 1}]}

Now when you send a message to the mph_drop process, you’ll get a set of reports on
the resulting flow of messages (<0.148.0> is the mph_drop process, and <0.149.0> is
the drop process):

iex(4)> send(pid1, {:moon, 20})
On moon, a fall of 20 meters {:moon, 20}
(<0.148.0>) << {moon,20}
yields a velocity of 17.89549032 mph.
(<0.148.0>) <0.149.0> ! {<0.148.0>,moon,20}
(<0.148.0>) << {moon,20,8.0}
(<0.148.0>) <0.50.0> ! {io_request,<0.148.0>,#Ref<0.0.2.159>,
 {put_chars,unicode,
 <<"On moon, a fall of 20 meters ">>}}
(<0.148.0>) << {io_reply,#Ref<0.0.2.159>,ok}
(<0.148.0>) <0.50.0> ! {io_request,<0.148.0>,#Ref<0.0.3.350>,
 {put_chars,unicode,
 <<"yields a velocity of 17.89549032 mph.\n">>}}
(<0.148.0>)<< {io_reply,#Ref<0.0.3.350>,ok}

The << pointing to a pid indicates that that process received a message. Sends are
indicated with the pid followed by ! followed by the message. This is much like what
you saw when using Observer to view process messages in “Watching Your Processes”
on page 114. Because :dbg is an Erlang module, the values in messages (both sent and

130 | Chapter 10: Exceptions, Errors, and Debugging

received) are printed using the Erlang syntax rather than the Elixir syntax. Here is
some explanation of the preceding debug output:

• On this run, the report from mph_drop that On moon, a fall of 20 meters
yields a velocity of 17.89549032 mph. and the result of {:moon, 20} come
through in the middle of the tracing information. The rest of the trace indicates
how that report got there.

• mph_drop (<0.148.0>) receives the message tuple {moon,20}.
• It sends a further message, the tuple {<0.148.0>,moon,20}, to the drop process

at pid <0.149.0>.
• mph_drop receives a tuple {moon,20,8.0} (from drop).
• Then it calls io:request/2, which triggers another set of process messages to

make the report.

The trace reports come through interleaved with the actual execution of the code, but
they make the flow of messages clear. You’ll want to learn to use :dbg in its many var‐
iations to trace your code and may eventually want to use match patterns and the
trace functions themselves to create more elegant systems for watching specific code.

Watching Function Calls
If you just want to keep track of arguments moving between function calls, you can
use the tracer to report on the sequence of calls. Chapter 4 demonstrated recursion
and reported results along the way through IO.puts. There’s another way to see that
work, again using the :dbg module.

Example 4-11, the upward factorial calculator, started with a call to
Fact.factorial/1, which then called Fact.factorial/3 recursively. :dbg will let
you see the actual function calls and their arguments, mixed with the IO.puts report‐
ing. (You can find it in ch10/ex3-debug.)

Tracing functions is a little trickier than tracing messages because you can’t just
pass :dbg.p/2 a pid. As shown on line 2 in the following code sample, you need to
tell it you want it to report on all processes (:all) and their calls (:c). Once you’ve
done that, you have to specify which calls you want it to report, using :dbg.tpl as
shown on line 3. It takes a module name (Fact), a function name as an atom (:facto
rial), and optionally a match specification that lets you specify arguments more pre‐
cisely. Variations on this function also let you specify arity.

So turn on the tracer, tell it you want to follow function calls, and specify a function
(or functions, through multiple calls to :dbg.tpl) to watch. Then call the function,
and you’ll see a list of the calls:

Watching Function Calls | 131

iex(1)> :dbg.tracer()
{:ok,#PID<0.43.0>}
iex(2)> :dbg.p(:all, :c)
{:ok, [{:matched, :nonode@nohost, 51}]}
iex(3)> :dbg.tpl(Fact, :factorial, [])
{:ok, [{:matched, :nonode@nohost, 2}]}

iex(4)> Fact.factorial(4)
1 yields 1.
(<0.26.0>) call 'Elixir-Fact':factorial(4)
(<0.26.0>) call 'Elixir-Fact':factorial(1,4,1)
2 yields 2.
(<0.26.0>) call 'Elixir-Fact':factorial(2,4,1)
3 yields 6.
(<0.26.0>) call 'Elixir-Fact':factorial(3,4,2)
4 yields 24.
(<0.26.0>) call 'Elixir-Fact':factorial(4,4,6)
finished!
(<0.26.0>) call 'Elixir-Fact':factorial(5,4,24)
24

You can see that the sequence is a bit messy here, with the trace reporting coming a
little bit after the IO.puts results from the function being traced. Because the trace is
running in a separate process (at pid <0.43.0>) from the function (at pid <0.26.0>),
its reporting may not line up smoothly (or at all, though it usually does).

When you’re done tracing, call :dbg.stop/0 (if you might want to restart tracing with
the same setup) or :dbg.stop_clear/0 (if you know that when you start again you’ll
want to set things up again).

The :dbg module and the trace functions on which it builds are incredibly powerful
tools.

132 | Chapter 10: Exceptions, Errors, and Debugging

CHAPTER 11

Static Analysis, Typespecs, and Testing

In programming, there are three major classes of errors: syntax errors, runtime errors,
and semantic errors. The Elixir compiler takes care of finding syntax errors for you,
and in Chapter 10 you learned how to handle runtime errors. That leaves logic errors,
when you tell Elixir to do something that you didn’t mean to say. While logging and
tracing can help you find logic errors, the best way to solve them is to make sure that
they never make their way into your program in the first place—and that is the role of
static analysis, typespecs, and unit testing.

Static Analysis
Static analysis refers to debugging by analyzing the source code of a program without
running it. The Dialyzer (DIscrepancy AnalYZer for ERlang programs) is a tool that
does static analysis of Erlang source and .beam files to check for such problems as
unused functions, code that can never be reached, improper lists, patterns that are
unused or cannot match, etc. To make it easier to use Dialyzer with Elixir, use the
Dialyxir tool. We followed the global install path with these commands:

$ git clone https://github.com/jeremyjh/dialyxir
$ cd dialyxir
$ mix archive.build
$ mix archive.install
$ mix dialyzer.plt

The last command builds a Persistent Lookup Table (PLT) that stores results of Dia‐
lyzer analyses; the PLT will analyze most of the commonly used Erlang and Elixir
libraries so that they don’t have to be scanned every time you use Dialyzer. This step
will take several minutes to complete, so be patient and go out and enjoy a short
break. As per the instructions on GitHub, you must rerun that command whenever
you install newer versions of Elixir or Erlang.

133

http://erlang.org/doc/man/dialyzer.html
https://github.com/jeremyjh/dialyxir

Now that Dialyxir has set up Dialyzer, let’s see it in action. Consider the code in
Example 11-1, which you will find in ch11/ex1-guards, which adds a very wrong func‐
tion to the example in ch03/ex2-guards.

Example 11-1. Erroneous calls to clauses

defmodule Drop do

 def fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

 def fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end

 def wrongness() do
 total_distance = fall_velocity(:earth, 20) +
 fall_velocity(:moon, 20) +
 fall_velocity(:jupiter, 20) +
 fall_velocity(:earth, "20")
 total_distance
 end
end

If you go into IEx, the compiler will not detect any errors. It is only when you run the
wrongness/0 function that things go bad:

$ iex -S mix
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe]
[kernel-poll:false]

Compiling 1 file (.ex)
Generated drop app
Interactive Elixir (1.3.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> Drop.wrongness()
** (FunctionClauseError) no function clause matching in Drop.fall_velocity/2
 (drop) lib/drop.ex:3: Drop.fall_velocity(:jupiter, 20)
 (drop) lib/drop.ex:18: Drop.wrongness/0
iex(1)>

Dialyzer, however, would have warned you about this problem in advance. The first
mix clean command clears out any compiled files so that Dialyzer is starting “from
scratch”:

$ mix clean
$ mix dialyzer

134 | Chapter 11: Static Analysis, Typespecs, and Testing

Compiling 1 file (.ex)
Generated drop app
Starting Dialyzer
dialyzer --no_check_plt --plt /home/david/.dialyxir_core_19_1.3.1.plt
 -Wunmatched_returns -Werror_handling -Wrace_conditions -Wunderspecs
 /Users/elixir/code/ch11/ex1-guards/_build/dev/lib/drop/ebin
 Proceeding with analysis...
drop.ex:15: Function wrongness/0 has no local return
drop.ex:18: The call 'Elixir.Drop':fall_velocity('jupiter',20) will never return
 since it differs in the 1st argument from the success typing
 arguments: ('earth' | 'mars' | 'moon',number())
drop.ex:19: The call 'Elixir.Drop':fall_velocity('earth',<<_:16>>) will
 never return since it differs in the 2nd argument from the success
 typing arguments: ('earth' | 'mars' | 'moon',number())
 done in 0m3.27s
done (warnings were emitted)

Dialyzer compiles your file and then checks it. All the -W items on the dialyzer com‐
mand line tell what things Dialyzer will give warning messages for in addition to the
default things that it warns about.

The first error, Function wrongness/0 has no local return, means that the func‐
tion never returns a value, because it has other errors in it. (If wrongness/0 had no
errors but called functions that did have errors, Dialyzer would give you the same
error.)

The second error tells you that the call fall_velocity(:jupiter, 20) (which Dia‐
lyzer punctuates differently, as it belongs to the Erlang universe) won’t work because
there is no pattern defined with :jupiter as the first argument.

The last error shows the power of Dialyzer. Even though the code hasn’t given a @spec
for drop/1, Dialyzer mystically divined that the second argument must be a number,
which makes fall_velocity(:earth, "20") incorrect. (OK, it’s not mystical. It’s a
really good algorithm.)

Typespecs
Dialyzer is an excellent tool and can do a lot on its own, but you can assist it in doing
its job (and readers of your code in doing theirs) by explicitly specifying the types of
parameters and return values of your functions. Consider the module in
Example 11-2 (in ch11/ex2-specs), which implements several gravity-related
equations.

Example 11-2. Explicitly specifying types

defmodule Specs do

 @spec fall_velocity({atom(), number()}, number()) :: float()

Typespecs | 135

 def fall_velocity({_planemo, gravity}, distance) when distance > 0 do
 :math.sqrt(2 * gravity * distance)
 end

 @spec average_velocity_by_distance({atom(), number()}, number()) :: float()
 def average_velocity_by_distance({planemo, gravity}, distance) when distance > 0 do
 fall_velocity({planemo, gravity}, distance) / 2.0
 end

 @spec fall_distance({atom(), number()}, number()) :: float()
 def fall_distance({_planemo, gravity}, time) when time > 0 do
 gravity * time * time / 2.0
 end

 def calculate() do
 earth_v = average_velocity_by_distance({:earth, 9.8}, 10)
 moon_v = average_velocity_by_distance({:moon, 1.6}, 10)
 mars_v = average_velocity_by_distance({3.71, :mars}, 10)
 IO.puts("After 10 seconds, average velocity is:")
 IO.puts("Earth: #{earth_v} m.")
 IO.puts("Moon: #{moon_v} m.")
 IO.puts("Mars: #{mars_v} m.")
 end
end

Each of these functions takes a tuple giving a planemo name and its gravitational
acceleration as its first parameter, and a distance or time (as appropriate) for its sec‐
ond parameter. You may have noticed that the calculate/0 function has an error in
the calculation for mars_v; the items in the initial tuple are in the wrong order. The
compiler won’t catch the error, so you get this result from IEx:

iex(1)> Specs.calculate()
** (ArithmeticError) bad argument in arithmetic expression
 (specs) lib/specs.ex:5: Specs.fall_velocity/2
 (specs) lib/specs.ex:10: Specs.average_velocity_by_distance/2
 (specs) lib/specs.ex:21: Specs.calculate/0
iex(1)>

Dialyzer, however, with the assistance of @spec, will tell you there is a problem:

$ mix dialyzer
Starting Dialyzer
dialyzer --no_check_plt --plt /home/david/.dialyxir_core_19_1.3.1.plt
 -Wunmatched_returns -Werror_handling -Wrace_conditions -Wunderspecs
 /Users/elixir/code/ch11/ex2-specs/_build/dev/lib/specs/ebin
 Proceeding with analysis...
specs.ex:23: Function calculate/0 has no local return
specs.ex:26:
 The call 'Elixir.Specs':average_velocity_by_distance(
 {3.70999999999999996447, 'mars'},10)
 will never return since the success typing is
 ({atom(),number()},number()) -> float()

136 | Chapter 11: Static Analysis, Typespecs, and Testing

 and the contract is ({atom(),number()},number()) -> float()
 done in 0m3.04s
done (warnings were emitted)

This is one of those instances when using a @spec gives a less clear
message from Dialyzer—without the @spec, you get this error
instead:

specs.ex:26: The call 'Elixir.Specs':average_velocity_by_
 distance({3.70999999999999996447, 'mars'},10)
 will never return since it differs in the 1st argument
 from the success typing arguments:
 ({atom(),number()},number())

In either case, however, Dialyzer alerts you to a problem.

There is a lot of duplication in the @specs. You can eliminate that duplication by cre‐
ating a typespec (type specification) of your own. In Example 11-3, in ch11/ex3-type,
we define a planetuple type and use it in the @spec for each function.

Example 11-3. Creating a type specification

defmodule NewType do
 @type planetuple :: {atom(), number()}

 @spec fall_velocity(planetuple, number()) :: float()
 def fall_velocity({_planemo, gravity}, distance) when distance > 0 do
 :math.sqrt(2 * gravity * distance)
 end

 @spec average_velocity_by_distance(planetuple, number()) :: float()
 def average_velocity_by_distance({planemo, gravity}, distance) when distance > 0 do
 fall_velocity({planemo, gravity}, distance) / 2.0
 end

 @spec fall_distance(planetuple, number()) :: float()
 def fall_distance({_planemo, gravity}, time) when time > 0 do
 gravity * time * time / 2.0
 end

 def calculate() do
 earth_v = average_velocity_by_distance({:earth, 9.8}, 10)
 moon_v = average_velocity_by_distance({:moon, 1.6}, 10)
 mars_v = average_velocity_by_distance({3.71, :mars}, 10)
 IO.puts("After 10 seconds, average velocity is:")
 IO.puts("Earth: #{earth_v} m.")
 IO.puts("Moon: #{moon_v} m.")
 IO.puts("Mars: #{mars_v} m.")
 end
end

Typespecs | 137

If you want a custom type to be private, use @typep instead of @type; if you want it to
be public without showing its internal structure, use @opaque. For a complete list of
all the built-in type specifications as well as those defined by Elixir, see the documen‐
tation.

Writing Unit Tests
In addition to static analysis and defining @specs for your functions, you can avoid
some debugging by adequately testing your code beforehand, and Elixir has a unit-
testing module named ExUnit to make this easy for you.

To demonstrate ExUnit, we used Mix to create a new project named drop. In the lib/
drop.ex file, we wrote a Drop module with an error in it. The gravity constant for Mars
has been accidentally mistyped as 3.41 instead of 3.71 (someone’s finger slipped on
the numeric keypad):

defmodule Drop do
 def fall_velocity(planemo, distance) do
 gravity = case planemo do
 :earth -> 9.8
 :moon -> 1.6
 :mars -> 3.41
 end
 :math.sqrt(2 * gravity * distance)
 end
end

In addition to the lib directory, Mix has already created a test directory. If you look in
that directory, you will find two files with an extension of .exs: test_helper.exs and
drop_test.exs. The .exs extension indicates that these are script files, which don’t write
their compiled output to disk. The test_helper.exs file sets up ExUnit to run automati‐
cally. You then define tests in the drop_test.exs file using the test macro. Here are two
tests. The first tests that a distance of zero returns a velocity of zero, and the second
tests that a fall of 10 meters on Mars produces the correct answer. Save this in a file
named drop_test.exs:

defmodule DropTest do
 use ExUnit.Case, async: true

 test "Zero distance gives zero velocity" do
 assert Drop.fall_velocity(:earth,0) == 0
 end

 test "Mars calculation correct" do
 assert Drop.fall_velocity(:mars, 10) == :math.sqrt(2 * 3.71 * 10)
 end
end

138 | Chapter 11: Static Analysis, Typespecs, and Testing

http://elixir-lang.org/docs/stable/elixir/typespecs.html
http://elixir-lang.org/docs/stable/elixir/typespecs.html

The async: true in the use line allows Elixir to run test cases in parallel. In this
instance there is only one module, so there is only one test case.

A test begins with the macro test and a string that describes the test. The content of
the test consists of executing some code and then asserting some condition. The test
passes if all the assertions pass; it fails if any of the assertions fail. In particular,
assert passes when the code it executes returns a truthy value, and fails when the
code returns a falsey value.

To run the tests, type mix test at the command line:

$ mix test
Compiling 1 file (.ex)
Generated drop app
.

 1) test Mars calculation correct (DropTest)
 test/drop_test.exs:8
 Assertion with == failed
 code: Drop.fall_velocity(:mars, 10) == :math.sqrt(2 * 3.71 * 10)
 lhs: 8.258329128825032
 rhs: 8.613942186943213
 stacktrace:
 test/drop_test.exs:9: (test)

Finished in 0.06 seconds
2 tests, 1 failure

Randomized with seed 585665

The line starting . indicates the status of each test; one . means that one test
succeeded.

Fix the error by going into the Drop module and changing Mars’s gravity constant to
the correct value of 3.71. Then run the tests again, and you will see what a successful
test run looks like:

$ mix test
Compiling 1 file (.ex)
..

Finished in 0.05 seconds
2 tests, 0 failures

Randomized with seed 811304

In addition to assert/1, you may use refute/1, which expects the condition you are
testing to be false in order for a test to pass. Both assert/1 and refute/1 automati‐
cally generate an appropriate message. There is also a two-argument version of each

Writing Unit Tests | 139

function that lets you specify the message to produce if the assertion or refutation
fails.

If you are using floating-point operations, you may not be able to count on an exact
result. In that case, you can use the assert_in_delta/4 function. Its four arguments
are the expected value, the value you actually received, the delta, and a message. If the
expected and received values are within delta of each other, the test passes. Otherwise,
the test fails and ExUnit prints your message. Here is a test to see if a fall velocity
from a distance of 1 meter on Earth is close to 4.4 meters per second. You could add
the test to the current drop_test.exs file, or you can (as we have) create a new file
named drop2_test.exs in the test directory:

defmodule Drop2Test do
 use ExUnit.Case, async: true
 test "Earth calculation correct" do
 calculated = Drop.fall_velocity(:earth, 1)
 assert_in_delta calculated, 4.4, 0.05,
 "Result of #{calculated} is not within 0.05 of 4.4"
 end
end

If you want to see the failure message, add a new test to require the calculation to be
more precise, and save it (this version is in the file ch11/ex4-testing/test/
drop3_test.exs):

defmodule Drop3Test do
 use ExUnit.Case, async: true
 test "Earth calculation correct" do
 calculated = Drop.fall_velocity(:earth, 1)
 assert_in_delta calculated, 4.4, 0.0001,
 "Result of #{calculated} is not within 0.0001 of 4.4"
 end
end

This is the result:

$ mix test
..

