
Java Programmer
97 Things Every

Should Know

Edited by Kevlin Henney
& Trisha Gee

Collective
Wisdom
from the
Experts

Kevlin Henney and Trisha Gee

97 Things Every Java
Programmer Should Know

Collective Wisdom from the Experts

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95269-6

[LSI]

97 Things Every Java Programmer Should Know
by Kevlin Henney and Trisha Gee

Copyright © 2020 O’Reilly Media Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade
Developmental Editor: Corbin Collins
Production Editor: Beth Kelly
Copyeditor: Piper Editorial
Proofreader: Sonia Saruba

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2020: First Edition

Revision History for the First Edition
2020-05-15: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491952696 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 97 Things Every Java Pro‐
grammer Should Know, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s
views. While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the
authors disclaim all responsibility for errors or omissions, including without limitation respon‐
sibility for damages resulting from the use of or reliance on this work. Use of the information
and instructions contained in this work is at your own risk. If any code samples or other tech‐
nology this work contains or describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that your use thereof complies with
such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491952696

To the memory of those who shaped us
through their wisdom and compassion

Table of Contents

Preface. xiii

1. All You Need Is Java. 1
Anders Norås

2. Approval Testing. 3
Emily Bache

3. Augment Javadoc with AsciiDoc. 5
James Elliott

4. Be Aware of Your Container Surroundings. 7
David Delabassee

5. Behavior Is “Easy”; State Is Hard. 9
Edson Yanaga

6. Benchmarking Is Hard—JMH Helps. 11
Michael Hunger

7. The Benefits of Codifying and Asserting
Architectural Quality. 14
Daniel Bryant

8. Break Problems and Tasks into Small Chunks. 17
Jeanne Boyarsky

v

9. Build Diverse Teams. 19
Ixchel Ruiz

10. Builds Don’t Have To Be Slow and Unreliable. 21
Jenn Strater

11. “But It Works on My Machine!”. 23
Benjamin Muschko

12. The Case Against Fat JARs. 25
Daniel Bryant

13. The Code Restorer. 27
Abraham Marin-Perez

14. Concurrency on the JVM. 29
Mario Fusco

15. CountDownLatch—Friend or Foe?. 31
Alexey Soshin

16. Declarative Expression Is the Path to Parallelism. 33
Russel Winder

17. Deliver Better Software, Faster. 35
Burk Hufnagel

18. Do You Know What Time It Is?. 37
Christin Gorman

19. Don’t hIDE Your Tools. 39
Gail Ollis

20. Don’t Vary Your Variables. 41
Steve Freeman

21. Embrace SQL Thinking. 44
Dean Wampler

Table of Contentsvi

22. Events Between Java Components. 46
A.Mahdy AbdelAziz

23. Feedback Loops. 48
Liz Keogh

24. Firing on All Engines. 50
Michael Hunger

25. Follow the Boring Standards. 52
Adam Bien

26. Frequent Releases Reduce Risk. 54
Chris O’Dell

27. From Puzzles to Products. 56
Jessica Kerr

28. “Full-Stack Developer” Is a Mindset. 58
Maciej Walkowiak

29. Garbage Collection Is Your Friend. 60
Holly Cummins

30. Get Better at Naming Things. 62
Peter Hilton

31. Hey Fred, Can You Pass Me the HashMap?. 64
Kirk Pepperdine

32. How to Avoid Null. 66
Carlos Obregón

33. How to Crash Your JVM. 69
Thomas Ronzon

34. Improving Repeatability and Auditability with
Continuous Delivery. 71
Billy Korando

Table of Contents vii

35. In the Language Wars, Java Holds Its Own. 73
Jennifer Reif

36. Inline Thinking. 75
Patricia Aas

37. Interop with Kotlin. 77
Sebastiano Poggi

38. It’s Done, But…. 79
Jeanne Boyarsky

39. Java Certifications: Touchstone in Technology. 81
Mala Gupta

40. Java Is a ’90s Kid. 83
Ben Evans

41. Java Programming from a JVM Performance
Perspective. 85
Monica Beckwith

42. Java Should Feel Fun. 87
Holly Cummins

43. Java’s Unspeakable Types. 89
Ben Evans

44. The JVM Is a Multiparadigm Platform: Use This to
Improve Your Programming. 91
Russel Winder

45. Keep Your Finger on the Pulse. 93
Trisha Gee

46. Kinds of Comments. 95
Nicolai Parlog

47. Know Thy flatMap. 97
Daniel Hinojosa

Table of Contentsviii

48. Know Your Collections. 100
Nikhil Nanivadekar

49. Kotlin Is a Thing. 102
Mike Dunn

50. Learn Java Idioms and Cache in Your Brain. 105
Jeanne Boyarsky

51. Learn to Kata and Kata to Learn. 107
Donald Raab

52. Learn to Love Your Legacy Code. 110
Uberto Barbini

53. Learn to Use New Java Features. 112
