
Daniel Bryant
& Abraham Marín-Pérez

Continuous
 Delivery
 in Java
ESSENTIAL TOOLS AND BEST PRACTICES
FOR DEPLOYING CODE TO PRODUCTION

Daniel Bryant and Abraham Marín-Pérez

Continuous Delivery in Java
Essential Tools and Best Practices
for Deploying Code to Production

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-98602-8

[LSI]

Continuous Delivery in Java
by Daniel Bryant and Abraham Marín-Pérez

Copyright © 2019 Daniel Bryant and Cosota Team Ltd. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Virginia Wilson
Production Editor: Nicholas Adams
Copyeditor: Sharon Wilkey
Proofreader: Marta Justak

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2018: First Edition

Revision History for the First Edition
2018-11-06: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491986028 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Continuous Delivery in Java, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491986028

Table of Contents

Forewords. xiii

Preface. xvii

1. Continuous Delivery: Why and What. 1
Setting the Scene 1
Enabling Developers: The Why 2

Rapid Feedback Reduces Context Switching 2
Automatic, Repeatable, and Reliable Releases 3
Codifying the Definition of “Done” 4

Exploring a Typical Build Pipeline: The What 5
Core Build Pipeline Stages 5
Impact of Container Technology 8
Changes with Contemporary Architectures 9

Summary 10

2. Evolution of Java Development. 13
Requirements of Modern Java Applications 13

Need for Business Speed and Stability 14
Rise of the API Economy 15
Opportunities and Costs of the Cloud 15
Modularity Redux: Embracing Small Services 16
Impact on Continuous Delivery 17

Evolution of Java Deployment Platforms 17
WARs and EARs: The Era of Application Server Dominance 17
Executable Fat JARs: Emergence of Twelve-Factor Apps 18
Container Images: Increasing Portability (and Complexity) 19
Function as a Service: The Emergence of “Serverless” 20

iii

Impact of Platforms on Continuous Delivery 21
DevOps, SRE, and Release Engineering 22

Development and Operations 22
Site Reliability Engineering 23
Release Engineering 25
Shared Responsibility, Metrics, and Observability 26

Summary 27

3. Designing Architecture for Continuous Delivery. 29
Fundamentals of Good Architecture 29

Loose Coupling 30
High Cohesion 31
Coupling, Cohesion, and Continuous Delivery 31

Architecture for Business Agility 33
Bad Architecture Limits Business Velocity 33
Complexity and Cost of Change 34

Best Practices for API-Driven Applications 35
Build APIs “Outside-In” 35
Good APIs Assist Continuous Testing and Delivery 36

Deployment Platforms and Architecture 36
Designing Cloud-Native “Twelve-Factor” Applications 37
Cultivating Mechanical Sympathy 40
Design and Continually Test for Failure 41

The Move Toward Small Services 42
Challenges for Delivering Monolithic Applications 42
Microservices: SOA Meets Domain-Driven Design 43
Functions, Lambdas, and Nanoservices 45

Architecture: “The Stuff That’s Hard to Change” 45
Summary 46

4. Deployment Platforms, Infrastructure, and Continuous Delivery of Java Apps. 49
Functionality Provided by a Platform 49
Essential Development Processes 50
Traditional Infrastructure Platforms 51

Traditional Platform Components 51
Challenges with Traditional Infrastructure Platforms 52
Benefits of Being Traditional 53
CI/CD on Traditional Infrastructure Platforms 53

Cloud (IaaS) Platform 54
Looking Inside the Cloud 54
Cloud Challenges 56
Benefits of the Cloud 58

iv | Table of Contents

Continuously Delivering into the Cloud 58
Platform as a Service 59

Peeking Inside a PaaS 60
PaaS Challenges 60
Benefits of PaaS 62
CI/CD and PaaS 63

Containers (Docker) 63
Container Platform Components 63
Container Challenges 64
Container Benefits 66
Continuously Delivering Containers 66

Kubernetes 67
Core Concepts of Kubernetes 67
Kubernetes Challenges 68
Benefits of Kubernetes 69
Continuous Delivery on Kubernetes 70

Function-as-a-Service/Serverless Functions 70
FaaS Concepts 71
Challenges of FaaS 72
FaaS Benefits 73
CI/CD and FaaS 73

Working with Infrastructure as Code 74
Summary 75

5. Building Java Applications. 77
Breaking Down the Build Process 77
Automating the Build 78

Build Dependencies 79
External Dependencies 83
Multimodule Projects 84
Multiple Repositories (or a Monorepo)? 84
Plugins 86
Releasing and Publishing Artifacts 86

Java Build Tooling Overview 87
Ant 87
Maven 89
Gradle 94
Bazel, Pants, and Buck 98
Other JVM Build Tools: SBT and Leiningen 99
Make 100

Choosing a Build Tool 101
Summary 102

Table of Contents | v

6. Additional Build Tooling and Skills. 105
Linux, Bash, and Basic CLI Commands 105

Users, Permissions, and Groups 106
Working with the Filesystem 110
Viewing and Editing Text 112
Joining Everything Together: Redirects, Pipes, and Filters 113
Searching and Manipulating Text: grep, awk, and sed 114
Diagnostic Tooling: top, ps, netstat, and iostat 115

HTTP Calls and JSON Manipulation 117
curl 117
HTTPie 120
jq 123

Basic Scripting 125
xargs 125
Pipes and Filters 125
Loops 126
Conditionals 126

Summary 127

7. Packaging Applications for Deployment. 129
Building a JAR: Step-by-Step 129
Building a Fat Executable “Uber” JAR 133

Maven Shade Plugin 134
Building Spring Boot Uber JARs 137

Skinny JARs—Deciding Not to Build Fat JARs 138
Building WAR Files 139
Packaging for the Cloud 141

Cooking Configuration: Baking or Frying Machines 142
Building RPMs and DEBs OS Packages 142
Additional OS Package Build Tools (with Windows Support) 146
Creating Machine Images for Multiple Clouds with Packer 147
Additional Tools for Creating Machine Images 150

Building Containers 151
Creating Container Images with Docker 151
Fabricating Docker Images with fabric8 152

Packaging FaaS Java Applications 154
Summary 157

8. Working Locally (Like It Was Production). 159
Challenges with Local Development 159
Mocking, Stubbing, and Service Virtualization 160

Pattern #1: Profiles, Mocks, and Stubs 160

vi | Table of Contents

Mocking with Mockito 162
Pattern #2: Service Virtualization and API Simulation 163
Virtualizing Services with Hoverfly 165

VMs: Vagrant and Packer 169
Installing Vagrant 169
Creating a Vagrantfile 169
Pattern #3: Production-in-a-Box 172

Containers: Kubernetes, minikube, and Telepresence 173
Introducing the “Docker Java Shop” Sample App 173
Building Java Applications and Container Images 174
Deploying into Kubernetes 176
Simple Smoke Test 179
Building the Remaining Applications 179
Deploying the Entire Java Application in Kubernetes 179
Viewing the Deployed Application 180
Telepresence: Working Remotely, Locally 181
Pattern #4: Environment Leasing 184

FaaS: AWS Lamba and SAM Local 185
Installing SAM Local 185
AWS Lambda Scaffolding 186
Testing AWS Lambda Event Handling 189
Smoke Testing with SAM Local 192

FaaS: Azure Functions and VS Code 194
Installing Azure Function Core Tools 195
Building and Testing Locally 197
Testing Remotely, Locally Using VS Code 200

Summary 202

9. Continuous Integration: The First Steps in Creating a Build Pipeline. 203
Why Continuous Integration? 203
Implementing CI 204
Centralized Versus Distributed Version-Control Systems 204
Git Primer 206

Core Git CLI Commands 206
Hub: An Essential Tool for Git and GitHub 209

Working Effectively with DVCS 210
Trunk-based Development 211
Feature Branching 212
Gitflow 212
No One-Size Fits All: How to Choose a Branching Strategy 213

Code Reviews 215
What to Look For 216

Table of Contents | vii

Automation: PMD, Checkstyle, and FindBugs 218
Reviewing Pull Requests 223

Automating Builds 224
Jenkins 224

Getting Your Team Onboard 226
Merge Code Regularly 226
“Stop the Line!”: Managing Broken Builds 226
Don’t @Ignore Tests 227
Keep the Build Fast 227

CI of the Platform (Infrastructure as Code) 227
Summary 228

10. Deploying and Releasing from the Pipeline. 231
Introducing the Extended Java Shop Application 231
Separating Deployment and Release 234
Deploying Applications 235

Creating a Container Image 236
Deployment Mechanisms 238
It All Starts (and Ends) with Health Checks 249
Deployment Strategies 253
Working with Unmanaged Clusters 264
Changing Databases 268

Releasing Functionality 272
Feature Flags 273
Semantic Versioning (semver) 276
Backward Compatibility and Versions in APIs 278
Multiple-Phase Upgrades 283

Managing Configuration and Secrets 284
“Baked-In” Configuration 285
Externalized Configuration 286
Handling Secrets 287

Summary 288

11. Functional Testing: Correctness and Acceptance. 289
Why Test Software? 289
What to Test? Introducing Agile Testing Quadrants 289
Continuous Testing 291

Building the Right Feedback Loop 292
Turtles All the Way Down 292
Synthetic Transactions 294
End-to-End Testing 295
Acceptance Testing 297

viii | Table of Contents

Behavior-Driven Development 298
Stubbing or Virtualizing Third-Party Services 302
Bringing It All Together 302

Consumer-Driven Contracts 303
RESTful API Contracts 304
Message Contracts 307

Component Testing 309
Embedded Data Stores 310
In-Memory Message Queues 311
Test Doubles 312
Creating Internal Resources/Interfaces 313
In-Process Versus Out-Of-Process 314

Integration Testing 316
Verifying External Interactions 317
Testing Fault Tolerance 318

Unit Testing 319
Sociable Unit Testing 320
Solitary Unit Testing 321

Dealing with Flaky Tests 322
Data 322
Resource That Is Not Available Yet 323
Nondeterministic Events 324
If Nothing Else Works 324

Testing Outside-In Versus Testing Inside-Out 325
Outside-In 325
Inside-Out 326

Putting It All Together Within the Pipeline 328
How Much Testing Is Enough? 329
Summary 331

12. System-Quality Attributes Testing: Validating Nonfunctional Requirements. 333
Why Test Nonfunctional Requirements? 333
Code Quality 334
Architectural Quality 335

ArchUnit: Unit-Testing Architecture 335
Generate Design-Quality Metrics with JDepend 337

Performance and Load Testing 340
Basic Performance Testing with Apache Benchmark 340
Load Testing with Gatling 342

Security, Vulnerabilities, and Threats 348
Code-Level Security Verification 348
Dependency Verification 353

Table of Contents | ix

Deployment Platform-Specific Security Issues 358
Next Steps: Threat Modeling 361

Chaos Testing 365
Causing Chaos in Production (Bring in the Monkeys) 366
Causing Chaos in Preproduction 368

How Much NFR Testing Is Enough? 370
Summary 370

13. Observability: Monitoring, Logging, and Tracing. 373
Observability and Continuous Delivery 373

Why Observe? 374
What to Observe: Application, Network, and Machine 376
How to Observe: Monitoring, Logging, and Tracing 376
Alerting 377

Designing Systems for Observability 378
Metrics 379

Type of Metrics 379
Dropwizard Metrics 380
Spring Boot Actuator 382
Micrometer 383
Best Practices with Metrics 383

Logging 384
Forms of Logging 385
SLF4J 386
Log4j 2 387
Logging Best Practices 388

Request Tracing 390
Traces, Spans, and Baggage 391
Java Tracing: OpenZipkin, Spring Sleuth, and OpenCensus 392
Recommended Practices for Tracing 393

Exception Tracking 393
Airbrake 394

System-Monitoring Tooling 396
collectd 396
rsyslog 396
Sensu 397

Collection and Storage 397
Prometheus 398
Elastic-Logstash-Kibana 398

Visualization 399
Visualization for Business 399
Operational Visualization 400

x | Table of Contents

Visualization for Developers 401
Summary 403

14. Migrating to Continuous Delivery. 405
Continuous Delivery Capabilities 405
Picking Your Migration Project 406
Situational Awareness 407

The Cynefin Framework and Continuous Delivery 408
All Models Are Wrong, Some Are Useful 410

Bootstrapping Continuous Delivery 410
Measuring Continuous Delivery 412
Start Small, Experiment, Learn, Share, and Repeat 413
Increase Adoption: Leading Change 415
Additional Guidance and Tips 417

Bad Practices and Common Antipatterns 417
Ugly Architecture: To Fix, or Not to Fix 418

Summary 420

15. Continuous Delivery and Continuous Improvement. 423
Start from Where You Are 423
Build on Solid Technical Foundations 424
Continuously Deliver Value (Your Highest Priority) 424
Increase Shared Responsibility of Software 425
Promote Fast Feedback and Experimentation 426
Expand Continuous Delivery in an Organization 427
Continuous Improvement 427
Summary 428

Index. 431

Table of Contents | xi

Forewords

There’s been broad agreement in the Continuous Delivery community that tools don’t
matter ever since Dave Farley and Jez Humble wrote Continuous Delivery. There are
plenty of good programming languages out there, and plenty of good tools for build‐
ing, testing, and deploying your code to production. The wisdom of the crowd has
been: it doesn’t matter which tools you use, as long as you avoid the really terrible
tools.

This year, that wisdom has been augmented by the work of Dr. Nicole Forsgren, Jez
Humble, and Gene Kim. Their book Accelerate summarises multiple years of
research into Continuous Delivery and IT performance. One of their conclusions is
the ability for teams to choose their own tools has a strong, statistical impact on Con‐
tinuous Delivery. So, now the wisdom of the crowd is: it doesn’t matter which tools
you use, as long as you’re able to choose them yourself and you avoid the really terri‐
ble tools.

Take me, for example. The first time I did Continuous Delivery on a team was at
Elsevier in 2007. We built a journal website in Java 6, Spring 2, and Tomcat 6 using
XP practices like TDD and CI. The pipeline was Ant and Cruise Control. The code‐
base was always releasable, and once a week we deployed to production.

The first time I did Continuous Delivery across an entire company was at LMAX in
2008. We built a state of the art financial exchange in Java 6, Spring 3, and Resin 3
using XP practices and Domain Driven Design. The pipeline was Ant and Cruise
Control, with a lot of custom dashboards. The codebase was always releasable, and
once a fortnight we deployed to production.

I’m sure you can see the similarities there. Groups of smart people worked closely
together. XP practices and sound design principles were essential. The tools used
were deliberately chosen for the task at hand. And in the case of LMAX, it helped that
the Head of Development was writing the inaugural book on Continuous Delivery at
the time. I think his name was Dafydd, or Dev, or something.

xiii

What this all means is you can use Java, or PHP, or .NET, and successfully implement
Continuous Delivery. You can use Solaris Zones, or Docker. You can use AWS, Azure,
or that on-premises data centre your Head Of Platform keeps saying is cheaper than
AWS. Just make sure you choose your tools yourself, for the particular problems you
face. And don’t use MKS for version control, QTP for testing, or any commercial
release management tool. They’re terrible.

So, if tools don’t matter for Continuous Delivery as long as you choose them yourself
and they’re not terrible choices, why am I writing this foreword?

There’s actually a nuanced answer in here, if we look hard enough. Tools don’t matter
as much as the principles and practices of Continuous Delivery, but they still matter a
great deal. Programming languages can help people to quickly create new features
and defect fixes, which reduces the Cost of Delay associated with product develop‐
ment. Programming languages can also encourage a testable, releasable application
architecture, which are key enablers of Continuous Delivery. Build, test, and deploy
tooling can nudge people in the right direction, towards practices such as TDD and
Trunk Based Development.

I was reminded of that nuance recently, when I cleared out my childhood bedroom
and found my university copy of Ivor Horton’s Understanding Java 2. Java and I mar‐
ried each other in 1999, and now it’s been so long we’ve both forgotten it’s our 20 year
anniversary very soon. In my opinion, it’s a great programming language. Over the
years Java, JUnit, Gradle, Spring and many other tools have helped me to build well-
tested, releasable applications, and encourage people to adopt Continuous Delivery.

With Cloud, containerization, and Serverless leading our inexorable march towards
Skynet, we all need guidance from experienced practitioners on how to use the latest
tools and work towards Continuous Delivery. In this book, Daniel and Abraham
explain how to use Java and popular tools such as Spring Boot, Kubernetes, and AWS
EKS to deliver modern web applications frequently enough to meet market demand.
IT practitioners working with Java and any of the other tools mentioned in this book
can rely on Daniel and Abraham to explain how to implement a Continuous Delivery
toolchain for their applications.

— Steve Smith
Continuous Delivery consultant at

Continuous Delivery Consulting

xiv | Forewords

https://www.continuousdeliveryconsulting.com/

Continuous delivery is one of the key practices that should be at the heart of any engi‐
neering team. We have often been asked what are some of the key enablers of success
at jClarity and new build farm for OpenJDK/Java at adoptopenjdk.net. The answer is
that we can deploy daily with the greatest of confidence, and do this with minimal
engineering teams. Ever since Dave Farley’s and Jez Humble’s seminal Continuous
Delivery: Reliable Software Releases through Build, Test, and Deployment Automation
(Addison-Wesley Signature) came out in 2010, folks have started adopting continu‐
ous delivery practices, but there has not been a comprehensive guide on how to do
this for the ~10 million Java developers out there. Well, now there is!

Daniel and Abraham are both real-world practitioners and their book contains every‐
thing you need as a Java developer on this topic, with in-depth explanations as to
“why” you want to follow the practices of continuous delivery; how to architect your
application in a way that is amenable to this; how to put together build, test, and
deploy pipelines; and also the intricacies of deploying to cloud and container envi‐
ronments.

The impact of “cloud native” technologies on Java cannot be understated—modern
applications must now contend with such concerns as connectivity to a larger num‐
ber of external components (both JVM and not), and a very different approach to
handling resources (such as I/O) that had traditionally been provided by the local
operating system. Even the life cycle of applications, and their locality to specific
machines, is changing, with approaches such as immutable infrastructure and server‐
less requiring Java developers to shift their thinking to take full advantage of the capa‐
bilities of these new ways of delivering applications.

Within this brave new world, techniques such as continuous deployment, the tooling
and architectural thinking required to support it, and the requirements of a cloud-
centric local development environment, are of paramount importance. Until now,
there has been no text that specifically caters to Java developers to guide them on
their journey into full adoption of continuous delivery and the benefits it offers.

— Martijn Verburg,
CEO at jClarity and LJC Leader

— Ben Evans,
Author and Consulting CTO

Forewords | xv

Preface

Why Did We Write This Book?
Both of us have been Java developers long enough to witness, and be part of, several
shifts within our chosen profession. Java the language has evolved a long way since
we both wrote our first lines of code: Java 1.4 gave us nonblocking I/O, Java 8 gave us
streams and lambdas, Java 9 gave us modules, and Java 10 finally gave us local vari‐
able type inference. Deployment platforms have also evolved in leaps and bounds,
and the emergence of cloud and containers has provided many opportunities and
challenges. One thing has not changed, though, and that is the need to deliver value
to end users and customers. We have needed to use all of our skills, tools, and practi‐
ces as best as we could in order to make the delivery of software as effective (and fun)
as possible. Perhaps even more importantly, we have needed to work with and lead
our teams to share this responsibility.

With an ever-increasing range of “best practices” emerging around software develop‐
ment, architecture, and deployment platforms, there is one thing that developers can
generally agree on: the principles of continuous integration and continuous delivery
add enormous value to the software delivery life cycle. With the increasing demands
from customers on the speed and stability of delivery, you need a framework that
provides fast feedback and enables the automation of both quality assurance and the
deployment processes. However, the challenges for modern software developers are
manyfold, and attempting to introduce a methodology like continuous delivery—
which touches on all aspect of software design and delivery—means that several new
skills must be mastered, and some are typically outside a developer’s existing comfort
zone.

xvii

As our careers have progressed, we’ve frequently found ourselves working on aspects
of a project that used to be handled by other individuals or teams, and as such we’ve
learned the hard way the new three key areas of developer skillsets that are needed to
harness the benefits of continuous delivery:

Architectural design
Correctly implementing the fundamentals of loose coupling and high cohesion
can have a dramatic effect on the ability to both continually test and deploy com‐
ponents of a software system in isolation.

Automated quality assurance
Business requirements for increased velocity, and the associated architecture
styles that have co-evolved with this (such as self-contained systems, microservi‐
ces, Function-as-a-Service, etc.), mean that you are now typically testing dis‐
tributed and complex adaptive systems. These systems simply cannot be verified
and validated repeatedly and effectively using a traditional manual process.

Deploying applications
The emergence of cloud and container technologies has revolutionized deploy‐
ment options for Java applications, and new skills are needed for harnessing this
and creating automated and safe deployment and release processes.

This book distills our learning and offers guidance for mastering these new skills.

Why You Should Read This Book
If you are a Java developer who wants to learn more about continuous delivery, or are
currently struggling with embracing this way of delivering software, then this is the
book for you. We have provided not only the “how” and “what” of implementing the
various practices and tools associated with continuous delivery, but also the “why.”
We believe this is important, because if you understand the motivations, you will be
well placed to adapt particular practices that don’t quite work for you as described.
Understanding the reasoning behind an approach also helps build strong founda‐
tions, and helps you share and teach these ideas to others. As the Japanese poet Mat‐
suo Bashō said, “Do not seek to follow in the footsteps of the wise; seek what they
sought.”

We have also written this book as a call to action to you, as a Java developer, to get
outside your comfort zone and learn more about architecture, automation, and oper‐
ations. In the current software development career space, we see increasingly fewer
opportunities for pure Java programming roles, with many new roles expecting
knowledge of continuous delivery, platforms, and operational tooling. By investing in
yourself and increasing your software development knowledge and skills, you will not
only be open to more opportunities, but also become a better programmer.

xviii | Preface

As we wrote this book, we had no single idea of a prototypical reader of this book,
other than you being a Java developer, but one of the following target personas may
resonate with you:

Traditional enterprise Java developer
You have most likely been coding Java EE or Spring applications for several years,
and now you are realizing that new applications within your organization are
being designed around microservice-style architectures, and the sysadmin or
operations team is experimenting with the cloud, Docker, and Kubernetes. You
are keen to learn more about how all these changes relate to building Java appli‐
cations, and you want to explore how automation will make testing and deploy‐
ment less painful.

Java developer looking to embrace DevOps
You have typically been developing Java applications for a few years, and you
have followed along with the blog posts, books, and conference presentations that
talk about the cloud, DevOps, and Site Reliability Engineering (SRE). You may
have envied the development practices of organizations like Netflix, Google, or
Spotify, but you appreciate that not all the things they do are relevant to you and
your team. However, you are keen to learn more and understand how you can
embrace some of these ideas to increasingly move to a DevOps style of working.

Recently graduated college or univerity student
You have just started your first professional software development job, and
although your time in formal education provided you with many specific pro‐
gramming skills, you realize that you aren’t sure how all the practices and tools
join up for the effective delivery of software. You want to learn more about the
entire software delivery process, filling in gaps in your knowledge, and joining all
of your skills together in order to advance to the next level in your career.

What This Book Is Not
This book specifically emphasizes the complete approach to implementing continu‐
ous delivery for Java applications, and as such, it doesn’t contain a deep dive into
everything related to architecture, testing, or cloud technologies. Sure, you’ll learn the
essentials of all these subjects, but many of the chapter topics could be extended into
their own book, and we simply didn’t have the time or space to do this. Whereas oth‐
ers have written books that are focused on specific topics, we have attempted to refer‐
ence and recommend their work.

Preface | xix

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/continuous-delivery-in-java.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this

xx | Preface

https://github.com/continuous-delivery-in-java

book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Continuous Delivery in Java by Dan‐
iel Bryant and Abraham Marín-Pérez (O’Reilly). Copyright 2019 Daniel Bryant and
Cosota Team Ltd., 978-1-491-98602-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/continuous-delivery-in-java.

Preface | xxi

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://www.oreilly.com/safari
http://bit.ly/continuous-delivery-in-java

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
As with almost all technical books, only two names may be listed as authors on the
front of this book, but the reality is that many people have contributed, either directly
in the form of feedback as the book was written, or indirectly by their teaching and
guidance over the years.

Although we can’t possibly list everyone who has helped us during this journey, we
would like to explicitly thank the people who took time out of their busy schedules to
provide extensive discussions, feedback, and support. In particular, we would like to
express our gratitude to (in alphabetical order of last name): Tareq Abedrabbo, Alex
Blewitt, the Devoxx team, Ben Evans, Trisha Gee, Arun Gupta, Charles Humble, Nic
Jackson, James Lewis, Richard Li, Simon Maple, Sam Newman, the SpectoLabs team,
Chris Newland, Christian Posta, Chris Richardson, Mani Sarkar, Richard Seroter,
Matthew Skelton, Steve Smith, the entire Tomitribe crew (and #usualsuspects), Mar‐
tijn Verburg, Richard Warburton, and Nicki Watt (and past and present members of
the OpenCredo team).

We would also like to express our thanks to the entire O’Reilly team, and although
there are surely many people we haven’t met behind the scenes who have helped us,
we would like to explicitly thank Brian Foster for the opportunity to write this book,
Virginia Wilson for providing motivation and a lot of great editorial advice (and for
sticking with us when times were tough!), and Susan Conant and Nan Barber for
their initial guidance.

Daniel’s acknowledgements: I would like to thank my entire famiy for their love and
support, both during the writing process and throughout my career. I would also like
to thank Abraham for joining me midway through the writing process; there aren’t
many people who would have accepted and excelled at the challenge quite so quickly.
Finally, I would like to thank everyone involved in the London Java Community
(LJC), Skills Matter, and the InfoQ/QCon team. These three communities have pro‐
vided me with access to mentors, guidance, and so many opportunities. I hope to
someday pay all of this forward.

xxii | Preface

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Abraham’s acknowledgements: It’s odd how a city as big and diverse as London can
sometimes work in such small circles. The first time that I ever performed a public
presentation was next to Daniel, and now it feels only fitting that my first large-scale
publication also happens next to him. I was truly excited when I was offered to join
this project, and thankful for the support and mentoring that I have received
throughout. Other organizations have helped me get to this point, among them the
London Java Community, Skills Matter, InfoQ, Equal Experts, and “the usual sus‐
pects,” who have made learning not just possible, but also incredibly fun. Finally, I
need to thank Bea for her patience, for her support, for just being there. Thank you.

Preface | xxiii

CHAPTER 1

Continuous Delivery: Why and What

In this chapter, you will explore the core concepts of continuous delivery and learn
more about the benefits for developers, QA, operations, and business teams. An
important question to ask before embarking on any change in the way you work is
“Why?” Here you will learn how enabling rapid feedback reduces context switching;
how automatic, repeatable, and reliable releases reduce much of the stress and chal‐
lenges with delivering software to customers; and how codifying the definition of
“done” allows rapid verification and facilitates any auditing required. Finally, you will
examine what a typical Java continuous delivery build pipeline looks like and learn
the fundamentals of each stage in the pipeline.

Setting the Scene
Continuous delivery (CD) is fundamentally a set of practices and disciplines in which
software delivery teams produce valuable and robust software in short cycles. Care is
taken to ensure that functionality is added in small increments and that the software
can be reliably released at any time. This maximizes the opportunity for rapid feed‐
back and learning, both from a business and technical perspective. In 2010, Jez Hum‐
ble and Dave Farley published their seminal book Continuous Delivery (Addison-
Wesley), which collated their experiences of deploying software delivery projects
around the world, and this publication is still the go-to reference for CD. The book
contains a valuable collection of techniques, methodologies, and advice from the per‐
spective of both technology and organizations.

Much has changed in the world of software development and delivery over the past
20 years. Business requirements and expectations have changed dramatically, with a
focus on innovation, speed, and time to market. Architects and developers have reac‐
ted accordingly, and new architectures have been designed to support these require‐
ments. New deployment fabrics and platforms have been created and have co-evolved

1

https://continuousdelivery.com/

alongside new methodologies like DevOps, Release Engineering, and Site Reliability
Engineering (SRE). Alongside these changes, a series of best practices for creating a
continuous delivery build pipeline has co-evolved. The core concept is that any can‐
didate change to the software being delivered is built, integrated, tested, and validated
before determining that it is ready for deployment to a production environment.

In this book, you will focus on accomplishing the task of creating an effective build
pipeline for modern Java-based applications, whether you are creating a monolith,
microservices, or “serverless” style function as a service (FaaS) application.

Enabling Developers: The Why
An important questions to ask before undertaking any major task within software
development and your approach to this is “Why?” Why, as a Java developer, should
you invest your valuable time in embracing continuous delivery and creating a build
pipeline?

Rapid Feedback Reduces Context Switching
Feedback is vital when working with complex systems, and nearly all software appli‐
cations are complex adaptive systems. This is especially true of modern component-
based software systems that are deployed to the web, which are essentially distributed
systems. A quick review of the IT press publications over the past 20 years reveals
that software development issues are often discovered only when large (and costly)
failures occur. Continual, rapid, and high-quality feedback provides early opportuni‐
ties to detect and correct errors. This allows the detection and remediation of prob‐
lems while they are smaller, cheaper, and easier to fix.

Rapid Feedback Can Provide a Business Competitive Advantage
In their book Accelerate (IT Revolution Press), Nicole Forsgren, Jez Humble, and
Gene Kim argue that organizations in all industries are moving away from using big
projects with long lead times to small teams that work in short cycles and measure
feedback from users in order to build products that delight customers and rapidly
deliver value. In addition to using metrics for technical concerns, you can also facili‐
tate feedback for the organization by working closely with the business team to iden‐
tify key performance indicators and metrics that can be implemented within the
application.

From a developer’s point of view, one of the clear advantages of rapid feedback is the
reduced cost in context switching and attempting to remember what you were doing
with a piece of code that contains a bug. We don’t need to remind you that it is much

2 | Chapter 1: Continuous Delivery: Why and What

https://itrevolution.com/book/accelerate/

easier to fix an issue that you were working on five minutes ago, rather than one you
were working on five months ago.

Automatic, Repeatable, and Reliable Releases
The build pipeline must provide rapid feedback for the development team in order to
be useful within their daily work cycles, and the operation of the pipeline must be
highly repeatable and reliable. Accordingly, automation is used extensively, with the
goal of 100% automation or as close as you can realistically get to this. The following
items should be automated:

• Software compilation and code-quality static analysis
• Functional testing, including unit, component, integration, and end-to-end
• Provisioning of all environments, including the integration of logging, monitor‐

ing, and alerting hooks
• Deployment of software artifacts to all environments, including production
• Data store migrations
• System testing, including nonfunctional requirements like fault tolerance, perfor‐

mance, and security
• Tracking and auditing of change history

“Shifting Left” Thinking and Testing
You will often hear people talk about “shifting left” processes like security verification
or practices like acceptance testing with continuous delivery. The core idea behind
the shift left is that you move things that are typically done in later stages earlier,
which results in a high-quality implementation or less cost to fix issues that would be
discovered only far into the delivery process. In the examples mentioned here, this
would mean consulting the InfoSec team or performing some threat modeling when
starting to design a new feature, or encouraging developers to implement automated
acceptance testing that runs as part of the pipeline test suite. Continuous delivery can
be a catalyst for this shift, as not only does the pipeline provide a visualization of all
the verification stages involved from code to deployment, but it also provides a
framework to implement automated verification and validation.

With the automation of the release process complete (and repeatable and reliable),
you, as a developer or operator, have confidence in continually releasing new func‐
tionality without causing breakages or regressions. Nothing destroys morale as
quickly as having to rely on an unreliable and flaky deployment process. This leads to
fear in deploying code, which, in turn, encourages teams to batch large amounts of

Enabling Developers: The Why | 3

functionality in a “big bang” release, which ultimately leads to even more problematic
releases. This negative feedback loop must be broken, and the adoption of the contin‐
uous delivery of functionality in small batch sizes (ideally, with single-piece flow) is a
great approach to help encourage this.

Codifying the Definition of “Done”
The fast feedback and automation of the release process is useful for developers in
and of itself. However, another clear advantage of creating a build pipeline is that you
can codify the definition of “done.” When a software component successfully traver‐
ses a build pipeline, this should unequivocally indicate that it is ready to go into pro‐
duction, provide the value planned, and function within acceptable operational
parameters that include availability, security, and cost. Historically, it has been diffi‐
cult for teams to ensure a consistent definition of “done,” and this can be a friction
point between development and business teams within an organization.

Determining Your Goals, Domain Modeling, and User Story Mapping
Although practices like continuous delivery are useful for codifying what “done”
means for you and your organization, you must figure out exactly what should be
built in order to deliver value to your customers:

• The Lean Startup (Currency) by Eric Reis draws on ideas from design thinking,
lean manufacturing, and agile methodologies, and provides guidance on how to
continually innovate by generating and testing business ideas and hypotheses.

• Lean Enterprise (O’Reilly) by Jez Humble et al. builds on work presented by Eric
Reis and many others and presents lean and agile principles and patterns to help
organizations move fast at scale.

• User Story Mapping (O’Reilly) by Jeff Patton with Peter Economy will help clarify
the user journeys within your system, and also help determine the minimal func‐
tionality to support them

• Context mapping, as detailed in Eric Evan’s Domain-Driven Design (Addison-
Wesley Professional), is a valuable technique for understanding the (static)
domain you are working in, and critically, how to model this domain and the
associated interaction within other domains in your codebase.

• Event Storming (Leanpub) by Alberto Brandolini describes a valuable technique
that takes a more dynamic approach to modeling a domain, by determining the
business events that flow through a system.

If you are looking to understand the concept of business value in more detail, we rec‐
ommend The Art of Business Value (IT Revolution Press) by Mark Schwartz.

As we will show in later chapters, the assertion of many functional and nonfunctional
(cross-functional) properties can be codified within a modern Java build pipeline,

4 | Chapter 1: Continuous Delivery: Why and What

http://theleanstartup.com/book
http://shop.oreilly.com/product/0636920030355.do
http://shop.oreilly.com/product/0636920033851.do
http://dddcommunity.org/book/evans_2003/
http://eventstorming.com/
https://itrevolution.com/book/the-art-of-business-value/

including fault tolerance, the absence of known security vulnerabilities, and basic
performance/load characteristics (which, in turn, can support the calculation of cost).

Exploring a Typical Build Pipeline: The What
It is vital that you understand the “what,” or purpose, of each of the core stages within
a continuous delivery pipeline, as the goals and principles are often more important
than specific implementation details (e.g., whether you use Jenkins or CircleCI, JUnit,
or TestNG).

Core Build Pipeline Stages
Figure 1-1 demonstrates a typical continuous delivery build pipeline for a Java-based
application. The first step of the process of CD is continuous integration (CI). Code
that is created on a developer’s laptop is continually committed (integrated) into a
shared version-control repository, and is automatically built and packaged into an
artifact. After CI, the resulting artifact is submitted to a series of automated accept‐
ance and system quality attribute verification stages, before undergoing manual user
acceptance testing and promotion through progressively more production-like envi‐
ronments.

The primary goal of the build pipeline is to prove that any changes to code or config‐
uration are production-ready. A proposed modification can fail at any stage of the
pipeline, and this change will accordingly be rejected and not marked as ready for
deployment to production. Artifacts that do pass all verification steps can be
deployed into production, and this is where both technical and business telemetry
can be collected and used to create a positive feedback loop.

Exploring a Typical Build Pipeline: The What | 5

Figure 1-1. A typical Java continuous delivery (CD) build pipeline

Let’s look at the purpose of each of the pipeline stages in more depth.

Local development
Initially, a developer or engineer makes a change on their local copy of the code. They
may develop new functionality using practices such as behavior-driven development
(BDD), test-driven development (TDD), and other extreme programming (XP) prac‐
tices like pair programming. One of the core goals of this stage is to make the local
development environment as production-like as possible; for example, running
certain tests in a locally installed virtualization- or container-based environment.

6 | Chapter 1: Continuous Delivery: Why and What

Another goal, one that can be challenging with larger applications, is that a local
development should not require all of the system components to be installed and
running in order for a developer to work effectively. This is where design principles
like loose coupling and high cohesion come into play, to test supporting practices like
contract verification, doubles, and service virtualization.

Commit
Developers working locally typically commit their proposed code and configuration
changes to a remotely hosted distributed version control system (DVCS) like Git or
Mercurial. Depending on the workflow that the team or organization has imple‐
mented, this process may require some merging of changes from other branches or
the trunk/master, and potentially discussion and collaboration with other developers
working in the same area of the codebase.

Continuous integration
At this stage of the pipeline, the software application to which a code or configuration
change is being proposed undergoes continuous integration (CI). Using integrated
code stored within the trunk or master branch of a version control system (VCS), an
artifact is built and tested in isolation, and some form of code quality analysis should
be applied, perhaps using tools like PMD, FindBugs, or SonarQube. A successful CI
run results in the new artifact being stored within a centralized repository, such as
Sonatype Nexus or JFrog Artifactory.

Acceptance tests
Code that successfully passes the initial unit and component tests and the code-
quality metrics moves to the right in the pipeline, and is exercised within a larger
integrated context. A small number of automated end-to-end tests can be used to ver‐
ify the core happy paths or user journeys within the application that are essential for
the provision of business value. For example, if you are building an e-commerce
application, critical user journeys most likely include searching for a product, brows‐
ing a product, adding a product to your cart, and checkout and payment.

This is also the stage in which the system quality attributes (also referred to as non‐
functional requirements) are validated. Examples of verifications run here include reli‐
ability and performance, such as load and soak tests; scalability, such as capacity and
autoscaling tests; and security, involving the scanning of code you wrote, the depen‐
dencies utilized, and the verification and scanning of associated infrastructure com‐
ponents.

Exploring a Typical Build Pipeline: The What | 7

User acceptance tests
At this stage, testers or actual users start preforming exploratory testing. This manual
testing should focus on the value of human cognition, and not simply consist of test‐
ers following large test scripts. (The repetitive behavior of validating functionality
from scripts is ideally suited to computers and should be automated.)

Staging
Once a proposed change has passed acceptance tests and other fundamental quality
assurance (QA) tests, the artifact may be deployed into a staging environment. This
environment is typically close to the production environment; in fact some organiza‐
tions do test in a clone of production or the production environment itself. A realistic
quantity of representative data should be used for any automated or exploratory tests
performed here, and integrations with third-party or external systems should be as
realistic as possible; for example, using sandboxes or service virtualization that mim‐
ics the characteristics of the associated real service.

Production
Ultimately, code that has been fully validated emerges from the pipeline and is
marked as ready for deployment into production. Some organizations automatically
deploy applications that have successfully navigated the build pipeline and passed all
quality checks—this is known as continuous deployment—but this is not an essential
practice.

Observing and maintenance
Once code has been deployed to production, you should take care not to forget about
observability—monitoring, logging, and alerting—for both the purposes of enabling
a positive feedback loop for business and technical hypotheses, and for facilitating
potential debugging of issues that occur within production.

Impact of Container Technology
It is increasingly common that software delivery teams are packaging their Java appli‐
cations within container technology like Docker, and this can alter the way tasks such
as local development, artifact packaging, and testing are conducted. Figure 1-2 identi‐
fies four key stages where changes occur:

1. Local development now typically requires the ability to provision a containerized
environment

2. Packaging of the deployment artifact now focuses on the creation of a container
image

8 | Chapter 1: Continuous Delivery: Why and What

3. The mechanism for initializing tests must now interact with and manage the con‐
tainer runtime environment

4. The deployment environments now typically use another layer of abstraction for
the dynamic orchestration and scheduling of containers

Figure 1-2. A Java continuous delivery pipeline that uses container technology

Changes with Contemporary Architectures
Many teams are now also building applications by using the microservices or FaaS
architecture style, and this can require that multiple build pipelines are created, one
for each service or function. With these types of architectures, a series of additional

Exploring a Typical Build Pipeline: The What | 9

integration tests or contract tests are often required in order to ensure that changes to
one service do not affect others. Figure 1-3 shows the impact of container technology
on the build pipeline steps, as well as the challenges of multiple service integration, as
shown by the large shaded arrow.

Figure 1-3. The effect of container technology and the microservices architectural style on
a typical CD build pipeline

Throughout the book, we will look at creating each stage of these types of pipelines,
and share our advice and experience.

Summary
In this introductory chapter, you have learned the core foundations of continuous
delivery and explored the associated principles and practices:

• Continuous delivery (CD) is fundamentally a set of practices and disciplines in
which software delivery teams produce valuable and robust software in short
cycles.

• For developers, CD enables rapid feedback (reducing context switching); allows
automatic, repeatable, and reliable software releases; and codifies the definition
of “done.”

• A CD build pipeline consists of local development, commit, build, code quality
analysis, packaging, QA and acceptance testing, nonfunctional (system quality
attributes) testing, deployment, and observation.

10 | Chapter 1: Continuous Delivery: Why and What

Next you will learn about the evolution of software delivery over the past 20 years,
with a focus on how Java application development has changed, and how some of the
new challenges and risks introduced can be mitigated with continuous delivery. You
will also explore how the ever-changing and evolving requirements, architectural and
infrastructure best practices, and shifting roles within IT are increasingly driving
changes in the skills required for modern software developers.

Summary | 11

CHAPTER 2

Evolution of Java Development

Since the introduction of Java in 1995, much has changed, and in this chapter you will
learn about how this affects your role as a Java developer. Your journey begins with a
brief look back in time in order to understand how Java applications and deployment
platforms have evolved, with a key focus on the impact this has had on the ability to
rapidly and safely deliver new software to production environments. Finally, you will
explore the human and “soft skills” aspect of continuous delivery, which focuses on
increasing the shared responsibility for the creation and operation of software, such
as the approaches of DevOps and Site Reliability Engineering (SRE).

Requirements of Modern Java Applications
Many Java developers have been practicing continuous integration and some form of
continuous delivery for the past decade. Innovative books including Java Power Tools
(O’Reilly) by John Smart provided the guidelines and frameworks to make this possi‐
ble. Technologies have obviously changed within the last 10 years, and so have associ‐
ated programming and architectural styles. In particular, business teams within
organizations have increasingly demanded that IT teams become more flexible and
be capable of rapidly responding to changes in customer preferences and market con‐
ditions.

The emergence of dynamic and programmable compute resources and deployment
platforms, combined with teams and organizations exposing application program‐
ming interfaces (APIs) as products, has resulted in the architectures that Java devel‐
opers are creating to converge toward component/service/function-based
architectures. All of these factors have led to (and, in turn, have been driven by) the
emergence of popular movements such as Agile, Lean, DevOps, cloud computing,
programmable infrastructure, microservices, and serverless or FaaS.

13

The Changing Role of a Developer and Architect: Craftspersonship
Since the 2010s began, the roles of a programmer, developer, and architect have argu‐
ably changed to include more responsibilities. You’ll learn more about this in this
chapter, but if you are keen to dive even deeper into these concepts and how they
relate to your career development, professionalism, and becoming a craftsperson,
then we recommend the following books:

• The Software Craftsman: Professionalism, Pragmatism, Pride (Prentice Hall) by
Sandro Mancuso

• The Clean Coder: A Code of Conduct for Professional Programmers (Prentice Hall)
by Robert C. Martin

• The Passionate Programmer: Creating a Remarkable Career in Software Develop‐
ment (Pragmatic Bookshelf) by Chad Fowler

Need for Business Speed and Stability
During his time as a cloud architect at Netflix, Adrian Cockcroft talked a lot about
“time to market” being a competitive advantage, and in many modern markets “speed
kills.” Uwe Friedrichsen, CTO at codecentric, has also talked extensively about this
trend beginning in the 1980s: globalization, market saturation, and the internet led to
highly competitive and dynamic ecosystems. The markets became highly demand-
driven, and the new biggest challenge of the companies was to adapt to the changing
demands of the customers quickly enough. The key driver changed from cost-
efficient scaling to responsiveness.

Over the same time period, the move to public commodity infrastructure (the cloud)
in combination with increasing transaction value flowing through global computer
systems has meant that new failure modes are being discovered, and new attackers
are emerging from the shadows. This has caused the need to balance stability and
security against the requirement for speed. Often this isn’t an easy balance to main‐
tain.

Continuous delivery is achieved when stability and speed can satisfy business demand.
Discontinuous delivery occurs when stability and speed are insufficient.

—Steve Smith (@AgileSteveSmith)

Accordingly, you now need to create applications that support rapid, safe, and stable
change, and continually ensure that you are meeting these requirements through
automated testing and validation.

14 | Chapter 2: Evolution of Java Development

Rise of the API Economy
APIs are at the core of the internet and a modern developer’s daily life. RESTful serv‐
ices are the de facto way to expose and consume third-party online business services.
However, as stated by Jennifer Riggins when attending the 2017 APIDays conference,
what people might not realize is how much the API will be at the center of the future
technology and part of every connected person’s daily life. APIs will continue to play
a central role in trends like chatbots and virtual assistants, the Internet of Things
(IoT), mobile services, and so much more.

APIs are also being increasingly consumed as “shadow IT” by departments that were
traditionally less “tech-savvy,” like marketing, sales, finance, and human resources.
Mediated APIs—APIs that act as bridges between new and old applications—are
becoming increasingly popular, as they provide adaptations and opportunities for
innovation in businesses that have considerable investment locked within legacy
infrastructure. Gartner, the US-based research and advisory firm, suggests that con‐
cepts such as the API marketplace and the API economy are becoming increasingly
important within the global economy.

As the API marketplace becomes more sophisticated and widespread, the risks for
failure and security issues become more apparent. APIs have made technology more
accessible than ever, which means that enterprise architects, the traditional bastions
of technology adoption, are no longer the gatekeepers for technical decision-making.
Accordingly, this empowers every developer in an organization to innovate, but at the
same time can lead to unintended consequences. It is essential to codify not only
functional requirements for an API—for example, using BDD and automated testing
—but also nonfunctional (or cross-functional) requirements and service-level agree‐
ments (SLAs) related to security, performance, and expected cost. These must be
continually tested and validated, as this has a direct impact on the product being
offered to customers.

Opportunities and Costs of the Cloud
It can be argued that the cloud computing revolution began when Amazon Web Serv‐
ices (AWS) was officially launched in March 2006. Now the cloud computing market
includes other big players like Microsoft Azure and Google Cloud Platform, and gen‐
erates $200+ billion in revenue annually. Cloud computing technologies have brought
many advantages—on-demand hardware, rapid scalability and provisioning, and
flexible pricing—but have also provided many challenges for developers and archi‐
tects. These include the requirements to design for the ephemeral nature of cloud
computing resources, the need to understand the underlying characteristics of a
cloud system (including mechanical sympathy and fault tolerance), and the require‐
ment for an increase in operational and sysadmin knowledge (such as operating sys‐
tems, configuration management, and networking).

Requirements of Modern Java Applications | 15

Developers unfamiliar with cloud technologies must be able to experiment and
implement continuous testing with these deployment fabrics and platforms, and this
must be done in a repeatable and reliable way. Early testing within a build pipeline
using applications deployed on infrastructure and platforms that are as like produc‐
tion as possible is essential to ensure that assumptions on performance, fault toler‐
ance, and security are valid.

Modularity Redux: Embracing Small Services
The combination of the need for speed from the business, the adoption of REST-like
APIs, and the emergence of cloud computing has provided new opportunities and
challenges to software architecture. Core topics in this space include the scaling of
both the organizational aspects of developing software (e.g., Conway’s law) and the
technical aspects (e.g., modularization), as well as the requirement to deploy and
operate parts of the codebase independently of each other. Much of this has been
incorporated within the emerging architectural pattern known as the microservices.

This book discusses the drivers and core concepts of microservices in Chapter 3 and
explores how this helps and hinders the implementation of CD. A further introduc‐
tion to microservices can be found in Christian Posta’s Microservices for Java Develop‐
ers (O’Reilly), and a more thorough treatment can be found in Sam Newman’s
Building Microservices (O’Reilly) and Irakli Nadareishvili et al.’s Microservice Architec‐
ture (O’Reilly). At a high level, the building of Java-based microservices impacts the
implementation of CD in several ways:

• Multiple build pipelines (or branches within a single pipeline) must be created
and managed.

• Deployment of multiple services to an environment have to be orchestrated,
managed, and tracked.

• Component testing may have to mock, stub, or virtualize dependent services.
• End-to-end testing must orchestrate multiple services (and associated state)

before and after executing tests.
• Process must be implemented to manage service version control (e.g., the

enforcement of allowing the deployment of only compatible, interdependent
services).

• Monitoring, metrics, and application performance management (APM) tooling
must be adapted to handle multiple services.

Decomposing an existing monolithic application, or creating a new application that
provides functionality through a composite of microservices, is a nontrivial task.
Techniques such as context mapping, from domain-driven design, can help develop‐
ers (working alongside stakeholders and the QA team) understand how application/

16 | Chapter 2: Evolution of Java Development

business functionality should be composed as a series of bounded contexts or focused
services. Regardless of how applications are composed, it is still vitally important that
both individual components and the system as a whole are continually being integra‐
ted and validated. The need for continuous delivery only increases as more and more
components are combined, as it becomes nearly impossible to manually reason about
their combined interactions and functionality.

Impact on Continuous Delivery
Hopefully, this exploration of the requirements of modern Java applications has high‐
lighted the benefits—and in some cases, the essential need—of continuous delivery to
ensure that software systems provide the required functionality. The changing
requirements, infrastructure, and architectural styles are just parts of the puzzle,
though. At the same time, new platforms have emerged that have either codified sev‐
eral of the architectural best practices or have attempted to help address some of the
same problems.

Evolution of Java Deployment Platforms
Java has an amazing history, and not many languages that are still relevant today can
claim to have been used for more than 20 years. Obviously, during this time, the lan‐
guage has evolved itself, partly to continually drive improvement and developer pro‐
ductivity, and partly to meet the requirements imposed by new hardware and
architectural practices. Because of this long history, there are now a multitude of ways
to deploy Java applications into production.

WARs and EARs: The Era of Application Server Dominance
The native packaging format for Java is the Java Application Archive (JAR) file, which
can contain library code or a runnable artifact. The initial best-practice approach to
deploying Java Enterprise Edition (J2EE) applications was to package code into a ser‐
ies of JARs, often consisting of modules that contain Enterprise JavaBeans (EJB) class
files and EJB deployment descriptors. These were further bundled up into another
specific type of JAR with a defined directory and structure and required metadata file.

The bundling resulted in either a Web Application Archive (WAR)—which consisted
of servlet class files, JSP files, and supporting files—or an Enterprise Application
Archive (EAR) file—which contained all the required mix of JAR and WAR files for
the deployment of a full J2EE application. As shown in Figure 2-1, this artifact was
then deployed into a heavyweight application server (commonly referred to at the
time as a “container”) such as WebLogic, WebSphere, or JBoss EAP. These application
servers offered container-managed enterprise features such as logging, persistence,
transaction management, and security.

Evolution of Java Deployment Platforms | 17

Figure 2-1. The initial configuration of Java applications used WAR and EAR artifacts
deployed into an application server that defined access to external platform services via
JNDI

Several lightweight application servers also emerged in response to changing devel‐
oper and operational requirements, such as Apache Tomcat, TomEE, and Red Hat’s
Wildfly. Classic Java Enterprise applications and service-oriented architecture (SOA)
were also typically supported at runtime by the deployment of messaging middle‐
ware, such as enterprise service buses (ESBs) and heavyweight message queue (MQ)
technologies.

Executable Fat JARs: Emergence of Twelve-Factor Apps
With the emergence of the next generation of cloud-friendly service-based architec‐
tures and the introduction of open source and commercial platform-as-a-service
(PaaS) platforms like Google App Engine and Cloud Foundry, deploying Java applica‐
tions by using lightweight and embedded application servers became popular, as
shown in Figure 2-2. Technologies that emerged to support this included the in-
memory Jetty web server and later editions of Tomcat. Application frameworks such
as DropWizard and Spring Boot soon began providing mechanisms through Maven
and Gradle to package (for example, using Apache Shade) and embed these applica‐
tion servers into a single deployable unit that can run as a standalone process—the
executable fat JAR was born.

18 | Chapter 2: Evolution of Java Development

Figure 2-2. The second generation of Java application deployment utilized executable fat
JARs and followed the principles of the Twelve-Factor App, such as storing configuration
within the environment

The best practices for developing, deploying, and operating this new generation of
applications was codified by the team at Heroku as the Twelve-Factor App.

Container Images: Increasing Portability (and Complexity)
Although Linux container technology had been around for quite some time, the cre‐
ation of Docker in March 2013 brought this technology to the masses. At the core of
containers is Linux technologies like cgroups, namespaces, and a (pivot) root filesys‐
tem. If fat JARs extended the scope of traditional Java packaging and deployment
mechanisms, containers have taken this to the next level. Now, in addition to packag‐
ing your Java application as a fat JAR, you must include an operating system (OS)
within your container image.

Because of the complexity and dynamic nature of running containers at scale, the
resulting image is typically run on a container orchestration and scheduling platform
like Kubernetes, Docker Swarm, or Amazon ECS, as shown in Figure 2-3.

Evolution of Java Deployment Platforms | 19

https://12factor.net/

Figure 2-3. Deploying Java applications as fat JARs running within their own name‐
spaced container (or pod) requires developers to be responsible for packaging an OS
within container images

Function as a Service: The Emergence of “Serverless”
In November 2014, Amazon Web Services launched a preview of AWS Lambda at its
global re:Invent conference, held annually in Las Vegas. Other vendors followed suit,
and in 2016 Azure Functions and Google Cloud Functions were released in preview.
As shown in Figure 2-4, these platforms lets developers run code without provision‐
ing or managing servers; this is commonly referred to as “serverless,” although FaaS is
a more correct term, as serverless offerings are actually a superset of FaaS, which also
includes other backend as a service (BaaS) offerings like blob storage and NoSQL
data stores. With FaaS, servers are still required to run the functions that make up an
application, but the focus is typically on reducing the operational burden of running
and maintaining the function’s underlying runtime and infrastructure. The develop‐
ment and billing model is also unique in that functions are triggered by external
events—which can include a timer, a user request via an attached API gateway, or an
object being uploaded into a blobstore—and you pay for only the time your function
runs and the memory consumed.

20 | Chapter 2: Evolution of Java Development

Figure 2-4. Deploying Java applications via the FaaS model. Code is packaged within a
JAR or ZIP, which is then deployed and managed via the underlying platform (that typi‐
cally utilizes containers).

Both AWS Lambda and Azure Functions offer support for Java, and you now return
back to the deployment requirement for a JAR or ZIP file containing Java code to be
uploaded to the corresponding service.

Impact of Platforms on Continuous Delivery
Developers often ask whether the required platform packaging format of the applica‐
tion artifacts affect the implementation of continuous delivery. Our answer to this
question, as with any truly interesting question, is, “It depends.” The answer is yes,
because the packaging format clearly has an impact on the way an artifact is built, tes‐
ted, and executed: both from the moving parts involved and the technological imple‐
mentation of a build pipeline (and potential integration with the target platform).
However, the answer is also no, because the core concepts, principles, and assertions
of continuously delivering a valid artifact remain unchanged.

Throughout this book, we demonstrate core concepts at an abstract level, but will also
provide concrete examples, where appropriate, for each of the three most relevant
packaging styles: fat JARs, container images, and FaaS functions.

Evolution of Java Deployment Platforms | 21

DevOps, SRE, and Release Engineering
Over the last 10 years, we have seen roles within software development evolve and
change, with a particular focus on shared responsibility. We’ll now discuss the new
approaches and philosophies that have emerged, and share our understanding of how
this has impacted continuous delivery, and vice versa.

Development and Operations
At the 2008 Agile Toronto conference, Andrew Shafer and Patrick Debois introduced
the term DevOps in their talk on Agile infrastructure. From 2009, the term has been
steadily promoted and brought into more mainstream usage through a series of
“devopsdays” events, which started in Belgium and have now spread globally. It can
be argued that the compound of “development” and “operations”—DevOps no longer
truly captures the spirit of the associated movement or philosophy; potentially, the
term “Businss-Development-QA-Security-Operations” (BizDevQaSecOps) captures
the components better, but this is far too much of a mouthful.

DevOps at its core is a software development and delivery philosophy that emphasi‐
zes communication and collaboration between product management, software devel‐
opment, and operations/sysadmins teams, and close alignment with business
objectives. It supports this by automating and monitoring the process of software
integration, testing, deployment, and infrastructure changes by establishing a culture
(with associated practices) where building, testing, and releasing software can happen
rapidly, frequently, and more reliably.

We are sure many of you reading will think this sounds a lot like the principles of
continuous delivery—and you would be right! However, continuous delivery is just
one tool in the DevOps toolbox. It is an essential and valuable tool, but to truly have
success with designing, implementing, and operating a continuous delivery build
pipeline, there typically needs to be a certain level of buy-in throughout the organiza‐
tion, and this is where the practices associated with DevOps shine.

22 | Chapter 2: Evolution of Java Development

http://www.jedi.be/presentations/IEEE-Agile-Infrastructure.pdf

Figure 2-5. DevOps is a combination of development and operations (and more). Image
taken from web.devopstopologies.com

Keen to Learn More About DevOps?
This book focuses on the technical implementation of continuous delivery. If you are
interested in learning more about DevOps and the associated bigger picture, we rec‐
ommend reading the following:

• The DevOps Handbook (IT Revolution Press) by Gene Kim et al., provides an
excellent overview of all the benefits and challenges of DevOps practices. If you
enjoy reading novels, we also recommend the accompanying The Phoenix Project
(IT Revolution Press).

• Lean Enterprise and Agile IT Organization Design (Addison-Wesley Professional)
by Sriram Narayan are also excellent references on the organizational and pro‐
cess changes that can drive (and to some degree are required for) continuous
delivery.

Site Reliability Engineering
The term Site Reliability Engineering (SRE) was made popular by the book of the
same name that was written by the SRE team at Google. In an interview with Niall
Richard Murphy and Benjamin Treynor Sloss, both of whom worked within the engi‐
neering division at Google, they stated that fundamentally SRE is what happens when
you ask a software engineer to design an operations function: “using engineers with

DevOps, SRE, and Release Engineering | 23

https://web.devopstopologies.com/
http://itrevolution.com/devops-handbook
https://itrevolution.com/book/the-phoenix-project/
http://shop.oreilly.com/product/0636920030355.do
https://info.thoughtworks.com/download-agile-it-organization-design.html
https://landing.google.com/sre/book.html
https://landing.google.com/sre/interview/ben-treynor.html

software expertise, and banking on the fact that these engineers are inherently both
predisposed to, and have the ability to, substitute automation for human labor.”

In general, an SRE team is responsible for availability, latency, performance, effi‐
ciency, change management, monitoring, emergency response, and capacity plan‐
ning. This overlap with DevOps and pure operational concerns can be seen in
Figure 2-6. However, a key characteristic of SRE teams at Google is that each engineer
should be doing only a maximum of 50% operations work, or “toil” as they refer to it,
and the rest of their time should be spent designing and building systems and the
supporting tooling. At Google, this split between workloads is continually measured
and reviewed regularly. SRE teams at Google are a scarce and valuable resource, and
development teams typically have to create a case for SRE support on their projects,
particularly in the early proof-of-concept stage with a product.

Google has institutionalized responses to providing SRE support, with processes like
the Production Readiness Review (PRR). The PRR helps to avoid getting into a bad
situation where the development teams are not incentivized to create production-
ready software with a low operational load by examining both the system and its
characteristics before taking it on, and also by having shared responsibility.

Figure 2-6. SRE and DevOps. Image taken from web.devopstopologies.com

The Google SRE team has also talked extensively about the way it monitors systems.
A classic approach to monitoring is to watch a value or a condition, and when the
monitoring system observes something interesting, it sends an email. However, email
is not the right approach for this; if you are requiring a human to read the email and
decide whether something needs to be done, the Google team SRE believes you are

24 | Chapter 2: Evolution of Java Development

https://landing.google.com/sre/book/chapters/evolving-sre-engagement-model.html
https://web.devopstopologies.com/

making a mistake. Ideally, a human never interprets anything in the alerting domain.
Interpretation is done by the software you write. You just get notified when you need
to take action. Accordingly, the SRE book states that there are only three kinds of
valid monitoring output:

Alerts
These indicate that a human must take action right now. Something is happening
or about to happen, and a human needs to take action immediately to improve
the situation.

Tickets
A human needs to take action but not immediately. You have maybe hours, typi‐
cally, days, but some human action is required.

Logging
No one ever needs to look at this information, but it is available for diagnostic or
forensic purposes. The expectation is that no one reads it.

This information is important, because as developers, we must implement appropri‐
ate logging and metrics within our systems. This also must be tested as part of a con‐
tinuous delivery pipeline.

Want to Learn More About SRE?
An increasing number of good books are being written that explore the concepts and
practices behind SRE. We recommend the following:

• Site Reliability Engineering (O’Reilly) by Betsy Beyer et al.
• The Site Reliability Workbook: Practical Ways to Implement SRE (O’Reilly) by

Betsy Beyer et al.
• Seeking SRE: Conversations About Running Production Systems at Scale (O’Reilly)

by David Blank-Edelman

Release Engineering
Release engineering is a relatively new and fast-growing discipline of software engi‐
neering that can be described as building and delivering software. Release engineers
focus on building a continuous delivery pipeline and have expert understanding of
source code management, compilers, automated build tools, package managers,
installation, and configuration management. According to the Google SRE book, a
release engineer’s skill set includes deep knowledge of multiple domains: develop‐
ment, configuration management, test integration, system administration, and cus‐
tomer support.

DevOps, SRE, and Release Engineering | 25

http://bit.ly/2QYemAR

The Google SRE workbook builds on the required skillset, and presents the basic
principles of release engineering as follows:

• Reproducible builds
• Automated builds
• Automated tests
• Automated deployments
• Small deployments

We’re sure you can see the similarity between these principles and those of continu‐
ous delivery. Even the additional operator-focused principles discussed are under‐
standable to developers: reducing operational load on engineers by removing manual
and repetitive tasks; enforcing peer review and version control; and establishing con‐
sistent, repeatable, automated processes to minimize mistakes.

The success of release engineering within an organization is highly correlated with
the successful implementation of a build pipeline, and typically consists of metrics
focused on time taken for a code change to be deployed to production, the number of
open bugs, the percentage of successful releases, and the percentage of releases that
were abandoned or aborted after they began. Steve Smith has also talked extensively
in his book Measuring Continuous Delivery (Leanpub) about the need to collect, ana‐
lyze, and take action based on these metrics.

Shared Responsibility, Metrics, and Observability
If you work within a team at a large enterprise company, the concepts of DevOps,
SRE, and release engineering may appear alien at first glance. A common pushback
from such teams is that these approaches work for only the “unicorn” companies like
Google, Facebook, and Amazon, but in reality these organizations are blazing a trail
that many of us are now following. For example, Google was the first to embrace con‐
tainerization to facilitate rapid deployment and flexible orchestration of serv‐
ices; Facebook promoted the use of a monorepo to store code, and released associated
open source build tooling that is now used extensively; and Amazon drove the
acceptance of exposing internal service functionality only via well-defined APIs.

Although you should never “cargo cult,” or blindly copy only the things or results you
can, you can learn much from their approaches and processes. The key trends dis‐
cussed in the previous sections also have a direct impact on the implementation of
continuous delivery:

• Increasing shared responsibility across development, QA, and operations (and
arguably the entire organization) is essential for the successful adoption of con‐
tinuous delivery.

26 | Chapter 2: Evolution of Java Development

https://leanpub.com/measuringcontinuousdelivery

• The definition, capture, and analysis of software build, deployment, and opera‐
tion metrics are vital to continuous delivery. They help the organization under‐
stand where it currently is and what success will look like, and assist in charting
and monitoring the journey toward this.

• Automation is essential for reliably building, testing, and deploying software.

Netflix’s Full Cycle Developers
Netflix, a rapidly growing, global video-streaming company, has presented at many
conferences about the way it builds and operates software based on the concepts of
freedom and responsibility. In May 2018, the Netflix Technology Blog described how
many Netflix engineers are encouraged to work as full cycle developers. They are
responsible for certain operational aspects of service delivery in addition to the
designing and building. Several other organizations have discussed similar ideas, and
the blog post is worth reading if you want to understand the challenges and benefits
of this approach, as well as the support systems and training required to make this
work.

Several luminaries within the Java space have been discussing the need for Java devel‐
opers to broaden their skillset, and Ben Evan’s and Martijn Verburg’s The Well-
Grounded Java Developer (Manning) is a good place to start.

Summary
In this chapter, you have explored the evolution of Java architecture, deployment
platforms, and the associated organizational and role changes within IT:

• Modern software architecture must adapt to meet the changing requirements
from the business of speed and stability, and implementing an effective continu‐
ous delivery pipeline is a core part of delivering and verifying this.

• Java deployment packages and platforms have changed over the years, from
WARs and EARs deployed onto application servers, through to fat (runnable)
JARs deployed in the cloud or PaaS, and ultimately to container images deployed
into container orchestration or FaaS platforms. A continuous delivery pipeline
must be built to support your specific platform.

• The focus on shared responsibility over the last 10 years—through DevOps, SRE,
and release engineering—has increased your responsibilities as a developer
implementing continuous delivery. You must now implement continual testing
and observability within the software you write.

Summary | 27

http://bit.ly/2N6Nzzb

In the next chapter, you will explore how to design and implement an effective soft‐
ware architecture that supports the implementation of continuous delivery.

28 | Chapter 2: Evolution of Java Development

CHAPTER 3

Designing Architecture for
Continuous Delivery

Now that you have been introduced to the motivations for continuous delivery, you
are ready to explore the technical foundations to enable this practice: software archi‐
tecture. In this chapter, you will learn about the importance of designing systems that
are loosely coupled and have high cohesion, and the associated technical and business
costs if these guidelines aren’t followed. You will be introduced to the importance of
designing effective APIs, how cloud computing has impacted software architecture,
and why many Java developers are embracing service-oriented development. The key
goal of this chapter is for you to understand how to create and cultivate an architec‐
ture that supports continuously delivering Java applications.

Fundamentals of Good Architecture
The Software Engineering Institute (SEI) defines software architecture as “the set of
structures needed to reason about the system, which comprises software elements,
relations among them, and properties of both.” Although this may at first glance
appear quite abstract, the mention of structures, elements, and properties is core to
what the majority of software engineers think of as architecture. Taking a slightly dif‐
ferent perspective, it is quite possible that you can relate to Martin Fowler’s definition
that software architecture consists of the “things that people perceive as hard to
change.” Regardless of which definition you prefer, several properties of a software
system are fundamental to creating fit-for-purpose architecture.

29

http://www.sei.cmu.edu/architecture/
https://youtu.be/DngAZyWMGR0

Additional Architecture Resources
Many books have been written on software architecture, but some of them are, how
do we say, a little dry. However, this shouldn’t put you off; there are many lessons to
be learned here. If you are keen to learn more about software architecture, we recom‐
mend the following books, which are very much fun to read:

• Building Evolutionary Architectures (O’Reilly) by Neal Ford et al.
• 97 Things Every Software Architect Should Know (O’Reilly) edited by Richard

Monson-Haefel
• Software Architecture for Developers (Leanpub) by Simon Brown
• Just Enough Software Architecture (Marshall & Brainerd) by George Fairbanks

Loose Coupling
A loosely coupled system is one in which each of its components has, or makes use of,
little or no knowledge of the definitions of other separate components. The obvious
advantage is that components within a loosely coupled system can be replaced with
alternative implementations that provide the same functionality. Loose coupling
within programming is often interpreted as encapsulation—or information-hiding—
versus nonencapsulation.

Within the Java programming language, this can be seen in primarily two places.
First, method signatures utilize interface types versus concrete class types; the former
makes extending applications much easier by loosely coupling and deferring the
choice of concrete class until runtime. Second, JavaBeans or Plain Old Java Objects
(POJOs) getters and setters (accessors and mutators), which enable hiding and con‐
trolling the access to internal state, give you much more control in making changes to
the internals of the class.

At the application or service level, loose coupling is typically achieved through well-
defined and flexible component interfaces; for example, using REST contracts (e.g.,
Pact or Spring Cloud Contract) with JSON over HTTP/S; using an interface defini‐
tion language (IDL) such as gRPC, Thrift, or Avro; or messaging via RabbitMQ or
Kafka. Examples of tight coupling include Java RMI, where domains objects are
exchanged in the native Java serialization format.

30 | Chapter 3: Designing Architecture for Continuous Delivery

Architecture Capabilities
In the book Accelerate (IT Revolution Press), authors Nicole Forsgren, Jez Humble,
and Gene Kim identify a series of capabilities from their work on the State of DevOps
surveys. These key capabilities drive improvements in software delivery performance
in a statistically significant way. Two important architecture capabilities identified
include using a loosely coupled architecture (this enables teams to work independ‐
ently, and deploying and testing require less orchestration in comparison to a highly
coupled system) and architecting for empowered teams (this allows teams to choose
which tools to use to become better at continuous delivery).

In the State of DevOps Report 2017, also written by the same authors, the research
showed that the strongest predictor of continuous delivery is loosely coupled archi‐
tectures (alongside loosely coupled teams).

High Cohesion
Cohesion refers to the degree to which the elements within a component belong
together, and can be thought of within programming as the measure of strength of
the relationship between pieces of functionality within a given module or class. Mod‐
ules with high cohesion tend to be preferable, because high cohesion is associated
with several desirable traits of software, including robustness, reliability, reusability,
and understandability. In contrast, low cohesion is associated with undesirable traits
such as being difficult to maintain, test, reuse, or even understand. A good example in
the Java language can be found within the java.util.concurrent package, which con‐
tains classes that cohesively offer functions related to concurrency. The classic Java
counterexample is the java.util package itself, which contains functions that relate to
concurrency, collections, and a scanner for reading text input; these functions are
clearly not cohesive.

At the application and service level, the level of cohesion is often evident by the inter‐
face exposed. For example, if a User service exposed functionality related only to
working with application Users, such as add new User, update contact email address,
or promote the User’s customer loyalty tier, this would be highly cohesive. A counter
example would include a User service that also offered functionality to add items to
an e-commerce shopping basket, or a payment API that also allowed stock informa‐
tion to be added to the system.

Coupling, Cohesion, and Continuous Delivery
Applications with a loosely coupled and highly cohesive architecture are easier to
continuously deliver. Therefore, you should strive to design and evolve systems with
this in mind. A good architecture facilitates CD through the following mechanisms:

Fundamentals of Good Architecture | 31

https://puppet.com/resources/whitepaper/state-of-devops-report
http://bit.ly/2DwCKXB
http://bit.ly/2QbkMey

Design
During the design phase of a new or evolving system, having clear and well-
defined interfaces specified throughout the system allows for loose coupling and
high cohesion. This, in turn, makes it easier to reason about the system. When
given new requirements for a specific area of functionality, a highly cohesive sys‐
tem immediately directs you to where the work should take place, as an alterna‐
tive to you having to trawl through the code of several multifunctional modules
with low cohesion. Loose coupling allows you to change design details of an
application (perhaps in order to reduce resource consumption) with a significant
reduction in concern that you will impact other components within the overall
system.

Build, unit, and integration test
A highly cohesive service or module facilitates dependency management (and the
associated testing), as the amount of functionality offered is limited within scope.
Unit testing, mocking, and stubbing is also much easier in a loosely coupled sys‐
tem, as you can simply swap configurable synthetic test doubles in for the real
thing when testing.

Component test
Components that are highly cohesive lead to easy-to-understand test suites, as
the context needed by developers in order to grok the tests and assertions is gen‐
erally limited. Loose coupling of components allows external dependencies to be
easily simulated or virtualized as required.

End-to-end test
Systems that are loosely coupled and highly cohesive are easier to orchestrate
when performing end-to-end tests. Highly coupled systems tend to share data
sources, which can make the curation of realistic test data fiendishly difficult.
When the inevitable issues do occur with end-to-end testing, a highly cohesive
system will generally be much easier to diagnose and debug, as functionality is
logically grouped in relation to theme.

Deployment
Applications and services that are loosely coupled are generally easy to deploy in
a continuous fashion, because each service has little or no knowledge of others.
Highly coupled services typically have to be deployed in lockstep (or sequen‐
tially) because of the tight integration of functionality, which makes the process
time-consuming and error prone. Highly cohesive services typically minimize
the number of subsystems that have to be deployed in order to release new func‐
tionality, and this results in fewer artifacts being pushed down the pipeline,
reducing resource consumption and coordination.

32 | Chapter 3: Designing Architecture for Continuous Delivery

Observability
A cohesive service is easy to observe and comprehend. Imagine you have a ser‐
vice that performs five unrelated tasks, and suddenly your production monitor‐
ing tool alerts you to high CPU usage. It will be difficult to understand which
functionality is causing the issue. A highly coupled application is often difficult to
diagnose when things inevitably go wrong, as failures can cascade throughout the
system, which, in turn, obfuscate the underlying causes.

With this foundational guidance in place, let’s now take a look at designing applica‐
tions that provide business value by using modern architectural themes and practices.

Building Maintainable Software
If you are keen to learn more about how these architecture principles relate to creat‐
ing maintainable code, we recommend reading Building Maintainable Software, Java
Edition (O’Reilly) by Gijs Wijnholds et al.

Architecture for Business Agility
If you have ever worked on a large-scale software system that is continually being
driven by new functional requirements, you will most likely at some point have bum‐
ped into a limiting factor imposed by the system architecture. This is almost inevita‐
ble because of the increased focus in the business world on short-term gains versus
long-term investment, and unforeseen changes in both the business and the develop‐
ment of the technological landscape. Software architecture also tends to evolve over
time within many companies, with occasional refactoring sprints being allocated to
teams in order to prop up major issues, or in the worst case, little attention being paid
until a “big bang” rewrite is forced. Continuous delivery can be used to monitor and
enforce certain architectural properties, but you have to understand the principles of
how architecture relates to business value, and then design applications and process
accordingly.

Bad Architecture Limits Business Velocity
If a business has no well-defined architecture to its systems, it is much harder to
properly assess the cost of doing something in a well-defined time frame. The “mess”
of your architecture creates excessive costs and missed opportunities. This can have
really bad competitive consequences, as the overhead incurred can increase dramati‐
cally, depending on the number of systems and overall complexity. Often developers
and architects find it difficult to convince nontechnical management of these issues.
Although empathy must be developed by both sides, one analogy that spans disci‐
plines is building a house from a complete plan with the intended usage versus start‐

Architecture for Business Agility | 33

ing from an empty plot of land and adding rooms and floors as you go along and
watching how the building is being used. Just as it would be much easier to design
and build a house with the intended usage in mind from day one, the same conclu‐
sion can be drawn for designing and building software.

The other hidden cost with a lack of architectural quality is that an inordinate
amount of time is spent patching systems rather than innovating. If more time is
spent playing software bug whack-a-mole than actually creating new features, you
know you have a rotten architecture. Good software architectures encourage the pro‐
duction of bug-free software and guard against the negative consequences of a bug;
well-architected systems “contain” the error, and through their structure provide
mechanisms to overcome any problems caused with minimal cost. Good architecture
also encourages greater innovation, as it is clearer what needs doing to support inno‐
vation on top of it. In addition, good architecture in itself can be a catalyst for innova‐
tion. You might see gaps or opportunities that would have otherwise been hidden.

Although the continual monitoring and analysis of architectural qualities in relation
to business value is somewhat orthogonal to the implementation of continuous deliv‐
ery, the creation of a build pipeline can be an effective way to introduce the capture of
relevant metrics. Tools such as SonarQube can be woven into the build process and
used to show cohesion, coupling, and complexity hotspots within the code and also
report high-level complexity metrics such as cyclomatic complexity (the quantitative
measure of the number of linearly independent paths through a program’s source
code) and the design structure quality index (DSQI) (an architectural design metric
used to evaluate a computer program’s design structure and the efficiency of its
modules).

Additional tooling, such as Adam Tornhill’s Code Maat, can also mine and analyze
data from version-control systems, and show areas of the codebase that are regularly
churning. This can demonstrate to the business that spending time and money on
improving the architecture will facilitate understanding within these high-churn
areas of the code, and, in turn, provide a high return on investment.

Complexity and Cost of Change
A typical mature or legacy architecture usually consists of a mix of technologies,
often based on frameworks that were popular at the time of construction and the
experiences of the engineers involved. This is where such a lack of structure (or an
overly complex structure) in the architecture can greatly impact an organiza‐
tion; instead of having to consider just one technology when making changes, you
end with a forest of interconnecting technologies in which no one person or team is
the subject-matter expert. Making any change is a risky undertaking with a lot of
inherent cost. If you compare this to an organization that has been careful to keep its

34 | Chapter 3: Designing Architecture for Continuous Delivery

architectural complexity under control, its costs of change could be a fraction of that
experienced by its “complex” competitor.

Some organizations have fine-tuned management of their technical complexity and
architecture to such a point that they are able, with complete confidence, to ship live
multiple updates each day. The end result is that the organization with a complex
architecture cannot keep pace with its more technically lean rival; this can result in a
“death by a thousand paper cuts” with many delayed and failed features and bug fixes.

A well-defined software architecture assists the management of complexity by show‐
ing and tracking the following:

• The real interdependencies between systems
• What system holds which data and when
• The overall technical complexity in terms of operating systems, frameworks,

libraries, and programming languages used

Many of these properties can be verified and monitored within a good continuous
delivery pipeline.

Best Practices for API-Driven Applications
All software applications expose APIs somewhere within the system, from the inter‐
nal classes, packages, and modules, to the external systems interface. Since 2008,
there has been an increase in APIs being seen as software products themselves: just
look at the prevalence of SaaS-based API offerings like Google Maps, Stripe pay‐
ments, and the Auth0 authentication API. From a programmer’s perspective, an API
that is easy to work with must be highly cohesive and loosely coupled, and the same
applies for integrating API-based services into the CD pipeline.

Build APIs “Outside-In”
A good API is typically designed outside-in, as this is the best way to meet user
requirements without overly exposing internal implementation details. One of the
challenges with classical SOA was that APIs were often designed inside-out, which
meant that the interface presented “leaked” details on the internal entities and func‐
tions provided. This broke the principle of encapsulating data, and, in turn, meant
that services integrating with other services were highly coupled as they relied on
internal implementation details.

Many teams attempt to define a service API up front, but in reality the design process
will be iterative. A useful technique to enable this iterative approach is the BDD
technique named The Three Amigos, where any requirement should be defined with at
least one developer, one QA specialist, and one project stakeholder present. The typi‐

Best Practices for API-Driven Applications | 35

cal outputs from this stage of the service design process include a series of BDD-style
acceptance tests that assert component-level (single microservice) requirements, such
as Cucumber Gherkin syntax acceptance test scripts; and an API specification, such
as a Swagger or RAML file, which the test scripts will operate against.

We also recommend that each service has basic (happy path) performance test scripts
created (for example, using Gatling or JMeter) and security tests (for example, using
bdd-security). These service-level component tests can then be run continuously
within the build pipeline, and will validate local microservice functional and non‐
functional requirements. Additional internal resource API endpoints can be added to
each service, which can be used to manipulate the internal state for test purposes or
to expose metrics.

Good APIs Assist Continuous Testing and Delivery
The benefits to the CD process of exposing application or service functionality via a
well-defined API include the following:

• Easier automation of test fixture setup and teardown via internal resource end‐
points (and this limits or removes the need to manipulate state via filesystem or
data store access).

• Easier automation of specification tests (e.g., REST Assured). Triggering func‐
tionality through a fragile UI is no longer required for every test.

• API contracts can be validated automatically, potentially using techniques like
consumer contracts and consumer-driven contracts (e.g., Pact-JVM).

• Dependent services that expose functionality through an API can be efficiently
mocked (e.g., WireMock), stubbed (e.g., stubby4j), or virtualized (e.g., Hoverfly).

• Easier access to metrics and monitoring data via internal resource endpoints
(e.g., Codahale Metrics or Spring Boot Actuator).

The popularity of APIs has increased exponentially in recent history, but with good
reason, and embracing good architectural practices around this clearly makes imple‐
menting continuous delivery much easier.

Deployment Platforms and Architecture
In 2003, the deployment options for enterprise Java applications were relatively limi‐
ted, consisting of mostly heavyweight application servers that attempted to provide
cross-cutting platform concerns such as application life cycle management,
configuration, logging, and transaction management. With the emergence of cloud
computing from Amazon Web Services (AWS), Google Cloud Platform (GCP), and
Microsoft Azure; platform-as-a-service (PaaS) offerings, such as Heroku, Google App

36 | Chapter 3: Designing Architecture for Continuous Delivery

https://www.continuumsecurity.net/bdd-security/

Engine, and Cloud Foundry; and container-as-a-service (CaaS) offerings like Kuber‐
netes, Mesos, and Docker Swarm, there are now a lot more choices for Java develop‐
ers. As the underlying deployment fabrics and platforms have changed, so too have
the associated architectural best practices.

Designing Cloud-Native “Twelve-Factor” Applications
In early 2012, PaaS pioneer Heroku developed the Twelve-Factor App, a series of
rules and guidance for helping developers build cloud-ready PaaS applications that:

• Use declarative formats for setup automation, to minimize time and cost for new
developers joining the project

• Have a clean contract with the underlying operating system, offering maximum
portability between execution environments

• Are suitable for deployment on modern cloud platforms, minimizing the need
for servers and systems administration

• Minimize divergence between development and production, enabling continu‐
ous deployment for maximum agility

• Can scale up without significant changes to tooling, architecture, or development
practices

Independent Systems Architecture Principles
Closely related to the Twelve-Factor App, but with more focus on architecture, are the
Independent Systems Architecture Principles. These are a collection of best practices
based on experience with microservices and self-contained systems (SCS) in particu‐
lar and the challenges faced in those projects.

Let’s look briefly at each of the factors now, and see how they map to continuously
deploying Java applications:

1. Codebase: one codebase tracked in revision control, many deploys
Each Java application (or service) should be tracked in a single, shared code
repository. Deployment configuration files, such as scripts, Dockerfiles, and Jen‐
kinsfiles, should be stored alongside the application code.

2. Dependencies: explicitly declare and isolate dependencies
Dependencies are commonly managed within Java applications by using build
tooling such as Maven or Gradle, and OS-level dependencies should be clearly
specified in the associated virtual machine (VM) image manifest, Dockerfile, or
serverless configuration files.

Deployment Platforms and Architecture | 37

https://12factor.net/
https://isa-principles.org

3. Config: store config in the environment
The Twelve-Factor App guidelines suggest that configuration data should be
injected into an application via environment variables. In practice, many Java
developers prefer to use configuration files to manage these variables, and there
can be potential security issues with exposing secrets via environment variables,
particularly when building VMs or containers that contain secrets.

Storing nonsensitive configuration data in a remote service like Spring Cloud
Config (backed by Git or Consul) and secrets in a service like HashiCorp’s Vault
can be a good compromise between the Twelve-Factor recommendations and
current best practices.

4. Backing services: treat backing services as attached resources (typically consumed over
the network)

Java developers are accustomed to treating data stores and middleware in this
fashion, and in-memory substitutes (e.g., HSQLDB, Apache Qpid, and Stubbed
Cassandra) or service virtualization (e.g., Hoverfly and WireMock) can be used
for in-process component testing within the build pipeline.

5. Build, release, run: strictly separate build and run stages
For a compiled language such as Java, this guideline comes as no surprise (and
with little choice of implementation). It is worth mentioning that the flexibility
provided by VM and container technology means that separate artifacts can be
used to build, test, and run the application, each configured as appropriate. For
example, a deployment artifact can be created for build and test with a full OS,
JDK, and diagnostic tools; and an artifact can be built for running an application
in production with only a minimal OS and JRE.

However, we see this as an anti‐pattern, as there should be only one artifact cre‐
ated that is the “single source of truth” that is pushed along the build pipeline.
Using multiple artifacts can easily lead to configuration drift, in which the devel‐
opment and production artifacts have a subtly different configuration that can
cause issues and make debugging challenging.

6. Processes: execute the app as one or more stateless processes
Building and running a Java application as a series of microservices can be made
easier by using VM images, container images, or serverless functions.

7. Port binding: export services via port binding
Java developers are used to exposing application services via ports (e.g., running
an application on Jetty or Apache Tomcat).

8. Concurrency: scale out via the process model
Traditional Java applications typically take the opposite approach to scaling, as
the JVM runs as a giant “uberprocess” that is often vertically scaled by adding
more heap memory, or horizontally scaled by cloning and load-balancing across

38 | Chapter 3: Designing Architecture for Continuous Delivery

multiple running instances. However, the combination of decomposing Java
applications into microservices and running these components within VMs, con‐
tainers, or serverless runtimes can enable this approach to scalability. Regardless
of the approach taken to implement scalability, this should be tested within the
build pipeline.

9. Disposability: maximize robustness with fast startup and graceful shutdown
This can require a mindset shift with developers who are used to creating a tradi‐
tional long-running Java application, where much of the expense of application
configuration and initialization was front-loaded in the JVM/application startup
process. Modern, container-ready applications should utilize more just-in-time
(JIT) configuration, and ensure that best efforts are taken to clean up resource
and state during shutdown.

10. Dev/prod parity: keep development, staging, and production as similar as possible
The use of VM or container technology in combination with orchestration tech‐
nologies like VMware, Kubernetes, and Mesos can make this easier in compari‐
son with traditional bare-metal deployments in which the underlying hardware
and OS configuration is often significantly different from that of developer or test
machines.

As an application artifact moves through the build pipeline, it should be exposed
to more and more realistic environments (e.g., unit testing can run in-memory
on a build box). However, exploratory end-to-end testing should be conducted in
a production-like environment.

11. Logs: treat logs as event streams
Java has had a long and sometimes arduous relationship with logging frame‐
works, but modern frameworks like Logback and Log4j 2 can be configured to
stream to standard output or streamed to disk.

12. Admin processes: run admin/management tasks as one-off processes
The ability to create simple Java applications that can be run within a container
or as a serverless function allows administrative tasks to be run as one-off pro‐
cesses. However, these processes must be tested within (or as part of) the build
pipeline.

Deployment Platforms and Architecture | 39

Exploring the “Fifteen-Factor App”
For developers looking to develop a deeper understanding of architectural principles
like those mentioned here, we strongly recommend reading Kevin Hoffman’s Beyond
the Twelve-Factor App (O’Reilly).

The principles of the Twelve-Factor App have hinted at designing systems that not
only embrace the properties of the underlying deployment fabric, but also actively
exploit it. Closely related is a topic known as mechanical sympathy.

Cultivating Mechanical Sympathy
Martin Thompson and Dave Farley have talked about the concept of mechanical
sympathy in software development for several years. They were inspired by the For‐
mula One racing driver Jackie Stewart’s famous quote, “You don’t have to be an engi‐
neer to be a racing driver, but you do have to have mechanical sympathy.”
Understanding how a car works will make you a better driver, and it has been argued
that this is analogous to programmers understanding how computer hardware works.
You don’t necessarily need a degree in computer science or to be a hardware engineer,
but you do need to understand how hardware works and take that into consideration
when you design software.

The days of architects sitting in ivory towers and drawing UML diagrams is over.
Architects and developers must continue to develop practical and operational experi‐
ence from working with the new technologies. Using PaaS, CaaS, and functions can
fundamentally change the way your software interacts with the hardware it is running
on. In fact, many modern PaaS and function-based solutions use container technol‐
ogy behind the scenes in order to provide process isolation, and it is beneficial to be
aware of these changes:

• PaaS and container technology can limit access to system resources because of
developer/operator specifications, or resource contention.

• Container technology can (incidentally) expose incorrect resource availability to
the JVM (e.g., the number of processor cores typically exposed to a containerized
JVM application is based on the underlying host hardware properties, not the
restrictions applied to a running container).

• When running a PaaS, additional layers of abstraction often are applied over the
operating system (e.g., orchestration framework, container technology itself, and
an additional OS).

• PaaS and container orchestration and scheduling frameworks often stop, start,
and move containers (and applications) much more often in comparison to tra‐
ditional deployment platforms.

40 | Chapter 3: Designing Architecture for Continuous Delivery

• The hardware fabric upon which public cloud PaaS and container platform appli‐
cations are run is typically more ephemeral in nature.

• Containerized and serverless applications can expose new security attack vectors
that must be understood and mitigated.

These changes to the properties of the deployment fabric should not be a surprise to
developers, as the use of many new technologies introduce some form of change (e.g.,
upgrading the JVM version on which an application is running, deploying Java appli‐
cations within an application container, and running Java applications in the cloud).
The vast majority of these potential issues can be mitigated by augmenting the testing
processes within the CD build pipeline.

Design and Continually Test for Failure
Cloud computing has provided amazing opportunities for developers; a decade ago,
we could only dream of the hardware that can now be spun up at the touch of a but‐
ton. But the nature of this type of infrastructure has also introduced new challenges.
Because of the networked implementation, commodity costing, and scale of modern
cloud computing, performance issues and failures within the platform are inevitable.

The vast majority of I/O operations within a cloud-based platform are going over the
wire. For example, elastic block storage that can appear local is typically provided by a
storage area network (SAN), and the performance characteristics are considerably
different. If you develop an application on your local development machine that con‐
sists of three chatty services with intensive access to a database, you can be sure that
the network performance of the localhost loopback adapter and direct access to an
SSD-based block store will be markedly different than the corresponding cloud oper‐
ations. This can make or break a project.

Most cloud computing infrastructure is ephemeral in nature, and you are also
exposed to failure with much more regularity in comparison with on-premises hard‐
ware. Combine this with the fact that many of us are designing inherently distributed
systems, and you must design systems that tolerate services disappearing or being
redeployed. When many developers think of testing this type of failure, the Netflix
Simian Army and Chaos Monkeys jump to mind; however, this type of testing is typi‐
cally conducted within production. When you are developing a CD build pipeline,
you need to also implement a limited (but equally) valuable form of this type of chaos
testing, but provided in a more controlled and deterministic fashion.

Deployment Platforms and Architecture | 41

Release It! Essential Reading for Developers
Now in it’s second edition, Michael Nygard’s Release It! (Pragmatic Bookshelf) is still
sometimes ignored by developers, as they don’t realize what the topic is. However, this
is the go-to reference for designing and deploying highly available and fault-tolerant
production-ready software. In our opinion, this is essential reading for any Java
developer building modern service-based applications or deploying into a (dis‐
tributed) cloud computing environment.

Systems that are designed with loose coupling are typically easier to test, as you can
isolate components more readily, and high cohesion helps with the mental effort
needed to understand what is happening when fixing bugs. The key takeaway from
this section is that a continuous delivery pipeline must allow deployment and testing
on a realistic production-like environment as soon as possible, and performance and
failure scenarios must be simulated and tested.

The Move Toward Small Services
It would appear that every other software development article published today men‐
tions microservices, and so much so that it is often difficult to remember that other
architectural styles do exist. Behind the popularity of this architecture, there are, of
course, many benefits of decomposing large and complex applications into smaller
interconnected services. However, there are also several challenges.

Challenges for Delivering Monolithic Applications
Despite what the software development press may say, nothing is inherently wrong
with designing and building a monolithic application. It is simply an architectural
style, and as with any architectural approach, it has trade-offs. The increase in adop‐
tion and rise in popularity of building service-based applications is primarily due to
three constraints imposed with working on a single monolithic application:

• Scaling development efforts on the codebase and system
• Isolating subsystems for independent deployability
• Operationally scaling subsystems within the application (independently, elasti‐

cally, and on demand)

Let’s examine each of these issues in turn, and discuss how this impacts the imple‐
mentation of continuous delivery.

42 | Chapter 3: Designing Architecture for Continuous Delivery

https://pragprog.com/book/mnee2/release-it-second-edition

Scaling development
When working with a monolithic application, all the developers have to “crowd
around” the same codebase. This can lead to developers having to develop an under‐
standing of the entire codebase in order to cultivate the appropriate domain context.
During implementation, code merge conflicts are almost inevitable, which leads to
rework and lost time. If a monolithic codebase is designed and implemented well—
for example, embracing the principles of high cohesion, loose coupling, and modu‐
larity—then this shouldn’t be a problem. However, the reality with long-running sys‐
tems is that they are incrementally evolved, and either by accident or on purpose, the
modularity breaks down over time.

Extracting modules from a monolithic codebase and building these as independent
subsystem services can lead to clearer domain boundaries and interfaces, which, in
turn, facilitates the ability of developers to understand the context. The independent
nature of these services also facilitates the distribution of labor over the codebase.

Differing change cadence: Independent deployability
An application that is designed as a single artifact has limited options for independ‐
ent deployability, and this can be a problem if functionality within the application
requires differing change cadence. At a basic level, every time a new piece of func‐
tionality is developed within the codebase, the entire application must be deployed. If
releasing the application is resource-intensive, on-demand resources may not be
practical. Worse still is if the application is highly coupled, as this means that a change
in a supposed isolated area of the codebase will require intensive testing to ensure
that no hidden dependencies have caused regressions.

By dividing the codebase into independently deployable modules or services, you can
schedule the release of functionality independently.

Subsystem scalability and elasticity
An application that is run as a single process (or tightly coupled group of pro‐
cesses) has limited options for scaling. Typically, the only approach is to replicate the
entire runnable application instance and load-balance requests across the multiple
instances. If you design an application as a series of cohesive subsystems that are
loosely coupled, you have many more options for scaling. A subsystem that is under
high load can be scaled independently from the rest of the application.

Microservices: SOA Meets Domain-Driven Design
Building small services that follow the Unix single responsibility principle has clear
benefits. If you design services and tools that do one thing and do it well, it is easy to
compose these systems to provide more-complicated functionality, and it is also eas‐
ier to deploy and maintain such systems. Large organizations like Netflix, eBay, and

The Move Toward Small Services | 43

Spotify have also talked publicly about how they are building smaller service-based
architectures.

The topic of Domain-Driven Design (DDD) is frequently mentioned alongside dis‐
cussions of microservices, and although the founding work by Eric Evans in this
space was published in 2003 in Domain-Driven Design: Tackling Complexity in the
Heart of Software (Addison-Wesley Professional), the technique gained traction only
when supporting technologies and methodologies converged: i.e., the combination of
the evolution of architectural practices, the emergence of cloud platforms that
allowed dynamic provisioning and configuration, and the rise of the DevOps move‐
ment that encouraged more collaboration throughout the build and operation of soft‐
ware.

Exploring Microservices and DDD Further
The term microservices first emerged during a talk by James Lewis in 2012, “Micro
Services: Java the Unix Way”, and was also talked about by Fred George and Martin
Fowler around a similar time. Covering microservices or DDD in much depth is
beyond the scope of this book; instead, an introduction to the topic can be found in
Microservices for Java Developers (O’Reilly), and a more thorough treatment can be
found in Microservice Architecture (O’Reilly) and Sam Newman’s Building Microservi‐
ces (O’Reilly).

A core concept of microservices revolves around creating services that follow the
single-responsibility principle and have one reason to change. This is closely related
to designing effective domain models, or bounded contexts, within DDD.

Building Java-based microservices impacts the implementation of CD in several ways:

• Multiple build pipelines (or branches within a single pipeline) must be created
and managed.

• Deployment of multiple services to an environment now have to be orchestrated,
managed, and tracked.

• Component testing may now have to mock, stub, or virtualize dependent
services.

• End-to-end testing must now orchestrate multiple services (and associated state)
before and after executing tests.

• Processes must be implemented to manage service version control (e.g., the
enforcement of allowing the deployment of only compatible interdependent
services).

44 | Chapter 3: Designing Architecture for Continuous Delivery

https://domainlanguage.com/ddd/
https://domainlanguage.com/ddd/
https://martinfowler.com/articles/microservices.html
https://www.infoq.com/presentations/Micro-Services
https://www.infoq.com/presentations/Micro-Services
http://shop.oreilly.com/product/0636920050308.do
http://shop.oreilly.com/product/0636920033158.do
http://shop.oreilly.com/product/0636920033158.do

• Monitoring, metrics, and APM tooling must be adapted to handle multiple
services.

Decomposing an existing monolithic application, or creating a new application that
provides functionality through a composite of microservices, is a nontrivial task.
Techniques such as context mapping, from DDD, can help developers (working
alongside stakeholders and the QA team) understand how application/business func‐
tionality should be composed as a series of bounded contexts or focused services.

Functions, Lambdas, and Nanoservices
As stated by Mike Roberts on the Martin Fowler blog, there is no one clear view of
what serverless is, and this is not helped by people talking about it in regards to two
different but overlapping areas:

• Serverless was first used to describe applications that significantly or fully depend
on third-party applications or cloud services to manage server-side logic and
state. These are typically thick client applications (think single-page web apps or
mobile apps) that use the vast ecosystems of cloud-accessible databases (like
Parse, Firebase), authentication services (Auth0, AWS Cognito), etc. These types
of services have been previously described as backend as a service (BaaS).

• Serverless can also mean applications for which some amount of server-side logic
is still written by an application developer, but unlike traditional architectures,
the code is run in stateless compute containers that are event-triggered, ephem‐
eral (may last for only one invocation), and fully managed by a third party. One
way to think of this is as functions as a service (FaaS).

This book focuses on the second type of serverless applications. The challenges of
continuously delivering serverless and FaaS applications are much the same as with
microservices, although not getting access to the underlying platform can provide
additional challenges when testing nonfunctional requirements.

Architecture: “The Stuff That’s Hard to Change”
Fundamentally, architecture can be thought of as the “stuff that is hard to change.”
Getting a software system’s architecture correct is a key enabler to facilitating contin‐
uous delivery. Following the key principles of designing systems with loose coupling
and high cohesion facilitates testing and continuous deployment by allowing services
to easily be understood and to be worked with and validated in isolation before being
assembled as part of the large systems.

Designing APIs outside-in (and with supporting internal APIs) also facilitates contin‐
uous testing of functional and nonfunctional requirements. Developers must now be
aware of cloud, PaaS, and container runtimes, and the impact this has on continuous

Architecture: “The Stuff That’s Hard to Change” | 45

https://martinfowler.com/articles/serverless.html

delivery. It can be a fundamental benefit, allowing the dynamic provisioning of
resources for testing, but it also changes the characteristics of the underlying infra‐
structure fabric, and this must be continually tested and assumptions validated.

Diagramming and Modeling Architecture: Daniel’s Experience
Regardless of your approach to architecture, you can benefit a lot from attempting to
diagram and model your architecture. When working as a consultant, my team and I
joined many software development teams, and it was expected by clients that I would
understand the software system and become productive working with it as soon as
possible.

One of the first things I did on any new project was ask the current team to provide
an overview of the architecture. I use the analogy of software architecture as a map
(with high-level components, structure, and interactions) of the underlying terrain
(code and deployment config). Most of the time, the team had to draw the architec‐
ture on a whiteboard because they didn’t maintain any kind of diagram or model. Fre‐
quently, the team doing the drawing had big arguments, as they couldn’t agree on the
components, structure, and connections, and they often learned several things from
each other. A few teams even realized that they were building the wrong components,
or that they were duplicating effort across teams.

I strongly recommend that you diagram and model your architecture outside the
code and regularly maintain this. My go-to reference for doing this is the C4 model
by Simon Brown, which he covers extensively in Software Architecture for Developers
(Leanpub).

Summary
In this chapter, you have learned about the considerable effect that architecture has
on your ability to continuously deliver a software system:

• The fundamentals of creating an effective and maintainable architecture consist
of designing systems that are highly cohesive and loosely coupled.

• High cohesion and loose coupling affect the entire CD process: at design time, a
cohesive system is easier to reason about; when testing, a loosely coupled system
allows the easy substitution of mocks to isolate the functionality being verified;
modules or services within a loosely coupled system can be deployed in isolation;
and a cohesive system is generally a more observable and understandable system.

• Bad or casually designed architecture limits both technical and business velocity,
and will reduce the effectiveness of a CD pipeline.

46 | Chapter 3: Designing Architecture for Continuous Delivery

https://c4model.com/
https://leanpub.com/u/simonbrown

• Designing effective APIs, which are built outside-in, assist with effective testing
and CD as they provide an interface for automation.

• The architectural principles captured within Heroku’s Twelve-Factor App assist
with implementing systems that can be continuously delivered.

• Cultivating mechanical sympathy (learning about the application platform and
deployment fabric, alongside designing for failure) are essential skills for a
modern Java developer.