 1) test Earth calculation correct (Drop3Test)
 test/drop3_test.exs:4
 Result of 4.427188724235731 is not within 0.0001 of 4.4
 stacktrace:
 test/drop3_test.exs:6: (test)

.

Finished in 0.08 seconds
4 tests, 1 failure

Randomized with seed 477713

140 | Chapter 11: Static Analysis, Typespecs, and Testing

You can also test that parts of your code will correctly raise exceptions. The following
two tests will check that an incorrect planemo and a negative distance actually cause
errors. In each test, you wrap the code you want to test in an anonymous function.
You can find these additional tests in the file ch11/ex4-testing/test/drop4_test.exs:

defmodule Drop4Test do
 use ExUnit.Case, async: true
 test "Unknown planemo causes error" do
 assert_raise CaseClauseError, fn ->
 Drop.fall_velocity(:planetX, 10)
 end
 end

 test "Negative distance causes error" do
 assert_raise ArithmeticError, fn ->
 Drop.fall_velocity(:earth, -10)
 end
 end
end

Setting Up Tests
You can also specify code to be run before and after each test, as well as before any
tests start and after all tests finish. For example, you might want to make a connection
to a server before you do any tests, and then disconnect when the tests finish.

To specify code to be run before any of the tests, you use the setup_all callback. This
callback should return :ok and, optionally, a keyword list that is added to the testing
context, which is an Elixir Map you may access from your tests. Consider this code,
which you will find in ch11/ex5-setup:

 setup_all do
 IO.puts "Beginning all tests"

 on_exit fn ->
 IO.puts "Exit from all tests"
 end

 {:ok, [connection: :fake_PID}]}

 end

This code adds a :connection keyword to the context for the tests; the on_exit
specifies code to be run after all the tests finish.

Code to be run before and after each individual test is specified via setup. This code
accesses the context:

 setup context do
 IO.puts "About to start a test. Connection is #{Map.get(context,

Setting Up Tests | 141

 :connection)}"

 on_exit fn ->
 IO.puts "Individual test complete."
 end

 :ok
 end

Finally, you may access the context within an individual test, as shown here:

 test "Zero distance gives zero velocity", context do
 IO.puts "In zero distance test. Connection is #{Map.get(context,
 :connection)}"
 assert Drop.fall_velocity(:earth,0) == 0
 end

Here is the result of running the tests:

$ mix test
Beginning all tests
About to start a test. Connection is fake_PID
In zero distance test, connection is fake_PID
Individual test complete.
.About to start a test. Connection is fake_PID
Test two
Individual test complete.
.Exit from all tests

Finished in 0.08 seconds
2 tests, 0 failures

Randomized with seed 519579

Embedding Tests in Documentation
There is one other way to do tests: by embedding them in the documentation for your
functions and modules. These are referred to as doctests. In this case, your test script
looks like this:

defmodule DropTest do
 use ExUnit.Case, async: true
 doctest Drop
end

Following doctest is the name of the module you want to test. doctest will look
through the module’s documentation for lines that look like commands and output
from IEx. These lines begin with iex> or iex(n)> where n is a number; the following
line is the expected output. Blank lines indicate the beginning of a new test. The fol‐
lowing code shows an example, which you may find in ch11/ex6-doctest:

142 | Chapter 11: Static Analysis, Typespecs, and Testing

defmodule Drop do

 @doc """
 Calculates speed of a falling object on a given planemo
 (planetary mass object)

 iex(1)> Drop.fall_velocity(:earth, 10)
 14.0

 iex(2)> Drop.fall_velocity(:mars, 20)
 12.181953866272849

 iex> Drop.fall_velocity(:jupiter, 10)
 ** (CaseClauseError) no case clause matching: :jupiter
 """
 def fall_velocity(planemo, distance) do
 gravity = case planemo do
 :earth -> 9.8
 :moon -> 1.6
 :mars -> 3.71
 end
 :math.sqrt(2 * gravity * distance)
 end
end

Elixir’s testing facilities also allow you to test whether messages have been received or
not, write functions to be shared among tests, and much more. The full details are
available in the Elixir documentation.

Embedding Tests in Documentation | 143

http://elixir-lang.org/docs.html

CHAPTER 12

Storing Structured Data

Despite Elixir’s general preference for avoiding side effects, storing and sharing data
is a fundamental side effect needed for a wide variety of projects.

Because Elixir works well with Erlang, you can use Erlang Term Storage (ETS) to help
you store and manipulate your data, and the Mnesia database provides additional fea‐
tures for reliable distributed storage.

Records: Structured Data Before Structs
As you saw in “From Maps to Structs” on page 84, Elixir’s structs allow you to use
names to connect with data rather than order (as with tuples). Structs, however, are
based on maps, which are new to Erlang and Elixir. Before maps existed, Erlang had
to solve the problem of keeping structured data, and that solution was the concept of
records. As with structs, you can read, write, and pattern match data in a record
without having to worry about the details of where in a tuple a field lurks or whether
someone’s added a new field.

Records are not especially loved in Erlang, and are supported but not encouraged in
Elixir. The record definition requirement creates headaches. However, records are
common in Erlang APIs and run efficiently, so they are still worth understanding. At
the very least you’ll have a better sense of what people are arguing about in discus‐
sions of Elixir and Erlang data structures.

There are still tuples underneath records, and occasionally Elixir
will expose them to you. Do not attempt to use the tuple represen‐
tation directly, or you will add all the potential problems of using
tuples to the slight extra syntax of using records.

145

Setting Up Records
Using records requires telling Elixir about them with a special declaration. Instead of
defmodule, you use a defrecord declaration:

defrecord Planemo, name: :nil, gravity: 0, diameter: 0, distance_from_sun: 0

That defines a record type named Planemo, containing fields named name, gravity,
diameter, and distance_from_sun with their default values. This declaration creates
records for different towers for dropping objects:

defrecord Tower, location: "", height: 20, planemo: :earth, name: ""

Unlike defstruct declarations, you’ll often want to share record declarations across
multiple modules and (for the examples in this chapter at least) even use them in the
shell. To share record declarations reliably, just put the record declarations in their
own file, ending with the extension .ex. You may want to put each record declaration
in a separate file or all of them in a single file, depending on your needs. To get
started, to see how these behave, you can put both of the declarations into a single
file, records.ex, shown in Example 12-1. (You can find it in ch12/ex1-records.)

Example 12-1. A records.ex file containing two rather unrelated record declarations

defmodule Planemo do
 require Record
 Record.defrecord :planemo, [name: :nil, gravity: 0, diameter: 0,
 distance_from_sun: 0]
end

defmodule Tower do
 require Record
 Record.defrecord :tower, Tower,
 [location: "", height: 20, planemo: :earth, name: ""]
end

Record.defrecord constructs a set of macros to create and access a record. The first
item after Record.defrecord is the record name. The second item is optional; it is
the tag. If you don’t provide a tag, Elixir uses the record name. In this case, we have
provided a tag for Tower records, but not for Planemo records. The name and
optional tag are followed by a list that gives pairs of key names and default values.
Elixir automatically builds functions into the module that let you create new records,
access record values, and update record values. Because records are defined in their
own modules, all you need to do to make a record available to your program is to be
sure that it has been compiled and is in the same directory as your other modules.
You can use the elixirc program from the command line to compile defrecord dec‐
larations, or you can have Mix compile them when starting with iex -S mix.

146 | Chapter 12: Storing Structured Data

The shell now understands records with the names Planemo and Tower, but you must
require them in order to use them in a program or in the shell.

You can also declare records directly in the shell by typing a mod‐
ule definition that contains the defrecord declaration, but if you’re
doing anything more than just poking around, it’s easier to have
them in an external file.

Creating and Reading Records
You can now create variables that contain new records. You create a new record by
using the record name function:

iex(1)> require Tower
Tower
iex(2)> tower1 = Tower.tower()
{Tower, "", 20, :earth, ""}
iex(3)> tower2 = Tower.tower(location: "Grand Canyon")
{Tower, "Grand Canyon", 20, :earth, ""}
iex(4)> tower3 = Tower.tower(location: "NYC", height: 241,
...(4)> name: "Woolworth Building")
{Tower, "NYC", 241, :earth, "Woolworth Building"}
iex(5)> tower4 = Tower.tower location: "Rupes Altat 241", height: 500,
...(5)> planemo: :moon, name: "Piccolini View"
{Tower, "Rupes Altat 241", 500, :moon, "Piccolini View"}
iex(6)> tower5 = Tower.tower planemo: :mars, height: 500,
...(6)> name: "Daga Vallis", location: "Valles Marineris"
{Tower, "Valles Marineris", 500, :mars, "Daga Vallis"}

These towers (or at least drop sites) demonstrate a variety of ways to use the record
syntax to create variables as well as interactions with the default values:

• Line 2 just creates tower1 with the default values. You can add real values later.
• Line 3 creates a tower with a location, but otherwise relies on the default values.
• Line 4 overrides the default values for location, height, and name, but leaves the
planemo alone.

• Line 5 replaces all of the default values with new values. Note also that, as is usual
with Elixir, you do not need to put the arguments to new inside parentheses.

• Line 6 replaces all of the default values, and also demonstrates that it doesn’t mat‐
ter in what order you list the name-value pairs. Elixir will sort it out.

You can read record entries with two different approaches. You can use a “fully quali‐
fied name” using a syntax that puts the record name before the dot (.); this may look
familiar from other languages. For example, to find out which planemo tower5 is on,
you could write:

Records: Structured Data Before Structs | 147

iex(7)> Tower.tower(tower5, :planemo)
:mars

Or you can make your life easier by doing an import so that you no longer need to
fully qualify the name:

iex(8)> import Tower
nil
iex(9)> tower(tower5, :height)
500

If you want to change a value in a record, you can do so. In the following example,
the righthand side actually returns an entirely new record and rebinds that new
record to tower5, overwriting its old value:

iex(10)> tower5
{Tower, "Valles Marineris", 500, :mars, "Daga Vallis"}
iex(11)> tower5 = tower(tower5, height: 512)
{Tower, "Valles Marineris", 512, :mars, "Daga Vallis"}

Using Records in Functions
You can pattern match against records submitted as arguments. The simplest way to
do this is to just match against the type of the record, as shown in Example 12-2,
which is in ch12/ex2-records.

Example 12-2. A method that pattern matches a complete record

defmodule RecordDrop do
 require Planemo
 require Tower

 def fall_velocity(t = Tower.tower()) do
 fall_velocity(Tower.tower(t, :planemo), Tower.tower(t, :height))
 end

 def fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

 def fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end

end

148 | Chapter 12: Storing Structured Data

This uses a pattern match that will match only Tower records, and puts the matched
record into a variable t. Then, like its predecessor in Example 3-8, it passes the indi‐
vidual arguments to fall_velocity/2 for calculations, this time using the record
syntax:

iex(12)> r(RecordDrop)
warning: redefining module RecordDrop (current version loaded from
 _build/dev/lib/record_drop/ebin/Elixir.RecordDrop.beam)
 lib/record_drop.ex:1

{:reloaded, RecordDrop, [RecordDrop]}
iex(13)> RecordDrop.fall_velocity(tower5)
60.909769331364245
iex(14)> RecordDrop.fall_velocity(tower1)
19.79898987322333

The RecordDrop.fall_velocity/1 function shown in Example 12-3 pulls out the
planemo field and binds it to the variable planemo. It pulls out the height field and
binds it to distance. Then it returns the velocity of an object dropped from that
distance, just like earlier examples throughout this book.

You can also extract the specific fields from the record in the pattern match, as shown
in Example 12-3, which is in ch12/ex3-records.

Example 12-3. A method that pattern matches components of a record

defmodule RecordDrop do
 require Tower
 def fall_velocity(Tower.tower(planemo: planemo, height: distance)) do
 fall_velocity(planemo, distance)
 end

 def fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

 def fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end
end

You can take each of the records created and feed them into this function, and it will
tell you the velocity resulting from a drop from the top of that tower to the bottom.

Records: Structured Data Before Structs | 149

Finally, you can pattern match against both the fields and the records as a whole.
Example 12-4, in ch12/ex4-records, demonstrates using this mixed approach to create
a more detailed response than just the fall velocity.

Example 12-4. A method that pattern matches the whole record as well as components
of a record

defmodule RecordDrop do
 require Tower
 import Tower
 def fall_velocity(t = tower(planemo: planemo, height: distance)) do
 IO.puts("From #{tower(t, :name)}'s elevation" <>
 "of #{distance} meters on #{planemo},")
 IO.puts("the object will reach #{fall_velocity(planemo, distance)} m/s")
 IO.puts("before crashing in #{tower(t, :location)}")
 end

 def fall_velocity(:earth, distance) when distance >= 0 do
 :math.sqrt(2 * 9.8 * distance)
 end

 def fall_velocity(:moon, distance) when distance >= 0 do
 :math.sqrt(2 * 1.6 * distance)
 end

 def fall_velocity(:mars, distance) when distance >= 0 do
 :math.sqrt(2 * 3.71 * distance)
 end
end

As noted previously, you can have a variable with the same name as
a field (in this case, planemo).

If you pass a Tower record to RecordDrop.fall_velocity/1, it will match against
individual fields it needs to do the calculation and match the whole record into t so
that it can produce a more interesting, if not necessarily grammatically correct,
report:

iex(15)> RecordDrop.fall_velocity(tower5)
From Daga Vallis's elevation of 500 meters on mars,
the object will reach 60.90976933136424520399 m/s
before crashing in Valles Marineris
:ok
iex(16)> RecordDrop.fall_velocity(tower3)
From Woolworth Building's elevation of 241 meters on earth,
the object will reach 68.72845116834803036454 m/s

150 | Chapter 12: Storing Structured Data

before crashing in NYC
:ok

Storing Data in Erlang Term Storage
Erlang Term Storage (ETS) is a simple but powerful in-memory collection store. It
holds tuples, and since records are tuples underneath, they’re a natural fit. ETS and its
disk-based cousin DETS provide a (perhaps too) simple solution for many data man‐
agement problems. ETS is not exactly a database, but it does similar work and is use‐
ful by itself as well as underneath the Mnesia database, which you’ll see in the next
section.

Every entry in an ETS tables is a tuple (or corresponding record), and one piece of
the tuple is designated the key. ETS offers a few different structural choices depending
on how you want to handle that key. ETS can hold four kinds of collections:

Sets (:set)
Can contain only one entry with a given key. This is the default.

Ordered sets (:ordered_set)
Same as sets, but also maintain a traversal order based on the keys. Great for any‐
thing you want to keep in alphabetic or numeric order.

Bags (:bag)
Let you store more than one entry with a given key. However, if you have multi‐
ple entries that have completely identical values, they get combined into a single
entry.

Duplicate bags (:duplicate_bag)
Not only let you store more than one entry with a given key, but also let you store
multiple entries with completely identical values.

By default, ETS tables are sets, but you can specify one of the other options when you
create a table. The examples here will be sets because they are simpler to figure out,
but the same techniques apply to all four table varieties.

There is no requirement in ETS that all of your entries look at all
similar. When you’re starting out, however, it’s much simpler to use
the same kind of record, or at least tuples with the same structure.
You can also use any kind of value for the key, including complex
tuple structures and lists, but again, it’s best not to get too fancy at
the beginning.

All of the examples in the following section will use the Planemo record type defined
in “Records: Structured Data Before Structs” on page 145, and the data in Table 12-1.

Storing Data in Erlang Term Storage | 151

Table 12-1. Planemos for gravitational exploration

Planemo Gravity (m/s2) Diameter (km) Distance from Sun (106 km)

mercury 3.7 4878 57.9

venus 8.9 12104 108.2

earth 9.8 12756 149.6

moon 1.6 3475 149.6

mars 3.7 6787 227.9

ceres 0.27 950 413.7

jupiter 23.1 142796 778.3

saturn 9.0 120660 1427.0

uranus 8.7 51118 2871.0

neptune 11.0 30200 4497.1

pluto 0.6 2300 5913.0

haumea 0.44 1150 6484.0

makemake 0.5 1500 6850.0

eris 0.8 2400 10210.0

Although the name is Erlang Term Storage, you can still use ETS from Elixir. Just as
you can use Erlang’s math module to calculate square roots by saying :math.sqrt(3),
you can use ETS functions by preceding them with :ets.

Creating and Populating a Table
The :ets.new/2 function lets you create a table. The first argument is a name for the
table, and the second argument is a list of options. There are lots and lots of options,
including the identifiers for the table types described in the previous section, but the
two most important for getting started are :named_table and the tuple starting
with :keypos.

Every table has a name, but only some can be reached using that name. If you don’t
specify :named_table, the name is there but visible only inside the database. You’ll
have to use the value returned by :ets.new/2 to reference the table. If you do spec‐
ify :named_table, processes can reach the table as long as they know the name,
without needing access to that return value.

Even with a named table, you still have some control over
which processes can read and write the table through
the :private, :protected, and :public options.

152 | Chapter 12: Storing Structured Data

The other important option, especially for ETS tables containing records, is
the :keypos tuple. By default, ETS treats the first value in a tuple as the key. The tuple
representation underneath records (which you shouldn’t really touch) always uses the
first value in a tuple to identify the kind of record, so that approach works very badly
as a key for records. Using the :keypos tuple lets you specify which record value
should be the key.

Remember, the record format for a Planemo looks like the following:

defmodule Planemo do
 require Record
 Record.defrecord :planemo, [name: :nil, gravity: 0, diameter: 0,
 distance_from_sun: 0]
end

Because this table is mostly used for calculations based on a given planemo, it makes
sense to use the :name as a key. An appropriate declaration for setting up the ETS
table might look like the following:

planemo_table = :ets.new(:planemos,[:named_table, {:keypos,
 Planemo.planemo(:name) + 1}])

That gives the table the name :planemos and uses the :named_table option to make
that table visible to other processes that know the name. Because of the default access
level of :protected, this process can write to that table but other processes can only
read it. This declaration also tells ETS to use the :name field as the key.

ETS expects the :keypos to be a number that gives the position of
the key field in the underlying tuple, with the first entry numbered
as one. The call to the planemo function returns the index of the
field in the underlying Elixir tuple, with the first entry numbered as
zero. That’s why the preceding code had to add one.

Because it doesn’t specify otherwise, the table will be treated as a :set, where each key
maps to only one instance of record, and ETS doesn’t keep the list sorted by key.

Once you have the table set up, as shown in Example 12-5, you use the :ets.info/1
function to check out its details. (You can find this in ch12/ex5-ets.)

Example 12-5. Setting up a simple ETS table and reporting on what’s there

defmodule PlanemoStorage do
 require Planemo

 def setup do
 planemo_table = :ets.new(:planemos,[:named_table,
 {:keypos, Planemo.planemo(:name) + 1}])
 :ets.info planemo_table

Storing Data in Erlang Term Storage | 153

 end
end

If you compile and run this, you’ll get a report of an empty ETS table with more
properties than you probably want to know about at the moment:

$ iex -S mix
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [async-threads:10]
 [hipe] [kernel-poll:false]

Compiling 2 files (.ex)
Generated planemo_storage app
Interactive Elixir (1.3.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> PlanemoStorage.setup
[read_concurrency: false, write_concurrency: false, compressed: false,
 memory: 299, owner: #PID<0.57.0>, heir: :none, name: :planemos, size: 0,
 node: :nonode@nohost, named_table: true, type: :set, keypos: 2,
 protection: :protected]

Most of this is either more information than you need or unsurprising, but it is good
to see the name (:planemos), size (0—empty!), and keypos (not 1, the default, but 2,
the location of the name in the tuple underneath the record). It is, as the defaults
specify, set up as a :protected :set.

