
Eben Hewitt

Semantic
Software
Design
A New Theory and Practical Guide for
Modern Architects

Eben Hewitt

Semantic Software Design
A New Theory and Practical Guide

for Modern Architects

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04595-3

[LSI]

Semantic Software Design
by Eben Hewitt

Copyright © 2020 Eben Hewitt. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editors: Ryan Shaw and
Chris Guzikowski
Development Editor: Alicia Young
Production Editor: Kristen Brown
Copyeditor: Octal Publishing, LLC

Proofreader: Charles Roumeliotis
Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

October 2019: First Edition

Revision History for the First Edition
2019-09-25: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492045953 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Semantic Software Design, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492045953

Table of Contents

Preface. ix

Part I. Episteme: The Philosophy of Design

1. Origins of Software Architecture. 3
Software’s Conceptual Origins 3
Copies and Creativity 9
Why Software Projects Fail 10
The Impact of Failures 13

2. The Production of Concepts. 17
Semantics and the Software Factory 17
The Myth of Requirements 19
Semantics and Software Architecture 20
The Semantic Field 21
Designers Are Producers of Concepts 23

Designing Concepts 24
What Is a Concept? 25

Accomplish, Avoid, Fix 26
Outlining Your Concept on the Concept Canvas 26

Ideas Are Captured in a Lookbook 30
Fit to Purpose 32
The Concept Is Expressed in a Parti 33

An Example 35
Adding Aspects to the Parti 36
The Parti Is Based on a Series of Reveals 36

Understanding Ideas 38

iii

Sense Certainty 38
Metacognition 39

Context 41
Sets 43

Relations 44
Advantages of Semantic Design 45

3. Deconstruction and Design. 49
Introduction to Deconstruction 49
Simplexity 53
(De)composition 55
Affordance 57
Give Intention and Use Value to Negative Space 58
Give Design Decisions at Least Two Justifications 61
Design from Multiple Perspectives 62
Create a Quarantine or Embassy 63
Design for Failure 63
Design Language 64

Naming 64
Start Opposite the User 65
Platforms 66

Disappearing 66

Part II. Semantic Design in Practice

4. Design Thinking. 71
Why Design Thinking? 71
Exploring Design Thinking 72

Principles 73
The Method 74

Implementing the Method 81
Summary 84

5. Semantic Design Practices and Artifacts. 85
Design Principles 86
Pair Designing 88
Murals 89
Vision Box 93
Mind Maps 94
Use Cases 95
Guidelines and Conventions 96

iv | Table of Contents

Utils 98
Domain 98
service-api 98
service-impl 99
service-client 99

Approaches 99
Design Definition Document 100

Considerations for Composing Your Design Definition 108
Position Papers 111
RAID 112
Presentations and Multiple Viewpoints 113
Summary 115

6. The Business Aspect. 117
Capturing the Business Strategy 120

Provide a Common Understanding 120
Align Strategic Objectives and Tactical Demands 122

Framework Introduction 123
Scope of the Framework 124

Create the Business Glossary 125
Create the Organizational Map 125
Create a Business Capabilities Model 126
Create a Process Map 129
Reengineer Processes 129
Take Inventory of Systems 131
Define the Metrics 131
Institute Appropriate Governance 132
Business Architecture in Applications 133
Summary 136

7. The Application Aspect. 139
Embrace Constraints 140
Decouple User Interfaces 141

UI Packages 142
On Platform Design 142
Service Resources and Representations 144

Domain Language 146
API Guidelines 147
Deconstructed Versioning 148
Cacheability and Idempotence 149
Independently Buildable 151
Strategies and Configurable Services 151

Table of Contents | v

Application-Specific Services 153
Communicate Through Services 154
Expect Externalization 154
Design for Resilience 155
Interactive Documentation 157
Anatomy of a Service 158

UI Packages 158
Orchestrations 158
Engines 161
Data Accessors 165

Eventing 165
Structure of an Event Message 168

Contextual Services and Service Mixins 168
Performance Improvement Checklist 170
Separating API from Implementation 171
Languages 172
Radical Immutability 173
Specifications 175
A Comment on Test Automation 178
A Comment on Comments 179
Summary 181

8. The Data Aspect. 183
Business Glossary 183
Strategies for Semantic Data Modeling 184
Polyglot Persistence 187

Persistence Scorecard 188
Multimodeling 189
Data Models for Streams 191
Feature Engineering for Machine Learning 193
Classpath Deployment and Network Proxies 195
Peer-to-Peer Persistent Stores 196
Graph Databases 198

OrientDB and Gremlin 199
Data Pipelines 200
Machine Learning Data Pipelines 203
Metadata and Service Metrics 206
Auditing 207
ADA Compliance 207
Summary 208

vi | Table of Contents

9. The Infrastructure Aspect. 209
Considerations for Architects 209
DevOps 211
Infrastructure as Code 212
Metrics First 215

Compliance Map 217
Automated Pipelines Also First 217
The Production Multiverse and Feature Toggling 218

Implementing Feature Toggles 219
Multi-Armed Bandits: Machine Learning and Infinite Toggles 221

Infrastructure Design and Documentation Checklist 222
Chaos 224
Stakeholder Diversity and Inside/Out 226
Summary 227

Part III. Operations, Process, and Management

10. The Creative Director. 231
The Semantic Designer’s Role 231
Creative Directors Across Industries 234

In Fashion 235
In Film 236
In Video Games 238
In Advertising 238
In Theater 238
In Technology 239
What’s In a Name? 241

11. Management, Governance, Operations. 245
Strategy and Tooling 245
Oblique Strategies 247
Lateral Thinking and Working with Concepts 248
Conceptual Tests 252
Code Reviews 254
Demos 255
The Operational Scorecard 255
The Service-Oriented Organization 258

Cross-Functional Teams 262
The Designed Scalable Business Machine 263
Managing Modernization as a Program 266
Change Management 267

Table of Contents | vii

Governance 270
Goals 270
Metrics 270
Service Portfolio 271
Service Inventory and Metadata 271

Service Design Checklist 273
Service Design 273
Service Operations 274
Business Processes 275
Data 275
Errors 276
Performance 276
Security 276
Quality Assurance 277
Availability and Support 277
Deployment 278
Documentation 278

Further Reading on Organizational Design 279

12. The Semantic Design Manifesto. 281
The Manifesto 281

The Four Ideals 285
The Key Practices 286
Opening 292

A. The Semantic Design Toolbox. 293

B. Further Reading. 297

Index. 303

viii | Table of Contents

Preface

Thank you kindly for picking up Semantic Software Design. Welcome.

This book introduces a new method of software design. It proposes a new way of
thinking about how we construct our software. It is primarily focused on large
projects, with particular benefit for greenfield software projects or large-scale legacy
modernization projects.

A software project is said to fail if it does not meet its budget or timeline or deliver
the features promised in a usable way. It is incontrovertible, and well documented,
that software projects fail at alarming rates. Over the past 20 years, this situation has
grown worse, not better. We must do something different to make our software
designs more successful. But what?

My assumption here is that you’re making business application software and services
to be sold as products for customers or you’re working at an in-house IT department.
This book is not about missile guidance systems or telephony or firmware. It’s not
interested in debates about object-oriented versus functional programming, though it
could apply for either realm. It’s certainly not interested in some popular framework
or another. And for the sake of clarity, my use of “semantic” here traces back to my
philosophical training, and as such, it concerns the matter of signs. “Semantic” here
refers more to semiology. It is not related or confined to some notion of Tim Berners-
Lee’s concept of the Semantic Web, honorable as that work is.

The primary audience is CTOs, CIOs, vice presidents of engineering, architects of all
stripes (whether enterprise, application, solution, or otherwise), software develop‐
ment managers, and senior developers who want to become architects. Anyone in
technology, including testers, analysts, and executives, can benefit from this book.

But there is precious little code in the book. It is written to be understood, and hope‐
fully embraced, by managers, leaders, intellectually curious executives, and anyone
working on software projects. That is not quite to say that it’s easy.

ix

The ideas in this book might appear shocking at times. They are likely to irritate some
and perhaps even infuriate others. The ideas will appear as novel, perhaps even for‐
eign and strange in some cases; the ideas will surface as borrowed and recast in other
cases, such as in the introduction to Design Thinking. Taken in sum, it’s my bespoke
method, cobbled together over many years from a wide array of disparate sources.
Most of these ideas stem from my studies in philosophy in graduate school. This book
represents a tested version of the ideas, processes, practices, templates, and practical
methods that together I call “semantic design.”

This approach to software design is proven and it works. Over the past 20 years, I
have been privileged to work as CTO, CIO, chief architect, and so on at large, global,
public companies and have designed and led the creation of a number of large,
mission-critical software projects, winning multiple awards for innovation, and, more
important, creating successful software. The ideas presented here in a sense form a
catalog of how I approach and perform software design. I’ve employed this approach
for well more than a decade, leading the design of software projects for $1 million,
$10 million, $35 million, and $50 million. Although this might seem a radical depar‐
ture from traditional ways of thinking about software design, it’s not conjecture or
theory: again, it’s proven and it works. It is not, however, obvious.

We are forced to use the language we inherit. We know our own name only because
someone else told us that’s what it was. For reasons that will become clear, in this
book I sometimes use the terms “architect” or “architecture” under erasure, meaning
it will appear with a strike, like this: architect. That means that I am forced to use the
word for clarity or historical purposes to be communicative, but that it is not presen‐
ted as the intended meaning in the current context.

The first part of the book presents a philosophical framing of the method. We high‐
light what problem we’re solving and why. This part is conceptual and provides the
theoretical ground.

The second part of the book is ruthlessly pragmatic. It offers an array of document
templates and repeatable practices that you can use out of the box to employ the ele‐
ments of this method in your own daily work.

The third part provides an overview of some ways you manage and govern your soft‐
ware portfolio to help contain the general entropy. The book ends with a manifesto
that summarizes concisely the set of principles and practices that comprise this
method.

Taken altogether, the book represents a combined theoretical frame and a gesture
toward its practice. It is not closed, however, and is intended to be taken up as a start‐
ing point, elaborated, and improved upon.

This book was written very much as a labor of love. I truly hope you enjoy it and find
it useful as you apply the method in your own work. Moreover, I invite you to

x | Preface

contribute to and advance these ideas. I’d be honored to hear from you at eben@ale‐
theastudio.com or AletheaStudio.com.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://aletheastudio.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not

Preface | xi

https://www.aletheastudio.com
https://aletheastudio.com

need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Semantic Software Design by Eben
Hewitt (O’Reilly). Copyright 2020 Eben Hewitt, 978-1-492-04595-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help compa‐
nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/semantic-software-design.

xii | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://www.oreilly.com
https://oreil.ly/semantic-software-design

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thank you to the gloriously perspicacious Mike Loukides, whose guidance and
encouragement has helped to shape these ideas and bring this work to fruition. I am
very grateful to know you and work with you. Thank you for all that you do to
advance the discourse in our field.

Thank you to the incredibly diligent, detail-oriented, assiduous Alicia Young, my
development editor at O’Reilly. Your partnership throughout the creation of this book
has been terrific; you’ve done so much to improve and focus it. It’s a pleasure to work
with you.

Thank you to Mary Treseler, Neal Ford, Chris Guzikowski, and the entire Software
Architecture Conference team at O’Reilly. These venues you have created make the
space and atmosphere where these ideas can be further explored and challenged.
Thank you to Tim O’Reilly, for the awesome wonder that is O’Reilly Media.

Thank you to our outstanding enterprise architecture team at Sabre. Andrea Baylor,
Andy Zecha, Holt Hopkins, Jerry Rossi, Tom Murray and Tom Winrow, I am grateful
to work with each of you and for the joy of all of the beautiful, rigorous systems we
make together. Thank you to Jonathan Haynes for your reviews of early drafts and
your brave comments that helped improve this work. Thanks goes to Clinton Ander‐
son and Justin Ricketts for all of your support.

Thank you to my parents, for inspiring in me the joy and practice of writing.

Thank you to my teachers, in particular Christine Ney and Bryan Short. I cherish you
for caring enough about the world of ideas to push your students so hard.

Thank you to Alison Brown for the many important ideas you contributed here and
for your amazing nurturing and support of this work. This is for you, as if to say else‐
wise would make it unso.

Preface | xiii

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Episteme: The Philosophy of Design

In everything, there is a share of everything.
—Anaxagoras

In this part, we explore the figure of design itself. We examine in new light how our
work designing software came to be shaped, and challenge some received views in
our industry. We reimagine architecture as the work of creating concepts, and see
how to express those concepts working with teams to create effective software
designs.

CHAPTER 1

Origins of Software Architecture

We are most of us governed by epistemologies that we know to be wrong.
—Gregory Bateson

The purpose of this book is to help you design systems well and to help you realize
your designs in practice. This book is quite practical and intended to help you do
your work better. We must begin theoretically and historically. This chapter is meant
to introduce you to a new way of thinking about your role as a software architect that
will inform both the rest of this text and the way in which you approach your projects
moving forward.

Software’s Conceptual Origins
We shape our buildings, and thereafter they shape us.

—Winston Churchill

FADE IN:
INT. A CONFERENCE HALL IN GARMISCH GERMANY, OCTOBER
1968 — DAY
The scene: The NATO Software Engineering
Conference.
Fifty international computer professors and crafts-
people assembled to determine the state of the
industry in software. The use of the phrase soft-
ware engineering in the conference name was delib-
erately chosen to be “provocative” because at the
time the makers of software were considered so far
from performing a scientific effort that calling

3

themselves “engineers” would be bound to upset the
established apple cart.

MCILROY
We undoubtedly get the short end of
the stick in confrontations with
hardware people because they are the
industrialists and we are the
crofters.
(pause)
The creation of software is backwards
as an industry.

KOLENCE
Agreed. Programming management will
continue to deserve its current poor
reputation for cost and schedule
effectiveness until such time as a
more complete understanding of the
program design process is achieved.

Though these words were spoken, and recorded in the conference minutes in 1968,
they would scarce be thought out of place if stated today.

At this conference, the idea took hold was that we must make software in an indus‐
trial process.

That seemed natural enough, because one of their chief concerns was that software
was having trouble defining itself as a field as it pulled away from hardware. At the
time, the most incendiary, most scary topic at the conference was “the highly contro‐
versial question of whether software should be priced separately from hardware.” This
topic comprised a full day of the four-day conference.

This is a way of saying that software didn’t even know it existed as its own field, sepa‐
rate from hardware, a mere 50 years ago. Very smart, accomplished professionals in
the field were not sure whether software was even a “thing,” something that had any
independent value. Let that sink in for a moment.

Software was born from the mother of hardware. For decades, the two were (literally)
fused together and could hardly be conceived of as separate matters. One reason is
that software at the time was “treated as though it were of no financial value” because
it was merely a necessity for the hardware, the true object of desire.

Yet today you can buy a desktop computer for $100 that’s more powerful than any
computer in the world was in 1968. (At the time of the NATO Conference, a 16-bit
computer—that’s two bytes—would cost you around $60,000 in today’s dollars.)

4 | Chapter 1: Origins of Software Architecture

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

And hardware is produced on a factory line, in a clear, repeatable process, determined
to make dozens, thousands, millions of the same physical object.

Hardware is a commodity.

A commodity is something that is interchangeable with something of the same type.
You can type a business email or make a word-processing document just as well on a
laptop from any of 50 manufacturers.

And the business people want to form everything around the efficiencies of a com‐
modity except one thing: their “secret sauce.” Coca-Cola has nearly 1,000 plants
around the world performing repeated manufacturing, putting Coke into bottles and
cans and bags to be loaded and shipped, thousands of times each day, every day, in
the same way. It’s a heavily scrutinized, sharply measured business: an internal com‐
modity. Coke is bottled in factories in identical bottles in identical ways, millions of
times every day. Yet only a handful of people know the secret formula for making the
drink itself. Coke is copied millions of times a day, every day, and bottled in an identi‐
cal process. But making the recipe a commodity would put Coke out of business.

In our infancy, we in software have failed to recognize the distinction between the
commodities representing repeated, manufacturing-style processes, and the more
mysterious, innovative, one-time work of making the recipe.

Coke is the recipe. Its production line is the factory. Software is the recipe. Its produc‐
tion line happens at runtime in browsers, not in the cubicles of your programmers.

Our conceptual origins are in hardware and factory lines, and borrowed from build‐
ing architecture. These conceptual origins have confused us and dominated and cir‐
cumscribed our thinking in ways that are not optimal, and not necessary. And this is
a chief contributor to why our project track record is so dismal.

The term “architect” as used in software was not popularized until the early 1990s.
Perhaps the first suggestion that there would be anything for software practitioners to
learn from architects came in that NATO Software Engineering conference in Ger‐
many in 1968, from Peter Naur:

Software designers are in a similar position to architects and civil engineers, particularly
those concerned with the design of large heterogeneous constructions, such as towns
and industrial plants. It therefore seems natural that we should turn to these subjects for
ideas about how to attack the design problem. As one single example of such a source of
ideas, I would like to mention: Christopher Alexander: Notes on the Synthesis of Form
(Harvard Univ. Press, 1964) (emphasis mine).

This, and other statements from the elder statesmen of our field at this conference in
1968, are the progenitors of how we thought we should think about software design.
The problem with Naur’s statement is obvious: it’s simply false. It’s also unsupported.
To state that we’re in a “similar position to architects” has no more bearing logically,
or truthfully, to stating that we’re in a similar position to, say, philosophy professors,

Software’s Conceptual Origins | 5

http://bit.ly/2mlnZOY

or writers, or aviators, or bureaucrats, or rugby players, or bunnies, or ponies. An
argument by analogy is always false. Here, no argument is even given. Yet here this
idea took hold, the participants returning to their native lands around the world,
writing and teaching and mentoring for decades, shaping our entire field. This now
haunts and silently shapes—perhaps even circumscribes and mentally constrains,
however artificially—how we conduct our work, how we think about it, what we
“know” we do.

Origins

To be clear, the participants at the NATO conference in 1968 were
very smart, accomplished people, searching for a way to talk about
a field that barely yet existed and was in the process of forming and
announcing itself. This is a monumental task. I hold them in the
highest esteem. They created programming languages such as
ALGOL60, won Turing Awards, and created notations. They made
our future possible, and for this I am grateful, and in awe. The
work here is only to understand our origins, in hopes of improving
our future. We are all standing on the shoulders of giants.

Some years later, in 1994, the Gang of Four created their Design Patterns book. They
explicitly cite as inspiration the work of Christopher Alexander, a professor of archi‐
tecture at University of California at Berkeley and author of A Pattern Language,
which is concerned with proven aspects of architecting towns, public spaces, build‐
ings, and homes. The Design Patterns book was pivotal work, one which advanced the
area of software design and bolstered support for the nascent idea that software
designers are architects, or are “like” them, and that we should draw our own concerns
and methods and ideas from that prior field.

This same NATO conference was attended by now-famous Dutch systems scientist
Edsger Dijkstra, one of the foremost thinkers in modern computing technology. Dijk‐
stra participated in these conversations, and then some years later, during his chair‐
manship at the Department of Computer Science at the University of Texas, Austin,
he voiced his vehement opposition to the mechanization of software, refuting the use
of the term “software engineering,” likening the term “computer science” to calling
surgery “knife science.” He concluded, rather, that “the core challenge for computing
science is hence a conceptual one; namely, what (abstract) mechanisms we can con‐
ceive without getting lost in the complexities of our own making” (emphasis mine).

This same conference saw the first suggestion that software needed a “computer engi‐
neer,” though this was an embarrassing notion to many involved, given that engineers
did “real” work, had a discipline and known function, and software practitioners were
by comparison ragtag. “Software belongs to the world of ideas, like music and

6 | Chapter 1: Origins of Software Architecture

http://bit.ly/2mp16ua
http://bit.ly/2lW5UXM

mathematics, and should be treated accordingly.” Interesting. Let’s hang on to that for
a moment.

* * *
Cut to:
INT. PRESIDENT’S OFFICE, WARSAW, POLAND — DAY
The scene: The president of the Republic of Poland
updates the tax laws.

In Poland, software developers are classified as creative artists, and as such receive a
government tax break of up to 50% of their expenses (see Deloitte report). These are
the professions categorized as creative artists in Poland:

• Architectural design of buildings
• Interior and landscape
• Urban planning
• Computer software
• Fiction and poetry
• Painting and sculpture
• Music, conducting, singing, playing musical instruments, and choreography
• Violin making
• Folk art and journalism
• Acting, directing, costume design, stage design
• Dancing and circus acrobatics

Each of these are explicitly listed in the written law. In the eyes of the Polish govern‐
ment, software development is in the same professional category as poetry, conduct‐
ing, choreography, and folk art.

And Poland is one of the leading producers of software in the world.

Cut to: HERE—PRESENT DAY.

Perhaps something has occurred in the history of the concept of structure that could
be called an event, a rupture that precipitates ruptures.

This rupture would not have been represented in a single explosive moment, a com‐
fortingly locatable and suitably dramatic moment. It would have emerged among the
ocean tides of thought and expression, across universes, ebbing and flowing, with

Software’s Conceptual Origins | 7

http://bit.ly/2ko2zAa

fury and with lazy ease, over time, until the slow trickling of traces and cross-
pollination reveal, only later, something had transformed. Eventually, these traces
harden into trenches, fixing thought, and thereby fixing expression and realization.

What this categorization illuminates is the tide of language, the patois of a practice
that shapes our ideas, conversation, understanding, methods, means, ethics, patterns,
and designs. We name things, and thereafter, they shape us. They circumscribe our
thought patterns, and that shapes our work.

The concept of structure within a field, such as we might call “architecture” within the
field of technology, is thereby first an object of language.

Our language is constituted of an interplay of signs and of metaphors. A metaphor is
a poetic device whereby we call something something that it isn’t in order to reveal a
deeper or hidden truth about that object by underscoring or highlighting or offsetting
certain attributes. “All the world’s a stage, and all the men and women merely players”
is a well-known line from Shakespeare’s As You Like It.

We use metaphors so freely and frequently that sometimes we even forget they are
metaphors. When that happens, the metaphor “dies” (a metaphor itself!) and becomes
the name itself, drained of its original juxtaposition that gave the phrase depth of
meaning. We call these “dead metaphors.” Common dead metaphors include the “leg”
of a chair, or when we “fall” in love, or when we say time is “running out,” as would
sand from an hourglass. When we say these things in daily conversation, we do not
fancy ourselves poets making metaphors. We don’t see the metaphor, or intend one.
It’s now just The Thing.

In technology, “architecture” is a nonnecessary metaphor. That word, and all it’s
encumbered by, directs our attention to certain facets of our work.

Architecture is a dead metaphor: we mistake the metaphor for The Case, the fact.

There has been considerable hot debate, for decades, over the use of the term archi‐
tect as applied to the field of technology. There are hardware architectures, applica‐
tion architectures, information architectures, and so forth. So can we claim that
architecture is a dead metaphor if we don’t quite understand what it is we’re even
referring to? We use the term without quite understanding what we mean by it, what
the architect’s process is, and what documents they produce toward what value.
“Architect” means, from its trace in Greek language, “master builder.”

What difference does it make?

8 | Chapter 1: Origins of Software Architecture

Copies and Creativity
No person who is not a great sculptor or painter can be an architect. If he is not a sculptor or
painter, he can only be a builder.

—John Ruskin, “True and Beautiful”

Dividing roles into distinct responsibilities within a process is one useful and very
popular way to approach production in business. Such division makes the value of
each moment in the process, each contribution to the whole, more direct and clear.
This fashioning of the work, the “division of labor,” has the additional value of mak‐
ing each step observable and measurable.

This, in turn, affords us opportunities to state these in terms of SMART goals, and
thereby reward and punish and promote and fire those who cannot meet the objec‐
tive measurements. Credit here goes at least in some part to Henry Ford, who
designed his car manufacturing facilities more than 100 years ago. His specific aim
was to make his production of cars cheap enough that he could sell them to his own
poorly compensated workers who made them, ensuring that what he could not keep
in pure profit after the consumption of raw materials—his paid labor force—would
return to him in the form of revenue.

This way of approaching production, however, is most (or only) useful when what is
being produced is well defined and you will make many (dozens, thousands, or mil‐
lions) of copies of identical items.

In Lean Six Sigma, processes are refined until the rate of failure is reduced to six stan‐
dard deviations from the mean, such that your production process allows 3.4 quality
failures per million opportunities. We seek to define our field, to find the proper
names, in order to codify, and make repeatable processes, and improve our happiness
as workers (the coveted “role clarity”), and improve the quality of our products.

But one must ask, how are our names serving us?

Processes exist to create copies. Do we ever create copies of the software itself? Of
course, we create copies of software for distribution purposes: we used to burn copies
of web browsers onto compact discs and send them in the mail, and today we distrib‐
ute copies of software over the internet. That is a process facilitating distribution,
however, and has little relation to the act of creating that single software application
in the first place. In fact, we never do that.

Processes exist, too, in order to repeat the act of doing the same kind of thing, if not
making the same exact thing. A software development methodology catalogs the
work to be done, and software development departments have divisions and (typi‐
cally vague) notions of the processes we undergo in the act of creating any software
product or system. So, to produce software of some kind, we define roles that

Copies and Creativity | 9

https://en.wikipedia.org/wiki/SMART_criteria

participate in some aspect of the process, which might or might not be formally rep‐
resented, communicated, and executed accordingly.

This problem of determining our proper process, our best approach to our work,
within the context of large organizations that expect measurable results according to
a quarterly schedule, is exacerbated because competition and innovation are fore‐
grounded in our field of technology. We must innovate, make something new and
compelling, in order to compete and win in the market. As such, we squarely and
specifically aim not to produce something again that has already been produced
before. Yet our embedded language urges us toward processes and attendant roles
that might not be optimally serving us.

Such inventing suggests considerable uncertainty, which is at odds with the Fordian
love of repeatable and measurable process. And the creation of software itself is
something the planet has done for only a few decades. So, to improve our chances of
success, we look at how things are done in other, well-established fields. We have
embraced terms like “engineer” and “architect,” borrowed from the world of con‐
struction, which lends a decidedly more specification-oriented view of our own pro‐
cess. We created jobs to encapsulate their responsibilities but through a software lens,
and in the past few decades hired legions of people so titled, with great hopes.

More recently, we in technology turned our sights on an even more venerable mode
of inquiry, revered for its precision and repeatability: science itself. We now have data
“scientists.” Although the term “computer scientist” has been around perhaps the
longest, no one has a job called “computer scientist” except research professors,
whose domain all too often remains squarely in the theoretical sphere.

The design of software is no science.

Our processes should not pretend to be a factory model that we do not have and do
not desire.

Such category mistakes silently cripple our work.

Why Software Projects Fail
As I mentioned earlier in this chapter, software projects fail at an astonishing rate:

• In 2008, IBM reported that 60% of IT projects fail. In 2009, ZDNet reported that
68% of software projects fail.

• By 2018, Information Age reported that number had worsened to 71% of soft‐
ware projects being considered failures.

10 | Chapter 1: Origins of Software Architecture

https://ibm.co/2kQHGxP
https://zd.net/2m28U4B
http://bit.ly/2mncfeX

• Deloitte characterized our failure rate as “appalling.” It warns that 75% of Enter‐
prise Resource Planning projects fail, and Smart Insights reveals that 84% of digi‐
tal transformation projects fail. In 2017 Tech Republic reported that big data
projects fail 85% of the time.

• According to McKinsey, 17% of the time, IT projects go so badly that
they threaten the company’s very existence.

Numbers like this rank our success rate somewhere worse than meteorologists and
fortune tellers.

Our projects across the board do not do well. Considering how much of the world is
run on software, this is an alarming state for our customers, us as practitioners, and
those who depend on us.

Over the past 20 years, that situation has grown worse, not better.

A McKinsey study of 5,600 companies found the following:
On average, large IT projects run 45 percent over budget and 7 percent over time,
while delivering 56 percent less value than predicted. Software projects run the highest
risk of cost and schedule overruns.

Of course, some projects come in on time and on budget. But these are likely the “IT”
projects cited in the McKinsey study, which include things like datacenter moves, lift-
and-shift projects, disaster-recovery site deployments, and so forth. These are com‐
plex projects (sort of: mostly they’re just big). I have certainly been involved in several
such projects. They’re different than trying to conceive of a new software system that
would be the object of design.

The obvious difference is that the “IT” projects are about working with actual physi‐
cal materials and things: servers to move and cables to plug in. It’s decidable and clear
when you’re done and what precise percentage of cables you have left to plug in. That
is, many CIO IT projects of the back-office variety are not much more creative than
moving your house or loading and unloading packages at a warehouse: just make the
right lists and tick through them at the right time.

It’s the CTO’s software projects that run the greatest risk and that fail most spectacu‐
larly. That’s because they require the most creative, conceptual work. They demand
making a representation of the world. When you do this, you become involved in
signs, in language, in the meaning of things, and how things relate. You’re stating a
philosophical point of view based in your epistemology.

You’re inventing the context wherein you can posit signs that make sense together
and form a representation of the real world.

That’s so much harder.

Why Software Projects Fail | 11

http://bit.ly/2lVXrDQ
http://bit.ly/2mgqn9E
https://tek.io/2XbQgZ0
https://mck.co/2kQnVq0
https://mck.co/2knAHvZ

It’s made harder still when we don’t even recognize that that’s what we are doing. We
don’t recognize what kind of projects our software projects are. We are in the seman‐
tic space, not the space of physical buildings.

The McKinsey study demarcates IT projects as if they are all the same because they
are about “computer stuff ” (I speculate). The results would look very different if
McKinsey had thought better and saw that these IT projects should be lumped in with
facilities management. The creation of a software product is an entirely different mat‐
ter, not part of “IT” any more than your design meetings in a conference room are
part of the facilities company you lease your office space from.

But creative work need not always fail. Plenty of movies, shows, theatrical produc‐
tions, music performances, and records all get produced on time and on budget. The
difference is that we recognize that those are creative endeavors and manage them as
such. We think we’re doing “knife science” or “computer science” or “architecture”:
we’re not. We’re doing semantics: creating a complex conceptual structure of signs,
whose meaning, value, and very existence is purely logical and linguistic.

This assumes that everyone from the executive sponsors to the project team had fair
and reasonable understanding of what was wanted, time to offer their input on the
scope, the budget, the deadline. We all well know that they do not. Even if they did,
they’re still guessing at best, because what they are doing by definition has never been
done before. And it’s potentially endless, because the world changes, and the world is
an infinite conjunct of propositions. Where do you want to draw the line? Where,
really, is the “failure” here?

Because software is by its nature semantic, it’s as if people who aren’t software devel‐
opers don’t quite believe it exists. These are hedge fund managers, executives, MBA-
types who are used to moving things on a spreadsheet and occasionally giving
motivating speeches. They don’t make anything for a living.

Software projects often fail because of a lack of good management.

The team knows from the beginning the project cannot possibly be delivered on time.
They want to please people, they worry that management will just get someone else to
lie to them and say the project can be delivered on the date that was handed to them.

As a technology leader in your organization, it’s part of your job to help stop this way
of thinking and have the healthy, hard conversations with management to set expect‐
ations up front. They can have some software in six months. It’s not clear what exactly
that will be. Software projects succeed when smart, strategic, supportive executives
understand that this is the deal and take that leap of faith with you to advance the
business. When greedy, ignorant executives who worry about losing a deal or getting
fired themselves dictate an impossible deadline and tremendous scope, you must
refuse it. This is in part how the failed software of the Boeing 737 Max was created.

12 | Chapter 1: Origins of Software Architecture

https://nyti.ms/2koeYUJ

The McKinsey study goes on to state the reasons it found for these problems:

• Unclear objectives
• Lack of business focus
• Shifting requirements
• Technical complexity
• Unaligned team
• Lack of skills
• Unrealistic schedules
• Reactive planning

These are the reasons that software projects fail.

If we could address even half of these, we could dramatically improve our rate of suc‐
cess. Indeed, when we focus on the semantic relations, on the concept of what we are
designing, and shift our focus to set-theorizing the idea of the world that our software
represents, our systems do better.

Of these reasons, the first five could be addressed by focusing on the concept: the idea
of the software, what it’s for, and the clear and true representation of the world of
which the software is an image. The remaining three are just good old fashioned bad
management.

The Impact of Failures
So perhaps now we can say there is a rupture between our stated aims, the situation in
which we find ourselves as technologists, and how we conceptualize and approach
our work. We are misaligned. The rupture is not singular. It shows itself in tiny cracks
emerging along the surface of the porcelain.

But what does it mean for a software project to fail? Although metrics vary, in general
these refer to excessive overruns of the budget and the proposed timeline, and
whether the resulting software works as intended. Of course, there are not purely
“failed” and purely “successful” projects, but not meeting these three criteria means
that expectations and commitments were not met.

And even when the project is done (whether considered a failure or not), if some
software has shipped because of it, the resulting software doesn’t always hit the mark.
Tech Republic cites a study showing that in 2017 alone, software failures “affected 3.6
billion people, and caused $1.7 trillion in financial losses and a cumulative total of
268 years of downtime.”

The Impact of Failures | 13

https://tek.io/2mjR1hW

Worse, some of these have more dire consequences. A Gallup study highlights the
FBI’s Virtual Case File software application, which “cost U.S. taxpayers $100 million
and left the FBI with an antiquated system that jeopardizes its counterterrorism
efforts.” A 2011 Harvard Business Review article states that the failures in our IT
projects cost the US economy alone as much as $150 billion annually.

The same HBR article recounts the story of an IT project at Levi Strauss in 2008. The
plan was to use SAP (a well-established vendor and leader in its technology) and
Deloitte (a well-known, highly regarded leader in its field) to run the implementation.
This typical project, with good names attached, to do nothing innovative whatsoever,
was estimated at $5 million. It quickly turned into a colossal $200 million nightmare,
resulting in the company having to take a $193 million loss against earnings and the
forced resignation of the CIO.

Of course, that’s small stakes compared with what President Obama called the
“unmitigated disaster” of the HealthCare.gov project in 2013, in which the original
cost was budgeted at $93 million, soon exploding to a cost 18 times that, of $1.7 bil‐
lion, for a website that was so poorly designed it was able to handle a load of only
1,100 concurrent users, not the 250,000 concurrent users it was receiving.

Discovering a root cause in all this history will be overdetermined: there are failures
of leadership, management, process design, project management, change manage‐
ment, requirements gathering, requirements expression, specification, understanding,
estimating, design, testing, listening, courage, and in raw coding chops.

Where are the heroes of architecture and Agile across all this worsening failure?

Our industry’s collective work on methods, tooling, and practices has not improved
our situation: in fact, it is only becoming markedly worse. We have largely made mere
exchanges, instead of improvements.

It’s also worth nothing that we in software love to tout the importance of failure. Fail‐
ure itself, of course is horrible. It is not something to be desired.

What people mean, or at least should mean, when they say this, is that what is impor‐
tant is to learn and to do something new to address the aspects that helped lead to a
failure, and that sometimes (often) failure accompanies doing something truly new.
It’s easy to repeat a known formula, but we must be supported in attempts to try
something different, and take a long view.

The importance of failure, in this context, is not to celebrate it. It is to underscore that
we are not doing good enough work. We can do better. There is no easy fix. As Fred
Brooks stated in his follow-up essay to 1975’s excellent book, The Mythical Man
Month: Essays on Software Engineering, there is no silver bullet.

But there is a way.

14 | Chapter 1: Origins of Software Architecture

http://bit.ly/2moAk56
http://bit.ly/2kooQ0R
https://en.wikipedia.org/wiki/HealthCare.gov

It starts with a question. What would our work look like if instead of borrowing bro‐
ken metaphors and language that cripple our work, we stripped away these traces,
and rethought the essence of our work?

What we would be left with are concepts, which are at the center of a semantic
approach to software design. The next chapter unpacks the idea of concepts as they
apply to our proposed approach to your role in designing effective software.

The Impact of Failures | 15

CHAPTER 2

The Production of Concepts

The external character of labor for the worker appears in the fact that it is not his own, but
someone else’s, that it does not belong to him, that in it he belongs, not to himself, but to
another.

—Karl Marx

Semantics and the Software Factory
The manufacturing process requires a system. The process of making a system for
anything itself requires a system. This is a meta-model: a way of making models.

In 1844, German economist Karl Marx wrote about the problems of the division of
labor in his Economic and Philosophical Manuscripts. By dividing work into many
jobs, each with only one distinct responsibility, the work within each field becomes
repetitive, rote, and is drained of opportunity for creativity. Such is the fate of indus‐
trial workers—our forebears in computer hardware factories from which software has
separated only in its physical space of production, but not entirely in our minds as
developers and designers. And certainly not in the minds of corporate leaders.

In the built world, architecture as a field is concerned with the transformation of raw
materials within a given site to create a concrete space, fit to a stated purpose. This
space might be a resort, a concert hall, a cathedral, a theater, an office building, a
bridge, a tunnel, or a park. The building architect starts with the ground, the site on
which the building will be built. The site is clearly defined and preestablished in no
uncertain terms by real estate ownership and zoning laws. Humans have had homes
and offices and hotels and formal gowns and luggage and many of the objects of
architecture and design for thousands of years. The ideas of going to work in an
office with others, or attending a musical performance, or traversing a body of water
safe and dry, these are well-understood human functions that have been going on for
thousands of years, across all cultures across the entire settled world.

17

We in software and systems have chosen for our conceptual parents “architecture”
and “design.” These are the words we use to describe our work. We print them on
business cards, and they rest in the fields of endless human resources databases to
describe our job functions. Our field is prescribed by their inherited language and
conceptual models. This is understandable, but perhaps inadequate.

It’s understandable because the building architect is concerned primarily with making
something that must be sturdy, usable (fit to purpose), and delightful. The conceptual
miss comes, I assert, because these fields are not predominated by a concern for
something novel (an innovation, the expounding of an idea that is new). Put bluntly,
building architects make rather an object that did not exist before, within a tightly
prescribed realm of human interaction.

However, when something is new as an idea, and not merely a latest realization of a
very old idea, we call it an invention. Or art. In this way, the term architecture, the
nonnecessary metaphor that has been carried over time onto our mental model of
how we think of our work, how we talk about it, and what we think our responsibili‐
ties are with respect it, has converged into a dead metaphor, perhaps constraining or
hampering our work more than it any longer enables and supports it.

What if, in that moment decades ago, as encapsulated at the NATO Conference in
1968, in that moment as fumbling around for how to assign metaphors to ourselves
to understand our work, in an effort to bootstrap our field, we had instead adopted
the term “composer,” or conductor, or play director, or writer? They were on the table.
It’s not unthinkable. But our entanglement, our fusion, at the time with the manufac‐
turing processes in hardware, have led us down a path that has created many wonder‐
ful programs and advances in software.

But perhaps these advances are in spite of, not because of, these industrial metaphors?
Or rather, that they were critical at the time, but no longer as useful?

The world has changed in these many decades since the NATO Conference in 1968.
The world is more synthetic. Jobs must move up the value chain. A faculty member of
the Arizona State University School of Architecture recently told me that the unem‐
ployment rate for architects in the Phoenix area is higher than 50%. In fact, the best
way to face the highest possible unemployment rate for yourself is to go to architec‐
ture school. It’s not a job that creates enough value in the world of physical buildings
because computers and civil engineering codes aid lower-level modelers. Such a fate
is coming for architects in software who cannot determine how to move up in the
chain of value creation for customers.

We have been altogether too inward facing, burdened by thinking the job was to cre‐
ate an enterprise ontology, or fill out the chart of a Zachman framework and think we
have done something useful. We have not. We have merely complied with one avail‐
able method of trying to understand our own place in the world, justifying an

18 | Chapter 2: The Production of Concepts

http://bit.ly/2ly7PSa
http://bit.ly/2ly7PSa

existence, the frame of a field grappling with its own identity. This was a necessary
stage to move through, yet we cannot remain in stasis there.

To be clear, I am not merely arguing for us to all have a title change and get on with
the same practices. But because the name begat practices that don’t fit our work, it
stands to reason we might learn from having new ones.

The Myth of Requirements
In system design, we speak of the “requirements.” This word creates a false center, a
supposed constant, which creates problems for our field. These problems come in the
form of a binary opposition set up between the product management team and the
development team. It supposes, in the extreme form, that the product management
team knows what to build and that the development team are passive receptacles into
whom we insert this list of what they are required to build. Within an Agile method,
some freedom is perhaps allowed to the development team in how to design within
that list of requirements.

The requirements, however, do not exist. But the requirements, like everything else of
value, are just made up by someone. They are not first known and then told. They are
invented.

Part of the work of the new architect-creative is to help create those requirements,
both functional and nonfunctional. To see what needs to be done, what might work,
what structure accounts for what we think we want the system to do, or what we
think someone else we’ve never met might want or need the system to do three years
from now when it’s harder to change and how to accommodate that.

How do we know that Indiana Jones is the archaeology professor who finds the Lost
Ark of the Covenant? Because George Lucas invented a character named Indiana
Smith, and Steven Spielberg didn’t like the name so he changed it to “Indiana Jones.”
And all of a sudden there is a world of the 1930s and a man standing in it and he
needs to go do something and someone needs to get in his way and how might that
work? That’s how requirements are made, in the movies and in software. People make
stuff up.

When you make stuff up as a software designer, that world, like the world of the
movie into which you posit a character with a conflict, is your context. It’s the place
where you posit signs that have meaning in relation to one another. It’s your semantic
field.

The Myth of Requirements | 19

1 https://en.wikipedia.org/wiki/Semantics

Semantics and Software Architecture
This book has a single primary purpose among many purposes: to help you better
design software. To do so, it advances a new model, a new approach, a new set of
ideas and tools called semantic software design.

Why “semantics”?

Semantics, as a field, is concerned with the production of meaning, and how logic and
language are used. It is “the linguistic and philosophical study of meaning, in lan‐
guage, programming languages, formal logic, and semiotics. It is concerned with the
relationship between signifiers—like words, phrases, signs, and symbols—and what
they stand for in reality.”1 It is about sets. It is about relations, and the possibilities that
language itself creates, performs, and cuts off.

This precisely describes the role that architects designers should be playing, the kind
of work they should be doing. The logic demanded by the compiler and the business
requirements remain logical problems, set theoretical problems. Everything the
developer does is expressed in language.

Semantics = logic + language.

That sounds exactly like the work we do when we are allowed to do our best work as
software developers. But we’ve been trained around these incorrectly conceived
metaphors. So we don’t have a set of practices to even see where we are making the
little mistakes that accrue toward failed projects. We have practices that rather dis‐
courage the kind of thinking we must embrace to make successful designs.

The problem with software—a chief reason our projects fail—is a failure of our lan‐
guage. We are not architects. Not even close. We do not build buildings with an obvi‐
ous and known prior purpose, which is an approximate copy of the same kind of
building people have been making and using for thousands of years, using tangible
commodity materials on a factory line. Quite the opposite.

Our only material is that of language and ideas, names and meanings, signifiers and
signifieds. Our only material is semantics.

When we design software we are designing the semantics of a demarcated field of signifi‐
ers and signifieds.

That is our primary activity. It takes its material expression in a collection of classes
or functions as syntax in some language. But these languages are interchangeable
enough. And the syntax is not the message.

20 | Chapter 2: The Production of Concepts

https://en.wikipedia.org/wiki/Semantics

The semantic field comprises the set of sets of interplaying linguistic terms that form
the idea our software represents from a comprehensive systems view. It’s the nouns
and verbs in your domain, how they relate, and how in your software system design
that complete set of ideas acts as an overlay representing the “real” world.

We are haunted by our inherited language. It’s the air we breathe: it’s ubiquitous and
invisible. It has both shaped and deformed our thinking, and our software suffers.

Semantics is the missing step. This is the piece that we skip because we did not know
it was required. Because our inherited conception of our field took us to the factory
lines, away from language and epistemology (the study of what is knowable, and how
we can know what we know), and philosophical categories.

To perform semantic software design, you perform these steps:

1. Define its semantic field.
2. Produce your concept within it.
3. Deconstruct the concept to improve it.
4. Design the system according to the deconstructed concept and its semantic field.
5. Write the software and realize the attendant systems and processes.

Where we fall short is in rigorously creating a concept of our software as above.
When we do this, our software succeeds. When we do not, we endure a thousand
minor missteps, many of which we don’t even see, that over time add up to larger fail‐
ures of our projects and systems.

The rest of this book unpacks these ideas and illustrates how to apply them to make
more successful software systems and projects.

The Semantic Field
A proposition is a declaration about what is the case. It represents the set of possible
worlds or states of affairs in which it obtains truth-value, in which it is true.

The universe is an infinite conjunct of propositions.

As an infinite conjunct of propositions, the universe is a (very long) list of all of the
statements that result in a truth-value. Because time keeps passing, that list is infin‐
itely long.

The conjunctive is just the logical connector “and.” We could say “this is true and this
is true and this is true..." If we said only true things, and said all the true things, we
would have a complete image of the entire universe across time and space. If we could
iterate every proposition across space and time, we would have an exhaustive repre‐
sentation of the universe.

The Semantic Field | 21

Representing some aspect of the actual world in its true propositions is the work of
the software designer.

If the scope of our software was to represent the entire universe, we would translate
the infinite list of propositions into executable statements. This would be straightfor‐
ward because computers understand the true/false binary.

But someone has to pay for this project. And they don’t have infinite time and they
don’t need all that scope. Just some of it. We use logic and language to form a concept.
Our concept is the collection of our propositions. We carve out a space from that
infinite conjunct of propositions representing the world. We create a boundary sepa‐
rating the scope of our software, its domain, from the rest of the universe. There are
things we represent and things we will not. This is how we define that semantic field.

Because we do not have time and scope and budget or need to represent the entire
universe, we carve off the scope of our domain. All software for certain and by neces‐
sity will have this boundary. This is the edge of your semantic field, that place where
your software stops representing the world. At this boundary, you will suffer border
skirmishes between your representation and what you’ve cast out or left out beyond
the horizon. We are forced to round our thought off in a not-entirely-consistent way.

If we did not draw such a line around the domain, our work would be to represent All
The Things, our scope would be infinite, our representation would be of the entire
universe in eternity, and our software would be the actual lived world and we would
be God. Because this is not the case, we have to stop making representations, and
that’s our semantic boundary, and that makes inconsistencies in our logic and lan‐
guage, our semantics. But if we consider that boundary consciously, because we’re
aware of it, because we understand that our work is actually semantics and not engi‐
neering or architecture, we will make the logic and language better. And because they
are only building blocks in software, our software will be better.

The main thesis of this book is that software fails because of improper understanding
of the world, because of an improper understanding of our role—we have thought we
were engineers and architects instead of philosophers and semanticists—and this
results in unclear objectives, undue complexity, incorrect and changing requirements,
lack of alignment, lack of focus, wasted effort, churn, and disarray—many of the top
reasons the McKinsey report states that software projects fail.

Software is a linguistic and logical endeavor. If we think we are the semanticists or
philosophers of our systems, we will make better language and use better logic. And
because those are the only tools of software design, our software will be better.

The semantic field allows for the possibility of concepts.

22 | Chapter 2: The Production of Concepts

Designers Are Producers of Concepts
To be engaged with architecture is to be engaged with almost everything else as well: culture,
society, politics, business, history, family, religion.

—Paul Goldberger

Vitruvius is the first Roman architect of record, working in the first century BC.

He wrote de Architectura, now known as Ten Books on Architecture, which is still
taught to this day at university. It would be nearly 1,500 years before another book on
architecture was written. Vitruvius declares that the architect should be versed in
drawing, geometry, optics, history, philosophy, astronomy, music, theater, medicine,
law, and other fields.

Building architects are told this sort of thing all the time: that they must engage with
all of culture, all schools of thought and academic disciplines, and understand many
disparate fields in order to do their work. The lineage of this assertion comes from de
Architectura.

Yet we in software somehow find ourselves exempt. As the world in general becomes
more and more specialized, we frequently find ourselves satisfied to recount the var‐
iants of Big O notation and argue the virtues of MergeSort over QuickSort, or
(heaven forbid) this JavaScript framework over that one.

This should not be the case.

Thinking only from our own perspective as computing practitioners leaves our
design tepid, derivative, inefficient, incomplete, untrustworthy, unstable, and costly to
expand and maintain.

We must begin with the concept.

The concept must support integrity and harmony. It must provide for, as Vitruvius
asserts, the three critical components: stability, utility, and beauty.

Technology Strategy Patterns

Please see this book’s companion volume, Technology Strategy Pat‐
terns, for a more in-depth discussion of an architect’s attributes and
how architecture and strategy best work together in a tech
organization.

Designers Are Producers of Concepts | 23

Designing Concepts
Good designs do not merely execute the stated requirements.

The creative architect will first create a coherence and an integrity to the concept.

First, we design the concepts. The concepts inform, provoke, and support the local
designs that they encompass. For the effective enterprise architect, these might be
designs of software systems, integrations, infrastructure, organizations, the use of
data, and business processes.

Proceeding from the concept, all the elements can work together in a coherent system
of signs.

We are not merely drawing deployment diagrams. We ask ourselves, what is your
theme, your point of view? What design principles can a user intuit from your work
without being told them?

Thinking in systems means that you observe the entire system. Step back far enough
to see all of it, the whole thing. You need to see all the parts to form an understanding
of the relations between all the parts, both within the bounds of the system and the
universe of systems that it touches and in which it participates. Then, in a double-
action, use that knowledge to understand each part on its own. Considering each part
as its own integral system, without a view of those relations, what new light does it
emit? What new understanding can you find in the observance?

Now strip it down further: consider the object of the system as a thing-in-itself,
relieved of our assumptions about what it is and why it is.

Now build the system up again, suspending your prior knowledge, reaching each
object itself, and see how the relations reveal themselves anew. Reexamine how the
relationships could be improved, augmented, destroyed, and rearranged based on this
violent investigation.

Only now can you proceed with confidence that you have considered for your client
the forces at work, the justifications for their presence in the system, their organiza‐
tion, and the context in which this system will operate and others within which it
possibly could.

The behavior your system exhibits reveals the web of all of these interrelated and
interdependent subsystems. There are many decisions to be made, whether by you,
your team, or the participating team (the application developers or those working in
the process).

The architect is the chief philosopher of their system.

The work and the joy of the architect is to create a concept, then clarify it, then com‐
municate it for realization.

24 | Chapter 2: The Production of Concepts

What Is a Concept?
So architecture is art and it is not art; it is art and it is something more, or less. This is the
paradox and its glory, and always has been.

—Paul Goldberger

A concept is a complex idea consisting of compounded abstractions over a variety of
related ideas. A concept is an interpreted representation of some aspect of the world.

Concepts are not facts. They are attempts to explain something. Your software might
not appear to be an attempt to explain something about the world. But it is in fact the
result of a concept. That concept might be very poor: it might be logically unsound,
ethically problematic, or aesthetically challenged. One of the arguments of this book
is to foreground the concept given that you have no material to carve, no plot of land
to build on with concrete and steel. You are defining concepts. That’s the job of the
software designer.

A concept is always a concept of something: it is a representation. As such, you are
necessarily interpreting what is important about the world, what requires independ‐
ence, what merits refining, what earns a place at the table of competing representa‐
tions, who gets a voice and a name and a fully rounded character and who doesn’t.
You are making value judgments, ethical judgments, aesthetic judgments, telling and
participating in a story about the world, whether you’re doing so consciously or not.

A concept is nonobvious. It’s a complex of ideas and abstractions mixed with judg‐
ments. It is the product of thinking. A simple and direct referent is not a concept.
Saying “My software system is an ecommerce website” is not a concept. That is obvi‐
ous, understood, undistinguished from any of the other millions of ecommerce web‐
sites. Saying “My software system is an ecommerce website that lets people barter
(trade goods and services) with each other instead of paying with money” is one step
closer. It’s more distinct, refined, and complected.

A concept can be argued against. A reasonable person could argue that your concept
is incorrect, that your representation is incomplete, shoddy, or misguided. This is an
easy test to see whether your concept is forming. If no one would argue the opposite
of your statement, you haven’t done anything but cheer a marketing slogan.

If I were to ask you to draw a picture of a “pet,” what would you draw? Perhaps a big,
fat snuggly kitty. Or a skittish and playful kitten. Or a bird, an iguana, a dog, a ferret.
There are many different ideas that complect into a concept. Foregrounding metacog‐
nition, or thinking about how you think, helps you recognize these kinds of differ‐
ences, including your own biases. It’s an important step to doing these more
consciously. That, in turn, is an important step in creating compelling concepts that
are the hallmark of truly innovative software.

What Is a Concept? | 25

Accomplish, Avoid, Fix
To be useful in a typical software project, your concept will generally be about one of
three things: accomplishing something, avoiding something, or fixing something:

Accomplish
This might mean that your user can make a contribution, or can take advantage
of a new opportunity in an emerging market. Projects involving accomplishing
are about doing something new, different, exciting. They’re about making more
cakes.

Avoid
Your project might be about helping you avoid something negative, like fraud or
noncompliance, or averting risk. They’re about more fairly dividing up the cake
you already have.

Fix
Software projects often arise in order to address some sins of the past, and “sim‐
plify” or “streamline” some particularly messy process. They’re not really about
cake.

Your new software project probably is not about all three, or even two of these. If it
seems that way, your concept might be too sprawling, unruly, and too poorly con‐
strained. You should refine it.

Outlining Your Concept on the Concept Canvas
To start to work with your concept in a more practical way, you can outline it.

Consider something that you do know about the project. Think in terms of some‐
thing your customer might want to accomplish, avoid, or fix. In a sentence, answer
this question:

Who wants what by when and for what reason?

These are basically the aspects of the “reporter” questions, and are very similar to the
structure of a user story. Your organization might have a “one pager” or “Business
Requirements Document” that is intended to answer these kinds of questions. Your
design concept is most immediately informed by the business idea: some application
or major update that product management or other executives want to make. It is
informed too by the overall business strategy, your technology strategy, and the crea‐
tive work you perform in designing the concept.

These are interrelated, and shown in a cluster of associated ideas, as illustrated in
Figure 2-1. They should inform one another in a continuous cycle, and not unidirec‐
tional or only top down. The design concept for your local application can be robust

26 | Chapter 2: The Production of Concepts

and rich and innovative enough to reinform and at times even reinvent the technol‐
ogy strategy and business strategy.

Figure 2-1. The relations between these elements are not hierarchical

To support your concept, and this richer cycle, consider what the need behind the
need is. Consider how they would like to accomplish this. Typically the “business”
will come up with what needs to be done, and expect architecture to describe how it
should be done. This is fine. There is greater value in the designer who can shape the
technology concept such that it informs and changes and perhaps even reimagines
the business idea.

What are the salient bullet points across People, Process, and Technology? Consider
the strengths your organization can build on, and challenges to overcome.

Constraints are often found to be frustratingly constricting in other models of soft‐
ware design. They are welcome in our world, however, because they give us an
anchor, something real to help orient us.

Divergent and convergent thinking
As you work through your concept, you should go through two stages, divergent
thinking, followed by convergent thinking.

With divergent thinking, you generate a list of candidate solutions that should be very
different from one another, and very different from what exists today. Then, in a
second, distinct stage, use convergent thinking to conflate these ideas, throw out the
ones that won’t work, and come up with your concept based on this refinement:

What Is a Concept? | 27

Divergent thinking
Generate a wide variety of possible solutions. They should have variety and be
distinct across the array of candidate solutions. What solutions do not neatly
conform with your current application or business landscape? How can you fol‐
low your curiosity? How can you imagine a solution that is prompted outside the
field of the local software problem, such as by a bit of music, art, an opera, a toy, a
game, something entirely outside the domain? Are you taking a risk? You should
be clear on what the risk is. If you are not sure what it is, you might not be doing
something sufficiently interesting. Capture your solution candidates in a list that
becomes part of your lookbook or scrapbook.

Convergent thinking
After your divergent thinking exercise has generated a list of candidate solutions,
it’s time to narrow this field to a coherent single concept. Here, you are creating a
set of filters or lenses by which to view your related ideas so that you can clarify
and refine these scattered lists into what will become your working concept. To
do so, ask yourself and your team the following types of questions for each candi‐
date solution:

1. What absolute constraints are known?
2. How might these candidates fit within a budget, if known?
3. How might these candidates fit within a timeline?
4. What known elements of the business or technology strategy do these candi‐

dates support?
5. What new opportunities does this create?
6. What positive and negative elements of our current landscape of People, Pro‐

cess, and Technology does this enhance or aggravate?
7. What people or roles would need to approve or work together with these

candidates?

There are many questions and conversations your team will have that might be more
relevant to this process for your situation. These are just to get you started.

The convergent thinking exercise will result in a few key components. There might be
three to seven of them. These are the main ideas that together form the concept. Later
in executive briefings, marketing slides, customer-facing product decks, interviews,
and other forms of communication, you’ll use the statement and then these main bul‐
let points as the “elevator pitch” to quickly and concisely express the concept—what
this system is about, why it exists, and whom it benefits.

Your ideation work at this stage can be captured in this template, which I call the
“Concept Canvas.” Figure 2-2 depicts this.

28 | Chapter 2: The Production of Concepts

Figure 2-2. Capturing your concept in the Concept Canvas

Of course, companies don’t have concepts: people do. Get your team together for a
morning and work through the Concept Canvas. This can then serve how you put
together the project plan and create the detailed design.

In our practice, we don’t do “architecture,” for reasons we discussed. Rather, in
Semantic Software Design we are producers of concepts, designers of concepts. We
express them in a way that allows others to be inspired and participate and under‐
stand the boundaries.

In summary, a rough guiding outline for how to work with your concept at this early
stage is as follows:

1. Concept statement: A single sentence or phrase. This is like the melody of a tune
you can hum. It’s not the whole song; it’s a memorable image that helps you com‐
municate the basic subject.

2. Statement of need: Captures who wants what by when for what reason. This
ensures that you are striking the right balance between being creative and curious
and not going off on a tangent that has no business value. Who are the custom‐
ers, end users, business partners, and internal executives who stand to benefit—
or could stand in the way?

3. Alignment with strategy: You will have a greater chance of relevance, impact,
and support if it is very clear that your concept relates and advances at least one
element of the business and technology strategies. You should identify this
explicitly.

What Is a Concept? | 29

4. Idea components: These are the highly cohesive idea components that work
together to form the concept. Consider them each through the lenses of People,
Process, and Technology.

5. Path forward: After you have your basic concept, you want to consider how you
will bring it into the world as a real system. There is of course considerable work
to be done yet. At this point, you have only a complex set of ideas that together
form your concept. The remainder of this book is devoted to showing how to
turn that concept into a designed system that can be implemented as fantastic
software. But you need a bridge to help cross this gap between concept and
designed system. The path forward captures circumstances in the real world and
tactical next steps that you want to take in order to advance your concept into a
system design and working software.

You capture these in your single Concept Canvas. You can then add this to your parti,
as we discuss shortly.

Ideas Are Captured in a Lookbook
In the fashion and design world, there’s something called a lookbook. This is a collec‐
tion of photographs that a designer will use to showcase their work for a particular
line or season or campaign. It gives viewers possible suggestions on how to pull
together a few components from the new season’s line, such as these jeans, that
sweater, and these boots to form a look or a personal style.

John Malkovich Lookbook

Venerable actor John Malkovich has turned his talents to designing
his own fashion line, and you can find an example of his lookbook
here.

In fashion, this is a collection of images illustrating the concept. At first, you can use
it that way, too. Eventually, your lookbook will become a compilation of design sour‐
ces, inspirations, and otherwise random-seeming documents. It’s your idea diary, and
it helps you to recall all the aspects of the concept you’re working with as you form it.
It helps you as a concise compendium to show others so that you can collaborate on
the design.

30 | Chapter 2: The Production of Concepts

https://www.johnmalkovich.com/lookbooks

Your lookbook might have many of the following items:

• Informal sketches
• UML-type diagrams, but nothing formal or definitive-looking
• Images
• Mind maps
• Snippets of thoughts
• Key customers
• Relevant quotes
• Stories
• Links
• Videos
• Colors
• Materials

Your lookbook is like an active journal in collage form. There will be many sources of
inspiration along the way that might have informed your concept. Simply capture
them in this single place so that you have them to refer back to. This single place
might just be a growing Word document, a special page on the wiki, a OneNote file, a
web page, or whatever you like.

You might be working with a set of themes, the way a composer would have a set of
themes for different characters or events. One might be “craftsmanship.” How would
you express that to your team or think of it yourself? You might consider some of the
following:

• The Mercedes-Benz AMG “one man, one engine” philosophy, as shown in this
video. Every AMG engine bears the signature of the one man who made it.

• A master seamstress making a tiny replica of the Miss Dior Dress from the 1950s
in this video.

• A master cobbler making a pair of Prada shoes in this video.

If one of your themes was about radically rethinking historical approaches, you might
include the Google X Moonshot Thinking video, and so forth.

Initially, the audience for your lookbook will be the other folks on your team, but it’s
probably not useful outside that at first. It should feel a bit personal, as if to share it,
you’d be revealing something, a bit of your attitude, tastes, inspirations, understand‐
ing, limits of that understanding, some part of yourself. You might feel a slight pang

Ideas Are Captured in a Lookbook | 31

http://bit.ly/2kH4qjU
http://bit.ly/2kH4qjU
http://bit.ly/2kTQbIv
http://bit.ly/2kQkboz
http://bit.ly/2kIGWuK

of nerves to do so. That’s good. This means that you’re doing something that matters
to you, something you’re truly engaged with.

As it becomes more refined, you can use it as a catalog from which to pull particular
views that help you communicate the design to the variety of diverse collaborators
who might include UI/UX folks, developers, executives, managers, and customers.

Fit to Purpose
As an artist, yes, I have constraints. Gravity is one of them.

—Frank Gehry

The Walt Disney Concert Hall opened its doors in Los Angeles in 2003 to become the
new home of the Los Angeles Philharmonic. After being designed by architect Frank
Gehry, it was constructed over the course of four years.

At the time of its opening, the following story was told by Los Angeles Times music
critic Mark Swed:

When the orchestra finally got its next [practice] in Disney, it was to rehearse Ravel’s
lusciously orchestrated ballet, Daphnis and Chloé. … This time, the hall miraculously
came to life. Earlier, the orchestra’s sound, wonderful as it was, had felt confined to the
stage. Now a new sonic dimension had been added, and every square inch of air in
Disney vibrated merrily. Toyota says that he had never experienced such an acoustical
difference between a first and second rehearsal in any of the halls he designed in his
native Japan. Salonen could hardly believe his ears. To his amazement, he discovered
that there were wrong notes in the printed parts of the Ravel that sit on the players’
stands. The orchestra has owned these scores for decades, but in the Chandler no con‐
ductor had ever heard the inner details well enough to notice the errors.

Figure 2-3 shows this fantastically expressive building.

This is architecture at its best: inventive, coherent, clear in concept, expressive, in
conversation with its context, multivariate, improvisational, alive. The building
appears as moving music itself. To support the quality of sound that it does, and the
comfort and clarity it affords patrons, is astonishing. Gehry’s building is brilliant,
beautiful. Moreover, as the story about the misprinted music sheets reveals, the build‐
ing is incredibly well fit to purpose. So must our concepts be.

32 | Chapter 2: The Production of Concepts

Figure 2-3. The Walt Disney Concert Hall in Los Angeles by architect Frank Gehry
(photo: Wikipedia)

In an interview, Gehry states that in architecture, you must ask, “Then what?” You
can love the clients, love the city, hit the budget, be polite, be good to work with.
These things are merely the table stakes. So you must ask yourself, “Then what?” to
get the real value out of your work.

We must push ourselves to deliver something truly special, something of such won‐
derful function that we help our users hear notes they never heard before. We can
astonish and delight.

The Concept Is Expressed in a Parti
It is better to enter a turn slow and come out fast than to enter a turn fast and come out
dead.

—Dr. Ferry Porsche

Building architects have space, a neighborhood, and a building to build. They can
start with physical objects, like a sculptor: a block of marble.

We in technology cannot do this. We have no space, no material but our logic, our
language, and how we employ semantic signs to produce a concept.

The Concept Is Expressed in a Parti | 33

The concept is the first moment of our work, and the one most often skipped and
ignored because we did not even know it should be part of our work. Because we
started with the “architect” metaphor. This causes us to make many other local cate‐
gory mistakes that accrue toward the failure of our projects.

Our work is to produce a concept. That concept produces a system design. That system
design is comprehensive to create the best context for writing valid and sound
requirements, both functional and nonfunctional, and for allowing them to be viewed
together. The concept also informs a designed project model. Because our view is com‐
prehensive, we design the project plan every bit as much as the software system.
Because they go together in symbiosis. Taken together, our projects then have a far
higher chance of succeeding than software projects have over the past 25 years or so.
Such a program model produces working software that is innovative, delights cus‐
tomers, and features outstanding support for nonfunctional requirements. It also
offers the most rewarding opportunity for the people on these teams to have fun and
make a meaningful contribution that they are excited and delighted to do. With our
approach, we stand a better chance to light a fire within people instead of under
people.

The advent of the microprocessor meant that we had to conceive of how to create
sturdiness, and fitness to purpose, and beauty, in a nonphysical realm. This is the
realm of the philosopher more than of the architect.

As we have discussed, one reason so little software is properly functional or pleasant
to use is that when we were busy borrowing metaphors, perhaps we picked the wrong
one. And after we did, even then we skipped a part, and an important one: the parti.

The parti is short for “parti pris,” meaning a “decision taken” in French. It is an image
expressing the general organization of a design. The parti takes the Concept Canvas,
the lookbook, and the ongoing changes and reveals of the project over time as inputs
and refines them over the course of the project into a decision log of the key compo‐
nents. The parti is the first representation of high-level executable system compo‐
nents that can be built as software modules.

Partis are never reused because they are particular to this design challenge, these con‐
straints, this context.

A straightforward, simple example comes from NASA (though they don’t call it a
parti), which you can see in Figure 2-4.

34 | Chapter 2: The Production of Concepts

Figure 2-4. A concept sketch for a lunar landing system

This is enough to have hard discussions with as you focus your concept. It is at a high
level. It focuses on the comprehensive system context, not one subsystem.

An Example
Imagine that we’re to begin work on a new machine learning–based software project
for the travel industry. We might create a parti for this software based on Athena. She
is the Greek goddess of wisdom, strategy, craft, the harvest, and war, and advisor to
travelers.

We ask, what possibilities does this suggest? Where does it direct our focus and atten‐
tion? How can this create a theme for our design that supports coherence? Many
things come to mind:

• The machine learning must not be tacked on to one aspect, but must be natively
relevant in the entire scope.

• The Strategy pattern can be used to inject ever more implementations of stated
algorithms. The system must create a new context for the business to pivot and
support alternate growth.

• A focus must remain on craftsmanship and careful adherence to resilience.
• The system will bring the harvest, the new capabilities in retailing and offers.
• The system should offer exceptional user support through its interfaces, offering

creative and just-in-time advice to travelers.

The Concept Is Expressed in a Parti | 35

Now you have the basis, a grounding, for thinking about ways in which such ideas
might be realized in the architecture. Pulling together these high-level contours under
a single unifying personage as “Athena” makes sense. Capturing your concept in a
unifying character, figure, name, or readily expressible idea will help you communi‐
cate your ideas with others who can help to refine the concept.

Define one supporting pole around which your idea can find another idea to enter a
dialogue. Where do these ideas argue? On what basis? What do they try to persuade
each other of? Where can they agree? Use that tension to create a space for the circu‐
lation of ideas.

Pick one pole, and design that entire pole. Now you have something to hang other
ideas on, something that has survived the first round of interrogation. This will help
prepare other aspects of the system.

Adding Aspects to the Parti
At this point, you’ve explored how one aspect of the system might work, how it can
be useful, and powerful. Now change dimensions and design across the whole
field, but only one inch deep so that you can see where the boundaries might be. You
don’t need to define them all firmly yet, but you’ve put a line on the horizon. You
have one aspect thought through, and many others as points identified on the field.

You do not need to express the parti directly or map all of these elements to some‐
thing concrete. It acts as an organizing principle and should be useful to you as you
continue to mentally process and further explore and imagine the system. Eventually,
your parti will find its way into a variety of concrete documents with design deci‐
sions, and the trick is to keep it in mind as you create these:

• Use case diagrams
• A deck outlining the design
• Class and component diagrams for key areas
• A complete architecture definition document

We address these in further depth in Chapter 5. The parti should not burden, but
ignite.

The Parti Is Based on a Series of Reveals
I have always felt that if you know what you’re going to do in advance, then you won’t do it.
Your creativity starts with whether you’re curious or not.

—Frank Gehry

The parti must reveal, moment by moment, the key aspects of the story. It is nothing
but a silly flight of fancy without a concrete realization. The parti is a disposable

36 | Chapter 2: The Production of Concepts

bridge toward human use. It can lend an organizing principle to your design that
allows people to intuit it better and support you in providing more ways to serve the
customer, the human user, as they want to be, and as they might not yet have imag‐
ined they want to be.