• There is a trend within software development to design systems consisting of
small and independently deployable (micro)services. Because of high cohesion
and loose coupling, these systems lend themselves to being continuously deliv‐
ered. These systems also require continuous delivery to ensure that both func‐
tional and nonfunctional system-level requirements are met, and to avoid an
explosion of complexity.

• Architecture is “the stuff that is hard to change.” Continuous delivery allows you
to codify, test, and monitor core system-quality attributes throughout the lifetime
of software systems.

Now that you have a good understanding of the principles of architecture, in the next
chapter you will learn about how to effectively build and test Java applications that
embody these properties.

Summary | 47

CHAPTER 4

Deployment Platforms, Infrastructure, and
Continuous Delivery of Java Apps

In this chapter, you will explore the various deployment options available to you for
continuously delivering web-based Java applications. Along the way, you will learn
about each platform’s components, its various strengths and weaknesses, and the core
areas of focus in relation to Java and continuous delivery. Upon completion of this
chapter, you should have the knowledge and tools to choose a platform for your next
project, and be aware of the best practices and pitfalls.

Functionality Provided by a Platform
In the context of modern web-based Java applications, or distributed Java applications
(based on the microservices architectural style), a platform provides the following
functionality:

• A physical (or virtual) location to host your applications from, which is accessible
to your users

• A Java runtime
• Persistent storage—either a block store or database
• Access to (or the ability to install) required middleware, such as ESBs or message

queues
• Self-healing or resilience—automated restart of failed applications
• Service discovery—a mechanism to locate your additional application services

and third-party services

49

• Fundamental security—hardened machine images, restricted ports, and strong
authentication required to access any control plane

• A clear mechanism to understand costs incurred from operation

The emergence of the cloud, containers, and DevOps has been empowering for soft‐
ware developers. You can now create and manage custom platforms at a scale that
was only dreamed of 10 years ago. However, with this power comes great responsibil‐
ity. It is all too tempting for Java development teams to build their own custom plat‐
form. Not only does this take time and resources away from coding the application
that was going to deliver the actual functionality required by the business, but often
these platforms are poorly designed, fragile, and cost-ineffective.

The Dangers of Building Your Own Platform

Sure, it may initially be a lot of fun assembling your own platform.
In addition, teams often (incorrectly) assume that their project is
somehow “special” and needs a custom platform. But before start‐
ing to build your own custom platform, always ask yourself the fol‐
lowing:

• Have you clearly identified that the most important and urgent
problem for your team to be working on is building a bespoke
platform to deploy software?

• Have you discussed the impact of the decision to build a cus‐
tom platform with core stakeholders?

• Do you (and your team) have the appropriate knowledge and
skillset to build an effective and maintainable platform?

• Have you assessed existing (open source and commercial)
platforms and determined that there is no clear long-term
cost/benefit trade-off in using or buying an existing platform?

Designing and operating a platform for Java applications is a spe‐
cialist skill, and the engineers behind platforms like AWS ECS,
Google App Engine, Azure App Service, and Cloud Foundry have a
lot of expertise that you can leverage by using their offerings.

Essential Development Processes
Regardless of what platform you ultimately deploy your Java application to, you and
your team must implement a series of fundamental first steps when starting your
journey with continuous delivery:

50 | Chapter 4: Deployment Platforms, Infrastructure, and Continuous Delivery of Java Apps

• Ensure that all application code and associated configuration is under version
control, and that this is the single source of truth.

• Create a continuous delivery pipeline that takes code from version control, builds
and tests the application, and deploys this onto a test (or, ideally, a production)
environment.

• Encode any manual deployment steps, such as changing configuration or
upgrading a database into the automated deployment process that is triggered by
the CD pipeline.

• Package your applications as standard Java artifacts (e.g., a WAR or fat JAR) and
remove any nonstandard deployment process (e.g., manual patching of class
files). This allows standard deployment mechanisms to be used (e.g., uploading a
WAR via an application server API or copying a fat JAR onto the filesystem) and
will facilitate further migration to additional or new platforms in the future.

The Value of Developer Experience: Daniel’s Perspective
The topic of developer experience, sometimes referred to as DevEx or DX, is a rapidly
emerging area of development for open source and commercial tooling. The topic
focuses on the workflow and tooling that is required to convert an idea into code, and
ultimately through to delivering value to users in production. DevEx is fundamentally
about minimizing friction for engineers and making tasks such as debugging and
observability easier. Many people, including me, are currently working in this space,
and some early thoughts can be found in my July 2018 CNCF webinar “Creating an
Effective Developer Experience on Kubernetes”.

Traditional Infrastructure Platforms
Many of you have undoubtedly deployed Java applications on what can now be
referred to as traditional infrastructure—application servers running within an on-
premises data center that is managed by a separate sysadmin team. Many teams are
also undoubtedly still deploying here. Although this book focuses on continuously
delivering Java applications onto modern platforms, there is still much here that can
be learned that is directly transferable to traditional environments.

Traditional Platform Components
Within traditional infrastructure, you (as a Java developer of web applications) typi‐
cally interact with the following components:

Traditional Infrastructure Platforms | 51

http://bit.ly/2zwtqi4
http://bit.ly/2zwtqi4

Application server
A software framework that provides facilities to create web applications and a
server environment to run them. For example, JBoss Application Server, Glass‐
Fish, or Tomcat.

Middleware
Software that sits “in the middle” between application software that may be work‐
ing on different operating systems, with the goal of supporting and simplifying
complex distributed applications. Examples include ESB technology, like IBM
WebSphere ESB, and MQ offerings, like ActiveMQ.

Database
An organized collection of data, which typically in a traditional infrastructure
stack is a relational database management system (RDBMS). For example, Oracle
RDBMS, Microsoft SQL Server, or IBM DB2.

Challenges with Traditional Infrastructure Platforms
The core challenge with traditional infrastructure is that there is no standardized or
broadly accepted continuous delivery out-of-the-box complete solution. This is
because the platform and deployment procedures are typically bespoke, and the
underlying infrastructure is not programmable. This can make the life of a developer
deploying onto this platform quite challenging. Often the deployment and operation
of these platforms is captured via “tribal knowledge”; the constantly evolving custom‐
ized processes and mechanisms are not captured formally, but are instead shared
through stories and partially correct wiki pages.

Platform Automation Is Useful for Continuous Delivery

One of the biggest technical challenges with implementing CD by
using a traditional infrastructure stack is the difficulty in automat‐
ing the creation of infrastructure configuration. You should strive
to make your tests and deployments as deterministic and reliable as
possible, and you must therefore work closely with the sysadmin
team to explain the need for consistent and reproducible infra‐
structure environments and deployment mechanisms.

Typically, deploying an application onto traditional infrastructure requires some form
of artifact “hand-off ” that may or may not include deployment instructions—poten‐
tially, a text file with a few snippets of SQL that are required to be run against the
associated database. The lack of codification and repeatability of these instructions
can lead to errors and friction between dev and ops. Another core challenge with this
type of platform is that it can fall into disrepair over time (particularly if the sysadmin
or operator who created the platform leaves the organization), and generally speak‐

52 | Chapter 4: Deployment Platforms, Infrastructure, and Continuous Delivery of Java Apps

ing, when something major goes wrong, it quickly becomes a murder-mystery-style
debugging adventure, which is not fun.

Benefits of Being Traditional
The benefits of running traditional infrastructure is that the sysadmin and opera‐
tional teams responsible for management typically have full control (unless, of
course, a third-party is maintaining the platform!). This full control allows rapid
changes and configuration—sometimes for better or worse—as well as full visibility
into the underlying hardware. Knowledge and skills are required for understanding
these inner workings, but this ability to look “behind the curtain” can save many
hours of debugging in comparison with using a blackbox third-party service.

Sysadmins—Even Developers Need Heroes
Although the relationship between dev and ops can sometimes be like that of cats and
dogs, we can’t stress enough the benefits of increased collaboration between these two
teams. As it states on the T-shirt, “sysadmins: even developers need heroes.” Over our
careers, we have learned so much from sysadmins and operations teams, and this has
helped us to understand more about infrastructure, and ultimately to become a better
developer.

CI/CD on Traditional Infrastructure Platforms
Introducing continuous delivery to this type of platform typically provides many ben‐
efits, such as improved build reliability and faster deployment times. Here is what you
should focus on:

• Once an application is being built and deployed via a pipeline, this is a great
opportunity to begin augmenting the application test suite with assertions that
test for well-known (and repeated) issues. This is also a good opportunity to
include nonfunctional testing services within the pipeline, such as code quality
analysis, code test coverage, and security testing. You may not be able to fix it all
straight away, but you will have a baseline from which to demonstrate continual
improvement.

• Creation of a pipeline can also trigger the discussion with the ops team as to
characteristics of the underlying infrastructure, and can lead to the formulation
of SLAs. The creation of SLAs allows all parties—developers, QA, and ops—to
agree on what the platform should provide, and, in turn, what operational func‐
tionality the application should have (i.e., should the app boot within 30 seconds,
or be tolerant of disk failures, or handle intermittent network failures?).

Traditional Infrastructure Platforms | 53

• Once the pipeline is in place, you will also be able to gain more visibility into
areas of your workflow that require improvement. For example, code merge con‐
flicts may indicate a need to change commit policies or implement something
like Gitflow, slow test runs may indicate the need to parallelize tests, or repeated
failed deployments may mean extra effort should be invested within the deploy‐
ment scripts.

Cloud (IaaS) Platform
Infrastructure-as-a-service (IaaS) cloud infrastructure and platforms currently come
in many forms:

Private cloud
This is an evolution from traditional infrastructure, and, in essence, is virtualized
hardware that is managed on premises or within a private data center. The line
can be drawn between traditional infrastructure and private cloud by requiring
that the private cloud must be manageable via an API or SDK—e.g., VMware
vSphere, OpenStack, Cisco Open Network Environment (ONE), and Scality
RING storage.

Public cloud
Technology that the majority of people reference when they talk about the cloud,
which is typically provided by vendors like AWS, Microsoft Azure, GCP, and
others.

Hybrid cloud
This is a blend of traditional private virtualized infrastructure with public cloud
offerings. Major cloud vendors are starting to offer products that will allow
organizations to run hybrid clouds (or help with migration), such as Azure’s
Stack (and AWS’s VM Import/Export and Direct Connect).

Looking Inside the Cloud
The cloud is different from traditional infrastructure in that you, as a developer, are
exposed to more fundamental infrastructure components:

Compute
A machine, VM, or other type of computing instance. This is directly analogous
to your desktop or laptop computer, and examples include AWS EC2, vSphere
VM, and OpenStack Nova.

Storage
Storage for your application data. This can be block storage that can be used to
boot a machine and host application binaries, much like the hard drive on your

54 | Chapter 4: Deployment Platforms, Infrastructure, and Continuous Delivery of Java Apps

local machine, or object storage that is not usable for booting a machine and can
be used to store binary or other style data objects. Examples of block storage
include AWS EBS, GCP Persistent Disk, and VMware local storage. Examples of
object storage include Amazon S3, Azure Storage Blobs, and OpenStack Swift.

Network
Connections, routers, firewalls, and other communication infrastructure. Exam‐
ples include Amazon VPC, security groups/firewall rules, and OpenStack
Neutron.

Services
Database and external middleware services that are directly analogous to that of
traditional infrastructure, but these are typically fully managed services offered
by the cloud vendor (e.g., Amazon RDS, Google Cloud Spanner, or Azure Service
Bus).

Continuous delivery services
Increasingly, you will see that virtualization and cloud vendors are providing out-
of-the-box CD solutions, such as an integrated Jenkins solution or a bespoke sol‐
ution such as VMware vRealize Code Stream or Amazon CodePipeline.

Additional Resources for Cloud Best Practices
If you are completely new to cloud technologies, we recommend reading The Practice
of Cloud System Administration: Designing and Operating Large Distributed Systems
(Addison-Wesley Professional) by Thomas Limoncelli et al.

The public cloud can be a brave new world for many engineers, so the majority of
cloud vendors have created best-practice documentation, which discusses everything
from recommended architecture principles, security practices, and approaches to
managing infrastructure. Many engineers we talk to on our consulting travels believe
that vendor-created content can often be biased, but this is becoming less of an issue.
The current vendor-driven cloud best practices are very much recommended reading
if you are working within their ecosystem:

• Amazon Web Services white papers, including “AWS Well-Architected Frame‐
work” and “Architecting for the Cloud: AWS Best Practices”

• “Azure Architecture Center” and “Azure Security Best Practices”
• “How to Use Google Cloud Platform” and “Best Practices for Enterprise Organi‐

zations”

Cloud (IaaS) Platform | 55

http://bit.ly/2xSQoOC
http://bit.ly/2xSQoOC
https://aws.amazon.com/whitepapers/
http://bit.ly/2R2kyrf
http://bit.ly/2R2kyrf
https://amzn.to/2xP3Hj2
http://bit.ly/2ORxizz
http://bit.ly/2xNhoig
https://cloud.google.com/docs/tutorials
http://bit.ly/2OS3Olj
http://bit.ly/2OS3Olj

Cloud Challenges
The core challenge for you, as a developer moving to cloud technologies, is dealing
with the learning curve needed to understand not only the new infrastructure build‐
ing blocks, but also the characteristics and performance of these technologies. You
will need to spend time understanding the impact of being exposed to networked
computers; you will nearly always be building a distributed system. You also will need
to ensure that you design your applications to perform as well within a networked
environment as they do on your local development machine.

Mechanical Sympathy: Daniel’s First Cloud Experiences

When I first started using cloud technologies, this was one of the
biggest learning hurdles for me, as it means that the characteristics
and performance of infrastructure on your local machine may not
match that of production—in a big way! For one particular project
in the earlier 2010s, I spent a week building a product feed parsing
application that wrote high volumes of temporary data to local
storage. This worked great on my development machine (with a
locally connected SSD drive), but as soon as I deployed this code to
production, the performance dropped by nearly two orders of
magnitude as the block storage on the cloud instance communica‐
ted over the network, which had very different performance char‐
acteristics!

Because of the nature (and scale) of the hardware used within IaaS platforms, there is
a relatively high probability that individual components will fail. Therefore, you will
need to design, build, and test resilient applications that can handle known failure
modes; for example, most cloud compute instances are ephemeral and can stop unex‐
pectedly, and your application must handle this gracefully. Werner Vogels, CTO at
Amazon, is famous for saying that “everything fails all of the time in the cloud.” Ini‐
tially, this might appear a strange thing for the CTO of a cloud vendor to say, but he
was referring to the benefits of the public cloud—on-demand and cost-effective
access to incredible infrastructure that can run at large scale—coming at a cost, and
this cost is the reliability of individual components.

56 | Chapter 4: Deployment Platforms, Infrastructure, and Continuous Delivery of Java Apps

The Ephemeral Nature of the Cloud: Daniel’s Experience

Another one of my core learning experiences when I started devel‐
oping Java applications for the cloud was the ephemeral nature of
the compute instances. My applications would randomly stop when
an instance was terminated, and because I was using elastic config‐
urations to ensure that I always had a set number of instances run‐
ning, a new instance would be started. I was used to creating Java
applications that were started only once a month, or even less
often, and so I didn’t worry about long startup times (and the JVM
and Java applications are almost famous for their long initialization
times!). I was also used to applications rarely being terminated in
an uncontrolled fashion, and so wrote only basic graceful restart or
cleanup functionality. This all had to change!

The benefit of applying continuous delivery when deploying Java applications onto
cloud infrastructure is that you can capture what you’ve learned in the build pipe‐
line. For example, if you discover strange performance characteristics that affect your
application negatively, you can create an integration test that simulates this and
asserts the correct handling. This test can be run on every build in order to prevent
regression from future modifications.

Many cloud vendors provide options to choose and provision infrastructure that has
low levels of baseline CPU, network, and disk performance, but has “credits” to allow
time-limited burstable performance that is considerably over the baseline. An initial
allowance of credits is given, and credits can be accumulated when the infrastructure
is being used below the baseline. This allows for the creation of cost-effective systems;
the starting credit balance allows the infrastructure to initialize rapidly, and if the sys‐
tem usage patterns truly are burstable, then a healthy level of credit can be main‐
tained to burst as required. However, if the usage patterns of an application are not
burstable, the credit balance can soon become depleted, and the corresponding appli‐
cation’s performance will drop, or potentially the application may fail.

Watch for the Effects of “Burstable” Infrastructure

Short development and test runs of an application deployed onto
this type of infrastructure can lead to the development team believ‐
ing that longer-term performance will be better than it actually is.
Accordingly, the baseline performance of such infrastructure must
be understood, and simulations created within a build pipeline that
test for system performance when running at the baseline infra‐
structure performance.

Cloud (IaaS) Platform | 57

Benefits of the Cloud
The core benefit for developers working with cloud infrastructure is that everything
is programmable: you can now apply all of your programming know-how and skills
to infrastructure. The cloud technologies are generally more standardized than tradi‐
tional infrastructure, too, and although a lot of variation exists across public cloud
vendors, it is possible to transfer your infrastructure knowledge as you move teams or
even organizations.

Immutable Infrastructure
Cloud computing (or, really, the introduction of programmable virtualization) made
the vision of immutable infrastructure possible. Immutable infrastructure is not mod‐
ifiable after creation. Instead of updating, you re-create the infrastructure, either by
using the same template (guaranteeing that it is identical to the infrastructure being
replaced) or using a new “updated” template. This generally makes your life as a
developer much easier, as you can provide stronger guarantees of a packaged deploy‐
ment artifact that works in QA, and staging will work in production.

Another core benefit with the cloud is the flexibility of instantiating infrastructure.
The cloud makes it possible for potentially each developer to create their own test
environment, or to run large-scale tests (but watch the cost!).

Developers Can’t (or Shouldn’t) Do Everything with the Cloud

As the cloud allows most infrastructure to be manipulated pro‐
grammatically, it can be tempting for developers to take on more
and more responsibility for the operational side of delivering soft‐
ware. For small-scale organizations or startups, this can be useful,
allowing a small development team to be self-sufficient and move
fast. However, this can also mean that developers become over‐
worked, or must learn increasing amounts of new skills (sometimes
outside their expertise or comfort zone), or become blind to the
inherent trade-offs and friction between the dev and ops roles. This
can lead to individual or team burnout, or lots of operational issues
with applications in production. This should be avoided at all costs.

Continuously Delivering into the Cloud
Introducing CD within a cloud environment is generally easier in comparison to a
traditional infrastructure platform, as CD practices largely co-evolved with cloud
technologies (and vice versa). The introduction of APIs and SDKs by virtualization
and public cloud vendors meant that codifying and reproducing environments (for
testing and QA, etc.) became much easier. In addition to the steps mentioned previ‐

58 | Chapter 4: Deployment Platforms, Infrastructure, and Continuous Delivery of Java Apps

ously for practicing CD with traditional infrastructure, the following guidelines also
apply to the cloud:

• Conduct analysis on which type of cloud deployment paradigm your current
project will fit best. Large cloud vendors like AWS, GCP, and Azure offer many
forms of cloud platform, from containers (covered later) like AWS ECS, and
Azure AKS, to PaaS-style offerings like AWS Elastic Beanstalk and Azure App
Service, in addition to the IaaS building blocks of compute, storage, and net‐
working.

• Focus on the creation of a CD pipeline that delivers your application (or even a
proof-of-concept application) from your local development environment to pro‐
duction. This will highlight any technical or organizational issues with using
cloud platforms.

• Codify as much of the cloud platform as possible (ideally, everything) by using
tools like HashiCorp Terraform, Ansible, or Puppet.

• Codify what you’ve learned (and your mistakes) into the pipeline—for example,
load testing, security testing, and chaos/resilience testing.

The cloud offers many possibilities for deploying Java applications at a rapid pace, but
speed is nothing without control, and control in the sense of CD is the ability to
repeatedly and reliably verify that your application is fit for production usage.

Platform as a Service
Platform as a service (PaaS) has a longer history than most people realize. The
JavaScript-supporting Zimki was the first recognized PaaS released in 2005. Within
the Java space, the launch of Google’s App Engine and Cloud Foundry have been the
most influential events.

Diving Deeper into PaaS Platforms
Many of the core takeaways from this book can be directly applied to PaaS technolo‐
gies, but because they often provide an opinionated (preset) workflow, we also recom‐
mend consulting specific PaaS-flavored books if you are deploying here. For example,
if you are deploying applications on Google App Engine, Programming Google App
Engine with Java (O’Reilly) by Dan Sanderson is an interesting read. If you are work‐
ing with Cloud Foundry (specifically, Pivotal Cloud Foundry), then Cloud Native Java
(O’Reilly) by Josh Long and Kenny Bastani provides a comprehensive guide.

Platform as a Service | 59

http://shop.oreilly.com/product/0636920033202.do
http://shop.oreilly.com/product/0636920033202.do
http://shop.oreilly.com/product/0636920038252.do

Peeking Inside a PaaS
PaaSs generally have similar primitives to cloud computing, although some of the
abstractions might be at a slightly higher level. For example, within Cloud Foundry,
you don’t directly spin up an instance to deploy your code onto, and instead you
focus on creating a “droplet” application artifact:

Compute
A machine, VM, or container environment.

Storage
Storage for your application data. This can be block storage that can be used to
boot a machine and host application binaries, much like the hard drive on your
local machine, or object storage that is not usable for booting a machine and can
be used to store binary or other style data objects.

Network
Connections, routers, firewalls, and other communication infrastructure.

Services
Database and external middleware services that are directly analogous to that of
traditional infrastructure, but these are typically fully managed services offered
by the PaaS vendor.

Continuous delivery services
Many PaaS vendors provide a complete solution for taking code from a local
development environment all the way through to production. For example,
Cloud Foundry has the integrated cf CLI tool and Concourse CD platform, and
Red Hat’s OpenShift has an integrated Jenkins solution.

PaaS Challenges
Many of the challenges revolving around the use of PaaS are concerned with the
learning curve and usage models. Generally speaking, most PaaSs are quite opinion‐
ated in regards to both developer workflow and deployment models. Some projects
will not fit into the models provided by a PaaS, and this is where it can become chal‐
lenging to bend the PaaS to work with your application. Having said this, if you are
building relatively typical web-based applications, then this should not be a problem.

60 | Chapter 4: Deployment Platforms, Infrastructure, and Continuous Delivery of Java Apps

Don’t Automatically Assume That PaaS Is Over-Opinionated

Many developers assume a PaaS like Cloud Foundry is over-
opinionated in regards to workflow, or that the project they are
working on is “special” or unique in some way, and won’t be
deployable onto a PaaS. Generally speaking, if you are creating a
web application for an e-commerce business, then this shouldn’t
require a bespoke developer workflow. In fact, we even know of
many large-scale banking and data processing organizations that
use (for example) Cloud Foundry very successfully.

Another possible challenge imposed by a PaaS is the potentially constrained Java JDK
or runtime environment. If you don’t know about these differences between your
local JDK and development environment, or you are relatively inexperienced with
Java development, this can be a steep learning curve! Examples of PaaS JDK modifi‐
cations include only whitelisted access to the JDK (i.e., some APIs within the stan‐
dard OpenJDK may be unavailable); the use of a Java security manager to restrict
operations available; the use of a sandbox that restricts access to resources like the
Java threads, the network, or filesystem; and differing class-loading strategies. Some
PaaS providers also encourage (or force) you to use their proprietary SDKs for
accessing databases or middleware.

Understand How Your PaaS Implements and Exposes the JDK: Daniel’s
Experience

If your PaaS provider provides a native Java environment (you
don’t have to install a Java runtime), please take time to understand
how the JDK and associated runtime have been implemented. This
was a big learning curve when I created my first Java application on
Google App Engine. The platform offered many great things (par‐
ticularly in relation to operation and scaling), but the sandboxed
Java runtime environment took away a lot of the tools I was used to
working with. Ultimately, the application I created met the business
requirements, but my estimation was way off, as I didn’t budget for
the learning curve!

The runtime and OS exposed via a PaaS can also be modified or restricted. In addi‐
tion to the access restriction to resources like the network and filesystems (which can
be implemented within the Java runtime or the OS), resources can also be throttled or
controlled—for example, CPU and usage are common targets for this—and the plat‐
form instances (and other infrastructure such as network routers or IP addresses) can
often be ephemeral. Once this has been identified, the learning can be codified into
the build pipeline; for example, asserting that your application does not produce

Platform as a Service | 61

OutOfMemoryExceptions when under heavy load, or that your application gracefully
handles forced restarts.

Modern PaaS Documentation Is (Generally Speaking) Excellent
In my experience, most popular Java-friendly PaaSs provide great documentation,
both about the developer workflow and about the runtime environment and any
caveats or limitations. For example, the Google App Engine team has written exten‐
sive notes about its (now deprecated) Java 7 runtime as well as its Java 8 runtime. The
Cloud Foundry team has created similar notes about the corresponding Java build
packs and runtime, and each CF commercial vendor usually provides additional doc‐
umentation on any details unique to their environment.

If you do decide that a hosted PaaS is the best fit for your project, one final thing to be
aware of is how hosted offerings are priced. Most of the Java PaaSs are priced based
on memory per application instance, and the number of application instances, and
other resources (such as CPU speed and cores and network bandwidth) are scaled
proportionally. This can mean that some CPU- or memory-intensive applications can
be expensive to run, and you often cannot pack applications on infrastructure to
accommodate this. With traditional or cloud infrastructure, you can run two
resource-intensive applications—one CPU-bound and one memory-bound—side by
side on the same hardware, and this way, you are not “wasting” (or being charged for
wasting) the resources that may go unused if just one application were running here.

Benefits of PaaS
Once you have taken the time to learn the core principles (and let’s be honest: every
new technology requires some learning), you can often become very productive, and
your knowledge is directly transferable to the next project that uses PaaS. This leads
to a (potentially massive) increase in developer productivity. If you are using a PaaS
that is based on open standards, such as Cloud Foundry, you also can operate your
PaaS across multiple infrastructures—for example, a hybrid of on-premises Cloud
Foundry, public-cloud-operated Pivotal Cloud Foundry, and public-cloud-operated
IBM Bluemix. Transitioning from one infrastructure/vendor to another should not
impact you greatly as a developer, because the platform provides all the core abstrac‐
tions you care about.

In addition, if your team decides to use a hosted PaaS offering, the operational bur‐
den of running the platform, and maintaining and patching the underlying infra‐
structure, is removed. This can free up time for other value-adding development
activities!

62 | Chapter 4: Deployment Platforms, Infrastructure, and Continuous Delivery of Java Apps

http://bit.ly/2OSuQZy
http://bit.ly/2xEx5JF
http://bit.ly/2OTAmeL
http://bit.ly/2OTAmeL

CI/CD and PaaS
Introducing continuous delivery with applications deployed into a PaaS environment
is usually a no-brainer, and often it is not optional; the only way to deploy your appli‐
cation is via a build pipeline. The following list highlights several areas you should
prioritize investing your time in when implementing CD with a PaaS:

• Focus on the creation of a CD pipeline that delivers your application (or even a
proof-of-concept application) from your local development environment to pro‐
duction. This will highlight any technical or organizational issues with using the
PaaS you have chosen to deploy to.

• Store all PaaS and application configuration and metadata within version control;
for example, any service discovery configuration or custom build packs you have
created.

• Codify your learning (and mistakes) into the pipeline—for example, load testing,
security testing, and chaos/resilience testing.

Containers (Docker)
Many developers use the words “container” and “Docker” interchangeably. This isn’t
strictly correct; a container is an abstract concept of OS-level virtualization or process
isolation, and Docker is an implementation of this technology by the company
Docker, Inc. Container technology existed before the emergence of Docker in Linux
Containers (LXC), but Docker provided the missing user experience and mechanism
to centrally share, pull, and push container images. There are many other container
technologies such as CoreOS’s rkt, Microsoft’s Hyper-V containers (and Windows
containers), and Canonical’s LXD.

Learning More About Docker
Because the container technology space is currently still evolving (and often changes
at a rapid pace), the best resources can often be found online. For engineers who like
to get the basics of a technology from a book, we recommend Docker Deep Dive by
Nigel Poulton.

Container Platform Components
A typical container-based deployment platform has multiple components:

Containers (Docker) | 63

The container technology
Fundamentally, a container provides OS-level virtualization, and although all of
the running containers on a single machine share an OS kernel, they each have
separate namespaces for processes and networking, control groups (cgroups) for
allocating and controlling resources like CPU and memory, and a root filesystem
(rootfs) that is not the same as the underlying host’s rootfs.

Container scheduler/orchestrator
This component is responsible for starting, stopping, and managing the con‐
tainer processes. This technology is often referred to as container infastructure as
a service (CIaaS), and in the Docker ecosystems this is typically provided by
Docker Swarm or Kubernetes.

Storage
Storage for your application data. This can be block storage that can be mapped
into a container, or object storage that can be used to store binary or other style
data objects. This is often managed by the CIaaS component.

Network
Connections, routers, firewalls, and other communication infrastructure. This is
often managed by the CIaaS component.

Services
Database and external middleware services that are directly analogous to that of
traditional infrastructure, but these are typically fully managed services offered
by the container platform vendor.

Continuous delivery services
Many container platform vendors provide a complete solution for taking code
from a local development environment all the way through to production. For
example, Docker Enterprise provides a solution integrated with its Docker Hub,
Azure provides Azure Pipelines, and AWS ECS provides CodeBuild and
CodePipeline.

In Chapter 10, you will learn how to deploy Docker containers onto AWS’s ECS.

Container Challenges
The biggest challenge with container technology is the learning curve. Not only is the
technology quite different from that of the cloud or PaaS, but it is very much an
emerging and evolving technology. It can sometimes be almost a full-time job keep‐
ing up-to-date with the latest container innovations! Another core challenge is that
older technologies (including the JVM itself) may not always work correctly or as
expected when running within a container, and you will often require (at least basic)
operational knowledge to identify, understand, and fix issues.

64 | Chapter 4: Deployment Platforms, Infrastructure, and Continuous Delivery of Java Apps

Running Java Within Docker: Common Gotchas Daniel Experienced

I’ve worked on several projects with Java and Docker, and my team
and I had to overcome quite a few issues. Steve Poole, Developer
Advocate for IBM Cloud Runtimes, and I talked about “Debugging
Java Apps In Containers: No Heavy Welding Gear Required” at
JavaOne in 2015, and here is a summary of some of the challenges
and issues:

• Any Java runtime pre Java 9 is not control group (cgroup)
aware. A call to obtain the number of CPU cores available to
an application will return the underlying host CPU resource
information, which, in reality, may be shared across multiple
containers running on the same host. This also affects several
Java runtime properties, as the fork-join pool and garbage-
collection parameters are configured based on this informa‐
tion. This can be overcome by specifying resource limits as
command-line flags when starting the JVM.

• Containers typically share a single source of entropy (/dev/
random) on the host machine, and this can be quickly exhaus‐
ted. This manifests itself with Java applications unexpectedly
stalling/blocking during cryptographic operations such as
token generation on the initialization of security functionality.
It is often beneficial to use the JVM option -Djava.security.
egd=file:/dev/urandom, but be aware that this may have
security implications.

It is also appropriate to remember that not all developers are operationally aware, nor
do they want to be; they simply want to write code that solves business problems. For
this reason, it can be beneficial to hide some of the container technology from devel‐
opers and provide them with a CD process that manages the building and deploying
of Java applications within this space. As we’ve mentioned earlier, this still does not
remove the requirement for developers to at least understand the operational charac‐
teristics and impact of running their applications by using this technology; always
think about mechanical sympathy!

Containers (Docker) | 65

http://bit.ly/2DxYdzm
http://bit.ly/2DxYdzm
http://bit.ly/2R40yof

Container Technology Is Still Rapidly Evolving

Although the speed of innovation has slowed somewhat over the
past year, the container technology ecosystem is still very much a
pioneering space. Technologies are evolving rapidly, tooling is
emerging, and a better understanding of development practices is
also occurring. However, the trade-off with access to new (better)
ways of packaging and deploying applications means that there can
be a steep learning curve—involving much experimentation—and
things change rapidly. Be sure that you and your team are happy to
commit to this trade-off before embracing container technology!

Container Benefits
The core benefits of container technology are the standardization of deployment
packaging—the container image—and the flexibility of execution. The standardiza‐
tion of deployment packaging makes it easier to deploy and operate a platform
because the container image becomes the new abstraction/interface between dev and
ops. As long as you can package your code within a container, ops can run this on a
platform; they don’t have to worry (to some degree) exactly how you have configured
the application.

Containers Enable Easier Immutable Infrastructure
We mentioned that virtualization and cloud technologies enabled the creation and
deployment of immutable artifacts (and infrastructure), and containers really are an
extension of this. It is generally easier and quicker to create an immutable container
image artifact than a full VM image, and this allows you to iterate and deploy faster.

Continuously Delivering Containers
Introducing continuous delivery with applications deployed into a container platform
is usually relatively easy:

• Focus on the creation of a CD pipeline that packages your application (or even a
proof-of-concept application) as a container image and takes this from your local
development environment to production. This will highlight any technical or
organizational issues with using the platform you have chosen to deploy to.

• If you are running your own container platform, capture all configuration within
version control, and automate all installation and upgrading via infrastructure as
code (IaC) tooling like Terraform or Ansible.

66 | Chapter 4: Deployment Platforms, Infrastructure, and Continuous Delivery of Java Apps

• Store any application configuration and metadata within version control; for
example, any service discovery configuration or custom build containers you
have created.

• Codify your learning (and mistakes) into the pipeline—for example, load testing,
security testing, and chaos/resilience testing.

Kubernetes
Kubernetes is an open source orchestrator for deploying containerized applications
that was originally developed by Google. Google has been running containerized
applications for many years, and this led to the creation of the Borg container orches‐
trator that is used internally within Google and was the source of inspiration for
Kubernetes.

If you are not familiar with this technology, a few core concepts may appear alien at
first glance, but they hide great power. The first is that Kubernetes embraces the prin‐
ciples of immutable infrastructure. Once a container is deployed, the contents (i.e.,
the application) are not updated by logging into the container and making changes.
Instead, a new version is deployed. Second, everything in Kubernetes is declaratively
configured. The developer or operator specifies the desired state of the system
through deployment descriptors and configuration files, and Kubernetes is responsi‐
ble for making this happen; you don’t need to provide imperative, step-by-step
instructions.

These principles of immutable infrastructure and declarative configuration have sev‐
eral benefits: it is easier to prevent configuration drift, or “snowflake” application
instances; declarative deployment configuration can be stored within version control,
alongside the code; and Kubernetes can be largely self-healing, so if the system expe‐
riences failure like an underlying compute node failure, the system can rebuild and
rebalance the applications according to the state specified in the declarative configu‐
ration.

Core Concepts of Kubernetes
Kubernetes provides several abstractions and APIs that make it easier to build these
distributed applications, such as those based on the microservice architectural style:

Pods
This is the lowest unit of deployment within Kubernetes, and is essentially a
group of containers. A pod allows a microservice application container to be
grouped with other “sidecar” containers that may provide system services like
logging, monitoring, or communication management. Containers within a pod

Kubernetes | 67

http://bit.ly/2zwQ5v3
http://bit.ly/2zwQ5v3
http://bit.ly/2xFXGG1

share a filesystem and network namespace. Note that a single container can be
deployed, but it is always deployed within a pod

Services
Kubernetes services provide load balancing, naming, and discovery to isolate one
microservice from another. Services are backed by Deployments, which, in turn,
are responsible for details associated with maintaining the desired number of
instances of a pod to be running within the system. Services, deployments, and
pods are connected together in Kubernetes through the use of labels, both for
naming and selecting.

In Chapter 10, you will learn how to deploy Docker containers into a Kubernetes
cluster.

Kubernetes: Up and Running
The container and Kubernetes space is rapidly evolving, and therefore the best learn‐
ing resources are often online. In fact, the Kubernetes online documentation is gener‐
ally excellent. If you are looking for a book to bootstrap your learning, we
recommend Kubernetes: Up and Running (O’Reilly), which is written by Kelsey High‐
tower et al., a group of Kubernetes creators and experts.

Kubernetes Challenges
As with container technology in general, the biggest challenge for developers using
Kubernetes is the learning curve. Not only do you have to understand Docker (or
another container technology), but you also have to come to grips with concepts like
scheduling, orchestration, and service discovery. On top of this, many development
teams like the idea of running their own Kubernetes cluster, perhaps within on-
premises infrastructure, and the operational learning curve for this can be steep—
particularly if you do not have experience in running distributed or container-based
platforms.

68 | Chapter 4: Deployment Platforms, Infrastructure, and Continuous Delivery of Java Apps

http://bit.ly/2q7AbUD
http://bit.ly/2q7vR7Y
http://bit.ly/2NKpuD8
http://shop.oreilly.com/product/0636920043874.do

Don’t Run Your Own Kubernetes Cluster (Unless Essential)

All of the major cloud vendors now offer a hosted and fully man‐
aged Kubernetes offering, and so we strongly recommend against
running your own Kubernetes cluster—particularly if you are a rel‐
atively small team, say, under 100 developers. The cloud vendors
have much more expertise and operational experience of running
the platform, taking on the burden of the platform SLA, and han‐
dling issues with Kubernetes or the underlying infrastructure when
they (inevitably) go wrong. In our opinion, running your own
Kubernetes cluster is viable only if you have a dedicated operations
team or strong compliance and governance requirements.

The core concepts of Kubernetes are all learnable, but it will take time, and not every
developer wants to deep-dive into the operational side of a technology like Kuber‐
netes. They simply want to code applications that deliver business value.

Although the speed of innovation has slowed somewhat over the past few months,
the Kubernetes ecosystem (much like the container ecosystem in general) is still very
much an evolving space. Technologies are evolving rapidly, tooling is emerging, and a
better understanding of development practices is also occurring. However, the trade-
off with access to new (better) ways of packaging and deploying applications means
that there can be a steep learning curve—involving much experimentation—and
things change rapidly.

Kubernetes Is Still Evolving (into a PaaS?)

Kubernetes is increasingly being thought of as a lower-level plat‐
form component, as vendors like Red Hat and Apprenda are build‐
ing PaaS offerings on top of this technology. The core idea here is
to encapsulate and hide some of the more operationally focused
aspects of Kubernetes, and to expose abstractions that will be more
useful to developers. Be sure that you and your team are happy to
commit to the trade-off of using the raw (and evolving) Kubernetes
offering before building an associated platform.

Benefits of Kubernetes
Kubernetes offers many benefits, and the technology encompasses many thousands of
hours learning how to run applications at scale within a company like Google. The
core benefit is that many of the difficult challenges with running applications within
containers are handled for you: you simply specify in a declarative manner how your
application is composed of services, the resources that you want your service compo‐
nents to have (CPU, memory, storage, etc.), and the number of service instances that
should be running at any given time. Kubernetes provides a framework for you to

Kubernetes | 69

specify resource and security boundaries (using network policies and ACLs, etc.), cre‐
ates and manages a cluster from underlying infrastructure resources that handles the
allocation of resources, and starts and stops instances according to infrastructure fail‐
ure or some other issues.

Continuous Delivery on Kubernetes
Introducing continuous delivery with applications deployed into a container platform
is usually relatively easy:

• Focus on the creation of a CD pipeline that packages your application (or even a
proof-of-concept application) as a container image and then takes this from your
local development environment to a production Kubernetes cluster. This will
highlight any technical or organizational issues with using the platform you have
chosen to deploy to.

• If you are running your own Kubernetes platform, capture all configuration
within version control, and automate all installation and upgrading via IaC tool‐
ing like Terraform or Ansible. However, generally it is most likely more cost-
effective (and requires less learning) to not run your own Kubernetes platform,
and instead use a hosted offering from one of the cloud vendors.

• Store any application configuration and metadata within version control; for
example, any service discovery configuration or custom build containers you
have created.

• Store any sensitive configuration and metadata within security and key manage‐
ment applications like HashiCorp’s Vault.

• Codify your learning (and mistakes) into the pipeline—for example, handling
service failures gracefully, load testing, security testing, and chaos/resilience
testing.

• Ensure that you load-test not only your applications, but also the ability of the
underlying platform to scale on demand.

Function-as-a-Service/Serverless Functions
FaaS is a compute service that lets you run code without provisioning or managing
servers. FaaS platforms executes your code only when needed and scales automati‐
cally, from a few requests per day to thousands per second. You pay only for the com‐
pute time you consume. There is no charge when your code is not running. With
FaaS, you can run code for virtually any type of application or backend service—all
with zero administration. FaaS vendors run your code on a high-availability compute
infrastructure and perform all the administration of the compute resources, including
server and operating system maintenance, capacity provisioning and automatic scal‐

70 | Chapter 4: Deployment Platforms, Infrastructure, and Continuous Delivery of Java Apps

ing, code monitoring, and logging. All you need to do is supply your code in one of
the languages that the platform supports.

Additional Learning
The topics of FaaS and serverless are evolving crazy fast, but for those who are look‐
ing for a general introduction to the core principles and associated architectural
requirements, we recommend Serverless Architectures on AWS (Manning) by Peter
Sbarski.

FaaS Concepts
You can use FaaS to run your code in response to events, such as changes to data in
an blob storage bucket or a managed NoSQL database table, or to run your code in
response to HTTP requests using an API Gateway. You can also invoke your code by
using API calls made using vendor-specific SDKs. With these capabilities, you can
use functions to easily create comprehensive data processing pipelines or reactive
event-driven applications that can scale on demand, and you are charged only when a
function is running.

Eventing-All-the-Things: A Completely New Paradigm

Don’t underestimate the learning curve for adapting to the event-
driven model imposed by FaaS serverless platforms, as this can be
completely new to many developers. We have seen several develop‐
ers creating applications by chaining functions together with syn‐
chronous (blocking) calls, much as they would with traditional
procedural development, and this causes the creation of fragile and
inflexible applications. We definitely recommend learning more
about event-driven architecture, asynchronous programming, and
designing reactive systems.

When using FaaS, you are responsible only for your code. The FaaS platform man‐
ages the compute (server) fleet that offers a balance of memory, CPU, network, and
other resources. This is in exchange for flexibility, which means you cannot log in to
compute instances, or customize the operating system or language runtime. These
constraints enable FaaS platforms to perform operational and administrative activi‐
ties on your behalf, including provisioning capacity, monitoring fleet health, applying
security patches, deploying your code, and monitoring and logging your Lambda
functions.

Function-as-a-Service/Serverless Functions | 71

Challenges of FaaS
As with many of the other modern deployment platforms, the biggest challenge with
FaaS technologies is the learning curve. Not only is the platform and Java runtime
often restricted (in much the same way as PaaS), but the development paradigm is
skewed toward event-driven architecture (EDA). FaaS applications are generally com‐
posed of reactive functions; the application functions are triggered by events like the
arrival of a message in an MQ or a file upload notification from the object store, and
the execution of the function may result in side effects (persistence of data in a data‐
base, etc.) and the generation of additional events.

FaaS platforms are available to run on your own infrastructure, often on top of an
orchestration system like Kubernetes (e.g., kubeless, fission, and OpenFaaS), stand‐
alone (like Apache OpenWhisk), or as a hosted service (such as AWS Lambda, Azure
Functions, or Google Cloud Functions). If you choose to use a hosted offering—and
generally speaking, this is the best option because of the reduction in operational bur‐
den and close integration with the vendor’s other services—then you must be aware
of how resources are provided and the control you have over this. For example, with
AWS Lambda and Azure Functions, you specify the required memory, and the CPU
resources available are scaled in relation to this.

Understand the FaaS Java Runtime

In much the same way with PaaS, the Java runtime that is made
available in FaaS platforms can be a modified version of the JRE.
Common restrictions imposed by running the JRE in a sandbox
include limited access to filesystem and network. The functions
also typically have a time limit for execution, and this means that
the code within your function will be forcefully terminated if this
limit is exceeded.
In addition, although FaaS functions are modeled as ephemeral
deployment units that are instantiated and terminated on demand,
the reality of the implementation details (typically, the function is
executed within an OS container) may leak, and this means a func‐
tion executed twice sequentially may use the same instantiation of
the function. This can be bad—for example, if you have left global
state like a public class variable set incorrectly, this will persist
between executions. Alternatively, it can be good—allowing you to
avoid repeated resource instantiation costs by opening a database
connection or prewarming a cache within a static initializer and
storing the result in a public variable.

Testing FaaS applications can also be challenging, both from a functional and non‐
functional perspective, as events must be created to trigger functionality, and often
many functions have to be composed together to provide a meaningful unit of func‐

72 | Chapter 4: Deployment Platforms, Infrastructure, and Continuous Delivery of Java Apps

http://kubeless.io/
http://fission.io/
https://www.openfaas.com/
https://openwhisk.apache.org/faq.html
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-gb/services/functions/
https://azure.microsoft.com/en-gb/services/functions/
https://cloud.google.com/functions/

tionality. For functional testing, this means that triggering test events have to be cura‐
ted, and a variety of functions (of a specific version) instantiated. For nonfunctional
tests, you typically have to run the tests on the platform itself (perhaps in a “staging”
environment) with the same caveats applying in regard to curating events and com‐
posing applications.

Be Aware of (Account-Wide) FaaS Limits

If you are using a fully managed hosted FaaS environment, be
aware of various limits that may apply; for example, the maximum
number of simultaneous concurrent executions of a function.
These limits can also apply account-wide, so if you have a runaway
function, this may impact your entire organization’s systems!

FaaS Benefits
The core benefit of FaaS is that the model allows the rapid creation and deployment
of new features. Applications with low-volume and spiky usage patterns can also be
operated at low cost.

Worth-Based Development: A Powerful Concept
Simon Wardley has written much about the powerful model that FaaS provides, and a
core theme is worth-based development. The essence of this concept is that design
choices are made to maximize the value provided by these systems in relation to their
costs. This implies that you, as a developer, will need to understand how “value” is
defined within your organization and for the component you are working on (for
example, it may be revenue generated, or the number of sign-ups), as well as the cost‐
ing model of the underlying platform and infrastructure.

Hosted FaaS platforms make the second part of this challenge much easier as you are
billed per function execution, and you have limited (or no) fixed costs of maintaining
infrastructure if your application is not used.

CI/CD and FaaS
Introducing continuous delivery with applications deployed within a FaaS platform is
usually a no-brainer, and may even be enforced by the vendor:

• Focus on the creation of a CD pipeline that packages your application (or even a
proof-of-concept application) as an artifact and takes this from your local devel‐
opment environment through to a production FaaS environment. This will high‐
light any technical or organizational issues with using FaaS technologies.

Function-as-a-Service/Serverless Functions | 73

• If you are running your own FaaS platform, capture all configuration within ver‐
sion control, and automate all installation and upgrading via IaC tooling like
Terraform or Ansible. However, generally it will be more cost-effective to not
operate your own platform and instead use a hosted offering from one of the
cloud vendors.

• Store any application configuration and metadata within version control; for
example, any service discovery configuration or custom build containers you
have created. This metadata should also include the current version of the func‐
tion that is considered “master” or the most current.

• Ensure that you are exposing and capturing core metrics for each function
deployed, such as memory used and execution time.

• It may be beneficial to conduct “right-sizing” experiments as part of the load test‐
ing within your pipeline: you deploy your function to a variety of container/
instance/runtime sizes and evaluate throughput and latency. Load testing FaaS
applications is generally challenging, as the underlying platform typically auto‐
scales based on load, but the size (CPU and memory) of the container/instance/
runtime will impact the individual and aggregate execution speed.

• Codify your learning (and mistakes) into the pipeline—for example, handling
service failures gracefully, security testing, and chaos/resilience testing.

• Although FaaS platforms abstract away the servers (and associated security
patching), don’t forget that you are responsible for identifying and resolving
security issues with your code and all of your dependencies.

• Don’t forget to decommission or delete old functions. It is all too easy to forget
about an old unused function, or to create a new replacement function and leave
the existing one. However, this can not only be confusing for other engineers
(wondering which functions are actively used), but also increase the attack sur‐
face from a security perspective.

Working with Infrastructure as Code
If you are creating your own platform or working closely with an operations team
that is doing this, we recommend learning more about programmable infrastructure
and infrastructure as code (IaC). This will not only allow you to create or customize
your own infrastructure, but also help you to cultivate mechanical sympathy for the
platform.

74 | Chapter 4: Deployment Platforms, Infrastructure, and Continuous Delivery of Java Apps

Infrastructure as Code: Learning More from Kief Morris
This book focuses on Java development, so IaC is not covered in much detail because
of space limitations. However, if you are interested in learning more, then Infrastruc‐
ture as Code by Kief Morris (O’Reilly) is highly recommended.

Our preferred tooling in this space is HashiCorp’s Terraform for specifying cloud
environments and related configuration (block storage, networking, additional cloud
vendor services, etc.), and Red Hat’s Ansible for configuration management and
machine instance installation.

Summary
In this chapter, you learned about the functionality that is provided by platforms for
deployment of Java-based web applications, and how the choice of platform affects
CI/CD.

• A platform provides an entry point for your users to access your application; a
Java runtime (which you may have to manage); access to CPU, memory, and
block storage; access to middleware or data stores; resilience (e.g., restarts of
failed applications); service discovery; security; and cost management.

• Regardless of the platform used, all code and configuration must be stored within
version control, and a continuous delivery build pipeline created that can take
code from a local machine, build and test, and deploy.

• Packaging and deploying Java applications as standard Java artifacts, such as the
JAR or WAR, provides more flexibility and safety than using a bespoke process
(e.g., zipping code artifacts or class patching).

• The four main platform types—traditional infrastructure platforms, cloud (IaaS),
PaaS, and FaaS—all have differing benefits and challenges for implementing
CI/CD for your application.

• You can augment your skills as a Java developer by learning more about infra‐
structure as code (IaC) and using tools like Terraform and Ansible. This will
allow you to create test environments and to cultivate a better understanding of
the underlying platform you are using.

Now that you have a good understanding of Java deployment platforms, let’s look into
building Java applications in more detail.

Summary | 75

http://shop.oreilly.com/product/0636920039297.do
http://shop.oreilly.com/product/0636920039297.do

CHAPTER 5

Building Java Applications

In this chapter, you will learn about how Java applications are built and explore the
typical life cycle of a build process. You will also learn about the value of automating
the build by using specialized tools (rather than just your IDE’s out-of-the box build
tool), the benefits of which allow the easy translation of the build to a continuous
integration build server. Finally, you’ll review the good, bad, and ugly of the most
popular build tools, with the goal of being able to make the best choice for your next
Java project.

Breaking Down the Build Process
Nearly all software has to be built (or at least packaged), and Java applications are no
exception. At the most basic level, the Java code you write has to be compiled into
Java bytecode before it is executed on the Java Virtual Machine (JVM). However, any
Java application of sufficient complexity will require the inclusion of additional exter‐
nal dependencies. This includes the libraries you use so often that you can forget they
are third-party code, like SLF4J and Apache Commons Lang. With this in mind, a
typical series of build steps for a Java application would look something like this (and
the Maven users among you might recognize this):

Validate
Validate that the project is correct and all necessary information is available.

Compile
Compile the source code of the project.

Test
Test the compiled source code by using a suitable unit-testing framework. These
tests should not require the code to be packaged or deployed.

77

Package
Take the compiled code and package it in its distributable format, such as a JAR.

Verify
Run any checks on results of integration tests to ensure that quality criteria are
met.

Install
Install the package into the local repository, for use as a dependency in other
projects locally.

Deploy
Done in the build environment, copies the final package to the remote repository
for sharing with other developers and projects.

All of these steps can be done manually, and indeed it is recommended that every
developer undertakes all of these steps manually at least once in their career. Much
can be learned by going back to basics and working with the fundamental processes
and tooling.

Experimenting with javac, java, and the Classpath
A lot can be learned from utilizing the javac and java command-line utilities for
compiling and executing simple Java applications, and particular attention should be
paid to managing class path issues. It is our belief that every Java developer should
learn the fundamentals of javac, the working directory, the challenges of managing a
class path, and the core JVM java command-line flags.

Although there is value in manually exploring build steps to learn, there is little to be
gained from continually doing this. Not only can your (valuable) time as a developer
be better used elsewhere, but automating a process makes it much more repeatable
and reliable. Build tooling automates the compilation, dependency management, test‐
ing, and packaging of software applications.

Automating the Build
Many Java application frameworks, IDEs, and platforms provide build tooling func‐
tionality out of the box, and it is often seemlessly integrated into the developer work‐
flow; sometimes using bespoke implementations, and sometimes by using a
specialized build tool. Although there are always exceptions, it is generally advanta‐
geous to utilize a specialialized build tool, as this allows all developers working on a
project to successfully build the application, regardless of the operating system, IDE,
or framework they are using. In the modern Java world, this is typically implemented

78 | Chapter 5: Building Java Applications

with Maven or Gradle, but other options do exist, as you’ll explore later in this
chapter.

According to the RebelLabs’ Ultimate Java Build Tool Comparison guide, a good
build tool should provide the following features:

• Managing dependencies
• Incremental compilation
• Properly handling compilation and resource management tasks across multiple

modules or applications
• Handling different profiles (development versus production)
• Adapting to changing product requirements
• Build automation

Build tools have evolved over the years, becoming progressively more sophisticated
and feature rich. This provides developers with useful additions, such as the ability to
manage project dependencies as well as automate tasks beyond compiling and pack‐
aging. Typically, build tools require two major components: a build script and an exe‐
cutable that processes the build script. Build scripts should be platform agnostic: they
must be executable without modification on Windows, Linux, and Mac, and only the
build tool binaries change. Within the build script, the concept of dependency man‐
agement is vital, as is the structure (modularity) of the associated projects and the
build process itself. Modern build tools address these concepts though the manage‐
ment of the following:

• Build dependencies
• External dependencies
• Multimodule projects
• Repositories
• Plugins
• Releasing and publishing artifacts

Before exploring several popular build tools, you first will need to be familiar with
what each of the preceding concepts encompasses.

Build Dependencies
Before build tooling provided dependency management, the management of a Java
application’s supporting libraries was typically done by manually copying around
folders of class files and JARs! As you can imagine, this was not only time-consuming
and error-prone, but critically it made a developer’s job much harder, as time and

Automating the Build | 79

http://bit.ly/2NL4PPp

energy were needed to form a mental model of all the components (and the corre‐
sponding versions) within a codebase when assembling an application or debugging.

The majority of build tools have their own ways of handling code dependencies, as
well as their differences. However, one thing is consistent: each dependency or library
has a unique identity that consists of a group of some kind, a name, and a version. In
Maven and Gradle, this is commonly referred to as the GAV coordinates of a depend‐
ency: group ID, artifact ID, and version. The dependencies required for your applica‐
tion are specified using this format, rather than the filename or URI of the external
library. Your build tool is expected to know how to locate the dependency identified
by the unique coordinates, and will typically download these from a centralized
source, such as Maven Central or Repo@JFrog.

Take Care to Avoid “Dependency Hell”

In the world of software development, there exists a dreaded place
called dependency hell. The bigger your system grows and the more
dependencies you integrate into your software, the more likely you
are to find yourself languishing in this nightmare. With an applica‐
tion that has many dependencies, releasing new package versions
can quickly become challenging, as changing one dependency may
have a cascading effect.
You’ll explore the concept of semantic versioning (semver) in the
next section of this chapter, but a core takeaway from this warning
is that if dependency specifications are too rigid, you are in danger
of version lock—the inability to upgrade a package without having
to release new versions of every dependent package. However,
approaching this problem from another perspective shows that if
dependencies are specified too loosely, you will inevitably be affec‐
ted by version promiscuity—assuming compatibility with more
future versions than is reasonable. Dependency hell is where ver‐
sion lock and/or version promiscuity prevent you from easily and
safely moving your project forward.

The majority of dependency management tooling allows you to specify a version
range for your dependencies instead of a specific version if required. This allows you
to find a common version of a dependency across multiple modules that have
requirements. These can be extremely useful and equally dangerous if not used sensi‐
bly. Ideally, software builds should be deterministic; the resulting artifact from two
identical builds (even those built some time apart) should be identical. You will
explore some of the challenges with this shortly, but first let’s look into the possible
ranges that you can specify. If you have used version ranges before, you will likely
have used a similar, if not identical, syntax in the past. The following is the typical

80 | Chapter 5: Building Java Applications

https://search.maven.org/
https://repo.jfrog.org/artifactory/

version range taken from the RebelLabs Java Build Tools crash course mentioned pre‐
viously:

[x,y]

From version x up to version y inclusive

(x,y)

From version x up to version y exclusive

[x,y)

From version x inclusive, up to version y exclusive

(x,y]

From version x exclusive, up to version y inclusive

[x,)

From version x inclusive and all greater versions

(,x]

From version x inclusive and all lesser versions

[x,y),(y,)

From version x inclusive and all greater versions, but specifically excluding ver‐
sion y

If you are using Maven to manage your dependencies, you might use something like
Example 5-1 when importing the Twitter4J API.

Example 5-1. Specifying dependency ranges by using Maven

<dependency>
 <groupId>org.twitter4j</groupId>
 <artifactId>twitter4j-core</artifactId>
 <version>[4.0,)</version>
</dependency>

The preceding example uses semantic versioning (explained in more detail later), and
essentially states that you want to import version 4.0.0 and up for the minor version
of the dependency. If you initially create the project when the Twitter4J API is avail‐
able at 4.0.0, this is the version you will include within your artifact. If a new 4.0.1
version is released, a new build of your artifact will include this version—and the
same for the versions in this range, such as 4.0.2 and 4.0.15. However, if a new 4.1.0
or 5.0.0 version is released, this would not be included within your artifact, because
this is outside the range specified. The theory behind using ranges like this is that
patch upgrades will not change the API or semantic behavior of the dependency, but
will include any security and nonbreaking bug fixes.

Automating the Build | 81

If you are regularly building and deploying your applications, any new minor
upgrade will automatically get pulled in to your project without you having to man‐
ually modify any build configuration. However, the trade-off is that any updated ver‐
sion of the dependency may break your project—perhaps the authors of the patch did
not realize that they must not break the API with a patch update, or maybe you were
relying on an incorrectly functioning API. Because of this, it may be best to specify
exact dependency versions, and only manually update them.

Many build tools provide plugins to ensure that you are using the most recent ver‐
sions of all of your dependencies, and will warn you or fail the build if you are not.
You will, of course, need a good suite of tests within your application to ensure that
upgrading the libraries does not cause any unexpected failures; a compilation failure
is the easiest to spot, but often not the most damaging.

Administrating Build Dependencies Is Your Responsibility!

Build tooling can detect and warn if you are using out-of-date
build dependencies. Some even detect if a library has known secu‐
rity issues, which can be invaluable. But you are responsible for
making sure this functionality is enabled and that you take action
on any warnings. Increasingly, many of our projects are assembled
from a vast array of third-party libraries and frameworks, and the
applications you are building are handling data that is critical to
your organization. This only increases your responsibility as a
developer.

If you are working on a project that consists of multiple applications, it can be chal‐
lenging to coordinate using the same dependencies across them. Sometimes this isn’t
needed. For example, one of the key tenets with microservice-style systems is the
independent evolvability of each of the services, and therefore you don’t want a
mechanism that enforces dependencies to be upgraded in lockstep. In this case, the
services should be loosely coupled, and tests or contracts used to assert that an
upgrade of a component in one service does not break another.

In other situations, this coupling can be useful. Perhaps you have a group of (deliber‐
ately designed) high-coupled applications that must use the same serialization library,
and all applications must be upgraded at the same time. Most modern Java depend‐
ency management tools have a concept of a parent build descriptor—for example, the
Parent project object model (POM) in Maven—that allows the specification of depen‐
dencies that will be inherited via child build descriptors (for example, the dependency
Management section within a Maven POM).

82 | Chapter 5: Building Java Applications

High-Coupling and Dependency Management: Daniel’s Experience

The use of parent build descriptors is powerful, but it can be
abused, particularly with microservice projects. In one of my first
microservice projects in 2012, my team and I decided to separate
our entity classes into a separate Maven artifact that would be built
and released separately from the other services that would import
this. However, I soon discovered that any change and new release
in the entity artifact meant that we had to build, release, and deploy
all of our microservices because we were using the classes for seri‐
alization when sharing data across service boundaries. I had acci‐
dentally created a highly coupled application.

External Dependencies
External dependencies include everything else that your project requires in order to be
built successfully. This includes external executables—perhaps a JavaScript code
minifier or an embedded driver—and access to any external resources—for example,
a centralized security scanner. A build tool must allow you to package, execute, or
specify a connection to an external resource.

Packaging Client-Side JavaScript Libraries as WebJars
For any of us who create Java applications that require a web frontend, you will know
that manually adding and managing client-side dependencies often results in codeba‐
ses that are difficult to maintain. WebJars provide an alternative approach, as they are
client-side dependencies packaged into JAR archive files and are made available via
Maven Central. They work with most JVM containers and web frameworks, such as
Twitter Bootstrap, Angular JS, and Jasmine.

Advantages of using WebJars, rather than packaging your own frontend resources,
include the following:

• Explicitly and easily manage the client-side dependencies in JVM-based web
applications

• Use JVM-based build tools (e.g., Maven, Gradle) to download your client-side
dependencies

• Know which client-side dependencies you are using
• Transitive dependencies are automatically resolved and optionally loaded via

RequireJS

More information, including the current WebJars available, can be found on the Web‐
Jars website.

Automating the Build | 83

https://www.webjars.org/
https://www.webjars.org/

Multimodule Projects
Although multimodule projects are some of the least understood (and perhaps anec‐
dotally, most abused) concepts, they can be powerful when deployed properly. Multi‐
module builds are effective when there are clearly defined components within an
application that, although they have well-defined interfaces and clear boundaries,
perhaps do not provide much value outside some large scope—in this case, the parent
project. Accordingly, a multimodule project allows you to group together such com‐
ponents, along with the user-facing components, such as a GUI or web application,
and build the entire system with a single command. The build system should be capa‐
ble of determining the build order for such applications, and the resulting compo‐
nents and applications are all versioned with the same identifier.

Less Is Typically More with Multimodule Projects
In our anecdotal experience (also backed up by a quick search on Stack Overflow),
multimodule projects add more complexity to a typical application. Before you begin
to divide your application this way, do yourself a favor and really think about the
trade-offs involved with organizing your code this way: is the added complexity and
increased potential lock-in to a build tool-specific methodology worth the benefits of
this style of modularization?

Multiple Repositories (or a Monorepo)?
The choice of how to organize your code has many implications, but your build tool
should be able to build the project regardless. With the rise in popularity of the
microservices architectural style, there has been increasing interest in the debate of
using a single (mono)repo or multiple repositories to store your code. Although the
concept sounds similar to the previously discussed ideas around multimodule
projects, a multimodule project should always be stored within a single repository;
this is because the modules are effectively coupled (in a positive way). However, if you
are creating an application consisting of several (or many) microservices, the choice
is not so clear-cut. If you have a large number of small, independently versioned code
repositories, each project will have a small, manageable codebase, but what about all
the code it depends on?

Questions for the Multi Versus Monorepo Debate
Several great resources online can help with making the decision between using mul‐
tiple repositories or a monorepo, but at the core of this, you need to ask yourself the
following questions:

• How do you find and modify the code your project depends on?

84 | Chapter 5: Building Java Applications

• If you are a library developer, how and when will applications adopt your most
recent changes?

• If you are a product developer, how and when will you upgrade your library
dependencies?

• Whose job is it to verify that changes don’t break other projects that depend on
them?

Several large engineering organizations prefer to keep their codebase in a single, large
repository. Such a codebase is sometimes referred to as a monorepo. Monorepos have
various advantages when it comes to scaling a codebase in a growing engineering
organization. Having all the code in one place:

• Allows a single lint, build, test, and release process.
• Increases code reuse, and enables easy collaboration among many authors.
• Encourages a cohesive codebase in which problems are refactored, not worked

around. Tests across modules are run together, which finds bugs that touch mul‐
tiple modules easier.

• Simplifies dependency management within the codebase. All of the code you run
with is visible at a single commit in the repo.

• Provides a single place to report issues.
• Makes it easier to set up a development environment.

As with many things within software development, there are always trade-offs. The
negatives with using a single repository include the following:

• The codebase looks more intimidating, and the cognitive load of understanding
the system is typically much higher (especially if the system has low cohesion and
high coupling).

• The repository is typically (much) bigger in size, and there can be lots of feature
branches if the team working on the codebase is large.

• Loss of version information can occur; if all you have is a Git hash, how can you
map this to version numbers of dependencies?

• Forking dependencies into the monorepo can lead to modifications being made
into this codebase that prevent upgrading of the library.

In regards to a build tool, having a large codebase in a single repository can present
challenges, too. In particular, it requires a scalable version-control system and a build
system that can perform fine-grained dependency management among many thou‐
sands of code modules in a single source tree. Compiling with tools that have arbi‐

Automating the Build | 85

trary recursively evaluated logic becomes painfully slow. Build tools like Blaze, Pants,
and Buck were designed for this type of usage in a way that other popular build tools,
such as Ant, Maven, and SBT, were not.

Plugins
Often, steps within a build, although not core to the build tool’s functionality, are
nevertheless vital for a successful build. You often find yourself needing the same
functionality over and over again, and you want to avoid copy/pasting hacks or quick
fixes. This is where build tooling plugins can be useful. Plugins provide a way to
package common build functionality that can be created by you or a third-party for
reuse.

Provenance, and Avoiding “Not Invented Here”

As we mentioned in the previous build dependency section, you
are responsible for all libraries and dependencies that you bring
into your application, and this also includes plugins. Be sure to
research the quality of a plugin before using it, and ideally examine
the associated source code. On a related note, this should not be an
excuse for writing every plugin yourself. Please avoid Not Invented
Here (NIH), as the developers of a well-built and maintained plugin
will have done a lot of the difficult design work and edge-case han‐
dling for you.

Releasing and Publishing Artifacts
Every build tool must be able to publish artifacts ready for deployment or consump‐
tion by a downstream dependency. Most build tools have the concept of releasing a
module or code artifact. This process assigns a unique version number to a specific
build, and ensures that this coordinate is also tagged appropriately in your VCS.

Semantic Versioning
Semantic versioning, or semver, is a simple set of rules and requirements that dictate
the way version numbers are assigned and incremented. These rules are based on pre‐
existing widespread common practices in use in both closed and open source soft‐
ware. Once you identify your public API—which in the Java development world
could be an interface at the code level or a REST-like API at the application level—
you communicate changes to it with specific increments to your version number.
Semver uses a version format of X.Y.Z (Major.Minor.Patch). Bug fixes not affecting
the API increment the patch version, backward-compatible API additions/changes
increment the minor version, and backward-incompatible API changes increment the
major version. Under this scheme, version numbers and the way they change convey

86 | Chapter 5: Building Java Applications

meaning about the underlying code and what has been modified from one version to
the next. Additional information can be found on the Semantic Versioning 2.0.0 web‐
site.

Java Build Tooling Overview
This section presents several of the popular Java build tools, and highlights strengths
and weaknesses, with the goal of helping you decide which is best for your current
project.

Ant
One of the first popular build tools in the Java space was Apache Ant. For many of us
who were previously used to manually building Java applications via a combination of
javac and Bash scripts, Ant was heaven sent. Ant takes an imperative approach:
developers specify a series of tasks that contain instructions on how exactly to build a
project. Ant was written in Java, and users of Ant could develop their own antlibs
containing Ant tasks and types. A large number of ready-made commercial or open
source antlibs provided useful functionality. Ant was extremely flexible and did not
impose coding conventions or directory layouts to the Java projects that adopt it as a
build tool. However, this flexibility was also its downfall.

The range of possible directory structures and layouts meant that nearly every project
(even within the same organizations) were subtly different from each other. The flexi‐
bility of how artifacts were built also meant that developers could not rely on the
availability of key life cycle events within a build, such as cleaning the workspace, ver‐
ifying the build, packaging, releasing, and deploying. Developers attempted to com‐
pensate for this by writing accompanying build documentation, but this was difficult
to maintain as a project evolved, and was particularly challenging for large projects
consisting of many artifacts. Another challenge presented by Ant was although it fol‐
lowed the good design principle of single responsibility, it didn’t assist developers
with managing dependencies. To address these shortcomings, Maven emerged from
the Apache Turbine project as a competitor against Ant.

Installation
You can download Apache Ant from ant.apache.org. Extract the ZIP file into a direc‐
tory structure of your choice. Set the ANT_HOME environment variable to this location
and include the ANT_HOME/bin directory in your path. Make sure that the
JAVA_HOME environment variable is set to the JDK. This is required for running Ant.

You can also install Ant by using your favorite package manager; for example:

$ apt-get install ant

Java Build Tooling Overview | 87

https://semver.org/
http://ant.apache.org/

$ brew install ant

Check your installation by opening a command line and typing ant -version into
the command line:

$ ant -version
Apache Ant(TM) version 1.10.1 compiled on February 2 2017

The system should find the command ant and show the version number of your
installed Ant version.

Build example
You can see an example build.xml build script in Example 5-2.

Example 5-2. Ant build.xml

<project name="MyProject" default="dist" basedir=".">
 <description>
 simple example build file
 </description>
 <!-- set global properties for this build -->
 <property name="src" location="src"/>
 <property name="build" location="build"/>
 <property name="dist" location="dist"/>
 <property name="version" value="1.0"/>

 <target name="init">
 <!-- Create the time stamp -->
 <tstamp/>
 <!-- Create the build directory structure used by compile -->
 <mkdir dir="${build}"/>
 </target>

 <target name="compile" depends="init"
 description="compile the source">
 <!-- Compile the java code from ${src} into ${build} -->
 <javac srcdir="${src}" destdir="${build}"/>
 </target>

 <target name="dist" depends="compile"
 description="generate the distribution">
 <buildnumber/>
 <!-- Create the distribution directory -->
 <mkdir dir="${dist}/lib"/>

 <!-- Put everything in ${build} into the
 MyProject-${version}.${build.number}.jar -->
 <jar destfile="${dist}/lib/MyProject-${version}.${build.number}.jar"
 basedir="${build}"/>
 </target>

88 | Chapter 5: Building Java Applications

 <target name="clean"
 description="clean up">
 <!-- Delete the ${build} and ${dist} directory trees -->
 <delete dir="${build}"/>
 <delete dir="${dist}"/>
 </target>
</project>

Assuming that you have packaged the Java source files in the directory structure as
specified in the build script, you can build this project by using the following com‐
mand:

$ ant -f build.xml

Releasing and publishing
The simplest way to release and version your build artifacts with Apache Ant is to use
the buildnumber task. In the dist target in the preceding build.xml, you can see the
use of the <buildnumber/> declaration tag. You can also see that the build artifact
destination file—shown as destfile="${dist}/lib/MyProject-${version}.$

{build.number}.jar"—is named as a concatenation of the string MyProject, a
version variable set within the global properties and the build.number variable that
is generated by the buildnumber task. This is a number that increases with each build,
which ensures uniqueness.

You can also release artifacts built by Ant (and manage dependencies) by using the
companion project Apache Ivy.

Maven
The Apache Maven build tool focuses on “convention over configuration,” and the
primary goal is to allow a developer to comprehend the complete state of a develop‐
ment effort in the shortest period of time. To attain this goal, that Maven attempts to
deal with several areas of concern:

• Making the build process easy
• Providing a uniform build system
• Providing quality project information
• Providing guidelines for best-practices development
• Allowing transparent migration to new features

Maven allows a project to build by using its POM and a set of plugins that are shared
by all projects using Maven, providing a uniform build system. Once you familiarize
yourself with how one Maven project builds, you automatically know how all Maven
projects build, saving you immense amounts of time when trying to navigate many

Java Build Tooling Overview | 89

http://ant.apache.org/ivy/

projects. Maven aims to gather current principles for best-practices development, and
make it easy to guide a project in that direction. For example, specification, execu‐
tion, and reporting of unit tests are part of the normal build cycle using Maven. Cur‐
rent unit-testing best practices were used as guidelines:

• Keeping your test source code in a separate, but parallel source tree
• Using test case naming conventions to locate and execute tests
• Have test cases set up their environment and don’t rely on customizing the build

for test preparation.
• Maven also aims to assist in project workflow such as release management and

issue tracking.

Maven also suggests some guidelines on how to lay out your project’s directory struc‐
ture so that after you learn the layout, you can easily navigate any other project that
uses Maven and the same defaults. There are three built-in build life cycles: default,
clean, and site. The default life cycle handles your project deployment, the clean life
cycle handles project cleaning, and the site life cycle handles the creation of your
project’s site documentation. Each of these build life cycles is defined by a different
list of build phases, wherein a build phase represents a stage in the life cycle.

These life cycle phases (plus the other life cycle phases not noted here) are executed
sequentially to complete the default life cycle. Given the preceding life cycle phases,
this means that when the default life cycle is used, Maven will first validate the
project, then will try to compile the sources, run those against the tests, package the
binaries (e.g., JAR), run integration tests against that package, verify the integration
tests, install the verified package to the local repository, and then deploy the installed
package to a remote repository.

Installation
You can download Maven from the Apache Maven project web page. Ensure that the
JAVA_HOME environment variable is set and points to your JDK installation, and then
extract the ZIP file into a directory structure of your choice. Add the bin directory of
the created directory apache-maven-3.5.2 to the PATH environment variable.

You can also install Maven by using your favorite package manager; for example:

$ apt-get install maven

$ brew install maven

Confirm everything is working:

$ mvn -v

Maven home: /usr/local/Cellar/maven/3.5.2/libexec
Java version: 9.0.1, vendor: Oracle Corporation

90 | Chapter 5: Building Java Applications

https://maven.apache.org/download.cgi

Java home: /Library/Java/JavaVirtualMachines/jdk-9.0.1.jdk/Contents/Home
Default locale: en_GB, platform encoding: UTF-8
OS name: "mac os x", version: "10.12.6", arch: "x86_64", family: "mac"

Build example
You can see an example pom.xml build script in Example 5-3.

Example 5-3. pom.xml of a simple Spring Boot application

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/
 4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>uk.co.danielbryant.oreilly.cdjava</groupId>
 <artifactId>conference</artifactId>
 <version>${revision}</version>
 <packaging>jar</packaging>

 <name>conference</name>
 <description>Project for Daniel Bryant's
 O'Reilly Continuous Delivery with Java</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.5.6.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
 <java.version>1.8</java.version>
 <!-- Sane default when no revision property
 is passed in from the commandline -->
 <revision>0-SNAPSHOT</revision>
 </properties>

 <scm>
 <connection>scm:git:https://github.com/danielbryantuk/
 oreilly-docker-java-shopping</connection>
 </scm>

 <distributionManagement>
 <repository>
 <id>artifact-repository</id>
 <url>http://mojo.codehaus.org/oreilly-docker-java-shopping</url>
 </repository>

Java Build Tooling Overview | 91

 </distributionManagement>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>

 <!-- Utils -->
 <dependency>
 <groupId>net.rakugakibox.spring.boot</groupId>
 <artifactId>orika-spring-boot-starter</artifactId>
 <version>1.4.0</version>
 </dependency>
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-lang3</artifactId>
 <version>3.6</version>
 </dependency>

 <!-- Test -->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 <plugin>
 <artifactId>maven-scm-plugin</artifactId>
 <version>1.9.4</version>
 <configuration>
 <tag>${project.artifactId}-${project.version}</tag>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

92 | Chapter 5: Building Java Applications

Assuming that all the Java code files are present and in the correct directory structure,
you can build the application:

$ mvn clean install

Releasing and publishing
Historically, releasing and versioning in Maven was conducted with the Maven
Release plugin, but this had issues, particularly around the plugin doing lots of opera‐
tions for each release: multiple clean and package cycles, POM transformations, com‐
mits, and source code management (SCM) revisions. Importantly for you, the Maven
Release plugin does not support continuous delivery effectively.

Maven Release Plugin: Dead and Buried
Axel Fontaine has written a popular blog series on the problems with the Maven
Release plugin over the last six years. If you want to learn more about the issues and
your options for releasing via Maven, we highly recommend you have a look at this
series.

Inspired by Axel Fontaine’s blog series about more-effective releasing with Maven
(post-Maven 3.2.1), many developers favor using the Versions Maven plugin. At its
core, the purpose of producing a release is nothing more than being able to link a
version of the software as deployed onto a machine back to the matching revision of
the source code in SCM. To accomplish this, you have to go through multiple steps,
the minimum of which include the following:

• Checking out the application code as it is
• Specifying a version number so it can be uniquely identified
• Building, testing, and packaging the application
• Deploying the application artifact to an artifact repository where it can be

deployed from
• Tagging this state in the SCM so it can be associated with the matching artifact

The preceding POM has been configured to enable Fontaine’s releasing methodology.
You’ll notice the <version>${revision}</version> and associated property that can
be set via a command-line argument (and would typically be set as an environment
variable via your continuous integration server). The <scm> and <distribution
Management> sections of the POM remain unchanged from the standard Maven
approach. You can now produce releases on your CI server by invoking the following:

$ mvn deploy scm:tag -Drevision=$BUILD_NUMBER

Java Build Tooling Overview | 93

https://axelfontaine.com/blog/dead-burried.html

BUILD_NUMBER is the environment variable provided by your CI server to identify the
current build number for the project. For services and deliverables consumed by
other teams and external parties, you can also easily combine this technique with
semantic versioning by prefixing the version tag in your POM with the correct
semantic version. You can then automatically produce releases internally and man‐
ually update this semantic version before each external delivery.

Using Gitflow? There Is Another Plugin for You
You will explore Gitflow in Chapter 9, but if you are using this Git-based branching
workflow, there is another plugin you should look at: JGit-Flow. The Maven JGit-
Flow plugin is based on and is a replacement for the Maven Release plugin, and ena‐
bles support for Gitflow-style releases via Maven. While this plugin is primarily used
to perform releases, it also provides full Gitflow functionality, including the following:

Starting a release
Creates a release branch and updates POM(s) with release versions

Finishing a release
Runs a Maven build (deploy or install), merges the release branch, and updates
POM(s) with development versions

Starting a hotfix
Creates a hotfix branch and updates POM(s) with hotfix versions

Finishing a hotfix
Runs a Maven build (deploy or install), merges the hotfix branch, and updates
pom(s) with previous versions

Starting a feature
Creates a feature branch

Finishing a feature
Merges the feature branch

Maven was influential within the Java build ecosystem, but a new community
emerged that believed that Maven, and the build process, was inflexible and overly
opinionated. Accordingly, Gradle emerged as a potential competitor that was not only
a lot more flexible, but also less verbose.

Gradle
Gradle is an open source build automation system that builds upon the concepts of
Apache Ant and Apache Maven and introduces a Groovy-based domain-specific lan‐
guage (DSL) instead of the XML form used by Apache Maven for declaring the

94 | Chapter 5: Building Java Applications

https://bitbucket.org/atlassian/jgit-flow/

project configuration. Gradle was designed for multiproject builds that could grow to
be quite large, and it supports incremental builds by intelligently determining which
parts of the build tree are up-to-date, so that any task dependent upon those parts will
not need to be reexecuted. The initial plugins are primarily focused around Java,
Groovy, and Scala development and deployment, but more languages and project
workflows are on the roadmap.

Gradle and Maven have fundamentally different views on how to build a project.
Gradle is based on a graph of task dependencies, where the tasks do the work. Maven
uses a model of fixed, linear phases to which you can attach goals (the things that do
the work). Despite this, migrations can be surprisingly easy because Gradle follows
many of the same conventions as Maven, and dependency management works in a
similar way.

Installation
You can download Gradle from the project’s installation page. You must have Java 7
or later installed in order to run the latest version of Gradle. Ensure that the
JAVA_HOME environment variable is set and points to your JDK installation, and then
extract the ZIP file into a directory structure of your choice. Add the bin directory of
the created directory apache-maven-3.5.2 to the PATH environment variable.

You can also install Gradle by using your favorite package manager; for example:

$ apt-get install gradle

$ brew install gradle

Once you have everything installed, you can check that everything is working by exe‐
cuting the gradle binary with the v flag. You should see something similar to the fol‐
lowing output:

~ $ gradle -v
--
Gradle 4.3.1
--
Build time: 2017-11-08 08:59:45 UTC
Revision: e4f4804807ef7c2829da51877861ff06e07e006d
Groovy: 2.4.12
Ant: Apache Ant(TM) version 1.9.6 compiled on June 29 2015
JVM: 9.0.1 (Oracle Corporation 9.0.1+11)
OS: Mac OS X 10.12.6 x86_64

Build example
You can see an example build.gradle build script in Example 5-4.

Java Build Tooling Overview | 95

https://gradle.org/install/

Example 5-4. build.gradle of a simple Spring Boot application

buildscript {
 ext {
 springBootVersion = '1.5.3.RELEASE'
 }
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath("org.springframework.boot:↵
 spring-boot-gradle-plugin:${springBootVersion}")
 classpath("net.researchgate:gradle-release:2.6.0")
 }
}

apply plugin: 'java'
apply plugin: 'eclipse'
apply plugin: 'org.springframework.boot'
apply plugin: 'net.researchgate.release'

version = '0.0.1-SNAPSHOT'
sourceCompatibility = 1.8

repositories {
 mavenCentral()
}

dependencies {
 compile('org.springframework.boot:spring-boot-starter')
 compile('org.springframework.boot:spring-boot-starter-web')
 compile('com.google.guava:guava:21.0')
 compile 'com.fasterxml.jackson.datatype:jackson-datatype-jsr310:2.8.6'

 testCompile('org.springframework.boot:spring-boot-starter-test')
}

Assuming that all of the code is included in the expected directory structure, you can
build the project by executing the following command:

$ gradle build

Releasing and publishing
There are several popular options for releasing and publishing Gradle artifacts, but
here you’ll focus on the ResearchGate gradle-release plugin, which is for providing
Maven-like Gradle releases.

96 | Chapter 5: Building Java Applications

https://github.com/researchgate/gradle-release

But Wait, You Said the Maven Release Plugin Was Dead and Buried?
Yes, yes, we did. However, the most common approach to releasing Gradle artifacts in
the wild is through the gradle-release plugin, and so we were keen to demonstrate it.
There is a plugin—the Intershop Communications AG scmversion-gradle-plugin—
that will allow you to perform the same steps that we have documented from Axel
Fontaine’s effective Maven release process. Another popular Gradle release mecha‐
nism uses the Gradle Artifactory plugin, but this is appropriate only if you are man‐
aging your dependencies and release artifacts via JFrog’s Artifactory repository.

The preceding build.gradle script includes the dependencies for the gradle-release
plugin, and also activates this within the apply plugin section of the script. You can
begin an interactive release by issuing the gradle release command. This will trig‐
ger the following default series of events:

1. The plugin checks for any uncommitted files (added, modified, removed, or
unversioned).

2. Checks for any incoming or outgoing changes.
3. Removes the SNAPSHOT flag on your project’s version (if used).
4. Prompts you for the release version.
5. Checks if your project is using any SNAPSHOT dependencies.
6. Will build your project.
7. Commits the project if SNAPSHOT was being used.
8. Creates a release tag with the current version.
9. Prompts you for the next version.

10. Commits the project with the new version.

You can also release artifacts not using the interact process (which will be essential
when you begin releasing from a continuous integration build server), by executing
the release command with the release.useAutomaticVersion flag set to true, with
the essential arguments passed as additional command-line flags. Full details, includ‐
ing all of the command-line options, can be found within the project’s documenta‐
tion. Here is the command:

$ gradle release -Prelease.useAutomaticVersion=true
-Prelease.releaseVersion=1.0.0 -Prelease.newVersion=1.1.0-SNAPSHOT

Java Build Tooling Overview | 97

http://bit.ly/2xH14R8
http://bit.ly/2R48Gp1
http://bit.ly/2NHDw8x
http://bit.ly/2NHDw8x

Bazel, Pants, and Buck
Bazel is an open source tool that allows for the automation of building and testing of
software. Google uses the build tool Blaze internally and released an open source part
of the Blaze tool as Bazel, named as an anagram of Blaze. The Bazel extension lan‐
guage allows it to work with source files written in any language, with native support
for Java, C, C++, and Python. Bazel produces builds and runs tests for multiple plat‐
forms. Bazel’s BUILD files describe how Bazel should build your project. They have a
declarative structure and use a language similar to Python. BUILD files allow you to
work at a high level of the system by listing rules and their attributes.

The complexity of the build process is handled by these preexisting rules. You can
modify rules to tweak the build process, or write new rules to extend Bazel to work
with any language or platform. Hermetic rules and sandboxing allow Bazel to pro‐
duce correct, reproducible artifacts and test results. Caching allows reuse of build
artifacts and test results. Bazel’s builds are fast. Incremental builds allow Bazel to do
the minimum required work for a rebuild or retest. Correct and reproducible builds
allow Bazel to reuse cached artifacts for whatever is not changed. If you change a
library, Bazel will not rebuild your entire source.

Build systems most similar to Bazel are Pants and Buck. Pants’ development and fea‐
ture set were informed by the needs and processes of many prominent software engi‐
neering organizations, including those at Twitter, Foursquare, Square, Medium, and
others. But it can also be used in smaller projects. Pants supports Java, Scala, Python,
C/C++, Go, Thrift, Protobuf, and Android code. Support for other languages, frame‐
works, and code generators can be added by third-party developers by authoring plu‐
gins through a well-defined module interface.

Buck is a build system developed and used by Facebook. It encourages the creation of
small, reusable modules consisting of code and resources, and supports a variety of
languages on many platforms. Buck is designed for building multiple deliverables
from a single repository (a monorepo) rather than across multiple repositories. It has
been Facebook’s experience that maintaining dependencies in the same repository
makes it easier to ensure that all developers have the correct version of all the code,
and simplifies the process of making atomic commits.

As these tools are not as popular as Ant, Maven, and Gradle, and because of the limi‐
ted scope of this book, a full installation and release guide will not be included here.
However, all of these details can be found on the respective project websites. An
example Bazel BUILD file can be seen in Example 5-5, and you can see that the struc‐
ture is not dissimilar to the Gradle build script that you examined earlier.

98 | Chapter 5: Building Java Applications

Example 5-5. Bazel BUILD file

package(default_visibility = ["//visibility:public"])

java_binary(
 name = "hello-world",
 main_class = "com.example.myproject.Greeter",
 runtime_deps = [":hello-lib"],
)

java_library(
 name = "hello-lib",
 srcs = glob(
 ["*.java"],
 exclude = ["HelloErrorProne.java"],
),
)

java_binary(
 name = "hello-resources",
 main_class = "com.example.myproject.Greeter",
 runtime_deps = [":custom-greeting"],
)

java_library(
 name = "custom-greeting",
 srcs = ["Greeter.java"],
 resources = ["//examples/java-native/src/main/resources:greeting"],
)

java_library(
 name = "hello-error-prone",
 srcs = ["HelloErrorProne.java"],
)

filegroup(
 name = "srcs",
 srcs = ["BUILD"] + glob(["**/*.java"]),
)

These new style of build tools can be useful if you are working with a large
monorepo-based codebase, and we will explore this in more detail in Chapter 9.

Other JVM Build Tools: SBT and Leiningen
Many more open source JVM-based build tools could have been mentioned in this
book, although we have tried to focus on the tools that are popular or provide novel
functionality. This book focuses primarily on Java within the JVM space, but it is also
worth mentioning that if you are working with Scala or Clojure, the Simple Build
Tool (SBT) or Leiningen build tools are worth considering. Even if you are not work‐

Java Build Tooling Overview | 99

http://www.scala-sbt.org/index.html
http://www.scala-sbt.org/index.html
https://leiningen.org/

ing with other languages, these tools can still be useful when working with other
projects. You will see the use of SBT later in the book when you will learn about load
testing with the Gatling tool. Before wrapping up our tour of Java build tools, let’s
look quickly at one final classic build tool: Make.

Make
GNU Make is a tool that controls the generation of executables and other nonsource
files of a program from the program’s source files. As shown in Example 5-6, Make
gets its knowledge of how to build your program from a file called the makefile,
which lists each of the nonsource files and how to compute it from other files. When
you write a program, you should write a makefile for it, so that it is possible to use
Make to build and install the program.

When you run Make, you can specify particular targets to update; otherwise, Make
updates the first target listed in the makefile. Of course, any other target files needed
as input for generating these targets must be updated first. Make uses the makefile to
figure out which target files ought to be brought up-to-date, and then determines
which of them actually need to be updated. If a target file is newer than all of its
dependencies, it is already up-to-date, and it does not need to be regenerated. The
other target files do need to be updated, but in the right order: each target file must be
regenerated before it is used in regenerating other targets.

Example 5-6. makefile for simple Java project

JFLAGS = -g
JC = javac
.SUFFIXES: .java .class
.java.class:
 $(JC) $(JFLAGS) $*.java

CLASSES = \
 Foo.java \
 Blah.java \
 Library.java \
 Main.java

default: classes

classes: $(CLASSES:.java=.class)

clean:
 $(RM) *.class

Make may appear verbose to many Java developers, but it is worth learning about for
simple build environments that are resource constrained and cannot run Maven of
Gradle, or for building multilanguage projects.

100 | Chapter 5: Building Java Applications

Choosing a Build Tool
Maven has long been the default Java build tool, primarily because of its standardized
build process and structure. If you know how to build one Maven project, you know
how to build them all. However, Gradle has seen an increase in popularity in the past
several years, most likely because of the concise nature of the build.gradle build script.
If you have ever had to wade through a large Maven project, you will remember only
too well the challenges of navigating large XML files. Choosing a build tool is often an
important first step in a new Java project, and this can be a life-long commitment, as
migrating from one build tool to another is not a pleasant experience. So, which tool
should you choose?

Ant + Ivy
• A good choice if your organization has heavy investment in this tool, or you are

migrating/upgrading a project that already uses this tool.
• You are in complete control of the project directory structure, build tooling, and

build life cycle.
• Not a good choice if your organization likes things to be standardized, as the flex‐

ibility provided by Ant means that build scripts will often diverge in layout and
process.

• Generally not recommended for starting a new project that uses modern frame‐
works like Dropwizard or Spring Boot.

Maven
• A good de facto choice for building Java applications, especially if your organiza‐

tion already has good skills or an investment in this build tool.
• The lack of flexibility and challenge of writing custom plugins mean that this tool

is not appropriate for projects that require a custom build process (but do check
that you really need a custom build process!).

• Not recommended if you are building a simple project with many dependencies;
navigating a 500+ line pom.xml can be challenging.

Gradle
• A good choice for building projects that require more flexibility in the life cycle

or process than Maven can provide.
• Great integration with the Groovy language and associated test frameworks like

Spock and Geb.
• The combination of the Gradle DSL and Groovy enable you to write custom and

complex build logic.

Choosing a Build Tool | 101

• Good for Spring Boot and other microservice frameworks, and has useful inte‐
gration with, for example, contract-based testing tools.

• The learning curve (and reliance on Groovy) could make this a bad choice if
your organization works exclusively with Java.

• Not a good choice if your organization likes things to be standardized, as there
are many ways to write a build.gradle.

Bazel, Buck, Pants, etc.
• Good if working with a large monorepo-based application.
• No real benefit over other tooling if working with many small (microservice-

style) code repositories.
• Can be challenging to learn if your team is familiar with only existing Java build

tooling.

Make
• A good choice if your project consists of multiple non-JVM languages, and/or

requires the use of several command-line tools for the build.
• Can be challenging to learn if your team is familiar with only existing Java build

tooling, or not comfortable working with the command line.

It really is worth spending some time at the beginning of a project to make sure you
are using the most appropriate build tool, as this is something you will interact with
every day.

Summary
You have covered a lot of ground on how Java applications are built within this chap‐
ter, and explored the benefits of automating the build process. Your new knowledge
of the strengths and weaknesses of popular Java build tools will be useful when start‐
ing your next project, whether this is a large monorepo-based project or a series of
independently built microservice-style code repositories. In summary:

• All Java applications must be built—compiled to Java byte code—before they can
be executed on the JVM.

• Java applications of sufficient complexity will require the inclusion of additional
external dependencies or libraries; these must be managed effectively.

• You should package client-side JavaScript libraries as WebJars.
• Although there is value in manually exploring build steps in order to learn more

about this process, there is little to be gained from continually doing this.

102 | Chapter 5: Building Java Applications

• Build tooling automates the compilation, dependency management, testing, and
packaging of software applications.

• It is generally advantageous to utilize a specialized build tool, such as Maven or
Gradle, as this allows all developers working on a project to successfully build the
application, regardless of the operating system, IDE, or framework they are
using.

• Build tooling can often detect and warn if you are using out-of-date (or insecure)
build dependencies, but you are responsible for making sure this functionality is
enabled and that you take action on any warnings.

• Application code can be structured within a single version-controlled monorepo,
or multiple independent repositories. The choice of structure will affect the build
process and determine which build tool to use.

• Semantic versioning, or semver, is a simple set of rules and requirements that dic‐
tate how version numbers are assigned and incremented. This is useful for releas‐
ing and managing your own dependencies, and is essential for avoiding
“dependency hell.”

• Choosing a build tool is often an important first step in a new Java project, and it
can be a life-long commitment, because migrating from one build tool to another
is generally not a pleasant experience.

Before learning about packaging Java applications for deployment, you will explore
several additional build tools and associated skills that can be useful in the next
chapter.

Summary | 103

CHAPTER 6

Additional Build Tooling and Skills

Because of the increase in popularity of ideas like DevOps and Site Reliability Engi‐
neering (SRE), the modern Java developer can rarely rely on coding exclusively in
Java in order to accomplish tasks, particularly in relation to building, testing, and
deploying code. In this chapter, you will learn more about operating systems and
associated tooling for building and running diagnostics on Java applications.

Linux, Bash, and Basic CLI Commands
Linux, Bash, and command-line skills are essential for installing development tools,
configuring external build steps, and understanding and managing the underlying
operating system environment. Even if you work on a Microsoft Windows develop‐
ment machine, which has excellent PowerShell support as an alternative to Bash, it is
useful to understand the Linux OS because many platforms utilize this. Knowledge
acquired from learning core Bash skills can often be easily transferred to the Win‐
dows environment.

Further Learning Resources
You will learn the core skills required with the command line, JSON manipulation,
basic scripting, and provisioning infrastructure in this chapter. However, space limita‐
tions prevent this from being a complete reference. For more information, we refer to
Bash Pocket Reference by Arnold Robbins (O’Reilly), Classic Shell Scripting by Arnold
Robbins and Nelson Beebe (O’Reilly), and Infrastructure as Code by Kief Morris
(O’Reilly).

105

Users, Permissions, and Groups
Linux operating systems (OSs) have the ability to multitask in a manner similar to
other operating systems, and from its inception Linux was designed to allow more
than one user to have access to the system at the same time. In order for this multi‐
user design to work properly, there needs to be a method to protect users from each
other. Understanding this concept of users is vital for implementing CD, as you will
often be creating build pipelines that run as multiple, different users. Often, develop‐
ers run applications in all environments as the root user—an all-powerful user that by
default has access to all files and commands on a Linux OS—when running Java
applications (perhaps because they are used to doing this locally). But you really
should be using a specific user with minimal permissions for running applications in
production.

Users and the Principle of Least Privilege
In IT and computer science, the principle of least privilege (also known as the principle
of minimal privilege or the principle of least authority) requires that in a particular
abstraction layer of a computing environment, every module—such as a user, process,
or program, depending on the subject—must be able to access only the information
and resources that are necessary for its legitimate purpose. When you are running
Java applications, the principle means giving a user account only those privileges that
are essential to perform its intended function. For example, the OS user running a
typical Java application should be able to access the required parts of the local filesys‐
tem and network, but not be capable of installing new software.

Benefits of the principle of least privilege include the following:

Better system stability
When code is limited in the scope of changes it can make to a system, it is easier
to test its possible actions and interactions with other applications.

Better system security
When code is limited in the systemwide actions it may perform, vulnerabilities in
one application cannot be used to exploit the rest of the machine.

Ease of deployment
In general, the fewer privileges an application requires, the easier it is to deploy
within a larger environment.

106 | Chapter 6: Additional Build Tooling and Skills

Users and permissions

To create a new standard user, use the useradd command: useradd <name>. The user
add command utilizes a variety of variables:

-d <home_dir>

home_dir will be used as the value for the user’s login directory.

-e <date>

The date when the account will expire.

-f <inactive>

The number of days before the account expires.

-s <shell>

Sets the default shell type.

You will need to set a password for the new user by using the passwd command (note
that you will need root privileges to change a user’s password): passwd <username>.
The user will be able to change their password at any time by using the passwd com‐
mand without specifying a username. A user account and associated password will
allow authentication, but you will need to use permissions in order to authorize a
user’s activities to manipulate files. Permissions are the “rights” to act on a file or
directory. The basic rights are read, write, and execute:

Read
A readable permission allows the contents of the file to be viewed. A read permis‐
sion on a directory allows you to list the contents of a directory.

Write
A write permission on a file allows you to modify the contents of that file. For a
directory, the write permission allows you to edit the contents of a directory (e.g.,
add/delete files).

Execute
For a file, the executable permission allows you to run the file and execute a pro‐
gram or script. For a directory, the execute permission allows you to change to a
different directory and make it your current working directory. Users usually
have a default group, but they may belong to several additional groups.

To view the permissions on a file or directory, issue the command ls -l <direc
tory/file>, as shown in Example 6-1.

Linux, Bash, and Basic CLI Commands | 107

Example 6-1. Examining file permissions

(master *+) conferencemono $ ls -l
total 32
-rw-r--r-- 1 danielbryant staff 9798 31 Oct 16:17 conferencemono.iml
-rw-r--r-- 1 danielbryant staff 2735 31 Oct 16:16 pom.xml
drwxr-xr-x 4 danielbryant staff 136 31 Oct 09:16 src
drwxr-xr-x 6 danielbryant staff 204 31 Oct 09:37 target

The first 10 characters show the access permissions. The first dash (-) indicates the
type of file (d for directory, s for special file, and - for a regular file). The next three
characters (rw-) define the owner’s permission to the file. In the preceding example,
for the pom.xml file, the file owner danielbryant has read and write permissions
only. The next three characters (r--) are the permissions for the members of the
same staff group as the file owner, which in this example is read-only. The last three
characters (r--) show the permissions for all other users, and in this example it is
read-only.

You can change a file’s permissions and ownership with the chmod and chown com‐
mands, respectively. The command chmod is short for change mode, and can be used
to change permissions on files and directories. By default, all files are “owned” by the
user who creates them and by that user’s default group. To change the ownership of a
file, use the chown command in the chown user:group /path/to/file format. To
change the ownership of a directory and all the files contained inside, you can use the
recursive option with the -R flag: chown -R danielbryant:staff /opt/applica
tion/config/. If a file is not owned by you, you will need root account access in
order to change permissions or ownership; however, you don’t necessarily need to log
in as root in order to achieve this.

Self-Help: Using man and help
Linux has many man manuals that provide more information on all of the commands
mentioned in this chapter, and many command and applications also have associated
help. If you want to learn more about a command, try typing man <command> or
<command> --help.

Understanding sudo—superuser do
The root user acccount is the super user and has the ability to do anything on a sys‐
tem. Therefore, in order to have protection against potential damage, the sudo com‐
mand is often used in place of root. sudo allows users and groups access to
commands they normally would not be able to use, and allows a user to have admin‐

108 | Chapter 6: Additional Build Tooling and Skills

istration privileges without logging in as root, from which it is all too easy to acciden‐
tally do all kinds of damage to the underlying OS and configuration.

A common example of the sudo command used within continuous delivery is when
installing software into a virtual machine or container: sudo apt-get install

<package> for Ubuntu or Debian, and sudo yum install <package> for Red Hat or
CentOS distributions. To provide a user with sudo ability, their name will need to be
added to the sudoers file. This file is important and should not be edited directly with
a text editor; if the sudoers file is edited incorrectly, it could result in preventing access
to the system. Accordingly, the visudo command should be used to edit the sudoers
file. If you are initializing a system, you will need to log in as root and enter the com‐
mand visudo. As soon as your user has sudo privileges, you can use sudo with
visudo. Example 6-2 shows an example of a sudoers file.

Example 6-2. Portion of the sudoers file that shows the users with sudo access.