You can set up only one ETS table with the same name. If you call the function Plane
moStorage.setup/0 twice, you’ll get an error:

iex(2)> PlanemoStorage.setup
** (ArgumentError) argument error
 (stdlib) :ets.new(:planemos, [:named_table, {:keypos, 2}])
 planemo_storage.ex:5: PlanemoStorage.setup/0

To avoid this, at least in these early tests, you’ll want to use the :ets.delete/1 com‐
mand to delete the table. Give the table name—in this case, :planemos—as the argu‐
ment. If you think you’re likely to call your initialization code repeatedly after you
figure out the basics, you can also test :ets.info/1 for :undefined to make sure the
table doesn’t already exist, or put a try...catch construct around the :ets.new/2
call.

A more exciting ETS table, of course, will include content. The next step is to
use :ets.insert/2 to add content to the table. The first argument is the table, refer‐
enced either by its name (if you set the named_table option) or by the variable that
captured the return value of :ets.new/2. In Example 12-6, which is in ch12/ex6-ets,
the first call uses the name, to show that it works, and the rest use the variable. The
second argument is a record representing one of the rows from Table 12-1.

154 | Chapter 12: Storing Structured Data

Example 12-6. Populating a simple ETS table and reporting on what’s there

defmodule PlanemoStorage do
 require Planemo

 def setup do
 planemo_table = :ets.new(:planemos,[:named_table,
 {:keypos, Planemo.planemo(:name) + 1}])
 :ets.insert :planemos, Planemo.planemo(name: :mercury, gravity: 3.7,
 diameter: 4878, distance_from_sun: 57.9)
 :ets.insert :planemos, Planemo.planemo(name: :venus, gravity: 8.9,
 diameter: 12104, distance_from_sun: 108.2)
 :ets.insert :planemos, Planemo.planemo(name: :earth, gravity: 9.8,
 diameter: 12756, distance_from_sun: 149.6)
 :ets.insert :planemos, Planemo.planemo(name: :moon, gravity: 1.6,
 diameter: 3475, distance_from_sun: 149.6)
 :ets.insert :planemos, Planemo.planemo(name: :mars, gravity: 3.7,
 diameter: 6787, distance_from_sun: 227.9)
 :ets.insert :planemos, Planemo.planemo(name: :ceres, gravity: 0.27,
 diameter: 950, distance_from_sun: 413.7)
 :ets.insert :planemos, Planemo.planemo(name: :jupiter, gravity: 23.1,
 diameter: 142796, distance_from_sun: 778.3)
 :ets.insert :planemos, Planemo.planemo(name: :saturn, gravity: 9.0,
 diameter: 120660, distance_from_sun: 1427.0)
 :ets.insert :planemos, Planemo.planemo(name: :uranus, gravity: 8.7,
 diameter: 51118, distance_from_sun: 2871.0)
 :ets.insert :planemos, Planemo.planemo(name: :neptune, gravity: 11.0,
 diameter: 30200, distance_from_sun: 4497.1)
 :ets.insert :planemos, Planemo.planemo(name: :pluto, gravity: 0.6,
 diameter: 2300, distance_from_sun: 5913.0)
 :ets.insert :planemos, Planemo.planemo(name: :haumea, gravity: 0.44,
 diameter: 1150, distance_from_sun: 6484.0)
 :ets.insert :planemos, Planemo.planemo(name: :makemake, gravity: 0.5,
 diameter: 1500, distance_from_sun: 6850.0)
 :ets.insert :planemos, Planemo.planemo(name: :eris, gravity: 0.8,
 diameter: 2400, distance_from_sun: 10210.0)

 :ets.info planemo_table
 end
end

Again, the last call is to :ets.info/1, which now reports that the table has 14 items:

iex(2)> r(PlanemoStorage)
warning: redefining module PlanemoStorage (current version loaded from
 Elixir.PlanemoStorage.beam)
 lib/planemo_storage.ex:1

{:reloaded, PlanemoStorage, [PlanemoStorage]}
iex(3)> :ets.delete(:planemos)
true
iex(4)> PlanemoStorage.setup
[read_concurrency: false, write_concurrency: false, compressed: false,

Storing Data in Erlang Term Storage | 155

 memory: 495, owner: #PID<0.57.0>, heir: :none, name: :planemos, size: 14,
 node: :nonode@nohost, named_table: true, type: :set, keypos: 2,
 protection: :protected]

If you want to see what’s in that table, you can do it from the shell by using
the :ets.tab2list/1 function, which will return a list of records, broken into sepa‐
rate lines for ease of reading:

iex(5)> :ets.tab2list :planemos
[{:planemo, :neptune, 11.0, 30200, 4497.1},
 {:planemo, :jupiter, 23.1, 142796, 778.3},
 {:planemo, :haumea, 0.44, 1150, 6484.0}, {:planemo, :pluto, 0.6, 2300, 5913.0},
 {:planemo, :mercury, 3.7, 4878, 57.9}, {:planemo, :earth, 9.8, 12756, 149.6},
 {:planemo, :makemake, 0.5, 1500, 6850.0}, {:planemo, :moon, 1.6, 3475, 149.6},
 {:planemo, :mars, 3.7, 6787, 227.9}, {:planemo, :saturn, 9.0, 120660, 1427.0},
 {:planemo, :uranus, 8.7, 51118, 2871.0}, {:planemo, :ceres, 0.27, 950, 413.7},
 {:planemo, :venus, 8.9, 12104, 108.2}, {:planemo, :eris, 0.8, 2400, 10210.0}]

If you’d rather keep track of the table in a separate window, Erlang’s Observer table
visualizer shows the same information in a slightly more readable form. You can start
it from the shell with :observer.start(), and click the Table Viewer tab. You will see
something that looks like Figure 12-1. Double-click the planemos table, and you’ll see
a more detailed report on its contents like the one shown in Figure 12-2.

The visualizer doesn’t know about your record declarations; it only knows the field
numbers. The Edit menu lets you poll the table to be sure you have its latest contents,
and set a polling interval if you want it to refresh automatically. If you declare tables
public, you can even edit their contents in the table viewer.

If you want to see a table of all the current ETS tables, try issu‐
ing :ets.i() in the shell. You’ll see the tables you’ve created (prob‐
ably) near the bottom.

Figure 12-1. Opening the table visualizer

156 | Chapter 12: Storing Structured Data

Figure 12-2. Reviewing the planemos table in the visualizer

Simple Queries
The easiest way to look up records in your ETS table is with the :ets.lookup/2 func‐
tion and the key. You can test this easily from the shell:

iex(6)> :ets.lookup(:planemos, :eris)
[{:planemo, :eris, 0.8, 2400, 10210.0}]

The return value is always a list. This is true despite Elixir’s knowing that this ETS
table has the :set type, so only one value can match the key, and despite there being
only one value. In situations like this where you know that there will only be one
returned value, the hd/1 function will get you the head of a list quickly. Since there is
only one item, the head is just that item:

iex(7)> hd(:ets.lookup(:planemos, :eris))
{:planemo, :eris, 0.8, 2400, 10210.0}

The square brackets are gone, which means that you can now extract, say, the gravity
of a planemo:

iex(8)> result = hd(:ets.lookup(:planemos, :eris))
{:planemo, :eris, 0.8, 2400, 10210.0}
iex(9)> require Planemo
Planemo
iex(10)> Planemo.planemo(result, :gravity)
0.8

Storing Data in Erlang Term Storage | 157

Overwriting Values
Although you can reassign values to Elixir variables, it’s better if you don’t overwrite
the value of a variable or change the value of an item in a list. Keeping variables
“single-assignment” makes it easier to write more reliable programs that involve com‐
munication among many processes (you saw this in Chapter 9 and will learn more
about how processes communicate in Chapter 13). However, ETS is meant for storing
values that might need to be reassigned. If you want to change the value of gravity
on :mercury, you can:

iex(11)> :ets.insert(:planemos, Planemo.planemo(name: :mercury,
...(11)> gravity: 3.9, diameter: 4878, distance_from_sun: 57.9))
true
iex(12)> :ets.lookup(:planemos, :mercury)
[{:planemo, :mercury, 3.9, 4878, 57.9}]

Just because you can change values in an ETS table, however, doesn’t mean that you
should rewrite your code to replace variables with flexible ETS table contents. Nor
should you make all your tables public so that various processes can read and write
whatever they like to the tables (making this a different form of shared memory).

Ask yourself when making changes is going to be useful, and when it might introduce
tricky bugs. You probably won’t have to change the gravity of Mercury, but it certainly
could make sense to change a shipping address. If you have doubts, lean toward
caution.

ETS Tables and Processes
Now that you can extract gravitational constants for planemos, you can expand the
Drop module to calculate drops in many more locations. Example 12-7 combines the
Drop module from Example 9-6 with the ETS table built in Example 12-6 to create a
more powerful drop calculator. (You can find this in ch12/ex7-ets-calculator.)

Example 12-7. Calculating drop velocities using an ETS table of planemo properties

defmodule Drop do
 require Planemo
 def drop do
 setup
 handle_drops
 end

 def handle_drops do
 receive do
 {from, planemo, distance} ->
 send(from, {planemo, distance, fall_velocity(planemo, distance)})
 handle_drops
 end

158 | Chapter 12: Storing Structured Data

 end

 def fall_velocity(planemo, distance) when distance >= 0 do
 p = hd(:ets.lookup(:planemos, planemo))
 :math.sqrt(2 * Planemo.planemo(p, :gravity) * distance)
 end

 def setup do
 :ets.new(:planemos, [:named_table,
 {:keypos, Planemo.planemo(:name) + 1}])
 info = [
 {:mercury, 3.7, 4878, 57.9},
 {:venus, 8.9, 12104, 108.2},
 {:earth, 9.8, 12756, 149.6},
 {:moon, 1.6, 3475, 149.6},
 {:mars, 3.7, 6787, 227.9},
 {:ceres, 0.27, 950, 413.7},
 {:jupiter, 23.1, 142796, 778.3},
 {:saturn, 9.0, 120660, 1427.0},
 {:uranus, 8.7, 51118, 2871.0},
 {:neptune, 11.0, 30200, 4497.1},
 {:pluto, 0.6, 2300, 5913.0},
 {:haumea, 0.44, 1150, 6484.0},
 {:makemake, 0.5, 1500, 6850.0},
 {:eris, 0.8, 2400, 10210.0}]
 insert_into_table(info)
 end

 def insert_into_table([]) do # stop recursion
 :undefined
 end

 def insert_into_table([{name, gravity, diameter, distance} | tail]) do
 :ets.insert(:planemos, Planemo.new(name: name, gravity: gravity,
 diameter: diameter, distance_from_sun: distance))
 insert_into_table(tail)
 end
end

The drop/0 function changes a little to call the initialization separately and avoid set‐
ting up the table on every call. This moves the message handling to a separate func‐
tion, handle_drops/0. The fall_velocity/2 function also changes, as it now looks
up planemo names in the ETS table and gets the gravitational constant from that
table rather than hardcoding those contents into the function. (While it would cer‐
tainly be possible to pass the planemo_table variable from the previous example as
an argument to the recursive message handler, it’s simpler to just use it as a named
table.)

Storing Data in Erlang Term Storage | 159

The setup function has also changed dramatically. Rather than doing a series
of :ets.insert calls, it creates a list of tuples with the planemo information and then
calls insert_into_table/1 recursively to insert each entry.

If this process crashes and needs to be restarted, restarting it will
trigger the setup/0 function, which currently doesn’t check to see if
the ETS table exists. That could cause an error, except that ETS
tables vanish when the processes that created them die. ETS offers
an heir option and an :ets.give_away/3 function if you want to
avoid that behavior, but for now it works well.

If you combine this module with the MphDrop module from Example 9-7, you’ll be
able to calculate drop velocities on all of these planemos. Since messages are passed
asynchronously, the tuple may appear in the middle of the output:

iex(1)> c("drop.ex")
[Drop]
iex(2)> c("mph_drop.ex")
[MphDrop]
iex(3)> pid1 = spawn(MphDrop, :mph_drop, [])
#PID<0.47.0>
iex(4)> send(pid1, {:earth, 20})
On earth, a fall of 20 meters yields a velocity of 44.289078952755766 mph.
{:earth,20}
iex(5)> send(pid1, {:eris, 20})
On eris, a fall of 20 meters yields a velocity of 12.65402255793022 mph.
{:eris,20}
iex(6)> send(pid1, {:makemake, 20})
On makemake, a fall of 20 meters yields a velocity of 10.003883211552367 mph.
{:makemake,20}

That’s a lot more variety than its :earth, :moon, and :mars predecessors!

Next Steps
While many applications just need a fast key-value store, ETS tables are far more flex‐
ible than the examples so far demonstrate. You can use Erlang’s match specifications
and :ets.fun2ms to create more complex queries with :ets.match and :ets.select.
You can delete rows (as well as tables) with :ets.delete.

The :ets.first, :ets.next, and :ets.last functions let you traverse tables
recursively.

Perhaps most important, you can also explore DETS, the Disk-Based Erlang Term
Storage, which offers similar features but with tables stored on disk. It’s slower, with a
2 GB limit, but the data doesn’t vanish when the controlling process stops.

160 | Chapter 12: Storing Structured Data

You can dig deeper into ETS and DETS, but if your needs are more complex, and
especially if you need to split data across multiple nodes, you should probably explore
the Mnesia database.

Storing Records in Mnesia
Mnesia is a database management system (DBMS) that comes with Erlang, and, by
extension, one that you can use with Elixir. It uses ETS and DETS underneath, but
provides many more features than those components.

You should consider shifting from ETS (and DETS) tables to the Mnesia database if:

• You need to store and access data across a set of nodes, not just a single node.
• You don’t want to have to think about whether you’re going to store data in mem‐

ory or on a disk or both.
• You need to be able to roll back transactions if something goes wrong.
• You’d like a more approachable syntax for finding and joining data.
• Management prefers the sound of “database” to the sound of “tables.”

You may even find that you use ETS for some aspects of a project and Mnesia for
others.

That isn’t “amnesia,” the forgetting, but “mnesia,” the Greek word
for memory.

Starting Up Mnesia
If you want to store data on disk, you need to give Mnesia some information. Before
you turn Mnesia on, you need to create a database, which you do using the func‐
tion :mnesia.create_schema/1. For now, because you’ll be getting started using only
the local node, that will look like the following:

iex(1)> :mnesia.create_schema([node()])
:ok

By default, when you call :mnesia.create_schema/1, Mnesia will store schema data
in the directory where you are when you start it. If you look in the directory where
you started Elixir, you’ll see a new directory with a name like Mnesia.nonode@nohost.
Initially, it holds a FALLBACK.BUP file. The node/0 function just returns the identi‐
fier of the node you’re on, which is fine when you’re getting started.

Storing Records in Mnesia | 161

If you start Mnesia without calling :mnesia.create_schema/1,
Mnesia will keep its schema in memory, and it will vanish if and
when Mnesia stops.

Unlike ETS and DETS, which are always available, you need to turn Mnesia on:

iex(2)> :mnesia.start()
:ok

This will create a schema.DAT file in the Mnesia.nonode@nohost directory. There’s
also a :mnesia.stop/0 function if you want to stop it.

If you run Mnesia on a computer that goes to sleep, you may get
odd messages like Mnesia(nonode@nohost): ** WARNING ** Mne
sia is overloaded: {dump_log, time_threshold} when it
wakes up. Don’t worry; it’s a side effect of waking up, and your data
should still be safe. You probably shouldn’t run production systems
on devices that go to sleep, of course.

Creating Tables
Like ETS, Mnesia’s basic concept of a table is a collection of records. It also
offers :set, :orderered_set, and :bag options, just like those in ETS, but doesn’t
offer :duplicate_bag.

Mnesia wants to know more about your data than ETS, too. ETS pretty much takes
data in tuples of any shape, counting only on there being a key it can use. The rest is
up to you to interpret. Mnesia wants to know more about what you store, and takes a
list of field names. The easy way to handle this is to define records and consistently
use the field names from the records as Mnesia field names. There’s even an easy way
to pass the record names to Mnesia, using record_info/2.

The planemos table can work just as easily in Mnesia as in ETS, and some aspects of
dealing with it will be easier. Example 12-8, which is in ch12/ex8-mnesia, shows how
to set up the table in Mnesia. The setup/0 method creates a schema, then starts Mne‐
sia, and then creates a table based on the Planemo record type. Once the table is cre‐
ated, it writes the values from Table 12-1 to it.

Example 12-8. Setting up a Mnesia table of planemo properties

defmodule Drop do
 require Planemo

 def drop do
 setup

162 | Chapter 12: Storing Structured Data

 handle_drops
 end

 def handle_drops do
 receive do
 {from, planemo, distance} ->
 send(from, {planemo, distance, fall_velocity(planemo, distance)})
 handle_drops
 end
 end

 def fall_velocity(planemo, distance) when distance >= 0 do
 {:atomic, [p | _]} = :mnesia.transaction(fn() ->
 :mnesia.read(PlanemoTable, planemo) end)
 :math.sqrt(2 * Planemo.planemo(p, :gravity) * distance)
 end

 def setup do
 :mnesia.create_schema([node()])
 :mnesia.start()
 :mnesia.create_table(PlanemoTable, [{:attributes,
 [:name, :gravity, :diameter, :distance_from_sun]},
 {:record_name, :planemo}])

 f = fn ->
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :mercury, gravity: 3.7,
 diameter: 4878, distance_from_sun: 57.9), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :venus, gravity: 8.9,
 diameter: 12104, distance_from_sun: 108.2), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :earth, gravity: 9.8,
 diameter: 12756, distance_from_sun: 149.6), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :moon, gravity: 1.6,
 diameter: 3475, distance_from_sun: 149.6), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :mars, gravity: 3.7,
 diameter: 6787, distance_from_sun: 227.9), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :ceres, gravity: 0.27,
 diameter: 950, distance_from_sun: 413.7), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :jupiter, gravity: 23.1,
 diameter: 142796, distance_from_sun: 778.3), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :saturn, gravity: 9.0,
 diameter: 120660, distance_from_sun: 1427.0), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :uranus, gravity: 8.7,
 diameter: 51118, distance_from_sun: 2871.0), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :neptune, gravity: 11.0,
 diameter: 30200, distance_from_sun: 4497.1), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :pluto, gravity: 0.6,
 diameter: 2300, distance_from_sun: 5913.0), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :haumea, gravity: 0.44,
 diameter: 1150, distance_from_sun: 6484.0), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :makemake, gravity: 0.5,
 diameter: 1500, distance_from_sun: 6850.0), :write)
 :mnesia.write(PlanemoTable, Planemo.planemo(name: :eris, gravity: 0.8,

Storing Records in Mnesia | 163

 diameter: 2400, distance_from_sun: 10210.0), :write)
 end

 :mnesia.transaction(f)
 end
end

In the setup, the :mnesia.create_table call gives the attributes for the table explic‐
itly because, as of this writing, there is no easy way to extract all the field names for a
record. Ordinarily, Mnesia presumes that the table name is the same as the name of
the first field of the record, but in this case, the table is PlanemoTable and the record
starts with :planemo. You give the record name explicitly with this code:
{:record_name, :planemo}.