A reveal is the careful dosage to the implementing teams of what they can under‐
stand. It is your job, not theirs, to provide the concrete links to the parti within
aspects of the design. Eventually the parti will fall away altogether, having blossomed
from abstraction into design diagrams into a working system.

Make the system for the extreme users: both the experienced power user who is able
to do everything, like make their own macros, and the novice user who only cares
about 10% of the functions should be able to easily and readily do the obvious jobs.
Consider the extremes up front and play them against each other to provide some‐
thing that works for both of them. Consider other spectra for extreme users: old and
young, native speakers and nonnative speakers, women and men, short and tall, those
who need the deep details and those who need the quick summary.

Know what and where your reveals are. Consider the people on your project and how
you will implant the parti into everyday life.

Look for opportunities to express the concept in every aspect, across the templates
you make, the hiring practices, the culture of the project team, the development life
cycle, the milestones, the management, the ordering and prioritizing.

Do not expect too much of the parti. It has its moment of real value in capturing the
concept, and then will fade away. New requirements, laws, and constraints will
emerge. Change it or abandon it if and when necessary and reconceive based on new
things you’ve learned. You must do this in order to retain the holistic integrity of the
concept, not the original concept or your parti.

Let the system begin to speak to you. Enter into a dialog with your concept that
hourly gains greater embodiment, through ever more avenues: the system diagrams,
the use cases, the goals, and the ways to achieve them.

Let it change your course as it takes on more life of its own. You make the child, name
it, teach it. Then, as the child grows, they show you that they’re not a tiny version of
you, but have their own values, desires, and methods; the child becomes your teacher.

As Eisenhower said, “Planning is indispensable. Plans are useless.”

The Concept Is Expressed in a Parti | 37

Understanding Ideas
Every block of stone has a statue inside it and it is the task of the sculptor to discover it. I saw
the angel in the marble and carved until I set him free.

—Michelangelo

We do not understand the idea that represents our system. That is because it is
incomprehensible. But also because it has not been our aim.

Michelangelo might have viewed his work as revealing the angel already within the
marble. But the marble existed, and the only work was to chisel. The creative archi‐
tect starts with emptiness, with nothing. And before him, a world of infinite con‐
juncts, a field, in which to assert some object anew. We have no marble.

When we approach system design in attempting to understand, we subvert our best
efforts because we cannot understand what we have yet to invent.

We therefore seek instead to understand the idea of ideas, not the idea of our system
or the solution we think we’re making, but ideas themselves. Are we quite sure we
know what an idea is?

Sense Certainty
See this? This is this. This ain’t something else. This is this.

—Robert DeNiro, The Deer Hunter

We receive sensory data, a multiplicity of inputs, constantly. A filmed motion picture
typically runs at 24 frames per second. The pictures are all still photographs. But as
with a flip book, our minds fill in the transitions that are not truly there to give us the
illusion of motion and continuity.

This is not thinking, but sensing. We do not have an idea. We have not mixed this
stream of sense data with our own apprehension and conclusions. We have only com‐
plected sense. Nineteenth-century German philosopher Hegel calls this “sense-
certainty,” and it’s sometimes called “picture-thinking.”

We can, in this mode, believe that they understand utterances like “here,” “now,” and
“this,” concretely, as if they were direct referents—as if we think there is a fixed,
understood definition of “here” or “now” or “this.”

To be blunt, when we say these words, we believe we are saying something meaning‐
ful and that we know what we are talking about, when in fact we do not. Parsing these
very commonly used words is almost impossible.

The distinction is critically important because our software projects are filled with the
words of the requirements, the words of the design, and the words of the code. We
must be crystal clear (as much as possible) that we are saying what we mean. When

38 | Chapter 2: The Production of Concepts

we start to try to express what we have observed about the world in language, mixed
with our ideas about their coherence, we begin to form concepts. These are the basis
of strong designs.

Metacognition
One of the most important skills you can have as a designer is to cultivate your meta‐
cognitive ability. You notice yourself thinking about how you think, as you do it. You
see not only your concepts, but you form more complex concepts and notice the
manner in which you constructed them.

When you think about how you think, you call into question a variety of things:

• The sensory data you take in, respond to, recall, and retain, and how you respond
to it, what you pick out, prioritize, conjoin, and disjoin.

• How you synthesize this data to represent it back to yourself as interpreted ideas.
• Your own understanding of yourself as a stable identity that can perform this

apprehension consistently, with clarity.

Foregrounding your metacognition puts you in a dialog with yourself. Being in a dia‐
log with yourself as if you were two people, perhaps arguing, will help you to quickly
shape nothing into something. And that “something” will be better, more interesting,
higher performing because you are considering it more carefully, more richly, with
fewer assumptions and biases.

You can practice this by batting your concepts back and forth between seemingly dis‐
parate characteristics. Consider the following:

• Sturdiness and flexibility
• Distribution and performance
• Security and ease of use
• Simplicity and complexity
• Tall and short
• Wide and narrow
• Bright and dark
• Solid and void
• Stasis and circulation
• Presence and absence
• Software and hardware

Understanding Ideas | 39

• Business and philosophy
• Architecture and art

How are you privileging one term in the binary pair? What sense data, history, ideas,
subliminal suggestions, constraints, laws, cultural norms, biases, stereotypes, and
viewpoint led you to this privileging? How can you find the concept that unifies both
terms in each pair, such that the trade-offs you make become no apparent trade-off at
all?

Then, after you have incorporated the competing concerns and satisfied the constitu‐
ent members of the British parliament arguing in your head to the point where you
feel there are no longer opposites, you have a concept with integrity, harmony, and
sturdiness, and one that is closer to bringing the design to its truth of the matter.

Criticize your own mental processes. Stand back and observe how you intake data,
from where, and why. You are always absorbing data; this data continually shapes
your mental space, the field which harvests thought. What can you observe about
what you’re taking in, to perform a habitual act of synthesis?

How can you then subvert or overturn that synthesis with a new perspective of appa‐
rently disparate or seemingly unrelated things? How is a raven like a writing desk?

Go shopping or to the park or to see a movie or listen to music or a lecture on some‐
thing entirely unrelated to your design challenge. Not as a field trip with a stated aim,
but as a quotidian act of noticing how your daily commute informs your design, how
a crumpled paper might beget Gehry’s Disney Concert Hall. All of these will inform
your thinking, what you see as possibilities of relations, and give you raw material
and metaphors to work with as you hone your concepts about the design and light a
path toward what concepts your design in turn affords the world.

It is an act of pattern recognition, synthesis, and subversion.

Software is often broken, and often broken from the start, in its conceptual under‐
standing of the world. As we have discussed, a software design represents our concep‐
tion of a portion of the real world. Yet we cannot design and make the software that
represents the world of infinite conjuncts; we would never be finished and go to mar‐
ket. So we must draw a line, a border, create a margin around some subset of this
world as we conceive it to limit our scope to have something to build. And that we
will call the domain. This is the set, the scope of the software, and it is at this horizon,
the gap between our concept and our created field imposed on top of the phenom‐
enological world, that computers must act rationally, decidably, given their inputs.
Their inputs are only those within the field we demarcate, and their outputs only
those that we allow. Despite our best efforts, at some point, the point of this horizon,
we must stop and ship the software. And there is ambiguity at these borders, the

40 | Chapter 2: The Production of Concepts

meeting points of the phenomenological world and our artificially superimposed
field.

For example, we might be called upon to make a system to predict the price of homes.
So, naturally, we define, among others, the class “House.” We spend a million dollars
on sophisticated machine learning projects to make better predictions. We do not
understand why our prediction so often fail us. We included the attributes of age,
square feet, acreage. But, fatally, did not include the attribute “proximity-to-the-
beach”: because we curtailed our semantic field there.

We cannot conceive of all the things. We cannot include all that we can conceive of.
At some point, we must stop and make a compromise. Make these moments of com‐
promise conscious, and this will mitigate the blow of the lie we’re telling our system
about its origins and context. This is the key aspect to better concepts, which are the
supporting substructure of better software.

Context
Always design a thing by considering its next largest context: a chair in a room, a room in a
house, a house in an environment, and environment in a city plan.

—Finnish architect Eliel Saarinen

There are only two kinds of problems in the world: trivial and nontrivial.

A trivial problem is straightforward. Its cause is direct, simple, and obvious. Its span
of influence is small. Examples include pricking your thumb, or running out of paper
towels. Its solution is similarly clear, direct, and simple. These are simple systems and
the behavior of the constituent elements of simple systems is predictable.

We are not interested in those here.

A nontrivial problem is almost always more complex than at first it seems. Trendy
practitioners will tell you to “Keep It Simple, Stupid.” This is a useless and empty
phrase. The problem is not simplicity versus complexity, and developers “making
things complex.” Sometimes things are in fact complex.

Imagine you are designing an ecommerce system. You have a database of Products,
wherein you assign an ID and name and description. We know when we add prod‐
ucts to our cart, we are asked for a quantity. So we add a column to the Products table
for “quantity.” That’s the simplest thing to do. But this is absurd.

We learn from our quick trip into sets that here there are two concepts at work: the
product, and the product-as-object-during-shopping-by-a-particular-customer. And
that is a related, but different matter.

This thing has certain properties that are its essence, and then there are other new
properties that are obtained only in the process of shopping; those cannot be

Context | 41

separated from that idea. There is no abstract quantity. So you must create something
new. You might invent the InventoryItem or CartProduct to express this new relation:
you have the user. The pencil doesn’t have quantity=3; that decorating idea must exist
to capture ideas that are not metadata about the product but are first-order properties
of the shopped item.

This is the purpose of item variants. We think there is a “shirt.” But a shirt is an
abstraction. You can’t sell it until you know its size and maybe its color and maybe its
intended gender. Are we to make three rows for small, medium, and large shirts?
What about color—we sell them in white, black, and blue. Are there then nine rows?
Do we double each of these according to gender? This is an inefficient database
design, and so this fault should call out to us that we are missing an idea—missing a
part of our concept.

So seeing this disconnect we must create a new object: we create the idea of the var‐
iant. We now have created semantic space that allows these ideas of color, size, gen‐
der, and what-have-you to be full and rich in expression and be themselves extensible
(if later we add one for men’s and one for women’s) but each have their integrity and
maintain an efficient design.

It might seem counterintuitive after all these years of false conditioning to “keep it
simple.” But the smart designer enlarges the problem space. You create ideas that are
semantically coherent with the overall design not to add complexity, but to make the
inherent complexity of the world efficiently represented in your design. You see many
contexts. You attempt to blow up and undermine your design the moment you see it
leap to life, knowing it will be used many different ways, only some of which you
intend.

Enlarging the problem space is about identifying multiple levels of causation. You
have a problem: the user needs to do X. First, that might or might not be the problem.
Ask why do they want to do that? In many cases, the user does not want to do at all
the thing they are doing. They don’t want to shop for that snazzy shirt and put it in
their cart and buy it. They want to wear it. The shopping is a necessary evil to the
wearing. This is an area in which Amazon simply excels.

You cannot solve all of these problems by continuing to trace things back in endless
deferrals. But you can perhaps arrive at a different, more general solution. This often
means that you can see many benefits, more than originally hoped for.

Often, it’s just as easy to do it right as it is to settle for a lesser design because that will
beget workarounds and compensations.

You can reduce the set later as needed to fit the timeline, budget, and other concerns.

42 | Chapter 2: The Production of Concepts

Sets
As you saw in the previous example, design is about thinking in sets. In this view, we
see the world as a collection of collections, each containing generally three element
counts: zero, one, or many.

What belongs to this object necessarily and what doesn’t? What does and doesn’t
belong together perhaps? What is optional to add on top?

Set theory is a rich and difficult study. For our purposes, two basic ideas will get us a
long way:

Extension
What belongs in this set? What is the name that puts these things in a group? For
a retailer, the group might be “All the stores of Brand X,” which is rather straight‐
forward. Now you have something to call a stake in the ground. We continue,
and posit “All the stores in Kalamazoo.” But where is the border precisely, or is it
a gerrymandering contorted border, a zip code, or set of them? What if they want
to run a campaign that allows owners to set discounts for their own store, but
Oscar owns several of them?

Essence
Essence refers to that without which, not. That is, if you don’t have some part of a
thing, you can no longer say you still have that thing.

Determining essence is difficult, but essential in keeping the ambiguities at the mar‐
gins to a minimum, which is what will undermine your design, and make it expensive
and untoward to maintain.

If you take away your hand, are you still you? I think most people would agree that
they are: they don’t lose their identity because they lost their hand. They can still be
found guilty of crimes and identified for tax purposes. How much of you can you lose
before you are not you anymore? If you suffer early onset dementia with your body
healthy and well intact, are you still you? These questions are difficult to determine.
Luckily, software is not as complex as people are.

Naive Set Theory

For a good introduction to set theory, I encourage you to read the
mathematics textbook Naive Set Theory by Paul Halmos from 1960.
It’s short and dense. For the truly impatient, make sure you’re
familiar with the concepts presented on the Wikipedia page.

Sets | 43

https://en.wikipedia.org/wiki/Naive_set_theory

Relations
We already understand relations, the connections between objects. My aim is to for‐
malize and problematize that understanding just a little bit so that you design with
the edges in mind. Let’s take a moment to consider these key terms:

The Axiom of Pairing
It is the case that for any two sets there exists a set that they both belong to. When
you assert a figure into the field, ask what other sets it also is a member of. Then
determine validity and priority.

Domain
We use this word regularly in software. It comes from set theory, and more for‐
mally refers to the set of input or argument values for which some function is
defined.

Range
The difference between the lowest and highest values in a set.

Intersection
The intersection of A and B is the set of all objects that are both in A and in B.

Union
The set consisting of all objects that are elements of A or of B or of both. For
every collection of sets, there exists a set that contains all the elements that belong
to at least one set of the given collection.

Complement
The set of all objects that belong to A but not to B.

There are three ways to talk about equivalence:

Reflexive
A relation is reflexive if all the members of a set have the same relation to the set.
So equality is a reflexive relation. “Less than” is not reflexive.

Symmetric
A relation is symmetric if, for all A and B in a set X, A is related to B if and only if
B is related to A. Examples include:

• Is married to
• Is a sibling of

44 | Chapter 2: The Production of Concepts

Transitive
A relation is transitive if it has the following property: if A is related to B and B is
related to C, then A is also related to C. Examples include:

• Being a subset of
• Implies
• Divides

Even though we might be familiar with some of these terms from programming lan‐
guages and databases, using this lens in your system analysis and design is sure to
come in handy. The only point here is to encourage you to explore your concepts
using this framework of how objects relate to one another.

Advantages of Semantic Design
On two occasions I have been asked, “Pray, Mr. Babbage, if you put into the machine wrong
figures, will the right answers come out?” I am not able rightly to apprehend the kind of con‐
fusion of ideas that could provoke such a question.

—Charles Babbage

So we have thought of ourselves awkwardly as engineers and architects, and we’ve
enjoyed none of the materials, methods, or tools, and that has meant we have mis-
conceived of our field and misapplied a lot of square pegs into a lot of round holes.
The only thing in our field that comes close, really, to the discourse of engineering is
that the speed of light means we can enjoy an understanding of the limit and measur‐
able rate of data transfer.

With the advent of user stories in Scrum and related Agile methods, we have lost a lot
of our focus on communicating coherently and specifically. This leads to a culture in
which there’s never enough time to do it right, but somehow always enough time to
do it over. This makes projects fail. The Semantic methodology offers a list of docu‐
ments that together make it practicable and repeatable in your organization, captur‐
ing an incredibly rich and robust set of perspectives on the software, with various
forms of communication. It focuses equally on the functional and nonfunctional
requirements, which are often missing.

But if you think through your concept, you will purposely reveal more of the seman‐
tic field that is your representation of the world. As you work through the concept,
the semantics evolve and are challenged and refined. Your resulting ideas and the lan‐
guage and logic overall will be more sound, more robust, more comprehensive, and
more customer-centric, and your requirements, both functional and nonfunctional,
will be far, far better than what you’re used to. Your design will be fit to purpose,
sturdy, harmonious, and beautiful. You will have expressed. You will have created the

Advantages of Semantic Design | 45

context in which fantastic software is born. That software will be reliable, maintaina‐
ble, extensible, scalable, available, secure, and delightful to the user.

And that’s the whole point.

There are a variety of other advantages in this method:

• It focuses the team and encourages them to be personally engaged and
motivated.

• It unleashes more creativity.
• It offers informal methods for testing your logic and your biases at the point in

the project where it will never be cheaper, quicker, or easier to change.
• It takes a comprehensive view. It’s synthetic, from many sources, more open, less

narrow and rigid. The ideas are native to software more so than engineering or
architecture.

• It is failure-oriented, as much as success-oriented. By foregrounding opposites
and contradictions and teasing them out, we predict more problems earlier and
can work to prevent them.

• It encourages you to focus on not just dividing the existing cake, but on making
more cakes because the only cost that matters in an innovative landscape is
opportunity cost.

• It does not use metaphors that do not apply, which misguides our thinking. In
software, that matters considerably given that logic and language are the only
tools we have.

• Contrary to much of what we see in Agile, you insert the concept design as an
upfront phase. This does not make it waterfall. And waterfall is not inherently
bad. It is bad, however, to presume to spend years of dozens of people’s time and
millions of dollars of other people’s money making software that you haven’t
thought through. Thinking it through as we outline here will make better
requirements and make you far more likely to do it right the first time.

• The focus on setting the context helps developers be productive while owning—
and being accountable for—the software they make.

• It’s prescriptive in certain documents and very loose in other areas of the method.
This allows for easy incorporation into the many other processes that you must
or like to use, while retaining the flexibility of an Agile process.

• It underscores the multiplicity of “customers” of the software, which makes it
more robust and usable to all the actual diverse users of your software.

• It sheds several false notions that lead us astray, such as a definition of “done.”
Software is almost never “done” the way a building gets done. One of the systems
in my charge is nearly 20 years old, and yet 200 people still work on it every day.

46 | Chapter 2: The Production of Concepts

They’re not just doing operating system updates. An evolutionary approach
works more naturally with how successful applications actually live in the real
world. The semantic method establishes a framework for its further evolution by
an array of teams and stakeholders.

• Because we foreground the concept and maximize context and extensibility, it is
easier to adjust for changes, problems, or new ideas as they inevitably arise, mini‐
mizing churn. The abstractions will be at the optimal level across your design.
Nonoptimal abstraction is often the way that lots of hacks and tacked-on addi‐
tions begin to rise up like weeds or poorly executed additions to a house across
your code, making it more difficult to maintain in the long run.

• Because a lack of timely, good decisions by the proper parties leads to failures, we
include communication plans and clear semantic paths for working across teams
in a complex environment. Decision making is an important part of the efficient
flow.

• We foreground assumptions and list them along with requirements such that if
they change, we can quickly plan for them.

• We thoughtfully align with the strategy and pave communication and decision
routes between development teams and leadership. We do not assume, as other
methods do, that software development teams exist in a vacuum, or only in some
dark room decorated with Star Trek paraphernalia where executives never go
except to slide pizza under the door. That isolation of the development teams is
not one to maintain. When we foreground software design as a software problem
instead of a semantic problem, we help build a wall that shouldn’t exist. That wall
creates divergence between the strategy and the local project and teams, which
threatens the project. You can be “in the zone” when your alignment is clear.

Software projects fail because people don’t know what they want, what they are mak‐
ing, why they’re doing it, who makes what decisions about it, and what the abstrac‐
tions and routes are to make those things clearer.

Our methods heretofore have improperly addressed these aspects, and they are the
precise aspects of a software project that the semantic design method addresses. Let’s
dive deeper into what it is and how it works.

Advantages of Semantic Design | 47

CHAPTER 3

Deconstruction and Design

Perhaps something has occurred in the history of the concept of structure that could be called
an “event,” if this loaded word did not entail a meaning which it is precisely the function of
structural—structuralist—thought to reduce or suspect...

—Jacques Derrida, “Structure, Sign, and Play in the Discourse of the Human Sciences”

Introduction to Deconstruction
This section might appear “out there,” marginal, even inconsequential, as some dis‐
tracting oddity in a book on software design. It could feel external to our purpose,
irrelevant, too unfamiliar, discomforting.

This section serves as critical context for the practical tools and strategies you will
learn in Parts II and III of this text. Is this section the marginalia, or is it the thing
itself?

Cut To:
INT. A CONFERENCE BALLROOM AT JOHNS HOPKINS UNIVER-
SITY, BALTIMORE, MARYLAND, US, 1966 — NIGHT
The Scene: A conference for philosophy professors
titled “The Language of Criticism and the Sciences
of Man.”
Action!

Enter French philosopher JACQUES DERRIDA. He is 36,
French-Algerian, soft-spoken, dressed in a suit
rumpled from his recent travel from Paris. He steps
to the podium to deliver his paper. He takes a sip
of water. He speaks.

49

DERRIDA
(quietly)
Perhaps something has occurred in the
history of the concept of structure
that could be called an “event,” if
this loaded word did not entail a
meaning which it is precisely the
function of structural—structuralist—
thought to reduce or to suspect...

As he continues, the room falls hushed. Then nervous. Then angry. Then astonished.
His talk is called “Structure, Sign, and Play in the Discourse of the Human Sciences.”
After he delivers it, the attendees retire to a chamber to smoke and argue into the
early hours of the next morning on its implications.

This paper would mark an origin of change, and advance, in the course of philosophy
and the humanities for the next several decades. It is an astonishing piece of writing,
and an incredibly erudite, fiery blast to his audience of assembled philosophy profes‐
sors who, like those at the 1968 NATO conference, were searching for the path for‐
ward in their field.

Derrida had been invited to speak with the supposition that his work would elaborate
and help popularize the idea of structuralism. Instead, he devoted his argument to
illustrating how philosophers can only talk in the language they inherit, and that as a
result, their concepts are limited: they rely on the patterns of previously established
metaphysics and base their arguments on it, even as they denounce it. He exposed
how the central theses and propositions of the structuralist philosophical endeavor
were in contradiction and how, as a result, their field was in stasis.

Derrida gave this paper at a conference intended to promote structuralism, and in a
sense, in a single evening, it ended the field. It is widely cited as the precipitating
event, the rupture, that ignited post-structuralism in the United States, introducing
new ways of thinking about writing, feminism, language, epistemology, ontology, aes‐
thetics, social construction, ideology, and political theory, across philosophy, sociol‐
ogy, political science, the arts, and the humanities.

The Paper

You can read “Structure, Sign, and Play” here in English transla‐
tion. I highly encourage it. It’s a (very) tough piece of writing, in
part because the writing is performative. That is, the writing exhib‐
its an acting out of the circling argument that Derrida is making. It
is, purposefully, a triumph of structure.

50 | Chapter 3: Deconstruction and Design

http://bit.ly/2kFSD5n

In “Structure, Sign, and Play,” Derrida begins with the idea that in an argument or
analysis, terms (signs) are defined purely in relation to one another. Put simply, we
only can conceive of “good” in relation to “bad,” or “success” in relation to “failure,”
along a spectrum of nuance and differing meaning in contexts. Such structuralist sys‐
tems thereby allow “play” in their terms because meaning is deferred; in a sense, the
can is kicked down the road from one sign to another such that establishing a fixed
and firm meaning in a sign is problematic because of this play.

The crux of Derrida’s position is this: throughout the history of structuralist thought,
we have relied on some anchoring center. This center is the term, sign, or idea that
appears as fixed, immutable, assumed, given: metaphysical. As such, it is beyond the
system of play that all the other signs operate within; it is incontrovertible, assumed
and therefore unexamined, not held to the same standard or afforded the same inter‐
pretations. It is not subject to the same terms of the established system and as such is
outside the system. “The center,” he therefore concludes, “is not the center.”

Derrida’s philosophy, introduced in this talk and subsequently outlined in dozens of
books across his formidable career, especially his key work Of Grammatology, is
called deconstruction.

Deconstruction in Popular Culture

This is probably a term you’ve heard in popular culture, where it is
typically misunderstood, diluted, misused. There’s a movie, Decon‐
structing Harry. It is a term Derrida employed to mean destroy and
create from within, at once. Before his death, he evolved this idea of
deconstruction over decades in dozens of books. He was incredibly
smart and learned, and his ideas are very complex, and are in no
way intended for the layperson. Our aim here is to take up, in the
manner of a bricoleur, the bits and pieces of these ideas available to
us and apply them as tools to illuminate our endeavors in software
design.

Derrida argues that when we examine semantic structure via deconstruction, we see
that the structure of meaning rests upon a series of binary oppositions, sets of pairs
that are opposed to each other in meaning, and from which they respectively derive
their meaning. Such pairs, as we can see even in our loose conversation in our daily
lives, might be good/bad, good/evil, presence/absence, speech/writing, man/beast,
God/man, man/woman, being/nothingness, normal/abnormal, sane/insane, healing/
hurting, primary/secondary, civilized/uncivilized or “savage,” theory/practice, and so
forth.

Introduction to Deconstruction | 51

Binary Oppositions

The idea of binary oppositions is important to understand in
semantic software design. You can read more about it here.

Assigning fixed meaning requires that we privilege one of the terms in a pair of
binary oppositions that unwittingly are held up as unquestionable, beyond reproach.
Derrida argues that the history of structuralism is the history of mere substitutions of
one honored and indisputable center for another, whether the central idea is “God” or
“Being” or “Man” or “presence.” His point is that there is a contradiction inherent in
structuralism such that it is rendered incoherent.

So what does all this mean in practice? The deconstructionist move is as follows:

1. Read the argument closely and carefully. For us, this means we consider our
understanding of the domain, the semantic field, closely and carefully.

2. Find the sets of binary pairs that form the structure of the concept as given.
3. Determine which term in the binary pair the author privileges above the other.
4. This can lead us to the assumed anchoring center that escapes challenge and

makes possible the rest of the discourse in which the terms can abound in
meaning.

5. Expose this contradiction and overturn the binary oppositions such that the
argument unravels and a new concept is created that properly can incorporate
the terms in the system without the prior inconsistency and false privileging. It
does this in a way that does not glibly reduce to “everything is everything,” but
rather marks the undecideability and interplay of the terms.

It’s a Process

Pay careful attention to understand this method insofar as it’s pre‐
sented here. Deconstruction provides a critical means for gaining a
true understanding for how a system operates, especially a system
derived from a concept that is purely logical and linguistic, as any
particular software system is. In this way, a method of deconstruc‐
tion is a critical tool in better system design. These few steps in
deconstruction represent a key, one might say “central,” element in
semantic software design as it unfolds throughout this book. We’ll
see how to apply it practically. For now, just don’t lose this term.

In this talk, Derrida revealed the problems philosophy had at its core, how its internal
contradictions abounded in ways that could no longer be ignored.

52 | Chapter 3: Deconstruction and Design

https://en.wikipedia.org/wiki/Binary_opposition

He closes his paper with the following:
Here there is a sort of question, call it historical, of which we are only glimpsing today
the conception, the formation, the gestation, the labor. I employ these words, I admit,
with a glance toward the business of childbearing—but also with a glance toward those
who, in a company from which I do not exclude myself, turn their eyes away in the face
of the as-yet unnameable which is proclaiming itself and which can do so, as is neces‐
sary whenever a birth is in the offing, only under the species of the non-species, in the
formless, mute, infant, and terrifying form of monstrosity.

It’s interesting to note that building architecture, our sometime progenitor, has an
entire school of deconstructionists who are among the best in their field. Included on
this illustrious list are the Pritzker Prize–winning Zaha Hadid, whose opera houses,
bridges, and cultural centers are among the most brilliant works of her generation;
the Pritzker Prize–winning Rem Koolhaas, who has designed museums and Prada
stores around the world while also holding a position as an architecture professor at
Harvard; Frank Gehry, the architect of the practically perfect Disney Concert Hall;
and Daniel Libeskind, whose work includes the very moving Jewish Museum in
Berlin.

The power of deconstruction in philosophy over the years caused it to reach into
farther-flung realms, including cuisine: the deconstructed Caesar salad introduced in
California in the 1990s owes its existence to Derrida and his philosophy of decon‐
struction.

What does this have to do with software? Everything, in fact. Certainly as much as
buildings and towns do.

After you define your concept and your semantic field, deconstruct it yourself in an
analytical move to expose the inadvertent bad arguments and misunderstandings and
contradictions and privileges introduced into the system. This is the step in which
you really improve it for better flexibility, more accurate representation of the world,
better resilience, scale, and more.

If it’s not at all clear how exactly this is the case, not to worry. This is just an introduc‐
tion and we explore further what it means and how it works in the coming chapters.

Simplexity
We often are told, and sometimes cling to, the slogan to make systems simple. We
hear, “Keep It Simple.” We “know” that good design is simple. This is not the case. Or
rather, while this statement passes for an idea, it isn’t one.

The engine of a typical E-class Mercedes-Benz has three times as many parts than a
typical Honda Accord. Which is the better engine? There’s one answer if you want to
go 180 mph. What are you hoping for from the car? Access to a greater number of

Simplexity | 53

1 See https://bit.ly/2qo8mHB.

mechanics with fewer specialized skills might be a design goal. That offers a different
answer.

Is Google search “simple”? For the end user, amazingly so. It’s estimated that Google
contains two billion lines of code, or roughly 40 times the size of Microsoft Windows,
estimated at 50 million lines.1 This of course begs the question, What part of Google
is “search,” when it’s used in web searches, Maps, Gmail, and many other products?
Or is it more complex than that?

Your intent must not be a facile “simplicity.” Nor can it be to design for its own sake.
Nor, obviously, to overengineer because complexity is fun or because we’re building
our resumé, or we don’t know when to stop or what we’re designing or for whom.

We create accidental complexity when we focus improperly on simplicity.

Fred Brooks is the famous architect and manager of the IBM System/360, and the
author of the book The Mythical Man Month in the 1970s. He thought to write it after
his exit interview from IBM in which Thomas J. Watson asked him why it was so
much harder to manage software projects than hardware projects. In his paper “No
Silver Bullet,” Brooks outlines two types of complexity:

Essential complexity
This is the complexity inherent in the design problem. It cannot be reduced.

Accidental complexity
This is the kind of complexity that is created by the developers themselves. It
does not inhere in the concept itself. It is due to weak design, poor coding quality,
or inattention to the problem.

Counterintuitively perhaps (and certainly counter to recent received ideas), your
intent should be to embrace the complexity of the many users of different kinds with
different needs. These include the many competing concerns of audit, attestation,
accounting, the timeline, the budget, and so forth.

Right-size the complexity of your concepts according to the job.

More important, never mistake accidental, or potential complexity, for essential
complexity.

54 | Chapter 3: Deconstruction and Design

https://bit.ly/2qo8mHB

(De)composition
The problem is not getting cool air to the engine, it’s getting the hot air away.

—Dr. Ferry Porsche

When we go to design a software system for a Human Resources (HR) department to
use, we ask what matters an HR department is concerned with. We decide they are
concerned with humans: after all, it’s in the name.

But, alas, they are not.

There are many humans that are not accounted for in an HR database—most of
them, in fact. So we decide to cast the lasso that will demarcate our field, our ground,
a bit more modestly. So we say: let an Employee (the kind of human the system is
about) be a thing that exists in this world.

We quickly ascribe attributes to this class. We then consider what assumptions we
have made, what we have left out. We realize there may be reasons to keep records of
contractors who work for the company, but are not employees. So we must add an
accounting for them, and their employers. Now we have extended the idea, and also
realize we have room for some consolidation, because even though employees and
contractors are different, they share many attributes that matter for these purposes.

So we say that a person exists, to hold these shared attributes, since both, for now at
least until the robots come, are people. And so forth.

The point is not to review basic object-oriented analysis, an understanding of which
is assumed. The point is to illustrate how this process might go well, how it might go
wrong, and how we do best to quickly search out the boundaries of our field, the
horizon beyond which we will not step, because that’s where the ambiguities are
found.

The second we cast any figure into the field, we ask what assumptions we’re making.

To avoid oversimplifying, or early simplifying, both of which lead to accidental com‐
plexity or overengineering and poor design, is to understand the essence of a thing.

You do this by looking at the universe first and then zooming into your problem
space. Then, after you have posited some figures onto the field, stop and zoom out
further again, to ask what you might be assuming.

Focusing on making something simple will create unwanted complexity later.

Embracing complexity now will allow you to organize your work properly. The orga‐
nization here is to reveal what functional, integral subsystems can work together to
create the complete functional system (see Figure 3-1).

(De)composition | 55

Figure 3-1. Decomposition (source: Wikipedia)

If you start from “simple,” you will end up tacking things on to handle the burgeon‐
ing, competing concerns. This will create a design with less integrity and harmony
and internal consistency.

Instead, start with the universe, and then narrow down subsystems.

With practice you can do this quickly, and then almost intuitively as a matter of
course, so it doesn’t take as long as it sounds.

If we think our problem is how to get cool air into the engine, we have made many
assumptions, and started too late in the problem space. The problem is not that; it is
how to keep the engine cool enough to function properly. These may casually sound
the same, but they are entirely different.

These assumptions invite nonessential elements. They add unnecessary complexity to
the design.

You might ask how to give more horsepower to a big engine that is already very pow‐
erful. That is a failure of analysis. Instead, ask whether the real problem is not that
you want the car to go faster.

Look for the nonobvious places to start. We must take time to separate the categories
of the problem space properly or assign relations properly.

To make a car go faster, increasing horsepower is an obvious place to start.

56 | Chapter 3: Deconstruction and Design

A Maserati Granturismo has a very large 4.7 liter V8 engine, which is made in part‐
nership with Ferrari, at 454 horsepower. By contrast, the Lotus Evora 400 has a rela‐
tively modest 3.5 liter V6 engine made by Toyota, with only 400 horsepower. Which
is the faster car?

Lotus did not ask how to make a bigger engine. They took a different view. Instead of
focusing on changing the engine (the “figure”), as would be obvious, they turned their
attention to the body (the “ground”). They threw out weight.

The Maserati weights 4,400 pounds. It needs that horsepower. The Lotus Evora
weighs only 2,700 pounds. To the Evora, they added a supercharger that compresses
air to make a bigger explosion in the same size engine. As a result both cars share the
same top speed of 190 mph.

These are not trade-offs: these are design decisions.

First you are designing the concept, then designing the factory for making those con‐
cepts. The rest of the book is about how you create this concept realization factory.
Then, the developers in the framework of your architecture go on within in it to
make the thing.

It’s no longer all about horsepower, but more ideas per horsepower.
—Porsche

Affordance
Years ago when I was living very briefly with a stockbroker who had a very good cellar I
asked him how I could learn about wine. “Drink it,” he said.

—Jeanette Winterson, Art [Objects]

The way you address ease of use is by considering affordance.

Norman doors got their name from the lovely book The Design of Everyday Things by
Donald Norman. In the book, he recounts the design of a particular door he encoun‐
tered: it had a handle on it, as doors do. But the way it was designed and installed
meant it had to be pushed to open it. This is counterintuitive, and makes the door
difficult to use. People see a handle and naturally pull, and their efforts to enter are
thwarted, albeit temporarily. But the frustration is real and unnecessary. The handle,
by its presence, affords pulling. It all but asks to be pulled. Pushing is not why we
make handles. This is bad design and must be avoided.

We must ask in our empathy what the most intuitive thing would be, to a wide array
of diverse people, with a wide array of aims, and design for what best affords, or sug‐
gests, how to use our system in the way they will want to.

This idea can be extended to include more: the keys of many cars today are electric
and battery-operated. But the battery failing in the key should not mean you can’t

Affordance | 57

open your car. Then what is otherwise a very expensive and nonnecessary “conve‐
nience” becomes a nightmare of the tail wagging the dog: the key is supposed to serve
the car. So these keys have a backup key: a small metal one inside the electric one that
work when the battery fails.

Do not make two equally obvious ways to accomplish the goal. Make one obvious
path and make the backup at once hidden and accessible.

You must also consider how you can afford from different perspectives.

Porsche has a rich heritage in track racing, and has won the Le Mans race more than
any other manufacturer: 18 times to date. It used to be that drivers at Le Mans did not
start in their cars: when the flag went down, they would sprint to their cars, get in,
turn it on, and go. So the designers at Porsche realized that by placing the starter on
the left of the steering wheel instead of the right, the driver could parallel process, by
turning the ignition on with his left hand while getting into gear with his right hand.
In a race like this, shaving off a few extra milliseconds matters. So to this day, even
with the keys powered by Bluetooth and even with no racing requirements for the
family getting into an SUV, every Porsche has its key on the left of the wheel.

Tying to their racing and design heritage and sense of tradition is important to Por‐
sche owners, and this subtle reminder affords a desired pleasure and connection,
even if it is silly or inconvenient for the 90% of people who are right-handed and are
used to it being on the right side of the wheel like every other car in the world. It’s a
good design—from that perspective.

Give Intention and Use Value to Negative Space
Architecture is the thoughtful making of space.

—Louis Kahn

Whenever you make space, you are making two things: the space demarcated within
the boundary, and the place outside it.

We demarcate a field in the raw space of thought. We then assert objects into this
field, and pay them considerable attention. These are the systems we make, the appli‐
cations, the databases, the products. We fret over the usability, the vendor, the cost,
the performance, the maintainability, the ease of use of these objects. Much wringing
of hands ensues. We are obsessed with the objects—the figures—that we assert.

But what of the negative space? The negative space is the field, or the ground, that
which is not our asserted object, but the place in which it can obtain ontological sta‐
tus, appear on the horizon, come into existence.

58 | Chapter 3: Deconstruction and Design

The white chalk letters we draw on a blackboard are our figure, the blackboard is the
ground. The charcoal letters we inscribe on brown butcher paper are the figure, the
paper is the ground. The software is the figure. But what is its space?

We might say it is the infrastructure on which it can run. But is that not software? We
might say it is the hardware, and software makers “abstract” this into a field—a public
or private cloud—that we fancy simply exists. We don’t have to bring it into existence.
It is not part of the application. It is a supplement.

Similarly, we abstract away the “business.” We narrow our scope to make our figure
workable. We find binary oppositions (here/there, now/then, inside/outside) and
assign one the status of priority.

You have likely encountered the image shown Figure 3-2 before.

Figure 3-2. Is it a vase, or two faces, or both? (Source: Wikipedia)

Figure-Ground theory states that the space that results from placing figures onto a
place (asserting them into the field) should be as carefully considered as the figures
themselves.

When you design, do not focus only on the figures, but look also to the ground. What
negative space are you creating?

We first must create negative space because in software there is no “situation,” no nec‐
essary context. We can outsource its creation, we can buy it, we can license it; at the
outset we aren’t sure what it will do or where it will run or exactly whom it will serve
or how it will be used.

Give Intention and Use Value to Negative Space | 59

We create the negative space, the ground, every bit as much as we create the figure.

Our designs suffer, and our users suffer, when we do not recognize this. Because
when we do not recognize it, we do not approach the design as purposively, as holisti‐
cally, as intentionally, as thoughtfully.

The unattended space between the figure and the ground creates a zone of ambiguity,
a tension, which, left unattended, creates an avenue of entry for uncertainty, uncoor‐
dination, chaos.

To improve the efficacy of the system, we recognize and closely observe the bound‐
aries of the system, and attend to them with the same care we do our cherished fig‐
ures. We must do this because by demarcating the field in the first place, as we must,
we have invented that boundary, too. It is figure, too.

The Japanese word for this is “ma,” meaning the space or pause between two struc‐
tural elements, not created by the elements themselves, but in the perception of the
human observer.

In a linguistic and conceptual failure, there is no corresponding word in English.

How can you give that negative space, the ground, an intention? How can you find
for it a use value? How can it be incorporated so that there are not stars and extras,
not masters and servants, not text and margins, not real and other?

The Cassandra distributed database has no masters and no servants. Each node is
equal.

The Infrastructure as Code pattern inverts the old paradigm, and affords a way to
version entire datacenters, allowing a rollback to a last known good state that is truly
known, complete.

Zoom in, to contemplate the design of a single component of your application sys‐
tem, and recognize that now what was figure (the whole application) becomes
ground, and that component must work within that ground, that field. And recogniz‐
ing the haziness at the boundaries where the figure meets the field, find every oppor‐
tunity to invert the logic, placing it outside.

The Eclipse IDE is the IDE for “everything and nothing.” It is an IDE for making
IDEs, and the Java assemblage just happens to be the first one, but it supports many
other languages and tools through its empty space and its foregrounding of inter‐
faces.

Make your software pan-pluggable, focus your work on the interfaces, the bound‐
aries, making as few assumptions as possible about the business logic of the imple‐
mentation. Do not make the application you’re told to make. Make the frame on
which it could be hung, as one route the data will take on its circulating journey
through the world. Do not simply implement the requirements as given—not to

60 | Chapter 3: Deconstruction and Design

ignore or devalue them, but to serve and realize them better. Instead, make a space
where those requirements could spring to life. Then the implementation can be injec‐
ted from the outside. Because we know that we don’t know how things will change,
what new constraints and possibilities will be introduced. Foreground the field, and
make it the figure of your work.

The design that contemplates and sets in harmony the business, the application, the
data, and the infrastructure is effective. The designer is effective when they recognize
that during discovery, the executives are the users of the design, as they contemplate
its budget and timeline and purpose and constraints; the developers are the users as
they build it; the customers are the users as they wish it to disappear to gain the true
value that lies behind it; and the monitors and maintainers are its subsequent users,
who must navigate their way through consoles, documentation, tests, and code to
find their avenue in.

What we assign to the margins, to the boundaries, to the field, will always leave its
trace in the figure. Eventually, these traces will upend the figure. Perhaps nothing is
destroyed entirely from the outside.

Give Design Decisions at Least Two Justifications
A stair is used for going up. And down. And also for congregating. Also for eaves‐
dropping, for sitting, for enjoying the beauty of a grandeur, for showcasing
adornment.

The quad at a university serves in organizing the buildings, studying, relaxing, meet‐
ing, playing Frisbee, graduations, protesting.

A theater is used for concerts, play productions, readings, assemblies.

We cook in a kitchen; we also gather, converse, prepare to leave, and eat.

Try to arrange the components of your design such that each has only one stated
responsibility. But allow multiple “witnesses” standing to vouch for the component’s
justification for being in the system at all.

Do this, and you’ll be able to get the most out of your components, maintain the
“simplexity” of the system to best balance between what should be simple for the user
and what is complex about the world, and see your best ideas win.

In software terms, you might envision a system that acts as a lookup registry to sup‐
port service discovery. This system shields your application code from complexities
of locating the right partition or shard where data is stored for geographically situated
customers. You have data for Europe in Paris and data for APAC in Tokyo, but you
don’t want developers to have to know about or manage repeatedly finding the right

Give Design Decisions at Least Two Justifications | 61

database for the current runtime customer when what they want to be able to do is to
just invoke the shopping function.

You might create an abstract “resource name” that knows how to find the appropriate
database given the customer ID. Considering this as the service registry, it does only
one thing and does it well: it maps the abstract service name to the proper location
and metadata to create a connection. That’s maintaining high cohesion, and the opti‐
mizations you make for your lookups will be inherited throughout the system, and
the management of the cache and offload to resource bundles can all work the same.
That’s a worthy service.

But you can also consider that if you properly structure the resource names, this same
system allows you to deploy multiple copies of your software in particular datacenters
around the world, or allows one of the copies to span multiple datacenters, affording
greater resilience.

So inserting that resource name has given you two justifications, though it performs
its singular purpose very well.

By focusing on interfaces, which capture the idea and not the implementation, by
focusing on factories, which embrace the result and not the means, your work will
invite multiple justifications for utility while maintaining the sturdiness of its frame.
You make your system fit to purpose when you contemplate many purposes while
designing still for high cohesion. This is one hallmark of platforms, and truly usable
and extensible systems, which are the ones that endure.

You know that you don’t know all the uses. Your extreme users will find new ones.
Embrace your extreme users.

Design from Multiple Perspectives
Think of your software as a three-dimensional object.

Do not design the entire application and then the entire infrastructure and then the
entire data model. These are three subsystems, but consider the entire system at once,
as well.

The data scientist might be concerned with choosing the proper neural network algo‐
rithm, but if the infrastructure architecture is not concomitantly thought of, you
might miss a GPU-based server that would perform better.

Design it in “section,” which to building architects means seeing the whole thing from
the side top to bottom with the fourth wall cut out so you’re seeing it from the side.

Then separately consider the floor plan, which is the view from the top with the roof
cut out. Looking after only the floor plan might result in an undifferentiated box.

62 | Chapter 3: Deconstruction and Design

Design from multiple perspectives: a little section, then a little floor plan. Design
from the view of the entire site, then do a detailed design of a specific minor detail in
a corner, or a piece of furniture. Zoom in, and zoom out, and back again, repeatedly.

Consider how the software change would affect the organization. Consider how the
infrastructure would change the software.

When the team at Google created the MapReduce algorithm, which resulted in the
popular Hadoop implementation, it was specifically to perform with resilience even
while running on cheap, commodity hardware that was presumed to regularly break.

A shift in perspective can create new constraints, which can be welcome design
mates.

Create a Quarantine or Embassy
Consider the embassy. The geopolitical purpose of an embassy is, in part, to carve out
a place for foreign government officials to work, free to abide by the laws of their own
land, even while on foreign soil.

In software, when we want to do something innovative, but we are dealing with non‐
trivial legacy systems, we can create an embassy package, or more sharply, a quaran‐
tine package. We create space for the legacy mappings and adapters and business
logic to work as they reliably have. But then you can have a standalone new system
that is free from any such constraints within its many chambers.

This lets the new stay new and be different and allows one messy space for the legacy
it must connect to, like the mudroom.

It’s an underscoring and permutation of the Adapter pattern, not because the inter‐
faces are incompatible and need to talk, but because the new interfaces don’t exist yet,
and you don’t want them to be too compatible with the legacy. Otherwise, you won’t
innovate.

If you don’t do this, it’s very easy to unintentionally infect the new system and its
design with the legacy’s restrictions, received ideas, and ways of thinking. You will
dumb everything down to the point where there’s no point making a new system; it
all looks just like the legacy.

Design for Failure
Design the system so that one part is the part you intend to fail or break. This allows
the pressure to exert focus there, keeping other parts free from that pressure. That
part can be swapped out readily. You can have service departments with a strong
understanding of that area and parts ready to replace it.

Create a Quarantine or Embassy | 63

You won’t be able to anticipate where exactly it will fail. It won’t fail conveniently
where and how you want it to at just the right time when you’re available and ready to
fix it.

A corollary can be found in chaos engineering, which reveals to us the parts that
break under different conditions and how they do so. This gives you feedback to
understand how to make it more resilient.

With this scapegoat in the system, the rest of the system can stay more sturdy. You
don’t want to have to replace or update many little aspects across many areas in the
system.

Design Language
One of Louis Kahn’s many important contributions to architectural theory was to
develop his distinction between “served” and “servant” spaces. For Kahn, “served”
spaces are those spaces in a building that are actively used by people, with “servant”
spaces being those spaces that serve the utilized: ventilation systems, furnace rooms,
elevator shafts, and so forth. Those are primarily used by systems.

This sounds reasonable enough. We don’t want to live in the stairway or the water
closet. But we must be careful with this distinction, because as we’ve seen, it presents
a privileged binary pair, which will inevitably become, one day, subject to a decon‐
struction, making the software very difficult, time-consuming, and expensive to work
with.

Designing properly is about using words properly. The names demarcate the space.
There should be truth in advertising in your API.

Naming
You define the semantic real estate when you name things.

This is very difficult for anyone to do. As stated earlier, we are forced to compromise
in the language we use to describe our systems, and that creates problems.

Your system is a linguistic object.

Naming is one of the hardest things a designer will do—and one of the most
important.

Name things as narrowly and as completely as their idea truly communicates. Do not
“false advertise” in the name. If you write the Shopping service, by golly it better
allow the user to shop All of The Things—hotels, houses, cruise ships, groceries, lap‐
tops, pencils, executive hoodies. What if your company wants to enter adjacent busi‐
nesses, or new ventures? Are you really sure you want a “Shopping service”? If you
have that, it is a good candidate to becomes a so-called God Object, which is the one

64 | Chapter 3: Deconstruction and Design

2 For much more on this important concept, see the companion book to this one, Technology Strategy Patterns:
Architect as Strategist (O’Reilly, 2018).

gigantic, omnipotent class that is difficult to understand and change (let alone do so
predictably and safely).

Are you sure it’s not really the HotelShopping service? Then there’s another one
called the VacationRentalShopping service. Things that they can share can go in a
library, or another service. But now they are allowed to be individuated and devel‐
oped, maintained, tested, deployed, migrated, upgraded, retired, all on independent
life cycles.

Name it properly and leave room for the other things and your user and help all your
colleagues know what belongs where.

Additionally, consider the API for use in different contexts, whether that’s Unix pipes
and filters or in user interfaces such as Xbox, web, phone, and voice. The work the
shopping service is doing in all those UIs should still be the same because it is about
owning that idea. There might be separate components to handle what’s distinctive
about each of those platforms on which you expose the shopping capability.

After you have this arrangement, test whether they are MECE. You do this by forming
the names at the same level into a single list and checking whether they are Mutually
Exclusive and Collectively Exhaustive.2

Start Opposite the User
Do everything in thinking about the user, the personas, their needs. Then forget
about them for a while and move to other users like the maintainers.

Design for the programmer first because they will become your factory for making
designs. So start with what is most useful to them. The programmer is a big user and
stakeholder in your design concept and the attendant guardrails you put in place to
shape the system’s possibilities. You are shaping work for the programmer, making
their work friction-ful or easier, more pleasant, and clearer.

So, design the deployment pipeline first because the programmer will build and
deploy their code a thousand times in the course of your project as they create it.
Design framework interfaces. Design the monitoring so that you get used to under‐
standing and interpreting and listening to your application more and more through‐
out the process so that by the time you launch, you have a well-understood repeatable
process. Start with the fire escape, the furnace, the mundane parts that have little that
seem specific about this business problem so that you create the best opportunity for
repeatability, which begets predictability, which begets insight and understanding and
reliability.

Start Opposite the User | 65

Platforms
We know that we don’t know how people will need or want to use our systems.

When making a product, consider the larger context (the chair in the room, the room
in the house). Consider how it would work as a platform.

The platform is the unified ecosystem of services that enable products. Focus on cre‐
ating the context, the place where the stated requirements could come to be true, not
simply directly building the stated requirements themselves. Work with your partners
in product management to set expectations properly, of course.

Tech blogger Jonathan Clarks helps build the argument here:
Platforms are structures that allow multiple products to be built within the same tech‐
nical framework. Companies invest in platforms in the hope that future products can
be developed faster and cheaper than if they built them standalone. Today it is much
more important to think of a platform as a business framework. By this I mean a
framework that allows multiple business models to be built and supported. For
instance, Amazon is an online retail framework. Amazon started by selling books.
Over time they have expanded to selling all sorts of other things. Apple iTunes started
by selling tracks and now uses the same framework to sell videos.

A platform could be your smartphone; that is, it has its own device form factor and
its own ability to interconnect with other software streams, therefore it’s a platform
that you can do other things with that were not originally envisaged at the time of its
initial design

Disappearing
Make the software or the system disappear as much as possible. Consider the pro‐
gress of the web search engine: it has been on a path of disappearing.

In 1997, an early search engine, Hotbot (Figure 3-3), had an advanced “SuperSearch”
that let you fill out many complex Boolean phrases, and its UI had many checkboxes.
Over time, the web refined into directories with Yahoo and others, eventually tracing
to Google’s single field that lets you type anything. Now, even that is disappearing as
intelligent digital assistants let you search with your voice. The aim is the same, the
use case is the same.

66 | Chapter 3: Deconstruction and Design

http://bit.ly/2kPzVZ1

Figure 3-3. The popular Hotbot search engine in 1997

It’s more powerful than ever, but less present. Make your user the center of the power,
and not your software.

Now in command of this theoretical frame, in the next part we explore the more
practical application and artifacts involved in semantic software design.

Platforms | 67

PART II

Semantic Design in Practice

Philosophers have hitherto only interpreted the world in various ways; the point, however, is
to change it.

—Karl Marx

In software, architects have frequently dithered away their time classifying existing
systems, often in arbitrary or irrelevant ways. We, as semantic designers, produce
concepts, challenged by deconstruction, in order to make a meaningful difference in
our organizations, to take action to create a new world of possibilities.

In this part, we explore the “ground” of action, and refine the archetypal concepts
introduced in Part I into the material realm. It’s filled with templates and practical
guides to help you get your job done.

CHAPTER 4

Design Thinking

There exists a designerly way of thinking and communicating that is both different from sci‐
entific and scholarly ways of thinking and communicating, and as powerful...

—L. Bruce Archer, Whatever Became of Design Methodology?, 1979

Design Thinking is a method to help incite innovation, creativity, and purpose when
you design solutions for customers. In this chapter, we transition to outline a repeata‐
ble process for applying Design Thinking within your organization as a semantic
software designer (perhaps “creative director in technology”).

Why Design Thinking?
When a customer approaches you for a technical solution, you need to start some‐
where. Having a method for problem solving will help you map the territory in a
repeatable way that gives customers and other stakeholders confidence and comfort
as you guide them through a process. Using the tenets of Design Thinking specifically
will help to improve your chances of coming up with the a creative, customer-focused
solution.

We start with Design Thinking because we who have been called enterprise architects
and have purview over the entire enterprise will see many problems as design prob‐
lems. It helps encourage you to be focused on the customer, the solution, and a mean‐
ingful outcome, rather than focused on your own internal activities, classifications,
and documents. This is the hallmark of the creative, effective semantic designer.

Further, we begin with Design Thinking because so many problems can be viewed as
design problems. Consider these questions:

• If you deeply consider with empathy who will use this solution and how, and how
it fits into their context, are you, in a sense, redefining the customer?

71

1 A fun aside is that our approach to design can be expanded to help design your career, your life itself, if you
shift to think of them as design problems.

• What is the optimal organization to support the creation and ongoing mainte‐
nance of this solution? What process can be designed to optimize its delivery,
before the solution gets to the user?

• How will you consider the schedule itself such that you align various competing
factors for the creation, launch, and delivery to again optimize the experience?

• How will the solution be managed?

What these all suggest is that although we tend to consider only the technical solution
as the object of design, there are many contributing aspects of our work that can ben‐
efit from approaching our problems as design problems. The organization, solution,
production, delivery, and supporting infrastructure and maintenance all can be opti‐
mized by approaching them as design problems. With our purview across the enter‐
prise in solving customer problems, we must consider the wide variety of
stakeholders, the design of the business, the application, the data, and the infrastruc‐
ture; you and your team must thoughtfully design all these areas of a technology solu‐
tion and the supporting business.1 Design Thinking offers a set of guidelines and
practices to help you do this, which we examine now.

Exploring Design Thinking
In the 1950s, professors at MIT and Stanford began exploring creative methods for
industrial design. The term “design thinking” originated in 1965 with L. Bruce Arch‐
er’s book Systematic Method for Designers. This term and evolving related practices
were later popularized by Palo Alto design consultancy company IDEO in the early
1990s, which based its early work on the Stanford curriculum. Given the breadth and
long history of these concepts as they have routed through academe and industry, dif‐
ferent adherents might not always agree on what Design Thinking precisely refers to.
What we discuss here represents my particular take on it, as a curated collection of
many of these different approaches to Design Thinking, refined over time with use in
the field.

The primary steps in Design Thinking are illustrated in Figure 4-1.

72 | Chapter 4: Design Thinking

Figure 4-1. The Design Thinking process

Principles
Before we dive into each of these steps in the process, let’s start with the principles
that design thinkers can generally agree on:

Human-centricity
Design Thinking is perhaps first about empathy. It asserts that all designs exist to
be used by a person to advance some human cause. Keeping the human user,
their context and conditions, their different abilities, cultural differences, and
their being situated in a social context is what makes great design relevant, useful,
and delightful.

Showing, not telling
Instead of talking about the design, find creative ways to express it. Architects
often present UML diagrams and written documents. These can be critical. What
if you had to present your design on the back of a cereal box and make punchy
illustrations of what its main features are and why it’s exciting? If you had to
present your architecture in the form of a story, how would you do that?

Clarification
One of my old mentors once told me, “leaders make the uncertain certain.” How
can you take the big, messy, wild-and-woolly problem space and clarify and
refine it down to its key elements? How can you capture the essence of the solu‐
tion and convey its impact succinctly?

Experimentation
Use a bias toward action. Even though it’s called Design Thinking, it’s really about
doing. As in iterative software development, how can you start quickly making a
prototype to get in front of people so that you can improve it with their feedback?

Exploring Design Thinking | 73

Collaboration
The orchestra wouldn’t sound as good if it used only the horn section; by com‐
bining the wind instruments, the string instruments, and other types, you can do
richer, more sophisticated things.

Diversions
If you search the web, you’ll find other representations of Design Thinking principles,
such as a focus on process. Process is very important to success, and much of this
book is devoted to how you can turn your work into a repeatable (almost standard)
process to make a compelling product with an architecture practice. However, I pur‐
posefully leave out the principle of “process” as stated by the d.school because to
me, your own internal process, while important to know and follow as reality
allows, is not interesting to the end user. There are no cookies for strict adherence to
the dictates of a methodology as long as you understand it and employ it properly to
achieve the desired aim. After all, it is about creativity, so it strikes me as a bit anti‐
thetical, especially given that there is no single, received, universal process here. Sec‐
ond, it is critically important to keep your eyes on the goal of creating something of
use to someone else—overemphasizing process can result in finding yourself engaged
in exciting-seeming, but ultimately fruitless, debates over schools of thought and nig‐
gling about your own internal activities in ways that don’t benefit your customer.

Now that we understand the basic tenets of Design Thinking, let’s walk through the
process for how you can apply it as you approach architecture and software design.

The Method
The method is about following the path illustrated in Figure 4-1. We explore each of
these steps and how to practically apply Design Thinking in your own architecture
shop here.

Design Thinking Is Context for Applied Architecting

The method outlined here is about viewing the world as a set of
problems and opportunities and that designing your approach to
both with the subsequent goal of designing a solution is broadly
applicable. It is intended to be used as a context and foundational
viewpoint for implementing the specific areas of “architecture” and
design outlined in the remainder of this book.

Define the problem
The first step is to understand the problem that has been presented. Here, you clarify
the need.

74 | Chapter 4: Design Thinking

It’s important, at least eventually, to refine the problem or challenge down to a single
statement of need: one sentence that illustrates the purpose or goal. This will be useful
later for internal marketing purposes, for getting others enlisted in your cause.

The second step is to define what success looks like. What are your acceptance crite‐
ria (to borrow the term from Agile) for having created something truly special that’s
an obvious improvement?

Make observations
This step is about discovery. After you know what the problem is that you’re solving,
and you know what success looks like at the end, you start your investigation.

Determine the users. The first question to ask yourself is, “Who are the stakeholders
in this solution?” You might be surprised. Spend some time on this step to generate a
real list. For example, if you’re designing software for use in a hotel, it’s easy to think
of the front-desk person. But what about the concierge, housekeepers, groundskeep‐
ers, bellmen, doormen, managers, and so forth? Also consider the programmers who
must maintain this software, your colleagues in the Network Operations Center mon‐
itoring its performance—are they not users, too? They might not be external paying
customers, but they will use your software from a different point of view and for a
different purpose. But deciding that they are part of your observation set or not will
certainly modify your solution.

Defining whom you’re actually solving a problem for is a potentially difficult exercise
in set theory, but it is a critical first step to getting the scope right. If you leave out
roles, you will have an inadequate observation set and leave things out. Push yourself
to list as many roles of different user types as you can.

Observe users’ actions. Now you can go about understanding their relation to this
product or service or space. How do they try to accomplish the task today? What
tools do they use? Why do they care about it? What parts are painful to use? What
opportunities can you afford them to gain some new super power?

The primary way to do this is by observing them in action and then writing down
what you see. Is there an existing tool they use to get their jobs done that you can
watch them interact with? Try to shadow them during daily use. If you’re designing a
new cash register for a restaurant, can you follow a few different waiters to see where
it works and doesn’t work well for them?

Of course, it’s important to talk with existing customers, too. They often will reveal
things in conversation that are difficult to observe. You also want to note any dispar‐
ity between what they say and what you observe.

Exploring Design Thinking | 75

Ask yourself the following questions:

• What do they say about their pains using the product? Is there a feature that they
know they miss having?

• What workarounds do they have to implement to get past some inadequate
aspect of the tool? A popular workaround in software is writing down passwords
on a sticky note because they’ve become so complicated, and we all have so many
of them that they can be difficult to remember. Newer computers allow you to
login with a biometric feature such as a fingerprint, which is one way of making
that problem go away.

• Are there aspects to its use that they never use? Why is that?

Jumping to Conclusions

At this stage, it’s very tempting and easy to begin interpreting what
you see and forming ideas immediately about the solution. You
presumably have some familiarity with the problem space or you
likely wouldn’t be involved in designing the solution. You could
design the whole thing in your head, perhaps. When that’s the case,
it’s easy to bring your own biases and preconceived notions about
the solution, which skips the entire point of Design Thinking.
To be more creative and innovative, you want to be free of those
biases and be focused on the user. For now, simply observe people
and record your observations, not what you think about them.
We’ll do that in a bit. For now, even though it doesn’t feel like
you’re doing much, simply recording user interactions in the man‐
ner of a courtroom stenographer without judgment is actually an
important step toward creating something innovative.

Consider at this stage different kinds of uses. When you watch customers actually
using the product, does that match what they say about how they use it, or is there a
cognitive disconnect? For example, do they say keyboard shortcuts are very impor‐
tant to them, but then they don’t actually use them?

76 | Chapter 4: Design Thinking

“I Use It Every Day”
So that you can record as many accurate observations as possible and create a com‐
prehensive list, it’s important to consider at this stage that sometimes “use value” can
be a slippery subject. People don’t always use a product as intended, or as we might
expect them to. For example, once upon a time we had an architect at our house who
was inquiring about how we used our space. He turned his attention to our swim‐
ming pool and asked with some skepticism if I ever actually used it. I quickly replied,
“Yes, I use it every day: I look at it.” Maybe I didn’t swim in it very often (the obvious
purpose of a pool, which implies it’s not useful to me), but in a hot desert with a
bright sun and lots of brown sand, it was very important to my sense of well being to
see the cool, blue water. The idea is to be clear on the actual value users might derive,
beyond a perceived or ostensible value.

Create personas. Now that you have your list of users, you can create personas. A per‐
sona is a fictional representation of a person who is a stakeholder or user of your sol‐
ution. When you do this, you are essentially creating a character who is a composite
of users that you interviewed and the observations you made about their goals and
challenges.

One important trick here is to chose “extreme users.” It’s obvious and easier to focus
on your mainstream or typical users. But this is a mistake. Extreme users are the
experts, the people with a lot of knowledge about the problem space and existing sol‐
utions. They tend to have a lot at stake in their success using your product. They are
highly knowledgeable on the subject and therefore very opinionated and vocal. They
tend to be the ones who push the boundaries.

Early Adopters

Extreme users tend to have the most elaborate workarounds for
things that aren’t how they want them. In this way, in a sense,
extreme users can become “early adopters” of a product or function
that doesn’t quite exist yet. Consider this example: in 1998, eBay
was known mostly for selling regular household objects for a few
dollars. The idea of selling a Ferrari for tens of thousands of dollars
on the auction site then would have been flagged as suspicious
behavior. But eBay took note, and instead of shutting it down, it
launched a new division: eBay Motors.

Extreme users might also be people of very different ages. For example, Apple did
well when making the iPad because it is usable not only by the initial obvious affluent
market of technophiles, but also by three-year-old children. But Apple failed here

Exploring Design Thinking | 77

when designing machine learning algorithms for facial recognition, which best
worked only on white males.

In listing your candidates to create as personas, you want to consider the typical
activities they go about in a day. Then, write down their goals: what is it that they
want to do. This is not about what they want to do with your software. It is guaranteed
with 100% certainty that they do not want your software in any way. They want to do
something else that your software helps them do. They don’t want Photoshop and they
don’t want to “edit and crop photos”: those are merely tasks they perform on the way
to getting what they want. They don’t want to “use” your music streaming software:
they want to relax and be entertained after a long day. They don’t want to arrange
their web templates: they want to effectively market their products. No goal that is
important to a person is about software. Sometimes, if we have a fun car and it’s a
beautiful day, we might take pleasure in driving just for driving’s sake. There are
many things pleasurable in their own right. But I submit that no human ever said: “I
think I’m in the mood to use some software. Oh, any old application will do. I just
want to use software for a bit.”

As you see the list of activities and goals you’ve discovered, you can group them.
These can potentially translate later into security roles as you do detailed architecture
work.

A persona is a document that has the following attributes:

• A name. Create a name for this representative person.
• An age, occupation, and education.
• Fictional details. Create a few lines of personal details in order to bring the char‐

acter to life and make them more vivid and real. Include their desires, interests,
and limitations. Given the impression of a story behind this person, you can bet‐
ter focus on designing for real humans.

• A picture.

The document should likely fit on a single page and might look like Figure 4-2.

Be sure to include multiple personas, each representing a different set of user goals,
cultural backgrounds, and ages.

78 | Chapter 4: Design Thinking

https://nyti.ms/2H3QeaT

Figure 4-2. A sample persona template (icon via FlatIcon, Creative Commons)

Value Proposition Design

There’s a wonderful book on the subject of determining the value
proposition of your solution called Value Proposition Design (by
Alexander Osterwalder et al). Although not strictly focused on
Design Thinking, the book offers templates and a method to help
you define and refine how to create products and services that mat‐
ter to customers and help build your business.

Now you can use your collection of personas to form insights about what should be
done to create your solution.

Form insights
An insight is an interpretation of your own, based on the facts. You “see into” the
objective data and make refutable assertions about what might be the case about the
situation. You can see patterns in the data and decide on some theme and notice cor‐
relations. You assign meanings among the interplay of signs that are beginning to
form your semantic field.

An insight is nonobvious. It reveals something about the object that others might not
have noticed or with which they might have an argument.

It is a moment that combines the raw data you’ve collected so far, and now you start
to draw conclusions about what a solution looks like. You are not forming a design of
the software. Resist that temptation. Yes, deadlines are tight, and we can be eager to
skip steps and head right for the coding. But if we do that, we miss a lot.

You are simply making another list of your conclusions.

Exploring Design Thinking | 79

Now you can create a Customer Journey Map. This is a diagram that illustrates the
steps your customers go through when they engage with your organization. It’s a
helpful tool for documenting a user’s path through a service. You might think of it
like a storyboard in films: the director creates a cartoon strip of drawings that makes
sure everything is laid out properly and the sequences are right before they spend
money doing expensive shots, particularly when there are limited opportunities, such
as when failing daylight might affect the continuity of the shot.

These maps help you to identify the interactions that cause users most pain. (They
also serve as a great starting point in building a process map later if you get into Busi‐
ness Process Modeling with BPMN to do business process reengineering using Lean
Six Sigma. If that sounds fascinating, just wait until we get to Chapter 6.)

Mapping the Customer Journey

There’s a great online tool at LucidChart that’s easy to use and helps
you make your own Customer Journey Maps.

They allow us to visualize the emotional state of users and highlight the flow of the
customer experience, including the good, the bad, and the ugly of their interactions.
This helps us to focus our opportunities for improvement.

Frame opportunities
First, you need to transform those insights into opportunities. What are things you
could do to creatively improve their interactions and experience?

Now you reflect on your collection of ideas, and pick one category to go with. For
now, you can pick just one that you will pursue for prototyping. Of course, you still
have this material if you want to return to it later.

Generate ideas and refine solutions
Your goal at this step is to transform the ideas into a solution. This is really a brain‐
storming phase. To brainstorm well, you must defer judgment, encourage wild ideas,
build on the ideas of others, stay focused on the topic, be visual when possible, and go
for quantity.

Now you can do a fun exercise. After you’ve picked your specific opportunity, you
then draw the idea on some poster board. Draw four frames, or quadrants. Give it a
name at the top and then a brief description and state what user need is addressed.

Then draw stick figure–type drawings into each of the four quadrants representing
how people would use and benefit from your solution.

80 | Chapter 4: Design Thinking

http://bit.ly/2kEhre1

Try prototypes
Here you create named experiments.

When I visited the Google campus in Mountain View many years ago, I was given an
early demonstration of Google Glass. I was fascinated to learn that in the Google X
Labs, the first prototype was built in a single day, using a backpack, a laptop, a tiny
projector and a piece of plexiglass with some hanger wire. The idea was that because
the developers had started with thinking empathetically about the user, they quickly
refined their priorities to conclude that it was a potential showstopper if people felt
too awkward having the web projected into their glasses that way. So that’s a bound‐
ary that they wanted to explore right away.

A Prototype in a Day

You can read about the prototype development process for Google
Glass at geek.com.

Build prototypes quickly that reflect a certain aspect of the product you know might
be problematic or require an adjustment for your users.