User privilege specification
root ALL=(ALL:ALL) ALL
danielbryant ALL=(ALL:ALL) ALL
ashleybryant ALL=(ALL:ALL) ALL

Working with groups
Groups in Linux are simply a (potentially) empty collection of users, which can be
used to manage several users at once or allow multiple independent user accounts to
collaborate and share files. Every user has a default or primary group, and control of
group membership is administered through the /etc/group file, which shows a list of
groups and its members. When a user logs in, the group membership is set for their
primary group. This means that when a user launches a program or creates a file,
both the file and the running program will be associated with the user’s current group
membership. This is an important concept within continuous delivery, as it means
that if your user starts a process (a Java application, a build server, test execution, or
indeed any process), this process inherits your permissions. If you are running with
generous permissions, it can mean that the process you started can do a lot of
damage!

A user may access other files in other groups, as long as they are also a member of
that group and the access permissions are set. To run programs or create a file in a
different group, you must run the newgrp command to switch your current group
(e.g., newgrp <group_name>). If you are a member of the group_name in the /etc/group
file, the current group membership will change. It is important to note that any files
created will now be associated with the new group rather than your primary group.
You can also change your group by using the chgrp command: chgrp <newgroup>.

Linux, Bash, and Basic CLI Commands | 109

Working with the Filesystem
The most fundamental skills you need to master are moving around the filesystem
and getting an idea of what is around you. When you log into your server (for exam‐
ple, a new build server), you are typically dropped into your user account’s home
directory.

Navigating directories
A home directory is a directory set aside for your user to store files and create directo‐
ries. To find out where your home directory is in relationship to the rest of the filesys‐
tem, you can use the pwd command. This command displays the directory that you
are currently in, as shown in Example 6-3.

Example 6-3. Using pwd to see the location of your current directory in the filesystem

(master *+) conferencemono $ pwd
/Users/danielbryant/Documents/dev/daniel-bryant-uk/
oreilly-book-support/conferencemono

You can view the contents of the current directory with the ls command. The ls
command has many useful flags, and it is common to use ls -lsa in order to view
more details about the file (lsa lists files in long format, file sizes, and showing all
files).

Example 6-4. Using ls in order to see the contents of the current directory

(master *+) conferencemono $ ls
conferencemono.iml pom.xml src target
(master *+) conferencemono $ ls -lsa
total 32
 0 drwxr-xr-x 7 danielbryant staff 238 31 Oct 16:17 .
 0 drwxr-xr-x 8 danielbryant staff 272 31 Oct 09:48 ..
 0 drwxr-xr-x 11 danielbryant staff 374 3 Jan 09:30 .idea
24 -rw-r--r-- 1 danielbryant staff 9798 31 Oct 16:17 conferencemono.iml
 8 -rw-r--r-- 1 danielbryant staff 2735 31 Oct 16:16 pom.xml
 0 drwxr-xr-x 4 danielbryant staff 136 31 Oct 09:16 src
 0 drwxr-xr-x 6 danielbryant staff 204 31 Oct 09:37 target
(master *+) conferencemono $

You can navigate directories by using the cd <directory name> command, as shown
in Example 6-5. cd .. moves you up one directory, and by combining the usage of
this ls and pwd, you can easily view files and not get lost.

110 | Chapter 6: Additional Build Tooling and Skills

Example 6-5. Navigating the filesystem

(master *+) conferencemono $ pwd
/Users/danielbryant/Documents/dev/daniel-bryant-uk/ ↵
oreilly-book-support/conferencemono
(master *+) conferencemono $ cd target/
(master *+) target $ ls
classes generated-sources generated-test-sources test-classes
(master *+) target $ cd classes/
(master *+) classes $ pwd
/Users/danielbryant/Documents/dev/daniel-bryant-uk/ ↵
oreilly-book-support/conferencemono/target/classes
(master *+) classes $ ls -lsa
total 0
0 drwxr-xr-x 4 danielbryant staff 136 31 Oct 16:21 .
0 drwxr-xr-x 6 danielbryant staff 204 31 Oct 09:37 ..
0 drwxr-xr-x 4 danielbryant staff 136 31 Oct 16:21 templates
0 drwxr-xr-x 3 danielbryant staff 102 31 Oct 10:20 uk
(master *+) classes $ cd ..
(master *+) target $ cd ..
(master *+) conferencemono $ pwd
/Users/danielbryant/Documents/dev/daniel-bryant-uk/ ↵
oreilly-book-support/conferencemono

Creating and manipulating files

The most basic method of creating a file is with the touch command. This creates an
empty file using the name and location specified: touch <file_name>. You will need
to have write permissions for the directory in which you are currently located for this
to succeed. You can also “touch” an existing file, and this will simply update the last
accessed and last modified times of the file to the current time. Many operations
within continuous delivery monitor the last modified date and use any change as a
trigger for an arbitrary operation, and using touch can short-circuit the check and
cause the operation to run. Similar to the touch command, you can use the mkdir
command to create empty directories: mkdir example You can also create a nested
directory structure by using the -p flag (otherwise, you will get an error, as mkdir can
create a directory only within a directory that already exists): mkdir -p deep/

nested/directories.

You can move a file to a new location by using the mv command mv file ./some/
existing_dir. (This command succeeds only if the /some/existing_dir directories
already exist.) Perhaps somewhat confusingly, mv can also be used to rename files: mv
original_name new_name. You are responsible for ensuring that these operations will
not do anything destructive—for example, mv can be used to overwrite existing files,
which cannot be recovered! In a similar fashion, you can copy files by using the cp
command: cp original_file new_copy_file. To copy directories, you must
include the -r option to the command. This stands for recursive, as it copies the

Linux, Bash, and Basic CLI Commands | 111

directory, plus all of the directory’s contents. This option is necessary with directories,
regardless of whether the directory is empty: cp -r existing_directory location_
for_deep_copy. To delete a file, you can use the rm command. If you want to remove
a non-empty directory, you will have to use the -r flag, which removes all of the
directory’s contents recursively, plus the directory itself.

There Is Often No Undo on the CLI

Please be extremely careful when using any destructive command
like rm, and potentially mv and cp. There is no “undo” command for
these actions, so it is possible for you to accidentally destroy impor‐
tant files permanently. If you’re anything like us, you’ll do this a few
times before you fully learn your lesson! One tactic we use now is
to list files we want to delete/move/replace before actually issuing
the command. For example, if we want to delete all the files with a
*.ini extension, but leave everything else intact, we will navigate to
the appropriate directory and list (by using ls *.ini) and check
the resulting files before issuing the remove command: rm *.ini.

Viewing and Editing Text
In contrast to some operating systems, Linux and other Unix-like operating systems
rely on plain-text files for vast portions of the system, so it is important that you learn
how to view text files via the command line. The basic mechanism to view a file’s con‐
tents on your terminal is by using the cat application (e.g., cat /etc/hosts). This
doesn’t work well with large files, or files with text you want to search, and therefore it
is common to also use a pager like less (e.g., less /etc/hosts). This opens the less
program with the contents of the /etc/hosts file. You can navigate through the pages in
the file with Ctrl-F and Ctrl-B (think forward and back). To search for text in the
document, you can type a forward slash, /, followed by the search term (e.g., /local
host). If the file contains more than one instance of the string being searched for, you
can press N to move to the next search, and Shift-N to move back to the previous
result. When you wish to exit the less program, you can type Q to quit.

When attempting to use continuous delivery or build tools, it is a common require‐
ment to be either able to view the first few lines or the last few lines of a large file—
this is especially common when looking at the first few lines of a configuration file, or
the last few lines of a log file (and you might want to follow along as more lines are
appended to the log file). The head and tail commands, respectively, can help a lot
here: e.g., head /etc/hosts or tail server.log.

112 | Chapter 6: Additional Build Tooling and Skills

Following Log File Generation in Real Time
A common requirement when configuring or debugging continuous delivery tools or
applications is the need to follow along with the generation of a log in real time. You
have most likely seen an example of this when running or debugging a Java applica‐
tion within an IDE—the program output, stdout, or log output is continuously
streamed to your window. If you have only terminal access to the log file, you can use
the tail program with the -f flag to follow the log and view lines appended in near
real-time:

tail -f /opt/app/log.txt

Programs like cat, less, head, and tail allow you only view or read-only access to a
file’s contents. If you need to edit a text file by using the command line, you can use
the vi, vim, emacs, or nano programs. Each Linux distribution provides different
tools by default, although you can usually install your favorite via a package manager
(providing your user has appropriate permissions).

Becoming a vi or vim Ninja
The vi and vim programs are widely available on Linux distribution. We strongly
encourage you to learn the basics of these tools, as this allows you to conduct basic
debugging, even if you can’t get debug access to the application or logs via another
mechanism. Vim is extremely powerful (and configurable), and although discussing
more about this is outside the scope of the book, we can definitely recommend read‐
ing Practical Vim (Pragmatic Programmers) by Drew Neil if you want to learn more!

Joining Everything Together: Redirects, Pipes, and Filters
Linux also has a powerful concept of redirects, pipes, and filters that allow you to
combine simple command-line programs to perform complicated processing and fil‐
ter the output (and text contents within the files) at any point within the processing
steps. More information on this can be found in the Linux Pocket Guide (O’Reilly) by
Daniel Barrett, but several examples are included here to demonstrate the power:

ls > output.log

Redirects (saves) the contents of the ls command to the text file output.log, over‐
writing any content that exists in this file.

ls >> output.log

Redirects (saves) the contents of the ls command to the text file output.log,
appending the new text to the existing contents of the file.

Linux, Bash, and Basic CLI Commands | 113

https://pragprog.com/book/dnvim/practical-vim

ls | less

Pipes the output of the ls command to the less pager, allowing you to page up
and down through long directory listings, as well as search the content.

ls | head -3

Pipes the output of the ls command to the head command (showing the top
three lines only).

ls | head -3 | tail -1 > output.log

Pipes the output of the ls command to head, which takes the top three lines and
pipes this to tail, which takes the bottom one line and redirects (saves) this to
the output.log file.

cat < input.log

Redirects (loads) the contents on input.log into cat. This example appears trivial,
as you don’t need to redirect the contents of a file into cat for it to be displayed,
but the program can be more complicated than cat. For example, this command
can be used to redirect (load) a database dump file into the MySQL command-
line program.

Searching and Manipulating Text: grep, awk, and sed
Some of the most basic—but also the most powerful—tooling in Linux searches and
manipulates text. grep is a command-line utility for searching plain-text data sets for
lines that match a regular expression. awk is a programming language designed for
text processing and typically used as a data extraction and reporting tool. sed is a
stream editor utility that parses and transforms text, using a simple, compact pro‐
gramming language. These tools are extremely useful when building continuous
delivery pipelines or diagnosing issues on Linux machines. The following are exam‐
ples:

grep "literal_string" filename

Searches for the exact match of literal_string in the file specified by filename.

grep "REGEX" filename

Searches for the regular expression REGEX in the file specified by filename.

grep -iw "is" demo_file

A case-insensitive search (-i) for the exact match of the word (-w) is. The word
must have space or punctuation on either side of it to match, in the file specified
by demo_file.

awk '{print $3 "\t" $4}' data_in_rows.txt

Prints to the terminal the third and fourth columns, separated by a tab (\t), of all
rows of data within the file specified.

114 | Chapter 6: Additional Build Tooling and Skills

sed 's/regexp/replacement/g' inputFileName > outputFileName

Globally (/g) replaces (s/) the regular expression (regex) with the (replace
ment) string in the inputFileName file and redirects—or saves—the results in the
outputFileName.

The Power of Regular Expressions
There is an old joke within IT that if you try to solve one problem with regular
expressions (regex), all you end up with is two problems. There is probably some
truth to this joke, but regex is a powerful tool when used correctly. We highly recom‐
mend that you learn more about the principles of regex, and at least become profi‐
cient in the basics, because lots of build and deployment tools employ regex for
matching configuration or metadata.

Diagnostic Tooling: top, ps, netstat, and iostat
The following list should be good to get you started diagnosing issues with Linux
machines, and all of these tools should be available on a standard Linux distro (or
easily installed via a package manager). You can find more details of each command
in the Linux Pocket Reference of by using the man tool to view the corresponding
manuals:

top
Allows you to view all processes running on the (virtual) machine.

ps
Lists all of the processes running on the (virtual) machine.

netstat
Allows you to view all network connections on the (virtual) machine.

iostat
Lists all of the I/O statistics of block devices (disk drives) connected to the (vir‐
tual) machine.

dig or nslookup
Provides information on DNS address.

ping
Checks whether an IP or domain names can be reached over the network.

tracert
Allows you to trace the route of an IP packet within the network (both an inter‐
nal network and the internet).

Linux, Bash, and Basic CLI Commands | 115

tcpdump
Allows you to spy on TCP network traffic. This is typically an advanced tool, but
can be useful in cloud environments where much of the communication occurs
via TCP.

strace
Allows you to trace system calls. This is typically an advanced tool, but can be
invaluable for debugging container or security issues.

Become Familiar with Your OS Package Manager
You will often find that the diagnostic tooling that you require is not available on a
machine you are working on, and therefore it is beneficial to become familiar with
how to install these tools via a package manager. For example, on many Ubuntu (or
Debian) OSs, you will have to install the sysstat package (sudo apt-get install -y
sysstat) in order to run iostat. Don’t forget that you will require the appropriate per‐
missions to be able to install them on the machine you are working on!

If you are working a lot with containers, you may require additional tooling, as some
of the preceding programs (and additional diagnostic tooling) do not work correctly
with container technology. The following list includes several tools that we have
found useful for understanding container runtimes:

sysdig
A useful container-aware diagnostic tool

systemd-cgtop
A systemd-specific tool to view top-like data within cgroups (containers)

atomic top and docker top
Useful utilities by Red Hat and Docker, respectively, that allow you to examine
processes running within containers

Several Older Diagnostic Tools Are Not Container Friendly!

Several of the popular diagnostic tools were created before con‐
tainer technology like Docker was created (or became popular),
and therefore they don’t work as you might expect. For example,
containers run as a process, and then the programs within each
container namespace also run as a process. Some tools may have to
be able to distinguish that all of the programs running within the
OS are separated via namespaces.

116 | Chapter 6: Additional Build Tooling and Skills

https://www.sysdig.org/install/
http://bit.ly/2xFaFaX
http://bit.ly/2Dxz3kd

HTTP Calls and JSON Manipulation
Many of the third-party services you interact with use HTTP/S as the transport pro‐
tocol and JSON as the data format. Therefore, it makes sense to become comfortable
working with these technologies, and also to develop skills that allow you to quickly
experiment and test ideas without needing to build an entire application in Java.

curl
The Linux curl command is a useful command for testing web-based REST-like
APIs. Example 6-6 shows usage of curl against the GitHub API.

Example 6-6. curl making a request against the GitHub API repos endpoint

$ curl 'https://api.github.com/repos/danielbryantuk/
oreilly-docker-java-shopping/commits?per_page=1'
[
 {
 "sha": "3182a8a5fc73d2125022bf317ac68c3b1f4a3879",
 "commit": {
 "author": {
 "name": "Daniel Bryant",
 "email": "daniel.bryant@tai-dev.co.uk",
 "date": "2017-01-26T19:48:46Z"
 },
 "committer": {
 "name": "Daniel Bryant",
 "email": "daniel.bryant@tai-dev.co.uk",
 "date": "2017-01-26T19:48:46Z"
 },
 "message": "Update Vagrant Box Ubuntu and Docker Compose. Remove sudo usage",
 "tree": {
 "sha": "24eb583bd834734ae9b6c8133c99e4791a7387e8",
 "url": "https://api.github.com/repos/danielbryantuk/↵
 oreilly-docker-java-shopping/git/trees/↵
 24eb583bd834734ae9b6c8133c99e4791a7387e8"
 },
 "url": "https://api.github.com/repos/danielbryantuk/↵
 oreilly-docker-java-shopping/git/commits/↵
 3182a8a5fc73d2125022bf317ac68c3b1f4a3879",
 "comment_count": 0
 },
 "url": "https://api.github.com/repos/danielbryantuk/↵
 oreilly-docker-java-shopping/commits/↵
 3182a8a5fc73d2125022bf317ac68c3b1f4a3879",
 "html_url": "https://github.com/danielbryantuk/↵
 oreilly-docker-java-shopping/commit/↵
 3182a8a5fc73d2125022bf317ac68c3b1f4a3879",
 "comments_url": "https://api.github.com/repos/danielbryantuk/↵
 oreilly-docker-java-shopping/commits/↵

HTTP Calls and JSON Manipulation | 117

 3182a8a5fc73d2125022bf317ac68c3b1f4a3879/comments",
 "author": {
 "login": "danielbryantuk",
 ...
 },
 "committer": {
 "login": "danielbryantuk",
 ...
 },
 "parents": [
 {
 "sha": "05b73d1f0c9904e6904d3f1bb8f13384e65e7840",
 "url": "https://api.github.com/repos/danielbryantuk/↵
 oreilly-docker-java-shopping/commits/↵
 05b73d1f0c9904e6904d3f1bb8f13384e65e7840",
 "html_url": "https://github.com/danielbryantuk/↵
 oreilly-docker-java-shopping/commit/↵
 05b73d1f0c9904e6904d3f1bb8f13384e65e7840"
 }
]
 }
]

The preceding example made a GET request to the repos endpoint and displayed the
JSON response. You can also use curl to get more detail from the endpoint response,
such as the HTTP status code, the content length, and any additional header informa‐
tion like rate-limiting. The -I flag makes a HEAD request against the specified URI and
displays the response, as shown in Example 6-7.

Example 6-7. Using curl to obtain additional information about an endpoint response
(by making a HEAD request)

$ curl -I 'https://api.github.com/repos/danielbryantuk/↵
oreilly-docker-java-shopping/commits?per_page=1'
HTTP/1.1 200 OK
Server: GitHub.com
Date: Thu, 21 Sep 2017 08:28:06 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 3861
Status: 200 OK
X-RateLimit-Limit: 60
X-RateLimit-Remaining: 51
X-RateLimit-Reset: 1505983279
Cache-Control: public, max-age=60, s-maxage=60
Vary: Accept
ETag: "4ce9e0d9cf4e2339bbc1f0fd028904c4"
Last-Modified: Thu, 26 Jan 2017 19:48:46 GMT
X-GitHub-Media-Type: github.v3; format=json
Link: <https://api.github.com/repositories/67352921/↵
commits?per_page=1&page=2>;

118 | Chapter 6: Additional Build Tooling and Skills

rel="next", <https://api.github.com/repositories/67352921/↵
commits?per_page=1&page=43>; rel="last"
Access-Control-Expose-Headers: ETag, Link, X-GitHub-OTP,↵
 X-RateLimit-Limit,
X-RateLimit-Remaining, X-RateLimit-Reset, X-OAuth-Scopes,↵
 X-Accepted-OAuth-Scopes, X-Poll-Interval
Access-Control-Allow-Origin: *
Content-Security-Policy: default-src 'none'
Strict-Transport-Security: max-age=31536000;↵
 includeSubdomains; preload
X-Content-Type-Options: nosniff
X-Frame-Options: deny
X-XSS-Protection: 1; mode=block
X-Runtime-rack: 0.037989
X-GitHub-Request-Id: FC09:1342:19A449:37EA9C:59C37816

If you want additional information about an endpoint’s response, but don’t want to
make a HEAD request, you can also use the verbose mode of curl via the -v flag. This
uses the HTTP method specified (the default of which is GET), but provides much
more detail in the response in addition to the JSON payload, as shown in
Example 6-8.

Example 6-8. Using curl with the verbose flag set

$ curl -v 'https://api.github.com/repos/danielbryantuk/↵
oreilly-docker-java-shopping/commits?per_page=1'
* Trying 192.30.253.117...
* TCP_NODELAY set
* Connected to api.github.com (192.30.253.117) port 443 (#0)
* TLS 1.2 connection using TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
* Server certificate: *.github.com
* Server certificate: DigiCert SHA2 High Assurance Server CA
* Server certificate: DigiCert High Assurance EV Root CA
> GET /repos/danielbryantuk/oreilly-docker-java-shopping/↵
commits?per_page=1 HTTP/1.1
> Host: api.github.com
> User-Agent: curl/7.54.0
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: GitHub.com

Finally, you can also use curl to download files over HTTP/S and FTP, as shown in
Example 6-9.

Example 6-9. Using curl to download a file over HTTPS and FTP

curl -O https://domain.com/file.zip

curl -O ftp://ftp.uk.debian.org/debian/pool/main/alpha.zip

HTTP Calls and JSON Manipulation | 119

The curl command also supports ranges. Example 6-10 demonstrates how you
would list files via FTP in the debian/pool/main directory whose filename starts with
the letters a to c.

Example 6-10. Listing files via FTP

$ curl ftp://ftp.uk.debian.org/debian/pool/main/[a-c]/

The curl command is a powerful tool. It is available on all modern Linux and macOS
distributions by default, and also installable on Windows. However, there is a newer
tool that can be much more intuitive to use: HTTPie.

HTTPie
HTTPie is a command-line HTTP client with an intuitive UI, JSON support, syntax
highlighting, wget-like downloads, plugins, and more. It can be installed on macOS,
Linux, or Windows and provides an http command that provides expressive and
intuitive command syntax and sensible defaults, as shown in Example 6-11.

Example 6-11. Using HTTPie to curl the GitHub API

$ http 'https://api.github.com/repos/danielbryantuk/↵
oreilly-docker-java-shopping/commits?per_page=1'
HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Access-Control-Expose-Headers: ETag, Link, X-GitHub-OTP,↵
 X-RateLimit-Limit,
X-RateLimit-Remaining, X-RateLimit-Reset, X-OAuth-Scopes,↵
 X-Accepted-OAuth-Scopes, X-Poll-Interval
Cache-Control: public, max-age=60, s-maxage=60
Content-Encoding: gzip
Content-Security-Policy: default-src 'none'
Content-Type: application/json; charset=utf-8
Date: Thu, 21 Sep 2017 08:03:10 GMT
ETag: W/"4ce9e0d9cf4e2339bbc1f0fd028904c4"
Last-Modified: Thu, 26 Jan 2017 19:48:46 GMT
Link: <https://api.github.com/repositories/67352921/↵
commits?per_page=1&page=2>;
rel="next", <https://api.github.com/repositories/67352921/↵
commits?per_page=1&page=43>; rel="last"
Server: GitHub.com
Status: 200 OK
Strict-Transport-Security: max-age=31536000;↵
 includeSubdomains; preload
Transfer-Encoding: chunked
Vary: Accept
X-Content-Type-Options: nosniff
X-Frame-Options: deny

120 | Chapter 6: Additional Build Tooling and Skills

https://curl.haxx.se/download.html
https://httpie.org/doc#installation

X-GitHub-Media-Type: github.v3; format=json
X-GitHub-Request-Id: F159:1345:23A3CA:4C9FC3:59C3723E
X-RateLimit-Limit: 60
X-RateLimit-Remaining: 54
X-RateLimit-Reset: 1505983279
X-Runtime-rack: 0.029789
X-XSS-Protection: 1; mode=block

[
 {
 "author": {
 "avatar_url": "https://avatars2.githubusercontent.com/u/2379163?v=4",
 "events_url": "https://api.github.com/users/danielbryantuk/↵
 events{/privacy}",
 "followers_url": "https://api.github.com/users/danielbryantuk/↵
 followers",
 "following_url": "https://api.github.com/users/danielbryantuk/↵
 following{/other_user}",
 "gists_url": "https://api.github.com/users/danielbryantuk/↵
 gists{/gist_id}",
 "gravatar_id": "",
 "html_url": "https://github.com/danielbryantuk",
 "id": 2379163,
 "login": "danielbryantuk",
 "organizations_url": "https://api.github.com/users/danielbryantuk/orgs",
 "received_events_url": "https://api.github.com/users/danielbryantuk/↵
 received_events",
 "repos_url": "https://api.github.com/users/danielbryantuk/repos",
 "site_admin": false,
 "starred_url": "https://api.github.com/users/danielbryantuk/↵
 starred{/owner}{/repo}",
 "subscriptions_url": "https://api.github.com/users/danielbryantuk/↵
 subscriptions",
 "type": "User",
 "url": "https://api.github.com/users/danielbryantuk"
 },
 "comments_url": "https://api.github.com/repos/danielbryantuk/↵
 oreilly-docker-java-shopping/commits/↵
 3182a8a5fc73d2125022bf317ac68c3b1f4a3879/comments",
 "commit": {
 "author": {
 "date": "2017-01-26T19:48:46Z",
 "email": "daniel.bryant@tai-dev.co.uk",
 "name": "Daniel Bryant"
 },
 "comment_count": 0,
 "committer": {
 "date": "2017-01-26T19:48:46Z",
 "email": "daniel.bryant@tai-dev.co.uk",
 "name": "Daniel Bryant"
 },
 "message":↵

HTTP Calls and JSON Manipulation | 121

 "Update Vagrant Box Ubuntu and Docker Compose. Remove sudo usage",
 "tree": {
 "sha": "24eb583bd834734ae9b6c8133c99e4791a7387e8",
 "url": "https://api.github.com/repos/danielbryantuk/↵
 oreilly-docker-java-shopping/git/trees/↵
 24eb583bd834734ae9b6c8133c99e4791a7387e8"
 },
 "url": "https://api.github.com/repos/danielbryantuk/↵
 oreilly-docker-java-shopping/git/commits/↵
 3182a8a5fc73d2125022bf317ac68c3b1f4a3879"
 },
 "committer": {
 "avatar_url": "https://avatars2.githubusercontent.com/u/2379163?v=4",
 "events_url": "https://api.github.com/users/danielbryantuk/↵
 events{/privacy}",
 "followers_url": "https://api.github.com/users/danielbryantuk/↵
 followers",
 "following_url": "https://api.github.com/users/danielbryantuk/↵
 following{/other_user}",
 "gists_url": "https://api.github.com/users/danielbryantuk/↵
 gists{/gist_id}",
 "gravatar_id": "",
 "html_url": "https://github.com/danielbryantuk",
 "id": 2379163,
 "login": "danielbryantuk",
 "organizations_url": "https://api.github.com/users/danielbryantuk/orgs",
 "received_events_url": "https://api.github.com/users/danielbryantuk/↵
 received_events",
 "repos_url": "https://api.github.com/users/danielbryantuk/repos",
 "site_admin": false,
 "starred_url": "https://api.github.com/users/danielbryantuk/↵
 starred{/owner}{/repo}",
 "subscriptions_url": "https://api.github.com/users/danielbryantuk/↵
 subscriptions",
 "type": "User",
 "url": "https://api.github.com/users/danielbryantuk"
 },
 "html_url": "https://github.com/danielbryantuk/↵
 oreilly-docker-java-shopping/commit/↵
 3182a8a5fc73d2125022bf317ac68c3b1f4a3879",
 "parents": [
 {
 "html_url": "https://github.com/danielbryantuk/↵
 oreilly-docker-java-shopping/commit/↵
 05b73d1f0c9904e6904d3f1bb8f13384e65e7840",
 "sha": "05b73d1f0c9904e6904d3f1bb8f13384e65e7840",
 "url": "https://api.github.com/repos/danielbryantuk/↵
 oreilly-docker-java-shopping/commits/↵
 05b73d1f0c9904e6904d3f1bb8f13384e65e7840"
 }
],
 "sha": "3182a8a5fc73d2125022bf317ac68c3b1f4a3879",

122 | Chapter 6: Additional Build Tooling and Skills

 "url": "https://api.github.com/repos/danielbryantuk/↵
 oreilly-docker-java-shopping/↵
 commits/3182a8a5fc73d2125022bf317ac68c3b1f4a3879"
 }
]

HTTPie also supports making requests against an authenticated endpoint, as shown
in Example 6-12 (additional Auth plugins can be found on the website).

Example 6-12. Using HTTPie with basic authentication

$ http -a USERNAME:PASSWORD POST https://api.github.com/repos/danielbryantuk/↵
oreilly-docker-java-shopping/issues/1/comments body='HTTPie is awesome! :heart:'

Sending headers in a request is also much easier to manage using HTTPie than with
curl, as shown in Example 6-13.

Example 6-13. Sending headers in a request using HTTPie

$ http example.org User-Agent:Bacon/1.0 'Cookie:valued-visitor=yes;foo=bar'↵
X-Foo:Bar Referer:http://httpie.org/

Proxies can also be specified for both HTTP and HTTPS, as shown in Example 6-14.

Example 6-14. Using a proxy for HTTP and HTTPS

$ http --proxy=http:http://10.10.1.10:3128↵
--proxy=https:https://10.10.1.10:1080 example.org

Now that you are familiar with two tools for making requests against HTTP REST-
like APIs, let’s look at a tool for manipulating JSON data: jq.

jq
jq is like sed for JSON data: you can use it to slice, filter, map, and transform struc‐
tured data with the same ease that sed, awk, and grep let you manipulate with text.
Example 6-15 queries the GitHub API for details on commits, but displays only the
first (0-indexed) result. Note that all of the response data will be sent over the wire, as
the jq command filters the data on the client side; this may be important when deal‐
ing with responses with a large payload.

Example 6-15. Piping the output of curl to jq and displaying on the first result

$ curl 'https://api.github.com/repos/danielbryantuk/↵
oreilly-docker-java-shopping/commits?per_page=1'| jq '.[0]'

HTTP Calls and JSON Manipulation | 123

https://httpie.org/doc#auth-plugins

{
 "sha": "9f3e6514a55011c26ca18a1a69111c0a418e6dea",
 "commit": {
 "author": {
 "name": "Daniel Bryant",
 "email": "daniel.bryant@tai-dev.co.uk",
 "date": "2017-09-30T10:18:58Z"
 },
 "committer": {
 "name": "Daniel Bryant",
 "email": "daniel.bryant@tai-dev.co.uk",
 "date": "2017-09-30T10:18:58Z"
 },
 "message": "Add first version of Kubernetes deployment config",
 "tree": {
 "sha": "7568df5f6bfe6725ad9fb82ac8cf8a0c0c4661ec",
 "url": "https://api.github.com/repos/danielbryantuk/↵
 oreilly-docker-java-shopping/git/trees/↵
 7568df5f6bfe6725ad9fb82ac8cf8a0c0c4661ec"
 },
 "url": "https://api.github.com/repos/danielbryantuk/↵
 oreilly-docker-java-shopping/git/commits/↵
 9f3e6514a55011c26ca18a1a69111c0a418e6dea",
 "comment_count": 0,
 "verification": {
 "verified": false,
 "reason": "unsigned",
 "signature": null,
 "payload": null
 }
 },
 "url": "https://api.github.com/repos/danielbryantuk/↵
 oreilly-docker-java-shopping/commits/9f3e6514a55011c26ca18a1a69111c0a418e6dea",
 "html_url": "https://github.com/danielbryantuk/↵
 oreilly-docker-java-shopping/commit/9f3e6514a55011c26ca18a1a69111c0a418e6dea",
 "comments_url": "https://api.github.com/repos/danielbryantuk/↵
 oreilly-docker-java-shopping/commits/9f3e6514a55011c26ca18a1a69111c0a418e6dea/↵
 comments",
 "author": {
 ...

jq can also be used to filter the JSON objects displayed. Example 6-16 builds on the
preceding jq query by displaying only a few select fields within the first commit
resource.

Example 6-16. curl against the GitHub API with jq filtering

$ curl 'https://api.github.com/repos/danielbryantuk/↵
oreilly-docker-java-shopping/commits?per_page=1'| jq '.[0] |↵
 {message: .commit.message, name: .commit.committer.name}'
{

124 | Chapter 6: Additional Build Tooling and Skills

 "message": "Update Vagrant Box Ubuntu and Docker Compose. Remove sudo usage",
 "name": "Daniel Bryant"
}

Using curl, HTTPie, and jq can allow for quick experimentation and prototyping
against a REST-like API, which can be an invaluable skill for a Java developer work‐
ing with this technology.

Basic Scripting
Learning the basics of Bash scripting can be a useful skill for a Java developer. This
knowledge can often be combined with tools like curl and jq to expand on and auto‐
mate basic experimentation, testing, and build processes. The Classic Shell Script‐
ing book elaborates on this concept in much more detail, but let’s take a closer look at
several useful examples.

xargs
The xargs command can be used to build and execute command lines from standard
input. This can be used to download a list of URLs that is contained within a text file
named urls.txt, as shown in Example 6-17.

Example 6-17. Using xargs to download multiple files as specified within the urls.txt file

$ xargs -n 1 curl -O < urls.txt

Pipes and Filters
Using pipes and filters can be a great way to chain simple commands to performance
complicated processes. Example 6-18 shows how to use the curl command to make a
silent HEAD request against http://www.twitter.com with the -L follow flag, which
shows all of the steps within the HTTP flow of getting a response from the Twitter
home page. The output of this command is then piped to grep in order to search for
the pattern HTTP/.

Example 6-18. Using curl with grep to find the steps in the HTTP flow when accessing
Twitter

$ curl -Is https://www.twitter.com -L | grep HTTP/
HTTP/1.1 301 Moved Permanently
HTTP/1.1 200 OK

The script in Example 6-19 can be used to extract the location of a shortened URL.

Basic Scripting | 125

Example 6-19. Unfurling a URL from a shortened form

$ $ curl -sIL buff.ly/2xrgUwi | grep ^Location;
Location: https://skillsmatter.com/↵
skillscasts/10668-looking-forward-to-daniel-bryant-talk?↵
utm_content=buffer887ce&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer

Loops
Simple loops using for within Bash can be used to repeatedly test an API quickly,
perhaps confirming that the response is identical across multiple requests, or deter‐
mining which status code is indicated when the API is broken. See Example 6-20.

Example 6-20. Using a loop in Bash to repeatedly curl a URI

#!/bin/bash

for i in `seq 1 10`; do
 curl -I http://www.example.com
done

Conditionals
You can also add in conditional logic; for example, to check the status code returned
from an API. Example 6-21 uses HTTPie and a simple Bash case check to display to
the terminal more details on the HTTP status code returned from the call to the
example.com URI.

Example 6-21. Simple Bash script using HTTPie and case to display additional
information based on the HTTP response code

#!/bin/bash

if http --check-status --ignore-stdin
--timeout=2.5 HEAD example.org/health &> /dev/null; then
 echo 'OK!'
else
 case $? in
 2) echo 'Request timed out!' ;;
 3) echo 'Unexpected HTTP 3xx Redirection!' ;;
 4) echo 'HTTP 4xx Client Error!' ;;
 5) echo 'HTTP 5xx Server Error!' ;;
 6) echo 'Exceeded --max-redirects=<n> redirects!' ;;
 *) echo 'Other Error!' ;;

126 | Chapter 6: Additional Build Tooling and Skills

 esac
fi

Keep Your Own Bash Scripts Library: Abraham’s Experience
One of the benefits of consulting work is that I get to experience an array of technolo‐
gies. In the last few years, I have worked on Java, Scala, PHP, .NET, Ruby, and even
some VBA (although I’m not particularly proud of the last one). One thing has
remained constant, though: wherever I have been, I have always found it useful to
keep a set of small scripts to execute common tasks.

I advise that you do this, too, and even that you share your scripts with your team.
Over the years, I have built my own little library of scripts, and recently I decided to
make it publicly available at bash-utils in case someone else found it useful. Even if
your particular needs are not exactly the same as mine, maybe my scripts can serve as
an inspiration to make your day-to-day work easier.

Summary
In this chapter, you have learned the fundamentals of additional skills and build tool‐
ing that will benefit your work as a modern Java developer:

• Linux, Bash, and command-line skills are essential for installing development
tools, configuring external build steps, and understanding and managing the
underlying operating system environment.

• Learning the basics of OS diagnostics tooling like top, ps, and netstat allow you to
debug applications more effectively in test and production.

• The curl, jq, and HTTPie tools are essential for viewing, manipulating, and
debugging REST-like APIs.

Now that you have a good understanding of build tooling and skills, you can learn
more about how Java applications are packaged for deployment across a range of
platforms: from traditional infrastructure, to cloud, to containers and serverless.

Summary | 127

https://github.com/quiram/bash-utils

CHAPTER 7

Packaging Applications for Deployment

You can deploy modern Java applications across a variety of platforms, and therefore
it is beneficial to understand the fundamentals of how to best package applications
using recommended artifact formats and practices. This chapter will walk you
through building a JAR step-by-step, and along the way explore issues such as creat‐
ing manifests, packaging dependencies (and classloading), and making a JAR exe‐
cutable. This information is fundamental for building artifacts for all platforms, even
modern serverless ones. After this, you will explore other packaging options, such as
fat JARs, skinny JARs, and WARs, and also lower-level OS artifacts like RPMs, DEBS,
machine images, and container images.

Building a JAR: Step-by-Step
This chapter will be much easier to understand if you work through several concrete
examples, and to help with this, a simple example project has been created with one
dependency: the popular Logback logging framework. Maven will be used in the
examples, but we will also mention how similar practices can be applied to other
build tools. The example pom.xml for the project can be seen in Example 7-1.

Example 7-1. The super-simple example project pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>uk.co.danielbryant.oreillyexamples</groupId>
 <artifactId>builddemo</artifactId>

129

 <version>0.1.0-SNAPSHOT</version>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 </properties>

 <dependencies>
 <dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>1.2.3</version>
 </dependency>
 </dependencies>

</project>

All this project will do is output a log message to the console. You can see the main
class in Example 7-2.

Example 7-2. LoggingDemo class, which logs a statement to the console using Logback
and SLF4J

package uk.co.danielbryant.oreillyexamples.builddemo;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class LoggingDemo {

 public static final Logger LOGGER = LoggerFactory.getLogger(LoggingDemo.class);

 public static void main(String[] args) {
 LOGGER.info("Hello, (Logging) World!");
 }
}

The directory of this project follows the standard Maven project structure. Before you
issue any build command, a tree of the root directory will look like Example 7-3.

Example 7-3. Using the tree command to view the directory structure

builddemo $ tree
.
├── builddemo.iml
├── pom.xml
└── src
 ├── main

130 | Chapter 7: Packaging Applications for Deployment

 │ ├── java
 │ │ └── uk
 │ │ └── co
 │ │ └── danielbryant
 │ │ └── oreillyexamples
 │ │ └── builddemo
 │ │ └── LoggingDemo.java
 │ └── resources
 └── test
 └── java

11 directories, 3 files

If you build and package the Maven project, as shown in Example 7-4, you will see
that a JAR file is created and stored within target/builddemo-0.1.0-SNAPSHOT.jar.

Example 7-4. Packaging the Maven application

builddemo $ mvn package
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building builddemo 0.1.0-SNAPSHOT
[INFO] --
[INFO]
[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @ builddemo ---
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] Copying 0 resource
[INFO]
[INFO] --- maven-compiler-plugin:3.1:compile (default-compile) @ builddemo ---
[INFO] Changes detected - recompiling the module!
[INFO] Compiling 1 source file to /Users/danielbryant/Documents/↵
dev/daniel-bryant-uk/builddemo/target/classes
[INFO]
[INFO] --- maven-resources-plugin:2.6:testResources↵
(default-testResources) @ builddemo ---
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] skip non existing resourceDirectory /Users/danielbryant/Documents/↵
dev/daniel-bryant-uk/builddemo/src/test/resources
[INFO]
[INFO] --- maven-compiler-plugin:3.1:testCompile↵
(default-testCompile) @ builddemo ---
[INFO] Nothing to compile - all classes are up-to-date
[INFO]
[INFO] --- maven-surefire-plugin:2.12.4:test (default-test) @ builddemo ---
[INFO] No tests to run.
[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ builddemo ---
[INFO] Building jar: /Users/danielbryant/Documents/↵
dev/daniel-bryant-uk/builddemo/target/builddemo-0.1.0-SNAPSHOT.jar

Building a JAR: Step-by-Step | 131

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 1.412 s
[INFO] Finished at: 2017-12-04T15:11:22-06:00
[INFO] Final Memory: 14M/48M
[INFO] --

If you try to execute the JAR by using the java -jar command, you will see the fol‐
lowing error message:

builddemo $ java -jar target/builddemo-0.1.0-SNAPSHOT.jar
no main manifest attribute, in target/builddemo-0.1.0-SNAPSHOT.jar

In order for a JAR to be a runnable JAR, there must be a manifest. You could easily
correct this now by adding such a file, using maven-jar-plugin, as shown in
Example 7-5.

Example 7-5. Adding maven-jar-plugin to the pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">

...
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 <mainClass>uk.co.danielbryant.
 oreillyexamples.builddemo.LoggingDemo</mainClass>
 </manifest>
 </archive>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

However, if you package the project and attempt to run the JAR, you will still receive
an error:

132 | Chapter 7: Packaging Applications for Deployment

builddemo $ java -jar target/builddemo-0.1.0-SNAPSHOT.jar
Exception in thread "main" java.lang.NoClassDefFoundError:↵
 org/slf4j/LoggerFactory at uk.co.danielbryant.oreillyexamples.builddemo.
LoggingDemo.<clinit>(LoggingDemo.java:8)
Caused by: java.lang.ClassNotFoundException:↵
 org.slf4j.LoggerFactory at java.base/jdk.internal.loader.BuiltinClassLoader.↵
 loadClass(BuiltinClassLoader.java:582)
at java.base/jdk.internal.loader.ClassLoaders$AppClassLoader.↵
loadClass(ClassLoaders.java:185)
at java.base/java.lang.ClassLoader.loadClass(ClassLoader.java:496)
... 1 more

This error message is quite helpful, and you can see by the NoClassDefFoundError
that the Logback dependencies that are required to run have not been included
within the JAR. You can see this by looking into the JAR file:

builddemo $ jar tf target/builddemo-0.1.0-SNAPSHOT.jar
META-INF/
META-INF/MANIFEST.MF
uk/
uk/co/
uk/co/danielbryant/
uk/co/danielbryant/oreillyexamples/
uk/co/danielbryant/oreillyexamples/builddemo/
uk/co/danielbryant/oreillyexamples/builddemo/LoggingDemo.class
META-INF/maven/
META-INF/maven/uk.co.danielbryant.oreillyexamples/
META-INF/maven/uk.co.danielbryant.oreillyexamples/builddemo/
META-INF/maven/uk.co.danielbryant.oreillyexamples/builddemo/pom.xml
META-INF/maven/uk.co.danielbryant.oreillyexamples/builddemo/pom.properties

The LoggingDemo.class file is present, as is your META-INF/MANIFEST.MF file
(which was missing earlier), but there are no other Java class files, such as your
dependencies.

Building a Fat Executable “Uber” JAR
You can create an executable JAR, most commonly referred to as a fat JAR or uber
JAR, by using plugins, but the most effective is typically the Maven Shade Plugin.
Many modern Java web application frameworks, such as Spring, now include this
plugin (or something offering equivalent functionality) by default, and you may not
even by aware you are using it. However, it is worth peeking under the covers of how
a fat JAR is built, as this can often provide hints as to how to solve bizarre classpath
issues!

Building a Fat Executable “Uber” JAR | 133

http://bit.ly/2NI7eKM

Other Options: Maven Jar Plugin and Maven Assembly Plugin
You explored using the Maven Jar plugin earlier in this chapter, and although this
plugin can build executable JAR files, it cannot package dependencies in with the cor‐
responding JAR (i.e., this plugin cannot make fat JARs). Another plugin that is often
used is the Maven Assembly plugin, and this plugin can create fat JARs. However,
because of the way this plugin assembles the JAR, it can cause name-conflict issues.

This generally isn’t an issue with small projects like our example, but can cause lots of
problems when dealing with projects with a lot of dependencies—which is usually the
case when using modern Java application frameworks. If you are interested in the
technical details of how the Maven Shade plugin overcomes the issues of class name
conflicts, you can read more about class relocating on the project’s website.

Maven Shade Plugin
The Maven Shade plugin can be added to your project pom.xml, as shown in
Example 7-6.

Example 7-6. pom.xml with the Maven Shade plugin

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">

...
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>3.1.0</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer implementation=↵
 "org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
 <mainClass>
 uk.co.danielbryant.oreillyexamples.builddemo.LoggingDemo
 </mainClass>
 </transformer>

134 | Chapter 7: Packaging Applications for Deployment

http://bit.ly/2Q7vDGn
http://bit.ly/1kEDuZk

 </transformers>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

The key points to note in the plugin are contained within the execution tag. The
phase specifies in which part of the life cycle this plugin should be executed (which in
this case is the package phase), and the goal specifies that the “shade” functionality
should be executed. The preceding configuration includes a ManifestResourceTrans
former resource transformer that specifies a main class to include within the JAR
manifest.

Maven Shade Plugin Resource Transformers
Aggregating classes and resources from several artifacts into one uber JAR is straight‐
forward as long as there is no overlap. Otherwise, some kind of logic to merge resour‐
ces from several JARs is required. This is where resource transformers can help.
Various default resource transformers are included within the
org.apache.maven.plugins.shade.resource package of the Maven Shade plugin,
and it is well worth reviewing this package in order to know the options you have
available to you!

If you now package your project, you will see additional details from the Maven
Shade plugin as it explains how the uber JAR is being assembled; see Example 7-7.

Example 7-7. Packaging the application with the Maven Shade plugin

builddemo $ mvn clean package
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building builddemo 0.1.0-SNAPSHOT
[INFO] --
[INFO]
...
[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ builddemo ---
[INFO] Building jar: /Users/danielbryant/Documents/dev/daniel-bryant-uk/↵
builddemo/target/builddemo-0.1.0-SNAPSHOT.jar
[INFO]
[INFO] --- maven-shade-plugin:3.1.0:shade (default) @ builddemo ---
[INFO] Including ch.qos.logback:logback-classic:jar:1.2.3 in the shaded jar.

Building a Fat Executable “Uber” JAR | 135

http://bit.ly/2zwYTAP

[INFO] Including ch.qos.logback:logback-core:jar:1.2.3 in the shaded jar.
[INFO] Including org.slf4j:slf4j-api:jar:1.7.25 in the shaded jar.
[INFO] Replacing original artifact with shaded artifact.
[INFO] Replacing /Users/danielbryant/Documents/dev/daniel-bryant-uk/↵
builddemo/target/builddemo-0.1.0-SNAPSHOT.jar with /Users/danielbryant/↵
Documents/dev/daniel-bryant-uk/builddemo/target/builddemo-0.1.0-SNAPSHOT-shaded.jar
[INFO] Dependency-reduced POM written at: /Users/danielbryant/↵
Documents/dev/daniel-bryant-uk/builddemo/dependency-reduced-pom.xml
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 2.402 s
[INFO] Finished at: 2018-01-03T16:28:25Z
[INFO] Final Memory: 19M/65M
[INFO] --

This all looks great, so now you can try to execute the resulting fat JAR, as shown in
Example 7-8.

Example 7-8. Running the fat JAR from the Maven Shade build

 builddemo $ java -jar target/builddemo-0.1.0-SNAPSHOT.jar
16:28:38.198 [main] INFO uk.co.danielbryant.oreillyexamples↵
.builddemo.LoggingDemo - Hello, (Logging) World!

Success! You can now look into the resulting fat JAR to see all of the dependency class
files that have been included by the Maven Shade plugin; see Example 7-9.

Example 7-9. Partial list of dependency class files included in the shaded fat JAR

builddemo $ jar tf target/builddemo-0.1.0-SNAPSHOT.jar
META-INF/MANIFEST.MF
META-INF/
uk/
uk/co/
uk/co/danielbryant/
uk/co/danielbryant/oreillyexamples/
uk/co/danielbryant/oreillyexamples/builddemo/
uk/co/danielbryant/oreillyexamples/builddemo/LoggingDemo.class
META-INF/maven/
META-INF/maven/uk.co.danielbryant.oreillyexamples/
META-INF/maven/uk.co.danielbryant.oreillyexamples/builddemo/
META-INF/maven/uk.co.danielbryant.oreillyexamples/builddemo/pom.xml
META-INF/maven/uk.co.danielbryant.oreillyexamples/builddemo/pom.properties
ch/
ch/qos/
ch/qos/logback/
ch/qos/logback/classic/
ch/qos/logback/classic/AsyncAppender.class
ch/qos/logback/classic/BasicConfigurator.class

136 | Chapter 7: Packaging Applications for Deployment

...
org/slf4j/impl/StaticMarkerBinder.class
org/slf4j/impl/StaticMDCBinder.class
META-INF/maven/ch.qos.logback/
META-INF/maven/ch.qos.logback/logback-classic/
META-INF/maven/ch.qos.logback/logback-classic/pom.xml
META-INF/maven/ch.qos.logback/logback-classic/pom.properties
ch/qos/logback/core/
...
META-INF/maven/org.slf4j/slf4j-api/pom.xml
META-INF/maven/org.slf4j/slf4j-api/pom.properties

As you can see, a lot of extra files are included as a result of shading the dependencies
into the fat JAR (and we’ve deliberately omitted 600 other classes from the preceding
example list). Hopefully, you are starting to understand some of the challenges with
managing dependencies with large applications.

Maven dependency:tree

It is quite common to get dependency clashes when initially using
the Shade plugin to package an artifact. A useful Maven command
to know is mvn dependency:tree. Executing this command on a
project will show you a tree of all of your dependencies. You can
also use the -Dverbose flag to add more details about conflicts, and
the -Dincludes=<dependency-name> flag to target specific depen‐
dencies. For example:

mvn dependency:tree -Dverbose -Dincludes=commons-collections

Building Spring Boot Uber JARs
If you are using Spring Boot, you have the option of using the Spring Boot Maven
plugin in order to create fat JARs rather than the Maven Shade plugin. Including the
plugin into your project is super simple; see Example 7-10.

Example 7-10. Including the Spring Boot Maven plugin into a pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">

...
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>

Building a Fat Executable “Uber” JAR | 137

 </plugin>
 </plugins>
 </build>
</project>

The Spring Boot Maven plugin will repackage a JAR or WAR that is built during the
package phase of the Maven life cycle. All you need to do is trigger a regular Maven
build.

Using the Maven Shade Plugin with Spring Boot

You can build Spring Boot applications by using the Maven Shade
plugin, but you may run into problems, particularly in regards to
application entry points and controllers not functioning correctly.
We’re sure all these problems can be solved (with enough time and
effort), but our advice is that if you are working with Spring Boot,
stick to using the Spring Boot Maven plugin unless you have a very
good reason not to. Otherwise, you could be exposing yourself to
more pain than necessary.

Bill of Materials: BOM
When working with Spring dependencies, you may encounter the acronym BOM
used alongside the traditional Maven POM. A bill of materials (BOM) is a special type
of POM that can be used to manage the versions of a project’s dependencies and pro‐
vide a central location to define and update these versions. The use of a BOM makes
managing complicated and interdependent libraries within the Spring framework
much easier, but there generally isn’t much reason for you to build your own BOMs.

Skinny JARs—Deciding Not to Build Fat JARs
In modern Java web development, the thought of packaging and running applications
in anything other that a fat JAR is almost becoming heretical. However, there can be
distinct disadvantages to building and deploying these large files. The HubSpot engi‐
neering team has created a fantastic blog post that explains some of the challenges
they were having when deploying large fat JARs continuously to the AWS cloud.

The blog explains how the team initially used the Maven Shade plugin to build and
package applications, but this was turning an application with 70 class files—which
totalled 210 KB in the original JAR containing no dependencies—into a 150+ MB-
sized fat JAR. Using Shade to combine 100,000+ files into a single archive was also a
slow process, and then as the build server copied and deployed the resulting JAR to
and from the AWS S3 storage service, this consumed both time and network resour‐
ces. This was magnified by the fact that the HubSpot team has 100 engineers that

138 | Chapter 7: Packaging Applications for Deployment

http://bit.ly/2R1m6li
http://bit.ly/2N469rA

were constantly committing and triggering 1,000–2,000 builds per day; they were
generating 50–100 GB of build artifacts per day!

The HubSpot team ultimately created a new Maven plugin: SlimFast. This plugin dif‐
fers from the Shade plugin, in that it separates the application code from the associ‐
ated dependencies, and accordingly builds and uploads two separate artifacts. It may
sound inefficient to build and upload the application dependencies separately, but
this step occurs only if the dependencies have changed. As the dependencies change
infrequently, the HubSpot team states that this step is often a no-op; the package
dependencies’ JAR file is uploaded to S3 only once.

The HubSpot blog post and corresponding GitHub repository provide comprehen‐
sive details, but, in essence, the SlimFast plugin uses the Maven JAR plugin to add a
Class-Path manifest entry to the Skinny JAR that points to the dependencies JAR file,
and generates a JSON file with information about all of the dependency artifacts in S3
so that these can downloaded later. At deploy time, the HubSpot team downloads all
of the application’s dependencies, but then caches these artifacts on each of the appli‐
cation servers, so this step is usually a no-op as well. The net result is that at build
time only the application’s skinny JAR is uploaded, which is only a few hundred kilo‐
bytes. At deploy time, only this same thin JAR needs to be downloaded, which takes a
fraction of a second.

The SlimFast plugin is currently tied to AWS S3 for the storage of artifacts, but the
code is available on GitHub, and the principles can be adapted for any type of exter‐
nal storage (see the following sidebar for other plugin options).

Looking to Create Skinny Spring Boot JARs?
Although the SlimFast plugin can be used to create Skinny Spring Boot JARs, it is eas‐
ier to use Dave Syer’s Spring Boot Thin Launcher plugin. This is a completely separate
project (using similar concepts) that has been built with Spring Boot support from
the ground up. Dave’s plugin also uses the local Maven repository for the caching of
the “launcher” dependencies JAR file, so there is no tie-in to AWS like there is with
the SlimFast plugin. The Spring Boot Thin Launcher is well-documented, offers good
Gradle support, and is also highly configurable.

Building WAR Files
If you are deploying your code to an application server (or potentially some serverless
platforms), you may need to package your code as a WAR file. A WAR file is much
like a JAR file: it is a zipped collection of files. However, in addition to class files, a
WAR file contains files needed to serve a web application, such as JSP, HTML, and
image files, and a WEB-INF folder is required that requires web application meta‐

Building WAR Files | 139

https://github.com/HubSpot/slimfast
https://github.com/dsyer/spring-boot-thin-launcher

data. If you have been following along in this chapter, you are probably thinking that
you could build your own WAR by using any one of the previously mentioned tech‐
niques—and you would be correct. However, there exists the even more convenient
Maven WAR plugin, shown in Example 7-11.

Example 7-11. Including the Maven WAR plugin within a pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <groupId>uk.co.danielbryant.oreillyexamples</groupId>
 <artifactId>builddemo</artifactId>
 <version>0.1.0-SNAPSHOT</version>
 <packaging>war</packaging>
...
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>3.2.0</version>
 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 </manifest>
 </archive>
 </configuration>
 </plugin>
 ...
 </plugins>
 </build>
</project>

You simply need to use Maven to package the application, and a resulting WAR file
will be generated within the target folder.

140 | Chapter 7: Packaging Applications for Deployment

http://maven.apache.org/plugins/maven-war-plugin/

Building a WAR file with Spring Boot

If you include the Spring Boot Maven plugin within your project,
you can easily build WAR files, as this plugin automatically
includes (and configures) the Maven WAR plugin. You will need to
change the packaging to war (as you saw in the standalone Maven
WAR plugin) and you will also need to explicitly specify the
spring-boot-starter-tomcat dependency within the dependen‐
cies section of the POM and indicate that the scope is provided in
order to ensure that the embedded servlet container doesn’t inter‐
fere with the servlet container to which the WAR file will be
deployed.

The Maven WAR plugin is highly configurable. It is relatively easy to include and
exclude specific Java class files (or other files), create Skinny WARs, or quickly spin
up the built WAR for testing by using the Jetty embedded application server plugin.

Escaping JAR (and WAR) Hell
Earlier we discussed how you could use the mvn dependency:tree command to view
dependency information in a project. When building and deploying a WAR to an
application server like GlassFish or WildFly, additional JAR files might be loaded onto
the classpath by the server itself, and these can also cause conflicts with dependencies
that you have included within your artifact.

A useful tool in this situation is JHades, which allows you to troubleshoot classpath
issues, even if the application won’t start.

Packaging for the Cloud
When deploying Java applications to the cloud, it can be advantageous to package the
resulting build artifacts in OS or VM native artifacts, as this allows you to specify
more fine-grained configuration and deployment instructions, and also include addi‐
tional metadata. For example, by building a Red Hat RPM Package Manager artifact
(an RPM) or a Debian Software Package file (a DEB file), you can specify where your
fat JAR file can be deployed within the filesystem, create a user to run this, and spec‐
ify configuration. This provides much more scope for automated installs, and it helps
developers and operators to collaborate and capture the required installation instruc‐
tions and process.

Moving down another layer of abstraction into the machine or VM image, if you
build this type of artifact, then in addition to all of the previously mentioned controls,
you also have complete control of the entire OS installation and configuration. Netflix
popularized the approach to deploying Java applications as complete AWS VM

Packaging for the Cloud | 141

http://bit.ly/2Qcr0Ln
http://bit.ly/2IhEoLa
http://bit.ly/2IhEoLa
http://bit.ly/2NGZybQ
http://bit.ly/2NICvgD
http://bit.ly/2NICvgD
http://jhades.github.io/

images—referred to as Amazon Machine Images (AMIs)—with its Aminator tooling
before the introduction of container technology, which also allows a similar
approach.

Cooking Configuration: Baking or Frying Machines
Creating and deploying an application as a machine or VM image is often referred to
as baking an image. Using a cooking analogy, you are effectively putting all of the
application deployment ingredients together and baking this as a single action before
the food is ready. You will often hear that that the counterapproach to this deploy‐
ment style is frying, and although this abuses the coking analogy slightly, the key idea
is that application deployment ingredients are added gradually, perhaps in layers.
Deploying a Java application by using an RPM or DEB (or even a basic JAR or WAR
file) is part of a frying deployment, whereas deploying an application using a machine
VM image is baking.

The advantage of baking is that you are creating immutable deployment artifacts, and
therefore it is easier to understand what was deployed, and much more difficult to see
configuration drift (i.e., with frying, it is possible that each application could be
installed in subtly different ways across a large fleet of machines). The disadvantages
are that this process generally takes longer than frying a machine, and the resulting
deployment artifacts can be large, which can, in turn, cause storage and network
issues. The advantages of frying are that this is generally quicker and more flexible to
deploy an application using a prebuilt base image that uses something like configura‐
tion management tooling (Chef, Ansible, Puppet, SaltStack, etc.) to deploy the
smaller application layer. Although config management tools attempt to minimize
configuration drift, this is still one of the main disadvantages with the frying
approach.

Building RPMs and DEBs OS Packages
The construction of RPM and DEB packages is relatively easy because of the Maven
plugins available. The core challenges you may experience are the configuration of
the installation process within the package (which requires operational/sysadmin
knowledge) and how you will test the Java application outside the OS package.

142 | Chapter 7: Packaging Applications for Deployment

Packaging OS Artifacts Requires Operational Knowledge

When you are creating OS artifacts, you will be modifying the OS
during installation of the application, and with this comes greater
responsibility than simply packaging a JAR artifact. Depending on
how the underlying OS is configured, you may (at worst) be able to
irreparably damage the OS or render the machine unbootable.
Your organization may also have a specific method or configura‐
tion for installing software, perhaps for compliance or governance
reasons. Because of this, it is always advisable to consult with your
organization’s operations or sysadmin team.

In general, it is recommended that you build and deploy your Java application locally
as you always have done (e.g., as a fat JAR or WAR). However, all build servers and
remote environments (QA, staging, and production) build and deploy using the OS
package. This provides choice minimal hassle (and tool changes) locally, but will
catch any configuration issues early within the build pipeline.

Building OS Artifacts Takes Time!

It is generally inadvisable to configure your local build process to
build the OS package on every build (mvn package). For a project
of medium size or complexity, this will soon start to consume your
time waiting for builds to complete, or your system resources such
as CPU and storage. This advice does somewhat go against the gen‐
eral principle of making your local development environment as
similar to production as possible, but as with everything in soft‐
ware development, this is a trade-off.

An RPM can be built using the RPM Maven plugin, and it is recommend that the
RPM is either built on demand (see the preceding warning) or built as a side effect
within the Maven life cycle.

Example 7-12. Example pom.xml that uses the RPM Maven plugin to create RPM
deployment artifacts

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <groupId>uk.co.danielbryant.oreillyexamples</groupId>
 <artifactId>builddemo</artifactId>
 <version>0.1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
...
 <build>

Packaging for the Cloud | 143

http://www.mojohaus.org/rpm-maven-plugin/

 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>rpm-maven-plugin</artifactId>
 <version>2.1.5</version>
 <executions>
 <execution>
 <id>generate-rpm</id>
 <goals>
 <goal>rpm</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

You will often find yourself creating quite complicated application deployment proce‐
dures, and the plugin is generally well equipped to handle common use cases. A snip‐
pet of a typical plugin configuration (taken from the samples section of the plugin
website) is shown in Example 7-13.

Example 7-13. Sample RPM Maven plugin configuration for installation of a Java
application

 <configuration>
 <license>GPL (c) 2005, SWWDC</license>
 <distribution>Trash 2005</distribution>
 <group>Application/Collectors</group>
 <icon>src/main/resources/icon.gif</icon>
 <packager>SWWDC</packager>
 <prefix>/usr/local</prefix>
 <changelogFile>src/changelog</changelogFile>
 <defineStatements>
 <defineStatement>_unpackaged_files_terminate_build 0</defineStatement>
 </defineStatements>
 <mappings>
 <mapping>
 <directory>/usr/local/bin/landfill</directory>
 <filemode>440</filemode>
 <username>dumper</username>
 <groupname>dumpgroup</groupname>
 <sources>
 <source>
 <location>target/classes</location>
 </source>
 </sources>
 </mapping>
...
 <mapping>

144 | Chapter 7: Packaging Applications for Deployment

http://bit.ly/2N4ZwVZ

 <directory>/usr/local/lib</directory>
 <filemode>750</filemode>
 <username>dumper</username>
 <groupname>dumpgroup</groupname>
 <dependency>
 <includes>
 <include>jmock:jmock</include>
 <include>javax.servlet:servlet-api:2.4</include>
 </includes>
 <excludes>
 <exclude>junit:junit</exclude>
 </excludes>
 </dependency>
 </mapping>
...
 <mapping>
 <directory>/usr/local/oldbin</directory>
 <filemode>750</filemode>
 <username>dumper</username>
 <groupname>dumpgroup</groupname>
 <sources>
 <softlinkSource>
 <location>/usr/local/bin</location>
 </softlinkSource>
 </sources>
 </mapping>
 ...
 </mappings>
 <preinstallScriptlet>
 <script>echo "installing now"</script>
 </preinstallScriptlet>
 <postinstallScriptlet>
 <scriptFile>src/main/scripts/postinstall</scriptFile>
 <fileEncoding>utf-8</fileEncoding>
 </postinstallScriptlet>
 <preremoveScriptlet>
 <scriptFile>src/main/scripts/preremove</scriptFile>
 <fileEncoding>utf-8</fileEncoding>
 </preremoveScript>
 </configuration>

The Debian Maven plugin allows the simple artifact creation for DEB files, as shown
in Example 7-14.

Example 7-14. Creating DEB artifacts using the Maven plugin

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">

Packaging for the Cloud | 145

http://debian-maven.sourceforge.net/

 <groupId>uk.co.danielbryant.oreillyexamples</groupId>
 <artifactId>builddemo</artifactId>
 <version>0.1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
...
 <build>
 <plugins>
 <plugin>
 <groupId>net.sf.debian-maven</groupId>
 <artifactId>debian-maven-plugin</artifactId>
 <version>1.0.6</version>
 <configuration>
 <packageName>my-package</packageName>
 <packageVersion>1.0.0</packageVersion>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

As with the RPM Maven plugin, the DEB Maven plugin also allows lots of configura‐
tion options for installing and configuring your application.

Additional OS Package Build Tools (with Windows Support)
As an alternative to RPMs and DEBs, there exist other mechanisms for creating OS
artifacts in order to deploy Java applications. The first is IzPack, which allows you to
create installers that can deploy applications to Linux and Solaris, as well as to Micro‐
soft Windows and macOS. The deployment and configuration of a Java application is
codified in IzPack by the creation of an installation description XML file;
Example 7-15 shows a sample file. This is then read in by an IzPack compiler (which
can be invoked via the command line, Maven, or Ant), and an OS-specific runnable
installer is created. The installer can run interactively using a Swing GUI or text con‐
sole, or more usefully for continuous delivery, noninteractively using records of pre‐
vious sessions of properties file.

Example 7-15. IzPack installation description file

<izpack:installation version="5.0"
 xmlns:izpack="http://izpack.org/schema/installation"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://izpack.org/schema/installation
 http://izpack.org/schema/5.0/izpack-installation-5.0.xsd">

 <info>
 <appname>Test</appname>
 <appversion>0.0</appversion>
 <appsubpath>myapp</appsubpath>
 <javaversion>1.6</javaversion>

146 | Chapter 7: Packaging Applications for Deployment

http://debian-maven.sourceforge.net/usage.html
http://debian-maven.sourceforge.net/usage.html
http://izpack.org/
http://bit.ly/2zvLCZt

 </info>

 <locale>
 <langpack iso3="eng"/>
 </locale>

 <guiprefs width="800" height="600" resizable="no">
 <splash>images/peas_load.gif</splash>
 <laf name="substance">
 <os family="windows" />
 <os family="unix" />
 <param name="variant" value="mist-silver" />
 </laf>
 <laf name="substance">
 <os family="mac" />
 <param name="variant" value="mist-aqua" />
 </laf>
 <modifier key="useHeadingPanel" value="yes" />
 </guiprefs>

 <panels>
 <panel classname="TargetPanel"/>
 <panel classname="PacksPanel"/>
 <panel classname="InstallPanel"/>
 <panel classname="FinishPanel"/>
 </panels>

 <packs>
 <pack name="Test Core" required="yes">
 <description>The core files needed for the application</description>
 <fileset dir="plain" targetdir="${INSTALL_PATH}" override="true"/>
 <parsable targetfile="${INSTALL_PATH}/test.properties"/>
 </pack>
 </packs>

</izpack:installation>

Additional open source tooling in this space includes Launch4j and (Windows-
specific) Nullsoft Scriptable Install System (NSIS). Many commercial tools are also
available that can be found from a web search.

Creating Machine Images for Multiple Clouds with Packer
Packer is an open source tool from HashiCorp for creating identical machine images
for multiple platforms from a single source configuration. Packer is lightweight,
command-line driven, runs on every major operating system, and is highly perform‐
ant, creating machine images for multiple platforms in parallel. Packer can provision
images by using shell scripts or configuration management tooling like Ansible, Chef,
or Puppet. Packer defines a machine image as a single static unit that contains a pre‐
configured operating system and installed software that is used to quickly create new

Packaging for the Cloud | 147

http://launch4j.sourceforge.net/
http://nsis.sourceforge.net/Main_Page
https://www.packer.io/

running machines. Machine image formats change for each platform, and some
examples include AMIs for EC2, VMDK/VMX files for VMware, and OVF exports
for VirtualBox.

Striving for Dev/Prod Parity with Packer
Packer can be used to help keep development, staging, and production environments
as similar as possible, which is a decidedly good thing. You can be much more confi‐
dent that your tests running in development and staging are much more indicative of
the behavior in the production environment.

A useful feature of Packer is that it can be used to generate images for multiple plat‐
forms at the same time. So if you use AWS for production and VirtualBox (perhaps
with Vagrant) for development, you can generate both an AMI and a VBox machine
by using Packer at the same time from the same template. If this is utilized within a
continuous delivery pipeline, you have a good system for consistent work environ‐
ments from development all the way through to production.

Packer can be installed through most operating system installers, or by visiting the
Install Packer web page. The Packer Getting Started web page provides a fantastic
introduction to the tool. A sample configuration file in Example 7-16 demonstrates
the metadata required in order to build an AWS AMI using provisioners that copy
files from a local directory to the image, and run a series of scripts. These commands
could be the copying of a JAR file and a simple init script to run this application.

Example 7-16. Packer firstimage.json build config file

{
 "variables": {
 "aws_access_key": "{{env `AWS_ACCESS_KEY_ID`}}",
 "aws_secret_key": "{{env `AWS_SECRET_ACCESS_KEY`}}",
 "region": "us-east-1"
 },
 "builders": [
 {
 "access_key": "{{user `aws_access_key`}}",
 "ami_name": "packer-linux-aws-demo-{{timestamp}}",
 "instance_type": "t2.micro",
 "region": "us-east-1",
 "secret_key": "{{user `aws_secret_key`}}",
 "source_ami_filter": {
 "filters": {
 "virtualization-type": "hvm",
 "name": "ubuntu/images/*ubuntu-xenial-16.04-amd64-server-*",
 "root-device-type": "ebs"
 },

148 | Chapter 7: Packaging Applications for Deployment

https://www.packer.io/intro/getting-started/install.html

 "owners": ["099720109477"],
 "most_recent": true
 },
 "ssh_username": "ubuntu",
 "type": "amazon-ebs"
 }
],
 "provisioners": [
 {
 "type": "file",
 "source": "./welcome.txt",
 "destination": "/home/ubuntu/"
 },
 {
 "type": "shell",
 "inline":[
 "ls -al /home/ubuntu",
 "cat /home/ubuntu/welcome.txt"
]
 },
 {
 "type": "shell",
 "script": "./example.sh"
 }
]
}

A Packer configuration can include multiple builders, so you can easily specify a local
VirtualBox build in addition to the AWS builder. Packer is run via the packer
command-line tool, and properties can be loaded in via flags or a properties file. An
example run of the packer build command is shown in Example 7-17.

Example 7-17. Output from a Packer execution of the firstimage.json build file

$ export AWS_ACCESS_KEY_ID=MYACCESSKEYID
$ export AWS_SECRET_ACCESS_KEY=MYSECRETACCESSKEY
$ packer build firstimage.json
amazon-ebs output will be in this color.

==> amazon-ebs: Prevalidating AMI Name: packer-linux-aws-demo-1507231105
 amazon-ebs: Found Image ID: ami-fce3c696
==> amazon-ebs: Creating temporary keypair:↵
packer_59d68581-e3e6-eb35-4ae3-c98d55cfa04f
==> amazon-ebs: Creating temporary security group for this instance:↵
packer_59d68584-cf8a-d0af-ad82-e058593945ea
==> amazon-ebs: Authorizing access to port 22 on the temporary security group...
==> amazon-ebs: Launching a source AWS instance...
==> amazon-ebs: Adding tags to source instance
 amazon-ebs: Adding tag: "Name": "Packer Builder"
 amazon-ebs: Instance ID: i-013e8fb2ced4d714c
==> amazon-ebs: Waiting for instance (i-013e8fb2ced4d714c) to become ready...

Packaging for the Cloud | 149

==> amazon-ebs: Waiting for SSH to become available...
==> amazon-ebs: Connected to SSH!
==> amazon-ebs: Uploading ./scripts/welcome.txt => /home/ubuntu/
==> amazon-ebs: Provisioning with shell script:↵
/var/folders/8t/0yb5q0_x6mb2jldqq_vjn3lr0000gn/T/packer-shell661094204
 amazon-ebs: total 32
 amazon-ebs: drwxr-xr-x 4 ubuntu ubuntu 4096 Oct 5 19:19 .
 amazon-ebs: drwxr-xr-x 3 root root 4096 Oct 5 19:19 ..
 amazon-ebs: -rw-r--r-- 1 ubuntu ubuntu 220 Apr 9 2014 .bash_logout
 amazon-ebs: -rw-r--r-- 1 ubuntu ubuntu 3637 Apr 9 2014 .bashrc
 amazon-ebs: drwx------ 2 ubuntu ubuntu 4096 Oct 5 19:19 .cache
 amazon-ebs: -rw-r--r-- 1 ubuntu ubuntu 675 Apr 9 2014 .profile
 amazon-ebs: drwx------ 2 ubuntu ubuntu 4096 Oct 5 19:19 .ssh
 amazon-ebs: -rw-r--r-- 1 ubuntu ubuntu 18 Oct 5 19:19 welcome.txt
 amazon-ebs: WELCOME TO PACKER!
==> amazon-ebs: Provisioning with shell script: ./example.sh
 amazon-ebs: hello
==> amazon-ebs: Stopping the source instance...
 amazon-ebs: Stopping instance, attempt 1
==> amazon-ebs: Waiting for the instance to stop...
==> amazon-ebs: Creating the AMI: packer-linux-aws-demo-1507231105
 amazon-ebs: AMI: ami-f76ea98d
==> amazon-ebs: Waiting for AMI to become ready...

Packer can create images for Microsoft Windows machines and the corresponding
cloud instances, and there is also open source support, such as osx-vm-templates, for
creating macOS images.

Additional Tools for Creating Machine Images
Several additional open source image creation solutions do exist, such as Netflix’s
aminator (a tool for creating AWS AMIs) and Veewee (a tool for creating Vagrant
base boxes, kernel-based virtual machines, and VMs). However, Aminator is AWS
specific and requires that your Java application is packaged as an RPM or DEB before
installation, and Veewee doesn’t support the majority of the main cloud vendor image
formats and requires Ruby to be installed.

You can also use open source multicloud Java toolkits like jclouds to create machine
images, but the scope of doing this is outside this book. If you are interested in this,
you can explore the jclouds ImageApi JavaDoc. Finally, commercial machine-image
creation tools are also available; for example, Boxfuse, which can create AWS AMIs
for deploying JVM, Node.js, and Go applications. There is comprehensive support for
a range of Java web frameworks, such as Spring Boot, Dropwizard, and Play, and
images are built using a simple (automatable) command-line tool.

150 | Chapter 7: Packaging Applications for Deployment

https://github.com/timsutton/osx-vm-templates
https://github.com/Netflix/aminator
https://jclouds.apache.org
http://bit.ly/2xIdFmW
https://boxfuse.com
https://boxfuse.com/getstarted/

The Trade-offs with Commercial Image-Creation Tools

If you want to package and deploy applications as machine images,
we recommend using HashiCorp Packer, as described in the previ‐
ous section of this chapter. Packer is a fully open source tool that is
configurable and supports multiple platforms. This allows you to
look into the internals to see what is happening during a build,
tweak the build steps and configuration, and change the output
format (with minimal changes) if you move to deploying to a new
platform.
The main trade-off with using Packer in comparison with a com‐
mercial tool like Boxfuse is user experience. In our opinion, the
HashiCorp tools are generally awesome, but they do assume a cer‐
tain level of operational awareness, which not all developers have.

Building Containers
Deploying Java applications to containers like Docker requires that not only the Java
application artifact be created, but also a container image be built.

Managing the Operational Complexity of Containers

By packaging your Java artifact within a container image, you will
be exposed to potentially new operational concerns. For example,
you will have to specify a base image with an operating system and
associated tooling to be used as a foundation for your image (or use
a Google Distroless base image), and also configure ports to be
exposed and the execution method of the JVM and Java applica‐
tion. We recommend consulting your operations or platform team
if this is the first time you are doing this, or if you are unsure as to
what the values should be.

Creating Container Images with Docker
Building a Docker image requires the creation of a Dockerfile, which is essentially an
image manifest that specifies the base operating system, the application artifacts to be
added, and associated runtime configuration; see Example 7-18.

Example 7-18. Example Dockerfile

FROM openjdk:8-jre
ADD target/productcatalogue-0.0.1-SNAPSHOT.jar app.jar
ADD product-catalogue.yml app-config.yml
EXPOSE 8020
ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./urandom","-jar","app.jar",↵
"server", "app-config.yml"]

Building Containers | 151

https://github.com/GoogleContainerTools/distroless

Once you have your Dockerfile, you can build and tag a Docker image by using the
commands in Example 7-19.

Example 7-19. Building and tagging a new Docker image using a Dockerfile

$ docker build -t danielbryantuk/productcatalogue:1.1 .
Sending build context to Docker daemon 15.56MB
Step 1/5 : FROM openjdk:8-jre
 ---> 8363d7ceb7b7
Step 2/5 : ADD target/productcatalogue-0.0.1-SNAPSHOT.jar app.jar
 ---> 664d4edcb774
Step 3/5 : ADD product-catalogue.yml app-config.yml
 ---> 8c732b560055
Step 4/5 : EXPOSE 8020
 ---> Running in 3955d790a531
 ---> 738157101d64
Removing intermediate container 3955d790a531
Step 5/5 : ENTRYPOINT java -Djava.security.egd=file:/dev/./urandom -jar app.jar
server app-config.yml
 ---> Running in 374eb13492e7
 ---> e504828640df
Removing intermediate container 374eb13492e7
Successfully built e504828640df
Successfully tagged danielbryantuk/productcatalogue:1.1

The Importance of Metadata
Regardless of the format, it is important to add build and packaging metadata to an
artifact, such as build date, base image identification (and core OS library version
numbers), and testing/verification signatures. This allows everyone to quickly under‐
stand what is in the artifact, and can also help with auditing or determining whether
an artifact is exposed to a new security vulnerability. Docker allows the use of labels
to add key-value information to a Dockerfile, and we recommend that you use this to
add key information. You can also store additional metadata about artifacts within
your artifact repository.

Fabricating Docker Images with fabric8
fabric8 is an open source project stewarded by Red Hat that aims to provide an end-
to-end development platform from development to production for the creation of
cloud-native applications and microservices. You can build, test, and deploy your
applications via continuous delivery pipelines and then run and manage them with
ChatOps tooling. You will explore fabric8 in more detail later in the book, but in this
chapter, you will learn about a relevant useful feature: fabric8 provides a Maven
plugin that makes building Docker images easy. The Docker Maven plugin not only

152 | Chapter 7: Packaging Applications for Deployment

https://fabric8.io/

allows container images to be built, but you can also run containers, perhaps during
an integration test. Example 7-20 shows how the plugin can be used to build a con‐
tainer.

Example 7-20. Project using the Docker Maven plugin

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <groupId>uk.co.danielbryant.oreillyexamples</groupId>
 <artifactId>builddemo</artifactId>
 <version>0.1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
...
 <build>
 <plugins>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <configuration>
 <images>
 
 </images>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Additional Java-Specific Container Build Tooling
In addition to writing your own Dockerfile or using the Fabric8 plugin, there are a
range of options for building container images as part of a standard Java build pro‐
cess, which may suite your workflow better:

Building Containers | 153

• Spotify docker-maven-plugin, and its latest incarnation dockerfile-maven. These
plugins allow a range of image build configuration options to be specified within
the POM, and also provide hooks for running containers during the integration-
test phases of the build life cycle.

• Google’s Jib, which provides both Maven and Gradle plugins for building OCI-
compatible container images. This tools provides a fast build due to its clever use
of image layering (in combination with the Distroless base images), and also does
not require the Docker daemon to be running locally.

Packaging FaaS Java Applications
A FaaS Java application code can typically be uploaded to the service by using either a
fat JAR (which shouldn’t be executable) or a ZIP file.

When building a fat JAR, the AWS Lambda guide recommends using the Maven
Shade plugin. If you look at the example pom.xml file in Example 7-21, you will see
the aws-lambda-java-core dependency that you can reference within your source
code (and does not affect the build life cycle), and you can also see the Shade plugin
with the createDependencyReducedPom configuration being declared as false. This
is because a FaaS Java application that is uploaded to the AWS Lambda service must
include all of their dependencies.

Example 7-21. Example pom.xml for an AWS Lambda FaaS Java application

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>doc-examples</groupId>
 <artifactId>lambda-java-example</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>lambda-java-example</name>

 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.1.0</version>
 </dependency>
 </dependencies>

 <build>

154 | Chapter 7: Packaging Applications for Deployment

https://github.com/spotify/docker-maven-plugin
https://github.com/spotify/dockerfile-maven
https://github.com/GoogleContainerTools/jib

 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <createDependencyReducedPom>false</createDependencyReducedPom>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

The Azure Functions documentation recommends using the maven-dependency-
plugin to package all of the relevant class and configuration files appropriately, and
this can be seen in the pom.xml file generated by the Maven artefact generator, as
shown in Example 7-22.

Example 7-22. Example pom.xml for Azure Function Java FaaS application

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>helloworld</groupId>
 <artifactId>ProductCatalogue</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>Azure Java Functions</name>

 <dependencyManagement>
 <dependencies>
 ...
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>com.microsoft.azure.functions</groupId>

Packaging FaaS Java Applications | 155

https://maven.apache.org/plugins/maven-dependency-plugin/
https://maven.apache.org/plugins/maven-dependency-plugin/

 <artifactId>azure-functions-java-library</artifactId>
 </dependency>
 ...
 </dependencies>

 <build>
 <pluginManagement>
 <plugins>
 ...
 </plugins>
 </pluginManagement>

 <plugins>
 ...
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <executions>
 <execution>
 <id>copy-dependencies</id>
 <phase>prepare-package</phase>
 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 <configuration>
 <outputDirectory>${stagingDirectory}/lib</outputDirectory>
 <overWriteReleases>false</overWriteReleases>
 <overWriteSnapshots>false</overWriteSnapshots>
 <overWriteIfNewer>true</overWriteIfNewer>
 <includeScope>runtime</includeScope>
 <excludeArtifactIds>
 azure-functions-java-library
 </excludeArtifactIds>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Creating an AWS Lambda or Azure Function artifact is as simple as running mvn
package.

In Chapter 8, you will learn how to work locally with AWS Lambda and Azure Func‐
tions and how to deploy locally and test a FaaS-based Java application.

156 | Chapter 7: Packaging Applications for Deployment

Summary
In this chapter, you have learned all you need to know about building JAR files. You
have also learned about other packaging options that are available, and explored the
creation of lower-level deployment artifacts like machine and container images:

• Understanding (in-depth) how a JAR file is built is essential. You can use this
knowledge when creating artifacts for any platform and when you are debugging
build issues like class-loading problems.

• You can create executable fat JARs or skinny JARs, depending on your require‐
ments and constraints.

• There are Maven (and other build tool) plugins for creating OS artifacts like
DEBs and RPMs, and for creating container images.

• You can use a tool like HashiCorp’s Packer to create and package Java applica‐
tions into a variety of machine images for test and production deployment across
OS hypervisors like VirtualBox and cloud platforms like AWS or Azure.

• FaaS applications are typically packaged in the same way as traditional Java appli‐
cations, by using JARs and tooling like the Maven Shade or Maven Dependency
plugin for managing dependencies.

Now that you have developed a good understanding of building and packaging Java
applications, it is time to work on ensuring that your pre-pipeline local development
process is as effective as possible. This is the topic of the next chapter.

Summary | 157

CHAPTER 8

Working Locally (Like It Was Production)

Before you can begin to construct a continuous delivery pipeline, you must first
ensure that you can work efficiently and effectively with code and systems on a local
development machine. In this chapter, you will explore several of the inherent chal‐
lenges with this—particularly when working with modern distributed systems and
service-based architectures—and then discusses techniques like mocking, service vir‐
tualization, infrastructure virtualization (both VM and container-based), and local
development of FaaS applications.

Challenges with Local Development
As a Java developer, you will typically be used to configuring a simple local work
environment for working with a traditional monolithic web application. This often
involves installing an operating system, a Java Development Kit (JDK), a build tool
(Maven or Gradle), and an integrated development environment (IDE), like IntelliJ
IDEA or Eclipse. Sometimes you may also need to install middleware or a database,
and perhaps an application server. This local development configuration works fine
for a single Java application, but what happens when you are developing a system
with multiple services that will be deployed into a cloud environment, a container
orchestration framework, or a serverless platform?

When you start working with an application with multiple services, the most logical
initial approach is to simply attempt to replicate your local development practices for
each new service. However, as with many things within computing—manual replica‐
tion gets you only so far. The biggest problem with this style of working is the inte‐
gration costs of testing. Even if each service has integration/component-level testing,
it can be difficult to coordinate test configuration and initialization once you develop
more than a few services. You’ll often find yourself spinning up an external service
locally (by cloning the code repository from VCS, building, and running), fiddling

159

around with the state, running tests on the service code in which you are developing,
and finally verifying the state of the external service.

The Dangers of Custom Local Development Config Scripts

In the past, we have seen many developers attempt to overcome the
local initialization problem by creating simple scripts (bash,
Groovy, etc.) that wire everything together and initialize data for
tests. In our experience, these scripts quickly become a nightmare
to maintain, and therefore this isn’t a recommended approach. We
include a mention of this here only as a start for the discussion.

Mocking, Stubbing, and Service Virtualization
The first approach that you can use to scale the local working environment is a tech‐
nique familiar to many—mocking. In this section, you will explore how best to use
this approach, and you will also examine a technique that is not so widely used but
nonetheless is useful when working with a large number of services or external APIs:
service virtualization.

Pattern #1: Profiles, Mocks, and Stubs
If you are familiar with developing code using the JVM-based Spring framework (or
the Maven build tool), you will instantly recognize the concept of profiles. Essentially,
profiles allow multiple configurations to be developed and switched at build or run‐
time. This will allow you to develop mock or stub implementations of external service
interfaces for a local development profile and switch this version to the actual pro‐
duction implementation as required. For example, this technique could be used when
developing a Java-based e-commerce shop-front service that is dependent on a
product-search service. The interface for the product-service is well-defined, and
therefore you can develop several profiles for use when running automated tests via
Maven:

no-search
This profile can simply mock the product-search service as a no-op (using Mock‐
ito) and return empty results. This is useful when the locally developed code is
interacting with the product-search service, but you don’t care about the results
coming back from a call.

parameterized-search
This profile can contain a stub implementation of the product-search service that
you can parametrize in your tests to return various search results (e.g., one prod‐
uct, two products, a product with a specific property, an invalid product, etc.).
The stub implementation can simply be created as a Java class, and the precanned

160 | Chapter 8: Working Locally (Like It Was Production)

search results can be loaded from an external JSON data file. This is a useful pat‐
tern, but if the stub begins to become complex (with lots of conditionals), it may
be time to look at the service virtualization pattern.

production
This is the production implementation of the product-search interface that will
communicate to a real instance of the service and undertake appropriate object
marshalling and error-handling, etc.

Although not exactly stubbing or mocking, you can also include the use of embedded
or in-process data stores and middleware within this pattern. Running an embedded
process will typically allow you to interact with this component as if you were run‐
ning a full out-of-process instance, but with much less initialization overhead or the
need to externally configure the process.

The Benefits of Running Embedded Databases and Middleware
Mocking and stubbing are effective techniques for creating tests, but when working
with data stores and middleware, you will sometimes find yourself either creating
complicated mocks or needing to simulate complex behavior. If you notice these
issues, we recommend exploring whether your data store or middleware applications
can be run in an “embedded” or in-process/memory mode. This gives all the benefits
of running the real thing, but with a reduced resource footprint compared to running
the full application.

Running an application in this mode typically means that the startup time is reduced,
along with the response times (as everything is running in memory and doesn’t
require disk access), and you apply configuration upon each start of the process. The
disadvantage of running in this mode is that you can typically use only small datasets
(that can fit into memory) and the data mutations are not persistent across test runs.

We have had much success using the following embedded applications during testing
and the creation of automated test suites:

• H2 or HSQL as a test replacement for MySQL (be aware there are some differ‐
ences between the implementations).

• Stubbed Cassandra for Apache Cassandra.
• ElasticSearch can be run as a single embedded node.
• Apache Qpid as an embedded alternative for RabbitMQ or ActiveMQ.
• The Localstack project contains an embedded/in-process version of many of the

AWS data store services, like DynamoDB and Kinesis.

Mocking, Stubbing, and Service Virtualization | 161

For any data store or middleware that does not provide an embedded or in-memory
mode, or you require large amounts of data for testing, the testcontainers project can
be used to containerize these systems and execute them via JUnit.

Mocking with Mockito
One of the most popular mocking libraries within the Java ecosystem is Mockito. The
latest version of the library, version 2.0+, provides a flexible framework to allow the
verification of interactions with dependencies, or the stubbing of method calls.

Verifying interactions
Often when you are developing against a third-party dependency, you want to verify
that the application you are developing interacts correctly with this external system,
particularly when given certain use cases (either happy path or edge/problem cases).
An example of this is shown in Example 8-1.

Example 8-1. Verifying interactions with the mocked List class, using Mockito

import static org.mockito.Mockito.*;

// mock creation
List mockedList = mock(List.class);

// using mock object - it does not throw any "unexpected interaction" exception
mockedList.add("one");
mockedList.clear();

// selective, explicit, highly readable verification
verify(mockedList).add("one");
verify(mockedList).clear();

The assertions within your test are focused on the behavior of your application (i.e.,
did it behave correctly given a certain use case or precondition).

Stubbing method calls
In addition to verifying the behavior of your application, you may often want to ver‐
ify output or state, or return precanned data from an external service during the exe‐
cution of a method under development or test. Often, this is the case when you have
created a complicated algorithm, or you are interacting with several external services
and the individual interactions are not as important as the end result. Example 8-2
illustrates.

162 | Chapter 8: Working Locally (Like It Was Production)

https://www.testcontainers.org/

Example 8-2. Stubbing the mocked LinkedList class to return a value

// you can mock concrete classes, not only interfaces
LinkedList mockedList = mock(LinkedList.class);

// stubbing appears before the actual execution
when(mockedList.get(0)).thenReturn("first");

// the following is true
assertThat(mockedList.get(0), is("first");

// the following prints "null" because get(999) was not stubbed
System.out.println(mockedList.get(999));

This simple test shows how you can assert on the value (which happens to come
directly from the mock in this trivial example), rather than on the interactions.

Watch for Mock Complexity

If you find that your mocks are continually drifting from the real
application or service that you are mocking/stubbing, or you find
yourself spending a large amount of time maintaining the mocks,
then this may be a sign that your mocks contain too much com‐
plexity, and you should use another tool or technique. Always
remember that your tools should work for you, not the other way
around!

The Mockito framework is a powerful library, and we have presented only a limited
demonstration of functionality within this chapter.

Pattern #2: Service Virtualization and API Simulation
When mocking or stubbing external (third-party) services becomes complex, this can
be the signal that it would be more appropriate to virtualize the service. If your stubs
start to contain lots of conditional logic, are becoming a point of contention with
people changing precanned data and breaking lots of tests, or are becoming a mainte‐
nance issue, this can be a sign of too much complexity. Service virtualization is a tech‐
nique that allows you to create an application that will emulate the behavior of an
external service without actually running or connecting to the service. This differs
from running an actual service in an embedded or in-process mode, as a virtual ser‐
vice is typically not the real thing, and can behave only in ways that you have either
defined or recorded from previous interactions with the real thing.

The service virtualization technique allows for the more manageable implementation
of complex service behavior than mocking or stubbing alone. You can use this techni‐
que successfully in multiple scenarios; for example, when a dependent service returns
complex (or large amounts of) data, when you don’t have access to the external

Mocking, Stubbing, and Service Virtualization | 163

service (for example, it may be owned by a third-party or is run as a SaaS), or when
many additional services will interact with this dependency and it will be easier to
share the virtual service than a mock or stub code.

Tooling in this area includes the following:

Mountebank
This tool is a JavaScript/Node.js application that provides “cross-platform, multi‐
protocol test doubles over the wire,” and can be used to virtualize services that
speak HTTP/HTTPS and TCP (it also supports SMTP). The API is easy to use,
and although some of the code you may write may look verbose, it is easy to craft
complicated virtualized responses.

WireMock
This tool is similar to Mountebank in that it works by creating an actual server
(HTTP in this case) that can be configured to respond with a range of virtualized
responses. WireMock is written in Java and is well supported by its creator, Tom
Akehurst.

Stubby4j
This is a Java-focused tool that shares a lot of similarity with Mountebank and
WireMock. This is an older service virtualization tool, but it can be used to emu‐
late complicated SOAP and WSDL messages when interacting with external leg‐
acy service.

VCR/Betamax
These are both useful implementations of applications that allow you to record
and replay network traffic. These tools can be particularly useful when you don’t
have access to the code of the external dependent services (and therefore can
only observe a response from a request), when the service returns a large amount
of data (which can be captured in an external “cassette”), or when making a call
to the service is restricted or expensive.

Hoverfly
This is a new service virtualization tool that provides additional configuration
options over WireMock and VCR, and you can emulate responses for compli‐
cated legacy applications, as well as complex microservice architectures with
many interdependent services. You can also use Hoverfly when performing load
testing that interacts with third-party services. For example, where an external
SaaS-based application test sandbox is on the critical path and it won’t allow you
to ramp up the number of test requests without becoming the bottleneck itself.
The fact that Hoverfly is written in Go means that it is lightweight and highly
performant: you can easily get thousands of request/responses per second when
running on a small AWS EC2 node.

164 | Chapter 8: Working Locally (Like It Was Production)

Service virtualization is not that common to many Java developers, so let’s explore the
uses and configuration a little more.

Virtualizing Services with Hoverfly
In this section, you will explore how to virtualize services for your local development
environment by using the Hoverfly API simulation tool.

Installing Hoverfly
Hoverfly can be installed via the macOS brew package manager, and can also be
downloaded and installed for Windows and Linux systems by following the instruc‐
tions on the Hoverfly website.

You can also download the simple Spring Boot–powered flight service API that we
will use to explore the concept of service virtualization from here.

Capturing and simulating a request with Hoverfly
First, start an instance of Hoverfly, as shown in Example 8-3.

Example 8-3. Start Hoverfly

$ hoverctl start
Hoverfly is now running

+------------+------+
| admin-port | 8888 |
| proxy-port | 8500 |
+------------+------+

At any time, you can check whether Hoverfly is running and which ports it is listen‐
ing on by issuing the hoverctl status command, as shown in Example 8-4.

Example 8-4. Hoverctl

$ hoverctl status

+------------+----------+
Hoverfly	running
Admin port	8888
Proxy port	8500
Mode	capture
Middleware	disabled
+------------+----------+

Start the flights service, and make a request to it to validate that it is running. Here we
are just searching for all the flights that are available tomorrow (note that your results

Mocking, Stubbing, and Service Virtualization | 165

http://bit.ly/2Q8dhVC

from the curl may appear different from the results shown in Example 8-5, as the
flight service returns a random set of flight data!):

Example 8-5. Running the sample flight service

$./run-flights-service.sh
waiting for service to start
waiting for service to start
waiting for service to start
service started

$ curl localhost:8081/api/v1/flights?plusDays=1 | jq
[
 {
 "origin": "Berlin",
 "destination": "New York",
 "cost": "617.31",
 "when": "03:45"
 },
 {
 "origin": "Amsterdam",
 "destination": "Dubai",
 "cost": "3895.49",
 "when": "21:20"
 },
 {
 "origin": "Milan",
 "destination": "New York",
 "cost": "4950.31",
 "when": "08:49"
 }
]

Now move Hoverfly into capture mode, as shown in Example 8-6. During this mode,
any request that is intercepted by Hoverfly will be captured.

Example 8-6. Hoverctl capture

$ hoverctl mode capture
Hoverfly has been set to capture mode

Once in capture mode, make a request to the flights API, but this time specify Hover‐
fly as a proxy, as shown in Example 8-7 (note that your curled flight results may look
different from those shown here).

Example 8-7. Capturing API responses with Hoverfly

$ curl localhost:8081/api/v1/flights?plusDays=1 --proxy localhost:8500 | jq
[

166 | Chapter 8: Working Locally (Like It Was Production)

 {
 "origin": "Berlin",
 "destination": "Dubai",
 "cost": "3103.56",
 "when": "20:53"
 },
 {
 "origin": "Amsterdam",
 "destination": "Boston",
 "cost": "2999.69",
 "when": "19:45"
 }
]

By specifying the proxy flag, the request will first go to the proxy (Hoverfly) and then
be forwarded onto the real flights API afterward. The reverse is true for the response,
and this is how Hoverfly is able intercept network traffic. The Hoverfly logs can be
consulted at any time that you are unsure of what has occurred (e.g., was a request/
response proxied), an example of which can be seen in Example 8-8.

Example 8-8. Viewing Hoverfly logs

$ hoverctl logs
INFO[2017-09-20T11:38:48+01:00] Mode has been changed
mode=capture
INFO[2017-09-20T11:40:28+01:00] request and response captured↵
mode=capture request=&map[headers:map[Accept:[*/*]↵
Proxy-Connection:[Keep-Alive] User-Agent:[curl/7.54.0]]↵
body: method:GET scheme:http destination:localhost:8081↵
path:/api/v1/flights query:map[plusDays:[1]]]↵
response=&map[error:nil response]
...

Now, let’s take a look at the simulation that we have produced, by exporting it and
then opening it in a text editor. In Example 8-9, we use atom, but feel free to substi‐
tute your favorite (like vim or emacs) in the command.

Example 8-9. Exporting Hoverfly simulation data

$ hoverctl export module-two-simulation.json
Successfully exported simulation to module-two-simulation.json
$ atom module-two-simulation.json

Take a look at the simulation file, and see if you recognize your recorded data. The
request you captured should correspond to a single element in the pairs array. Now,
we can use our simulation to simulate the flights API. First, stop the flights service to
make sure we are unable to communicate with it, as shown in Example 8-10.

Mocking, Stubbing, and Service Virtualization | 167

Example 8-10. Stop the flight service

$./stop-flights-service.sh
service successfully shut down
$ curl localhost:8081/api/v1/flights?plusDays=1
curl: (7) Failed to connect to localhost port 8081: Connection refused

Now, put Hoverfly into simulate mode, as shown in Example 8-11.

Example 8-11. Putting Hoverfly into simulate mode

$ hoverctl mode simulate
Hoverfly has been set to simulate mode with a matching strategy of 'strongest'

During simulate mode, instead of forwarding the traffic to the real API, Hoverfly will
immediately respond to the client with our recorded request. Now we can repeat our
request, only this time using Hoverfly as a proxy. We should now receive our recor‐
ded response rather than an error, as shown in Example 8-12.

Example 8-12. Making a request against Hoverfly as a proxy

$ curl localhost:8081/api/v1/flights?plusDays=1 --proxy localhost:8500 | jq
[
 {
 "origin": "Berlin",
 "destination": "Dubai",
 "cost": "3103.56",
 "when": "20:53"
 },
 {
 "origin": "Amsterdam",
 "destination": "Boston",
 "cost": "2999.69",
 "when": "19:45"
 }
]

That’s it: we have successfully simulated our first API endpoint! Although you used
curl for this demonstration, in a real test, this would typically be the application
under test making these requests against Hoverfly. Once request and response data
have been stored within Hoverfly, we no longer need access to the service we recor‐
ded the data from, and we can also control the exact response given by Hoverfly. One
of the major benefits of using a service virtualization tool like Hoverfly is that the tool
has a lightweight resource footprint and initializes fast. Therefore, you can virtualize
many more services on your laptop than you could run real services, and you can also
include the use of Hoverfly within fast integration tests.

168 | Chapter 8: Working Locally (Like It Was Production)

Don’t Reimplement Your Service “Virtually”

If you find that your virtual services are continually drifting from
the functionality of the real application, you may be tempted to add
more logic or conditional responses; this can be an antipattern!
Although tempting at times, you should definitely not reimplement
a service as a virtual copy. Service virtualization is ideal for acting
like an intelligent mock or stub for a service that has complex inter‐
nal logic but a well-defined interface and relatively simple data out‐
put (i.e., you should aim to virtualize [encapsulate] behavior, not
state, within a virtual service).
If you find yourself modifying virtual services with lots of condi‐
tional logic for determining what state should be returned from
interactions, or your virtual service logic begins to look similar to
the real service workflow, this is an antipattern, and the user of
another technique could be more appropriate.

VMs: Vagrant and Packer
Often when working with or deploying to cloud platforms, you will want to package
your Java applications within VM images. If you have a small number of services (and
a reasonably powerful development machine), this may also allow you to spin up sev‐
eral dependent services when building and testing an application. You will now
explore how to use the HashiCorp Vagrant tool for building and initalizing VMs on
your local development machine.

Installing Vagrant
Vagrant can be downloaded and installed from the Vagrant website, and there are
installers for macOS, Linux, and Windows. You will also need to install a VM hyper‐
visor application such as Oracle’s VirtualBox or VMware Fusion, upon which the
Vagrant VMs will run.

Creating a Vagrantfile
All VMs that will be part of your local Vagrant development environment will be
defined in a Vagrantfile. This file allows you to specify the number of VMs, their
allotted compute resources, and networking configuration. You can also specify
installation and provisioning scripts that will configure the VM and install the
required OS dependencies. An example Vagrantfile is shown in Example 8-13.

VMs: Vagrant and Packer | 169

https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com/uk/products/fusion.html

Example 8-13. Vagrantfile that configures a single VM with Ubuntu and installs the
Jenkins build server via a simple sets of Bash CLI commands

-*- mode: ruby -*-
vi: set ft=ruby :

All Vagrant configuration is done below. The "2" in Vagrant.configure
configures the configuration version (we support older styles for
backward compatibility). Please don't change it unless you know what
you're doing.
Vagrant.configure("2") do |config|
 # The most common configuration options are documented and commented below.
 # For a complete reference, please see the online documentation at
 # https://docs.vagrantup.com.