The :mnesia_write calls take three parameters: the table name, the record, and the
type of lock to use on the database (in this case, :write).

Apart from the setup, the key thing to note is that all of the writes are contained in a
fn that is then passed to :mnesia.transaction to be executed as a transaction. Mne‐
sia will restart the transaction if there is other activity blocking it, so the code may get
executed repeatedly before the transaction happens. Because of this, you should not
include any calls that create side effects in the function you will be passing to :mne
sia.transaction, and don’t try to catch exceptions on Mnesia functions within a
transaction. If your function calls :mnesia.abort/1 (probably because some condi‐
tion for executing it wasn’t met), the transaction will be rolled back, returning a tuple
beginning with :aborted instead of :atomic.

You may also want to explore the more flexi‐
ble :mnesia.activity/2 when you need to mix more kinds of
tasks in a transaction.

Your interactions with Mnesia should be contained in transactions, especially when
your database is shared across multiple nodes. The main :mne

sia.write, :mnesia.read, and :mnesia.delete methods work only within transac‐
tions, period. There are dirty_ methods, but every time you use them, especially to
write data to the database, you’re taking a risk.

Just as in ETS, you can overwrite values by writing a new value
with the same key as a previous entry.

164 | Chapter 12: Storing Structured Data

If you want to check on how this function worked out, try the :mnesia.table_info
function, which can tell you more than you want to know. The following listing is
abbreviated to focus on key results:

iex(1)> c("drop.ex")
[Drop]
iex(2)> Drop.setup
{:atomic,:ok}
iex(3)> :mnesia.table_info(PlanemoTable, :all)
[access_mode: :read_write,
 active_replicas: [:"nonode@nohost"],
 all_nodes: [:"nonode@nohost"],
 arity: 5,
 attributes: [:name,:gravity,:diameter,:distance_from_sun],
 ...
 ram_copies: [:"nonode@nohost"],
 record_name: :planemo,
 record_validation: {:planemo,5,:set},
 type: :set,
 size: 14,
 ...]

You can see which nodes are involved in the table (nonode@nohost is the default for
the current node). arity in this case is the count of fields in the record, and
attributes tells you what their names are. ram_copies plus the name of the current
node tells you that this table is stored in memory locally. It is, as in the ETS example,
of type :set, and there are 14 records.

By default, Mnesia will store your table in RAM only (ram_copies)
on the current node. This is speedy, but it means the data vanishes
if the node crashes. If you specify disc_copies (note the spelling),
Mnesia will keep a copy of the database on disk, but still use RAM
for speed. You can also specify disc_only_copies, which will be
slow. Unlike with ETS, the table you create will still be around if the
process that created it crashes, and will likely survive even a node
crash so long as it wasn’t only in RAM on a single node. By com‐
bining these options and (eventually) multiple nodes, you should
be able to create fast and resilient systems.

The table is now set up, and you can start to use it. If you’re running Observer, you
can take a look at the contents of your Mnesia tables as well as your ETS tables.
Choose the Table Viewer tab, then, in the View menu, choose Mnesia Tables. The
interface is similar to that for ETS tables.

Storing Records in Mnesia | 165

Reading Data
Just like writes, you should wrap :mnesia.read calls in a fn, which you then pass
to :mnesia.transaction. You can do that in the shell if you want to explore:

iex(4)> :mnesia.transaction(fn()->:mnesia.read(PlanemoTable, :neptune) end)
{:atomic, [{:planemo, :neptune, 11.0, 30200, 4497.1}]}

The result arrives as a tuple, which when successful contains :atomic plus a list with
the data from the table. The table data is packaged as a record, and you can get to its
fields easily.

You can rewrite the fall_velocity/2 function from Example 12-8 to use a Mnesia
transaction instead of an ETS call. The ETS version looked like the following:

def fall_velocity(planemo, distance) when distance >= 0 do
 p = hd(:ets.lookup(:planemos, planemo))
 :math.sqrt(2 * Planemo.planemo(p, :gravity) * distance)
end

Line 2 of the Mnesia version is a bit different:

def fall_velocity(planemo, distance) when distance >= 0 do
 {:atomic, [p | _]} = :mnesia.transaction(fn() ->
 :mnesia.read(PlanemoTable, planemo) end)
 :math.sqrt(2 * Planemo.planemo(p, :gravity) * distance)
end

Because Mnesia returns a tuple rather than a list, this uses pattern matching to extract
the first item in the list contained in the second item of the tuple (and throws away
the tail of that list with _). This table is a set, so there will always be only one item
there, so we could have as well matched on {:atomic, [p]}. Then the data, con‐
tained in p, can be used for the same calculation as before.

If you compile and run this, you’ll see a familiar result:

iex(5)> r(Drop)
warning: redefining module Drop (current version loaded from
 _build/dev/lib/mph_drop/ebin/Elixir.Drop.beam)
 lib/drop.ex:1

{:reloaded, Drop, [Drop]}
iex(6)> Drop.fall_velocity(:earth, 20)
19.79898987322333
iex(7)> pid1 = spawn(MphDrop, :mph_drop, [])
#PID<0.115.0>
iex(8)> send(pid1, {:earth, 20})
On earth, a fall of 20 meters yields a velocity of 44.289078952755766 mph.
{:earth, 20}

166 | Chapter 12: Storing Structured Data

For these purposes, the simple :mnesia.read is enough. You can tell Mnesia to build
indexes for fields other than the key, and query those with :mnesia.index_read as
well.

If you want to delete records, you can run :mnesia.delete/2, also
inside of a transaction.

Storing Records in Mnesia | 167

CHAPTER 13

Getting Started with OTP

At this point, it might seem like you have all you need to create process-oriented
projects with Elixir. You know how to create useful functions, can work with recur‐
sion, know the data structures Elixir offers, and, probably most important, know how
to create and manage processes. What more could you need?

Process-oriented programming is great, but the details matter. The basic Elixir tools
are powerful but can also lead you into frustrating mazes debugging race conditions
that happen only once in a while. Mixing different programming styles can lead to
incompatible expectations, and code that worked well in one environment may prove
harder to integrate in another.

Ericsson encountered these problems early when developing Erlang (remember,
Elixir runs on Erlang’s virtual machine), and created a set of libraries that ease them.
OTP, the Open Telecom Platform, is useful for pretty much any large-scale project
you want to do with Elixir and Erlang, not just telecom work. It’s included with
Erlang, and though it isn’t precisely part of the language, it is definitely part of Erlang
culture. The boundaries of where Elixir and Erlang end and OTP begins aren’t always
clear, but the entry point is definitely behaviors. You’ll combine processes built with
behaviors and managed by supervisors into an OTP application.

So far, the lifecycle of the processes we’ve seen has been pretty simple. If needed, they
set up other resources or processes to get started. Once running, they listen for mes‐
sages and process them, collapsing if they fail. Some of them might restart a failed
process if needed.

OTP formalizes those activities, and a few more, into a set of behaviors (or behav‐
iours—the original spelling was British). The most common behaviors are GenServer
(generic server) and Supervisor. Through Erlang, you can use the gen_fsm (finite
state machine) and gen_event behaviors. Elixir provides the Mix build tool for creat‐

169

ing applications so that you can package your OTP code into a single runnable (and
updatable) system.

The behaviors predefine the mechanisms you’ll use to create and interact with pro‐
cesses, and the compiler will warn you if you’re missing some of them. Your code will
handle the callbacks, specifying how to respond to particular kinds of events, and you
will need to decide upon a structure for your application.

If you’d like a video introduction to OTP, though it is Erlang-
centric, see Steve Vinoski’s “Erlang’s Open Telecom Platform (OTP)
Framework”. You probably already know the first half hour or so of
it, but the review is excellent. In a very different style, if you’d like
an explanation of why it’s worth learning OTP and process-
oriented development in general, Francesco Cesarini’s slides work
even without narration (especially the second half).

Creating Services with GenServer
Much of the work you think of as the core of a program—calculating results, storing
information, and preparing replies—will fit neatly into the GenServer behavior. It
provides a core set of methods that let you set up a process, respond to requests, end
the process gracefully, and even pass state to a new process if this one needs to be
upgraded in place.

Table 13-1 shows the functions you need to implement in a service that uses Gen
Server. For a simple service, the first two or three are the most important, and you
may just use placeholder code for the rest.

Table 13-1. What calls and gets called in GenServer

Function Triggered by Does

init/1 GenServer.start_link Sets up the process

handle_call/3 GenServer.call Handles synchronous calls

handle_cast/2 GenServer.cast Handles asynchronous calls

handle_info/2 Random messages Deals with non-OTP messages

terminate/2 Failure or shutdown signal from supervisor Cleans up the process

code_change/3 System libraries for code upgrades Lets you switch out code without losing state

Example 13-1, which you can find in ch13/ex1-drop, shows an example that you can
use to get started. It mixes a simple calculation from way back in Example 2-1 with a
counter like that in Example 9-4.

170 | Chapter 13: Getting Started with OTP

http://bitly.com/10Cif1r
http://bitly.com/10Cif1r
http://bitly.com/10CiqKo

Example 13-1. A simple gen_server example

defmodule DropServer do
 use GenServer

 defmodule State do
 defstruct count: 0
 end

 # This is a convenience method for startup
 def start_link do
 GenServer.start_link(__MODULE__, [], [{:name, __MODULE__}])
 end

 # These are the callbacks that the GenServer behavior will use
 def init([]) do
 {:ok, %State{}}
 end

 def handle_call(request, _from, state) do
 distance = request
 reply = {:ok, fall_velocity(distance)}
 new_state = %State{count: state.count + 1}
 {:reply, reply, new_state}
 end

 def handle_cast(_msg, state) do
 IO.puts("So far, calculated #{state.count} velocities.")
 {:noreply, state}
 end

 def handle_info(_info, state) do
 {:noreply, state}
 end

 def terminate(_reason, _state) do
 {:ok}
 end

 def code_change(_old_version, state, _extra) do
 {:ok, state}
 end

 # internal function
 def fall_velocity(distance) do
 :math.sqrt(2 * 9.8 * distance)
 end

end

The module name (DropServer) should be familiar from past examples. The second
line specifies that the module is going to be using the GenServer module.

Creating Services with GenServer | 171

The nested defmodule declaration should be familiar; it creates a structure that con‐
tains only one field, to keep a count of the number of calls made. Many services will
have more fields, including things like database connections, references to other pro‐
cesses, perhaps network information, and metadata specific to this particular service.
It is also possible to have services with no state, which would be represented by an
empty tuple here. As you’ll see later, every single GenServer function will reference
the state.

The State structure declaration is a good example of a declaration
you should make inside of a module and not in a separate file. It is
possible that you’ll want to share state models across different pro‐
cesses that use GenServer, but it’s easier to see what State should
contain if the information is right there.

The first function in the sample, start_link/0, is not one of the required GenServer
functions. Instead, it calls Elixir’s GenServer.start_link function to start up the
process. When you’re just getting started, this is useful for testing. As you move
toward production code, you may find it easier to leave start_link/0 out and use
other mechanisms.

The start_link/0 function uses the built-in __MODULE__ declaration, which returns
the name of the current module:

This is a convenience method for startup
def start_link do
 GenServer.start_link(__MODULE__, [], [{:name, __MODULE__}])
end

The first argument is an atom (__MODULE__) that will be expanded to the name of the
current module, and that name will be used as the name for this process. This is fol‐
lowed by a list of arguments to be passed to the module’s initialization procedure and
a list of options. Options can specify things like debugging, timeouts, and options for
spawning the process. By default, the name of the process is registered with just the
local Elixir instance. Because we want it registered with all associated nodes, we have
put the tuple {:name, __MODULE__} in the options list.

You may also see a form of GenServer.start_link with :via as an
atom in an option tuple. This lets you set up custom process regis‐
tries, of which gproc is the best known.

All of the remaining functions are part of the GenServer behavior. init/1 creates a
new state structure instance whose count field is 0—no velocities have yet been calcu‐
lated. The two functions that do most of the work here are handle_call/3 and

172 | Chapter 13: Getting Started with OTP

https://github.com/uwiger/gproc

handle_cast/2. For this demonstration, handle_call/3 expects to receive a distance
in meters and returns a velocity for a fall from that height on Earth, while
handle_cast/2 is a trigger to report the number of velocities calculated.

handle_call/3 makes synchronous communications between Erlang processes
simple:

def handle_call(request, _from, state) do
 distance = request
 reply = {:ok, fall_velocity(distance)}
 new_state = %State{count: state.count + 1}
 {:reply, reply, new_state}
end

This extracts the distance from the request, which isn’t necessary except that we
wanted to leave the variable names for the function almost the same as they were in
the template. (handle_call(distance, _from, state) would have been fine.) Your
request is more likely to be a tuple or a list rather than a bare value, but this works
for simple calls.

The function then creates a reply based on sending that distance to the simple
fall_velocity/1 function at the end of the module. Next, it creates a new_state
containing an incremented count. Then the atom :reply, the reply tuple containing
the velocity, and the new_state containing the updated count get passed back.

Because the calculation is really simple, treating the drop as a simple synchronous call
is perfectly acceptable. For more complex situations where you can’t predict how long
a response might take, you may want to consider sending a :noreply response and
using the _from argument to send a response later. (There is also a :stop response
available that will trigger the :terminate/2 method and halt the process.)

By default, OTP will time out any synchronous calls that take
longer than five seconds to calculate. You can override this by mak‐
ing your call using GenServer.call/3 to specify a timeout (in
milliseconds) explicitly, or by using the atom :infinity.

The handle_cast/2 function supports asynchronous communications. It isn’t sup‐
posed to return anything directly, though it does report :noreply (or :stop) and
updated state. In this case, it takes a very weak approach (but one that serves well for
a demonstration), calling IO.puts/1 to report on the number of calls:

def handle_cast(_msg, state) do
 IO.puts("So far, calculated #{state.count} velocities.")
 {:noreply, state}
end

Creating Services with GenServer | 173

The state doesn’t change, because asking for the number of times the process has cal‐
culated a fall velocity is not the same thing as actually calculating a fall velocity.

Until you have good reason to change them, you can leave the handle_info/2, termi
nate/2, and code_change/3 functions alone.

Making a GenServer process run and calling it looks a little different than starting the
processes you saw in Chapter 9:

iex(1)> DropServer.start_link()
{:ok,#PID<0.46.0>}
iex(2)> GenServer.call(DropServer, 20)
{:ok,19.79898987322333}
iex(3)> GenServer.call(DropServer, 40)
{:ok,28.0}
iex(4)> GenServer.call(DropServer, 60)
{:ok,34.292856398964496}
iex(5)> GenServer.cast(DropServer, {})
So far, calculated 3 velocities.
:ok

The call to DropServer.start_link() sets up the process and makes it available.
Then, you’re free to use GenServer.call or GenServer.cast to send it messages and
get responses.

While you can capture the pid, you don’t have to keep it around to
use the process. Because start_link returns a tuple, if you want to
capture the pid you can do something like {:ok, pid} =

DropServer.start_link().

Because of the way OTP calls GenServer functions, there’s an additional bonus—or
perhaps a hazard—in that you can update code on the fly. For example, we tweaked
the fall_velocity/1 function to lighten Earth’s gravity a little, using 9.1 as a con‐
stant instead of 9.8. Recompiling the code and asking for a velocity now returns a
different answer:

iex(6)> r(DropServer)
warning: redefining module DropServer (current version loaded from
 _build/dev/lib/drop_server/ebin/Elixir.DropServer.beam)
 lib/drop_server.ex:1

warning: redefining module DropServer.State (current version loaded from
 _build/dev/lib/drop_server/ebin/Elixir.DropServer.State.beam)
 lib/drop_server.ex:4

{:reloaded, DropServer, [DropServer.State, DropServer]}
iex(7)> GenServer.call(DropServer, 60)
{:ok,33.04542328371661}

174 | Chapter 13: Getting Started with OTP

This can be very convenient during the development phase, but be careful doing any‐
thing like this on a production machine. OTP has other mechanisms for updating
code on the fly. There is also a built-in limitation to this approach: init gets called
only when start_link sets up the service. It does not get called if you recompile the
code. If your new code requires any changes to the structure of its state, your code
will break the next time it’s called.

A Simple Supervisor
When you started the DropServer module from the shell, you effectively made the
shell the supervisor for the module—though the shell doesn’t really do any supervi‐
sion. You can break the module easily:

iex(8)> GenServer.call(DropServer, -60)
** (EXIT from #PID<0.141.0>) an exception was raised:
 ** (ArithmeticError) bad argument in arithmetic expression
 (stdlib) :math.sqrt(-1176.0)
 (drop_server) lib/drop_server.ex:44: DropServer.fall_velocity/1
 (drop_server) lib/drop_server.ex:20: DropServer.handle_call/3
 (stdlib) gen_server.erl:615: :gen_server.try_handle_call/4
 (stdlib) gen_server.erl:647: :gen_server.handle_msg/5
 (stdlib) proc_lib.erl:247: :proc_lib.init_p_do_apply/3

Interactive Elixir (1.3.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>
10:50:58.899 [error] GenServer DropServer terminating
** (ArithmeticError) bad argument in arithmetic expression
 (stdlib) :math.sqrt(-1176.0)
 (drop_server) lib/drop_server.ex:44: DropServer.fall_velocity/1
 (drop_server) lib/drop_server.ex:20: DropServer.handle_call/3
 (stdlib) gen_server.erl:615: :gen_server.try_handle_call/4
 (stdlib) gen_server.erl:647: :gen_server.handle_msg/5
 (stdlib) proc_lib.erl:247: :proc_lib.init_p_do_apply/3
Last message: -60
State: %DropServer.State{count: 5}

The error message is nicely complete, even telling you the last message and the state,
but when you go to call the service again, you can’t, because the IEx shell has restar‐
ted. You can restart it with DropServer.start_link/0 again, but you’re not always
going to be watching your processes personally.

Instead, you want something that can watch over your processes for you and make
sure they restart (or not) as appropriate. OTP formalizes the process management
you saw in Example 9-10 with its Supervisor behavior.

A basic supervisor needs to support only one callback function, init/1, and can also
have a start_link function to fire it up. The return value of that init/1 function
tells OTP which child processes your supervisor manages and how you want to han‐

A Simple Supervisor | 175

dle their failures. A supervisor for the Drop module might look like Example 13-2,
which is in ch13/ex2-drop-sup.

Example 13-2. A simple supervisor

defmodule DropSup do
 use Supervisor

 # convenience method for startup

 def start_link do
 Supervisor.start_link(__MODULE__, [], [{:name, __MODULE__}])
 end

 # supervisor callback

 def init([]) do
 child = [worker(DropServer, [], [])]
 supervise(child, [{:strategy, :one_for_one}, {:max_restarts, 1},
 {:max_seconds, 5}])
 end

 # internal functions (none here)
end

The init/1 function’s job is to specify the process or processes that the supervisor is
to keep track of, and specify how it should handle failure.