To do this, ask yourself, what could be done for only $100 in just one day to test the
premise of your solution? Remember, you’re not testing anything like what a solution
might be in the real world, you’re testing the premise. In the case of Amazon Alexa,
for example, the premise is that users would want to have a robotic assistant based
primarily on voice interaction. You don’t even need to build anything at all to play
through a variety of scenarios with that idea; you just need to take regular interac‐
tions, such as playing music, checking the weather, or booking a hotel room with
yourself and another person speaking the parts, with one of you playing “Alexa.”

When you have landed upon the prototype that works best, the Design Thinking
party is over, and you can then set about creating it as a full-fledged solution to move
to production and delivery.

In the next section, we see how to put these ideas into practice with workshops to
implement Design Thinking at your organization.

Implementing the Method
Much of the existing literature about Design Thinking assumes that you are designing
a physical object for use out in the real world, or that if your realm is software, that it
only would be of interest to user experience/user interface (UX/UI) designers. One
assertion of this chapter is that the creative architect will find much here to fruitfully
adopt and adapt, even when what you’re focused on is not the UI, but the architecture
for a data streaming application or cloud services or an API. Indeed, if many

Implementing the Method | 81

http://bit.ly/2lVZN5E

problems we face are design problems, I urge you to consider how to apply these con‐
cepts even without a UI or, indeed, even without software.

You should not consider the stages within Design Thinking as purely sequential. Your
approach should be iterative, and the real world will end up necessitating that any‐
way. It’s helpful to go back and revise or reconsider earlier decisions in light of new
understandings.

Design Thinking as Fractal Within Your Structure

A fractal is a geometric figure in which each constituent part has
the same structural or statistical dimensions as the whole. Because
Design Thinking is a way of approaching design with an empa‐
thetic, collaborative, and iterative mindset, it is applicable when‐
ever you are creating artifacts of architecture design. That is, it is
not only to be considered in isolation regarding your software
product, and I do not present it here as operating solely in the
domain of user experience or user interface design.
In a larger project, use Design Thinking at each stage, not just once
up front. You can employ an adaptation of the method when it’s
time to consider the business, application, data, and infrastructure
aspects. The insights you generate can be incorporated entirely
within each stage of a broader process while also observing how it
operates at a higher level toward that broader goal of delivering the
complete software product.

To begin your Design Thinking work, collect these tools:

• An easel with large conference room–sized paper
• Sticky notes
• Markers
• Dot-shaped stickers to vote with

Pull together a workshop, and depending on the scope of your challenge, you might
need a couple of days or a few weeks.

First, frame the challenge. You do this by having everyone write on sticky notes what
they think the problem might be. You should do this quickly, in a matter of five or
seven minutes. Then put all of the sticky notes on a paper and discuss. People will
typically see different emphases in the problem space, and you can use these to ensure
that you have properly framed the problem.

Then, move on to focusing on the user, the customer. Determine who they are, and
figure out how to make observations in the field. After you have this list, you’ll likely

82 | Chapter 4: Design Thinking

break and then move on to scheduling how to make those observations with real
people.

Now you have collected your data such that you can create personas.

Using the raw data from your field journal observing users as well as interview notes
and personas, you are ready to form your insights. Time for another workshop!

Give people time to review the collected material. Then, in this workshop, try to get
participants to start assertions with “I wonder....” This encourages them to exercise
their thought process, to venture a thought that is perhaps incomplete but could be
built upon, and to go beyond what they feel sure they already know. Otherwise, peo‐
ple tend to repeat their own entrenched views or to speak in platitudes so as to avoid
conflict.

As they did before, have each person generate as many insights as they can, writing
them down on sticky notes. Then, have the facilitator collect and place them alto‐
gether on the paper boards with markers so that everyone can see them together.

Now you can begin to see patterns in the insights. Eliminate true duplicates, being
careful to discuss if any subtle differences in the apparent duplicates are relevant and
shouldn’t be lost. This is a consolidation step. Next, you can discuss and elaborate on
what was meant. Ambiguity is just fine here and is in fact something to be encour‐
aged. Be sure people are not designing the solution yet.

Group the insights into different categories.

Then, you can use the dot-shaped stickers to vote on the insights you’ve formed that
make it to the posters. These are stickers of different colors that you can get at a
hobby or office supply store. Each person voting has their own color so that everyone
can trace back who voted for what in case further conversation is needed. The voting
serves only to narrow down the focus on the most pressing concerns, setting the stage
for the next step.

Now, you’re ready to discuss what opportunities might be suggested by the insights.
Again, you’re not designing the solution (say, your software product) at this step. You
are generating ideas on what could be new and how you might help your users miti‐
gate the pains and realize the gains.

Now you can repeat the sticky-note voting process to again narrow toward a focus.
You’ll draw on your storyboard for your identified solution at this point.

At this point, you’re ready to brainstorm solutions, describe them, and vote on them.

Now you leave the workshop with a slate of work, go build your prototype, and again
go out into the field to test it with real people. This, of course, will be an iterative pro‐
cess of refining your prototypes until you have something buildable that you can
deploy.

Implementing the Method | 83

Throughout the process, be sure to honor the following principles:

• Focus on users’ experiences with an emphasis on building empathy
• Allow, accept, and encourage ambiguity
• Tolerate mistakes or oversights
• Regularly reset expectations about what stage you’re in throughout the process

and restate the near-term goals

With all of this work, you will have come up with a terrific solution that has an excel‐
lent chance of being well designed for solving real people’s problems and giving them
usefulness and hopefully delight and maybe even joy. You’ll have done that by seeing
much of the world and experiences as design problems, by grounding your approach
firmly in framing the problem properly, and by harboring strong empathy for your
user.

Summary
This chapter introduced Design Thinking, the principles and practices, and how you
as a creative architect can put it to work. If you’d like to learn more about Design
Thinking, check out these additional resources:

• See this Harvard Business Review article.
• See this in-depth case study on how Design Thinking was used to improve pro‐

cesses for veterans at the Bureau of Veteran Affairs.
• IDEO Design Kit. This website offers case studies and a wealth of practical

resources to assist you in taking a Design Thinking approach in your next
project. This includes a field guide and a variety of courses that you can take.

• The d.school at Stanford. The university’s design school website offers some
material about Design Thinking in broader application, such as designing space
and furniture. Of course, that’s the original purpose of Design Thinking anyway!
Check out its Bootleg Toolkit to help support your process.

In the next chapter, we build on this Design Thinking approach. Keep it in your back
pocket throughout the book: many problems and opportunities across the entire
technology enterprise can be helped when framed as design problems with these
tools.

84 | Chapter 4: Design Thinking

http://bit.ly/2kEiFG9
http://bit.ly/2kTXj7J
http://www.designkit.org/methods
https://dschool.stanford.edu/

CHAPTER 5

Semantic Design Practices and Artifacts

Building architects have blueprints, sections, physical models, software models, zon‐
ing codes, engineering codes, and other such received means with which to express
their designs. Building architects have a known building envelope, beginning with the
actual world. We in software are in a purely virtual semantic world.

You can express your design direction in conversation, as sometimes happens. But
this is a recipe for disaster. All of the essential people aren’t always in the same room
all the time when the conversations are happening. People mishear, you forget to say
things, the conference phone drops, and so forth. I wouldn’t belabor the point, but I
regularly see architects expressing their design in conversation, which quite pointedly
I must say will fail. You must make the complex and abstract notions of your archi‐
tecture design actionable, concrete, durable, precise.

Up to this point, you have worked to find the precise problem, frame the challenge
and the solution properly, and create conceptual coherence in this space. Now, in this
transitional stage, you must bring your ideas from being conceptually coherent to
becoming material ready to record into architecture documents with specific, exe‐
cutable solutions and plans. You have the concept of your semantic field. Now you
must define it in a way that software developers can understand and execute to create
fantastic software.

In this chapter, we highlight some key practices of semantic software design and the
accompanying artifacts that help you make it practicable. Some of these are intended
to be used internally within your team, and some are more executive- and customer-
facing.

85

Design Principles
Principles are propositions. They assert a set of beliefs about the world. They act as a
substrate to a system of values. They serve to guide decision making across your
entire organization.

Principles are important in architecture and design because they help to scale your
team. They provide guidance to developers making a local decision. Many small local
decisions made by the implementation teams will tend to add up over time to pro‐
duce something that has imperceptibly skewed over a period of months to accrue
toward a design result that looks little like you intended.

As propositions, principles are abstract, but they should precipitate actions on the
part of your teams that support them. Presumably, the principles are subsets or
decompositions of your overarching corporate vision or the strategy that you’ve iden‐
tified. If they’re not, your teams and department will suffer from a lack of alignment.
You’ll be doing stuff that doesn’t matter. This is mistaking activity for progress.

Well-established principles will also allow you to negotiate with the product manag‐
ers, executives, and other stakeholders. If you state your principles, and they follow
logically from the stated business vision and strategy, you can more quickly resolve
disputes as they arise in the project. If your CIO believes that they should be moving
compute and storage to the cloud, and you believe that you must run your own data‐
centers, you have a mismatch of principles that must be reconciled to ensure that
your project doesn’t blow up.

On the other hand, if you state your principles and publish, circulate, and reference
them in other architecture artifacts, you have a token for conversation with these
stakeholders. If you can get them to agree on the principles, you can help guide the
teams with confidence that you’re all rowing the boat in the same direction. This
makes decision making less fraught with friction; the answers become more obvious.
They help you to gain alignment and clarity.

An obvious example of a set of principles is the Ten Commandments. Specifically, the
commandment to “honor thy mother and father” works well here. You want your
principles to be at this level. It is not certain what it means to “honor” a person; it is
abstract. The discrete set of actions to carry out are not obvious or stated. You then
must consider, when left to your own devices, how you should proceed in order to
enact the concrete action of “honoring.” Perhaps you decide that not blaming them
for forgetting your birthday is the honorable thing to do. Perhaps you think it means
that you must buy them a house. Because, like a parent, the architect cannot be there
to direct when every local decision is being made. These are the sorts of things that
will shape the overall quality and adherence to the timeline and budget, and the kinds
of things developers decide all the time: whether to inline the stylesheet or not, or
take an extra few minutes to code this to an interface instead of an implementation,

86 | Chapter 5: Semantic Design Practices and Artifacts

or take the time to store the application’s database passwords in a key management
store instead of in plain text. If you have principles that they can consider, they will
act more in accordance and the system will be closer to the desired image.

No Empty Slogans
Many so-called principles are stated as empty slogans. “Integrity” was, I believe, chi‐
seled on the marble floor of the lobby of Enron as every day executives walked over
the words in their Louboutin loafers while they ran the company into the ground with
fraudulent accounting and valuation, taking the pensions of thousands of workers
with it. When you state principles and don’t turn them into action by making leaders
accountable for them, they’re empty slogans.

When you state principles that are so obvious that they are ignored, you must make
finer distinctions to help them carry action. Similarly, many so-called principles are
stated as ra-ra marketing slogans, like “Be the best.” Maybe that works for some, but I
don’t see it helpful in driving action when two directors are disagreeing at an imple‐
mentation meeting. You want to define principles such that some reasonable person
could argue the opposite side. Would any company’s principle be “Be the worst”? If
not, better to move on.

There’s an old adage I’m sure you’re familiar with that states, “You can have it good,
fast, cheap: pick two.” That is applicable here. If the quality and craftsmanship are
high and you deliver it inexpensively, it won’t be done fast (and so on). It’s OK to
want it fast and cheap; this is the reason fast food restaurants exist. But stating what
you value up front over other also desirable qualities is making an actual decision that
can truly guide behavior.

The Open Group Architecture Framework (TOGAF), which was my architecture
training and certification many years ago, publishes an in-depth way of approaching
technology principles. You can also take a shortcut and read Digital Principles or
IBM’s old published principles.

Those sets of principles are in no way intended to be something to just copy. Take a
look at them. They are just a sample so that you can see the level at which they’re
written. You can adopt them for use as a jumping-off point in creating your own.

Let’s take one example: “Data is an asset.” The opposite is “Data is not an asset.” If you
thought that your only job was to make applications for end users to accomplish tasks
quickly and you wanted to keep costs, management, and liability down, that would be
a reasonable conclusion. However, if you state that data is an asset for your organiza‐
tion, the applications might be window dressing over the data. You might spend con‐
siderable time gathering data, storing it, protecting it, organizing it, making it

Design Principles | 87

http://bit.ly/2Buottr
http://bit.ly/2Buottr
http://bit.ly/2BtQ5ib
https://ibm.co/2wbWoRG

available to other applications, finding ways to market and sell it, finding new appli‐
cations to build on top of it, foregrounding machine learning, and the like.

Your principles should be broad without being empty slogans. Guidelines (covered in
an upcoming section) will be more local and specific. Your principles should be
thoughtfully constructed, publicly stated, and often referred to. They will help guide
your teams toward more efficient decision making, reduce churn, and create a sense
of alignment.

Pair Designing
There are a few things you can do to help you capture the concept for the architecture
that you have in your mind, which is still forming.

After you have an idea, you need to begin shaping it with others. When you’re in the
stage of forming the idea for what the software should be, what it can be, and what
the general contours are, it’s natural and important to express these in collaborative
conversation.

To capture your ideas and test their validity, their boundaries, and their value, try pair
architecting.

In 1999, the venerable Kent Beck, perhaps most famous for JUnit, wrote a book
called Extreme Programming Explained. In it, he proposed the idea of pair program‐
ming, that two programmers should share one screen and one keyboard, each taking
a different view into the partnership. Each could catch the other’s bugs as they hap‐
pen, learn the software, and think at different levels. It’s mentally taxing to write soft‐
ware: you’re essentially solving a logic puzzle in a foreign language. So when one
programmer becomes tired, they could switch the keyboard to let the other drive and
change roles.

I love the practice of pair programming, and it has served me and my teams quite
well over the years. I don’t see it used as much any more, because perhaps the people
with the purse strings think it’s a form of socializing. I’ve heard one executive com‐
plain that her pair programming teams were getting half as much done. I don’t
believe she was ever a programmer, because this is laughably far from the case.

As an architect designer, try carrying this practice forward. Set aside a time to solve a
particular design challenge on some specific aspect of the system, especially at the
idea stage. This does a variety of wonderful things:

• You’ll get a clearer, more developed idea because your partner will prompt you to
clarify what you mean. If you need to express it to someone else who is present,
you’ll be forced to shine a light on certain shadowy areas of your idea. You might
not solve everything at that moment, but you’ll know which areas you need to
refine.

88 | Chapter 5: Semantic Design Practices and Artifacts

• Your partner will have better ideas than you about some things. Maybe they excel
at hyperthreading models, whereas you’re weaker, but you excel at design pat‐
terns. Together, your idea will take richer shape.

• Two people now understand the idea and can represent it. You’re scaling the idea
quickly. This provides better avenues into an eventual project planning session.

If you’re not geolocated together, you might put this in practice by having a Webex or
Hangout where one of you shares your screen, and you begin sketching your parti,
your lookbook, subsystem components, and interface outlines. You might do this on
a very specific piece of the puzzle. Then, you can zoom your camera out a bit and
have a discussion about how this part relates to the broader concept and how it will
support or shape related ideas.

Your work is to define the concept, agreeing on what populates this world, what their
names are, how they interact, and where the boundaries are. I have used this techni‐
que a lot with my team; it results in more nuanced and thoughtful design, closer per‐
sonal relationships, and more common understanding, and the best idea always wins.

The artifact result will be a few key sections of code that help clarify unknowns and
reduce the risk to the project.

Murals
While you are in the archetypal and conceptual realm of design and are transitioning
into the developmental stage, you might want to use a mural to help organize your
design concepts into something you can begin to work on.

A mural can be a collage that might cover an entire conference room wall. Use the
wall and sticky notes and pens to capture your ideas. The elements of your wall could
include the following items that you would have created during Design Thinking:

Personas
Who will use this work?

Customer Journey Map
Why are they using this and how do they interact with it?

Pains
What about their current process is problematic? Where are they thwarted?

Gains
What new innovations can you offer them that might help them take a leap for‐
ward in productivity, delight, options, opportunities?

Murals | 89

Outcomes
What is the change that would make a difference to your customers and other
users? What gumdrop do they want at the end of the journey?

Metrics
How will your customers measure the difference that was made for them? How
will they know they got great value from your system? Note that these should be
rough and general at this stage.

Invite peers, executives, team members, and others to walk the wall with you. Guide
them through how you are thinking about the project. This allows others to know
where you’re headed and to contribute their ideas before things are implemented.
This is about ensuring that you’re building the right thing.

Capturing the aforementioned items in the mural will help give you the shape of the
work on which you will soon base your architecture definitions and your project
plan.

You can make this a bit of a collage. It’s OK, and even encouraged, to add elements to
your collage that capture some of the extra-synthetic conceptual work you did in
Chapter 4. What painting, image, piece of music, building, motto, sketch, fabric,
sculpture, or texture is inspiring to you and helps brings your concept to life? You can
capture these in your lookbook.

Consider the following example. When architect Frank Gehry was designing the
tower at 8 Spruce Street in New York City, his inspiration for the building was the
Bernini sculpture The Ecstasy of Saint Teresa (1652), shown in Figure 5-1.

90 | Chapter 5: Semantic Design Practices and Artifacts

Figure 5-1. Bernini’s Ecstasy of Saint Teresa in Rome (photo by Alvesgaspar, Wikipedia
CCA)

Notice how the building at 8 Spruce Street, depicted in Figure 5-2, incorporates and
echoes the folds in Saint Teresa’s robes.

Murals | 91

Figure 5-2. The tower at 8 Spruce Street, New York City, incorporating Bernini’s folds
(photo by Jim.henderson, Wikipedia CCA)

Pushing yourself outside of what is comfortable and familiar to do this kind of work
at this stage can mean the difference between making something mundane and for‐
gettable and something truly special, useful, and exciting to your customers.

Digital Murals

If you are a geographically distributed team or prefer handling
things digitally, you can use a tool like Mural. It comes with tem‐
plates to capture many of these elements from Design Thinking,
and you can invite team members to contribute.

92 | Chapter 5: Semantic Design Practices and Artifacts

https://mural.co/

It’s one thing to see an example of how a marble sculptor inspired the lines for a steel
building; even though one is art and one is architecture, both are in the realm of the
physical, plastic arts. But what would this mean in our less tangible universe of
software?

Is it a painting like Edward Hopper’s “Automat,” or Piet Mondrain’s “Composition II”?
A Volkswagen Beetle, a Bugatti, a Tesla, or a Mack truck? Is the system Glenn Gould’s
Bach: The Goldberg Variations or ABBA? Bootsy Collins of Parliament-Funkadelic is
one kind of bass player, and Jaco Pastorius another. A sharp, classic Prada blue wool
suit suggests one sense of style, whereas an Alexander McQueen patchwork paisley
suit suggests another. Is the system more like a wild Jean Paul Gaultier or a buttoned-
down Brooks Brothers? The venerable Chanel No. 5 perfume is appropriate for one
kind of occasion, whereas Tom Ford’s scent “Fucking Fabulous” represents another
attitude altogether. Which informs your concept of your software? Add sketches.

After you feel you have the mural complete, you can invite stakeholders to visit it and
vote on their level of confidence that it represents the correct direction and has the
vital emphases.

The mural is a temporary, transitional artifact. It serves as an organizing mechanism
for all of these disparate elements and eventually gives way into traces in other arti‐
facts. Like a butterfly, it won’t likely last more than a few weeks.

Vision Box
I will not deny, but possibly it might be reduced to a narrower Compass than it is; and that
some Parts of it might be contracted.... But to confess the Truth, I am now too lazy, or too
busy, to make it shorter.

—John Locke, An Essay Concerning Human Understanding

Making your concept expressable in a single sentence that represents it is the mark of
a clear thinker and a clear concept. Allowing three to five phrases to further describe
it will help advance your idea with executives and other stakeholders. You must be
able to take your broad canvas and reduce it to the value proposition succinctly.

Software used to come in cardboard boxes that had disks in them. Although not as
large, these boxes were colorful, featured images and slogans, and represented the
product’s promise. They told you what the name of the software was, what it was for,
and what you could become by using it.

Even though software rarely comes in boxes anymore, you can adopt this idea to help
create your executive summary and communicate quickly to stakeholders. The point
is to work with your team in a couple of hours to produce the statement of value to
customers and get away from the technical implementation underpinnings.

Vision Box | 93

1 For a bio, see https://en.wikipedia.org/wiki/Jim_Highsmith.

Jim Highsmith1 introduced the idea of the product vision box, similar to a cereal box,
which you can use to describe the main features of what you’re building. The vision
box acts as a kind of executive summary. The small space forces you to pare down the
concept to the three to five most impactful things from your customer’s view.
Figure 5-3 shows a version of this.

Figure 5-3. The product vision box

To structure this short activity with your team, ask of your system the standard
reporter questions: who, what, when, where, why? Your answers to these should help
you quickly put together your box.

Mind Maps
A mind map is a way to organize and classify ideas or information. You start with a
single box in the middle and allow subtopics to branch out from it. In turn, these sub‐
topics each have subtopics. In a sense, it’s a visual representation of an outline. It acts
as an aid in information architecture, and you should consider a mind map a neces‐
sary first step before any work is done on designing a user interface. It will act as a
method for organizing the areas of functionality you will expose. It can serve as a
method for determining the placement of your reveals (see Chapter 2 on the parti
and reveals).

Mind maps are wonderful to create in collaboration with your team. Figure 5-4 shows
an example.

Two great tools for making these are Lucidchart and XMind. You can use both free of
charge. Lucidchart is online and works well when you want to collaborate. XMind is
locally installed, and the paid version allows many more advanced features, such as
saving to PowerPoint.

94 | Chapter 5: Semantic Design Practices and Artifacts

https://en.wikipedia.org/wiki/Jim_Highsmith
https://www.lucidchart.com/
https://www.xmind.net/

Figure 5-4. Mind map image from Lucidchart

Use Cases
At this point, you can use any mural, mind map, product vision box, and material
generated in Design Thinking to begin to make your use cases. A use case captures a
user role who performs an action to derive some clear value. These are captured two
ways: in the form of a Unified Modeling Language (UML) diagram, and in a written
list of steps.

Here is a template for use cases that you can use:

Overview
Provide a one-paragraph description of this use case.

Actors
Identify primary and supporting actors.

Relationship to Other Use Cases
This use case is related to the following use cases:

• Extends Use Case 1 (link)
• Includes Use Case 2 (link)

Use Cases | 95

Preconditions
The following must be true for this use case to be started:

• Condition 1

Postconditions
Describe what will be true when this use case completes:

• Condition 1

Primary Flow
Describe the main flow of this use case, excluding error conditions:

1. Step 1
2. Step 2

Alternate Flows
Describe any desired alternative flows or error conditions. Identify step numbers
where the alternative paths begin.

Special Requirements
Identify performance, scalability, availability, and internationalization requirements
associated with this use case.

Capture all of your use cases together in a single list. These will become user stories
or functional requirements. The Design Definition Document, which we cover in a
moment, captures the nonfunctional requirements. Together, these are converged and
refined into user stories, with acceptance criteria capturing both functional and non‐
functional requirements from these two sources.

Guidelines and Conventions
Principles are broad statements to guide decision making when no direct, specific
guideline exists. Guidelines and conventions consist of a set of unambiguous direc‐
tives for development teams to follow. So they are more specific and concrete

96 | Chapter 5: Semantic Design Practices and Artifacts

direction on the management of certain processes, the use of certain tools, or the
management of people than principles are.

You should publish guidelines on focused topics. They should state how you want
people to use a particular tool, practice, methodology, or process. You might create
guidelines on the Use of Security Groups in the Azure Cloud, how to use the Deploy‐
ment Pipeline, best practices on writing integration tests, and so forth.

Publish conventions so that everyone does something the same way. You might have
conventions on how to format source files to make them more readable and more
readily understandable. The value in conventions is that your code is easier to main‐
tain because it is quicker to read and understand, and tooling can be more predicta‐
ble. It’s not that camelCase is inherently better than InitialCaps for naming methods
(as in Java versus .NET), but if everyone does it the same way, you can eschew obfus‐
cation. When 80% of the cost of software is in the maintenance, making it easier to
read and understand and find issues and fix them is a valuable long-term investment.

You don’t need to invent many of these convention or style guides from whole cloth.
For common languages and frameworks, first search to see whether someone has
already written a convention guide that you can borrow. Here are some I’ve used, and
you can, too:

Java
Follow the Google Java coding guidelines.

JSON
Follow the Google JSON coding guidelines.

React
Follow the Airbnb coding standards for React.

These can often be checked as part of your automated build process.

You should create and publish guidelines and conventions for certain critical things
in your project that you know must be correct and will make a material difference in
the success of the architecture and strategy. For example, suppose that you have
developers who don’t get along and organize code differently in their own silos, and
extensibility really matters in your project. You want to be sure to call out how to
organize the codebase so that they can support your aim. You might write a guideline
document stating the structure for the projects under the service, as shown in
Example 5-1.

Guidelines and Conventions | 97

http://bit.ly/2lX951m
http://bit.ly/2mlpnBa
http://bit.ly/2kSiVkR

Example 5-1. Sample convention for a service project structure

+---<application name>
: +---<application name>-utils
: +---<application name>-domain
: +---<application name>-service-api
: +---<application name>-service-impl
: +---<application name>-service-client
: +---<application name>-web

Then, you can go the extra mile and explain the purpose of each of these subprojects,
to help justify why you’re asking people to do the extra work to separate them out.
The subsections that follow provide some examples that can be used in any language
type (but Java is assumed here).

Utils
This subproject provides common utility functions used throughout the application:

• It should contain utilities relative only to this application.
• It must not be dependent on any subproject.
• It may depend on libraries outside the project (e.g., Log4J).
• The artifact must be a JAR artifact.

Domain
This subproject provides common domain objects representing nouns (entities) used
throughout the application:

• It should contain domain objects relative only to this application.
• It may depend on the Utilities project.
• It may depend on libraries outside the project.
• The artifact must be a JAR artifact.

service-api
This subproject provides interfaces to business functionality used in the application:

• It must contain only interfaces at the level of business functionality and capabili‐
ties relevant to this application.

98 | Chapter 5: Semantic Design Practices and Artifacts

• It must contain only interfaces and not implementing classes that belong in the
service-impl project.

• It may depend on the Utilities project and/or the Domain objects project.
• It may depend on libraries outside the project.
• The artifact must be a JAR artifact.

service-impl
This subproject provides the implementation of the business service interfaces:

• It must only contain business service implementations.
• It may depend on the Utilities project and/or the Domain objects project.
• Dependencies outside of the project are allowed.
• The artifact must be a WAR artifact.

service-client
This subproject provides the client code necessary to call business functionality:

• It must contain only service client implementations; that is, the classes required
to invoke the service, sharply distinct from any business logic.

• It may depend on the Utilities project and/or the Domain objects project. By def‐
inition, it depends on the service-impl project.

• Dependencies outside of the project are allowed.
• The artifact must be a JAR standalone or JAR built and added to classloader

within a WAR artifact.

This is just an example of the sort of thing you might specify.

Approaches
Approaches are short versions of Design Definition Documents (discussed in the fol‐
lowing chapters). These are perhaps 3 to 10 pages long and cover a specific
engagement.

For example, we had a customer who wanted to integrate with our APIs in a certain
unusual way because of constraints of their legacy system. So, the architect wrote an
Approach document describing how the integration should be performed, the proto‐
cols to use, where to get certain data, the security implementation, and so forth.

Approaches | 99

Approaches have a loose structure, other than the expected front matter. The remain‐
der has headers for the sections you need to draw attention to. Make sure they’re
MECE (Mutually Exclusive and Collectively Exhaustive).

Approaches are meant to be written quickly and focused on a specific local problem.
They are not used when designing an entire new system or process or strategy.

When the development teams or sales teams come across one of the following situa‐
tions, you have something of architectural significance on your hands and you should
create an Approach:

• The requirement is associated with high business value and changes could break
mission-critical/high-revenue components (such as Shopping), or there is a large
new opportunity.

• Has high technical risk (our organization has little real experience with a pro‐
posed new technology).

• Has high business risk (could jeopardize our reputation, change intellectual
property, mergers, and acquisitions).

• The requirement is “net new" or first-of-a-kind for us: none of the responsibili‐
ties of already existing components in the architecture addresses it.

• The requirement would cross service boundaries/create a new orchestration.
• The proposal requires crossing datacenter/cloud boundaries.
• The requirement is a concern/on the radar of a particularly important/influential

stakeholder (big customer, President, etc.).
• The requirement has Quality of Service/Service-Level Agreement (SLA) charac‐

teristics that exceed current ones.
• The requirement has caused budget overruns or client dissatisfaction in a previ‐

ous project with a similar context, suggesting that it needs more senior attention.
• The component breaks backward compatibility of an in-use production service

Design Definition Document
The Design Definition Document (or “D3”) represents one of the crucial elements of a
successful semantic design practice. This is a template that I have used with great suc‐
cess, and therefore little modification, for more than a decade. Here, I’ll give you the
basic outline of the template, which you can adopt and adapt for your purposes.

All of the work you have done in the conceptual stage has been captured in a variety
of models, including your lookbook, parti, personas, use cases, guidelines, and more.
These have helped you define your own terms and think about what you’re doing,

100 | Chapter 5: Semantic Design Practices and Artifacts

how you want to do it, and how it should be structured a bit. Some of these are inter‐
nal, just for you. These help you to figure out where and what your semantic field is;
they don’t so much help others. It’s not user-friendly to expect someone to sort
through that collection of material, which is purposefully idiomatic.

But all of that concept work is not useful if it’s not communicated to others in a way
that is clearly executable. You must represent your concept in an act of translation in
a way that is comprehensive in scope, captures the relevant elements in a single place,
and is testable and measurable. The D3 is crucial to our practice because it acts as the
translation of your concept into an executable, testable specification.

In this section, we present the template with the questions that you need to answer. In
the next four chapters, we cover each of its main areas (business, application/services,
data, and infrastructure) from a comprehensive view. Those chapters will help you
formulate the content, the answers to the questions in this template.

Your audience for the D3 are the analysts who will write detailed requirements, devel‐
opers who will write the code that realizes your design, testers, the operations or
“run” team, compliance officers, “architects” in your organization, and the occasional
executive who might need to understand how all of your quiet and contemplative
concept work is going to help realize actual business value.

This is not a blueprint or specification exactly. It is at a technical and precise level. Its
scope is the nonfunctional requirements of the system. The functional requirements
are expected to be expressed elsewhere, say in the form of user stories derived from
your use cases.

Here is the template:

Design Definition Document Template

Program Name Design Definition
Executive Summary

State the purpose of the program and what this document covers.

About this Document
This section contains metadata about the design document itself.

Authors
Names of people who did most of the writing.

Contributors
Names of people who contributed some writing or key ideas.

Design Definition Document | 101

Reviewers
Names of people who did some quality control on this document.

Document State
Is this a draft, in review, or published?

Use of IETF Keywords
This document employs a subset of the Internet Engineering Task Force key‐
words found in RFC 2119. These words are MUST, SHOULD, MAY, and their
counterparts MUST NOT, SHOULD NOT, MAY NOT. They are capitalized
throughout the document to draw attention to their special status as keywords
used to indicate requirement levels.

Business Design
Describe the business objectives, drivers, and expected benefits for undertaking this
program.

Capabilities
Describe what capabilities the solution will have. What new benefits are provided
in functional and nonfunctional terms? What new scalability, reliability, global
distribution, performance, resilience, extensibility, manageability, portability,
security, or other benefits are expected? Don’t advertise or market to your audi‐
ence; be concrete and concise.

Strategic Fit
What element of the business and technology strategies does this help realize?
How?

Business Drivers
Why are we doing this? What priority is it among known others?

Assumptions
What is expected to be in place for this solution approach to be successful? Refer
to funding, availability of key resources, operations support, contracts, key pro‐
cesses, procurement, Global Network Operations Center (GNOC), regulations,
stated standards and guidance or technology patterns from the leadership team,
and so on.

Constraints

Applicable laws
Does the Americans with Disabilities Act (ADA) apply?

Applicable regulations
Reference need to maintain compliance with Payment Card Industry (PCI),
Personally Identifiable Information (PII), General Data Protection Regula‐
tion (GDPR), and System and Organization Controls (SOC). Do not merely

102 | Chapter 5: Semantic Design Practices and Artifacts

https://www.ietf.org/rfc/rfc2119.txt

state that these laws exist, state how your design specifically accounts for
supporting them so that the developers can be sure to implement it
accordingly.

Risks
List business risks in doing the project as envisioned, risks to the customer or
existing business prospects or processes, how it can be maintained and operated
properly, availability of staffing resources, securing funding, countries/markets,
the inherent risks in trade-offs made, and so forth.

Impacts
What will this project or this architecture create in terms of organizational, train‐
ing, and process needs that affect the business? How will the business need to
change to best support this? Are there new processes that are expected to be
adopted internally within product development to support a new technology or
skillset? Should any roles and responsibilities change?

Stakeholders
List the organization, roles, and named individuals who stand to win or lose by a
good or bad outcome on this program. Who must change to accommodate it?
This will eventually feed your Responsible, Accountable, Consulted, Informed
(RACI) document.

Governance
What is the framework you’ll use to govern this project? Must you invent a new
committee? Are there design review processes or cloud governance or financial
governance processes to follow?

Application Design
Application overview and general strategy description.

Applicable Standards and Policies
List of links to published guidelines and conventions for development teams to
follow. For example, any internal policies, industry-specific standards, PCI guide‐
lines, ADA guidelines, and so forth that you expect teams to follow.

Guidelines and Conventions
Links to published guidelines and conventions for Dev teams to follow, such as
published internal standards, Google Java coding guidelines, JavaScript conven‐
tions, code quality guidelines, and so forth.

Patterns
Diagrams, links, and descriptions of patterns for Dev teams to follow in the
implementation. Reference any design patterns for designing and developing
services as applicable.

Design Definition Document | 103

Services
List services to be created or existing services to be reused, along with the owners
of those services.

Security
Security requirements and design: how data will be secured, encrypted, author‐
ized, authenticated at rest, in transmission, or in processing. Use of Open Web
Application Security Project (OWASP) Top Ten and how those are addressed.
What security groups are required? Highlight security requirements for develop‐
ment such as bastion hosts. List transport or Transport Layer Security (TLS)/
Secure Sockets Layer (SSL) requirements.

Availability
Target SLA in terms of 9’s uptime and how specifically the architecture will sup‐
port such numbers. How recoverability, disaster recovery, and the like is being
supported. Consider these questions:

• What are the compensating actions taken in a failure?
• Will a circuit breaker be used?
• What redundancy is there?
• How is caching used to support certain failure events?
• Health-check page?
• Multideployments?
• How are specific key components particularly designed for resilience and

high availability? Are you using multiple cloud zones?
• What is your service replacement and versioning strategy to support zero-

downtime releases?

Scalability and Performance
What number of transactions per second at this latency and CPU utilization
must the solution support? What is the unit of scale (container, virtual machine,
cluster)? Use actual numbers and calculate the impact on server footprint that
will have. What are the ways in which the application and services can scale
through statelessness, Auto Scaling Groups (ASGs)? State the ASG threshold so
developers aren’t left to guess.

Extensibility
Will you use certain patterns in your services such as Strategy or Specification?
How will APIs specifically support the ways that the application affords future
change, how will the application support customizing per customer, and how are
configurations afforded?

104 | Chapter 5: Semantic Design Practices and Artifacts

Testability
How will this be tested, what tools will be used, and what specific automation and
targets will be in place? Include functional testing, regression testing, integration
testing, and chaos/resilience testing. Load testing plan? How will this be automa‐
ted? What specific toolset used in what process?

Maintainability
What software guidance for developers will help make the code base easier,
cleaner, simple to maintain in the long term? Code repository needs or project
needs? What is the maintenance schedule anticipated or downtime for upgrades
strategy?

Monitorability and Metrics
What tools and dashboards are required, logging requirements, how the software
itself must support event publishing to increase visibility. What are the specific
metrics that will indicate system uptime, health, and proper performance? How
will alerts be triggered at what threshold? Consider CPU, memory, drive/filesys‐
tem volumes, process monitoring, logs, event logs, and required procedures.

Data Design
Database Strategy

Overview the general data management strategy for this application. What spe‐
cial customer requirements should be called out for careful handling? What are
the risks involved with this strategy? Expected benefits?

Standards and Guidelines
What is the applicable set of data technology standards, guidelines, and tools?

Technologies
What database technologies will be used for what purposes, what specific serv‐
ices? Are there any new database technologies being used, or new versions?
Where can developers learn more? What guidance exists for them?

What instance types are being used? Are the available networking modes the
proper type for that database? Have you used the cost calculator to size and price
instances?

Import/Export
How will customers get data into your system?

If you’re porting data, what are the source and target maps?

How will customers get their data back out of your system for their own use?

Design Definition Document | 105

Replication, Backup, and Recovery
How is data replication supported? How will you distribute data globally?

What is the backup/recovery strategy? Will you store full or partial backups? For
how long? On what systems, for what services?

What is the bulk data replication strategy? What is the multiregion strategy?

Data Versioning
How will your database be versioned? What about the data itself?

Database Automation
How will the database farm be automated and updated? What tools, pipelines,
and processes are in place or should be developed?

Database Performance Considerations
What performance thresholds for transactions within the database are expected?
Do you have a known level you must support?

Data Warehousing, Storage, and Management Requirements
What data volumes must be supported? Data movement policies and require‐
ments. Reference how logs will be stored, managed, or forwarded.

Data Maintenance
How data will be maintained, data retention policies, scripting to offload, data
restoration. How will data be populated for different environments for this appli‐
cation? Will data be truncated? At what interval? How will data be encrypted?
Are there GDPR or PII/PCI requirements to be stated for development teams or
infrastructure admins?

Data Migration
How will data get into the system? Is connecting to a legacy system required? Is
Golden Gate or Kafka or Extract, Transform, and Load (ETL) or another tool in
use? What time period is anticipated for this? Will data need to be synchronized
over a certain period of time?

Data Volume
What is the expected starting volume of data? What size database is anticipated?
Will there be multiple data stores? How many rows are anticipated to be added or
removed daily for the key services?

Logging
What are your log rotation policies? Are there requirements for Splunk or
another monitoring tool?

Reporting
How will we do reporting for customer use? For internal use?

106 | Chapter 5: Semantic Design Practices and Artifacts

Auditing
How must the system audit user changes to track and report in case of a security
breach or for compliance?

Security
How is the database farm itself specifically secured? Will data be encrypted at
rest, and how will that be managed? How will access to different environments be
managed, including at the development level?

Analytics
What data must be exposed by the application to support business analytics. How
must that data be exposed to support analytics tools? Will you have a data lake?
How will that be maintained, accessed, and used properly?

Caching Strategy
Requirements for caching and the locations and technology to support caching.
How distributed is it? Any guidance for application developers as applicable.
Guidelines on caching for implementers and for developers subsequently using
it.

Machine Learning
What specific processes must be called out for machine learning? How will data
pipelines be supported? What is that entire subsystem design? Feature engineer‐
ing considerations.

Infrastructure Design
Infrastructure overview statement.

Infrastructure Strategy
What are the patterns you employ? Are there deployment diagrams, component
diagrams, other UML? Cloud infrastructure design? Do you need to include load
balancers, DNS, application servers, networks, CIDR allowances, security, data
servers, firewalls, storage, queues, and so on?

Latency and Performance
How does your infrastructure support the specific application and customer-level
SLAs described earlier?

Infrastructure Security
How will the environments be secured?

Maintenance
How will teams perform patching (hopefully no-patching)? Related policies such
as operating system (OS) upgrades, replacements.

Standards, Guidelines, Conventions
References or links to existing guidelines that you want the teams to follow.

Design Definition Document | 107

Infrastructure as Code (IaC)
References to templates, best practices, samples.

Environment Guidelines
When/how to use reserve instances, autoscaling groups, VPN access to different
environments by different teams, and so on.

Global Distribution
How do we enable and maintain the ability to distribute our applications glob‐
ally? Are there any particular concerns, such as regarding the Chinese firewall?
Concerns associated with performance and security in globally distributing?
Server replication processes and automation?

Immutable Infrastructure
Describe how your infrastructure is immutable, including process automation.

Hybrid
Are there any necessary strategies for hybrid architectures (solutions that span
on-premise and cloud)?

SLAs
State SLAs that you must meet. Put them in mathematically testable terms, from
a customer perspective. Include the panoply of customers, not only the end user.

Considerations for Composing Your Design Definition
That’s the template. Each section should liberally include UML diagrams, pictures,
and other drawings to help illustrate your requirements. You are the owner of the
nonfunctional requirements, and this is your opportunity to state them.

Your prose must be simple, directive, and testable in every statement. Do not allow
yourself to write a sentence like, “Use caution when employing the thus-and-such fea‐
ture of the new bleeding-edge database.” That statement is problematic because it is
impossible to test. How can a developer know whether they are “using caution”? An
actual human cannot sit at an actual desk in front of an actual computer and “use
caution.” They can either flip the bit to turn that feature on or not. If you’re tempted
to write something like this, catch yourself and decompose it using the IETF key‐
words (“MUST,” “MAY,” “SHOULD,” whose intended meaning in this context is
clearly spelled out on the IETF’s website).

Your document should vary based on the specific work you’re doing. Just make sure
to use the front matter as specified earlier, including the IETF keywords. This will
encourage you to write very directive, unequivocating, testable statements. You want
to do this such that there is no further question about what you’re specifying and the
programmer can read your document and go implement your design without a lot of
confusion or pursuant clarifying emails. Also make sure to have sections for each of

108 | Chapter 5: Semantic Design Practices and Artifacts

https://www.ietf.org/rfc/rfc2119.txt

2 For that project, the team got to production on time and on budget with the initial milestone. The software
went on to win industry innovation awards.

Business, Application/Services, Data, and Infrastructure. This will encourage you to
consider the comprehensive view.

Writing a really meaningful document like this can be grueling work. Enlist experts
and colleagues. Do research. It takes considerable time, even if you’re very knowl‐
edgeable and like writing a lot. Expect that your design document will be very long,
50 pages at a minimum, for a small system. Mine are typically 110 or 150 pages,
sometimes hundreds of pages. I work with a chief architect, and together we will pro‐
duce a 200-slide deck. It’s basically like writing a Master’s thesis for each system. If it’s
any shorter, you’re not covering enough material, digging deep enough, being specific
and directive enough, or you don’t know the answers. You just need to do more work.

People might scoff that no one would read a document that long. I’ve certainly heard
a few people say that to me. Here are a few thoughts on that:

• It doesn’t need to be a single, giant monolithic document. It could mean here a
dedicated wiki. The point is not to make something static and gigantic, it’s to be
sure you’re capturing all of the relevant and necessary aspects

• It’s the formalization of your concept as it evolved since the lookbook. It’s closer
to being an executable blueprint.

• Different people will read and focus on different parts of it. The operations team
might get a lot more out of the Infrastructure section than the UI folks will.

• Teams read certain parts at different times. It’s important that it’s all in one place
to have a coherent whole. The document itself is a system, too. It should be highly
cohesive and loosely coupled so that it’s easy to use parts of it as perspectives.

• When I start a big, mission-critical project, I give the team appropriate time to
read it and ask questions, and we’ve even given mandatory tests on it before, with
prizes for the winners.2 You can’t let it be an afterthought.

• This document is a cornerstone of understanding, communication, clarity, writ‐
ing great requirements, setting expectations, making project plans, and making
more predictable or accurate timelines. You can and should refer development
teams to it often. As new people enter the project, they’ll find it invaluable when
the current teams have no time to stop and train up the new folks.

Here’s another view on this: if people think it’s silly or are unwilling or grumbling
about reading 50 or 100 pages or 150 slides that inform them what they are supposed
to build and why and how, why on earth would you allow them on your team? We

Design Definition Document | 109

might equate this to the old adage that “if you think education is expensive, try
ignorance.”

The more you can automate into the software itself, the better. That is expected. The
document is of no inherent value. It will be thrown away. But how will teams first
know what to automate?

Building software of the kind of scope we’re talking about here means that the com‐
pany is spending maybe a year, maybe three to four years and millions (or tens of mil‐
lions) of dollars of someone else’s money. That’s very serious business. If the
developers or the engineering leaders don’t recognize the gravity of that responsibility
and still think such a document is a bad idea, I don’t want them in my organization.
Coding your heart out into the wide open sky with nothing but disconnected phrases
contorted into the template of the user story represents mere tactics without strategy:
“the noise before defeat.” Those projects often fail, and it’s dismally tiresome to see the
defeat slouching ever closer toward us, especially when we can avoid it.

Of course, your project can still fail and have a thousand things go wrong with a good
design document. And they will. This makes no guarantees. But it does give you a far
better chance of success, especially when working with multiple, contentious, litigious
stakeholders on a very complex project with many unknowns. This will help your
project succeed.

Writing a hundred pages up front is not the answer. What is the answer is this:

• Creating a concept of the whole picture as well as it’s understood and committing
that to an external, formal format beyond the designer’s internal thoughts and
conversations that others can see, read, understand, and use.

• Performing a thorough and ongoing analysis and deconstruction of the concept
based on its semantics. You don’t need to complete the entire document up front.
We just must make sure we do visit all of these concerns, understanding that they
will evolve.

• Making a crisp, declarative, unambiguous, directive, testable set of design deci‐
sions that are clearly derived from the concept and record them formally in a
public recording for the many diverse stakeholders.

That is, in a nutshell, the way of semantic design. That is the answer.

Things will undoubtedly change over the course of the project. That’s expected. So
having this record also helps inform “architecture sprints.” Your architects can work a
sprint ahead of the developers and get them short local designs. But don’t do that
without first having envisioned the entire thing, or expect a lot of churn. Churn
means redoing stuff that’s done, which takes time and money, which makes projects
fail.

110 | Chapter 5: Semantic Design Practices and Artifacts

Of course, the document itself will serve a purpose and then fall away. Things will
change. So it will eventually give way to smaller, local documents. That’s a good thing.
They’ll be coherent with the concept. Alternatively, you can update the document,
version it, and republish it depending on your project needs. Again, “document” here
could mean evolving wiki pages or some other team site as long as its in a shareable
and formal format.

Position Papers
These are comments that your architecture/design team makes on a particular tool,
framework, style, or trend. When blockchain reached the common developer’s minds
recently, everyone wanted to make a proof of concept and look for places to imple‐
ment it. When senior developers and development managers and directors stop you
in the hall and ask you about a trendy new technology, you know it’s time to write a
position paper. You need to make a statement to the broad organization on your views
on the value of this technology, and what applicability (if any) you see for it.

For example, when the Gartner hype cycle sees a technology (such as, say, block‐
chain) heading for the apex, it’s probably time to write a position paper.

I’ve also had to do so in the past for warring internal factions: some thought we
should use Python for machine learning, and others not; some thought we should use
JavaSpaces, and others not; some thought we should use Hibernate, and others not;
some thought we should always use stored procedures, and others never; and some
thought we should use aspect-oriented programming; and so on. Or, consider a sce‐
nario where we all like a certain rules engine, but people do not know when or how to
use it consistently.

Position papers tend to be oriented around a specific framework, and you’re stating
for the entire organization what your position is so that the organization can consider
it further. Consider the objects of your position papers through the lens of people and
process, as well as technology.

Position papers tend to be needed in two situations:

• When there is some emerging technology that people are excited about and you
need to investigate to help keep entropy contained, lest developers begin ran‐
domly downloading some 0.01 version tool and marrying the organization to
something that might be insecure, unsupported, inappropriately licensed, or
wrong for some other reason. You want to state your reasons to help nurture the
entire organization along.

• When there are two warring factions in your organization and you need to help
clarify and set a direction for them.

Position Papers | 111

https://www.gartner.com/en/research/methodologies/gartner-hype-cycle

You can use a ThoughtWorks Radar here to help you see when things might be com‐
ing around in your own organizations as solutions looking for a problem or when a
turf war or religious war is about to break out. Your position papers should go a long
way to solving this.

RAID
The RAID document comes from the world of project management, and its name
stands for Risks, Assumptions, Issues, Dependencies.

This is a document that will be owned and carried through the life of the project by
the project or program manager. But you must start it off properly. You as the archi‐
tect are the first person to be able to see and understand the risks, assumptions,
issues, and dependencies that will matter most as you begin your project.

Let’s define the words that make up the RAID.

Risks
Risks are something that could possibly occur in the course of your project, and
if they did, they would have a detrimental impact. Consider risks across the areas
of people, process, and technology. Second, characterize the likelihood of this
event occurring as well as the anticipated impact or severity. Third, ensure you
have metadata such as owner, status, and date raised.

Assumptions
This is a log of the factors that you anticipate will be in place to contribute to the
success of your project. For example, you might assume that the CIO will accept
your decision to deploy in the Microsoft Azure cloud, or that you will be able to
hire three scrum teams. Or, you might assume that you will meet your first
project milestone phase gate in order to unlock a new tranche of funding.

Include the date raised, a short name, and a description along with the reason for
having made this assumption as well as the action to validate that the assumption
is true. You can also include a necessary action or response to remediate, if the
assumption proves false. Always include a status column with the values “open”
or “closed.”

Issues
An issue is something currently presenting a problem in the project. These must
be logged, foregrounded, and actively managed. Your RAID document’s issues
tab will have columns for ID, short name, description, impact description, impact
level (high, medium, low), management priority (high, medium, low), mitigation
plan, owner, and status. At the outset, you might not have any of these.

112 | Chapter 5: Semantic Design Practices and Artifacts

https://www.thoughtworks.com/radar

Dependencies
The columns include ID, date raised, short name, description, whether it is an
internal or external dependency, the date it must be resolved, priority (high,
medium, low), and status (open, closed).

This artifact is a spreadsheet, with four separate tabs, one for each letter. Each item
should have its own ID for easy reference.

The RAID is a log, so you do not delete items as they are resolved; change their status
to closed. This will help you in later projects to anticipate what kinds of concerns you
will see. It will also help you in today’s project to see how much progress you’re mak‐
ing or whether you need to change your management: if you are opening as many
new items as you’re closing, your project is in churn and you need to get the manage‐
ment team together and evaluate what’s going on, why information is not flowing or
how you can better anticipate challenges, or how you can reduce areas of unknowns.
Identify the source of the chaos.

RAID Template

You can download a simple and straightforward RAID template.
Also see the templates available for download at this book’s com‐
panion website, AletheaStudio.com.

Perhaps it seems unusual to have this document started at this stage, before you’ve
created the architecture document. But you already should be able to anticipate and
identify many of the risks, assumptions, and dependencies at this point, even if there
are no issues yet before the building work has begun.

Even if you are not the development manager or project manager, the creative archi‐
tect is the spiritual leader of the endeavor. You help conceive and create it, and should
assist in identifying in an actionable, formal manner what can go wrong so that you
can help add effort and care in those areas.

Review the RAID regularly, such as at project status meetings, to ensure that you are
actively managing the project toward success.

Presentations and Multiple Viewpoints
The building architect has the paying client for whom they are working. You have the
same thing: the executives running the show. Perhaps you identified a need that no
one else saw and are proposing some work. More often, someone in charge will ask
you to do something that requires architecture work. Either way, someone is paying
for it. Eventually, they will want to know how their money is being spent, and will
expect the dots to be connected for them on how your proposal solves their problem.

Presentations and Multiple Viewpoints | 113

https://bit.ly/2DALXOH
https://www.aletheastudio.com/

The Pitch Deck

For an extended and practical set of patterns for how to run the
meetings and make the decks that will get your ideas across to
executives and teams in a compelling way, see this book’s compan‐
ion text, Technology Strategy Patterns (O’Reilly, 2018).

Architecture changes by definition are not small, simple, local changes. You must
have executive support at the highest level you can get: the COO, president, even the
CEO for large projects.

To help you gain this support, put yourself in the executives’ shoes and with empathy
for their position, their context, and their charge, consider what pains them and what
keeps them up at night. You must do two basic things:

• Map your ideas to their pains and concerns
• Illustrate these in a way that speaks their “love language”

I know one very senior executive who loves spreadsheets. He adores spreadsheets. I
believe in the holiday cards he sends his friends and family, there’s a stocking hung
right next to those for children on his chimney reserved for Excel. Giving him a pre‐
sentation that is something other than a decorated spreadsheet illustrating how you’re
managing costs gets you thrown out of the room and your project cancelled. He
doesn’t want to hear the ideas as much as read the numbers. He definitely doesn’t
want to see any text. Spreadsheets are his “love language.” They are the way he sees,
thinks, feels, understands, and interprets work.

He doesn’t think in terms of project milestones, the points at which you ship along
the way. He doesn’t think in terms of quarters. He thinks only in terms of annual
budget cycles.

Working for this client, you need to express the architecture in a way that maps to
these concerns and speaks in this language.

You can’t give them 200, or even 20, architecture slides. They won’t read it. Then they
won’t have the right expectations about what you’re doing or why. Confusion, frustra‐
tion, and heartbreak ensues. Prepare a short-pitch deck that summarizes your project
based on your Concept Canvas. It should include what you’re doing, why, timeline
and budget estimate, and what the state of the world will be (what value or new capa‐
bilities the executive gets) at the end of the project. Keep it to 4–8 slides. You’ll be in
good shape to earn their support for your project.

114 | Chapter 5: Semantic Design Practices and Artifacts

https://oreil.ly/YgqNc

Summary
In this chapter, we reviewed the kinds of documents that you can create to represent
architectural concepts and practical designs as well as how to present them. Follow‐
ing these will help your work be clear and actionable by many teams perhaps in a
variety of time zones.

When you write these documents, keep the following tips in mind:

• Your design documents are systems, too. If you think of these
written documents as you are structuring them as if they were
systems, you then design the documents themselves just as
you do the architecture itself.

• Make each section and each component highly cohesive
(about one topic).

• Make each section loosely coupled so that readers can take a
break and know where they left off and focus on just one sec‐
tion that they might refer back to for a specific answer. You
can’t make it one long Turing tape of interrelated ideas.

• The Design Definition Document must be MECE (Mutually
Exclusive and Collectively Exhaustive). It must be comprehen‐
sive, and each part must not be repeated elsewhere. Keep the
idea of a foreign key from relational databases in your mind to
help with this as you write.

As you make your documents, prepare them in a way that they serve as a pool from
which you can quickly and easily draw as you build the 5 or 10 or 15 decks for the
presentations that you’ll need to make to various executives, peers, teams, and other
stakeholder groups.

In the coming chapters, we explore each of the major areas of traditional architecture,
taking an enterprise view. Your work will vary between the enterprise and executive
level, and also at the local application level. When you design one system, whether it’s
a new application or a modified business process, you must consider all the view‐
points of business, application and services, data, and infrastructure. For this reason,
each of the next four chapters is devoted to those respective areas, and in some tech‐
nical depth. We’re switching gears.

Summary | 115

CHAPTER 6

The Business Aspect

Allow me, dear reader, to state some propositions regarding the design of software,
for your consideration:

Proposition 0
By definition, any purposive compound of objects and their relations is called a
system. (Examples can include a software application, a datacenter, a business
organization, a business process, a chemical compound, a written document, a
play, a music composition, and so forth.)

Proposition 0a
These compounded elements and their relations are not innate, but are proposed,
socially constructed, captured, augmented, determined, and filtered by the design‐
ers of that system.

Proposition 0b
Any system is either designed explicitly (purposively), or implicitly. If the design
is implicit, its design is regarded and comprehended only after the fact, after the
system is in place, as a result of a series of accidents, which is likely non-optimal.

Proposition 1
Certain principles apply to well-designed systems, and these same principles can
be employed across the design of any system, though seemingly disparate.

Proposition 1a
The attributes of any well-designed system include, at a minimum:

Fitness to purpose
It must serve what it purports to serve, to help users achieve their goals
efficiently.

117

Felicity
It must afford that purpose in a way that minimizes friction and noise, mak‐
ing it easy and delightful to use, consume, and participate in.

Flexibility
Given that the system operates in a world of frequent change, it should be
designed in a way to allow modifications, updates, and extension according
to future needs.

Proposition 1b
An additional set of attributes contemplated for a well-designed system (software
or otherwise) include the following:

Maintainability
It should be easy to correct faults, improve performance, and adapt to a
changed environment.

Manageability
You should be able to keep the system safe, secure, and operating smoothly.

Monitorability
You should be able to see into the system, to measure and understand how it
is working.

Performance
It must excel at its purposes.

Portability
It should be able to operate in a variety of contexts.

Scalability
It should be able to operate at the same level, even under increased load.

Proposition 2
The software system you design will operate within a business context, and there‐
fore, to be optimally designed, the software system must be designed to support
and operate within this business context or a new business context the software,
in its innovation, potentially requires the creation of.

Proposition 3
The business is a system of systems (these are business elements that are also sys‐
tems: your service-oriented development organization, the sales delivery process,
the architecture review board, the strategic funding process, local executive steer‐
ing committee meetings, the joint venture strategy, the project execution plan,
and so forth).

118 | Chapter 6: The Business Aspect

Proposition 4
The business therefore can be designed as systems; it operates according to these
same principles.

Proposition 5
Because the semantic designer (creative architect) is foremost a designer of sys‐
tems, the purview of the role includes the proper design of the software as well as
the design of the business systems themselves.

Conclusion
The business is a system just like the application is, so you as the creative director
must help design the business itself as a cohesive and coherent system according
to these principles, to achieve a better overall business outcome. The resulting
business, as a context in which software is developed, will help improve the soft‐
ware itself, and help you make it on time and on budget and according to user
needs. They inform and help (or hurt) each other. This is shown in Figure 6-1.

Figure 6-1. The business and application systems inform each other

So there are two points here:

• You might not have historically considered it part of your job, but to be especially
effective, consider your purview to include the design of the organization itself
and its processes according to received architecture and design principles.

• When you design especially effective software, you not only consider the applica‐
tion frameworks and software attributes, but consider the impact the business
will have on your system, and the impact your system will have on the business.

Therefore, now we turn our attention to the business itself, to ask specifically:

• How can you see your organization and processes as systems in themselves to be
understood and purposively designed?

• After you begin to see your organization through the lens of systems, how can
you optimize the organization and processes toward maximum effectiveness?

• How can you determine the impact your burgeoning system might have on the
business?

The Business Aspect | 119

• How aligned is the business with the system you are creating? As you bring it to
life, can it be properly supported?

By the end of this chapter, you will be able to answer these questions with the practi‐
cal tools we’ll introduce.

Capturing the Business Strategy
Business Architecture as we define it refers to the formal representation and active
management of the design of the business. Any system that operates within a business
will be heavily informed (for better or for worse) by this business context.

The business context includes the strategy, the organization design, business pro‐
cesses, culture, applicable laws and regulations, and other elements that we discuss
shortly.

At this juncture, we are interested in a level of strategy in document form, usually a
deck. Broader statements such as “establish our company as the leader in the sprin‐
kled donut space” are not useful here. Such documents will perhaps delineate how the
business leaders propose to answer three key questions:

• How will we create value? You need to understand your target markets, how the
markets are expected to change, and how your products and services specifically
address your markets’ needs.

• How will we capture value? What are the ways you can effectively compete? How
will you manage your technology to align with these objectives?

• How will we deliver value? What processes and capabilities do you need to bol‐
ster, streamline, expand, and improve to meet your customers in the market?

The Business Architecture Working Group of the Object Management Group
(OMG) describes Business Architecture as “a blueprint of the enterprise that provides
a common understanding of the organization and is used to align strategic objectives
and tactical demands." I’m not a big fan of the “blueprint” metaphor, for reasons
which should by now be obvious. But the OMG specifies many popular things in our
industry, so let’s build on that for a moment.

Provide a Common Understanding
It is important to know your company’s org chart. For a startup, or a smaller organi‐
zation, this might seem so obvious as to not bear stating. Everyone might know
everyone else, and they all might have one job title: “Get Stuff Done.”

But many larger, global conglomerates have thousands or tens of thousands of
employees, including multiple CIOs for different geographic regions or different

120 | Chapter 6: The Business Aspect

business units or functions. In such companies, it can be challenging to know who
works on what and how.

Here’s what you’re doing:

• Gaining an understanding of the organization yourself
• Making it explicit in some documents that serve as a capture of that

understanding
• Sharing that with others so that the understanding becomes common

To help design your organization explicitly, with purpose, and in accordance with the
aforementioned system design principles, you must define “organization.” It’s a slip‐
pery term. For us, we would have an understanding of the organization if we knew
the answer to all of the following questions:

• What functions does the organization perform? What are its capabilities?
• What organization performs each of those functions?
• Who works to support each function? What is the level of talent, the FTE-to-

Contractor ratio, typical tenure of service?
• What software systems and services are used to aid each function?
• Which of these functions are value creators and which are supporting functions?
• For whom? Who are the key customers internally and externally? Who are the

stakeholders along the value chain?
• How are they performed? That is, what are the business processes they engage in?
• Why do they perform them? What is the value they hope to generate? Do they

generate that value efficiently?
• How does money come into the organization (revenue)?
• How does money leave the organization (costs)?
• Who is ostensibly in charge of making decisions over what areas?
• Who is actually a key contributor or influencer on those decisions?
• Are there overlaps or gaps, such that decision making is difficult or fraught with

friction, slow, and inefficient?
• Where are there “accidental organizations”—those left over as ancillaries or mis‐

fits from various reorganizations over the years?
• What is the culture? What are the perks, the benefits, the attitudes among peo‐

ple? What do leaders say they value, and how real, well understood, and shared is
that? How are people trained, developed, nurtured? How are people rewarded
and promoted? When and why are they reprimanded or released?

Capturing the Business Strategy | 121

1 Note that “better” in this context typically means, “whatever is the opposite of what the last person did.”

• What is the geographic location of all the employees? What is the purpose behind
that? Where are the dependencies across teams?

With these questions as the general backdrop, you aim to determine the following:

• The answer to these questions rather accurately for the current state of your
business.

• What strategic objectives and tactical means the organization has for the future as
it evolves.

• How you could help other leaders in your organization build an evolutionary
map to that future.

Align Strategic Objectives and Tactical Demands
The second component of the OMG’s definition of business architecture is the align‐
ment between strategic objectives and tactical demands.

The job here is to take the set of strategic objectives, and create practices and pro‐
cesses that directly, efficiently support them. So let’s begin with the business strategy.

To be clear, here we’re talking about the strategy of the overall business, as outlined by
the CEO and discussed by presidents and strategy officers. If you have a technology
strategy, hopefully it lines up to this. But it might not. In that case, you might have
two levels of work to do. But the first job is to get your hands on an approved strategy
document, or two: at the business level and the technology level. This can be more
difficult than it sounds.

Your business might have a strategy that is more or less explicit. For our purposes,
let’s characterize two kinds of companies: one in which the leader is new (say,
installed in the past two years), and one in which the leader has been around a long
time.

In companies where the leader is new, the board expects them to lay out a plan for
how they will do things better,1 and so it’s an expectation that a new strategy, and typi‐
cally accompanying new organizational model, will be rolled out. There can be a tre‐
mendous amount of change, eagerness for new ideas, excitement, and fear. The old
guard leaves. Young Turks step up to gain the notice of the new boss. Some jockey for
position, while others lose commitment, confidence, and conviction. New and odd
alliances dissipate, form, and reform. Palace intrigue, politics, and chaos ensue. Even‐
tually things settle—until the next time.

122 | Chapter 6: The Business Aspect

2 To help create your strategy, see this book’s companion text, Technology Strategy Patterns (O’Reilly, 2018).

In companies where the leadership has not changed for a while, long-standing rela‐
tionships have developed. The last strategy, created years ago, gave way to processes,
habit, and culture among people with long-standing relationships. Those who like
and understand one another communicate quickly, almost in code. Those who don’t
get along have figured out ways to work around one another. The strategy might not
be written down. The expectations are more implicit. People hire for cultural fit. The
once-explicit plans have settled into the roots of standard operating procedures
where leaders don’t feel quite the same urgency to document, publish, and circulate
strategies, because people can get more done locally. In this case, you have a different
kind of challenge.

If you find yourself in the former kind of organization, your work will be easier in
some respects. For one thing, it’s likely expected that things must be done differently
now, and you might encounter less opposition and can ride a wave of change and get
your new ideas across readily.

Depending on which of these kinds of environments you currently find yourself, you
might modify your interpretation and adjust your use of the framework accordingly.

Either way, aligning strategic objectives with tactical demands in this case means that
you must know what the strategy is in practical terms. If one is not immediately avail‐
able, ask your manger or another leader so that you know what it is. Then any work
you do can follow from it. If you are working in an organization that allows or
expects it, you can even help drive the creation of the technology and/or business
strategy yourself.2

The general approach for this alignment will be as follows:

• You must first discover and then examine the business strategy. What actions
does it suggest?

• Then examine the current operating procedures, business process, and the way
that work enters and leaves the organization. Refer to the questions in “Provide a
Common Understanding” on page 120, and focus on who the work is for and
how it is ordered and shipped. Within that, how is the work completed?

• Then prioritize where to aim your design sights.

Framework Introduction
To help improve your business, you can consider your business system as an object of
design. There are a variety of practical tools I’ve found, borrowed, rerouted, or

Framework Introduction | 123

invented over the years to aid in answering these questions, and then for doing some‐
thing thoughtful about it. Together, these tools serve as your business system design
framework.

Let’s examine this framework now.

Scope of the Framework
You can use the tools in this chapter as a guide in two primary scopes:

• A broader business design
• A local business design

The first case has a very broad scope and is usually performed within the purview of
very senior leaders. This can come about on a few occasions:

• In the event of a reorganization
• If you are considering acquiring a company
• If you are considering a major change in strategic direction, such as entering a

new market
• After a new senior leader has come into the organization

Depending on how your organization is set up, you might find this business design
works in the C-suite, strategy office, or enterprise architecture, or some combination
of them.

In the second case, which will likely occur more frequently, you might be in one of
these situations:

• You might have recognized the need to fine tune your own architecture depart‐
ment and processes, or some other single process.

• You might have been called on to assist or lead a process reengineering effort.
• Your department might be suffering in some regular, particular, acute way, such

as with quality or on-time delivery, and you need to help repair this. Such repair
will involve more than a manager standing behind the coders and beating them
with a rubber hose while commanding them to work smarter; it will involve an
examination of the organizational forces that have conspired to create this
situation.

With your common set of documents describing the business organization, pro‐
cess, and capabilities, you will be able to share the common understanding to aid in
all of these cases.

124 | Chapter 6: The Business Aspect

Create the Business Glossary
A business glossary is like any other glossary: it simply lists key terms relevant to your
business and defines them. The purpose of doing this is because the words we use
define the systems we create, and if the definitions are not both clear and shared,
your systems, customers, and employees will suffer.

Every business has its own terms of art. A term of art is a word or phrase that has
particular, specific meaning in a given industry, field, or company. For example, one
such term in airlines is the “PNR,” or “Passenger Name Record.” In hospitality, they
use “ARI” to refer to the availability, rates, and inventory of hotel rooms. In finance
they use EBITDA. In each of these cases, there are loose ends exposed for deviating
interpretations. It’s difficult to trace, but starting from this innocent-seeming misun‐
derstanding, many software projects are sent awry. Your glossary will help new people
coming on board, but it will do wonders to help your analysts and those writing
requirements and imagining and designing systems. It’s amazing how few people
have a clear and shared understanding of the most common terms in business.

Define your terms of art clearly and decisively. Do so in a single document, publish it
in your architecture wiki, and link to it in your local documents. You won’t need to
update it very often.

Create the Organizational Map
You likely have an HR application such as WorkDay that allows you to view your
organizational chart (“org chart”) of who reports to whom and what everyone’s titles
are. You’ll want to use this regularly in designing business systems.

Such an online tool is a great place to start, but you’ll likely need to transfer this to a
more pliable tool that you can use in your own related working documents in order
to perform your analysis.

Export the Org Chart

See if your online tool will let you export the org chart to a comma-
separated values (CSV) file or other usable format that will help
you work with it as a system for analysis. This might save you some
time.

You need to know the following:

• What are the primary business units?
• What departments are in each?

Create the Business Glossary | 125

• What is the primary function of each, in a single sentence, in terms that would
matter to a customer?

• Who is the leader of each of those?
• Who participates in each of the capabilities you mapped in the Capability Model?

You don’t want to list the people working in each of these departments, just the key
leaders and decision makers. This is less likely to change and is easier to update. At
the level of the business process, business capability, and general effectiveness, you’re
not interested in the individual contributors here.

Also, don’t only consider the technology-related departments. You’re performing an
enterprise-level analysis. Remember to include product management, development,
training, support, delivery, account management, sales, strategy, and administrative
and supporting functions.

Another reason to get the data out of your online tool is because you need a true and
complete picture of how your capabilities are supported. Include any third parties,
such as those managing your datacenters, and suppliers such as labor contracting
companies. Map where those dependencies exist.

You’ll be able to use this to determine stakeholders quickly in your local architecture
documents.

Create a Business Capabilities Model
A business capability is something the business must be able to do successfully in
order to execute its business model in creating and delivering value to customers. It
does not represent the value (product or service) itself. Nor does it represent the busi‐
ness process that is carrying out creating or delivering that value. It’s the set of stuff
your company is good at doing (or needs to be good at doing) to achieve its goals.