 # Every Vagrant development environment requires a box. You can search for
 # boxes at https://atlas.hashicorp.com/search.
 config.vm.box = "ubuntu/xenial64"
 config.vm.box_version = "20170922.0.0"

 config.vm.network "forwarded_port", guest: 8080, host: 8080
 config.vm.provider "virtualbox" do |v|
 v.memory = 2048
 end

 # Enable provisioning with a shell script. Additional provisioners such as
 # Puppet, Chef, Ansible, Salt, and Docker are also available. Please see the
 # documentation for more information about their specific syntax and use.
 config.vm.provision "shell", inline: <<-SHELL
 apt-get update

 # Install OpenJDK Java JDK and Maven
 apt-get install -y openjdk-8-jdk
 apt-get install -y maven

 # Install sbt
 echo "deb https://dl.bintray.com/sbt/debian /" |
 tee -a /etc/apt/sources.list.d/sbt.list
 apt-key adv --keyserver hkp://keyserver.ubuntu.com:80
 --recv 2EE0EA64E40A89B84B2DF73499E82A75642AC823
 apt-get update
 apt-get install sbt

 # Install Docker (made slightly more complex by the need
 # to use specific Docker package repos)
 apt-get install -y apt-transport-https ca-certificates
 apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80
 --recv-keys 58118E89F3A912897C070ADBF76221572C52609D
 echo deb https://apt.dockerproject.org/repo ubuntu-xenial main >>
 /etc/apt/sources.list.d/docker.list
 apt-get update
 apt-get purge lxc-docker

170 | Chapter 8: Working Locally (Like It Was Production)

 apt-get install -y linux-image-extra-$(uname -r) linux-image-extra-virtual
 apt-get install -y docker-engine

 # Install Jenkins
 wget -q -O - https://pkg.jenkins.io/debian/jenkins-ci.org.key | apt-key add -
 echo deb http://pkg.jenkins-ci.org/debian binary/ >
 /etc/apt/sources.list.d/jenkins.list
 apt-get update
 apt-get install -y jenkins
 # Echo the Jenkins security key that is required upon initialization
 printf "\n\nJENKINS KEY\n*********************************"
 # Add the Jenkins user to the Docker group
 usermod -aG docker jenkins
 # Wait until the initialAdminPassword file is generated via Jenkins startup
 while [! -f /var/lib/jenkins/secrets/initialAdminPassword]
 do
 sleep 2
 done
 cat /var/lib/jenkins/secrets/initialAdminPassword
 printf "*********************************"
 # restart the Jenkins service so that the usermod command above takes effect
 service jenkins restart

 # Install Docker Compose
 curl -s -L https://github.com/docker/compose/releases/
 download/1.10.0/docker-compose-`uname -s`-`uname -m` >↵
 /usr/local/bin/docker-compose
 chmod +x /usr/local/bin/docker-compose
 SHELL
end

The VMs defined in the Vagrantfile can be initialized with the vagrant up command,
as shown in Example 8-14, and stopped and deleted with vagrant halt and vagrant
destroy, respectively.

Example 8-14. Vagrant booting a VM

$ vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Checking if box 'ubuntu/xenial64' is up-to-date...
==> default: Clearing any previously set forwarded ports...
==> default: Clearing any previously set network interfaces...
==> default: Preparing network interfaces based on configuration...
 default: Adapter 1: nat
==> default: Forwarding ports...
 default: 8080 (guest) => 8080 (host) (adapter 1)
 default: 22 (guest) => 2222 (host) (adapter 1)
==> default: Running 'pre-boot' VM customizations...
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...

VMs: Vagrant and Packer | 171

 default: SSH address: 127.0.0.1:2222
 default: SSH username: ubuntu
 default: SSH auth method: password
==> default: Machine booted and ready!

If you examine the preceding Vagrantfile, you will notice the line config.vm.network
"forwarded_port", guest: 8080, host: 8080, which maps port 8080 in the VM to
port 8080 on the localhost development machine. This means that we can view http://
localhost:8080 in a web browser and view our Jenkins installation running on the VM
provisioned via Vagrant.

You have learned about Packer in “Creating Machine Images for Multiple Clouds
with Packer” on page 147, and you can use this tool to create images that can be ini‐
tialized via Vagrant using the config.vm.box property in the Vagrant box configura‐
tion.

Pattern #3: Production-in-a-Box
The use of environment virtualization tools like HashiCorp’s Vagrant enables you to
download precanned images of services to a local machine that can be easily executed
when developing an application or running automated tests. This technology also
allows you to build a production-in-a-box—a replicated (smaller version) of your
production environment that can be shared around a team for a consistent develop‐
ment experience. To implement this, you create (for example) a preconfigured VBox
image that contains an application’s code/binaries alongside an OS, configuration,
and associated data stores.

Is the “Production-in-a-Box” an Antipattern?

The production-in-a-box is most useful for teams with a small
number of services operating in a relatively simple and stable pro‐
duction environment. As soon as an application grows to involve
more than three to five services or involves complicated infrastruc‐
ture or configuration, it can become impractical to attempt to repli‐
cate a production environment locally or it can become too
time-consuming to maintain parity between production and devel‐
opment. If you notice that the local production replica is not
behaving as the real production environment, or you are spending
large amounts of effort and resources to maintain this, then it may
be that this pattern is becoming an antipattern for you.

The arrival of HashiCorp Packer has made the image creation process even easier,
and it gives you the ability to specify application packaging once and reuse this across
environments (e.g., Azure in production, OpenStack for QA, and VirtualBox for local
development). Arguably, the arrival of Docker (explored next) pushed this style of

172 | Chapter 8: Working Locally (Like It Was Production)

application packaging and sharing into the mainstream, and the Fig composition tool
was the icing on the cake. Fig has since evolved into Docker Compose, and now
allows the declarative specification of applications/services and associated dependen‐
cies and data stores. This pattern does allow for the flexible execution of a collection
of dependent services on a local development machine, and the main limiting factor
in our experience is machine resources (particularly when running on hypervisor-
based virtual platforms).

The production-in-box pattern can allow you to keep a much cleaner local developer
environment and remove potential configuration clashes by encapsulating a service
and its dependencies and configuration (e.g., different requirements of Java versions).
You can also parametrize the images (through initialization params or environment
variables), much as you saw with the profiles pattern previously, and it allows services
to behave as you require. You can also use Docker plugins for Maven, which enable
the integration of container life cycles with test runs. A potential extension to this
pattern is developing within the actual images themselves; for example, by mounting
local source code into the running instance of an image. If done correctly, this can
remove the need for the installation of practically all tooling on the local development
machine (except perhaps your favorite editor or IDE), and it greatly simplifies the
build toolchain.

Cloud-Based Development (with Production-in-a-Large-Box)?
Several cloud-based IDEs are emerging on the market, such as Eclipse Che and Ama‐
zon’s Cloud9 platforms, and some industry analysts are suggesting that the future of
development could be conducted using these tools rather than local installs. Time will
tell, but you will often see that the online IDEs allow you to spin up a replica (or a
subset) of a production environment that is then attached to your “local” cloud devel‐
opment environment; this is particularly the case for serverless FaaS applications.
Regardless of whether you want to work locally like this, this is a good pattern to
explore in order to understand future developer workflows.

Containers: Kubernetes, minikube, and Telepresence
In this section, you will explore working locally with Docker containers and the
Kubernetes orchestration platform.

Introducing the “Docker Java Shop” Sample App
Running containers at any real-world scale requires a container orchestration and
scheduling platform, and although many exist (i.e., Docker Swarm, Apache Mesos,
and AWS ECS), the most popular is Kubernetes. Kubernetes is used in production at
many organizations, and is now hosted by the Cloud Native Computing Foundation

Containers: Kubernetes, minikube, and Telepresence | 173

https://kubernetes.io/
https://www.cncf.io/

(CNCF). Here you will take a simple Java-based, e-commerce shop and package this
within Docker containers and run this on Kubernetes.

The architecture of the Docker Java Shopfront application that we will package into
containers and deploy onto Kubernetes is shown in Figure 8-1.

Figure 8-1. Docker Java Shopfront application architecture

Building Java Applications and Container Images
Before we create a container and the associated Kubernetes deployment configura‐
tion, we must ensure that we have installed the following prerequisites:

Docker for Mac/Windows/Linux
This allows us to build, run, and test Docker containers outside Kubernetes on
our local development machine.

minikube
This is a tool that makes it easy to run a single-node Kubernetes test cluster on
our local development machine via a virtual machine.

A GitHub account and Git installed locally
The code examples are stored on GitHub, and by using Git locally, you can fork
the repository and commit changes to your own personal copy of the application.

174 | Chapter 8: Working Locally (Like It Was Production)

https://www.cncf.io/
https://dockr.ly/2zwBIqz
https://dockr.ly/2NL7dWn
https://dockr.ly/2xUSIV5
http://bit.ly/2xNk8w4
https://github.com/
https://git-scm.com/

Docker Hub account
If you would like to follow along with this tutorial, you will need a Docker Hub
account in order to push and store your copies of the container images that we
will build next.

Java 8 (or 9) SDK and Maven
We will be building code with the Maven build and dependency tool that uses
Java 8 features.

Clone the project repository from GitHub (optionally, you can fork this repository
and clone your personal copy), as shown in Example 8-15. Locate the Shopfront
microservice application.

Example 8-15. Clone the example repository

$ git clone git@github.com:danielbryantuk/oreilly-docker-java-shopping.git
$ cd oreilly-docker-java-shopping/shopfront

Feel free to load the Shopfront code into your editor of choice, such as IntelliJ IDEA
or Eclipse, and have a look around. Let’s build the application using Maven, as shown
in Example 8-16. The resulting runnable JAR file that contains the application will be
located in the ./target directory.

Example 8-16. Building the Spring Boot application

$ mvn clean install
…
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 17.210 s
[INFO] Finished at: 2017-09-30T11:28:37+01:00
[INFO] Final Memory: 41M/328M
[INFO] --

Now you will build the Docker container image. The operating system choice, config‐
uration, and build steps for a Docker image are typically specified via a Dockerfile.
Let’s look at the example Dockerfile that is located in the shopfront directory; see
Example 8-17.

Example 8-17. Sample Dockerfile for Spring Boot Java application

FROM openjdk:8-jre
ADD target/shopfront-0.0.1-SNAPSHOT.jar app.jar
EXPOSE 8010
ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./urandom","-jar","/app.jar"]

Containers: Kubernetes, minikube, and Telepresence | 175

https://hub.docker.com/
http://bit.ly/2xO16pw
https://maven.apache.org/
http://bit.ly/2Og0JOP
http://bit.ly/2Og0JOP

The first line specifies that your container image should be created from the openjdk:
8-jre base image. The openjdk:8-jre image is maintained by the OpenJDK team, and
contains everything we need to run a Java 8 application within a Docker container
(such as an operating system with the OpenJDK 8 JRE installed and configured). The
second line takes the runnable JAR and adds this to the image. The third line specifies
that port 8010, which your application will listen on, must be exposed as externally
accessible, and the fourth line specifies the entrypoint, or command to run, when the
container is initialized. Let’s build the container; see Example 8-18.

Example 8-18. Docker build

$ docker build -t danielbryantuk/djshopfront:1.0 .
Successfully built 87b8c5aa5260
Successfully tagged danielbryantuk/djshopfront:1.0

Now let’s push this to Docker Hub, as shown in Example 8-19. If you haven’t logged
into the Docker Hub via your command line, you must do this now and enter your
username and password.

Example 8-19. Pushing to Docker Hub

$ docker login
Login with your Docker ID to push and pull images from Docker Hub.
If you don't have a Docker ID, head over to https://hub.docker.com to create one.
Username:
Password:
Login Succeeded
$
$ docker push danielbryantuk/djshopfront:1.0
The push refers to a repository [docker.io/danielbryantuk/djshopfront]
9b19f75e8748: Pushed
...
cf4ecb492384: Pushed
1.0: digest: sha256:8a6b459b0210409e67bee29d25bb512344045bd84a262ede80777edfcff3d9a0
size: 2210

Deploying into Kubernetes
Now let’s run this container within Kubernetes. First, change the kubernetes directory
in the root of the project:

$ cd ../kubernetes

Open the shopfront-service.yaml Kubernetes deployment file and have a look at the
contents, shown in Example 8-20.

176 | Chapter 8: Working Locally (Like It Was Production)

https://hub.docker.com/_/openjdk/

Example 8-20. Sample Kubernetes deployment.yaml file for the Shopfront service

apiVersion: v1
kind: Service
metadata:
 name: shopfront
 labels:
 app: shopfront
spec:
 type: ClusterIP
 selector:
 app: shopfront
 ports:
 - protocol: TCP
 port: 8010
 name: http

apiVersion: apps/v1beta2
kind: Deployment
metadata:
 name: shopfront
 labels:
 app: shopfront
spec:
 replicas: 1
 selector:
 matchLabels:
 app: shopfront
 template:
 metadata:
 labels:
 app: shopfront
 spec:
 containers:
 - name: djshopfront
 image: danielbryantuk/djshopfront:1.0
 ports:
 - containerPort: 8010
 livenessProbe:
 httpGet:
 path: /health
 port: 8010
 initialDelaySeconds: 30
 timeoutSeconds: 1

The first section of the YAML file creates a Service named shopfront that will route
TCP traffic targeting this service on port 8010 to pods with the label app: shopfront.
The second section of the configuration file creates a Deployment that specifies
Kubernetes should run one replica (instance) of your Shopfront container, which you

Containers: Kubernetes, minikube, and Telepresence | 177

have declared as part of the spec (specification) labeled as app: shopfront. You will
also specify that the 8010 application traffic port we exposed in your Docker con‐
tainer is open and declared a livenessProbe, or healthcheck, that Kubernetes can use
to determine whether your containerized application is running correctly and is
ready to accept traffic. Let’s start minikube and deploy this service (note that you may
need to change the specified minikube CPU and memory requirements depending
on the resources available on your development machine); see Example 8-21.

Example 8-21. Starting minikube

$ minikube start --cpus 2 --memory 4096
Starting local Kubernetes v1.7.5 cluster...
Starting VM...
Getting VM IP address...
Moving files into cluster...
Setting up certs...
Connecting to cluster...
Setting up kubeconfig...
Starting cluster components...
Kubectl is now configured to use the cluster.
$ kubectl apply -f shopfront-service.yaml
service "shopfront" created
deployment "shopfront" created

You can view all services within Kubernetes by using the kubectl get svc com‐
mand, as shown in Example 8-22. You can also view all associated pods by using the
kubectl get pods command. (Note that the first time you issue the get pods com‐
mand, the container may not have finished creating, and is marked as not yet ready).

Example 8-22. kubectl get svc

$ kubectl get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes 10.0.0.1 <none> 443/TCP 18h
shopfront 10.0.0.216 <nodes> 8010:31208/TCP 12s
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
shopfront-0w1js 0/1 ContainerCreating 0 18s
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
shopfront-0w1js 1/1 Running 0 2m

You have now successfully deployed our first service into Kubernetes!

178 | Chapter 8: Working Locally (Like It Was Production)

Simple Smoke Test
You can use curl to attempt to get data from the shopfront application’s healthcheck
endpoint, as shown in Example 8-23. This is a simple way to check whether every‐
thing is working as it should be.

Example 8-23. Simple smoke test in minikube

$ curl $(minikube service shopfront --url)/health
{"status":"UP"}

You can see from the results of the curl against the application/health endpoint that
the application is up and running, but you will need to deploy the remaining micro‐
service application containers before the application will function as required.

Building the Remaining Applications
Now that you have one container up and running, let’s build the remaining two sup‐
porting microservice applications and containers, as shown in Example 8-24.

Example 8-24. Building the remaining applications

$ cd ..
$ cd productcatalogue/
$ mvn clean install
…
$ docker build -t danielbryantuk/djproductcatalogue:1.0 .
...
$ docker push danielbryantuk/djproductcatalogue:1.0
...
$ cd ..
$ cd stockmanager/
$ mvn clean install
...
$ docker build -t danielbryantuk/djstockmanager:1.0 .
...
$ docker push danielbryantuk/djstockmanager:1.0

At this point, you have built all of your microservices and the associated Docker
images, and pushed the images to Docker Hub. Let’s now deploy the productcata‐
logue and stockmanager services to Kubernetes.

Deploying the Entire Java Application in Kubernetes
In a similar fashion to the process you used previously to deploy the Shopfront ser‐
vice, you can now deploy the remaining two microservices within your application to
Kubernetes; see Example 8-25.

Containers: Kubernetes, minikube, and Telepresence | 179

Example 8-25. Deploying the entire Java application in Kubernetes

$ cd ..
$ cd kubernetes/
$ kubectl apply -f productcatalogue-service.yaml
service "productcatalogue" created
deployment "productcatalogue" created
$ kubectl apply -f stockmanager-service.yaml
service "stockmanager" created
deployment "stockmanager" created
$ kubectl get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes 10.0.0.1 <none> 443/TCP 19h
productcatalogue 10.0.0.37 <nodes> 8020:31803/TCP 42s
shopfront 10.0.0.216 <nodes> 8010:31208/TCP 13m
stockmanager 10.0.0.149 <nodes> 8030:30723/TCP 16s
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
productcatalogue-79qn4 1/1 Running 0 55s
shopfront-0w1js 1/1 Running 0 13m
stockmanager-lmgj9 1/1 Running 0 29s

Depending on how quickly you issue the kubectl get pods command, you may see
that all the pods are not yet running. Before moving on to the next section, wait until
the command shows that all of the pods are running (maybe this is a good time to
brew a cup of tea!)

Viewing the Deployed Application
With all services deployed and all associated pods running, you now should be able to
access your completed application via the Shopfront service GUI. You can open the
service in your default browser by issuing the following command in minikube:

$ minikube service shopfront

If everything is working correctly, you should see the page shown in Figure 8-2 in
your browser.

In addition to running minikube locally, it is also possible to provision a remote
Kubernetes cluster and develop locally against this by using tooling like Datawire’s
Telepresence. Let’s explore this pattern now.

180 | Chapter 8: Working Locally (Like It Was Production)

Figure 8-2. Simple UI of Docker Java Shopfront

Telepresence: Working Remotely, Locally
Telepresence is an open source tool that lets you run a single service locally, while con‐
necting that service to a remote Kubernetes cluster. This lets developers working on
multiservice applications do the following:

• Do fast local development of a single service, even if that service depends on
other services in your cluster. Make a change to your service and save, and you
can immediately see the new service in action.

• Use any tool installed locally to test/debug/edit your service. For example, you
can use a debugger or IDE!

• Make your local development machine operate as if it’s part of your Kubernetes
cluster. If you have an application on your machine that you want to run against
a service in the cluster, it’s easy to do.

First, you need to install Telepresence. This is easy if you are using a Mac or Linux
machine to develop software locally, and full instructions for all platforms can be
found on the Telepresence website. Example 8-26 details installation on a Mac.

Containers: Kubernetes, minikube, and Telepresence | 181

http://bit.ly/2N6wAwJ

Technical Details of Telepresence
Telepresence deploys a two-way network proxy in a pod running in your Kubernetes
cluster. This pod proxies data from your Kubernetes environment (e.g., TCP connec‐
tions, environment variables, volumes) to the local process. The local process has its
networking transparently overridden so that DNS calls and TCP connections are
routed over the proxy to the remote Kubernetes cluster.

This approach gives the following:

• Your local service full access to other services in the remote cluster
• Your local service full access to Kubernetes environment variables, secrets, and

ConfigMap
• Your remote services full access to your local service

How Telepresence works is discussed in more detail here.

Example 8-26. Installing Telepresence on a Mac local development machine

$ brew cask install osxfuse
$ brew install socat datawire/blackbird/telepresence
...
$ telepresence --version
0.77

Now you can create a remote Kubernetes cluster. Example 8-27 uses the Google
Cloud Platform (GCP) GKE service to deploy a fully managed cluster. If you want to
follow along, you need to sign up for a GCP account and install the gclouds
command-line tool. Don’t forget that after you have installed the gclouds tool locally,
you must configure the tool to use the credentials of the account you have just created
(full details can be found on the Google Cloud SDK web page). At the time of writing,
you will also need to install the beta components of the gcloud tool. (Instructions can
be found on the gcloud install web page.)

The cluster will be created with slightly bigger compute instances than the default,
n1-standard-2, as some of the Java applications’ memory requirements can be too
large for the smaller instances. To keep costs low, you can also specify that the Kuber‐
netes cluster is created using preemptible instances. These instances are a lot less
expensive than the standard instances, but the risk is they might be preempted, or
reclaimed, if Google needs the extra compute capacity. Typically, this doesn’t happen
often, and if it does, then Kubernetes self-heals and redeploys the affected applica‐
tions.

182 | Chapter 8: Working Locally (Like It Was Production)

http://bit.ly/2IkkXl7
http://bit.ly/2NKqjfm
http://bit.ly/2OTEknF

Example 8-27. Creating a preemptible Kubernetes cluster on GCP GKE

 $ gcloud container clusters create telepresence-demo
--machine-type n1-standard-2 --preemptible
Creating cluster telepresence-demo...done.
Created [https://container.googleapis.com/v1beta1/projects/↵
k8s-leap-forward/zones/us-central1-a/clusters/telepresence-demo].

To inspect the contents of your cluster, go to:
https://console.cloud.google.com/kubernetes/workload_/gcloud/↵
us-central1-a/telepresence-demo?project=k8s-leap-forward

kubeconfig entry generated for telepresence-demo.
NAME LOCATION MASTER_VERSION MASTER_IP MACHINE_TYPE NUM_NODES STATUS
telepresence-demo us-central1-a 1.8.8-gke.0 35.193.55.23 n1-standard-2 3 RUNNING

With your cluster built, you can now deploy the example services onto this remote
cluster. You’ll notice that once Telepresence has initialized, you can curl the shop
front healthendpoint as if you were located in the cluster; you don’t need to use the
external IP address (or even expose this service to the internet).

Example 8-28. Curling a remote service healthcheck endpoint as if it were local

$ cd oreilly-docker-java-shopping/kubernetes
$ kubectl apply -f .
service "productcatalogue" created
deployment "productcatalogue" created
service "shopfront" created
deployment "shopfront" created
service "stockmanager" created
deployment "stockmanager" created
$
$ telepresence
Starting proxy with method 'vpn-tcp', which has the following limitations:
All processes are affected, only one telepresence can run per machine,↵
 and you can't use other VPNs. You may need to add cloud hosts with↵
 --also-proxy. For a full list of method limitations↵
 see https://telepresence.io/reference/methods.html
Volumes are rooted at $TELEPRESENCE_ROOT.↵
 See https://telepresence.io/howto/volumes.html for details.

No traffic is being forwarded from the remote Deployment to your local machine.
You can use the --expose option to specify which ports you want to forward.

Password:
Guessing that Services IP range is 10.63.240.0/20. Services started after
this point will be inaccessible if are outside this range; restart↵
 telepresence if you can't access a new Service.

@gke_k8s-leap-forward_us-central1-a_demo| $ curl shopfront:8010/health

Containers: Kubernetes, minikube, and Telepresence | 183

{"status":"UP"}
@gke_k8s-leap-forward_us-central1-a_demo| kubernetes $ exit

This is only scratching the surface with what Telepresence can do, and the most excit‐
ing thing is debugging a local service that is communicating with other services loca‐
ted in the remote cluster. The Telepresence website has full details on how to do this.

Cleaning Up Your GKE Cluster

Don’t forget to delete your cluster, or else you could end up with an
unexpected bill at the end of the month! You can delete your clus‐
ter by running the following command:

$ gcloud container clusters delete telepresence-demo

Pattern #4: Environment Leasing
In a nutshell, the environment leasing pattern is implemented by allowing each devel‐
oper to create and automatically provision their own remote environment that can
contain an arbitrary configuration of services and data. This pattern is somewhat
similar to the production-in-a-box pattern, but instead of running a replica of pro‐
duction locally, you are running this in the cloud. The services and data (and associ‐
ated infrastructure components and glue) must be specified programmatically via an
infrastructure as code (IaC) tool (like Terraform) or one of the automated provision‐
ing and configuration management tools (like Ansible). The configuration and
operational knowledge must also be shared across the team for this approach to be
viable, and therefore you must be embracing a DevOps mindset.

After an environment is specified and initialized, it is then “leased” by an individual
developer. Each developer’s local machine is then configured to communicate with
services and dependencies installed into the remote environment as if all the services
were running locally. You can use this pattern when deploying applications to cloud-
based platforms, as it allows you to spin up and shut down environments on demand
and rapidly.

184 | Chapter 8: Working Locally (Like It Was Production)

http://bit.ly/2OjmPQg
https://terraform.io/
http://www.ansible.com/

Platform Leasing Requires Programmable Infra and DevOps

The platform-leasing pattern is an advanced pattern, and does rely
on both the ability to provision platform environments on demand
(e.g., private/public cloud with elastic scaling) and that the devel‐
opment team has a reasonable awareness of operational character‐
istics of the production platform. The pattern also requires that a
developer’s machine has a stable network connection to this envi‐
ronment. Running a local proxy, such as Datawire’s Telepresence,
NGINX, or HAProxy in combination with HashiCorp’s Consul and
consul-template, or a framework such as Spring Cloud in combina‐
tion with Netflix’s Eureka, is useful in order to automate the storage
and updating of each developer’s environment location.

FaaS: AWS Lamba and SAM Local
AWS introduced Serverless Application Model (SAM) in 2016 in order to make it eas‐
ier for developers to deploy FaaS serverless applications. At its core, SAM is an open
source specification built on AWS CloudFormation that makes it easy to specify and
maintain your serverless infrastructure as code.

SAM Local takes all the useful parts of SAM and brings them to your local machine:

• It lets you develop and test your AWS Lambda functions locally with SAM Local
and Docker.

• It lets you simulate function invocations from known event sources like Amazon
Simple Storage Service (S3), Amazon DynamoDB, Amazon Kinesis, Amazon
Simple Notification Service (SNS), and nearly all of the other Amazon services
offered.

• It lets you start a local Amazon API Gateway from a SAM template, and quickly
iterate on your functions with hot-reloading.

• It lets you quickly validate your SAM template and even integrate that validation
with linters or IDEs.

• It provides interactive debugging support for your Lambda functions.

Let’s take AWS SAM Local for a spin.

Installing SAM Local
There are several ways to install SAM Local, but the easiest is through the pip Python
package management tool. A discussion of installing pip and Python is outside the
scope of this book, but both the SAM Local and pip websites provide more informa‐
tion.

FaaS: AWS Lamba and SAM Local | 185

https://www.consul.io/
https://github.com/hashicorp/consul-template
http://bit.ly/2Q76njB
https://github.com/Netflix/eureka
https://pypi.org/project/pip/
https://github.com/awslabs/aws-sam-cli

Once pip is installed locally, SAM Local can be installed using the command shown
in Example 8-29 in the terminal.

Example 8-29. Installing SAM Local

$ pip install aws-sam-cli

The latest version can also be installed from the source if you have Go installed on
your local development machine: go get github.com/awslabs/aws-sam-local.

AWS Lambda Scaffolding
You can use the simple Java function in Example 8-30 that is a basic implementation
of the Product Catalogue service you explored earlier in the Shopping demonstration
application. The full code can be found in the book’s GitHub repo. The main handler
function class can be seen in Example 8-30.

Example 8-30. Simple Java “Hello World” AWS Lambda function

package uk.co.danielbryant.djshoppingserverless.productcatalogue;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.google.gson.Gson;
import uk.co.danielbryant.djshoppingserverless.productcatalogue.↵
services.ProductService;

import java.util.HashMap;
import java.util.Map;

/**
* Handler for requests to Lambda function.
*/
public class ProductCatalogueFunction implements RequestHandler<Map<String, Object>,
GatewayResponse> {

 private static final int HTTP_OK = 200;
 private static final int HTTP_INTERNAL_SERVER_ERROR = 500;

 private ProductService productService = new ProductService();
 private Gson gson = new Gson();

 public GatewayResponse handleRequest(final Map<String, Object> input,
 final Context context) {
 Map<String, String> headers = new HashMap<>();
 headers.put("Content-Type", "application/json");

 String output = gson.toJson(productService.getAllProducts());
 return new GatewayResponse(output, headers, HTTP_OK);

186 | Chapter 8: Working Locally (Like It Was Production)

https://github.com/continuous-delivery-in-java/product-catalogue-aws-lambda

 }
}

The handleRequest method will be called by the AWS Lambda framework when you
run the function locally or remotely (in production). Several predefined RequestHan
dler interfaces and associated handleRequest methods are available in the aws-
lambda-java-core library that you can import via Maven. This example uses
RequestHandler<Map<String, Object>, GatewayResponse> that allows you to cap‐
ture the JSON map of data that is passed to the function (and contains details such as
the HTTP method, headers, and request param/body) and return a GatewayResponse
object, which ultimately gets sent to the requesting service or user.

The project’s pom.xml can be seen in Example 8-31, and notice also that the function
JAR is being packaged for deployment using the Maven Shade plugin that you
learned about earlier.

Example 8-31. ProductCatalogue AWS Lambda pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>uk.co.danielbryant.djshoppingserverless</groupId>
 <artifactId>ProductCatalogue</artifactId>
 <version>1.0</version>
 <packaging>jar</packaging>
 <name>A simple Product Catalogue demo created by the SAM CLI sam-init.</name>
 <properties>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 </properties>

 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.1.0</version>
 </dependency>
 <dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.8.5</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>

FaaS: AWS Lamba and SAM Local | 187

https://amzn.to/2QbAgiF
https://amzn.to/2QbAgiF

 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>3.1.1</version>
 <configuration>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

To build and test this locally, you also need a template.yaml manifest file, which speci‐
fies the Lambda configuration and wires up a simple API Gateway to allow us to test
our function; see Example 8-32.

Example 8-32. AWS Lambda template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: >
 Product Catalogue Lambda Function

 (based on the sample SAM Template for sam-app)

Globals:
 Function:
 Timeout: 20

Resources:

 ProductCatalogueFunction:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: target/ProductCatalogue-1.0.jar
 Handler: uk.co.danielbryant.djshoppingserverless.↵
 productcatalogue.ProductCatalogueFunction::handleRequest
 Runtime: java8

188 | Chapter 8: Working Locally (Like It Was Production)

 Environment: # More info about Env Vars: https://github.com/awslabs/↵
 serverless-application-model/blob/master/versions/↵
 2016-10-31.md#environment-object
 Variables:
 PARAM1: VALUE
 Events:
 HelloWorld:
 Type: Api # More info about API Event Source:
 https://github.com/awslabs/serverless-application-model/↵
 blob/master/versions/2016-10-31.md#api
 Properties:
 Path: /products
 Method: get

Outputs:

 HelloWorldApi:
 Description: "API Gateway endpoint URL for Prod stage for
 Product Catalogue Lambda "
 Value: !Sub "https://${ServerlessRestApi}.execute-api
 .${AWS::Region}.amazonaws.com/prod/products/"

 HelloWorldFunction:
 Description: "Product Catalogue Lambda Function ARN"
 Value: !GetAtt ProductCatalogueFunction.Arn

 HelloWorldFunctionIamRole:
 Description: "Implicit IAM Role created for Product Catalogue Lambda function"
 Value: !GetAtt ProductCatalogueFunction.Arn

Testing AWS Lambda Event Handling
The SAM Local tooling allows you to generate test events through the sam local
generate-event command. You can learn more about the event generation options
available to you by using the --help argument at various locations within the CLI
commands. In this example, you need to generate an example API gateway event.
This is effectively a synthetic version of the JSON object that will be sent when a ser‐
vice or user makes a request against the Amazon API Gateway that is fronting your
function. Let’s explore in Example 8-33.

Example 8-33. Generating test events using SAM Local

$ sam local generate-event --help
Usage: sam local generate-event [OPTIONS] COMMAND [ARGS]...

 Generate an event

Options:
 --help Show this message and exit.

FaaS: AWS Lamba and SAM Local | 189

Commands:
 api Generates a sample Amazon API Gateway event
 dynamodb Generates a sample Amazon DynamoDB event
 kinesis Generates a sample Amazon Kinesis event
 s3 Generates a sample Amazon S3 event
 schedule Generates a sample scheduled event
 sns Generates a sample Amazon SNS event
$
$ sam local generate-event api --help
Usage: sam local generate-event api [OPTIONS]

Options:
 -m, --method TEXT HTTP method (default: "POST")
 -b, --body TEXT HTTP body (default: "{ "test": "body"}")
 -r, --resource TEXT API Gateway resource name (default: "/{proxy+}")
 -p, --path TEXT HTTP path (default: "/examplepath")
 --debug Turn on debug logging
 --help Show this message and exit.
$
$ sam local generate-event api -m GET -b "" -p "/products"
{
 "body": null,
 "httpMethod": "GET",
 "resource": "/{proxy+}",
 "queryStringParameters": {
 "foo": "bar"
 },
 "requestContext": {
 "httpMethod": "GET",
 "requestId": "c6af9ac6-7b61-11e6-9a41-93e8deadbeef",
 "path": "/{proxy+}",
 "extendedRequestId": null,
 "resourceId": "123456",
 "apiId": "1234567890",
 "stage": "prod",
 "resourcePath": "/{proxy+}",
 "identity": {
 "accountId": null,
 "apiKey": null,
 "userArn": null,
 "cognitoAuthenticationProvider": null,
 "cognitoIdentityPoolId": null,
 "userAgent": "Custom User Agent String",
 "caller": null,
 "cognitoAuthenticationType": null,
 "sourceIp": "127.0.0.1",
 "user": null
 },
 "accountId": "123456789012"
 },
 "headers": {

190 | Chapter 8: Working Locally (Like It Was Production)

 "Accept-Language": "en-US,en;q=0.8",
 "Accept-Encoding": "gzip, deflate, sdch",
 "X-Forwarded-Port": "443",
 "CloudFront-Viewer-Country": "US",
 "X-Amz-Cf-Id": "aaaaaaaaaae3VYQb9jd-nvCd-de396Uhbp027Y2JvkCPNLmGJHqlaA==",
 "CloudFront-Is-Tablet-Viewer": "false",
 "User-Agent": "Custom User Agent String",
 "Via": "1.1 08f323deadbeefa7af34d5feb414ce27.cloudfront.net (CloudFront)",
 "CloudFront-Is-Desktop-Viewer": "true",
 "CloudFront-Is-SmartTV-Viewer": "false",
 "CloudFront-Is-Mobile-Viewer": "false",
 "X-Forwarded-For": "127.0.0.1, 127.0.0.2",
 "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,
 image/webp,*/*;q=0.8",
 "Upgrade-Insecure-Requests": "1",
 "Host": "1234567890.execute-api.us-east-1.amazonaws.com",
 "X-Forwarded-Proto": "https",
 "Cache-Control": "max-age=0",
 "CloudFront-Forwarded-Proto": "https"
 },
 "stageVariables": null,
 "path": "/products",
 "pathParameters": {
 "proxy": "/products"
 },
 "isBase64Encoded": false
}

You can use this generated event to test your function in several ways. The simplest
method is to simply pipe the results of the event generation through a local invoca‐
tion of your function, which is triggered via sam local invoke <function_name>;
see Example 8-34.

Example 8-34. Generating an Amazon API Gateway event and sending this to a local
invocation of a Lambda function

$ sam local generate-event api -m GET -b "" -p "/products" | ↵
 sam local invoke ProductCatalogueFunction
2018-06-10 14:06:04 Reading invoke payload from stdin (you can also↵
 pass it from file with --event)
2018-06-10 14:06:05 Invoking uk.co.danielbryant.djshoppingserverless.↵
productcatalogue.ProductCatalogueFunction::handleRequest (java8)
2018-06-10 14:06:05 Found credentials in shared credentials file:↵
 ~/.aws/credentials
2018-06-10 14:06:05 Decompressing /Users/danielbryant/Documents/↵
dev/daniel-bryant-uk/tmp/aws-sam-java/sam-app/target/↵
ProductCatalogue-1.0.jar

Fetching lambci/lambda:java8 Docker container image......
2018-06-10 14:06:06 Mounting /private/var/folders/1x/↵

FaaS: AWS Lamba and SAM Local | 191

81f0qg_50vl6c4gntmt008w40000gn/T/tmp1kC9fo as↵
 /var/task:ro inside runtime container
START RequestId: 054d0a81-1fa9-41b9-870c-18394e6f6ea9↵
 Version: $LATEST
END RequestId: 054d0a81-1fa9-41b9-870c-18394e6f6ea9
REPORT RequestId: 054d0a81-1fa9-41b9-870c-18394e6f6ea9↵
 Duration: 82.60 ms Billed Duration: 100 ms↵
 Memory Size: 128 MB Max Memory Used: 19 MB

{"body":"[{\"id\":\"1\",\"name\":\"Widget\",↵
\"description\":\"Premium ACME Widgets\",↵
\"price\":1.19},{\"id\":\"2\",\"name\":\"Sprocket\",↵
\"description\":\"Grade B sprockets\",↵
\"price\":4.09},{\"id\":\"3\",\"name\":\"Anvil\",↵
\"description\":\"Large Anvils\",\"price\":45.5},↵
{\"id\":\"4\",\"name\":\"Cogs\",↵
\"description\":\"Grade Y cogs\",\"price\":1.80},↵
{\"id\":\"5\",\"name\":\"Multitool\",↵
\"description\":\"Multitools\",\"price\":154.09}]",↵
"headers":{"Content-Type":"application/json"},"statusCode":200}

If you want to customize the generated event in more detail, you can pipe the gener‐
ated results to a file, modify the contents or the file, and then cat this into an invoca‐
tion, as shown in Example 8-35.

Example 8-35. Piping a generated event to a file, modifying it, and then using cat to pipe
the file content to SAM Local

$ sam local generate-event api -m GET -b "" -p "/products" > api_event.json
$ # modify the api_event.json file with your favourite editor and then save
$ cat api_event.json | sam local invoke ProductCatalogueFunction
...

You can also debug the function that is being invoking via Docker by specifying the
--debug-port <port_number> and attaching a remote debugger to the specified port
(for example, using an IDE like IntelliJ). You can then invoke the function, and the
SAM Local framework will pause until you attach a debugging process. You can then
set breakpoints and variable watches as you would typically when debugging, and
simply allow the Lambda function call to complete in order to see the data returned
via the terminal invocation.

Smoke Testing with SAM Local
SAM Local also allows you to simulate the running of an Amazon API Gateway
locally, which can integrate with your function. The gateway and function can be
started via SAM Local by typing sam local start-api in the directory with the tem‐

192 | Chapter 8: Working Locally (Like It Was Production)

plate.yaml file. You can now curl the local endpoints to smoke test the Lambda func‐
tion, as shown in Example 8-36.

Example 8-36. Using SAM Local to start the function and API gateway, and then curling
the API

$ sam local start-api
2018-06-10 14:56:03 Mounting ProductCatalogueFunction
at http://127.0.0.1:3000/products [GET]
2018-06-10 14:56:03 You can now browse to the above
endpoints to invoke your functions. You do not need to restart/reload SAM CLI↵
 while working on your functions changes will be reflected↵
 instantly/automatically. You only need to restart SAM CLI if you update your↵
 AWS SAM template
2018-06-10 14:56:03 * Running on http://127.0.0.1:3000/ (Press CTRL+C to quit)

[Open new terminal]

$ curl http://127.0.0.1:3000/products
[{"id":"1","name":"Widget","description":"Premium ACME Widgets","price":1.19},↵
...]

If you switch back to the first terminal session in which you started the API, you will
notice that additional information is echoed to the screen, which can be useful for
viewing not only all of your logging statements, but also data on how long the func‐
tion ran and how much memory it consumed. Although this data is unique to the
configuration (and CPU and RAM) of your machine, it can be useful to attempt an
approximate calculation of how much running your function will cost in production.

Example 8-37. Viewing the terminal output of SAM Local running a simulated local
Amazon API Gateway

$ sam local start-api
2018-06-10 14:56:03 Mounting ProductCatalogueFunction
at http://127.0.0.1:3000/products [GET]
2018-06-10 14:56:03 You can now browse to the above
endpoints to invoke your functions. You do not need to restart/reload SAM CLI↵
 while working on your functions changes will be reflected↵
 instantly/automatically. You only need to restart SAM CLI if you update↵
 your AWS SAM template
2018-06-10 14:56:03 * Running on http://127.0.0.1:3000/ (Press CTRL+C to quit)
2018-06-10 14:56:37 Invoking uk.co.danielbryant.djshoppingserverless.
productcatalogue.ProductCatalogueFunction::handleRequest (java8)
2018-06-10 14:56:37 Found credentials in shared credentials file:↵
 ~/.aws/credentials
2018-06-10 14:56:37 Decompressing /Users/danielbryant/Documents/
dev/daniel-bryant-uk/tmp/aws-sam-java/sam-app/target/ProductCatalogue-1.0.jar

FaaS: AWS Lamba and SAM Local | 193

Fetching lambci/lambda:java8 Docker container image......
2018-06-10 14:56:38 Mounting /private/var/folders/↵
1x/81f0qg_50vl6c4gntmt008w40000gn/
T/tmp9BwMmf as /var/task:ro inside runtime container
START RequestId: b5afd403-2fb9-4b95-a887-9a8ea5874641 Version: $LATEST
END RequestId: b5afd403-2fb9-4b95-a887-9a8ea5874641
REPORT RequestId: b5afd403-2fb9-4b95-a887-9a8ea5874641 Duration: 94.77 ms
Billed Duration: 100 ms Memory Size: 128 MB Max Memory Used: 19 MB
2018-06-10 14:56:40 127.0.0.1 - - [10/Jun/2018 14:56:40]↵
 "GET /products HTTP/1.1" 200 -

Often when testing Lambda functions locally, your code will integrate with another
service within Amazon, such as S3 or DynamoDB. This can cause difficulties with
testing, and the solution is often to mock or virtualize dependencies by using the
techniques presented within this chapter. Rather than creating your own solutions, it
is wise to explore current community options (although care must be taken when
downloading and executing any code or application locally, particularly if this will
ultimately be run as root or within a build pipeline with access to staging or produc‐
tion). One particular community solution within the domain of AWS is LocalStack—
a fully functional local AWS cloud stack.

Running AWS Services Locally with LocalStack
The LocalStack testing utilities provide useful tools for integration testing, as they
allow you to spin up a local version (on a development machine or within the pipe‐
line) of many of the AWS services, such as DynamoDB, Kinesis, and S3. These local
services look and behave like the real thing—typically exposing REST-like APIs and
service-specific protocols—and can be configured with appropriate data or behavior
for your test. You can even inject cloud- or service-specific errors that you may see in
production, and test against these.

FaaS: Azure Functions and VS Code
In 2016 Azure introduced Azure Functions, with support for Java applications being
added to the FaaS platform in 2017. There isn’t a direct analogy to AWS SAM for
specifying the infrastructure associated with Azure Functions, but the Microsoft team
have focused on creating an effective set of configuration files and associated tooling
in order to make it easy to build and test functions both locally and remotely. You can
perform all of the necessary tasks via the command line, although in general we have
found it much easier to use the excellent integrations with Microsoft’s VS Code edi‐
tor.

194 | Chapter 8: Working Locally (Like It Was Production)

https://github.com/localstack/localstack
https://code.visualstudio.com/
https://code.visualstudio.com/

Installing Azure Function Core Tools
In order to develop Azure Function-based applications with Java, you must have the
following installed on your local development machine:

• Java Developer Kit, version 8
• Apache Maven, version 3.0 or above
• Azure CLI
• Azure Functions Core Tools (which also requires the .NET Core 2.1 SDK)
• VS Code (optional)

You can easily create Java functions using the Maven archetype generator.
Example 8-38 demonstrates the initial parameters required for the mvn arche

type:generate command and also the questions asked as part of the generation
process:

Example 8-38. Creating a Java Azure Function using Maven

$ mvn archetype:generate -DarchetypeGroupId=com.microsoft.azure ↵
 -DarchetypeArtifactId=azure-functions-archetype
[INFO] Scanning for projects...
Downloading from central: https://repo.maven.apache.org/maven2/org/apache/↵
maven/plugins/maven-release-plugin/2.5.3/maven-release-plugin-2.5.3.pom
Downloaded from central: https://repo.maven.apache.org/maven2/org/apache/↵
maven/plugins/maven-release-plugin/2.5.3/maven-release-plugin-2.5.3.pom↵
 (11 kB at 24 kB/s)
...
Define value for property 'groupId'↵
 (should match expression '[A-Za-z0-9_\-\.]+'): helloworld
[INFO] Using property: groupId = helloworld
Define value for property 'artifactId'↵
 (should match expression '[A-Za-z0-9_\-\.]+'): ProductCatalogue
[INFO] Using property: artifactId = ProductCatalogue
Define value for property 'version' 1.0-SNAPSHOT: :
Define value for property 'package' helloworld: :↵
 uk.co.danielbryant.helloworldserverless.productcatalogue
Define value for property 'appName' productcatalogue-20180923111807725: :
Define value for property 'appRegion' westus: :
Define value for property 'resourceGroup' java-functions-group: :
Confirm properties configuration:
groupId: helloworld
groupId: helloworld
artifactId: ProductCatalogue
artifactId: ProductCatalogue
version: 1.0-SNAPSHOT
package: uk.co.danielbryant.helloworldserverless.productcatalogue
appName: productcatalogue-20180923111807725

FaaS: Azure Functions and VS Code | 195

http://bit.ly/2xH4raK
http://bit.ly/2OdOuSR

appRegion: westus
resourceGroup: java-functions-group
 Y: : Y
...
[INFO] Project created from Archetype in dir: /Users/danielbryant/Documents/dev/↵
daniel-bryant-uk/tmp/ProductCatalogue
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 03:25 min
[INFO] Finished at: 2018-09-23T11:19:12+01:00
[INFO] --

As part of the generation process, a simple Java Function class is created, which con‐
tains an HttpTriggerJava function method that can be invoked with an HTTP GET
request. Example 8-39 shows the contents of this class, and you can use this sample to
learn how to work locally and debug an Azure Function.

Example 8-39. The sample Function class generated by the Maven archetype

public class Function {
 @FunctionName("HttpTrigger-Java")
 public HttpResponseMessage HttpTriggerJava(
 @HttpTrigger(name = "req",
 methods = {HttpMethod.GET, HttpMethod.POST},
 authLevel = AuthorizationLevel.ANONYMOUS)↵
 HttpRequestMessage<Optional<String>> request,
 final ExecutionContext context) {
 context.getLogger().info("Java HTTP trigger processed a request.");

 // Parse query parameter
 String query = request.getQueryParameters().get("name");
 String name = request.getBody().orElse(query);

 if (name == null) {
 return request.createResponseBuilder(HttpStatus.BAD_REQUEST)
 .body("Please pass a name on the query string↵
 or in the request body").build();
 } else {
 return request.createResponseBuilder(HttpStatus.OK)
 .body("Hello, " + name).build();
 }
 }
}

In the root of the generated Java project you can see the configuration files local.set‐
tings.json and host.json. The file local.settings.json stores application settings, connec‐
tion strings, and settings for the Azure Functions Core Tools. The host.json metadata
file contains global configuration options that affect all functions for a function app.

196 | Chapter 8: Working Locally (Like It Was Production)

The default host.json is typically simple, but as Example 8-40 shows, you can config‐
ure HTTP API and endpoint properties, health checks, and logging for more
advanced use cases.

Example 8-40. A more complicated host.json Azure Function configuration file

{
 "version": "2.0",
 "extensions": {
 "http": {
 "routePrefix": "api",
 "maxConcurrentRequests": 5,
 "maxOutstandingRequests": 30
 "dynamicThrottlesEnabled": false
 }
 },
 "healthMonitor": {
 "enabled": true,
 "healthCheckInterval": "00:00:10",
 "healthCheckWindow": "00:02:00",
 "healthCheckThreshold": 6,
 "counterThreshold": 0.80
 },
 "id": "9f4ea53c5136457d883d685e57164f08",
 "logging": {
 "fileLoggingMode": "debugOnly",
 "logLevel": {
 "Function.MyFunction": "Information",
 "default": "None"
 },
 "applicationInsights": {
 "sampling": {
 "isEnabled": true,
 "maxTelemetryItemsPerSecond" : 5
 }
 }
 },
 "watchDirectories": ["Shared", "Test"]
}

You can treat the project like any other Maven project, and you can build the artifact
ready for upload to the Azure Function service via the mvn clean package com‐
mand.

Building and Testing Locally
You can use Azure Function Core Tools to initialize your function ready for local test‐
ing by running the Azure-Function Maven plugin using the mvn azure-

functions:run command, as demonstrated in Example 8-41.

FaaS: Azure Functions and VS Code | 197

Example 8-41. Using the Azure Maven plugin to run a Java function locally

$ mvn azure-functions:run
[INFO] Scanning for projects...
[INFO]
[INFO] --------------------< helloworld:ProductCatalogue >---------------------
[INFO] Building Azure Java Functions 1.0-SNAPSHOT
[INFO] --------------------------------[jar]---------------------------------
[INFO]
[INFO] --- azure-functions-maven-plugin:1.0.0-beta-6:run↵
 (default-cli) @ ProductCatalogue ---
AI: INFO 1: Configuration file has been successfully found as resource
AI: INFO 1: Configuration file has been successfully found as resource
[INFO] Azure Function App's staging directory found at:↵
 /Users/danielbryant/Documents/dev/daniel-bryant-uk/↵
tmp/ProductCatalogue/target/azure-functions/↵
productcatalogue-20180923111807725
[INFO] Azure Functions Core Tools found.

 %%%%%%
 %%%%%%
 @ %%%%%% @
 @@ %%%%%% @@
 @@@ %%%%%%%%%%% @@@
 @@ %%%%%%%%%% @@
 @@ %%%% @@
 @@ %%% @@
 @@ %% @@
 %%
 %

Azure Functions Core Tools (2.0.3)
Function Runtime Version: 2.0.12115.0

...

Now listening on: http://0.0.0.0:7071
Application started. Press Ctrl+C to shut down.
Listening on http://0.0.0.0:7071/
Hit CTRL-C to exit...

Http Functions:

HttpTrigger-Java: http://localhost:7071/api/HttpTrigger-Java

198 | Chapter 8: Working Locally (Like It Was Production)

[23/09/2018 10:25:24] [INFO] {MessageHandler.handle}:↵
 Message generated by "StartStream.Builder"
[23/09/2018 10:25:24] Worker initialized
[23/09/2018 10:25:25] "HttpTrigger-Java" loaded
 (ID: 7115f6e7-f5de-475c-b196-089e6a6a2a89,
 Reflection: "/Users/danielbryant/Documents/dev/
 daniel-bryant-uk/tmp/ProductCatalogue/target/
 azure-functions/productcatalogue-20180923111807725/
 ProductCatalogue-1.0-SNAPSHOT.jar"::
 "uk.co.danielbryant.helloworldserverless.productcatalogue.Function.run")
[23/09/2018 10:25:28] Host lock lease acquired by
 instance ID '000000000000000000000000826B7EEE'.

All of the HTTP functions that are available to call are displayed in the final stages of
the mvn azure-functions:run output, along with the associated URL, e.g.,
"HttpTrigger-Java: http://localhost:7071/api/HttpTrigger-Java". You can
call the locally running function using another terminal session and a tool like curl,
as shown in Example 8-42. Note how the function accepts the data payload of Local
FunctionTest as a parameter the HttpTriggerJava function, and returns this pre‐
fixed with the string Hello.

Example 8-42. Using curl to call the local Azure Function endpoint

$ curl -w '\n' -d LocalFunctionTest http://localhost:7071/api/HttpTrigger-Java
Hello, LocalFunctionTest

You can press Ctrl-C in the terminal session that is running the local function in
order to stop the function executing.

If you have installed the VS Code editor you can also install the Azure Functions
Extension and Java Extension Pack, and run functions directly from the editor by
pressing F5, as shown in Figure 8-3.

If you chose to run your functions using VS Code, you can also take advantage of the
integrated debugging functionality. You do this by simply specifying break points in
the margin of the appropriate line of Java code and calling the function endpoint via
curl or another testing tool.

FaaS: Azure Functions and VS Code | 199

http://bit.ly/2DwMwsH
http://bit.ly/2DwMwsH
http://bit.ly/2xR580l

Figure 8-3. Running a Java Azure Function using the VS Code editor

Testing Remotely, Locally Using VS Code
In certain situations it can be very difficult to test your function locally. For example,
you may have a dependency on a service running within the cloud that is challenging
to stub or mock in a realistic way. Azure Functions make it relatively easy to debug a
Java function running remotely in a cloud deployment.

To follow along with this guide you will need to have signed up for an Azure account,
and also have a valid subscription, free or otherwise. To log into Azure from VS Code
you will have select “Sign In” from the Command Palette, and follow the device login
flow (which is typically achieved by opening your default browser and directing you
to the the Azure login page).

After signing in, click the “Deploy to Function App” button on the Azure panel or
select this option from the Command Palette. After this, select the folder of the
project you would like to deploy, and follow the prompts to configure your function
project. Once the function is deployed you will see the associated endpoint displayed
in the output window. You can then curl this endpoint as you did with the locally
running function, as shown in Example 8-43.

Example 8-43. Curling an Azure Function deployed into the Azure cloud

$ curl -w '\n' https://product-catalogue-5438231.azurewebsites.net/↵
api/httptrigger-java -d AzureFunctionsRemote
Hello, AzureFunctionsRemote

200 | Chapter 8: Working Locally (Like It Was Production)

In order to debug this function running remotely you will need to install the cloud-
debug-tools utility via the Node Package Manager (NPM), as shown in Example 8-44.

Example 8-44. Installing the cloud-debug-tools via NPM

$ npm install -g cloud-debug-tools

Once this tool is installed, you can run the debug proxy tool in order to attach to the
running Function on Azure, specifying the remote base URL for the function.
Example 8-45 shows an example of this.

Example 8-45. Using the cloud-debug-tools dbgproxy

$ dbgproxy product-catalogue-5438231.azurewebsites.net
Function App: "product-catalogue-5438231.azurewebsites.net"
Subscription: "Pay-As-You-Go" (ID = "xxxx")
Resource Group: "new-java-function-group"
Fetch debug settings: done
done
done
Set JAVA_OPTS: done
Set HTTP_PLATFORM_DEBUG_PORT: done
Remote debugging is enabled on "product-catalogue-5438231.azurewebsites.net"
[Server] listening on 127.0.0.1:8898

Now you should be able to debug using "jdb -connect com.sun.jdi.SocketAttach:↵
hostname=127.0.0.1,port=8898"

Once the proxy is connected to the running function, you can add a new debugging
configuration in VS Code (specified within the .vscode/launch.json file) to attach to
the local port opened by it.

Example 8-46. Example debug launch configuration for VS Code

{
 "name": "Attach to Azure Functions on Cloud",
 "type": "java",
 "request": "attach",
 "hostName": "localhost",
 "port": 8898
}

Now you can set a break point within VS Code and attach to your cloud function
using the editor’s debug panel functionality. When you call the remote function with
the debugger attached you will be able to debug locally as is you were working in the
cloud.

FaaS: Azure Functions and VS Code | 201

Summary
This chapter has explored how to best configure a local development environment for
building and testing systems locally. You have explored the following techniques:

• Mocking, stubbing, and service virtualization to simulate dependencies that you
may not have access to (e.g., for connectivity or resource reasons).

• The use of tooling like Vagrant to instantiate consistent and re-creatable VMs for
local development.

• The use of container-focused tooling like minikube and Telepresence for creating
consistent and easily debuggable environments for local and remote develop‐
ment.

• The use of support utilities included within AWS SAM Local to facilitate devel‐
oping FaaS code and support infrastructure locally.

• Using the Azure cloud-debug-tools to run locally debug a remotely executing
Azure Function Java application.

In the next chapter, you will learn about continuous integration and the first stages of
creating a continuous delivery pipeline.

202 | Chapter 8: Working Locally (Like It Was Production)

CHAPTER 9

Continuous Integration: The First Steps in
Creating a Build Pipeline

In this chapter, you will learn how to implement continuous integration (CI). You will
learn why CI is important, and then explore the fundamental topic of version control
systems (VCSs). You will also learn the basics of the Git-distributed VCS, and how
best to organize your team to work with this tool. The topic of code reviewing can be
challenging, but you will also explore some of the core benefits of doing this, along
with a guide on how to get started. The final topic you will explore in this chapter is
automating CI builds.

Why Continuous Integration?
Continuous integration (CI) is the practice of frequently integrating your new or
changed code with the existing code repository, merging all working copies to a
shared mainline or trunk regularly. The use of the word “regularly” here is open to
interpretation, but to truly practice CI, this should be several times a day. A well-
accepted best practice is to trigger code builds upon every commit made to a shared
code repository, and to schedule a regular “nightly” build in order to catch any inte‐
gration issues within externally modified systems or issues outside our control (e.g., a
new security vulnerability being found within one of your dependencies).

The main aim of CI is to prevent integration problems, referred to as integration hell
in early descriptions of extreme programming (XP), which is recognizable to many
developers. In XP, CI was intended to be used in combination with automated unit
tests written through the practice of test-driven development (TDD). After a series of
local red-green-refactor coding loops were complete, you would typically run all unit
tests within your local environment and verify that they had all passed before com‐
mitting your new work to the mainline. By committing regularly, every developer can

203

reduce the number of conflicting changes, and this helps to avoid the situation where
your current work-in-progress unintentionally breaks another developer’s work.

In modern CI, a development team typically uses a build server to implement the
continuous processes of building and running automated tests and verification pro‐
cesses. In addition to executing unit and integration tests, a build server can also run
static and dynamic code-quality validation, measure and profile performance, per‐
form basic security verification, and extract and format documentation from the
source code.

The CI process, along with this continuous application of quality control, aims to
improve the repeatability and stability of software, and the velocity at which it can be
delivered. In comparison with traditional approaches to software delivery, where the
testing and quality assurance (much of it manual) is completed after the majority of
the coding efforts, CI has the potential to find defects and help guide best practices
much earlier in the application development life cycle.

Implementing CI
As discussed in Humble and Farley’s Continuous Delivery book, several prerequisites
must be met before you can practice CD:

Version control
Everything must be committed to a single version-control repository: code, con‐
fig, tests, data store scripts, build files, etc.

An automated build
You need to be able to run your build process in an automated way from a local
command line and remote continuous integration environment (build server).

Agreement of the team
CI is a practice, and not a set of specific tools. Everyone on your team needs to be
on board with the process, or this will not work.

In the remainder of this chapter, you will learn about each of these steps.

Centralized Versus Distributed Version-Control Systems
In the late 1990s and early 2000s, the use of centralized-version control systems
(VCS), such as Concurrent Versions System (CVS) and Apache Subversion
(SVN), became popular. Before the adoption of VCS, the storage of source code and
the ability for multiple developers to collaborate on the same codebase was often
implemented using bespoke solutions, and it was not uncommon to see an FTP
repository with multiple gzipped files in the format of source_v1.gz.tar,
source_v2.gz.tar, source_v1_patch1.gz.tar, etc. Understandably, the operation and

204 | Chapter 9: Continuous Integration: The First Steps in Creating a Build Pipeline

https://www.nongnu.org/cvs/
https://subversion.apache.org/
https://subversion.apache.org/

management of these systems were fraught with danger, and developers could not
easily transfer their knowledge of working with source code management systems
between different projects or organizations.

In 2005, Linus Torvalds, creator of Linux, released Git, a distributed version-control
system (DVCS). Inspiration for Git was taken from BitKeeper and other earlier
DVCSs, which although initially used to store source code for Linux kernel develop‐
ment, could not be used from April 2005 because of a change in licensing. Other
DVCSs emerged at the same time as Git, including Mercurial (hg) and DCVS, with
each being written in different languages and supporting subtly different design
goals. However, the release of Git under the GNU v2 open source license and the
choice of the Linux kernel development team to adopt this to manage their source
code ultimately led to Git now being the DVCS tool of choice for the majority of
developers.

Git repositories can be stored remotely; for example, on popular hosting sites like
GitHub and Atlassian Bitbucket. Each developer can clone a repository to their per‐
sonal development machine, and this gives them a local copy of the full development
history. Changes can be copied from one such repository to another, and these
changes imported as added development branches that can be merged in the same
way as a locally developed branch. Git supports rapid branching and merging, and
includes specific tools for visualizing and navigating a nonlinear development history.
In Git, a core assumption is that a change will be merged more often than it is writ‐
ten, because newly committed code will be passed around to various reviewers.

Compared to older VCS technologies, branches in Git are lightweight, and a branch is
simply a reference to one commit. However, the flip side of this “cheapness” of branch
creation is that it can be tempting for developers working on larger features to create
long-lived branches that may diverge away from the mainline, or trunk, branch.

Many open source and commercial projects use hosting sites like GitHub to not only
provide a canonical copy of the source code for continuous integration and delivery,
but also to act as a central hub for contributor management, documentation, and
issue tracking. You’ll be getting a firsthand tour of GitHub when using the examples
throughout this book. However, don’t worry if you choose to use another hosted plat‐
form, as the core concepts of version control and project collaboration should apply
to all DVCS hosting sites.

Centralized Versus Distributed Version-Control Systems | 205

https://git-scm.com/
https://www.mercurial-scm.org/
https://github.com/
https://bitbucket.org/

Stuck with a Centralized VCS? Consider Upgrading

If you are stuck using a centralized version control system like VCS
or SVN, we highly recommend experimenting with a decentralized
system like Git. Many great tutorials are on the internet, such as
Code School’s Git tutorial (sponsored by GitHub), and the benefits
are numerous. There are also many comprehensive guides and
tools for migrating an existing code repository to Git, such as the
official Git documentation’s guide Migrating to Git, for SVN and
Perforce repositories (alongside several other more esoteric VCSs),
and Git for CVS Users, which contains an overview of migrating
from CVS alongside several example commands.

Git Primer
You will be using Git a lot within the examples in this book, and therefore it makes
sense to learn the basics of operating the tool. The Git system itself is extremely flexi‐
ble and powerful. Much like the game of chess, it is easy to learn but difficult to
master.

Additional Resources
Because of the space limitations (and scope) of this book, you will learn only the very
basics of Git. If you would like to learn more, we recommend Version Control with
Git, 2nd Edition (O’Reilly) by Jon Loeliger and Matthew McCullough. The Git docu‐
mentation is also excellent, with a complete reference site, as well as a full online copy
of Pro Git (Apress) by Scott Chacon and Ben Straub.

Core Git CLI Commands
You will need to make sure you have Git installed on your local development
machine, either via your favorite package manager, or by downloading a binary from
the Git website.

Initializing and working with a repo (history)
You can initialize a new Git repo within a new (or current) directory like so:

$ git init

This creates a hidden directory within the current directory that contains all the repo
data. You can also add a .gitignore file at this point, which will configure Git to ignore,
or not track, changes to certain files.

206 | Chapter 9: Continuous Integration: The First Steps in Creating a Build Pipeline

https://try.github.io/levels/1/challenges/1
https://git-scm.com/book/en/v2/Git-and-Other-Systems-Migrating-to-Git
https://git-scm.com/docs/gitcvs-migration
https://git-scm.com/doc
https://git-scm.com/doc
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Don’t Include Secret Files or Local Config

It is vitally important that you do not commit secrets, such as data‐
base access passwords or cloud vendor credentials, within Git—
even if this is a private repository. This is a dangerous security vul‐
nerability, and it can easily be exploited if the repo is ever made
public or a bad actor gains access to the repo. It is also important
not to include local configuration files that are unique to you, and
this includes your IDE config files. You filesystem path details may
be different from those of other developers (along with other infor‐
mation), which can cause merge conflicts when your teammates
attempt to commit code.

An example Java .gitignore file is shown in Example 9-1. This file is commonly used to
avoid tracking unwanted Java and Maven files in addition to IntelliJ project files.

Example 9-1. Java .gitignore file

Java
Compiled class file
*.class

Package Files
*.jar
*.war
*.ear
*.zip
*.tar.gz
*.rar

Log file
*.log

Maven
target/

IntelliJ-specific stuff:
.idea
*.iml
/out/

The .gitignore file you will want to use may vary between projects, but always make
sure you have at least a skeleton file, as you will rarely want to track every single file
within a repository.

Git Primer | 207

Generating .gitignore Files

You can generate comprehensive .gitignore files via gitignore.io.
This website allows you to specify all the platforms and tooling
within your project (e.g., Java, Maven, IntelliJ) and create a ready-
to-use .gitignore file!

If you are working with a remote repository, you can clone the repo like so:

$ git clone <repo_name>

By default, this will create a directory with the name of the repo within the current
directory.

You can attempt to update your local copy of this repo at any time by issuing a pull
against the repo:

$ git pull origin <branch_name>

Once you have your local copy of a Git repo, you can add files to the staging area
before committing them, like so:

$ git add . #add all files recursively within the current directory

$ git add <specific_file_or_dir>

To see what files have been added to the staging area, as well as what changes have
been made within locally tracked files, you query for the status, like so:

$ git status

You can remove files that have been added to the staging area:

$ git rm <specific_file_or_dir> --cached # keep the local copy of the file or dir

$ git rm <specific_file_or_dir> -f # force removal of the local file or dir

You can commit new or updated files that are located within the staging area:

$ git commit -m "Add meaningful commit message"

If this repo is tracking a remote repository, you can attempt to push your commits
like so (you’ll learn more about potential merge conflicts in the following subsection):

$ git push origin master

Finally, you can also view the log or history of commits within a repo:

$ git log

Branching and merging
You can create a new branch and switch to this by issuing the following command:

$ git checkout -b <new_branch_name>

208 | Chapter 9: Continuous Integration: The First Steps in Creating a Build Pipeline

https://www.gitignore.io/

You can switch back to the master branch, and then to the new_branch like so:

$ git checkout master

$ git checkout <new_branch_name>

You can push and pull branches to and from a remote repo:

$ git push origin <branch_name>

$ git pull origin <branch_name>

When you attempt to push or pull content to or from a remote repo, you may dis‐
cover merge conflicts—differences between your local copy of the codebase and the
current state of the remote codebase—which need to be resolved. This often involves
manually updating or editing your local copy of the codebase, or using an automated
tool (often contained within modern IDEs) to perform the merge.

Because of the scope of this book, you will need to consult “Additional Resources” on
page 206 to find additional information on merging. There are also many other useful
Git practices to learn, such as rebasing your work against a repo that has had addi‐
tional work committed since you last pulled a local copy, squashing commits to
present more coarse-grained units of work, and cherrypicking individual commits
from a complicated Git branch history.

Hub: An Essential Tool for Git and GitHub
Many public DVCS repositories exist online, such as Bitbucket and GitLab, but the
one we find ourselves using the most is GitHub. Therefore, we are keen to share a few
of the tools that have been useful to our teams. Hub is a command-line tool written
by the GitHub team that wraps Git in order to extend it with extra features and com‐
mands that make working with GitHub easier. Hub can be downloaded from git‐
hub.com/github/hub.

Once the tool is installed, cloning a repo from GitHub is then as simple as
Example 9-2.

Example 9-2. Cloning a remote GitHub repo

$ hub clone <username_or_org>/<repo_name>

You can also easily browse the issues or wiki page within your default browser, as
shown in Example 9-3.

Example 9-3. Loading the issues or wiki page within your default browser

$ hub browse <username_or_org>/<repo_name> issues
$ hub browse <username_or_org>/<repo_name> wiki

Git Primer | 209

https://github.com/github/hub
https://github.com/github/hub

You can also issue pull requests (PRs) from the command line, as shown in
Example 9-4.

Example 9-4. Issuing a pull request from the CLI

$ hub pull-request
→ (opens a text editor for your pull request message)

Because Hub simply wraps and extends the default Git CLI tool, Hub is best aliased as
Git. You can type $ git <command> in the shell and get access to all of the usual Git
commands, as well as the Hub features; see Example 9-5.

Example 9-5. Aliasing Hub to Git

$ alias git=hub
$ git version
git version 2.14.1
hub version 2.2.9

With the Git alias now in place, a typical workflow for contributing to a project looks
similar to Example 9-6.

Example 9-6. Workflow with Hub aliased to Git

Example workflow for contributing to a project:
$ git clone github/hub
$ cd hub
create a topic branch
$ git checkout -b feature
 (making changes ...)
$ git commit -m "done with feature"

It's time to fork the repo!
$ git fork
→ (forking repo on GitHub...)
→ git remote add YOUR_USER git://github.com/YOUR_USER/hub.git

push the changes to your new remote
$ git push YOUR_USER feature
open a pull request for the topic branch you've just pushed
$ git pull-request
→ (opens a text editor for your pull request message)

Working Effectively with DVCS
Like any tool, a DVCS requires learning and experience to use it effectively. In this
section, you will learn more about the overarching development and collaboration

210 | Chapter 9: Continuous Integration: The First Steps in Creating a Build Pipeline

workflows you can use when working with Git. Essentially, a Git workflow is a recipe
or recommendation for how to use Git to get work done in a consistent and produc‐
tive manner. This is especially important if you are working within a large team, as it
is all too easy to “step on others’ toes” and accidentally create a merge conflict or
unwind someone’s changes.

Given Git’s focus on flexibility, there is no standardized process for interacting with
the tool, although there are several publicized Git workflows that may be a good fit
for your team. To ensure that the team is aligned on the collaboration strategy, we
recommend agreeing upon a Git workflow when starting any project.

Learn More About Workflows with Atlassian
Although you will learn the essentials of the various strategic approaches to working
with a DVCS in this chapter, if you would like to learn more, we highly recommend
the Atlassian tutorials.

Trunk-based Development
The trunk-based, or centralized, workflow is an effective Git workflow for teams tran‐
sitioning from older VCS such as Subversion or CVS. Like SVN, the centralized
workflow uses a central repository to serve as the single point of entry for all changes
to the project. Instead of the name trunk, the default development branch is called
master, and all changes are committed to this branch. This workflow doesn’t require
any other branches to exist besides master. You begin the trunk-based development
process by cloning the central repository, and within your own local copies of the
project, you can edit files and commit changes as you would with SVN. However,
these new commits are stored locally, and they are completely isolated from the cen‐
tral repository. This lets you defer synchronizing your changes with the remote mas‐
ter branch until you are in a position to merge code.

Once the repository is cloned locally, you can make changes by using the standard
Git commit process: edit, stage, and commit. If you’re not familiar with the staging
area, it essentially provides a holding area that allows you to prepare a commit
without having to include every change in the working directory. This also lets you
create highly focused commits through the use of squashing, even if you’ve made a lot
of local changes initially across multiple commits. To publish changes to the official
project, you “push” your local master branch to the central repository’s master
branch. When attempting to push changes to the central repository, it is possible that
updates from another developer have been previously pushed that contain code con‐
flicting with the intended push updates. Git will output a message indicating this con‐
flict. In this situation, you will need to git pull to get the other developer’s changes
locally and begin merging or rebasing.

Working Effectively with DVCS | 211

https://www.atlassian.com/git/tutorials/syncing

Feature Branching
The core idea behind the feature-branch workflow is that all feature development
should take place in a dedicated branch instead of the master branch. This encapsula‐
tion of changes makes it easy for multiple developers to work on a particular feature
without disturbing the main codebase. It also means that your master branch will
never contain broken code, which is an advantage if you are using continuous inte‐
gration. Encapsulating feature development also makes it possible to use PRs, which
are a way to initiate discussions around a branch. PRs provide other developers on
your team with the opportunity to sign off on or +1 a feature before it gets integrated
into the codebase.

The feature branch workflow assumes a central repository, and the master branch
here represents the official project history. You create a new branch every time you
start work on a new feature, and feature branches should have descriptive names, like
cart-service, paypal-checkout-integration, or issue-#452. The idea is to specify a clear
purpose for each branch, and this makes reviewing and tidying up branches much
easier at a later date. Git makes no technical distinction between the master branch
and feature branches, so you can edit, stage, and commit changes to a feature branch,
and feature branches can (and should) be pushed to the central repository. This not
only provides a backup against losing locally stored code, but also makes it possible
for you to share a work-in-progress feature with other developers without touching
any of the code within the master branch. Because master is the only “special” branch,
storing several feature branches on the central repository should not pose any
problems.

The workflow with the feature branching approach is relatively straightforward: start
with the master branch; create a new feature branch; update, commit, and push
changes; push the feature branch to remote; issue a PR; start discussion (if necessary)
and resolve any feedback; merge or rebase the pull request; and, finally, delete the fea‐
ture branch in order to save storage space and prevent confusion with later work.

Gitflow
Gitflow is a Git workflow that was first published and made popular by Vincent
Driessen at nvie. The Gitflow workflow defines a strict branching model designed
around the project release, and this type of workflow can be useful for collaboration
across a large team working on a single codebase. Gitflow is also ideally suited for
projects that have a scheduled release cycle or want to deploy using a release train
approach of queueing up features into batches.

This workflow doesn’t add any new concepts or commands beyond what is required
for the feature-branch workflow. Instead, it assigns well-defined roles to different
branches and specifies how and when they should interact. In addition to the use of
feature branches, it also makes use of individual branches for preparing, maintaining,

212 | Chapter 9: Continuous Integration: The First Steps in Creating a Build Pipeline

and recording releases. You get all the benefits of the feature-branch workflow: pull
requests, isolated experiments, and more efficient collaboration.

Instead of a single master branch, Gitflow uses two branches to record the history of
the project. The master branch stores the official release history (ideally, each commit
contains a release version number), and the develop branch serves as an integration
branch for features and will contain the complete history of the project.

When starting work, you clone the central repository and create a tracking branch for
develop. Each new feature should reside in its own branch, which can be pushed to
the central repository for the purposes of collaboration or as a backup. However,
instead of branching off master, feature branches use develop as their parent branch;
features should never interact directly with master. When you’re finished with the
development work on the feature, you merge the feature branch into the remote copy
of develop. Because other developers are also merging features to the develop branch,
you often will have to merge or rebase your feature onto the updated content of the
develop branch.

Once the develop branch has acquired enough features for a release (or an iteration
release date is approaching), you fork a release branch off the develop branch. Creat‐
ing this branch starts the next release cycle, which means that no new features can be
added after this point—only bug fixes, documentation generation, and other release-
oriented tasks should go in this branch. Once the release is ready to be deployed, the
release branch gets merged into master and tagged with a version number. In addi‐
tion, it should be merged back into develop, which may have progressed since the
release was initiated. Using a dedicated branch to prepare releases makes it possible
for one team to finalize the current release while another team continues working on
features for the next release.

In addition to the abstract Gitflow workflow strategy described here, a git-flow tool‐
set is available that integrates with Git to provide specialized Gitflow Git command-
line tool extensions.

No One-Size Fits All: How to Choose a Branching Strategy
When evaluating a workflow for your team, it’s most important that you consider
your team’s culture. You want the workflow to enhance the effectiveness of, and abil‐
ity to collaborate within, your team, and not to be a burden that limits productivity.

The following are things to consider when evaluating a Git workflow:

Release cadence
As stated by Jez Halford in a great article, Choosing a Git Branching Strategy, the
more often you release, the nearer your commits or feature branches should be to
the trunk or master. If you are releasing features every day (or planning to),
trunk-based development can provide the least friction to the developer experi‐

Working Effectively with DVCS | 213

https://github.com/nvie/gitflow
http://bit.ly/2xFW5jD

ence. However, if you release once every two weeks, say, at the end of a sprint or
development iteration, then it makes more sense to merge to a holding branch
(like Gitflow’s develop and release branches) before code is merged into the trunk
or master.

Testing
Continuing from Halford’s article, development teams often use one of two
approaches with testing: early-stage QA or late-stage QA. The early approach
means that a feature is tested before it is merged; the late means that a feature is
typically tested afterward. If your QA occurs early, you should probably have
your feature branch close to the mainline. If it’s late, a release branch is probably
where your QA should take place, so that failures can be rectified before they
reach the master. This approach is further impacted by the integration tests if you
are working with a distributed (microservice or FaaS-based) system, which often
skews testing requirements to the late stage (although the use of contract tests
can mitigate this, as you will learn in “Consumer-Driven Contracts” on page
303).

The size of your team
Generally speaking, the larger a team that is working on a single codebase is, the
further away your feature branches should be from the master. This assumes that
the team is working on a codebase that is somewhat coupled, which often results
in merge conflicts occurring as many developers are working on the same area of
code. If you are working on a small team, or the application has been divided into
loosely coupled modules or services, then it may be more appropriate to embrace
trunk-based or feature branch–driven development in order to increase velocity.

Workflow cognitive overhead
In regards to practicing Gitflow, there is definitely a learning overhead that
comes with the strict and highly controlled coordination of feature implementa‐
tion. Not every team will be happy with the cognitive overhead (and extra pro‐
cess) that comes with a more complicated feature-branching workflow. However,
it is worth noting that some of this complication can be overcome through the
use of tooling.

In summary, every branching strategy is a variation on the theme of keeping code out
of your (releasable) master or trunk branch until you want it there, balanced against
the friction caused by having lots of branches that can be in an unmerged (and poten‐
tially unmergable) state.

214 | Chapter 9: Continuous Integration: The First Steps in Creating a Build Pipeline

Long-Lived Branches Can Be Unproductive

Much of Jez Humble’s work argues that using long-lived branches
leads to a loss of productivity. In The DevOps Handbook, Humble
quotes Jeff Atwood, founder of the Stack Overflow site, that
although there are many branching strategies, they can be put on a
spectrum, with “optimize for individual productivity” at one end,
and “optimize for team productivity” at the other. Optimizing for
individual productivity, where in the extreme everyone works in
their own private branch, can lead to merge hell when it comes
time to integrate work.
Nicole Forsgren and Jez Humble also state in their book Accelerate
that their research has shown that (independent of team size and
industry) optimizing for team productivity and developing off
trunk was correlated with higher delivery performance.

Paraphrasing Halford’s article one more time, if your instinct is to avoid merging
until the last minute, think about why. Perhaps your team likes to work in isolation or
team members don’t trust each other to coordinate work within the codebase effec‐
tively. Therefore, you may need work to build trust, or to schedule development more
carefully. Conversely, if you’re having to undo merges and cherrypick things a lot,
perhaps you and your team are too keen to merge. This often calls for a more struc‐
tured workflow with steps for testing and review before release.

You Can Mix and Match Workflows (with Care!)

Although care should be taken not to create even more cognitive
overhead, it is possible to use different workflows across distinct,
logically separated, areas of a codebase such as services. We have
seen this work on several microservice migration projects, where
the rigor and structure of Gitflow was ideal for use by several prod‐
uct teams all working around the existing monolith, but as this
workflow added a lot of overhead for work on the new (less com‐
plicated and coupled) microservices, the teams working here deci‐
ded to use trunk-based development.

Code Reviews
Code reviews are the process of at least one developer (and potentially more) review‐
ing the code written by another developer, and can be extremely valuable. The obvi‐
ous benefit to code reviews is that sometimes a fresh pair of eyes can catch issues or
potential future issues that would be introduced into the codebase. The more subtle
(and powerful) benefit of code reviews is that they promote the sharing of knowledge
—not just idiomatic programming knowledge, but also information about the

Code Reviews | 215

business domain. This can lead to improved conversations and collaboration between
developers, and also helps limit the impact of vacation or sick days.

Much like pair programming, code reviews can be an excellent mechanism for men‐
toring new engineers, and can also promote better estimates. However, you also have
to watch out for various negative patterns, such as not sharing the load fairly among
the senior members of the team, getting stuck on esoteric or dogmatic style issues
(e.g., tabs versus spaces), not reviewing before merging, and using reviews as an
excuse to not get early feedback.

Pair Program for More-Efficient Reviews
One of the original practices of eXtreme Programming (XP) was pair programming,
and the use of this can reduce or remove the need for other reviews. By ensuring that
at least two people are writing all of the code and configuration together on one com‐
puter, you can get the benefits of reviewing in real time. The two roles of driver and
navigator operate very differently during the coding process, and it is generally easier
for one of the pair to identify an issue that a single programmer working on their own
may not. For more information on this, and the benefits and principles of XP in gen‐
eral, please read Kent Beck’s classic Extreme Programming Explained: Embrace Change
(Addison-Wesley).

What to Look For
Entire websites and books have been written on this topic, so we won’t go into what
you should look for when reviewing code in much detail. However, reviewing code
doesn’t come naturally to many developers, so this chapter contains a basic overview
of key review patterns.

Learning More About Code Reviews
Robert Martin’s Clean Code (Prentice-Hall) and The Clean Coder (Prentice-Hall)
books both provide good insight into the code review process. Another useful book is
Best Kept Secrets of Peer Code Review (Smart Bear) by Jason Cohen. Josh Bloch’s Effec‐
tive Java (Addison-Wesley Professional) should also be mandatory reading for any
Java developer looking to conduct a code review. A portion of the review patterns
within this chapter comes from the useful reference Java Code Review Checklist by
Mahesh Chopker.

Understandability
Writing code that is understandable not only helps other developers on your team
work with the code, but also often helps you in the future when you are revisiting a

216 | Chapter 9: Continuous Integration: The First Steps in Creating a Build Pipeline

http://bit.ly/2QcCQFe
https://dzone.com/articles/java-code-review-checklist

feature or bug. Unless you are working within a domain where performance is of the
utmost importance (e.g., high-frequency trading), it is typically best practice to sacri‐
fice performance for increased understandability. Example understandability issues
to look out for in a code review include the following:

• Use solution/problem domain names.
• Use intention-revealing names.
• Minimize the accessibility of classes and members.
• Minimize the size of classes and methods.
• Minimize the scope of local variables.
• Don’t Repeat Yourself (DRY) within a single logical component (a package, mod‐

ule, or service).
• Explain yourself in code.
• Use exceptions rather than esoteric error codes and don’t return null.

Language-specific issues
Every language has idioms for accomplishing tasks that the majority of developers
would expect to see, but often new developers are not aware of these. There are also
specific antipatterns that developers would not expect to see in Java, so a good code
review will look for these:

• Use checked exceptions for recoverable conditions and runtime exceptions for
programming errors.

• Check parameters for validity as close to their specification or associated user
input as possible.

• Indicate which parameters can be null.
• In public classes, use accessor methods, not public fields.
• Refer to objects by their interfaces.
• Use enums instead of int constants.
• Use marker interfaces to define types.
• Synchronize access to shared mutable data.
• Prefer executors to tasks and threads.
• Document thread safety.

Code Reviews | 217

Security
The issue of security is of vital importance. Several common mistakes can be searched
for during a code review:

• Input into a system should be checked for valid data size and range, and always
sanitize any input that will be supplied to a data store, middleware, or third-party
system.

• Do not log highly sensitive information.
• Purge sensitive information from exceptions (e.g., do not expose file paths, inter‐

nals of the system, or configuration).
• Consider purging highly sensitive data from memory after use.
• Follow the principle of least privilege (e.g., run an application with the least privi‐

lege mode required for the correct functioning).
• Document security-related information.

Performance
Code reviews can be a good tool for detecting obvious performance issues. Here are
several example issues to be aware of:

• Watch for inefficient algorithms (e.g., unnecessary multiple loops).
• Avoid creating unnecessary objects.
• Beware of the performance penalty of string concatenation.
• Avoid excessive synchronization and keep synchonized blocks as small as practi‐

cal.
• Watch for potential deadlocks or livelocks in algorithms.
• Ensure that thread-pool configuration and caching is configured correctly.

Automation: PMD, Checkstyle, and FindBugs
Much of the fundamentals of code reviewing can be automated by static code analysis
tooling like PMD, Checkstyle, and FindBugs. Automation not only increases reliabil‐
ity in the detection of issues, but it also frees time for developers to conduct code
reviews that focus on aspects of code that humans excel at, such as reviewing in the
context of the bigger picture, or mentoring a fellow engineer with guidelines and
maxims on best practice.

218 | Chapter 9: Continuous Integration: The First Steps in Creating a Build Pipeline

Watch for False Positives

All of the code-quality automation tools in this section can result in
false positives when an issue or bug is flagged incorrectly. This often
occurs when using some of the more esoteric dependencies within
your Java application, or when you are optimizing code for perfor‐
mance reasons. All of the tools can be configured to minimize
these false positives, so don’t be discouraged if you add automated
code-analysis tools to a project and nonissues are found. Usually,
after a few runs, you can easily identify the false positives and adapt
accordingly.

Maven Enforcer: Codifying Best Practice with the Build
Although not a static code scanner, the Maven Enforcer plugin provides useful goals
to control certain environmental constraints such as Maven version, JDK version, and
OS family along with many more built-in rules; for example:

banDistributionManagement

Enforces that the project doesn’t have distributionManagement.

bannedDependencies

Enforces that excluded dependencies aren’t included.

requireActiveProfile

Enforces one or more active profiles.

requireEnvironmentVariable

Enforces the existence of an environment variable.

requireJavaVersion

Enforces the JDK version.

requireNoRepositories

Enforces not to include repositories.

requireOS

Enforces the OS/CPU architecture.

requireReleaseDeps

Enforces that no snapshots are included as dependencies.

requireReleaseVersion

Enforces that the artifact is not a snapshot.

There are many more useful rules, and you can also create your own custom rules if
you want to enforce something else. The Maven Enforcer plugin is perhaps at its most
powerful when specified in a parent POM. Otherwise, it can be challenging to main‐

Code Reviews | 219

http://bit.ly/2O6EPJC

tain consistency across projects, or sometimes even to ensure that the plugin is run
on each project.

PMD: static code analyzer
PMD is a static source code analyzer. According to the project’s website, it finds com‐
mon programming flaws like unused variables, empty catch blocks, unnecessary
object creation, unused private methods, and a host of other bad practices. PMD fea‐
tures many built-in checks, or rules, and an API is provided to allow you to build
your own. PMD is most useful when integrated into your CI process, because it can
then be used as a quality gate, to enforce a coding standard for your codebase.
Example 9-7 illustrates utilizing a Maven plugin to run PMD automatically during
the verify phase of the build.

Example 9-7. Running the maven-pmd-plugin within a build

<project>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 <configuration>
 <failOnViolation>true</failOnViolation>
 <printFailingErrors>true</printFailingErrors>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 ...
</project>

In addition to running PMD as a build plugin, you can also configure it to be run
during the reporting phase. The PMD website contains many configuration options,
and we refer you to that site to learn more.

220 | Chapter 9: Continuous Integration: The First Steps in Creating a Build Pipeline

https://pmd.github.io/

Checksyle: coding standard enforcement
Checkstyle is a development tool to help you write Java code that adheres to a coding
standard. It automates the process of checking Java code to spare humans of this bor‐
ing (but important) task. Checkstyle is highly configurable and can be made to sup‐
port almost any coding standard.

Please Don’t Argue over Tabs or Spaces
Using a tool like Checkstyle to enforce coding standards is a great way to promote
readability and understandability across a codebase, but the tool needs to be config‐
ured to a single style. Some developers are very opinionated about coding styles,
which can lead to wasteful arguments over which style is best. Our advice is to have a
quick discussion at the start of a project, choose a style, enforce this with Checkstyle,
and then never debate about this again. Examples of good Java programming styles
include Google’s and Sun’s (now Oracle’s).

Checkstyle can be run as a Maven plugin that will fail the build upon violations to the
style defined; see Example 9-8.

Example 9-8. Running the maven-checkstyle-plugin within a build

<project>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 ...
 </plugins>
 </build>
 ...
</project>

Much like PMD, Checkstyle can be configured in a variety of ways, and the project’s
website is the best source of guidance.

Code Reviews | 221

http://checkstyle.sourceforge.net/cmdline.html
http://bit.ly/2zx0F5f
http://bit.ly/2OcQOJJ

FindBugs: Static analyzer for bugs
FindBugs is another static code analyzer for Java applications, and this tool operates at
the Java bytecode level. PMD and FindBugs share many similarities, but each has its
own strengths and weakness due to the way they are implemented. FindBugs identi‐
fies issues in three categories: correctness bugs, an apparent coding mistake resulting
in code that was probably not what you intended; bad practice, indicating violations
of recommended and essential coding practice; and dodgy, code that is confusing,
anomalous, or written in a way that lends itself to errors.

FindBugs May Be Superseded by SpotBugs
According to Wikipedia, the last stable release of FindBugs was in 2015, which is
quite a long time in the world of software. A successor named SpotBugs has been cre‐
ated, which is being kept up-to-date via a community effort. For new projects, you
may benefit from using this tool instead.

FindBugs is best run as part of your build process, and an example of configuring this
via Maven is included in Example 9-9.

Example 9-9. Running the findbugs-maven-plugin within a build

<project>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>findbugs-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 ...
 </plugins>
 </build>
 ...
</project>

FindBug also has extensive reporting capabilities and configuration options. The best
reference to learn more about this is the project’s website.

222 | Chapter 9: Continuous Integration: The First Steps in Creating a Build Pipeline

http://findbugs.sourceforge.net/
https://spotbugs.github.io/

Reviewing Pull Requests
Modern self-hosted or SaaS-based DVCSs like GitHub and GitLab allow developers
to not only create pull requests, but also facilitate discussion around these requests.
An example of this is shown in Figure 9-1. These features allow developers to review
changes asynchronously at their convenience, or when conversations about a change
can’t happen face-to-face. They also help to create a record of the conversation
around a given change, which can provide a history of when a change was made and
why. Metadata can also be added to a discussion manually or automatically via a CI
tool through the use of labels, indicating, for example, that a discussion relates to a
specific bug.

Figure 9-1. An example discussion on GitHub; note the assignee, labels, and milestones
metadata that can be assigned to the issue

All of the rules you have learned about code reviews so far apply to this style of
reviewing. Just because you may not be in the same office (building or country) does
not mean you shouldn’t seek to empathize with the developer who created the code.

Code Reviews | 223

Gerrit: An Opinionated Review Tool
Initially created within Google, Gerrit provides an opinionated web-based code
review and repository management for Git. As discussed on the Gerrit website, when
a developer makes a change, it is sent to this store of pending changes, where other
developers can review, discuss, and approve the change. Gerrit also captures notes
and comments about each change. After enough reviewers grant their approval, the
change becomes an official part of the codebase. While Git platforms like GitHub and
GitLab support multiple commits in one pull request, Gerrit does not: one code
change, whether it is a feature or a bug fix, is one commit, and the discussion revolves
around this.

Automating Builds
You will explore more about automating builds in the next chapter focused on
deploying and releasing from the pipeline, but this is also a critical process within CI.
Although build tooling like Maven and Gradle allow each developer to run the build
process on their local machine, there still needs to be a centralized place in which all
of the integrated code is built. This is typically achieved by using a build server, such
as Jenkins or TeamCity, or a build service, such as CircleCI or Travis CI.

Jenkins
The code examples in the repository found at https://github.com/danielbryantuk/
oreilly-docker-java-shopping include a directory that is called ci-vagrant. Within this
directory is a Vagrant script for initializing a Jenkins build server VM. Providing you
have Vagrant and a virtualization platform like Oracle VirtualBox installed, you can
initialize the Jenkins instance by using the vagrant up command from this directory.
After 5–10 minutes (depending on your internet connection speed and computer
CPU speed), you will be presented with the Setup Wizard for a fresh Jenkins instance.
You can accept the defaults and create an admin user for yourself. Once everything
has been configured, you should see a screen similar to Figure 9-2.

224 | Chapter 9: Continuous Integration: The First Steps in Creating a Build Pipeline

https://www.gerritcodereview.com/
https://github.com/danielbryantuk/oreilly-docker-java-shopping
https://github.com/danielbryantuk/oreilly-docker-java-shopping

Figure 9-2. Jenkins welcome page

You can then create a basic Java “freestyle project” build job for each of the services
within the main oreilly-docker-java-shopping repository: stockmanager, productcata‐
logue, and shopfront. Figure 9-3 demonstrates the configuration parameters required
for each job: the GitHub repository URL, the build triggers, and the Maven pom.xml
location and build target.

Figure 9-3. An example Jenkins build job for the Shopfront services

Automating Builds | 225

The next chapter provides much more detail on creating build jobs, which also
includes building Java applications that will be deployed within container images.

Other Build/CI Servers and Services
Many other free and commercial CI tools exist, some of which you can download and
run on your own infrastructure, like TeamCity and GoCD, and some of which can be
consumed as a service, such as Travis CI, CircleCI and Azure Pipelines. This book
focuses on using Jenkins, because this is the tool that we have most encountered when
working with organizations building and deploying Java code.

Getting Your Team Onboard
Continuous integration is a practice, not a tool, in and of itself. Therefore, everyone
on your team must be on board with contributing to this way of working. Several
practices in particular can make or break a team’s success with implementing CI.

Merge Code Regularly
Code must be integrated into the trunk or master regularly—ideally, daily. It takes
only one developer who is working on a critical feature and decides to create a long-
lived branch to create havoc. Typically, the issues start during the merge process, and
sometimes code already committed into the trunk can be accidentally lost.

If you are acting as a team lead, part of your job will be to regularly ensure that no
branches are becoming long-lived within your VCS system. This is relatively easy if
you are using a DVCS and associated service like GitHub, because a nice UI is pro‐
vided that shows all branches currently not in sync with the trunk. But this does rely
on all local branches being committed at least once.

“Stop the Line!”: Managing Broken Builds
When many developers are integrating their code to a single trunk or master branch,
there are bound to be merge conflicts and accidental breaking of the build or CI pro‐
cess. It is vital that fixing any breakage is top priority, even if this means reverted code
is committed. It does not take long for a team to ignore the output from a build
server if it is constantly broken, and then your development process effectively
reverts to what it was before CI—everyone working on their own branches.

The simple rule to enforce among your team is that upon any build failure, the per‐
son or persons responsible should be notified (either via development dashboards or,
ideally, via IM such as Slack), and they must immediately fix the issue. If they cannot
fix the problem, they must escalate this or ask other teams involved for assistance.

226 | Chapter 9: Continuous Integration: The First Steps in Creating a Build Pipeline

Don’t @Ignore Tests
Another temptation for teams is to mark failing tests within the trunk or master
branch as ignore—not to be run (@Ignore in JUnit). Doing this is dangerous, as
although the tests appear in the codebase, they are not providing any verification or
value.

Much like the issues mentioned with a regularly broken build server, the ignoring of
tests can quickly spread, as developers are happily marking any failing tests that they
did not write as ignorable. The next, even more insidious, step is developers com‐
menting out (or physically deleting) tests because the test code will no longer compile
even though it is ignored at execution time.

The rule that must be enforced here is that anyone who checks in code to the trunk
and causes a test failure is responsible for fixing this, even if it means communicating
this to, or working with, another team.

Keep the Build Fast
The final piece of advice in this section is to keep the build fast. There are several rea‐
sons for doing this. First, having a slow build means that there is more time for things
to change between the start of a build and its completion. This is especially an issue
when the build fails. For example, other developers could have committed code to the
trunk after the code you committed triggered the build. If the build takes too long, it
is highly likely that you will have moved on to other work before you realize that the
build has failed, so not only will you have to context switch, but you may also need to
reconfigure your local development environment.

Second, having a long build process can become an issue when you need to quickly
build and deploy a hot fix to production. The immediate need to address a customer
facing issues often results in engineers not running the associated test suite or other‐
wise trying to shortcut the build process, which can lead to a slippery slope of more
and more shortcuts being taken that result in a trade-off of time versus stability.

CI of the Platform (Infrastructure as Code)
The scope of this book prevents going into much detail about the continuous integra‐
tion and delivery of infrastructure, but it goes almost without saying that CI and CD
of infrastructure are vitally important. Kief Morris has discussed the concepts, practi‐
ces, and importance of CD pipelines when creating platforms in his O’Reilly book,
Infrastructure as Code. This is a highly recommended read, particularly if you are (or
are an aspiring) technical lead or architect. You won’t become a Terraform or Ansible
expert after reading this book, but you will develop a good understanding of the prin‐
ciples, practices, and tooling required for the continuous delivery of platforms.

CI of the Platform (Infrastructure as Code) | 227

https://twitter.com/kief
http://shop.oreilly.com/product/0636920039297.do

Simultaneous Continuous Delivery of Application
and Infrastructure Code Can Cause Problems

We have worked on several projects with multiple application and infrastructure
teams, where each team was responsible for either an application domain (or service)
or components of the “platform” we were deploying onto. This can cause issues, par‐
ticularly if the platform is evolving as rapidly as the application. Often when the engi‐
neering team is bootstrapping a product or project, the platform (such as Kubernetes
and the associated infrastructure pieces like configuration management and service
discovery) is still being assembled. The same can be said when migrating to a new
platform.

This can cause headaches for the development team, because not only are the applica‐
tion components changing and causing friction between teams, but so is the underly‐
ing deployment fabric. This can lead to lots of “murder mystery” style debugging
sessions, where a development team isn’t sure who broke the build: was it them, a fel‐
low development team, or the platform team? In our experience, this has to be man‐
aged carefully. Our recommendation is to have separate CI/CD pipelines and
environments for the development and platform teams.

When a new release of the platform is ready, this should be gated for approval by the
team leads within the development teams, and the platform team should present its
new features and any breaking changes before deploying the latest platform code into
a dev or QA environment.

Summary
In this chapter, you have learned about several core components to implementing
continuous delivery, both from a technical and team perspective:

• The use of a distributed version-control systems (DVCS) such as Git is highly
recommended for managing code within a modern continuous delivery pipeline.
If you are still using a centralized VCS, we strongly recommend upgrading to a
DVCS.

• Numerous DVCS workflows have been discussed and shared on the internet.
Choose one that is appropriate based on your organization’s requirements, your
application architecture, and your team’s skills.

• Utilize appropriate tooling for your DVCS workflow (e.g., use GitHub/Hub for
branch-by-feature, and nvie/Gitflow for Gitflow).

• Automate all builds and ensure that the build process runs both locally and
remotely on a centralized build server like Jenkins or TravisCI.

228 | Chapter 9: Continuous Integration: The First Steps in Creating a Build Pipeline

• When the build is broken, the highest priority of the team should be to fix the
current issue. Never check in more code on a broken build. As soon as people
believe the build server is unreliable, the adherence to the workflow and code
quality will rapidly decline, ultimately causing big issues in the future.

• Any infrastructure (as code) that is required for the creation and operation of the
deployment platform (e.g., cloud computing environments or a Kubernetes clus‐
ter) should be continuously delivered. Careful management of the collaboration
and delivery of code between the development and infrastructure team is
required, particularly for projects using a new platform or migrating onto a new
platform.

So far, you have developed a firm foundation in the principles and practices of con‐
tinuous integration. Let’s now extend these skills with the implementation of a com‐
plete continuous delivery pipeline.

Summary | 229

CHAPTER 10

Deploying and Releasing from the Pipeline

With firm foundations in automating builds and continuously integrating code, we
can now focus on the delivery of valuable software to various environments, includ‐
ing production. A key lesson that you will learn is that today’s business requirements
and popular software architecture practices strongly encourage you to separate the
processes of deployment (a technical activity, as you will see) and release (a business
activity); in fact, we will talk about deploying an application, but releasing a feature.
This has ramifications for the way you design, test, and continuously deliver software.

One aspect of software development that becomes critical after you start to consider
different environments is configuration. The need to track different configuration
values depending on the environment that you are using (development, test, pre-
production, production...) isn’t new, but tracking all these has become much harder
with the advent of cloud-based platforms, since you may not know a priori where
your application might be running. On top of this, a continuous delivery process
might require frequent changes in configuration, meaning configuration manage‐
ment has to be at the heart of your deployment and release strategies.

Deploying, releasing, and managing configuration are some of the most challenging
aspects of continuous delivery, and there is a lot of ground to cover. To help you go
through all of it, we have created the Extended Java Shop application, which will
demonstrate many of the concepts outlined in this chapter.

Introducing the Extended Java Shop Application
The example application presented in “Introducing the “Docker Java Shop” Sample
App” on page 173 was used to demonstrate how to work locally using Docker con‐
tainers and Kubernetes. In this chapter and in Chapter 11, we will use an extended
version of this application, called the Extended Java Shop, together with a small exter‐

231

https://github.com/continuous-delivery-in-java/extended-java-shop

nal library known as java-utils. The Extended Java Shop also includes three prebuilt
Jenkins pipelines that demonstrate how the different phases of testing are linked
together, and how deployments can be made to different platforms.