The worker/3 function specifies a module that the supervisor should start, its argu‐
ment list, and any options to be given to the worker’s start_link function. In this
example, there is only one child process to supervise, and the options are given as a
list of key-value tuples.

You can also specify the options as a keyword list, which you would
write this way:

supervise(child, [strategy: :one_for_one, max_restarts: 1,
max_seconds: 5])

The supervise/2 function takes the list of child processes as its first argument and a
list of options as its second argument.

The :strategy of :one_for_one tells OTP that it should create a new child process
every time a process that is supposed to be :permanent (the default) fails. You can
also go with :one_for_all, which terminates and restarts all of the processes the
supervisor oversees when one fails, or :rest_for_one, which restarts the process and
any processes that began after the failed process had started.

176 | Chapter 13: Getting Started with OTP

When you’re ready to take more direct control of how your
processes respond to their environment, you might explore work‐
ing with the dynamic functions Supervisor.start/2, Supervi
sor.terminate_child/2, Supervisor.restart_child/2, and
Supervisor. delete_child/2, as well as the restart strat‐
egy :simple_one_for_one.

The next two values define how often the worker processes can crash before termi‐
nating the supervisor itself. In this case, it’s one restart every five seconds. Customiz‐
ing these values lets you handle a variety of conditions but probably won’t affect you
much initially. (Setting :max_restarts to 0 means that the supervisor will just termi‐
nate if a worker has an error.)

The supervise function takes those arguments and creates a data structure that OTP
will use. By default, this is a :permanent service, so the supervisor should always
restart a child when it fails. You can specify a :restart option when defining the
worker if you want to change this to a different value. By default, the supervisor waits
five seconds before shutting down the worker completely; you can change this with
the :shutdown option when defining the worker. More complex OTP applications can
contain trees of supervisors managing other supervisors, which themselves manage
other supervisors or workers. To create a child process that is a supervisor, you use
the supervisor/3 function, whose arguments are the same as those of worker/3.

OTP wants to know the dependencies so that it can help you
upgrade software in place. It’s all part of the magic of keeping sys‐
tems running without ever bringing them to a full stop.

Now that you have a supervisor process, you can set up the DropServer by just calling
the supervisor. However, running a supervisor from the shell using the start_link/0
function call creates its own set of problems; the shell is itself a supervisor and will
terminate processes that report errors. After a long error report, you’ll find that both
your worker and the supervisor have vanished.

In practice this means that you need a way to test supervised OTP processes (that
aren’t yet part of an application) directly from the shell. This method explicitly breaks
the bond between the shell and the supervisor process by catching the pid of the
supervisor (line 1) and then using the Process.unlink/1 function to remove the link
(line 2). Then you can call the process as usual with GenServer.call/2 and get
answers. If you get an error (line 5), it’ll be OK. The supervisor will restart the
worker, and you can make new calls successfully. The calls to Process.whereis(Drop
Server) on lines 3 and 6 demonstrate that the supervisor has restarted DropServer
with a new pid:

A Simple Supervisor | 177

iex(1)> {:ok, pid} = DropSup.start_link()
{:ok,#PID<0.44.0>}
iex(2)> Process.unlink(pid)
true
iex(3)> Process.whereis(DropServer)
#PID<0.45.0>
iex(4)> GenServer.call(DropServer, 60)
{:ok,34.292856398964496}
iex(5)> GenServer.call(DropServer, -60)
** (exit) exited in: GenServer.call(DropServer, -60, 5000)
 ** (EXIT) an exception was raised:
 ** (ArithmeticError) bad argument in arithmetic expression
 (stdlib) :math.sqrt(-1176.0)
 (drop_sup) lib/drop_server.ex:44: DropServer.fall_velocity/1
 (drop_sup) lib/drop_server.ex:20: DropServer.handle_call/3
 (stdlib) gen_server.erl:615: :gen_server.try_handle_call/4
 (stdlib) gen_server.erl:647: :gen_server.handle_msg/5
 (stdlib) proc_lib.erl:247: :proc_lib.init_p_do_apply/3

11:05:00.438 [error] GenServer DropServer terminating
** (ArithmeticError) bad argument in arithmetic expression
 (stdlib) :math.sqrt(-1176.0)
 (drop_sup) lib/drop_server.ex:44: DropServer.fall_velocity/1
 (drop_sup) lib/drop_server.ex:20: DropServer.handle_call/3
 (stdlib) gen_server.erl:615: :gen_server.try_handle_call/4
 (stdlib) gen_server.erl:647: :gen_server.handle_msg/5
 (stdlib) proc_lib.erl:247: :proc_lib.init_p_do_apply/3
Last message: -60
State: %DropServer.State{count: 1}
 (elixir) lib/gen_server.ex:604: GenServer.call/3
iex(5)> GenServer.call(DropServer, 60)
{:ok,34.292856398964496}
iex(6)> Process.whereis(DropServer)
#PID<0.46.0>

You can also open the Process Manager in Observer and whack
away at worker processes through the Kill option on the Trace
menu, and watch them reappear.

This works, but it is only the tiniest taste of what supervisors can do. They can create
child processes dynamically and manage their lifecycle in greater detail.

Packaging an Application with Mix
In this section, you will use Mix to create an application for the drop supervisor and
server that you have written.

178 | Chapter 13: Getting Started with OTP

Reiterating what we did in “Firing It Up” on page 2, create a directory to hold your
application by typing mix new name, as in the following example:

$ mix new drop_app
* creating README.md
* creating .gitignore
* creating mix.exs
* creating config
* creating config/config.exs
* creating lib
* creating lib/drop_app.ex
* creating test
* creating test/test_helper.exs
* creating test/drop_app_test.exs

Your Mix project was created successfully.
You can use "mix" to compile it, test it, and more:

 cd drop_app
 mix test

Run "mix help" for more commands.

Mix creates a set of files and directories for you. Change directory to the drop_app
directory that Mix created. Then open up the mix.exs file in your favorite text editor.
We haven’t talked about this file before because we never needed to make changes to
it, but now we will need to modify it. So take a look:

defmodule DropApp.Mixfile do
 use Mix.Project

 def project do
 [app: :drop_app,
 version: "0.0.1",
 elixir: "~> 1.3",
 build_embedded: Mix.env == :prod,
 start_permanent: Mix.env == :prod,
 deps: deps]
 end

 # Configuration for the OTP application
 #
 # Type "mix help compile.app" for more information
 def application do
 [applications: [:logger]]
 end

 # Dependencies can be Hex packages:
 #
 # {:mydep, "~> 0.3.0"}
 #
 # Or git/path repositories:

Packaging an Application with Mix | 179

 #
 # {:mydep, git: "https://github.com/elixir-lang/mydep.git", tag: "0.1.0"}
 #
 # Type "mix help deps" for more examples and options
 defp deps do
 []
 end
end

The project/0 function lets you name your application, give it a version number,
and specify the dependencies for building the project.

The dependencies are returned by the deps/0 function. The commented example
says that you need to have the mydep project version 0.3.0 or higher, and it is available
via git at the specified URL. In addition to git:, you may specify the location of a
dependency as a local file (path:)

In this example, the application doesn’t have any dependencies, so you may leave
everything exactly as it is.

If you type the command mix compile, Mix will compile your empty project. If you
look in your directory, you will see that Mix has created a _build directory for the
compiled code:

$ mix compile
Compiling 1 file (.ex)
Generated drop_app app
$ ls
_build config lib mix.exs README.md test

An empty application isn’t very exciting, so copy the drop_server.ex and drop_sup.ex
files that you wrote into the lib folder. Then run iex -S mix. Mix will compile the
new files, and you can start using the server straightaway:

$ iex -S mix
Erlang/OTP 19 [erts-8.0] [source] [64-bit] [smp:4:4] [async-threads:10]
 [hipe] [kernel-poll:false]

Compiling 2 files (.ex)
Generated drop_app app
Interactive Elixir (1.3.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> {:ok, pid} = DropServer.start_link()
{:ok,#PID<0.60.0>}

The last steps you need to do are to write the application code itself and then tell Mix
where everything is.

Inside mix.exs, change the application/0 function to look like this:

180 | Chapter 13: Getting Started with OTP

 def application do
 [applications: [:logger],
 registered: [:drop_app],
 mod: {DropApp, []}]
 end

The :registered key is a list of all the names that your application registers (in this
case, just :drop_app), and :mod is a tuple that gives the name of the module to be run
when the application starts up and a list of any arguments to be passed to that mod‐
ule. :applications lists any applications that your application depends on at
runtime.

Here is the code that we have added to the DropApp module, which is in a file named
drop_app.ex in the ch13/ex3-drop-app/drop_app/lib directory:

defmodule DropApp do
 use Application

 def start(_type, _args) do
 IO.puts("Starting the app...") # show that app is really starting
 DropSup.start_link()
 end
end

The start/2 function is required. The first argument tells how you want the virtual
machine that Elixir runs on to handle application crashes. The second argument gives
the arguments that you defined in the :mod key. The start/2 function should return
a tuple of the form {:ok, pid}, which is exactly what DropSup.start_link/0 does.

If you type mix compile at the command prompt, Mix will generate the file
_build/dev/lib/drop_app/ebin/drop_app.app. (If you look at that file, you will see an
Erlang tuple that contains much of the information gleaned from the files you have
already created.) You may then run the application from the command line:

$ elixir -pa _build/dev/lib/drop_app/ebin --app drop_app
Starting the app...

There is much, much more to learn. OTP deserves a book, or several, all on its own.
Hopefully this chapter provides you with enough information to try some things out
and understand those books. However, the gap between what this chapter can reason‐
ably present and what you need to know to write solid OTP-based programs is, to say
the least, vast.

Packaging an Application with Mix | 181

CHAPTER 14

Using Macros to Extend Elixir

You have now learned enough Elixir to write interesting and fairly powerful pro‐
grams. Sometimes, though, you need to extend the language itself in order to make
your code easier to read or to implement some new functionality. Elixir’s macro fea‐
ture lets you do this.

Functions Versus Macros
On the surface, macros look a lot like functions, except that they begin with defmacro
instead of def. However, macros work very differently than functions. The best way
to explain the difference is to show you Example 14-1, which is in the directory ch14/
ex1-difference.

Example 14-1. Showing the difference between function and macro calls

defmodule Difference do

 defmacro m_test(x) do
 IO.puts("#{inspect(x)}")
 x
 end

 def f_test(x) do
 IO.puts("#{inspect(x)}")
 x
 end

end

In order to use a macro, you must require the module that it’s in. Type the following
in the shell:

183

iex(1)> require Difference
Difference
iex(2)> Difference.f_test(1 + 3)
4
4
iex(3)> Difference.m_test(1 + 3)
{:+, [line: 3], [1, 3]}
4

Line 2 gives you exactly what you’d expect—Elixir evaluates 1 + 3 and passes it on to
the f_test function, which prints the number 4 and returns the number 4 as its
result.

Line 3 may be something of a surprise. Instead of an evaluated expression, the argu‐
ment is a tuple that is the internal representation of the code before it is executed. The
macro returns the tuple (in Elixir terms, the macro has been expanded), and then that
tuple is passed on to Elixir to be evaluated.

The first item in the tuple is the operator, the second item is a list of
metadata about the operation, and the third item is a list of the
operands.

A Simple Macro
Because defmacro gets the code before Elixir has had a chance to evaluate it, a macro
has the power to transform the code before sending it on to Elixir for evaluation.
Example 14-2 is a macro that creates code to double whatever its argument is. (This is
something that could much more easily be accomplished with a function, but we
need to start with something easy.) It works by manually creating the tuple that Elixir
will recognize as a multiplication operation. You can find it in ch14/ex2-double.

Example 14-2. A manually created macro

defmodule Double do

 defmacro double x do
 {:*, [], [2, x]}
 end

end

After recompiling, you can try this out in the shell:

iex(1)> require Double
Double
iex(2)> Double.double(3)

184 | Chapter 14: Using Macros to Extend Elixir

6
iex(3)> Double.double(3 * 7)
42

That works, but there must be an easier way. It would be nice if you could say, “Turn
this Elixir code into internal format” so that Elixir would create the tuples for you. In
fact, you can do this by using quote, which takes any Elixir expression and converts it
to internal format:

iex(4)> quote do: 1 + 3
{:+, [context: Elixir, import: Kernel], [1, 3]}
iex(5)> x = 20
20
iex(6)> quote do: 3 * x + 20
{:+, [context: Elixir, import: Kernel],
 [{:*, [context: Elixir, import: Kernel], [3, {:x, [], Elixir}]}, 20]}

As you see, quote takes normal Elixir code and converts it to the internal format that
macros accept as input and return as their expanded result. You might be tempted to
rewrite the macro from the previous example as follows:

defmodule Double do

 defmacro double(x) do
 quote do: 2 * x
 end

end

But if you try this code, it won’t work. The reason is that you are saying, “Turn 2 * x
into its tuple form,” but x already is in tuple form, and you need a way to tell Elixir to
leave it alone. Example 14-3 uses the unquote/1 function do exactly that. (You may
find this example in ch14/ex3-double.)

Example 14-3. Using quote to create a macro

defmodule Double do

 defmacro double(x) do
 quote do
 2 * unquote(x)
 end
 end

end

This says, “Turn 2 * x into internal form, but don’t bother converting x; it doesn’t
need quoting”:

A Simple Macro | 185

iex(7)> r(Double)
warning: redefining module Double (current version loaded from
 _build/dev/lib/double/ebin/Elixir.Double.beam)
 /Users/elixir/code/ch14/ex3-double/lib/double.ex:1

{:reloaded, Double, [Double]}

double.ex:1: redefining module Double
[Double]
iex(8)> require Double
Double
iex(9)> Double.double(3 * 5)
30

The most common mistake people make when writing macros is to
forget to unquote arguments. Remember that all of a macro’s argu‐
ments are already in internal format.

To summarize: quote means “Turn everything in the do block into internal tuple for‐
mat”; unquote means “Do not turn this into internal format.” (The terms quote and
unquote come from the Lisp programming language.)

If you quote an atom, number, list, string, or tuple with two ele‐
ments, you will get back the same item and not an internal-format
tuple.

Creating New Logic
Macros also let you add new commands to the language. For example, if Elixir didn’t
already have an unless construct (which works as the opposite of if), you could add
it to the language by writing the macro shown in Example 14-4, which is in ch14/ex4-
unless.

Example 14-4. Creating a macro to implement the unless construct

defmodule Logic do

 defmacro unless(condition, options) do
 quote do
 if(!unquote(condition), unquote(options))
 end
 end

end

186 | Chapter 14: Using Macros to Extend Elixir

This macro takes a condition and options (in their internal form) and expands
them to the internal code for an equivalent if statement with a reversed test for the
condition. As in the previous example, the condition and options must remain in
an unquote state, as they are already in internal form. You can test it in the shell after
compiling via iex -S mix:

iex(1)> require(Logic)
Logic
iex(2)> Logic.unless (4 == 5) do
...(2)> IO.puts("arithmetic still works")
...(2)> end
arithmetic still works
:ok

Creating Functions Programatically
Everything in Elixir has an internal representation, even functions. This means that a
macro can take data as input and output a customized function as its result.

Example 14-5 is a simple macro, create_multiplier, that takes an atom and a multi‐
plication factor as its input. It produces a function whose name is the atom you gave,
and that function will multiply its input by the factor.

Example 14-5. Using a macro to programmatically create a function

defmodule FunctionMaker do
 defmacro create_multiplier(function_name, factor) do
 quote do
 def unquote(function_name)(value) do
 unquote(factor) * value
 end
 end
 end
end

You now need another module to invoke the macro:

defmodule Multiply do
 require FunctionMaker

 FunctionMaker.create_multiplier(:double, 2)
 FunctionMaker.create_multiplier(:triple, 3)

 def example do
 x = triple(12)
 IO.puts("Twelve times 3 is #{x}")
 end

end

Creating Functions Programatically | 187

Once this is done, you can use the programmatically created functions:

iex(1)> Multiply.double(21)
42
iex(2)> Multiply.triple(54)
162
iex(3)> Multiply.example()
Twelve times 3 is 36
:ok

The entire example is in ch14/ex5-programmatic.

You can’t define a function programmatically outside of a module
or inside of a function.

You can even write a single macro that creates many different functions. If, for exam‐
ple, you wanted to have a separate drop/1 function for each planemo, you could have
a macro that takes a list of planemos with their gravity constants and creates those
functions. Example 14-6 will create functions mercury_drop/1, venus_drop/1, etc.
from a keyword list.

Example 14-6. Creating multiple functions with a macro

defmodule FunctionMaker do
 defmacro create_functions(planemo_list) do
 Enum.map planemo_list, fn {name, gravity} ->
 quote do
 def unquote(:"#{name}_drop")(distance) do
 :math.sqrt(2 * unquote(gravity) * distance)
 end
 end
 end
 end
end

The expression :"#{name}_drop" uses interpolation to append the string "drop" to
the planemo’s name, and the leading : converts the result to an atom. The whole
expression is unquoted, as atoms are already in quoted form.

Again, you need another module to invoke the macro:

188 | Chapter 14: Using Macros to Extend Elixir

defmodule Drop do
 require FunctionMaker

 FunctionMaker.create_functions([{:mercury, 3.7}, {:venus, 8.9},
 {:earth, 9.8}, {:moon, 1.6}, {:mars, 3.7},
 {:jupiter, 23.1}, {:saturn, 9.0}, {:uranus, 8.7},
 {:neptune, 11.0}, {:pluto, 0.6}])

end

Once compiled, the 10 new functions are available to you:

iex(1)> Drop.earth_drop(20)
19.79898987322333
iex(2)> Drop.moon_drop(20)
8.0

The entire example is in ch14/ex6-multidrop.

When (Not) to Use Macros
What you have seen so far are good examples of sample programs. Everything in this
chapter could have been done more easily with simple Elixir functions, though. While
you’re learning about Elixir, go wild and experiment with macros as much as you like.
But when you start writing programs for general use and are tempted to write a
macro, first ask yourself, “Could I do this with a function?” If the answer is “Yes” (and
it will be, most of the time), then stick with functions. Use macros only when it will
make the lives of people who use your code easier.

Why, then, has this chapter made such a big tzimmes about macros, if you aren’t
encouraged to use them? First, Elixir itself uses macros extensively. For example,
when you define a record, Elixir programatically generates the functions that let you
access that record’s fields. Even def and defmodule are macros!

More important, when you read other people’s code, you may find that they have used
macros, and the information from this chapter will help you understand what they’ve
written. (It’s sort of like learning a foreign language; there are phrases you may never
have to say yourself, but you want to be able to understand them when someone says
them to you.)

When (Not) to Use Macros | 189

CHAPTER 15

Using Phoenix

While it’s great to use Elixir from the command line, sometimes you’ll want to expose
your work to the web as well. The Phoenix framework offers an Elixir-based toolkit,
somewhat like Ruby on Rails, for building web applications. Phoenix is designed for
robustness and scalability, building on macros, OTP, and Erlang’s Cowboy server. It
wraps those powerful features, though, so you can get started building simple things
without mastering those details.