Consider the example of writing a book: the book is the product. To create it you par‐
ticipate in the writing process with a publisher. But the capabilities involved might
include subject matter expertise in a specific domain, ability to research and collect
data, ability to create a concept, ability to write clearly, and so on. These are all then
applied at various stages in the process of creating the book.

The Capability Model captures the complete set of business capabilities. After you
have this catalog, you can use it to assess the gaps between the current state and
desired future state. Consider how well they currently fulfill the creation and delivery
of the products and services of value to your customers. You can also examine where
they are redundant with other processes, and where gaps exist between them.

At this stage you can do a quick scoring to see what you’re really good at and where
you need to improve. This should suggest a list of actions that you can put in a

126 | Chapter 6: The Business Aspect

project plan. It can also help you in your software architecture documents, to help
you perform more accurate estimates and see what your architecture needs to take
into account as you build software, move datacenters around, and do other technol‐
ogy work.

So you need to capture in a document the list of capabilities your business, organiza‐
tion, or department (depending on the scope of your current exercise) will expose to
the market to create and deliver value.

Initially, I like to use a simple spreadsheet for this purpose. List the capabilities at the
department level. This spreadsheet might have the columns shown in Table 6-1.

Table 6-1. Capabilities spreadsheet

ID Department Capability name Description Systems Products Services

This is not a complete database, but it serves as a simple and straightforward way to
get started quickly.

Start by listing what you yourself know, because you can do that most easily. But
expect that you’ll have only a very incomplete picture, and interview others. Examine
the org chart to see who might be involved in your established set of capabilities, and
they will often refer to others that are part of their value chain.

Now you can continue this process for a bit. Don’t do this exhaustively, because there
is no “exhaustively.” Not all stakeholders will agree on exactly what the discrete set is.
So just do enough until you have reasonably covered it. The best way to do that is to
start with the set of customers and customer segments that your business serves, and
work inward by figuring out what products and services you provide them. Find the
product managers in these areas and contact service delivery and other supporting
organizations to see what they do.

Capabilities Aren’t Processes

Business capabilities are not business processes. Processes and
applications support the realization of capabilities.

Now you can start another tab to do an analysis. Where are there gaps?

Create a Business Capabilities Model | 127

Score each of the capabilities according to the criteria for good systems design:

Performance
How efficient is it? What is the level of waste created? How quickly is it per‐
formed? What are the places where communications could be tightened? How
clear are recommendation and decision responsibilities?

Scalability
Is this capability ready to serve 10 times the number of customers?

Stability
Is the capability delivered reliably and repeatably, with clear understanding of
roles and clear expectations?

Monitorability
How well are the metrics aligned to measure the actual delivery of value in the
eyes of the customer? Where are the “black boxes” in the system where no one
seems to know what’s going on, or what the current state is?

Extensibility
As the business changes, how ready is this capability to be augmented or adjusted
without major disruptions?

Security
Is the data created in the production of this capability secure?

Score each capability against each of these criteria, on a scale of 1 to 5. Figure 6-2
shows a sample.

Figure 6-2. Scoring your capabilities map

Now to improve it with an eye toward the future state, cross-reference the listed capa‐
bilities to the stated business objectives. For example, is your business strategy to
expand in Europe? Do you need to create an outpost there? Do you need to move key
team members to France for six months to develop key business contacts or work
with important clients because your competition is well established there?

There is a more sophisticated analysis you are ready for at this stage. You can examine
your capabilities map and consider how you can develop or capitalize on those capa‐
bilities that you’re really good at. Can you create a new set of products or services

128 | Chapter 6: The Business Aspect

around those? Can you create a new line of business around them? That analysis will
consist of the following:

1. Looking at the high scorers.
2. Considering why you are good at them.
3. Imagining what products and services can you create by combining them in new

ways or augmenting or bolstering them.
4. Having conversations with executives, strategists, and other leaders to see how

they can contribute to your ideas and reshape them. Does anything look viable
and interesting enough to carry forward into a more formal proposal?

This analysis should result in a list of actions you can put on a project plan to go
improve those capabilities toward your stated objectives.

Create a Process Map
The basic structure of a process map is to define who does what, when. At a very
rudimentary level, it’s a set of boxes that each describe a discrete task, with arrows
that lead to the next task, ultimately producing some meaningful result. Common
high-level business processes include the sales process, product development, order
to cash, the delivery and customer care process, and so forth.

First you must determine what process you’re mapping. This exercise can eventually
lead to other discoveries about related processes and subprocesses. At first, keep it
focused by starting with an output: something of value that matters to someone. Start
there, and then work backward to figure out the whole supply chain of events that
lead up to that “gumball” result popping out of the machine. This is the best way to
narrow the scope of your process to a workable size. It also is the best way to ensure
that you’re going to map a picture that you can work with to improve.

One typical aim of business process mapping is to discover how information flows
through an organization. This provides a window into what systems are touched over
the course of that flow, affording an opportunity to make that process more efficient
(process reengineering) and to rationalize and simplify your set of systems.

Reengineer Processes
Often just mapping out a current state process to illustrate how things actually work
today will be an enormous revelation. This alone can be enough of a conversation
piece among executives to draw attention to how to improve the process. Sometimes
the breakdowns, overlaps, gaps, and inefficiencies appear so obvious that they can be
addressed in conversational direction.

Create a Process Map | 129

In other cases, more formal or subtle work will be required to reengineer the process
to make it more efficient. This takes time, and depending on the size and complexity
of your organization, it can take weeks or months to determine the true current state
process and to create an improved future state process. In this case, you will likely
need to gain management approval to launch your reengineering effort as a full-
fledged project.

As you interview stakeholders in the process, you’ll find that people do not always
agree. Each participant will have a different role, different levels of influence or inclu‐
sion, and different levels of self-understanding about their work, and therefore a dif‐
ferent view into the overall system. People will have different understandings of how
or why something is done as it is. They might not be sure who really contributes to a
final product. Therefore, you will want to get as many different perspectives as you
can regarding the same parts of the process. Don’t just ask the sales person how the
sales process works—they won’t actually be able to communicate the whole picture.
Getting many diverse perspectives will reveal the true process, as opposed to the
socially acceptable or imagined process.

To improve the process, consider the power of the simplicity of Unix pipes and filters.
Each program does one thing optimally, and has a clear interface for input and a clear
format for output. Use this as a model for your processes.

We do not often see processes so well defined in business. For example, what is your
customer defect intake process? In a typical large product organization, this will be
poorly defined, depending primarily on personal relationships, threats to escalate to
managers, and so on. Defects might go straight to development, which is also doing
support. This creates problems because then product management will be left out of
the loop, creating obscured resource availability and roadmap contention.

When selecting candidate processes for reengineering, ask about where the break‐
downs are and where customers are unhappy. Pick one that is of clear value to a clear
stakeholder so that you know you’re working on something that matters and can be
well defined. Trace it through as a flow.

You start by considering the value stream. A value stream view defines the end-to-
end set of activities that deliver value to external and internal stakeholders.

You can then represent the process using a modeling language called Business Pro‐
cess Modeling Notation (BPMN). This is an excellent way to represent all of your
major processes consistently and without the confusion of communication that
occurs when you create your own bespoke representation style. BPMN has standard
types for swimlanes, starting tasks, ending tasks, forks/joins, decision points, timers,
and all the basic tools you’ll need to represent any process. Take the time to install a
BPMN plug-in if you’re using Visio. If you’re collaborating with others, you can use a
tool like Lucidchart, which works great, too.

130 | Chapter 6: The Business Aspect

http://bit.ly/2mnvaX4

If you get really excited about process representation and reengineering, you can
learn techniques from Six Sigma to help you do the work thoroughly. A great book
with a comprehensive view is The Six Sigma Handbook by Pyzdek Keller.

Take Inventory of Systems
Surprisingly, many organizations do not know what systems they have. They see costs
escalate and aren’t sure why. They see confusion and poor design because they simply
don’t have a picture of actual inventory of systems. Some business system design
work might benefit you here. It’s a good idea for your team to know what you truly
have. Take an inventory of your systems.

With this system inventory document, you list the systems you have, interviewing
people in different roles. These should match entirely the list of systems in your pro‐
cess maps. If you imagine that some omniscient being in your organization had a per‐
fect and complete view of all your processes, there would be no system unaccounted
for: every system would have a place in at least one process.

In this list of systems, give them a name. Determine what capabilities each supports.
Who is the named business or product-side owner of that system? Who is the named
development or engineering-side owner? Who is the associated architect? Who is the
enterprise operations side or infrastructure system owner?

You certainly have expiring items like certificates, vendor support contracts for data‐
bases, DNS, domains, functional account passwords, and other items that expire.
These can be helpful to add to this inventory spreadsheet, too.

Knowing the answers to these questions will help you have a holistic and coordinated
way to solve problems with development, enterprise operations and infrastructure,
and even procurement. You can use this list to determine whether you have gaps or
overlaps to help you rationalize your catalog, simplify governance and ownership,
and reduce costs.

Define the Metrics
The saying goes that if you don’t know where you’re going, you’ll never get there.
Defining the metrics that will truly tell you whether your process is successful in the
eyes of the key stakeholders is critical. Define these success metrics before you do any
work reengineering your processes.

These can be determined in conversation with customers, peers, and executives. Here
are some key considerations:

• Look at any existing scorecards and ask yourself if those are the best ones to
reflect what makes a difference to customers. Do not merely use the existing set

Take Inventory of Systems | 131

of metrics, taking them for granted. They might have been invented by someone
working from the bottom up, or someone interested in showing their own con‐
stant activity rather than a meaningful customer outcome. But take them into
account.

• You need to be able to measure and communicate them definitively. Words are
slippery. Do you report uptime availability? Is that measured by total wall clock
time because you have a lot of planned downtime that affects your customers?
Do you measure it only in planned or also in unplanned downtime? Do you
measure it based only on priority 1 or 2 incidents? If you state that the system
was up and running fine, but that two-hour outage doesn’t count against your
uptime because even though the customer couldn’t reach your system, it was a
firewall problem, is that really appropriate? If your organization measures “cus‐
tomer caused” incidents, separates those out, and congratulates itself on not
being the cause, are you sure that’s what you want? That seems like the kind of
reclassifying that I see bureaucrats do to make themselves look better. It means
you are missing an opportunity to make your system more resilient by taking it
into account and learning. Besides, if you give a customer enough rope to hang
themselves, is that really their fault?

• Realize that metrics drive behavior. Ask yourself if you’re picking the metrics that
drive the behavior you want. In the development organizations I run, I ban any
talk of user story points. Developers tend to get caught up in the idea that com‐
pleting 13 points is better than 8, and it drives undesirable sandbagging. It is, to
me, an unnecessary abstraction when people can estimate days just as well as
meaningless numbers from the Fibonacci sequence, and they’re likely to be
equally as wrong, so why obscure things further?

Metrics matter. Define them such that teams can measure them accurately, consis‐
tently, and in a way that truly communicates customer success, not the team’s own
activities.

Institute Appropriate Governance
It’s not enough to just capture the current state process and then do the analytical
work on the value stream to determine what a more optimal future state process
would be. It won’t be successful without proper governance. Governance is a meta-
process. In your value stream, ask how decisions are made, who the authorities are,
what roles they have, and what relevant review boards are. Who can start a process?
Who can stop it? What would occasion them to do those things? On what grounds
can a product be rejected? At what points in the process? Who stands to gain by the
successful completion of a process, and who could suffer if it’s unsuccessful or late?

132 | Chapter 6: The Business Aspect

Process governance is a codified answer to these questions. Many times people intuit
these, or know them because they’ve been at the company a long time, or they don’t
understand them and this wastes time. A little extra effort to help define a set of
standards, guidelines, and a published process for the governance of a process will go
a long way toward making it successful and creating more value in your reengineer‐
ing effort.

A terrific way to ensure appropriate governance is through the Operational Score‐
card, which we examine in detail in Chapter 10.

Business Architecture in Applications
To this point, we’ve talked about business architecture and business system design at
the macro level: the process and organizational level. This is an area of the business
that in my view is underserved by systems thinkers. My hope is that you can bring
your design sensibilities and the practices we have covered here to improve the over‐
all organization, with the business itself as your design target.

However, much of the time we are called on to architect or design a particular system,
and the business aspects are commonly underserved by architects in this situation. In
this section, we discuss what business architecture/design means at the system level.

When you are called on to provide an architecture for a new software product or
project, your application or software product design should not only cover software-
specific aspects, but to be truly effective, it should take into account the business
aspects as well.

Your job with respect to business architecture at the single system/application level is
to record a set of assumptions and requirements to create context for further techni‐
cal decisions. This context that is often missing for development teams, but when
they understand what they’re doing and why it matters, they can be far more effective
and engaged and have the pride of ownership of their work that really drives people
to do great things. You don’t need to try to explicitly motivate anyone here. You need
to simply answer certain questions clearly and directly:

• What business strategy does this map to and support? Are there internal strategy
documents you can cite to draw a line to certain strategic objectives and show
how this fits in?

• Why does this project matter to the business? Why does it exist at all? What is the
business trying to achieve? What will the anticipated state be at the end of the
project?

• What new capabilities are you bringing to market?
• What are the major use cases the software must perform?

Business Architecture in Applications | 133

• Who are the audiences?
• When must the software be delivered? Do not get into project management

specifics here, but only state this if there are certain large financial penalties for
not delivering by a certain date, or rigid dates that matter for other reasons such
as the holiday rush or tax day, and so forth.

In answering these questions, you might feel you’re stating the obvious, but often
developers or engineers are not aware of these answers. You’ll have better software
that is more fit for purpose if they are care about what they’re doing. As a designer,
you’re creating the context for others to be successful, and the business architecture is
a key part of doing that.

You are also setting the stage for the proper program management of your project.
That means you must state your architecture requirements, known constraints, and
guidance for effective execution of the project regarding the following aspects:

Organizational and business requirements
• Changes required to successfully execute the project. Are you introducing any

new process that might affect other teams? The PM will need to know this to call
it out: making it clear here in your document will make that more easily accom‐
plished. For instance, you might be introducing DevSecOps or starting Chaos
Engineering, or using containerization in a new way that could impact the enter‐
prise operations or “run” teams. Often technical changes like this means someone
else will likely need a heads up and ongoing coordination. Consider all the poten‐
tial organizational impacts to existing processes because of the nature of this
project.

• What “intake” documents are there that must be completed before you can go
live? That is, your teams can type all the code correctly and brilliantly, but then
not meet expectations of the run/enterprise operations organization and not be
ready to release. Make sure that you have noted any such required documenta‐
tion. It is part of the successful delivering of the complete solution: do not focus
only on the software engineers. The truly effective architect is designing and
helping manage the entire solution with all its interrelating parts.

• Finance: can part of this be capitalized? Can you take advantage of an R&D tax
credit based on the work you’re doing?

• Who are the stakeholders that help you manage the project going forward? These
include product management, marketing, operations, procurement, known and
relevant engineering leaders, the project executive sponsor, business stakehold‐
ers, the program management team, and so on. List them and their contact infor‐
mation here.

134 | Chapter 6: The Business Aspect

Team requirements
• What special business needs do you have because of some novelty in the

project? Perhaps you’re embarking on your first machine learning project and
need special training, contractors with a particular skill set, or definition of a new
department for data scientists.

• Will there be offshoring, nearshoring, or “insourcing” from other teams? What
risks do those produce?

• What impacts or changes are required in the procurement department? Will you
need them for any new team contract (such as if you plan to engage a specialized
outside development firm) or software purchase?

• Does your project present any potential required changes to your business con‐
tinuity plan that might require discussion with HR?

Legal and regulatory requirements
• The execution of particular contracts or legal dependencies. Do you need to con‐

sult the attorneys?
• Risks with respect to patents or impending/potential litigation.
• Risks with respect to General Data Protection Regulation (GDPR), data privacy,

and business security. Do not plan to move data around in a cluster if the coun‐
tries you are operating in do not allow it. Are you working with China or Russia,
or do you have customers there? These countries will require knowledgeable
handling and often a distinct solution, so state these considerations.

• Does your application need to comply with the Americans with Disabilities Act
(ADA) laws? Ensuring that your UI complies with ADA standards is not only the
law, it often makes for much better UI work. This can be a painful process to
overhaul if you don’t do it up front, but is often fairly straightforward to imple‐
ment if you do. See the ADA Checker tool, which works for public sites.
Although a complete discussion is beyond our scope here, remember that the
ADA can be required for internal applications as well, so be sure you are familiar
with these regulations. Another tool I’ve used before called Pa11y can be helpful
here. There are attorneys who just troll for announcements of revamped web‐
sites, check them for compliance with a quick little tool, and send out form letters
targeting failing companies in lawsuits. Part of your job as an architect/designer
is ensuring you’re making legally compliant software, no different than a building
architect ensuring that the zoning laws are followed.

• What auditing is at work (SOC 2, SOX) that might require attestation, or the abil‐
ity to efficiently show compliance? Making sure that developers track their time
and mark their stories appropriately is important. Again, this might seem like
project management work, and it is, but you should consult with the PMO and
state these matters up front in this handy single location of the architecture

Business Architecture in Applications | 135

https://www.webaccessibility.com/
http://pa11y.org/

document. What you’re doing is making it all visible so that estimates are better
and all the work that people actually have to do is accounted for. Often the devel‐
opment itself is a small portion of the successful project (maybe 15%).

You might want to consider including in this section certain more specialized techni‐
cal details that have a business impact.

For example, if you are moving to the cloud, or building a cloud-native system, you
might record that you want to reserve instances so that you can get a better deal.
Reserving instances can make a difference of 40% to 60% on your bill. It’s a big deal.
But left to their own devices, teams might just spin up servers and pay hourly at a
much higher rate. With you noting it and directing them here, reserved instances
become a nonfunctional requirement for the DevOps or pipeline team such that
they’re taking advantage of reserved instances and saving considerable money. This is
a great example of the kind of real and meaningful impact you as a designer can have
on both the business and the implementation that the technical teams create. It’s the
sweet spot for the effective enterprise architect.

The bottom line is that these myriad business considerations can seem remote from
the work of developers. However, your job as the truly effective enterprise architect is
to take all these matters into account, not simply police developers.

These business considerations can and should constrain software and application
designs. Stating them explicitly and helping draw a path to how teams can support
these requirements will make a difference in your project that people rarely concern
themselves with, to their project’s detriment. Considering and stating clear positions
on the matters of business architecture can be a wonderful tool for you. This is often
misunderstood or overlooked, and yet when it’s employed, which is simple to do, it’s
powerful. In this way, you are helping architect or design the business aspects of the
project itself so that it can be successful.

Summary
In this chapter, you learned how to consider the business aspects in designing your
software systems, and how to consider the business itself as an object of design. You
examined how to discover and engineer business processes, create a capabilities
model, measure the success of the redesign with metrics, and consider governance.

For further consideration on this topic of business architecture, you can read up on
the Business Process Framework (eTOM), published by the TM Forum, which
describes the full scope of business processes required by a service provider in the
telecommunications industry and defines key elements and how they interact.

136 | Chapter 6: The Business Aspect

https://www.tmforum.org/business-process-framework/

The Process Classification Framework (PCF), published by APQC, creates a common
language for organizations to communicate and define work processes comprehen‐
sively and without redundancies. Organizations are using it to support benchmark‐
ing, manage content, and perform other important performance management
activities.

Summary | 137

https://www.apqc.org/pcf

CHAPTER 7

The Application Aspect

Most applications today are, or should be, service oriented. With the core of your
software product or application built as services, you will gain clarity, high cohesion,
the ability to scale, and improved portability, and provide the basis for a platform.

I tend not to be too zealous about following strict community dictates just because,
say, the RESTafarians demand things be done a certain way. I rather try to find the
true, concrete advantage in some dicta, and then, if there is a practical value to it, I’ll
choose to follow it. For example, it doesn’t do you much good if I simply insist that
you religiously follow the HATEOAS (Hypermedia as the Engine of Application
State) creed because it’s important, and you’re not beholden to me in any regard.
There are plenty of times when it makes considerable sense to use verbs and not
nouns, or to use ProtoBuf or Avro over hypermedia. There is no silver bullet, and
there is no one perfect way. There are the constraints, tools, knowledge, and goals that
you and your team have, and that’s the important thing to foreground. So please keep
that in the back of your mind through this chapter.

In this chapter, we cover the fundamental guidelines for good service design that I use
with engineering teams. Although there are certainly other helpful directions you can
offer, these are what I find most pragmatic and useful. Doing just these will get you a
very long way.

139

Embrace Constraints
It is not worth it to use marble for that which you don’t believe in, but it is worth it to use
cinder blocks for that which you do believe in.

—Louis Kahn

Frequently, the more that leaders express constraints to development teams, the more
development teams complain. They don’t have time to adhere to all these require‐
ments, they say.

In my view, design constraints are like meetings. People say they don’t like meetings
and they want fewer meetings clogging up their day and wasting their time. I think
what they really mean is that they don’t like ineffective meetings, in which the goal or
purpose is not clear, the wrong participants have been invited (or not invited), there is
no agenda and no clear outcome, and the decision rights are not stated. If you do
those things, your meetings will be effective, and people will enjoy them, because they
will be useful, meaningful, move your project forward, and make things happen.

So by way of analogy, I think design constraints are similar. If you are policing devel‐
opers, specifying where they should place every last semicolon, harping on things
that don’t truly make a material difference, and have not aligned the product organi‐
zation around a shared voice for supporting the constraints you do state, no one is
likely to appreciate that. But if you can express for teams the things that make a mate‐
rial difference, in a way that they can execute confidently, whether they like it or not,
you’ll be effective.

Constraints are actually positive, and something I actively seek in the early stages of
design. They can ground you, give your work a boundary, kind of like filling out a
puzzle by starting with the corner pieces and the edges: they give you something you
can count on, that can orient you, and that can inform other design decisions over
which you can exercise more judgment or taste.

Your constraints might come in the form of a deadline, or data privacy laws, or regu‐
latory compliance, or a specific customer requirement. If you approach these with an
open mind, you can use them to gain advantage in and improve your designs. For
example, in one project I designed with my team, the executive sponsor imposed an
arbitrary six-month constraint on us, stating, “You have to get to market with some‐
thing usable in six months; I don’t care what it is.” (This has actually happened to me
three times on major projects, so I’ve come to expect it).

This was very unwelcome news for the engineering team. The project was a three-
year overall endeavor and represented the core of our system. We wanted to work on
the foundational aspects and ensure that the structural underpinnings were abso‐
lutely solid before going through all the UI work and other things that customers
required, and so this created considerable distraction in our eyes. We grumbled

140 | Chapter 7: The Application Aspect

because we thought it meant that we would never get to come back to the key abstrac‐
tions that made the system so powerful. So, we decided to interpret the constraint in a
positive way, out of sheer cussedness more than anything else: we didn’t want to give
up our powerful abstraction for the deadline—so we didn’t. We had to build the sub‐
system in a different way to accomplish our one chosen use case for a minimum via‐
ble product (MVP), but still make progress toward the overall substructure, which
was the purpose of the project in the first place. In the end, we didn’t compromise
anything, and the deadline improved the design and tested it thoroughly. And being
forced to test all the way through and build pipelines all the way through into pro‐
duction turned out to be terrific.

Use constraints to get the most out of everything.

Decouple User Interfaces
Your software products and applications should be thought of as thin user interfaces
on top of collections of services.

Ensure that the user interfaces feature responsive designs; that is, you should not
assume that you know the user interfaces that will be needed for your applications.
Although today most UI JavaScript frameworks such as Angular, Ember, and React
make this straightforward, be sure to design the web UI to work across mobile devi‐
ces, tablets, and desktops at a minimum.

User interfaces can frustrate your users if they are not thoughtfully designed with user
goals in mind. Therefore, applying Design Thinking and Concept Models, discussed
in Chapter 4, is imperative. The trick, however, is that while considerable thought
must go into making them easy and even delightful to use, you must also consider
them disposable. In general, the UI will change more frequently than other parts of
your application. Marketing will come up with a new color scheme, and the commer‐
cial officer will come up with new retailing and merchandising schemes and A/B test‐
ing. The product managers will create new business partnerships, which means that
your business application might suddenly need to surface on a gaming console, a car
console, a voice agent, a watch, an Internet of Things (IoT) product, and so forth.
These are all very different ways of interacting with the same set of business services.
Your business services should not need to change too much or too often, just because
your UI does.

Therefore, you must be sure to keep your UI very separate from your business serv‐
ices. Do not assume that you know what the interface will be, and assume that there
will be many of them. The UI should just do the work of displaying results, and not
perform “work.” This seems obvious, but it’s amazing how frequently I see it violated.

Decouple User Interfaces | 141

UI Packages
Following our deconstructive method, you can create “UI Packages.” At the start of
your project design work, do not talk about “the UI” as if there were only one. This
semantic misstep will lead you down a bad path. It closes down thinking, making an
unconsidered, implicit assumption. It might be “mobile first” or “web” or whatever
your thing is. Yes, of course you must settle on the one or three UIs realizations you
will support for now. The point is to get to market. Just make sure that you are aware
of implicit and unchallenged assumptions and decisions that aren’t being made
explicitly as decisions. Be aware of what you have anchored and privileged as the
“central term,” thereby casting the rest of the universe of possibilities as the secon‐
dary, ancillary, marginal, minor afterthoughts. You can do this in a matter of minutes.
Just don’t skip it.

At the beginning of your project, regardless of what the product managers state as the
only “requirement,” do right by them by considering the entire universe of UI possi‐
bilities that you are aware of. These might be web, table, mobile, gaming console, car
console, headless, and a variety of IoT applications. Then, according to your current
requirements, carve out the space for naming the UI package after only the ones your
requirements call for. That is, instead of grouping “The UI Code” together (as if there
were only one), you simply name it “web-mobile-xxx” for your responsive design for
that UI as one channel among many possibilities. This leaves room in your concept
for placeholders for other UI packages, such as “xbox-xxx,” which would need to sur‐
face the UI in C# code, maybe written by another team with a different skill set.

Doing this creates the quickest time to market and the best ability to parallelize work
and keeps things nice and tidy, preventing overlap with engineering teams. It also
allows those UIs to be updated and retired on their own timelines, and leaves a path
for the UI packages that you might not need today but that can open up new revenue
streams if you have left semantic space for it.

Consider what elements are only display and interaction, and don’t put anything else
in the UI package. Then just use your UI to invoke your service APIs.

The other advantage of doing this is that you can create mock objects, demonstrate
the UI in front of customers in a Design Thinking fashion, gain valuable feedback,
and improve it quickly without a big lift.

On Platform Design
You keep using that word. I do not think it means what you think it means.

—Inigo Montoya, The Princess Bride

Many software people today cheerfully throw around the word “platform.” A lot. In
fact, it’s hard to find a business today that isn’t calling whatever it does a “platform”

142 | Chapter 7: The Application Aspect

(which is often also “disruptive”). To me, the term “platform” is clear. It’s something
that someone stands on. Your software is a platform if someone else can build on top
of it a new useful application that does something your original system doesn’t. It’s a
SaaS platform if they can do that without calling you. Otherwise, it isn’t: it’s just an
application. Amazon Web Services (AWS) is a platform. Google Cloud Platform
(GCP) is a platform. SalesForce is a platform. Facebook is a platform. Platforms pre‐
vail. They create an incredible business opportunity. They create a great balance
between offering something useful out of the box, something that can change with
the quickly changing times, and something that can be customized without you hir‐
ing a bunch of Scrum teams to add a bunch of awful conditional logic for routing
specific customer behavior into the main code base over the course of a six-month
development project.

In a famous memo Jeff Bezos wrote to his teams in 2002, which you can readily find
discussed online, he basically said this: “Make sure everything you write is a service.
Only communicate with any other teams’ products through service APIs. I don’t care
what the implementation language is. If you don’t do this, you’re fired. Have a nice
day.” That presumably short memo is arguably the thing that enabled a storage engine
to become the Amazon Simple Storage Service (Amazon S3) service and Dynamo to
become a distributed data service, and indeed is arguably responsible for creating all
the various building blocks for what would then become AWS three short years later.
AWS went on to grow from $0 in revenue to $26 billion in revenue in just over a dec‐
ade. To be clear, there are only about 400 companies in the world with more revenue
than that, and many of them have taken an order of magnitude more time to create it.
Services are the way to scale, and they’re the way to create a platform.

Businesses, and the customers they serve, can realize the richest possibilities if you
offer your software as a unified platform. The platform is not one corner of two or
three services you expose to the outside world. It is the complete catalog of the serv‐
ices across your business, made available as APIs. Do not think, as some do, that
“there is a services team, and they are the ones that build services and so I don’t build
them.”

Like user interfaces, the core business services and the exposed external-facing serv‐
ices should be separated. Just like a UI, customer-facing services should do no work.
In fact, these external APIs are just another UI, and should be designed and managed
accordingly.

Your engineering teams must build services-first. Everything that might possibly be
of use to anyone else should be considered as an API, and then exposed that way. One
of the very first things your teams should do is consider in a list on the whiteboard or
in Excel or whatever little tool the list of services that your application can and should
be based around. It can’t be an afterthought. For every team, for everything you build,
build it as a service.

On Platform Design | 143

http://bit.ly/2kIxLul

Some people get religious about the implementation language. This is not a mature
view in businesses of any size or import. Now more than ever, the implementation
language doesn’t matter much, especially if you expose services. There are fun debates
to be had over threading models and performance and scalability and portability, and
how Java has become a teaching language, and something about Go, and so forth. I
find these conversations insufferably boring. As a designer thinking like a business
person, there is primarily one reason to care about the programming languages used
in your platform work: human talent.

The protocol, too, is another element to consider in our deconstructed method. After
doing this for more than 20 years, it becomes very apparent how much time we tech‐
nologists spend rearranging the furniture for the flavor of the month. Everyone had
to switch everything to SOAP. Then they hated SOAP and had to switch everything to
XML. Then they hated that and had to switch everything to JSON. The clever minor‐
ity touted ProtoBuf. Popular products like Cassandra used Avro, so a patch of propo‐
nents pop up around that. Soon something else will come along.

The point is that, like the UI, the API you expose via one or more protocols must be
separate from the engine doing the work. Offering your services, at least as exposed
to the external world, in a few protocols is a fine idea. At least expect that you will
change them and put the seam of semantic separation in the right place. Consider the
protocol, like the UI, as just a particular representation of how you get the message to
the user; it’s not the message itself and it certainly is not the worker engine that does
math to make the message. I think of protocols the way I think of stories and their
presentations in different venues. You might have a story of Cinderella. That could be
read in a book, or performed as a Broadway play, or done in a cartoon movie. But the
story is the same. The story is your engine service that does the work. These different
venues are your protocol. If some executive says that you should be making services
with RESTful interfaces that exchange JSON, that’s fine. But just like the UI, it’s free
and only takes seconds to simply name the protocol package after its implementation
(“rest-json-xxx”) and then leave space in the code repository for “protobuf-xxx” and
thereby remind yourself and everyone on your team to keep the separation of con‐
cerns (protocol as mere message delivery mechanism versus service doing the work).

Service Resources and Representations
It goes without saying that services must be thoughtfully designed. Because you have
this basic structural idea of services in place, you need to consider how they will work
together to orchestrate work flows, how they can scale and evolve independently, and
how they can best support accomplishing user goals in a secure and fast manner.
With the basic idea that you’re dividing your semantic real estate up into services,
how shall you go about that division of neighborhoods?

144 | Chapter 7: The Application Aspect

Start with a simple word, usually a noun, that describes your idea. The idea might be
“storage,” “distributed database,” “customer profile,” “products,” or other primary
ideas in the system you’re designing. Capture these key words from the conversations
you have; the main aspects will come up all the time.

Then consider the verbs. What are the things that people want to do to or with those
nouns? At this point, you’re not coding anything or using some horrible heavy “enter‐
prise architecture” software tool. Pencil and paper or a whiteboard is great here.

How you name things at this level is critically important. One of the most important
things you will do in your design is to decide what to call things, and what ideas get
names at all. Be certain you are not biting off too much semantic real estate with the
name you give a concept. If you name your service HotelShopping, this means that a
different service can be created to run VacationRentalShopping or MerchandiseShop‐
ping. Carefully consider these service names and talk with your colleagues to ensure
that you are truly saying what you mean in the name, that the space the name takes
up is actually supported by the service. Calling a service “Shopping” means it better
allow the user to shop All The Things, which might not really be what you want.

Before you leave the pencil and paper stage, get inspiration and learn from the mas‐
ters as a kind of test to see how your ideas look in comparison. Review popular APIs
such as those at Twitter, AWS, Google, Microsoft, or Amazon Merchants, and see
how they are constructed. A great resource to model your work after is the Google
API explorer, which lists the available APIs for many of its products such as Gmail,
Cloud services, Android, and more. You can examine how it has set up the APIs in
AWS for a great lesson. These have been incredibly popular, scalable, and successful
for years.

Although REST teaches us to be oriented around resources and representations—
which means the nouns in your application, such as Guest, Hotel, Flight Route, Prod‐
uct, or what have you—sometimes it services as functions. You might have a function
that calculates the currency exchange rate, or a Shopping service. The challenge with
a “Shopping” service is that it already combines a few ideas, such as Customer, Prod‐
uct, Cart, and so forth. So this can become a monolith, and a service in name only if
you aren’t careful.

But after you have considered the noun you’re starting with, consider what it might
do, what actions it might take, and what might be done to it. With the aforemen‐
tioned AWS API, Amazon Elastic Compute Cloud (Amazon EC2) allows you to
“reboot instance,” or “create tags,” and so forth.

With Twitter, the API includes functions to post a tweet, delete one, search and filter,
upload media content, receive a stream of tweets, and so forth. The idea of tweets is
one distinct idea and its API has the constellation of related actions. The idea of
advertising is separate and distinct. We know this because in the conceptual universe,

Service Resources and Representations | 145

https://developers.google.com/apis-explorer/
https://developers.google.com/apis-explorer/
https://amzn.to/2kQslgA
https://amzn.to/2kQslgA

tweets can (and they did when it first started) exist without the idea of an ad, and vice
versa. So they are distinct ideas and have different users. If you consider the stick fig‐
ures in a use-case diagram, we have two now: the regular Twitter user and the Adver‐
tiser. They want, and do, different things. So we can expect that their product
managers might evolve their businesses independently. Making these distinct APIs in
the system takes advantage of Conway’s Law, which is a great way to make sure your
teams can work in parallel, efficiently, while minimizing the number of decision mak‐
ers and communicators involved in any particular decision, allowing quicker
movement.

Conway’s Law

In 1967 Melvin Conway wrote a paper analyzing how committees
work. He concluded that, “organizations which design systems...are
constrained to produce designs which are copies of the communi‐
cation structures of these organizations.” Put simply, your software
is going to be structured they way your teams are structured. I can
attest to the veracity of Conway’s Law across many different organi‐
zations. So it can make your life much easier, and your software
cleaner, if you organize on purpose the way that you want your
product to be. To make your architecture work easier, talk to your
boss regularly about the way that your teams are organized, and
how well that aligns with the product roadmap.

It is a tenet of REST that you separate the representation from the resource. In service
APIs, this generally means the protocol is not thought to be fixed to the idea in the
application code. You might have a Product API, in which case the product is the
resource. But you could return to the end user a variety of different representations of
that resource, such as XML, JSON, HTML, or an image collection. Be sure to keep the
representation separate from the resource in your code to keep things flexible.

Domain Language
At this stage, you’re not writing code, you’re making lists of the basic categories to see
how they interact. You’re zoning the city: here’s the airport, here’s the train station,
here’s the park, here’s the shopping center, here are the neighborhoods. Stay at that
level for a moment to be sure you have the right ideas. This will prevent rework later.

The main thing is to be very clear on the words you use. The AWS API for EC2 fea‐
tures many “detach-" functions (such as “detach volume,” “detach VPN gateway”). It
also features many “disable-” and “disassociate-" functions. Define your terms very
carefully, reuse them as much as you can, and be rigorously consistent about them.
Never say “find” in one part of your API and then “search” in another if they do
roughly the same thing and it’s not immediately obvious what that difference is.

146 | Chapter 7: The Application Aspect

Here you are settling on your domain language, and it’s crucially important. Create a
glossary of your key API words, whether they are “detach-,” “disable-,” or what have
you. Do this from the point of view of an imagined new person on your team who
has just joined as a new hire and needs to quickly get up to speed. Write out these key
words, define them definitively, and prescribe their consistent use. For example,
“get-” might always mean that you must pass a unique identifier in the request, and
the operation is expected to return one or zero results. Then a “find-” operation
might accept some search criteria and always return a collection.

API Guidelines
Some teams insist on making their own guidelines for engineers to follow when mak‐
ing an API. I would encourage you to make a short set of conventions that you want
teams to follow across two vectors:

• What are the domain-specific names or ideas or terms of art that are particular to
your business that you want to make sure people use in the same way?

• What are the specific guidelines you have regarding your internal use because of
specific mechanisms your IT team has in place to handle cross-cutting concerns?
These might include throttling based on customer tier, security gateways, and so
forth. Those are not particular to your domain, but they are particular to your
organization.

Beyond that, there is little point in re-creating the wheel. For general guidelines
around developing services, someone else has already done it. There could be aca‐
demic debates about the readability of code that puts its curly braces on a new line or
not, but I recommend you save that for the pub, point people to well-considered API
guidelines made by experts and publicly available, and get on with life. Here are a
couple that you can review and then adopt:

• Microsoft for API design
• IBM Guidelines for Watson: this one is great because it includes multilingual

conventions, coding, and repository guidelines

The point is not that one way of writing curly braces is blessed by a celestial omnipo‐
tent power; the important thing is that everyone does it more or less the same way,
whichever way that is.

For cases in which having clear guidance does make a material difference to your
business, such as how you illustrate versioning, following the guidelines is very
important but is illustrated in the public ones that I just listed.

The main point of following these guidelines is this: as you consider your API con‐
tours, ask yourself if you have created cacheable URIs. If they are cacheable and don’t

API Guidelines | 147

http://bit.ly/2miIQCt
http://bit.ly/2ktn2nm

violate out-of-band (like with using cookies) or create a split-brain scenario in which
you have been sloppy about where certain required elements are implemented such
that you need all of them to complete an action, you should be off to a better start
than most.

Deconstructed Versioning
The proper versioning of your services is very important. Naive development teams
state that the way to know a major change from a minor change is based around their
personal volume of work: how many late nights they had or how much coffee they
drank to get the release done. This is subjective, it’s about you and not your customer,
and it’s far too slippery. Just because you had four teams working on something for
six months, and that big effort is rewarded with cake and executive speeches at the
end, does not make it a major version. It should be crystal clear what constitutes a
major and minor version, because it has a big impact on your customers. As decon‐
structionist designers, we are always empathetically concerned with the customer
view.

There’s a strong argument for the idea that there is no such thing as a “version” in
software, that a new major “version” must simply be a new and distinct deployable
artifact. This is the deconstructed way of service versioning, and it’s very simple and
straightforward.

In general, you have a minor version change if your API has any of these changes,
which should be considered (meaning, implemented and tested) as nonbreaking,
backward-compatible changes:

• Addition of output fields.
• Addition of (optional) input parameters.
• Changes to underlying models and algorithms that may result in different results

and values.
• Changes to string values, except string values that have special status as being

structurally significant. A date is a structurally significant string; a name is not.
• Generally expansions, such as increasing a field size limit, but depending on your

legacy systems, be careful with this.

Foursquare does this well, and IBM followed suit for Watson. Services should include
a major version in the path (/v1/) and a minor version as a required query parameter
that takes a date: ?version=2019-3-27.

In general, you have a major version change if you will break clients. This means that
you are not backward-compatible. This means that clients will need to update, which
they cannot all do in the same magic instant when you cutover to the new API so that

148 | Chapter 7: The Application Aspect

they can keep their businesses running. Therefore, you will need to run the current
version and the new version at the same time, for some time (perhaps weeks, months,
or even years). Therefore, a major version must be built and deployed separately,
must run in a separate process from the prior version, and must be separately
addressable. It must state explicitly in the URI what the major version number is.
Therefore, it’s just part of the name, it’s just different software, and not really a “ver‐
sion” at all. But that’s in a way academic, and the practical thing to do is to include the
major version number in the path, to leave room for breaking changes in new ver‐
sions later.

Breaking changes include these sorts of things:

• Deleting ideas/removing output fields
• Addition of a required input parameter
• Changes to parameter default values
• Change of field names
• Change of status codes

Even if certain fields are optional in your API, your clients building software on top
of your API might consider them required for their use cases in their software, so
deleting optional output fields is considered breaking. Changing structured data,
which is used by clients for indexing and reporting and other built-around purposes,
is a big deal, and so changes there mean a major version, too.

The obvious distinction here is that great teams consider what is major or minor
from the customer’s perspective; weaker practitioners consider what was major or
minor in their own experience of doing the development.

It would be lovely if it could go without saying that it is imperative to communicate
clearly and repeatedly any breaking and nonbreaking changes to your API well in
advance of when you impose them on your customers, whether they are internal or
external. Alas, it does not.

Cacheability and Idempotence
There is a simple test I like to use when designing services, to make sure they have
proper separation of concerns. Here it is: be certain that your URIs are all accessible
and usable as planned from the cUrl program. That’s a good test to ensure that you
are keeping business logic out of the UI, and that you aren’t baking session logic and
state assumptions into protocol mechanisms where they don’t belong (such as in
cookies—but you would never do that, would you?). I recognize that if you’re using
special protocols such as ProtoBuf or Avro, you won’t be able to check it with cUrl,

Cacheability and Idempotence | 149

but that’s then a completely different matter because you will have an entire client
SDK.

If you’re following that idea—that you always check if your services are properly
accessible and usable from cUrl—you have good reason to believe that your service is
cacheable by clients, which is a key tenet of REST.

If it’s cacheable, it’s also bookmarkable and easily readable, which comes in handy for
clients, helps drive traffic, and makes working with your API easier and clearer. If it’s
bookmarkable by clients, you can bookmark it yourself and make a “saved search”
type feature very easily. You can also then easily perform producer-side caching to
relieve pressure on your database and offer fast performance.

The cUrl test doesn’t prove it, but you want to make sure your services are idempo‐
tent. A function is idempotent if invoking it repeatedly produces the same result as
invoking it once, without side effects. Except for “creationary” functions, they should
be idempotent. That is, a PUT operation is not idempotent. You create a Customer
row and that returns a 200 OK, and then attempting to create the same customer
should return an error status that the resource already exists. Other‐
wise, the GET, PUT, DELETE, HEAD, OPTIONS, and TRACE invocations are idempotent in
HTTP and should be in your APIs, too.

This is easily done. Again, with the plurality that our deconstructionist design high‐
lights, never invoke your noncreationary services once in regression testing, but
always at least twice with the same parameters. This makes sure that you are design‐
ing in a way that affords you the most flexibility with future clients, makes you most
resilient to changes, and puts your dependencies where they belong without creating
a split brain.

Make sure that your REST APIs are hypermedia-driven, such that they observe the
HATEOAS principle.

Hypermedia as the Engine...

For a good overview of the RESTful HATEOAS principle, see the
Spring page on the topic, or read Roy T. Fielding’s original disserta‐
tion, which I highly recommend.

This principle of REST is the one I see violated most often, and what then creates a
variety of artificial constraints that make later extensibility, flexibility, reuse, change,
or porting very difficult.

150 | Chapter 7: The Application Aspect

http://bit.ly/2lWkzC8
http://bit.ly/2lUEphg
http://bit.ly/2lUEphg

Independently Buildable
You should be able to build, test, and deploy each service independently from others.
Building a service should be an automated job through a tool such as Jenkins, and the
result should be a deployable artifact.

Rebuilding a client application, or UI package application, should not require that
your services are rebuilt. Otherwise, they aren’t really services; they are part of your
application monolith.

If you make a breaking change, it is likely that you will need to rebuild both your UI
application and one or more services, but that job should be a separately defined job
from the overall housing application’s build.

Give yourself the option to always be able to do the following:

• Rebuild everything all at once
• Rebuild only one specific aspect (UI packager aspect, service, orchestration, etc.).

That allows you to define an arbitrary collection of services and UI packagers to
rebuild as necessary for whatever update you’ve made. This is the best intersection of
keeping things quick and understandable. If you have to rebuild a lot of things
because you changed one thing, you’re not getting much advantage. Part of what’s
great about services that isn’t often mentioned is that rebuilding and subsequently
redeploying only a small percentage of your application’s overall footprint means that
a lot of things go much faster: building, testing, deploying, replicating. And it means
that any new problems that you might have introduced are likely to have a very con‐
fined scope, or at least be more quickly identified.

Strategies and Configurable Services
Sometimes teams try to envision everything a user will need and create the service
that includes all of those features. But this is pretty tough to do. And of course, you
already know that some customers will need to set up some features differently.
Allowing users to do this through a UI or an API is configuration. Users are not
changing the behavior of the service; they are specifying certain things they want to
see done in a certain way, and you have already afforded them the exact dials they will
be able to twist.

Configurability in this way is great, but it still requires that you are able to sharply
anticipate all of the things your users will need to be able to change in fairly fine-
grained ways.

Independently Buildable | 151

You might also consider configurability in another way. The traditional Gang of Four
Strategy pattern should be your default, go-to solution for implementing any business
logic. As a refresher, let’s quickly examine the Strategy pattern.

Deconstructionist designers assume that their current way of implementing is just
one of many possible ways, and so they don’t just directly implement exactly what the
requirements are. They pave a path forward for change and concurrent differences in
behavior based on the channel, the client type, the customer, or anything.

The Strategy pattern allows you to define a family of algorithms that can achieve a
result differently and allow clients to select the algorithm they want to use at runtime.
This produces more flexible and reusable software. As a simple example, imagine that
you have a sorting function. Computer scientists have written several different sort‐
ing algorithms to sort a list that each have different advantages, such as BubbleSort,
MergeSort, and QuickSort. Instead of designing your sorting function by trying to
know in advance what the best one to use must be and then giving up all the others,
the Strategy pattern would always produce a sorted list, but allow clients to specify
how to sort it themselves, as demonstrated in Figure 7-1.

Figure 7-1. The Gang of Four Strategy pattern

This is an important pattern in deconstruction and semantic design, and it serves as a
kind of paradigm or kernel of this entire approach to system design. You first define a
context, which calls the strategy interface to get its result, and the context is inde‐
pendent of the particular strategy employed in achieving the result.

The Strategy pattern represents the object-oriented tenet of composition over inheri‐
tance. Inheritance is frequently antithetical to deconstructed software designs. Inheri‐
tance in software creates rigid hierarchies, which are almost always reducable to
arbitrary distinctions that fall apart when challenged, creating brittle and unmain‐
tainable software. There are times when your domain is specifically about hierarchies,
such as in a genealogy model or a military chain of command perhaps, and then it’s
less cumbersome and a more natural fit. But in general, I try to avoid designing cate‐
gories of assumed hierarchies in my data model, because too many times I have seen
how difficult and expensive and time consuming it is to change them later. Instead of
hierarchies, try compositions with associations such as tagging. Arranging your list of
products via tags as opposed to categories can usually achieve the same apparent

152 | Chapter 7: The Application Aspect

result and functionality, and it saves you the time it takes to design something in a
false representation of the world.

The Strategy pattern is very simple and yet very powerful. As a rule, your services
should implement their business logic as strategies. Even if the first Strategy you
define is the only one you ever really use, you added only about five minutes of cod‐
ing time to make the separation. But if someone within or outside your organization
were ever to change their mind or have a different need at the same time, you’d have
saved untold hours of development time and kept the code very neat, tidy, communi‐
cative, and easy to read and understand.

Another great way to support configuration is through a library such as Lightbend. It
allows you to read from a local file or URL to get configuration settings. If you set this
up from the beginning to allow many of your application features to be configurable,
you can have different clients load their own settings, creating a very dynamic
platform.

Application-Specific Services
In general, disallow the idea of “application-specific” services to creep into your
vocabulary or engineering organization. I’ve seen teams far too many times assume
that a service will only ever be used by the application or product whose inception
first caused it to be written.

There is no real advantage other than the illusion of immediate convenience to defin‐
ing something like an application-specific service. There is a certain hotel in Paris, the
beautiful and artful Molitor, which actually started life as a community pool and not a
hotel at all. The hotel was built around it later, and yet the community continues to
use the pool today with no intention of staying at the hotel. Because the two services
of the hotel and the pool are conceived independently, they can be managed sepa‐
rately with revenue recognized separately, or rolled up together, and the business
model is more flexible. This is one way of seeing how the world reflects the advan‐
tages of not making too many assumptions.

A central tenet of deconstructive design is that we know that we don’t know how
things will change and how people will want to use them in a changing world. The
easiest way to make flexible, reusable, and easily maintained software is to not make
any unnecessary assumptions about how things are yolked together. When you hear
someone saying, “we know that no one will ever want to invoke this function outside
of the context of this particular application,” that should send up red flags for you.
Honestly, I don’t understand why people sometimes cling to this idea of “application-
specific services.” It seems a necessarily arbitrary and unhelpful distinction.

Application-Specific Services | 153

https://github.com/lightbend/config

If you think more generally, honoring the precepts discussed earlier, you’ll find that
your product team is very happy with the many options for business capabilities you
readily afford them.

Communicate Through Services
As in the famous Bezos memo of 2002, the way to achieve a fantastic platform is to
ensure that all communication is done only through service interfaces. Services must
own their own data. Other applications or services must not go through the “back
door.” No team must ever read directly from another team (service)’s data store.
Instead, they should go through the service interface. Do not allow teams to get
another service’s data via direct linking, extended queries directly at the database
level, shared memory, or vendor-specific data emulsion extensions.

Services own, and are responsible for, the data they have—the noun or function they
represent in our domain. When a service is ready, all other applications should reuse
it and not build their own that does the same thing, or with a slight variation.

This means that no two services in our domain should overlap and do the same job.

Expect Externalization
Throughout this book, I’ve begged for us to assume less in order to make better soft‐
ware. There is one case, however, for which making an assumption, or at least having
a vague expectation, will do wonders for the robust resilience, performance, and scal‐
ability of your design. That is to expect that any service you write will be publicly
available, externalized from your own organization and applications and used by
other business units, and exposed out on the open internet.

Now there is a balance here of course. If for the near-term roadmap you have no rea‐
son to suppose that your service would be externalized, and you have a tight and hard
deadline, it’s perhaps inappropriate to take the extra time to create a new public inter‐
face for your service, which would (as we discussed earlier) need to be separately built
and deployed, and go through a perhaps cumbersome change request process and set
up space in the DMZ and incur the cost of that compute and storage if no one is
going to use it. The point is not to do all that, but do imagine that someone soon will
ask you to do that, and that would cause you to do a few precautionary things first:

• Ensure that you have a full set of security scans such as with a tool like Veracode.
Running static scans and gaining insight from the reports on how you might
accidentally be violating Open Web Application Security Project (OWASP) con‐
straints is a rich source of data to help you prioritize security bugs lurking in
your software and fix them now.

154 | Chapter 7: The Application Aspect

• Ensure that you have properly designed your software to be scalable. Gaining
data now by running load tests in automation regularly will give you a clear path
for how far you would have to go make your service publicly available. If you
imagine this scenario up front, you might take the time to design it more
thoughtfully. Using just a few basic scaling techniques, such as asynchronous
invocations, eventing, loose coupling, statelessness, and horizontal scalability up
front can literally save your business and can help it prosper. Scaling means that
the business can scale, too. It can become very expensive if you neglect to con‐
sider public-level scale. I have seen businesses that actually lost more money the
more large customers they added because the services weren’t designed with big
scale in mind, by which time it is too difficult to change. That’s the opposite of
scaling a business. You don’t need to do more than is necessary; just consider
these scalability techniques from the beginning, and then public or even global
scale is much easier later. It’s mostly a matter of considering carefully how you
manage state.

• Carefully select how you address functions on the network.

Mostly what this means, though, is that you design for resilience.

Design for Resilience
Often when designing services, we consider only the Happy Path. That’s natural
because the product team has described what it wants it to do, and so we go imple‐
ment that. But we know things sometimes go awry, so we do logging and exception
handling and monitoring.

The problem with doing only these things is that they don’t help the caller. In the case
of logging and monitoring, we learn only after something blows up that it’s happened,
and we rush onto a crit-sit call (or if it’s less severe, we put it on a priority list for later
bug fixes). But we can do better and provide an answer to the customer now. We’re all
accustomed to seeing 404 pages if we type a wrong URL. That’s better than nothing.
But a 404 page that offers a search bar in it and a list of help topics is even better. In
the event of a 500 Internal Server Error, a Bad Gateway error, a request timeout, or a
rate limit violation, the improved response is not quite so clear. But we must consider
those possible errors and design for them, just as we design the Happy Path.

A second point is that there is a spectrum here: things are not, in my mind anyway,
totally up or totally down as much as they are functioning along a spectrum, across
many different aspects of the system. We’re used to jumping if things are hard down.
But many users experience very frustrating engagements with our software for a vari‐
ety of reasons, including very long response times, or haphazard behavior, things that
are not quite so readily identifiable as someone running through the halls screaming
because the entire site is “hard down.”

Design for Resilience | 155

Consider graceful degradation in your services up front, and throughout their life.
Hystrix is a tool that was open-sourced by Netflix a few years ago and has been a
good way to handle resilience features. But it required a lot of up-front configuration,
which violates the deconstruction tenet of not trying to use a crystal ball to imagine
every kind of failure and how it will happen and what the impact will be. So Hystrix is
just in maintenance mode and no longer under active development. At the time of
this writing, Netflix itself is moving toward a newer, more dynamic and lighter-
weight framework suitable for functional programming called Resilience4j.

You can use a library like one of these, or roll your own, but either way, you must
design for resilience, which means graceful degradation, compensation, and recovery.
Your service functions and engineering team should have an answer for each one of
these items in your services:

• Where you will employ circuit breaking and how you will implement it? At heart,
a Circuit Breaker pattern is essentially an implementation of the old Gang of
Four Decorator pattern working with an Observable. The trick is not implement‐
ing the circuit breaker as much as it is determining the next-best state for your
function to delegate to.

• How you will allow rate limiting? This allows you to restrict the calling rate of
some method to be not higher than two requests per second, for example. This is
an important element in any service. If you think that your service is just to be
used by internal customers and so you don’t need to consider rate limiting, I urge
you to think again. Well-intentioned junior colleagues two cubicles over can acci‐
dentally launch a Denial of Service attack with a little improper loop logic that
can flood or bring down your service. You won’t be able to responsibly plan for
regular usage and future provisioning and costing if you don’t have a rate limiter
in place for your services.

• Bulkheading. This is related to rate limiting, but specifically restricts how many
parallel invocations you will allow on a function at once.

• Automatic retrying. If this request fails, can you automatically try again?
• Compensation. Can you perform a different action?
• Response caching. We tend to think of caching strictly as a mechanism to

improve performance. But it also can improve resilience. Caching in order to
reuse a previous response for the same request is a great performance improve‐
ment and relieves pressure on the database, reduces network calls, and so forth.
Caching responses as a resilience consideration is a powerful way to allow grace‐
ful degradation: think of how your application might answer user queries starting
with “No, but...,” as in, “I can’t do exactly that right now because something is
broken, but I can give you a related response to a similar question.”

156 | Chapter 7: The Application Aspect

• Notification. Some companies have implemented a nice service wherein if you
call into customer service and there are currently long wait times to speak with a
representative, they can record your number in the system and call you back.
Since HTTP/2 and WebSockets and push notifications and other advances in
technology, websites and mobile apps can now do this, too. You can can imple‐
ment a feature whereby there is no good cache and no good circuit breaker, but
you can automatically call back the client later when you’re back up again. It’s not
ideal of course, but it makes the customer feel more cared for than just blowing
up in their lap with no clear next step.

The deconstruction tenet here is that exceptions are not exceptions. They happen all
the time and the results of failures can obviously range from irritating to disastrous. If
you treat the Happy Path as the privileged term and focus all your implementation
effort there, and treat exceptions and failures as marginalized second-class citizens,
they will eventually undermine you.

Adding these with a library such as Resilience4J will make your life, and your cus‐
tomers’ lives, so much easier.

Interactive Documentation
If you’re using RESTful services, publish Open API documentation (Swagger). The
OpenAPI Specification was donated to the Linux Foundation in 2015. The specifica‐
tion creates a RESTful interface for easily developing and consuming an API by map‐
ping all the resources and operations associated with it.

Doing this provides a variety of advantages:

• It allows you to write a complete specification before you write any code.
• It lets you visualize the operations in your APIs and allows internal developers

and external consumers to quickly and confidently adopt your API.
• It provides SDK and scaffolding generation.
• It promotes test case automation by supporting response generation.

Also publish documentation guidance with your service so that others can use it
without talking to you. We use services all the time on the web, and then when we
turn around to make them, we forget our own personal experience and think we’re
done when the code for the function is done.

Think of how you use something like Amazon S3. You don’t call Amazon and have
meetings with them when you want to use Amazon S3; you just call the API. You can
do that because AWS provides the documentation, examples, automated API keys
and credential management, and other necessary functions to make this possible.
That’s why it’s called a service. If you go to a taco stand and place your order and the

Interactive Documentation | 157

https://swagger.io/

guy at the counter invites you back into the kitchen to cook it yourself, that’s not food
service, that’s outsourcing your kitchen.

As a rule, you should automatically add Swagger documentation to your services and
publish them to a demo environment so that users can try them out interactively and
see how to use them without hurting themselves or you. This will also help ensure
strong contracts and efficient communications between your internal teams. Mini‐
mize the communication necessary to achieve this by automatically publishing the
documentation at build time and deploying it as a step in your pipeline.

At a minimum, use GitHub as a model and publish Markdown describing your ser‐
vice with the service (not on some remote wiki). If you use Java and Maven, it’s a step
up to use the Maven HTML site generator for each service with the Site Plugin. This
will just put the documentation in the site folder, so make sure to include Wagon or
another tool to then post your documentation to the proper public repository. This
should be automated and easy given that your services are independently buildable
and deployable.

Anatomy of a Service
There are a few basic kinds of services my teams and I find helpful.

The overarching rule is that services must have high cohesion, so each one represents
one important noun in the domain or performs only one meaningful action. A ser‐
vice API can have many functions, but they should all be related around a single idea
from the domain perspective.

UI Packages
The UI package is a service with the single job of displaying information to users and
providing a means of input and user interaction. These services can be put together
with building blocks of UI widgets or reusable UI components that can invoke
orchestration services in their own process. For example, if you have a shopping ser‐
vice that returns a list of offers that a customer can pick from, you might want a cor‐
responding Shopping UI widget in your JavaScript framework so that you can reuse it
across various channels such as your public website or your onsite application for
store employees as well as your voice agent call-in channel application. Your UI pack‐
age service then becomes a collection of such reusable widgets.

Orchestrations
The UI package widgets will likely invoke the second layer of services, which are
orchestrations. Orchestrations have the single purpose of representing a workflow
and managing state for the end user. They should be designed from a business per‐
spective. These services are called orchestrations because they are like the conductor

158 | Chapter 7: The Application Aspect

in an orchestra who doesn’t play an instrument but pulls together all the different
individual players to make a coherent whole. Orchestrations just perform the job of
combining others that actually do the work (these we call engines, which we look at
in a moment).

If you have a user experience (UX) team or knowledgeable product managers, work
closely with them to determine the best workflow for a particular use case and map it
out on a whiteboard or with a tool like Balsamiq so that it’s easy to change. Using
Design Thinking techniques discussed earlier will help ensure that your workflow
makes the most sense to your users: it’s very important to design workflows from the
outside in or top down. Resist the temptation to start from code (bottom up). This
will have the effect of dumping the database out onto your user. You want to be user-
goal-oriented here, constantly asking yourself what the thing of value that the user is
trying to do is, and how you help them achieve it most effortlessly.

Here are some guidelines for considering how to create your orchestration services:

• Start with a clear definition of the user goal.
• Consider this particular workflow at the same time that you consider a variety of

related workflows so that you’re taking the holistic view and placing tasks where
they best belong, not only for this particular goal, but in relation to all the things
a user will want to do in your application. It’s crucial here to recall our theme of
the importance of naming and the importance of picking the right levels of
abstraction as you work with your concept. For example, you could decide that
you have one user goal to Add Products and a second one to Edit Products and
then create two workflows. This would be obvious and seems reasonable enough.
But if you decided that, at a higher level of abstraction, the user wants to “Work
with Products,” you might have a single display that lets them do both of those
things that is more convenient, obvious, and less mentally taxing and time con‐
suming for your user. This might make your design work more complex, but
again the point is to keep it simple for your user, not necessarily for yourself.

• Orchestrations might be step by step or rules driven. It’s probably easiest to start
with the step-by-step process, but then to use that only as a starting point or
input to a second round of refinements to discover if and how you should com‐
bine workflows. This will also reveal some complexities that might suggest to you
that a rules-driven workflow approach makes the most sense here. Consider the
tax application TurboTax. This is a rules-driven workflow. Although the goal is to
get your taxes filed, it’s great software because the user input values might trigger
different rules that show different screens. It’s nonlinear. It’s convenient for engi‐
neers to think in simple, linear, step-by-step processes, but this is rarely what’s
best for a user.

Anatomy of a Service | 159

• Do not start with UI design here. This is a common mistake. You define your end
goal, and a logical starting place based on the minimum amount of information a
user needs to have to start achieving that goal. Then, fill in the necessary steps in
between. The naive, or hasty, approach is to then make each one of those steps a
screen. If your goal is to minimize friction or time-on-task for the user, they will
be happier. So you have a prior step of conceptualizing the best way to design the
UX after you have the clear goal and set of steps.

• Mark clearly which steps are required and which are optional. Ask yourself how
you can make the easy things easy and the difficult things possible. This is a hall‐
mark of good workflow design. Doing this requires that you consider, as we do in
deconstruction, the multitude of user personas: there is no such thing as “the
user.” There are users in extremes: the three year old and the grandmother; the
casual user and the one for whom it is mission critical; novices and power users;
and users who need it heavily for a short period of time and then might not come
back to it for several months. Look at your workflow through all of these lenses
in order to determine the best way to conceive of the steps and screens (or voice
commands).

• Highlight any dependencies: what steps can be done at any point, and what steps
absolutely require something prior to be done?

• In deconstruction design, we always consider the opposite as early as possible, to
free ourselves from unwarranted assumptions and do something delightful and
innovative. Ask yourself what the world would look like if you didn’t have this
workflow at all. Is that possible? How can you eliminate it altogether? What
would have to be the case for you to do that and save your user all the time? Per‐
haps you can’t eliminate it altogether, but putting your team through this exercise
will likely help you come up with ways in which you can simplify things for
them. An obvious answer is how you can use automation, previously collected
data, or a machine learning recommender engine to prepopulate as much as pos‐
sible by guessing what the user would want to do. Then, if 7 times out of 10 they
are just approving and going to the next step, you’ve saved them a lot of time.

• Make sure that every task is rigorously defined in this one structure: verb/noun.
The user is doing something to or with something. The task might be “Search
Songs” or “Pick Room.”

• Be sure to include the exceptions in your workflows, and not only the Happy
Path.

As you draw out your workflow, you can use a tool such as SmartDraw to make sure
you are defining the flow based around user goals and tasks before jumping into the
UI design; they’re separate matters.

160 | Chapter 7: The Application Aspect

Engines
A third type of service we might call the engine. These are the services that do the
work. They perform calculations, execute algorithms on data, run searches, invoke
data services to persist changes, and save state.

When you design your engines, make sure they do one thing only. The engine might
represent the Profile Persona service, the Offers service, the Cart service, or the
Ordering service. Shopping and ordering are two different things, which we can
know for certain by observing the world. Out walking around in the world, we can
shop without buying anything. We might shop, take a rain check, and save this and
submit it for ordering later without shopping again. Therefore, we know for certain
that these are two distinct ideas, and should be two different services.

Separating ideas like this encourages you to make strong interfaces. We can see in
that previous example that if we can place an order without shopping, as long as we
have a well-formed order slip, that input to the Ordering service can be generated by
a variety of possible other services or systems. The message can be created from the
Cart service during checkout for a typical ecommerce flow, or generated by a third-
party business partner channel, or by a voice agent. Keeping things well defined in
this way is the best thing you can do to make your services portable. Because we
know that we don’t know what the new business direction will be, portability is
important. New executives come in and change direction, the cloud gets invented, car
consoles get invented, NoSQL databases come on the scene and are initially fantastic
and then get taken over by corporations that squeeze you for money and there’s pres‐
sure to switch. We know how this all goes. Making sure your services feature high
cohesion and loose coupling is the best thing you can do to keep your business nim‐
ble and cost efficient.

Make engines stateless
As much as possible, engines should be stateless. This is generally an impossible goal
given that the whole point of any software is to modify the state of some
representation.

What you can do is to disallow developers from writing to a server’s local filesys‐
tem. Application developers should not implement code that allows users or systems
to upload or transfer objects for storage on any server’s local filesystem. Doing so
would create servers that hold state and are not automatically replicated. State MUST
be held only by databases or specified object storage systems. Otherwise, the overall
system’s resilience would be compromised.

System designers and developers should make local choices that support stateless
interactions across use cases, anticipating that web and application servers will

Anatomy of a Service | 161

randomly fail partially or completely at any time; the system’s resilience design should
support this.

Scaling engines
A primary goal in designing engines should be their scalability. The most inexpensive
and quickest way to scale is horizontally, which means that you can replicate, as if off
a conveyor belt, many exact duplicates of your services and deploy them alongside
one another. These nodes are just some drone army that are indistinguishable from
one another. You then have a set of load balancers send requests to servers with avail‐
able capacity to do the work. Cloud providers let us define autoscaling groups, so that
we can define triggers for specific thresholds to deploy a new copy of the service, add
it to the load-balancer pool, and let it begin accepting requests. Then they can auto‐
matically scale back down again when demand is reduced in order to save costs.

You can’t do that when vertically scaling—adding more hardware capacity in terms of
memory or processor power to the same service instance. This often requires appro‐
vals in a lengthy provisioning process, ordering new hardware, adding it to the avail‐
able capacity, and making many potentially dangerous network changes. You
therefore need to vertically scale months in advance of when you might actually need
the additional capacity. In short, vertical scaling is not transparent and as fluid with
your business in the way that horizontal scaling is. So horizontal scaling is far more
preferable. It requires that you design your services thoughtfully around how you
hold state, how much work you make each service do, and at what point in your
design you do what work.

You must design your services to horizontally scale at the service level. That is, you
don’t scale your entire application set at once. You might have a web server farm that
is performing just fine, but the shopping engine services running your .NET code are
performing complex calculations that take 200 ms and so you need to scale out only
those nodes without adding any more web server nodes.

You can then allow your load balancers to execute the simplest round-robin algo‐
rithm to select which service it directs the request to. Of course depending on your
load-balancing hardware or software, you can select more sophisticated algorithms
that direct requests based on actual server capacity at that moment.

Every engine must have defined scale goals and clear current scale ceilings. These
metrics should be expressed only in math and never in any other way. I have heard
very senior folks in different organizations talk about whether the service is “scalable,”
or claim that their service is “scalable.” This is nonsense, absolute fiddlesticks. It
doesn’t even mean anything at all to say that. In the case of expressing scalability,
there is only math representing the current ceiling, and the math structured the same
way that represents the scalability goal (if they’re different). Scalability means that you
can perform the same under additional load. This obviously means that you need to

162 | Chapter 7: The Application Aspect

know what acceptable performance is, stated in terms of response time to the user,
and then under what load. It’s obvious then how to represent scalability; state it like
this in your design documents:

For 500 concurrent users, the response time to the end user agent will be under 2 sec‐
onds 80% of the time, 2 to 4 seconds 19% of the time, and 4 seconds or greater 1% of
the time.

Change the numbers, of course, as you need for your business, but the structure of
the sentence should be the same. But let’s unpack this a bit more. Notice that we state
“to the end user agent.” That could mean the browser. This is differentiating because
first, it’s user oriented, which we love; second, it’s clear. I have seen vice presidents
argue vehemently over this because they weren’t clear on this precise point: response
time to where? The engineering guy would proclaim he was within his SLA because
the service responded to the load balancer in under two seconds, and the product guy
would proclaim that doesn’t matter to the end user because they see the result several
seconds later. Then, engineering claims that’s the network and the Wild West of the
internet over which they have no control, and so forth. You can see where that goes:
nowhere good. So if you do elect to define “at the end user agent,” you need to know
how you will measure that consistently and store that data to track it, which is a great
idea. It also means that you would need to carefully consider holistically all of the
components in the stack for that service request, including the load balancer, the edge
cache, the network, and your datacenter regions. You might then restate your goal as
“in Europe” and have a different goal for “in the US.”