The particulars of each part of the Extended Java Shop and its supporting libraries are
explained in detail in the relevant sections that follow, but a general overview is illus‐
trated in Figure 10-1. Note that the purpose of this sample application is to demon‐
strate concepts related to deploying, releasing, testing, and managing configuration,
but this is not necessarily a production-ready application. Shortcuts have been taken
for simplicity; wherever possible, these shortcuts will be highlighted, indicating how a
production-ready application would be constructed.

Figure 10-1. Architecture of the Extended Java Shop

The repository for the Extended Java Shop is a monorepo that includes the following:

Owned services
• Shopfront: The website that the user visits. This serves the same function as in

the Docker Java Shop, with the exception that here it also communicates to a Fea‐
ture Flags service and an Adaptive Pricing service.

• Product Catalogue: Holds information about each different product. It holds data
in an in-memory database (in a real case scenario, the database would be
real). Similar to its counterpart in the Docker Java Shop.

• Stock Manager: Holds available amounts for each product. It holds data in an in-
memory database (in a real case scenario, the database would be real). Similar to
its counterpart in the Docker Java Shop.

232 | Chapter 10: Deploying and Releasing from the Pipeline

https://github.com/quiram/java-utils

• Feature Flags: Holds information about the different feature flags and their acti‐
vation levels. It stores its data in a real PostgreSQL database. New with regards to
the Docker Java Shop.

“Third-party” services
• Adaptive Pricing: This is meant to represent a service provided by a third-party

entity that the Shopfront service communicates with; in a real scenario, it
wouldn’t be part of our repository, nor would we have control over it. New with
regards to the Docker Java Shop.

• Fake Adaptive Pricing: This is a “fake” Adaptive Pricing service, the sort a team
would create to be able to test integration with a third party. This therefore would
be part of our repository, and we’d have control over it. New with regards to the
Docker Java Shop.

Databases
• Feature Flags DB: The production database used by the Feature Flags service.

This is a PostgreSQL database running in a Docker container, although in a real-
case scenario, the database wouldn’t run in a container. New with regards to the
Docker Java Shop.

• Test Feature Flags DB: The test database used by Feature Flags service, also a
PostgreSQL database running in a Docker container, but using different creden‐
tials. New with regards to the Docker Java Shop.

Acceptance tests
A set of tests that puts all the owned services together and verifies that they work
correctly. More on this in Chapter 11. New with regards to the Docker Java Shop.

Pipelines
• Jenkins Base: A prebuilt pipeline that automatically builds all the services and

databases mentioned previously upon code changes, and then runs acceptance
tests where needed. It includes a dummy deployment job (it doesn’t really deploy
anywhere). New with regards to the Docker Java Shop.

• Jenkins Kubernetes: An extension of Jenkins Base, where the deployment job has
been overwritten to deploy services to a Kubernetes cluster. New with regards to
the Docker Java Shop.

• Jenkins AWS ECS: A different extension of Jenkins Base, where the deployment
job has been overwritten to deploy services to Amazon’s Elastic Container Ser‐
vice. New with regards to the Docker Java Shop.

Introducing the Extended Java Shop Application | 233

Exploring Deploy and Release for Serverless and IaaS

Because of the static nature and size limitations of a print book, this
chapter focuses exclusively on the deployment and release of appli‐
cations by using the technologies that appear to be the most popu‐
lar at the time of writing: Docker, Kubernetes, and AWS ECS. The
accompanying GitHub repository contains more practical exam‐
ples using serverless and IaaS technologies that have been talked
about in previous chapters.

Separating Deployment and Release
Deployment and release are concepts that many people use as synonyms. However, in
the context of continuous delivery, they mean different things:

Deployment
A technical term that refers to the act of making a new binary package of a ser‐
vice available in production

Release
A business term that refers to the act of making a particular functionality avail‐
able to users

Deployments and releases many times happen at the same time—typically, when a
new piece of functionality is implemented and then released into production as part
of a deployment—but you can have one without the other. For instance, when a
developer refactors a particular section of code without altering its functionality, and
deploys this new version of code to production, we have a deployment without a
release. You could also add new functionality but hide it away under a feature flag
(see “Feature Flags” on page 273), in which case you also have a deployment without
a release. On the other hand, if a feature is hidden behind a feature flag, and feature
flags can be modified without deploying, then by altering the feature flag, you could
be releasing a new functionality without the need of a deployment.

Understanding that deploying and releasing are two related but independent activi‐
ties is crucial in order to create an environment for continuous delivery: it gives the
development team the freedom to deploy new versions of the software as they need
to, while it allows the product owners to keep full control over the features that are
available to users. Because they are indeed different activities, they require different
tools and techniques to make them happen in an effective manner; this is the focus of
the next sections.

234 | Chapter 10: Deploying and Releasing from the Pipeline

https://github.com/continuous-delivery-in-java

Deploying Applications
Although some aspects of the deployment will differ, depending on the platform that
you are deploying services to, some concerns will be the same, regardless of said plat‐
form. In general, the deployment of an application will be influenced by the following
activities:

Creating the releasable artifact
This is the binary file that will contain your application code (and potentially
configuration—more on this in “Managing Configuration and Secrets” on page
284), and that will be sent to the machines where the application will be running.
The releasable artifact can take many shapes (fat JAR, WAR, EAR, Buildpack,
Docker container image, etc.), and the most suitable one will depend on the plat‐
form where your application is being deployed. In this book, we have decided to
focus on Docker container images because of their flexibility and popularity, but
you are free to try out others if you so wish.

Automating deployments
Years ago, when deployments happened only once a month, you could have a
person manually copying your applications to the target server and restarting the
application. With continuous delivery, you are potentially deploying a dozen
times a day, and this is no longer practical.

Setting up health checks
An important drawback of the microservices architecture and cloud platforms is
the increase in the number of moving parts. And more moving parts means a
higher probability that something will go wrong. Your applications will fail, and
you need to be able to detect it and fix it.

Choosing a deployment strategy
Whenever you need to make a new version of your application available to the
public, there is the conundrum of how you are going to coordinate that with the
removal of the existing version, especially if you run multiple parallel instances
for reliability. A trade-off between complexity and functionality will need to be
struck.

Implementing your deployment strategy
Latest cloud platforms can manage a cluster of machines and the deployment of
your applications across them transparently, meaning you have to worry only
about picking the strategy. However, if you are not in one of these platforms, you
will have to implement the strategy yourself.

Working with databases
Continuous delivery affects everything, even databases, and changes will have to
be brought about there, too. The process cannot be stopped for anything, so

Deploying Applications | 235

schema changes and data migrations will have to be executed from the pipeline
as well.

Daunting as it may sound, managing the preceding factors is the key to unlocking the
benefits of continuous delivery. Each activity has its own complexities and decision
points; during the rest of this section, we will go through them and give you every‐
thing you need to set up your pipeline.

Creating a Container Image
Although packaging applications in a Docker image is certainly not the only way to
deploy services into production, it is among the most popular ones. It is therefore
useful to know how to create and publish a Docker image for your applications as
part of the build pipeline, because then you will be able to use that image to deploy
services. The image creation process is no different from the one outlined in “Creat‐
ing Container Images with Docker” on page 151, although in the case of the build
pipeline, you also have the option to wrap the command-line orders into a plugin.

This is the option that has been taken in the sample pipelines available in the Exten‐
ded Java Shop repository, more particularly in folders jenkins-base, jenkins-
kubernetes, and jenkins-aws-ecs. (See the relevant README.md files to execute these
examples locally.) The creation and publication of the container image can then be
performed with the following steps.

Installing the plugin
In this case, we are making use of the CloudBees Docker Build and Publish plugin,
which you can install either using the graphical interface (from the main page, choose
Manage Jenkins and then Manage Plugins), or using the command line while logged
into the Jenkins server:

/usr/local/bin/install-plugins.sh docker-build-publish

You need to restart Jenkins after this to activate the plugin.

Creating the DockerHub credentials
Unless you are publishing your Docker container images to a private repository that
doesn’t require authentication, you need to provide Jenkins with some kind of
authentication mechanism when pushing each new container image. In fact, the
CloudBees Docker Build and Publish plugin uses Docker Hub by default, so you need
a Docker Hub account to proceed. Here are basic steps to do this in Jenkins:

1. Go to Credentials and then Add Credentials, as shown in Figure 10-2.

236 | Chapter 10: Deploying and Releasing from the Pipeline

https://plugins.jenkins.io/docker-build-publish

Figure 10-2. Creating new credentials in Jenkins

2. Select “Username with password” from the Kind drop-down menu.
3. Leave the scope as Global or restrict it to something more specifically aligned to

your own security policies.
4. Give your credentials a meaningful name in the ID field, like DockerHub, and

optionally a description.
5. Enter the username used to publish images.
6. Enter the password and then click OK. Figure 10-3 shows the selection of these

options.

Figure 10-3. Adding new Docker Hub credential to Jenkins

Deploying Applications | 237

Building and publishing
Finally, you can now create a step within your job definition to build the Docker con‐
tainer image and publish it into Docker Hub (or any other registry):

1. When adding the new step, select the type Docker Build and Publish to open the
window shown in Figure 10-4.

2. Indicate the name that you want to give to the published image; this is equivalent
to using the -t option in the command line when building the Docker image.

3. Indicate the credentials to use when pushing the image to Docker Hub.

Figure 10-4. Creating a new build step to build and publish a Docker image

4. If the necessary Dockerfile isn’t in the root folder of your repository, indicate the
folder where it is to be found, as shown in Figure 10-5.

Figure 10-5. Indicating the folder where the Dockerfile resides

With this, your build pipeline can now create Docker images for your applications in
an automated manner, and you are ready to deploy them to your platform of choice.

Deployment Mechanisms
The first point to cover is the mechanism by which the service makes its way into
production—in other words, the mechanism by which you communicate to the rele‐
vant platform and indicate that a new version is available. Once you know this, you
can then configure your CD pipeline to do this automatically for you.

Most platforms out there, including Kubernetes, Amazon, and Cloud Foundry, have a
RESTful API as their main means of communication that you can use to manage your

238 | Chapter 10: Deploying and Releasing from the Pipeline

deployments. However, this is not what most people use. In the same way that they
provide a RESTful API, they also provide the following tools, built on top of this API,
that make interaction easier:

A graphical interface
Usually in the form of a website, this is where deployments can be performed and
managed. This is useful to get comfortable with the way a new platform works or
to check the status of the platform at a quick glance, but not for deployment
automation.

A command-line interface
Frequently including Bash completion, this interface acts as a wrapper for the
RESTful API. The advantage of the CLI is that commands can easily be scripted,
making it suitable for build automation.

On top of this, some platform providers, or sometimes even third parties, can develop
plugins for different build automation tools that leverage either the RESTful API or
the CLI to provide common use cases in a pipeline-friendly manner.

The plugin example: Kubernetes
As explained in Chapter 4, Kubernetes is an orchestrator platform for deploying
immutable services encapsulated in containers. In Chapter 8, we already indicated
how Docker and Kubernetes could be used to allow developers to work locally, mim‐
icking a production environment. Now we will indicate how this deployment can be
automated to deploy to the production Kubernetes cluster by using a plugin in Jen‐
kins. A fully functional example is available at the Extended Java Shop repository—
more precisely, at the jenkins-kubernetes folder. You can follow the instructions at the
README.md file in that folder to run the example locally. (Incidentally, this example
will also make use of a locally running minikube instance, but the process will be no
different from a real-life Kubernetes cluster.)

Jenkins X: The Future?
As this book is going to print, the new open Jenkins X subproject within the Jenkins
Foundation is gaining momentum. Jenkins X is written by CloudBees, and many of
the engineering team members have previously worked on the Red Hat fabric8 devel‐
opment tooling. The platform encompasses many of the recommended build and
deployment practices they have encountered with customers deploying applications
onto Kubernetes, such as declarative configuration, management of multiple environ‐
ments, and GitOps (automated synchronizing of config against environments).

Deploying Applications | 239

https://jenkins.io/projects/jenkins-x/
https://www.weave.works/technologies/gitops/

Installing the plugin. First, you need to install the Kubernetes CD Jenkins plugin.
Once again, this can be done using the graphical interface in Jenkins (from the main
page, choose Manage Jenkins and then Manage Plugins) or via the command line at
the Jenkins server:

/usr/local/bin/install-plugins.sh kubernetes-cd

You need to restart Jenkins after this to activate the plugin.

Kubernetes Plugin Versus Kubernetes CD Plugin

The Jenkins Plugin repository includes two similarly named but
fundamentally different plugins: Kubernetes and Kubernetes CD.
The former allows you to create additional Jenkins nodes in an
existing Kubernetes cluster so as to assist on build execution, while
the latter allows you to deploy your applications into a Kubernetes
cluster. We are referring to the latter here.

Preparing the configuration files. Before diving into details, it’s necessary to clarify
some extra Kubernetes concepts:

Cluster
A cluster is a particular collection of nodes, driven by a single master, where
Kubernetes can choose to deploy containers. You can have multiple clusters, for
instance, if you want to completely separate test and production.

User
The Kubernetes cluster will expect some form of authentication to make sure that
the requested operation (deploy, undeploy, rescale, etc.) is allowed for the specific
actor; this is managed through users.

Namespace
A named subsection of the cluster, almost like a “virtual cluster.” Users can have
different permissions to execute operations, depending on the namespace. It’s an
optional parameter, and if unspecified, the default namespace will be used.

Context
A particular combination of cluster, user, and namespace.

Kubeconfig
A file indicating the cluster(s) that is available, the namespaces within it, the
user(s) that can access it, and the known combinations of access named as con‐
texts. The Kubeconfig file can also have information regarding how the user is to
be authenticated.

240 | Chapter 10: Deploying and Releasing from the Pipeline

https://github.com/jenkinsci/kubernetes-cd-plugin

With this, and assuming the creation and publication of Docker images is already set
up as indicated in the previous section, you can configure an automatic step to deploy
to a Kubernetes cluster by following these steps:

1. Ask the Kubernetes administrator to create a user specific for deployment. Users
can be authenticated by providing username and password, or by means of certif‐
icates; for the deployment user, the second option will be preferred to facilitate
automatic deployment.

2. Obtain the certificate and key files from the Kubernetes administrator for the
deployment user; these will typically be ca.crt, client.crt, and client.key.

3. Copy these files into the Jenkins server and place them in a recognizable location;
for instance, /var/jenkins_home/kubernetes/secrets.

4. Prepare the kubeconfig file; the details may depend upon your particular installa‐
tion, but the simplest form can be as follows:

apiVersion: v1
clusters:
- cluster:
 certificate-authority: %PATH_TO_SECRETS%/ca.crt
 server: https://%KUBERNETES_MASTER_IP%:8443
 name: %CLUSTER_NAME%
contexts:
- context:
 cluster: %CLUSTER_NAME%
 user: %DEPLOYMENT_USER%
 name: %CONTEXT_NAME%
current-context: %CONTEXT_NAME%
kind: Config
preferences: {}
users:
- name: %DEPLOYMENT_USER%
 user:
 client-certificate: %PATH_TO_SECRETS%/client.crt
 client-key: %PATH_TO_SECRETS%/client.key

5. Copy the kubeconfig file into the Jenkins server and place it in a recognizable
location; for instance, /var/jenkins_home/kubernetes.

Registering Kubernetes credentials. Now that all the relevant configuration is available
in the Jenkins server, it is important to let Jenkins know how to use it. For this, you
will create a Kubernetes Credentials record, similar to the DockerHub credentials that
you created previously:

1. Go to Credentials and then Add Credentials.
2. Select Kubernetes Configuration (Kubeconfig) from the drop-down menu.

Deploying Applications | 241

3. Leave the scope as Global or restrict it to something more specifically aligned to
your own security policies.

4. Give your credentials a meaningful name, like kubernetes, and optionally a
description.

5. Indicate that the kubeconfig is in a file on the Jenkins master, and indicate the
path where you previously saved the file; then click OK. Figure 10-6 illustrates
these settings.

Figure 10-6. Adding new Kubernetes credentials to Jenkins

Creating service definitions. You will need to create service definitions for all your serv‐
ices, much in the same way that you did in “Deploying into Kubernetes” on page
176 to deploy to the local Kubernetes; in fact, you can probably add those files to your
version-control system and reuse them. As an example, the service definition file for
the Feature Flags service in the Extended Java Shop is replicated in Example 10-1; fur‐
ther examples can be found in jenkins-kubernetes/service-definitions.

Example 10-1. Kubernetes service definition sample for Feature Flags service in
Extended Java Shop

apiVersion: v1
kind: Service
metadata:
 name: featureflags
 labels:
 app: featureflags

242 | Chapter 10: Deploying and Releasing from the Pipeline

spec:
 type: NodePort
 selector:
 app: featureflags
 ports:
 - protocol: TCP
 port: 8040
 name: http

apiVersion: apps/v1beta2
kind: Deployment
metadata:
 name: featureflags
 labels:
 app: featureflags
spec:
 replicas: 1
 selector:
 matchLabels:
 app: featureflags
 template:
 metadata:
 labels:
 app: featureflags
 spec:
 containers:
 - name: featureflags
 image: quiram/featureflags
 ports:
 - containerPort: 8040
 livenessProbe:
 httpGet:
 path: /health
 port: 8040
 initialDelaySeconds: 30
 timeoutSeconds: 1

Creating the deployment job. Finally, your Jenkins server is ready to configure the
deployment job. For this, you can create a new Freestyle element as indicated in “Jen‐
kins” on page 224, configure the repository location, and add a build step of type
Deploy to Kubernetes, as shown in Figure 10-7.

Deploying Applications | 243

Figure 10-7. Adding a build step to deploy to Kubernetes

The configuration of the Deploy to Kubernetes step will need references to only two
of the elements previously constructed: the Kubeconfig, for which you can select the
Kubeconfig Credentials that was created previously (“kubernetes” in Figure 10-8),
and the path to the service definition within the repository. You can now save this job,
and you will have an automated way to deploy your services to Kubernetes.

Figure 10-8. Configuring the build step to deploy to Kubernetes

244 | Chapter 10: Deploying and Releasing from the Pipeline

You can then repeat this step for each of the services, or you can tweak the existing
one to take a parameter that indicates the service to deploy; this is the course that was
chosen in the example available at the jenkins-kubernetes folder.

Helm Packaging for Kubernetes
If you are creating services or applications for Kubernetes that have complicated
installation procedures or several external dependencies, it may be worth exploring
the Helm package manager. Helm allows you to create charts that are very much like
traditional package manager artifacts such as RPMs or DEBs, and not only enable you
to bundle all the required configuration, but also version the chart artifact for easy
upgrading and auditing.

The CLI example: Amazon ECS
One of the advantages of using plugins in your build pipeline of choice is that they
are usually nicer and more user-friendly to operate with. On the other side, one of the
disadvantages is the lack of portability: if you ever want to change to a different auto‐
mated build platform, you’ll probably have to start from scratch. This is one of the
reasons that you may choose to leave plugins aside and use command-line tools
instead.

This is the option that has been chosen in the second of our examples: deploying to
Amazon Elastic Container Service (ECS). Amazon ECS is in many ways similar to
Kubernetes, in the sense that Amazon provides a managed cluster of computers and
orchestrates the deployment of containers across them; this way, you just need to pro‐
vide Amazon ECS with the Docker image information, and the platform will do the
rest. The main difference is that, in Kubernetes the nodes in the cluster can either be
physical or virtual machines, but in Amazon ECS, the computers must be Amazon
EC2 instances, keeping everything within the Amazon ecosystem. This means that
adding or removing EC2 instances to an Amazon ECS cluster is a streamlined opera‐
tion, although it adds the risk of vendor lock-in.

Combining Kubernetes and Amazon EC2

You can build a Kubernetes cluster by using Amazon EC2 instances
as nodes, which might be a good middle step if you are already
using one of these platforms and considering switching to the other
one.

The setup and management of an Amazon ECS cluster is beyond the scope of this
book (just as setting up and managing a Kubernetes cluster also is), so in this section
we will assume the Amazon ECS cluster is already available and we will just focus on

Deploying Applications | 245

https://helm.sh/

how to deploy services to it. The fully functional example available at the Extended
Java Shop repository (more precisely, at the jenkins-aws-ecs folder) does include
scripts to create and configure a minimal Amazon ECS cluster; readers can follow the
instructions at the README.md to run the example locally and check the relevant
scripts to know more.

Going Serverless with ECS

Although we have been talking about using ECS on top of EC2
instances, there is also the option to go serverless with ECS Fargate.
This option eliminates the need to manage a cluster, choose com‐
puter instance characteristics, etc. The cluster will manage all of
this, and you’ll just need to provide the container images. There is a
catch, though: as of the time of writing this book, ECS Fargate is
still being rolled out and is available in only a handful of regions
(Northern Virginia, Ohio, Oregon, and Ireland). Depending on
when you are reading this, ECS Fargate may be an option to
explore.

Installing and configuring the CLI. Installing the AWS CLI is relatively straightforward,
and can be done either by getting the packages from the official AWS CLI installation
page, or by using a package manager of choice (yum, apt-get, homebrew, etc.). Config‐
uring it requires a couple more steps, which are explained in detail at the AWS CLI
configuration page, but essentially boils down to the following:

1. Create an AWS user to execute deployments.
2. Obtain an AWS Access Key and an AWS Secret Access Key for that user.
3. Log into your build server (Jenkins, for instance).
4. Execute aws configure and provide the previous details as requested.

After the preceding steps have been performed, every aws command that is intro‐
duced at the command line will run against your AWS environment.

Getting the Latest AWS CLI

Many package managers like homebrew or yum include AWS CLI in
their repositories, making it easy to install. However, there will be a
necessary lag between the latest existing version as provided by
AWS and the latest available via these package managers. If you use
only relatively established features, this will be fine, but if you need
the latest, then you’ll have to install AWS CLI from the official
source.

246 | Chapter 10: Deploying and Releasing from the Pipeline

https://amzn.to/2xVAGSG
https://amzn.to/2xVAGSG
https://amzn.to/2zx2SNN
https://amzn.to/2zx2SNN

Amazon ECS concepts. At this point, we need to define some of the terms used in the
Amazon ECS environment. These shouldn’t be difficult to grasp, though, as they are
quite similar to their Kubernetes counterparts:

Cluster
The collection of all computers and the services that it runs.

Instance
Each of the EC2 computers that have been included into a cluster.

Service
An application that has been deployed to a cluster.

Task
Each of the individual copies of the Docker containers of an application that are
in execution. The same service may have multiple identical tasks across instances,
typically with a limit of at most one per instance, although tasks of different serv‐
ices can share an instance.

Task definition
The template from which a task is created; this includes details such as the loca‐
tion of the Docker image, but also the amount of memory or CPU that the task is
allowed to use, the ports that it needs to expose, etc. Task definitions are referred
to by using their family (a name) and their version.

There can be multiple task definitions for the same service, but a running service can
be associated with only a single task definition at a time. This way, deploying a new
version of an application will be done by creating a new task definition that refers to
the new version, and then updating the service to associate it to it.

Note also that, while services and tasks run in a specific cluster, task definitions are
cluster-independent, and can, in fact, be used across clusters. This allows you to have
different clusters for test and production and make sure that the task definitions are
consistent across environments.

Creating tasks, deploying services. Now that you know the basic nomenclature of Ama‐
zon ECS, you can explore the minimum commands that will allow you to deploy
services to a cluster. The AWS CLI reference documentation is the best place to inves‐
tigate how to go further.

Before you can even create a service, you need to create a task definition. This can be
done using the subcommand register-task-definition:

aws ecs register-task-definition \
 --family ${FAMILY} \ # The family of the task, i.e. the name
 --cli-input-json file://%PATH_TO_JSON_FILE% \ # File with the definition
 --region ${REGION} # Region for the task definition, default if omitted

Deploying Applications | 247

https://amzn.to/2N54KRB

The file at file://%PATH_TO_JSON_FILE% is what contains the actual definition, and
may look like the one used for the Shopfront service in the Extended Java Shop appli‐
cation, displayed in Example 10-2.

Example 10-2. Amazon ECS task definition for Shopfront service in Extended Java Shop

{
 "family": "shopfront",
 "containerDefinitions": [
 {
 "image": "quiram/shopfront",
 "name": "shopfront",
 "cpu": 10,
 "memory": 300,
 "essential": true,
 "portMappings": [
 {
 "containerPort": 8010,
 "hostPort": 8010
 }
],
 "healthCheck": {
 "command": ["CMD-SHELL", "curl -f http://localhost:8010/health || exit 1"],
 "interval": 10,
 "timeout": 2,
 "retries": 3,
 "startPeriod": 30
 }
 }
]
}

Once you have created the first task definition, you can then create your service by
using the create-service subcommand:

aws ecs create-service \
 --service-name ${SERVICE_NAME} \ # Name for the service
 --desired-count 1 \ # Desired number of tasks when this service is running
 --task-definition ${FAMILY} \ # Family of the task definition to use
 --cluster ${CLUSTER_NAME} \ # Cluster where the service is to be created
 --region ${REGION} # The region where the cluster is, default if omitted

Finally, to deploy a new version, you can create a new task definition that points to
the new version of the Docker image and then update the running service to use the
new version of the task definition with the subcommand update-service; note that,
since you can have multiple versions of a task definition, this has to be specified using
both family and version:

248 | Chapter 10: Deploying and Releasing from the Pipeline

aws ecs update-service \
 --service ${SERVICE_NAME} \ # Name of the service to update
 --task-definition ${FAMILY}:${VERSION} \ # Task definition to use
 --cluster ${CLUSTER_NAME} \ # Cluster where the service currently runs
 --region ${REGION} # The region where the cluster is, default if omitted

Once your scripts are clear, you can create a job in your automated build platform of
choice that simply runs them. Ideally, you will also store this script in your version-
control system, so you can track changes as your needs evolve. A full example,
including some conditional logic to decide when to create and when to update a ser‐
vice, is available at the Extended Java Shop repository, located at jenkins-aws-ecs/
deploy-to-aws-ecs.sh.

It All Starts (and Ends) with Health Checks
Before continuous delivery became a standardized practice, when organizations still
deployed their applications to production manually, there was a clear way to check
that everything was working correctly after deployment: a manual check. But now,
with automated deployments that happen typically several times a day, and each ser‐
vice being deployed to potentially multiple instances to provide horizontal scalability,
checking services manually is not an option.

What’s more, in a world of autoscaling, deployments may be happening at any time
without our awareness: a peak in demand might signal the orchestrating platform of
the need of additional resources, which the platform may respond to by deploying
new copies of a particular service. Once again, you cannot be expected to manually
check that these newly deployed services are working as expected.

Finally, there is another reason for an automated means to check that your services
are running correctly. Modern microservices architectures provide you with unprece‐
dented levels of flexibility, but at the cost of having to manage additional moving
parts. With the increase in the number of components, the probability of a failure
occurring anywhere in the system increases until it becomes an inevitability: a hard‐
ware failure, a lost communication link, a deadlock in a kernel, etc., are just some
events that could bring a node down, and with it, all the services that are running
within. You could be losing services at any point, and you need to detect when this
happens and repair it.

This all leads to the concept of the health check. A health check is a purpose-built
interface in a service, for instance a /health endpoint in a RESTful API, that is used by
the service to indicate its internal status. When invoked, this interface may run some
quick checks to verify that everything is working fine, and then provide either a posi‐
tive or negative response. The orchestrating platform can then be configured to regu‐
larly consult the health checks of all the different instances of a service and act
accordingly:

Deploying Applications | 249

• If the service responds with a positive outcome, the instance is healthy.
• If the service responds with a negative outcome, the instance is unhealthy.
• If the service doesn’t even respond to the health check, the instance is unhealthy.

One needs to be careful with health checks, though. An instance appearing to be
unhealthy at a particular moment in time is not necessarily indicative of an issue;
after all, short glitches happen all the time. However, if an instance appears to be
unhealthy too many times in a row, or too many times within a time window, the
orchestrating platform can then deduce that the instance is faulty, bring it down, and
re-create another one somewhere else. This self-healing mechanism adds resiliency to
your platform, compensating for the added uncertainty of the continuous redeploy‐
ments and the increased number of moving parts.

Providing health-check endpoints
Health-check endpoints have become so ubiquitous that multiple tools and frame‐
works can automatically attach them to your services, so you don’t even need to cre‐
ate one yourself. This is the path that has been taken in the Extended Java Shop
sample application, with two available variants.

Most of the web services in the Extended Java Shop are based in Spring Boot, which
automatically adds a /health endpoint to any service without further action. This can
be noticed in the log as the application starts up, and can be verified by simply con‐
tacting /health in the desired service after it has been deployed. For more details, see
Example 10-3, an extract (edited and broken into multiple lines for readability) from
the log of the Stock Manager service, where you can see that /health and /health.json
have been automatically registered.

Example 10-3. Partial extract of the startup log for Stock Manager service

2018-05-02 11:49:37.487 INFO 56166 --- [main] o.s.b.a.e.mvc.EndpointHandlerMapping:
 Mapped "{[/health || /health.json],methods=[GET],
 produces=[application/vnd.spring-boot.actuator.v1+json || application/json]}"
 onto public java.lang.Object org.springframework.boot.actuate.endpoint.mvc.
 HealthMvcEndpoint.invoke(
 javax.servlet.http.HttpServletRequest,java.security.Principal

A different example is shown in the Product Catalogue service, which is a web service
based in Dropwizard, as opposed to Spring Boot. Setting up a health check with
Dropwizard requires a couple of steps, but it also comes with greater flexibility. The
first step is to create a class that overrides HealthCheck, implementing the check()
method; this is done in the BasicHealthCheck class, which is shown in Example 10-4.
(In this case, the check simply returns the version number of the running applica‐
tion.)

250 | Chapter 10: Deploying and Releasing from the Pipeline

Example 10-4. A basic health check in Dropwizard

public class BasicHealthCheck extends HealthCheck {
 private final String version;

 public BasicHealthCheck(String version) {
 this.version = version;
 }

 @Override
 protected Result check() throws Exception {
 return Result.healthy("Ok with version: " + version);
 }
}

Once the health check has been created, you need to register it in your application.
This is shown in the ProductServiceApplication class, with the specific line
required for registration copied next for reference:

final BasicHealthCheck healthCheck = new BasicHealthCheck(config.getVersion());
environment.healthChecks().register("healthCheck", healthCheck);

The advantage of this approach is that multiple health checks can be created and reg‐
istered, all of them consulted when calling /healthcheck.

Dropwizard Exposes Health Checks at a Different Port

Dropwizard differentiates between normal user traffic and what it
considers admin traffic; health checks are registered as admin traf‐
fic. Endpoints for admin don’t listen in the default port, but in what
is called the admin port. By default, the admin port is the normal
port +1 (e.g., if the application is listening on 8020, the admin port
will by default be 8021), but this can be overridden. See product-
catalogue.yml for an example on how to define your own admin
port.

Needless to say, one doesn’t need to be constrained to whatever framework is in use,
and can choose to build health-check endpoints manually. At the end of the day, the
health check is just an ordinary endpoint, which can be created just like any other
endpoint in the application.

Consulting health-check endpoints
Creating health-check endpoints in your services is one side of the coin, and config‐
uring the orchestrating platform to use them is the other one. This, again, is pretty
straightforward with most orchestrating platforms.

Deploying Applications | 251

Let’s check our two examples: Kubernetes and Amazon ECS. With Kubernetes, the
health check is configured at the very service definition. In fact, keen readers might
have noticed the following section in Example 10-1:

livenessProbe:
 httpGet:
 path: /health
 port: 8040
 initialDelaySeconds: 30
 timeoutSeconds: 1

The parameters indicated here, together with others that have been omitted and for
which default values are being used, tell Kubernetes the strategy to follow when
checking the health of our service instances. Let’s check these values in detail:

initialDelaySeconds

It is understood that services need time to become fully operational after they’ve
been deployed. This value represents how long Kubernetes waits before it starts
checking the health of a service instance.

timeoutSeconds

The maximum time we expect the health check to take.

periodSeconds

The time between two consecutive health checks (the default value is 10).

failureThreshold

The number of consecutive times a health check has to fail for Kubernetes to give
up on the service instance and restart it (the default value is 3).

Configuring Amazon ECS to use health checks is similar. Let’s look at the following
extract from the task definition for the Stock Manager service (located at /jenkins-
aws-ecs/task-definitions/stockmanager-task.json):

"healthCheck": {
 "command": ["CMD-SHELL", "curl -f http://localhost:8030/health || exit 1"],
 "interval": 10,
 "timeout": 2,
 "retries": 3,
 "startPeriod": 30
}

Amazon ECS leverages the HEALTHCHECK command in Docker to verify whether the
service instance is healthy (which is why the command parameter follows that particu‐
lar syntax), but other than that, the parameters are analogous:

interval

The time between two consecutive health checks

252 | Chapter 10: Deploying and Releasing from the Pipeline

timeout

The maximum time a health check is expected to take

retries

The number of consecutive times a health check has to file for ECS to consider
the task unhealthy and restart it

startPeriod

The wait time after the task has been deployed before it starts performing health
checks

What these examples show is that, regardless of the technology in place, creating and
configuring health checks is an easy and powerful task. Every orchestrating platform
will offer the ability to perform health checks in one form or another and follow simi‐
lar parameters, which means that you should always be able to count on them.

Keep Your Health Checks as Simple as Possible

Ideally, your health checks will have a simple, hardcoded answer.
After all, they are just a way to check whether your service is fun‐
damentally operational. You may consider doing some mild checks,
but be careful not to overdo it.
Above all, never make a health-check endpoint call another health-
check endpoint in another service; the health check applies to your
service only, not to dependencies. Your infrastructure will be calling
your health-check endpoints regularly; if the implementation of
them calls for more health checks, you can have significant traffic
dedicated to a “health-check storm.” Moreover, if you ever happen
to have a cyclical dependency among your services (which is not so
uncommon), your health checks might enter into an infinite loop
that can bring your entire system down, and you’ll have to suffer
the irony of having an unhealthy system because of badly designed
health checks.

Deployment Strategies
Now that you know how to deploy services to production, and how to verify that
those services are working as expected (or restarting them if they are not), it is time
to decide how you coordinate the removal of an old version of a service and its
replacement with a new version.

This is another of those concerns that didn’t exist before continuous delivery. At the
time when services were deployed manually, organizations chose a time when the
application was meant to have the least active users, typically during the weekend or
overnight, and informed everyone with sufficient time that the system would be
unavailable due to maintenance during a particular time window. During this

Deploying Applications | 253

window, the operations team would bring down the old version, deploy the new one,
and check that everything was working correctly.

Again, now that you are continuously deploying new versions into production, you
cannot simply assume that a deployment will imply downtime, since this will leave
you with a system that has one section or another down at almost any given time. You
need to come up with new deployment strategies that take into account how much
impact to the system you can tolerate during a deployment, and how many resources
you are willing to dedicate to keep that impact at bay.

This section introduces six strategies to accomplish this in different ways. The philos‐
ophy behind each strategy is hinted by its name: single target, all-at-once, minimum
in-service, rolling, blue/green, and canary. However, in order to describe them and
compare them with ease, a common set of terms will be introduced first:

Desired number of instances
This is the number of service replicas that are expected to be running whenever
the service is fully operational. If you take this number to be n, this means that in
any deployment, you will go from having n instances of an old version of a ser‐
vice, to having n instances of the new version of that service. We will refer to this
simply as desired.

Minimum number of healthy instances
As old service instances are taken down and new ones brought up, you may want
to state that there is always a minimum number of them, either old or new, in a
healthy state. This can be done to ensure a minimum level of service. We will
refer to this as simply minimum, and it can usually be expressed as either a per‐
centage of the total or an absolute number, depending on the platform.

Maximum number of instances
Sometimes you may want to start the new service instances before taking out the
old ones so you can limit the gap in the service. This implies a higher utilization
of resources. By setting a hard limit on the maximum number of instances, you
also set a maximum on the utilization of resources during a deployment. We will
refer to this as simply maximum, and, again depending on the platform, it can
also be expressed as either a percentage, indicating how many additional instan‐
ces are allowed (e.g., if maximum was set to 100%, that would mean that you
allow the number of instances to double during deployment), or an absolute
number (this would indicate how many extra instances the platform is allowed to
create).

Graphical representation
For each strategy, we will show a diagram depicting the succession of events
while the deployment is taking place. Light squares will represent old versions of
the service instances, while dark ones will represent new ones; striped squares

254 | Chapter 10: Deploying and Releasing from the Pipeline

indicate new version instances that are in the process of starting up, and there‐
fore not available yet. Each row will represent a snapshot at a particular point in
time, with older snapshots at the top and newer ones at the bottom.

Most orchestrating platforms provide some means to indicate these values in one way
or another. In the case of Kubernetes, you can add an additional strategy section to
the service definition, where replicas indicates desired, maxUnavailable indicates
the opposite of minimum (minimum = 100% - maxUnavailable), and maxSurge indi‐
cates maximum:

spec:
 replicas: 5
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 25%
 maxSurge: 25%
 [...]

In the case of Amazon ECS, you can specify this whenever you create or update a ser‐
vice that is based on a task definition:

Creation
aws ecs create-service \
 --desired-count 5 \
 --deployment-configuration \
 'maximumPercent=25,minimumHealthyPercent=25' \
 # other parameters

Update
aws ecs update-service \
 --desired-count 5 \
 --deployment-configuration \
 'maximumPercent=25,minimumHealthyPercent=25' \
 # other parameters

Regardless of your platform, once you know how you can set up the ergonomics of
your deployment, you can then explore the different strategies and pick the one that
suits you better. Let’s go through all of them.

Single target deployment
This is the simplest of the strategies and the one that requires the fewest resources. In
this case, you assume the service has only one running instance, and whenever you
need to update it, you will have to take it down and then deploy the new one. This
implies that there will be a gap in the service, but no additional resources will be
needed. The values that define this strategy therefore are as follows:

• desired: 1
• minimum: 0%

Deploying Applications | 255

• maximum: 0%

This is represented in Figure 10-9 with the following steps:

• Beginning: One instance of the previous version exists.
• Step 1: The one instance has been substituted by another of the new version; the

service is effectively unavailable while this new instances starts up.
• End: The new instance is now up and running, available for requests.

Figure 10-9. Single target deployment: the old instance is killed and replaced by a new
one

All-at-once deployment
This strategy is similar to the single target deployment, with the only difference that,
instead of having a single instance, you may have any fixed number of them. When a
deployment is needed, all the current instances are taken down, and once they are
down, all the new ones are brought up. As in the previous case, there is no additional
need for resources during the upgrade, but there will also be a gap in the service. The
parameters for this case are as follows:

• desired: n
• minimum: 0%
• maximum: 0%

This is represented in Figure 10-10 with the following steps:

• Beginning: Five instances of the previous version exist.
• Step 1: All five instances are taken down at the same time and substituted with

five instances of the new version of the service; the service is effectively unavail‐
able while the new instances start up.

256 | Chapter 10: Deploying and Releasing from the Pipeline

• End: The new instances are now up and running.

Figure 10-10. All-at-once deployment: all old instances are killed at the same time, and
new ones are brought in as the old ones are gone

Minimum in-service deployment
The two previous instances have one major inconvenience: they both imply a service
gap. You can improve this by tweaking your strategy and ensuring that there is always
a minimum number of healthy instances. This way, instead of bringing down all the
old instances at once, you bring down only a number of them and create new instan‐
ces when they are gone. Once the new instances are up and running, you can remove
another batch of old instances, substituting them with new ones. You can repeat this
process until all old instances have been replaced by new ones.

This process prevents a gap in the service without the need of additional resources,
but it does mean that the minimum in-service instances must take an additional hit
of traffic to compensate for the fact that there are fewer of them; make sure not to set
this limit too low, or the remaining instances may not be able to cope with the load.

For the case represented in Figure 10-11, the parameters are as follows:

• desired: 5
• minimum: 40% (or 2, if expressed as absolute number)
• maximum: 0%

The process can be described as follows:

• Beginning: Five instances of the previous version exists.
• Step 1: Since at least two instances have to be always operational, only three are

taken down and substituted by new instances; deployment remains in the step
while the new instances start up.

Deploying Applications | 257

• Step 2: Once the new instances are operational, the remaining two old versions
can be taken down and substituted with new versions.

• End: All the new instances are now operational.

Figure 10-11. Minimum in-service deployment: at least two instances, either new ones or
old ones, have to be operational at any given point

Rolling deployment
A rolling deployment can be seen as a different form of minimum in-service deploy‐
ment: the focus isn’t placed on the minimum number of healthy instances, but the
maximum number of absent instances. The most typical case of a rolling deployment
sets this maximum at one, meaning only one instance can be in the process of being
updated at any given time. This means that one instance will be brought down, and
then a new one brought up; and only when the new one is operational will we con‐
tinue the process with the next one. In some cases, a rolling deployment may set
higher limits, allowing for two, three, or more instances to be in transition at any
given time.

As a variant of the minimum in-service deployment, the rolling deployment presents
pretty much the same characteristics: it prevents service gaps without the need for
additional resources. The main advantage with regards to minimum in-service is that,
by limiting the number of absent instances, you limit the extra strain that the remain‐
ing instances may have to endure; the main disadvantage is that deployments will
take longer and, depending on the number of instances, the startup time, and the rate
of redeployment, the platform could end up with a batch of queued redeployments.

For the case of a rolling deployment, the defining parameters are as follows:

• desired: 5
• minimum: 80% (or 4, if expressed as an absolute number)

258 | Chapter 10: Deploying and Releasing from the Pipeline

• maximum: 0%

Note that the rolling deployment is equivalent to a minimum in-service deployment
where minimum = desired - 1.

This process is shown step-by-step in Figure 10-12:

• Beginning: Five instances of the previous version exist.
• Step 1: One instance is taken down and substituted with a new one; deployment

remains in the step while the new instance starts up.
• Step 2: After the new instance created in step 1 is operational, another old

instance is taken down and substituted with a new one; deployment remains in
the step while the new instance starts up.

• Steps 3, 4, and 5: The same process is repeated for the remaining old instances.
• End: All the new instances are now operational.

Figure 10-12. Rolling deployment, where the maximum number of absent instances is
one.

Deploying Applications | 259

Blue/green deployment
Blue/green deployment is one of the most popular strategies in the realm of microser‐
vices deployments, and perhaps for this reason is one whose meaning is not entirely
set. The available literature seems to refer to two slightly different strategies under the
same name, each solving a slightly different problem.

The first version of the blue/green deployment aims at fixing one of the disadvantages
of both minimum in-service and rolling deployments: during the upgrade, there will
be fewer healthy instances to share the total load, potentially causing a strain on
them. To address this, blue/green deployments create new instances first, and only
when these are available does it starts to take down the old ones. The number of
healthy instances never goes below the desired total, but it does mean that we will
need extra resources during the upgrade. Considering the standard parameters, a
blue/green deployment described this way would have the following:

• desired: n
• minimum: 100%
• maximum: m% (where 0 < m ≤ 100)

Setting m to a higher value will exacerbate the peak use of resources, but will also
shorten the length of the deployment.

The second version of the blue/green deployment goes beyond this, though, and can‐
not simply be obtained by a combination of the desired/minimum/maximum param‐
eters. There is another disadvantage in the previous strategies: during the
deployment, there will be a mix of old and new versions of the application in produc‐
tion. This might be OK in many scenarios, particularly if one is being careful with the
release of functionality (see “Releasing Functionality” on page 272). However, when
this mix is to be avoided, the second version of blue/green deployment adds a twist:
no new instances will be available to the users until all of them are ready, and at that
moment all old instances will be made immediately unavailable.

The way to achieve this is by manipulating the routing of requests, in addition to the
orchestration of services; this is displayed graphically in Figure 10-13 via the follow‐
ing steps:

• Beginning: A number of instances of the previous version exists (two in this
example). The load balancer/router, represented in the graph by a cylinder, is
configured to send incoming requests to the old versions of the service.

• Step 1: New instances are created, aside from the old ones. These instances are
not visible to the public, and the load balancer/router still sends all incoming
traffic to the old instances. Deployment remains in this step while the new
instances start up.

260 | Chapter 10: Deploying and Releasing from the Pipeline

• Step 2: The new instances have finished starting up and are now operational, but
no traffic is being directed to them yet.

• Step 3: The load balancer/router is reconfigured so all incoming traffic is directed
to the new versions of the service. This switch is meant to be almost instantane‐
ous. No new requests are sent to the old versions, although existing ones are
allowed to finish.

• End: After the old instances are no longer useful, they are taken down.

As can be deduced, the second version of the blue/green deployment provides the
best user experience, but at the cost of added complexity and high resource utiliza‐
tion.

Figure 10-13. A blue/green deployment: new instances are not visible by the user until
all of them are ready; at that moment, the router changes to point to the new instances,
making the old ones inaccessible to users

Deploying Applications | 261

Canary deployment
Canary deployment is another case that cannot be achieved by tweaking the combi‐
nation of desired/minimum/maximum parameters. The idea of the canary deploy‐
ment is to try out a new version of the service without fully committing to it. This
way, instead of completely replacing the old version of an application with the new
one, you simply add an instance to the mix with the new version. The load balancer
placed on top of the service instances can divert some traffic to the canary instance,
and by inspecting logs, metrics, etc., you can understand how this behaves. If the
result is satisfactory, you can then perform a full deployment of the new version. A
canary deployment is performed in two steps, as shown in Figure 10-14:

• Beginning: Multiple instances of the previous version exist (four in this example).
• Step 1: An instance of the new version is created, without removing any of the

old ones.
• End: The new instance is now up and running and can serve requests together

with the old ones.

Canary deployments involve a number of challenges when it comes to orchestration.
For instance, when the platform is checking the health status of the different instan‐
ces, it needs to treat the canary one differently from the rest: if the canary instance is
unhealthy, it needs to replace it with another canary instance, but if any of the other
instances is unhealthy, then it needs to be replaced with a noncanary version. Also,
canary instances sometimes need to run for relatively long periods to properly under‐
stand the effects of the change under study, during which time you are probably mak‐
ing new versions of the normal instance, triggering redeployments that need to
update the normal instances while leaving the canary one intact.

Fortunately, the use case for canary deployments is rather slim. If you just want to
expose a new functionality to a subset of users, you can do this by using feature flags
(see “Feature Flags” on page 273). The added value of a canary deployment is testing
out deeper changes that cannot be hidden via feature flags, like a change in the log‐
ging or metrics framework, an alteration of the garbage-collection parameters, or the
trial of a newer version of the JVM.

262 | Chapter 10: Deploying and Releasing from the Pipeline

Figure 10-14. Canary deployment, where a new instance is simply added to the group of
current-version instances without replacing any

The Future of Canary Testing
Currently, the majority of canary testing is conducted via the deployment platform.
However, increasingly we are seeing open source API gateways like Ambassador sup‐
port the dynamic routing of traffic to differing backends, as well as service mesh con‐
trol planes such as Istio offering the ability to canary test interservice traffic. The
Netflix team has also talked about how it performs automated canary analysis with
Spinnaker and Kayenta. We recommend keeping up-to-date with these develop‐
ments.

Which deployment type should I choose?
As has been shown, the different deployment strategies provide solutions to different
problems at the cost of additional resources and/or complexity, meaning each of
them will be better suited for different scenarios. Teams will have to analyze what
their needs are and the investments they are willing to make. Table 10-1 provides a
quick look at the different things that may need to be taken into account to aide in
this decision.

Table 10-1. Summary of the characteristics and costs of the deployment strategies

 Single
Target

All-at-Once Minimum in-
Service

Rolling Blue/Green Canary

Overall complexity Low Low Medium Medium Medium High

Service downtime Yes Yes No No No No

Mix of old and new
versions

No No Yes Yes No Yes

Deploying Applications | 263

https://www.getambassador.io/
https://istio.io/
http://bit.ly/2Q5UV7I
http://bit.ly/2Q5UV7I

 Single
Target

All-at-Once Minimum in-
Service

Rolling Blue/Green Canary

Rollback procedure Redeploy
previous
version

Redeploy
previous
version

Halt rollout,
redeploy
previous
version

Halt rollout,
redeploy
previous
version

Switch traffic
back to
previous
version

Kill canary
instance

Infrastructure
support during
deployment

Health
checks

Health
checks

Routing
alteration,
health checks

Routing
alteration,
health checks

Routing
alteration,
health checks

Routing
alteration,
weighted
routing, health
checks

Monitoring
requirements

Basic Basic Simple Simple Simple Advanced

Beware of Longer Warm-up Times

Java technology has evolved for many years under the paradigm of
the big monolithic application, and the performance of the JVM
has adapted to it: sections of code that run frequently are detected
and compiled to native code from bytecode by the JIT (just-in-
time) compiler, object creation and destruction patterns are recog‐
nized and the ergonomics of the garbage collector adjusted
accordingly, etc. However, this can work only when the application
has been running for a certain period of time and the JVM has had
the chance to gather statistics and make calculations.
After adopting continuous delivery, you will deploy your applica‐
tions much more often, and any statistical information that the
JVM may have gathered during previous executions will be lost.
Upon each new deployment, the JVM will have to start from
scratch, which might affect the overall performance behavior of
your application.
Moreover, if you have too many instances running in parallel, each
of them will receive only a small portion of the total traffic, which
means it will take longer to have run enough cycles so as to detect
patterns. If you combine this with the frequent redeployments, you
might have applications that never get to peak performance. If
warm-up time is a problem for you, consider using some advanced
features like CDS (Class Data Sharing) or AOT (ahead-of-time)
compilation; Matthew Gilliard has written a good article about it.

Working with Unmanaged Clusters
So far, we have assumed that we are working with a managed cluster—a cloud plat‐
form that keeps track of the totality of servers where our applications run, as well as
the different instances of our applications within those servers. This is certainly the

264 | Chapter 10: Deploying and Releasing from the Pipeline

https://mjg123.github.io/2017/10/02/JVM-startup.html

recommended approach, for it removes all the burden from the team, allowing it to
focus on building useful functionality; unfortunately, teams don’t always have this
option.

If your cloud platform doesn’t manage the cluster for you, or if you don’t have a cloud
platform as such but rather a set of machines, virtual or physical, that you can use for
your production environment, then you need to keep track of what application is
running where. The mechanism to do this will be different depending on the technol‐
ogy at hand and on the deployment strategy of your choice, but some general guide‐
lines can be applied.

First, you will need a dedicated database to record what is running where. This data‐
base will have at least the following tables:

Servers
Indicating the actual machines (virtual or physical) that exist, together with avail‐
able resources in each of them (memory, CPU share, etc.).

Applications
Details of all the different applications, together with the parameters that indicate
their running configuration (number of instances, memory to be allocated to
each instance, CPU share per instance, etc.).

Instances
Details of each single running instance, including the application it belongs to,
the server where it is deployed, its health status (deploying, running, failed, etc.),
and the parameters used when it was deployed, as these might be different from
the new parameters for the application (memory, CPU share, etc.).

Accounting for Resources Once

You might be able to specify only the total resources in the servers
table, and deduce the available resources by adding up the resour‐
ces used by all the instances in that server. Whether you want to
have that value precalculated or calculate it on the fly every time is
up to you.

Second, you need control over the routing logic. It doesn’t matter which mechanism
you use for this, whether you have a configurable load balancer, or edit DNS entries
on the fly, or anything else. What matters is that you can decide, whenever an external
request comes for your application, the actual instance or instances that the request
can be directed to.

Finally, you will need to write your own application to manage deployments. Ideally,
this will take the form of one or more command-line scripts, where you just need to

Deploying Applications | 265

indicate the application to be deployed, a pointer to the new version (a version num‐
ber, for instance), and the new parameters for deployment (if any):

deploy <application-id> <application-version> [deployment-params]

Designing your deployment application this way will allow you to hide the complex‐
ity from the CI/CD pipeline and from the development activity itself, while also let‐
ting you create more and more sophisticated deployment strategies over time.

Deployment Scripts Are Code

Because the deployment scripts aren’t part of the core of the busi‐
ness functionality that your team is providing, it may be easy to
forget that these scripts are also code, and that they need to be
treated like that. Make sure changes to deployment scripts are
appropriately recorded in your CVS, apply the same coding stand‐
ards (like pair programming or peer review), prioritize changes
through your backlog, and, above all, test your changes! Consider
having an entirely different cloud environment where you can try
out new versions of your scripts without impacting production.

A generic strategy
Regardless of your deployment strategy, a deployment will be composed of a combi‐
nation of three types of action, each potentially executed more than once and not
necessarily in this order:

• Deploying new instances
• Bringing down old instances
• Rerouting

For instance, the “Rolling deployment” on page 258 strategy will imply a succession
of the following:

1. Update routing to exclude one of the existing instances.
2. Bring down that instance.
3. Deploy the new instance.
4. Update routing to include the new instance.
5. Repeat for all other existing instances.

Similarly, the “Blue/green deployment” on page 260 strategy will imply the following:

1. Deploy all the new instances.
2. Update routing to point to the new instances.

266 | Chapter 10: Deploying and Releasing from the Pipeline

3. Bring down all the old instances.

By breaking down the deployment logic into these three types of action, you can
focus on each of them separately, knowing that you just need to combine them in dif‐
ferent ways to achieve the different deployment strategies. Let’s now cover the three
actions in detail.

Deploying a single instance. Deploying a single instance is the act of having a new ser‐
vice up and running at a particular location; it doesn’t concern itself with other
instances that may or may not need to be deployed or taken down, and it doesn’t con‐
cern itself with making this particular instance available to the world. It’s just a matter
of having a new instance up and running and ready to serve requests.

The actual process may be different, depending on your specific needs, but these gen‐
eral steps can work:

1. Check the resources that are needed for this instance by looking up the relevant
application details in the Applications table.

2. Locate a server with the capacity to run this instance (and ideally one that is not
already running another instance of the application) by looking in the Servers
table; if none is available, the deployment fails.

3. Update the entry for the server to account for the resources to be used by this
instance.

4. Create a new record in the Instances table to account for the new instance; mark
its health status as Deploying.

5. Copy the application to the server and start it.
6. Poll the health endpoint of the new instance regularly until it provides a healthy

status; this will let us know that the application is ready to serve requests.
a. If the health endpoint doesn’t return a healthy status within a configured

period of time, abort the deployment. Update the record in the Instances table
to Failed (or just delete it) and restore the available resources in the appropri‐
ate record of the Servers table.

b. (Optionally) Retry deploying the instance into a new server up to a maximum
number of times.

7. Update the record in the Instances table to mark the health status as Running.
8. The deployment is finished.

Bringing down a single instance. Analogously to the previous section, here we will just
cover the generic steps to bring down a particular instance. Again, your particular
needs might vary, but this can be a good base:

Deploying Applications | 267

1. Update the relevant record in the Instances table to mark its health status as
Undeploying.

2. Send a signal to the application to gracefully close (most frameworks support
this). This will make the application stop accepting new requests, but will wait
until existing ones have finished.

3. Poll the health endpoint until it no longer provides a healthy response; this will
indicate that it has successfully closed down.
a. If the health endpoint continues to provide a healthy response past a configu‐

rable time-out, abort the removal and mark the instance in the Instances table
as Failed-to-undeploy.

4. Remove the application binary from the server to avoid clutter building up.
5. Look up the relevant record in the Instances table to gather how many resources

were being used by this particular instance.
6. Update the relevant record in the Servers table to indicate the extra resources that

are now available.
7. Update the relevant record in the Instances table to mark it as Undeployed (or

simply delete it).

Transactions and Data Constraints in Your Deployments Database

We can’t emphasize this enough: your deployment application is a
production tool, and it needs to be treated as such. In the previous
steps, we’ve described multiple changes to the database; make sure
these are executed within a single database transaction. Also, con‐
sider adding data constraints to make sure you never over-allocate
resources to any server or that you don’t allocate two instances of
the same application to the same server.

Rerouting. This action is the most dependent on your particular routing technology,
and therefore the one that we can say the least about. The key thing to keep in mind
is that the configuration change to move from the old to the new routing details
needs to be atomic: after you provide a new routing configuration, no request can be
directed using the old details. Make sure your load balancer or routing technology of
choice can support this.

Changing Databases
Even though services seem to attract most of the attention when talking about contin‐
uous delivery, the fact is that information usually ends up being stored in a database.
Therefore, if continuous delivery requires the ability to change services at a constant

268 | Chapter 10: Deploying and Releasing from the Pipeline

pace to keep up with business needs, it also requires the ability to change your data‐
bases accordingly.

If you are working with a NoSQL database, like MongoDB, there isn’t much to worry
about: the database isn’t restricted by a data schema as such, and therefore any
changes to the data structure or to data itself can be performed in the application
code. If, on the other hand, you are working with a standard SQL database, there are
a few things that you need to look after.

Managing database deployments
Changing a database needs to be seen under the same light as changing an applica‐
tion: like an automated and tested process within a CI/CD strategy. This implies that
things like a schema modification or a data migration cannot be done manually or in
isolation, but rather must be done as part of a CVS-registered change that triggers a
build in our CI/CD pipeline. Moreover, you need to recognize that, as the needs of
the business evolve, so does the optimum data schema. Therefore, you need to be
comfortable with the idea of refactoring databases, just as you refactor application
code.

Multiple tools can help with this, and DBDeploy, probably the first tool designed to
ease database changes as part of a CI/CD pipeline, is worth highlighting. Although
DBDeploy still does its job, it’s fair to say that development has been somewhat aban‐
doned (the last commit in the DBDeploy repository as of the time of writing this
book dates to 2011), so new adopters should probably look at more recent alterna‐
tives like Flyway or Liquibase. In either case, all these tools work in a similar way:

• Changes to the database, either structure or data, are performed via migration
scripts. These scripts are standard SQL files.

• Each migration script must have a unique name and sequence number.
• The migration tool keeps a table for itself in which it keeps track of which migra‐

tion scripts have been run in the database and which ones haven’t.
• Whenever the migration tool is invoked, it will scan the totality of available

migration scripts, compare it with the ones that have already been run against a
particular database, identify the ones that haven’t been run, and then run those.

This process allows you to keep track of changes across multiple environments, so
you can try out a database schema change in test without affecting production. It also
gives you a history of changes, and lets you jump to any particular version of the
database at any point in time: you just need a blank database and then run the migra‐
tion scripts up to your desired point.

Undoing or amending changes is a bit tricky, though. It may be tempting to think
that, if you identify a bug after testing a particular migration script in the test envi‐

Deploying Applications | 269

https://github.com/tackley/dbdeploy
https://flywaydb.org/
https://www.liquibase.org/

ronment, you can just amend that particular migration script and rerun it. The truth
is that the migration tools don’t usually understand changes in a migration script, they
consider them only as either “already run” or “not yet run”; if a particular script has
already been run against a database (for instance, staging), then an amendment to the
script won’t trigger a rerun: the tool considers it has already processed it, and there‐
fore skips it. In these situations, the best option is to wipe out the database every time
so that all the scripts are always run (definitely not a good idea for production), or
simply add further migration scripts that undo or amend the previous ones.

Dealing with Long-Running Migrations: Abraham’s Experience
The beauty of young projects is that they rarely have truly large amounts of data to
deal with, which means database migrations run quickly and nicely. Fast-forward five
or ten years, and the story will be quite different. Try adding a new column to a table
that has hundreds of millions of records; even the best databases can take a good 30
minutes to cope—not the sort of time span that you have in mind when you use the
phrase “tight feedback loop.”

This is not the worst that I have seen, though. The main problem with these long-
running migrations is that the migration tool itself, or the CI build invoking the
migration tool, might time out halfway during the migration. This leads to a cata‐
strophic outcome: the order sent to the database will eventually succeed, performing
the migration, but the migration tool will not record it on its script-keeping table. In
other words, the migration has been run (or at least partially run), but the migration
tool hasn’t acknowledged it, which means it will try to run it again the next time it’s
invoked.

I have had the (mis)fortune of dealing with my fair share of database migrations, and
have learned a few tricks along the way. To overcome these limitations, you need to
play dirty with the migration tool.

First, you have to understand how these tools work internally. For each migration
script, the tool will analyze how many individual statements it has and will prepare to
run them in sequence. After all of them have been run successfully, the tool will add a
record on its script-keeping table to flag it as installed. Therefore, if one of these state‐
ments takes long enough to cause a time-out, I know that all statements up to and
including the offending one will (eventually) run successfully, but any statements
after it won’t. So here is the trick:

1. Whenever I suspect a statement might take too long, I create an individual migra‐
tion script for that statement alone. If multiple statements can cause trouble, I
create an individual migration script for each of them.

2. I prepend each long-running statement with a data update statement that will
add a record to the script-keeping table, marking this script as completed.

270 | Chapter 10: Deploying and Releasing from the Pipeline

3. I then append after the long-running statement another data update statement
that removes the record that I just added to the script-keeping table.

Depending on the actual data schema of your tool of choice, the final migration script
will look something like this:

INSERT INTO SCHEMA_VERSION (SCRIPT_NAME, SCRIPT_NUMBER)
 VALUES ("23_long_running_change", 23)

-- long-running change

DELETE FROM SCHEMA_VERSION WHERE SCRIPT_NUMBER = 23

Now, if the long-running change does cause a time-out, the last DELETE statement
won’t be executed, and the migration tool won’t attempt to record this migration
script as installed. However, I already did that myself with the first INSERT statement,
meaning my database will remain in a consistent status. The build in the CI/CD pipe‐
line may appear as failed once, but the next time it runs, it will work with no problem.

If, on the other hand, the long-running change does not cause a time-out, then the
DELETE statement will be executed, leaving the script-keeping table clean and letting
the migration tool itself update it. Either way, writing the migration scripts this way
will ensure that the database is in a consistent state at all times.

Separating database and application deployments
One of the requirements for a continuous delivery process is minimizing the impact
of potential failures so as to allow for continuous changes. This is why you should
always try to avoid multi-application deployments: each application should be
deployable independently of others. The same is true for database and application
deployments.

Whenever you prepare a migration script, you should make it so it can be deployed
without breaking any compatibility with any running applications, for the following
reasons:

• If multiple applications use your database, there is no guarantee that all of them
will be deployed at the same time (an individual deployment may fail at any
time); if this were to happen, the applications that haven’t been upgraded to the
next version will fail to communicate with the database from now on.

• Even if only one application uses your database, you could have a mix of old and
new instances of your application, depending on your deployment strategy (e.g.,
rolling deployment); the new instances will work while the old ones won’t,
defeating the purpose of a deployment with zero downtime.

• Finally, even in the extreme case where only one application uses your database
and you don’t use a deployment strategy that mixes old and new instances (e.g.,

Deploying Applications | 271

all-at-once deployment), there is no guarantee that database and application will
be deployed at exactly the same time, providing a window of failure.

Regardless of your case, you need to acknowledge that your database is an independ‐
ent component that has its own deployment cycle, and respect the relationship with
connecting applications. For changes that can potentially break compatibility, take a
look at “Multiple-Phase Upgrades” on page 283.

A different matter is whether the migration scripts need to be on their own reposi‐
tory. This is a debating point, and different individuals may lean toward different sol‐
utions. In general, if a database is used by multiple applications, and each of these
applications has its own repository, then it is advisable that the migration scripts have
their own space, too. If, on the other hand, the database is used by only a single appli‐
cation, or it is used by a set of applications that are all managed together in the same
repository (a monorepo), then it is OK to include the migration scripts in the same
repository.

Communicating via stored procedures: turning the database into just another service
Stored procedures have somehow grown out of fashion over the last few years. Many
developers today tend to associate them with bureaucratic organizations in which
everything that is database-related is managed by DBAs, and developers are allowed
to access data only via a set of rigidly designed stored procedures. This has the unfor‐
tunate effect of blaming the messenger: if appropriately managed, stored procedures
can be a great ally to provide a faster development environment, and can even let you
look at your databases in a new, imaginative way.

The main reason a microservices architecture works is that it provides the right bal‐
ance between exposure and encapsulation. Each service will hide its internal work‐
ings to others, and will allow communication only via a number of known endpoints.
In the same way, you can look at your database as just another microservice where
the stored procedures are the known endpoints, and where communication is per‐
formed via SQL as opposed to HTTP. Knowing that connecting applications access
the database only via stored procedures, and assuming that you keep the behavior of
the stored procedures constant, you can perform as many refactorings to the internals
of the database as you want without affecting any applications.

This, of course, requires that your stored procedures are appropriately tested, just as
you test the endpoints of your services. Testing databases is out of the scope of this
book, but from a Java point of view, the best tools to consider are DbUnit and Unitils.

Releasing Functionality
The previous section covered the mechanisms and strategies that allow code changes
to make the journey from the pipeline to production. However, as we said before,

272 | Chapter 10: Deploying and Releasing from the Pipeline

http://dbunit.org
http://unitils.sourceforge.net/

that’s only one side of the story. The fact that you are now able to continuously push
new changes to production doesn’t mean that you should expose your users to a con‐
stant stream of changes; users tend to like a rather stable and predictable experience,
and there is only so much change they can tolerate. On the other hand, some changes
may make sense only when grouped together with others, but you don’t want to
revert back to an old-style big-bang deployment where all these changes are intro‐
duced in one go. You need a mechanism to decide which features you expose to users
that is orthogonal to the deployment mechanism.

On the other hand, you must not forget that it’s not just users that you provide func‐
tionality to. In the world of microservices, there is a lot of service-to-service commu‐
nication in the form of RESTful API calls, and sometimes you may need to make
changes to these APIs to enable new functionalities. This is another instance where
change cannot be brought about without further thought, since modifying the way an
endpoint works may impact some of the client applications using it, and this, in turn,
could create cascading effects onto ulterior services.

It is therefore essential that you adopt a set of practices, independent from the ritual
of deploying services, that allow you to control the way in which changes that might
affect other entities are introduced, so you can communicate with the teams or
organizations responsible for those entities and make the necessary arrangements.
That’s what we will cover in this section.

Service Meshes: The Future of Releasing Functionality?
Since late 2016, there has been increasing interest in service meshes, a dedicated infra‐
structure layer for making service-to-service communication reliable, secure, and fast.
Open source projects and commercial products have emerged in this space, such as
Linkerd, Envoy/Istio, Cilium, and Consul Connect. As we go to print, the practices
around working with a service mesh are still being developed, so we won’t offer guid‐
ance here. However, we encourage you to keep up-to-date with this interesting space,
particularly if you are working with containers. Thought leaders in this space who
also have an interest in Java include Christian Posta and Burr Sutter from Red Hat.
Both blog extensively, and have also published an O’Reilly report, Introducing Istio
Service Mesh for Microservices, that is well worth reading.

Feature Flags
Feature flags are essentially configuration options that determine whether a particular
functionality or feature should be exposed to the user during a given request. Since
they are just configuration options, they can have different values in different envi‐
ronments, meaning you can give access to all the new features in the test environment
while hiding them in the production environment until you are ready for full rollout.

Releasing Functionality | 273

Also, like any other configuration option, you can construct them so they can be
modified without redeploying the service (see “Managing Configuration and Secrets”
on page 284).

There are several ways to implement feature flags, but they mostly come in one of
three flavors:

Binary flags
The flag can have a value of true or false, effectively enabling or disabling the
functionality. This is the simplest of flags.

Throttle flags
The flag represents the percentage of requests that should use the new feature,
with 0% being equivalent to a disabled binary flag, and 100% equivalent to an
enabled binary flag. For values in the middle, you can generate a random number
between 0 and 100 for every request, and provide access to only those where the
generated number is below the flag value. Implementing throttle flags carries a
little more complexity than binary flags but allows for the new feature to be
released gradually.

Category flags
While throttle flags give control over the number of users exposed to the new fea‐
ture, they don’t give control over which particular population is exposed; this can
be achieved with category flags. Given a particular property attached to each
incoming request, a category flag includes the subset of possible values for that
property that should grant access. In other words, access to the feature is pro‐
vided if the value of the target property in the incoming request is within the
configured set of values of the category flag, and rejected otherwise. Category
flags are a bit harder to implement but provide the finest form of control. For
example, if you are offering some kind of commercial deal for which you need
legal approval, you could be opening the feature only to visitors from countries
where approval has already been obtained. Similarly, if you have some kind of
beta-tester user program, you could open experimental features only to affiliated
users.

The Extended Java Shop includes a fully implemented example of feature flags. As
mentioned before, this application represents a digital shop where different mechani‐
cal parts can be purchased. Prices are set and managed statically at the Product Cata‐
logue service.

Let’s assume that we want to trial a new Adaptive Pricing service, provided by a third
party. This Adaptive Pricing service promises to calculate in real time the optimum
price for a product, taking into account overall stocks in different providers, demand,
etc. The idea is that, by using the Adaptive Pricing service, we might be able to auto‐
matically adjust the price of our products and increase profit margins. The third

274 | Chapter 10: Deploying and Releasing from the Pipeline

party charges us a fee for every single time they successfully provide a price in
response to one of our requests, so we’d like to limit the number of calls that we make
until we are sure that this service is worthy. Also, we are unsure of how users will
react to these variable prices, so we want to limit any potential discontent.

The best way to tackle this dilemma is with a throttle flag. The Product Catalogue ser‐
vice provides to the Shopfront service the static prices as managed in our inventory,
and then the Shopfront service decides whether to use that price or query the Adap‐
tive Pricing service for a new one. In our case, we have created a service to manage
feature flags, so the Shopfront service has to query the Feature Flags service on every
request to get the current value of the flag, and then needs to decide whether the cur‐
rent request fits.

The Feature Flags service can be found under the folder /featureflags of the Extended
Java Shop repository. The section within Shopfront that uses this flag to determine
the price to use can be found in the ProductService class, although the most relevant
parts are displayed in Examples 10-5 and 10-6 for convenience.

Example 10-5. Using a feature flag to decide on-the-fly whether an adaptive price should
be used instead of the original one

// Check value of flag, if it applies, attempt to get adaptive price
private BigDecimal getPrice(ProductDTO productDTO) {
 Optional<BigDecimal> maybeAdaptivePrice = Optional.empty();
 if (featureFlagsService.shouldApplyFeatureWithFlag(ADAPTIVE_PRICING_FLAG_ID))
 maybeAdaptivePrice = adaptivePricingRepo.getPriceFor(productDTO.getName());
 return maybeAdaptivePrice.orElse(productDTO.getPrice());
}

Example 10-6. Mechanism to decide whether a given throttle feature flag should be
applied

// Get value of flag and check if a randomly generated value falls within
public boolean shouldApplyFeatureWithFlag(long flagId) {
 final Optional<FlagDTO> flag = featureFlagsRepo.getFlag(flagId);
 return flag.map(FlagDTO::getPortionIn).map(this::randomWithinPortion)
 .orElse(false);
}

private boolean randomWithinPortion(int portionIn) {
 return random.nextInt(100) < portionIn;
}

For Your Everyday Rump-Up: Smart Throttles
If you use throttle feature flags often, and you are in the habit of increasing the value
of your throttle at a gradual pace until you reach 100%, you might find it tedious hav‐

Releasing Functionality | 275

ing to update the value of the flag every day. If that is the case, you can try with a
smart throttle, which is just a fancy name for a throttle flag that automatically increa‐
ses its value on a daily basis (or any other frequency that suits you). Your exact needs
might vary, but something like this can do the trick:

 public class SmartThrottleFlag {
 private int initialPortionIn;
 private LocalDate startDate;
 private int dailyIncrement;

 /* Constructor goes here */

 public int getPortionIn() {
 final LocalDate now = LocalDate.now();
 if (startDate.isAfter(now)) {
 return 0;
 }

 long daysPast = DAYS.between(startDate, now);
 long totalIncrement = daysPast * dailyIncrement;
 long currentPortionIn = initialPortionIn + totalIncrement;
 return Math.min((int) currentPortionIn, 100);
 }
}

Semantic Versioning (semver)
In the current world of microservices, the most common way to make shared func‐
tionality available across codebases is quickly becoming the creation of a new service
for that functionality. Sometimes, however, you still might find it useful to create
libraries of shared functionality, especially for syntactic sugar constructs, and you
need to be careful about how these libraries evolve.

As introduced in Chapter 5, Semantic Versioning, or semver, is a set of rules that let
you know the extent of a change in a library just by checking its version number. In
its simpler form, version numbers that follow semver have three numbers separated
by dots: MAJOR.MINOR.PATCH. When a new version of a library, framework, or
tool is released, only one of these three numbers is allowed to increase, typically by a
single unit. The number that is increasing will tell you the scope of the change:

MAJOR
The new version introduces backward-incompatible changes; using the new ver‐
sion might break client code at compilation and/or runtime. When the MAJOR is
updated, MINOR and PATCH are commonly set to zero.

276 | Chapter 10: Deploying and Releasing from the Pipeline

MINOR
The new version introduces some new, backward-compatible features; existing
clients should be able to adopt the new version without any impact. When the
MINOR is updated, PATCH is commonly set to zero.

PATCH
No new functionality has been added; this new version corrects an existing bug.

Semver allows clients to decide when they are ready to adopt a new version, or even
whether they want to adopt new versions automatically. For instance, Maven allows
you to provide dependency information indicating a fixed-value version or a range of
versions. If you know that the maintainers of a particular library use semver, and you
are currently using version v5.0.0 of their library, it would be advisable to write your
dependency like this:

<dependency>
 <groupId>com.github.quiram</groupId>
 <artifactId>java-utils</artifactId>
 <!-- square bracket includes the value, curved bracket excludes it -->
 <!-- this is equivalent to v5.0.x -->
 <version>[v5.0.0,v5.1.0)</version>
</dependency>

If you feel adventurous enough, you could even register your dependency to auto‐
matically update to the latest minor version by using [v5.0.0,v6.0.0). This
shouldn’t ever break your client code (barring mistakes) and would always give you
the latest available features. It is not a good idea to automatically upgrade to new
major versions, though.

An example of semantic versioning in action can be seen in the external library java-
utils. If you take java-utils and explore versions v4.0.0 through to v4.6.0, you’ll notice
that each new version simply adds methods to helper classes, which are evidently
backward-compatible changes. The next version after v4.6.0 is version v5.0.0, which
represents a backward-incompatible change. If you inspect the changes in this new
version, you we will see that the meaning of the method ArgumentChecks.
ensure(Callable<Boolean>, String) has changed: in version v4.6.0, this method
expected a fail condition as the first argument, but in version v5.0.0 it expects a pass
condition—it’s exactly the opposite!

The next version after v5.0.0 is v5.0.1, which indicates a bug fix. Indeed, if you inspect
the changes, you will see that v5.0.0 inverted the meaning of the aforementioned
ensure method, although it didn’t update all the locations within the library where
this method was called, breaking some functionality; v5.0.1 fixed this.

Releasing Functionality | 277

https://github.com/quiram/java-utils
https://github.com/quiram/java-utils

What’s with the v?

Sometimes different organizations will push for different sets of
best practices for slightly different but often interchangeable
aspects of programming; versioning is one of them. While semver
advocates for a purely numerical version number, GitHub advo‐
cates for prepending versions with the letter v. Both approaches
aren’t incompatible, since technically GitHub’s style refers to
a tag that points to a specific version, not to the version itself. So in
GitHub speak, v1.2.3 is a tag that refers to version 1.2.3 of the code.
As a matter of fact, even the semver repository uses the v prefix in
its releases.
Some systems and tools may not make a distinction between the
two styles, and treat either of them as a version number. This is
usually OK, but depending on the build system that you use, this
might have the effect of confusing the build tool when using ranges
for the MAJOR component of the version (e.g., it might consider
that version v10.x.y is earlier than v2.x.y). This is just another rea‐
son not to use ranges for the MAJOR component of the version.

Backward Compatibility and Versions in APIs
Semver is an incredibly powerful and yet simple paradigm that can reduce friction
between producers and consumers. However, it doesn’t easily apply to APIs. The con‐
sumption of libraries and frameworks has a history of using specific version numbers
to record snapshots of code, and tools have been adapted to it. As we have shown,
you can instruct your dependency management system (for instance, Maven) to grab
the latest available version from within a range pattern, but this should not be done
trivially when consuming a web service’s API.

The first thing to realize is that, whereas the version number of a library refers to the
implementation of the code within the library, the version number of a service refers
to the interface. Therefore, a new versioning paradigm is needed, one that doesn’t take
into account changes in implementation, but changes in behavior.

Now, the topic of versioning APIs is a rather controversial one, and the development
community hasn’t yet agreed on a single best practice. Several options exist, and dif‐
ferent people will defend their position passionately. The only thing that can be cate‐
gorically stated is that some solution is needed. In this section, we present some of the
most common options and indicate their pros and cons so that you can make your
own informed decision.

Avoid versioning
The first approach to manage versioning in an API is simply to avoid it: if your team
needs to make a particular change to the API, make it in a way that keeps backward

278 | Chapter 10: Deploying and Releasing from the Pipeline

https://github.com/semver/semver/releases

compatibility. In practice, this means keeping the endpoint URL as it is, and changing
the structure of the returned object only to add new fields. Existing clients can con‐
tinue to use the API, oblivious to the change, while clients who need the new feature
have it there available for them.

An example of this approach can be found in the Extended Java Shop—more pre‐
cisely, in the Feature Flags service. The story goes as follows. The Feature Flags ser‐
vice was initially designed as a throttle flag with three parameters: the flag ID, the flag
name, and the rate of requests that should be granted access to the feature (the “por‐
tion in”). At some point, the business realized there was a downside to the current
way feature flags were managed: since each request was independent from the others,
it could happen that the same user was granted access to the feature in one request
and rejected in another one, potentially providing an inconsistent experience.
Depending on the feature, this might be an acceptable situation, or it may not. To
address this, a new functionality was to be added to the Feature Flags service: flags
should include a “sticky” parameter, which indicated whether the behavior across
requests would be the same for a given user or whether it was allowed to change.

The implementation of the sticky parameter has been done in a backward-compatible
way to avoid the need for a new version: a new field has been added to the response.
Existing consumers of feature flags, like the shopfront service, can simply ignore this
new field until they are ready and/or willing to make use of it.

Ignoring New Fields May Not Be the Default Behavior

Backward-compatible changes implemented this way work only if
the client application that is consuming the service ignores any new
or unknown fields, which is not necessarily the default. For
instance, in the case of acceptance tests in the Extended Java Shop,
which uses Jackson to deserialize JSON objects, this has to be
explicitly requested by using @JsonIgnoreProperties(ignoreUn
known = true); see the Flag class in the folder /acceptance-tests for
details.

A similar approach can be used when you need to modify an existing field: instead of
modifying it, you can choose to add a new one with the new meaning. This, of
course, can work for only so long, and eventually your API will be littered with a
mixed bag of old and new fields. If you get to this point, or if you need to make
changes that cannot be implemented by simply adding new fields, then you need to
create a new version of the API as indicated next.

Version the endpoint
A simple and effective way to create a new version for a backward-incompatible
change in the API is to include the version number as part of the endpoint itself. This

Releasing Functionality | 279

way, if the current version of the resources is located under /resource, the new version
can be located at /v2/resource. This is a common approach, used in well-known serv‐
ices like AWS, and it’s one that is simple to implement and communicate. You can
easily switch from one version to the other by quickly editing the URL. You can give
someone a link to easily try out the new version. The pragmatism under this
approach is its main advantage.

The Extended Java Shop includes a case of versioning through endpoints in the Prod‐
uct Catalogue service. Let’s say that, in our example, the business has decided to have
two different prices for the products: the single price, when the item is purchased in
small amounts, and the bulk price, with an implicit discount for large purchases. The
Product Catalogue would then also indicate, for each product, the number of units
that need to be purchased at the same time to qualify for the bulk price. Developers
decide that it would be too messy to implement this new feature simply by adding
new fields to the response, and decide to create a new version of the API. Version 1 of
the Product Catalogue returns a Product object like this:

GET /stocks/1

200 OK
{
 "id": "1",
 "name": "Widget",
 "description": "Premium ACME Widgets",
 "price": 1.20
}

Version 2 returns a modified object with extra information:

GET /v2/stocks/1

200 OK
{
 "id": "1",
 "name": "Widget",
 "description": "Premium ACME Widgets",
 "price": {
 "single": {
 "value": 1.20
 },
 "bulkPrice": {
 "unit": {
 "value": 1.00
 },
 "min": 5
 }
 }
}

280 | Chapter 10: Deploying and Releasing from the Pipeline

You can see how this has been implemented by looking at the two versions of the
ProductResource class in the Product Catalogue service.

This is a backward-incompatible change that has been implemented using the
version-endpoint pattern. This way, requests to /products would return the first ver‐
sion, while requests to /v2/products would return the second version. Clients using
the first version of the API can continue to operate as normal, but those who want to
use the new features can make the necessary arrangements to use the second version.
Note that, in our sample application, the Shopfront service is still using version 1 of
the API.

Version the content
Detractors of the version-in-endpoint approach usually point out how it breaks the
semantics of the RESTful principles: in a pure RESTful API, an endpoint is meant to
represent a resource, not a version of a resource, so version numbers should not be
included in the URL. Instead of versioning the endpoint, you can version the content
by means of the Content-Type header.

Let’s assume your service provides a response in JSON format. The value of the
Content-Type header in this situation will most typically be application/json. You
can, however, provide a versioned content type using the pattern application/
vnd.<resource-name>.<version>+json, where <resource-name> is the name of the
resource that this type refers to, and <version> is the version of the resource format.
Clients can then indicate the version that they want to be provided by using the
Accept header. This way, the same endpoint can serve different versions of the same
resource.

An example of this can be found in the Stock Manager service of the Extended Java
Shop. In this case, we can say that the business realized that some of the pieces on sale
were particularly heavy, and they wanted to impose a limit on the number of them
that a customer could buy in a single purchase to ease the packaging and delivery.
(Whether it is credible that any business would willingly limit the number of prod‐
ucts that they sell is something that we will not debate here—just roll with it.) For
this, the development team decided that stocks should include both the total number
of available units, and the number of units that could be purchased at the same time.
Once again, the developers decided that it would be better to do a new version of the
API than try to add the changes to the existing one in a backward-compatible
manner, and decided to implement this change by using the version-in-content
approach. This way, the old API still worked in the following way:

Accept: application/json
GET /stocks/1

200 OK
Content-Type: application/json

Releasing Functionality | 281

{
 "productId": "1",
 "sku": "12345678",
 "amountAvailable": 5
}

The new API is available by changing the header:

Accept: application/vnd.stock.v2+json
GET /stocks/1

200 OK
Content-Type: application/vnd.stock.v2+json
{
 "productId": "1",
 "sku": "12345678",
 "amountAvailable": {
 "total": 5,
 "perPurchase": 2
 }
}

Details of this implementation can be found in the StockResource class in the Stock
Manager service. Note that, in our example, the Shopfront service is still using ver‐
sion 1 of the API.

Don’t Mix Your API Versioning Strategies

Either of the API versioning strategies mentioned here can work,
but we advise you to pick one and stick to it. Having both version‐
ing strategies in the same application or system will make it harder
to manage and will confuse your consumers. As Troy Hunt said,
the whole point of an API is to provide predictable, stable con‐
tracts.

Advanced change management
On the far end of the spectrum lies the argument that the mere fact that a RESTful
API needs to be versioned is an antipattern, since it doesn’t strictly follow the rules of
hypermedia communication. The URIs of our resources should be immutable, and
the provided content should use a language that is parsable upon a definite set of
rules; this way, changes in the content can just be reinterpreted by the consumer, and
no coordination between provider and consumer is needed.

Although strictly true, most people find this approach harder than it’s worth, and
revert back to one of the approaches outlined previously. For this reason, we have
decided not to cover it in this book, although readers who want to investigate further
are encouraged to check Roy Fielding’s work.

282 | Chapter 10: Deploying and Releasing from the Pipeline

https://www.troyhunt.com/your-api-versioning-is-wrong-which-is/
https://roy.gbiv.com

You Don’t Need API Versioning Until You Do

After reading this section, you might be compelled to pre‐
ppend /v1 to any new endpoint that you create, or even to the end‐
points that you already have (or, if you have opted for versioning
via content type, then change the content type of all your end‐
points). The truth is that, even though you need to be ready to deal
with API changes, you might not need to deal with them right from
the outset: if you’re creating a new service, and you have a lot of
decisions to make, the versioning scheme is one that you might be
able to delay. Simply assume that a lack of version means version 1,
and when (and if) you need to deal with a change, then you can
choose a versioning scheme.

Multiple-Phase Upgrades
In the previous examples, we presented some use cases in which a service is to offer a
new piece of functionality before clients are ready to consume it, meaning backward-
compatibility has to be preserved in some way: either by making a backward-
compatible change, or by creating a new version of the API. You may be tempted to
think that if you control both the provider and the consumer of the API, you can skip
this trouble and simply change both at the same time, but you would be wrong.

Even if you do change both at the same time, there is no guarantee that those changes
will be made available in production also at the same time. On one side, your deploy‐
ment strategy may imply that both the old and the new version of the provider coex‐
ist in production during some time; if your client can cope with only the new version,
it will experience significant disruption during deployment. On the other hand, and
as you will see in Chapter 11, your changes will have to go through multiple test pha‐
ses, and there is always the chance that those tests pass for the provider but not for
the consumer (or vice versa), meaning you’ll have in production mismatching ver‐
sions of provider and consumer.

The moral of the story is that, regardless of whether you control both sides of the
interaction or only one, you will need to perform your actions in numerous steps to
make sure both sides don’t fall out of sync. This is sometimes referred to as Expand
and Contract, and usually boils down to the following steps:

1. Create a new version of your API or library, and push the changes.
2. Let the change make its way through the pipeline. If you are changing an API,

make sure the deployment is completely finished and that the new API is avail‐
able in all the running instances.

3. Change your consumer(s) to use the new API or library.

Releasing Functionality | 283

https://www.martinfowler.com/bliki/ParallelChange.html
https://www.martinfowler.com/bliki/ParallelChange.html

4. If you’re updating an API, and once every consumer has been updated to use the
new version, you can consider deprecating the old one.

Deprecating old APIs
Keeping every historical version of an API would be a maintenance nightmare. That’s
why, even though you want to make it easier for consumers to adopt new APIs at
their own pace, you also want to make sure they do move on.

You can track the number of people using each version of your APIs (if at all) by
keeping usage metrics of each of your versioned interfaces (see Chapter 13 for infor‐
mation about metrics). Once you are confident that nobody is using the old versions,
either because you know or control all the potential consumers, or because you can
see in the metrics reports that there is no usage, you can confidently delete the old
versions.

Sometimes you won’t feel in a position to remove the old endpoints straightaway,
either because you know there is some usage but you can’t track the owner, or because
yours is a public API and you can’t assert with confidence that nobody is using the
old API anymore. If this is the case, you might be able to nudge the slow movers by
keeping the old interface but removing the implementation: requests to the old API
can be replied to with an HTTP redirect instruction:

GET /v1/resource

301 MOVED PERMANENTLY
Location: /v2/resource
Content-Type: text/plain
This version of the API is no longer supported, please use /v2/resource

Chances are, the consumer will still be broken by this, since the request will be redi‐
rected to the new version, for which the consumer is probably not ready. However, at
least they will be notified of what they need to do to fix the situation.

Managing Configuration and Secrets
In previous sections, we correctly identified how to best manage application deploy‐
ments and functionality releases as part of a continuous delivery process. There is,
however, one last responsibility to be taken care of whenever we consider the evolu‐
tion of applications onto newer versions: configuration.

In the past, configuration used to be something managed aside from code. Applica‐
tions would be deployed to servers, assuming that they would be able to find a file at a
particular location and that they would contain the different configuration options
needed by the application. Changes to the configuration would be controlled by a
separate process and different tools, typically known as Software Configuration Man‐

284 | Chapter 10: Deploying and Releasing from the Pipeline

agement (or SCM). Quite frequently, it would even be different people who handled
code and configuration.

However, the dynamic environment that we have showcased in this chapter makes
managing configuration in this way impractical. New computer instances might be
created and added to your environment at any time, and configuration files would
have to be copied there as part of the instantiation. A change in configuration would
have to be spread across a large number of computers. And the fact that multiple
services could be sharing the same computer instance presents us with the real possi‐
bility of a configuration clash. A different way is needed.

This section indicates the most common ways to manage configuration in the world
of microservices and continuous delivery, indicating the pros and cons of each
approach.

“Baked-In” Configuration
The simplest way to configure an application is to pack the configuration file with the
application itself. What’s more, you can keep the configuration file in the same repos‐
itory as the code, which allows you to keep track of changes to configuration. Operat‐
ing this way means you don’t need to do anything special to ensure your application
is configured when deployed into production, which makes it a convenient and
appealing option. All the services in the Extended Java Shop make use of baked-in
configuration; the Spring Boot-based ones use the file applications.properties, while
the Dropwizard-based one (Product Catalogue service) uses product-catalogue.yml.

It might seem that, by following this baked-in configuration approach, you can have
only one set of values for the configuration, meaning that you cannot have different
configurations for different environments (e.g., test and production). However, your
baked-in configuration can include several options or profiles, and then your applica‐
tion can decide to pick one or the other, based on a parameter or variable that the
environment in question is making available. An example of this can be seen in the
Feature Flags service, which uses Spring Boot’s concept of profiles to keep two sets of
configuration values; this is achieved with three baked-in configuration files:

application.properties
Indicates which profile is used by default

application-test.properties
Indicates the configuration values to use according to the test profile

application-prod.properties
Indicates the configuration values to use according to the prod profile

The first file sets the property spring.profiles.active to prod, indicating that
Spring Boot should use the contents of application-prod.properties to configure

Managing Configuration and Secrets | 285

the application. However, this property can be overridden by an environment variable
of the same name. This is done in the Acceptance Tests (folder /acceptance-tests). If
you inspect the docker-compose.yml file in the Acceptance Tests module, you will
notice the following:

featureflags:
 image: quiram/featureflags
 ports:
 - "8040:8040"
 depends_on:
 - test-featureflags-db
 links:
 - test-featureflags-db
 environment:
 - spring.profiles.active=test

The last element, environment, sets the environment variable spring.profiles.
active to test. This will override the setting in the file application.properties, and will
signal Spring Boot to use the file application-test.properties when bringing up and
configuring the Feature Flags service. This way, you can use the baked-in configura‐
tion pattern and still keep different configuration sets for different environments.

Externalized Configuration
One of the consequences of baked-in configuration is that, since you are tracking it as
just another file (or set of files) within your code, any change to configuration will be
treated by the build pipeline like a change in code. This will sometimes be desirable,
because a change in configuration might require the execution of your test suite, but
in many other cases it will just trigger unnecessary work: for instance, a change in a
flag for the test environment will not only trigger the entire suite of sets, but also
result in a new deployment to production for something that doesn’t affect the pro‐
duction environment at all.

There is another disadvantage to baked-in configuration: since it is managed as
another file in the code repository, only developers can make changes to it. Again,
this might be appropriate for some configuration options (like the connection pool‐
ing parameters for a database connection). For some other cases, you might want to
give that power to different members of the organization. For instance, for the case of
managing feature flags, you may want to let the business decide when and how these
are tweaked. Another case might be if the infrastructure team provides some resour‐
ces for your application—for instance, log pools (see Chapter 13): maybe you want
certain details to be managed by the infrastructure team, so they can manage and
change details of the infrastructure with flexibility, and your application simply reads
the configuration from them. Either way, they will be instances in which you don’t
want the configuration to live within your own application, but to be provided from
outside.

286 | Chapter 10: Deploying and Releasing from the Pipeline

The solution for externalizing configuration will depend on the reason by which you
want this to be externalized; you might even want to have multiple solutions for dif‐
ferent cases. In the Extended Java Shop, we opted for externalized configuration for
the case of feature flags. We could have kept feature flags just as another parameter in
the application.properties file of Shopfront service, but we decided to go through the
trouble of creating an independent service to make that configuration editable
without code changes. If business members are tech-savvy enough, they can make
HTTP requests to the Feature Flags service to edit the flags as they need to; if not, you
can always create a little GUI that wraps the calls to the service.

Other forms of externalizing configuration could be setting up environment variables
in the computer instances where services will run, or creating files in special locations
for the application to pick them up.

Remember: You Lose Control of What You Externalize

With baked-in configuration, you can be fairly confident that any
configuration item that you need is exactly where you expect it; if
not, you can just call it a bug and fix it. However, when you decide
to externalize your configuration items, you’re dependent on what
other people or teams might decide to do. Feature flags could be
deleted without notice; other configuration items may have invalid
or unexpected values in them. Make sure your application can cope
with all these scenarios.

Handling Secrets
Some configuration items are especially sensitive. We are talking, of course, about
secrets of different kinds: database passwords, private keys, OAuth tokens, etc. We
obviously can’t include these in the baked-in configuration, but even the externalized
configuration may need special treatment to make sure the values are secure.

Keeping secrets private while still making them available where they are needed is a
surprisingly difficult task. Our best advice is that you don’t try to create your own sol‐
ution, at least not from the outset. All orchestrating platforms offer some kind of
secret management with different degrees of privacy, depending on how hard your
needs are.

For instance, you might not mind if everyone in your team or organization knows the
values for these secrets; you just don’t want to record them as plain text anywhere
(least of all in your code repository). In this case, you can use tools like Kubernetes
Secrets. Kubernetes allows you to create secret keys and give them a name to identify
them. These keys are then stored safely by Kubernetes. You can configure your appli‐
cations to consume these keys, and Kubernetes can make them available to them as
either files or environment variables. When your application tries to read these files

Managing Configuration and Secrets | 287

https://kubernetes.io/docs/concepts/configuration/secret
https://kubernetes.io/docs/concepts/configuration/secret

and/or environment variables, the keys will already have been decoded, and your
application will be able to use them normally.

AWS provides a similar way to handle secrets via Parameter Store, which is part of
Systems Manager. Parameter Store is integrated with Amazon ECS, meaning your
applications can use it easily. Other platforms will have other similar features; check
out the relevant configuration to know more.

Summary
In this chapter, we covered the aspects surrounding the last section of our continuous
delivery pipeline: automated delivery. As it usually happens, the last mile is the hard‐
est one, and extra challenges appear when you want to set up an environment where
you deliver changes at a constant pace:

• Deployments and releases are two different concepts. The former is the technical
activity of bringing a new version of an application to production, while the latter
is the business activity of allowing users access to functionalities.

• Different deployment strategies are available, each with a different profile of
advantages, resources needs, and complexity. There is no right or wrong strategy,
but strategies that are more or less adequate to your needs.

• You may need to choose when and how to make new features available to your
consumers, either end users or other teams. Feature flags allow you to gradually
open features to the public, while versioning schemes for libraries (like semver)
and for APIs (like version-in-endpoint or version-in-content) allow your con‐
sumers to adopt new features at their own pace.

• With the increase in the number of moving parts, configuration needs to become
a first-class citizen. Baked-in configuration is easy to handle and track, but
accessible only to developers. Externalized configuration allows other people to
manage configuration details, but it can become less reliable. Secrets, like pass‐
words or keys, need special support from the orchestrating platforms or sophisti‐
cated purposed-built solutions.

Thanks to the last two chapters, you can now build an end-to-end automated pipeline
that can bridge the gap from the development station to production. In the next
chapter, we will explore what you need to add to that pipeline to ensure that your
changes don’t introduce any regressions or unintended consequences.

288 | Chapter 10: Deploying and Releasing from the Pipeline

https://aws.amazon.com/systems-manager/features/

CHAPTER 11

Functional Testing: Correctness and
Acceptance

Testing is vitally important to confirm that the delivery of software provides value to
the business, is easy to maintain, and performs within specified constraints. In this
chapter, you will learn about functional testing, which is focused on asserting that the
system provides the specified functionality, both from the business perspective and
the technical perspective.

Why Test Software?
Why should you test software? The answer that first jumps to mind is to ensure that
you are delivering the functionality required, but the complete answer is more com‐
plex. You obviously need to ensure that software that you are creating is functionality
capable of doing what was intended—delivering business value—but you also need to
test for the presence of bugs, to ensure that the system is reliable and scalable, and in
some cases cost-effective.

Traditionally, validating the quality of a software system has been divided into testing
functional requirements and testing nonfunctional requirements—also referred to as
cross-functional or system quality attributes. Before exploring the process of testing
functional requirements within a CD pipeline, you first need to understand the vari‐
ous types and perspectives of testing.

What to Test? Introducing Agile Testing Quadrants
It is important that you are clear about the types of testing that must be performed on
a system that you are building, and you also need to understand how much of this
can be automated. A useful introduction to the types and goals of testing can be

289

found in Agile Testing: A Practical Guide for Testers and Agile Teams (Addison-
Wesley) by Lisa Crispin and Janet Gregory.

The entire book is well worth reading, but the most important concept for us in this
chapter is the Agile Testing Quadrants, based on original work by Brian Marick. The
Agile Testing Quadrants, depicted in Figure 11-1, is a 2 × 2 box diagram with the x-
axis representing the purpose of the tests (from supporting the team to critiquing the
product) and the y-axis representing whom the test is targeting (from technology fac‐
ing to business facing). The resulting quadrants within the diagram are labeled Q1 to
Q4, and no ordering is implied with this numbering system; this is purely for
reference.

Quadrant 1 is located in the position that is strongly supporting the team and tech‐
nology facing, so the tests falling within this quadrant are unit and component tests.
These types of tests can act as scaffolding around which the development team cre‐
ates the software. They can also shape the design and the architecture. For example,
by using TDD, you can ensure that there are also two consumers of functionality: the
original consumer component within the application and a test.

Figure 11-1. Agile Testing Quadrants from Agile Testing (Addison-Wesley) by Lisa
Crispin and Janet Gregory

Tests falling in Quadrant 1 are highly automatable. You should be running these tests
not only within a build pipeline, but also as part of minute-by-minute local builds
and, ideally, through an automated process that watches for code changes and runs

290 | Chapter 11: Functional Testing: Correctness and Acceptance

appropriate tests. Infinitest is one such example of a continuous testing tool that
operates as a plugin for Eclipse and IntelliJ.

Quadrant 2 is also strongly supporting the team, but is oriented toward being
business- or customer-facing. Tests that fall into this category include functional tests,
examples, and story tests. Tests within this quadrant are often referred to as accept‐
ance tests, and are a focus of Specification by Example or BDD.

Quadrant 3, at the top right-corner, is also business facing, but switches the purpose
toward critiquing the product. In this quadrant, you try to explore how the end user
will feel when using the product. Is it appealing? Is it intuitive? Is it accessible by all
types of users and devices? This kind of test cannot be easily automated, since the
expected right answer is not always known before the test. However, this does not
mean that the tests aren’t important, since failing to address these questions can lead
to the product’s failure.

Finally, Quadrant 4 deals with critiquing the product from a technical point of view.
These tests are usually difficult to write and tend to require special tools. Also,
although their execution can be automated, their evaluation is a little more subjective.
For instance, let’s say you write a performance test that ensures that a particular trans‐
action can be executed within 3 seconds. If after a change you see the transaction
time jumping from 1 second to 2 seconds, should you worry about it? 2 seconds still
falls within the 3-second allowance, but you have suddenly doubled the transaction
time.

Quadrants 1 and 2 cover functional requirements, and they will be thoroughly
explored within this chapter. Quadrant 4 covers nonfunctional requirements (also
referred to as operational requirements), which will be dealt with in Chapter 12.
Quadrant 3 goes beyond what can be achieved in a continuous delivery pipeline and
is therefore out of scope for this book. However, you can take a look at resources like
Explore It! (Pragmatic Bookshelf) by Elisabeth Hendrickson to learn more about this
concept.

Continuous Testing
To be able to create new functionality and deliver value at a sustainable pace, you
need to have a high level of confidence in your pipeline and practices. Every team
makes mistakes, but it is a well-accepted maxim within software delivery that the ear‐
lier an issue is found, the less it costs to fix. No amount of testing (outside mathemati‐
cal formal verification) can guarantee the absence of issues, but your testing approach
must be able to highlight problems as early as possible in your development practice.

To achieve this, you need to establish a culture of testing your software thoroughly
and continuously, from the moment the first line of code is written to when the asso‐
ciated feature is deployed. In his blog post, “End-to-End Testing Considered Harm‐

Continuous Testing | 291

https://infinitest.github.io/
http://bit.ly/2IjDf5U

ful”, Steve Smith explores these ideas in depth and talks about the practice of
continuous testing. The idea behind this is that software needs to be tested at all times.
This can be a challenge, with things such as the choice of test tooling and the skills
available across the team impacting how you implement this.