Skeleton Installation
Once you have Elixir itself installed, installing just Phoenix isn’t difficult. Installing
everything that Phoenix might want, including PostgreSQL and Node.js, is more than
this introduction can cover, but you can do (at least sort of) useful things with only
Phoenix.

To get started, install Phoenix from Mix (the command line and output have been
formatted to fit the page margins here, but you should enter the entire command on a
single line):

$ mix archive.install
https://github.com/phoenixframework/archives/raw/master/phoenix_new.ez
Are you sure you want to install archive "https://github.com/phoenixframework/
 archives/raw/master/phoenix_new.ez"? [Yn] y
* creating .mix/archives/phoenix_new

Once you’ve installed Phoenix, you can have it build a minimalist application. The
--no-brunch directive turns off Phoenix’s support for managing assets, which
requires you to install Node. --no-ecto turns off the object relational mapping
(ORM) that expects you to have installed PostgreSQL:

191

$ mix phoenix.new fall --no-brunch --no-ecto
* creating web/config/config.exs
* creating web/config/dev.exs
...
* creating web/web/views/layout_view.ex
* creating web/web/views/page_view.ex

Fetch and install dependencies? [Yn] y
* running mix deps.get

We are all set! Run your Phoenix application:

$ cd fall
$ mix phoenix.server

You can also run your app inside IEx as:

$ iex -S mix phoenix.server

The directory Phoenix created contains a lot of parts, as shown in Figure 15-1.

Figure 15-1. Files created by Phoenix

For the rest of this chapter, you’ll be working in the web directory.

Take Phoenix’s advice and change to the fall directory, then start Phoenix:

$ cd fall
$ iex -S mix phoenix.server

Phoenix may ask to install local copies of more software the first
time you run it. Our installation required Rebar, which it installed
without a hitch.

192 | Chapter 15: Using Phoenix

The first time you run Phoenix, it will take a while to build before starting. After a lot
of notices about files Phoenix is compiling, you’ll see:

Generated web app
[info] Running Web.Endpoint with Cowboy using http://localhost:4000

A basic site will now be running on port 4000 of your machine. When you visit http://
localhost:4000, you’ll see the barely customized welcome page shown in Figure 15-2.

Figure 15-2. Phoenix’s welcome page

You can tell it came from your app because the tab title says “Hello Fall!” At the com‐
mand line where you started Phoenix, you should see something like:

[info] GET /
[debug] Processing by Web.PageController.index/2
 Parameters: %{}
 Pipelines: [:browser]
[info] Sent 200 in 2ms

Skeleton Installation | 193

Structuring a Basic Phoenix Application
A minimal Phoenix application that does just one thing (beyond the welcome page!)
requires you to work in four different places:

Router
The router logic gives Phoenix basic direction on what to do when it receives a
request for a given URL.

Controller
The controller is the switchboard for information coming in and going out, the
piece that will connect requests for calculations to the calculations.

View
The view takes results from the controller and makes everything ready for final
formatting in the template.

Template
The template combines HTML formatting with variables that come to it from the
controller using logic from the view.

For this basic application, we’re going to skip the M in MVC, the model that manages
interactions with data. Phoenix typically uses Ecto to manage data, and Ecto expects
PostgreSQL, which requires a potentially more complex installation than the basics of
Phoenix.

If you liked Mnesia, it is possible to use it with Phoenix, though it
is far enough off the beaten path that you should probably get
familiar with Phoenix first. For more, see AmberBit’s “Using mne‐
sia database from Elixir”.

Presenting a Page
Getting a simple HTML page posted—one that isn’t the installation’s default page—
requires setting up all four of the components just listed. While posting HTML may
seem even duller than calculating the velocity of falling objects, establishing that
foundation will give you a solid base on which to build more. Even stranger, chasing
the errors you get from a not quite complete installation will teach you lessons you’ll
need for future construction. When something goes wrong, it will be easier to see at
which layer the problem occurred.

194 | Chapter 15: Using Phoenix

https://www.amberbit.com/elixir-cocktails/elixir/using-mnesia-database-from-elisir/
https://www.amberbit.com/elixir-cocktails/elixir/using-mnesia-database-from-elisir/

First, start Phoenix and then try visiting http://localhost:4000/welcome. You’ll see
something like Figure 15-3.

Figure 15-3. Phoenix needs a route

Routing
Phoenix needs explicit instructions about where to send requests for particular URLs.
It understood how to show the welcome page because the web/router.ex file that
comes in a new Phoenix app provided that information:

defmodule Fall.Router do
 use Fall.Web, :router

 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_flash
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 end

 pipeline :api do
 plug :accepts, ["json"]
 end

Presenting a Page | 195

 scope "/", Fall do
 pipe_through :browser # Use the default browser stack
 get "/", PageController, :index
 end

 # Other scopes may use custom stacks.
 # scope "/api", Fall do
 # pipe_through :api
 # end
end

There’s a lot going on in that file. First, it makes clear that the application is called
Fall. You’ll see Fall.Web a lot here, and one of the common perils of cutting and
pasting code from another app is to forget to change all of those references.
(Fall.Web gets defined in the web/web.ex file, but for now and probably for the most
part you should leave that alone.)

The router also defines two pipelines. The first is meant for content to be displayed in
a browser, typically HTML, and the second is for JSON-based API content. For now
that’s all you need to know about those, but you can see the work Phoenix does for
you, especially in the browser pipeline.

The place where you’ll tell Phoenix to support a new URL for an HTML interface is
in the scope function. Phoenix knows to show the Phoenix default page because of
get "/", PageController, :index, which kicks off a series of events that will show
it. get tells Phoenix it will be handling an HTTP GET request. To create your own
URL, you’ll add a line right above that line:

get "/welcome", FallController, :welcome

When the router gets a request for /welcome, it will pass the information from that
call to the welcome function on the FallController. This means that you can
advance to the next error, shown in Figure 15-4.

196 | Chapter 15: Using Phoenix

Figure 15-4. Phoenix wants a controller

A Simple Controller
Phoenix expects to find controllers in the web/controllers directory. In the beginning,
there’s only one file there, page_controller.ex, which is part of the welcome page. Its
form provides a sense of what controllers should look like:

defmodule Fall.PageController do
 use Fall.Web, :controller

 def index(conn, _params) do
 render conn, "index.html"
 end
end

The controller file as a whole is a module, relying on the Web code for the whole appli‐
cation. The router also relies on it, but the router referenced :router while the con‐
troller (unsurprisingly) references :controller.

Each function in the module should take a connection (conn) and parameters, and
(perhaps after some processing) call render with that connection and the name of a
file to send back.

To create the FallController specified in the earlier change to the routing file, make
a fall_controller.ex file in web/controllers, and give it a welcome function:

Presenting a Page | 197

defmodule Fall.FallController do
 use Fall.Web, :controller

def welcome(conn, params) do

 render conn, "welcome.html"

end

end

Then reload http://localhost:4000/welcome. The next error will ask for a view, as
shown in Figure 15-5.

Figure 15-5. When a controller points to a nonexistent view

A Simple View
Creating the view requires building two parts. The first, the view code in web/views/
fall.ex, starts out as an extremely simple pass-through:

defmodule Fall.FallView do
 use Fall.Web, :view
end

You’re almost there, but the error message isn’t much more encouraging, as you can
see in Figure 15-6.

198 | Chapter 15: Using Phoenix

Figure 15-6. When a controller points to a nonexistent template

The final piece you need is a template. The controller code said to render wel‐
come.html, so you need to create a template for that in /web/templates/fall/
welcome.html.eex. EEx, Embedded Elixir, is a part of Elixir that lets you create string
templates that Elixir can process efficiently. In this case, Phoenix uses EEx to generate
HTML, which will then go to the browser for display. Your templates don’t need to
create a whole page: Phoenix already has templates that wrap your content, making it
easy to keep applications looking consistent. That means your opening template can
be as simple as:

<h1>Falling starts now!</h1>

This produces the welcome in Figure 15-7—you might not even have to reload, as
Phoenix in development mode retries failed code periodically.

Figure 15-7. A complete set of parts finally produces a result

Presenting a Page | 199

You may not want the Phoenix Framework logo stamped on all of your work. To
remove it, explore web/templates/layout/app.html.eex, and remove the header

element.

You can have Phoenix generate basic controller and view code with
mix phoenix.gen.html, but it will also want to generate a model,
which won’t work in this simple example.

Calculating
Now that you have a page, it’s time to do something with the data that it sends the
server. This means learning to build a simple form, and dealing with the minor chal‐
lenge that picking parameters out of an HTTP request is a bit trickier than receiving
parameters in a function call.

Phoenix expects that long chain of files because it helps keep code organized as appli‐
cations grow complex, but most of the changes you need to make to build a simple
application are confined to the controller and the template, with an occasional visit to
router.ex. Until you start building complex applications that need to reuse code across
multiple interfaces, you shouldn’t need to make a lot of changes to the other files.

To get started, ask visitors some questions on that welcome page. This example uses
the same fall velocity calculations as many previous examples, so you can focus on the
form and the controller rather than the calculations. Phoenix supports a core set of
functions that safely create HTML markup from data you provide.

Put the following in /web/templates/fall/welcome.html.eex:

<h1>Falling starts now!</h1>

<%= form_for @conn, fall_path(@conn, :faller), [as: :calculation],
fn f -> %>
 <%= select f, :planemo, @choices %>
 <%= text_input f, :distance %>
 <%= submit "Calculate" %>
<% end %>

The h1 stays the same—it’s just a headline—but form_for and its contents are all new.
Elixir code surrounded by <%= and %> will produce results that turn up in the result
HTML. (If it’s surrounded by <% and %>, without the =, the Elixir will run but won’t
modify the HTML.) In this case, form_for is the core function, producing an HTML
form element, and each of the lines in that function also produces some HTML (part
of that form).

200 | Chapter 15: Using Phoenix

HTML forms need a few things to work. They need controls inside them to collect
user input. In this case a selector and text input will tell our velocity calculator the
information it needs. A submit button provides a way for the user to tell the form that
the data is ready to be sent.

But where? How should that data be presented? In Phoenix, the form_for function
handles all that. The first arguments about where the request came from and where
the form response should go. @conn is the connection information that led to the
form being presented, passed along through the whole chain. For now, this form will
send its data to another page, which doesn’t yet exist, connected to the :faller con‐
troller method. fall_path provides the information needed to send the data from the
form in the browser back to your Phoenix server, and is the piece that will break
when you load your page after making these changes.

The [as: :calculation] piece is required because this form isn’t working with an
underlying model. as: tells form_for how to present the collected information when
it’s sent back, as you’ll see when the controller processes it. fn f creates a hook that
the other pieces of the form use to access the information applying to the whole form.

Both the select and text_input functions take that f as their first argument. Their
second argument is the name of the field that the controller will use to extract it when
the form is submitted. select takes a third argument, @choices. (The @ makes it an
assign, a variable that comes through from the controller.) That will provide the items
in the select field, but it has to be provided by the controller, which doesn’t exist yet.

Right now, of course, the template fails before it gets to the missing @choices assign,
as shown in Figure 15-8.

Figure 15-8. Broken again, pointing to a route that doesn’t exist yet to a page that doesn’t
exist yet

Adding the new page will require adding a new entry to the routing file, as well as
creating a new set of controller, view, and template files. Open up web/router.ex, and

Calculating | 201

find the scope method. Add get "/fall", FallController, :faller just after the
route for /welcome:

scope "/", Fall do
 pipe_through :browser # Use the default browser stack

 get "/welcome", FallController, :welcome
 get "/fall", FallController, :faller
 get "/", PageController, :index
 end

That helps—but now that it has the route, Phoenix fails on the missing assign, as seen
in Figure 15-9.

Figure 15-9. Just a missing variable now

Adding @choices requires one new line of code and an addition to the render call:

def welcome(conn, params) do
 choices = ["Earth": 1, "Moon": 2, "Mars": 3]
 render conn, "welcome.html", choices: choices
end

The choices probably look familar from earlier examples, and now Phoenix has all it
needs to create the form in Figure 15-10.

Figure 15-10. Form, presented

202 | Chapter 15: Using Phoenix

Excellent! A quick look at the form Phoenix generated provides some sense of what
form_for and its companions did:

<form accept-charset="UTF-8" action="/fall" method="post">
<input name="_csrf_token" type="hidden"
value="bnAhLkknegAwUXENPw48ByQ5FTYmJgAAZDjE0C+mY4+KNyuOOWwCHA==">
<input name="_utf8" type="hidden" value="✓">

<select id="calculation_planemo" name="calculation[planemo]">
 <option value="1">Earth</option>
 <option value="2">Moon</option>
 <option value="3">Mars</option>
 </select>

<input id="calculation_distance" name="calculation[distance]"
type="text">

<input type="submit" value="Calculate">
</form>

form_for created a lot by default and a little specific to your form. The action came
from the routing addition. The information about the UTF-8 charset (and the hidden
field for it), the method (POST), and the extra hidden CRSF prevention token all
came by default. The select is built out of content you provided, combining the
name from the as: argument with the names of the forms. This will make it easier to
pick out the form data later.

Now, pick a planemo, enter a distance, and hit Calculate. Figure 15-11 shows the not
so excellent result.

Figure 15-11. No place to go

Calculating | 203

Because form_for defaulted to the HTTP POST method, and the route added only
handled GET, Phoenix is confused (though you could say it created the situation). Fix
this by adding a POST route to web/router.ex:

scope "/", Fall do
 pipe_through :browser # Use the default browser stack

 get "/welcome", FallController, :welcome
 get "/fall", FallController, :faller
 post "/fall", FallController, :faller
 get "/", PageController, :index
 end

Now the route works, but Figure 15-12 demonstrates that it’s time to build the path
for the response.

Figure 15-12. Needing a function to answer the request

That’s the last error message you should see for a while. Fortunately, creating a new
set of pieces for the response will be easier, with most of the challenge in the control‐
ler. In the existing /web/controllers/fall_controller.ex file, add a new function:

def faller(conn, params) do
 choices = ["Earth": 1, "Moon": 2, "Mars": 3]
 speed = 0
 render conn, "faller.html", speed: speed, choices: choices
end

Yes, that simply throws away the form data, but it also lets you build a template and
make sure that all the connections are working before diving into the details of
parameter handling.

In /web/templates/faller ., create a new file called faller.html.eex. Make its contents
look like welcome.html.eex, with a key change—a @speed reference in the headline:

<h1>Speed at impact was <%= @speed %> m/s.</h1>

<p>Fall again?</p>

<%= form_for @conn, fall_path(@conn, :faller), [as: :calculation],
fn f -> %>
 <%= select f, :planemo, @choices %>

204 | Chapter 15: Using Phoenix

 <%= text_input f, :distance %>
 <%= submit "Calculate" %>
<% end %>

Technically you could skip the form for trying again if you wanted to, but
Figure 15-13 shows what Phoenix created.

Figure 15-13. The speed may be zero, but data flowed from the right controller

To move into calculating and returning a real speed, you need to extract the parame‐
ters received from the form. In the terminal window where you ran Phoenix, you’ll
see something like:

[info] POST /fall
[debug] Processing by Fall.FallController.faller/2
 Parameters: %{"_csrf_token" => "bnAhLkknegAwUXENPw48ByQ5FTYmJgA
AZDjE0C+mY4+KNyuOOWwCHA==", "_utf8" => "✓", "calculation" =>
%{"distance" => "20", "planemo" => "1"}}
 Pipelines: [:browser]
[info] Sent 200 in 664µs

The distance and planemo parameters are there as maps, wrapped—as form_for said
—in the calculation parameter. You have a few choices for how to get those param‐
eters. Map.get can extract them for you. However, pattern matching seems more
Elixir-like, and makes it easy to build controllers that smoothly handle things like
requests that come without parameters. (Elixir lets things crash and doesn’t worry.
Web users are a little more particular.)

To grab the parameters, open up the /web/controllers/fall_controller.ex file. Add
another faller function that pattern matches instead of just accepting params, and
some familiar fall_velocity functions to handle the calculations:

def faller(conn, %{"calculation" => %{"planemo" => planemo,
"distance" => distance}}) do
 calc_planemo = String.to_integer(planemo)
 calc_distance = String.to_integer(distance)
 speed = fall_velocity(calc_planemo, calc_distance)
 choices = ["Earth": 1, "Moon": 2, "Mars": 3]
 render conn, "faller.html", speed: speed, choices: choices
end

def fall_velocity(1, distance) do

Calculating | 205

 :math.sqrt(2 * 9.8 * distance)
end

def fall_velocity(2, distance) do
 :math.sqrt(2 * 1.6 * distance)
end

def fall_velocity(3, distance) do
 :math.sqrt(2 * 3.71 * distance)
end

The pattern match at the start that replaces the params mention, %{"calculation"
=> %{"planemo" => planemo, "distance" => distance}}, matches the calcula
tion map that should come from a normal form submission. It also breaks that down
further, into planemo and distance.

The next two lines deal with another challenge in handling parameters from web
forms: everything arrives as a string. The String.to_integer/1 function handles the
conversion, and you should expect to do explicit conversions on parameters rou‐
tinely. Eventually you may want to create your own validation, to prevent errors
caused by nonnumeric data, but this will get things started.

The calculations are familiar, and the results in Figure 15-14 should be too.

Figure 15-14. Reporting the correct speed

Obviously, you’re going to want to do more. Generating JSON and working with data
both go well beyond the scope of this book. However, if you can make these parts
work, you’re ready to move further. The online documentation for Phoenix is gener‐
ally good, and Programming Phoenix (Pragmatic Programmers) can take you deeper.

Sharing the Gospel of Elixir
While this concludes your introduction to Elixir, be aware that Elixir is a young lan‐
guage with a growing ecosystem, and there are many more features available for you
to learn.

206 | Chapter 15: Using Phoenix

It may seem easy to argue for Elixir. The broad shift from single computers to net‐
worked and distributed systems of multiprocessor-based computing gives the Elixir/
Erlang environment a tremendous advantage over practically every other environ‐
ment out there. More and more of the computing world is starting to face exactly the
challenges that Elixir and Erlang were built to address. Veterans of those challenges
may find themselves breathing a sigh of relief because they can stop pondering tool‐
sets that tried too hard to carry single-system approaches into a multisystem world.

At the same time, though, we’d encourage you to consider a bit of wisdom from Joe
Armstrong: “New technologies have their best chance a) immediately after a disaster
or b) at the start of a new project.”

While it is possible you’re reading this because a project you’re working on has had a
disaster (or you suspect it will have one soon), it’s easiest to apply Elixir to new
projects, preferably projects where the inevitable beginner’s mistakes won’t create new
disasters.

Find projects that look like fun to you and that you can share within your organiza‐
tion or with the world. There’s no better way to show off the power of a programming
language and environment than to build great things with it!

Sharing the Gospel of Elixir | 207

http://bit.ly/erlang-ques
http://bit.ly/erlang-ques

APPENDIX A

An Elixir Parts Catalog

Like every language, Elixir has drawers full of parts that are fun to peruse, and there
are many more available through Erlang.