The best thing here is to, within your budget and timeline as appropriate, do the best
job by your users. Don’t use this scalability sentence structure to “game the system”
and look good in your metrics because of the fine print. People see through that
pretty quickly and it doesn’t truly help your business. Instead, make aggressive goals
and use them as a statement of work for yourself to examine and improve the differ‐
ent parts of your stack.

First, you need to have an understanding of your customer base. How many people
are using it concurrently? What is the response time they require? What response
time would delight them while still being cost effective for your business?

You then would need to have in place a good load test using a tool such as Selenium.
But then you also would need to run that load test regularly, which would mean that
you need to automate the execution and reporting of the load test results. You want to
do this throughout development so that you can quickly spot which additional fea‐
tures or implementations affected your results. This means that you want to set up
your load testing as early as possible and launch it even against your initial hello
world engines. It’s a lot of effort to define and run and report load tests, and so
putting this work up front instead of at the end means that you will get to do it many,

Anatomy of a Service | 163

many times before you actually go live, and so you’ll have a very clear understanding
of your application when you need to most.

To state your scalability goals, you follow the same structure, but using the future
tense. Now, you have a goal that’s measurable and testable, and you can show your
success and be prepared if things begin trending downward.

High-Scalability Case Studies

There’s a website that’s been around for many years now that hosts
case studies by different companies on how they scaled their sys‐
tems. It’s called HighScalability.com and it hosts a section on “Real
Life Architectures,” featuring articles about how the usual suspect
companies like Netflix, Amazon, Twitter, and Uber faced certain
scaling challenges and how they designed to scale better.

Another good way to scale engines is to consider where you can do work asynchro‐
nously (discussed in a moment). Again, this is more difficult for us because it makes
things more complex, but it’s better for the end user in terms of performance.

Serverless
Serverless functions such as AWS Lambda, Microsoft Azure Functions, and Google
Functions can also serve as a backbone for some of your engines, but you should
employ these with caution. Recall that the person who invented the ship also invented
the shipwreck. No benefit is free, and the cost of the convenience and scalability that
serverless provides comes in the form of challenges in monitoring and permissions
management, general confusion, and difficulties for team development.

Teams need to experiment, to try to test things. This is very easy to do with serverless.
But you must make sure that testing a function in this way does not inadvertently
cause you to forego the design process of considering whether serverless is really the
best place for that function in your overall design.

The confusion comes in because until serverless matures, it remains a rather opaque
part of your stack. You can use tools such as XRay in AWS to help understand the
general metrics, but it can be difficult to integrate these with other monitoring tools
your organization might have as standards, making it difficult to trace and piece
together the overall behavior. There are other tools that you can employ such as
IOPipe and Epsagon that might be of use in improving your observability.

The takeaway on serverless for now is that it will add considerable complexity to your
architecture: everything is a trade-off and there are no silver bullets. So as you grow
your serverless footprint, you will find a proliferation of satellite tools creeping into
your stack like weeds, accidentally changing the landscape of your architecture. No
tool solves everything for you. Considering up front how you are going to handle all

164 | Chapter 7: The Application Aspect

http://highscalability.com/

the good old-fashioned concerns that you will always need to account for, including
availability, monitorability, manageability, scalability, performance, cost, and security,
is paramount.

Any time you go to use a new tool, remember that you still have all those concerns to
account for, and imagine a kind of scorecard. Where one tool succeeds, another
might stumble. This will help you to make the requisite trade-offs more purposefully.

Data Accessors
All data access must be through service APIs. These services are called Data Acces‐
sors. Data Accessor services are invoked by engines and interact with the data store
for the engines to do the work.

We examine those more in detail in Chapter 8 because they’re a big topic on their
own. I mentioned them here solely for completeness. For now, just know that there
are services called Data Accessors and they are distinct services from engines.

Eventing
The most basic form of asynchronous processing is publisher/subscriber, or pub/sub.
One component, the event producer, publishes an event to a queue or topic. A queue,
here, stores that event and allows it to be read asynchronously by a single separate
second component (the subscriber). A topic is like a queue that allows multiple sub‐
scribers to pick up the event.

The idea of publishing events to topics is a crucial one in deconstructed design. Fun‐
damentally, the fact that there are multiple event subscribers, and they are free to
come and go (subscribe and unsubscribe), free to process the event in their own time,
in some way unbeknownst to the event producer, is a perfect vehicle for many of the
concepts we’re working with. Because we know that we don’t know what something
will mean, because we know that we don’t know the “correct” response (or assume
that there is only one of them), and because we want to design systems to be incredi‐
bly scalable, pub/sub eventing fits the bill perfectly. It’s the architectural choice that
makes the fewest assumptions about the world. It allows you the most scalability, flex‐
ibility, extensibility, loose coupling, and portability.

At the heart of this pattern is the event. Every event should be represented with the
same idea: that there is a state change that just happened to this noun in the immedi‐
ate past. In the hotel domain, for instance, you could conceive that “Guest Checked
Out” is an important event. Others might be “Order Placed” or “Reservation Cancel‐
led.” Notice that any human being who has ever stayed in a hotel is likely aware of
these events. That’s the appropriate level for now: nontechnical, business oriented.
Just take a few minutes to list out what some of the major and obvious events are in
your domain.

Eventing | 165

When performing your domain analysis and representing your set of services as we
discussed earlier in this chapter, take another pass through that work, viewing it
through the lens of events. Examine each of your services and the ideas in your
domain model and ask which of them can benefit from an event pattern. Just as you
examined the domain model to ask how the verbs and nouns interact, consider too
which services have strong associations with the events you have listed. This will lead
you to some clear places where you can take advantage of events for the things they’re
best at: loose coupling, perceived performance, scalability, extensibility, and
portability.

Because managers run the orchestration of services, it is best to have the manager
emit the significant events. The manager service places an event on a pub/sub topic
so that multiple subscribers can respond, as shown in Figure 7-2.

Figure 7-2. The basic anatomy of asynchronous service components

Managers should own their events, such that no other manager or subsystem should
produce the same type of event. The Event Handler is an interface that listens to a
topic to read events it subscribes to, performing filtering as necessary.

For all the benefits in perceived performance and scalability that pub/sub brings, after
you have created a number of event producers and subscribers, it can be confusing to
know exactly how your system is working. Before you create too many of these, it is
therefore a good idea to create a master index file of all known event types and which
orchestration services publish them. This is documentation, and not necessarily a
central online registry. This will help teams know which events are already being gen‐
erated, such that you might be able to easily add extensibility and customer customi‐
zations to your system by adding another subscriber to an existing event. This is one
reason why it is best to start out with what in JMS is called a Topic (which allows

166 | Chapter 7: The Application Aspect

multiple subscribers) rather than a Queue, which is a one-to-one publisher/
subscriber mechanism.

Events should be lightweight messages that should not contain a copy of the complete
current state. Instead, events should contain their header or metadata information
and a reference ID that they can use to access a copy of the complete information
should they require it. The Claim Check pattern is helpful here to get the current state
from the system of record. Using this pattern prevents you from inadvertently “leak‐
ing” the system of record out into the many provinces of a complex system, maintain‐
ing the integrity of each service. It also means that you can maintain a tighter security
boundary to help maintain compliance with the General Data Protection Regulation
(GDPR) as well as Payment Card Industry (PCI), Personally Identifiable Information
(PII), Service Organization Control 2 (SOC 2), and other important data privacy and
security restrictions.

Enterprise Integration Patterns

A very helpful and informative book on integration patterns is Gre‐
gor Hohpe and Bobby Woolf ’s Enterprise Integration Patterns. For
more sophisticated interactions, you will find places to perform a
Scatter-Gather or use Claim Check (these are patterns in the book
that are overviewed on the website). It’s many years old now, and
newer tools such as Apache Camel have been built using the pat‐
terns so you don’t need to implement them all from scratch. But
much of the book is still quite relevant. It’s an excellent reference.

Asynchronous calls are wonderful, but use them wisely. You do not want to use asyn‐
chronous calls every place possible, for a few reasons:

• First, they come with a cost of complexity. You need to create more infrastructure
to support asynchronous systems like pub/sub.

• More infrastructure can mean more cost.
• You also will have a harder time monitoring and tracing requests through those

systems after they are in place.

Many teams will default to simply assuming everything is synchronous because that’s
by far the easier thing to implement. Be thoughtful and specific about where to use
synchronous calls given the use case and your scalability needs. If your use case
allows for a short time between interactions, you should almost certainly use asyn‐
chronous processing. For example, if the user places an order and then an email con‐
firmation is required, the notification to the email system and then the sending of the
email itself should occur in separate processes. Some use cases, such as this one, are
obvious, to make the point.

Eventing | 167

http://bit.ly/2kmeoXy
https://www.enterpriseintegrationpatterns.com

There are some that are less obvious. If you need to scale to many thousands of
requests per second, you might find even asynchronous queues for shopping read
requests are valuable.

Structure of an Event Message
Every single event in your system should be structured in the same way to ensure that
you capture everything consistently for processing. Table 7-1 shows an example.

Table 7-1. Structure of an event message

Attribute Data type Req’d Description Example

EventType String Y Code that identifies the type of event ProfileModified,
OrderCreated

EventID String Y Unique identifier for every event [UUID]

Correlation

ID

String N Identifier for finding relation to another event ID [UUID]

Timestamp TS Y When the event was created 03/27/2020 17:15:00Z00

Event

Context

Map N Set of key/value pairs with context data specific
to the event type

ProfileID:1148652
StartDate: …
EndDate: …

EventName Structured
String

Y The resource name, fully qualified and
discoverable

[discoverable address
name]

Make the UUIDs strings instead of native language UUID types for interoperability
between services. After the translations happen in and out of the database and across
service implementations in .NET, Java, and Python, you will wish they were strings.

In conclusion, use eventing liberally, but of course thoughtfully. We default to syn‐
chronous request/response models, as if we know the meaning, we know what should
always happen. Instead, foreground asynchronous. This improves scalability and
description of the system. But it also does something for you where you don’t need to
decide the meaning: you allow the “import” of the event to be deferred. This is power‐
ful because the business changes its mind frequently, the system evolves, different
customers need different things, and things means something different to diverse
audiences. Any reaction in your application should not be hardcoded. Use event han‐
dlers instead. This helps you model services as contextual agents, not static and pre‐
determined and fixed essences. It’s a key tenet of deconstructed design.

Contextual Services and Service Mixins
When you design with eventing foremost in your mind, we tend to make things far
more flexible and yet more solid. It pulls you away from obvious and wrong ideas,
such that there could be the One True “Customer Profile" service to rule them all.

168 | Chapter 7: The Application Aspect

Customers, products, all the things in this glorious and rich world are multi-
dimensional and varied. When we try to lock them down we quickly are forced to
make false statements about them in how we represent them in our classes, and this is
where the trouble begins.

Consider the traveler. You have likely traveled many places for many reasons in your
life. We can consider that we might go on a leisure trip with our sweethearts, and also
go on a business trip with our colleagues. If we as service designers decide that there
is a single profile for a person, we will be painted into a corner. For instance, if you
book a room for two nights on a Tuesday for one person, we can assume that is busi‐
ness travel, whereas we might well assume that a booking for two people on a Friday
is leisure. And perhaps they are. But the context here is king. The same traveler
could (and frequently does) book both these trips, but have entirely different reasons
for them.

The temptation, of course, is to continuously add to the same one Traveler or Cus‐
tomer table or the same one Product table, with their encompassing services becom‐
ing ever larger and more complex Swiss Army knives to try to support all these
different use cases. In this model, different services will all put pressure on the same
one bottleneck, and find it confusing to wade through dozens of optional input and
output fields that only make sense in certain use cases. You eventually need to have a
very complex rubric to understand how to make proper requests of such services.
Instead, we want to take that rubric as metadata or documentation and break it out
into actual functions on separate service implementations. To embrace this concept,
we might call this manner of writing services “service mixins” or “contextual services.”

We do not define services in accordance with a unifying idea of the single Grand Nar‐
rative. Doing so would mean participating in perhaps not quite a fantasy, but a limi‐
ted view that will have serious and costly ramifications for extensibility, and
portability.

Instead, we ask what use cases this entity participates in, and in what contexts the
entity might be required to store or share information. We might discover smaller,
more specific related Personae services, wherein the single person with one tax ID has
many different relevant modes of being in the world, and appears differently in your
system in different contexts. Designing for that multiplicity will aggregate nuances
that improve the richness of the system.

For example, instead of storing one single unified Traveler service, you might have a
Business Traveler and a Leisure Traveler and a Bleisure Traveler service, all relating to
the same unique identifier for the same individual actual human, but capable of rec‐
ognizing that in different contexts the same person will have different needs and
desires for communication, notifications, recommendations, and the relevant
attributes that support those.

Contextual Services and Service Mixins | 169

https://en.wikipedia.org/wiki/Metanarrative
https://en.wikipedia.org/wiki/Metanarrative

You might have a variety of brands in your company portfolio that cater to the econ‐
omy segment and the luxury segment. You might have customers that plot against a
2x2 matrix of income level (low to high) and spend level (low to high).

Consider the way that, say, an unsupervised machine learning system will determine
customer clusters based on runtime or historical behavior. You can use these ideas, or
even the actual cluster results to help inform if not drive the design of your services.

Clustering

Clustering is an unsupervised machine learning technique. There
are no defined dependent and independent variables that anchor
the data. Instead, the patterns observed in the data are used to
identify and then group similar data points into clusters.

In this way, we can design much richer, more targeted and helpful business systems.
If you are in a modernization or digital transformation effort, in which you have the
luxury of a strong historical understanding of your business, your customers, and
your systems, consider using machine learning principles such as these to actually
help define your modernized system. You might call this machine learning–driven
design.

Performance Improvement Checklist
There are a few simple things that you can do to improve performance in your web
applications. Hopefully, you do all this already and it’s obvious to everyone. I wish it
were. I list them here for you as a kind of helpful checklist. They are general rules of
thumb that you should always tick through; make sure they find their way into the
Acceptance Criteria of your user stories.

1. On web APIs, collections must provide filtering, sorting, field selection, and pag‐
ing to keep performance tight.

2. Use GZip compression. Add this configuration to your web server to enable it,
and browsers that advertise that they accept GZip encoding in the request header
will be sent the compressed version. This can save up to 70% of the response file
size, reducing the time to return the response and reducing your network bill.

3. Combine and minify both CSS and JavaScript files. Instead of forcing the
browser to make multiple network requests to many CSS files and many Java‐
Script files, use a tool to combine your JavaScript into one file and then minify it.
Check out JSCompress, Gulp, Webpack, Blendid, or any others that might serve
your purposes best.

170 | Chapter 7: The Application Aspect

https://github.com/vigetlabs/blendid

4. Ensure that your image files are the same size as your <div> display containers.
Do not rely on the browser to crop large images while needlessly sending and
processing a lot of bytes that it will just throw away.

5. Tune your database. First, use indexes. If you are using a relational database and
have columns listed in a WHERE, ORDER BY, or GROUP BY query, they should
all be indexed and those indexes should be regularly rebuilt on a scheduled job.
Second, run EXPLAIN to understand where the bottlenecks are in your database
queries. Third, be sure that you do not have very long queries and queries with
many joins. If you have more than just a few joins and that query is executed fre‐
quently, you should revisit that design. Fourth, denormalize data as necessary
and have the data act as a kind of side car to the “System of Record” tables.
Finally, move things up into a distributed cache.

6. Use a Content Delivery Network (CDN) like Akamai or AWS CloudFront to
deliver your media. The fastest responding system is the one that’s never actually
hit. That’s true for web servers as well as databases.

Again, we’re not trying to capture all the things you can do for performance tuning.
That’s a whole (very long) book. Of course you need to design your system properly,
use the right level and type of hardware, and so on. If you don’t do those things,
adding CSS minification certainly won’t save you. These are just a few simple, obvi‐
ous, easy, low-hanging-fruit type things to do. If you do just these and little else on
top of an otherwise solid design, they’ll get you a great head start.

Separating API from Implementation
Often, teams know that they should separate the API from the implementation. In
rushing to meet an aggressive deadline, they might simply create an interface and
then implement it in a class in the same package. This also becomes a habit because,
if you’re using .NET or Java, those languages provide the interfaces in the same pack‐
age as the implementations. For example, List (the interface) and ArrayList (the
implementation of List) are both in java.util. Of course, we are free to create our
own implementation of List in our own package, so it makes perfect sense here. But
this acts as a silent teacher that can prevent us from seeing a practical extensibility
and portability advantage we could gain by more cleanly separating them.

When you design your system, put the interfaces for a subsystem together in a pack‐
age, and then make that its own buildable JAR or binary. Then, create a second, sepa‐
rate project with that binary as a dependency and put your implementation there.
What you’re doing is not assuming that your first implementation is the One True
Light and The Way. Rather, you are assuming that this is one possible implementation
of many. If you do this at the beginning of your project, it takes literally five minutes.
And it opens the door to incredible extensibility for customers and other teams. Your

Separating API from Implementation | 171

service code remains mostly empty, with little real “business logic,” which is in the
implementation. Your code becomes an empty container, the possibility for that busi‐
ness logic to be executed.

The model here is the set of interfaces that support Java Database Connectivity
(JDBC). These ship with Java but do no work. The database vendors such as Oracle,
Microsoft, and open source projects then create their own database drivers that know
how to communicate with their specific databases. But they allow you as a developer
to switch between database vendors without changing the interface. So you must have
the class implementation binary on your classpath, and that binary should be a sepa‐
rate artifact. I’m suggesting to do the same thing up one level further, too, with your
engine implementations.

Following this model will prove to be an incredible time saver later when a customer
wants to do it their own way, when another team wants to reuse the system shell for
their own purposes, when you need to port to another platform or provider, or when
you need to make a significant version upgrade. It will allow for wonderful extensibil‐
ity, helping turn your regular application into a true platform that supports multiple
implementations.

If you are writing in an interpreted language such as Python, you can still do this.
Python has duck typing (you can pass a walrus for a duck as long as it’s a quacking
walrus) and as of Python 3 you can use Abstract Base Classes using the
@abc.abstractmethod annotation and put these definitions in separate folders and
packages from the implementations. Then, customers or other teams can provide
their implementations that adhere to the same interface.

Languages
You might have more customers in Europe than North America, and APAC might be
your fastest growing region. You might have a strong customer base in South Amer‐
ica. You might be entirely run in London with no plans to expand beyond Brighton,
but consider the multitude of languages, cultures, and diverse people in the world.
English is only one language among many hundreds. When we default our applica‐
tion to English, and then later our Chief Strategy Officer wants to enter the Cuban
market, we have to create a multimillion-dollar project that could have been free.
Here are a few simple design rules of thumb for applications and services:

• Externalize all strings from your code so that internationalization and localiza‐
tion is made easier. You might exempt logged strings from this because it
becomes overbearing and hopefully no one but you is reading your logs. These
strings can be externalized in resource bundles, in the database, or in text files.

• For multiple languages, you can use an external service such as translations.com.
That can get expensive depending on how much you use it. You can do a

172 | Chapter 7: The Application Aspect

http://translations.com

poor-person’s version of this using the terrific translate.google.com service to start
to get an idea of your key/value translations and test it to make sure that it’s
working properly. At the most rudimentary level, you’re looking for a few basic
things:
— When you specify another language, does it appear?
— Are you using UTF-8 in your application code, database, and accept head‐

ers, so that non-Latin characters display properly, such as when you need to
represent the German “Straßenbahn” or the French “ça va”?

— Are you able to fully represent double-byte character sets, such as Mandarin,
Japanese, and Korean?

— Are you able to represent right-to-left languages such as Hebrew and Arabic?
• Are you handling currency conversion properly? You can easily get a download

once per day from Bloomberg or xe.com for current currency conversion rates.
You must also handle the display of the currency properly (using dots and com‐
mas properly for the different locales, and so forth).

Use the Google Translate service to get a few strings of each of the kinds listed above,
and test your user interface labels with each of the different locales.

Every service should have three clear, named owners: when you list the services in
your service catalog, associate the business owner (the VP of product management
for that area), the engineering leader, and the associated architect expert. Maintaining
such a map of your service catalog will be valuable.

Don’t go overboard if you truly have zero customers from anywhere else in the world
other than your neighborhood, and zero plans to ever get any. But doing just these
few things now will set you up for a very well-designed system that will serve you well
in an increasingly global commercial world.

Radical Immutability
As we create software in our development environment we must be sure that every‐
thing compiles and runs, and so we have references to what works and is allowed in
development. These variables comprise database connection strings, caching loca‐
tions, service endpoints, passwords, filesystem references, dependencies, and so forth.
At worst, we write all of these references directly into the code and then make it
someone else’s problem, such as a release engineering or release management team.

They might then have tools that rebuild your software after rewriting these strings,
which can be a manual or automated process. If you have seen such processes fail cat‐
astrophically as I have, you step back and consider how this could have happened.
The real question is, given all the many variables and considerable differences in

Radical Immutability | 173

http://translate.google.com

environments about which we maintain a pretense of sameness, why doesn’t this hap‐
pen more often?

We comfort ourselves that we have externalized our encrypted passwords and end‐
point URIs and use an automated tool to rewrite these files as we deploy on through
to certification, user acceptance testing, and production. We assume or hope that the
binary artifact moving through these environments, which is getting rebuilt each
time, is somehow the same. It is not.

This process is rife with opportunity for failure. This is a wonderful place for entropy
to set it. There are small, barely noticeable changes that can offset the environment
just enough to, when taken altogether, create a very different runtime than what we
tested. Thus is the origin of the phrase “it works on my machine.”

I wouldn’t bother making this point except that in my 20-plus years in this business I
have heard numerous developers say those words with apparent lack of any irony, as
if that closes the case. Thus, the equation goes: it works on my machine == it works
== no problem || someone else’s problem.

We want to avoid this confrontation, avoid problems in certification and User
Acceptance Testing (UAT) and production, and have more assurance that our artifact
will behave predictably. When you test and certify something, and then redo it, your
test and certification are both invalidated, obviously. Yet we often behave as if this
were perfectly normal, or acceptable, or perhaps we’re aware that it’s nonoptimal but
shrug in conclusion, “Well, what’s a developer to do?”

Seek as much immutability in your design as you can. You minimize what you have to
change if you design the change in. Instead of kicking the can down the road to this
broken process, design your system as if it were a series of references to many varied
and wild outside things.

The binary artifact you build must be as close as possible to what is tested, certified,
and deployed to production. The way to do that is to never rebuild it: what you build
in development is the same binary that is deployed in production. The only way to
achieve that is to externalize every reference. Your software becomes smaller, does
less, and becomes rather more like a schedule of references to external references.
This means that your software is not the thing that does all the work; it is rather like a
bill of lading. It’s a receipt list of packages. It does little, and looks more like a list of
references to things it otherwise has little awareness of. Invert your software by
extending the idea of dependency injection into more aggressive, radical territory.

One approach is to match your development environment as closely as possible to
your production environment. Using containers such as Docker or a virtual box such
as Vagrant helps with this.

174 | Chapter 7: The Application Aspect

An important element in this process is to use a universal package manager. Treat
your own code as if it were not the center of the universe with some ancillary depen‐
dencies, but rather one element, flat alongside the dependencies. The role of your
code is to pull them all together. Here are some of the commercial and open source
tools from which you might benefit:

• Apache Archiva (this has not been updated in a while, but it’s venerable, works,
and is free)

• Sonatype Nexus
• JFrog

Of course, this also means that you must use the same process to deploy the software
across all environments. You must not have different deployment pipelines, and just
as your deployment pipeline is software, too, you want to be sure to externalize
strings and related references there, such that deploying to the QA environment ver‐
sus the staging environment is a simple matter of changing a target name.

Another benefit of this radical configurability is that you get improved portability. It’s
easier to move from one cloud provider to another, for example.

If you have problems with them at runtime, they are easily visible, and easily updated
without a rebuild and redeploy process.

Specifications
Martin Fowler and Eric Evans invented a wonderful way to implement the frequently
needed use case of searching for objects from a catalog that match certain criteria. For
example, in an ecommerce application, you likely need to allow users to state their
filtering or search criteria, and your code needs a fast and loosely coupled way to
respond to the query. You might also need to validate a candidate list of objects to
ensure that they are suitable for the task at hand. This is where the Specification pat‐
tern comes in. It is based on the real-world idea of shipping cargo and the separation
of concerns of objects that get picked from the contractors doing the picking.

Original Specification Paper

You can read the original Specification pattern paper published in
ACM here. The pattern is based (again, as so many good things
are) on the crucial Gang of Four Strategy pattern. A more dynamic
and sophisticated, but slower, version relies on a combination of
Strategy and Interpreter. This paper goes into far more detail, var‐
iations, and applications than we do here.

Specifications | 175

https://archiva.apache.org/
https://www.sonatype.com/nexus-repository-sonatype
https://jfrog.com/artifactory/
https://www.martinfowler.com/apsupp/spec.pdf
https://en.wikipedia.org/wiki/Interpreter_pattern

Upon consideration, you can see that there are many applications for this pattern,
beyond the ecommerce product filter/criteria search. These might include a set of
candidate routes that an airline might propose to get travelers connecting flights from
one city to another, or the right set of containers for certain kinds of products based
on their size, whether or not they are perishable, or fragile, and so forth. Though it’s a
bit abstract, I like to think of the Specification pattern as kind of related to the more
mathematical Knapsack problem.

To realize the pattern, you create a specification that is able to determine whether a
candidate object (such as a product in a catalog) matches some criteria. The specifica‐
tion features a method isSatisfiedBy(someObject) : Boolean, which returns true
if all criteria are met by someObject. The important move in the Specification pattern
is that you are treating the specification as a separate object from the candidate
domain objects that use it. You create the search criteria independently and let the
domain object inform you as to whether it satisfies them.

As usual, we want to start our design from the outside in. We want to write the dream
client that we wish we could have, and then fill in the code that makes that client
possible.

Consider a proposed use case from the travel domain. A guest wants to search for a
hotel room based on criteria she specifies. She wants a hotel room that costs less than
$800 with a size of at least 22 square feet that has an ocean view. We want a readable,
maintainable, flexible, business-oriented client for our room finder service that might
look like Example 7-1.

Example 7-1. Criteria client search

Criteria criteria = new RoomSearchCriteriaBuilder()
.withPrice().being(lessThan).value(800).and()
.withSquareMeters().being(largerThan).value(22).and()
.withView().being(View.OCEAN).build();

List<HotelRoom> allRooms = ProductRepository.getRooms();
List<HotelRoom> matchingRooms = new ArrayList<HotelRoom>();
for (HotelRoom room : allRooms) if room.satisfies(criteria);
matchingRooms.add(room);

This code builds a criteria based on the supplied user parameters and then searches
the hotel for rooms that match those three criteria. Matches are then added to a
results list to be passed back up to the user.

So we need a few classes to satisfy this dream client. As demonstrated in Example 7-2,
first, we’ll make a Product interface and a HotelRoom implementation (this is just
close/pseudocode to give you the implementation idea, it’s not meant to be perfect).

176 | Chapter 7: The Application Aspect

http://bit.ly/2lYfJ7p

Example 7-2. Product basics

class Product {
 double price;
 public boolean satisfies(SearchCriteria criteria){
 return criteria.isSatisifiedBy(this);
 }
}

class HotelRoom extends Product {
 int squareFeet;
 View view;
}

enum View { GARDEN, CITY, OCEAN }

We also then must define our Criteria classes, as shown in Example 7-3.

Example 7-3. Search criteria listings

public interface SearchCriteria {
 boolean isSatisfiedBy(Product product);
}

public class Criteria implements SearchCriteria {
 private List<SearchCriteria> criteria;
 public Criteria(List<SearchCriterion> criteria) {
 this.criteria = criteria;
 }

 public boolean isSatisfiedBy(Product product)() {
 Iterator<Criteria> it = criteria.iterator();
 while(it.hasNext()) {
 if(!it.next().isSatisfiedBy(product))
 return false;
 }
 return true:
 }
}

public class PriceCriterion implements SearchCriteria {
 public PriceCriterion(Operator operator, double target){
 //
 }
 public boolean isSatisfiedBy (Product product){
 //do price check
 }
}

Now we need to fill out the builders and connectors that are similar to what would be
part of any Fluent API following the Builder pattern, as illustrated in Example 7-4.

Specifications | 177

Example 7-4. Builders

public class SearchCriteriaBuilder {
 List<SearchCriteron> criteria = new ArrayList<>();
 private PriceCriteriaBuilder priceCriteriaBuilder;
 public PriceCriteriaBuilder withPrice() {
 if(priceCriteriaBuilder == null)
 priceCriteriaBuilder = new PriceCriteriaBuilder();
 return priceCriteriaBuilder;
}

public PriceCriteriaBuilder and() {
 return this;
}

public SearchCritera build() {
 return new Criteria(criteria);
}

public PriceCriteriaBuilder {
 Operator operator;
 double desiredPrice;
 public enum Operator { lessThan, equal, largerThan }
}

public PriceCriteriaBuilder being(Operator operator) {
 this.operator = operator;
 return this;
}
public PriceCriteriaBuilder value(double desiredPrice) {
 this.desiredPrice = desiredPrice;
 PriceCriteriaBuilder.this.criteria.add(
 new PriceCriterion(operator, desiredPrice));
 return PriceCriteriaBuilder.this;
 }
}

Then, you can add the code for other criteria in the same manner.

The result is a very flexible system that allows you to develop and add to the design in
a tidy and compatible manner. Things are loosely coupled and follow patterns that
help your code communicate and stay maintainable.

A Comment on Test Automation
In a modern system, we really must radically automate testing.

There are times when we will need to do manual testing, but we should not rely on
this as the primary practice of our testing department. We should have engineers who

178 | Chapter 7: The Application Aspect

are not secondary to the application engineers, but who work right alongside them
writing automated tests.

Just as a programmer would put writing unit tests first in Test-Driven Development
(TDD), the test engineer should sit with the business analyst as the stories are written
and provide input into the Acceptance Criteria to ensure that it is testable. Accept‐
ance Criteria should be specific, measurable, and verifiable.

The tests are not ancillary to the code base as the marginalized term of that binary
pair; they are written in code, are committed to the code repository, enjoy an automa‐
ted pipeline, are versioned, and might not only be written before the code, as in TDD,
but might also inform the stories themselves that are built.

As we have discussed, your test suite topology should include the following:

• Unit tests written by developers
• Canary/smoke tests
• Integration tests
• Regression tests
• Load tests
• Security penetration tests

That’s a big job. And they all need to be separated, automated, and treated as first-
class citizens.

A Comment on Comments
Encourage your development teams (require them, in fact) to write comments about
their code. Make them meaningful and helpful, not perfunctory or merely restating
the obvious.

Anything that is checked in to the code repository—including YAML, CFTs, Python,
Java, JS, CSS, RunwayDB scripts, pipeline scripts, machine learning code—anything
someone will need to read and understand and use, all should have meaningful
comments.

Have the developers secretly aim, however, to make comments unnecessary because
their code is so well named with such high cohesion and behaves in such a clear and
obvious way that anything they would write into the comments would be redundant.
After they write the comments, encourage them to read over it and see whether,
instead of making a comment, they can make some tweaks to the code to try to
actually put comments into the working code itself to make it better.

A Comment on Comments | 179

Here are a few good examples taken from the Java APIs themselves, as some instruc‐
tive examples of comments, but the ideas apply to any language:

Enum
This is quite short but directive about a specific point of interest, and points the
reader to considerable deeply detailed information in the JLS.

UUID
This too is short and to the point, but clear on boundaries that would make a dif‐
ference to the programmer, and points the user to an additional related class and
an RFC for further usage implications.

TimeUnit
This tells you exactly how things are defined within the class, gives examples for
proper usage, and states what is and is not guaranteed.

PhantomReference
Same. This is fantastic. The sweet spot.

List<E> and Set<E>
These both are quite good. For both, it is for an interface, which is different. It
gives an overview of what the interface provides so that you don’t need to read
the code to find out; it does not speak beyond what it can for an interface that has
different implementations (that’s the purpose after all). It has documentation for
the type parameter (<E>). It talks about why Lists/Sets should exist at all, what is
special about them in distinction with the other items in Collections, and how to
use it.

String
Clear guidance and examples on usage, implications, and equivalencies.

Formatter
This is an interesting case that I call out for a specific reason. The JavaDoc alone
must have taken a full week to write; it’s pages long. If you have to take a week to
write the JavaDoc to explain usage like this, you have probably designed a class
poorly, in a non-object-oriented way. In this case, however, it makes perfect sense
because Formatter is specifically intended to replicate the 1970s C printf func‐
tion, so the code looks like that on purpose. Thus, it has to take a week to write
the JavaDoc. This is a rare case to illustrate longer doesn’t always mean better, but
in this case it is appropriate. Hopefully, your developers won’t write books like
this comment and don’t write classes that would require them doing so.

These are all great lessons for how to write proper comments. Most of these would
not take forever to write and are helpful for maintainability, clarity, and efficiency for
future developers.

180 | Chapter 7: The Application Aspect

http://bit.ly/2kjR78C
http://bit.ly/2m2eVyd
http://bit.ly/2knF2PN
http://bit.ly/2mnim2T
http://bit.ly/2kTinep
http://bit.ly/2miJArf
http://bit.ly/2m190ti
http://bit.ly/2lXuYgS

Summary
In this chapter, we covered significant ground. We examined how to discover the
services in your domain, the structure of services, how and when to add eventing,
and how to use machine learning to go beyond pluggability into radical extensibility.

In Chapter 8, we examine the data aspect more specifically.

Summary | 181

CHAPTER 8

The Data Aspect

We don’t eat lollipops, do we mommy? They’re not true.
—Alison Brown, Fear, Truth, Writing

The API and the data model represent the most obvious ways in which your concept
is practically realized in the software.

In this chapter, we examine some of the tenets for us as semantic designers to keep in
mind when creating data services. Following these ideas, we can create very resilient,
scalable, available, manageable, portable, and extensible systems.

We don’t skip the crucial step that is the one real difference between successful soft‐
ware and failures: first we decide what ideas will populate our world and what they
mean.

Business Glossary
Define your terms.

This is the single most effective thing you can do to help your software and your
business.

Identify key terms within your business. Make a spreadsheet. Put it on the wiki. What
is “Inventory” as opposed to “Availability”?

Be very clear on the distinctions. Leave no ambiguity. Make them mutually exclusive.
Don’t allow fudging.

Sometimes this is called a “Data Dictionary.” That’s fine, too. Either way. For us, this is
not a difference that makes a difference. Call the document what you like, but be
ruthlessly exacting with respect to defining its constituent elements.

183

After you define them, use them consistently with their definition when it’s time to
make a data model or API.

Strategies for Semantic Data Modeling
Throughout this book, we have been sometimes practical and sometimes abstract.
That is on purpose because I want to spur your imagination and thinking. It is also
because the semantic design method, by definition, is not a prescriptive method. It is
holistic. It is a mindset, a shift in mental models, supported by accompanying pro‐
cesses, practices, and templates. Examples are sometimes useful.

Here are some tenets, or oblique strategies, questions to ask yourself to make sure
that your data model is rich, robust, and correct. The book has given us the context,
the description of the semantic mindset. Refer back to Chapter 3 on sets.

Here are the kinds of things that, having that semantic mindset, we ask when making
our data model.

You are representing the world. Your job is to make a clear depiction of the actual
facts about the actual world. That mostly means thinking about fine distinctions and
understanding relations and attributes.

Your first job is to ask: what is true? What is the actual case about each thing, their
constituent things, and how they relate?

Then ask, what is important about all of those things? What is significant, which (lit‐
erally) means what here is capable of making signs, of participating in the language?

Then ask, to whom? This gains you a vector of perspective.

The main lesson that all of these roll up to is this one: be clear on where you are draw‐
ing the boundary in your semantic field.

Here’s an example. Your restaurant might serve different kinds of wine and beer and
soft drinks. The wine and beer are regulated differently, and sold both individually
(by the bottle) and by a pour (from kegs or in glasses of wine). So tracking is easy in
one case and difficult in the other. You might care very much from an inventory per‐
spective about tracking the specific bottles of each kind of wine sold and print them
on the check so that the customer knows that the 2012 Cakebread Napa Cab was $25
per glass and the Merlot was $18. But you aren’t interested in tracking whether you
sold a Coke or a Diet Coke, because it’s self-serve and you order it by the syrup box,
not the bottle: you have less of a match between how you order it and how you sell it.
Your customers get free refills. So you think you can call that a “Fountain Drink” and
roll up all of the brands of soda together under that name.

That moment right there, where you posit the name “Fountain Drink” into your
world so you can dim the horizon and get on with life instead of tracking each

184 | Chapter 8: The Data Aspect

individually has lost details that still exist in the actual world. Your representation in
this moment degrades to being a little bit less true. This idea is not that important to
the customers and is not that important to the inventory keeper. But computers
understand only True or False. Thus, you have made a fuzziness on purpose so that
you can ship software. “Coke” versus “Diet Coke” are now beyond the boundary: they
no longer have identities and are outside the inventory field. The real world in its
infinite conjuncts carries on merrily with Coke and Diet Coke, however. I can’t tell
you whether it’s right or wrong to say Fountain Drink here. I’m just saying to be clear
and purposive, that this is where you created the semantic boundary. Because this is
the place where the representation stops matching the real world and our semantics
become incorrectly dimmed or inconsistent, and therefore this is where software
starts to go wrong. We must do it. We need to ship. Just be aware, is all we’re saying;
live on this line.

With that context, here are some questions and simple guidelines:

• Next turn to your business glossary. That will be an easy anchor. You want to be
consistent with it. “Availability” in your glossary should reflect what it means in
your data model or there is a different word.

• If you’re struggling to understand a word, break it into two words. Does that
work better?

• What is the perspective of this database table? That is, who is the use-case driver?
Who makes data enter this table and why? Perhaps you’re looking at an Order
table and a Vendor table, and you have them both pointing to a set of
OrderReferences.

• Can you delete this table or column completely from the semantic field, the
vocabulary? What do you lose if you do that? Do you gain anything?

• Try to make everything NOT NULL. Any column in the data model that wants to
be NULL might be in the wrong table. Anything that wants to be allowed to have
null values must claw and fight its way to earn that status for a very clear reason.
If you have a column in your order table for “PointsPaid,” because you reason
that customers can pay with cash or with points, but they’re different, so you
need a column for each, and the one they didn’t pay with will always be null, this
is lazy. Allowing null columns should be very rare. Consider any column with a
null constraint a red flag. Can you decompose further?

• Be suspicious of anything called “Type.” “Type” doesn’t mean anything. It’s a pro‐
grammer overlay. Modelers who say “type” a lot also use enums a lot. Wrongly. If
a valid value in your “WhateverType” column is “Other,” you don’t have a type.
Break it out into a referenced list. There is no such thing as “other.”

• Avoid false sectioning. A false section is much related to the Type problem. This
is an antipattern when you take something that’s on a spectrum and break it into

Strategies for Semantic Data Modeling | 185

multiple categories: “Child, Adult.” These are two sections of the idea of “age.” But
you could have Toddler, Senior Citizen. What is a “child,” anyway? Is that a per‐
son age five to twelve? Three to seventeen? What if one vendor defines it the first
way and another vendor the second way? Did you provide for them to do that in
your data model, or presume one universal idea of these sections that are false
overlays? Childhood didn’t even exist until it was invented 250 years ago. What
about Infant? What about Minor? “Minor” doesn’t mean the same thing across
different states in the US, or across the world. When you section a spectrum, it’s
always an overlay. Overlays are almost always false. That’s where your semantics
will fail, and consequently that’s where the maintenance programmers will need
to build a lot of time-consuming, expensive workarounds that will chip away at
the integrity of your model. It’s where entropy alights.

• Consider who will input this data? Why? Who will use this data after it’s there?
Why do they care and when do they no longer care? Can you state that as a uni‐
versal truth across all time, space, and dimensions? Be culturally sensitive to
make it right the first time. That usually means making your previously binary
distinction into a list and separating it into a referenced table. It’s free and takes
30 seconds to do now, and it takes a million dollars and six months to do in three
years.

• Always test, interrogate, and challenge common words. If you have a column for
CurrencyType what precisely does that include: Bitcoin? Is Bitcoin flat with USD
and Yen in your semantic space? What if loyalty members can pay with points?
Are the valid values of that column “Bitcoin, USD, Yen (and so forth), and
Points”? What if you have multiple customers each with their own loyalty pro‐
gram? Decompose and refine away any assumptions.

• “Customer” and “User” or “Guest” are not the same. If I buy two ice cream cones,
and give one to Alison, the vendor sees one customer with one order with one
name on the credit card, and two ordered items. There are two guests. Don’t con‐
flate things unless you’re doing it on purpose because you know that’s your
boundary. Because at a restaurant you might have one order (the “check”), and
the table might want to split the bill either 50/50 or by which customer ordered
what items: one table, two customers, two checks.

• Narrow to the lowest possible scope you can for a single data item until it feels
like you’re considering the most obviously useless detail. Then, start to edge back
up in your scope until you get to where it feels still tight but also useful. This
helps to ensure significance. Do the same again, but on the trajectory of who it’s
important to, who the use-case driver is.

• Don’t make vague distinctions. “ShortDescription” and “LongDescription” don’t
exist in the world. Assign a stronger type based on the context in which they’re
used to better match the real world. The real world doesn’t have short and long
descriptions.

186 | Chapter 8: The Data Aspect

• Be careful when you write “PrimaryChannel” and “SecondaryChannel.” What’s
the difference? From whose perspective? This is a hierarchy and it’s a common
software guy overlay. There is no such thing in the real world as primary and sec‐
ondary channels. They are channels. What about the “TertiaryChannel”? This is
a cousin of the “ShortDescription” and “LongDescription” problem.

• There are only three numbers in the universe: zero, one, and many.
• Does “Price” really belong on the Product table? It seems like with only the input

of the Product table we don’t have enough information: we need Vendor, too,
because the same hose at Alice’s Hardware might cost $30, whereas at Bob’s Hard‐
ware, it’s $25. That’s because even though colloquially we speak that way, it is a
false representation of the world that a Product has a Price. An InventoryItem
has a price—that’s the moment in time the product meets the vendor. So it’s truer
and therefore less error prone. Also, a Product doesn’t typically have one price,
but the “rack rate” or “base price” and then a military price, or educator discounts
apply, and so on. The point is that things are almost always more complicated.
Examine the complexity so that you can make the truest statement that makes
sense for what you’re doing. Usually things come in lists.

• You make a split brain when you make something referenced at two levels. Con‐
sider who is the use-case driver and how they enter the data model and then
make the reference only at the lowest level from that actor if you can. Sometimes,
there are multiple valid perspectives on the same table, and you need to accom‐
modate them. Then that’s not making a split brain, and it’s fine.

Ask yourself these questions while making your data model.

Polyglot Persistence
Consider the relational database, invented more or less by Dr. E.F. Codd in 1970. In a
relational database, you define entities as the nouns represented in your tables: Cus‐
tomer, Product, ProductGroup, and so forth. It seems to me that “relational” has
always been a bit of a misnomer given that the relations are not even defined as first-
class citizens in the model and are only apparent in the join routes in the SQL code.
Even the so-called “join table” that provides a many-to-many definition (such as Stu‐
dentsToClasses) is not defined any differently in the model than any other table.
Which is to say that the relations are often thought of secondarily, and as a result, we
can have a pristine data model with perfect entities and queries that require 10 or 15
joins or considerable processing logic to get the work done. Such queries can be quite
slow.

The relational model has become the de facto standard in our industry, and many
teams jump directly to thinking in a relational model without first considering
whether it is the optimal model for their design. In the past decade, however, the

Polyglot Persistence | 187

NoSQL movement has seen dozens of very different kinds of persistence models,
each with their own set of advantages and use cases for which they are well suited.

My hope here is that you survey the landscape of available persistent stores, look at
what they’re good at, and thoughtfully pick the ones that make the most sense for
your use cases.

Notice that I did not say to pick the one, or the one most appropriate for your applica‐
tion. Instead, we recognize that the data is really the rocket fuel of any modern appli‐
cation. Data is the backbone of machine learning and artificial intelligence (AI). Data
is the point of any application.

Applications, for all the drama surrounding them, are really simply window dressing
on the data. We don’t use a single language for our applications and services: we regu‐
larly and unquestioningly use HTML, CSS, JavaScript, Java, Python, JSON, and
myriad frameworks supporting all of those in our application code. No one hardco‐
des HTML into a Java servlet for their display, or, worse, uses a Java applet for the
display layer because that’s the One Language you’ve chosen for your application. It’s
absurd. Yet we often still maintain an idea that there is the One True Data Store to
Rule Them All. Why the application should enjoy all these tools that are very well
suited to the specific job they perform, and the data, which represents the real pur‐
pose of any application, should be crammed into one store suitable to do one job well
is beyond me.

We have columnar databases such as Vertica, time-series and row-oriented databases
such as Cassandra, document stores such as MongoDB and Couchbase, key/value
stores such as Dynamo, object databases such as Postgres, graph databases such as
Neo4J, hybrid “NewSQL” databases such as Google Spanner, and more. They’re all
good at different things, and selecting the ones that make the right sense for your use
cases will help your system scale in the best and most cost-effective manner.

You might have an Oracle database for your set of tables hosting your services. But
then you need a place to store the denormalized BLOBs representing your orders
each time they are confirmed or updated, or need an Audit table so you know when
things were changed. Those can be separate, in something that is optimized for writes
and rarely read. Cassandra is perfect for that. Use the best tool for the job that you
can afford and that your team knows or that you can hire for.

Persistence Scorecard
As you consider the appropriate persistence implementations, you might create a
scorecard or grid of your own that illustrates the advantages and disadvantages of dif‐
ferent implementations. Table 8-1 presents one to get you started down the path of
thinking about having a scorecard like this.

188 | Chapter 8: The Data Aspect

Table 8-1. Persistence scorecard

Tool Hosting Storage type Replication Modeling Transaction
support

Scaling
model

Master/
slave

Mongo Atlas Cloud-only Document Good Easy Document level Horiz. Yes
Cassandra Cloud/on-

prem.
Wide row Best Worst Row level Horiz. Peer to peer

Neo4J Self-managed Graph Good Best Good Horiz. Yes

Of course you can be more scientific in your approach, run tests in a lab and do a real
bake-off, score things more numerically, and use more criteria. The idea here is just
for you to consider polyglot persistence, and to have some way to judge in a rubric
which are right for your different services, depending on your actual needs.

With polyglot persistence, you will gain improved scalability, performance, and suita‐
bility, and be encouraged to follow the “database per service” dictum. You will also
encounter additional challenges with manageability (dealing with multiple vendors)
and maintainability (having development teams need to learn more than one system
and model). Architecture is always about trade-offs, so just be sure that you’re picking
what’s right for your business.

Multimodeling
Extend the idea of polyglot persistence into the realm of your modeling. Here, we’re
not referring so much to the daily work of doing modeling in a tool such as Embarca‐
dero or something similar. If you get hung up on your tool, however, and assume that
the tool you have for modeling is your allowed universe of possibilities for modeling,
that’s a category mistake that will cost you. For this reason, I generally avoid data
modeling tools and instead use, on purpose, the wrong tool for the job. I use a white‐
board, paper and pencil, spreadsheets, plain text files, and drawing programs. I like
these tools for data modeling because they force me to never mistake the tool for the
concept I am trying to express.

As a data modeler, you are creating the concept of the data and their relations, not
filling in forms in a predefined tool that might restrict and severely modify how freely
and imaginatively you think about your data.

You do not want to consider your data as a static light, which having one database,
especially a relational one, strongly urges us to do. We want to design for evolution,
for change, for fluidity as best we can. To do so, we want to consider what the data
will become and how it will evolve and be augmented and changed over time. Con‐
sider the time vector of your data. I don’t mean timestamps of when that row was
written. I mean the stages of life through which it will evolve.

Multimodeling | 189

Your application might feature 20 services, and each service has its own database, and
perhaps there are three different databases you use for the different primary benefits a
group of services would realize: a wide row, a graph, and a document store. You will
need a different data model per service, and the models will need to be created very
differently in accordance with each of those database types.

Because we cherish first the concept of our data, consider it as a whole, including the
typically marginalized aspects of it, and are not led around by a tool, we have the fol‐
lowing models to make:

• A distinct data model per database implementation, per service to run the
application.

• A model for each service’s data according to a temporal trajectory within the run‐
time: how it will enter the world of the software, how and when it will be cleaned,
stored, moved to long-term storage and purged. What is the source of batch data,
and what are the sources and destinations and uses of it?

• A security data model per service: where are the Personally Identifiable Informa‐
tion (PII), Payment Card Industry (PCI), and Service Organization Control 2
(SOC 2)–controlled systems? How will the data be encrypted? How will it be sur‐
faced in APIs, for reporting, auditing, compliance checks, or machine learning
consumption?

• A model for logs-as-data. Developers must be mentored to not think of logs as
the disposable runoff or leftovers from an application that they are grudgingly
asked to provide. Instead, consider the life cycle of logs. How do they tell a story
if read in trace or debug or info mode? How will they be rotated, shipped, aggre‐
gated, stored, and removed? What regulatory restrictions surround values in
them?

• A model for each service’s data according to temporal trajectory as a roadmap.
We make roadmaps for our products all the time, stating that we’ll release this set
of features on this rough timeline. We can make roadmaps for our data as well,
stating what data we can add at what stages of the service evolution and what new
sources we can get for it.

• A model per machine learning use case, per service, to map the machine learning
use case to the data you will need to support your feature engineering.

• A model for the cache. We often don’t model the cache itself because we think it
is a mere reflection in memory of what we’ve already modeled. In a wonderful
deconstructive move, the old application Coherence (created by the very smart
Cameron Purdy and eventually sold to Oracle) inverted the database, moving the
“primary” store into memory, with the persistent on-disk layer as the secondary.
This can also include how will you create indexes, materialized views, and
denormalization strategies.

190 | Chapter 8: The Data Aspect

• A model for events. What events are published, what Claim Checks are needed
by what services to fulfill event subscriber needs, and where will they retrieve that
data? Complex Event Processing systems invert the database, too: they essentially
store the queries and let the data flow on top of it, and when a match is noticed
between the criteria in the query and the data, a function is executed.

• A model for streams. We will examine this separately below because it might be
newer to you.

The modeling job can’t stop with dutifully enumerating the nouns in your applica‐
tion, making join tables between ones that seem to matter to each other, and policing
developers on column name conventions.

Data Models for Streams
Data streams allow you to perform real-time analysis on a continuously flowing series
of events, without having to store the data first. The data may flow from a variety of
sources.

There are several common use cases for streaming data, including the following:

Finance
Stock tickers provide a continuous stream of changing financial data. Trackers
can update and rebalance portfolios in real time and make robotic trades.

Media streaming services and video games
Here the content of music or movies or audio books comprise the data stream.
Metadata regarding usage of the content, such as when it is paused, rewound, the
resolution viewed, the receiving devices, and so forth can be examined to
improve your services.

Web ecommerce clickstreams
On an ecommerce website, applications can capture each click, and even each
mouse hover, as an event and stream them for processing in order to understand
user behavior.

Social media
You can capture tweets and other posts from social media outlets in real time and
filter on hashtags or use natural language processing (NLP) in order to gain real-
time understanding of customer sentiment or current news updates and take
action.

Power grids
The grid can stream usage by location to improve planning and generate alerts if
a threshold is exceeded.

Data Models for Streams | 191

Internet of Things (IoT)
In the hotel domain, for example, a property might capture stream data from a
variety of on-premises sources, including thermostats, mobile key usage, mini‐
bars, and other guest activities and make management adjustments.

This is data; it’s often not stored at all or is likely not stored in the same way as typical
data in applications. It requires a different kind of thinking from the traditional
model, which is all about understood entities and on-disk persistent storage.

There are several wonderful tools available to get you started with stream processing.

Apache Kafka
Kafka, created originally at LinkedIn, is a distributed publish/subscribe messag‐
ing system that integrates applications and data streams.

Apache Storm
Storm is a distributed, real-time computation framework written in Clojure. Its
model is a directed acyclic graph (DAG) in which the edges of the graph are the
stream data, which is moved from one node to another for processing. In Storm,
the data sources are proxied by spouts and the nodes that perform the processing
are called bolts. Taken together, the graph acts as a data transformation pipeline.
Storm excels at distributed machine learning and real-time analytics.

Apache Spark Streaming
Spark Streaming reuses Spark’s Resilient Distributed Dataset (RDD) component
to perform real-time analytics over small batches of data. Because of this mini-
batching, the Spark Streaming library can be susceptible to latency bursts. Spark
Streaming has built-in support to consume data from Kafka, Twitter, TCP/IP,
Kinesis, and other sources.

Apache Flink
Written in Java and Scala, Flink is a high-throughput, low-latency streaming
data-flow engine with support for parallel processing, bulk/batch processing such
as Extract, Transform, and Load (ETL), and real-time event processing. Flink
supports exactly-once semantics and fault tolerance. It does not provide its own
storage system, but instead features data sources and sinks for Cassandra,
Hadoop Distributed File System (HDFS), Kinesis, Kafka, and others.

All of these systems have a basic variation on a theme: they are data pipelines that
accept unbounded streams of data and have a particular way of representing that data
to nodes that provide an opportunity to do some processing, filtering, enrichment,
and transformation. They must start with a source where the data comes from and
end with a sink, where the transformed or processed data ends up.

192 | Chapter 8: The Data Aspect

https://kafka.apache.org/
http://storm.apache.org/
http://spark.apache.org/
https://flink.apache.org/

In your streaming model, consider the following:

• The data source and destination (sink).
• The interval by which the data is updated or at which you want a snapshot.
• Your near-term and long-term storage needs and restrictions.
• Your durability requirements.
• Your scalability requirements: what is the math on the data volume and the pro‐

cessing time/response immediacy requirements? Consider processing in parallel
and batches for their server footprint, cost, and management implications. Does
your chosen library support scale-out?

• Your fault tolerance in the storage layer as well as in your processing layer.
• Many of these have a SQL-like language that allows the developer to express

matches. Consider your guidelines for developers regarding its usage.

These tools are rather young, and so are rapidly changing. They are also complex to
use well and keep manageable. But don’t assume that streaming data is at all what
you’re used to from thinking of data as a passive element at rest in a persistent store
that gets operated on by application code. By designing your stream architecture in
its own light, given its own special and separate concerns, you can do amazing
things.

Feature Engineering for Machine Learning
Machine learning is becoming a more typical aspect of any modern application.
Understanding how you as a data designer can assist the data scientists and machine
learning engineers with a basic skill in feature engineering is important. It will prompt
you to see machine learning more as a capability to be used throughout your applica‐
tion as opposed an exotic separate project that you tack on to the existing application
design.

When you get data to be used in machine learning, you’ll need to clean it. You’ll need
to fix structural errors, impute values to missing data elements, and otherwise pre‐
pare it for processing. In data science and machine learning endeavors, feature engi‐
neering is probably where most time is spent. This is where your domain expertise
and understanding of how customers use your data as a data architect can be of ter‐
rific service.

In machine learning, a feature is a numeric representation of real-world data. The
purpose of feature engineering is to develop the data you have to the point where it’s
most useful to your machine learning model, given the use case. It’s a matter of deter‐
mining what is most relevant and differentiating to the model for it to make accurate

Feature Engineering for Machine Learning | 193

predictions. You take the raw data, clean it up, engineer the features, create the model,
and gain the insights and predictions it outputs.

In this way, feature engineering is a creative process. You are imaginatively figuring
out what features are needed in your machine learning model and developing them
from existing values that you have in your raw data. In this sense, it is much more like
application developing. You must approach feature engineering with equal measures
of imagination, creativity, and analysis. Here, you as a data architect/data designer/
feature engineer are inventing something rather than figuring out where to put
something.

One of the primary theses of this book is that you are a designer of concepts, that
architecture is about the generation and illumination of the concept of the system,
and that the best approach for making better software is the mindset shift afforded by
a deconstructive analysis. That is certainly the case for feature engineering.

Done well, feature engineering goes far beyond the typical concerns of the data archi‐
tect who is tuning queries for performance given intimate knowledge of a particular
database platform. With feature engineering, yes, it’s a matter of analysis, but, done
well, you quickly can get into the varied realms of marketing, semantics, philosophy,
politics, ethics, and bias.

The basic overview of the steps in feature engineering are as follows:

1. From the scrubbed raw data, determine which terms matter the most. Isolate
these and highlight them with an aim toward focusing the machine learning
algorithms on these.

2. Use your domain expertise to combine the data into more usable inputs. These
are called interaction features because they combine multiple data points into a
new one. At this stage, you’re examining the data to see whether two features can
be combined to discover one that might be more useful. For example, in a real
estate model you might assume that the number of schools is important to pre‐
dicting housing market prices in an area. But combining this point with the qual‐
ity rating of each school to create a new idea of school richness (number and
quality) is smart feature engineering. You’re making the distinction, a value judg‐
ment, a determination in the world of the concept that quantity of schools doesn’t
matter to the question at hand if they aren’t very good. These interactions will
result in mathematical products, sums, or differences.

3. Use your domain expertise to combine values that are sparse. That is, if you don’t
have enough data points across a variety of categories in your dataset, determine
how the sparse values can possibly be combined into one category that abstracts
them up so that you have enough data points you can count as the same for the
purposes of your model.

194 | Chapter 8: The Data Aspect

4. Remove unused values such as IDs or other columns that add to the size and
noise of your dataset.

5. Use your business knowledge to frame all of this feature engineering work by
always relating it back to the underlying, fundamental question of what specific
task this particular machine learning model is intended to execute. What ques‐
tion does it exist to answer? All feature engineering must clearly map back to the
question of the model. Are you hoping to predict stock prices to determine
where to invest? Or predict which product offers will delight your customers the
most? Traffic and purchasing patterns due to external related events?

Feature Engineering for Machine Learning

For an in-depth and hands-on examination of this field (with
plenty of code), see the excellent book Feature Engineering for
Machine Learning by Amanda Casari and Alice Zheng (O’Reilly).

The field of feature engineering merits entire books on its own, and requires a strong
understanding of the mathematics required to feed machine learning models. Our
aim here is to provide our particular perspective on it as something to add to your
toolbox with a caution to start with the concept and the language and then do the
math later. Do not let feature engineering be mathematics-driven. The math is just a
mechanism for representing one format concept, no different than JSON as an
exchange format.

Classpath Deployment and Network Proxies
Data accessor services should provide a network-reachable API endpoint that your
engines can connect to. In this way, they present as services like any other, exchang‐
ing data via JSON or ProtoBuf.

But they should also present a native API such that you can compile the data accessor
services into a binary artifact and either add them to the classpath of the engines that
use them or directly bundle them into the engines’ deployment artifacts. Providing
the option makes a little extra work, but will likely prove necessary if you need the
flexibility of network access as well as the faster performance you get from avoiding a
network hop and translation.

You can implement this using a Facade pattern. Your default option is to simply pro‐
vide the native interface for direct access as a library via the classpath. Then, provide
a facade interface that wraps the data accessor service with a service endpoint to
exchange JSON or ProtoBuf, or what have you.

Classpath Deployment and Network Proxies | 195

https://oreil.ly/L8Sr2
https://oreil.ly/L8Sr2
http://bit.ly/2krrlzu

The Proxy pattern provides a simple way to change the behavior of an object without
changing the original object. To do this, implement the original data accessor and
deploy it with an alternative proxy that exposes the same functions but adds the nec‐
essary translations for the HTTP endpoint to receive requests and post responses via
JSON messages.

Peer-to-Peer Persistent Stores
The master/slave paradigm for scaling databases is popular because it has obvious
benefits: you can usually see good performance and response times while also repli‐
cating data to prevent significant downtime. You can perform reporting and analytics
off of the slave databases.

Beyond the unfortunate name, master/slave databases suffer from the obvious prob‐
lem of the single point of failure. This is common when you have such a clear and
obvious binary opposition with a privileged term. In deconstruction design, we ques‐
tion underlying structures to see how we can overturn and subvert power relations
like this to arrive at what will hopefully be an improved design.

The obvious solution is a peer-to-peer database, such as Apache Cassandra. In Cas‐
sandra, every node is identical to every other in its function within the topology.
There are no privileged nodes. Because the data is distributed and replicated across
multiple nodes, it is incredibly fault tolerant. It is also tuneably consistent, so that
depending on how you define your quorum, you can set the consistency level to be
strong or weak, depending on your use case needs.

Follow-Up with Cassandra the Definitive Guide

To read more on Cassandra and get into the details of how to set it
up, model it, and operate it, see the book Cassandra: The Definitive
Guide (O’Reilly), which I wrote (the second edition was by me and
Jeff Carpenter).

Because we want to use the appropriate database given the use case the service sup‐
ports, use the following checklist to determine whether Cassandra might be suitable
for your service. Instead of choosing a database because it’s what you already have or
it seems like the exciting new technology, ask yourself if you have these needs:

• High availability.
• Linear horizontal scaling.
• Global distribution (you can define clusters regionally).
• Ultra-fast writes are much more important to your use case than reads.
• You can do most or all of your reading only by primary key.

196 | Chapter 8: The Data Aspect

https://en.wikipedia.org/wiki/Proxy_pattern

• You have little need for any joins: data tables match the queries very closely.
• Time-series and log journaling.
• Data with a defined lifetime; after a time-to-live (TTL) threshold is reached, the

data is automatically deleted, which is a great feature as long as you’re clear on its
behavior.

Because of these features, Cassandra is a great choice for workloads such as these:

• IoT updates and event logging
• Transaction logging
• Status tracking such as package location, delivery status
• Health status tracking
• Stock update tracking
• Time-series data

Keep in mind that Cassandra is probably the wrong choice if you have the following
needs in the service you expect it to support:

• Tables will have multiple access paths, causing you to employ considerable secon‐
dary indexes. This will slow your performance.

• ACID support. Atomic, Consistent, Isolated, Durable transactions have been,
from the beginning, a nongoal for Cassandra.

• Locks. These are not supported in Cassandra.
• Intense reading. Cassandra is far more performant on writes than on reads. If

your data can likely have a very strong cache read hit ratio, you probably will be
better off with another implementation.

When we find a technology exciting, it is tempting to tell ourselves a story about how
we can use it for use cases that don’t quite seem to fit and to make up for shortcom‐
ings ourselves. We might suppose that we will write our own locks and transactions
on top of Cassandra, for instance. This rarely works out. Pick the appropriate tool for
the business use case.

When you have a write-intensive application, and need massive horizontal scaling,
global distribution, and unbeatable fault tolerance, Cassandra is an excellent choice.
Using a database with a flat peer-to-peer design as opposed to a hierarchical master/
slave design is in keeping with our overall deconstructive design paradigm.

Peer-to-Peer Persistent Stores | 197

Graph Databases
A graph database has three major conceptual components: nodes, edges, and proper‐
ties. Nodes are the entities in the model (such as user or product), and edges repre‐
sent the named relations between the nodes. The relations can be one way or
bidirectional, and multiple relations can be defined between nodes. Properties are
attributes that can be assigned to both the nodes and the relations. Nodes are typically
called vertices and the relations are typically called edges.

The underlying storage model holds these all as first-order components in the imple‐
mentation. Queries in a graph database can be very fast, because the relations are
stored as first-order objects along with the nodes. This means that data in the store is
linked together directly according to the relations and can therefore often be
retrieved with a single operation.

Graph databases also allow you to readily visualize the data model because it closely
and intuitively mirrors the actual world in its representation. They support and even
promote the idea of modeling heavily interrelated data. Moreover, they are perfectly
suited for semantic querying.

For all these reasons, graph databases are an outstanding example of the deconstruc‐
tive design paradigm.

A key concept of the system is the graph (or edge or relationship), which directly
relates data items in the store to a collection of nodes of data and edges representing
the relationships between the nodes.

Popular graph databases include OrientDB and Neo4J, which we take a look at
shortly.

When would you want to consider using a graph database? If you have any of the fol‐
lowing use cases, it is worth checking out:

• Social media graphs (understanding relationships between users and making rec‐
ommendations)

• Ecommerce (understanding relationships between disparate products and other
datasets, and making richer recommendations)

• Fraud and security detection by identifying patterns in real time
• Personalized news stories
• Data governance and master data management

198 | Chapter 8: The Data Aspect

Check the Licensing

Be sure to check the licensing on your graph database selection. For
example, Neo4J is a popular choice, but has a General Public
License (GPL) license and is “freemium registerware.” OrientDB,
on the other hand, has a more friendly Apache license. Both have
commercial support from parent companies.

Graph databases are a terrific choice as the underlying support for your service if its
job is to answer questions or perform operations such as these:

• What is the list in ranked order of products recommended for purchase with this
product?

• Who are all the managers between this employee and the CEO?
• What are the names of the musicals that won a Tony award and are produced by

this person and are composed by that person?
• Who are friends of my friends?
• What is the distribution of companies that people who work on this project have

also worked in?
• What are the most popular recommended activities for people staying this hotel?

From a certain point of view, the entire universe can be viewed as a (very long) list of
things that each have a list of relations to other things, and both the things and rela‐
tions have a list of properties. If you view the universe this way, you can see that a
graph database is capable of most closely representing the world and creating the least
impedance mismatch in so doing. It is therefore well suited to many data modeling
tasks of any even modest level of complexity and richness.

OrientDB and Gremlin
OrientDB is perhaps the database with the greatest intellectual kinship to deconstruc‐
tive design. As a multimodel database, it’s incredibly open in terms of allowing you to
pick the storage model that best supports a variety of workloads. It supports not only
graphs, but also key/value pairs, objects, and document storage.

In addition to the multimodel, OrientDB offers the following features:

• Horizontal scaling
• Fault tolerance
• Clustering
• Sharding
• Full ACID transaction support

Graph Databases | 199

• Relational database management system (RDBMS) import
• Works with SQL as opposed to a proprietary language

And it’s free and open source. It also comes with a standard Java Database Connectiv‐
ity (JDBC) driver and other options for integrations.

OrientDB also supports Apache TinkerPop Gremlin, which is a powerful and flexible
graph traversal language. Gremlin is composed of three interacting components: the
graph, the traversal, and a set of traversers.

From the Gremlin site:
Gremlin is a functional, data-flow language that enables users to succinctly express
complex traversals on (or queries of) their application’s property graph. Every Gremlin
traversal is composed of a sequence of (potentially nested) steps. A step performs an
atomic operation on the data stream. Every step is either a map-step (transforming the
objects in the stream), a filter-step (removing objects from the stream), or a sideEffect-
step (computing statistics about the stream). The Gremlin step library extends on these
3 fundamental operations to provide users a rich collection of steps that they can com‐
pose in order to ask any conceivable question they may have of their data for Gremlin
is Turing Complete.

Gremlin supports imperative and declarative querying, host language agnosticism,
user-defined domain-specific languages, an extensible compiler/optimizer, single-
and multimachine execution models, and hybrid depth- and breadth-first evaluation.

Check out the wonderful Tinkerpop Gremlin Getting Started Tutorial to see how it
works.

Because of the power of Gremlin, picking a graph database with this support is a
good idea.

Data Pipelines
Historically, developers would get an idea of the platform on which their work would
eventually be deployed to, and they would make some close approximation of that in
their local environments. They would work on the code and then on rare occasions at
major milestones (or, commonly, only once) transfer their work to a production envi‐
ronment. This was considered perfectly reasonable because why would you deploy
something to production that was not fully ready?

In recent years, the idea of the Continuous Integration/Continuous Delivery (CI/CD)
pipeline has gained popularity. A CI/CD pipeline is a set of end-to-end automations
that use tools to compile, run, test, and deploy code. Because it is automated, all of
these steps can be executed by the single command.

200 | Chapter 8: The Data Aspect

https://tinkerpop.apache.org/gremlin.html
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Dataflow_programming
http://arxiv.org/abs/1508.03843
http://tinkerpop.apache.org/docs/3.4.0/tutorials/getting-started/

Some of the advantages of a pipeline include:

• Problems with the code are detected early and the team gets feedback on what
happened so that it can quickly address it.

• It prevents compounding errors in a code base, keeping your project more pre‐
dictable. General quality is promoted.

• Automation makes your program more testable and reduces single points of
knowledge in your organization.

For a deconstruction designer, you want to design your pipeline early, up front, so
that you are deploying a simple “Hello World” type application. In this sense, your
application code base acts as a mock object for the testing of your pipeline.

You want to design the pipeline first because then you can increase predictability and
efficiency in your project. Give your developers a single command to invoke, a single
“button to push” to build, test, and deploy their software. If it is easy to invoke the
deployment, they will do it a lot. The more they do it, the more you learn about your
environment and application, and the more surety and stability you will have
throughout your project.

Of course, your pipeline is software, too. As you execute it, you are making sure that
your pipeline works properly and covers all the use cases you need to. If you have put
the basic structure in place early in your project, you can add specialty items to it
easily. These might include security scans with a tool such as Veracode, UI tests,
regression tests, health checks following deployments, and more.

You might have a few pipelines:

• One for creating and tearing down the infrastructure, using the Infrastructure as
Code (IaC) pattern. This works if you are using a cloud provider with APIs that
allows you to do this in a “software-defined datacenter” manner.