The entire article by Smith is well worth reading. The core ideas to remember are that
although a unit test or acceptance test may appear to offer a low degree of coverage
(compared with, say, an end-to-end test), a unit test will validate intent against imple‐
mentation, and an acceptance test will check the implementation against the require‐
ments. This means that both the code’s behavior and its interaction with other parts
of the system can be verified, and this can also be done in a small amount of time and
with a minimum of coordination. For example, trying to verify a series of input edge
cases within a part of an application by using only end-to-end tests can be ineffective,
as a lot of orchestration has to be undertaken with the associated data stores, and
each run of a test takes a long time to stand up the system, run the test, and tear
everything down.

Building the Right Feedback Loop
Tests create a feedback loop that informs the developer whether the product is work‐
ing. The ideal feedback loop has several properties:

It’s fast
No developer wants to wait hours or days to find out whether their change
works. Sometimes the change does not work—nobody is perfect—and the feed‐
back loop needs to run multiple times. A faster feedback loop leads to faster fixes.
If the loop is fast enough, developers may even run tests before checking in a
change.

It’s reliable
No developer wants to spend hours debugging a test, only to find out it was a
flaky test. Flaky tests reduce the developer’s trust in the test, and as a result, flaky
tests are often ignored, even when they find real product issues. Flaky tests also
add unnecessary delays: when a developer suspects a test failure might be spuri‐
ous, their first reaction will be to simply run it again instead of investigating.

It isolates failures
To fix a bug, developers need to find the specific lines of code causing the bug.
When a product contains millions of lines of code, and the bug could be any‐
where, it’s like trying to find a needle in a haystack.

Turtles All the Way Down
There is an old expression—“turtles all the way down”—that refers to the mythologi‐
cal idea that a giant World Turtle supports Earth on its back. This World Turtle is

292 | Chapter 11: Functional Testing: Correctness and Acceptance

http://bit.ly/2IjDf5U

supported by an even bigger turtle, and that bigger turtle is, in turn, supported by a
yet bigger one. There is meant to be an infinite succession of increasingly bigger tur‐
tles, each supporting the previous one, therefore concluding that Earth is ultimately
supported by “turtles all the way down.”

This expression comes in handy when you think of how tests support your microser‐
vices. At the smallest level, you have unit tests, which can assert that all the individual
smaller pieces of code are working as intended. This level of testing is obviously not
enough, for you need to verify that those pieces can work with each other, which
means unit tests need to be supported by a bigger level of tests: component tests.
Component tests can check that all subparts of the service can work together to form
a cohesive whole, but this is not enough; you also need to verify that your service can
work with the rest of your owned components, like databases. This gives rise to
acceptance tests. And then, to support this level of testing, you need to verify that
your owned components can work as expected with the unowned ones, building end-
to-end tests. This way, you can see that your test strategy includes “turtles all the way
down.”

The analogy isn’t perfect, though. There are other types of tests that are useful but
don’t fit into this idea of scope progression. We are referring to contract tests, which
verify that the interaction with an external component works as expected (without the
need to include the full service on it), and integration tests, which test all the different
communication patterns against components like databases (again, without including
the full service).

This idea was effectively put into a graph by Toby Clemson in his presentation “Test‐
ing Strategies in a Microservice Architecture,” an extract of which appears in
Figure 11-2.

However, all the testing in the world cannot guarantee that your application will work
in production for one simple reason: your tests didn’t run in production. Needless to
say, we’re not trying to imply that you should run your tests in production. We’re just
highlighting the fact that there is a score of reasons for which your application could
fail in production even though it passed all the tests prior to deployment: production
configuration might be wrong, networking setup might prevent services from talking
to each other, database keys may not have the right permissions, etc.

In the end, the only way of truly knowing that your application works in production
is exercising it in production. This leads to the highest level of testing: synthetic trans‐
actions, or actions that you execute in the production environment as if you were a
real user using the application.

Turtles All the Way Down | 293

Figure 11-2. A microservice, adjacent components, external services, and the boundaries
that all the different types of testing will cover. Image taken from Toby Clemson’s online
deck on Testing Strategies in a Microservice Architecture.

In the rest of the chapter, we will explore all these types of tests, understand when to
use them, and indicate examples of how to build them effectively. We will start with
the outermost ones, the ones closer to “the real thing” (synthetic transactions), and
we will progressively make our way in to the innermost ones, unit tests.

Synthetic Transactions
Synthetic transactions are real transactions exercised against a production system, but
by fake users. This activity can be seen as the highest form of testing, since it is per‐
formed on the actual production environment with all the real components, and not
just a test environment that is meant to represent production.

Synthetic transactions can also supplement typical monitoring techniques to provide
more insight into production health, since you can monitor exactly what the user will
experience. This way, they can detect when key business metrics fall outside accepta‐
ble norms and assist in identifying production issues fast. Some teams decide to have
a bunch of key synthetic transactions scheduled to run on a daily basis, as a way to
make sure that everything is working OK.

294 | Chapter 11: Functional Testing: Correctness and Acceptance

https://martinfowler.com/articles/microservice-testing/

Remove Fingerprints from Synthetic Transactions

Although we are referring to these transactions in a way that some‐
how makes them look not real, they are very much so. Bear in
mind that this is still your production environment, and any trans‐
actions that you execute will form the corpus of reports that might
be generated by or presented to the business. Wherever possible,
remove the effects of synthetic transactions after running them;
you don’t want the CEO to congratulate the company on the steady
increase of new users when your synthetic transactions are respon‐
sible for a large number of them.

End-to-End Testing
The next level down from Synthetic Transactions is end-to-end testing. End-to-end
tests only differ from synthetic transactions in the target environment: like synthetic
transactions, end-to-end tests exercise the entire system, including unowned compo‐
nents; however, unlike synthetic transactions, end-to-end tests are run against a
purpose-built test environment, as opposed to the real, user-facing production envi‐
ronment. Given that end-to-end tests don’t impact real users, you can be more
aggressive with them, performing more operations and manipulating the environ‐
ment at any point to suit your testing needs.

As a microservice architecture includes more moving parts for the same behavior
(compared to a monolithic architecture), end-to-end tests provide value by adding
coverage of the gaps between the services. This gives additional confidence in the cor‐
rectness of messages passing between the services, but it also ensures that any extra
network infrastructure such as firewalls, proxies, or load-balancers is correctly con‐
figured (especially if the deployment and set-up of these have been automated). End-
to-end tests also allow a microservice architecture to evolve over time: as more is
learned about the problem domain, services are likely to split or merge, and end-to-
end tests give confidence that the business functions provided by the system remain
intact during such large scale architectural refactorings.

Writing and maintaining end-to-end tests can be difficult, though. Since end-to-end
tests involve many more moving parts than the other strategies discussed in this
chapter, they have more reasons to fail. End-to-end tests may also have to account for
asynchrony in the system, whether in the GUI or due to asynchronous backend pro‐
cesses between the services. But, most importantly, since end-to-end tests include
coverage of unowned components, the team won’t be fully in control of the environ‐
ment, limiting their capacity to adapt and react to circumstances. These factors can
result in flakiness, excessive test runtime, and additional cost of maintenance of the
test suite. Mastering the art of end-to-end tests takes time and practice.

End-to-End Testing | 295

Given all these caveats, and given that a high level of confidence can be achieved
through lower levels of testing, the role of end-to-end tests must be just making sure
everything ties together and that there are no high-level disagreements between the
microservices. As such, comprehensively testing business requirements at this level is
wasteful, especially given the expense of end-to-end tests in time and maintenance.

Once you take into account all the many drawbacks, it is fair to question whether you
need end-to-end tests at all. The right answer is, it depends. The key thing to note at
this point is that it is dangerous to over-rely on end-to-end tests, but that doesn’t
mean you cannot benefit from them. One of the things to bear in mind is that the
difference between end-to-end and acceptance tests is that the former include exter‐
nal services and components, while the latter don’t. The tools, the stakeholders, and
the strategies are all the same. If your system doesn’t interact with external entities, or
if you trust that interaction, or if you think that automating the test of that interaction
isn’t worth the effort, you might be OK with just acceptance tests.

If you do decide to write end-to-end tests, one strategy that works well in keeping an
end-to-end test suite small is to apply a time budget, an amount of time the team is
happy to wait for the test suite to run. As the suite grows, if the runtime begins to
exceed the time budget, the least valuable tests are deleted (or re-written as lower-
level tests) to keep the build within the allotted time. The time budget should be in
the order of minutes, not hours.

Also, to ensure that all tests in an end-to-end suite are valuable, you should model
them around personas of users of the system and the journeys those users make
through the system (e.g., “A customer that buys a product for the first time” or “An
accountant that needs to review the tax balance for the last quarter”). This provides
confidence in the parts of the system that users value the most and leaves coverage of
anything else to other types of testing. Tools, such as Gauge and Concordion, exist to
help in expressing journeys via business-readable DSLs.

You may have noticed that we have talked about the philosophy and recommended
approaches of end-to-end tests, but we haven’t delved into any tools or practices to do
this. This is because the tools and practices are the same for end-to-end and accept‐
ance tests; since you are likely to spend more time writing acceptance than end-to-
end tests, we will cover the details of tools and practices in the next section.

296 | Chapter 11: Functional Testing: Correctness and Acceptance

End-to-End Testing May Be Considered Harmful!

As noted by Steve Smith in “End-to-End Testing Considered
Harmful”, end-to-end testing often seems attractive because of its
perceived benefits: an end-to-end test maximizes its system under
test, suggesting a high degree of test coverage; and an end-to-end
test uses the system itself as a test client, suggesting a low invest‐
ment in test infrastructure. However, the end-to-end testing value
proposition is fatally flawed, as both assumptions are incorrect:

• The idea that testing a whole system will simultaneously test
its constituent parts is a decomposition fallacy. Checking
implementation against requirements is not the same as
checking intent against implementation, which means an end-
to-end test will check the interactions between code pathways
but not the behaviors within those pathways.

• The idea that testing a whole system will be cheaper than test‐
ing its constituent parts is a cheap investment fallacy. Test exe‐
cution time and nondeterminism are directly proportional to
system under test scope, which means an end-to-end test will
be slow and prone to nondeterminism.

End-to-end testing is an uncomprehensive, high-cost testing strat‐
egy. An end-to-end test will not check behaviors, will take time to
execute, and will intermittently fail, so a test suite largely composed
of end-to-end tests will result in poor test coverage, slow execution
times, and nondeterministic results.

Acceptance Testing
As previously mentioned, acceptance tests and end-to-end tests vary solely in scope:
acceptance tests exclude unowned dependent services. If, for instance, you are
responsible for a Company Accounts system that uses an external Payments service,
and you want to write acceptance tests for it, your system under test would comprise
the latest Company Accounts code and a Payments Stub.

Acceptance tests can be written just like any other tests: as a set of automated actions
with some prior setup and a number of assertions at the end. However, their position
gives you an opportunity to treat them slightly differently. Acceptance testing is the
highest form of automated testing in which everything is fully under your control:
you can create and delete data, take services up and down, inspect internal status, etc.
This means that acceptance tests can be designed as a form of rewriting the business
requirements, up to the point that tests and test results can be easily inspected by
nontechnical people.

Acceptance Testing | 297

http://bit.ly/2IjDf5U
http://bit.ly/2IjDf5U

This idea is encapsulated in the term behavior-driven development which has become
almost a synonym of acceptance testing. In the rest of this section, we will assume
that you have chosen to use BDD to implement acceptance tests, and we will go over
both the practice and the main tools that facilitate it.

Behavior-Driven Development
Behavior-driven development (BDD) is a technique to develop systems that appeared
as a generalization of TDD. The idea is that, for each use case or scenario, you list the
behavior that should be perceived when a user is exercising the system, express that
behavior as a set of steps, and then turn those steps into executable actions. Those
executable actions can then be run against the system, and if all of them succeed, the
scenario can be considered to be successfully implemented. The art of BDD is a wide
topic that would require a book on its own, and indeed there are some great resources
(for example, BDD in Action [Manning] by John Ferguson Smart), so we’ll only cover
the surface here.

Now, whether the BDD tests need to be written before or after the feature is imple‐
mented is a matter of debate (see “Testing Outside-In Versus Testing Inside-Out” on
page 325), but that’s not the main point of BDD. The key advantage of BDD com‐
pared to other forms of tests is that BDD is expressed in a high-level language that
business people can understand, and the test execution and reports are formatted in a
way that nontechnical people can consume. In some teams, the business people write
the steps, and then the developers implement them and make them pass.

There isn’t a single tool that makes BDD possible. It could be said that in few areas
has the combination of different tools designed to address different problems created
such a powerful combined effect as in the realm of acceptance testing. There are
essentially three problems that need to be addressed when designing acceptance tests
in a BDD manner:

• The definition, execution, and reporting of scenarios and steps, using tools like
SerenityBDD.

• The interaction with the system mimicking user interaction and experience,
using tools like Selenium WebDriver.

• The enablement of such interaction in environments that are radically different
from users’ devices, using tools like HtmlUnit.

Let’s go through them one by one.

298 | Chapter 11: Functional Testing: Correctness and Acceptance

Defining steps
Multiple tools can be used to define steps in a BDD interaction, all of which are simi‐
lar. Some of the most popular ones that are available for Java are Cucumber, JBehave,
and SerenityBDD.

The pattern in all of them is simple. You start by indicating a particular feature or
story. (The terminology might be different, depending on the tool.) For each feature
or story, you indicate various scenarios, or use cases, that describe how the feature is
supposed to work. Each scenario is described by multiple steps, each of them tagged
with one of these keywords:

Given
Steps that start with “Given” are supposed to indicate the state of the system at
the time of initiating the action; for instance, “Given that the user has an
account...”.

When
Steps that start with “When” indicate the actions that the user runs against the
system; it’s a prelude of the conclusion that will happen next. For instance,
“When the user enters her username and password and hits Enter...”.

Then
Steps that start with “Then” indicate the consequence of the previous steps, and
they are essentially BDD’s version of assertions. For instance, “Then the user is
logged in.”

It’s important to note that these keywords are just syntactic sugar for the reader: they
don’t mean anything from the execution point of view. You could write all the steps
with “Given,” or with “Then,” and the tests would run the same. Some tools even
forgo the idea of Given/When/Then and simply call everything just a “Step.”

One of these tools is SerenityBDD, which is also the one we have chosen to demon‐
strate acceptance tests in the Extended Java Shop. SerenityBDD integrates with JUnit
and other tests’ frameworks seamlessly, meaning you have to worry only about the
definition of steps. Although full details can be found at the documentation page, the
basic working of SerenityBDD is as follows.

First, you need to create one or more classes that will hold your steps. Each step will
be a different method, and will be tagged with the annotation @Step:

@Step
public void user_obtains_the_list_of_products() {
 productNames = page.getProductNames();
}

@Step
public void shopfront_service_is_ready() {

Acceptance Testing | 299

http://www.thucydides.info/docs/serenity/

 page.load();
}

// ... //

These steps can then be used in normal tests:

@Test
public void numberOfProductsAsExpected() {
 // GIVEN
 shopfrontSteps.shopfront_service_is_ready();

 // WHEN
 shopfrontSteps.user_obtains_the_list_of_products();

 // ... //
}

You may think that annotating the methods with @Step seems redundant, since those
methods can be called anyway from the test, but then you would be missing one of
the most important features of this kind of tools: the reports. By tagging these meth‐
ods as steps, SerenityBDD can then create appropriate, high-level reports that show
which steps worked and which ones didn’t, like the one in Figure 11-3.

Figure 11-3. SerenityBDD’s error report, showing steps that failed and steps that didn’t
run

Mimicking user action
Because you are testing at the highest possible level, you want your actions to be as
close as possible to those of a real user. Despite all the microservices that may be
present in your system, chances are that, eventually, your users are going to interact

300 | Chapter 11: Functional Testing: Correctness and Acceptance

with you via a website. Therefore, what you want is a way to mimic the way in which
a user interacts with your website. This is achieved with tools like Selenium Web‐
Driver (or just Selenium).

Selenium can bring up a browser and allows you to interact with it in an automated
manner. Through Selenium, you can tell the browser to visit a page, fill in text boxes,
click buttons, etc. Selenium also allows you to programmatically inspect the page,
querying whether a particular object is present or whether it has certain text. What’s
more, since the action is driven through a real browser, any JavaScript code will also
be executed, bringing it closer to a user’s experience. Selenium lets you focus on what
the user does, feels, and sees.

It’s important to note that, even though Selenium can help in writing tests, it is not a
test tool in itself. It’s just a tool to interact with a web browser programmatically.

Making build instances work like a user device
The first time that you use Selenium, you will probably stumble upon one major hur‐
dle: you can use Selenium in your developer machine with no problem, because your
browser of choice is locally installed and Selenium can bring it up, but the browser is
not available in the machine running your tests as part of the automated build pipe‐
line, and it will fail. You may think that you just need to install the browser in the
build nodes, but chances are that will fail, too: even if the browser is available, your
nodes are most likely machines designed for running tests, and won’t have a graphical
environment. If you try to start up a browser, it will fail, because it won’t have a
graphical subsystem where it can open a window.

To be able to run Selenium in your automated build pipeline, you either need build
nodes that include a graphical interface (which would consume significant resources),
or a browser without the need for one. And that’s exactly what HtmlUnit is.

HtmlUnit can communicate with a server and obtain websites like a user. It can pro‐
cess HTML and run JavaScript. It can even mimic the input of data and actions like
clicking or selecting. And it can do all this without the need to create a graphical win‐
dow, making it perfectly suitable for running Selenium actions in a windowless envi‐
ronment.

Visual Regression/Comparison Testing
Some organizations like to ensure that web-based user interfaces do not change in a
meaningful way unless specifically updated. Visual regression and comparison test
tooling allow you to automate the comparison of a “before and after” image of a web
page. Popular visual regression testing tools to include in your CD pipeline include
PhantomCSS, Gemini, and Pix-Diff. This is an area of testing that is in flux and
beyond the scope of this book, and we recommend that if you’re interested, you

Acceptance Testing | 301

https://github.com/HuddleEng/PhantomCSS
https://github.com/gemini-testing/gemini
https://github.com/koola/pix-diff

experiment with several of the tools, and potentially consider commercial offerings,
before deciding on which to rely on within a build pipeline.

Stubbing or Virtualizing Third-Party Services
Although some systems are small enough that a single team has ownership of all the
composite components, in many cases, systems grow to have dependencies on one or
more externally managed services. As previously stated, you are not supposed to
include these external services in your acceptance tests, but your application will still
have to contact something that looks like them. The best thing to do at this point is to
either stub or create a fake service that behaves like the external service, and include
that in the mix when you are running your acceptance tests.

You could write a web service from scratch, or you could use tools like WireMock or
Hoverfly (as you saw in “Virtualizing Services with Hoverfly” on page 165). Wire‐
Mock is a stubbing framework for web applications that can create a service that lis‐
tens on a specified port, and that can respond to requests in any way you configure it.
This then becomes the third-party service that your application communicates with
during acceptance tests. More on WireMock in“Component Testing” on page 309.

Bringing It All Together
The Extended Java Shop includes a fully working example of acceptance tests that
includes all the items mentioned in this section, and then some more. It can be found
in the folder /acceptance-tests of the Extended Java Shop repository, and is mainly
characterized by the following items:

• A docker-compose.yml file that will bring all the owned services up so they can be
tested together.

• To substitute the Adaptive Pricing service (which in our setup is meant to be a
third-party system), we have decided to opt for a virtualized service called fake-
adaptive-pricing. This is brought up also using docker-compose (in practice,
you’ll notice that the Fake Adaptive Pricing is simply a wrapper for the real one,
but that’s just to make the sample application simpler; the key thing is that, from
the acceptance tests’ point of view, we’re not using the real one).

• Maven has been complemented with a docker-compose plugin to be able to start
up and bring down all the necessary Docker containers for testing. See pom.xml
for details.

• SerenityBDD is in use in the main test class, ShoppingAT, and in the steps classes
in the steps package.

302 | Chapter 11: Functional Testing: Correctness and Acceptance

• Selenium WebDriver is in use in the ShopfrontHomePage class, where high-level
ways to interact with the Shopfront home page are recorded.

• HtmlUnit is specified when we instantiate the Selenium WebDriver object
in ShoppingAT (near the top of the class).

Consumer-Driven Contracts
Whenever a consumer couples to the interface of a component to make use of its
behavior, an implicit contract is formed between them. This contract consists of
expectations of input and output data structures, side effects and performance, and
concurrency characteristics. The idea of consumer-driven contracts (sometimes called
simply contract tests) is to make that contract explicit in the form of executable tests
that will verify whenever either side is deviating from the agreement.

Tests based on consumer-driven contracts can be used in two different scenarios:

• Both parts, consumer and provider, agree on the need to have a contract that ties
down the interaction. This could either be because your team owns both con‐
sumer and provider, and you just want to make sure the interaction is correct, or
because even though consumer and provider are owned by different teams, they
have agreed on having close communication to ensure that the interaction is fluid
and flawless.

• Only the consumer is willing to create contract tests, maybe because the provider
doesn’t want to go through that trouble, or because the provider has so many
consumers that they can’t afford to share contract tests with all of them. The sec‐
ond case is more common that it would seem. For instance, if one writes a client
to consume the Twitter API, it is very unlikely that they’ll be able to share the
burden of contract tests, even if they are willing—imagine if they had to do that
with all consumers!

Being confronted with one case or the other will affect not just the type of tests that
you write, but also the technologies that you use to write those tests, and even the
frequency at which you run them. Let’s begin with the latter case. If the provider is
not willing or able to participate in the interface verification, you’re just writing one-
sided contract tests. This means you’re essentially treating the external service as a
black box and you’re writing tests to verify that behavior doesn’t change unexpectedly,
which is no different from what you would do to test your own service (see “Compo‐
nent Testing” on page 309). Given this, you don’t need any special tool to write these
contract tests; normal testing libraries will do, but you do need to be careful about
scheduling.

Consumer-Driven Contracts | 303

Is This Really a Contract?

You might be wondering whether a contract that exists for only one
side of the interaction is really a contract. The technical response
would be that what you are writing isn’t the contract, but the test
that verifies the contract. The contract is the implicit understand‐
ing that an API wouldn’t change without notice. However, if the
name troubles you, just call it something else.

Ideally, you would run your contract tests whenever the client component in the con‐
sumer or the interface component in the provider are modified. However, if the pro‐
vider is not participating in the contract verification, you aren’t likely to know when
the provider has changed. You’ll have to configure your pipeline to execute the con‐
tract tests whenever your client component changes, and then, depending on how
often you do change your client component, you’ll have to consider also scheduling a
regular test execution (e.g., daily or weekly) to try to detect any changes that may
have happened on the provider side.

Test What You Need, but No Further

If you remember from “Backward Compatibility and Versions in
APIs” on page 278, one of the ways to handle changes in an API is
to allow responses to be modified in a backward-compatible man‐
ner. This means that the provider might add new fields at any point
without that being considered a violation of the contract. Given
this, avoid testing that the entire response from the provider is as
you expect. Instead, simply test that you can obtain whatever fields
you need. That will save you a lot of time handling false-positives.

The story changes when both provider and consumer are willing to participate in the
verification of the interaction. Here we can talk about proper contract-based testing,
and use technologies aimed specifically at the specification and verification of con‐
tracts. Let’s see them in detail.

RESTful API Contracts
Once provider and consumer have agreed to share the burden of contract testing,
several things need to happen. On one side, the provider has to write tests that verify
that the API doesn’t change (at least, not inadvertently). On the other side, each con‐
sumer has to write tests that verify that their application works with the responses
provided by the consumer. There are several issues with this approach. On one hand,
there is a significant communication overhead whenever the provider changes the
API. On the other hand, there is a non-negligible amount of duplicated effort by all
the different consumers to test the same thing from the provider.

304 | Chapter 11: Functional Testing: Correctness and Acceptance

It is for this reason that contract tests shouldn’t be written using typical testing tools,
but specialized ones. The contract itself should be represented by an independent
physical entity that both providers and consumers subscribe to: the provider verifies
that the contract is a fair representation of what they produce, while the consumers
verify that they can cope with responses from the provider as specified by the con‐
tract. Whenever a change in the API is needed, the contract is updated, and every‐
body reruns their tests against the updated version.

There are different tools to specify contracts, each following different approaches that
try to align with different team dynamics and social interactions. We can roughly cat‐
egorize these tools into two groups, depending on what is considered to be the source
of truth. This way, you have contract-first tools, where an independent entity (the
contract) is the source of truth, and interaction-first tools, where the consumer is the
source of truth. As you will see in detail, in contract-first tools, either consumer or
provider may be seen as aligning with or deviating from the contract, while for
interaction-first tools, only the provider can be seen as abiding by or violating the
contract.

Contract first, interaction second
Contract-first tools work by beginning with the definition of a contract in the form of
a set of interactions. Each interaction will specify an example of a request followed by
an example of a response. The tools usually provide options to include random values
within the requests and/or responses to avoid falling into hardcoded value traps.
This, together with many other variants, allows the configuration of the contracts to
be as realistic as possible. The tool can then generate two types of artifacts for con‐
sumers and providers:

For providers
The tool turns each interaction into a test; the sample request is sent to the ser‐
vice, and then it checks that the response from the service matches the sample
response.

For consumers
The tool creates a preconfigured, stubbed service that you can use when testing
the consumer application. For each request that the consumer application makes
to the stub, the stub will check whether it matches one of the sample requests
and, if so, it will respond with the corresponding sample response.

The asymmetry in the artifacts created for consumers and providers reflects the dif‐
ference in responsibilities: while the provider needs to abide by all the use cases speci‐
fied in the contract, a given consumer may need to use only some of them. This is
why the contract becomes a set of enforced rules for the provider, but a set of available
rules for the consumer.

Consumer-Driven Contracts | 305

In the Extended Java Shop, we have chosen to demonstrate contract-first tools with
the use of Spring Cloud Contract. In this example, we are using Spring Cloud Con‐
tract to verify the interaction between the Stock Manager service and the Shopfront
service. The contracts themselves live in the Stock Manager project as a set of Groovy
files in the package contracts.stockmanager (in the folder /stockmanager/src/test/
resources/contracts/stockmanager); they should be easy to interpret, although full
details about the syntax can be found at the Spring Cloud Contract documentation.
These contracts are then used by both the Stock Manager service build, and the Shop‐
front service build.

The Stock Manager service build uses the contracts rather transparently, thanks to the
inclusion of a specific Spring Cloud Contract Maven plugin. The only code that is
needed is the creation of a base class for the generated tests to extend and where any
setup will be performed; in our example, this will be StockManagerCDCBase.

The Shopfront service needs some extra setup, though. The job definition in Jenkins
needs to be modified to make sure it is triggered whenever the contract is modified,
and a step needs to be added to generate the artifact that contains the stubbed service.
Check the job definition for the Shopfront service in either of the three prebuilt Jen‐
kins instances in the Extended Java Shop repository. (You can do this by looking at
the file /jenkins-base/jobs/shopfront/config.xml, or by running any of the prebuilt Jen‐
kins instances locally as specified in the relevant README.md files and looking at the
job definition.) After this, a specific test that uses the generated stubbed service can
be written; see StockManagerCDC in Shopfront service for details.

Interaction first, contract second
Interaction-first is a different breed of contract testing tools that take the idea of
consumer-driven contracts to the extreme. In this kind of tool, the consumer starts
by writing a set of tests that indicate how it expects to interact with the provider. By
running these tests against a stub, the tool can make a record of the requests sent by
the consumer and the responses that it expects, and call such record the contract. This
contract is then sent to the provider, where it will be run against it as a form of com‐
ponent tests that the provider is expected to comply with. Interaction-first tools are
therefore a way to run TDD against the definition of an API.

Despite being more faithful to the concept of CDC, interaction-first tools have short‐
comings when compared to contract-first tools, at least under some scenarios. If the
same team owns both the consumer and the provider, interaction-first tools are ideal,
because they ensure that the provider is doing exactly what the consumer needs it to
do and nothing else. However, if consumer(s) and provider belong to different teams,
these tools can be a source of significant friction.

A provider’s build might be broken because a consumer might have misunderstood
the way the API is supposed to work and have written their tests wrong. (Remember,

306 | Chapter 11: Functional Testing: Correctness and Acceptance

http://bit.ly/2Oa6BZZ

it is the contract that is written from the test, not the other way around.) A rogue
consumer might “bully” the provider into developing new features by simply writing
some tests for the interaction that they desire, breaking the provider’s build until
these are done. And a provider who wants to develop a new version of the API will
have no contract tests to validate it until a consumer starts to use it, unless the provid‐
er’s team writes a consumer themselves. These, of course, aren’t faults attributable to
the tool, but to a flawed organizational culture and misguided social interaction, but
one needs to be aware that interaction-first tools enable this sort of behavior.

But remember: there aren’t right or wrong tools, just tools that are more or less ade‐
quate for a particular scenario. Despite the aforementioned disadvantages, an
interaction-first tool might be exactly what your team needs.

The Extended Java Shop doesn’t include any examples of interaction-first tools, but
we encourage you to check out Pact and Pact Broker.

Unvilifying Contract Tests
Contract testing has a bad reputation for being brittle, slow, and a source of friction
across teams. The truth is that whenever these attributes are present, it is mostly due
to a flawed approach.

Brittleness tends to come from overzealous contract tests that test way more than
needed. For instance, and as we explained in the Test What You Need, but No Fur‐
ther, if you check full responses in your contract, you’ll lock yourself against harm‐
less, backward-compatible changes.

Slowness usually appears because a lot of business logic seeps into contracts, bloating
them unnecessarily. Your business logic should be tested mostly elsewhere—for
instance, in unit and component testing, while your interaction checks should be
addressed in integration testing. The contract is there basically to check that the for‐
mat of the resources hasn’t changed.

Friction emerges when contract testing is used as a surrogate for real communication.
For instance, if instead of engaging with consumers to negotiate an API change, you
simply push it, assuming that “contract failures will let them know,” you are asking for
trouble.

The truth is that contracts can bring you a lot of benefit—if you use them wisely.

Message Contracts
When it comes to RESTful interfaces, services communicate with each other by using
HTTP (barring some odd exceptions). Therefore, regardless of the technology used
for the client and/or server side (Dropwizard, Play, Jetty, etc.), when it comes to con‐
tract testing, you can use anything that communicates via HTTP to mimic the client

Consumer-Driven Contracts | 307

https://docs.pact.io
https://github.com/pact-foundation/pact_broker

and/or server and verify your contracts. Unfortunately, the situation isn’t quite as
standardized for the case of messaging platforms, and we won’t be able to provide a
single solution for testing message contracts.

It is important to highlight that the objective of this section isn’t to help you choose a
messaging technology, but rather to assist in how to test it. For this reason, we will go
through the most popular options when it comes to messaging platforms, and indi‐
cate how each of them can be tested most effectively. Because of the array of options,
we won’t cover each of them in detail, but we’ll include references so you can explore
further if needed.

Contract testing at the protocol layer
Testing at the protocol level is useful when the different services that send messages
to each other do so using different technologies, but abiding by the same protocol.
This is an analogous situation to RESTful services, where different services may use
different web technologies, but they all communicate using HTTP. Among the differ‐
ent message queue protocols available, the most popular one is AMQP, with imple‐
mentations including RabbitMQ, Apache Qpid, and Apache ActiveMQ, among
others.

If you are using AMQP as your communication protocol, you can easily execute con‐
tract tests by using Pact and Pact Broker. The way the tests are executed is no differ‐
ent from the case of web services described previously. The only difference is that,
instead of mimicking the HTTP interaction of server/client, you mimic the AMQP
interaction of producer/consumer. Specifics can be found in the documentation, but
to give a sense of how similar both approaches are with Pact, suffice it to say that the
test setup will differ only in that it uses an AmqpTarget object instead of an HttpTar
get object for the mimicked service.

Contract testing at the serialization layer
In some cases, you won’t want to or be able to run your contract tests at the protocol
layer. For instance, you might be using a message queue protocol for which there is
no easy testing framework. Or you might be using exactly the same technology in all
your services, meaning you can afford to move the actual protocol out of the equa‐
tion. Regardless of the reason, you can assume that messages are going to be correctly
delivered to the right recipient, and focus only on the messages themselves. In other
words, you can focus on the production and interpretation of the messages.

The best strategy in this scenario is to define schemas for all your messages, including
different versions of the same message. This is particularly easy to do if you use
Apache Avro to serialize your messages, because then you can leverage the Confluent
Schema Registry to store and retrieve your schemas during testing. Gwen Shapira’s

308 | Chapter 11: Functional Testing: Correctness and Acceptance

https://www.amqp.org
https://docs.pact.io
https://github.com/pact-foundation/pact_broker
https://avro.apache.org
http://bit.ly/2Q5Xyq6
http://bit.ly/2Q5Xyq6

excellent talk, “Streaming Microservices: Contracts & Compatibility”, shows in detail
how this can be achieved.

Even if you don’t use Avro or the Confluent Schema Registry, you can still use Gwen’s
ideas to hone your serialization-based contract tests, especially if you need to support
several versions of the same message schema:

• You can contract-test your producers to ensure that they generate messages
using all versions of a schema, placing each copy in a different queue. You can
then contract-test your consumers to ensure that they interpret messages of at
least one version of a schema, taking it from the relevant queue.

• Similarly, you can contract-test your producers to ensure that they generate mes‐
sages matching at least one version of a schema. You can then contract-test your
consumers to ensure that they can interpret messages matching any version of
the schema, again ensuring producer/consumer communication.

• Finally, you can contract-test both producers and consumers to ensure that they
can produce/consume messages matching at least one version of schema, and
then create a number of message transformers that you can contract-test to
ensure that they can convert from any given version to any other version of a
schema.

In some ways, serialization-based contract testing is a more natural form of contracts,
because it takes the schema of the message as the contract to abide by. This way, you
can leave aside the actual exchange mechanism and focus on the message itself.

Component Testing
A component is any well-encapsulated, coherent, and independently replaceable part
of a larger system. Testing such components in isolation provides multiple benefits.
By limiting the scope to a single component, it is possible to thoroughly test the
behavior encapsulated by that component while maintaining tests that execute more
quickly than broad stack equivalents. In the context of microservices, you can iden‐
tify a component as one microservice.

Now, there are challenges and questions that need to be addressed when considering
component tests. To begin with, your microservice is likely to have external
dependencies that you want to exclude when testing your component, so you need an
effective and efficient way to replace those. On the other hand, you may need to
check some internal behaviors when testing your component, but you need to do this
while still treating your service as a black box. Finally, you need to be careful with the

Component Testing | 309

http://bit.ly/2DzcSu4

very mechanism through which you run the component tests, since this may affect
how much of your component you are actually testing. Let’s go through all of this.

Testcontainers: Manage Containers for Testing
If you are building and deploying Java applications with containers, or are encounter‐
ing challenges with (potentially non JVM based) reproducible test environments,
then we recommend you take a look at the Testcontainers, written by Richard North.
Testcontainers makes it easy to launch useful Docker containers for the duration of
JUnit tests; for example, when executing an integration test you can run throwaway
instances of common databases, headless Selenium web browsers, or anything else
that can run self-contained in a Docker container. We would like to thank Asaf
Mesika, Chief Architect at Logz.io, for reminding us of this useful tool.

Embedded Data Stores
If your service uses a database, you will want to exclude that from your component
tests. First, because the database is not really part of the service, it’s a different compo‐
nent that your service communicates with (even if database and service are tightly
coupled). Second, and maybe more important, including the database in your com‐
ponent tests would add complexity and slow it down. Besides, you are already includ‐
ing a real database in your acceptance tests, so you can part with it at this level.

What you need, therefore, is something that can look like a database to your service,
but without all the added complexity. You need an embedded data store, which is typ‐
ically implemented by an in-memory database. An in-memory database will offer the
same interface as a normal database, but will run entirely in memory, removing the
delays of network and disk access. There are multiple options for this, but the most
common ones are H2 for standard SQL databases and Fongo for MongoDB.

The Extended Java Shop includes an example of component tests supported by an H2
in-memory database in the Feature Flags service, although this may not be entirely
obvious at first. The component tests of the Feature Flags service (folder /feature‐
flags), located in the FeatureFlagsApplicationCT class, make some heavy usage of
“Spring Boot magic,” so if you’re looking to understand how H2 is used, you should
look at the following:

• The test/resources folder includes an application.properties file that will override
any matching files in main/resources. This file is empty, effectively removing all
the configuration items provided in main/resources. In a situation like this,
Spring Boot will try to guess the parameters from whatever it can find in the
classpath.

• The pom.xml file has added an H2 dependency for testing.

310 | Chapter 11: Functional Testing: Correctness and Acceptance

https://www.testcontainers.org/
http://www.h2database.com/html/main.html
https://github.com/fakemongo/fongo

• When running the tests, Spring Boot will notice the H2 driver in the classpath
and, without any other parameters related to database, assume this is what it
needs to use. Because H2 works in memory, no connection details such as URL
or username are needed, and our application will be autowired to use H2.

For applications based on frameworks other than Spring Boot, you may need to
explicitly indicate that H2 is to be used; this is usually accomplished by configuring
the connection URL to something like jdbc:h2:mem:. For other H2 connection
options, you can check the H2 documentation.

In-Memory Message Queues
The same arguments apply when running component tests for services that commu‐
nicate to a message queue: for control and speed, you will want to run the message
queue server in-memory. However, as we discussed when we talked about
“Consumer-Driven Contracts” on page 303, the world of message queues is not as
standardized as other disciplines, and while you can use an in-memory database that
understands SQL to mimic any other database solution, there isn’t a single tool that
can help with message queue technologies. But you still have options.

First, many message queue brokers have the option to run without persistence, effec‐
tively turning them into in-memory technologies. If your message queue of choice
does support this option, you can just start an instance locally before your compo‐
nent tests start and then stop it when you’re done.

Sometimes you won’t be able to do this for a variety of reasons: maybe the message
broker doesn’t support running without persistence, or maybe you can’t run an
instance locally because of license or resource constraints. In these cases, you can try
the following:

AMQP-based queues
All message queue brokers that implement AMQP are interchangeable at the
functional level, meaning you can just pick a different technology for testing.
ActiveMQ can easily be set up to run in-memory as part of your tests, with the
drawback that it supports only AMQP 1.0; for earlier versions, you can use Qpid.

Kafka
Apache Kafka is so popular that we consider it worth its own mention. Kafka
runs on top of ZooKeeper, meaning you can effectively have an in-memory
Kafka instance if you run it using the in-process TestingServer for ZooKeeper.
Alternatively, if you’re using Spring Boot, you can just use EmbeddedKafka, which
essentially runs the in-memory Kafka and ZooKeeper instances for you.

If none of the previous options apply to your case, you can still try some ad hoc
options. You can consider creating a Docker image that will start up an instance of

Component Testing | 311

http://www.h2database.com/html/features.html#database_url
http://bit.ly/2R2zENK
http://bit.ly/2Og50BR
https://curator.apache.org/curator-test/
http://bit.ly/2zwPIR0

your message queue broker, and spin up a container for that image before your com‐
ponent tests; this won’t be exactly in-memory, but at least it will keep things locally.
Alternatively, if the protocol is simple enough, you can consider creating your own
in-memory message queue implementation.

Finally, if no option fits you, maybe you need to take a step back and remove the mes‐
sage queue from the equation: instead of using an in-memory version of the message
queue broker, you can use an in-memory version of the code that communicates with
the message queue—your message queue client. It’s true that this will avoid testing the
connection to the message queue, but you can try to bridge that gap through accept‐
ance and integration tests.

Test Doubles
In the same way that your service may make use of a database that you want to
exclude in your component tests, it may communicate with other services that you
also want to exclude. You can replace these dependencies with test doubles, owned
entities that mimic the external behavior of your dependencies, but without the real
internal logic.

The development community has a longstanding debate about the different types of
test doubles and the names that each type should have, with terms like stubs, mocks,
fakes, dummies, spies, and some others being constantly thrown in and out. In recent
times, it has also added virtualized services to the mix. This is still a slightly conten‐
tious topic, and some readers might disagree with what we are going to expose next,
but in our case, we have decided to adopt the view of Wojciech Bulaty and define the
following:

Stub
The simplest of test doubles, a static resource that has fixed values configured for
each possible call. It doesn’t keep a state, and it’s not configurable.

Mock
An evolution of the previous; it can be configured to return different values
according to different patterns, or it can be reconfigured before each test. It keeps
a state, and it can be queried after the test has run to verify whether specific func‐
tions have been invoked and how.

Virtualized service
Similar to a mock, but long-lived and hosted at a remote server. Virtualized serv‐
ices can typically be shared between developers and testers.

Any of these types can be useful when replacing real dependencies in component
tests, but because of their characteristics, mocks tend to be the most common option.
Stubs are sometimes too simplistic to cover some of the cases of a component test,

312 | Chapter 11: Functional Testing: Correctness and Acceptance

http://bit.ly/2zwaiRm

while virtualized services add the delay and uncertainty of a remote network connec‐
tion.

Stubs can usually be implemented manually, but mocks and virtual services benefit
from some tooling. In the realm of component testing, the most common of these
tools is WireMock. WireMock can be used as a mock or as a virtualized service in the
following ways:

WireMock as a mock
You can start and configure a WireMock instance at any point during your tests;
a good example of this can be found in ShopfrontApplicationCT, where we have
used WireMock to replace the service dependencies of the Shopfront service.

WireMock as virtualized service
Once configured, WireMock can be started up as a standalone service and
deployed into a server, making it permanently available for anyone who needs it.
Alternatively, there is also the option of MockLab, a service built on top of Wire‐
Mock that allows the creation of virtualized services in the cloud.

Regardless of your choice, the important thing to take into account when writing
component tests is that you make them independent from the real services your com‐
ponent has to communicate with. This will reduce the probability of false-positives
and will allow you to run your tests with confidence.

Creating Internal Resources/Interfaces
As previously mentioned, there are situations in which you want to verify certain
internal behaviors as part of your component tests, but you can’t test them directly
because that would break the encapsulation that component tests are meant to pro‐
vide. The best option in this situation is to create internal resources or interfaces—
endpoints in your web service that are not meant to be available to the general pub‐
lic. These internal resources can expose the details that you need to verify in your test,
and you can use them to check whether the service is behaving as expected.

Perhaps the easiest way to expose this is with an example, which you can find in the
Extended Java Shop—more precisely, in the Shopfront service (folder /shopfront). As
we have mentioned before, the Shopfront service can talk to an external Adaptive
Pricing service to try to override the price of our products to obtain a higher revenue.
Let’s say that this Adaptive Pricing service is still rather experimental and not reliable,
and it’s frequently down. To minimize the impact of this to our Shopfront service, we
want to add a circuit breaker to the connection to the Adaptive Pricing service, for
which we will use Netflix’s Hystrix library; details of this can be seen in the Adaptive
PricingRepo class.

Now, as part of our component tests, we want to verify that when the Adaptive Pric‐
ing service is down, the circuit breaker trips and we stop making calls to it, providing

Component Testing | 313

http://wiremock.org
https://get.mocklab.io
https://github.com/Netflix/Hystrix

a default value instead. We also want to test that after the Adaptive Pricing service is
restored, the circuit breaker closes and we continue to make calls to the external ser‐
vice. We could test this by keeping a count of the number of requests we are making
to the Shopfront service and comparing it to the number of requests that our Adap‐
tive Pricing service mock is receiving, but this would be a rather cumbersome test.
What we have decided to do instead is create a new internal endpoint, called /inter‐
nal/circuit-breakers, and then use the InternalResource class to obtain information
about all the circuit breakers within the Shopfront service and their status. This way,
tests can easily query the status of the circuit breakers and verify that behavior is as
expected. What’s more, if you ever change the way circuit breakers are implemented,
the component tests will be unaffected.

Internal resources can be restricted to tests (for instance, via feature flags), or they
can be packaged with the application and deployed to production. The latter can be
useful, because a quick way to assess the internal status of your service can assist in
the investigation of production issues.

Control Access to Internal Resources in Production

Internal resources provide useful information for investigations,
but may contain sensitive details that shouldn’t be leaked to outsid‐
ers. If you do release your internal resources to production, make
sure that access is restricted to authorized parties. You can do this
by configuring your services so that a specific token is needed to
access the resource, or by placing all your internal resources under
a common path like /internal and then adding a traffic rule so
requests to that path can be performed only from within the organ‐
ization’s network.

In-Process Versus Out-Of-Process
The last concern to take into account when designing your component tests is per‐
haps one of the easiest to miss. The thing is, we have been talking about testing your
entire service in isolation, but where does the service really end? Is it just the set of
classes that you have written? Or does it also include whatever web framework that
you have based your application on and that will be ultimately responsible for listen‐
ing to requests and dispatching responses?

Depending on your answers to these questions, you will be implicitly choosing from
two options: in-process testing or out-of-process testing. The names derive from the
mechanics used to run the tests. With in-process testing, the service and the tests are
running under the same OS process, and the communication between the two is
largely done in-memory. However, with out-of-process testing, the service and the
tests are running under different OS processes, and the communication between the
two is performed over a communication protocol like TCP/IP (even though this will

314 | Chapter 11: Functional Testing: Correctness and Acceptance

still be contained within the running machine). Let’s analyze the pros and cons of
each approach.

Assume that your answer to the previous questions was that you consider your ser‐
vice to comprise only the code that your team has written, and that the underlying
web framework has already been thoroughly tested by its creators and by other par‐
ties. In this case, you probably don’t want to include the web framework in your com‐
ponent test, because that will only slow it down unnecessarily. Most frameworks will
include test utilities that allow you to bypass all the scaffolding and hook into the ser‐
vice at the point where your code starts. This will obviously need the tests and your
service to run under the same process, because the machinery for over-the-wire com‐
munication might not even be available. You can find an example of this kind of test
in the Product Catalogue service (folder /productcatalogue)—more precisely, in
the ProductServiceApplicationCT class. The Product Catalogue service is a
Dropwizard-based application, and the test uses DropwizardAppRule to instantiate
the server automatically before the test starts, and then brings it down after the test is
finished.

Similarly, assume now that your answers to the preceding questions were the oppo‐
site: you consider that the web framework is, like any other dependency, part of your
service, and therefore needs to be tested when you treat your application as a black
box. In this case, you want to start up your application independently from your tests
to keep them entirely separate, and then use a normal HTTP client (or whatever com‐
munication technology that you are using) to exercise your service from the tests. An
example of this can be found in the Stock Manager service (folder /stockmanager)—
more precisely, in StockManagerApplicationCT. The Stock Manager service is a
Spring Boot–based application. However, you won’t see any references to Spring Boot
in these tests; compare this with ShopfrontApplicationCT in the Shopfront service
(folder /shopfront), where we are using Spring Boot testing facilities. In the Stock
Manager service, the component tests are contacting the application by using RestAs‐
sured, a library to execute actions over HTTP with a BDD-style syntax. The applica‐
tion itself is being started by Maven through the Spring Boot Maven plugin before
tests are executed, and stopped also by this plugin after the tests are done; check
the pom.xml file for details.

As usual, neither approach is intrinsically better than the other, and your choice will
be based on the needs and values of your team. To assist in this decision, we have
included a summary in Table 11-1 with the main pros and cons of each approach.

Component Testing | 315

Table 11-1. Comparison of in-process and out-of-process approaches for component tests

 In-process Out-of-process

Service execution Startup and shutdown are automatically
managed during test execution and performed
transparently; tests can be run within an IDE
without any manual steps.

Startup and shutdown of the application need
to be managed independently from tests; the
developer will have to start the service
manually to be able to run component tests
within an IDE.

Communication
pattern

Depending on the framework, communication
will be performed in-memory or via the chosen
protocol (e.g., TCP/IP).

Communication needs to be done using
whatever protocol the application will use in
production; e.g., TCP/IP.

Scope Framework may not be included in tests. Framework will be included in tests.

Test coupling Tests will depend on the framework used to
develop the application; if the framework is
changed, tests will have to be amended.

Tests are independent from the framework used
to develop the application; if the framework is
changed, tests remain unaffected.

Speed Potentially faster, as parts of the stack are being
bypassed.

Slower, because everything is being executed.

Running tests
independently (e.g.,
manually and one by
one from the IDE)

Slow, because the application will be started
and stopped after each test.

Fast, because the application will remain active
across test runs.

Bringing changes in Automatic; because the application is
autostarted at each test, any changes will be
detected.

Manual; you’ll have to restart the application
yourself if you have changed the code.

Remember: Out-of-Process Testing Implies Manual Reload!

One of the most frustrating, baffling, and disheartening experien‐
ces comes when you’re trying to fix a failing test: you keep chang‐
ing the code of your application and, when you run it again, the
test is still failing. You try ever more esoteric and drastic measures,
but still no, the test is broken. And then it hits you: you have
changed the code, but you haven’t restarted the service! You can get
so used to all the automatic actions by IDEs and tools that some‐
times you forget that you need to press that pesky button. You’ve
been warned!

Integration Testing
Integration testing is another of those terms that mean different things to different
people. Some people consider that a system is “integrated” when all the components
are fit together, and therefore understand that “integration testing” should involve all
the existing components. That’s what we have called end-to-end testing in this book.
Here, when we use the term integration testing, we are referring to the test of a partic‐
ular integration point; for instance, when your service talks to a database, the hard
drive, or another service. James Shore and Shane Warden tried to solve this dilemma

316 | Chapter 11: Functional Testing: Correctness and Acceptance

in their book The Art of Agile Development (O’Reilly) by calling this focused integra‐
tion testing, emphasising that that you’re focusing on a particular integration point.
Although the name is certainly apt, we have chosen to avoid references to the word
“integration” anywhere else in this chapter so as to make clear that, when we talk
about integration testing, we mean individual points of integration and not the entire
system.

At this point, it may seem difficult to ascertain what there could be about the connec‐
tion between your service and other elements that hasn’t been tested already by either
end-to-end, acceptance, or contract tests. However, end-to-end and acceptance tests
don’t go into the details of the integration points; they just check that the pieces
roughly fall in place. Contract tests verify that the logic of the interaction is correct,
but they don’t test the interaction itself.

There are several things that you may need to consider when you test interactions in
detail, and we will go through them in the next couple of subsections. The most
important thing is this: in order to test the integration with an external component,
you don’t need to test your entire application, only the bit that connects with the
external component. This will not only give you greater control over the test, but will
also result in smaller, faster tests.

Verifying External Interactions
Verifying in detail the interactions with an external component is one of the main
reasons to do this kind of test. Moreover, because you’re not bringing up your entire
application, but only the bit that contacts the external component, you can afford to
run your test against a real external component (or at least something that looks very
much like that). Let’s take the example of a database.

When you’re running your component tests, you’ll probably use an in-memory data‐
base to speed things up. When you run your acceptance tests or your end-to-end
tests, you’ll use the real components, but your tests will cover only a handful of the
possible operations against the database. You need to make sure that all the opera‐
tions against the database are going to work, so you can get the specific class that
encapsulates database access, connect it to a real database, and try out all the
operations that you may ever need to execute in production. This will give you the
confidence that the integration between your service and the database is correct, and
will remove the deep tests at acceptance or end-to-end levels.

The mechanism to do this will depend on the technology that you are using and on
the type of component that you are connecting to. The Feature Flags service includes
an example of this in the FlagRepositoryIT class. In the Feature Flags service
(folder /featureflags), all the communication with the database is encapsulated in the
FlagRepository class, which provides a high-level interface for the persistance layer.
By instantiating this class on its own and connecting it to a real database, we can ver‐

Integration Testing | 317

ify all the operations. Bringing up a real database is also easier than it sounds: thanks
to Docker, most database vendors now provide a container with a readily installed
database. This, in combination with the Docker Maven plugin, allows you to create
and start up a real database before running integration tests, and then dispose of it
when you’re done; check the pom.xml file in Feature Flags service for details.

Testing Fault Tolerance
The other reason to run integration tests is to verify that your application is going to
respond correctly to multiple error scenarios. This might be impossible to do at the
end-to-end test level, because you don’t have control over the external components.
You might be able to try this at the component- or acceptance-test level, because here
you’re operating with test doubles that you can control. However, given the many
moving parts present in these kinds of tests, you may have trouble assessing whether
the system did what you expected.

If you, however, isolate the class in the code that is in contact with the external com‐
ponent, and you expose it to different kinds of failures, you can assert exactly what
that class is going to do, and then reason from there about how the rest of the service
will behave.

Testing fault tolerance is different from verifying external interactions: to test the
external interactions, you want to use a real component (or something as real as pos‐
sible), in order to legitimate the transaction being tested, while to test fault tolerance,
you will want to use a fake component, so you can generate all the different error sce‐
narios. The technologies needed for this have been mentioned already. Typical mock‐
ing frameworks will provide options to respond with errors; it’s only the approach
that is different in this kind of test.

The Extended Java Shop includes an example of fault-tolerance testing in the Shop‐
front service. The Shopfront service verifies the integration with the Feature Flags
service in FeatureFlagsRepoIT, and does this by mocking the Feature Flags service
with WireMock and then forcing it to respond with multiple error conditions, among
them empty responses, an HTTP status of 500 INTERNAL SERVER ERROR, and a sce‐
nario in which the service takes too long to reply. These tests will make the class in
contact with Feature Flags, FeatureFlagsRepo, experience exceptions that represent
the different error scenarios, which we can now catch and handle appropriately. As
you can see in the sample application, from where the code in Example 11-1 has been
extracted, in this case we have opted to log the situation and simply indicate to the
rest of the application that there is no flag available.

Example 11-1. Handling several error conditions when retrieving a feature flag

public Optional<FlagDTO> getFlag(long flagId) {
 try {

318 | Chapter 11: Functional Testing: Correctness and Acceptance

 final String flagUrl = featureFlagsUri + "/flags/" + flagId;
 LOGGER.info("Fetching flag from {}", flagUrl);
 final FlagDTO flag = restTemplate.getForObject(flagUrl, FlagDTO.class);
 return Optional.ofNullable(flag);
 } catch (HttpClientErrorException | HttpServerErrorException |
 ResourceAccessException | HttpMessageNotReadableException e) {
 final String msg = "Failed to retrieve flag %s; falling back to no flag";
 LOGGER.info(format(msg, flagId), e);
 return Optional.empty();
 }
}

Be Aware of How Much of the Stack Is Being Tested

When performing fault tolerance tests, it is easy to end up mocking
more of the technology stack than you initially realize. This makes
tests fragile.

Unit Testing
Unit testing is rather ubiquitous these days, and you probably don’t need a primer on
it. Countless resources out there explain unit testing and TDD and the main tools for
it: frameworks like JUnit, TestNG, or Spock for text execution, and libraries like
Mockito, JMock, or PowerMock for mocking dependencies. Also worth mentioning
are libraries that help writing more expressive assertions, like Hamcrest or Fest-
Assert. But none of this is news.

There is something, however, that we have only recently begun to understand. Over
the years, a lot of debate has ensued about what is the “correct” way to write unit tests
—more particularly, about how much a unit test should cover. Traditionally, a unit
test should cover only the target class being tested, and any dependencies of the class
should be abstracted away using test doubles of some sort. However, in some cases,
pragmatism leads you to include some of the dependencies of the target class, effec‐
tively treating a set of classes as a single “unit.”

Instead of debating about which way is more correct, what the industry is now lean‐
ing toward is admitting that both approaches can be correct, depending on the case.
In fact, Toby Clemson has gone to the point of giving a name to each of these
approaches so we can discuss them in detail: these are sociable unit testing and soli‐

Unit Testing | 319

tary unit testing. As you will see, some cases obviously call for either approach, and in
others the decision won’t be that clear.

New to Unit Testing? No Need to Fret!
Even though we are assuming that the majority of readers know about unit testing
and TDD, we are aware that this assumption won’t be true for everyone. If you are
within this group, the following resources will lead you to the right place:

• For a primer with easy-to-follow examples, take a look at Kent Beck’s Test Driven
Development: By Example (Addison-Wesley).

• If you want something more Java-focused, Jeff Langr has you covered with Agile
Java: Crafting Code with Test-Driven Development (Prentice Hall) and Pragmatic
Unit Testing in Java 8 with JUnit (Pragmatic Bookshelf), the last one cowritten
with Andy Hunt and Dave Thomas.

• If you are working with an existing codebase that doesn’t have unit tests, and
need to find a way to refactor it into more testable code, Michael Feathers’s Work‐
ing Effectively with Legacy Code (Prentice Hall) is the way to go.

• Once you have built a comprehensive unit test suite, keep it up to scratch by
applying the teachings of xUnit Test Patterns: Refactoring Test Code (Addison-
Wesley) by Gerard Meszaros.

• Finally, Practical Unit Testing with JUnit and Mockito by Tomek Kaczanowski is a
great reference for applying these frameworks effectively.

Of course, this is just a small subset of the many good resources available, including
some really good blog posts and videos. If you fancy learning together with someone
else, Ping-Pong TDD is a great way to apply TDD while pair programming.

Sociable Unit Testing
Sociable unit testing considers a group of two or more classes a society that performs a
discernible function when brought together, but that doesn’t have a clear goal when
considered separately. In these cases, you can consider the whole group a unit, and
you will test them together when writing unit tests.

We can see an example of this in the Product Catalogue service (folder /productcata‐
logue)—more precisely, in PriceTest, which tests the Price class. As you can see in
the code, a Price object accepts two parameters: a UnitPrice, indicating the price of
a single unit, and a BulkPrice, indicating the price of the item when bought in bulk
(together with the minimum number of items that need to be bought together for the
purchase to be considered “bulk”). One of the rules that needs to be verified in

320 | Chapter 11: Functional Testing: Correctness and Acceptance

http://bit.ly/2xEFQn1

PriceTest is that the price of an element bought in bulk must be lower than the price
of the element bought individually.

If you were strict about your unit testing, when testing Price in PriceTest, you
wouldn’t pass in real implementations of UnitPrice and BulkPrice. Instead, you
would pass in test doubles for them. You would create these test doubles so that when
Price invokes their methods to check the single and bulk prices (so as to verify the
previous rule), the appropriate values are returned by the test doubles. However, you
probably agree that this would be overkill here: Price is not entirely independent of
UnitPrice and BulkPrice. It’s not like the latter offer some kind of interface to the
former. We don’t need to keep the implementations of these classes separate. The con‐
cepts of UnitPrice or BulkPrice don’t have that much value beyond the scope of the
concept of Price. We have created different classes for these just to avoid duplication
of code and to manage tests more easily, but that’s not enough to fully decouple them.

That should convince you that sociable unit testing is the right approach for testing
the Price class. If you still need further arguments, try to rewrite those tests by using
test doubles instead of real objects, and then compare. You might think that Price
Test looks better with test doubles (and if so, that’s OK), but we honestly doubt it.

Solitary Unit Testing
Solitary unit testing is closer to the traditional idea of unit testing. A class is identified
as a unit, and all of its dependencies need to be abstracted away when unit testing,
among other things because using real objects for dependencies would make unit
testing harder. Although any test doubles might be used for solitary testing, mocks
are usually the best suited ones.

Perhaps one of the best examples within the Extended Java App can be found in the
Shopfront service (folder /shopfront)—more particularly, in the tests for Feature
FlagsService. The objective of this class is, given a particular flag ID (which may or
may not exist in the Feature Flags service), decide whether the user should be allowed
to access the feature. The class therefore has a few responsibilities: obtain the flag,
read its portion-in value, and decide whether this particular request will fall within
the value. As can be seen in the code, this class accepts two parameters: a Feature
FlagsRepo object to communicate with the Feature Flags service, and a Random object
to generate random numbers.

Passing in a real FeatureFlagsRepo object would make FeatureFlagsServiceTest
unnecessarily complex. For instance, FeatureFlagsRepo could fail to deliver a flag for
multiple reasons: it could be because the flag doesn’t exist, or simply because the Fea‐
ture Flags service is currently unavailable and data couldn’t be retrieved. But, from
the point of view of FeatureFlagsService, all this is irrelevant. The only thing that

Unit Testing | 321

matters is whether a flag is provided, not the reason. This is already pointing us
toward the usage of mocks.

However, the case becomes even more obvious if you consider passing in a real
Random object. This would imply you don’t have any control over the execution of
your tests, because you wouldn’t be able to tell which number is being provided to the
FeatureFlagsService object. In this case, the use of mocks is not just convenient; it’s
necessary.

Chicago School Versus London School
Although the terms might not be as common, an alternative way to refer to these
approaches is Chicago (or sometimes Detroit) School for sociable unit testing, and
London School for solitary unit testing. As a matter of fact, Solitary (London School)
unit testing relies heavily on the use of mocking frameworks, and many of the most
popular mocking frameworks in Java (for example, Mockito, jMock, or WireMock)
have deep roots in London (United Kingdom). If you’re interested in the history of
these approaches and their names, check Martin Fowler’s “Mocks Aren’t Stubs” or
Jason Gorman’s “Classic TDD or “London School”?”

Dealing with Flaky Tests
As the number of moving parts increases, the number of things that could go wrong
also increases. This sometimes makes tests of larger scope flaky, failing for no appa‐
rent reason and then recovering without remediation. And the larger the scope, the
higher the likelihood of flakiness. This is a more dangerous thing than it would seem,
because it will slowly lead developers toward not taking failing tests very seriously;
soon you will develop the habit of rerunning a failing test a couple of times before
you start investigating it, delaying necessary action.

The truth is, most brittleness can be addressed with the right measures, although the
“right measures” will be different depending on the technology and the problem at
hand. A comprehensive compendium of these would require a book of its own, but
we can discuss some generic approaches.

Most brittleness comes from some form of indeterminism that hasn’t been accounted
for, some implicit assumption or expectation that the test execution didn’t meet. So
the general approach will be to identify these assumptions and address them. Let’s
look at some examples.

Data
Bad data is one of the most common causes of flaky tests. Data, especially in test/stag‐
ing environments, tends to be quite volatile: people may delete, add, or modify

322 | Chapter 11: Functional Testing: Correctness and Acceptance

http://bit.ly/2kuR98s
http://bit.ly/2OdRWwF

underlying data without prior warning. Entire databases may be erased and reprovi‐
sioned. Live refreshes from production (hopefully, with the right anonymization)
might be coming in at any point. If your tests rely on a particular piece of data being
there, it is asking for trouble.

The best thing to do regarding data is to have your tests create it as part of the test
setup. That way, you know you have exactly what you need. (Ideally, you’ll also delete
the data after you’re done, but that is not strictly necessary.) If your test cannot create
the data it needs for whatever reason, at the very least it should include a precheck to
verify that necessary data is indeed there in the expected form, failing with a mean‐
ingful error message otherwise. The former is the best option, since all failures would
be proper red flags, but the latter case can still be a time-saver: when you know that
your data isn’t there, you can take the necessary measures to add it, but at least you
don’t have to do all the prior investigation.

Resource That Is Not Available Yet
This issue can take many forms, from a UI test (for instance, based in Selenium) that
is trying to assert on a particular section of the page that hasn’t loaded yet, to a service
that is trying to contact a test database that is still in the process of being provisioned.
The most common solution is to add delays in the assertion execution so as to try to
wait for the relevant resource to be available. Others keep retrying the assertion for a
period of time. The problem with this approach is that genuine failures will take very
long to fail, because the configured delay will have to pass fully before considering the
test a failure, which slows the tests down:

// Both test success and failure will always take 1 minute
Thread.sleep(60 * 1000);
/* assertion */

// Test success will be as fast as possible,
// test failures will always take 1 minute
await().atMost(1, MINUTES).until(/* assertion */);

A better approach is detecting when your resource has become available, and only
then performing the relevant assertions. For instance, in the case of a Selenium test,
you can add a hidden element that is present in all the pages served by your website,
and that becomes available only after the page has fully loaded. Your test can then
wait on this element being available, and then you perform your assertion: this way, if
your assertion finds that an expected element is not there, you know it’s a genuine
error, and not just a premature assertion. Similarly, for checking that external
components are up and running, you can use simple utilities like wait-for-it.

Dealing with Flaky Tests | 323

https://github.com/vishnubob/wait-for-it

Nondeterministic Events
Sometimes unexpected events will affect the execution of your test, yielding a differ‐
ent result than the one you expected, and therefore causing your test to fail. Now, the
important thing to realize here is that the fact that the obtained result is different
from expected does not necessarily mean that it’s wrong: if an event has affected exe‐
cution, maybe the test expectation is no longer valid. An example of this is an accept‐
ance test that expects a particular response from a service, but whose result is affected
by an unexpected communication failure between the tested service and a depend‐
ency. If the server has been configured to react to the communication failure, it will
produce a correct response (given the circumstances), but different from the
expected.

The general solution to this kind of problem is to detect that an anomaly has hap‐
pened and adjust the test expectation accordingly. For instance, the service under test
could indicate that its result is impacted by a communication failure, and the test
assertion could be simply skipped. It is important to signal this to the test execution
framework, though, and categorize the test as “skipped” or “ignored,” because catego‐
rizing it as either “success” or “failure” would be misleading. Knowing that a test
hasn’t run, developers can then decide what to do in this situation, whether repeating
the test or simply accepting the risk that this particular run had a slightly slower test
coverage.

If Nothing Else Works
In some rarer scenarios, there will be nothing you can do to address the brittleness of
a test, for a variety of reasons. Maybe you have a dependency from a system or com‐
ponent that is managed by a different team, or even a different organization. Maybe
the system under test is inherently indeterministic, and you can’t adapt to unexpected
events without reimplementing the business logic in the test. Whatever the reason,
when a fix is not possible, it’s time to consider mitigation.

If a fix is possible, just not on your hand, and someone else is going to work on it,
consider temporarily ignoring the tests. You can simply flag it as ignored and then
remember to unignore it at some point in the future (a reminder in a team-shared
calendar can work). Or if you want something more automated, you can configure it
so it will run only from a particular date onward, effectively ignoring it for the time
being and unignoring it automatically at some point in the future.

If a fix is not possible, neither by you nor by someone else, you can try to reduce the
scope of the test. Maybe what you are trying to achieve at acceptance-test level can be
done by a combination of component and integration tests, which might prove more
reliable. Moreover, this might even have the advantage of being faster (and it’s the rea‐
son so many teams end up with builds that take up to one hour to run).

324 | Chapter 11: Functional Testing: Correctness and Acceptance

Finally, if and when you conclude that no possible fix exists, you must consider delet‐
ing the test. This might seem a drastic measure, but you need to remember that tests
are there to give you valuable information as part of a tight feedback loop: if the
information that they are giving you is misleading and wasteful, you need to reassess
what the value of that test really is. Deleting the test might be, overall, better than
having to deal with it.

Testing Outside-In Versus Testing Inside-Out
Now that you know all the levels of testing that you will need in your application, a
different question pops up: where should you start? Should you begin by defining the
overall end-to-end tests and then work your way in? Or should you begin with unit
tests for the smallest elements and then build up from there? At the risk of sounding
repetitive, the answer is, once again, that it depends.

Your technology, build pipeline, skillset, and even personal preference will determine
whether you should favor an outside-in or an inside-out approach. We can only enu‐
merate the characteristics of each case to help you make a decision.

“Outside-In Versus Inside-Out” Is a Different Question from “In-Process
Versus Out-of-Process”

Admittedly, the title of this section is awfully similar to that of “In-
Process Versus Out-Of-Process” on page 314, but they refer to very
different things. In this section, we discuss the order in which tests
at different levels are written. In an outside-in approach, you start
by the outermost tests (acceptance tests, for instance) and make
your way through by specifying newer tests at lower levels. In an
inside-out approach, you start at the lower scale (unit tests) and
progressively build up bigger and longer tests.
On the other hand, the question of in-process versus out-of-
process refers to the mechanics used to design and run component
tests. In-process will have the service and the tests running under
the same OS process. In an out-of-process approach, service and
tests run in different OS processes.
Fortunately, these decisions tend to be made once at the beginning
of the project, and you won’t have to talk about them (falling prey
to the risk of confusion) very often.

Outside-In
Testing outside-in forces you to think of the user experience up front. You will need
to determine end-to-end and acceptance tests first; you will have to analyze the needs
and limitations in the interactions with other systems; and you will check firsthand

Testing Outside-In Versus Testing Inside-Out | 325

whether the environment allows you to do what you intend to do. Also, it allows you
to define the feature in a more iterative way: as you make your way in, and you start
defining more and more detailed tests, when you go through component, contract,
integration, and unit tests, you and your team can decide how to handle edge cases as
they approach. Developing outside-in ensures than you don’t build any more code
than you strictly need, because everything you do is just the consequence of a higher-
level need.

Not everything is rosy, though. To begin with, practitioners agree that building and
testing software outside-in requires stronger development skills. When programmers
are testing at a particular level, they need to identify the right moment to refactor and
switch to a lower level; failing to do this could result in an unbalanced test suite that
is too heavy on big, overarching tests. Also, there is the question of when end-to-end
and acceptance tests need to go green. If you consider that these tests should be red
until the feature is fully implemented, but you have to write these tests first thing,
they are going to be failing for a while. If your build is configured to stop the pipeline
upon failing tests, your pipeline will be blocked until your feature is fully imple‐
mented, which is the opposite of continuous delivery. If your failing end-to-end or
acceptance tests don’t block the pipeline, you may be delivering bugs to production—
not a great idea either. And, if you decide to write the tests at the beginning but hold
off committing them until the end, your uncommitted code could grow stale, also
going against the idea of continuous delivery.

Some teams overcome these issues by deciding that end-to-end and acceptance tests
may go green before the feature is fully implemented. The idea is that, because these
tests are meant to be rather superficial, they could be made to pass by means of a sim‐
plistic, incomplete implementation of the feature. The feature can then be fully
fledged out as lower-level tests are written and implemented. This certainly addresses
the aforementioned issues, but it also creates another one: people need to be aware of
the fact that a green end-to-end test doesn’t imply that the feature is available to the
public. The useful reports created by tools like SerenityBDD cannot be taken like gos‐
pel, and close communication between business and developers is needed to avoid
misunderstandings.

Inside-Out
Inside-out testing is, in a way, easier to execute. You may not be able to visualize the
big picture, or have an idea of how all the components are going to fit together, but
you can grab what you do know and start from there. Maybe you feel pretty confident
about a particular class needing extra responsibilities to implement this feature, so
you can start there.

Achieving the right balance between types of tests is easier when you work inside-out.
If you start with unit tests, you can keep on writing tests until you realize that you

326 | Chapter 11: Functional Testing: Correctness and Acceptance

have exhausted all the possible scenarios. Once you realize you cannot test anymore
at the unit-test level, you go up one level and continue from there. Once you get to
the end-to-end or acceptance-test level, you’ll realize that there is little left to test, if
anything, and you may focus on writing just enough tests so as to produce the right
BDD reports.

One of the downsides of inside-out testing is that you might end up writing at the
lower levels more functionalities and checks than you need, maybe because some of
the edge cases that you considered at the lower level are just not possible when you
put them in the context of the higher level. If you’re having troubling visualizing this,
you can find a small example in the Extended Java Shop application—more precisely,
in the Feature Flags service (folder /featureflags). We added the ability to update flags
by using an inside-out approach, meaning we added an updateFlag(Flag) method
in the FlagService class before we added the relevant PUT operation in FlagRe
source.

When we were writing FlagService and FlagServiceTest, we considered the sce‐
nario where we pass to the updateFag(Flag) method a Flag without a flag ID. We
considered that an error condition, and created FlagWithoutIdException to signal it.
Faithful to the idea of working in small increments, we implemented these changes,
tested them, and committed them. When we then added a PUT method to FlagRe
source, we associated this to the path pattern /flags/{flagId}, and we realized that
we would never have a case of updating a flag without a flag ID. If a client tries to
update a flag without indicating a flag ID, the request would have the form
PUT /flags/, but this would be interpreted by the framework as performing the
wrong operation upon the /flags resource, which would be automatically rejected as
405 METHOD NOT ALLOWED. In the end, this was just an unnecessary precaution.

Testing Outside-In Versus Testing Inside-Out | 327

Different People Have Different Brains, and Different Brains Work
Differently

It is not uncommon for a person to have a preference over outside-
in or inside-out testing, and then change preferences to the other
one at some point in their career. This is often perceived as “matur‐
ing” or “learning,” and people assume that the latter choice must be
better than the former. The reality is much more complex. Differ‐
ent people may be more comfortable with different thought pro‐
cesses; some will have a skill for managing abstractions and
thinking about the big picture, and some will need to focus on the
details to establish a foundation. Don’t make assumptions about
the skill level of a person just because they favor one approach or
the other.

Additional Resources (Particularly for Testing Java EE Apps)
Because of the scope of this book, there is only so much information we can provide
about each topic. Testing is one of the topics that deserves an entire book to be dedi‐
cated to it, especially to cover all of the nuances with testing Java EE and Spring appli‐
cations. If you want to learn more, we recommend the following books:

• Testing Java Microservices (Manning) by Alex Soto Bueno et al. (which is relevant
even if you are not creating microservices)

• Continuous Enterprise Development in Java (O’Reilly) by Andrew Lee Rubinger
and Aslak Knutsen

• Growing Object-Oriented Software, Guided by Tests (Addison-Wesley Professio‐
nal) by Steve Freeman and Nat Pryce

Putting It All Together Within the Pipeline
The right balance of tests at all the levels gives a comprehensive and reliable test cov‐
erage. Now it’s time to tie it all together in an automated build pipeline. The mecha‐
nism used to achieve this will depend on the technology used for your build (Maven,
Gradle, Ant, etc.) and the technology used for build automation (Jenkins, TeamCity,
GoCD, etc.). However, a few general recommendations can be made:

• Ensure that each deliverable (i.e., each service or library) has its own job in the
build software. This job should trigger whenever a code change is detected that
affects the deliverable either directly or indirectly.

• Tests that refer to a single deliverable (unit, contract, integration, and component
tests) should all run within the job that is specific to that deliverable. What’s

328 | Chapter 11: Functional Testing: Correctness and Acceptance

more, ideally they should run with a single command of the build technology of
choice (e.g., Maven), which would take care of any necessary setup or teardown.

• After a successful build, the specific deliverable should be packaged and made
available in some form of repository for later consumption (e.g., DockerHub,
Artifactory, etc.).

• Tests that refer to a set of deliverables (like acceptance or end-to-end tests)
should have their own job in the pipeline, and should be triggered after any given
service is successfully rebuilt.

• After a successful run of the acceptance and end-to-end tests, the deliverable
whose change triggered the run should be deployed to production (optionally,
going through one or more test environments first).

A full example of this can be found in the Extended Java Shop. The three prebuilt Jen‐
kins servers contain a preconfigured pipeline that works exactly as described here.
You can follow the instructions in the README.md file to run Jenkins locally and
observe the behavior.

Identifying Your Test Types

Most build tools have a set of default suffixes that denote classes
that contain tests, like *Test or *Spec. However, most build tools
allow you to define your own, which can be helpful to identify at a
glance at what level you have encountered a test failure. In the case
of the Extended Java Shop, we have used *AT for acceptance tests,
*CDC for contract tests, *CT for component tests, *IT for integration
tests, and *Test for unit tests. You don’t need to use exactly the
same suffixes, but it is highly encouraged that you identify your
different test types somehow.

How Much Testing Is Enough?
If a testing strategy is to be compatible with continuous delivery, it must have an
appropriate ratio of unit tests, acceptance tests, and end-to-end tests that balances the
need for information discovery against the need for fast, deterministic feedback. If
testing does not yield new information, defects will go undetected. If testing takes too
long, delivery will be slow, and opportunity costs will be incurred.

Continuous delivery advocates continuous testing—a testing strategy in which a large
number of automated unit and acceptance tests are complemented by a small number
of automated end-to-end tests and focused exploratory testing. The continuous test‐
ing test ratio can be visualized as a test pyramid, illustrated in Figure 11-4.

How Much Testing Is Enough? | 329

Figure 11-4. The test pyramid indicates that faster, localized tests should be the founda‐
tion for slower, broader ones

Finding this balance isn’t easy, and nothing can tell you whether you have achieved it.
There are, however, some heuristics that you can consider. Keep in mind that the real
objective of your test suite is not to guarantee that your software is free of flaws; that
is impossible. When you are constantly changing something, mistakes will happen
and bugs will appear. The objective of the test suite is therefore to detect whenever
these mistakes happen so as to limit the impact. When you start thinking about tests
this way, you develop a sense to know whether you have too few or too many. If you
can see parts of the code that, if broken, wouldn’t cause a test to fail, you have too few.
If you can identify tests that cannot be made to fail in isolation (i.e., make a change
that will make that test and only that test fail), some of those tests are probably
redundant.

Close inspection and awareness of your codebase are vital to achieve a test balance,
but some tools can help. For instance, test coverage tools like JCov or JaCoCo can flag
sections of code that are not covered by any test. Be careful, though, when interpret‐
ing the results of these tools: the fact that a line has been covered by a test doesn’t
necessarily mean that the right assertions about that line have been executed. Test
coverage can warn you when something is not covered, but it cannot be used as a way
to state that something is covered.

More advanced tools can flag when a particular section of code is not covered by a
test, but they are slow and expensive to run. One of these tools is Jester. Jester will
make a random change in your code and then run the tests, assuming something will
fail; if it doesn’t, then it flags this change as a test gap. After completing a cycle, it will
revert the previous change, make another one somewhere else, and repeat the tests. It
will continue until it considers it has tried all the possible combinations. You can

330 | Chapter 11: Functional Testing: Correctness and Acceptance

easily see how Jester can take literally hours to complete a run, but that’s the price that
you pay for complete confidence.

In the end, the important thing is that you remain vigilant. The number of tests that
you have will never be “just right.” It will always be either too much or too little. But if
you keep an eye on your system, and maybe get the help of some of the tools men‐
tioned here, you’ll be able to detect when you’re deviating from the sweet spot and
correct.

Summary
Tests are essential to building trust in your software; they give you the confidence to
deliver a product. However, in a world of continuous delivery, you cannot rely on
manual tests, for the pace of change is too fast, so you need an appropriate strategy
for automated testing:

• Building a comprehensive test suite will ensure not just that the new features of
the application work as expected, but also that you haven’t broken any of the
existing ones.

• Synthetic transactions are the ultimate test, for they replicate exactly what your
users will do, but the fact that they run in the production environment adds a
number of risks.

• Broad end-to-end tests are slow to run and often brittle, but they are the only
ones that bring all the components together, and therefore the ones closer to the
real user experience.

• Acceptance tests are also slow, but they verify that all the components that you
own work well together, indicating whether you have done your job correctly.

• Consumer-driven contracts verify that the expectations between two services are
appropriately met by both sides, without the overhead of loading entire applica‐
tions.

• Component tests treat an entire service as a black box, ensuring that all the inter‐
nal subsections fit in together.

• Integration tests look at the seams between components, verifying all the possible
variants of the interaction.

• Unit tests are fast to run, so you can use them as your foundation to test as much
of the logic of your software as possible.

• Tying all the tests together into an automated build pipeline will ensure that,
upon any code change, your software is thoroughly tested and, if appropriate,
released to production.

Summary | 331

After this chapter, you have everything that you need to verify that the work you have
done when building your software is correct, which is half of the user experience. The
other half will be dependent on the nonfunctional requirements, and will be the
objective of the next chapter: regardless of how “correct” your application is, users
won’t be pleased if the application is slow or unreliable.

332 | Chapter 11: Functional Testing: Correctness and Acceptance

CHAPTER 12

System-Quality Attributes Testing:
Validating Nonfunctional Requirements

You learned in the previous chapter that you must test software for correctness and
the delivery of the required business functionality. However, it is equally important to
ensure that the system is reliable and scalable, and that the software can be run in a
cost-effective manner. Classically, validating the quality of a software system has been
divided into testing functional requirements and testing nonfunctional requirements
—sometimes referred to as cross-functional requirements or system-quality attributes.
In this chapter, you will learn how to test the nonfunctional requirements.

Why Test Nonfunctional Requirements?
Testing nonfunctional requirements is often relegated to the end of a software deliv‐
ery project, and sometimes completely ignored, particularly within small teams con‐
strained by resources (and expertise). Enterprise development teams can fare
somewhat better, partly through access to specialized skills and partly by understand‐
ing their customers and associated resource usage better.

Many enterprise organizations conduct capacity and security planning within the fea‐
sibility study of a large project. In reality, this is often fraught with uncertainty and
danger, as business teams are unsure of the number of customers, usage patterns, and
potential threats; and the engineering teams are unsure of the impact and capacity
requirements of each unit of functionality offered by the software. The recent trend
toward designing functionality within well-bounded services, deploying on flexible
and programmatically defined infrastructure, and the embrace of the shared respon‐
sibility model (e.g., DevOps, SRE) has dramatically reduced the barrier to entry for
this type of testing.

333

The terms nonfunctional requirements, cross-functional requirements, and system-
quality attributes may be used interchangeably throughout this chapter. However, it
should be stressed that although the term nonfunctional requirements is the most pop‐
ular, it is also perhaps the most incorrect—and the potential cause of the lack of pri‐
ority given to these types of quality attributes. The word “nonfunctional” could imply
that not testing these requirements will not affect the functionality of the system. But
this could not be further from the truth, especially in the current climate of Hacker‐
News or Twitter-driven customer-thundering herds, the potentially spectacular fail‐
ure modes of underlying infrastructure platforms, and entire illicit organizations
created (that are sometimes state sponsored) with the sole purpose of hacking soft‐
ware systems.

Launch Coordination and Production-Ready Checklists
Several large organizations, such as Google and Uber, have presented at conferences
about how they require launch coordination checklists or production-ready check‐
lists to be completed by engineers before an application is deployed to users. There
can be a lot of value in doing this, as a checklist forces you to think about all aspects
of supporting your application after it is receiving traffic and becomes critical to the
business. Many of the items within these checklists are focused on nonfunctional
requirements.

The good news is that with current tooling, methodologies, and access to commodity
programmable infrastructure, it is now easier than ever before to conduct this type of
testing.

Code Quality
Writing code is an inherently creative act, so there are often many ways to implement
each piece of functionality. Nearly every developer has their own personal style (often
within each language they know), but when working as part of a team, you must all
agree on a baseline for certain code qualities, such as code formatting and use of eso‐
teric parts of the language.

The primary metric of code quality is whether the functionality created meets the
requirements specified, and you learned how to verify this in the previous chapter,
which focused on testing functional requirements. The “nonfunctional” perspective
of code quality consists of reducing time-to-context (how readable is the code for
another developer, and can someone else quickly understand the implementation
logic) and being free of deficiencies (is the code written in a way that allows the appli‐
cation to scale effectively, or handle faults gracefully).

334 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

http://bit.ly/2OdU2g1
http://shop.oreilly.com/product/0636920053675.do
http://shop.oreilly.com/product/0636920053675.do

In Chapter 9, you explored how to implement automated code-style checking as part
of the CI process with tooling like Checkstyle and PMD, and in this chapter you will
learn how this can be augmented with automated architecture quality assessment.

Architectural Quality
The build pipeline should be the primary location where agreed-upon architectural
qualities are codified and enforced. These quality assertions should not replace dis‐
cussions with your team about agreed-upon standards and quality levels, and should
definitely not be used to avoid intra- or inter-team communication. However, check‐
ing and publishing quality metrics within the build pipeline can prevent the gradual
decay of quality that can otherwise be challenging to notice.

ArchUnit: Unit-Testing Architecture
ArchUnit is an open source, extensible library for checking the architecture of your
Java code by using a Java unit-test framework like JUnit or TestNG. ArchUnit can
check dependencies between packages and classes, layers and slices, check for cyclic
dependencies, and more. It does this by analyzing Java bytecode and importing all
classes into a Java code structure for analysis.

Why Test Your Architecture?
This is a fair question, and the ArchUnit Motivation web page has you covered! It
starts by suggesting that most developers working in larger projects will know this
story: once upon a time, an architect drew a series of nice architecture diagrams,
showing the components the system should consist of, and how they should interact.
Then the project got bigger, use cases became more complex, and new developers
dropped in and old developers dropped out. In more and more cases, new features
would be added in any way that fit. Suddenly, everything depended on everything and
every change could have an unforeseeable effect on any other component. We’re sure
many of you will recognize this scenario.

You could fix this issue by having an experienced developer or architect look at the
code once a week, identify violations, and correct them. Realistically, a more practical
method is to define the components in code and rules for these components that can
be automatically tested (for example, as part of your continuous integration build).

To use ArchUnit in combination with JUnit 4, include the dependency shown in
Example 12-1 from Maven Central.

Architectural Quality | 335

https://www.archunit.org/

Example 12-1. Including ArchUnit within a Maven pom.xml

<dependency>
 <groupId>com.tngtech.archunit</groupId>
 <artifactId>archunit-junit</artifactId>
 <version>0.5.0</version>
 <scope>test</scope>
</dependency>

At its core, ArchUnit provides infrastructure to import Java bytecode into Java code
structures. This can be done by using ClassFileImporter. Architectural rules such as
“services should be accessed only by controllers” can be made by using a DSL-like flu‐
ent API, which can, in turn, be evaluated against imported classes; see Example 12-2.

Example 12-2. Using the ArchUnit DSL to assert that services should be accessed only by
controllers

import static com.tngtech.archunit.lang.syntax.ArchRuleDefinition.classes;

// ...

@Test
public void Services_should_only_be_accessed_by_Controllers() {
 JavaClasses classes =
 new ClassFileImporter().importPackages("com.mycompany.myapp");

 ArchRule myRule = classes()
 .that().resideInAPackage("..service..")
 .should().onlyBeAccessed().byAnyPackage("..controller..", "..service..");

 myRule.check(classes);
}

A host of ArchUnit examples are available on GitHub, and we’ve included several
next so that you are aware of the power of the framework. Extending the preceding
example, you can enforce more layer-based access rules, as shown in Example 12-3.

Example 12-3. Enforcing additional layer-based access rules with ArchUnit

@ArchTest
public static final ArchRule layer_dependencies_are_respected = layeredArchitecture()
 .layer("Controllers").definedBy("com.tngtech.archunit.example.controller..")
 .layer("Services").definedBy("com.tngtech.archunit.example.service..")
 .layer("Persistence").definedBy("com.tngtech.archunit.example.persistence..")
 .whereLayer("Controllers").mayNotBeAccessedByAnyLayer()
 .whereLayer("Services").mayOnlyBeAccessedByLayers("Controllers")
 .whereLayer("Persistence").mayOnlyBeAccessedByLayers("Services");

336 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

https://github.com/TNG/ArchUnit-Examples

You can also ensure naming conventions, such as prefixes, or specify that a class
named a certain way must be in an appropriate package (this, for example, can pre‐
vent developers from putting controller classes outside controller packages); see
Example 12-4.

Example 12-4. Enforcing naming conventions with ArchUnit

 @ArchTest
 public static ArchRule services_should_be_prefixed =
 classes()
 .that().resideInAPackage("..service..")
 .and().areAnnotatedWith(MyService.class)
 .should().haveSimpleNameStartingWith("Service");

 @ArchTest
 public static ArchRule classes_named_controller_should_be_in_a_controller_pkg =
 classes()
 .that().haveSimpleNameContaining("Controller")
 .should().resideInAPackage("..controller..");

Finally, you can also enforce that only specific classes can access other classes, fields;
for example, only DAO classes can access an EntityManager, as shown in
Example 12-5.

Example 12-5. Enforcing class-access patterns

 @ArchTest
 public static final ArchRule only_DAOs_may_use_the_EntityManager =
 noClasses().that().resideOutsideOfPackage("..dao..")
 .should().accessClassesThat()
 .areAssignableTo(EntityManager.class)
 .as("Only DAOs may use the " +
 EntityManager.class.getSimpleName());

Generate Design-Quality Metrics with JDepend
JDepend has been around longer than ArchUnit, and although it potentially offers
fewer features, the two frameworks can be complementary. JDepend traverses Java
class file directories and generates design-quality metrics for each Java package. JDe‐
pend allows you to automatically measure the quality of a design in terms of its
extensibility, reusability, and maintainability to manage package dependencies effec‐
tively.

Architectural Quality | 337

JDepend Is Showing Its Age

The last official release of JDepend was in 2005, and in “tech years”
(much like dog years), this is a long time. Someone else has forked
the codebase and applied a series of bug fixes, but caution is war‐
ranted, especially in regards to support for new language features.
Our preference is to use a combination of SonarQube for design-
quality metrics, and ArchUnit for asserting architectural require‐
ments. However, we have included JDepend here because we often
bump into this framework on consulting engagements.

As specified on the JDepend website, the framework generates design-quality metrics
for each Java package, including the following:

Number of classes and interfaces
The number of concrete and abstract classes (and interfaces) in the package is an
indicator of the extensibility of the package.

Afferent couplings (Ca)
The number of other packages that depend upon classes within the package is an
indicator of the package’s responsibility.

Efferent couplings (Ce)
The number of other packages that the classes in the package depend upon is an
indicator of the package’s independence.

Abstractness (A)
The ratio of the number of abstract classes (and interfaces) in the analyzed pack‐
age to the total number of classes in the analyzed package.

Instability (I)
The ratio of efferent coupling (Ce) to total coupling (Ce + Ca) such that I = Ce /
(Ce + Ca). This metric is an indicator of the package’s resilience to change.

Distance from the main sequence (D)
The perpendicular distance of a package from the idealized line A + I = 1. This
metric is an indicator of the package’s balance between abstractness and stability.

Package dependency cycles
Package dependency cycles are reported along with the hierarchical paths of
packages participating in package dependency cycles.

338 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

Metrics Do Not Necessarily Indicate Good or Bad Designs
The JDepend documentation makes it clear that before using any design-quality ana‐
lyzing framework like JDepend, it is important to understand that “good” design-
quality metrics do not necessarily indicate good designs. Likewise, “bad” design-
quality metrics do necessarily show bad designs. The design-quality metrics produced
by JDepend are intended to be used by designers to measure the designs they create,
understand those designs, and automatically check that the designs exhibit expected
qualities while being enhanced or refactored.

JDepend can be used as a standalone tool, but it is more typical to implement the
analysis via JUnit. You can include JDepend in your project as shown in
Example 12-6. Note that the original JDepend is no longer maintained, and someone
else has forked the codebase in order to apply bug fixes).

Example 12-6. Including JDepend within your Maven pom.xml

<dependency>
 <groupId>guru.nidi</groupId>
 <artifactId>jdepend</artifactId>
 <version>2.9.5</version>
</dependency>

Example 12-7 shows how to use JDepend to analyze a codebase and ensure that the
dependencies asserted are valid.

Example 12-7. A constraint test with JDepend

public class ConstraintTest extends TestCase {
...
 protected void setUp() throws IOException {

 jdepend = new JDepend();

 jdepend.addDirectory("/path/to/project/util/classes");
 jdepend.addDirectory("/path/to/project/ejb/classes");
 jdepend.addDirectory("/path/to/project/web/classes");
 }

 /**
 * Tests that the package dependency constraint
 * is met for the analyzed packages.
 */
 public void testMatch() {

 DependencyConstraint constraint = new DependencyConstraint();

Architectural Quality | 339

 JavaPackage ejb = constraint.addPackage("com.xyz.ejb");
 JavaPackage web = constraint.addPackage("com.xyz.web");
 JavaPackage util = constraint.addPackage("com.xyz.util");

 ejb.dependsUpon(util);
 web.dependsUpon(util);

 jdepend.analyze();

 assertEquals("Dependency mismatch",
 true, jdepend.dependencyMatch(constraint));
 }
...
}

Performance and Load Testing
Understanding the performance characteristics of your application and its individual
service components is extremely invaluable. Accordingly, the practice of performance
and load testing is a vital skill to master. Load tests can be run at an application level,
covering the entire system, as well as at a modular level, covering an individual ser‐
vice or function. Combining the two approaches effectively will allow you to quickly
spot performance trends within isolated components and in the overall user experi‐
ence.

Additional Resources for Java Performance
If you want to learn more about writing performant Java code and applications, we
recommend the following books:

• Optimizing Java: Practical Techniques for Improving JVM Application Performance
(O’Reilly) by Benjamin J. Evans et al.

• Java Performance: The Definitive Guide (O’Reilly) by Scott Oaks

Basic Performance Testing with Apache Benchmark
The Apache Bench ab tool is an extremely easy-to-use performance benchmark tool.
This CLI-driven tool works by generating a flood of requests to a given URL and
returns performance-related metrics to the terminal. Although it is not a particularly
flexible tool, the simplicity means that it is a great tool to reach for when you need to
run quick performance tests. You can install this tool through your package manager.
If you are using Windows, the alternative SuperBenchmarker can be installed via
Chocolately. Once the tool is installed, you can simply type ab at the terminal to get a
list of the available parameters. You will find yourself most commonly specifying -n

340 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

http://shop.oreilly.com/product/0636920121718.do
http://shop.oreilly.com/product/0636920028499.do
https://github.com/aliostad/SuperBenchmarker

for the number of requests to perform for the benchmarking session, -c for the num‐
ber of concurrent requests to perform at a time, and the target URL. For example, to
benchmark Google with 10 requests that are executed 2 at a time, you can run
Example 12-8.

Example 12-8. Using Apache Bench ab to run a performance benchmark test against
Google

$ ab -n 10 -c 2 http://www.google.com/
This is ApacheBench, Version 2.3 <$Revision: 1807734 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking www.google.com (be patient).....done

Server Software:
Server Hostname: www.google.com
Server Port: 80

Document Path: /
Document Length: 271 bytes

Concurrency Level: 2
Time taken for tests: 0.344 seconds
Complete requests: 10
Failed requests: 0
Non-2xx responses: 10
Total transferred: 5230 bytes
HTML transferred: 2710 bytes
Requests per second: 29.11 [#/sec] (mean)
Time per request: 68.707 [ms] (mean)
Time per request: 34.354 [ms] (mean, across all concurrent requests)
Transfer rate: 14.87 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 13 32 51.6 17 179
Processing: 14 18 3.5 16 23
Waiting: 13 17 3.1 16 23
Total: 28 50 50.4 35 193

Percentage of the requests served within a certain time (ms)
 50% 35
 66% 37
 75% 38
 80% 44
 90% 193
 95% 193
 98% 193

Performance and Load Testing | 341

 99% 193
 100% 193 (longest request)

The Apache Bench tool is great for quick load tests, but its lack of configurability for
ramping up virtual users (making the requests) and creating more-complex scenarios
with assertion can be limiting. It can also be challenging to incorporate ab into a build
pipeline and parse the output into a meaningful format. With this in mind, you can
reach for alternative, more powerful, tools like Gatling

What Are Virtual Users?
When executing a load test, you simulate a certain number of users accessing your
system concurrently. A virtual user (VU) is an application, or thread or process
within an application, that acts just like a real user would when making requests to a
web application. During a load test, requests from many virtual users can be gener‐
ated from one compute instance—in this context, called a driver machine. This can
either be your local machine, or a series of machines orchestrated via a build pipeline.

If you are looking for more information, “Determining Concurrent Users in Your
Load Tests”, from Load Impact explains how to mine the relevant data from your
Google Analytics data. The webperformance.com website also has a useful VU calcula‐
tor.

Load Testing with Gatling
Gatling is an open source load- and performance-testing tool based on Scala, Akka,
and Netty. It is easy to run standalone or within a CD build pipeline, and the DSL
(“performance tests as code”) and request-recording mechanisms for generating
interactions provide a lot of flexibility. Gatling really shines over a basic load-testing
tool by providing a lot of configuration in regards to how you simulate the VU inter‐
action with the site, in terms of quantity, concurrency, and ramp-up. The DSL also
allows you to specify assertions, such as HTTP status codes, payload content, and
acceptable latencies, which means that this is a powerful tool.

What Happened to JMeter?
The Apache JMeter load-test tool project is still very much alive and healthy. We per‐
sonally still use this tool on projects. Because of space limitations in this book, and
because the JMeter tool is starting to show its age, we decided to focus on the more
flexible Gatling tool. JMeter can be a viable alternative to Gatling if you don’t want to
learn a new DSL. If you want to know more about JMeter, you can consult the home
page.

342 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

http://bit.ly/2NEWFIi
http://bit.ly/2NEWFIi
http://bit.ly/2DzridM
https://jmeter.apache.org/
https://jmeter.apache.org/

Gatling can be downloaded from the project’s website. Core concepts within Gatling
include the following:

Simulation
The simulation file includes the various scenarios of a test, its parametrization,
and the injection profiles.

Scenario
A scenario consists of a series of requests and can be thought of as a user journey.

Group
Groups can be used to subdivide a scenario. You can also think of groups as a
module that has a functional purpose (for instance, the login process).

Request
A request is exactly what you think it is: a user request made against the system
under test.

Injection profile
An injection profile is the number of virtual users injected during the test in the
system under test and how they are injected.

The O’Reilly Docker Java Shopping example application contains a demonstration of
how to run a Gatling-based load test against a Java application that is deployed via
Docker Compose. The DSL allows you to write load-testing simulations as a Scala
class, but don’t worry, only minimal knowledge is required with this language.

If you look at the simulation in Example 12-9, you will see the protocol being speci‐
fied, which is simply how the requests will be made. In this case, the protocol is
HTTP, and you are running the simulation as if your users were using the Mozilla
browser. Next, a scenario is specified and a request execution (exec) is defined against
the API. The final part of the simulation specifies the number of virtual users the sim‐
ulation will run alongside the ramp-up, as well as any assertions you require. In this
example, you are asserting that the maximum global response time was less that
50 ms, and that no requests failed.

Example 12-9. DjShoppingBasicSimulation Gatling Scala load test

package uk.co.danielbryant.djshopping.performancee2etests

import io.gatling.core.Predef._
import io.gatling.http.Predef._

import scala.concurrent.duration._

class DjShoppingBasicSimulation extends Simulation {

Performance and Load Testing | 343

https://gatling.io/download/
https://github.com/danielbryantuk/oreilly-docker-java-shopping

 val httpProtocol = http
 .baseURL("http://localhost:8010")
 .acceptHeader("text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8")
 .acceptEncodingHeader("gzip, deflate")
 .acceptLanguageHeader("en-US,en;q=0.5")
 .userAgentHeader("Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8; rv:16.0)
 Gecko/20100101 Firefox/16.0")

 val primaryScenario = scenario("DJShopping website and API performance test")
 .exec(http("website")
 .get("/")
 .check(
 status is 200,
 substring("Docker Java")))
 .pause(7)

 .exec(http("products API")
 .get("/products")
 .check(
 status is 200,
 jsonPath("$[0].id") is "1",
 jsonPath("$[0].sku") is "12345678"))

 setUp(primaryScenario.inject(
 constantUsersPerSec(30) during (30 seconds)
).protocols(httpProtocol))
 .assertions(global.responseTime.max.lessThan(50))
 .assertions(global.failedRequests.percent.is(0))
}

You can execute the simulation via the SBT build tool, which is shown in
Example 12-10.

Example 12-10. Run of Gatling to load-test the Docker Java Shop

$ git clone https://github.com/danielbryantuk/oreilly-docker-java-shopping
$ cd oreilly-docker-java-shopping
$./build_all.sh
$ [INFO] Scanning for projects...
[INFO]
[INFO] --------------< uk.co.danielbryant.djshopping:shopfront >---------------
[INFO] Building shopfront 0.0.1-SNAPSHOT
[INFO] --------------------------------[jar]---------------------------------
[INFO]
[INFO] --- maven-clean-plugin:2.6.1:clean (default-clean) @ shopfront ---

...

[INFO] --- maven-install-plugin:2.5.2:install (default-install) @ stockmanager ---
[INFO] Installing /Users/danielbryant/Documents/dev/daniel-bryant-uk/
 tmp/oreilly-docker-java-shopping/

344 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

 stockmanager/target/stockmanager-0.0.1-SNAPSHOT.jar to
 /Users/danielbryant/.m2/repository/uk/co/danielbryant/
 djshopping/stockmanager/0.0.1-SNAPSHOT/
 stockmanager-0.0.1-SNAPSHOT.jar
[INFO] Installing /Users/danielbryant/Documents/dev/daniel-bryant-uk/
 tmp/oreilly-docker-java-shopping/
 stockmanager/pom.xml to
 /Users/danielbryant/.m2/repository/uk/co/danielbryant/djshopping/
 stockmanager/0.0.1-SNAPSHOT/stockmanager-0.0.1-SNAPSHOT.pom
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 12.653 s
[INFO] Finished at: 2018-04-07T12:12:55+01:00
[INFO] --
$
$ docker-compose -f docker-compose-build.yml up -d --build
Building productcatalogue
Step 1/5 : FROM openjdk:8-jre
 ---> 1b56aa0fd38c
...
Successfully tagged oreillydockerjavashopping_shopfront:latest
oreillydockerjavashopping_productcatalogue_1 is up-to-date
oreillydockerjavashopping_stockmanager_1 is up-to-date
oreillydockerjavashopping_shopfront_1 is up-to-date
$
$ sbt gatling:test

(master) performance-e2e-tests $ sbt gatling:test
[info] Loading project definition from /Users/danielbryant/Documents/dev/
 daniel-bryant-uk/tmp/
 oreilly-docker-java-shopping/
 performance-e2e-tests/project
[info] Set current project to performance-e2e-tests
 (in build file:/Users/danielbryant/Documents/dev/daniel-bryant-uk/tmp/
 oreilly-docker-java-shopping/performance-e2e-tests/)
Simulation uk.co.danielbryant.djshopping.performancee2etests
 .DjShoppingBasicSimulation started...