These are a few of the more common ones, all represented using Elixir calling con‐
ventions. If you want (much, much) more, see the Erlang User Guide.

Shell Commands
You can use most Elixir functions from the shell, but the commands shown in
Table A-1 are ones that are exclusive to the shell.

Table A-1. Elixir shell commands

Command Action

c(file) Compiles the specified Erlang file

c(file,path) Compiles the specified file and puts object code in the directory specified by path

ls() Lists files at the current location

ls(path) Lists files at the specified path

cd(directory) Changes to the specified directory

pwd() Gets the present working directory

clear() Clears the screen

h() Prints list of available helpers

h(item) Prints help for the specified item

l(module) Loads the given module’s code, purging the current version

m() Lists all loaded modules

r(module) Recompiles and reloads the given module’s source file

v() Prints a list of all commands and returned values for this session

209

http://bit.ly/erlang-docs

Command Action

v(n) Retrieves the nth output value from the shell session

flush() Flushes all messages sent to the shell

Reserved Words
There are a few Elixir terms you can’t use outside of their intended context.

The Elixir compiler will wonder what you’re trying to do if you use certain keywords
as function names (see a list of these words in Table A-2). It will try to treat your
functions as if they were code, and you can get very strange errors.

Table A-2. Reserved words that require careful use
after and catch do else end false fn

in nil not or rescue true when

The answer is simple: use something else.

There are also a few atoms commonly used in return values (see Table A-3). While
these aren’t reserved words, it’s probably best to use them only in the circumstances
where they’re normally expected.

Table A-3. Commonly used return-value atoms

Atom Means

:ok Normal exit to a method. Does not mean that whatever you asked for succeeded.

:error Something went wrong. Typically accompanied by a larger explanation.

:undefined A value hasn’t been assigned yet. Common in record instances.

:reply A reply is included with some kind of return value.

:noreply No return value is included. A response of some sort may come, however, from other communication.

:stop Used in OTP to signal that a server should stop. Triggers the terminate function.

:ignore Returned by an OTP supervisor process that can’t start a child.

Operators
Table A-4. Logical (Boolean) operators

Operator Operator Description

and && Logical and

or || Logical or

not ! Unary logical not

210 | Appendix A: An Elixir Parts Catalog

The logical not operator has the highest precedence. and, &&, or, and || are short-
circuit operators. If they don’t need to process all the possibilities in their arguments,
they stop at the first one that gives them a definite answer.

Operators in the first column require their argument(s) to be Boolean. Operators in
the second column will accept any expression, with any value that is not false or nil
treated as true. Because of short-circuiting, the && and || operators will return
whichever value “decided” the ultimate true or false value. For example, nil || 5
returns 5, and nil && 5 returns nil.

Table A-5. Term-comparison operators

Operator Description

== Equal to

!= Not equal to

<= Less than or equal to

< Less than

>= Greater than or equal to

> Greater than

=== Exactly equal to

!== Exactly not equal to

You can compare elements of different types in Elixir. The relationship of types from
“least” to “greatest” is:

number < atom < reference < fn < port < pid < tuple < list < bit string

Within number, you can compare integers and floats except with the more specific ===
and !== operators, both of which will return false when you compare numbers of
different types.

You can also compare tuples even when they contain different numbers of values.
Elixir will go through the tuples from left to right and evaluate on the first value that
returns a clear answer.

Table A-6. Arithmetic operators

Operator Description

+ Unary + (positive)

- Unary – (negative)

+ Addition

- Subtraction

* Multiplication

An Elixir Parts Catalog | 211

Operator Description

/ Floating-point division

To calculate integer division and integer remainder, use the div and rem functions.
Thus, div(17, 3) yields 5, and rem(17, 3) yields 2.

Table A-7. Binary operators

Function Operator Description

bnot ~ Unary bitwise not

band &&& Bitwise and

bor ||| Bitwise or

bxor ^ Arithmetic bitwise xor

bsl <<< Arithmetic bitshift left

bsr >>> Bitshift right

If you wish to use these operators and functions, your code must use Bitwise.

Table A-8. Operator precedence, from highest to lowest

Operator Associativity

Unary + - ! ^ not ~~~ Not associative

=~ |> Right

++ -- ** Right

<> Right

* / Left

+ - Left

&&& ||| Left

.. Left

in Left

< > <= >= == === != !== Left

and Left

or Left

&& Left

|| Left

<- Right

= Right

| Right

// Right

212 | Appendix A: An Elixir Parts Catalog

Operator Associativity

when Right

:: Right

, Left

-> Right

do Left

@ Not associative

The highest-priority operator in an expression is evaluated first. Elixir evaluates oper‐
ators with the same priority by following associative paths. (Left-associative operators
go left to right, and right-associative operators go right to left.)

Guard Components
Elixir allows only a limited subset of functions and other features in guard expres‐
sions, going well beyond a “no side effects” rule to keep a simple subset of possibili‐
ties. The list of allowed components includes the following:

• true

• Other constants (regarded as false)
• Term comparisons (Table A-5)
• Arithmetic expressions (Tables A-6 and A-7)
• Boolean expressions and these logical operators: and and or
• The following functions: hd/1, is_atom/1, is_binary/1, is_bitstring/1,
is_boolean/1, is_float/1, is_function/1, is_function/2, is_integer/1,
is_list/1, is_number/1, is_pid/1, is_port/1, is_record/1, is_record/2,
is_reference/1, is_term/2, is_tuple/1

Common Functions
Table A-9. Mathematical functions

Function Use

:math.pi/0 The constant pi

:math.sin/1 Sine

:math.cos/1 Cosine

:math.tan/1 Tangent

:math.asin/1 Inverse sine (arcsine)

An Elixir Parts Catalog | 213

Function Use

:math.acos/1 Inverse cosine (arcosine)

:math.atan/1 Inverse tangent (arctangent)

:math.atan2/2 Arctangent that understands quadrants

:math.sinh/1 Hyperbolic sine

:math.cosh/1 Hyperbolic cosine

:math.tanh/1 Hyperbolic tangent

:math.asinh/1 Hyperbolic arcsine

:math.acosh/1 Hyperbolic arccosine

:math.atanh/1 Hyperbolic arctangent

:math.exp/1 Exponential function

:math.log/1 Natural logarithm (base e)

:math.log10/1 Logarithm (base 10)

:math.pow/2 First argument to the second argument power

:math.sqrt/1 Square root

:math.erf/1 Error function

:math.erfc/1 Complementary error function

Arguments for all trigonometric functions are expressed in radians. To convert
degrees to radians, divide by 180 and multiply by pi.

The erf/1 and erfc/1 functions may not be implemented in Win‐
dows. The Erlang documentation also warns more broadly that
“Not all functions are implemented on all platforms,” but these
come directly from the C-language libraries.

Table A-10. Approachable higher-order functions for processing collections and lists (take an
enumerable and a function as arguments)

Function Returns Use

Enum.each/2 :ok Performs the side effects specified in the function

Enum.map/2 New list Applies the function to the list values

Enum.filter/2 Subset Creates a list containing the items for which the function returns true

Enum.all?/2 Boolean Returns true if the function is true for all values, otherwise false

Enum.any?/2 Boolean Returns true if the function is true for any values, otherwise false

Enum.take_while/2 Subset Collects the head of the list until the function is true

Enum.drop_while/2 Subset Deletes the head of the list until the function is true

List.foldl/3 Accumulator Passes the function a list value and an accumulator, moving forward through
the list

214 | Appendix A: An Elixir Parts Catalog

http://bit.ly/2gP7A0Z

Function Returns Use

List.foldr/3 Accumulator Passes the function a list value and an accumulator, moving backward
through the list

Enum.partition/2 Tuple of two lists Splits the list based on the function

Chapter 8 describes these in greater detail.

Table A-11. Escape sequences for strings

Sequence Produces

\" Double quote

\' Single quote

\\ Backslash

\b Backspace

\d Delete

\e Escape

\f Form feed

\n Newline

\r Carriage return

\s Space

\t Tab

\v Vertical tab

\xXY Character in hex

\x{X...} Characters in hex, where X… is one or more hexadecimal characters

^a...\^z or ^A...\^Z Ctrl-A to Ctrl-Z

Table A-12. String sigils

Sigil Meaning

%c %C Returns a list of characters

%r %R Returns a regular expression

%s %S Returns a binary string

%w %W Returns a list of words

Sigils created with lowercase letters will use escaping and interpolation as usual; those
created with uppercase letters will be created exactly as written, with no escaping or
interpolation.

An Elixir Parts Catalog | 215

Datatypes for Documentation and Analysis
Table A-13. Basic datatypes for @spec and ExDoc

atom() binary() float() fun() integer() list() tuple()

union() node() number() String.t() char() byte() [] (nil)

any() none() pid() port() reference()

The type String.t() is used for Elixir binaries; the type string() is used for what
Erlang calls strings but which are char lists in Elixir. For more on Erlang types, see the
User’s Guide.

216 | Appendix A: An Elixir Parts Catalog

http://erlang.org/doc/reference_manual/typespec.html
http://erlang.org/doc/reference_manual/typespec.html

APPENDIX B

Generating Documentation with ExDoc

In Chapter 2, you learned how to add documentation to your programs. The ExDoc
tool takes that documentation and produces nicely formatted reference documenta‐
tion in web page format. ExDoc works in conjunction with Mix, a tool for creating,
compiling, and testing projects. You can find out more about Mix in Chapter 13.

Using ExDoc with Mix
The easiest way to create documentation is to create a project using the Mix tool,
using a command of the form:

mix new project_name

Here is what it looks like when creating the documentation for the code in
Example 2-4:

$ mix new combined
* creating README.md
* creating .gitignore
* creating mix.exs
* creating lib
* creating lib/combined.ex
* creating test
* creating test/test_helper.exs
* creating test/combined_test.exs

Your mix project was created successfully.
You can use "mix" to compile it, test it, and more:

 cd combined
 mix test

Run "mix help" for more commands.

217

Change to the combined directory and put all of your source files (for this example,
combined.ex, drop.ex, and convert.ex) into the lib directory. The combined.ex file you
wrote before will replace the one that Mix created for you in the lib directory.

Now edit the file mix.exs so that the deps function reads as follows:

def deps do
 [{:ex_doc, github: "elixir-lang/ex_doc}]
end

Typing mix deps.get will install ExDoc in a directory named deps. If you have not
yet installed Hex (Elixir’s package manager), Mix will prompt you to do so. You can
now compile all the Elixir files in one go using mix compile:

$ mix compile
==> ex_doc
Compiled lib/ex_doc/cli.ex
Compiled lib/ex_doc.ex
Compiled lib/ex_doc/markdown/cmark.ex
Compiled lib/ex_doc/markdown/earmark.ex
Compiled lib/ex_doc/markdown.ex
Compiled lib/ex_doc/markdown/hoedown.ex
Compiled lib/ex_doc/markdown/pandoc.ex
Compiled lib/mix/tasks/docs.ex
Compiled lib/ex_doc/formatter/html.ex
Compiled lib/ex_doc/retriever.ex
Compiled lib/ex_doc/formatter/html/templates.ex
Compiled lib/ex_doc/formatter/html/autolink.ex
Generated ex_doc app
==> combined
Compiled lib/convert.ex
Compiled lib/combined.ex
Compiled lib/drop.ex
Generated combined app
Consolidated List.Chars
Consolidated IEx.Info
Consolidated String.Chars
Consolidated Collectable
Consolidated Enumerable
Consolidated Inspect

You can then generate the documentation with mix docs. If you have a Markdown
processor installed, it should all be smooth sailing. If you don’t (one of the authors
didn’t on his Linux system), you might get an error message like this:

** (RuntimeError) Could not find a markdown processor to be used on ex_doc.
You can either:

1. Add {:markdown, github: "devinus/markdown"} to your mix.exs deps
2. Ensure pandoc (http://johnmacfarlane.net/pandoc) is available in your system

218 | Appendix B: Generating Documentation with ExDoc

In our case, the first option seemed simpler, so we changed the function deps in
mix.exs to:

defp deps do
 [{:ex_doc, github: "elixir-lang/ex_doc"},
 {:markdown, github: "devinus/markdown"}]
end

We then did another mix deps.get:

* Getting markdown (git://github.com/devinus/markdown.git)
Cloning into '/Users/code/ex6-docs/combined/deps/markdown'...
remote: Reusing existing pack: 83, done.
remote: Total 83 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (83/83), 12.52 KiB | 0 bytes/s, done.
Resolving deltas: 100% (34/34), done.
Checking connectivity... done.
* Getting hoedown (git://github.com/hoedown/hoedown.git)
Cloning into '/Users/code/ex6-docs/combined/deps/hoedown'...
remote: Counting objects: 1869, done.
remote: Compressing objects: 100% (805/805), done.
remote: Total 1869 (delta 1050), reused 1869 (delta 1050)
Receiving objects: 100% (1869/1869), 504.60 KiB | 481.00 KiB/s, done.
Resolving deltas: 100% (1050/1050), done.
Checking connectivity... done.

Then we redid the mix docs (which caused the Markdown processor to be compiled
with the C compiler), recompiled the Elixir files, and finally created the documents.
The following is the output without the compiler messages:

Compiled lib/markdown.ex
Generated markdown.app
==> combined
Compiled lib/convert.ex
Compiled lib/combined.ex
Compiled lib/drop.ex
Generated combined.app
%{green}Docs successfully generated.
%{green}View them at "doc/index.html".

Sure enough, listing the directory will now show a doc directory that contains an
index.html file. The result will look like Figure B-1.

Generating Documentation with ExDoc | 219

Figure B-1. Example of web page produced by ExDoc

220 | Appendix B: Generating Documentation with ExDoc

Index

Symbols
! (exclamation point), 130
" (double quotes), 55
""" (three double quotes), 58
(hashtag) sign, 22
#{} operator, 56
$PATH variable, 3
%> notation, 200
%{} operator, 83
& (capture operator), 13, 17, 94
&1 notation, 94
' (single quotes), 59
* (multiplication) operator, 5
+ (addition) operator, 5
++ operator, 59, 68
- (subtraction) operator, 5
-> operator, 14, 40
-export directive, 19
-import directive, 19
/ (backslash) operator, 5
: (colon), 130
:dbg module (Erlang), 130
:debug logging level, 129
:error logging level, 129, 210
:ets.delete function, 160
:ets.delete/1 function, 154
:ets.first function, 160
:ets.fun2ms function, 160
:ets.give_away/3 function, 160
:ets.i() function, 156
:ets.info/1 function, 153
:ets.insert function, 160
:ets.insert/2 function, 154
:ets.last function, 160

:ets.lookup/2 function, 157
:ets.match function, 160
:ets.new/2 function, 152, 154
:ets.next function, 160
:ets.select function, 160
:ets.tab2list/1 function, 156
:ignore response, 210
:infinity atom, 173
:info logging level, 128
:keypos tuple, 153
:noop (no operation), 15
:noreply response, 173, 210
:observer.start() function, 156
:ok response, 15, 50, 210
:one_for_all function, 176
:one_for_one option, 176
:protected access level, 153
:reply response, 210
:stop response, 173, 210
:terminate/2 method, 173
:undefined response, 210
:warn logging level, 129
; (semicolon), 10
<%= notation, 200
<< notation, 130
<= comparison operator, 50
<> operator, 56, 59
== comparison operator, 50, 57
=== comparison operator, 50, 57
>= comparison operator, 50
? (question marks), 99
@doc tag, 23
@opaque, 138
@spec, 136

221

@spec tag, 24
@typep/@type, 138
@vsn tag, 25
[] (square brackets), 67
_ (underscores), 33, 40
_from argument, 173
__MODULE__ declaration, 172
{} (curly braces), 56, 85
| (vertical bar), 69, 84
|> (pipe) operator, 19, 65
~ (tilde), 59

A
access levels

protected, 153
public, 158

accumulators, 49, 100
acknowledgments, xv
addition (+) operator, 5
after construct, 108
anonymous functions, 13
arguments

default values for, 21
ignoring with underscores, 33
pattern matching against structures, 86
precise handling with guards, 30-33, 40
quoting/unquoting, 185

arithmetic operators, 211
Ask module, 60
associative arrays, 82
atoms

atomic Booleans, 29
commonly used in return values, 210
guard components, 30-33
pattern matching with, 27
vs. strings, 55
syntax of, 27
underscores (_) and, 33
used as keys in maps, 83

B
backslash (/) operator, 5
bags, 151
BEAM (Bogdan’s Erlang Abstract Machine), 16,

133
binary operators, 212
Boolean (logical) operators, 210

C
c (compile) command, 16
c(file) command, 209
c(file,path) command, 209
capture operator (&), 13, 17, 94
case construct, 39-42, 63
case...end statement, 105
CaseClauseError, 41, 127
cd() command, 5
cd(directory) command, 209
cd(pathname) command, 16
character lists, 58
characters, gathering from users, 60
clear() function, 10, 209
closures, 95
code examples, downloading and using, xiii
colon (:), 130
comments and feedback, xiv
comments, inserting for documentation, 22
communication with humans (see also strings)

gathering characters, 60
reading lines of text, 62
using Ask module, 60

comparison operators, 50, 57
compile (c) command, 16
concatenation

of character lists, 59
of lists, 68

cond construct, 39, 42
contact information, xv
countdown() function, 47
countup() function, 49
curly braces ({}), 56, 85

D
data storage

using Erlang Term Storage, 151-161
using Mnesia, 161-167
using records, 145-150

database management systems (DBMS) , 161
datatypes, for documentation and analysis, 216
:dbg module (Erlang), 130
:debug logging level, 129
debugging (see exceptions, errors, and debug‐

ging)
decimal values (see floating-point numbers)
defmacro declaration, 183
defmodule declaration, 14, 85, 146, 172, 189
defrecord declaration, 146

222 | Index

defstruct declaration, 85, 146
Dialyxir tool, 133
Dialyzer (DIscrepancy AnalYZer for ERlang

programs)
static analysis with, 133
using typespecs with, 135-138

directories
changing, 16
discovering current, 16

Disk-Based Erlang Term Storage (DETS), 160
div() function, 6
divide function, 100
do...end syntax, 14
documentation

comments, 22
data types for, 216
embedding tests in, 142
ExDoc tool for, 217-219
functions, 23
modules, 25

double quotes ("), 55
double quotes, triple ("""), 58
duplicate bags, 151

E
EEx (Embedded Elixir), 199
elem function, 36
Elixir (see also Interactive Elixir)

atoms, tuples, and pattern matching, 27-38
basic operations, 3-10
benefits of, ix, xii, 206
best application of, 207
communicating with humans, 55-65
data storage, 145-167
exceptions, errors, and debugging, 125-132
functions and modules, 11-26
goals for learning, x
higher-order functions and list comprehen‐

sions, 93-102
installing, 2
lists, 67-77
logic and recursion, 39-53
macros, 183-189
name-value pairs, 79-91
Open Telecom Platform (OTP) and,

169-181
Phoenix framework and, 191-207
prerequisites to learning, ix
process for learning, x

processes, 103-123
programming dictionary, xi, 209-216
resources for learning, xi, 2
starting, 2
static analysis, typespecs, and testing,