• One for deploying the standard application and services code that you create as
your product.

• One for the database creation and updating automation. You can do this with a
tool like FlywayDB, which is a scripting database migration tool with APIs. It’s
open source with an Apache license and supports about 20 different databases.

• One for the machine learning services and offline aspects of your application.

All of these will be jobs that you create to be executed in independent steps using an
automation tool such as Jenkins.

Pipelines can be initiated automatically every time code is committed to the reposi‐
tory. A listener hook in Jenkins makes this easy be simply pointing to your repository.

Data Pipelines | 201

https://flywaydb.org/
https://jenkins.io/

After the job is kicked off, the pipeline should create a new instance so that only one
build is tested at a time. If the job fails, developers can be notified immediately.

Here is the outline of a flow for you to use in building your own pipeline for your
application code:

1. Commit: this stage is kicked off on an approved pull request or code commit. It
should execute unit tests. You might also want to include executing “A/B” tests at
this stage. Here you are checking that the basic functionality works as advertised.

2. Integrate: For an application of any size, you won’t want to re-create the environ‐
ment every time. Instead, use this stage to promote the changed or new code into
the environment with the rest of the existing passed code. This is an integration
environment. Here, you run a battery of regression tests to ensure that the new
functionality doesn’t break existing functionality. Here, you should also run a bat‐
tery of security tests and scanning (with a tool such as Veracode) and penetration
tests, too. To do that, you’ll need to expose your build to the internet.

3. Production: If you are ready to release this new code to production, you will exe‐
cute this phase of the pipeline. Here you run smoke tests to ensure that your
build actually connects to all of the proper environments with the production
settings. Smoke tests are essentially just quick verification tests. You can execute
them by pinging a health check function on your services.

Health Check Function

Chris Richardson has a clear and practical writeup of how to
implement the Health Check function on a service using Spring.

Note that not all software can or should be continually deployed. If you are making
large-scale operational software for companies to run their businesses, that would not
be desirable or responsible, so choose production schedules as is appropriate for your
business. The aim with pipelines is that the technical teams are not the bottleneck,
that you could theoretically release 10 times per day if the business wanted to; that
doesn’t mean you must or should.

202 | Chapter 8: The Data Aspect

http://bit.ly/2lVAMYo

Code Coverage
Your code review process should include a test coverage tool, such as the old Java
Cobertura, though this project is not actively maintained any longer. Most developers
have moved on to use SonarQube, which also has a Community Edition if you don’t
have the cash for the full version. These tools are a great way to check how well your
unit tests are checking the cyclomatic complexity in your code. This is essentially a
measure of how many ways there are in and out of a method. Your code might throw
a checked exception or a runtime exception such as NullPointer, or it might pass or
fail some condition in the business logic. Do not test only the Happy Path: write tests
that truly cover the cyclomatic complexity and monitor your teams’ test coverage.
SonarQube is not only interested in test coverage and cyclomatic complexity, but the
richer idea of “continuous inspection” to call out warnings when it sees potential
issues with your code. Employ this tool and watch your resilience score go way up.

You should aim for creating a single artifact that you build once, and that then moves
through all the production pipeline stages intact. If you rebuild software at each stage,
or tamper with its settings or replace things, your tests are all essentially invalidated.

Machine Learning Data Pipelines
As deconstructive designers, we don’t make frozen pictures of software we advertise;
we will build and assume that the system will actually work or look that way. The sys‐
tem is a representation of a concept. Neither do we make frozen software that is
locked, fixed, and predetermined. Not because we are on a religious quest, but
because it fits the world better and therefore is more successful software. We design
deconstructed systems to be a more organic and generative system. We find ways to
make a generative architecture, an active design where the system helps create itself.
The obvious mechanism for this is machine learning.

To help the system you’re designing have the biggest impact, expect to design
machine learning capabilities throughout the system. At least take the entire system
into account so that you can prioritize how you apply machine learning from a holis‐
tic point of view. Although it is not likely appropriate, desirable, or cost effective to
make every aspect of your product machine learning enabled, it is certainly impor‐
tant to inspect your system and its set of use cases, top to bottom, and consider how it
might take advantage of machine learning at each of these.

For example, in a shopping system it might be obvious to see that you want to use
machine learning as part of a product recommender. But not all of the great uses for
machine learning will be customer facing. There are internal opportunities to proac‐
tively predict when you might have the next outage.

Machine Learning Data Pipelines | 203

http://cobertura.github.io/cobertura/
https://www.sonarqube.org/

For any of these use cases, it will quickly become important to have a machine learn‐
ing pipeline in place to allow automation to keep the data and resulting machine
learning predictions fresh and tuned. A data collection workflow to help gather and
prepare the data for your machine learning algorithms will be necessary and save you
a lot of headaches trying to manage it later.

The data collection pipeline has the following responsibilities:

• Decentralize data intake. Agent adapters can pull data in from their original
sources.

• Parallelize data intake for different data sources and data types to execute quickly.
Each of the data intakes can stream with a throttle mechanism or can be awak‐
ened on timers or triggered by events.

• Normalize and munge the data to prepare it for use in data science use cases
including ingestion, data cleanup, imputing missing values, and so forth.

Designing data pipelines will make it easier for you to add new data sources later and
make your machine learning richer and more robust. Figure 8-1 shows an example
process and set of responsibilities for a machine learning data pipeline that you can
use.

Figure 8-1. The online and offline machine learning data pipeline

Here is the basic flow for a data pipeline similar to how we use them as designed
together with a great architect, Holt Hopkins:

204 | Chapter 8: The Data Aspect

1. At code time, create a separate project and package for your data pipeline. Create
a set of interfaces that you deploy as an API separately from the implementation
classes associated with any particular data pipeline. Say, for example, that in the
travel domain you have flights and trains and you want to use schedule, change,
or cancellation data as an object of machine learning in order to optimize your
application in some way. You would make separate implementation artifacts
(WAR or JAR in Java) that adhered to the data intake interfaces: one for the
flights and one for the trains.
a. These interfaces include a Scheduler, a Workflow Manager, a Task Manager,

and a Data Processor Engine.
2. At runtime, a Scheduler interface implementation determines when to initiate a

job. This will typically be for one of three reasons: an event was published that
the scheduler consumes, a certain hour of the clock was struck, or it’s continu‐
ously running or running at intervals capturing a stream of data (such as from
the Twitter streaming API). If the scheduler is notified through a publisher/
subscriber (pub/sub) mechanism that something has happened and it decides it
should open a pipeline, the scheduler invokes the proper implementation of the
Workflow Manager through its interface.

3. The Workflow Manager, like typical manager services as we have discussed, rep‐
resents the orchestration layer and does no other actual work but to track the
state machine of progress across the use case through to completion and to
ensure that asynchronous notification messages are published so that Task Man‐
agers can do their work.

4. Each Task Manager receives the message appropriate for its task. There are tasks
for Collecting, Staging, Indexing, and Context Optimizing. Each of them can rep‐
resent a long-running process.
a. A Collector acts as a Data Processing Engine service, which is an implementa‐

tion that knows how to connect to its data source (typically through a network
API) and retrieve and save the raw data for local storage (say, in Amazon S3).
Data should be stored in its raw form, as from the source. That way, if any‐
thing goes wrong in the processing, you can revert to this step without retriev‐
ing it again (which might not be possible in the case of streams).

b. The Stager puts data into a common format, cleans it up, normalizes it, and
generally prepares it for consumption. The Stager performs conversions from
tab-separated to comma-separated values (CSV), renames columns for file
consistency, imputes missing values, and normalizes numeric values on
appropriate scale. The Stager is specific to its API client. For example, a single
Task Manager might be invoked to refresh the “social media” data and that
could kick off two Collectors and two Stagers (one for Facebook and one for
Twitter).

Machine Learning Data Pipelines | 205

c. The Indexer has no awareness of the source of the data. It is aware of the use
case in which the data will be used, and how. It knows how the data will be
filtered and queried. Multiple Indexers can be at work for a given use case. For
example, one could index according to date, another could index according to
user, and another according to content category. The Indexers will break large
files into small ones that are optimized for read retrieval, rewrite files with the
proper order, update a database, and store metadata in case range queries are
needed.

d. The Optimizer performs the last offline step. This is necessary only for inten‐
sive, high-traffic systems. It can precompile and add to caching in order to
optimize shopping performance. In this way, it acts analogously to Facebook’s
HipHop precompiler, or a Maven “effective POM.” It can denormalize data for
speedy retrieval, prepare any anticipated runtime rules, and add it to a dis‐
tributed cache if necessary.

5. At each step, the Task Manager should update the Workflow Manager from time
to time regarding what percentage complete its job is or otherwise update on the
status of the job. The Workflow Manager receives the job status update and
records it in a database for exposure to tooling.

6. When the jobs are complete, the Manager service notifies a topic. The machine
learning Manager can then understand that the data was updated and execute
any processes it wants to, such as pulling the data into its store. The raw data can
be deleted if desired to save space, cost, or comply with data privacy rules.

These steps are all performed “offline” and are not in the standard use case runtime
path.

Now with your machine learning algorithm running as a service, the fresh circulation
of properly prepared data acts like the fresh circulation of water through a fountain.

Metadata and Service Metrics
Define the metrics that your services will use. This must be treated as data because it
must be defined, collected, massaged, and put into a usable form. The metrics must
be engineered by you as a data architect/data designer. Table 8-2 shows examples of
service metrics that you might consider employing in your own organization.

Table 8-2. Sample service metrics

Metric name Description
Request Count (Total) Total number of requests, per service operation, by millisecond, second, minute, etc.
Response Time (Average) Average response time, per service operation, by millisecond, second, minute, etc.
Failure Rate Count (Total) Total number of failed service requests, by millisecond, second, minute, etc.
Success Rate (%) Percentage of successful service requests over the total number of service requests

206 | Chapter 8: The Data Aspect

Metric name Description
Failure Rate (%) Percentage of failed service requests over the total number of service requests
Service Availability (%) Percentage of availability, per service operation, by hours, days, etc.
Fault Count (Total) Number of times a technical fault has been registered, per service operation
Transaction Response Time (End-
to-End)

Average end-to-end response time, per service operation, by millisecond, second, minute,
etc.

MTTR (Mean Time to Recovery) Average duration in minutes from a service incident to its complete recovery

These are by no means the only metrics, just some that I’ve used effectively in the
past. The point here is to give you a jump start toward tracking the behavior of your
services so that you can understand how well they are working and how to improve
them. This is a matter for you to design to ensure they are meaningful; do not merely
leave this up to the operations team.

Auditing
You will need to add auditing to your system so that you can trace who changed what
and when.

For auditing purposes, tables that supply configuration options, user access, PII data,
and certainly PCI data should maintain columns such as the following items to sup‐
port auditability:

• When created
• Who created
• When last updated
• Who last updated

For a robust security measure that can really help you out in the event of a breach or
unauthorized use, also maintain columns for who and when last viewed. You can
implement this as part of the eventing framework discussed earlier.

ADA Compliance
Your software user interface design in its various forms (including desktop, tablet,
and mobile) must comply throughout with the Americans with Disabilities Act
(ADA). Any consumer-facing web application must meet Web Content Accessibility
Guidelines 2.0 (WCAG) to ensure that the application is perceivable, operable, under‐
standable, and sufficiently robust for users with disabilities.

Companies that do not comply with this federal regulation are subject to fines of
$25,000 per day for every instance of a violation, which becomes a million dollars in
fines to your company for every three sprints it takes to correct.

Auditing | 207

https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/

Therefore, it’s an excellent idea to test your software on a regular, frequent basis
(prior to every release) using the following tools:

• JAWS (required) with the IE browser
• NVDA and Zoom Text Only (required) with the Firefox browser

Your software could also be tested on a less frequent but still regular basis (quarterly)
using the following tools:

• IE-Edge with the IE browser
• GoogleVox with the Google Chrome browser
• Totally: an accessibility visualization toolkit
• MAGic: a screen magnification tool
• Voiceover and TalkBack for Apple and Android tablet and mobile devices

Keeping your software ADA compliant is not only a way to make better software, it’s
the law. Your public-facing consumer software will be particularly susceptible to this,
but although that’s where designers tend to focus their activity, your internal applica‐
tions are subject to it as well.

Summary
In this chapter, we looked at new ways of thinking about and implementing rich data
designs to support the new needs of modern applications.

208 | Chapter 8: The Data Aspect

CHAPTER 9

The Infrastructure Aspect

In this chapter, we take a look at the kinds of services to create at the infrastructure
layer. We explore a variety of infrastructure-related concepts that are important
within the universe of deconstructed design, including Infrastructure as Code (IaC),
Pipelines for Machine Learning, Chaos, and many more tools and methods.

Considerations for Architects
Sometimes, architects are viewed as only a part of the application development or
product development team. They limit their specifications to only the software and
services layer. Just as we saw that the effective architect’s purview also includes the
business view, this individual also must contemplate the infrastructure, seeing all the
aspects of business, application/services, data, and infrastructure working together.

As you consider how to design your infrastructure, the following are critical issues to
address:

• Definition of approach to infrastructure creation in support of your project,
including containerization and IaC

• Toolsets in support of these
• Release engineering and management
• Process definition for Continuous Delivery, Continuous Deployment, and Con‐

tinuous Integration
• Process definition for change control
• Budgeting and financial management of the infrastructure
• Capacity planning
• Patching

209

• Disaster recovery
• Monitoring
• Logging and auditing
• Roles and responsibilities definitions for DBAs, DevOps, architects, and applica‐

tion owners and/or system owners

These are all important considerations in the purview of the effective enterprise
architect. They should be captured and addressed in your Design Definition Docu‐
ment. Although these aspects of your infrastructure are critical, they will be specific
to your business and project needs.

If you are working in a cloud environment, many of these will change from your on-
premises approach. For example, the saying goes that in the cloud, you treat your
infrastructure as cattle, not pets. This refers to the cloud best practice of never
actually patching servers. You instead take them offline and entirely replace them
with a complete upgraded server using your automation tools.

Disaster recovery is another area that tends to change dramatically from on-premises
to cloud. Historically, you needed to have two different datacenters, and grudgingly
negotiate vendor contracts that have a separate disaster recovery datacenter. The
application here tends to not have the same capacity, the same setup, and the same
version of the application and data. There is usually some lag because there is less
urgency to keeping these perfectly synchronized because disasters don’t happen every
day. There is also significant cost associated with something you hope to never
actually use. If you design your services properly, to statelessly run on top of automat‐
ically replicating peer-to-peer data services, you can have a very resilient application
running across multiple datacenters, even across multiple continents in an active–
active configuration. This puts your services close to your customers and maximizes
both your resilience and the cost/benefit.

Architects assist in the budgeting and financial planning aspect by using tools such as
cloud provider cost calculators to estimate the infrastructure and the monthly rental
costs. Make sure when you do this to specify different needs for development, testing,
integration, User Acceptance Testing (UAT)/staging, and production as necessary.
Defining your infrastructure across several environments like this can become expen‐
sive. This is one reason why automation through IaC is crucial: it allows you not only
to scale up, but to scale back down. You can shut down entire environments when
they aren’t needed, to save costs. If all you need to do is push a single button to kick
off the automatic creation of your entire infrastructure and deployment, you’ll be
more likely to manage this closely and carefully.

Capacity planning will also require significant changes in how you operate in the
cloud. Instead of trying to guess up front, months in advance before you have any real
traffic patterns or load to plan for, you can take advantage of autoscaling groups.

210 | Chapter 9: The Infrastructure Aspect

These allow you to define rules such that when a trigger circumstance is met (for
instance, when a server reaches 80% CPU and stays there for some time), you can
have the cloud automatically provision another server and add it to the cluster behind
the load balancer. Likewise, for cost management reasons, you’ll want to define rules
that remove a server in the event that usage becomes very low.

This all means that your infrastructure is more closely related to your business than
ever, and potentially more closely coupled to your applications than ever. We have
been used to two separate horizontal layers in the false dichotomy of infrastructure
versus application. But we deconstruct that false binary opposition, and with the
cloud and IaC, see the entirety of our servers, networking, and application all defined
as versioned plain text and code in a single image, automated, and all working
together in near real time.

Make sure that however your relationship with the enterprise operations/run team is
structured within your organization that you have clearly defined the aforementioned
items. The one place no one likes surprises is in the infrastructure. Your goals should
be clarity, predictability, transparency, and cost-aware resilience.

DevOps
Another story that we comfort ourselves with in software is patently false: if we use
this tool, this framework, this practice, we will “save time” by eliminating effort. The
person who invented the ship also invented the shipwreck, which reminds us that
every solution creates new problems; we are often not solving problems so much as
trading them for others we (hopefully) would rather have. If we focus on the idea that
we are “solving problems” and “saving time,” we will miss much of the picture. Simi‐
larly, we must let go the idea that we are eliminating effort. Effort, like problems, is
typically just moved, not eliminated. This presents one of the major difficulties in
DevOps today.

DevOps attempts to conflate the two jobs of development and operations. It is
encouraging that DevOps is a deconstruction of the traditional binary opposition
between development and operations. But the responsibilities of the two jobs do not
go away.

The stated aims of DevOps are, as you might expect, improved productivity, speed,
scale, reliability, collaboration, and the other usual suspects that have been the aim of
most initiatives in our industry in the past half century.

There are a variety of DevOps models, and we as an industry have been discussing
and debating the practice, what it is, and how to go about it for more than a decade.
For our purposes, let’s do a quick overview to make sure we have defined the term
and highlighted some of the key principles that might make the most material differ‐
ence to architects/designers:

DevOps | 211

• In DevOps, the application developers and the operational folks are not siloed in
a Plan/Build/Run–type model in which the builders throw completed code over
the wall to the runners. Instead, they work together on the same team for a more
integrated lifespan of the project, and share practices and duties. Development,
infrastructure, and security are viewed as part of the holistic set of concerns
everyone shares.

• DevOps focuses on IaC as a practice, which requires that traditional infrastruc‐
ture folks work more as developers, but with an infrastructure and operations
mindset. They need to be not just more aware of developer practices such as
Agile methods, code repositories, testing, software design, commenting, and so
forth, but they need to be very skilled in these practices.

• It represents a philosophical shift in mindset wherein both roles are focused on
developer productivity, resilience and reliability, automation, and security.
Instead of serializing the customer needs on through to product management
and then development and then infrastructure, the DevOps engineer is less
abstracted from the customer by working side by side with the application
makers.

Although the way different organizations have tried to realize DevOps can vary, there
are a few practices that seem consistent and important across applications:

• Small, frequent updates as opposed to large, infrequent major pushes. This
requires a CI pipeline, and a continuous (or at least frequent) delivery pipeline.
Such pipelines allow you to be more responsive to your customers and improve
reliability because changes are isolated to small batches instead of large and less
predictable updates.

• Service-oriented development. Aligning a single function with a single service
that is independently deployable, scalable, and versionable, and in turn aligning
that service with an Agile team on your org chart can also help productivity,
accountability, speed to market, and reliability.

• Other important practices include IaC, configuration management, and integrat‐
ing monitoring and logging with the application development practices as we will
discuss throughout this chapter.

These are the principles and ideas that will be most relevant to you as you consider
your infrastructure angle further in light of your organization’s position and needs.

Infrastructure as Code
IaC allows you to describe declaratively in plain text the infrastructure that you want
to create. Software systems read those declarations and spin up the infrastructure to

212 | Chapter 9: The Infrastructure Aspect

match it. Instead of negotiating contracts, enlisting the procurement department, and
spending capital dollars far in advance to provision your datacenter in a nonrepeata‐
ble and hard-to-visualize process, IaC allows you to define your entire datacenter
with plain text using a configuration syntax. This gives you a blueprint of your data‐
center. There are tremendous advantages here:

• You can readily understand the comprehensive picture of your datacenter and all
of the components that underpin your applications and services.

• You can also repeat that datacenter to deploy across multiple cloud regions by
simply changing the region or zone names.

• Additionally, infrastructure definitions can be shared and reused by other teams
to give them a jump start on their projects.

• Because they are plain text files, they can and should be stored in your code
repository, which means your IaC definitions can be versioned. You can roll back
entire datacenters to a Last Known Good state if something gets out of whack.

• Your infrastructure environment becomes more testable. You can (and should)
write a battery of tests for checking the health and compliance of your
infrastructure

• You can define Governance as Code, checking that resources are properly provi‐
sioned, tagged, and compliant with guidance.

For these reasons, IaC is an important element of deconstructive software system
design. Anything in your business applications sphere that can be code should be
code, so that it can be presented with an API and invoked through automated
processes.

Following are some of the popular tools for implementing IaC:

• Provision local and remote systems with a tool like Vagrant. Vagrant is a free and
open source tool created by HashiCorp that allows you to create a portable com‐
plete environment inside a single file called a “box.” You can then share this file,
which defines your complete environment across teams so that everyone has the
same repeatable, working OS with all the same versions of all the same tools. This
goes a long way toward combating the “It Works on My Machine” syndrome. You
define your Vagrant virtual machine boxes using Ruby. You can also search for
existing boxes to give you a jump start.

• A popular Platform as a Service (PaaS) tool is Heroku, which assists you by pro‐
visioning and orchestrating containers (which it calls “dynos”), managing and
monitoring their life cycle, and providing proper network configuration, HTTP
routing, log aggregation, and more. Because it’s a full PaaS tool, the platform reg‐
ularly performs audits and maintains PCI, HIPAA, ISO, and SOC compliance,
taking a variety of necessary but often cumbersome tasks off your plate. With

Infrastructure as Code | 213

https://www.vagrantup.com
https://www.heroku.com

Heroku, you can add extensions for Kafka, Redis, Postgres, and more. Heroku
supports Ruby, Java, Node.js, Scala, Clojure, Python, PHP, and Go.

• Define, manage, and test automated systems with Chef or Puppet. These tools
allow you to perform configuration management. Puppet requires that you
declare dependencies between resources, which Puppet then satisfies. Chef, on
the other hand, satisfies all resources in the order in which they appear in the file.

• Automation of creation production infrastructures can be done with Jenkins,
Ansible, and Terraform. These help you to deploy on environments including
Amazon Web Services (AWS), Google Cloud Platform (GCP), OpenStack, and
Digital Ocean. Terraform, also by HashiCorp, lets you define and provision data‐
center infrastructure using a high-level, proprietary configuration language
called HashiCorp Configuration Language (HCL); you can also use JSON. With
Terraform, you can configure your corporate GitHub account, dynamically create
servers across multiple IaaS providers, register their names at another DNS pro‐
vider, enable their monitoring from a third-party monitoring company, and spec‐
ify to send the application logs to an aggregrator service.

Depending on your environment and needs, any of these in combination can be help‐
ful to you. You can use these in conjunction with Docker and Kubernetes to create a
more portable infrastructure foundation.

If you are using the AWS cloud, you would likely use AWS CloudFormation as the
templating system, and something like Ansible or Jenkins to help you execute the
scripts. AWS CloudFormation is essentially YAML. You can use it to describe the
Amazon EC2 servers, the autoscaling groups, the security groups, databases, network
routing and DNS, edge services, and basically everything you can create in AWS.

The primary mental shift that you will need to negotiate with your enterprise opera‐
tions teams is this: historically, the operations and infrastructure folks want nothing
to change. Change of any kind is often viewed as nothing but an opportunity for fail‐
ure and uncertainty that keeps people up and night away from their families and rest.
IaC asks you to embrace change, and provides a set of practices and accompanying
tools that support this mental shift. Changes in an IaC world are viewed as an oppor‐
tunity for improvement, rather than an obstacle or hardship.

The second challenge you’ll see organizationally is that people sometimes do not
want to give up what they know or are reluctant to learn new ways of doing things.
They can feel threatened or think that their jobs will go away or change and they’ll
lose power and control. Don’t underestimate the force of this kind of resistance, and
include the enterprise operations teams who might be running traditional datacen‐
ters, or (worse) bring a traditional datacenter operations mindset to the cloud.

214 | Chapter 9: The Infrastructure Aspect

https://www.terraform.io/

Metrics First
In our rush to make deadlines, and in the absence of any demand to produce metrics
numbers for a product that hasn’t been launched yet, we often begin designing and
coding without consideration of metrics.

If you don’t create a few key metrics up front, you’ll not only miss out on showing
how successful you’ve been, you’ll also have nothing to start reporting from when
deadlines grow near and when budgets are almost used up and management begins
asking questions.

Define the metrics for success of your overall project up front. Then, before actually
recording any values, check with executives to see that these metrics, if you did the
work to track against them and give them real values, would in fact tell them the story
that they need to hear to determine whether you’re being successful in the ways that
matter to them. This is a crucial point of difference for us as deconstructive designers.
It’s like Test-Driven Development (TDD) in which you create the test from a client
point of view, it fails because there’s no code to fulfill it, and then you fill in the code
to make the test pass. You want to do this on an organizational/project level, and
defining the metrics up front is like defining your own set of tests for the project.

If you define them at the end, you will be doing a “Texas Two Step”: right at the point
when you’re all exhausted from the big push of delivering your project, you’ll have a
second small project on your hands to figure out what the right metrics are, hope that
you have things in place to procure them, add those tools and processes in when you
inevitably don’t have them all, and then go through weeks, if not months, of reme‐
diating your product for performance or security, right at the worst time.

With respect to the broad infrastructure, you should consider the following success
metrics:

• Are there health checks on every service? To get a jump start on adding health
checks to your services, you can check out the Netflix runtime health check
library.

• Do you have a battery of automated tests for the infrastructure itself to show that
all the correct services are present and properly networked and connected?

• Do you have regularly running Veracode scans to produce an Open Web Appli‐
cation Security Project (OWASP) secure coding practices report? This is espe‐
cially useful throughout the project so that you are keeping the security tidy and
manageable throughout. You don’t want to get to the end and discover that you
have a long list of security bugs to work through before going live.

• Do you have a mechanism in place to measure mean time between failures
(MTBF) through your monitoring tool?

Metrics First | 215

https://github.com/Netflix/runtime-health
https://github.com/Netflix/runtime-health

• Do you have a mechanism in place for recording mean time to recovery
(MTTR)? This is the more important metric going forward, but often not really
measurable until you have an incident in production. You should, however,
decide up front and agree on how you will measure this. Usually the Ops team
will have a virtual room or Pager Duty type tool and process defined for captur‐
ing the duration of incidents.

At the application level, you want to set up certain metrics that will tell you how well
your application is performing. Although these are not strictly infrastructure-related,
their collection and measurement will probably need to be defined in collaboration
with your Ops team. Here are some of the key infrastructure-oriented performance
metrics to define, collect, and reflect:

Latency per service
This gives you a concrete measure of how long it takes to perform a task, whether
that time is consumed in travel, processing, or response time. Focusing sharply
on the latency in your mission-critical services will be an important key to suc‐
cess. Being able to consistently measure, say, your shopping response times, will
help you find bottlenecks in performance and fine-tune your infrastructure or
your code to improve them. It will also help with forecasting financial needs and
scalability ceilings. Don’t forget offline batch jobs: create service-level agreements
(SLAs) around them and measure how frequently they complete on time.

Traffic
This is the measure of load and demand on your system so that you are clear on
how much work each component is doing. Collecting traffic data will indicate
whether you need to provision more supporting infrastructure, or if you can
redesign a component to do more work in parallel, or whether asynchronous
processing can be employed. As you measure your traffic, you should look to
view it in patterns and trends. If they swing significantly, this might indicate
where you can add or fine-tune autoscaling groups to scale up and down
accordingly.

Availability
This is important and notoriously difficult to consistently measure. People seem
to argue about it all the time. So it’s good to be clear on what you mean when you
say “available.” For this reason, it’s common to see advice suggesting that you
measure primary functions during business hours, all functions during business
hours, and both of these in a 24x7 measure. You can consider the nature of your
application or product, and the impact that availability failures can have at differ‐
ent times. If you have a financial reporting application, that can go offline for
hours on the weekend with little or no user impact. Does your measure account
for planned or only unplanned downtime? Define it in whatever way makes sense
for your business and your product, but make sure you’re consistent.

216 | Chapter 9: The Infrastructure Aspect

Incidents
Number of production incidents measured by severity (priority one, priority two,
and so forth). I don’t see a lot of value in defining more than a few priority levels
because they tend to just incite arguments and defensiveness and cause people to
lose sight of customer focus.

There are other metrics that your organization might prefer. The point here is to be
sure to define measurable metrics, start figuring out early on how to track them and
report on them, and be sure that they are metrics that drive the behavior that you
want to see.

Compliance Map
Depending on the size of your organization and the role of your department, you
might also consider having a compliance map. This would essentially be a list of appli‐
cations in your purview and how well they comply with your next generation toolset.
Create a spreadsheet with the list of applications and several columns to capture spe‐
cific aspects of the application current state versus your target or future state toolset.
Next, you can assign a score with a color code of red/yellow/green to indicate how far
away each application is. Then, you can assign a business priority to each application.
This would generate for you a score in a 2x2 type quadrant: applications with high
strategic business value that are far out of compliance might be prioritized first.

You can then use this as a data view to discuss with your executives and product man‐
agement to create a prioritized roadmap for application remediation.

Automated Pipelines Also First
Often, we go through projects and we add automation close to the end, when we’re
almost done. We wait until we have a significant part of the work done and need to
turn our attention to deploying to certification, staging, or production environments.
This creates a second, hidden project.

Instead, we want to start with automation, even when you have nothing. We create
the simplest “Hello World” project, and then immediately begin automating the
build, testing suite, and deployment across the IaC. That’s how you get the most bang
for the buck because you can use your own automation throughout the development
of the project. This adds efficiency and predictability overall. Moreover, when you do
it in this order, you are less likely to start with application-specific needs (because the
application is just a kind of empty shell at this point), and your automation pipelines
can enjoy more reuse across the organization.

Automated Pipelines Also First | 217

The Production Multiverse and Feature Toggling
We in software tell ourselves many comforting stories. One is that we have a reliable
staging environment that is very much like production and that if we test our code
here, we should be good in production. The problem with this story is that it’s almost
never true.

You must decouple unit tests from integration tests as well as performance tests and
penetration tests. Think of these as separate matters that can be kicked off, or not, as
your current situation demands. Penetration tests by definition occur in production.
But the rest occur before you get to the production environment.

Try this thought experiment: imagine that you had no staging environment at all, and
imagine then what you would need to do differently to perform responsible deploy‐
ments. It is impossible to test completely.

One problem with our typical way of thinking is that we have an idea of a perfect
piece of software in a perfect environment (whether that is staging or production)
and these ideas are all monolithic. Even if your application is decomposed into
microservices, the idea here is monolithic, unified, perfect, complete.

If you abandon the idea that there is a perfect application, a perfect environment, you
can start to create compensatory actions as a native and integral part of your design.
And these compensatory actions will not only make up for the fact that you are not
relying so much on the false foundation of staging, but will create new benefits.

If we see our application as rhizomatic (as being made of decentralized root systems),
that is a more honest and accurate view of the world that will benefit our software.
Although that sounds abstract, consider this: your source code management system
exists as a series of roots. They can be merged back to the trunk, and different people
can be working simultaneously on different areas of the code. In a large development
project, there is no single, unified field of the code base. The code base is a set of mul‐
tiplicities. One key reason our software is less resilient and higher quality than it
could be is not, I wager, that we didn’t spend a million dollars on a staging environ‐
ment that looks “exactly” like production. That is a fantasy that we must abandon.
When your uptime availability is measured in ten-thousandths of a percent, a “pretty
close to production” environment is not even in the ballpark. No, I think the reason is
instead that we are happy with the idea of a multiplicity of code bases in develop‐
ment, and force ourselves into an inaccurate translation that there must now be a sin‐
gle, unified, monolithic idea of “The Production Code” right around staging time.

The idea that staging will save us does not serve us well enough. We cannot replicate
the complete production environment precisely. You won’t have all of the exact same
licenses, which can be prohibitively expensive. We certainly don’t have the same net‐
work setup, firewall rules, and routing tables. Is everything authorized to third-party

218 | Chapter 9: The Infrastructure Aspect

APIs the same way, with the same throttling and service level? No. Are all the file
paths identical and security groups identical and URLs identical? The data is not the
same, the keys are not the same. Clinging to this idea hurts us.

If instead, we carried that multiplicity of development branches forward into produc‐
tion, what would that mean? What benefit would it give us? What would we need to
do? What if we gave up on the idea of staging, and moved that matter into produc‐
tion? We would need to build those paths, that extensibility, that configurability, into
our code base and subvert the idea of production in order to make it more resilient.

In what I hope by now is a more intuitive first thought in our deconstructive design,
we look for the binary opposition, see which term is privileged, and overturn the
hierarchy in order to determine how they are interrelated and interdependent and
how they can inform each other to create a new space for an improvement. In this
case, we would not privilege production over nonproduction by treating it as pristine,
wholly distinct. Yes, of course, we must have it properly secured. Nothing here is say‐
ing to play fast and loose with what surely must be a hardened, resilient, secure pro‐
duction environment or to encourage sloppiness or entropy.

The point rather is to suggest that the code base itself, as deployed in production,
might have many credible paths through it that can be turned on and off for different
users, different countries, different percentages. I have heard it said that there are
hundreds of “versions” of Expedia.com all running simultaneously in production.
Consider production less as a single monolith and more as a choose your own adven‐
ture book, or a set of train tracks at a major rail station: the tracks can be switched to
route trains (user requests) through to various points.

A good way of achieving this is through feature toggles or feature flags.

Implementing Feature Toggles
There are two primary use cases for feature toggles. One is that you have a new ver‐
sion of an algorithm that you want to try out on a subset of users. You might not be
sure how it will perform or whether it will convert shoppers at a higher rate. So you
want to introduce it slowly to a subset of your site visitors rather than rolling it out in
speculation en masse and hoping it works; if it doesn’t, you are faced with rolling it all
back and figuring out what to do. Feature toggles deconstruct this binary opposition
of “all or nothing” and “totally on or totally off.” They allow you to see the world on a
gradient and implement new features or algorithms accordingly.

The second primary use case for feature toggles is rather similar: you want to have
two versions running at once in an A/B or multivariate testing scenario and gather
data to learn which performs or converts better. This is common in ecommerce,
where we’re likely to have a few different merchandising messages, colors, photo
placements, and so forth. You might have different button labels with variations on

The Production Multiverse and Feature Toggling | 219

the same message, such as “Buy Now” or “Add to Cart” or “Book it!” and you want to
show these to different users of the same kind in order to measure which is more suc‐
cessful. If the “Buy Now” button shows a conversation rate 10% higher, you might
want to settle on that wording and eventually let the other label candidates go at the
conclusion of your test.

Let’s consider how we might implement feature toggles. In the most rudimentary way,
you could comment out the old lines of code in favor of running the new code and
then redeploy and switch back if it didn’t work out. This is not, however, what we’re
talking about. Beyond the fact that commenting out code is a terrible practice, it does
not achieve our aim of separating the idea of deployment from the idea of what is
“released.”

A slightly more advanced way to do it would be to make the flags dynamic so that
you can have both options of the functions/algorithms/whatever you’re toggling
available, and then flip a Boolean in a configuration or runtime parameter to state
which to run:

if (flagEnabled) { return exciting new thing }
else { return standard thing }

You can get more fancy with this, such that you have a function to determine which
path this runtime request is in. You can even build a UI to make it easy to see all the
flags you have and turn them on or off. The inadequacy here is that a Boolean just
means on or off; you must pick between one of two states. But worse, your code will
become littered with conditional logic all over the place, and the state machine you’re
creating will become far more complex to picture with the more flags you put in
place. In this situation, the chances of having at least some users wind up in a bad
state becomes much higher.

A more sophisticated way of doing this is to use a Strategy pattern. This is my prefer‐
red method. If the development teams know that when designing every microservice
they must ensure that the service contains no actual business logic, but rather that all
business logic is “injected” via Strategy pattern, you will be able to keep your code
very clean, intuitive, readable, and manageable while still providing the ability to fea‐
ture toggle. You can have one strategy with the exciting new algorithm and one strat‐
egy remaining for the old one. Then, you can create a toggle router component that
sets the Toggle Context. This has a plain-text configuration to associate various strat‐
egy implementations with runtime attributes. For example, you might want to send
5% of requests as selected by the load balancer to the strategy A path, and the rest to
strategy B. Or you might select a path based on country of request origin, geolocation,
logged in users, loyalty members, random cookie settings, an HTTP header setting,
or whatever suits your needs. Using the Strategy pattern should be standard in your
microservice design, and for feature toggling, it allows you to avoid any conditionals
littering your code.

220 | Chapter 9: The Infrastructure Aspect

Strategy Pattern

We’ve discussed the venerable Gang of Four Strategy pattern ear‐
lier, but it’s always a great time to be reminded of this simple, pow‐
erful design technique. See the explanation, diagram, and examples
at DoFactory. The examples are in C#, and I like to refer people to
it because the explanation is very clear and it’s easy to translate.

You can find a good article on thinking about and designing feature toggles at Martin
Fowler’s website. It is very long, so you are making a commitment, but if this idea is
important to you, it’s a good read.

Finally, if you really love this idea of feature toggling and find yourself wanting to go
all-out with it, you might also be interested in feature flags as a service, which you can
check out at Launch Darkly.

Putting the idea of feature toggling first, and assuming that you will have multiple
production environments running at once is an excellent way to learn what your
users truly prefer, how they use your application, and what works best for your
business.

Multi-Armed Bandits: Machine Learning and Infinite Toggles
An outstanding extension of this idea is the Netflix user interface. Instead of deciding
which toggle path to chose, the more modern and advanced way of doing feature tog‐
gling is to do so much toggling on so many aspects that you end up with many thou‐
sands of simultaneous versions of your application, such that the entire idea of
toggling sort of goes away and is sublated into the realm of machine learning. This
level of personalization represents a key facet of deconstructed design.

They use machine learning to select not only the selection of movies to recommend
to you, but even the image thumbnails for movies, based on your preferences. I
highly recommend reading up on how the company does this on its engineering blog.
Using a multi-armed bandit machine learning algorithm, Netflix selects the best
image for you personally, based on items you have previously enjoyed. For example, if
you have watched and liked several Matt Damon movies, the image Netflix selects for
you when recommending Good Will Hunting would include a picture of him. If
you’ve never watched another Matt Damon movie, but enjoy lots of comedies, it
might instead select an image from that movie featuring Robin Williams.

The name “multi-armed bandit” (MAB) is derived from the image of slot machines,
colloquially called “one-armed bandits” because slot machines “steal” your money.
You pull the arm to place a bet. If you find a machine that you think is “hot,” or that is
paying off well, you might tend to stick with it and continue pulling the arm of the
same machine. However, in the row of slot machines before you, others might pay off
better. You’ll never get the optimal payout unless you fashion a combination of

The Production Multiverse and Feature Toggling | 221

http://bit.ly/2m3136T
http://bit.ly/2m316zB
https://launchdarkly.com/
http://bit.ly/2kH70GC

continuing with machines that you know work and occasionally trying other
machines that might work better. These two axes on which a MAB operates are
known as “exploit” and “explore”: you continue to execute what you know works
(exploit) in an optimal balance with exploring other options that could work better.
The machine learning algorithm converges when, after many executions, it learns this
optimal balance. This is how a basic recommender engine works, suggesting that the
people who bought the sleeping bag also bought the flashlight, and then occasionally
recommending something that might have less chance of hitting but which would
represent a higher revenue point and profit margin, like recommending a tent, too.
What your MAB should be optimizing here is not the number of conversions but the
total revenue or total profit.

Your data scientists should be able to pull together a good multi-armed bandit in
short order. If you don’t have a strong data science team or want to test it yourself
quickly, Jason Liu has put his multi-armed bandit library for Java on GitHub. That’s
an easy way to get started.

As you can see, it’s difficult at this point to say that there is one “Netflix website.” It
hardly makes sense to refer to "The Netflix website” as if there is one and it’s always all
the same. The same is obviously true for Google, as well, in which you see personal‐
ized results based on patterns, but even results that no one but you sees.

In your design work, ask yourself how you can unravel the idea of the single mono‐
lithic unified application in ways that make sense for your users and workload. What
would make things quicker and easier for them? Have you designed a single mono‐
lithic workflow as the One Grand Narrative to rule them all? Or have you considered
that you have both novices and power users, and thought about how you can distin‐
guish between the two and in real time modify the workflow steps or the additional
controls you reveal to them? This is a silent, seamless, wonderful way to make the
easy things easy and the hard things possible.

How can you introduce paths for the production multiverse?

Infrastructure Design and Documentation Checklist
In your lookbook or Design Document, you will want to be clear and directive with
teams regarding the infrastructure decisions you have made. The following should all
be things that you outline and take a clear, declarative stance on in your architecture:

• Statement of what infrastructure provider you are using. Will this be on-
premises, in cloud (if so, which one), or a hybrid?

• Operating system. This should include whether you want to use a cloud vendor’s
version of software. Often it has the advantage of getting regularly patched and
updated as a service, alleviating that responsibility from your teams.

222 | Chapter 9: The Infrastructure Aspect

https://github.com/jxnl/bandits-java

• If you are in a public cloud, you must explicitly state which region you will
deploy to. Base your decision on where your customers are, latency between that
cloud region and any home runs the systems there will need to make back to
your datacenters, and the tools available in each. Not all regions have the same
capabilities even within the same cloud vendor, so be sure to check.

• How many datacenters (“Availability Zones” in AWS) will you deploy to within
that region?

• Will you be using an edge cache? Through which vendor?
• Are there particular infrastructure requirements for your application’s design?

For example, you might choose to forego web servers altogether, and instead
deploy your static assets such as JavaScript, CSS, and images to a storage service
such as Amazon S3 and have them served from your edge cache.

• Define how you will handle Security Groups and Access Control Lists (ACLs).
Which services will be in which security groups and how will you balance the
complexity challenge of maintainability when they each are accessible only via
their own load balancer? What connections will you require between datacen‐
ters? Will you use a Direct Connect? Do you require use of a bastion or jump
server to control access to environments?

• Define how you will handle key management.
• How do you anticipate scaling? What will be next one or two regions you expect

to deploy to?
• How will you handle disaster recovery (DR)? Or you might choose not to have

DR, but rather what I refer to as “built-in DR,” where you run active–active in
three or more datacenters and merge your DR investment with your active run‐
time investment. This, of course, must be designed into the application.

• To support your related infrastructure practices such as IaC, you should specify
the design of your pipelines. Also specify some of the seemingly small matters
that can end up making a big difference, such as disallowing anyone from using
the cloud provider’s UI console to make changes. Instead, mandate that any and
all infrastructure changes occur only through the IaC automated process.

• To help control costs, you should specify how you will do resource tagging. If
you’re an AWS user, be sure to read its tagging guide.

• Of course, you must specify the typical matters such as load balancers, DNS
names and relevant IP lists, firewalls, routing, reverse proxies, and the infrastruc‐
ture communications setup including what type of servers, from what vendor,
with what power and capacity, and how requests will route through them. What
protocols will you allow and disallow?

• What monitoring must be in place? What alerts and triggers do you have?

Infrastructure Design and Documentation Checklist | 223

https://amzn.to/2ksO5z8

• How will you perform autoscaling? What are the thresholds defined for those
rules?

• Will you employ service or server virtualization? Gateways? How will you throt‐
tle traffic from the internet? Do you need to have tiers of API service (in which
case, you must be able to identify traffic properly)?

• List the environments you expect to have. Is this Production, Testing, and Devel‐
opment only? Or will you also have Integration, Demo, Staging, UAT, Certifica‐
tion, and Load Test, or do these overlap in some way? Be very clear on this
because it becomes the specification for the IaC people to build, and it has signifi‐
cant implications for cost and manageability. Be sure you’re clear on who will use
them, when, how, and for what purpose. Put this in a chart. It seems obvious, but
it will require at least two meetings to sort out, and then another one later to
tighten the belt when either it’s not being followed according to the specification
or when finance comes to find you.

Make sure that you do the calculations and projections for costing as you make these
choices. If you end up with an incredibly resilient architecture that costs a million
dollars a month to run, you might be asked to revise your plan. Make sure you are
working with finance and product closely as you make these decisions. They are, after
all, business decisions.

Chaos
As deconstructionist designers, we recall that an important part of our work in the
production of concepts is to identify the values, the arguments, the principles, and
the apparent superstructure in order to discover their opposites: we find the binary
oppositions that adhere in the set of concepts we are working with. When we find a
pair of binary oppositions, we can identify which term in the pair is privileged, and
which is marginalized, secondary, or ancillary. Through analysis, we will discover
how the privileged term actually relies on that marginalized term, how they are inter‐
twined. Such analysis allows us to subvert that privileging, which is desirable because
it will help us discover a more innovative, better design. It will be better because it
will be a more accurate and less myopic view of the world, so our concept will be
cleaner, richer, and reflect a truer state of affairs. This will improve our design, which
is nothing but a transcription in code of our concept.

A very common binary opposition in our world is that of development versus pro‐
duction. Development is hopefully not the Wild West, but we expect it to be a bit
messy and not at all presentable to guests. We expect it to be very dynamic, and that
we must break stuff in development almost by definition because we are in the pro‐
cess of making the thing in the first place.

224 | Chapter 9: The Infrastructure Aspect

Production, on the other hand, should be frozen, the opposite of dynamic, pristine
and perfect, which must never be touched and must be tread silently by, stepping del‐
icately and not even looking at it or speaking above a whisper. Production is clearly
the privileged term in this binary opposition.

Chaos Engineering is a term coined by Netflix around the year 2010. This is a won‐
derful, innovative practice that makes perfect sense for us as deconstructive design‐
ers: it has engineers invert the sacrosanct idea that production should never go down.
Instead of thinking of production as the place you hope never breaks, and which you
do everything to prevent breaking, you break production on purpose in order to
make your application more resilient. It’s beautiful. And if you actually do it, very
effective.

The tool that Netflix made for this and eventually open sourced is called Chaos Mon‐
key. You can think of Chaos Monkey as Failure as a Service. It does a few basic things
to create problems for your application services. As you see how your application
responds by creating these common problems and then observing how it responds,
you can then design and plan changes to your application to improve its behavior
under these adverse conditions. In this way, you’re creating a terrific feedback loop.
Perhaps by way of analogy, it’s a little bit like vaccinations: you infect your application
with a little bit of real world trouble in order to build up terrific defenses against it
ruining things when it occurs in the wild.

It tends to work across a few lines:

Resource
Starve your service of resources it needs to operate properly. These can include
CPU, memory, or disk. In the real world, common problems like these are caused
by runaway threads, stalled processes, and log files filling up due to improper
configuration and (on Linux) too many open file descriptors.

State
Change the state of your service’s underlying environment. This can mean shut‐
ting down the operating system of one of the servers in a cluster, rebooting a
machine, or changing the network time. It might mean removing a dependency.

Network
Create simulated network stability problems. You can kill a specific process or
flood the network.

Request
Randomly create problems for specific requests.

Its popularity and usefulness within Netflix caused the company to spawn an entire
“Simian Army,” including Chaos Gorilla, which destroys an entire datacenter, and
Chaos Kong, which destroys an entire region. Other monkeys are more “helpful,”

Chaos | 225

such as Janitor Monkey, which scans for leftovers and unused resources and cleans
up, and Conformity Monkey, which runs at regular intervals and checks that all your
resources conform with predefined rules, such as being tagged properly, creating a
simple form of Governance as Code.

A great place to begin is to read the Principles of Chaos. Then, you can download
Chaos Monkey to run locally and read the documentation for how to install and use
it there.

You can also try Chaos as a Service using Gremlin instead of trying to set it up and
run it yourself.

Stakeholder Diversity and Inside/Out
We often talk about the customer as the person outside our company who is buying
our product. In this binary opposition of inside/outside in which the external stake‐
holder is privileged, we might actually be doing them a disservice in not considering
the many multiple customers we have.

If you do a thought experiment and imagine that your internal colleagues are your
customers, too, that everyone’s back end is someone else’s front end, that the develop‐
ment environment is the production environment to a developer, you might change a
few practices that can help your external paying customer.

Who really are all the users of the system? At different stages, there are many of them.

Developers are the first user of the system. There are a few things you can do to set
the table for them that will pay off richly in happier developers who aren’t dealing
with the same low-level and uninteresting headaches every day:

• Invest in automation. This includes deployment, testing, and provisioning. There
is a step that needs to be inserted in the software development life cycle before
coding starts to make sure that the table is set for them. In a sense, you’re build‐
ing production first, but with the developer as the customer.

• Do everything you can as an architect and a leader of influence to take process
bureaucracies away from them. The more time they spend filling out tickets just
to get access to the environment that they work in every day, the more grumpy
and distracted from the important work they will be.

• The developer is a user of the system after it’s deployed into the hands of paying
customers. Ensuring that they have commented thoughtfully and made the code
readable and properly named and properly segmented will help to make their
work more efficient when they are going back to fix bugs and make maintenance
updates.

226 | Chapter 9: The Infrastructure Aspect

http://bit.ly/2M4GoLB
http://bit.ly/2lW0yvF
http://principlesofchaos.org/
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey
https://www.gremlin.com

The Network Operations Center team and the Bunch of Poor People on the Phone at
3 A.M. on a Crit Sit Call are also users of your system. Make sure to put the following
in place to take care of this customer:

• There must be proper monitoring for them to gain transparency and clarity.
• Log messages properly and actually design the logging subsystem and naming

conventions thoughtfully. Consider how messages will be written in order to be
quickly looked up, indexed by a system like Splunk, and consider how they will
be aggregated.

• Can you build components as managed components (think of something like
Managed Beans in Java as part of Java Management Extensions or JMX)? Wrap
or decorate your services as managed components for vendor-agnostic viewing,
monitoring, and even updating at runtime. The Apache Cassandra database does
this, and it essentially turns the software system inside out, making all the run‐
time components available in this way. It’s a fantastic feature of the system and
allows vendors to build monitoring and manipulation control panels on top of it
very easily and plug in existing ones.

Make Managed Components

Even if you’re not using Java, that doesn’t matter. The point is to use
this idea of the managed component in whatever language. See
how Apache Cassandra does it in the source code on GitHub with
the CommitLog and CommitLogMBean. You don’t need to worry
about how Cassandra works or what a commit log is; this is just an
accessible example.

Testers and auditors are also users of the system. Consider their needs along these
lines. The obvious point is that if you think only of the “user” who is sitting in front of
the UI clicking, your long-term product will suffer. Everything you do in the design
to support this more diverse customer set will pay off.

Summary
In this chapter, we reviewed a variety of modern practices and methodologies that
you can employ to make your infrastructure more scalable, resilient, predictable, and
manageable.

There can be entire books written on the subject of infrastructure architecture that go
into more detail about specific fine points of the areas we have touched on here. We
have focused primarily on considerations for infrastructure with respect to building
software products or applications, because there is no point in infrastructure in its

Summary | 227

http://bit.ly/2kGZFH6
http://bit.ly/2ltMtW3
http://bit.ly/2krd6uu

own right; it exists solely for the purpose of providing a platform for some kind of
application.

In Chapter 10, we turn our attention to broader development methods, operations,
and change-management processes.

228 | Chapter 9: The Infrastructure Aspect

PART III

Operations, Process, and Management

In Part III, we explore your role as semantic designer within an organizational con‐
text. You are the technology Creative Director. After you have interpreted and trans‐
lated the theory into practice using the templates and guides provided, you need to
get your project and systems up and running. It also must be managed appropriately
after you’ve accomplished that. Here, we explore some best practices for governing
and managing your work operationally. It’s filled with templates and practical guides
to help you get your job done.

Finally, we close with a manifesto to capture in summary the main tenets of semantic
software design.

CHAPTER 10

The Creative Director

Depending on the organization’s size, industry, line of business, and culture, and the
general role of IT or product development, architects can have a difficult time know‐
ing what their role is or should be in order to be effective. I often see CTOs at smaller
companies acting essentially like the lead programmer. Sometimes this is necessary,
or is just the “Way It Is” at a given company.

Moreover, this book problematizes that even further with the suggestion that “archi‐
tect” is not exactly the role that’s needed at all, but that rather our work is in seman‐
tics and semiotics.

This chapter aims to help you define the scope of your role and perhaps expand it.
Ultimately, you might well become the chief semanticist, principal semantician, chief
designer, creative director, chief philosopher, or something similar to better reflect the
practices here. Because everything is a potential subject of design, bringing your
design mentality and toolset to a broader purview in the organization can help it be
more effective, clear, and efficient.

The Semantic Designer’s Role
I often observe that role clarity is a challenge in many organizations. It is difficult to
rally around your job, invest in continuous learning, research best practices, and gen‐
erally go all out to be the best if you’re not sure what it is you’re supposed to be doing
or what success even looks like. Lack of role clarity accounts for considerable disen‐
gagement in organizations. People become overly concerned about boundaries that
get crossed or gaps that are left due to nothing but lack of communication of the
expectations. We regularly define service contracts in our systems design and pro‐
gramming work, and then forget entirely that we must do the same thing with our
roles if we are to be effective and efficient.

231

So although I don’t presume to have the precise definition of your role given your
industry, organization, and culture, I do encourage you to take a shot at defining it.

First, you might consider the skills, or job-description type attributes, for an architect
or designer on your team. What must this person know, what proclivities and talents
must he or she have? Of course you can go on the internet and find a variety of job
descriptions for an architect. That’s not our present point. Rather, we’re trying to state
what you might do differently as a Chief Designer, Chief Philosopher, CTO, Chief
Architect, Chief Concepter, or whatever title you’re able to get away with in your
organization. The following attributes would be representative of this role:

• Strong understanding of our industry and business: primary economic drivers
and factors, competitive landscape, customer needs, threats and opportunities.

• Strategic thinker with a strong understanding of strategy consulting tools (for an
excellent guide on this, see my companion book to this volume, Technology Strat‐
egy Patterns).

• Philosophical, analytical thinker with good command of logic, set theory, rhet‐
oric, post-structuralism, and ethics.

• Ability to form and communicate concepts as foundational software designs to
support business outcomes. Command of semantics and semiotics is imperative.

• Design-oriented, creative, aesthetic thinker with a background in one or more
fields of the arts including music, theater, dance, or painting. An understanding
of the concerns, methods, and needs of marketing and advertising.

• Data-oriented thinker who builds arguments based on data and communicates
them in meaningful models. Capable of assisting in machine learning efforts.

• Strong teaching/mentoring ability. Communicates broad concepts and memora‐
ble stories to create context across teams, focusing on “where” and “why” as
much as “how.” Regularly and enthusiastically mentors and coaches team mem‐
bers in concepts and best practices

• Good breadth across all technical domains (business, data, application, technol‐
ogy) and a strong depth in at least one of these.

• Strong written and verbal skills. Ability to write long documents detailing com‐
prehensive solutions as well as brief documents that make a clear point with high
impact. Command of the language appropriate for highly analytical, discriminat‐
ing concept creation. Compelling and inspiring public speaker who excels at lis‐
tening to and communicating with customers.

• Effective formal presentation skills: your great ideas don’t matter if you cannot
communicate them in an clear and inspiring way to others.

232 | Chapter 10: The Creative Director

• Ability to lead directly and by influence. Often few people, if anyone, will report
to the chief architect or chief systems designer. Even the CTO can have a small
organization, but even if it’s the whole development team, they must be able to
lead by influence with other business partners.

• Skilled at planning and project management.
• Skilled at conflict resolution, customer negotiation, and business development.

Notice that a primary difference between our list of desired attributes and what you’ll
find in a typical job description include a heightened focus on skills and background
in strategy, philosophy, aesthetics/the arts, teaching/mentoring, and data.

When you see the world as a list of lists of things with relations, all of which have
attributes, you can see the data in everything. Notice that it does not say “data-
driven.” We want to be informed by data, and use it to assist in judgments and assess‐
ments, but it’s far from the only thing. This is the direction in which we need to
develop our talents in order to be more effective in our organizations.

The responsibilities for us might include the following:

• Documents current and future state designs across applications, technology sys‐
tems, business processes, organization, and culture. Proposes evolutionary plans
for the transformation and assists in program planning and change management.
This includes authoring Design Definition Documents (see Chapter 5).

• Solution consulting: responds to customer RFPs. Identifies possible solutions to a
customer need and determines the optimal product combinations, configura‐
tions, third-party technology partnerships, and important gaps, and documents
the strategic approach. Develops a strong customer fact base including business
strategy, technology strategy, technical/infrastructure capabilities and require‐
ments, FAQs, and organizational capabilities and constraints.

• Use data-driven methods to determine design decisions.
• Able to quickly create clear and communicative models for large-scale and local

problems and solutions.
• Guides technical/development teams through images, lookbooks, wikis, patterns,

and formal guidelines. Establishes a vision and strategic technical direction and
communicates common goals and means to achieve them.

• Keeps abreast of trends in the economy, politics, technology, media, and the
industry at hand and is able to create meaningful conclusions and advise senior
leadership with recommendations to senior leadership about strategic business
and technology direction.

• Create formal methods and innovative models for viewing concepts throughout
the organization, whether they are people, process, or technology related.

The Semantic Designer’s Role | 233

• Understands and negotiates trade-offs between people in technical disputes.

Some additional responsibilities depending on the seniority level might include the
following:

• Identifies technical risks and makes recommendations for remediation.
• Determines, documents, aligns, and communicates design decisions.
• Formally expresses system design in a document, lookbook, architecture defini‐

tion, architecture approach document, or other concept-capturing artifact.
• Illustrates formally how the system’s design (whether a software system, process,

or organizational change) will support the “-ilities” of Extensibility, Scalability,
Availability, Portability, Manageability, Monitorability, Security, Performance.
Include perspectives for Business, Application/Services, Data, Infrastructure.

• Drive integrity and capability readiness across the entire business portfolio.
• Review designs, code, environments, and tests.
• Establish processes, project and program management rubrics and milestones,

and design executive steering committee meetings to ensure the design definition
is actually realized in the solution as implemented.

Defining and publishing and communicating the role is a really good idea: it helps
others know what your job is so that they don’t imagine or assume it’s something else
and then continually wonder why you’re not doing it. It helps people know when to
engage you and for what purpose, and when to leave you alone to think and get stuff
done.

Creative Directors Across Industries
Peter Drucker, father of business consulting, famously stated decades ago: the pur‐
pose of any business is to create a customer. A business does that with only two func‐
tions: marketing and innovation.

Everything that isn’t marketing or innovation is a necessary support function, like
Legal and HR.

The question we must ask ourselves is this: how do I create value in my organization?

Designers and makers of software create value through innovation. Innovation, by
definition, is making something novel, something new. It’s not repeating the same
thing, as if on a factory line, such as with hardware.

Everything in a business that is not innovation or marketing is a cost. Architects must
be value creators, and not clerks.

234 | Chapter 10: The Creative Director

Apple and Microsoft and Amazon have jobs with the title “architect” in them. In gen‐
eral, Facebook and Google do not employ architects. We are at an inflection point in
our industry’s journey toward maturity, and in the discovery of new ways of working
that best achieve our aims given changes in technology and the evolution of our
practices.

Architects must create value for customers. All too often, they do not. If you have a
spectacularly knowledgeable and collaborative developer who works very fast, they
will do the “application architecture” work naturally themselves. Same for the role of
project manager: you wouldn’t need one if people did what they said they would do
on time. But they don’t.

Someone on the project must collaborate across fields to achieve the real aims of the
business, which is less about telling engineers what to do, and more about collaborat‐
ing to create a vision and unifying concept to meet the diverse needs of marketing,
product, infrastructure, compliance, and strategy. To do so, you must perform a dou‐
ble, and apparently contradictory, action: you must innovate and you must make
your innovations repeatable. You are making a system of systems, prescribing not the
system itself, but the context in which the software system can spring to life with all
these competing concerns met. You must at once define a practice that is measurable
and can meet the budget and the timeline, and yet which supports the kind of inno‐
vation and invention that is the hallmark of value creation, which means that you
can’t merely always do what you did before.

Consider for a moment the production of film and television, music, advertising,
media, and fashion houses. These industries have existed for far longer than the field
of software, and none of them employ anyone with “architect” in their title. This
moniker is not necessary, and perhaps has outgrown its usefulness for us.

But is there not a need for someone to see across multiple projects and ensure that
they are aligned with the broader vision, to stand at the busy crossroads of finance,
HR, management, compliance, technology, and material production across a variety
of more defined internal disciplines and ensure that they all come together in a work
of art?

There is, and this role in each of those industries is called the creative director. Let’s
survey them briefly; we can learn something.

In Fashion
The creative director at a fashion house is the most senior creative role, and fre‐
quently the most critical role in the company. Houses rise and fall most because of
their creative directors. At Prada, the creative director is Miuccia Prada who is also
co-CEO. She took over her grandfather’s company after being told that a woman
could not run the business. When she took the reins, Prada was a $450,000 company;

Creative Directors Across Industries | 235

today it is worth several billion dollars. Tom Ford was creative director at Gucci and
Yves Saint Laurent before opening his own house (he is also an Academy Award–
nominated film director, writer, and producer).

The job of the creative director is not to design the clothes themselves. Their job is to
create concepts. These concepts will apply to the collection or the label as a whole.
Their work consists of the following:

• Understanding what the market needs, and what customers want that they might
not even know they want

• Determining what designs should be made within the constraints and the
possibilities

• Expressing an overarching concept that allows many different local designs to
support the innovation necessary to stay relevant, but also the consistency neces‐
sary to produce and distribute the realizations of the designs

In this sense, they are a meta-modeler. They make a design wherein designs can be
made.

In Film
In film, the creative director might be the director or the production designer. They
must do all of the following:

• Manage teams.
• Lead by influence.
• Bargain.
• Stick to a budget.
• Understand how the music, the characters, the dialog, and the edits and pacing

all work together to tell the story to reveal to viewers what they need to know
when so that they both understand what’s happening and have enough mystery
to figure out to keep watching.

• Design the props and settings and scenery and lights altogether to make a unify‐
ing concept.

• Express the unifying concept to the local designers responsible for each of those
areas, such that they can in turn produce their own designs for their respective
areas.

• Figure out with the team how to invent something familiar enough to be appeal‐
ing to audiences and yet new enough to get them to buy a ticket.

236 | Chapter 10: The Creative Director

The creative director is who gives a movie or a show its look and feel, its mood, its
unification with the script, the actors, and the goals and constraints of the studio.

It is perhaps easy for the more scientifically minded of us to dismiss or deride artists
as people who are disorganized or who do not understand the rigors of applied
knowledge in business. Although software projects being late by months or a factor of
two or three are the norm, when was the last time you heard of a play not opening on
the advertised evening? Films do go over budget on occasion, but the director is
responsible for assembling the creative team but also ensuring proper execution at
every stage of preproduction, filming, and postproduction. In a sense, the making of
a movie is similar to a software project. You have the script (the requirements), you
storyboard in simple and cost-effective sketches before filming to allow everyone to
envision how it will come together, and you manage all the people and places and
things with a budget of a million dollars up to $200 million and more.

How Raiders of the Lost Ark Got Made
This tale is told in the 2017 HBO documentary Spielberg. An iconic movie of the
1980s was Raiders of the Lost Ark. George Lucas originally had brought the script idea
to Spielberg, who was enthusiastic to direct the movie. But the script was rejected by
every major studio in Hollywood. Eventually Paramount signed on, but the studio
would not allow Spielberg to be associated with it, because although his prior movies
such as Jaws and Close Encounters of the Third Kind were very well received, their pro‐
ductions had gone over budget by two and three times what the studio had signed up
for. Lucas fought for his friend Spielberg to direct, arguing that he was the best person
for the job. The studio finally agreed on one unwavering and practical condition:
Spielberg would never be allowed to go a dime over their allowed budget of $20 mil‐
lion. He could hardly imagine making an epic movie of this scope on such a relatively
modest budget. But he made the promise as well as many trade-offs and adjustments
along the way in order to keep it. The movie was completed with Spielberg’s new‐
found need to be disciplined and keep to his budget, which he did through a variety
of practical measures: often films do 30 or 40 takes of a shot, but they could only
afford three or four takes, so Spielberg storyboarded every scene of the movie, draw‐
ing them out with pencil and paper like cartoon strips before doing any shooting.
When one of the actors became sick, someone on the crew would jump in and do the
part to keep things on schedule (the movie was actually completed sooner than
schedule).

The movie became wildly successful. The movie was entered into the Library of Con‐
gress for its historical and cultural significance, received eight Academy Award nomi‐
nations (including Best Picture) and remains nearly 40 years later one of the highest-
grossing films of all time.

Creative Directors Across Industries | 237

The lesson for us is that $20 million is not that different than the budget of many soft‐
ware projects, and that creatives, like software folks, need to use their experience and
ability to adjust to make something wonderful within the confines of a very real busi‐
ness setting. Storyboarding your concept helps you do that.

An important similarity here is that what the director must be good at is understand‐
ing the creative process of himself and the entire team, as well as practical matters of
making an artistic product that must “work” within a business context.

In Video Games
The creative director is critical in the making of video games. This person, like Vitru‐
vius’ architect of old, must be skilled in many disciplines including art, graphics, illus‐
tration and fine art, math, physics, computer science, management collaboration and
leadership, and outstanding ability in reading and writing. Their precise skills depend
in part on who the person is, and what their own background and proclivities entail.

In Advertising
The creative director in advertising guides the entire creative department in selection
of visuals, music, and themes for an engagement. They lead directly and by influence.
They will often work with key clients as a project manager and lay out the entire
chronological order of how a campaign and all its constituent elements across many
media outlets will be arranged. They are charged with working for maximum impact,
cost management, and efficiency, and must meet deadlines.

They might also perform copy writing and art direction and have a degree in journal‐
ism, psychology, media communications, film making or language arts, or, more
rarely, business.

In advertising, creative directors are not uncommonly promoted to chief creative
officer, and chairman of a firm.

In Theater
In the theater, this role is called the artistic director. This is the person with overarch‐
ing control over the artistic vision of the organization, as well as choices of the plays
to be produced and directorial choices. Their job in practical terms is to plan the sea‐
son of what will be produced. They frequently speak to the press and represent the
theater and often will engage in fundraising and meeting with prominent donors.
They are frequently former directors and often apply support in the form of counsel‐
ing and recruiting.

In ballet, they hire choreographers, and ensure proper training of the dancers. They
are almost without exception former dancers.

238 | Chapter 10: The Creative Director

In Technology
If you thought your job in technology was to be the creative director, what would you
do differently?

You would not police the developers. You would create a context in which they can
design well themselves.

You would not be overinvolved in metaphors about skyscrapers—things made of
concrete and steel and intended to last many decades of being battered by physical
elements. You would see that software has a shorter shelf life, and that you are not the
designer of a building, but the designer of designs: you would make a factory not of
software, but a factory for designers of software.

You would not create mere taxonomies and classifications, and become devoted to
making hair-splitting distinctions between the role of the solution architect versus the
software architect and the application architect. Each company is too different for
these to have any traction or much applicability outside their own walls, and the
employees within the walls too transient for anyone to care. Rather, you would be in
the business of creating value for customers, like the plucky and resilient creatives: by
any means necessary.

You would see, and embrace the fact, with joy, that software is a creative process and
that there is no shame in that. You would look beyond the factories of the asphalt jun‐
gle and cannery row for inspiration, and turn to architectonics of music, games, and
film.

If we were to learn from our esteemed leaders in the artistic community of filmmak‐
ers, dancers, video game creators, theatrical artists, fashion designers, and advertisers,
we would have turned the dial a bit in our focus.

In such a configuration, the architect creative director in technology would be a role
that is responsible for understanding and finding ways of applying these things in
practical ways to create value for customers:

• How will people work together? What is the set of expectations across disci‐
plines? What organizations are necessary, what roles and functions are needed?
What training? How can we help recruit the best talent to reach our aims? What
sense of collective culture and individual craftsmanship will obtain the best
results?

• What processes will be employed? Processes are a system and can be designed
with the same level of rigor and imagination that we use to design software sys‐
tems. A set of repeatable practices are necessary; how can they be optimized for
efficiency, impact, and delight?

Creative Directors Across Industries | 239

• What tools will the people employ to best realize these practices with the least
friction and waste? What attributes should any system have to ensure that func‐
tional and nonfunctional requirements can be readily met?

• What must systems adhere to in compliance and regulation? What balance of
budget and timeline and quality should they demonstrate?

• How does your corporate and departmental strategy inform the way systems will
be made? What internal projects, such as the moving of a datacenter or a pending
merger/acquisition, inform system design across teams?

• How can you help your organization grow, scale, differentiate, and compete
across these areas?

• How will you manage projects and design the implementation of projects for
maximum efficiency?

• How will you collaborate with internal stakeholders in marketing, communica‐
tions, product management, development, infrastructure, procurement, finance,
HR, management, strategy, and executive leadership to create a unified vision
and the organization that can realize it in a coherent, compelling way?

• How can you represent your organization in the press, in interviews, in speaking
engagements, and in public writing to advance your organization’s position as a
thought leader? How can you attract and retain key customers and assist in mar‐
keting efforts?