==
2018-04-07 14:49:00 5s elapsed
---- DJShopping website and API performance test -------------------------------
[-----------] 0%
 waiting: 768 / active: 132 / done:0
---- Requests --
> Global (OK=131 KO=0)
> website (OK=131 KO=0)
==

==
2018-04-07 14:49:05 10s elapsed

Performance and Load Testing | 345

---- DJShopping website and API performance test -------------------------------
[#####------------------] 7%
 waiting: 618 / active: 211 / done:71
---- Requests --
> Global (OK=352 KO=0)
> website (OK=281 KO=0)
> products API (OK=71 KO=0)
==
...

==
2018-04-07 14:49:33 37s elapsed
---- DJShopping website and API performance test -------------------------------
[##]100%
 waiting: 0 / active: 0 / done:900
---- Requests --
> Global (OK=1800 KO=0)
> website (OK=900 KO=0)
> products API (OK=900 KO=0)
==

Simulation uk.co.danielbryant.djshopping.performancee2etests
 .DjShoppingBasicSimulation completed in 37 seconds
Parsing log file(s)...
Parsing log file(s) done
Generating reports...

==
---- Global Information --
> request count 1800 (OK=1800 KO=0)
> min response time 6 (OK=6 KO=-)
> max response time 163 (OK=163 KO=-)
> mean response time 11 (OK=11 KO=-)
> std deviation 8 (OK=8 KO=-)
> response time 50th percentile 10 (OK=10 KO=-)
> response time 75th percentile 12 (OK=11 KO=-)
> response time 95th percentile 19 (OK=19 KO=-)
> response time 99th percentile 36 (OK=36 KO=-)
> mean requests/sec 47.368 (OK=47.368 KO=-)
---- Response Time Distribution --
> t < 800 ms 1800 (100%)
> 800 ms < t < 1200 ms 0 (0%)
> t > 1200 ms 0 (0%)
> failed 0 (0%)
==

Reports generated in 0s.
Please open the following file: /Users/danielbryant/Documents/dev/
 daniel-bryant-uk/tmp/oreilly-docker-java-shopping/
 performance-e2e-tests/target/gatling/
 djshoppingbasicsimulation-1523108935957/index.html

346 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

Global: max of response time is less than 50 : false
Global: percentage of failed requests is 0 : true
[error] Simulation DjShoppingBasicSimulation failed.
[info] Simulation(s) execution ended.
[error] Failed tests:
[error] uk.co.danielbryant.djshopping.performancee2etests.DjShoppingBasicSimulation
[error] (gatling:test) sbt.TestsFailedException: Tests unsuccessful
[error] Total time: 40 s, completed 07-Apr-2018 14:49:34

Gatling produces useful intermediate results when the tool is run via the CLI, and
good summary information. When run via a build pipeline tool, it is also possible to
generate HTML-based reports that are easy for an entire team to consume.

The Gatling Recorder Can Capture Interactions

The Gatling Recorder helps you to quickly generate scenarios by
either acting as an HTTP proxy between the browser and the
HTTP server or converting HAR (HTTP Archive) files. Either way,
the Recorder generates a simple simulation that mimics your recor‐
ded navigation. This can be an invaluable way to generate interac‐
tion scripts and tests.

Understanding the Dark Art of Performance Testing:
Abraham’s Experience

You’ve probably heard the phrase, “There are three kinds of lies: lies, damned lies, and
statistics,” or maybe the adapted version, “lies, damned lies, and benchmarks.” It fits
well in this context.

I have witnessed multiple teams who think that they have set up performance tests,
only to realize upon closer inspection that their tests weren’t really telling them what
they thought they were telling them. The problem with benchmarks is that they are
comparable only to other results obtained under exactly the same conditions—and
guess what? Your performance test environment isn’t the same as your production
environment, which means that your performance tests are not running under the
same conditions as your production application, which means that the results that
you obtained during your performance tests are not really applicable to production.

I can tell you a dozen reasons why your tests are not a guarantee of performance, and
I’m not a performance expert; an expert can probably tell you several dozens. Having
a set of tests that can guarantee that your application can cope with a certain work‐
load, or that transactions can run within a determined time limit, is surprisingly hard
—so hard that it may not be worthy at all. Unless you are working on financial
technology or another domain where bad performance truly means failure (and not
just occasionally irritated customers), you don’t need that kind of sophistication.

Performance and Load Testing | 347

https://gatling.io/docs/2.3/http/recorder/

Most of the teams that I have seen benefiting from performance testing are not the
ones worrying about hitting a particular value on a benchmark, but the ones who
simply monitor the benchmark for unexpected changes. When your benchmark goes
up or down for no apparent reason, that’s when you have something to investigate.

Security, Vulnerabilities, and Threats
Modern criminals are becoming increasingly technically savvy. This, in combination
with more and more valuable (and private) data being managed in publicly net‐
worked computers, makes for a potential security challenge. Therefore, it is every‐
one’s job in a software delivery team to think about security, right from the beginning
of the project. When attempting to implement continuous delivery, you need to be
aware of and plan for many aspects of security. The CD build pipeline is often an
effective location in which to codify and enforce security requirements. In this sec‐
tion, you will learn about code and dependency vulnerability checking, platform-
specific security issues, and threat modeling.

Agile Application Security
Some organizations believe that the practice of agile methodologies and security are
incompatible, which can lead to many arguments. If you are struggling with this, or
discovering lots of security issues within your applications that require management
buy-in to be fixed, then we recommend reading Agile Application Security (O’Reilly)
by Laura Bell, Michael Brunton-Spall, et al.

Code-Level Security Verification
The go-to tool for checking Java code for known security issues is the Find Security
Bugs plugin for the FindBugs static analyzer (mentioned previously). It can detect
125 vulnerability types with over 787 unique API signatures. This tool integrates
nicely with build tools like Maven and Gradle, and will produce an XML and HTML
report based on the findings.

The Value of Commercial Code Scanning
Depending on your security requirements, it may be worth investing in commercial
tools for security code scanning, such as those offered by Black Duck or Sonatype’s
Nexus Software Supply Chain Management. These companies specialize in identify‐
ing and mitigating security issues, which is a rapidly shifting and evolving landscape.
New attacks are created daily, and new vulnerabilities are found almost at the same

348 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

http://find-sec-bugs.github.io/
http://find-sec-bugs.github.io/
https://www.blackducksoftware.com/
https://www.sonatype.com/

pace. If the commercial security scanning tools look expensive, ask yourself (and the
rest of your organization) if you can afford the cost of a security breach.

The Find Security Bugs plugin documentation is comprehensive. On the Bug Patterns
web page, you can find a full list of security issues that the plugin will find within
your code. The following are some examples:

• Predictable pseudorandom number generator
• Untrusted servlet parameter or query string
• Potentially sensitive data in a cookie
• Potential path traversal (file read)
• Potential command injection
• TrustManager that accepts any certificates
• XML parsing vulnerable to XML external entity (XXE) attack via Transformer
Factory

• Hardcoded passwords
• Database and AWS query injection
• Spring CSRF protection disabled

Example 12-11 is a simple Java application that is launched from a main method, and
introduces several security bugs on purpose. The first is relatively easy to do, acciden‐
tally using Random in an attempt to generate cryptographically secure random num‐
bers. The second is more obvious, and contains an unparsed argument value to a
runtime execution (the same principle applies to SQL and other injection attacks)

Example 12-11. Simple Java application with obvious security issues

package uk.co.danielbryant.oreillyexamples.builddemo;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.IOException;
import java.util.Random;

public class LoggingDemo {

 public static final Logger LOGGER = LoggerFactory.getLogger(LoggingDemo.class);

 public static void main(String[] args) {
 LOGGER.info("Hello, (Logging) World!");
 Random random = new Random();

Security, Vulnerabilities, and Threats | 349

http://find-sec-bugs.github.io/bugs.htm

 String myBadRandomNumString = Long.toHexString(random.nextLong());

 Runtime runtime = Runtime.getRuntime();
 try {
 runtime.exec("/bin/sh -c some_tool" + args[1]);
 } catch (IOException iox) {
 LOGGER.error("Caught IOException with command", iox);
 }
 }
}

A snippet from the project’s Maven POM is included in Example 12-12 that shows
the inclusion of the Maven FindBugs plugin alongside the Find Security Bug plugin.
You can see the Maven reporting that has been configured to include the generation
of a Find Bugs HTML/site report.

Example 12-12. Including findbugs-maven-plugin with findsecbugs-plugin in a project

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

...

 <build>
 <plugins>
...
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>findbugs-maven-plugin</artifactId>
 <version>3.0.5</version>
 <executions>
 <execution>
 <phase>verify</phase>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <effort>Max</effort>
 <threshold>Low</threshold>
 <failOnError>true</failOnError>
 <plugins>
 <plugin>
 <groupId>com.h3xstream.findsecbugs</groupId>
 <artifactId>findsecbugs-plugin</artifactId>
 <version>LATEST</version>

350 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

 <!-- Auto-update to the latest stable -->
 </plugin>
 </plugins>
 </configuration>
 </plugin>
 </plugins>
 </build>
 <reporting>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>findbugs-maven-plugin</artifactId>
 <version>3.0.5</version>
 </plugin>
 </plugins>
 </reporting>

</project>

You can now execute this plugin as part of the verify life cycle hook: mvn verify, as
shown in Example 12-13.

Example 12-13. Building the insecure project with the FindBugs plugin enabled

$ mvn verify
/Library/Java/JavaVirtualMachines/jdk1.8.0_151.jdk/Contents/Home/bin/java
 -Dmaven.multiModuleProjectDirectory=/Users/danielbryant/Documents/dev/
 daniel-bryant-uk/builddemo "-Dmaven.home=/Applications/IntelliJ IDEA.app/
 Contents/plugins/maven/lib/maven3" "-Dclassworlds.conf=/Applications/
 IntelliJ IDEA.app/Contents/plugins/maven/lib/maven3/bin/m2.conf" "-javaagent:/
 Applications/IntelliJ IDEA.app/Contents/lib/idea_rt.jar=50278:/
 Applications/IntelliJ IDEA.app/Contents/bin" -Dfile.encoding=UTF-8 -classpath
 "/Applications/IntelliJ IDEA.app/Contents/plugins/maven/lib/maven3/boot/
 plexus-classworlds-2.5.2.jar" org.codehaus.classworlds.Launcher
 -Didea.version=2017.2.6 verify
objc[12986]: Class JavaLaunchHelper is implemented in both
 /Library/Java/JavaVirtualMachines/jdk1.8.0_151.jdk/Contents/Home/bin/java
 (0x10f1044c0) and /Library/Java/JavaVirtualMachines/jdk1.8.0_151.jdk/
 Contents/Home/jre/lib/libinstrument.dylib
 (0x10f1904e0). One of the two will be used. Which one is undefined.
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building builddemo 0.1.0-SNAPSHOT
[INFO] --
...
[INFO] >>> findbugs-maven-plugin:3.0.5:check (default) > :findbugs @ builddemo >>>
[INFO]
[INFO] --- findbugs-maven-plugin:3.0.5:findbugs (findbugs) @ builddemo ---
[INFO] Fork Value is true
 [java] Warnings generated: 3

Security, Vulnerabilities, and Threats | 351

[INFO] Done FindBugs Analysis....
[INFO]
[INFO] <<< findbugs-maven-plugin:3.0.5:check (default) < :findbugs @ builddemo <<<
[INFO]
[INFO] --- findbugs-maven-plugin:3.0.5:check (default) @ builddemo ---
[INFO] BugInstance size is 3
[INFO] Error size is 0
[INFO] Total bugs: 3
[INFO] This usage of java/lang/Runtime.exec(Ljava/lang/String;)Ljava/lang/Process;
 can be vulnerable to Command Injection [uk.co.danielbryant.oreillyexamples
 .builddemo.LoggingDemo, uk.co.danielbryant.oreillyexamples.builddemo
 .LoggingDemo] At LoggingDemo.java:[line 20]At LoggingDemo.java:[line 20]
 COMMAND_INJECTION
[INFO] Dead store to myBadRandomNumString in uk.co.danielbryant.oreillyexamples
 .builddemo.LoggingDemo.main(String[]) [uk.co.danielbryant.oreillyexamples
 .builddemo.LoggingDemo] At LoggingDemo.java:[line 16] DLS_DEAD_LOCAL_STORE
[INFO] The use of java.util.Random is predictable [uk.co.danielbryant
 .oreillyexamples.builddemo.LoggingDemo] At LoggingDemo.java:[line 15]
 PREDICTABLE_RANDOM
[INFO]

To see bug detail using the Findbugs GUI, use the following command
"mvn findbugs:gui"

[INFO] --
[INFO] BUILD FAILURE
[INFO] --
[INFO] Total time: 6.337 s
[INFO] Finished at: 2018-01-09T11:45:42+00:00
[INFO] Final Memory: 31M/465M
[INFO] --
[ERROR] Failed to execute goal org.codehaus.mojo:findbugs-maven-plugin:3.0.5:check
 (default) on project builddemo: failed with 3 bugs and 0 errors -> [Help 1]
[ERROR]
[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.
[ERROR] Re-run Maven using the -X switch to enable full debug logging.
[ERROR]
[ERROR] For more information about the errors and possible solutions,
 please read the following articles:
[ERROR] [Help 1] http://cwiki.apache.org/confluence/display/
 MAVEN/MojoExecutionException

Process finished with exit code 1

Because the plugin threshold has been set to low, as well as to fail on error, you will
see that the build fails. This behavior can be fully configured—perhaps you want to
fail the build only on major issues. When you generate the Maven site, the FindBugs
web page in Figure 12-1 will be created.

352 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

Figure 12-1. Output from the Maven FindBugs plugin with FindSecBugs enabled

Dependency Verification
It is important to verify the security properties of your code, but it is equally impor‐
tant to verify that the dependencies you are including within your project are equally
secure. In a high-security environment (perhaps governmental or finance), this may
involve scanning the codebases or binaries for all dependencies, and commercial
tooling does exist to make this possible.

The Value of Commercial Dependency Scanning
Even if you believe your security requirements are quite minimal, it may be worth
investing in commercial dependency scanning tooling, such as that offered by
Snyk or Sonatype’s Software Bill of Materials. These companies specialize in identify‐
ing and mitigating security issues within common dependencies (across multiple lan‐
guages). New vulnerabilities are found daily, so the build pipeline must be run at least
this regularly, even if no code changes have been made. If the dependency scanning
tools detect an issue, you must address this as soon as possible.

Depending on your security needs, a good first step (and perhaps solution) to this
issue is to use the open source OWASP Maven Dependency Check plugin. This
plugin contacts the National Vulnerability Database (NVD) and downloads a list of
Java dependencies with known Common Vulnerabilities and Exposures (CVEs), and
then examines all of dependencies—and their transitive dependencies—within your

Security, Vulnerabilities, and Threats | 353

https://snyk.io/
https://www.sonatype.com/software-bill-of-materials
http://bit.ly/2xEGD7t

project, looking for a match. If you have imported a dependency with a known
issue, this will be highlighted for you, and the plugin allows configuration to warn
during or to fail the build. A sample Maven POM file is included in Example 12-14
for a project that includes dependencies with several known vulnerabilities.

Example 12-14. Project POM that includes dependencies with known vulnerabilities

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>uk.co.danielbryant.djshopping</groupId>
 <artifactId>shopfront</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>shopfront</name>
 <description>Docker Java application Shopfront</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.5.7.RELEASE</version>
 </parent>
...
 <dependencies>
 <!-- let's include a few old dependencies -->
 </dependencies>
...
 <build>
...
 <plugin>
 <groupId>org.owasp</groupId>
 <artifactId>dependency-check-maven</artifactId>
 <version>3.0.1</version>
 <configuration>
 <centralAnalyzerEnabled>false</centralAnalyzerEnabled>
 <failBuildOnCVSS>8</failBuildOnCVSS>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>

354 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

 </build>
</project>

You can see the sample Maven verify output in Example 12-15.

Example 12-15. Build output when running verify against a project with known
vulnerable dependencies

$ mvn verify
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building shopfront 0.0.1-SNAPSHOT
[INFO] --
...
[INFO]
[INFO] --- dependency-check-maven:3.0.1:check (default) @ shopfront ---
[INFO] Central analyzer disabled
[INFO] Checking for updates
[INFO] Skipping NVD check since last check was within 4 hours.
[INFO] Check for updates complete (16 ms)
[INFO] Analysis Started
[INFO] Finished Archive Analyzer (0 seconds)
[INFO] Finished File Name Analyzer (0 seconds)
[INFO] Finished Jar Analyzer (1 seconds)
[INFO] Finished Dependency Merging Analyzer (0 seconds)
[INFO] Finished Version Filter Analyzer (0 seconds)
[INFO] Finished Hint Analyzer (0 seconds)
[INFO] Created CPE Index (2 seconds)
[INFO] Finished CPE Analyzer (2 seconds)
[INFO] Finished False Positive Analyzer (0 seconds)
[INFO] Finished Cpe Suppression Analyzer (0 seconds)
[INFO] Finished NVD CVE Analyzer (0 seconds)
[INFO] Finished Vulnerability Suppression Analyzer (0 seconds)
[INFO] Finished Dependency Bundling Analyzer (0 seconds)
[INFO] Analysis Complete (6 seconds)
[WARNING]

One or more dependencies were identified with known vulnerabilities in shopfront:

jersey-apache-client4-1.19.1.jar (cpe:/a:oracle:oracle_client:1.19.1,
com.sun.jersey.contribs:jersey-apache-client4:1.19.1) : CVE-2006-0550
xstream-1.4.9.jar (cpe:/a:x-stream:xstream:1.4.9,
cpe:/a:xstream_project:xstream:1.4.9,
com.thoughtworks.xstream:xstream:1.4.9) : CVE-2017-7957
netty-codec-4.0.27.Final.jar (cpe:/a:netty_project:netty:4.0.27,
io.netty:netty-codec:4.0.27.Final) : CVE-2016-4970, CVE-2015-2156
ognl-3.0.8.jar (ognl:ognl:3.0.8,
cpe:/a:ognl_project:ognl:3.0.8) : CVE-2016-3093
maven-core-3.0.jar (org.apache.maven:maven-core:3.0,

Security, Vulnerabilities, and Threats | 355

cpe:/a:apache:maven:3.0.4) : CVE-2013-0253
tomcat-embed-core-8.5.20.jar (cpe:/a:apache_software_foundation:tomcat:8.5.20,
cpe:/a:apache:tomcat:8.5.20, cpe:/a:apache_tomcat:apache_tomcat:8.5.20,
org.apache.tomcat.embed:tomcat-embed-core:8.5.20) : CVE-2017-12617
bsh-2.0b4.jar (cpe:/a:beanshell_project:beanshell:2.0.b4,
org.beanshell:bsh:2.0b4) : CVE-2016-2510
groovy-2.4.12.jar (cpe:/a:apache:groovy:2.4.12,
org.codehaus.groovy:groovy:2.4.12) : CVE-2016-6497

See the dependency-check report for more details.

[INFO]
[INFO] --- maven-install-plugin:2.5.2:install (default-install) @ shopfront ---
[INFO] Installing /Users/danielbryant/Documents/dev/daniel-bryant-uk/
 oreilly-docker-java-shopping/shopfront/target/
 shopfront-0.0.1-SNAPSHOT.jar to /Users/danielbryant/.m2/
 repository/uk/co/danielbryant/djshopping/shopfront/
 0.0.1-SNAPSHOT/shopfront-0.0.1-SNAPSHOT.jar
[INFO] Installing /Users/danielbryant/Documents/dev/daniel-bryant-uk/
 oreilly-docker-java-shopping/shopfront/pom.xml to
 /Users/danielbryant/.m2/repository/uk/co/danielbryant/
 djshopping/shopfront/0.0.1-SNAPSHOT/shopfront-0.0.1-SNAPSHOT.pom
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 23.946 s
[INFO] Finished at: 2018-01-09T12:20:47Z
[INFO] Final Memory: 35M/120M
[INFO] --

In addition to the preceding build information, you can produce a report that con‐
tains more details, including links to more information on each CVE found; see
Figure 12-2.

Once you have identified dependencies with known CVEs, it is up to you to resolve
this issue. Often, a newer version of the plugin exists, and you can upgrade (and of
course, run your comprehensive test suite to ensure that this upgrade causes no issues
or regressions), but sometime it doesn’t. Your alternative options are to find another
dependency that offers similar functionality and modify your code to use this, or
attempt to fix the vulnerability yourself, by forking the dependency and taking own‐
ership of this codebase. Occasionally, neither of these alternatives is appropriate; per‐
haps you are maintaining very large legacy codebase that makes extensive use of the
vulnerable dependency, or you don’t have the skillset to fork and modify the depend‐
ency. This then leaves you with a difficult decision, because although doing nothing
may seem appealing, it is also dangerous.

356 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

Figure 12-2. HTML report from the Maven Dependency Check plugin

You will need to conduct a thorough audit and analysis of the vulnerability, known
exploits, and attack vector. You must communicate the risks within your organization
and document the known vulnerability. You can also take steps to mitigate the risk—
perhaps for a known vulnerability that requires OS-level access for an exploit to be
undertaken, you may increase security around accessing the instances running your
application. If there are no known exploits, or the attack vector is extremely obtuse,
you may choose to do nothing more. But be warned: this is not simply a technical
decision—the business must be consulted about this risk

Mitigating Risks Is a Business Decision: Be a Professional

We cannot stress enough the risks of ignoring security or vulnera‐
bility issues. You must inform and work closely with your business
team if a problem is identified, because the decision of how to miti‐
gate a risk is not just technical, it is also business related. Simply
ignoring issues (or not checking for them in the first place) is at
best case unprofessional—and at worst case, potentially criminally
negligent.

Security, Vulnerabilities, and Threats | 357

Deployment Platform-Specific Security Issues
Each of the three deployment platforms you are learning about in this book has spe‐
cific security properties and practices that it would be wise to learn more about.

Manual and Automated Penetration Testing
Regularly hiring professional penetration testers to inspect your systems can deliver
much value, even if the domain you work in doesn’t require this by regulation or
compliance. In the same respects as good exploratory testers, many penetration test‐
ing experts think differently than other engineers, and accordingly can find potential
security issues before they are exploited.

In addition to manual penetration testing, we also recommend automated scanning.
One of the leading open source tools in this space is the OWASP Zed Attack Proxy,
which can automatically find security vulnerabilities in your web applications. You
can run this tool via the command line, and there is also a Jenkins ZAP plugin. A
company named Continuum Security has also created the open source bdd-security
tool, which provides a wrapper around ZAP that enables you to specify security tests
in a BDD-style given/when/then syntax.

Cloud security
The core change in regards to security practices from on-premises infrastructure to
public cloud is knowledge of the “shared responsibility model.” Azure has created a
short guide, “Shared Responsibilities for Cloud Computing”, that introduces the
shared responsibilities across the various service models. Figure 12-3 is taken from
this guide, and clearly shows how your responsibilities for security differ as you move
from on-premises to SaaS.

Amazon Web Services has also created a useful (although somewhat AWS-specific)
whitepaper, “AWS Security Best Practices”, that explains the concept in depth, but in
essence the model states that the cloud platform vendor is responsible for ensuring
the security of certain parts of the platform, and you, the developer, are responsible
for your code and configuration that is deployed onto the platform. Figure 12-4
shows IaaS offerings, such as EC2 compute and virtual private cloud (VPC) network‐
ing, and the shared responsibility.

358 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

http://bit.ly/1NIcfdT
http://bit.ly/2zxbZy9
http://bit.ly/2xFNltC
https://amzn.to/2OhLjJR

Figure 12-3. Azure shared responsibilities for different cloud service models (taken from
the Azure Shared Responsibilities for Cloud Computing document)

Figure 12-4. Shared responsibility model for infrastructure services (taken from the AWS
Security Best Practices document)

Security, Vulnerabilities, and Threats | 359

https://amzn.to/2OhLjJR
https://amzn.to/2OhLjJR

We strongly encourage you to read the AWS and Azure shared responsibility guides
and also the documentation from the other cloud vendors.

Other common “gotchas” for engineers moving to the public cloud include the
importance of correctly managing API and SDK keys, which provide secured pro‐
grammatic access to the cloud. It is all too easy for these keys to end up accidentally
stored within code or committed to a DVCS. Once a key is exposed publicly, bad
actors can use this to create infrastructure to perform illegal operations, such as
DDoS attacks, or mine for cryptocurrency. Not only will you be charged money for
the use of the cloud platform resources, but you could be legally liable for damage,
too! These keys must be targeted to individual users; use the principle of least privi‐
lege (i.e., allow the smallest amount of access to accomplish the intended work); and
be audited, well protected, and rotated regularly.

Cloud Security 101: The Shared Responsibility Model and Key
Management

If you and your team are moving to a public cloud platform for the
first time, the two core security concepts you must learn more
about are the shared responsibility model and API/SDK access key
management and security.

A public cloud platform often provides a higher level of security than an on-premises
solution; after all, the cloud vendor has large, dedicated teams managing this. But you
will have to play your part, too. In addition to managing API keys, you need to man‐
age identity access management (IAM) users, group, and roles, as well as network
security, often implemented by security groups (SGs) and network access control lists
(NACLs). Core security concepts, such as securing data in rest and in transit, also
change slightly with cloud usage. Finally, if you are managing your own VMs and
operating systems, you will also be responsible for patching the software here.

As with any new technology, there is lots to learn, but there are many good cross-
cloud resources like the online A Cloud Guru learning platform. Each cloud vendor
also typically offers a security review platform and associated automated tooling, as
well as professional services.

Container security
The primary issue with container security is that “with great power, comes great
responsibility,” and in particular, this relates to the deployable artifact (the container
image), as this now includes an operating system in addition to the Java application
artifact. Container technology allows you to quickly deploy your applications and the
supporting containerized infrastructure, such as queues and databases. However, the
attack surface exposed by this is considerably larger than with traditional application
artifacts and sysadmin-managed infrastructure. For this reason, we recommend the

360 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

https://acloud.guru/

use of a static image vulnerability scanner as part of your continuous delivery pipe‐
line.

The open source tool we recommend in this space is Clair from CoreOS. It can be
challenging to get Clair working, especially when integrating within your build pipe‐
lines. Accordingly, Armin Coralic has created a Docker-based installation of Clair
that is well worth exploring. There are also various commercial offerings in this
space, and some container registry vendors, like Quay and Docker Enterprise, offer
security scanning as part of this. There are also standalone image scanners like that
offered by Aqua.

Static Container Image Scanning Is as Important as Code Scanning

Container technology allows convenient packaging of application
artifacts, but you must not forget that you are typically including
components (such as an operating system and associated tooling)
in comparison with traditional artifacts. Accordingly, vulnerability
scanning of images should be an essential part of any pipeline
delivering applications as container images.

We also recommend learning more about operating systems, and building minimal
images in order to minimize the attack surface. For example, instead of using a full
Ubuntu distro for your OS, use Debian Jessie or Alpine, and instead of including a
full JDK, include a JRE instead. Starting from Java 9, you could also investigate using
the module system to build a smaller JRE. This is beyond the scope of a book this
size, but we would recommend consulting Java 9 Modularity (O’Reilly) by Sander
Mak and Paul Bakker for more information on this process and tooling such as jlink.

FaaS/Serverless security
The security issues for FaaS and serverless platforms are largely aligned with the
issues discussed in Cloud Security. This is because the FaaS platforms are typically a
subset of the larger cloud infrastructure offerings. Guy Podjarny, CEO of the Synk
security company, has created a great InfoQ article that highlights key security issues
with serverless technologies, “Serverless Security: What’s Left to Protect”, and the pri‐
mary issues discussed revolve around the importance of code and dependency vul‐
nerability scanning and function provenance (tracking all of your functions)

Next Steps: Threat Modeling
Threat modeling is a structured approach that enables you to identify, quantify, and
address the security risks associated with an application. The inclusion of threat mod‐
eling within the design and development process can help ensure that applications
are being developed with security built in from the beginning. This is important, as
even with modern, flexible architectures like microservices, it can still be difficult (or

Security, Vulnerabilities, and Threats | 361

https://github.com/arminc/clair-scanner
http://shop.oreilly.com/product/0636920049494.do
https://www.infoq.com/articles/serverless-security

extremely costly) to retrofit security into a new system that is nearing comple‐
tion. Baking in security from the start, in combination with the documentation pro‐
duced as part of the threat-modeling process, can provide a reviewer with a greater
understanding of the system, and allows for easier identification of entry points to the
application and the associated threats with each entry point. The OWASP Application
Threat modeling website states that the concept of threat modeling is not new, but a
clear mindset change has occurred in recent years: modern threat modeling looks at a
system from a potential attacker’s perspective, as opposed to a defender’s viewpoint.

Keen to Learn More About Threat Modeling?
The OWASP Application Threat Modeling website is a fantastic free resource to learn
more about threat modeling, and was also the inspiration for much of the content in
this section of the chapter. If you want to learn even more, we strongly recommend
Threat Modeling: Designing for Security (Wiley) by Adam Shostack. We have learned
much from this book, and it often accompanies us on consulting engagements, where
we bump up against security issues. Just to be clear, neither of us is a security expert,
and because of the importance of this topic for some organizations, we often recom‐
mend calling in security specialists. Knowing when you are out of your league—and
crucially, asking for help—is a key skill for all technical leaders.

The threat modeling process can be decomposed into three high-level steps, presen‐
ted next.

Decompose the application
This involves creating use cases to understand how the application is used, identify‐
ing entry points to see where a potential attacker could interact with the application,
identifying assets (i.e., items/areas that the attacker would be interested in), and iden‐
tifying trust levels that represent the access rights that the application will grant to
external entities. This information is documented and used to produce data flow dia‐
grams (DFDs) for the application, as shown in Figure 12-5.

362 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

http://bit.ly/1TQ0Qy3
https://threatmodelingbook.com/

Figure 12-5. Data flow diagram for the College Library Website (image courtesy of the
OWASP Application Threat Modeling website)

Determine and rank threats
Critical to the identification of threats is using a threat categorization methodology,
such as STRIDE (an acronym for Spoofing, Tampering, Repudiation, Information
disclosure, Denial of service, and Elevation of privilege). A threat categorization pro‐
vides a set of threat categories with corresponding examples so that threats can be
systematically identified in the application in a structured and repeatable manner.
DFDs produced in step 1 help identify the potential threat targets from the attacker’s
perspective, such as data sources, processes, data flows, and interactions with users.
Threats can be further analyzed by using a threat tree (shown in Figure 12-6) in order
to explore the attack paths, the root causes (e.g., vulnerabilities) for the threat to be
exploited, and the necessary mitigation controls (e.g., countermeasures, depicted as
third-level leaf nodes).

Figure 12-6. Threat tree (image courtesy of the OWASP Application Threat Modeling
website)

Security, Vulnerabilities, and Threats | 363

http://bit.ly/1TQ0Qy3
http://bit.ly/1TQ0Qy3
http://bit.ly/1TQ0Qy3

Threats can be ranked from the perspective of various factors, all depending on the
approach and methodology applied. A risk-centric threat model such as PASTA (Pro‐
cess for Attack Simulation & Threat Analysis) focuses on prioritization based on risks
to the product, information owners, business, or other stakeholders. A security-
centric approach may rank threats based on ease of exploitation or technical impact
to the product or application. A software-centric approach may prioritize threats
based on the adverse effects they may have against functional use cases and software
features.

Microsoft’s DREAD Model
Microsoft has been a strong advocate of threat modeling, and has made threat model‐
ing a core component of its development process, which it claims to be one of the
reasons for the increased security of Microsoft products in recent years. In the Micro‐
soft DREAD threat-risk ranking model, the technical risk factors for impact are Dam‐
age and Affected Users, while the ease of exploitation factors are Reproducibility,
Exploitability, and Discoverability. This risk factoring allows the assignment of values
to the different influencing factors of a threat. To determine the ranking of a threat,
the threat analyst has to answer basic questions for each factor of risk, for example:

For Damage
How big would the damage be if the attack succeeded?

For Reproducibility
How easy is it to reproduce an attack that works?

For Exploitability
How much time, effort, and expertise is needed to exploit the threat?

For Affected Users
If a threat were exploited, what percentage of users would be affected?

For Discoverability
How easy is it for an attacker to discover this threat?

Determine countermeasures and mitigation
A lack of protection against a threat might indicate a vulnerability whose risk expo‐
sure could be mitigated with the implementation of a countermeasure. The purpose
of the countermeasure identification is to determine whether there is some kind of
protective measure (e.g., security control, policy measures) in place that can prevent
each threat previously identified via threat analysis from being realized. Vulnerabili‐
ties are then those threats that have no countermeasures. Risk management is used to
reduce the impact that the exploitation of a threat can have to the application, and

364 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

this can be done by responding to a threat with a risk mitigation strategy. In general,
there are five options to mitigate threats:

• Do nothing (for example, hope for the best)
• Inform about the risk (for example, warn user population about the risk)
• Mitigate the risk (for example, by putting countermeasures in place)
• Accept the risk (for example, after evaluating the business impact of the exploita‐

tion)
• Transfer the risk (for example, through contractual agreements and insurance)
• Terminate the risk (for example, shut down, turn off, unplug, or decommission

the asset)

The decision of which strategy is most appropriate depends on the impact an exploi‐
tation of a threat can have, the likelihood of its occurrence, and the costs for transfer‐
ring (i.e., costs for insurance) or avoiding it (i.e., costs or losses due to redesign or
reimplementation).

Chaos Testing
The concept of chaos engineering and resilience testing has become increasingly pop‐
ular over the last year, even though pioneers such as Netflix have been talking about
this for quite some time. One of the major concepts of working with infrastructure as
code and with cloud and container environments is designing for failure. This is men‐
tioned in nearly all the major cloud vendor best-practice documents, and the main
idea behind designing for failure is accepting that things are going to go wrong, and
making sure your application and infrastructure is set up to handle that.

However, it is one thing to say that your system is resilient; it is quite another to prove
it by running chaos tooling attempts to tear your infrastructure apart and inject all
manner of faults. Tooling such as Netflix’s Chaos Monkey (and associated Simian
Army collection) are relatively mainstream, and many recent conference presenta‐
tions feature a mention of chaos. However, use of this technology often requires an
advanced level of infrastructure and operational skill, the ability to design and exe‐
cute experiments, and available resources to manually orchestrate the failure scenar‐
ios in a controlled manner.

Chaos engineering is fundamentally the discipline of experimenting on a distributed
system in order to build confidence in the system’s capability to withstand turbulent
conditions in production, and is not simply about breaking things in production.
According to the Principles of Chaos Engineering website, in order to specifically
address the uncertainty of distributed systems at scale, chaos engineering can be

Chaos Testing | 365

http://principlesofchaos.org/
http://bit.ly/2yukZU8
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/SimianArmy
https://github.com/Netflix/SimianArmy
http://bit.ly/2ObOwe5
http://bit.ly/2ObOwe5
http://bit.ly/2xNwK7B
http://principlesofchaos.org/

thought of as the facilitation of experiments to uncover systemic weaknesses. These
experiments follow four steps:

1. Start by defining steady state as some measurable output of a system that indi‐
cates normal behavior.

2. Hypothesize that this steady state will continue in both the control group and the
experimental group.

3. Introduce variables that reflect real-world events such as servers that crash, hard
drives that malfunction, network connections that are severed, etc.

4. Try to disprove the hypothesis by looking for a difference in steady state between
the control group and the experimental group.

The harder it is to disrupt the steady state, the more confidence we have in the behav‐
ior of the system. If a weakness is uncovered, we now have a target for improvement
before that behavior manifests in the system at large.

The Human Side of Chaos and Resilience
The human aspects of chaos and resilience testing should not be forgotten. Indeed,
some thought leaders in this space—such as John Allspaw, cofounder at Adaptive
Capacity Labs—are cautioning that the human side of resilience engineering is, in
fact, more important than the associated tooling. Tammy Butow has also argued that
you must invest in processes for managing high-severity incidents. Testing these pro‐
cedures through the running of game days is also effective. Adrian Cockcroft refers to
game days as the “fire drill for IT”, because the idea is to simulate a failure in a con‐
trolled way, and watch how people respond to the incident. For example, is the prob‐
lem detected, are the correct on-call engineers paged, and does everyone
communicate effectively?

Causing Chaos in Production (Bring in the Monkeys)
Running chaos experiments in production is a relatively advanced pattern, so please
apply caution before rushing off to try some of the tooling mentioned in this section!
Arguably, chaos engineering began in 2011, with the publication of the Netflix blog
post “The Netflix Simian Army”, which properly introduced the Chaos Monkey and
assorted friends to the world. Let’s have a look at the various chaos engineering tools
available for each platform.

366 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

https://www.linkedin.com/in/jallspaw/
http://bit.ly/2R2AdqS
http://bit.ly/2QVLo4x
http://bit.ly/2NIeeY4
http://bit.ly/2xGB48y
http://bit.ly/2yukZU8

Gremlins in the Works: Commercial Tooling
The domain of chaos and resilience testing is evolving rapidly, and at the time of writ‐
ing, only one commercial tool is within this space: Gremlin by Gremlin, Inc. The
founding members and current team have earned lots of experience from their time
working at AWS, Netflix, Dropbox, and more. We are sure that other vendors will
emerge within this space. If the SaaS model of chaos testing, alongside training and
support, is appealing to your organization, it will be worth keeping up-to-date with
this ecosystem.

Cloud chaos
If you are working with the AWS platform, the original Chaos Monkey tool is still
available as a standalone project on GitHub. You will have to install Golang on your
local (or test) machine, but this is easily accomplished by using a package manager.
The standalone Chaos Monkey should work with any backend that the Netflix/
Google build tool Spinnaker supports (AWS, Google Compute Engine, Azure, Kuber‐
netes, Cloud Foundry), and the documentation states it has been tested with AWS,
GCE, and Kubernetes. If you are working with Azure, the Microsoft blog post Induce
Controlled Chaos in Service Fabric Clusters is the place to learn about the tooling
offered for this platform, of which the primary offering is the Azure Fault Analysis
Service.

Container (and Kubernetes) chaos
PowerfulSeal a Kubernetes-specific chaos testing tool written by the Bloomberg engi‐
neering team, was inspired by the infamous Netflix Chaos Monkey. PowerfulSeal is
written in Python, and is very much a work in progress at the time of writing. It has
only “cloud drivers” for managing infrastructure failure for the OpenStack platform,
although a Python AbstractDriver class has been specified in order to encourage the
contribution of drivers for additional cloud platforms.

PowerfulSeal works in two modes—interactive and autonomous:

• Interactive mode is designed to allow an engineer to discover a cluster’s compo‐
nents and manually cause failure to see what happens. It operates on nodes, pods,
deployments, and namespaces.

• Autonomous mode reads a policy file, which can contain any number of pod and
node failure scenarios, and “breaks things” as specified. Each scenario describes a
list of matches, filters, and actions to execute on your cluster.

Each scenario can consist of matches and filters (target node names, IP addresses,
Kubernetes namespaces and labels, times and dates) and actions (start, stop, and kill).

Chaos Testing | 367

https://www.gremlin.com/
https://github.com/netflix/chaosmonkey
http://bit.ly/2IjXsZt
http://bit.ly/2OSXE4j
http://bit.ly/2OSXE4j
http://bit.ly/2Q7aHiO
http://bit.ly/2Q7aHiO
https://github.com/bloomberg/powerfulseal
http://bit.ly/2y2yMjx
http://bit.ly/2xFXGG1
http://bit.ly/2q7vR7Y
http://bit.ly/2r0wBc3
http://bit.ly/2xG6trJ

A comprehensive JSON schema can be used to validate the policy files, and an exam‐
ple policy file listing most of the available options can be found within the project’s
tests.

PowerfulSeal can be installed via pip, and the command-line tool is initialized and
configured against a Kubernetes cluster as follows:

1. Point PowerfulSeal at the target Kubernetes cluster by giving it a Kubernetes con‐
fig file.

2. Point PowerfulSeal at the underlying cloud IaaS platform by specifying the
appropriate cloud driver and credentials.

3. Ensure that PowerfulSeal can SSH into the nodes in order to execute commands.
4. Write the required policy files and load these into PowerfulSeal.

FaaS/Serverless chaos
As the FaaS paradigm is relatively new, there isn’t much in the way of chaos testing
tools for this platform. Yan Cui has written a series of Medium posts on the topic,
which demonstrate how to inject latency into AWS Lambda innovations, and the
Serverless framework team has built on Ben Kehoe’s work on Monkeyless Chaos.
Although both of these sources are interesting, the accompanying work is still in an
early stage and is predominantly conceptual.

Causing Chaos in Preproduction
Causing chaos in production may (quite rightly) be too risky for many organizations
initially, but this is not to say that you can’t benefit from the principles in a prepro‐
duction environment. Using service virtualization tooling like Hoverfly allows you to
simulate service dependencies and inject middleware into the tool, which can modify
the response. The middleware can be written in any language, or be deployed as a
binary, or target an HTTP endpoint. However, it is most common to write the mid‐
dleware in a scripting language like Python or JavaScript, as these languages have
great support for modifying JSON and HTTP headers, and they also execute fast. As
shown in Figure 12-7, with middleware active in Hoverfly, each time a request/
response is simulated, the middleware is started as a separate (forked) process that
has full access to the associated request/response JSON.

368 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

http://bit.ly/2Dx6Da9
http://bit.ly/2N5J8nT
http://bit.ly/2R1DuXj
http://bit.ly/2xGCCz9
http://bit.ly/2zze6l4
http://bit.ly/2xIcHqN

Figure 12-7. Causing chaos with Hoverfly middleware

Using middleware allows you to write simple scripts to modify the response and
deterministically simulate the effects of increased latency, corrupted responses, and
failures scenarios within the dependency.

This is a relatively low-risk approach to chaos testing, as you can simulate failure
within your local development environment by using the Hoverfly JUnit rule, or a
CD build pipeline or QA/staging environment by running Hoverfly as a standalone
binary with the middleware configuration specified via the CLI parameters.

Deterministically Simulating Failure in a Dependency with Hoverfly:
Daniel’s Experience

On several projects I worked on, we used Hoverfly in combination with middleware
to deterministically simulate and test failure scenarios. For example, in one project,
my service was going to be integrated with an in-house legacy system. Fortunately, the
legacy system had a REST API wrapper, and the legacy API was not changing over the
life cycle of my project. However, I could get access to the staging version of the sys‐
tem only once every two weeks, and it was difficult to cause the system to fail deter‐
ministically in the way it had within production several times before.

I wanted to make sure my service (which was dependent on the legacy API) could
handle the known failure scenarios, so when I was given access to the the system, I
recorded a series of simulations using Hoverfly-Java, JUnit, and the REST Assured
framework. I then modified the Hoverfly simulation request/response pair data to
simulate the legacy system failures, and loaded this into a Hoverfly instance that was
instantiated as part of my test. Success! I was not only able to test my service integra‐
tion with the legacy API whenever needed by using the Hoverfly simulation, but also
could reliably test the failure-handling code within my application.

Chaos Testing | 369

How Much NFR Testing Is Enough?
Answering the question of how much nonfunctional requirement (NFR) testing is
required for a product or project is nearly impossible, or very much like the answer to
“How long is a piece of string?” How much effort you choose to invest in this will
depend on the stage of your business and the resources and time you have available.
If your business does not have product/market fit, experimenting to figure out what
functionality to offer is most likely the highest priority. Likewise, if your leadership
team has not dedicated (or allowed) any engineering time and energy to this type of
testing, then the results will simply be best effort.

There are several “smells” to look for, though, which may indicate you would benefit
from more nonfunctional testing:

• New team members have a difficult time understanding the design and code of
the application.

• You are having difficulty extending the application; or every time you attempt to
modify the architecture, everything breaks, and you don’t know why.

• Your team is undertaking time-consuming manual performance and security
verification.

• Worse, your customers are reporting performance and security issues.
• You are experiencing frequent production issues.
• All of your after-incident retrospectives point to the root causes as being very

simple (e.g., the application ran out of disk space, the network experienced a
small temporary amount of latency, or a user supplied bad data).

Balancing the correct amount of nonfunctional testing is, much like all jobs of a
technical leader, about trade-offs. Here it is typically time/expense versus velocity/
stability.

Summary
In this chapter, you learned about the key concepts for testing what is commonly
referred to as the nonfunctional requirements of a system:

• The nonfunctional perspective of code quality consists of reducing time-to-
context (how readable is the code for another developer, and can someone else
quickly understand the implementation logic?) and being free of deficiencies.

• Architecture quality can be maintained by having an experienced developer or
architect look at the code once a week, identify violations, and correct them.
Realistically, a more practical method is to define the rules and violations in code

370 | Chapter 12: System-Quality Attributes Testing: Validating Nonfunctional Requirements

and then automatically assert the properties as part of your continuous integra‐
tion build.

• Understanding the performance characteristics of your application and its indi‐
vidual service components is extremely invaluable. Load tests can be run at an
application level, covering the entire system, and at a modular level, covering an
individual service or function.

• It is everyone’s job in a software delivery team to think about security, right from
the beginning of the project. The CD build pipeline is often an effective location
in which to codify and enforce security requirements, from code and dependency
issues to other threats.

• The concept of chaos engineering and resilience testing has become increasingly
popular, primarily driven by pioneers such as Netflix. One of the major concepts
of working with infrastructure as code and with cloud environments is designing
for failure, and chaos engineering provides an approach to define a hypothesis,
run experiments, and determine how failure is handled.

• Knowing how much NFR testing is enough is a difficult question to answer.
However, there are several “smells” to look for, which may indicate you would
benefit from more nonfunctional testing.

In the next chapter, you will learn about how to observe your systems through moni‐
toring, logging, and tracing.

Summary | 371

CHAPTER 13

Observability: Monitoring, Logging,
and Tracing

You have learned that testing is a vital skill to be mastered for the effective implemen‐
tation of continuous delivery, but equally import is observability. Testing enables veri‐
fication and promotes understanding at build and integration time, whereas
observability allows verification and enables debugging at runtime. In this chapter,
you will examine what you should observe and how, and you will learn about the
implementation of monitoring, logging, tracing, and exception tracking. You will also
explore several best practices for each of these implementations, and learn how to
combine them with visualization to not only increase your understanding of your
running systems, but also identify how to close the feedback loop and continuously
enhance your applications.

Observability and Continuous Delivery
Continuous delivery does not end with the application being deployed into produc‐
tion. In fact, you could argue that deploying your application is really the beginning
and that the process of continuous delivery stops only when an application or service
is retired or decommissioned. Throughout the lifetime of an application, it is vital
that you are able to understand what is occurring, and what has occurred, within the
system. This is what observability is all about.

373

Recommended Resources
Covering everything there is to know about monitoring and logging is beyond the
scope of this book. The two books we most recommend in this respect are The Art of
Monitoring by James Turnbull and Practical Monitoring (O’Reilly) by Mike Julian,
which will address many of the follow-up questions you may have after completing
this chapter.

Why Observe?
An application is rarely deployed only once and never modified or updated again. A
more typical pattern is that the business evolves or the organization changes, which
generates new requirements, and, in turn, triggers the creation and deployment of
multiple new versions of the application. Often, these new requirements are gener‐
ated from insight into the application itself—for example, are key performance indi‐
cators (KPIs) being met, or is the application running at close to capacity? It is also
common for a deployed application to crash or otherwise misbehave, so you may
have to run tests and simulations locally in order to re-create the issues, or you may
even have to log on to production systems to debug the application in situ.

Monitoring and Observability
The recent popularity of the term observability has driven some in the industry to
question what exactly is meant by this term and how it relates to monitoring. An
excellent blog post by Cindy Sridharan titled “Monitoring and Observability”
explores these topics in detail, and provides many useful references. Fundamentally,
Sridharan argues that the goals of monitoring and observability are different but
complementary:

“Monitoring” is best suited to report the overall health of systems. Aiming to “moni‐
tor everything” can prove to be an antipattern. Monitoring, as such, is best limited to
key business and systems metrics derived from time-series based instrumentation,
known failure modes, as well as blackbox tests. “Observability,” on the other hand,
aims to provide highly granular insights into the behavior of systems along with rich
context, perfect for debugging purposes. Since it’s still not possible to predict every
single failure mode a system could potentially run into or predict every possible way
in which a system could misbehave, it becomes important that we build systems that
can be debugged armed with evidence and not conjecture.

Observability may be a popular new term, but the chances are that you or your team‐
mates have been creating “observable” Java applications for many years. If you have
ever coded auditing, events logging, or exception tracking, then you have been
attempting to observe the system behavior.

374 | Chapter 13: Observability: Monitoring, Logging, and Tracing

https://artofmonitoring.com/
https://artofmonitoring.com/
http://shop.oreilly.com/product/0636920050773.do
http://bit.ly/2OiZpdU

Monitoring, logging, and tracing help with all of these situations. These practices pro‐
vide insight, often referred to an observability, into what is currently occurring or
going wrong, as well as a record as to what the application has done. This allows you
to “close the loop” on the continuous delivery process, as shown in Figure 13-1.

Once you understand the power that feedback provides, you will undoubtedly want
to observe “all the things,” but there is value in being systematic in focusing your
efforts. Let’s now look at what to observe.

Figure 13-1. “Closing the loop” of continuous delivery—monitoring provides feedback

Observability and Continuous Delivery | 375

What to Observe: Application, Network, and Machine
In general, you will tend to monitor and observe your entire system at three levels:
application, network, and machine. Application metrics are usually the most chal‐
lenging to create and understand—yet they are the most important—and this is
because they are very specific to your business and requirements. One perspective on
monitoring is that it can be used to implement some form of testing in production;
you know what a potential failure looks like, and you are asserting that everything is
good. For example, you know that there will be trouble if a variety of scenarios occur:

• Your virtual machine runs out of block storage (disk) space.
• A network partition occurs.
• Your web application is returning a 404 HTTP status code for nearly all valid

page requests.

For each of these scenarios, you can write a monitoring test. The first two will most
likely be checked at the OS level. With the third, you could implement a counter or
meter that outputs the number of 404s being generated, and create an alert based on
this.

Monitoring and logging can also be used to provide data that is required to answer
questions from the business in real time or at a later date. For example, your market‐
ing team may want to know the average shopping basket checkout value during a
promotion they are running, or your subscription retention team may want to mine
activity logs to see whether they can identify behavior that suggests a customer will
soon terminate their commercial contract. In order to implement effective monitor‐
ing, logging, and tracing, you have to design with observability in mind.

How to Observe: Monitoring, Logging, and Tracing
There are three primary approaches to observing modern software applications—
monitoring, logging, and tracing:

Monitoring
This is used to observe a system in near real-time, and typically involves the gen‐
eration and capture of ephemeral metrics, values, and ranges. You generally have
to know what data you want to observe in this approach. Because of the simplic‐
ity of the numbers captured, you cannot mine the data for additional insight later
(other than producing aggregates or looking for trends).

Logging
This is generally used to observe the system in the future, perhaps after a particu‐
lar event (or failure) has occurred. Logs tend to be semantically richer and cap‐
ture more data in comparison with metrics. Therefore, you can usually mine logs

376 | Chapter 13: Observability: Monitoring, Logging, and Tracing

in order to generate additional insight. Logs can also be analyzed to help you
generate future questions.

Tracing
This captures the flow of a request as it traverses the (distributed) system, and
captures metadata and timing at specific points you believe are interesting.
Examples include traffic ingress to an API gateway, handling of the request by
your application, and handling of a query against a database.

The outputs of these approaches will allow you to examine the behavior of your
application and surrounding system and to reflect on how this can be improved.
However, certain outputs demand immediate attention.

Alerting
Certain events that occur during the life of an application require human interven‐
tion; you want to be emailed, phoned, or paged when something bad is happening so
that you can fix it. For this, you need to create alerts that are triggered based on speci‐
fied thresholds or occurrences of data from monitoring and logging.

Many alerts can be designed and configured before an application is even deployed,
although this does require some up-front planning. The known unknowns of running
out of disk space or exceeding the JVM heap space are good examples that should
generate alerts. You will want to be aware of impending failure, and ideally fix this
before it impacts your users. In the examples provided, you will provision more disk
space or reengineer the application to use less memory. Other scenarios that should
generate alerts can be found only with the experience of running the system in pro‐
duction; these are the unknowns unknowns. This means it is necessary to continually
iterate on creating and maintaining alerts.

Avoiding Alert Overload from Microservices at the Financial Times
Creating effective alerts is challenging, particularly when moving to a new infrastruc‐
ture or working with a new architectural style. Daniel wrote an article based on a talk
by Sarah Wells from FT.com “Observability and Avoiding Alert Overload from
Microservices at the Financial Times”, that explains how her team identified and
overcame a series of challenges when embracing a microservice architecture. Three
key takeaways from the article are as follows:

• A core goal of monitoring and alerting is to know about problems before clients
do, so the practice of running synthetic requests that mimic user functionality
behavior is vital.

Observability and Continuous Delivery | 377

https://www.infoq.com/articles/observability-financial-times
https://www.infoq.com/articles/observability-financial-times

• Creating alerts should be part of the normal development workflow: code, test,
alerts. To ensure that the development team knows if an alert stops working, tests
should be added to validate the alert.

• Alerts must continually be cultivated, and if an alert is received that doesn’t make
sense or does not require human interaction, it must be corrected or removed.

Alerts for metrics can be implemented using popular tooling such as the commercial
PagerDuty and open source Bosun. Basic metric alerting can even be implemented in
Prometheus. Alerting based on log content can be implemented by commercial tools
like Humio and Loggly and open source Graylog 2.

Rob Ewaschuk’s Philosophy on Alerting
A comprehensive guide to alerting and being on-call is provided in a now famous
shared Google doc by Rob Ewaschuk: “My Philosophy on Alerting”. If you are serious
about learning more in this space, this is an essential read.

Designing Systems for Observability
Retrofitting monitoring, logging, and tracing into applications can be difficult,
because often the required data is not easily available or is difficult to expose without
impacting the application functionality. Therefore, it is important to design your sys‐
tem with monitoring in mind, specifically:

• Design your application to be capable of monitoring and logging from day one—
include metrics and logging frameworks in your build dependencies (or, ideally,
in the archetype of the project template).

• Ensure that any module (or microservice) boundaries that you create are capable
of exposing data that an upstream system may require.

• Provide context data on downstream network calls (i.e., which service is calling,
and on behalf on which application account).

• Ask yourself, the operations team, and your business what type of questions they
are likely to ask in the future, and plan to expose the metrics and log data as the
application is being designed and built. For example:
— How effectively is a single instance of your application processing an event

queue?
— How do you know if the application is fundamentally unhealthy?
— How many customers are currently logged into the application?

378 | Chapter 13: Observability: Monitoring, Logging, and Tracing

http://bit.ly/2Ijp2pu
http://bosun.org/
https://docs.humio.com/alerts/
https://www.loggly.com/docs/adding-alerts/
https://www.graylog.org/overview
http://bit.ly/2zA4u9O

Design and Build Applications with Monitoring from Day One

As retrofitting monitoring, logging, and tracing into existing appli‐
cations is difficult, you should include appropriate frameworks to
support these practices from day one. This is especially true if
building distributed applications like microservices and serverless
functions, because not only will the applications need to support
the frameworks, but so will the platform and infrastructure (e.g.,
collecting and presenting metrics for the system-level view of mon‐
itoring or implementing tooling for aggregated logging).

You will now learn how to implement each of the observability approaches with Java
applications, but keep in mind the benefits of designing and implementing observa‐
bility up front.

Metrics
Metrics are a numeric representation of some properties that your system has over
intervals of time, such as maximum number of threads being used by your applica‐
tion, current heap memory available, or number of application users logged in during
the last hour. Numbers are easily stored, processed, and compressed, and as such,
metrics enable longer retention of data, as well as easier querying, which can, in turn,
be used to build dashboards to reflect historical trends. Additionally, metrics better
allow for gradual reduction of data resolution over time, so that after a certain period
of time, data can be aggregated into daily or weekly frequency.

In this section, you will learn about the various types of metrics and the use cases for
each. You will also be introduced to several of the most popular metrics libraries for
Java—Dropwizard Metrics, Spring Boot Actuator, and Micrometer—and you will see
examples of the various types of metrics demonstrated using these libraries.

Eclipse MicroProfile
We haven’t covered Eclipse MicroProfile in this chapter, purely for reasons of scope.
The Metrics and OpenTracing projects within MicroProfile are excellent alternatives
for the libraries discussed in this section, and the overall MicroProfile framework
provides many great standards, implementations, and guidelines for building micro‐
services with Java EE technology.

Type of Metrics
There are, generally speaking, five metric types:

Metrics | 379

https://microprofile.io/

Gauges
The simplest metric type, a gauge simply returns a value. A gauge is useful for
monitoring the eviction count in a cache or the average spending amount within
a shopping basket that checks out.

Counters
A simple incrementing and decrementing integer. A counter can be used to mon‐
itor the number of failed connections to the database, or the number of users log‐
ged in to the website.

Histograms
This measures the distribution of values in a stream of data. A histogram is useful
for monitoring the average response time of a downstream service or the number
of results returned by a search.

Meters
This measures the rate at which a set of events occur. A meter can be used to
measure the rate in relation to total cache lookups as cache misses are occurring
or the rate in relation to time that users are abandoning shopping baskets with a
product still present.

Timers
A histogram of the duration of a type of event and a meter of the rate of its occur‐
rence. A timer can be used to monitor the time it takes to serve a web request or
load a user’s saved shopping basket.

All of these metric types can be useful for monitoring a system from an operational
(application) perspective or business perspective.

Dropwizard Metrics
The popular Dropwizard Metrics library (formerly the Coda Hale Metrics library)
started life as a personal project, alongside what is now called the Dropwizard Java
application framework. This metrics library is extremely flexible, and principles from
it have been copied in many other metric frameworks, even across other language
platforms.

The Codahale Metrics library can be imported into your project via the following
dependency (and Example 13-1 is shown using Maven).

Example 13-1. Importing the Dropwizard Metrics library into a Java project

<dependency>
 <groupId>com.codahale.metrics</groupId>
 <artifactId>metrics-core</artifactId>

380 | Chapter 13: Observability: Monitoring, Logging, and Tracing

http://metrics.dropwizard.io/4.0.0/

 <version>${metrics-core.version}</version>
</dependency>

Metrics configuration and metadata

The starting point for metrics is the MetricRegistry class, which is a collection of all
the metrics for your application (or a subset of your application). Generally, you need
only one MetricRegistry instance per application, although you may choose to use
more if you want to organize your metrics in particular reporting groups. Global
named registries can also be shared through the static SharedMetricRegistries
class. This allows the same registry to be used in different sections of code without
explicitly passing a MetricRegistry instance around.

Each metric is associated with a MetricRegistry and has a unique name within that
registry. This is a simple dotted name, like uk.co.bigpicturetech.queue.size. This
flexibility allows you to encode a wide variety of context directly into a metric’s name.
If you have two instances of com.example.Queue, you can make them more specific:
uk.co.bigpicturetech.queue.size versus uk.co.bigpicture

tech.inboundorders.queue.size, for example.

MetricRegistry has a set of static helper methods for easily creating names:

MetricRegistry.name(Queue.class, "requests", "size")

MetricRegistry.name(Queue.class, "responses", "size")

Implementing a gauge
You can create a gauge with minimal effort by using Codahale Metrics. If, for exam‐
ple, your application has a value that is maintained by a third-party library, you can
easily expose this by registering a Gauge instance that returns the corresponding
value, as shown in Example 13-2.

Example 13-2. Gauge example using Codahale Metrics libary

registry.register(name(SessionStore.class, "cache-evictions"), new Gauge<Integer>() {
 @Override
 public Integer getValue() {
 return cache.getEvictionsCount();
 }
});

This creates a new gauge named com.example.proj.auth.SessionStore.cache-
evictions that will return the number of evictions from the cache.

Metrics | 381

The Codahale Metrics library provides all of the common metrics mentioned earlier
in this chapter, and the best way to learn more about how to implement them is to
consult the documentation.

Spring Boot Actuator
Spring Boot Actuator is a subproject of Spring Boot that provides several features to
support production-readiness of your applications. After Actuator is configured in
your Spring Boot application, you can interact and monitor your application by
invoking different HTTP endpoints exposed, such as application health, bean details,
version details, configurations, logger details, etc.

To enable Spring Boot Actuator, you need to include only the following dependency
in your existing build script (Example 13-3 is using Maven).

Example 13-3. Enabling Actuator within a Spring Boot-based project

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 <version>${actuator.version}</version>
</dependency>

Creating a counter

To generate your own metrics with Actuator, you simply inject a CounterService
and/or GaugeService into your bean. CounterService exposes increment, decre‐
ment, and reset methods, and GaugeService provides a submit method.
Example 13-4 provides a simple illustration.

Example 13-4. Creating a counter with Spring Boot Actuator metrics

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.actuate.metrics.CounterService;
import org.springframework.stereotype.Service;

@Service
public class MyService {

 private final CounterService counterService;

 @Autowired
 public MyService(CounterService counterService) {
 this.counterService = counterService;
 }

 public void exampleMethod() {
 this.counterService.increment("services.system.myservice.invoked");

382 | Chapter 13: Observability: Monitoring, Logging, and Tracing

http://bit.ly/2zzH0BE

 }

}

Micrometer
Micrometer provides a simple facade over the instrumentation clients for the most
popular monitoring systems, allowing you to instrument your JVM-based application
code without vendor lock-in. The tagline on the project’s website is “Think SLF4J, but
for application metrics!”

Micrometer can be imported into your Java application by using the following
dependency (Example 13-5 is shown in Maven).

Example 13-5. Importing Micrometer into your Java project

<dependency>
 <groupId>io.micrometer</groupId>
 <artifactId>micrometer-registry-prometheus</artifactId>
 <version>${micrometer.version}</version>
</dependency>

Creating a timer
The metrics APIs exposed within the Micrometer framework are based on the fluent-
DSL pattern, so creating a timer is relatively simple. The primary difficulty with ini‐
tializing a timer typically revolves around how the timer is wrapped around the
method to be invocated; see Example 13-6.

Example 13-6. Timers in Micrometer

Timer timer = Timer
 .builder("my.timer")
 .description("a description of what this timer does") // optional
 .tags("region", "test") // optional
 .register(registry);

timer.record(() -> dontCareAboutReturnValue());
timer.recordCallable(() -> returnValue());

Runnable r = timer.wrap(() -> dontCareAboutReturnValue()); (1)
Callable c = timer.wrap(() -> returnValue());

Best Practices with Metrics
There are many good practices in relation to generating and capturing metrics:

Metrics | 383

http://micrometer.io/

• Always expose core JVM internal metrics, such as: nonheap and heap memory
usage; how often the garbage collector (GC) runs; and thread details, including
the number of threads, current status, and CPU usage. The majority of modern
metrics frameworks provide this as a bundled feature, so it is simply a matter of
enabling this.

• Attempt to expose core application-specific technical details that will supplement
the JVM internal details. For example, the queue depth of an internal processing
queue, the cache statistics (size, hits, average entry age, etc.) of any internal
caches, and throughput of core processing.

• Report on error and exception details. For example, the number of HTTP 5xx
status codes returned when users call a REST API, the number of exceptions
caught when calling a third-party dependency that is critical to your flow, and the
number of exceptions that propagate through to the end user (which you should
always attempt to minimize).

• Ensure that development and operation teams work together when designing
and implementing infrastructure and platform metrics. Every layer of abstraction
within a platform will need to be monitored, and developers and operators may
have differing requirements. Example layers of abstraction include application
framework (e.g., the Spring or Java EE framework), the runtime Java container
(e.g., GlassFish or Tomcat), the JVM, the container implementation (e.g.,
Docker), the orchestration platform (e.g., Kubernetes), the virtualized cloud
hardware (e.g., the VMs and software-defined networks [SDNs]), and physical
infrastructure.

• Work closely with your business team in order to know what KPIs they want to
track. Other systems might be best placed to provide this data, such as an associ‐
ated data store or an ETL-based batch processing system. However, often a few
well-chosen metrics can provide a lot of value in regards to real-time insight into
the system. For example, when working with an e-commerce startup, it is com‐
mon to expose metrics that indicated the number of users currently logged in, the
average conversion from adding a product to the basket for purchasing, and the
average basket value.

Now that you have developed a good understanding of metrics, it is equally valuable
to learn about logging.

Logging
A log is an immutable append-only record of discrete events that happened over time,
such as when the application initialized, when a disk read failed, or when an applica‐
tion user logged out.

384 | Chapter 13: Observability: Monitoring, Logging, and Tracing

Forms of Logging
Generally, logs are produced in one of three forms:

Plain text
A log record might take the form of free-form text. In the Java world, this is com‐
monly seen within old applications that use System.out.println to log what is
happening within an application. Unfortunately, this means that every log state‐
ment is uniquely formatted.

Structured
Here a log entry implements a defined structure, ranging from a simple JSON
format entry to an XML format with a strict schema.

Binary
This type of log is generally intended for consumption by an application, where
human readability is less of a concern. Examples include the MySQL binlog used
for replication, and Protobuf or Avro logs of events that are used for point-in-
time recovery.

Logs are useful when you need additional insight along with extra contextual infor‐
mation and other alerting and metrics do not provide enough. However, lots of log‐
ging information can be overwhelming, so you should also add metadata to log
entries, such as the level of the entry and the cause (user, IP address, etc.) of the
action. Many logging frameworks provide level categorization, such as ERROR, WARN,
INFO, DEBUG, TRACE.

As with any new technology, there is a temptation to overuse logging when you first
discover it. One method to help manage this is to understand and use the log levels.
When you are writing a log statement, ponder to yourself whether this information
that will be generated would be useful on a day-to-day basis. If it would be, it may
well be an INFO statement. If the information is useful only to you, the developer,
when trying to track down a bug, then DEBUG or TRACE is probably more appropriate.
Any errors should, of course, be output using the ERROR level, but it is worth agreeing
with the rest of the development team on where within the stack an error will be
logged.

Our recommendation is to log an error at the highest possible level (closest to the call
or user-initiated action). Attempting to log a single error multiple times within a call
stack often just adds noise to the logs, and makes it even more challenging to track
down the issue.

Logging | 385

Guard Against “Overlogging”

The real power of log levels is that they allow the amount of logging
to be modified at deployment or runtime. For example, if an appli‐
cation is not performing as expected, an operator can enable a
more fine-grained logging level, such as DEBUG, in order to gain
more insight. However, there will be a cost in performance for gen‐
erating extra debug issues, and the irony is that many issues disap‐
pear when you start looking for them. This is often due to timing
and memory usage patterns changing with the additional logging.
On the contrary, we have also seen an application completely fall
over when logging was enabled, as the memory requirements for
generating log statements in a production environment were mas‐
sive (and the associated TRACE statements had always been used in
only tightly controlled development environments with minimal
data).

There are several choices for logging frameworks with the Java ecosystem. You will
now learn about the two most popular: SLF4J (with Logback) and Log4j 2.

Don’t Invent Your Own Logger

Please don’t attempt to implement your own logging framework, or
almost as bad, simply use System.out.println. The modern Java
logging frameworks are highly evolved, and offer much more flexi‐
bility compared with simply echoing details to the console output
(which may or may not exist when running in a containerized envi‐
ronment).

SLF4J
The Simple Logging Facade for Java (SLF4J) serves as a simple facade or abstraction
for various logging frameworks (e.g., java.util.logging, Logback, Log4j), allowing you
to plug in the desired logging framework at deployment time. You can include SLF4J
(in this case, using Logback under the hood) via Maven, as shown in Example 13-7.

Example 13-7. Including SLF4J with Logback, via Maven

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-jdk14</artifactId>
 <version>${slf4j.version}</version>
</dependency>
<dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>

386 | Chapter 13: Observability: Monitoring, Logging, and Tracing

https://www.slf4j.org/
https://logback.qos.ch/

 <version>${logbacl.version}</version>
</dependency>

The usage of SLF4J is simple, as you can see in Example 13-8, from the SLF4J user
manual.

Example 13-8. Using the SLF4J APIs

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class HelloWorld {
 public static void main(String[] args) {
 Logger logger = LoggerFactory.getLogger(HelloWorld.class);
 logger.info("Hello World");
 }
}

SLF4J also supports Mapped Diagnostic Context (MDC), which allows you to add
context-specific key-value data to a logger and can provide useful information for
searching and filtering data from a system that is dealing with many user requests in a
distributed system. If the underlying logging framework offers MDC functionality,
SLF4J will delegate to the underlying framework’s MDC. Currently, only Log4j and
Logback offer MDC functionality.

Mapped Diagnostic Context
Mapped Diagnostic Context is essentially a map maintained by the logging framework;
the application code provides key-value pairs that can then be inserted by the logging
framework in log messages. MDC data can also be highly helpful in filtering messages
or triggering certain actions. The chapter on MDC in the Logback user manual pro‐
vides useful information on this topic, and provides examples of the types and pur‐
pose of additional information within a log message, for example:

70984 [RMI TCP Connection(4)-192.168.1.6] INFO
 N:129 - Beginning to factor.

Log4j 2
Apache Log4j 2 is an upgrade to the original Log4j that provides significant improve‐
ments over the first (and very popular) version. The Log4j 2 website claims that it
provides many of the improvements available in Logback while fixing some inherent
problems in Logback’s architecture. One of the key differences with version 2 of the
logging framework is that the API for Log4j is separate from the implementation,
making it clear for application developers which classes and methods they can use

Logging | 387

https://www.slf4j.org/manual.html
https://www.slf4j.org/manual.html
https://logback.qos.ch/manual/mdc.html
https://logging.apache.org/log4j/2.x/

while ensuring forward compatibility. Applications coded to the Log4j 2 API always
have the option to use any SLF4J-compliant library as their logger implementation
with the Log4j-to-SLF4J adapter.

While the Log4j 2 API will provide the best performance, Log4j 2 provides support
for the Log4j 1.2, SLF4J, Commons Logging, and java.util.logging (JUL) APIs. If per‐
formance is an especially important issue for you, you may be interested in the fact
that Log4j 2 contains asynchronous loggers based on the LMAX Disruptor inter-
thread messaging library, which can provide higher throughput and orders of magni‐
tude lower latency than Log4j 1.x and Logback.

You can include Log4j 2 in your Maven project with the dependencies shown in
Example 13-9.

Example 13-9. Including Log4j 2 in your Maven-based application

<dependencies>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-api</artifactId>
 <version>${log4j.version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-core</artifactId>
 <version>${log4j.version}</version>
 </dependency>
</dependencies>

The use of the Log4j 2 API is similar to that of SL4JF API, so if you are used to this
framework, then you will feel right at home; see Example 13-10.

Example 13-10. Usage of Log4j 2

import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;

public class HelloWorld {
 private static final Logger logger = LogManager.getLogger("HelloWorld");
 public static void main(String[] args) {
 logger.info("Hello, World!");
 }
}

Logging Best Practices
Lots of great articles online share logging best practices, and we’ve collated several of
the recommendations here, combined with our own experience:

388 | Chapter 13: Observability: Monitoring, Logging, and Tracing

https://lmax-exchange.github.io/disruptor/

• Don’t log every little detail. This not only can have a performance impact, but
also adds a lot of noise to logs. Any future maintenance in the code will also
potentially have to modify all of the logs.

• Conversely, do log important details, particularly around core flows or forks of
processing within the overall application processing, as it is often a good idea to
start at these places when debugging strange issues.

• Write meaningful logging information that will help you and others diagnose
information in the future. Be sure to include relevant context—finding the
phrase “Transaction failed” within a log without any other context is never help‐
ful. Make the information machine parsable as well, which will also aid in search‐
ing for keywords.

• Log at the correct level: INFO for general information, DEBUG/TRACE for finer-
grained diagnostic information, and WARN/ERROR for events that should require
additional follow-up.

• Use a static modifier for your Logger object, as this means that the Logger will be
created only once, reducing overhead.

• You can customize your layout in the logs (for example, with Log4j Pattern Lay‐
outs).

• Consider using a JSON layout for structured logging. This makes logs easier to
parse into an external, centralized log aggregation platform.

• If you are working with SLF4J and you are running into issues with getting
appenders configured correctly (or receiving no logging output), you can often
resolve these issues after enabling the internal debugging by setting the
log4j.debug system property in the configuration file or adding -Dlog4j.debug
to the application/JRE startup command.

• Don’t forget to rotate logs regularly to prevent the log files from growing too
large, or the loss of data. Closely related to this topic is the recommendation that
all logs should be asynchronously shipped off to a centralized log store, and a
maximum number of rotated log files stored locally.

• Get in the habit of periodically scanning all logs, looking for unexpected WARNs,
ERRORs, and exceptions. This can often be a great way to catch an issue before it
becomes more significant.

Logging | 389

Don’t Log Sensitive Data

Although it may be tempting for debugging purposes, you should
never log any sensitive information, such as confidential user or
business data, personally identifiable information (PII), or any data
that would fall under legal regulations, such as the EU’s General
Data Protection Regulation (GDPR). Not only can logging sensitive
information lead to compliance violations and fines, but it is a
potential security vulnerability. We have both seen logs that have
recorded credit card information, passwords (and failed password
attempts, which often contain passwords a user uses somewhere
else), and answers to account reset questions.

One of our favorite logging articles is Brice Figureau’s “The 10 Commandments of
Logging”, and we recommend reading this for a more in-depth overview of logging
practices.

Logging in the (Ephemeral) Cloud

When deploying Java applications on an IaaS or PaaS cloud plat‐
form, and especially on a FaaS serverless platform, don’t forget that
the underlying infrastructure will most likely be ephemeral, mean‐
ing that it could disappear at a moment’s notice. You obviously
have to code your application to be resilient to this, but you must
also configure your logs appropriately. Primarily, you must ship
your logs to a centralized collection or aggregation service, such as
an ELK stack or commercial platform such as Humio, and it can
also be beneficial to think about where you are storing your logs
locally. For example, storing logs on a mounted persistent volume
can help prevent data loss during an instance crash, but this will
also have performance implications (i.e., less performance than
writing log data to a locally attached volume).

Request Tracing
The basic idea behind request tracing is relatively straightforward: specific inflection
points must be identified within a system, application, network, and middleware—or
indeed any point on a path of a (typically, user-initiated) request—and instrumented.
These points are of particular interest, as they typically represent forks in execution
flow, such as the parallelization of processing using multiple threads, a computation
being made asynchronously, or an out-of-process network call being made. All of the
independently generated trace data must be collected, coordinated, and collated to
provide a meaningful view of a request’s flow through the system.

390 | Chapter 13: Observability: Monitoring, Logging, and Tracing

http://bit.ly/2zz8jvH
http://bit.ly/2zz8jvH

Traces, Spans, and Baggage
As defined by the Cloud Native Computing Foundation (CNCF) OpenTracing API
project, a trace tells the story of a transaction or workflow as it propagates through a
system. In OpenTracing and Dapper, a trace is a directed acyclic graph (DAG) of
spans, which are also called segments within some tools, such as AWS X-Ray. Spans
are named and timed operations that represent a contiguous segment of work in that
trace. Additional contextual annotations (metadata, or baggage) can be added to a
span by a component being instrumented—for example, an application developer
may use a tracing SDK to add arbitrary key-value items to a current span. It should be
noted that adding annotation data is inherently intrusive: the component making the
annotations must be aware of the presence of a tracing framework.

Trace data is typically collected “out of band” by pulling locally written data files (gen‐
erated via an agent or daemon) via a separate network process to a centralized store,
in much the same fashion as currently occurs with log and metrics collection. Trace
data is not added to the request itself, because this allows the size and semantics of the
request to be left unchanged, and locally stored data can be pulled when it is conve‐
nient.

When a request is initiated, a parent span is generated, which, in turn, can have causal
and temporal relationships with child spans. Figure 13-2, taken from the OpenTracing
documentation, shows a common visualization of a series of spans and their relation‐
ship within a request flow.

This type of visualization adds the context of time, the hierarchy of the services
involved, and the serial or parallel nature of the process/task execution. This view
helps to highlight the system’s critical path, and can provide a starting point for iden‐
tifying bottlenecks or areas to improve. Many distributed tracing systems also pro‐
vide an API or UI to allow further drill-down into the details of each span.

Request Tracing | 391

https://www.cncf.io/
http://opentracing.io/
http://opentracing.io/documentation/#what-is-a-trace
https://aws.amazon.com/xray/
http://bit.ly/2DyAsXZ

Figure 13-2. Decomposing a sample request trace, showing a parent and corresponding
child spans that relate to specific actions conducted when processing the request

Java Tracing: OpenZipkin, Spring Sleuth, and OpenCensus
The world of distributed tracing is both fast evolving and becoming increasingly
(cloud) platform specific. These facts, in combination with limitations of scope, mean
that no implementation guide will be provided in this book. Interested readers are
pointed to the popular open source frameworks OpenZipkin, Spring Cloud Sleuth,
and OpenCensus for more information, which all provide Java SDKs.

Commercial Distributed Tracing Solutions
Many of the large public cloud vendors offer their own tracing solutions, which can
be well worth utilizing. If you are on AWS, the X-Ray service is useful, although it is a
proprietary solution, and you will have to include the AWS SDKs within your appli‐
cation. Google Cloud Platform offers Stackdriver Trace, which is OpenCensus and
OpenZipkin compliant, and the GCP team offers a Maven JAR that performs all the
integration. The Microsoft team has also created zipkin-azure, which integrates
OpenZipkin into the Azure platform via Azure Event Hubs.

Closely related to distributed tracing, application performance management (APM) is
also a useful tool for developers and operators to understand and debug a system.
Historically, the commercial solutions have had much more functionality in compari‐
son with open source tooling, but Naver’s Pinpoint is now offering much of the
expected core functionality and provides distributed tracing features.

392 | Chapter 13: Observability: Monitoring, Logging, and Tracing

https://zipkin.io/
https://cloud.spring.io/spring-cloud-sleuth/
https://opencensus.io/
https://aws.amazon.com/xray/
https://cloud.google.com/trace/docs/zipkin
https://github.com/openzipkin/zipkin-azure
https://github.com/naver/pinpoint

Recommended Practices for Tracing
Distributed tracing within the Java space is a relatively new practice, and therefore
there are limited “best” practices. However, recommended practices include the fol‐
lowing:

• You must remember to forward the tracing headers to all downstream services,
middleware, and data stores; otherwise, part of the application will not be cov‐
ered by the traces.

• In relation to the previous point, if you are working with a polyglot application
stack, you should integrate Zipkin (or your tracing solution of choice) into the
additional language frameworks. Zipkin is great for this purpose, as it is a
language-agnostic tracing solution.

• Do not attempt to add a large amount of “baggage” metadata. Although this is
collected out-of-band of the request itself, this can still result in noisy traces.

Finally, consider whether you want to run your own trace collection service, and
whether you have the skills and resources available to make this a viable solution.
Many of the cloud vendors offer excellent fully managed services.

Exception Tracking
Even if you have followed all of the advice within this chapter and implemented
aggregated logging and centralized monitoring, you will still encounter scenarios
within production systems where something goes wrong and you won’t know about
it. This is almost inevitable with the complexity of the systems being implemented
today. Ideally, you always want to know about a problem before an end user sees this
or (worse still) reports to you that your system is broken. Therefore, an additional
tool in your issue management toolbox should be an exception-tracking system.

Commercial Exception-Tracking Tools
Because exception tracking can be valuable, in our opinion it is often worth paying
for a commercial solution that not only hosts the service for you but also provides an
SLA. Popular Java commercial exception- and error-tracking platforms include Air‐
brake, Sentry, RayGun, and OverOps.

An exception-tracking system is typically provided by a SaaS vendor, although in-
house solutions are also available (such as the open source Ruby on Rails Errbit appli‐
cation, which is Airbrake compatible). A client SDK is added to your Java application,
typically as a Maven or Gradle dependency, which captures any exceptions that are
uncaught or have propagated to the view layer and reports the details to the

Exception Tracking | 393

https://airbrake.io/
https://airbrake.io/
https://sentry.io/for/java/
https://raygun.com/
https://www.overops.com
https://github.com/errbit/errbit

exception-tracking service. Many tracking services have informative dashboards that
help you in diagnosing and finding the associated issue, and they also typically alert
you to the issue in near real time (or integrate with other services that provide this
feature).

Exposed Exceptions Can Provide Information to Hackers!

If an internal exception or error is propagated through to the end
user, this is obviously a bad user experience, but the error may also
leak sensitive or useful information to a hacker. Indeed, the hacker
may have been trying to break your system, and even if they suc‐
ceed, they should receive no information of the issue. For this rea‐
son, you should avoid including overly descriptive error messages,
stack traces, or PII data with an error message that is displayed
(intentional or otherwise).

In addition to utilizing an exception-tracking system, we also recommend imple‐
menting a catchall error-handling web page that is displayed by default on the event
of an uncaught exception. This page can typically be configured within modern Java
web frameworks, or alternatively by configuring a static error page within your web
server or API gateway that is displayed when an error is indicated within the HTTP
response (e.g., a 5xx HTTP status code). Any error page should apologize for the
inconvenience, and suggest that the user contact the company help desk. If the error
page is generated within the application server, it is acceptable to provide a UUID as a
reference to the error.

Don’t Forget the Client Side

If you are working on an application that exposes a web-based
interface, errors can also occur in the client-side code. These also
need to be caught and tracked. Many of the commercial tooling
mentioned can be integrated with frontend JavaScript to accom‐
plish this, such as Sentry.

Airbrake
A popular cross-language exception tracker is Airbrake. To install the Airbrake client
into your Java code, you can simply import the dependency via Maven, as shown in
Example 13-11.

Example 13-11. Importing the Airbrake SDK into your Java project

 <dependency>
 <groupId>io.airbrake</groupId>
 <artifactId>airbrake-java</artifactId>

394 | Chapter 13: Observability: Monitoring, Logging, and Tracing

https://airbrake.io/

 <version>${airbrake.version}</version>
 </dependency>

As stated in the Airbrake Java client GitHub repository README, the easiest way to
use Airbrake is by configuring a Log4j appender. Therefore, when an uncaught excep‐
tion occurs, Airbrake will POST the relevant data to the Airbrake server specified in
your environment. (Don’t forget that you are still responsible for preventing or trans‐
lating the display of this error to the end user.) You saw an example Log4j configura‐
tion in the preceding example, and Example 13-12 is a modified version configured
to report errors to the external Airbrake service (which could be a self-hosted Errbit
service).

Example 13-12. Log4j properties configuration file for reporting exceptions to an
external Airbrake service

log4j.rootLogger=INFO, stdout, airbrake

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=[%d,%p] [%c{1}.%M:%L] %m%n

log4j.appender.airbrake=airbrake.AirbrakeAppender
log4j.appender.airbrake.api_key=YOUR_AIRBRAKE_API_KEY
#log4j.appender.airbrake.env=development
#log4j.appender.airbrake.env=production
log4j.appender.airbrake.env=test
log4j.appender.airbrake.enabled=true
#log4j.appender.airbrake.url=http://api.airbrake.io/notifier_api/v2/notices

If you are not using Log4j, or want to send other exceptions to your exception-
tracking service, you can call the Airbrake client directly, as shown in Example 13-13.

Example 13-13. Calling the Airbrake service directly via the SDK

try {
 doSomethingThatThrowsAnException();
}
catch(Throwable t) {
 AirbrakeNotice notice = new AirbrakeNoticeBuilder(
 YOUR_AIRBRAKE_API_KEY, t, "env").newNotice();
 AirbrakeNotifier notifier = new AirbrakeNotifier();
 notifier.notify(notice);
}

Exception Tracking | 395

https://github.com/airbrake/airbrake-java

System-Monitoring Tooling
You’ve seen how important it is to generate and collect metrics and logs from your
Java applications within this chapter, and the same advice applies to the OS and infra‐
structure that your applications run on.

collectd
collectd gathers metrics from various sources (e.g., the operating system, applications,
log files, and external devices) and stores this information or makes it available over
the network. Those statistics can be used to monitor systems, find performance bot‐
tlenecks, and predict future system load. collectd runs as a daemon on each machine
instance, and all of the functionality is provided as a series of plugins. collectd’s con‐
figuration is kept as easy as possible—besides which modules to load, you don’t need
to configure anything else, but you can customize the daemon to your liking if you
want. collectd utilizes a data push model: the data is collected and sent (pushed) to a
multicast group or server. Thus, there is no central instance that queries any values.

Because of space limitations (and subtle differences between Linux distros), we won’t
cover how to install and set up a central collectd server. Usually, this would be done
by a centralized operations team in a large organization, and for smaller teams using
public cloud services, you can often transform collectd metric data into the vendor’s
proprietory centralized metrics collection framework (e.g., Amazon CloudWatch has
a collectd plugin). The client collectd daemon can be installed as a binary (available
via the project’s download page), and the configuration is specified by modifying
the /etc/collectd.conf configuration file. More information can be found on the col‐
lectd website.

rsyslog
Modern Java applications involve lots of moving parts that are often distributed
across multiple machines, and tracking what is happening and diagnosing issues at
the OS level can be challenging. Therefore, centralizing your log output can be useful.
Syslog is a standard developed in the 1980s for recording logging messages, and used
widely, especially in Unix environments. All mainstream Linux distributions install a
syslog implementation as part of the base system, which is a strong reason for adopt‐
ing it in preference to other, less widely deployed systems. Rsyslog builds upon the
basic syslog protocol, and extends it with content-based filtering, flexible configura‐
tion options, and a bunch of useful extensions, such as the support for ISO 8601
timestamps and the ability to log directly into various database engines.

Typically, this type of centralized log management will be implemented by a central‐
ized operations team, but it is not difficult to run your own central receiving server.
For the sake of brevity (and the subtle differences based on Linux distros), we won’t

396 | Chapter 13: Observability: Monitoring, Logging, and Tracing

https://collectd.org/
https://github.com/awslabs/collectd-cloudwatch
http://collectd.org/download.shtml

cover the installation or configuration of a receiving server. For the client servers, all
you need to do is tell syslog to forward all logs to the central server. This is typically
achieved by adding the following to the base of the /etc/rsyslog.conf config file:

. syslog.mycentralserver.com

This will send all log messages sent via syslog to the central receiving server.

Sensu
Sensu is an open source and commercial infrastructure and application-monitoring
and telemetry solution that provides a framework for monitoring almost everything:
from infrastructure to application health, and business KPIs. Sensu is designed to
solve monitoring challenges introduced by the types of modern infrastructure plat‐
forms that we have talked about in this book (e.g., a mix of static, dynamic, and
ephemeral infrastructure when using public, private, and hybrid clouds). Sensu is
often deployed in place of existing infrastructure-monitoring solutions such as
Nagios.

Sensu exposes all of its configuration as JSON files, so it is easy to automate and man‐
age configuration via VCSs. Sensu also integrates well with alerting tools like
PagerDuty, Slack, and email.

In general, Sensu can coexist with other tooling like Prometheus, and it is common to
see both being utilized at an organization. Developers tend to gravitate toward Prom‐
etheus because of its user experience (UX) and extensive query features, and opera‐
tors tend to embrace Sensu because of its extensive integration with infrastructure
(including the ability to reuse existing Nagios health checks).

Collection and Storage
Any metric and logging data must be reliably captured and stored for later analysis.
This section will explore a popular solution for each of these requirements.

Commercial Metric and Log Collection Tooling
All of the large cloud vendors offer their own metric and logging collection and anal‐
ysis tooling, such as AWS CloudWatch, GCP StackDriver, and Azure Monitor. A
number of startups are also exploring this space, as the challenges for collating and
generating insight from all of this data is not trivial, and the value that can be added
to organizations and engineers means that this is commercially interesting. If your
cloud provider or in-house solution is not meeting your needs, it is worth exploring
commercial offerings such as Honeycomb and LightStep.

Collection and Storage | 397

https://www.honeycomb.io/
https://lightstep.com/

Prometheus
Prometheus is an open source systems monitoring and alerting toolkit originally built
at SoundCloud. It is now a standalone open source project (hosted by the CNCF) and
maintained independently, and developers from many organizations now contribute.
Prometheus fundamentally stores all data as time series: streams of timestamped val‐
ues belonging to the same metric and the same set of labeled dimensions. Prome‐
theus works well for recording any purely numeric time series. It fits both machine-
centric monitoring as well as monitoring of highly dynamic service-oriented
architectures. In a world of microservices, its support for multidimensional data col‐
lection and querying is a particular strength.

Prometheus provides its own Java SDK that provides all of the metrics types dis‐
cussed previously. However, the Prometheus API is specific to this collection plat‐
form, and instead it is often advantageous to use a platform-agnostic library and
integrate this with Prometheus. All of the main metrics libraries provide Prometheus
integration, including Dropwizard/Codahale Metrics, Micrometer, and Spring Boot
Actuator/Metrics. Metrics stored within Prometheus can easily be visualized via Gra‐
fana.

Elastic-Logstash-Kibana
When discussing how to aggregate and store log data, you will often hear talk of the
ELK stack. ELK is an acronym for three open source projects: Elasticsearch, Logstash,
and Kibana. Elasticsearch is a search and analytics engine. Logstash is a server‑side
data processing pipeline that ingests data from multiple sources simultaneously,
transforms it, and then sends it to a “stash” like Elasticsearch. Kibana lets users visual‐
ize data with charts and graphs in Elasticsearch. Both SLF4J and Log4j 2 can be con‐
figured to format data into JSON that is ready for consumption by Logstash and
Elasticsearch.

Beware of the Boiling Frog: Abraham’s Experience
There is an old fable that states that if you put a frog in a pot of boiling water, it will
immediately jump out, but if you put it in warm water and then gradually increase the
temperature to a boil, the frog won’t notice the increase and will boil alive. While the
veracity of the story is probably questionable (and I’m most certainly not encouraging
you to test it yourself), there is some knowledge that you can apply here.

A limiting factor of many metrics and visualization tools is the amount of resources
that they require: storing data is expensive, and indexing it to quickly visualize it even
more so. For this reason, I have frequently seen teams that will impose an age limit in
their visualization tools, typically two weeks, but sometimes even less.

398 | Chapter 13: Observability: Monitoring, Logging, and Tracing

https://prometheus.io/
https://github.com/prometheus/client_java
http://bit.ly/2OebIIr
http://bit.ly/2NMqZ3I
http://bit.ly/2QeJxqp
http://bit.ly/2QeJxqp
http://bit.ly/2Oi4YcA
http://bit.ly/2Oi4YcA
https://www.elastic.co/elk-stack
https://www.elastic.co/elk-stack

Most people don’t mind that because they have configured their graphs with a rather
short window, usually something between the last 30 minutes and the last day; I have
rarely met teams that tend to be interested in checking what happened more than a
day ago. I do like to check further, though, because I like to understand the long-term
patterns: how much higher is traffic usually on weekdays compared to weekends?
How many new users do we have in the summer months compared to the rest of the
year? Is it normal that visits plummet like this during the holiday season, or are we
having a bad year? Questions like these are the ones that bug me, and the ones that
most monitoring tools cannot answer.

It is true that many problems tend to be sudden, and that these can be noticed with a
short-term monitoring view. For the longer-term ones, I tend to maintain my own list
of metrics that I keep in a rather unsophisticated way (typically, a spreadsheet with
daily totals), and where I can observe patterns. It may sound like overkill, particularly
if you have spent so much effort setting up a proper ELK stack or similar, but for me
it has paid off: once I was able to identify one of these slowly cooking frogs, a perfor‐
mance issue that kept creeping up ever so slightly over the course of two months, but
that was clearly growing at an exponential rate. Hopefully, we managed to catch it at
the beginning, when it still wasn’t too much of an issue, but imagine what could have
happened if I hadn’t kept an eye on the longer trends.

Visualization
Designing systems with observability in mind and collecting appropriate metric and
logging data is a good first step toward understanding your application and system.
However, an equally important step is converting this data to something that provides
insight and drives actions and improvement. How you do this depends on your target
audience: business, operations, or development. The goal of this section is to provide
an overview of what is possible. Because of the scope of the book, you are invited to
follow up with further reading and web searches.

Visualization for Business
The primary driver when creating visualizations for business use is to focus on the
most important information and to minimize noise. A popular mechanism for dis‐
playing textual and numeric insight is a dashboard. The dashing.io framework, along
with a more actively maintained fork, Smashing (shown in Figure 13-3) is a simple-
to-use and effective dashboard tool. Dashboards are created using ERB Ruby scripts
(much like JSPs), and data can be submitted to the tool via a REST-like API.

Visualization | 399

http://dashing.io/
https://smashing.github.io/

Figure 13-3. Smashing dashboard

Operational Visualization
Popular operations visualization tooling includes Graphite and the more modern
Grafana, shown in Figure 13-4. These tools make it easy to create dashboards that
focus on global system health and performance, as well as service- or infrastructure-
specific properties. Core goals for visualization within this space include providing
the ability for engineers to self-serve and create their own dashboards, and to create
automated alerts on anything that should require an action to be taken.

Figure 13-4. Grafana dashboard for the Kubernetes-native Ambassador API gateway

Another popular requirement from operators is the ability to understand the flow of
requests and data across a system, and for this, the output of APM tooling can be val‐
uable. Figure 13-5 demonstrates a request/response scatter chart from the user-

400 | Chapter 13: Observability: Monitoring, Logging, and Tracing

https://graphiteapp.org/
https://grafana.com/

generated request to the associated database query using the open source Pinpoint
APM solution.

Figure 13-5. A request/response scatter chart generated by Pinpoint APM

Visualization for Developers
Developers are well catered to by visualization tooling like Kibana, which is often
used as part of the ELK stack. Whereas Grafana is focused on metrics, Kibana, shown
in Figure 13-6, is focused on logs, and enables full-text querying in addition to graph‐
ing. This functionality is invaluable for developers when debugging complex issues.

If you are utilizing distributed tracing, many of these tools provide a graphical inter‐
face that can be queried to show a single trace. As demonstrated in Figure 13-7, the
benefit of this type of visualization is that it allows you to quickly identify the flow of
the request/response and data across a single user-triggered action. Long spans allow
you to locate a long-running process, and broken spans quickly highlight processes or
services that are failing.

Visualization | 401

Figure 13-6. Kibana dashboard

Figure 13-7. Zipkin trace

Although the lure of the command line can be tempting for many developers, you
can also get a lot of value from the appropriate use of visualization. A core goal of
visualization in this domain is to ensure that developers have self-service access to the
tooling, and can create dashboards, charts, and trace queries with minimal overhead.

402 | Chapter 13: Observability: Monitoring, Logging, and Tracing

Summary
In this chapter, you have learned about the fundamentals of observability:

• Throughout the lifetime of an application, it is vital that you are able to under‐
stand what is occurring, and what has occurred, within the system. This is what
observability is all about.

• In general, you will tend to monitor and observe your entire system at three lev‐
els: application, network, and machine.

• There are three primary approaches to observing modern software applications:
monitoring, logging, and tracing.

• Monitoring is used to observe a system in near real-time, and typically involves
the generation and capture of ephemeral metrics, values, and ranges.

• Logging is generally used to observe the system in the future, perhaps after an
event (or failure) has occurred.

• Tracing captures the flow of a request as it traverses the (distributed) system, and
captures metadata and timing at specific points you believe are interesting.

• Certain events that occur during the life of an application require human inter‐
vention. For this, you need to create alerts that are triggered based on specified
thresholds or occurrences of data from monitoring and logging.

• Retrofitting monitoring, logging, and tracing to applications can be difficult.
Therefore, it is important to design your system with monitoring in mind.

• You always want to know about a problem before an end user sees it. Therefore,
an additional tool in your issue management toolbox should be an exception-
tracking system.

• Using visualization tools and dashboards correctly can provide insight and
reduce the amount of noise that is presented by raw metric and log data.

At this point in the book, you have learned about the technical details of implement‐
ing continuous delivery. The next chapter focuses on the challenges of migrating an
existing organization or application to this way of working.

Summary | 403

CHAPTER 14

Migrating to Continuous Delivery

At this point in the book, you have learned many of the technical principles and prac‐
tices associated with continuous delivery. In this chapter, you will learn about the
challenges with migrating your organization and team to this way of working. You
will also learn current good practices and approaches to make this easier.

Continuous Delivery Capabilities
If you have read the book chapter to chapter, you will have read several times about
the continuous delivery capabilities that Nicole Forsgren, Gene Humble, and Gene
Kim have identified in their book, Accelerate. Through their work with the State of
DevOps Reports and by running the DevOps Enterprise conference series they have
had a unique opportunity to identify what makes a high-performing organization.
They have also developed insight into which approaches work and which don’t, and
developed scientifically validated models on best practices.

One of the key findings of their research is the uncovering of 24 key capabilities that
drive improvement in software delivery performance in a statistically significant way.
These capabilities have been classified into five categories: continuous delivery; archi‐
tecture; product and process; lean manufacturing and monitoring; and cultural. You
will note that continuous delivery is a category in and of itself; this is how significant
the practice is for creating a high-performing organization.

Examining the continuous capabilities in more depth, you will see the following list:

• Use version control for all production artifacts.
• Automate your deployment process.
• Implement continuous integration.
• Use trunk-based development methods.

405

• Implement test automation.
• Support test data management.
• Shift left on security.
• Implement continuous delivery.

Forsgren, Humble, and Kim argue in their book that if you and your organization
invest in these capabilities, your software delivery performance will increase.
Throughout this book, you have learned the technical skills associated with these
capabilities, and this is therefore a good checklist to reference when migrating a team
within your organization to continuous delivery.

Implementing Continuous Delivery Can Be Challenging

So, you’ve worked your way through the book and are keen to start
helping your organization move toward fully embracing continu‐
ous delivery. However, this is not as easy as it may initially appear.
Maybe you have seen this when attempting to introduce new tech‐
nologies or methodologies to your team in the past, or perhaps you
are simply visualizing potential technical or organizational hurdles
—you know, the ones that make your organizational working prac‐
tices “special.” (Spoiler alert: every organization is unique, but very
few are particularly “special” when it comes to continuous deliv‐
ery.) Don’t be discouraged if your initial efforts appear fruitless;
migrating to continuous delivery can take time.

The first question to ask, particularly if your organization consists of more than one
software delivery team or product, is how do you pick which application to migrate
first?

Picking Your Migration Project
The DevOps Handbook, a highly recommended read for any technical leader, contains
an entire chapter dedicated to choosing which project, or more correctly, which
“value stream” to start with when attempting a DevOps transformation. Whether you
are looking to begin a full-scale transformation or simply to implement continuous
delivery, the advice for choosing a target is very much the same. The first step in pick‐
ing a migration process is to do some research on your organization. If you are a rela‐
tively small startup or medium-scale enterprise, this may be easy. If you are working
in a large-scale multinational organization, this may be more challenging, and you
may want to limit your research to only the geographic area in which you work.

406 | Chapter 14: Migrating to Continuous Delivery

Cataloguing the value streams, systems, and applications can provide you with an
overview of which areas to tackle first. When doing your research, The DevOps Hand‐
book authors recommend considering both brownfield and greenfield projects, as
well as systems of record (resource planning and analytic systems) and systems of
engagement (customer-facing applications). The advice continues by suggesting that
you “start with the most sympathetic and innovative groups.” The goal is to find the
teams that already believe in the need for continuous delivery (and other DevOps
principles), and teams that already possess a desire and demonstrated ability to inno‐
vate and be early adopters in new technologies and techniques.

The DevOps Handbook: An Essential Read
If you are a technical or team leader who is keen to embrace continuous delivery and
spread this throughout your organization, we strongly recommend that you read The
DevOps Handbook. The knowledge, models, and advice contained within are invalua‐
ble, and you will save yourself a lot of time and pain by reading this.