133-143
tutorials and documentation, xi
version 1.3, ix

else statements, 43
Emacs text editor, 4
end command, 12
Enum module

Enum.all?/2, 98
Enum.any?/2, 98
Enum.concat/1 function, 69
Enum.drop_while/2, 99
Enum.each/2, 96
Enum.filter/2, 97
Enum.map/2, 96
Enum.partition/2, 99
Enum.reverse function, 70
Enum.take_while/2, 99
Enum.unzip/1 function, 74
Enum.zip/2 function, 74
higher-order functions in, 95

Erlang
compatibility with older code, 79
vs. Elixir, 46, 58
Erlang BEAM files, 16, 133
Erlang Runtime System (ERTS), 16
Erlang User Guide, 209
installing, 1
math module, 7
Observer tool, 114, 156
resources for learning, xii

Erlang Term Storage (ETS)
benefits of, 151
complex data queries, 160
creating/populating tables, 152-156
kinds of collections held in, 151
vs. Mnesia, 161
overwriting values, 158
simple data queries, 157
tables and processes, 158

errata system, ix, xiv
:error logging level, 129, 210
errors (see exceptions, errors, and debugging)
escape sequences, 55, 215
except argument, 21

Index | 223

exceptions, errors, and debugging
logging progress and failure, 128
rescuing runtime errors as they occur, 126
tracing messages, 129
types of error, 125
watching function calls, 131

exclamation point (!), 130
ExDoc tool, 26, 216, 217-219
-export directive, 19
ExUnit module, 138

F
factorials, 50
false value, 43
feedback and comments, xiv
floating-point numbers, 7
flush() function, 104, 210
fn keyword, 11, 93-95
for comprehensions, 98
fully qualified names, 147
FunctionClauseError, 41
functions (see also modules)

adjusting to conditions, 42
anonymous functions, 13
calling, 12
combining with pipe operators, 19
creating programatically, 187
creating with fn keyword, 11, 93-95
debugging, 131
default values for arguments, 21
defining in modules, 13-16
defining with capture operators (&), 13
documenting, 22-25
escape sequences for strings, 55, 215
higher-order, 93-102, 214
importing, 20
including multiple statements in, 12
logic inside of, 39-46
vs. macros, 183, 189
mathematical, 6, 213
naming conventions, 99
passing from modules to functions, 95
recursion in, 47
referring to already defined, 17
separating pieces of with newlines, 12
using records in, 148-150
using structs in, 86-88

f_test function, 184

G
GenServer (generic server) modules, 169-175
guard expressions

avoiding infinite loops with, 50
with case construct, 40
in countdowns, 48
guard components, 213
side effects and, 47
specifying data accepted by functions with,

30-33

H
h() command, 209
h(item) command, 209
handle_call/3 function, 172
handle_cast/2 function, 172
handle_info/2 function, 174
hash dictionaries, 82
hashtag (#) sign, 22
hd/1 function, 157
heads, extracting from lists, 69
help, obtaining, 3, 24, 26
heredocs, 58
Hex package manager, 218
higher-order functions

basics of, 93
creating new lists with, 95-98
defined, 93
list of, 214

I
IEx (see Interactive Elixir)
if construct, 39, 49, 186
if, or else statements, 43-44
:ignore response, 210
impatient processes, 108
import command, 20
-import directive, 19
improper lists, 72
infinite loops, 47, 50
:infinity atom, 173
:info logging level, 128
init/1 function, 175
input variable, 64
insert_into_table/1 function, 160
inspect function, 57, 91
Inspect.Algebra module, 91
integers, 6, 7

224 | Index

Interactive Elixir (IEx)
benefits of, 1
calling functions, 6
mathematical expressions, 5
moving through files, 5
moving through text and history, 4
new project creation, 2
obtaining help, 3
quitting Elixir, 3
working with variables in the shell, 9

IO.getn function, 60
IO.gets function, 62
IO.puts function, 46, 51, 56, 63, 96, 128, 173
IO.write/1, 112
is_ predicate, 99

K
keyword lists, 79, 83, 84
Keyword module, 79

L
l(module) command, 209
“let it crash” philosophy, 71, 111
limit values, 50
line breaks, 10
line function, 62
links

bidirectionality of, 120
specifying dependencies with, 119

list comprehensions, 95, 97-98
lists

appending, 68
building lists of lists, 74-77
containing lists, 68
copying/creating new modified, 80
creating single from multiple, 68
creating with heads and tails, 72
creating with higher-order functions, 95-98
defined, 67
elements permitted, 67
empty lists, 71
filtering list values, 97
folding, 100
improper lists, 72
vs. maps, 83
mixing with tuples, 74
vs. name-value pairs, 79
number of items permitted, 67
processing list content, 70

reporting on, 96
running list values through functions, 96
splitting, 99
splitting into heads and tails, 69
syntax for, 67
testing for conditions, 98
of tuples with multiple keys, 81
vs. tuples, 68

Logger module, 128
(see also exceptions, errors, and debugging)

logic
evaluating cases, 39-42
if, or else, 43
overview of, 39
side effects, 46
variable assignments in case and if, 45

logic errors, 125, 133
(see also exceptions, errors, and debugging)

logical (Boolean) operators, 210
loops, infinite, 47, 50
ls() command, 5, 209
ls(path) command, 209

M
m() command, 209
macros

conditions and options, 187
creating functions programatically, 187
creating multiple functions with, 188
creating new logic, 186
drawbacks of, 189
example of basic, 184
vs. functions, 183, 189
quoting/unquoting arguments, 186

maps (see under name-value pairs)
math module (Erlang), 7, 95, 152
mathematical expressions, 5
mathematical functions, 6, 213
messages

displaying in/removing from mailbox, 104
pids and, 104
reading, 104
retrieving unprocessed, 117
syntax for, 104
tracing, 129
watching among processes, 115

mix new first_app command, 2
Mix tool

invoking, 2

Index | 225

packaging an application with, 178-181
using ExDoc with, 217-219
working with modules, 13

Mnesia
benefits of, 161
creating tables, 162-165
overload error message, 162
reading data, 166
starting up, 161
using with Phoenix framework, 194

modules (see also functions)
defining, 13-16
documenting, 25-26
importing functions from, 20
passing functions from, 95
spawning processes from, 105-108
splitting code across, 17

multiplication (*) operator, 5

N
name-value pairs

from lists to maps
creating maps, 83
maps vs. lists, 83
reading maps, 84
updating maps, 84

from maps to structs
adding behavior to structs, 89
adding to existing protocols, 90
creating/reading structs, 85
maps vs. structs, 84
pattern matching against structs, 86
setting up structs, 85
using structs in functions, 86-88

hash dictionaries, 82
keyword lists, 79
lists of tuples with multiple keys, 81
vs. tuples and lists, 79

negative numbers, 7
newlines

IO.puts function and, 47
separating pieces of functions with, 12, 56
strings containing, 58

nil value, 43
“no match...” error, 70
no operation (:noop), 15
:noreply response, 173, 210

O
Observer tool (Erlang), 114, 156
:ok response, 15, 50, 210
:one_for_all option, 176
:one_for_one option, 176
only argument, 20
Open Telecom Platform (OTP), x

benefits of, 169
creating services with GenServer, 170-175
Supervisor module, 175-178
video introduction to, 170

operators
arithmetic, 211
atomic Booleans, 29
binary, 212
logical (Boolean), 210
operator precedence, 212
term comparison, 211

ordered sets, 151

P
parentheses, 6
Pascal’s triangle, 74
pattern matching

against records submitted as arguments, 148
against structs, 86
against structures submitted as arguments,

86
inside of functions using case construct, 39
with atoms, 27
with tuples, 36

Persistent Lookup Table (PLT), 133
Phoenix framework

basic application structuring, 194
benefits of, 191
calculating data, 200-206
online documentation, 206
page presentation

routing, 195
simple controller for, 197
simple view for, 198

resources for learning, 206
skeleton installation, 191-193
starting, 194

pid (process identifier), 103, 111
pipe (|>) operator, 19, 65
pipe forward (see |> (pipe) operator)
predicates, 99
“pretty printing”, 91

226 | Index

Process.register/2 function, 109
Process.registered/0 function, 110
Process.whereis/1 function, 109
processes

additional process management options,
123

benefits of OTP for, 169
broken processes, 117
default behavior for linked, 120
defined, 103
failure of, 110
impatient processes, 108
lightweight processes, 108
process identifiers (pids), 103, 111
process-to-process communication, 111-113
registering/unregistering, 109
spawning from modules, 105-108
specifying dependencies with links, 119
tables and, 158
the Elixir shell as, 103
watching messages among, 115
watching with Observer tool, 114

product/1 function, 71
product/2 function, 71
programs, deployment of, 103
protected access level, 153
protocols, 89-91
pwd() command, 5, 16, 209

Q
queries, 157
question marks (?), 99
quote function, 185
quotes

double ("), 55
single ('), 59
triple ("""), 58

R
r() command, 28
r(module) command, 209
receive...end construct, 104, 105
recompile command, 15, 28
records

benefits and drawbacks of, 145
changing values in, 148
creating/reading, 147
setting up, 146
using in functions, 148-150

record_info/2 function, 162
recursion

basic kinds of, 47
counting down, 47
counting up, 49
with return values, 50-53
unending, 47

Regex (regular expressions) , 57
(see also pattern matching)

rem() function, 6
:reply response, 210
report/0 function, 105
reserved words, 210
return-value atoms, 50, 210
round() function, 6
runtime errors, 125

(see also exceptions, errors, and debugging)

S
s() function, 25
scientific calculator, 7
self() function, 103
semicolon (;), 10
send/2 function, 104
sets, 151
setup function, 160
setup/0 function, 160
shell commands, 209
shortcut (->) syntax, 14
side effects, 46
sigils, 59, 215
single quotes ('), 59
spawn/3 function, 105
square brackets ([]), 67
start..end notation, 97
start_link function, 174, 175
start_link/0 function, 172
State structure declaration, 172
static analysis, 133-135
:stop response, 173, 210
strings

#{} operator in, 56
vs. atoms, 55
character list support, 58
creating new, 56
documentation for, 57
equality comparisons, 57
escape sequences for, 55, 215
finding content in, 57

Index | 227

interpolating, 56
multiline, 58
sigils, 59, 215
string handling in Elixir, 55
UTF-8 strings, 58

structs (see under name-value pairs)
subtraction (-) operator, 5
Supervisor module, 175-178

T
tables

ETS
access levels, 158
controlling processes in, 152
creating/populating, 152-156
deleting rows, 160
processes and, 158

Mnesia, creating, 162
tail recursion, 52
tails, extracting from lists, 69
term-comparison operators, 211
testing (see exceptions, errors, and debugging;

unit tests)
text data, reading, 62
text editor, 4
tilde (~), 59
trace function, 129
trace_pattern function, 129
trunc() function, 6
truthiness, 43
try...catch construct, 154
try...rescue construct, 126
tuples

:keypos tuple, 153
adding structure with, 35
in Erlang Term Storage, 151
lists of with multiple keys, 81
vs. lists, 68
in macros, 184

mixing with lists, 74
vs. name-value pairs, 79
pattern matching with, 36
processing, 37
vs. structs, 84
underlying records, 145

typespecs, 135-138
typographical conventions, xii

U
:undefined response, 210
underscores (_), 33, 40
Unicode (UTF-8) strings, 58
unit tests

embedding in documentation, 142
setting up, 141
writing, 138-141

unless construct, 186
unquote/1 function, 185
users, communicating with (see communica‐

tion with humans)

V
v() command, 6, 9, 209
v(N) command, 4
v(n) command, 210
values, overwriting, 158
variables

assignment in case and if constructs, 45
single-assignment vs. reassignment, 158
working with in the shell, 9

vertical bar (|), 69

W
:warn logging level, 129
when keyword, 30
worker/3 function, 176
wxwidgets, 114

228 | Index

About the Authors
Simon St.Laurent is a Content Manager at LinkedIn Learning, focusing primarily on
the client side of the web. He is a past co-chair of the Fluent and OSCON conferen‐
ces. He’s authored or co-authored books including Introducing Elixir, Introducing
Erlang, Learning Rails 3, XML Pocket Reference, 3rd edition, XML: A Primer, and
Cookies.

You can find more of his writing on technology, Quakerism, and the Town of Dryden
at simonstl.com.

J. David Eisenberg is a programmer and instructor living in San Jose, CA. David has
a talent for teaching and explaining. He has developed courses for HTML and CSS,
JavaScript, XML, and Perl. He also teaches computer and information technology
courses at Evergreen Valley College in San Jose and has developed online courses pro‐
viding introductory tutorials for Korean, Modern Greek, and Russian. David has
been developing education software since 1975, when he worked with the Modern
Foreign Language project at the University of Illinois to develop computer-assisted
instruction on the PLATO system. He is coauthor of SVG Essentials (O’Reilly). When
not programming, David enjoys digital photography, caring for a feral cat colony at
work, and riding his bicycle.

Colophon
The animal on the cover of Introducing Elixir is a four-horned antelope (Tetracerus
quadricornis), found in India and Nepal. Also called chousingha, these antelope are
the smallest of Asian bovids, standing at 22 to 25 inches at the shoulder and weighing
from 37 to 49 pounds. They have a slender build with thin legs and short tails, and a
yellow-brown or reddish coat that fades to white on the underbelly and inner legs.
They also have a black stripe of hair that runs down each leg. The antelope’s most dis‐
tinctive features are the four horns seen on males: two between the ears, which grow
in at just a few months’ age, and two on the forehead, which grow in after 10 to 14
months. The front pair can reach about 2 inches whereas the hind pair can grow
nearly 4 inches in length.

Four-horned antelope tend to live near a water supply and in areas with significant
vegetation cover, such as from tall grass or heavy undergrowth. They are generally
solitary animals, occasionally found in groups of up to four, and they tend to avoid
human-inhabited areas. During mating season—May to July—males can become
aggressive toward other males. Gestation lasts around eight months and usually
results in one or two young, which remain with their mothers for about a year, reach‐
ing sexual maturity at two years.

http://simonstl.com
http://shop.oreilly.com/product/0636920032335.do

The antelope communicate through alarm calls, which sound like a husky “phronk,”
and through scent marking (leaving piles of droppings to mark their territory or
using large scent glands in front of their eyes to mark vegetation).

Because they live in such a densely populated area of the world, the four-horned ante‐
lope’s natural habitat is threatened by agricultural development. This species is listed
as Vulnerable by the International Union for Conservation of Nature (IUCN) because
of habitat loss. They have also become a target for trophy hunters who seek their
unusual horned skull. There are estimated to be only around 10,000 individuals of
this species left in the wild; many are being protected in animal conservatories. The
four-horned antelope is protected under the Indian Wildlife Protection Act.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Who This Book Is Not For
	What This Book Will Do For You
	How This Book Works
	Other Resources
	Elixir Will Change You
	Conventions Used in This Book
	Using Code Examples
	Help This Book Grow
	Please Use It For Good
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Comfortable
	Installation
	Installing Erlang
	Installing Elixir

	Firing It Up
	First Steps
	Moving Through Text and History
	Moving Through Files

	Doing Something
	Calling Functions
	Numbers in Elixir
	Working with Variables in the Shell

	Chapter 2. Functions and Modules
	Fun with fn
	And the &
	Defining Modules
	From Module to Free-Floating Function
	Splitting Code Across Modules
	Combining Functions with the Pipe Operator
	Importing Functions
	Default Values for Arguments
	Documenting Code
	Documenting Functions
	Documenting Modules

	Chapter 3. Atoms, Tuples, and Pattern Matching
	Atoms
	Pattern Matching with Atoms
	Atomic Booleans
	Guards
	Underscoring That You Don’t Care
	Adding Structure: Tuples
	Pattern Matching with Tuples
	Processing Tuples

	Chapter 4. Logic and Recursion
	Logic Inside of Functions
	Evaluating Cases
	Adjusting to Conditions
	if, or else
	Variable Assignment in case and if Constructs

	The Gentlest Side Effect: IO.puts
	Simple Recursion
	Counting Down
	Counting Up
	Recursing with Return Values

	Chapter 5. Communicating with Humans
	Strings
	Multiline Strings
	Unicode
	Character Lists
	String Sigils
	Asking Users for Information
	Gathering Characters
	Reading Lines of Text

	Chapter 6. Lists
	List Basics
	Splitting Lists into Heads and Tails
	Processing List Content
	Creating Lists with Heads and Tails
	Mixing Lists and Tuples
	Building a List of Lists

	Chapter 7. Name-Value Pairs
	Keyword Lists
	Lists of Tuples with Multiple Keys
	Hash Dictionaries
	From Lists to Maps
	Creating Maps
	Updating Maps
	Reading Maps

	From Maps to Structs
	Setting Up Structs
	Creating and Reading Structs
	Pattern Matching Against Structs
	Using Structs in Functions
	Adding Behavior to Structs
	Adding to Existing Protocols

	Chapter 8. Higher-Order Functions and List Comprehensions
	Simple Higher-Order Functions
	Creating New Lists with Higher-Order Functions
	Reporting on a List
	Running List Values Through a Function
	Filtering List Values

	Beyond List Comprehensions
	Testing Lists
	Splitting Lists
	Folding Lists

	Chapter 9. Playing with Processes
	The Shell Is a Process
	Spawning Processes from Modules
	Lightweight Processes
	Registering a Process
	When Processes Break
	Processes Talking Amongst Themselves
	Watching Your Processes
	Watching Messages Among Processes

	Breaking Things and Linking Processes

	Chapter 10. Exceptions, Errors, and Debugging
	Flavors of Errors
	Rescuing Code from Runtime Errors as They Happen
	Logging Progress and Failure
	Tracing Messages
	Watching Function Calls

	Chapter 11. Static Analysis, Typespecs, and Testing
	Static Analysis
	Typespecs
	Writing Unit Tests
	Setting Up Tests
	Embedding Tests in Documentation

	Chapter 12. Storing Structured Data
	Records: Structured Data Before Structs
	Setting Up Records
	Creating and Reading Records
	Using Records in Functions

	Storing Data in Erlang Term Storage
	Creating and Populating a Table
	Simple Queries
	Overwriting Values
	ETS Tables and Processes
	Next Steps

	Storing Records in Mnesia
	Starting Up Mnesia
	Creating Tables
	Reading Data

	Chapter 13. Getting Started with OTP
	Creating Services with GenServer
	A Simple Supervisor
	Packaging an Application with Mix

	Chapter 14. Using Macros to Extend Elixir
	Functions Versus Macros
	A Simple Macro
	Creating New Logic
	Creating Functions Programatically
	When (Not) to Use Macros

	Chapter 15. Using Phoenix
	Skeleton Installation
	Structuring a Basic Phoenix Application
	Presenting a Page
	Routing
	A Simple Controller
	A Simple View

	Calculating
	Sharing the Gospel of Elixir

	Appendix A. An Elixir Parts Catalog
	Shell Commands
	Reserved Words
	Operators
	Guard Components
	Common Functions
	Datatypes for Documentation and Analysis

	Appendix B. Generating Documentation with ExDoc
	Using ExDoc with Mix

	Index
	About the Authors
	Colophon