This emergent role is a collaborator, a presenter, a leader across disciplines, who is
able to assemble across disciplines and to synthesize across industries, including
fields in philosophy, set theory, logic, history, cultural difference, religion, linguistics,
math, physics, marketing, management, music, art, advertising, theater, systems engi‐
neering, writing, rhetoric, customer service, retailing, psychology, strategy, and com‐
puter science and its attendant history. This is not an entry-level role. You must first
understand making, and have been a maker for a long time, of different kinds of sys‐
tems, in different fields, with different organizations and among different cultures.

The creative director is in the business of making meta-models: the model of how
models are made in your organization, taking all these disciplines into account to cre‐
ate that meta-model, the space in which other disciplines such as software developers
can do their best work. This is the creative director. You are not creating the thing;
you are creating the space in which everyone else can create their things.

Don’t see yourself as making the architecture and design for one building, one piece
of software. Rather, move up the value chain, and make the design of how designs are
made. Lift your visor to take as your domain not only a software system, and not only
a collection of software systems, but the design of people, process, and technology at
your organization. This is what is needed now. But we do not need this old architect
metaphor anymore. Creativity by definition can never become a commodity.

240 | Chapter 10: The Creative Director

What’s In a Name?
It is well understood that the architect’s role is not particularly well understood.
Despite this, we presume to attempt to be “effective” at our pursuit of the work. In so
doing, I have suggested modifications and updating of the way we approach our
work, and the scope and activities of the work we do to help our organizations.

In this book, we have taken issue with even the moniker “architect” as being an inap‐
propriate metaphor for the work we do, the tools we have at our disposal, and the
material we have as our subject. But just fighting with a name and replacing it with a
different one would serve little important purpose.

Perhaps, given all the existing conferences and HR job descriptions, we must remain
satisfied with calling ourselves “enterprise architects”? But there may be hope (to par‐
aphrase Churchill) to shape this title, and thereafter the title will shape our work.
Recall that “Scrum Master,” a wildly outlandish title that comes from the game of
rugby, didn’t exist 20 years ago, and soon came to be considered de rigeur in any soft‐
ware organization.

But there is a job to do. Considering the multivariate functions we perform and the
new ways this book suggests to help us be more effective and, well...perhaps another
title is more appropriate now. Maybe chief semanticist.

Other names come to mind. The title creative director makes a certain wonderful
sense. Of course people might think you’re at a marketing agency or fashion house
with that title. But then has there not been considerable clarification at cocktail par‐
ties as to whether you’re an architect of buildings or of software; have you not even
made the distinction to say “real architect” when referring to those who make build‐
ings? I want to say “concepter,” but it sounds a bit high-falutin’.

Or maybe executive producer. Consider for a moment the work of the theatrical pro‐
ducer, which has no obvious analog in business. This maps better to how we see the
role. The Broadway producer has the following responsibilities:

• Assembling a compelling creative team
• Helping ensure that the right talent is available and managing the balance

between star power and cost (note that in the theater, “talent” refers to the people
onstage, whereas “creatives” refers specifically to the director, writer, and com‐
poser)

• Making the case to win the money from a variety of backers
• Finding the right space for the production
• Managing talent throughout the process

Creative Directors Across Industries | 241

• Setting expectations for a wide variety of stakeholders, dealing with very concrete
matters such as number of seats, marketing, and the contractural arragements for
the size of the font for the star’s name in relation to the title

• Setting parameters and providing creative input as the show is being developed
• Helping negotiate and manage contracts and meet competing requirements
• Pulling together the many disparate elements to create a financial and critical

success
• Doing anything necessary to ensure that the show will go on

Perhaps executive producer is at least as good a metaphor for helping us think anew,
think differently about our work so that we can be more effective. They are there to
help conceive the show when it’s just an inkling, and they see it all the way through
writing, workshopping, rehearsals, and staging. They are the “quarterback” of the the‐
atrical production. In successful projects, this is what this role is about: creating the
concept, communicating it to others, ensuring that the implementation matches the
concept, and ensuring its successful rollout. Then, someone else can take over.

As we further consider our better role, consider the following:

Perhaps we can do better by forgetting about the conceptual legacy of architecture.
Or not forget it entirely, but take up what matters from the discipline, not get too
caught up in the name, and step into our future.

Perhaps it is not so much a problem. Perhaps some titles no longer serve us. Do they
hamper more radical thinking? There weren’t always architects in technology. It is not
necessary. No one knew they were supposed to have Scrum Masters until a little more
than a decade ago. Things evolve as they must. It’s time for something new.

Consider yourself, your own situation. How would your world change if you were the
chief semanticist, the creative director, chief philosopher, or the executive producer of
your organization? How dramatically would that change what we do, how we focus,
how we advance our field? The signs, the language is real, and not only real, but signs
in a semantic field are our only material and beget our systems and make us think and
create differently.

The future of computing will not be programming. It will not involve human pro‐
grammers writing code in syntax for static compilers.

The future of computing will be visual.

We have the nagging need to show up at our work tomorrow and do something we
hope could be called valuable, perhaps even important, innovative, or beautiful. We
hope to act beyond the haunting chains of our inherited language and thereby our
inherited identity, to learn the lessons of our failures, to make something creative,

242 | Chapter 10: The Creative Director

something meaningful, something that’s useful and capable of creating wonder and
perhaps even joy. Something new. Something better.

Are you ready?

What will it be?

Creative Directors Across Industries | 243

CHAPTER 11

Management, Governance, Operations

After you have done all this wonderful work as we’ve discussed throughout this book,
you must continue to manage it through to success and operationalize it. If you don’t,
your work runs tremendous risk of collecting dust somewhere in the shadowy
recesses of the wiki where no person ever visits.

So, this chapter offers a set of practical tools and templates to help you govern and
manage your portfolio. It’s not intended as a definitive guide exactly, though you can
use it that way. These tools and practices can help you improve the management, gov‐
ernance, and operations of the product development organization.

Strategy and Tooling
You must ensure that your concept aligns with the business vision. The best way to
help connect those dots is to read this book’s companion volume, Technology Strategy
Patterns. All too frequently I see architects and even CTOs who consider themselves
as a kind of lead programmer. They are incredibly interested in the bleeding edge tool
of the day. You can identify these people because they proudly and vocally will argue
at lunch or over beers from a fervent viewpoint on the comparative merits of some
particular JavaScript framework versus another.

We’re not interested in arguing over JavaScript frameworks. They don’t matter.

Raise your visor, think strategically, focus on getting the concept right, and you will
have the best chance to define and create something maintainable, extensible, evolu‐
tionary, maybe even interesting, innovative, and groundbreaking.

Work at the level of the idea, the concept, and be ruthlessly pragmatic and detailed in
your analysis. Argue the concept, the view of the world you are representing. This is

245

where all the difference is made in a successful project versus an unsuccessful one, a
costly and late one versus an efficient and on-time one.

Let the programmers pick their tools. They’ll be eager to become concept designers as
soon as they realize how little difference is made between Ember and Angular.

There are only a few reasons that you want to weigh in on the tool selection:

• You have done homework the developers haven’t and have good reason to believe
that one tool is more generally popular and therefore might be easier to hire for
and will have better chances of living a longer life.

• You’re clear (without irrational bias) that a particular tool fits the concept well—
for example, a graph database.

• You’re clear that a particular tool offers more portability and extensibility over
another candidate tool.

• The tool represents a major new shift in direction or a wholly new kind of tech‐
nology for your organization. If your organization has never done blockchain
and has decided to go down that path, you need to do the homework yourself,
read as much as you can, install what you can, and work with them a bit and cre‐
ate a comparative rubric with data to illustrate the thought behind your
recommendation.

These things do matter, and should be squarely within your purview. Otherwise, tool
arguments are nothing but minor border skirmishes, posing, and religious battles.

ThoughtWorks Radar

You can also use the neat ThoughtWorks Technology Radar to
assist in your research.

The fact that one language has duck typing and another doesn’t is interesting and
quite important to a lot of people, typically those who might be designing languages
or compilers and the like. To be clear, that is a fascinating and wonderful discussion
to have, and any intellectual pursuit will only help you and your colleagues. I am only
saying to not invoke minor technical differences in one framework or language and
think you’re doing effective architecture. That’s all an important conversation, just
not for us, not for these purposes.

One thing I do recommend is to study tools and processes from outside your indus‐
try. For example, if you work on business application software, look outside your
domain and examine the software used by DJs, screenwriters, or composers for
example. Consider the software tools you use every day that are outside your domain,
whether these are ecommerce sites, social media sites, audio books, your car interface,

246 | Chapter 11: Management, Governance, Operations

https://www.thoughtworks.com/radar

and more. What can you learn from them and apply back to your domain? What can
you learn from a MasterClass in chess, poker, cooking, or directing? You and your
users will be richly rewarded.

Oblique Strategies
A common human trait is confirmation bias. We tend to quickly interpret new evi‐
dence, whatever it might be, as confirming the status quo or supporting our existing
views. This is an efficient and important trait in navigating the world. We can’t look at
every stop signal and wonder afresh what red might mean in this context, just
because we’ve entered a new intersection. But such habits leak out into our thinking
and shut it down. This is harmful for us as designers. It curtails, hampers, and dilutes
our thinking until our conclusions are so pat and obvious that we are not prepared to
make something new or exciting. It’s painful and awkward to challenge our own
thinking. But that act of challenging might in fact be the only thing that can even be
called “thinking.” Because we are creatures of habit, we must find ways to challenge
ourselves in order to innovate.

One fun easy way I have found to help with this a little bit is called Oblique Strategies.
These are a deck of cards, invented in the 1970s by musician Brian Eno and Peter
Schmidt. Each card contains a short maxim, suggestion, or remark that can be used
to break a deadlock or dilemma you might be having.

The strategies include directives such as these:

• Do something boring.
• Make a sudden, unpredictable, destructive action; incorporate.
• Emphasize differences.
• Work at a different speed.
• Only one element of each kind.
• Would anybody want it?

Picking one of these and using it as a heuristic or a lens through which to view the
current aspect of your project can be very illuminating and get you out of a creative
jam.

Fun Fact

In 1996, the illustrious computing pioneer Peter Norton persuaded
Brian Eno to allow him to produce a deck of the cards for distribu‐
tion to his friends and colleagues.

Oblique Strategies | 247

https://www.masterclass.com/
https://en.wikipedia.org/wiki/Oblique_Strategies

Here’s one way to use them. Each morning, visit the free Oblique Strategies website.
Or, if you really like it, you can buy a deck of cards with the strategies on them. Pull a
new card and read the strategy, and consider it like a little mentoring guide for your
work that day. You can pick one and then state it to the team in your daily standup, or
mail them to the team. I’ve used this practice and although it’s by nature impossible to
measure the specific impact this has had on the designs, the teams seemed to enjoy it,
and I’m sure it caused a few actions or decisions to be reconsidered.

Use Oblique Strategies to challenge your own conventional or default view. You’re
activating the synapses of critical thinking and imagination, and that will only help
your concepting.

Lateral Thinking and Working with Concepts
You can also take the simple approach we discussed in the Oblique Strategies pattern
and extend and deepen it using a technique called lateral thinking. Lateral thinking as
an approach to creative thinking and creative problem solving was invented by
Edward de Bono in the late 1960s. Dr. de Bono’s PhD was in philosophy and he auth‐
ored more than 70 books.

Lateral thinking is concerned with using an indirect, creative approach to problem
solving. To do so, you use certain specific techniques to incorporate nonobvious
methods of reasoning that help you arrive at conclusions that you might not other‐
wise get to using linear traditional logic. It’s about how you can search for alternatives
without using standard patterns. Traditional logic is concerned with determination of
truth value of a given proposition. Lateral thinking, on the other hand, is more con‐
cerned with the slippage, reversals, or movement of terms in statements and ideas. As
such, it is an important tool for us as semantic designers.

de Bono defines four types of thinking tools to solve problems in an unconventional
or indirect manner:

• Idea-generating tools, intended to break thinking patterns that are traditional,
routine, or simply represent the status quo

• Focus tools, intended to broaden the horizon as you search for new ideas
• Harvest tools, intended to ensure more value is received from idea generating

output
• Treatment tools, intended to prompt consideration of real-world constraints,

resources, and support

Dr. de Bono compares traditional vertical thinking with lateral thinking, which we
present in Table 11-1.

248 | Chapter 11: Management, Governance, Operations

http://stoney.sb.org/eno/oblique.html

Table 11-1. Traditional vertical versus lateral thinking

Vertical thinking Lateral thinking
Selective Generative
Moves only if there is a direction to move in Moves in order to generate a direction
Analytical Provocative
Sequential Makes jumps
Must be correct at every step Not required to be correct at every step
Use the negative to block certain pathways There are no negatives
Concentrate to exclude what is irrelevant Welcome chance intrusions
Assigns fixed categories, classifications, labels Labels are not fixed
Follows the most likely Happy Paths Explores the least likely
Finite process Probabilistic process

You can see how well lateral thinking fits into a deconstructive designer’s mindset and
work in concepting. The more you design your software in this way, the better it will
be.

This is a field of considerable study as well as controversy. But we should illuminate a
few of the major tools here that you can incorporate into your concept work:

Challenge idea tool
We often ask the question “why?” to solve a current problem, and this begets Fish
Bone Diagrams and root-cause analysis exercises. However, it’s interesting to ask
“why?” about something that is not an apparent problem, but a typical state of
affairs. To ask why in a nonthreatening way about a current state of affairs or the
way something is done can help us innovate and remove headaches and ineffi‐
ciencies. You can apply it to processes, organizational culture, toolsets, and any‐
thing really. For example, in the United States, many states use Daylight Savings
Time and roll their clocks forward and back one hour each year. We just do it,
and that’s the way it is. By asking “why?” and realizing that the original purpose
was to support our agricultural society, which is no longer agricultural, we might
stop doing that. Similarly, we might ask why certain conventions are in place for
the treatment or expectations of children. It is perhaps shocking to learn that
childhood has not always existed, and had to be invented. It is a social construc‐
tion and not at all “necessary” or even a candidate for the realm of something
“true.” In fact the idea of “childhood” has only been with us about 250 years.

Reversal method
A swimmer swimming a lap in a pool will, as soon as they reach the opposite
side, kick hard against the wall upon turning around, to move quickly in the
opposite direction. Whenever a direction is indicated, an equal and opposite
direction is also indicated. If you start in New York and move toward Paris,
you’re moving away from Los Angeles. If a person is supposed to obey the

Lateral Thinking and Working with Concepts | 249

government, reverse the relationship and ask what the world would look like if
the government had to obey a person or people. Embrace this opposite idea and
consider the ramifications in order to put together a new idea. You purposefully
and provocatively turn the status quo inside out, upside down, or around to see
the world anew.

Provocation
A provocation is a statement that we know is wrong or impossible but is used to
create new ideas. This helps you deliberately leave the mainstream in your think‐
ing. Negate what you take for granted about a topic. That negation is your provo‐
cation. In Serious Creativity, de Bono gives an example of considering how to
handle river pollution. He creates the provocation “the factory is downstream of
itself ”; this leads to the idea of forcing a factory to take its water input from a
point downstream of its output, an idea which later became law in some coun‐
tries. Other kinds of provocation include wishful thinking (“wouldn’t it be nice
if...”), exaggeration (if there is a quantity in your statement, wildly exaggerate it
bigger or smaller), reversal (make an opposite statement), escape, and distortion.

Consider the movement in your idea. How can you use a provocation to advance a
new idea?

Extract a principle
From this circumstance, provocation, suggestion, or implementation detail, can
you define the broader principle that would lead to it? To what seemingly unrela‐
ted point can you apply this principle? First try to extract a principle. Then, dis‐
card the provocation and work with the concept with the new principle at work.

Random inputs
To escape the mainstream, randomize input that has nothing to do with the topic
under discussion into your process and work with it. You start with the focus on
your topic at hand. Introduce a random, irrelevant word and then list associa‐
tions with that word. For each association, use it as a metaphor or descriptor for
an idea that might then be related to your original topic and help illuminate an
innovative solution or perspective.

Focus on the difference
Highlight and explore the points of difference between the provocation and your
idea.

Moment to moment
Imagine or simulate what would happen, what would have to be true, to imple‐
ment the provocation as is.

250 | Chapter 11: Management, Governance, Operations

Positive aspects
Are there any direct benefits or positive outcomes of the provocation itself?
Examine each benefit and see if it could be achieved by practical means.

Special circumstances
Explore for a moment if there are some special circumstances where your provo‐
cation might have some immediate use.

Related to the idea of lateral thinking is another book by de Bono’s called Six Thinking
Hats. Published in 1985, this book and its techniques were focused on business man‐
agers. In the 2000s, it found popularity in the UK government to help spur
innovation.

The six hats outlines an exercise that you can do with your team:

White Hat
Concerned with data, definitions, facts, figures; neutral and objective

Red Hat
Intuition, feeling, emotion

Black Hat
Logical, careful and cautious, the “devil’s advocate”

Yellow Hat
Sunny and positive, finds reasons something will work

Green Hat
Growth, creativity, new alternatives, provocations

Blue Hat
Cool, the color of the sky, the meta-hat, organizing, looking at the process

The idea is that these six forces impinge on our thinking and can scramble it. If we
instead do a bit of role playing and actively represent the different positions embod‐
ied by each hat, we can be clearer in our thinking.

We can’t cover everything about the six hats and lateral thinking presented in de
Bono’s work, but I do encourage you to check out his books Lateral Thinking and Six
Thinking Hats to learn more about these techniques if you’re interested. I hope you
are interested, because lateral thinking represents an excellent way to work with con‐
cepts in a challenging, creative manner that will result in your best designs and
products.

Lateral Thinking and Working with Concepts | 251

Conceptual Tests
It would be nice if all of the data which sociologists require could be enumerated because
then we could run them through IBM machines and draw charts as the economists do. How‐
ever, not everything that can be counted counts, and not everything that counts can be
counted.

—William Bruce Cameron, Informal Sociology

The cost of finding bugs goes up exponentially for every later stage in which it’s
found. The sooner you find bugs, the quicker and cheaper it is to fix them. There’s
actually a lot of math done around this, in a famous National Institute of Standards
and Technology (NIST) paper that reveals how these costs multiply, as shown in
Table 11-2.

Table 11-2. Cost multiples at each stage of finding bugs

Requirements gathering &
analysis/architectural design

Coding/unit
test

Integration &
component/system test

Early customer feedback/
beta test programs

Post-product
release

1X 5X 10X 15X 30X

In the paper, which is actually more than 300 pages long, the authors demonstrate
considerable and complex math and justifications to substantiate these numbers.

NIST Report on Software Testing

The NIST paper is an oldie but a goodie. Check out the NIST
report on the costs of software testing.

As round and neat as the numbers look, the cost increases are real.

The Concept Is the Thing
Table 11-2 reinforces the central thesis of this book: many problems in software and
software projects are caused because we as designers have not understood that our
primary job is to create a sound and accurate representation of the world, which is
our concept, and that our software will be better all around if we make that our
object.

The earliest you can find a bug in the software is before there is any software, in the
analysis and design phase. The time you spend on the design will literally pay off later
in a reduced number of bugs and reduced cost of fixing each bug. The time you
spend making sure your concept is well designed and properly advanced will do won‐
ders for creating high-quality code.

252 | Chapter 11: Management, Governance, Operations

http://bit.ly/2kTnQSC
http://bit.ly/2kTnQSC

Your job as a architect designer who creates and communicates concepts concerns the
following:

• Test whether your concept is internally consistent. Your design is your concept.
Your concept is an argument for a certain representation of the world. You are
making claims about how the world itself is, how it works, its causations, rela‐
tions, attributes, meanings, implications, and boundaries. Some of it is a reflec‐
tion of the existing world, and some of it might be a wholly invented world. But
just as in science fiction or fantasy, even invented worlds are only components of
what exists in the actual world. And they must have internally consistent rules.
Even in a space fantasy such as Star Wars, nothing exists or happens that does not
have some relation to the actual real world. And The Force might be invented,
but its implementations must be consistent with the rules established when it was
set up and presented to the audience.

• Test whether your concept is valid. Your concept is an argument which, like all
arguments, consists of a collection of statements. The argument is valid if every
comprising internal statement is valid. A statement is valid if it takes a form such
that if its premises are true, it is impossible to have a false conclusion.

• Test whether your concept is sound. The argument your concept represents is
sound if all its propositions are valid and all the premises are actually true.

• Perform the deconstruction on your concept.
• Test and challenge your concept using the techniques of lateral thinking, as we

have seen.
• Ensure that its arrangements have lightness yet sturdiness, beauty yet fitness to

purpose, integrity yet openness, harmony yet challenge, movement yet quietness.
• Test whether it is rhizomatic instead of arborescent: consider tagging, flatness,

and contexts-in-relation, as opposed to rigid categories, hierarchies, and concrete
entities-in-themselves.

To do these things, you can use the ideas and practical techniques discussed through‐
out this book. In the end, the test is about thinking through it yourself and talking
with other smart people through these various lenses.

You must test your concept early, often, and vigorously. This need diminishes some‐
what over time. Make sure that it is internally consistent, that all the components are
named properly, and that you have made an accurate and true and rich representa‐
tion of the actual world, and you will have made the biggest impact you can make on
the quality of your software in the near and long term.

Conceptual Tests | 253

https://www.iep.utm.edu/argument/
https://www.iep.utm.edu/val-snd/

Code Reviews
I often see code reviews used to police programmers on compliance matters. Code
reviews are important, but the code reviewer should not be forced to become the QA
department or test compliance with convention guides.

Instead, your code reviews should be about encouraging and deepening your con‐
cept, broadening its understanding and application. Code reviews should support the
development of the coder through sharing, mentoring, recommendations to best
practices resources, and mapping to principles to reinforce them. They help you
develop a better bench. You are reducing single points of knowledge across your
organization if you can make them a positive and participative experience. You are
helping to refactor the design.

The purpose of code reviews is not to put people in their place or to overindulge in
nit-picking minutiae. They should elevate, not diminish, the programmer.

As the chief semanticist, designer, or concepter on the technical staff, you should be
at least occasionally reviewing the implementation to ensure that your design is being
realized properly.

First, be sure your concept is well tested as discussed in the previous section. After
code starts hitting the repository, here are a few pointers or guidelines to help you
determine the code review process that’s right for you:

• Hopefully your team uses a version control system like Git and a tool like Bit‐
Bucket, which makes it very easy to for you to view commits and diffs on pull
requests, make comments, and treat it as a bit of a conversation. The code can’t
be committed until approved by reviewers. This is typically a very good thing.
Reviewers must respond quickly to pull requests.

• Encourage developers to notice, use, and take action on the refactorings and rec‐
ommendations in their IDEs. For example, Eclipse, JetBrains’ IntelliJ Idea, and
Microsoft Visual Studio all have capabilities of reading source code and making
recommendations. Your developers are doing it wrong if you’re using code
reviews to catch possible null pointer exceptions. Use tools for that job and ele‐
vate the nature of the code review.

• Use a continuous inspection tool such as SonarQube to improve code quality. It
will detect bugs, vulnerabilities, and red flags in the code construction. Have
developers run this before pull requests so that your code reviews can be more
robust and interesting.

• Review a small batch at a time. If you’re presented with 20 files to review, you will
skim and hit only the obvious things. Maybe three classes or a few hundred lines
of code is best.

254 | Chapter 11: Management, Governance, Operations

https://www.sonarqube.org/

• Make two checklists. There will be things that your developers’ IDEs should just
capture. You might be able to tune it to insert your rules to capture low-hanging
fruit, using something like Appraise. The second checklist should be things that
your developers will commonly violate that the IDE can’t capture as easily. I find
these are things like uncommented or poorly commented code, exception han‐
dling, proper “discoverable” logging, avoidance of null pointer exceptions,
improper use of enums, and so on. These are common things that act as a pre‐
liminary review for the developer, to save everyone the brain damage of repeating
the same low-level observations at every review.

The manner in which you conduct code reviews should improve your culture. They
should encourage transparency, interest in having the best idea win instead of your
own idea, conversations about quality so that it stays top of mind, and a brave and
open invitation to scrutiny in our work. Code reviews reduce your “truck factor,” so
even if you haven’t gone as far as pair programming, you still will get more people
with more familiarity with the broader code base.

Of course, if you’re designing the next space shuttle, print out every line of code and
review the minutiae in a locked room for weeks before allowing anyone to do any‐
thing. For all the rest of us, make it a fun, collaborative learning and team-building
experience.

Demos
If a developer on a typical Scrum team finishes his first story in a sprint, he might
then wait for a week or 10 days before getting to demo it. Why wait so long to demo
code?

As an alternative, when code is done, invite the team to demo it later that day or the
next. This aligns your development in an event-driven way, when your story is done.
Don’t wait until the end of the sprint if you use those (though Kanban is more consis‐
tent). I have used this in the past in a Kanban-like style, and the teams loved it. The
sense of progress, competition, drive to complete work, and frequent little public cel‐
ebrations all conspire to generate a palpable sense of energy, movement, and camar‐
aderie. You can make a party of it. Send an email when a story is done and let
everyone gather at the end of the day in a room used for this purpose, put it on a
video for the distributed team members, and demo the story. It’s fantastic!

The Operational Scorecard
As deconstructionist designers, we see the whole as well as the parts, and we under‐
stand that it’s not only software that are our design candidates. You probably have, or
should have, monthly operational meetings. These typically are boring reviews of

Demos | 255

https://github.com/google/git-appraise-eclipse

dead history that cause participants, who are generally forced to be there, to disen‐
gage. This in turn makes the meeting worse.

What you want to do instead is design this meeting. As we always do, we begin with
one of our key questions: who it is for and what do they want or need to know to make
a decision or do something differently?

You can elevate your organization by encouraging your executives and peers to
design their meetings. Everything is a potential object of design. And when you take
the holistic view, every constituent part becomes improved. As designers, architects,
executives, leaders in the business, we will spend a nontrivial portion of the time
reviewing performance against our key metrics across the business. That perfor‐
mance will include people, process, and technology and product views. The goal is to
understand performance trends, discuss issues we need to address, and get quick
updates on improvement efforts underway that will affect our performance. In your
operational meeting, the expectation is that each functional leader will speak to his or
her metrics, with questions, issues, suggestions, or concerns being discussed with the
broader team.

The goal of the meeting should be:

• Give you and all participants a comprehensive view of the actual progress, the
important elements that will give us confidence about how we’re actually doing
for our customers.

• Give you a seamless transition to subsequent reporting out to senior executives;
the data should cover similar items to minimize repetitive busywork.

• Make a template that is repeatable and easy for your team to update each month.

I urge you to create an operational scorecard template that you can use in the opera‐
tional meeting. Each meeting simply provides a forum for leaders in each area to
present the current state of their organization through this lens.

Your scorecard might include the following as a sample from which you can create a
template to share with the leaders to fill out each month in preparation for this
meeting:

Roadblocks
Just like in a standup, what remains in your way that might need visibility or
executive action?

Risks/mitigations
What problems do you anticipate becoming roadblocks next, and what are you
doing to mitigate these?

256 | Chapter 11: Management, Governance, Operations

Major misses
What did we recently mess up? Including this and covering it in a way that is
nonjudgmental can help engender transparency and improved collaboration, and
makes sure that any relationships that need to be smoothed over are repaired.

Major accomplishments
Who is due some recognition from the leadership team? What went right that we
can replicate?

Contracts/budgets
Any deals that need legal or executive review? What seems stuck in procurement
or finance or HR or otherwise needs pushing?

“10X" initiatives
What are you doing to “10x” your performance, to compete with the very best in
the world at what you do? How are you driving your team to go above and
beyond mere maintenance, the status quo? Instead of just doing our daily jobs,
how is your team working to take a big step forward across People/Process/Tech‐
nology to be the very best in the industry?

Critical skill gaps
For People, what technologies or soft skills do you see that your leaders need to
focus on?

MBO/OKR/goal tracking
How is the team progressing against stated goals at the organizational level?
Whether you use Management by Business Objective, Objectives and Key Results
(OKRs), or any other framework, how close is your team to completing what the
leadership team expects?

For each major product by area
State the availability/uptime since last reporting period. How many Sev-1 and
Sev-2 production defects does the code base have? Measure mean time to recov‐
ery (MTTR) and show that on a graph: we will have failures, the point is to work
toward improving how quickly things get noticed, identified, and resolved so that
customers are back up.

Cloud spend
What is the Amazon Web Services (AWS) monthly spend (incorporate the
reports from CloudHealth, for example, gained through your cloud pro‐
vider)? What are the recorded security defects reported for each major product as
reported by OWASP/Veracode scans? How aligned is the product with the overall
enterprise architecture/design and strategy?

The Operational Scorecard | 257

For each major initiative
How is your team progressing on an initiative that is not simply specific product
creation or maintenance? These might include a modernization effort, cloud
migration, database migration effort, datacenter move, disaster recovery (DR)
overhaul, a process reengineering effort, and so forth. Report on these right
alongside products so that they are measured and visible, too. These might need a
different kind of summary with success metrics specifically tailored for each ini‐
tiative given that they are not product based.

Then, to ensure that you’re taking the comprehensive view and including People as
well as Process and Technology, review these items as well:

• Current headcount FTE/contractors
• Current recruiting efforts (number of open positions, offers out, new hires/

conversions)
• Terminations/people on Performance Improvement Plans

In your monthly operational review meeting, instead of just having vice presidents
attend, you might also consider including folks one level down (the senior directors
or directors). This then helps you to build your executive bench. It acts as a kind of
training ground for them so that they see what executive meetings are about, how
they are run, what the expectations are, and what the conversations are like, and gen‐
erally helps bring them into the fold for developing their careers. This alone can be a
really good motivator. It has the benefit to you as a leader of helping create context, so
that you can be more comfortable and confident pushing decisions down to them.
With the understanding they’ve gained attending this meeting, they’ll be better equip‐
ped to make decisions that are in alignment with your overall strategy.

The Service-Oriented Organization
In this section, we tackle the exciting subject of effective organization design. To do
so, we look through two lenses: Conway’s Law and software design principles.

We introduced Conway’s Law earlier in the book. It’s the idea that software designs
are copies of the communication structures in an organization. This is often inter‐
preted as a warning that if your organization has lots of committees and lack of clear
roles in decision making, you won’t have high cohesion in the software created by the
teams in that organization. But we can look at it from the other direction and use this
to our advantage as we design our organizational structure. Imagine and refine the set
of services you think best define your future state platform. This will include some
services as they are now, and some that might not exist yet but represent the direction
in which your business is evolving.

258 | Chapter 11: Management, Governance, Operations

To begin, be sure you have a diagram or sketch outlining the set of services your plat‐
form provides, grouped together by domain. Consider the following as you sketch
this catalog:

• Find a level of abstraction that’s right for several groupings. You don’t want too
few or too many groupings within your domain. Fewer than three or four is
maybe not granular enough, and more than seven or eight is maybe getting too
complicated and thus too difficult to track, manage, and govern. There is no
“right” number, but this will rather depend on the size of your company or busi‐
ness unit and where you are in your life cycle.

• The catalog should be balanced so that one grouping is not responsible for 85%
of the critical services in the catalog, whereas the others are left anemic with a
few random stragglers.

• Consider the items that tend to change at the same time. Group services together
that tend to change together. For instance, you probably don’t typically need to
change the Profile service when you need to make changes to the Shopping ser‐
vice. But you might need product-related services or distribution-related services
to change with them. The point here is to not settle into what seems a “logical”
grouping, but rather to consider the efficiency gains you will have if you can limit
the number of people helping make a particular decision, attending the meetings,
or weighing in on emails.

• Consider process divisions, such as supply chain, offer management, order man‐
agement, and fulfillment. Viewing your service catalog groupings through this
lens will give you another perspective to consider.

• Consider the specific customer segments you have. Who are the primary custom‐
ers or users of your services and applications? This will allow you to line up your
portfolio in lanes along with your different customers. Serving a B2B customer is
different than B2C; serving an enterprise-sized customer is different than an
SMB, and so forth.

• Consider the future strategic direction versus the current leaders and what sets of
services and applications they own. There might be some left over arrangements
from various leaders coming and going that don’t make sense any more. The
leaders will be the champions (or detractors) of the required change management
to make your service-oriented organization successful. If the people involved do
not all have something interesting and important to do while overseeing their
domain, they won’t be on board. This is an important element to keep in mind.
Sometimes the organization will need a tweak here and there, and sometimes a
major overhaul.

Essentially, you are starting with the aforementioned lenses to look at your organiza‐
tional catalog, and you’ll find the one that alights the best path. By viewing the

The Service-Oriented Organization | 259

potential groupings through these different perspectives, you will ultimately arrive at
the most effective service catalog groupings to which you can make your future state
organizational recommendation. Then, you can socialize this with leaders and work
to make the organizational changes accordingly.

As you consider together your service catalog and how you organize it, and how you
propose an organization to best support its efficient operation, we can see it as a sys‐
tem. As a system, we can look to the standard tenets of good object-oriented (OO)
design to consider how these ideas, usually intended for the realm of software, can
also help inspire the design of a great people organization. After all, it’s a system, too.
Here are the SOLID principles of OO design:

Single responsibility
Things should have one and only one reason to change. Teams should be organ‐
ized around the services they offer and are accountable for. Minimize the number
of people on the email, at the meeting, and on a call to move more nimbly.

Open-closed
Things should be open for extension, but closed for modification. Therefore,
teams should be flexible enough to move where the business heats up. But the
teams must be cross-functional enough to have all the expertise they need inter‐
nally to complete their work. This requires some common technology across
teams so that new members can get up to speed quickly. It also means that you
don’t modify the teams frequently, moving members around and expecting that
developers are somehow the commodity equivalent of interchangeable blade
servers. Get the right mix of seniority and expertise on cross-functional teams
and then don’t mess with their members very often; let them go through their
inevitable Storming/Forming/Norming/Performing phases.

Liskov Substitution Principle
Objects of a derived class should always be substitutable for a parent class. What
this means to us is that you need to build your bench so that others can step in
for you. If you have a conflict, you want to be sure your team can speak for you
with the same message, the same emphasis, and the same principles. This means
that as a leader (whether it’s with direct reports or dotted lines as you lead by
influence), leaders must build their bench and spend time mentoring others and
illustrating the vision, regularly preparing others to step into their place and lead
the customer engagement or design meeting without them and still feel confident
that it will be done properly.

Interface segregation
A client should never be forced to implement an interface that it doesn’t use.
When teams do not create their own interfaces and define the proper way to
engage them and the set of inputs and outputs that they generate, it can be awful
working with them. To be respectful of other teams, define clearly how they

260 | Chapter 11: Management, Governance, Operations

engage you, when they engage you, for what purpose, how long they’ll wait, how
they can get permissions or exceptions, and so forth. When teams do not do this,
they need to be managed by the team that is depending on them; typically this
means engaging with several different members and trying to coordinate them
from the outside. It’s just crazy-making. Ideally you would set this up like a ver‐
sion of your own Unix “man” pages within your architecture department first.
Do this as practice with your own department, and learn how it feels to create the
proper documents to set expectations and then to socialize them. Then branch
out to make a recommendation for how others can do this using scalable busi‐
ness machines (which we discuss shortly).

Dependency Inversion Principle
Things must depend on abstractions, not on concretions. The high-level module
must not depend on the low-level module. Therefore, hide your organization
behind a clear strong interface and contract. Have defined inputs and outputs
and do not require other teams to get into your internal business or manage/
corral your organization to get their work done.

Now that you have considered your organization through all of the principles and
lenses, there is a practical matter. You’re ready to draw up your service-oriented orga‐
nization in an image. Each organization might look like what is shown in Figure 11-1.

Figure 11-1. The structure of your service-oriented organization representation

Do this for each organization (each VP, probably). You start with the customer, enter
the organization at the point of the product VP for that area, and fan into product
development VP and assigned architect. These are the named buddies that will work
together most closely. They control the portfolio of applications as well as the portfo‐
lio of services to govern within their subdomain.

The Service-Oriented Organization | 261

Cross-Functional Teams
Within each of these subdomains, it can really work to your advantage to form your
teams with dedicated, full-stack developers on cross-functional teams if you can
swing it.

The talent on each team should include people with knowledge of the following:

• Business domain knowledge
• Systems design
• UI/UX
• API design and service creation
• Familiarity with and interest in the overall strategy
• Testing
• Automation
• Data
• Infrastructure, networking, your datacenters

As you populate teams, minimize any cross-team dependencies that threaten the
accountability of the outcome. It’s important to persist these teams, keeping them
consistent. Don’t frequently swap members from one team to another. They need to
go through the “storming/forming/norming/performing” phases. Meddling managers
often rob teams of their productivity by moving members around.

With such teams, I have found that you will get more natural leadership, accountabil‐
ity, sense of shared success, free collaboration, curiosity, shared understanding, and
habitual reevaluation of quality.

Each cross-functional team works within a single domain. The architects and project
managers coordinate across the teams when a complex multi-domain solution is
required. This is shown in Figure 11-2.

262 | Chapter 11: Management, Governance, Operations

Figure 11-2. The cross-functional team composition

Within a single domain that corresponds to a named set of salable products, your
cross-functional teams should have this composition, or some close approximation. If
you do, you will get the most velocity and productivity, the most team accountability
and happiness, the best overall throughput for product development, and the most
efficient and clear management mechanics. You will get to take best advantage of
things like all the pipelines you’re building, reusable libraries, and services and practi‐
ces like DevOps.

It’s on purpose that I don’t specifically call out “DevOps” developer or something like
that here. Although you can (and should, at least for a while) have named developers
doing the pipeline and automation work, they’re still developers. Recall that in Agile
there is only the role of “developer.”

The Designed Scalable Business Machine
A scalable business machine (SBM) is a representation of the inputs that come into
your organization, the outputs you produce, and the principles that underpin the
internal processes by which you create those outputs for use by others. The purpose
of an SBM is to define your work in a clear process to help set expectations for other
organizations with which you work. In a sense, you are defining the interface, the
API, for other departments to work with you. It’s important for us to do this because
we so often float between product management, strategy, and product development.
Defining your own SBM will help you move from the potentially murky realm of
adviser into a more clearly effective participatory role, and help make your entire
organization more performant and responsive to customers.

The Designed Scalable Business Machine | 263

The SBM consists of a few main parts:

• Principles
• Inputs
• Processes
• Outputs
• Tools

Principles are propositions that serve as foundational statements for a system of
beliefs. Explicitly stating the principles that you want to see enacted in terms of peo‐
ple, process, and technology can help your entire organization be more effective,
especially as you undertake large-scale modernization efforts. To create your own set
of principles, refer to “Principles” on page 73 to get some ideas.

Inputs are the raw materials that come into your team. These are the conversations,
ideas, documents, and external parameters you use to build your solutions. You don’t
define or control them yourself. You might get them directly from customers, the
product management team, the strategy team, executives, or a central compliance
group.

Processes are the defined activities that you undertake to convert the raw material of
inputs into the new, useful outputs. These should be internal to your own team and
can be treated like a “black box.” They are the engine working behind your API.

Tools are any helping software programs or other concrete means that you use to pro‐
duce your concepts and documents.

Outputs are the result of mixing the inputs with your own internal processes using
your tools. The outputs should be of clear use to a clear set of customers. Consider
who cannot make a good decision or take their next action without having some dec‐
laration or direction from you. Then think of how you can formalize that and turn it
into a template your team can repeatedly use. Identify what deliverables and metrics
matter to the customer. Define metrics incentives internally to drive toward great cus‐
tomer outcomes.

Figure 11-3 shows a sample template that you can use to define your own SBM.

264 | Chapter 11: Management, Governance, Operations

Figure 11-3. A sample scalable business machine

The principles are not listed on the template, but they could be. Here are some exam‐
ples of principles that you might adopt and adapt:

• Primacy of principles.
• Solutions must first comply with laws, regulations, and standards.
• Nonfunctional requirements must be considered on equal footing alongside

functional requirements.
• Data is an asset, shared, and accessible, and requires stewardship.
• Solutions must be service oriented, and designed in accordance with the service

design framework.
• Development work must be aligned with the stated architectural strategy.
• Solutions must be globally deployable.
• Solutions must be cloud native or cloud ready.
• The organizational structure must be aligned with system governance.

The goal of creating an SBM is to maximize efficiency, maximize speed to market,
scale the business better, delight customers, win back customer trust, increase
employee engagement, and so forth. These are the typical goals of any business. Ori‐
ent your SBM around these goals depending on your current needs.

This book’s companion volume, Technology Strategy Patterns, elaborates on the idea
of the SBM more thoroughly. I encourage you to do this for your own architecture-
design department. You will likely have different principles, tools, and inputs, and
that’s a good thing. Introduce the SBM idea to your team and have a workshop to

The Designed Scalable Business Machine | 265

construct your own diagram. This will help you to create a contract-oriented interface
with other organizations and set expectations properly.

If the effort proves effective for your own department, I encourage you to lead similar
workshops for other departments in your organization. Of course, if you decide to do
that, you must first get the understanding and approval of the senior leader in that
area, and work with that person.

Managing Modernization as a Program
There are large initiatives that architects might be invited to participate in or assigned
to run. The effective enterprise architect will not try to execute these from the bottom
up, or as small, local, individual, unrelated projects. Instead, view them as a holistic
program that requires management from a senior program manager, as shown in
Table 11-3. You can apply a mindset here to “think globally, act locally.”

Table 11-3. Managing modernization as a program

Program management plan Description
Detailed work plan All milestones, deliverables, tasks, and subtasks in a work breakdown structure. Start and

finish dates, dependencies, critical paths, resources.

Staffing and resource plan Organizational structure, communication, retention strategies. Roles and responsibilities.

Risk management Conduct pre-mortems. Develop checklists to monitor, identify, analyze, and remediate risks.

Quality management plan Establish a consistent method for automation and standards, service-level agreements, and
quality level.

Configuration management Describes the approach for identifying and controlling project configurability in source and
deliverables.

Change management Defines and develops sign-off on architectural changes, resource changes, and goal and
scope changes. Records changes in a log, ensures proper approvals according to impact to
stakeholders.

Issue management Identifies prioritizes, assigns, monitors, remediates, closes issues in a RAID.

Time and schedule
management

Approach, control, and change thresholds to manage project schedule.

Communications
management

Policies, values, practices. Include a communication plan with all contact information and
communication trigger events.

Writing the code is maybe 15% of a software project, and less if the project is a digital
transformation effort. They are change management efforts. Because this is one of the
top three reasons that projects fail, we address it in our method.

As an architect or systems designer, you are not likely to be expected to be in charge
of these areas. But you can have a tremendous impact on the overall success of the
program. Seeing your large-scale effort as requiring true program management and
change management is essential to its overall success. If your PMO is mature, well-
staffed, and powerful, architecture might be more on the production and participa‐

266 | Chapter 11: Management, Governance, Operations

tion end of such programmatic management. Either way, you can play a central role
in helping to bring these proper activities, business guardrails, and processes to the
fore. As a deconstructive designer, your comprehensive view of the semantic field that
includes promulgating the need for these activities, and for properly representing
your team’s perspective in these areas, will help to make your programs a success.

Change Management
Change management is the active, programmatic management and leadership of an
organization through some large change. Is your organization going through any of
the following efforts?

• Large digital transformation programs
• Modernization programs
• Service portfolio management efforts
• Mission-critical systems overhaul
• Datacenter migrations
• The creation of a platform
• Mergers and acquisitions
• Organizational restructuring
• Large-scale business process reengineering

Any of these should be considered change-management efforts. They will result in
the redefinition and reallocation of funds and other resources, changing processes,
retraining, and more. They will create the need for considerable communication and
nurturing of the staff and other stakeholders throughout the process. They will need
programmatic oversight and architectural involvement.

Typically, an executive will be the sponsor for such efforts and appoint a leader to act
as the named accountable party. As an architect, this might be you. Even if a different
leader is accountable, architecture will likely be a responsible or recommending party
for one or more of the activities in the overall change-management effort. The effec‐
tive enterprise architect can serve as the locus of many interrelated activities across a
variety of departments, helping guide the effort to success.

Figure 11-4 presents my change management framework, which you can use or adapt
for your own needs.

Change Management | 267

Figure 11-4. The change management framework

Depending on the nature of the change management program, you might have more
or less need for each of these activities.

Don’t Forget the Culture

Peter Drucker, the father of modern management methods,
famously stated, “culture eats strategy for breakfast.” Check out this
article for a good reminder on how to ensure that you are consider‐
ing and actively supporting the cultural forces at work in any
change-management program.

Analogous to these four phases of change management illustrated in Figure 11-4 are
four phases of a project or development method. Whatever your software develop‐
ment methodology is, you will go through the following phases:

Define
Create the vision, goals, parameters, and definition of successful completion for
the effort.

Design
Create a set of concepts from which you derive systems: new business processes,
new data flows, new software, new infrastructure.

Develop
Do the work to realize the designed system.

Deliver
Complete the transfer of the work product to the customer.

If you follow more of a waterfall process, these phases can be very sharply delineated
with phase gates. If you follow more of a Scrum or Kanban method, they might be

268 | Chapter 11: Management, Governance, Operations

http://bit.ly/2kJxbMT
http://bit.ly/2kJxbMT

more iterative or less formally defined. But you’ll still touch on each of these concerns
for at least some time. The point is to be consciously aware of them and define the
expectations for your stakeholders. Moreover, it will help us to remember the many
diverse stakeholders in a program and recognize their different needs and plan
accordingly. Helping to set good expectations is one of the best ways for you to help
your organization overall.

Figure 11-5 illustrates the activities and documents you generate in each of these pha‐
ses. As an effective enterprise architect, you can help to guide the product manage‐
ment, program management, legal, HR, development, and other teams through these
steps as necessary.

Figure 11-5. The change management activities in each phase

Change management is a huge field of study on its own. Your company might employ
legions of Deloitte or Accenture consultants for millions of dollars to help define and
lead these efforts. For the rest of us, the framework provided here should give you a
good starting point, set of reminders, checklist suggestions, and other tools that you
can adopt and adapt for your own needs.

Change Management | 269

Governance
To advance your service catalog with clarity, purpose, and alignment with the overall
vision, create a governance committee. Its working members should include archi‐
tects/designers and development leaders.

Goals
Like your design principles, clearly state the goals of your governance board. These
might be sample goals for the governance committee:

• Reduce training time
• Improve consistency and best practices across the service catalog
• Improve technical documentation
• Limit risk for the team
• Save time in supporting consuming teams to get economies of scale; reduce pres‐

sure on one central team
• Reduce time for rolling deployments
• Reduce time for testing
• Reduce time and risk of rollback
• Help go to cloud
• Improved quality because of focus and hardening

Again, this is just a sample, and you should make your own. Keep in mind fixing bro‐
ken things, avoiding problems, and taking advantage of opportunities.

Don’t do much else until you and the executive sponsor can agree on the goals.

Metrics
After you have your goals, define the metrics. People often do this last. But it’s like
setting acceptance criteria for the governance board: if you know how success will be
measured, you will make a better board more efficiently.

These are some examples your might consider tracking:

• Deployment time
• Availability
• Stability including number and duration of Sev-0, Sev-1
• What is the maturity model?

270 | Chapter 11: Management, Governance, Operations

• Capture the number of internal and external clients consuming them to illustrate
service reuse.

• Adoption percentage: total number of consumers out of the total number of cli‐
ents expected.

• How much did we save/cost avoidance because we reused this?
• Number of services total
• How fast are we growing in TPS?
• What is the total cost to operate each service?

— VM initial cost and cost to maintain * number of servers
— How much disk space does the database consume?
— Network

• Metrics that illustrate success for each service

Service Portfolio
One of the goals of governance is to improve the understanding of your portfolio so
that you can manage your business better. Be sure that your governance regime is
focused on more efficiency and better support for product teams, customers, and
business outcomes.

The activities of the committee might include some of these:

• Evangelize the platform and service orientation
• Teach the organization services best practices
• Create a service cookbook for the organization to use

— Define standards (say, for event headers)
— Define patterns to reuse

• Create a service design review checklist
• Define your design review process
• Define your code review process

Help with some of these items is covered in this book.

Service Inventory and Metadata
Defining the semiotic signs and their interplay and relations is, in my view, critical
because it’s the structure of the semantic field of your software application. Naming
things properly is one of the most important things you can do. But I’m not a big fan

Governance | 271

of the kind of architects that nerdily classify services for hours on end, debating
whether this is a “business service” or not. These folks are bureaucrats but don’t even
know it. They aren’t innovating, and they aren’t creating value, as Peter Drucker said.
Architecture cannot be a Drucker Support function. That’s what it becomes when you
classify all day.

However, there is some use value in terms of understanding what you have, why you
have it, and where in its life cycle it is, as part of an active governance regime:

• Clearly define the life cycle stages of services.
• Maintain the service registry with each listing its name, purpose, life cycle stage,

version, owner, deployed location, code location, and so forth.
• What is the protocol and data format of each?
• What events do they produce?
• What security (auth/auth) mechanism is required?
• What is the capacity (ceiling) for transactions per second of each?
• Document the set of known workflows and consumers of each service.
• What is the roadmap of features per service?

Answering these will help you to make good decisions, understand the impacts and
complexity, set proper expectations with product management, and manage timelines
well.

You have to, as always, ask yourself: if I do this work, produce this result, who is able
to make a particular decision or go do the thing they couldn’t do before? If the answer
is “no one” or you don’t know, stop doing that thing. There’s no value.

These questions are probably difficult to answer. They would be hard to even find an
answer to with some effort; you’d need to have load tested and stress tested every ser‐
vice to be able to answer that question. The point is that what gets measured and
managed gets done. If you govern your services with this as a guide, you will be in far
better shape than most organizations. Part of the idea is that it forces you to get better
practices in place if you’re going to be able to answer these questions.

Schedule a monthly meeting or whatever cadence makes sense for your stage for the
governance committee to meet. Include not only architects, but software develop‐
ment directors, product managers, and project managers. Understand whether you
will report out externally, such as to the sales team or leaders because there’s some‐
thing of value to them, or if you will use the meeting for your own internal manage‐
ment. Either way’s fine; just decide consciously which one you’re doing.

But at that meeting you’ll need a document to review. Can you put all of this on a KPI
Dashboard? Make something fancy in D3 that jumps. Or just use a spreadsheet.

272 | Chapter 11: Management, Governance, Operations

In addition to the working members, expect that there are other stakeholders who
will want to be kept apprised of the progress of the service portfolio. These might
include executives, sales and account management, and parallel organizations such as
labs or other business units, UX teams, and others. For them, have the governance
program manager send an update on the catalog.

Service Design Checklist
Your governance should exist as a structured organizational body. This is a cross-
functional committee of architect/designers, development leaders, and product lead‐
ers who can work at a high level with a view across the entire portfolio of services.
This ensures that overall what your teams are developing is actually accruing toward
the vision for your platform or general product strategy.

But you must also have a practical means of checking the work at the local level. As
each individual service is developed, you want to make sure they are developed in
accordance with the many nonfunctional requirements that operate alongside the
functional requirements. For this purpose, it’s helpful to have a checklist that ensures
proper service design.

Automate Me!

If you can, automate the things on this list to the extent possible. It’s
far more efficient to have them actually checked by tools if you can.
This will depend on your working environment, so I present them
as a list here, hopefully to help serve as an automation require‐
ments document for some of the items, as applicable.

Here is a sample list that you can adopt and modify for your own purposes.

Service Design
1. Describe the concept of this service. What are the abstractions you employ?
2. Where have you embraced the complexity of the abstractions and their relations

in order to make it simpler for the end user? Where are the semantic boundaries,
the points at which your service is no longer representing the semantics explicitly
and the implicit ideas begin?

3. What is the general category of this service?
a. Stateful business process (employee onboarding, return merchandise)
b. Business entity (nouns such as employee, customer)
c. Business functions (verbs for atomic actions in a process such as shopping or

booking); these can also be Event Handlers

Service Design Checklist | 273

d. Utility (perform a non-domain-specific application-agnostic function such as
notifications)

e. Security service (handle identity, authorization, privacy)
4. If this is a new version of an existing service, have you tested directly for back‐

ward compatibility issues according to major/minor versioning guidelines?
5. Illustrate how you started with the client/customer goal. How simply is that fulfil‐

led from their perspective?
6. How have you accounted for this service in terms of the platform-wide capability

it represents? How is it reusable in other contexts? Trace the assumptions made
in the semantics: what is the assumed client context?

7. Where are the tightest couplings with other services or systems? Are manager/
orchestration services used to invoke other services such that dependencies are at
the proper level?

8. In what other systems can this service potentially be reused? Beyond the current
demand, what else might this service enable or support?

9. What patterns from your service design patterns catalog have been employed?
10. Have you followed relevant organizational implementation standards (coding

conventions)?
11. How have you accounted for internationalization? How will your service support

localization (e.g., return different data based on geographic location, formatting
concerns for currency, language, and other items)?

12. What protocols and message formats does your service support? Why were those
selected? What basic message exchange patterns are used for this service?

13. How is user configurability supported? Does the service make use of or allow for
user preferences (e.g., number of results returned)?

14. How does the design support an event-driven approach?
15. What are the binary oppositional structures in the semantics (primary/secon‐

dary, main/ancillary)? How have those been flattened?

Service Operations
1. Does the service support purely stateless connections (unless it is a business pro‐

cess service)? Can the binary artifacts be easily horizontally scaled, such as in an
autoscaling group?

2. Do service operation definitions support typical variations in the domain?
3. Have you avoided any messages, operations, or logic that are consumer specific?

274 | Chapter 11: Management, Governance, Operations

4. Are all operations capable of being executed independently without necessarily
relying on any previous invocation of another operation? Is HATEOAS (or at
least the ideas behind it) achievable?

5. Are data operations (as applicable) idempotent?
6. Does the service offer a variety of operations for retrieving minimal, most com‐

mon, and full datasets? How is data filtering and pagination supported to balance
user needs and pressure on the network and database?

7. Does the service use only standard logging facilities and approved log rotation
strategy?

Business Processes
1. What named business processes (order-to-cash, account management, etc.) use

this service?
2. What business rules have been identified that can be extracted to a business rules

management system or external rules engine?
3. Does the service reference any business rules that might feature thresholds or

other items that could be configured by a business user? How is extensibility
specifically accounted for?

4. What specific customer-oriented KPIs have been identified for the service?

Data
1. Describe how this service accesses data, what data it accesses, and where.
2. Are transactions required? How does the design handle transactions? Has com‐

pensation been considered as an alternative?
3. Describe how this service fully encapsulates its data. If it cannot at this point,

what is the transition plan for doing so?
4. How does the service perform validation on incoming data? How does the ser‐

vice respond to invalid inbound data?
5. How does the service account for data quality?
6. Have you externalized all strings used in labels, buttons, notifications, and so

forth?
7. Has the user interface been designed and tested in accordance with ADA (Ameri‐

cans with Disabilities Act) guidance?

Service Design Checklist | 275

Errors
1. Does the service use only standard message return codes and user-friendly

descriptions?
2. What runtime exceptions are likely to be generated from the service? When con‐

sumers receive runtime exceptions, what opportunities for compensation or next
steps do you offer?

3. Are exceptions logged specifically for surfacing in Splunk, AppDynamics, or
other instrumentation agents?

Performance
1. What is the measured latency of service response in testing?
2. What SLAs have been defined for this service? What mechanisms are in place to

prevent SLA violations? What mechanisms are in place to report SLA violations?
3. What steps in an orchestration can you design to be executed in parallel and

joined later?
4. How does the design encourage asynchronous invocation through events or pub/

sub?
5. Does your design allow for clients to select variations on an operation based on

their context? For example, can you offer both doXandWait(m) : Response and
a doXLater(m) : Void operation options?

6. Are the operations designed at various levels of appropriate granularity so that
they are not prone to network chattiness and do not return data clients are not
likely to need?

7. How does the design delineate between operations that must be performed
quickly and operations that are long running?

8. What is your caching strategy behind the service implementation? Can known
consumers easily cache data in front of the service? How will this be managed
(eviction policy, invalidation, etc.)?

9. Do your services exchange binary data? How is that encoded and stored?
10. Has edge caching been employed?

Security
1. Does the service require authentication? Authorization? Single sign-on? Are

these implemented according to the internal standard tool?

276 | Chapter 11: Management, Governance, Operations

2. What other regulatory constraints (PCI, GDPR, Sarbanes-Oxley, SOC 2, etc.)
might affect this service contract or deployment? How have those been directly
accounted for in the design?

3. Are logs free from PCI or PII information? Do you have masking and scrubbing
in place?

4. What are any additional security requirements for this service? How are they ful‐
filled?

5. How does your service specifically accommodate auditing?
6. Has Veracode or another security service scanned the code base to ensure a pass‐

ing score against OWASP issues?
7. If this service is public facing, have you run penetration tests?

Quality Assurance
1. Is the unit test coverage at the set threshold according to a coverage tool such as

Cobertura or SonarQube?
2. Are all unit tests independently executable?
3. Were test cases created for every user function? Did the tests use a variety of data

inputs (valid, invalid, null, many different combinations of length and character)?
4. Were test cases created for all exception conditions and the “Unhappy Path”?
5. Are the unit tests in version control and versioned in clear correspondence with

the service so that the environment can be entirely reproduced?
6. What functional tests were written if a consumer is available?
7. How was the service load tested? What metrics were recorded? Are they run reg‐

ularly to inspect the trends?
8. Are integration tests run regularly?
9. If the service uses asynchronous pub/sub or fire-and-forget operations, were

these tested by subscription?

Availability and Support
1. What are the availability requirements? How will these be met? What is the busi‐

ness impact (in revenue and other measures) if the service is down for 1 minute?
5 minutes? 30 minutes? 1 hour? 4 hours?

2. How will availability be measured (see the previous details)?

Service Design Checklist | 277

3. Have you employed a circuit breaker or Resilience4j kind of mechanism to pre‐
vent catastrophic or cascading failures?

4. How will the production support team receive messages or alerts regarding the
current state or health of the service?

5. How will runtime issues with the service be addressed organizationally? Has an
on-call schedule been established?

6. Is the service instrumented to natively surface metrics in an independent manner
through tools such as JMX, DataDog, SNMP, and so forth? Have you measured
and recorded the execution time of all key services? Have you done the same for
unhandled exceptions, trace data for response codes?

7. Does the service require planned downtime for maintenance? How much time,
and how often? What work do you expect to be done during this time? What
design would allow you to avoid this?

8. How have you involved the infrastructure operations team in the creation and
design of this service?

9. What is the plan for future maintenance of the service after it is successfully
deployed?

Deployment
1. Have you made a simple deployment diagram so that upstream and downstream

dependencies are understood?
2. Can you move the same binary artifact through multiple environments because

you have externalized necessary variables?
3. Can you deploy with the “push of a single button” in an automated process, such

as through Jenkins or similar tool?
4. What services if any in the existing catalog can be retired or sunsetted after this

service is deployed?

Documentation
1. Have you captured the design in the Service Template?
2. Have you followed relevant guidelines for code-level documentation?
3. Have all test execution results been recorded and posted (such as through the

wiki or a generated Maven website)

278 | Chapter 11: Management, Governance, Operations

4. Have you completed necessary go-live documentation, technical readiness,
operational review documents, attestation on compliance, and so forth?

Your list might (and likely should) vary. But the idea is to inspire you to have a check‐
list like this, and to create the appropriate one for your teams’ needs. Require your
developers to go through it before making pull requests. In a larger, more formal
organization, you might have them prepare documentation attesting to how these
concerns are specifically addressed in their services.

To help ensure this is happening, you can make it part of your governance process. A
good way to catch things early on is to have the analysts add it to the Acceptance Cri‐
teria of your user stories. Then, in the sprint review or event-driven demos, develop‐
ers can illustrate how they’ve accommodated this guidance.

Further Reading on Organizational Design
• Aronowitz, Steven, et al. “Getting organizational redesign right”, McKinsey Quar‐

terly (June 2015).
• Davis, Stanley M. and Paul R. Lawrence. “Problems of Matrix Organizations”,

Harvard Business Review (May 1978).
• Henshall, Adam. “How 4 Top Startups are Reinventing Organizational Struc‐

ture”, Process Street.
• Morgan, Jacob. “The 5 Types Of Organizational Structures: Part 1, The Hierar‐

chy”, Forbes.com.
• Neilson, Gary L., et al. “10 Principles of Organization Design”, strategy + business

(Summer 2015).
• Peters, Tom. “Beyond the matrix organization”, McKinsey Quarterly (September

1979).
• Sisney, Lex. “Rethinking Product Management: How to Get from Start-up to

Scale-up”, Organizational Physics.
• Sisney, Lex. “Predictable Revenue: How to Structure the Customer Success Role”,

Organizational Physics.
• Stuckenbruck, Linn C. “The matrix organization”, Project Management Quarterly

(September 1979).
• Tollman, Peter, et al. “A New Approach to Organization Design”, BCG.
• Whalley, Brian. “SaaS Company Structure: Learning From 13 More Companies”,

InsightSquared.

Further Reading on Organizational Design | 279

https://mck.co/2lUnXxx
http://bit.ly/2lYbPvh
http://bit.ly/2kQm4Sb
http://bit.ly/2kQm4Sb
http://bit.ly/2kR6WnC
http://bit.ly/2kR6WnC
http://bit.ly/2lUBZzc
https://mck.co/2mpmXBP
http://bit.ly/2lVAgcU
http://bit.ly/2lVAgcU
http://bit.ly/2kI2vLZ
http://bit.ly/2moBeP2
https://on.bcg.com/2krreny
http://bit.ly/2mlxg9L

CHAPTER 12

The Semantic Design Manifesto

Should I, after tea and cakes and ices / Have the strength to force the moment to its crisis?
—TS Eliot, “The Lovesong of J. Alfred Prufrock”

We have come to the end that is hopefully a beginning.

What here are we proclaiming? A definitive answer? No. A different path forward?
Yes.

Proclamations of that order seem to require a manifesto.

The Manifesto
Any manifesto will reject the supposed values, claims, methods, and models of the
past, proposing to replace them with new ones. An exciting age of expansion and
prosperity is heralded, but only for the true-believing radicals who can see the
promise of the proposed One True Light and Way. Astonishing advances have been
made in the reach and power of software in the past 50 years. So we do not wish to
trumpet quite such claims, which doubtless will ultimately prove facile and reduce to
a fascism of the mind.

But perhaps something has occurred in the history of software that could be called
the architecture of our concept of software itself. Within this field of signs, directives,
meanings, and metaphors, we shape our words, and thereafter our words shape us.

Our practices have countless times failed to achieve our aims. This is obvious in our
collective landscape, littered with growing project failures. Seven out of ten software
projects fail by not meeting budget, timeline, or feature requirements. More than
eight out of ten big data projects fail. One in six software projects fail so spectacularly
that they threaten the very existence of the company. Project failures abound, costing
three times, ten times, twenty times as much as proposed; they take longer, do less,

281

and if they don’t destroy the company, they leave unhappy customers and unhappy
makers. Projects churn, with large portions thrown away and redone. And the prob‐
lem has grown worse over the past twenty years, not better.

Received architecture frameworks, Zachmann, TOGAF, DODAF have not saved us in
this, having done more to relegate architects to the Ivory Tower of Irrelevance than to
realize the promise of project success.

Agile in its merriment has not saved us in this. But its religion has had a (possibly
purposeful) side effect of relegating architecture as something unnecessary, or as a
facet of the hated enemy other-method, Waterfall.

We see a major contributing factor as a failure of comprehension of the complexities
and contradictions in the world. The world is an infinite conjunct of propositions
and their predicates. Software and systems design demands we bound a context, to
represent our ideas in the system, translating them to instructions. When these con‐
cepts and our language falter, we wait, as one waits for Godot, forever, for the
“requirements.”

There are no requirements. There is only fecund imagination, and the subsequent
work of reduction into rigorous concepts. Rigor here does not mean rigid: quite the
opposite. Any further conceptual demarcation in the system’s design and naming that
fails to embrace context, complexity, contradiction, and change will act as the kernel
of its eventual upset, across many possible vectors.

We identify this is a key contributor to our history of failure. And this is what we here
address.

We can do better.

How?

With X.

We call this method, this conceptual model for design “semantic software design,”
“deconstructive design,” an “Architecture X.”

Why “Architecture X”? “X” is provisional, temporary. X refers to the horizontal axis,
the flatness of the extending horizon on which rhizomes work, rather than falsely
hierarchical Y-based systems; it is used to represent the in-between of time. “x” in the
art and fashion worlds is used to signify a collaboration between two or more artists,
as in “Jane x Jill”; in other fields, “x” is the unknown value, which we embrace in see‐
ing that our software is a representation of a concept of the world—our work suffers
when we disavow its complexities and paradoxes, as by extension software presents
the world view of its designers. “x” in mathematics represents the independent vari‐
ables—they are the inputs or causes; that is, potential reasons for variation, which can
confound the system. “x” is one sign we use for the multiplying operator—x is gener‐

282 | Chapter 12: The Semantic Design Manifesto

ative and fecund, not reductive; x is a kiss. X marks the spot. X crosses boundaries of
disciplines, and its cultural allure alights in cross-pollination.

Yet, and “so,” X is not X. Because X represents, in one usage, the unknown, we might
easily replace the term “Architecture X.” We can be united in our ideals, but recognize
a panoply of names, each foregrounding some different facets, each true and useful;
we might here be doing “Generative Architecture” or “Oblique Architecture” follow‐
ing Brian Eno, “Active Architecture,” “Dadaist”—provocative against the architecture
of the day. Or the X is for “x-perimental.” Or rather it is a “deconstructed” architec‐
ture following Derrida, a “thousand plateaus” following Deleuze. So we emerge from
Architecture X into Semantic Software Design.

Because it is in fact no architecture at all, precisely not architecture. There are no
architects in fashion houses, but rather designers. Is it so different? Music has com‐
posers. Is this more estranged from our work than making a concrete building in
legally demarcated physical space? We are precisely semanticists, whose only tools are
language and logic. We have no material but these, and imagination, creativity. Our
work is in producing, challenging, and inhabiting the semantic field we demarcate to
produce a properly structured concept of our software. This is the piece that’s missing
from our failures.

We assert: an image of thought called architecture has been formed historically, and
even though we don’t agree on job descriptions and practices, this effectively stops
people from thinking. The X architect must create. We reject architecture as catego‐
rizing and classifying. No one with a P&L has any use for such endless classification
of the animals. This is not Ivory Tower architecture: quite the contrary—Semantic
Design, Deconstructive Design, X Architecture is street-fighting architecture, firmly
rooted and working in the gritty, real world of customer demands, annual budget
cycles, arbitrary strategies, mergers and acquisitions, our own independent flights
into the unknown.

We recognize that that real world is richly complex, abounding with contradiction
and deferral, and if we refuse or ignore or are blind to that, we will continue to make
weak systems and fill them with accidental complexity later, making them very
expensive and difficult to maintain. So we embrace the tools of deconstruction. Soft‐
ware is, to paraphrase Samuel Beckett, not about something—it is something. The
code represents the design; the code is not the product. The code is a design factory,
which emits into production only once invoked. So our work is further complicated
in that the design is the primary object of our design. Recognizing this double action
is critical. Recognizing that our true materials for construction are semantics is criti‐
cal.

What you are creating is not architecture, not anything like a single building that
won’t be changed over decades and hundreds of years: very far from. You are design‐
ing the concept. You design the design in semantic space.

The Manifesto | 283

So Architecture X is not architecture. We use the term “architecture” here under era‐
sure. As X Architects, X Designers, Concepters, we not only read but hear, and hear
"Ex-Architects,” and we do not in fact practice architecture at all. We practice seman‐
tics and design (“of signs”). We leave architecture as a metaphor, adopted decades ago
at a conference in Germany in 1968, as one proposed option among many, to help
find a language to talk about how to talk about how to talk in software. Perhaps it has
served us to some extent: one needs to put a stake in the ground. But we assert, no
longer. “Architecture” itself is not what we do, but there our job titles sit in fields in
the totalitarian wisdom of HR databases. Yet it is a metaphor that, like all language,
can’t help but generate ancillary metaphors, like “blueprint” and “plumbing,” which
lead us further away from our efficacy.

X Architects/Semantic Designers see that our language prescribes a space, demarcates
our words and as such our thoughts and expressions of our work. As such, we recog‐
nize across the spectra of writing and speech the sound quality that presents us: ex-
architects. We abandon this metaphor while we recognize its pervasiveness, and
deconstruct it from within, in search of a better model for our work.

Our work, hardly fully captured by the term “architect,” is making software, designing
software, designing whole systems, designing data models and infrastructure and
datacenters and managing teams and projects, thinking, mentoring, researching,
changing the structure of organizations, recommending, coding, reviewing, deciding
what and how and when and why and writing, presenting; we are the philosophers of
the organization, its fools, in the classical sense: we advise the king. We support merg‐
ers and acquisitions. We make broad strategies and tactical fixes. We debug, we
curate. We arrange the semiotics of what names and labels and words mean what in
relation to each other. We design. “De” = “of ” + sign. Design = “of the sign.” Compre‐
hensively, not merely software, but across all these vectors. So little of the work of
making software has anything to do with the coding.