Once you have chosen your project or team to begin your continuous delivery jour‐
ney, you must then take time to understand their situation in more depth.

Situational Awareness
Any large-scale change within a company or organization will take commitment of
resources, time, and determination. An organization is a complex adaptive system
and can appear at times to be much like a living creature itself. This is further com‐
pounded when the organization and the change involve the use of technology, as you
are then dealing with a “socio-technical” system. The Cynefin framework is a concep‐
tual framework used to help leaders and policy makers reach decisions. Developed in
the early 2000s within IBM, it was described as a “sense-making device.”

Cynefin offers five decision-making contexts or domains: simple, complicated, com‐
plex, chaotic, and disorder. The purpose of the framework is to enable leaders to indi‐
cate how they perceive situations, and to make sense of their own and other people’s
behavior and decide how to act in similar situations. Figure 14-1 shows that the
domains on the right, simple and complicated, are ordered: cause and effect are
known or can be discovered. The domains on the left, complex and chaotic, are unor‐
dered: cause and effect can be deduced only with hindsight or not at all.

Situational Awareness | 407

Figure 14-1. The Cynefin framework: a conceptual framework used to help leaders per‐
ceive and analyze situations, and decide how to act. (Image from Dave Snowden taken
from Wikipedia)

The Cynefin Framework and Continuous Delivery
The Cynefin framework can be a useful tool when implementing continuous delivery
within an organization. Although nearly all organizations are in the Complex quad‐
rant, many of the situations involved within a journey to embracing continuous deliv‐
ery fall elsewhere in the framework.

Simple
The simple domain represents the known knowns. These are rules or best practices:
the situation is stable, and the relationship between cause and effect is clear. The

408 | Chapter 14: Migrating to Continuous Delivery

http://bit.ly/2DAXlde

advice is to sense–categorize–respond: establish the facts (sense), categorize, and then
respond by following the rule or applying a best practice. For example, one of the first
situations encountered with a continuous delivery adoption journey is the storing,
access, and management of source code. Here you can do the following:

Establish the facts
Application source code is stored in Git, config is stored only in a database, and
infrastructure code is stored within scripts marked with version numbers.

Categorize it
Review the source code storage mechanisms.

Respond
The current best practice within this space is to utilize a version-control system
(VCS) or distributed VCS (DVCS).

Complicated
The complicated domain consists of the known unknowns. The relationship between
cause and effect requires analysis or expertise; there is a range of right answers. The
framework recommends sense–analyse–respond:

Sense and assess the facts
Identify the steps required to take code from a local development machine to
production.

Analyze
Examine and analyze each of the steps, and determine the techniques and tools
required, along with the teams (and any challenges) that will need to be involved.

Respond
By applying the appropriate recommended practice.

You will often encounter the complicated domain when attempting to build your first
continuous delivery pipeline. The steps within such a pipeline are known, but how to
implement them for your specific use cases is not. Here it is possible to work ration‐
ally toward a decision, but doing so requires refined judgment and expertise.

Complex
The complex domain represents the unknown unknowns. Cause and effect can be
deduced only in retrospect, and there are no right answers. Instructive patterns can
emerge if experiments are conducted that are safe to fail. Cynefin calls this process
probe–sense–respond. Complexity within continuous delivery is often encountered
when attempting to increase adoption in an organization.

Situational Awareness | 409

http://bit.ly/2NIwTTz

Chaotic
In the chaotic domain, cause and effect are unclear. Events in this domain are “too
confusing to wait for a knowledge-based response,” and action is the first and only
way to respond appropriately. In this context, leaders act–sense–respond: act to estab‐
lish order; sense where stability lies; respond to turn the chaotic into the complex.
This is typically how external consultants operate when called in to implement con‐
tinuous delivery pipelines or firefight operational issues.

Disorder
The dark disorder domain in the center represents situations where there is no clarity
about which of the other domains apply. As noted by David Snowden and Mary
Boone, by definition it is hard to see when this domain applies: “The way out of this
realm is to break down the situation into constituent parts and assign each to one of
the other four realms. Leaders can then make decisions and intervene in contextually
appropriate ways.”

All Models Are Wrong, Some Are Useful
Whenever your adoption of continuous delivery stalls or becomes stuck, it can often
be a good idea to step back from the issue, look at the wider context, and attempt to
classify where your issue sits within the Cynefin framework. This can allow you to
use the best approach in resolving the issue. For example, if you are dealing with a
simple issue (for example, whether to use a VCS), you don’t need to conduct experi‐
ments—the widely accepted best practice suggests that this is beneficial.

However, if you are dealing with a complex problem, such as securing organizational
funding to further roll out your build pipeline initiative to additional departments,
then conducting experiments that are safe to fail can be highly beneficial. For exam‐
ple, you’d identify a team that has issues deploying software, collect baseline delivery
metrics (build success, deployment throughput, etc.), and work with them on a time-
boxes experiment to create a simple build pipeline to address their pain.

Bootstrapping Continuous Delivery
In an informative blog post by Steve Smith, “Resilience as a Continuous Delivery
Enabler”, he presents a four-stage model for bootstrapping continuous delivery that
complements the capabilities discussed at the start of this chapter (Figure 14-2).

The first stage to focus on is version controlling everything. This approach is echoed
in the book Accelerate, as the research here shows that version controlling everything
is correlated with higher performance in software delivery; “application code, system
configuration, application configuration, and build and configuration scripts” should

410 | Chapter 14: Migrating to Continuous Delivery

http://bit.ly/2NIwTTz
http://bit.ly/2xTvRJD
http://bit.ly/2xTvRJD

all be stored in version control. Not only can this provide increased performance, but
deployment stability can also be improved.

Once this is achieved, Smith suggests that you should measure the stability and
throughput of your delivery process; for example, how many deployments fail or
result in near misses, and how fast can you get code committed to delivering value in
production? The goal in this step is to improve delivery awareness and to provide
baseline metrics that can be used for comparison later in your continuous delivery
journey.

The third areas to focus on include adding production telemetry, which enables you
to observe what is happening in the application both from a technical and business
perspective, and moving to an adaptive (or “evolutionary”) architecture, which pro‐
motes looser coupling between components and easier modifications. The goal here
is to improve production reliability.

The final stage of Smith’s model is to run parallel experiments with the goal of
“improving all things.” This is where continual improvement happens over a longer
time period and sets the framework for ongoing iterative improvement. (You will
learn more about this in the final chapter of this book.)

Figure 14-2. Bootstrapping continuous delivery (image courtesy of Steve Smith’s blog
post, “Resilience as a Continuous Delivery Enabler”)

You already learned about version controlling everything (stage 1) in Chapter 9. You
also learned about increasing production telemetry, or observability, and cultivating
an adaptive architecture (stage 3) in Chapters 13 and 3, respectively. In the next two
sections, you will learn the fundamentals of how to measure continuous delivery
(stage 2) and run parallel experiments (stage 4).

Bootstrapping Continuous Delivery | 411

http://bit.ly/2xTvRJD

Measuring Continuous Delivery
In Accelerate, the authors state that software delivery performance can be measured
effectively via four factors:

Lead time
A measure of how fast work can be completed, from the ticket creation in a fea‐
ture or bug tracker to the delivery into production.

Deployment frequency
How often code or configuration is deployed into a production environment.

Mean time to restore (MTTR)
The time taken to restore or fix a service when something goes wrong in produc‐
tion. This includes the time taken to identify and find the issues, as well as the
time required for the implementation and deployment of the fix.

Change fail percentage
A measure of how many changes that are deployed result in some form of failure.

Steve Smith builds on this work in his book, Measuring Continuous Delivery. He states
that the sum of lead time and deployment frequency is the throughput of your CD
process, and the sum of failure rate and failure recovery time (the MTTR) is the sta‐
bility.

Measuring CD Is a Large Topic
Because of the scope of this book, we will cover only the fundamentals of the vitally
important stage of measuring continuous delivery. We suggest that you commit to
learning more by consulting the recommended reading of Accelerate and Measuring
Continuous Delivery.

All four of these metrics should be established from the start of your CD migration
efforts, as this will provide a baseline for comparison later. Lead time and deployment
frequency can typically easily be collected from your build pipeline tooling, such as
Jenkins. The failure rate and failure recovery time can be more challenging to capture
unless you use an issue-tracking system (which records discovery and remediation
times), and these metrics may need to be collected manually by a responsible party.

412 | Chapter 14: Migrating to Continuous Delivery

https://itrevolution.com/book/accelerate/
https://leanpub.com/measuringcontinuousdelivery
https://leanpub.com/measuringcontinuousdelivery

Measuring Continuous Integration as a Proxy for Continuous Delivery:
Abraham’s Experience

Continuous delivery is not achieved just by having an automated build pipeline, but it
certainly needs one. For this reason, measuring and controlling the performance of
your continuous integration pipeline can be a way to contribute toward a measurable
continuous delivery.

I have been exploring the connection between architectural design and pipeline per‐
formance for a while, and I have come up with ways not just to measure this relation‐
ship, but also to alter it. You may be thinking that changing the architecture of an
application to have a faster build pipeline is overkill, but if a faster build is what your
organization needs to deliver value, then why not?

The topic is a bit longer than what I can afford to write here, but the key concept is
understanding that sometimes the structure of your code, considering the interde‐
pendencies across modules, can cause sections of your system to be rebuilt an unnec‐
essary number of times. Detecting these situations, and performing the right
restructure, can address the problem.

I have spoken about this a few times; if you’d like to know further, you can search for
“Keeping Your CI/CD Pipeline as Fast as It Needs to Be” and “Breaking Down Your
Build: Architectural Patterns for a More Efficient Pipeline”.

Apply Maturity Models Cautiously

Many consulting companies and DevOps tool vendors are provid‐
ing maturity models that promise to capture, measure, and analyze
progress with a CD implementation. There can be some value in
the structure that this provides, especially if an organization is in
particular chaos, but, in general, they can present challenges. Often,
maturity models present a static level of technical progress that
relies on the measurement of the tool’s install-base or technical pro‐
ficiency, and they also assume that the steps in the model apply
equally to all areas of the organization. Focusing on capabilities can
account for context and variation across an organization, and drive
focus on outcomes rather than obtaining a particularly qualitative
measure that can be gamed.

Start Small, Experiment, Learn, Share, and Repeat
Adopting continuous delivery is a complex process, and therefore there are somewhat
limited “best practices” that apply to all contexts. There are, however, many good
experiments that can be run once you get to stage 4 in Steve Smith’s model:

Start Small, Experiment, Learn, Share, and Repeat | 413

https://youtu.be/8JxoKJng_eQ
https://youtu.be/cPCzcvntxso
https://youtu.be/cPCzcvntxso

• If you are starting with a greenfield project, construct a basic but functional pipe‐
line, and deploy a sample application to production as soon as possible. Dan
North refers to this as creating a Dancing Skeleton. This will identify not only
technical challenges such as deployments to production that must be conducted
manually via a vendor portal, but also organizational issues such as the sysadmin
team not giving you SFTP access to production for fear that you may damage
other application configurations.

• Identify a piece of functionality that you can have end-to-end responsibility for
delivery, and improve the stability and throughput of the associated application.
Ideally, this will be non-business-critical (i.e., not the checkout process within an
e-commerce system), but will clearly add business value, and the requirements
must be well understood. A newsletter sign-up page or a promotional microsite
are ideal candidates.

• Define one or two metrics of success that you will focus on improving with any
component within your system. This could be something that is causing a partic‐
ular challenge to your organization; for example, a high percentage of builds fail,
or lead time for change is unacceptably high.

Once you have made progress, you must create a virtuous loop of feedback and learn‐
ing across the organization:

• Demonstrate any positive results, benefits, and key learning to as big an audience
as you can find. This must include at least one leader within your organization.

• Reflect on your approaches and technology choices. Make changes as appropriate
and be sure to share this knowledge.

• Find a slightly bigger piece of functionality—ideally, something that uses a differ‐
ent technology stack, or that is owned by a different team or organization unit—
and repeat the experimentation process.

• After two or three rounds of experimentation, you should have begun to identify
common patterns and approaches to solve both technical and social issues within
your organization. This is where you can once again elevate visibility of the pro‐
gram, perhaps taking the findings to the organization’s VP of engineering or
CTO, and campaign for a widespread rollout of continuous delivery.

• As soon as a senior engineering leader agrees to make the implementation of
continuous delivery a priority, it’s time to switch from experimentation to rollout.

Increasing adoption throughout an organization is challenging and depends a lot on
the context in which you work, but several models and approaches can help.

414 | Chapter 14: Migrating to Continuous Delivery

http://bit.ly/2NIB6ql

Related Approaches: PDCA and OODA
There are many great references to change management and learning processes work
that can help you with migrating to continuous delivery. Two essential ideas are Dem‐
ming’s plan-do-check-act (PDCA) cycle, and Boyd’s observe, orient, decide, and act
(OODA) loop. We encourage you to learn more about these ideas.

Increase Adoption: Leading Change
Once your experiments with continuous delivery have proved successful, the next
stage is planning a wider rollout to the entire organization. Although the full process
for this is beyond the scope of this book, it is worth mentioning John Kotter’s eight-
step process for leading change. In his 1996 international bestseller Leading Change
(Harvard Business Review Press), he defined the following steps:

1. Establishing a sense of urgency
2. Creating the guiding coalition
3. Developing a vision and strategy
4. Communicating the change vision
5. Empowering employees for broad-based action
6. Generating short-term wins
7. Consolidating gains and producing more change
8. Anchoring new approaches in the culture

These steps are relevant for any large-scale change within an organization, and imple‐
menting continuous delivery is very much a large-scale project for many companies.
Figure 14-3 shows how the eight steps can be grouped into three stages, and the work
you have undertaken so far falls into the first, “Creating the climate for change.” The
experiments you have run should enable you to create urgency, by providing you with
data you can share that shows the benefits of adopting continuous delivery (perhaps
in comparison with data associated with the issues the company is currently facing).

Finding like-minded individuals and teams within the organization allows the forma‐
tion of a coalition and the creation of a vision for change. The next stages for engag‐
ing and enabling the organization and implementing and sustaining for change also
build upon your success and CD implementation principles and practices learned in
the journey so far.

Increase Adoption: Leading Change | 415

Figure 14-3. John Kotter’s eight-step process for leading change

Driving adoption of continuous delivery within an organization can be challenging—
particularly when the existing delivery processes have been in place for some time, or
the organization is not yet feeling enough pain to drive change (think Blockbuster
versus Netflix).

Leadership Is a Valuable Skill
Leading change, like implementing continuous delivery, requires a lot of skill, and
skills that are different from that of software development. We have both been fortu‐
nate to have several mentors in our careers who have taught and guided us in devel‐
oping these skills (and we recommend you find your own, too). We have also learned
a lot from several books:

• The Geek Leader’s Handbook: Essential Leadership Insight for People with Technical
Backgrounds (Leading Geeks Press) by Paul Glen and Maria McManus

• Talking with Tech Leads (CreateSpace Independent Publishing Platform) by Pat
Kua

• The Manager’s Path (O’Reilly) by Camille Fournier

416 | Chapter 14: Migrating to Continuous Delivery

http://shop.oreilly.com/product/0636920056843.do

Additional Guidance and Tips
An entire book could be written on how to improve adoption of continuous delivery,
but a few particular areas often provide challenges: common bad practices and deal‐
ing with ugly architecture.

Bad Practices and Common Antipatterns
You have read several times within this chapter that implementing continuous deliv‐
ery within an organization is a complex process, and although many good practices
are context-specific, there are also bad practices that are not. It is good to be aware of
these so that you can avoid them:

• Overly ambitious choice (or scale) of functionality for continuous delivery proof-
of-concept.

• Attempting to implement continuous delivery for a completely new and innova‐
tive piece of functionality. This can be a valid choice for experimenting with CD,
but it can also lead to long delays if the new functionality is not well-defined or
does not have political support within the organization.

• Introducing too much new technology into the stack—for example, going from
deploying an EAR file for an application server hosted on in-house infrastructure
to deploying Fat JAR applications within containers running on Kubernetes
within the public cloud.

• Simultaneously modifying the architecture in a disruptive manner and attempt‐
ing to create a build pipeline for the application—for example, going from
deploying the application as a single monolithic WAR file to attempting to deploy
and orchestrate the application as 10 microservices.

• Overreliance of external parties or vendors. Consultants and vendors can add a
lot of value to a migration (and provide much needed expertise), but the migra‐
tion process must ultimately be owned by an in-house team.

• Simply automating current manual practices. This can be a good starting point,
but care must be taken to ensure that each manual practice is valid and necessary.
Automating the wrong process simply means that you can do it faster and more
often, which may cause even more damage than before!

• Not acknowledging the limitations or coupling imposed by a legacy application.
• Not understanding that the current organizational structure is not compatible

with continuous delivery (e.g., the environment is heavily politicized or Conway’s
law is not being respected).

• Not planning for migration or transformation of existing business data that is
critical for the day-to-day operation of the organization.

Additional Guidance and Tips | 417

http://bit.ly/2zzsSbs
http://bit.ly/2zzsSbs

• Overreliance on third-party integrations (which can be solved with mocking and
service virtualization).

• Not providing access to self-service environments for development and testing.

This list is just some of the continuous delivery antipatterns that are seen in the wild.
One of the most common issues deserves its own section within the chapter: the issue
of “ugly” system architecture.

Ugly Architecture: To Fix, or Not to Fix
At some point within a continuous delivery implementation, the application’s archi‐
tecture may be a limiting factor. Several typical examples and potential solutions are
explained in this section.

Conducting an Architecture Review
If you have just started working with a system or are unsure as to what state the cur‐
rent architecture is in, it can be worth conducting a formal architecture review. This
process goes beyond simply drawing the (idealized) architecture on a whiteboard, and
Production-Ready Microservices (O’Reilly) by Susan Fowler and Software Architecture
for Developers (Leanpub) by Simon Brown, contain useful practices and techniques to
accomplish this.

Each end user/customer has separate codebase and database
It can be tempting to fork a single application codebase for individual customers, par‐
ticularly if the applications share a similar core, but each customer wants customiza‐
tions. This may scale when the business has only two or three customers, but soon
becomes unmanageable, as a required security or critical bug patch has to be made on
all the systems, and each fix may be subtly different because of the isolated evolution
of each codebase.

Often an organization embracing continuous delivery with this style of application
has to create as many build pipelines as there are customers, but this can also become
unmanageable, particularly if the company has multiple products. A potential, but
costly, solution to this issue is to attempt to consolidate all of the applications back
into a single codebase that is deployed as a multitenant system, and any required cus‐
tom functionality can be implemented via plugins or external modules.

418 | Chapter 14: Migrating to Continuous Delivery

http://shop.oreilly.com/product/0636920053675.do
https://leanpub.com/software-architecture-for-developers
https://leanpub.com/software-architecture-for-developers

Beware of the Big-Bang Fix

It can be tempting to try to fix all of your problems by throwing
away (or retiring) an old application and deploying a new version
as a “big bang.” This can be dangerous for many reasons: the old
application evolves while the new one is being built; the business
team becomes nervous that no tangible value is being delivered by
the team working on the new application; engineers working on
the old application become unmotivated; and the complexity of
deploying the new application means that something nearly always
goes wrong.
One approach to overcoming big bang rewrites that has become
popular, especially within microservice migrations, is the Strangler
Pattern. This pattern promotes the incremental isolation and
extraction of functionality from a monolith into a series of inde‐
pendently deployable services.

No well-defined interface between application and external integrations
In a quest to add increased functionality to a system, engineers often integrate exter‐
nal applications into their applications; for example, email sending or social media
integration. Often, the interface between the system and the external applications is
custom and tightly coupled to the specific implementation details. This often directly
affects the release cadence of your application.

When these types of systems are put into a continuous delivery pipeline, the tight
integration means that typically one of two issues is seen. First, developers have cre‐
ated mocks or stubs to allow testing against the external application, but frequently
these mocks don’t capture the true behavior of the application, or the external system
constantly changes, which results in constant build failures and developers having to
update the mocks. Second is that testing against the applications is conducted via
external (test) sandbox implementations of the application, which are often flaky or
lag behind the production implementation.

A solution to these types of issues is to introduce an anti-corruption layer (ACL)—or
adapter—between the two systems. An ACL breaks the high coupling, and can facili‐
tate the creation of a smaller, more nimble pipeline that tests the ACL adapter code
against the real external (sandbox) service, and allows the company’s application to be
tested against the ACL running in a virtual/stubbed mode.

Infrastructure provides a single point of integration (and coupling and failure)
Existing systems that have been deployed into production for a long time, particularly
within an enterprise organization, may communicate or integrate into a centralized
communication mechanism like an ESB or heavyweight MQ system. Much like the
preceding example, if these systems do not provide an embedded or mock mode of

Additional Guidance and Tips | 419

http://bit.ly/2OfQCpg
http://bit.ly/2OfQCpg

operation, then it can be advantageous to implement ACLs that reduce the coupling
between the application and the communication mechanism.

The application is a “framework tapestry” and contains (too) many application frameworks or
middleware
Many systems that are more than 10 years old will often contain multiple application
frameworks, such as EJB, Struts, and Spring, and often multiple versions of these
frameworks. This soon becomes a maintenance nightmare, and the frameworks often
clash at runtime, both in regards to functionality and classpaths. It can be difficult to
re-create the issues seen in production within a build pipeline, especially without exe‐
cuting the entire application and running end-to-end tests. The classic book Working
Effectively with Legacy Code (Prentice Hall) provides several good patterns for dealing
with this issue. Be aware, however, that this type of architectural modification typi‐
cally requires a lot of investment, and it can be advantageous to rewrite or extract cer‐
tain parts of the application if there is a business case for modifying the functionality.

Think: Incremental, Hard Problems, and Pilot Project

Any migration must incrementally demonstrate value; otherwise, it
is likely to get cancelled midway through the implementation. Solv‐
ing, or at least understanding, the hard problems first increases the
chances of delivering value, and it also typically forces you to think
globally rather than getting stuck on a local optimization problem.
In addition, make sure that the pilot project you pick for a migra‐
tion has a clear sponsor who has political support within the orga‐
nization. There will be challenging times within the migration, and
you will need someone to support you and stand up for the work
being undertaken.

Summary
In this chapter, you learned about the challenges of migrating to continuous delivery.
You also explored techniques that help mitigate some of these challenges:

• The research undertaken by Forsgren, Humble, and Kim shows that 24 key capa‐
bilities drive improvement in software delivery performance in a statistically sig‐
nificant way. Several of these capabilities have been grouped together and
classified into the category of continuous delivery.

• The first step in picking a continuous delivery migration process is to do some
research on your organization. The goal is to find the teams that already believe
in the need for continuous delivery and already possess a desire and demon‐
strated ability to innovate and be early adopters in new technologies and techni‐
ques.

420 | Chapter 14: Migrating to Continuous Delivery

• Sense-making models, like Cynefin, can help you understand and classify some
of the challenges you will encounter.

• Steve Smith’s model for bootstrapping continuous delivery consists of: version
controlling everything; measuring stability and throughput; adding production
telemetry and moving to an adaptive architecture; and running parallel experi‐
ments.

• Continuous delivery can be measured by throughput—lead time and deployment
frequency, and stability—the change fail rate and mean time to recovery.

• When you are learning how to implement continuous delivery effectively, you
want to start with small hypotheses and ideas, experiment, learn, share locally
and globally, and repeat.

• Leadership is a vital skill that you will need to cultivate when attempting to
increase adoption throughout the organization.

• It is easy to fall into certain bad practices with CD, and there are potential chal‐
lenges presented by “ugly” architectures.

With a good understanding of the technical practices of continuous delivery and the
techniques required to roll this out across your team and organization, you are now
in the perfect place to learn more about how to drive continual improvement in the
final chapter.

Summary | 421

CHAPTER 15

Continuous Delivery and Continuous
Improvement

In this concluding chapter, you will review what you’ve learned about how to imple‐
ment continuous delivery, and focus once more on the core goals and challenges.
Many of the practices associated with modern continuous delivery revolve around
you, as a Java developer, to increase your knowledge, skills, and accountability
throughout the software delivery and operation process. You will wrap up the book
with a look at how the principles of continuous delivery can be expanded throughout
the entire organization, and explore how continuous improvement should drive all
the things that you do.

Start from Where You Are
Understanding the current situation you and your team are currently in is a vital skill.
In Chapter 6, you learned about the evolution of the Java ecosystem, and the range of
options modern developers now have to create applications. You built on this knowl‐
edge in Chapter 3 and Chapter 4 by learning how designing adaptive, or “evolution‐
ary,” architectures in combination with the use modern cloud and container
technology can greatly increase both throughput and stability of the software delivery
process.

A core requirement of modern software developers, especially technical leads, is
keeping up-to-date with changes in technology, tooling, and practices. Learning from
books, regularly reading blogs, watching online content, and attending conferences
are all valuable uses of the essential portion of your time dedicated to continually
improving. Only when you combine an understanding of the current situation you
and your team are in with the potential possibilities can you most effectively decide

423

on the best course of action to improve both the delivery of valuable software to users
and the fun of building systems.

Build on Solid Technical Foundations
Chapters 5 and 6 provided you with foundational skills and tooling around building
Java applications. Whereas in the early 2000s you could focus solely on coding Java,
the reality is that now you also have to develop skills (or at least an understanding of
those skills) that used to be purely within the domain of operations. The rise of the
DevOps and SRE approaches to the delivery and running of software have crystal‐
lized this.

Chapter 7 built on many of the things you learned about packaging applications for
the deployment onto available platforms you explored in Chapter 4. Packaging tradi‐
tional Java deployment artifacts like the JAR and WAR for standalone execution adds
new challenges, as does the use of VM, container, or FaaS technologies. Chapter 8
combined and extended many of the skills you learned over the previous chapters,
and shared with you the importance of being able to develop and test locally as effec‐
tively as possible.

In Chapters 9 and 10, you began your journey into the early stages of the core of con‐
tinuous delivery: continuous integration, and deploying and releasing functionality
by using a build pipeline.

Continuously Deliver Value (Your Highest Priority)
The first of the 12 principles behind The Manifesto for Agile Software Development
states the following:

Our highest priority is to satisfy the customer
through early and continuous delivery
of valuable software.

Continuous delivery is not only the catalyst to enable early and continuous delivery
of functionality to customers, but it is also the mechanism in which value (to a large
degree) can be verified. Of course, you may not get the required functionality exactly
right on the first try—probably far from it—but the framework provided by CD
allows you to iterate fast.

Chapter 11 has shown you how to capture value hypotheses and codify user require‐
ments, ideally through BDD-inspired collaboration and processes. With the emer‐
gence of container and FaaS technologies, and a whole host of testing harnesses and
test double frameworks available to you, the Java ecosystem offers a compelling plat‐
form from which teams can deliver valuable software.

424 | Chapter 15: Continuous Delivery and Continuous Improvement

http://agilemanifesto.org/

As you have seen in Chapter 12, an effective CD pipeline also enables the validation
of system-quality attributes, or nonfunctional requirements, and these can be just as
important to get right as their functional counterparts. It is vitally important that you
take the time to implement these core validation steps within a CD pipeline, and
equally crucial that you keep them up-to-date. In the previous chapter, your learned
about the capability to “shift left on security,” and the same value can be seen by
“shifting” left many nonfunctional verifications, in both the pipeline itself and also in
your thinking and designing process.

Once expectations have been codified within a CD pipeline, they can, of course, be
automated and run multiple times. This not only provides more reliable results in
comparison with the same operations carried out by humans (computers, after all, are
great at carrying out repetitive and tedious tasks), but also frees up additional time
for human engineers to do what they are good at: be creative, look for improvements,
and empathize with the user requirements.

The effort to implement all of these validation steps should be shared throughout the
team, as this is often the only way that enough time and energy will be available to
work on the CD pipelines, and this is also typically the only way to get buy-in and
shared responsibility across the organization. Every single person on the team should
be focused on the continuous delivery of valuable software, and the practices on CD
itself can often be a catalyst for organizational change.

Increase Shared Responsibility of Software
You have read about the importance of shared responsibility within several of the
chapters of this book. The current market dictates that customer requirements
change and shift faster than ever before. Technology also changes more rapidly today
than ever before, as does the associated security threat landscape.

With the exception of the simplest website, it is clear that no one person can support
all of these changes. When you are delivering software as part of a large enterprise, it
would be impossible to even gather all of the scope into a single person’s brain. There‐
fore, you have to embrace shared responsibility, and the CD pipeline is the perfect
tool to rally around. As the pipeline captures a large part of the value stream, every‐
one involved can see the flow of business ideas, software, and functionality.

Two core concepts that you learned about in Chapters 13 and 14 are observability
and measurements. Observability enables the monitoring of metrics from applica‐
tions running in production to allow you to close the feedback loop and increase
learning. Measuring continuous delivery outputs, such as lead time and the rate of
failure, provide you with the ability to objectively evaluate the progress you are mak‐
ing through the use of continuous delivery as you increase throughput and stability.

Increase Shared Responsibility of Software | 425

Promote Fast Feedback and Experimentation
You learned in Chapter 14 that rapid feedback is vital when working with complex
systems—and nearly all software applications are complex, adaptive systems. Contin‐
ual, rapid, and high-quality feedback provides early opportunities to detect and cor‐
rect errors. From a developer’s point of view, one of the clear advantages of rapid
feedback is the reduced cost in context switching and cognitive overhead of under‐
standing a piece of functionality and the code and configuration that underlies.

The power of fast feedback and experimentation goes much deeper than this. Gene
Kim, Kevin Behr, George Spafford, and Mike Orzen have talked extensively about the
benefits of Three Ways of DevOps: systems thinking, amplify feedback loops, and the
culture of continual experimentation and learning. Figure 15-1 provides an illustra‐
tion.

Figure 15-1. The Three Ways of DevOps (courtesy of The Phoenix Project by Gene Kim,
et al.)

The First Way emphasizes the performance of the entire system, as opposed to the
performance of a specific silo of work or department; you read about this previously
in regards to increasing shared responsibility. The Second Way is about creating the
right-to-left feedback loops, from operations to development, with the goal of short‐
ening and amplifying feedback loops in order for corrections and improvements to
be continually made. You’ve learned about this and the need to “shift left” many
forms of testing and verification. The outcomes of the Second Way include under‐
standing and responding to all customers, internal and external, shortening and
amplifying all feedback loops, and embedding knowledge where we need it—both in
teams and codified within the build pipeline itself.

The Third Way is about creating a culture that fosters two things: continual experi‐
mentation, taking risks and learning from failure; and understanding that repetition
and practice is the prerequisite to mastery. Experimentation and taking risks ensure
that you keep pushing to improve, and you need mastery of the skills that can help
you recognize and course-correct when you have gone too far into the unknown. The
outcomes of the Third Way include allocating time for the improvement of daily
work (for example, focusing on improving the build pipeline and associated skills),

426 | Chapter 15: Continuous Delivery and Continuous Improvement

https://itrevolution.com/the-three-ways-principles-underpinning-devops/

creating rituals that reward the team for taking risks, and introducing chaos and
disaster-recovery testing into the system and team in order to increase resilience.

Expand Continuous Delivery in an Organization
If you are keen to promote continuous delivery throughout your organization, there
are two key approaches that you explored in Chapter 14: knowledge sharing and
demonstration of benefits.

Knowledge sharing increases awareness of the principles, practices, and technologies
associated with CD, such as those contained within The DevOps Handbook and The
Phoenix Project. Many interesting presentation recordings from the DevOps Enter‐
prise Summit YouTube playlists contain great stories and insights from thought lead‐
ers and practitioners across the industry, many of whom have focused on challenges
in implementing the DevOps mindset and practices like CD within large enterprises.
The culture in some organizations can be resistant to learning from resources like
this, and therefore you may need to subtly introduce this type of knowledge sharing
through the use of weekly book club sessions or “brown bag” lunchtimes, where any‐
one interested can join in and allocate dedicated time to learning.

The demonstration of benefits is also key to increasing adoption of CD principles
throughout an organization, and for this to happen, you must become effective at
capturing metrics, and at telling a story around these metrics. The starting point is
often simply adding basic metrics capture to key processes within an organization,
such as the time taken from idea to production, the number of failed deployments or
production outages, or the number of bugs caught by automated testing. You can also
add metrics to the systems running in production, and capture the number of user
sessions, the average CPU and RAM requirements of an application, and the write
performance of a data store.

Once you have these metrics in place, you can create a baseline from which you can
(hopefully) demonstrate improvement. It is important to track how the metrics
change with your attempts to implement CD, and also to attempt to fit a story to the
changes. You may not always get this correct, but ideally you can frame the story as a
hypothesis, and create tests to validate your ideas. Human beings have evolved along‐
side storytelling, and this is a powerful mechanism to create buy-in and understand‐
ing with people across the business.

Continuous Improvement
In conclusion, you should strive to continuously improve everything you do in creat‐
ing software and delivery business value to customers. The principles of continuous
delivery and the associated practices, like that of the build pipeline, are effective
mechanisms for driving this improvement. The Continuous Improvement Kata,

Expand Continuous Delivery in an Organization | 427

http://bit.ly/2Ilj7QS
http://bit.ly/2Ilj7QS
http://bit.ly/1v73SSg

taken from the Toyota Way and inspired by the martial arts kata approach to honing
skills, is a great resource for helping to fully understand the approach, and codifies a
lot of the practices you have learned from reading this book. Figure 15-2 illustrates
the Continuous Improvement Kata.

Figure 15-2. The Continuous Improvement Kata

It is key to first understand your challenges. Perhaps you are frequently slowed by
failed releases, or you don’t get appropriate requirements from the business. You must
then grasp the current condition fully, and work with people across the organization
and share responsibility for the potential improvements. After establishing the next
target condition and planning with your team, you iterate toward this goal. Along the
way, monitor for signs of success and failure, and continually reflect on and feed your
learning forward into the process.

This book should act as your guide for implementing continuous delivery and ulti‐
mately drive continuous improvement within your organization. Although a book of
this scope can never hope to cover every single topic (or every topic in the depth you
may require), we are confident that this book can point you in the correct direction
and provide a foundation to get started. When you have success and identify new
techniques or areas of improvement, please do get in touch, or ideally write an article
or book that expands on your idea.

Summary
In this concluding chapter, you have reviewed the core skills that you learned from
this book so far, and explored the key ideas behind continuous delivery:

• Understanding the current situation that you and your team are currently in is a
vital skill. This must be combined with continually developing your understand‐
ing of the possible practices and tooling in order to set goals for continual
improvements.

428 | Chapter 15: Continuous Delivery and Continuous Improvement

• A core requirement of modern software developers, especially technical leads, is
keeping up-to-date with changes in technology, tooling, and practices.

• Whereas in the early 2000s you could focus purely on coding Java, the reality is
that now you also have to develop skills (or at least an understanding of those
skills) that used to be purely within the domain of operations.

• Continuous delivery is not only the catalyst to enable early and continuous deliv‐
ery of functionality to customers, but also the mechanism in which value (to a
large degree) can be verified.

• Every single member of a software delivery team should be focused on the con‐
tinuous delivery of valuable software, and the practices of CD itself can often be a
catalyst for organizational change.

• Observability enables the monitoring of metrics from applications running in
production and allows you to close the feedback loop and increase learning.

• Measuring continuous delivery outputs, such as lead time and the rate of failure,
provide you with the ability to objectively evaluate the progress you are making.

• Gene Kim, Kevin Behr, George Spafford, and Mike Orzen have talked extensively
about the benefits of Three Ways of DevOps: systems thinking, amplify feedback
loops, and the culture of continual experimentation and learning.

• If you are keen to promote continuous delivery throughout your organization,
there are two key approaches: knowledge sharing and demonstration of benefits.

• You should strive to continuously improve everything you do when creating soft‐
ware and delivering business value to customers. The Continuous Improvement
Kata is a great resource for helping to fully understand the approach.

The end of this chapter also marks the end of this book, but this is the beginning of
your journey. We wish you the best of fortune on this journey with continuous
delivery!

Summary | 429

Index

Symbols
@Step annotation, 299

A
Accelerate (Forsgren, Humble, and Kim), 2, 31,

215, 405, 412
acceptance testing, 297-303, 329

behavior-driven development (BDD), 298
fully working examples of, 302
stubbing or virtualizing third-party services,

302
acceptance tests, 7, 293

(see also user acceptance tests)
BDD-style, 36

admin processes, 39
agile

application security, 348
testing quadrants, 290

Agile Testing (Crispin and Gregory), 290
Airbrake, 394
alerting, 377

avoiding alert overload from microservices,
377

Prometheus toolkit for, 398
alerts, 25
all-at-once deployment, 256, 263
Amazon API Gateway, 189

generating an event with SAM Local, 191
simulating running of with SAM Local, 192

Amazon ECS (Elastic Container Service),
245-249
combining Kubernetes and EC2, 245
concepts, 247
creating tasks and deploying services, 247

going serverless with ECS Fargate, 246
health checks, 252
installing and configuring AWS CLI, 246
specifying number of service instances and

deployment strategy, 255
Amazon machine images (AMIs), 141, 150
Amazon Web Services (AWS), 15, 36

AWS CLI, installing and configuring, 246
AWS Lambda, 20

chaos testing, 368
FaaS Java application, packaging for,

154-156
AWS VM images, 141
chaos testing, 367
CloudWatch, 397
handling secrets via Parameter Store, 288
running services locally with LocalStack,

194
using AWS Lambda and SAM Local,

185-202
pom.xml, AWS Lambda, 187
serverless scaffolding, AWS Lambda

function, 186
smoke testing Lambda function with

SAM Local, 192
template.yaml, AWS Lambda, 188

X-Ray distributed tracing solution, 392
Aminator, 150
AMQP protocol, 308

AMQP-based message queues, 311
Ansible, 59, 66, 75, 142
Ant, 87-89

build example, 88
installation, 87

431

pros and cons as build tool choice, 101
releasing and publishing build artifacts, 89

Apache Ant (see Ant)
Apache Avro, 308
Apache Benchmark (see Benchmark, testing

performance with)
Apache JMeter (see JMeter)
Apache Kafka (see Kafka)
Apache Log4j 2 (see Log4j 2)
Apache Maven (see Maven)
API simulation and service virtualization,

163-169
using Hoverfly, 165-168

APIs
automated API tests, 330
best architectural practices for API-driven

applications, 35-36
building APIs outside-in, 35

best practices for API-driven applications
good APIs assisting in continuous test‐

ing and delivery, 36
multiple-phase upgrades, 283

deprecating old APIs, 284
rise of API economy, 15
versions in, backward compatibility and,

278-283
advanced change management, 282
avoiding versioning, 279
caveat on mixing versioning strategies,

282
versioning the content, 281
versioning the endpoint, 279

application performance management, 392
application servers, 52

era of domination of, 17
applications, observing, 376
architectural quality, 335-340

generating design-quality metrics with JDe‐
pend, 337-340

unit testing architecture with ArchUnit,
335-337

architecture
as the stuff that's hard to change, 45
best practices for API-driven applications,

35-36
building APIs outside-in, 35
good APIs assisting in continuous test‐

ing and delivery, 36

contemporary, effects on typical CD build
pipeline, 9

deployment platforms and, 36-42
cultivating mechanical sympathy, 40
designing and continually testing for

failure, 41
designing cloud-native Twelve-Factor

Applications, 37-40
diagramming and modeling, 46
for business agility, 33-35

bad architecture as limit on business
velocity, 33

complexity and cost of change, 34
fundamentals of good architecture, 29-33

coupling, cohesion, and continuous
delivery, 31

high cohesion, 31
loose coupling, 30

move toward small services, 42-45
challenges for delivery of monolithic

applications, 42-43
functions, lambdas, and nanoservices, 45
microservices, SOA and domain-driven

design, 43
resources for further learning, 30
ugly architecture, fixing or not fixing,

418-420
Artifactory Gradle plugin, 97
assertions, more expressive, writing, 319
atomic top, 116
automation, items to automate in releases, 3
Avro, 308
awk, 114
AWS Lambda (FaaS), 70-74

challenges of serverless, 72
CI/CD and serverless, 73
FaaS/serverless concepts, 71
serverless benefits, 73

"AWS Security Best Practices" whitepaper, 358
Azure, 15, 36

Azure App Service, 50
Azure Functions, 20, 72

and VS Code, testing locally and
remotely with, 194-201

packaging class and configuration files,
155

Azure Monitor, 397
Azure Pipelines, 64
Azure Service Bus, 55

432 | Index

Azure Storage Blobs, 55
chaos testing, 367
cloud best practices, 55
cloud platforms, 59
public and hybrid cloud offerings, 54
shared responsibility model, 358
zipkin-azure distributed tracing solution,

392

B
backend as a service (BaaS), 45
backing services, treating as attached resources,

38
bad practices and common antipatterns, 417
baked-in configuration, 285
baking VM images, 142
Bash shell, 105

(see also Linux, Bash, and CLI commands)
basic scripting, 125, 127

conditionals, 126
keeping your own Bash scripts library,

127
loops, 126
using pipes and filters, 125
xargs command, 125

Bazel build tool, 98, 102
example BUILD file, 98

behavior-driven development (BDD), 298, 424
defining steps in BDD interaction, 299
making build instances work like user

device, 301
mimicing user actions, 300
The Three Amigos technique, 35

Benchmark, testing performance with, 340-342
big-bang fix, avoiding, 419
binary flags, 274
binary logs, 385
blue/green deployment, 260-262, 263, 266
BOM (bill of materials) in Maven, 138
bootstrapping continuous delivery, 410-411
Boxfuse, 150
Buck build tool, 98, 102
bugs, FindBugs code analyzer, 222
build pipeline

exploring typical build pipeline, 5-10
changes with contemporary architec‐

tures, 9
core build stages, 5-8
impact of container technology, 8

build servers, 224
(see also Jenkins)
other than Jenkins, 226

build tools, 159
building Java applications, 77-103, 424

automating the build, 78-87
build dependencies, 79
external dependencies, 83
multimodule projects, 84
multiple repositories or a monorepo,

84-86
plugins, 86
releasing and publishing artifacts, 86

breakdown of build process, 77
build tooling overview, 87-100

Ant, 87-89
Bazel, Pants, and Buck, 98
Gradle, 94-98
Make, 100
Maven, 89-94
other JVM build tools, SBT and Leinin‐

gen, 99
choosing a build tool, 101

builds
automating, 224-226

other build/CI servers and services, 226
using Jenkins, 224

build, release, run in cloud-native Twelve-
Factor apps, 38

codifying best practice with Maven
Enforcer, 219

facilitation by good architecture, 32
keeping the build fast, 227
managing broken builds, 226
testing in automated build pipeline, 328

identifying test types, 329
burstable infrastructure, 57
business agility, architecture for, 33-35

bad architecture limiting business velocity,
33

complexity and cost of change, 34
business competitive advantage from rapid

feedback, 2
business speed and agility, need for, 14
business value, 4
business-readable DSLs, 296

C
canary deployment, 262, 263

Index | 433

canary testing, future of, 263
capabilities (architecture), 31
cat command, 112

redirecting contents of input.log to, 114
category flags, 274
CD (see continuous delivery)
cd command, 110
centralized version control systems, 204
change fail percentage, 412
chaos engineering, 365
Chaos Monkey, 366
chaos testing, 41, 365-370

causing chaos in preproduction, 368
causing chaos in production, 366-368
human side of, 366

chaotic domain, 410
Checkstyle, 221
Chef, 142
chgrp command, 109
Chicago School for sociable unit testing, 322
CI (see continuous integration)
Clair from CoreOS, 361
classes, analysis in ArchUnit, 335-337
classpath, 78
cloud (IaaS) platforms, 54-59

benefits of, 58
best practices, additional resources for, 55
challenges in , 56-58
components of, 54
continuously delivering into, 58
immutable infrastructure, 58

cloud computing, 36
and serverless model, 45
chaos in the cloud, 367
cloud platform security, 358
cloud-based IDEs, 173
designing apps and continually testing for

failure, 41
designing cloud-native Twelve Factor Appli‐

cations, 37-40
logging in the cloud, 390
metric and log collection tooling, 397
opportunities and costs of, 15
packaging applications for the cloud,

141-151
building RPM and DEB OS packages,

142-146
creating machine images for multiple

clouds with Packer, 147-150

other OS package build tools, 146
other tools for creating machine images,

150
Cloud Foundry, 37, 59, 62
A Cloud Guru learning platform, 360
CloudBees Docker Build and Publish plugin,

236
CloudBees Jenkins X, 239
clusters

in Amazon ECS, 247
in Kubernetes, 240
unmanaged, working with, 264-268

Codahale Metrics library, 380
implementing a gauge with, 381

code quality, 334
code quality analysis, 7
code reviews, 215-224

automation with PMD, Checkstyle, and
FindBugs, 218-222
Checkstyle, 221
FindBugs, 222
PMD, 220

pair programming, more efficient reviews
with, 216

reviewing pull requests, 223
what to look for, 216

language-specific issues, 217
performance, 218
security, 218
understandability, 216

code-level security verification, 348-353
codebase

achieving testing balance in, 330
analyzing areas of high churn, 34
each cutomer with separate codebase, 418
for cloud-native Twelve-Factor Apps, 37

coding standard enforcement with Checkstyle,
221

cohesion, high, 31
at application or service level, 31
benefits for continuous delivery, 31
in Java programming language, 31

collectd, 396
collection and storage, 397-399
command-line interface (CLI)

CLI deployment mechanism example, Ama‐
zon ECS, 245-249
installing and configuring AWS CLI, 246

for interaction with RESTful APIs, 239

434 | Index

commits to distributed version control system,
7

Common Vulnerabilities and Exposures
(CVEs), 353

comparison testing, 301
complex domain, 409
complexity

and cost of change, 34
capturing metrics on, 34

complicated domain, 409
component testing, 309-316, 330

creating internal resources/interfaces, 313
embedded data stores, 310
in-memory message queues, 311
in-process vs. out-of-process, 314
test doubles, 312

component tests, 293
facilitation by good architecture, 32

compute instances
in cloud (IaaS) platforms, 54, 57
in PaaS environments, 60

concurrency, scaling out via process model in
cloud-native Twelve-Factor apps, 39

conditionals in Bash shell scripting, 126
configuration

dangers of custom local development config
scripts, 160

JIT, in container-ready applications, 39
managing configuration and secrets,

284-288
baked-in configuration, 285
externalized configuration, 286
secrets, 287

storing config in the environment for cloud-
native Twelve-Factor apps, 38

configuration management
automated tools for, 184
tooling, 142

consumer-driven contracts, 303-309
message contracts, 307-309
RESTful API contracts, 304-307
unvillifying contract tests, 307

container images, 19
container infrastructure as a service (CIaaS), 64
container scheduler/ochestrator, 64

Kubernetes, 67-70
serverless platform running on top of, 72

container-as-a-service (CaaS), 37

changes in interaction between software and
hardware, 40

containers, 63-67, 173-185
benefits of, 66
building, 151-154

creating container images with Docker,
151

fabricating Docker images with fabric8,
152

other Java-specific container build tool‐
ing, 153

building Java applications and container
images, 174-176

building remaining microservice applica‐
tions and containers, 179

challenges in, 64
chaos testing, 367
container platform components, 63
continuous delivery with applications

deployed to, 66
creating a container image, 236-238

building and publishing the image, 238
creating DockerHub credentials, 236
installing Docker Build and Publish

plugin, 236
deploying entire Shopfront Java application

in Kubernetes, 179
deploying into Kubernetes, 176-178
Docker Java Shop sample app, 173
impact of container technology on Java con‐

tinuous delivery pipeline, 8
Linux diagnostic tools unfriendly to, 116
managing operational complexity of, 151
orchestration and scheduling platforms, 19
rapidly evolving container technology, 66
security issues, 360

static container image scanning, impor‐
tance of, 361

simple smoke test in minikube, 179
Testcontainers, 310
versus Docker, 63

content, versioning via Content-Type header,
281

context (in Kubernetes), 240
context mapping, 4, 16
continuous delivery (CD)

about, 1
building on solid technical foundations, 424

Index | 435

challenges implementing with traditional
infrastructure, 52

CI/CD in serverless model, 73
continuously delivering value, 424
essential development process, 50
expanding in an organization, 427
good APIs assisting in, 36
impacts of building Java-based microservi‐

ces, 16, 44
impacts of coupling and cohesion on, 31
impacts of requirements of modern Java

applications, 17
impct of deployment platforms on, 21
implementing chaos testing in CD build

pipeline development, 41
in container applications, 66
in platform as a service (PaaS) environ‐

ments, 63
increasing shared responsibility of software,

425
into cloud (IaaS) platforms, 58
introducing on traditional infrastructure

platforms, 53
migrating to, 405-421

bad practices and common antipatterns,
417

best practices for adopting continuous
delivery, 413

bootstrapping continuous delivery,
410-411

continuous delivery capabilities, 405
increasing adoption and leading change,

415
incremental, hard problems, and pilot

project, 420
measuring continuous delivery, 412
picking a migration project, 406
situational awareness, 407-410
ugly architecture, fixing or not fixing,

418
observability and, 373-378
on Kubernetes, 70
promoting fast feedback and experimentat‐

tion, 426
starting from where you are, 423

Continuous Delivery (Humble and Farley), 1
continuous delivery services

in cloud (IaaS) platforms, 55
in container platforms, 64

in PaaS environments, 60
continuous deployment, 8
continuous improvement, 427
continuous integration (CI), 5, 7, 203-229, 424

automating builds, 224-226
code reviews, 215-224

automating with PMD, Checkstyle, and
FindBugs, 218-222

issues to look for, 216-218
reviewing pull requests, 223

goals of, 203
implementing, 204
measuring CI as proxy for continuous deliv‐

ery, 413
of infrastructure as code platform, 227
team best practices

keeping the build fast, 227
managing broken builds, 226
merging code regularly, 226
not ignoring failing tests, 227

team best practices in implementing, 226
version control, 204-206

Git primer, 206-210
working effectively with DVCS, 211-215

continuous testing, 291, 329
contract tests (see consumer-driven contracts)
cost (expected) for API in service-level agree‐

ments, 15
countermeasures for threats, 364
counters, 380

creating with Spring Boot Actuator, 382
coupling, loose, 30

and dependency management, 82
at application or service level, 30
benefits for continuous delivery, 31
in Java programming language, 30

cp command, 111
craftsperson, becoming, 14
cross-functional requirements, 334

(see also nonfunctional requirements)
curl command, 117-120

piping output to jq, 123
using with grep to find HTTP flow in

accessing Twitter, 125
using with HTTPie, 120

Cynefin framework, 407
all models are wrong, some are useful, 410
and continuous delivery, 408-410

chaotic domain, 410

436 | Index

complex domain, 409
complicated domain, 409
disorder domain, 410
simple domain, 408

decision-making contexts or domains, 407

D
data flow diagrams, 362
data, bad data causing flaky tests, 322
databases

changing, 268-272
communicating via stored procedures,

272
dealing with long-running migrations,

270
managing database deployments, 269
separating database and application

deployments, 271
deployments database, transactions and data

constraints in, 268
each cutomer with a separate database, 418
excluding from component testing, 310
Featue Flags DB in Extended Java Shop app

(example), 233
for recording servers, applications, and

instances, 265
in traditional infrastructure platforms, 52
running in embedded or in-process/

memory mode, 161
working with, in continuous delivery, 235

DBDeploy, 269
Debian Maven plugin, 145
Debian Software Package files (DEB files), 141

building, 142-146
debugging

DEBUG logging level, 385
internal debugging in SLF4J, 389
wih FindBugs code analyzer, 222

dependencies
build, 79
escaping JAR and WAR hell, 141
external, 83
for cloud-native Twelve-Factor Apps, 37
health checks and, 253
verifying, 353-357

dependency hell, 80
deploying applications, 231, 235-272, 424

changing databases, 268-272

communicating via stored procedures,
272

managing database deployments, 269
separating database and application

deployments, 271
creating a container image, 236-238

building and publishing the image, 238
creating DockerHub credentials, 236
installing Docker Build and Publish

plugin, 236
deployment mechanisms, 238-249

CLI example, Amazon ECS, 245-249
plugin example, Kubernetes, 239-245

deployment strategies, 253-264
all-at-once deployment, 256
blue/green deployment, 260-262
canary deployment, 262
choosing a deployment type, 263
minimum in-service deployment, 257
rolling deployment, 258
single target deployment, 255

health checks, 249-253
providing health-check endpoints, 250

longer warm-up times with frequent
deployments, 264

working with unmanaged clusters, 264-268
bringing down a single instance, 267
deploying a single instance, 267
generic deployment strategy, 266
rerouting, 268

deployment, 235
(see also deploying applications)
continuous, 8
deployment frequency, 412
deployment scripts as code, 266
facilitation by good architecture, 32
in traditional infrastructure platforms, 52
managing in unmanaged clusters, 265
of changes in monolithic applications, 43
packaging applications for (see packaging

applications)
separating from releases, 234

deployment platforms, 49-50
and architecture, 36-42

cultivating mechanical sympathy, 40
designing and continually testing for

failure, 41
building your own, dangers of, 50
functionality provided by, 49

Index | 437

Java, evolution of, 17-21
container images, 19
executable fat JARs and twelve-factor

apps, 18
functions as a service and serverless

model, 20
impact of platforms on continuous deliv‐

ery, 21
WARs and EARs in era of application

server dominance, 17
security issues, 358-361

container security, 360
serveless security, 361

deployments, 68
design

designing for failure in cloud and container
environments, 365

designing systems for observability, 378
facilitation by good software architecture,

32
generating design-quality metrics with JDe‐

pend, 337-340
desired number of instances, 254
developers

and cloud (IaaS) platforms, 58
changing role of, 14
core requirement of modern software devel‐

opers, 423
developer experience (DevEx), value of, 51
enabling with continuous delivery, 2-5
full cycle developers at Netflix, 27

development
essential process for continuous delivery, 50
evolution of Java development, 13-28
local, 6
scaling for monolithic applications, 43
worth-based, in FaaS and serverless, 73

development and operations (see DevOps)
development/production parity, 39

striving for with Packer, 148
DevOps, 22, 424

and site reliability engineering (SRE), 24
implementing the DevOps mindset, 427
sysadmins, 53
Three Ways of DevOps, 426

The DevOps Handbook, 215, 406
diagnostic tools (Linux), 115-116
dig utility, 115
disorder domain, 410

disposability in cloud-native Twelve-Factor
apps, 39

distributed tracing, 392
distributed version control systems, 7, 205

merging code regularly, 226
pull requests, review of, 223
working effectively with, 211-215

Docker, 63-67
building a container with docker build, 176
creating and publishing container image for

applications, 236-238
creating container images with, 151
Docker Compose Maven plugin, 302
Docker-based installation of Clair, 361
HEALTHCHECK command, 252
pushing container image to Docker Hub,

176
Docker Build and Publish plugin, 236
Docker Compose, 173
Docker Java Shop sample app, 173
Docker Maven plugin, 152
Docker Swarm, 64
docker top, 116
Dockerfiles, 151, 238

sample file for Spring Boot Java application,
175

domain modeling, 4
domain-driven design (DDD), 44
done, codifying definition of, 4
DREAD threat-risk ranking model, 364
Dropwizard

basic health check in, 250
configuration for services, 285
Dropwizard Metrics library, 380
DropwizardAppRule, 315
health checks exposed at different port, 251

DVCS (see distributed version control systems)

E
EAR (Enterprise Application Archive) files, 17
Eclipse MicroProfile, 379
editors, 113
Elasticsearch, 398
embedded data stores, 310
embedded databases and middleware, running,

161
encapsulation, 30
end-to-end testing, 295, 329
end-to-end tests, 293

438 | Index

facilitation by good architecture, 32
Enterprise Application Archive (EAR) files, 17
environment leasing, 184
ephemeral nature of the cloud, 57
errors

catchall error-handling web page, 394
logging, 385

EU's General Data Protection Regulation
(GDPR), 390

event storming, 4
event-driven model, FaaS/serverless, 71
exception tracking, 393-394

commercial tools for, 393
exposed exceptions providing information

to hackers, 394
on the client side, 394
using Airbrake, 394

execute permission, 107
Expand and Contract, 283
experimentation, 426
Extended Java Shop sample application,

231-233
external dependencies, 83
external interactions, verifying in integration

testing, 317
externalized configuration, 286
eXtreme Programming (XP), 6, 203

pair programming, 216

F
FaaS (see functions as a service)
fabric8, fabricating Docker images with, 152
failures

change fail percentage, 412
continually testing for failure in cloud plat‐

forms, 41
designing for, in cloud and container envi‐

ronments, 365
deterministically simulating in a depend‐

ency with Hoverfly, 369
of components in cloud (IaaS) platforms, 56

false positives from code-quality automation
tools, 219

fat JARs, 18
deploying Java applications running in con‐

tainers, 19
fault tolerance, testing, 318
feature branching, 212
feature flags, 273

Featue Flags service in Extended Java Shop
app, avoiding versioning in, 279

feedback
promoting fast feedback, 426
rapid, with continuous delivery, 2

feedback loops from tests, 292
filesystem

viewing permissions on file or directory,
107

working with Linux filesystem, 110-112
creating and manipulating files, 111
navigating directories, 110

Find Security Bugs plugin, 348-353
FindBugs, 222
Flyway, 269
focused integration testing, 317
Fongo, 310
for loop in Bash shell scripting, 126
framework tapestry, application as, 420
frying VM images, 142
full cycle developers, 27
functional testing, 289-332, 424

acceptance testing, 297-303
behavior-driven development (BDD),

298
fully woking examples of, 302
stubbing or virtualizing third-party serv‐

ices, 302
building the right feedback loop, 292
component testing, 309-316

creating internal resources/interfaces,
313

embedded data stores, 310
in-memory message queues, 311
in-process vs. out-of-process, 314
test doubles, 312

consumer-driven contracts, 303-309
message contracts, 307-309
RESTful API contracts, 304-307
unvillifying contract tests, 307

continuous testing, 291
dealing with flaky tests, 322-325

data, 322
if nothing else works, 324
nondeterministic events, 324
resource not available yet, 323

deciding how much testing is enough,
329-331

Index | 439

deciding what to test, Agile testing quad‐
rants, 289

how testing supports applications, 292
integration testing, 316-319

of fault tolerance, 318
verifying external interactions, 317

outside-in vs. inside-out, 325-328
inside-out, 326
outside-in, 325

putting it all together within the pipeline,
328

synthetic transactions, 294
unit testing, 319-322

sociable, 320
solitary, 321

functions as a service (FaaS), 20, 45
AWS Lambda, 70-74

FaaS/serverless concepts, 71
challenges of serverless, 72
CI/CD and serverless, 73
packaging FaaS Java applications, 154-157

G
Gatling, load testing with, 342-347
gauges, 380

implementing using Codahale Mertrics, 381
GAV coordinates of dependencies, 80
gclouds tool, 182
Gerritt (code review tool), 224
Git, 206-210

core CLI commands, 206-209
branching and merging, 208
initializing and working with a repo, 206

distributed version control with, 205
Hub, tool for Git and GitHub, 209
workflows, 211-215

choosing a branching strategy, 213
feature branching, 212
Gitflow, 212
trunk-based or centralized, 211

git flow toolset, 213
Gitflow

Maven JGit-Flow plugin, 94
Given/When/Then steps in BDD interactions,

299
GNU Make (see Make)
goals, determining, 4, 4
Google App Engine, 59
Google Cloud Platform (GCP), 36

cleaning up your GKE cluster, 184
GKE service, 182
StackDriver, 397
Stackdriver Trace, 392

Google Compute Engine (GCE), 367
Google Jib, 154
Gradle, 94-98

build example, 95
installation, 95
pros and cons as build tool choice, 101
releasing and publishing build artifacts, 96

gradle-release plugin, 96
graphical representation of deployment strate‐

gies, 254
Gremlin (chaos testing tool), 367
grep utiiity, 114

using with curl, 125
groups (Linux), 109

H
H2, 310
HashiCorp's Terraform, 59, 66, 75
head command, 112
health checks, 249-253

basic health check in Dropwizard, 250
consulting health-check endpoints, 251
keeping as simple as possible, 253
providing endpoints for, 250
setting up, 235

help (Linux), 108
Heroku, 37

(see also Twelve-Factor App)
high coupling and dependency management,

82
histograms, 380
home directory, 110
Hoverfly, 302

about, 164
causing chaos with middleware, 368
deterministically simulating failure in a

dependency with, 369
virtualizing services with, 165-168

HtmlUnit, 301
HTTP calls and JSON manipulation, 117-125

curl command, 117-120
manipulating JSON with jq utility, 123

HTTP status codes
404 NOT FOUND, 376
405 METHOD NOT ALLOWED, 327

440 | Index

500 INTERNAL SERVER ERROR, 318
indicating errors, 394

HTTPie, 120-123
Hub tool for Git and GitHub, 209
hybrid cloud, 54
hypervisors, 169

I
IaaS (see infrastructure as a service)
IAM (Identity and Access Management), 360
IBM Bluemix, 62
IDEs (integrated development environments),

159
cloud-based, 173

immutable infrastructure, 58
enabled by containers, 66

improvement, continuous, 427
in-memory message queues, 311
in-process vs. out-of-proccess component test‐

ing, 314, 325
Independent Systems Architecture Principles,

37
INFO logging level, 385
infrastructure

cloud (Iaas) platforms, 54-59
benefits of, 58
challenges in, 56, 57
components, 54
continuous delivery into, 58

traditional platfoms
challenges with, 52

traditional platforms, 51-54
benefits of, 53
CI/CD on, 53
components, 51

infrastructure as a service (IaaS)
cloud (IaaS) platforms, 54-59
cloud platform security, 358
exploring deploy and release for, 234

infrastructure as code (IaC)
continuous integration of the platform, 227
tools, 184
working with, 74

inside-out testing, 326
(see also outside-in vs. inside-out testing)

instances (EC2), 247
integrated development environments (IDEs),

159
integration testing, 316-319

facilitation by good architecture, 32
testing fault tolerance, 318
verifying external interactions, 317

internal resources or interfaces, creating, 313
iostat utility, 115

J
JAR (Java Archive) files, 17

applications deployed via FaaS or serverless
model, 21

building, 129-133
escaping JAR hell, 141

building a fat executable uber JAR, 133-137
using Maven Shade plugin, 134-137
using Maven Spring Boot plugin, 137

deploying Java applications as fat JARs run‐
ning in a container, 19

executable fat JARs and twelve-factor apps,
18

skinny JARs instead of fat JARs, 138
Java

running within Docker, gotchas, 65
tracing with OpenZipkin, Spring Sleuth,

and OpenCensus, 392
java (command-line utility), 78
java -jar command, 132
Java Development Kit (see JDK)
Java development, evolution of, 13-28

DevOps, SRE, and release engineering,
22-27
release engineering, 25
shared responsibility, metrics, and

observability, 26
site reliability engineering (SRE), 23-25

Java deployment platforms, 17-21
requirements of modern Java applications,

13-17
impacts on continuous delivery, 17
need for business speed and stability, 14
opportunities and costs of the cloud, 15
rise of the API economy, 15
small services, 16

Java Runtime Environment (see JRE)
Java Shop application, extended (example),

231-233
Java Virtual Machines (see JVMs)
javac, 78
JAVA_HOME environment variable, 87, 90
JBehave, 299

Index | 441

jclouds toolkit, 150
JDepend, generating design-quality metrics

with, 337-340
JDK, 38, 87, 90, 159, 219, 361

constraints on, in PaaS platforms, 61
PaaS implementation and exposure of, 61

Jenkins, 224-226
creating DockerHub credentials in, 236
installing Docker Build and Publish plugin,

236
Jenkins X subproject, 239
Kubernetes CD plugin, using to deploy

applications, 239-245
creating service definitions, 242
creating the deployment job, 243
installing the plugin, 240
preparing configuration files, 240
registering Kubernetes credentials, 241

Kubernetes plugin vs. Kubernetes CD
plugin, 240

prebuilt pipelines in Extended Java Shop
sample application, 233

JGit-Flow Maven plugin, 94
JHades utility, 141
JMeter, 342
JMock, 319
JRE (Java Runtime Environment), 65, 361

minimal, in cloud Twelve-Factor apps, 38
OpenJDK 8 JRE, 176
serverless Java runtime, 72
serverless JRE, 72

JSON
manipulating with jq utility, 123
returned from HTTP calls, 117-120

manipulating with curl, 117-120
using for structured logging, 389

JUnit, 319, 335
Hoverfly JUnit rule, 369
using ArchUnit with JUnit 4, 335

just-in-time (JIT) configuration, 39
JVMs (Java Virtual Machines), 38, 57, 65, 77, 83

container technology exposing incorrect
resource availability to, 40

internal metrics, 384
java command-line flags, 78
longer warm-up times with frequent

deployment, 264
other JVM build tools, 99

K
Kafka, 311
key management in cloud platforms, 360
Kibana, 398
kubeconfig file, 240

copying into Jenkins server, 241
example file, 241

kubectl get pods command, 180
kubectl get svc command, 178
Kubernetes, 64, 67-70, 173-184

Amazon ECS and, 245
benefits of, 69
challenges in, 68
chaos testing, 367
clarifying some concepts, 240
combining with Amazon EC2, 245
connecting local service to remote cluster

using Telepresence, 181-184
preemptible Kubernetes cluster on GCP

GKE, 182
continuous delivery on, 70
core concepts, 67
creating service definitions for, 242
deploying a container into, 176-178

starting minikube, 178
viewing all services using kubectl get svc,

178
deploying container image to, automatic

step for, 241
deploying entire Shopfront Java application

in, 179
deploying to production cluster using a

plugin, 239
handling secrets, 287
health checks, 252
Helm packaging for, 245
installing Kubernetes CD Jenkins plugin,

240
possibly evolving into a PaaS, 69
registering credentials in Jenkins, 241
serverless platform running on top of, 72
strategy section, adding to service defini‐

tion, 255
viewing deployed Java application using

minikube, 180

L
labels (Docker), 152
labels (Kubernetes), 68

442 | Index

language-specific issues (in code reviews), 217
launch coordination checklists, 334
Launch4j, 147
lead time, 412
Leading Change (Kotter), 415
less command, 112
levels of logging, 385, 389
Linux

users, permissions, and groups
understanding sudo, 108

Linux, Bash, and CLI commands, 105-117
diagnostic tooling, top, ps, netstat, and

iostat, 115-117
often no undo on CLI, 112
package managers, 116
redirects, pipes, and filters, 113
searching and manipulating text with grep,

awk, and sed, 114
users, permissions, and groups, 106-109

groups, 109
users and permissions, 107

viewing and editing text, 112-113
working with the filesystem, 110-112

creating and manipulating files, 111
navigating directories, 110

load testing, 340
with Apache Bench, 342
with Gatling, 342-347

local development, 6, 159
(see also working locally)
challenges with, 159

LocalStack, running AWS services locally, 194
Log4j

configuring to report exceptions to Airbrake
service, 395

Log4j 2, 387
Logback, 129
logging, 25, 375, 376, 384-390

best practices, 388
collection and storage of logging data with

ELK stack, 398
commercial log collection tooling, 397
following log file generation in real time,

113
forms of, 385
guarding against over-logging, 386
Log4j 2, 387
rsyslog, 396
SLF4J, 386

treating logs as event streams, 39
warning against inventing your own logger,

386
Logstash, 398
London School for solitary unit testing, 322
loops in Bash shell scripting, 126
loose coupling and dependency management,

82
loosely coupled systems, 30
ls command, 110

redirecting output, 113
lzPack build tool, 146

M
machine images

creating for multiple clouds with Packer,
147-150
machine image formats, 148

other tools for creating, 150
trade-offs with commercial image-

creation tools, 151
virtual machines, creating with Vagrant and

Packer, 169-173
maintenance, 8
MAJOR, MINOR, and PATCH versions, 276
Make, 100

makefile for simple Java project, 100
pros and cons as build tool choice, 102

man and help (Linux), 108
manifests (JAR), 132
Mapped Diagnostic Context (MDC), 387
maturity models, 413
Maven, 89-94

build example, 91
including ArchUnit in pom.xml, 335
Including findbugs-maven-plugin with

findsecbugs-plugin in a project, 350
including JDepend in pom.xml, 339
including Log4j 2, 388
installation, 90
JGit-Flow plugin, 94
packaging a project into a JAR file, 129-133
Parent project object model (POM), 82
profiles to use when running automated

tests via, 160
project pom.xml including dependencies

with known vulnerabilities, 354
pros and cons as build tool choice, 101
releasing and publishing build artifacts, 93

Index | 443

specifying dependency version with, 81
Maven Assembly plugin, 134
Maven Checkstyle plugin, 221
Maven Debian plugin, 145
Maven Dependency Check plugin, 356
Maven Docker Compose plugin, 302
Maven Docker plugin, 152
Maven Enforcer plugin, 219
Maven FindBugs plugin, 222
Maven Jar plugin, 134

adding to pom.xml, 132
Maven PMD plugin, 220
Maven Release plugin, 93
Maven RPM pluging, 143-145
Maven Shade plugin, 134-137, 138, 187

using for AWS FaaS Java application, 154
using with Spring Boot, 138

Maven SlimFast plugin, 139
Maven Spring Boot plugin

buildin WAR files, 141
creating skinny Spring Boot JARs, 139

Maven WAR plugin, 140
maximum number of instances, 254
mean time to restore (MTTR), 412
Measuring Continuous Delivery (Smith), 412
mechanical sympathy, 40

in cloud (IaaS) platforms, 56
mediated APIs, 15
merging code regularly, 226
message contracts, 307-309

contract testing at protocol layer, 308
contract testing at serialization layer, 308

message queues, in-memory, 311
messaging middleware, 18
metadata

adding to log entries, 385
importance of adding to container images,

152
meters, 380
method calls, stubbing, 162
method signatures

loose coupling in Java, 30
metrics, 27, 379-384, 425

alerts for, 378
best practices with, 383
capturing for architectural qualities, 34
commercial metric collection tooling, 397
defining metrics of success, 414
Dropwizard Metrics library, 380

metrics configuration and metadata, 381
easier access to in good APIs, 36
limiting factor in metrics tools, 398
metric collection tooling

Prometheus, 398
Micrometer, 383

creating a timer, 383
Spring Boot Actuator, 382
types of, 379

Micrometer, 383
creating a timer, 383

microservices, 16
avoiding alert overload from, 377
components and, 309
dependency management, 82
effects on typical CD build pipeline, 9
end-to-end testing, 295
SOA meets domain-driven design, 43
testing strategies for, 293

Microsoft Azure (see Azure)
Microsoft DREAD threat-risk ranking model,

364
middleware

in cloud (IaaS) platforms, 55
in traditional infrastructure platforms, 52
running in embedded or in-process/

memory mode, 161
migrations

dealing with long-running migrations, 270
migration scripts, 269

minikube
simple smoke test in, 179
starting, 178
viewing deployed Java application, 180

minimum in-service deployment, 257, 263
minimum number of health instances, 254
mitigation of threats, 365
mkdir command, 111
mocking and stubbing, 160-163

in good APIs, 36
mocking dependencies in unit testing, 319
mocking frameworks for Java, 322
mocking with Mockito, 162-163

stubbing method calls, 162
verifying interactions, 162

profiles, mocks, and stubs, 160-162
benefits of running embedded databases

and middleware, 161
stub and mock test doubles, 312

444 | Index

stubbing or virtualizing third-party services,
302

watching out for mock complexity, 163
Mockito, 319
modularization, 16
monitoring, 375, 376

and observability, 374
designing and building applications with,

379
easier access to data in good APIs, 36
resources for further learning, 374
system-monitoring tooling, 396-397

Monkeyless Chaos, 368
monolithic applications

challenges for delivering, 42-43
changes and limited options for inde‐

pendent deployability, 43
scalability and elasticity, 43
scaling development, 43

Mountebank, 164
multimodule projects, automating build, 84
multiple-phase upgrades, 283

deprecating old APIs, 284
mv command, 111

N
namespaces (Kubernetes), 240
Netflix Chaos Monkey, 365, 366
Netflix Hystrix library, 313
Netflix Simian Army, 366
Netflix, full cycle developers, 27
netstat utility, 115
network access control lists (NACLs), 360
networks

in cloud (IaaS) platforms, 55
in container platforms, 64
in PaaS environments, 60

newgrp command, 109
nondeterministic events, 324
nonfunctional requirements

for APIs, 15
testing, 291, 333-371, 425

architectural quality, 335-340
chaos testing, 365-370
code quality, 334
determining how much testing, 370
performance and load testing, 340-348
reasons for testing, 333

security, vulnerabilities, and threats,
348-365

validation of, 7
nonfunctional requirements (APIs), 15
NoSQL databases, 269
nslookup utility, 115
Nullsoft Scriptable Install System (NSIS), 147

O
observability, 27, 373-403, 411, 425

and continuous delivery, 373-378
alerting, 377
how to observe, monitoring, logging,

and tracing, 376
observing application, network, and

machine, 376
reasons for observing, 374

collection and storage of metric and logging
data, 397-399

designing systems for, 378
exception tracking, 393-396
facilitation by good architecture, 33
logging, 384-390

best practices, 388
Log4j 2, 387
SLF4J, 386

metrics, 379-384
best practices with, 383
Dripwizard Metrics library, 380
Micrometer, 383
Spring Boot Actuator, 382
types of, 379

monitoring and, 374
request tracing, 390-393

recommended practices, 393
traces, spans, and baggage, 391

system-monitoring tooling, 396-397
visualization, 399-402

observe, orient, decide, and act (OODA) loop,
415

observing and maintenance, 8
OpenCensus, 392
OpenJDK 8 JRE, 176
OpenZipkin, 392
operating systems, 219

container images, security of, 361
in container images, 19
minimal, in cloud Twelve-Factor apps, 38

operational requirements, 291

Index | 445

(see also nonfunctional requirements)
operations, 22

(see also DevOps)
OS-level virtualization (containers), 64
out-of-process component testing, 314

implying manual reload, 316
outside-in vs. inside-out testing, 325-328

difference from in-process vs. out-of-
process, 325

inside-out, 326
outside-in, 325

OWASP Application Threat modeling website,
362

OWASP Maven Dependency Check plugin, 353

P
package managers, 113, 116

Helm, using for Kubernetes, 245
packaging applications, 129-157, 424

building a JAR, 129-133
building containers, 151-154

fabricating Docker images with fabric8,
152

building skinny JARs instead of fat JARs,
138

building WAR files, 139-141
client-side JavaScript libraries as WebJars,

83
FaaS Java applications, 154-157
for the cloud, 141-151

baking or frying machines, 142
building RPM and DEB OS packages,

142-146
creating machine images for multiple

clouds with Packer, 147-150
other OS package build tools, 146
other tools for creating machine images,

150
Packer, 147-150, 151

production-in-a-box and, 172
pagers, 112
pair programming, 216
Pants build tool, 98, 102
parent build descriptor, 82
passwd command, 107
performance

evaluating in code reviews, 218
for APIs, in service-level agreements, 15
in cloud (IaaS) platforms, 57

resources for further learning, 340
testing, 340-342

understanding dark art of, 347
with Apache Benchmark, 340-342

testing for performance issues in cloud-
hosted applications, 41

personally identifiable information (PII), 390
ping utility, 115
Ping-Pong TDD, 320
pipes, 114
plan-do-check-act (PDCA), 415
platform as a service (PaaS), 36, 59-63

benefits of, 62
CD and CI in, 63
challenges in, 60-62
components of, 60
documentation, 62
evolution of Kubernetes into, 69

platform leasing pattern, 184
platform-as-a-service (PaaS), 37

changes in interaction between software and
hardware, 40

plugins (build tooling), 86
PMD (static code analyzer), 220
pods (Kubernetes), 67

kubectl get pods command, 178
POM (project object model) in Maven, 138
port binding, 38
PowerfulSeal, 367
PowerMock, 319
preemptible instances, 182
preproduction, causing chaos in, 368
private cloud, 54
processes

executing app as one or more stateless pro‐
cesses, 38

in-process vs. out-of-process component
testing, 314, 315

product-search service, 160
production

adding production telemetry, 411
chaos experiments in, 366

cloud chaos, 367
container and Kubernetes chaos, 367
serverless chaos, 368

code having navigated build pipeline suc‐
cessfully, deploying, 8

parity between development, staging, and
production, 39

446 | Index

Production Readiness Reviews (PRRs), 24
production-in-a-box, 172
production-ready checklists, 334
profiles, 160, 285
Prometheus, 398
proxies, specifying with HTTPie, 123
ps command, 115
public cloud, 54
pull requests, reviewing, 223
Puppet, 59, 142
pwd command, 110

R
reactive functions, 72
read permission, 107
Red Hat

Ansible, 75
atomic top, 116
RPM package manager, 141

redirects, 113
regular expressions (regex), 115
releasable artifacts, 235
release engineering, 25
release Gradle plugin, 97
Release It! (Nygard), 42
Release Maven plugin, 93
releases

automatic, repeatable, and reliable, 3
releasing a feature, 231
separating from deployment, 234

releasing functionality, 272-284, 424
feature flags, 273
multiple-phase upgrades, 283
semantic versioning, 276-278
service meshes, 273

replication controllers, 177
repositories

monorepo, 272
using multiple rerepositories or a mono‐

repo, 84
request tracing, 390-393
Resilience as a Continuous Delivery Enabler

blog post, 410
resilience testing, human side of, 366
resources, unavailable, causing flaky tests, 323
responsibility, shared, 26
responsiveness, 14
RestAssured library, 315
RESTful API contracts, 304-307

contract first, interaction second, 305
interaction first, contract second, 306

RESTful APIs
and tools for interaction provided by

deployment platforms, 239
endpoint versioning and, 281
/health endpoint, 249
versioning as anti-pattern, 282

rm command, 112
robustness

maximizing with fast startup and graceful
shutdown, 39

rolling deployment, 258, 263, 266
routing

controlling in unmanaged clusters, 265
rerouting in unmanged clusters, 268

RPM packages, building, 142-146
using Maven RPM plugin, 143-145

rsyslog, 396
runtimes

PaaS and JDK or runtime environment, 61
serverless Java runtime, 72

S
SaaS-based API offerings, 35
SaltStack, 142
SAM (Serverless Application Model), 185

SAM Local, 185
installing, 185
simulating running Amazon API Gate‐

way locally, 192
testing event handling, 189

SBT (Simple Build Tool), 99
scalability

scaling out via the process model, 38
subsystem scalability and elasticity, 43

scmversion-gradle-plugin, 97
scope progression, 293
scripting, 125-127
secrets, handling, 287
security, 348-365

code-level security verification, 348-353
dependency verification, 353-357
deployment platform-specific issues,

358-361
cloud security, 358
containers, 360
serverless, 361

evaluating in code reviews, 218

Index | 447

for APIs, in service-level agreements, 15
risks of ignoring security issues, 357
threat modeling, 361-365

decomposing the application, 362
determining and ranking threats, 363
determining countermeasures and miti‐

gation, 364
sed, 114
Selenium WebDriver, 301, 303
self-contained systems (SCS), 37
semantic versioning, 81, 86, 276-278
semver (see semantic versioning)
sensitive data, not logging, 390
Sensu, 397
SerenityBDD, 299, 302
serverless

challenges in, 72
Serverless Application Model (SAM), 185
serverless model, 20, 45

(see also functions as a service)
account-wide limits, 73
AWS Lambda and SAM Local, 185-202

serverless scaffolding, 186
benefits of, 73
chaos testing in serverless platforms, 368
CI/CD and, 73
exploring deploy and release for, 234
FaaS/serverless concepts, 71
going serverless with ECS Fargate, 246
security issues for serverless platforms, 361
understanding serverless Java runtime, 72

service meshes, 273
service virtualization, 38, 163-169

not reimplementing services virtually, 169
tools for, 164
using Hoverfly, 165-168

service-level agreements (SLAs), 15
service-oriented architecture (SOA), 18
services

creating in Amazon ECS, 248
creating Kubernetes service definitions, 242
deploying in Amazon ECS, 248
in Amazon ECS, 247
in cloud (IaaS) platforms, 55
in container platforms, 64
in Kubernetes, 68
in PaaS environments, 60
move toward small services, 42-45

functions, lambdas, and nanoservices, 45

microservicses, SOA meets domain-
driven design, 43

third-party, stubbing or virtualizing, 302
turning the database into just another ser‐

vice, 272
Shade plugin (see Maven Shade plugin)
shadow IT, APIs consumed as, 15
shared responsibility, 26, 333, 358

increasing shared responsibility of software,
425

shifting left, 3
Simian Army, 365, 366
simple domain, 408
single responsibility principle, 43
single target deployment, 255, 263
site reliability engineering (SRE), 23-25, 424

types of valid monitoring output, 25
situational awareness, 407-410, 423
SLF4J (Simple Logging Facade for Java), 386,

389
support for Mapped Diagnostic Context,

387
SlimFast Maven plugin, 139
smart throttles, 276
sociable unit testing, 320
Software Architecture for Developers (Brown),

46
software configuration management (SCM),

285
(see also configuration; configuration man‐

agement)
solitary unit testing, 321
spans, 391
Spock testing framework, 319
SpotBugs, 222
Spotify docker-maven-plugin, 154
Spring Boot Actuator, 382

creating a counter, 382
Spring Boot Maven plugin

building a WAR file, 141
configuration of services, 285
creating skinny Spring Boot JARs, 139
health-check endpoints, 250
using to build uber JARs, 137

Spring Cloud Sleuth, 392
stability and speed, need for, 14
staging, 8

parity between development, staging, and
production, 39

448 | Index

startup and shutdown, fast and graceful, 39
stateless processes, 38
sticky parameters, 279
storage

in cloud (IaaS) platforms, 54
in container platforms, 64
in PaaS environments, 60

strace utility, 116
STRIDE threat categorization, 363
structured logging, 385

using JSON layout for, 389
stubbing (see mocking and stubbing)
Stubby4j, 164
sudo command, 108
sudoers file, 109
synthetic transactions, 294
sysdig utility, 116
syslog, logging to, 396
system quality attributes, validation of, 7
system-monitoring tooling, 396-397

collectd, 396
Prometheus, 398
rsyslog, 396
Sensu, 397

system-quality attributes, 334
(see also nonfunctional requirements)

system-quality attributes testing (see nonfunc‐
tional requirements, testing)

systemd-cgtop utility, 116

T
tail command, 112
task definitions (Amazon ECS), 247

creating for Extended Java Shop example
application, 248

tasks (Amazon ECS), 247
creating, 247

tcpdump utility, 116
Telepresence, 181-184

cleaning up your GKE cluster, 184
curling a remote service healthcheck end‐

point as if local, 183
installing on local Mac development

machine, 181
Terraform (see HashiCorp's Terraform)
test doubles, 312
test-driven development (TDD), 203, 290, 306,

319
resources for further learning, 320

testing
API-based applications, 35
building the right feedback loop, 292
continually testing for failure in cloud plat‐

forms, 41
dealing with flaky tests, 322-325
deciding how much is enough, 329-331
deciding what to test, Agile testing quad‐

rants, 289
facilitation offered by good architecture, 32
functional (see functional testing)
identifying test types in build tools, 329
nonfunctional requrements, 333-371, 425

architectural quality, 335-340
chaos testing, 365-370
code quality, 334
determining how much testing, 370
performance and load testing, 340-348
reasons for testing, 333
security, vulnerabilities, and threats,

348-365
not ignoring failing tests in continuous inte‐

gration, 227
of serverless applications, 73
outside-in vs. inside-out, 325-328
reasons for testing software, 289
resources for further learning, 328

TestNG, 319
text

plain text logs, 385
searching and manipulating with grep, awk,

and sed, 114
viewing and editing on Linux/Unix-like sys‐

tems, 112
text editors, 113
threat modeling, 361-365

decomposing the application, 362
determining and ranking threats, 363
determining countermeasures and mitiga‐

tion, 364
throttle flags, 274

smart throttles, 275
tickets, 25
timers, 380

creating in Micrometer, 383
top command, 115
touch command, 111
tracert utility, 115
tracing, 375, 377

Index | 449

request tracing, 390-393
Java tracing, 392
recommended practices, 393
traces, spans, and baggage, 391

TRACE logging level, 385
traditional infrastructure, 51

(see also infrastructure)
trunk-based development, 211
turtles all the way down, 292-294
Twelve-Factor App, 19

cloud-native applications, designing, 37-40

U
understandability of code, 216
unit testing, 319-322, 329

architecture, using ArchUnit, 335-337
resources for further learning, 320
sociable, 320
solitary, 321

unit tests, 293
facilitation by good architecture, 32

upgrades, multiple phase, 283
user acceptance tests, 8
user story mapping, 4
useradd command, 107
users, 106-109

groups, 109
in Kubernetes, 240
mimicing user actions in BDD, 300
permissions, 107
principle of least privilege, 106
understanding sudo, 108
virtual, 342

V
Vagrant, 169-172

booting a VM, 171
creating a Vagrantfile, 169
installing, 169

VCR/Betamax, 164
Veewee, 150
verifying interactions

external interactions in integration testing,
317

of mocked class with Mockito, 162
version control, 410

centralized vs. distributed systems, 204-206
merging code regularly, 226
working effectively with DVCS, 211-215

version control systems (distributed), commits
to, 7

version lock, 80
versioning

backward compatibility and versions in
APIs, 278-283
advanced change management, 282
avoiding versioning, 279
caveat on mixing versioning strategies,

282
versioning the content, 281
versioning the endpoint, 279

semantic, 276-278
specifying version ranges for build depen‐

dencies, 80
Versions Maven plugin, 93
vi and vim editors, 113
virtual private cloud (VPC) networking, 358
virtual users, 342
virtualized hardware, 54
virtualized services, 312
visual regression and comparison testing, 301
visualization, 399-402

limiting factor in visualization tools, 398
VM hypervisors, 169
vulnerabilities

Java dependencies with, 353
risks of ignoring, 357
threats with no countermeasures, 364

W
WAR (Web Archive) files, 17

building, 139-141
escaping WAR hell, 141
using Maven Spring Boot plugin, 141
using Maven WAR plugin, 140

WebJars, packaging client-side JavaScript libra‐
ries as, 83

Windows
Nullsoft Scriptable Install System (NSIS),

147
PowerShell, 105
SuperBenchmarker, installation via Choco‐

lately, 340
WireMock, 164, 302

as mock test double, 313
as virtualized service, 313

working locally, 159-202, 424
challenges with local development, 159

450 | Index

mocking, stubbing, and service virtualiza‐
tion, 160-169
mocking with Mockito, 162-163
profiles, mocks, and stubs, 160-162
service virtualization and API simula‐

tion, 163-169
serverless, AWS Lambda and SAM Local,

185-202
testing event handling with SAM Local,

189
virtual machines, creating with Vagrant and

Packer, 169-173
production-in-a-box, 172

with Docker containers and Kubernetes,
173-185
building Java applications and container

images, 174-176
building remaining applications and

containers, 179

deploying entire Java application in
Kubernetes, 179

deploying into Kubernetes, 176-178
environment leasing, 184
simple smoke test in minikube, 179
using Telepresence, 181-184
viewing the deployed application, 180

worth-based development, 73
write permission, 107

X
xargs command, 125

Z
ZooKeeper, 311

Index | 451

About the Author
Daniel Bryant works as an independent technical consultant and product architect at
Datawire. He specializes in enabling continuous delivery within organizations
through the identification of value streams, creation of build pipelines, and imple‐
mentation of effective testing strategies. Daniel’s technical expertise focuses on
DevOps tooling, cloud/container platforms, and microservice implementations. He is
also a Java champion, contributes to several open source projects, writes for InfoQ,
O’Reilly, and Voxxed, and regularly presents at international conferences such as
OSCON, QCon, and JavaOne.

Abraham Marin-Perez is a Java and Scala developer with more than 10 years of expe‐
rience in industries ranging from finance to publishing to the public sector. He also
helps run the London Java Community, and provides career advice at the Meet a
Mentor London group. Abraham likes sharing his experiences with other people,
which has led him to speak at international events like JavaOne or Devoxx UK, and to
write about Java news at InfoQ. He is also the author of Real-World Maintainable Soft‐
ware (O’Reilly). Currently based in London, Abraham likes going out on a hike
whenever the English weather permits it, and cooking when it doesn’t.

Colophon
The animals on the cover of Continuous Delivery in Java are lanternfish, a family of
fish known as Myctophidae. Lanternfish get their name from their natural biolumi‐
nescence, which causes them to glow with blue, green, or yellow light. This light is
produced by organs known as photophores, which are arranged along the body and
head of the fish. It is theorized that bioluminescence plays a role in communication
between lanternfish.

Small and slender, Lanternfish are covered in silvery scales. They live deep in the
ocean, diving deeper by day and rising at night. They are a major food source for
marine predators, such as whales, dolphins, tuna, and sharks, making them an
important link in the oceanic food chain.

Lanternfish are extremely numerous, and are estimated to make up 65% of all deep
sea fish biomass. They account for much of the deep sea scattering layer, a phenom‐
enon where ships’ sonar is scattered off the swim bladders found in deep sea fish,
causing false depth readings. Although common in the wild, there is very little com‐
mercial fishing of lanternfish.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

http://animals.oreilly.com

The cover image is from Lydekker’s Royal Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Forewords
	Preface
	Why Did We Write This Book?
	Why You Should Read This Book
	What This Book Is Not
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Continuous Delivery: Why and What
	Setting the Scene
	Enabling Developers: The Why
	Rapid Feedback Reduces Context Switching
	Automatic, Repeatable, and Reliable Releases
	Codifying the Definition of “Done”

	Exploring a Typical Build Pipeline: The What
	Core Build Pipeline Stages
	Impact of Container Technology
	Changes with Contemporary Architectures

	Summary

	Chapter 2. Evolution of Java Development
	Requirements of Modern Java Applications
	Need for Business Speed and Stability
	Rise of the API Economy
	Opportunities and Costs of the Cloud
	Modularity Redux: Embracing Small Services
	Impact on Continuous Delivery

	Evolution of Java Deployment Platforms
	WARs and EARs: The Era of Application Server Dominance
	Executable Fat JARs: Emergence of Twelve-Factor Apps
	Container Images: Increasing Portability (and Complexity)
	Function as a Service: The Emergence of “Serverless”
	Impact of Platforms on Continuous Delivery

	DevOps, SRE, and Release Engineering
	Development and Operations
	Site Reliability Engineering
	Release Engineering
	Shared Responsibility, Metrics, and Observability

	Summary

	Chapter 3. Designing Architecture for Continuous Delivery
	Fundamentals of Good Architecture
	Loose Coupling
	High Cohesion
	Coupling, Cohesion, and Continuous Delivery

	Architecture for Business Agility
	Bad Architecture Limits Business Velocity
	Complexity and Cost of Change

	Best Practices for API-Driven Applications
	Build APIs “Outside-In”
	Good APIs Assist Continuous Testing and Delivery

	Deployment Platforms and Architecture
	Designing Cloud-Native “Twelve-Factor” Applications
	Cultivating Mechanical Sympathy
	Design and Continually Test for Failure

	The Move Toward Small Services
	Challenges for Delivering Monolithic Applications
	Microservices: SOA Meets Domain-Driven Design
	Functions, Lambdas, and Nanoservices

	Architecture: “The Stuff That’s Hard to Change”
	Summary

	Chapter 4. Deployment Platforms, Infrastructure, and Continuous Delivery of Java Apps
	Functionality Provided by a Platform
	Essential Development Processes
	Traditional Infrastructure Platforms
	Traditional Platform Components
	Challenges with Traditional Infrastructure Platforms
	Benefits of Being Traditional
	CI/CD on Traditional Infrastructure Platforms

	Cloud (IaaS) Platform
	Looking Inside the Cloud
	Cloud Challenges
	Benefits of the Cloud
	Continuously Delivering into the Cloud

	Platform as a Service
	Peeking Inside a PaaS
	PaaS Challenges
	Benefits of PaaS
	CI/CD and PaaS

	Containers (Docker)
	Container Platform Components
	Container Challenges
	Container Benefits
	Continuously Delivering Containers

	Kubernetes
	Core Concepts of Kubernetes
	Kubernetes Challenges
	Benefits of Kubernetes
	Continuous Delivery on Kubernetes

	Function-as-a-Service/Serverless Functions
	FaaS Concepts
	Challenges of FaaS
	FaaS Benefits
	CI/CD and FaaS

	Working with Infrastructure as Code
	Summary

	Chapter 5. Building Java Applications
	Breaking Down the Build Process
	Automating the Build
	Build Dependencies
	External Dependencies
	Multimodule Projects
	Multiple Repositories (or a Monorepo)?
	Plugins
	Releasing and Publishing Artifacts

	Java Build Tooling Overview
	Ant
	Maven
	Gradle
	Bazel, Pants, and Buck
	Other JVM Build Tools: SBT and Leiningen
	Make

	Choosing a Build Tool
	Summary

	Chapter 6. Additional Build Tooling and Skills
	Linux, Bash, and Basic CLI Commands
	Users, Permissions, and Groups
	Working with the Filesystem
	Viewing and Editing Text
	Joining Everything Together: Redirects, Pipes, and Filters
	Searching and Manipulating Text: grep, awk, and sed
	Diagnostic Tooling: top, ps, netstat, and iostat

	HTTP Calls and JSON Manipulation
	curl
	HTTPie
	jq

	Basic Scripting
	xargs
	Pipes and Filters
	Loops
	Conditionals

	Summary

	Chapter 7. Packaging Applications for Deployment
	Building a JAR: Step-by-Step
	Building a Fat Executable “Uber” JAR
	Maven Shade Plugin
	Building Spring Boot Uber JARs

	Skinny JARs—Deciding Not to Build Fat JARs
	Building WAR Files
	Packaging for the Cloud
	Cooking Configuration: Baking or Frying Machines
	Building RPMs and DEBs OS Packages
	Additional OS Package Build Tools (with Windows Support)
	Creating Machine Images for Multiple Clouds with Packer
	Additional Tools for Creating Machine Images

	Building Containers
	Creating Container Images with Docker
	Fabricating Docker Images with fabric8

	Packaging FaaS Java Applications
	Summary

	Chapter 8. Working Locally (Like It Was Production)
	Challenges with Local Development
	Mocking, Stubbing, and Service Virtualization
	Pattern #1: Profiles, Mocks, and Stubs
	Mocking with Mockito
	Pattern #2: Service Virtualization and API Simulation
	Virtualizing Services with Hoverfly

	VMs: Vagrant and Packer
	Installing Vagrant
	Creating a Vagrantfile
	Pattern #3: Production-in-a-Box

	Containers: Kubernetes, minikube, and Telepresence
	Introducing the “Docker Java Shop” Sample App
	Building Java Applications and Container Images
	Deploying into Kubernetes
	Simple Smoke Test
	Building the Remaining Applications
	Deploying the Entire Java Application in Kubernetes
	Viewing the Deployed Application
	Telepresence: Working Remotely, Locally
	Pattern #4: Environment Leasing

	FaaS: AWS Lamba and SAM Local
	Installing SAM Local
	AWS Lambda Scaffolding
	Testing AWS Lambda Event Handling
	Smoke Testing with SAM Local

	FaaS: Azure Functions and VS Code
	Installing Azure Function Core Tools
	Building and Testing Locally
	Testing Remotely, Locally Using VS Code

	Summary

	Chapter 9. Continuous Integration: The First Steps in Creating a Build Pipeline
	Why Continuous Integration?
	Implementing CI
	Centralized Versus Distributed Version-Control Systems
	Git Primer
	Core Git CLI Commands
	Hub: An Essential Tool for Git and GitHub

	Working Effectively with DVCS
	Trunk-based Development
	Feature Branching
	Gitflow
	No One-Size Fits All: How to Choose a Branching Strategy

	Code Reviews
	What to Look For
	Automation: PMD, Checkstyle, and FindBugs
	Reviewing Pull Requests

	Automating Builds
	Jenkins

	Getting Your Team Onboard
	Merge Code Regularly
	“Stop the Line!”: Managing Broken Builds
	Don’t @Ignore Tests
	Keep the Build Fast

	CI of the Platform (Infrastructure as Code)
	Summary

	Chapter 10. Deploying and Releasing from the Pipeline
	Introducing the Extended Java Shop Application
	Separating Deployment and Release
	Deploying Applications
	Creating a Container Image
	Deployment Mechanisms
	It All Starts (and Ends) with Health Checks
	Deployment Strategies
	Working with Unmanaged Clusters
	Changing Databases

	Releasing Functionality
	Feature Flags
	Semantic Versioning (semver)
	Backward Compatibility and Versions in APIs
	Multiple-Phase Upgrades

	Managing Configuration and Secrets
	“Baked-In” Configuration
	Externalized Configuration
	Handling Secrets

	Summary

	Chapter 11. Functional Testing: Correctness and Acceptance
	Why Test Software?
	What to Test? Introducing Agile Testing Quadrants
	Continuous Testing
	Building the Right Feedback Loop

	Turtles All the Way Down
	Synthetic Transactions
	End-to-End Testing
	Acceptance Testing
	Behavior-Driven Development
	Stubbing or Virtualizing Third-Party Services
	Bringing It All Together

	Consumer-Driven Contracts
	RESTful API Contracts
	Message Contracts

	Component Testing
	Embedded Data Stores
	In-Memory Message Queues
	Test Doubles
	Creating Internal Resources/Interfaces
	In-Process Versus Out-Of-Process

	Integration Testing
	Verifying External Interactions
	Testing Fault Tolerance

	Unit Testing
	Sociable Unit Testing
	Solitary Unit Testing

	Dealing with Flaky Tests
	Data
	Resource That Is Not Available Yet
	Nondeterministic Events
	If Nothing Else Works

	Testing Outside-In Versus Testing Inside-Out
	Outside-In
	Inside-Out

	Putting It All Together Within the Pipeline
	How Much Testing Is Enough?
	Summary

	Chapter 12. System-Quality Attributes Testing: Validating Nonfunctional Requirements
	Why Test Nonfunctional Requirements?
	Code Quality
	Architectural Quality
	ArchUnit: Unit-Testing Architecture
	Generate Design-Quality Metrics with JDepend

	Performance and Load Testing
	Basic Performance Testing with Apache Benchmark
	Load Testing with Gatling

	Security, Vulnerabilities, and Threats
	Code-Level Security Verification
	Dependency Verification
	Deployment Platform-Specific Security Issues
	Next Steps: Threat Modeling

	Chaos Testing
	Causing Chaos in Production (Bring in the Monkeys)
	Causing Chaos in Preproduction

	How Much NFR Testing Is Enough?
	Summary

	Chapter 13. Observability: Monitoring, Logging, and Tracing
	Observability and Continuous Delivery
	Why Observe?
	What to Observe: Application, Network, and Machine
	How to Observe: Monitoring, Logging, and Tracing
	Alerting

	Designing Systems for Observability
	Metrics
	Type of Metrics
	Dropwizard Metrics
	Spring Boot Actuator
	Micrometer
	Best Practices with Metrics

	Logging
	Forms of Logging
	SLF4J
	Log4j 2
	Logging Best Practices

	Request Tracing
	Traces, Spans, and Baggage
	Java Tracing: OpenZipkin, Spring Sleuth, and OpenCensus
	Recommended Practices for Tracing

	Exception Tracking
	Airbrake

	System-Monitoring Tooling
	collectd
	rsyslog
	Sensu

	Collection and Storage
	Prometheus
	Elastic-Logstash-Kibana

	Visualization
	Visualization for Business
	Operational Visualization
	Visualization for Developers

	Summary

	Chapter 14. Migrating to Continuous Delivery
	Continuous Delivery Capabilities
	Picking Your Migration Project
	Situational Awareness
	The Cynefin Framework and Continuous Delivery
	All Models Are Wrong, Some Are Useful

	Bootstrapping Continuous Delivery
	Measuring Continuous Delivery
	Start Small, Experiment, Learn, Share, and Repeat
	Increase Adoption: Leading Change
	Additional Guidance and Tips
	Bad Practices and Common Antipatterns
	Ugly Architecture: To Fix, or Not to Fix

	Summary

	Chapter 15. Continuous Delivery and Continuous Improvement
	Start from Where You Are
	Build on Solid Technical Foundations
	Continuously Deliver Value (Your Highest Priority)
	Increase Shared Responsibility of Software
	Promote Fast Feedback and Experimentation
	Expand Continuous Delivery in an Organization
	Continuous Improvement
	Summary

	Index
	About the Author
	Colophon