And we design from nothing, no cloth, no marble—nothing but our concept. There is
no ground we are given as in other fields. We invite our constraints like few others.
Our design subject is systems, of all kinds—systems of thought, organizations, data‐
centers, and software. And the work we apply to them is design work. We have for‐
gotten how to think and lost our words. We mustn’t, because a key job is naming the
things in the semantic space: the infinite Turing tape of propositions and their
predicates.

But it is frivolous and impotent to merely replace one word with another and keep
doing the same things. We care less for the worry over the word as the concern to
shift our focus, to rethink what our work actually is, to improve the outcome. “Scrum
Master” is a metaphor borrowed from the game of rugby—what in the world has that
to do with software development? Yet fresh-out-of-college HR recruiters happily

284 | Chapter 12: The Semantic Design Manifesto

repeat it, echoing the phrase into the internet as if it were a thing. As indeed it is. So it
does happen.

X Architecture, X Design, this notion of not-architecture but concepting, is a recogni‐
tion of the world as an infinite conjunct of propositions, and that systems require
demarcating a semantic field in a way that paradoxes take hold at the boundaries, and
these hurt the unprepared system. We take a holistic view, expanding the work of
designer: everything in the organization, the software, the data, the infrastructure, is a
design candidate, and structures are riddled with binary oppositions, each featuring a
privileged term, creating hierarchies, which create semantic glitches that we tend to
gloss over, but which the software cannot. It is this that ultimately undermines the
software in inadequacy or complication. We therefore deconstruct such structural
binary oppositions, foreground the idea of the concept to be designed, and invite a
collage of other lenses from other fields, to make better software.

The Four Ideals
We design software with these basic ideals:

• Our work is to design concepts, before designing software, rather than classify in
taxonomies and falsely overlay simplicity in a single frozen layered picture. The
concept is of the system.

• Our view is comprehensive: the organization, the project, the integrations, the
documentation, the conversation, the data, the infrastructure, the metrics, as well
as the software applications are systems as objects of design. We recognize the
impossibility of this, as we work beyond monoliths, or any totalitarian idea of
completeness and stability.

• Our mode is de-centered, deconstructed: it embraces imagination, diversity, con‐
text, complexity, contradiction, and change. Meaning in the system is not rigid,
but deconstructed; it is generative. Requirements change and overlap in gaps of
incompleteness and contradiction, so we embrace uncertainty and design for it.
We employ lateral thinking, rhizomatic root systems over arborescent hierar‐
chies, rather than thinking in traditional structures, in binary oppositions, and
hierarchies of technology versus business; this ensures our concepts can continue
to create themselves and to change in evolution: they are autonomous, learning,
unfolding, multiplicative modes.

• Our focus is on diverse customers: we are highly focused on outcomes, the “differ‐
ence that makes a difference” to customers, the result, over the process, over our
own activity. We recognize the diversity of voices in the many “users” of the sys‐
tem, and make our systems accessible, foregrounding our algorithmic and design
bias so we can subvert it.

The Manifesto | 285

The Key Practices
We follow these practices that are consistent with our ideals. Some are new, some are
old, some gain power by their inclusion and juxtaposition here.

Concept design practices

• You focus on the concept: what is the world you are making that creates a context
for the design that becomes the production factory?

• How do you invite, not reject constraints, to find grounding? How specific can
you be while still saying only true things in all the names throughout the design?

• How can you invite nonbuilding metaphors to help you as a bricolage?
• You are engaging and alighting the curiosity and intellect and cross-pollinating

vectors of thought in your team. You are encouraging and nurturing their think‐
ing processes. That is the first element. Not to dictate and prescribe, but to
inspire and alight according to the principles of X.

• Use Design Thinking when thinking about what to make.
• Use lateral thinking when thinking about how to implement it. This is about

solving problems using an indirect and creative approach via reasoning that is
not immediately obvious. It involves ideas that may not be obtainable using only
traditional step-by-step logic. Lateral thinking is more concerned with the
“movement value” of statements and ideas. Edward de Bono defines four types of
thinking tools: 1) idea-generating tools intended to break current thinking pat‐
terns—routine patterns, the status quo; 2) focus tools intended to broaden where
to search for new ideas; 3) harvest tools intended to ensure more value is
received from idea generating output; and 4) treatment tools that promote con‐
sideration of real-world constraints, resources, and support.

• Use Strategic ideas, as in Technology Strategy Patterns, to ensure your concept
aligns with the business vision: raise your visor and innovate at this level of the
idea. We’re not interested in arguing over frameworks. They don’t matter.

• Use Oblique Strategies to challenge your own conventional or default view. Pick
one in the standup each day, or send them to the team. You’re activating critical
and lateral thinking and imagination.

• Use deconstruction: look at the multiplicity of structures that start to arise in the
system, find the binary oppositions that support those structures (Master/Slave,
Center/Margin, Speech/Writing, Production/Development—development is pro‐
duction to the developers, Functional/nonfunctional Requirements), determine
which of the terms is the privileged one, and show how the traces undermine that
privileging. Then design something without marginalizing one of the terms.

• We do DevOps, as it is a deconstruction of that historical binary opposition.

286 | Chapter 12: The Semantic Design Manifesto

• The system has many small pieces, with high cohesion following the Single
Responsibility Principle.

• Keep a design scrapbook or lookbook as they are called in fashion houses. You
will need a multiplicity of views and perspectives represented in different formats
for varying time horizons, executives, customers, and developers.

• We do not freeze in time, which has perpetually frustrated software designers.
Instead we admit that this never works, and instead foreground Becoming. What
we design is not the system as is, but a process of change, flight, or movement
within an assemblage. As Deleuze and Guattari explain:

The process of “becoming-” is not one of imitation or analogy, it is generative of a
new way of being that is a function of influences rather than resemblances. The
process is one of removing the element from its original functions and bringing
about new ones. Hans is also taken up in an assemblage: his mother’s bed, the
paternal element, the house, the cafe across the street, the nearby warehouse, the
street, the right to go out onto the street, the winning of this right, the pride of
winning it, but also the dangers of winning it, the fall, shame.... These are not
phantasies or subjective reveries: it is not a question of imitating a horse, “playing”
horse, identifying with one, or even experiencing feelings of pity or sympathy.
Neither does it have to do with an objective analogy between assemblages. The
question is whether Little Hans can endow his own elements with the relations of
movement and rest.”

For architects, this means we resist the demands to freeze things in time. Things
are not themselves: they are only ever becoming-things. So we design for move‐
ment, design for becoming, not now-ness, not false decideability and stasis. We
know that we don’t know the most important things, how it will be used, and we
design an empty center to hold that not-knowing up front, on purpose, with care:
this makes us foreground pluggability throughout the system.

Comprehensive view practices

• There is only one substance. Therefore everything which exists must be consid‐
ered on the same plane, the same level, and analyzed by way of their relations,
rather than by the “essence” of the “entity”, as if it exists in a vacuum: that false
assumption damages our designs. Despite its name, Relational Data Models priv‐
ilege the essence, and relegate the relation to a second-class citizen. Deconstruc‐
tion loves the relation, and see things not in an special essence, but in their
relations of differences. We find ways in the design to foreground the relations
and the differences.

• Graph databases are therefore an excellent tool, as are pub/sub, eventing streams
that turn the database inside out, and modeling services as contextual agents, not
essences. That is, we don’t design the One True “Profile” service to rule them all.
We instead abstract up and design the Persona service, wherein the single person

The Manifesto | 287

with one tax ID has many different relevant modes of being in the world, and
designing for that multiplicity aggregates nuances that improve the richness of
the system.

• The elements of the architecture (business, application, data, infrastructure, as
well as their representations) are not viewed as separate but in a unity, altogether,
and their impact and forcefulness and intensities on each other are examined and
considered and designed for.

• Make design decisions in empathetic thought of customer personas in different
extremes, both valid.

• Design with the entire picture in mind: business, application, data, and infra‐
structure as systems. When designing, think of the monitoring as you implement
an algorithm; consider the business implications of infrastructure choices; and
consider the changing requirements when locking down a data modeling.

• We recognize our duty and responsibility and joy to design all the things, not just
focus on the software: when subsystems are in harmony with each other and the
broader concept, the product will be optimal across many concerns (-ilities,
project concerns). Design the software together with the business design and the
infrastructure and data design.

• The making of the software is one small piece of the puzzle; overindexing on
software and thinking it will run separately when magical fairies whisk it away to
the cloud is a recipe for failure.

• In considering infrastructure, we design pipelines.
• We radically automate the testing: we never manually test, but have test automa‐

tion engineers. The tests are not ancillary to code: they are code, and are first-
class citizens.

• Write automation tests against the infrastructure, too.
• Design in extremes such that if you are plotting out this event type, get two differ‐

ent points of view and put one stake in the ground and then a second one on a
different extreme (how does ecommerce work for a sleep room, how does it work
for a coffee mug).

• Code reviews are not about today’s code and policing programming but
about encouraging the concept and broadening its understanding and application.
It is about mentoring, sharing, mapping to the principles and not scrutinizing
junior developers but more like pair programming so others learn it and make
less SPOKs and learn the principles and refactor the design.

• We do Pair Architecting: share a screen and review the design together, in a plain
text file to get the words right. You’re agreeing on metaphors that carve our
semantic space and it should be MECE.

288 | Chapter 12: The Semantic Design Manifesto

• Radical immutability in the architecture whereas the artifact that is built and
deployed is totally immutable. Focusing on making things immutable every‐
where possible is the key to allowing movement and change and mutability,
which is the hallmark of a manageable, monitorable, extensible, cost-effective
system

• Write a Design Definition Document that compiles the views across business,
application, software, and infrastructure stakes. This might be called a Petits
Recits.

• Why wait for a week to demo code? When code is done, invite the team to demo
it immediately, or in a very short amount of time, in an event-driven way, when
your story is done—don’t wait until the end of the sprint if you use those (though
Kanban is more consistent). Make a party of it.

Decentered, deconstruction practices

• Defer the implementation: do not write precisely the requirements as given. First
create a context in which those imagined requirements could come to life; then
implement them as merely what happens to be the first known requirements (not
even the “default”—that’s always a false privileging). See what you’re doing now,
abstract up to the category, and make that first as the context, then implement
whatever the stated requirement is, knowing it will change. Give names that rec‐
ognize this.

• Design machine learning capabilities throughout the system. This is generative
architecture, active design: embrace that. Yes, make your machine learning for
customer product recommendations, but also for data clean up and rogue moni‐
toring. Design learning into the system to make it truly organic. This suggests
making feedback loops and machine learning pipelines. You don’t decide the
implementation up front even necessarily: let the system pick based on what it
learns. You’re recommending products to your customers without being asked:
your system can, in an adversarial manner, learn, pick a champion, and deploy it
in an ultra-dynamic manner. The radical pluggability supports this idea. You are
designing the system that can do better, move, grow. We don’t make frozen pic‐
tures of software or frozen software.

• Do not design with hierarchies or enums in the data model. These will almost
always be proven to be false deconstructed in the world, so your software must
reflect more fluidity.

• Assume your component will eventually be Decorated or have a Strategy injected.
Instead of directly implementing any business logic, write it as the presumed first
Strategy implementation.

The Manifesto | 289

• Prefer peer-to-peer protocols and systems without Master/Slave, such as
Cassandra.

• Interfaces over inheritance.
• Do multivariate testing, canary deploys, multivariate deploys.
• Do not privilege production over staging: have a multiplicity of stagings, and

automate learning which ones work best. Why have one production? Have many
running at once. Use multi-armed bandits to explore and exploit. The world of X
production is richly multidimensional.

• Do automation at the beginning of the project, not at the end.
• Define metrics at the beginning of the project, not at the end. Code toward suc‐

cess metrics.
• Break production on purpose: run Chaos Monkey to ensure you’re breaking pro‐

duction. This makes your services more resilient.
• Design and use pipelines for Continuous Integration and Continuous Deploy‐

ment. Design them up front, when your software is just Hello World, not at the
end. This way you test them throughout the project. They are software, too.
Make pipelines for your database (FlywayDB). Make a machine learning Pipeline
for Continuous Learning.

• We know that we don’t know, so we design for change, not fake frozen pictures,
we design it to be pluggable.

• Design the configuration first, not last as we typically do, when things are most
rigid: consider how this will be changed and design it for that change, not for fix‐
ing on arbitrary and changing requirements.

• Don’t treat exceptions as exceptions (ancillaries, losers in the binary opposition)
but rather as one of the valid paths requests will take through the system in its
cyclomatic complexity. This will make your services more robust and resilient.
You’ll design Dead Letter Offices, consider retries and compensations and useful
messages to quickly improve, and narrow your design appropriately. Accept
exceptions, and invite them. If you don’t give them power, they will take yours.

• Do not assume the single data tool: model your associations for change and
becoming, with extensibility as the feature. This will mean there are many data
models: the different database implementations, in which one may be suited for
reads and one for writes under different services with different scalability needs
and usage patterns. There are also different views of the same data: yes, use mate‐
rialized views but also caches and denormalized patterns, which may differ.

• Use the Specification pattern (see “Specifications” on page 175) for decoupling
external search criteria from the entity.

290 | Chapter 12: The Semantic Design Manifesto

• Design for the team, the first user of the software, to maximize flow. You as a
designer are making space for the rest of the team so they can do their work in
parallel to maximize velocity and ownership. Design for the team too and then
Conway’s Law will work well, and the software will be well organized and devel‐
opers can be accountable and have pride of ownership.

Diversity of customer practices

• Outcomes over activity.
• Value creation over process obedience.
• Employ use cases with an outside-in approach.
• Commit to the Value Chain and make it efficient towards outcomes. Do not

focus on policing developers or preventative architecture review boards to ensure
compliance with an arbitrary and academic committee that does not own an
P&L.

• Your internal colleagues are your customers too: developers are the first users of
the system; the Network Operations Center monitoring crew are users of the sys‐
tem; testers are users of the system. Everything you do in the design to support
this diverse customer set will pay off.

• There are nearly 200 countries on earth, with thousands of languages. Externalize
user strings and design for internationalization and localization from the
beginning.

• If this is a web system, design it for a watch. If this is a phone app, design it for a
game console, or for voice. Foreground varying UIs by creating a separate UI
Package service. There is no “The UI.”

• Use eventing liberally. We default to synchronous request/response models, as if
we know the meaning, we know what should always happen. Instead, foreground
asynchronous. This improves scalability and description of the system. But it also
does something for you where you don’t have to decide the meaning: you allow
the “import” of the event to be deferred. This is powerful because the business
changes their mind frequently, the system evolves, different customers need dif‐
ferent things, things means something different to diverse audiences. Any reac‐
tion in your application should not be hardcoded. Use event handlers.

• Allow for a multiplicity of voices using polyglot persistence and polyglot pro‐
gramming: make them right for the job and there will be different kinds for dif‐
ferent jobs in your application. This is the majesty of AND, not the tyranny of
OR. This dramatically improves performance and prevents lock-in of contracts,
licensing, and thinking.

The Manifesto | 291

Opening
Though perhaps counterintuitive when they were born, some of our most cherished
and time-tested tools and ideas embody some form of these ideals, particularly in a
field in which we didn’t imagine why we needed to keep source code private, and we
often just shipped for free with hardware products until the Copyright Act of 1976.
This rich history includes even (again) our language, such as recursive definitions, as
in, “GNU stands for GNU’s Not Unix”:

• BitTorrent, Cassandra database, and the World Wide Web itself, as peer networks
• Unix variants
• The Apache Foundation and open source projects
• Wikis
• Eclipse, Emacs
• Chaos engineering
• Servant leadership
• Quantum computing
• Blockchain

So in a sense, what we propose is a radical departure from the status quo, that few
would recognize as the corporate enterprise architect job, and is shocking once fully
understood. Yet in a sense we have intuited these things in our history, and in this
way made some of the most important contributions to the field. Semantic Design, X
Architecture, is scary-radical, such that the standard-issue business person paying
even some attention might find it astonishing, preposterous. Yet it bears traces of
some of the best work in our collective history, and looks backwards as it looks for‐
ward, and in this sense is nothing new, nothing to fear, tut tut. But practicing it as a
framework, as a method, as a collection of job strategies as we put forth here will help
us build the future better.

We have practiced this art, this craft, this design method, this strategy, this way, and it
has proven to work well. Nothing is perfect. We will invite new problems in this,
surely. But in making software this way, we find we can do more with less, we move
quickly, our designs are better, our projects more successful, the software more
sturdy, flexible, scalable, harmonious, even beautiful and delightful. Our customers
do better. Our businesses do better. We do better.

292 | Chapter 12: The Semantic Design Manifesto

APPENDIX A

The Semantic Design Toolbox

The Tools
Throughout this book, we have introduced new, and sometimes radical, ideas for how
to approach software design. Many of these ideas are about thinking differently, using
different language, and reconsidering the very job of software designers as what we
used to call “architects.”

Accompanying these ideas we have introduced many templates as well. These serve to
bring this new approach of deconstructive software design into a pragmatic, practical
realm so that you can apply it today in your own work. Deconstructive design is more
a mindset and a “way of life” than a silver bullet; I don’t advertise it as a silver bullet.
It’s hard work. You’ll likely spend some time swimming upstream of your corporate
culture to change how you approach software design in this new way.

These are the key components, templates, checklists, scorecards, and practical frame‐
works, that together form the semantic designer’s toolbox. You can download the
toolbox at https://aletheastudio.com.

Thinking Stage
For these tools, see Chapter 4.

• Persona Document
• Customer Journey Map

293

https://aletheastudio.com

Concept Stage
For these, see Chapter 2.

• Lookbook
• Parti
• Concept Canvas

Design Stage
For these, see Chapter 5.

• Mural
• Vision box
• Mind map
• Use cases
• Principles
• Position paper
• Approach document
• RAID
• Design Definition Document

These tools help capture the ideas in Chapter 6:

• Business glossary
• Business capabilities model
• Process map
• System inventory

These are in Chapter 7:

• Guidelines list

294 | Appendix A: The Semantic Design Toolbox

Operations and Governance
These are the toolbox components in Chapters 10 and 11:

• Role of architect
• Lateral thinking guide
• Operational scorecard
• Service-oriented organization template
• Scalable business machine template
• Program management framework
• Change management framework
• Governance framework
• Service design checklist

In Chapter 12, the manifesto, the following is offered:

• Deconstruction design practice list

Together, these templates, frameworks, scorecards, and lists together form a complete
and practical semantic designer’s toolbox.

The Semantic Design Toolbox | 295

APPENDIX B

Further Reading

These books have shaped my work as a software developer, manager, architecture
leader, chief architect, CIO, and CTO over many years. They have all, in various and
sometimes tangential ways, informed the ideas in this book—sometimes as inspira‐
tion, sometimes as intellectual sparring partner. The ideas in this book are made pos‐
sible by these wonderful works, particularly those in Philosophy. I encourage you to
follow your curiosity with this list.

Architecture and Design Books
• Alexander, Christopher W. The Phenomenon of Life: An Essay on the Art of Build‐

ing and the Nature of the Universe, Books I and II. The Center for Environmental
Structure, 2002.

• Alexander, Christopher, et al. A Pattern Language. Oxford University Press, 1977.
• de Bono, Edward. Lateral Thinking: Creativity Step by Step. Harper, 2015.
• Box, Hal. Think Like an Architect. University of Texas Press, 2007.
• Brooks, Frederick P. The Design of Design: Essays from a Computer Scientist.

Addison-Wesley, 2010.
• Dal Monte, Luca, et al. Maserati: A Century of History. Giorgio Nada Editore,

2014.
• Frederick, Matthew. 101 Things I Learned in Architecture School. The MIT Press,

2007.
• Glancey, Jonathan. Architecture: A Visual History. DK, 2017.
• Goldberger, Paul. Why Architecture Matters. Yale University Press, 2011.
• Karjaluoto, Eric. The Design Method. New Riders, 2013.

297

• Kossiakoff, Alexander, et al. Systems Engineering: Principles and Practice. Wiley,
2011.

• Lidwell, William, et al. Universal Principles of Design. Rockport Publishers, 2010.
• Lukic, Branko. Nonobject. The MIT Press, 2010.
• Norman, Don. The Design of Everyday Things. Basic Books, 2013.
• Patt, Doug. How to Architect. The MIT Press, 2012.
• Piano, Renzo. Museums. The Monacelli Press, 2007.
• Van Uffelen, Chris. Bridge Architecture and Design. Braun, 2009.

Philosophy Books
• Adams, Hazard, and Leroy Searle. Critical Theory Since Plato, 3rd Edition. Wads‐

worth Publishing, 2004.
• Appel, Andrew. Alan Turing’s Systems of Logic. Princeton University Press, 2012.
• Aristotle. Poetics. Penguin Classics, 1997.
• Auden, W. H. Lectures of Shakespeare. Princeton University Press, 2000.
• Bachelard, Gaston. The Poetics of Space. Penguin Classics, 2014.
• Bataille, Georges. The Accursed Share. Zone Books, 1991.
• Berkeley, George. Three Dialogues between Hylas and Philonous. Hackett Classics,

1979.
• Blanchot, Maurice. The Space of Literature. University of Nebraska Press, 1989.
• Boole, George. An Investigation of the Laws of Thought. Dover, 1862.
• Borges, Jorge Luis. Labyrinths. New Directions, 2007.
• Brecht, Bertolt, and John Willett. Brecht on Theater. Hill and Wang, 1977.
• Brown, Alison Leigh. Fear, Truth, Writing: From Paper Village to Electronic Com‐

munity. SUNY Press, 1995.
• Brown, Alison Leigh. Subjects of Deceit: A Phenomenology of Lying. SUNY Press,

1998.
• Butler, Judith. Gender Trouble: Feminism and the Subversion of Identity. Rout‐

ledge, 2006.
• Campbell, Joseph. The Hero with a Thousand Faces. Princeton University Press,

1973.
• Cixous, Hélène. Coming to Writing and Other Essays. Harvard University Press,

1992.

298 | Appendix B: Further Reading

• Cixous, Hélène. Rootprints. Routledge, 1997.
• Crary, Jonathan, and Sanford Kwinter. Zone: Incorporations. Zone Books, 1992.
• Culler, Jonathan. On Deconstruction. Cornell University Press, 2008.
• Descartes, Rene. Discourse on Method and Related Writings. Penguin Classics,

2000.
• Deleuze, Gilles. Cinema II: The Time-Image. University of Minnesota Press, 1989.
• Deleuze, Gilles. Difference and Repetition. Columbia University Press, 1995.
• Deleuze, Gilles. Negotiations. Columbia University Press, 1997.
• Deleuze, Gilles, and Felix Guattari. Anti-Oedipus: Capitalism and Schizophrenia.

Penguin Classics, 2009.
• Deleuze, Gilles, and Felix Guattari. A Thousand Plateaus. University of Minne‐

sota Press, 1987.
• Deleuze, Gilles, and Felix Guattari. What is Philosophy? Columbia University

Press, 1996.
• Derrida, Jacques. Aporias. Stanford University Press, 1993.
• Derrida, Jacques. Cinders. University of Minnesota Press, 2014.
• Derrida, Jacques. Dissemination. University of Chicago Press, 2017.
• Derrida, Jacques. Glas. University of Nebraska Press, 1990.
• Derrida, Jacques. Margins of Philosophy. University of Chicago Press, 1985.
• Derrida, Jacques. Of Grammatology. Johns Hopkins University Press, 2016.
• Derrida, Jacques. Speech and Phenomena. Northwestern University Press, 1973.
• Derrida, Jacques. The Truth in Painting. University of Chicago Press, 1987.
• Derrida, Jacques. Writing and Difference. University of Chicago Press, 1978.
• Eagleton, Terry. The Ideology of the Aesthetic. Blackwell Publishers, 1991.
• Eagleton, Terry. Literary Theory: An Introduction. University of Minnesota Press,

2008.
• Eagleton, Terry. Marxist Literary Theory: A Reader. Wiley-Blackwell, 1996.
• Elderfield, John. Modern Painting and Sculpture. The Museum of Modern Art,

2010.
• Foucault, Michel. Discipline and Punish: The Birth of the Prison. Vintage, 1995.
• Foucault, Michel. Madness and Civilization: A History of Insanity in the Age of

Reason. Vintage, 1988.
• Foucault, Michel. The Order of Things: An Archaeology of the Human Sciences.

Vintage, 2012.

Further Reading | 299

• Frankl, Viktor E. Man’s Search for Meaning. Touchstone, 1984.
• Freud, Sigmund. The Future of an Illusion. W.W. Norton & Company, 1975.
• Frye, Northrop. The Educated Imagination. Indiana University Press, 1964.
• Haack, Susan. Deviant Logic, Fuzzy Logic: Beyond the Formalism. University of

Chicago Press, 1996.
• Hacking, Ian. An Introduction to Probability and Inductive Logic. Cambridge Uni‐

versity Press, 2001.
• Halmos, Paul R. Naive Set Theory. Martino Fine Books, 2011.
• Hegel, Georg. The Phenomenology of Spirit. Oxford University Press, 1977.
• Heidegger, Martin. On the Way to Language. HarperOne, 1982.
• Heidegger, Martin. Poetry, Language, Thought. Harper Perennial Modern Clas‐

sics, 2013.
• Irigaray, Luce. This Sex Which Is Not One. Cornell University Press, 1985.
• Kant, Immmanuel. The Critique of Pure Reason. Penguin Classics, 2008.
• Keller, Thomas. The French Laundry Cookbook. Artisan, 1999.
• Kierkegaard, Søren. Concluding Unscientific Postscript. Princeton University

Press, 1992.
• Lacan, Jacques. Ecrits. W.W. Norton & Company, 2007.
• Locke, John. An Essay Concerning Human Understanding. Prometheus Books,

1995.
• Lyotard, Jean-Francois. The Postmodern Condition. University of Minnesota

Press, 1984.
• Makaryk, Irena. Encyclopedia of Contemporary Literary Theory. University of Tor‐

onto Press, 1993.
• Meadows, Donella H. Thinking in Systems. Chelsea Green Publishing, 2008.
• Minsky, Marvin. The Society of Mind. Simon & Schuster, 1987.
• Nelson, Ted. Computer Lib: Dream Machines. Tempus Books, 1987.
• Rousseau, Jacques. Emile, or On Education. Penguin Classics, 2007.
• Sallis, John. Deconstruction and Philosophy: The Texts of Jacques Derrida. Univer‐

sity of Chicago Press, 1989.
• Shakespeare, William. The Complete Works of William Shakespeare.
• Shyer, Laurence. Robert Wilson and His Collaborators. Theatre Communications

Group, 1993.
• Smith, Adam. The Theory of Moral Sentiments. Liberty Fund Inc., 1985.

300 | Appendix B: Further Reading

• de Spinoza, Benedict. The Ethics. Penguin Classics, 2005.
• Sterne, Laurence. The Life and Opinions of Tristram Shandy, Gentleman. Penguin

Classics, 2003.
• Stoppard, Tom. Rosencrantz and Guildenstern are Dead. Grove Press, 2017.
• Weinberg, Gerald M. An Introduction to General Systems Thinking. Dorset House,

2001.
• Wilde, Oscar. The Artist as Critic. University of Chicago Press, 1982.
• Winterson, Jeanette. Art Objects: Essays on Ecstasy and Effrontery. Vintage, 1997.
• Wittgenstein, Ludwig. Tractatus Logico-Philosophicus. Dover Publications, 1998.
• Wolfram, Stephen. A New Kind of Science. Wolfram Media, 2002.
• Zizek, Slavoj. The Plague of Fantasies. Verso, 2009.
• Zizek, Slavoj. Tarrying with the Negative. Duke University Press, 1993.

Software Books
• Allamaraju, Subbu. RESTful Web Services Cookbook. O’Reilly Media, 2010.
• Bass, Len, et al. Software Architecture in Practice. Addison-Wesley, 2012.
• Beyer, Betsy, et al. Site Reliability Engineering. O’Reilly Media, 2016.
• Bloch, Joshua. Effective Java. Addison-Wesley, 2018.
• Brooks, Frederick P. The Mythical Man Month. Addison-Wesley, 1995.
• Campbell, Laine, and Charity Majors. Database Reliability Engineering. O’Reilly

Media, 2017.
• Daigneau, Robert. Service Design Patterns. Addison-Wesley, 2011.
• Erl, Thomas. SOA Design Patterns. Prentice Hall, 2008.
• Fowler, Martin. Domain-Specific Languages. Addison-Wesley, 2010.
• Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-Wesley,

2002.
• Fowler, Martin. Refactoring. Addison-Wesley, 2018.
• Glass, Robert L. Facts and Fallacies of Software Engineering. Addison-Wesley,

2002.
• Hanmer, Robert. Patterns of Fault Tolerant Software. Wiley, 2007.
• Harvard Business Review. Aligning Technology with Strategy. Harvard Business

Review Press, 2011.

Further Reading | 301

• Hewitt, Eben. Technology Strategy Patterns: Architecture as Strategy. O’Reilly
Media, 2018.

• Hohpe, Gregor, and Bobby Woolf. Enterprise Integration Patterns. Addison-
Wesley, 2003.

• Jacobson, Daniel, et al. APIs: A Strategy Guide. O’Reilly Media, 2011.
• Kejariwal, Arun, and John Allspaw. The Art of Capacity Planning, 2nd Edition.

O’Reilly Media, 2017.
• Kroll, Per, and Phillippe Kruchten. The Rational Unified Process Made Easy.

Addison-Wesley, 2003.
• Lamport, Leslie. Specifying Systems. Addison-Wesley, 2002.
• Larman, Craig. Agile and Iterative Development. Addison-Wesley, 2003.
• Leffingwell, Dean, and Don Widrig. Managing Software Requirements. Addison-

Wesley, 2003.
• McConnell, Steve. Software Project Survival Guide. Microsoft Press, 1997.
• McGovern, James, et al. A Practical Guide to Enterprise Architecture. Prentice

Hall, 2003.
• Monson-Haefel, Richard (editor). 97 Things Every Software Architect Should

Know. O’Reilly Media, 2009.
• Morris, Kief. Infrastructure as Code. O’Reilly Media, 2016.
• Narayan, Sriram. Agile IT Organization and Design. Addison-Wesley, 2015.
• The Open Group. TOGAF Version 9. Van Haren Publishing, 2015.
• Pilone, Dan, and Neil Pitman. UML 2.0 in a Nutshell. O’Reilly Media, 2005.
• Schlossnagle, Theo. Scalable Internet Architectures. Sams Publishing, 2006.
• Sessions, Roger. Simple Architectures for Complex Enterprises. Microsoft Press,

2008.
• Stephens, Rod. Beginning Software Engineering. Wrox, 2015.
• Taylor, Hugh, et al. Event-Driven Architecture. Addison-Wesley, 2009.
• Taylor, R.N., et al. Software Architecture: Foundations, Theory, and Practice. Wiley,

2009. (You can get the PowerPoint slides here.)
• Tulach, Jaroslav. Practical API Design. Apress, 2008.

302 | Appendix B: Further Reading

https://www.softwarearchitecturebook.com/svn/main/slides/ppt/

Index

A
acceptance criteria, 179
access control lists (ACLs), 223
accessibility requirements, 207
accidental complexity, 54
accomplishing something, 26
activities, observing for users or personas, 78
advertising, creative directors in, 238
aesthetics, semantic designer's skills and back‐

ground in, 232
affordance, 57
Agile, 46, 282
alignment

business strategic objectives and tactical
demands, 122-123

concept's alignment with strategy, 29
Amazon Alexa, premise of, 81
Amazon Web Services (AWS), 143

APIs, naming of, 145
AWS CloudFormation templating system,

214
using Amazon S3 with interactive docu‐

mentation, 157
Americans with Disabilities Act (ADA), 135

compliance with, 207
Ansible, 214
Apache Cassandra (see Cassandra distributed

database)
Apache TinkerPop Gremlin, 200
Apache tools for stream processing, 192
APIs

considering for use in different contexts, 65
guidelines for, 147
reviewing popular service APIs, 145

separating from implementation, 171
service API, 98

Application Design section, Design Definition
Document, 103-105

applications, 139-181
anatomy of a service, 158-165

engines, 161-165
orchestrations, 158
serverless, 164
UI packages, 158

API guidelines, 147
application-specific services, 153
business architecture in, 133-136
cacheability and idempotence, 149
comments in code, 179-180
communication through services, 154
compliance maps, 217
contextual services and service mixins,

168-170
data as point of, 188
decoupling user interfaces, 141
design that harmonizes business and appli‐

cation systems, 119
designing for resilience, 155-157
embracing constraints, 140-141
eventing, 165-168
expecting externalization of services, 154
independently buildable services, 151
interactive documentation, 157
languages, 172
metrics for, 216
performance improvement checklist, 170
platform design, 142-144
radical immutability in, 173-175

303

separating API from implementation, 171
service resources and representations, 144
specifications, 175-178
strategies and configurable services, 151-153
test automation, 178
tools for, 294
versioning, deconstructed, 148-149

approaches, 99
situations requiring creation of, 100

arborescent, 253, 285
Archer, L. Bruce, 72
de Architectura (Vitruvius), 23
architecture

books on, 297
building and design, 17

architecture (software)
architect, use of term, 5
architects, role of, 235
architecture as non-necessary metaphor in

technology, 8
design thinking as context for applied archi‐

tecting, 74
elements of, 288
forgetting the conceptual legacy of architec‐

ture, 242
infrastructure considerations for architects,

209-211
origins of, 3-15
semantics and, 20

arts, semantic designer's background in, 232
assumptions, 112

expecting externalization of services, 154
for solution success, 102

asynchronous operations, 164
basic anatomy of asynchronous service

components, 166
publisher/subscriber or pub/sub, 165
wise use of asynchronous calls, 167

Athena, travel industry software based on
(example), 35

attributes, 184
auditing, 207
automatic retries, 156
automation, 226

defining automated pipelines first, 217
service design checklist, 273

autoscaling, 224
availability

metrics for applications, 216

service design checklist for, 277
avoiding something, 26
axiom of pairing, 44

B
becoming, 287
behavior, driven by metrics, 132
Bernini sculpture The Ecstasy of Saint Teresa,

90
Bezos, Jeff, 143, 154
binary oppositions, 51, 224, 286
Brooks, Fred, 54
budgeting and financial planning (for infra‐

structure in cloud environments), 210
bulkheading, 156
business

business context, elements of, 120
design that harmonizes business, applica‐

tion, and data, 61
designing software to operate within, 118
platform as business framework, 66
scalable business machine, designing,

263-266
semantic designer's understanding of, 232
treating as a system and applying design

principles to it, 117-120
writing business glossary, 125, 183

questions and guidelines for, 185
business architecture

defined, 120
definition by Object Management Group,

120
in applications, 133-136
tools, 294

Business Design section, Design Definition
Document, 102

business idea, 26
Business Process Modeling Notation (BPMN),

130
business processes, 275
business strategy, 26

capturing, 120-123
aligning strategic objectives and tactical

demands, 122-123
providing a common understanding,

120-122
business system design

creating business capabilities model,
126-129

304 | Index

creating organizational map, 125
creating process map, 129
creating the business glossary, 125
defining metrics for successful processes,

131
framework, introducing for, 123-124
instituting appropriate process governance,

132
reengineering processes, 129-131
taking inventory of systems, 131

C
cacheability, 149
cacheable URIs, 147
caching

data model for the cache, 190
response, 156

capabilities, 102
business processes versus, 127
creating business capabilities model,

126-129
support by systems, 131

capacity planning, 210
Cassandra distributed database, 60, 188, 196

checklist for determining suitability of, 196
services for which it's the wrong choice, 197
wrapping services as managed components,

227
category mistakes, 10
challenge idea tool, 249
change management, 267-269
chaos engineering, 64, 225
Chef, 214
chief semanticist, 241
circuit breaking, 156
Claim Check pattern, 167
clarification (in design thinking), 73
Clarks, Jonathan, 66
classpath deployment and network proxies

(data accessors), 195
clients

major version changes breaking clients, 148
rebuilding, 151
service-client subproject, 99

cloud, 59
deployment tools for cloud environments,

214
infrastructure considerations for architects,

210

infrastructure design checklist, 222
money spent on cloud providers, 257

clustering, 170
code coverage, 203
code reviews, 254-255
collaboration (in design thinking), 74
collections (on web APIs), 170
comments, 179-180
commodities, 5
communication, semantic designer's skills in,

232
compensation, 156
competition and innovation, 10
complement, 44
complexity

caused by oversimplifying, 55
essential and accidental, 54
inherent in the world, representing in

design, 42
simplicity versus, 41

compliance map, 217
comprehensive view, semantic design, 285, 287
computers, prices of, 4
computing, future of, 242
Concept Canvas template, 26-30
concept statement, 29
concepts, 15

concept stage tools, 294
conceptual tests, 252-253
design practices, 286
designer of, 194
designing, 285
extra-synthetic conceptual work in murals,

90
formal methods and innovative models for

viewing, 233
lateral thinking and, 248-251
organizing in mind maps, 94
production of, 17-47

advantages of semantic design, 45-47
architecture and design, 18
context, 41-42
creative director in fashion, 236
defining a concept, 25-30
designers as producers of concepts,

23-24
expressing the concept in a parti, 33-37
fit to purpose, 32
ideas captured in a lookbook, 30-32

Index | 305

myth of requirements, 19
semantic field, 21-22
semantics and software architecture,

20-21
thinking in sets, 43
understanding ideas, 38-41

configurable services, strategies and, 151-153
confirmation bias, 247
constraints, 27, 28, 102

embracing, 140-141
content delivery networks (CDNs), 171
context, 41-42, 46

considering the larger context in design, 66
contextual services and service mixins,

168-170
continuous integration/continuous delivery

(CI/CD) pipeline, 200, 212
defining automated pipelines, 217
process definition for, 209
specifying design for infrastructure, 223

conventions, 97-99
convergent thinking, 28
Conway's Law, 146, 258
copies and creativity, 9
costs, 234

multiples at each stage of finding bugs, 252
craftsmanship, 31
creative artists in Poland, professions catego‐

rized as, 7
creative directors, 231-243

across industries, 234
in advertising, 238
in fashion, 235
in film, 236
in technology, 239
in theater, 238
in video games, 238
replacing architect with, 241
semantic designer's role, 231-234

creativity
copies and, 9
design thinking, 71
feature engineering as creative process, 194
software as creative process, 239

CSS and JavaScript files, combining and mini‐
fying, 170

culture, 268
defining for a business, 121

cUrl program, testing URIs, 149

currency conversions, 173
customer journey maps, 80, 89, 293
customers

customer segments for services, 259
customer-focused solutions with design

thinking, 71
diverse, focus on, 285
diversity of customer practices, 291
internal colleagues as, 226

D
D3 (see Design Definition Document)
data, 183-208

Americans with Disabilities Act (ADA)
compliance, 207

auditing, 207
belonging to services, 154
business glossary or data dictionary, 183
classpath deployment and network proxies,

195
Data Design section, Design Definition

Document, 105
data models for streams, 191-193
data pipelines, 200-203
feature engineering for machine learning,

193-195
graph databases, 198-200
in service design checklist, 275
machine learning data pipelines, 203-206
metadata and service metrics, 206
multimodeling, 189-191
no hierarchies or enums in data model, 289
peer-to-peer persistent stores, 196
polyglot persistence, 187-189
protection of, legal and regulatory require‐

ments, 135
semantic designer's skills and background

in, 232
strategies for semantic data modeling,

184-187
data accessor services, 165, 195
databases

distinct data model per implementation and
per service, 190

graph, 198-200
Java Database Connectivity (JDBC), 172
master/slave paradigm for scaling, 196
NoSQL and other types of, 188
peer-to-peer, 196

306 | Index

persistence scorecard for, 188
pipeline for, 201
relational, 187
tuning for web applications, 171

datacenters
configuring in plain text with IaC, 213
design checklist for, 223
traditional operations mindset, 214

de Bono, Edward, 248
dead metaphors, 8
decision log (see parti template)
decks, 114
decomposition, 55-57
deconstruction, 49-53, 286

applying to UIs, 142
binary oppositions, 224
decentered, deconstruction practices, 289
deconstructive analysis to make better soft‐

ware, 194
design practices, 152, 160, 285, 295
in building architecture, 53
in popular culture, 51
relations of differences, 287

demos, 255, 289
dependencies, 113
deployments

continual deployment of software, 202
deployment pipeline, radical immutability

in, 175
pipelines for, 201
service, 278

Derrida, Jacques, 49, 52
design, 18

books on, 297
design concept in Concept Canvas, 26
design principles in semantic design, 86-88
design stage tools, 294
designers as producers of concepts, 23
designing business as well as software, 119
designing concepts, 24
designing for failures, 63
designing for the programmer first, 65
designing from multiple perspectives, 62
framework for business system, 123-124
giving design decisions at least two justifica‐

tions, 61
harmonizing business, application, and

data, 61
infrastructure design checklist, 222-224

semantic designer's role, 231-234
service, 273

Design Definition Document (D3), 100-111,
289
considerations for composing, 108

gravity of the undertaking and responsi‐
bility for it, 110

long length of the document, 109
template for, 101-108

Application Design section, 103-105
Business Design section, 102
Data Design section, 105
Infrastructure Design section, 107
Program Name Design Definition, 101

design language, 64-65
Design of Everyday Things, The (Norman), 57
Design Patterns (Gang of Four), 6
design thinking, 71-84, 286

advantages of, 71
avoiding overemphasis of process, 74
implementing the method, 81-84
method, 74-81

defining the problem, 74
determining the users, 75
forming insights, 79
framing opportunities, 80
generating ideas and refining solutions,

80
making observations, 75
observing users' actions, 75
trying prototypes, 81

primary steps in, 72
principles, 73
resources for further learning, 84

developers, practices helpful to, 226
development, 211

(see also DevOps)
no isolation of development teams, 47
phases of, 268
production versus, 224
service-oriented, 212

development environment, matching closely to
production environment, 174

DevOps, 211, 286
important and consistent practices, 212
principles making most difference to archi‐

tects/designers, 211
Dijkstra, Edsger, 6
disappearing software in platforms, 66

Index | 307

disaster recovery, 210, 223
divergent thinking, 27
Docker, 214
documentation, 278

interactive, 157
domain, 40, 44

common objects representing nouns (enti‐
ties), 98

domain language, 146
platform services grouped by, 259

Drucker, Peter, 234, 268, 272

E
early adopters, 77
Eclipse IDE, 60
ecommerce product filter/criteria search, 175
edges (in graph databases), 198
embassy or quarantine, creating, 63
empty slogans, 87
engineering, 45
engines, 161-165

making engines stateless, 161
scaling, 162

Eno, Brian, 247
Enterprise Integration Patterns (Hohpe and

Woolf), 167
entities (in relational databases), 187
environments, 224

cloud, 210
defining infrastructure across several, 210
deploying to, 217
production multiverse and feature toggling,

218
epistemology, 21
errors, 276
essence, 43
essential complexity, 54
Evans, Eric, 175
eventing, 165-168, 291

basic anatomy of asynchronous service
components, 166

structure of an event message, 168
events, 165

data model for, 191
exception handling, 155, 290
executive producer, 241
executive support, getting for your project, 114
experimentation (in design thinking), 73
extension, 43

externalization, expecting, 154
extreme users, 77

F
Facade pattern, 195
failures

designing for, 63
exceptions are not exceptions, 157
measuring mean time between failures, 215
predicting earlier in semantic design, 46

false sectioning, 185
fashion, creative directors in, 235
FBI, Virtual Case File software application, 14
feature engineering (machine learning),

193-195
feature flags (see feature toggles)
feature toggles, 219-222

implementing, 220
multi-armed bandits, machine learning and

infinite toggles, 221
use cases, 219

figure and ground, 58
Figure-Ground theory, 59
film, creative directors in, 236
finance, data streaming for, 191
fit to purpose, 32
fixing something, 26
focus tools, 248
Ford, Henry, 9
Ford, Tom, 236
Fowler, Martin, 175, 221
fractal within your structure, design thinking

as, 82
frameworks, 245
functions

idempotent, 150
serverless, 164

G
gains, 89
Gang of Four, 6, 152, 175
Gartner, hype cycle, 111
Gehry, Frank, 32, 36, 90
General Data Protection Regulation (GDPR),

135
GitHub

Cassandra commit logs, 227
configuring corporate account with Terra‐

form, 214

308 | Index

Lightbend library, 153
Markdown describing services, 158
multi-armed bandit library for Java, 222
Netflix Chaos Monkey library, 226
Netflix runtime health check library, 215
tools for combining/minifying JavaScript

and CSS files, 170
glossary (business), 125, 183

questions and guidelines for, 185
goals of users or personas in design thinking,

78
God Object, 64
Google API Explorer, 145
Google Glass, prototype development, 81
Google X Moonshot Thinking video, 31
governance, 270-273

appropriate, instituting for processes, 132
creating simple Governance as Code, 226
defining Governance as Code, 213
defining metrics for, 270
goals for governance committee, 270
in undertaking a project, 103
service inventory and metadata, 271
service portfolio, 271
tools for, 295

graceful degradation, 156
graph databases, 198-200, 287
Gremlin, 200, 226
guidelines and conventions, 96-99

API guidelines, 147
GZip compression, using in web applications,

170

H
Hadoop, 63
Halmos, Paul, 43
hardware, separation of software from, 4
harvest tools, 248
HashiCorp Terraform, 214
HashiCorp Vagrant, 213
HATEOAS (Hypermedia as the Engine of

Application State), 139
REST APIs observing, 150

health check function, 202
health checks on every service, 215
HealthCare.gov project (2013), 14
Hegel, G.W.F., 38
Heroku, 213
HighScalability.com, 164

Highsmith, Jim, 94
horizontal scaling, 162

services scaling horizontally at service level,
162

Hotbot search engine, 66
HTTP, idempotent methods, 150
HTTP/2, 157
human-centricity (design thinking), 73

I
IaC (see Infrastructure as Code)
IBM Guidelines for Watson, 147
idea components, 30
ideas

challenge idea tool, 249
idea-generating tools, 248
movement toward factoring into new idea,

250
transforming into solutions in design think‐

ing, 80
understanding, 38-41

metacognition, 39
sense certainty, 38

idempotent services, ensuring, 150
IETF keywords, 108
images in web applications, 171
immutability, radical, 173-175, 289
implementation, separating from API, 171
incidents, metrics for, 217
industrial process, making software in, 4
infrastructure, 209-228

chaos engineering, 224-226
considerations for architects, 209-211
defining automated pipelines first, 217
defining metrics first, 215-217
design and documentation checklist,

222-224
DevOps and, 211
Infrastructure Design section, Design Defi‐

nition Document, 107
production multiverse and feature toggling,

218-222
stakeholders, inside and outside, 226

Infrastructure as Code (IaC), 212-214
challenges to adoption of, 214
DevOps focus on, 212
tools for implementing, 213

Infrastructure as Code pattern, 60, 201
innovation, 234

Index | 309

and competition in technology, 10
and concept of architecture, 18

inputs (scalable business machine), 264
insights

forming in design thinking, 79
generating in design thinking, 83

integrated development environments (IDEs)
Eclipse, 60
refactorings and recommendations in, 254

integration tests, 218
intention and use value, giving to negative

space, 58-61
interaction features, 194
interactive documentation, 157
internal consistency, testing concepts for, 253
internationalization and localization

currency exchange rate, 145
languages in applications and services, 172

Internet of Things (IoT), 141
streaming data, 192

Interpreter pattern, 175
intersection, 44
issues, 112

J
Java, 168

API and implementation in same package,
171

comment examples in APIs, 180
managed components, 227
multi-armed bandit library for, 222

Java Database Connectivity (JDBC), 172, 200
JavaScript and CSS files, combining and mini‐

fying, 170
JavaScript frameworks (UI), 141
Jenkins, 214

K
Kahn, Louis, 58, 64
Kanban, 255
Keller, Pyzdek, 131
key management, 223
Knapsack problem, 176
Kubernetes, 214

L
language

in software development, 20

languages in applications and services, 172
role in shaping thinking and practice, 8
study of, in semantics, 20
using properly in design, 64-65

latency, 104, 107
in Apache tools for stream processing, 192
in cloud environments, 223
measured in service response testing, 276
per service, 216

lateral thinking, 248-251, 253, 286
vertical thinking versus, 248

leadership skills of semantic designers, 233
Lean Six Sigma, 9
legal and regulatory requirements, 102, 135

Americans with Disabilities Act (ADA)
compliance, 207

Levi Strauss, IT project (2008), 14
licensing, 111, 218

for graph databases, 199
Liu, Jason, 222
load balancers, 223
logging, 155

data model for logs-as-data, 190
design of log messages, 227

lookbook, 287
capturing ideas in, 30-32

possible contents, 31
extra-synthetic conceptual work in, 90

lookup registry to support service discovery, 61
Lucidchart, 94
lunar landing system, concept sketch of (parti

example), 34

M
machine learning, 289

data model per use case, per service, 190
data pipelines, 203-206
determining customer clusters, 169
feature engineering for, 193-195
multi-armed bandits and infinite feature

toggles with, 221
major version change, 148
Malkovich, John, 30
managed components, 227
management, governance, and operations
MapReduce algorithm, 63
marketing, 232, 234
Marx, Karl, 17
master/slave databases, 196

310 | Index

mean time between failures (MTBF), 215
mean time to recovery (MTTR), 216
MECE (mutually exclusive and collectively

exhaustive) approaches, 100
media streaming services and video games, 191
meta-models, 240
metacognition, 25, 39-41
metaphors, 8

architecture as dead metaphor in software,
18

architecture in technology, 8
metrics, 90

defining first, 215-217
defining for governance committee, 270
defining for successful process, 131
service, 206, 278

Michelangelo, 38
Microsoft for API design, 147
mind maps, 94
minor version change, 148
mixins (service), 169-170
modeling data

multimodeling, 189-191
semantic data modeling, strategies for,

184-187
modernization, managing as a program, 266
monitoring, 65, 155, 227

specifying for infrastructure, 223
monolithic applications, 218

unraveling, 222
movies, creative directors, 236
multi-armed bandits, 221
murals, 89-93

digital, 92
elements included in, 89
extra-synthetic conceptual work in, 90

N
Naive Set Theory (Halmos), 43
naming, 64

in code, importance of, 179
service resources and representations, 145

National Institute of Standards and Technology
(NIST), report on software testing, 252

NATO Software Engineering conference
(1968), 5

need, statement of, 29, 75
negative space, giving intention and use value

to, 58-61

Neo4J graph database, 198
.NET, 168

API and implementation in same package,
171

Netflix
Chaos Monkey, 225
runtime health check library, 215
user interface personalization, 221

network proxies, classpath deployment and,
195

network stability problems, creating, 225
nodes

in engines, 162
in graph databases, 198
in peer-to-peer databases, 196

nontrivial problems, 41
Norman, Donald, 57
Norton, Peter, 247
NoSQL databases, 187
notifications, 157

O
Object Management Group (OMG), 120
object-oriented (OO) design, SOLID principles,

260
Oblique Strategies, 247, 286
oblique strategies website, 248
observations in design thinking, 75
open source, 292
Open Web Application Security Project

(OWASP), 154
secure coding practices report, 215

operating systems, 222
operational scorecard, 255-258

goal of operational meetings, 256
including people, 258
items to include, 256

operations, 211
(see also DevOps)
practices helpful to, 227
service, 274
tools for, 295

opportunities, framing in design thinking, 80,
83

opposites, 51, 224, 286
orchestrations, 158

guidelines for assessing creation of, 159
organizations

change management, 267-269

Index | 311

creating business organization map, 125
defining your business organization, 121
further reading on, 279
organizational and business requirements

for an application, 134
service-oriented, 258-263

cross-functional teams, 262
examining through OO SOLID princi‐

ples, 260
structure of representation, 261

OrientDB, 199
outcomes, 90
outputs (scalable business machine), 264

P
package manager, universal, 175
pains, 89
pair designing, 88-89
pairing, axiom of, 44
parti pris, 34
parti template

concept expressed in, 33-37
adding aspects, 36
example, travel industry software based

on Athena, 35
series of reveals, 36

path forward, 30
peer-to-peer persistent stores, 196, 290
penetration tests, 218
performance

improving in web applications, checklist for,
170

in service design checklist, 276
performance tests, 218
persistence, polyglot, 187-189, 291
personalization, 221

(see also feature toggles)
personas, 89, 293

attributes included in the document, 78
creating in design thinking, 77

philosophical/analytical thinking, 232
philosophy, books on, 298-301
picture-thinking, 38
pitch decks, 114
Platform as a Service (PaaS), Heroku tool, 213
platforms, 66-67

communication through service interfaces,
154

design of, 142-144

making the software disappear, 66
Poland, software developers in, 7
position papers, 111
power grids, 191
Prada, Miuccia, 235
presentations, 113
principles, 264

as empty slogans, 87
examples of technology and digital princi‐

ples, 87
extracting, 250
importance in architecture and design, 86

problems
defining in design thinking, 74
viewing as design problems, 71

processes
business processes in service design check‐

list, 275
capabilities versus, 127
creating process map, 129
in design of software, 10
in scalable business machine, 264
instituting appropriate governance for, 132
process in design thinking, 74
reengineering in a business, 129-131
repeatable, for making copies, 9
studying from outside your industry, 246
successful, defining metrics for, 131

producers (theatrical), 241
product vision box, 94
production

development versus, 224
production multiverse and feature toggling,

218-222
production environment, matching closely with

development environment, 174
programming languages, 144, 246

used in applications, 188
properties (in graph databases), 198
propositions, 21

principles as, 86
protocols, 99, 144

for your services, 144
prototypes, 81, 83
provocation, 250
Proxy pattern, 196
publisher/subscriber (pub/sub), 165
Puppet, 214
push notifications, 157

312 | Index

Python, 111, 168, 179
separating API from implementation, 172

Q
quality assurance, 277
quarantine or embassy, creating, 63

R
radical immutability (see immutability, radical)
RAID document, 112
Raiders of the Lost Ark (movie), 237
random inputs, 250
range, 44
rate limiting, 156
reading further, resources for, 297-302
recovery

disaster recovery, 210
mean time to recovery, 216

reflexive, 44
regulatory requirements, 102, 135

Americans with Disabilities Act (ADA)
compliance, 207

relational databases, 187
relations, 44, 184
representations and resources (services),

144-147
requests

chaos engineering with, 225
toggle router component setting Toggle

Context, 220
requirements, 45

functional and nonfunctional, 96
myth of, 19

resilience, 104
designing for, 155-157
externalized services and, 154

resilience4j, 156
resources

chaos engineering with, 225
resource tagging, 223
service resources and representations, 144

response caching, 156
REST

APIs observance of HATEOAS principle,
150

Open API documentation for services, 157
orientation around resources and represen‐

tations, 145
retries (automatic), 156

reveals, parti based on, 37
reversal method, 249
rhizomatic, 218, 253, 285
risks

business risks in software project, 103
defined, 112
RAID (Risks, Assumptions, Issues, Depen‐

dencies) document, 112
roles

approach to production in business, 9
in software production, 9
role clarity, challenges of, 231

S
scalability

ensuring proper design of software for, 155
high-scalability case studies, 164
of engines, 162
representing, 163

scalable business machine (SBM), designing,
263-266

scaling infrastructure, 223
IaC and, 210

Schmidt, Peter, 247
science, software design and, 10
search

disappearing web search engines, 66
for candidate objects based on criteria,

175-178
security

auditing mechanisms, 207
for externalized services, 154
OSWAP secure coding reports, 215
security data model per service, 190
service design checklist for, 276

security groups, 223
semantic design manifesto, 281-292

four ideals, 285
key practices, 286

comprehensive view practices, 287
concept design, 286
decentered, deconstruction practices,

289
diversity of customer practices, 291

opening, 292
semantic design toolbox, 293-295

concept stage, 294
design stage, 294
thinking stage, 293

Index | 313

semantic designer's role, 231-234
attributes representative of, 232
possible names for, 241
responsibilities, 233

semantic field, 21
being clear on where to draw boundary, 184
curtailing, 41
defining in software development, 21-22

semantic software design, 20
advantages of, 45-47
architects as producers and designers of

concepts, 29
practices and artifacts, 85-115

approaches, 99
design principles, 86-88
guidelines and conventions, 96-99
mind maps, 94
murals, 89-93
pair designing, 88-89
position papers, 111
presentations and multiple viewpoints,

113
RAID document, 112
use cases, 95
vision box, 93

steps in the process, 21
semantics and software architecture, 20
sense-certainty, 38
served versus servant spaces, 64
serverless, 164
service discovery, lookup registry to support, 61
service-oriented organizations, 258-263

cross-functional teams, 262
examining through OO SOLID principles,

260
SOLID principles of OO design, 260

services, 139
(see also applications)
anatomy of, 158-165
application-specific, 153
communication through, 154
diagram or sketch outlining services pro‐

vided by your platform, 259
health checks, 215
independently buildable, 151
latency per service, 216
metrics for, 206
platform design and, 142-144
resources and representations, 144-147

service API, 98
service client, 99
service design checklist, 273

availability and support, 277
data, 275
deployment, 278
documentation, 278
errors, 276
performance, 276
quality assurance, 277
security, 276
service design, 273
service operations, 274

service implementation, 99
service inventory and metadata, 271
service portfolio, 271
service-oriented development, 212

sets, 43
relations, 44

showing, not telling, in design thinking, 73
significance, 184

ensuring in data models, 186
simian army, 225
simplicity, 41, 53

avoiding oversimplifying or early simplify‐
ing, 55

single responsibility principle, 287
Six Sigma Handbook, The (Keller), 131
slogans, empty, 87
SMART goals, 9
smartphones as platforms, 66
social media, 191
software

books on, 301
conceptual origins, 3
designers of, 239

software engineering, 3
software projects

accomplishing, avoiding, or fixing some‐
thing, 26

failures , reasons for, 10-13
impact of failures, 13
similarity of making movies to, 237

solutions
refining in design thinking, 80, 83
testing premise of, 81

specifications, 175-178
Spielberg, Steven, 237
staging environment, 218

314 | Index

stakeholders
inside and outside, 226
listing for programs, 103

state
chaos engineering with, 225
making engines stateless, 161
managing, 155

statement of need, 29, 75
strategies, 286

business and technology strategy, 26
capturing the business strategy, 120-123
concept alignment with, 29
configurable services and, 151-153
future strategic direction, 259
oblique, 247
semantic designer's skills in, 232
strategy and tooling, 245-247
using strategy pattern to implement feature

toggles, 220
Strategy pattern, 152, 175
streams, data models for, 191-193
strings

externalizing for internationalization and
localization, 172

externalizing strings and related references,
175

structuralism, 51
"Structure, Sign, and Play" (Derrida), 50
success, defining in design thinking, 75
support for services, 278
support functions, 234
Swagger documentation, 157
symmetric, 44
Systematic Method for Designers (Archer), 72
systems, 117

business architecture at single system/appli‐
cation level, 133-136

business as system of systems, 118
design principles, 117
inventorying for a business, 131
machine learning capabilities throughout,

203
thinking in, 24
well-designed, additional attributes of, 118

T
tactical demands, aligning with strategic objec‐

tives, 122-123
teaching/mentoring ability, 232

teams
cross-functional, 262
requirements for an application, 135

technologies, semantic designer's skills in, 232
technology strategy, 26
Technology Strategy Patterns (Hewitt), 23
technology, creative directors in, 239
templates

Concept Canvas, 28
operational scorecard template, 256

terms of art, 125
Terraform, 214
test-driven development (TDD), 179
testing

ADA compliance, tools for, 208
automated tests for infrastructure, 215
automation of tests, 178
code coverage, 203
conceptual tests, 252-253
IaC and, 213
in service quality assurance, 277
in staging versus production environments,

218
The Ecstasy of Saint Teresa (Bernini), 90
The Open Group Architecture Framework

(TOGAF), 87
theater, artistic directors in, 238
thinking, 71

(see also design thinking)
about thinking (metacognition), 25, 39-41
challenging your default view, 247
divergent and convergent, 27
lateral thinking and working with concepts,

248-251, 286
thinking stage tools, 293

thinking hats, 251
ThoughtWorks Radar, 112, 246
tools (scalable business machine), 264
tools, selection of, 245-247
traffic, 224

metrics for applications, 216
transitive, 45
translate.google.com , 173
translations.com, 172
treatment tools, 248
true and false values, 185
Twitter API, 145
type, problem with the term, 185

Index | 315

U
UIs (user interfaces)

creating UI packages, 142
decoupling from applications, 141
rebuilding UI package application, 151
UI packages, 158

Unified Modeling Language (UML) diagrams,
95

union, 44
unit tests, 218
URIs

cacheable, 147
testing with cUrl program, 149

use cases, 95
for streaming data, 191

use value and intention, giving to negative
space, 58-61

use value, questioning, 77
user acceptance testing, 179
user interfaces (see UIs)
users, 65

determining in design thinking, 75
extreme users, 77
observing users' actions in design thinking,

75
utilities, 98

V
Vagrant, 213
value

creating in your organization, 234
creating, capturing, and delivering, 120
creation for customers by technology crea‐

tive director, 239

value stream, considering in process reen‐
gineering, 130

Value Proposition Design (Osterwalder et al.),
79

variants, 42
versioning, 148-149
vertical scaling, 162
vertical thinking versus lateral thinking, 248
video games, creative directors, 238
viewpoints, multiple, 114
virtualization, 224
vision box, 93
Vitruvius, 23

W
waterfall, 46
Web Content Accessibility Guidelines 2.0

(WCAG), 207
web ecommerce clickstreams, 191
WebSockets, 157
words, testing, interrogating, and challenging,

186
workflow, drawing out, 160

X
XMind, 94

Y
YAML, 179

use by AWS CloudFormation, 214

316 | Index

About the Author
Eben Hewitt is the chief architect and CTO at Sabre Hospitality where he is responsi‐
ble for the technology strategy, designing large-scale, mission-critical systems, and
leading teams to build them. He works at the intersection of innovation, architecture
and design, leadership, and global enterprise business development. He has served as
CTO at one of the world’s largest hotel companies and as CIO of O’Reilly Media.
Eben has originated architecture departments at three companies. He is also the
author of Technology Strategy Patterns (2018) and Cassandra: The Definitive Guide
(two editions, translated into Chinese), and several other books on architecture, serv‐
ices, Java, and web development. He has won awards for innovation and been an invi‐
ted presenter to Amazon AWS, Oracle headquarters, and conferences around the
world. He is a full member of the Dramatists Guild, with his first full-length play pro‐
duced in New York City.

Colophon
The animal on the cover of Semantic Software Design is an African forest buffalo
(Syncerus caffer nanus), a subspecies of the Cape buffalo found in Africa. This type of
buffalo lives in rainforests throughout the western and central parts of the continent,
in contrast to the other three subspecies who roam the savanna.

African forest buffalo are the smallest subspecies at 550–700 pounds (compared to
880–1760 pounds for the Cape buffalo). They have red-brown hides with dark faces.
The shape and size of their horns is also distinct from their larger cousins, as the
horns are smaller, grow in a different direction, and do not fuse in the center. The
buffalo feed on grass and various plants in clearings around the forest. As deforesta‐
tion occurs, the buffalo have also adapted to graze near human roads or recently log‐
ged areas where grass is now able to grow.

Herds of forest buffalo are relatively small at no more than 30 individuals, and are
typically made up of 1–2 bulls and several females, juveniles, and calves. The bulls
stay with this group the entire year rather than cycling through a bachelor herd. The
herd size is usually a deterrent to predators, as most cannot kill an adult buffalo. One
notable exception is the Nile crocodile.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Jose Marzan, based on a black and white engraving from
Lydekker’s Royal Natural History. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Episteme: The Philosophy of Design
	Chapter 1. Origins of Software Architecture
	Software’s Conceptual Origins
	Copies and Creativity
	Why Software Projects Fail
	The Impact of Failures

	Chapter 2. The Production of Concepts
	Semantics and the Software Factory
	The Myth of Requirements
	Semantics and Software Architecture
	The Semantic Field
	Designers Are Producers of Concepts
	Designing Concepts

	What Is a Concept?
	Accomplish, Avoid, Fix
	Outlining Your Concept on the Concept Canvas

	Ideas Are Captured in a Lookbook
	Fit to Purpose
	The Concept Is Expressed in a Parti
	An Example
	Adding Aspects to the Parti
	The Parti Is Based on a Series of Reveals

	Understanding Ideas
	Sense Certainty
	Metacognition

	Context
	Sets
	Relations

	Advantages of Semantic Design

	Chapter 3. Deconstruction and Design
	Introduction to Deconstruction
	Simplexity
	(De)composition
	Affordance
	Give Intention and Use Value to Negative Space
	Give Design Decisions at Least Two Justifications
	Design from Multiple Perspectives
	Create a Quarantine or Embassy
	Design for Failure
	Design Language
	Naming

	Start Opposite the User
	Platforms
	Disappearing

	Part II. Semantic Design in Practice
	Chapter 4. Design Thinking
	Why Design Thinking?
	Exploring Design Thinking
	Principles
	The Method

	Implementing the Method
	Summary

	Chapter 5. Semantic Design Practices and Artifacts
	Design Principles
	Pair Designing
	Murals
	Vision Box
	Mind Maps
	Use Cases
	Guidelines and Conventions
	Utils
	Domain
	service-api
	service-impl
	service-client

	Approaches
	Design Definition Document
	Considerations for Composing Your Design Definition

	Position Papers
	RAID
	Presentations and Multiple Viewpoints
	Summary

	Chapter 6. The Business Aspect
	Capturing the Business Strategy
	Provide a Common Understanding
	Align Strategic Objectives and Tactical Demands

	Framework Introduction
	Scope of the Framework

	Create the Business Glossary
	Create the Organizational Map
	Create a Business Capabilities Model
	Create a Process Map
	Reengineer Processes
	Take Inventory of Systems
	Define the Metrics
	Institute Appropriate Governance
	Business Architecture in Applications
	Summary

	Chapter 7. The Application Aspect
	Embrace Constraints
	Decouple User Interfaces
	UI Packages

	On Platform Design
	Service Resources and Representations
	Domain Language

	API Guidelines
	Deconstructed Versioning
	Cacheability and Idempotence
	Independently Buildable
	Strategies and Configurable Services
	Application-Specific Services
	Communicate Through Services
	Expect Externalization
	Design for Resilience
	Interactive Documentation
	Anatomy of a Service
	UI Packages
	Orchestrations
	Engines
	Data Accessors

	Eventing
	Structure of an Event Message

	Contextual Services and Service Mixins
	Performance Improvement Checklist
	Separating API from Implementation
	Languages
	Radical Immutability
	Specifications
	A Comment on Test Automation
	A Comment on Comments
	Summary

	Chapter 8. The Data Aspect
	Business Glossary
	Strategies for Semantic Data Modeling
	Polyglot Persistence
	Persistence Scorecard

	Multimodeling
	Data Models for Streams
	Feature Engineering for Machine Learning
	Classpath Deployment and Network Proxies
	Peer-to-Peer Persistent Stores
	Graph Databases
	OrientDB and Gremlin

	Data Pipelines
	Machine Learning Data Pipelines
	Metadata and Service Metrics
	Auditing
	ADA Compliance
	Summary

	Chapter 9. The Infrastructure Aspect
	Considerations for Architects
	DevOps
	Infrastructure as Code
	Metrics First
	Compliance Map

	Automated Pipelines Also First
	The Production Multiverse and Feature Toggling
	Implementing Feature Toggles
	Multi-Armed Bandits: Machine Learning and Infinite Toggles

	Infrastructure Design and Documentation Checklist
	Chaos
	Stakeholder Diversity and Inside/Out
	Summary

	Part III. Operations, Process, and Management
	Chapter 10. The Creative Director
	The Semantic Designer’s Role
	Creative Directors Across Industries
	In Fashion
	In Film
	In Video Games
	In Advertising
	In Theater
	In Technology
	What’s In a Name?

	Chapter 11. Management, Governance, Operations
	Strategy and Tooling
	Oblique Strategies
	Lateral Thinking and Working with Concepts
	Conceptual Tests
	Code Reviews
	Demos
	The Operational Scorecard
	The Service-Oriented Organization
	Cross-Functional Teams

	The Designed Scalable Business Machine
	Managing Modernization as a Program
	Change Management
	Governance
	Goals
	Metrics
	Service Portfolio
	Service Inventory and Metadata

	Service Design Checklist
	Service Design
	Service Operations
	Business Processes
	Data
	Errors
	Performance
	Security
	Quality Assurance
	Availability and Support
	Deployment
	Documentation

	Further Reading on Organizational Design

	Chapter 12. The Semantic Design Manifesto
	The Manifesto
	The Four Ideals
	The Key Practices
	Opening

	Appendix A. The Semantic Design Toolbox
	The Tools
	Thinking Stage
	Concept Stage
	Design Stage
	Operations and Governance

	Appendix B. Further Reading
	Architecture and Design Books
	Philosophy Books
	Software Books

	Index
	About the Author
	Colophon