Gail C. Anderson

54. Learn Your IDE to Reduce Cognitive Load. 115
Trisha Gee

55. Let’s Make a Contract: The Art of Designing a Java
API. 117
Mario Fusco

56. Make Code Simple and Readable. 119
Emily Jiang

57. Make Your Java Groovier. 121
Ken Kousen

58. Minimal Constructors. 124
Steve Freeman

59. Name the Date. 127
Kevlin Henney

60. The Necessity of Industrial-Strength Technologies. 129
Paul W. Homer

Table of Contents ix

61. Only Build the Parts That Change and
Reuse the Rest. 131
Jenn Strater

62. Open Source Projects Aren’t Magic. 133
Jenn Strater

63. Optional Is a Lawbreaking Monad but a Good Type. . . . 135
Nicolai Parlog

64. Package-by-Feature with the Default Access
Modifier. 138
Marco Beelen

65. Production Is the Happiest Place on Earth. 140
Josh Long

66. Program with GUTs. 142
Kevlin Henney

67. Read OpenJDK Daily. 144
Heinz M. Kabutz

68. Really Looking Under the Hood. 146
Rafael Benevides

69. The Rebirth of Java. 148
Sander Mak

70. Rediscover the JVM Through Clojure. 150
James Elliott

71. Refactor Boolean Values to Enumerations. 152
Peter Hilton

72. Refactoring Toward Speed-Reading. 154
Benjamin Muskalla

73. Simple Value Objects. 156
Steve Freeman

Table of Contentsx

74. Take Care of Your Module Declarations. 159
Nicolai Parlog

75. Take Good Care of Your Dependencies. 161
Brian Vermeer

76. Take “Separation of Concerns” Seriously. 163
Dave Farley

77. Technical Interviewing Is a Skill Worth Developing. 165
Trisha Gee

78. Test-Driven Development. 167
Dave Farley

79. There Are Great Tools in Your bin/ Directory. 169
Rod Hilton

80. Think Outside the Java Sandbox. 171
Ian F. Darwin

81. Thinking in Coroutines. 173
Dawn Griffiths and David Griffiths

82. Threads Are Infrastructure; Treat Them as Such. 175
Russel Winder

83. The Three Traits of Really, Really Good Developers. . . . 177
Jannah Patchay

84. Trade-Offs in a Microservices Architecture. 179
Kenny Bastani

85. Uncheck Your Exceptions. 181
Kevlin Henney

86. Unlocking the Hidden Potential of Integration
Testing Using Containers. 183
Kevin Wittek

Table of Contents xi

87. The Unreasonable Effectiveness of Fuzz Testing. 185
Nat Pryce

88. Use Coverage to Improve Your Unit Tests. 188
Emily Bache

89. Use Custom Identity Annotations Liberally. 190
Mark Richards

90. Use Testing to Develop Better Software Faster. 193
Marit van Dijk

91. Using Object-Oriented Principles in Test Code. 195
Angie Jones

92. Using the Power of Community to Enhance Your
Career. 198
Sam Hepburn

93. What Is the JCP Program and How to Participate. 200
Heather VanCura

94. Why I Don’t Hold Any Value in Certifications. 202
Colin Vipurs

95. Write One-Sentence Documentation Comments. 204
Peter Hilton

96. Write “Readable Code”. 206
Dave Farley

97. The Young, the Old, and the Garbage. 209
María Arias de Reyna

Contributors. 211

Index. 239

Table of Contentsxii

Preface

The mind is not a vessel that needs filling, but wood that needs igniting.
—Plutarch

What should every Java programmer know? It depends. It depends on who
you ask, why you ask, and when you ask. There are at least as many sugges‐
tions as there are points of view. In a language, platform, ecosystem, and
community that affects the software and lives of so many people, and has
done so from one century to the next, from one core to many, from mega‐
bytes to gigabytes, it depends on more than you could ever hope to cover in a
single book by a single author.

Instead, in this book, we draw on some of those many perspectives to collect
together for you a cross section and representation of the thinking in the
Java-verse. It’s not every thing, but it is 97 of them from 73 contributors. To
quote the preface of 97 Things Every Programmer Should Know (O’Reilly):

With so much to know, so much to do, and so many ways of doing so, no
single person or single source can lay claim to “the one true way.” The contri‐
butions do not dovetail like modular parts, and there is no intent that they
should—if anything, the opposite is true. The value of each contribution
comes from its distinctiveness. The value of the collection lies in how the
contributions complement, confirm, and even contradict one another. There
is no overarching narrative: it is for you to respond to, reflect on, and con‐
nect together what you read, weighing it against your own context, knowl‐
edge, and experience.

What should every Java programmer know? In the 97 things we have sam‐
pled, the answers span the language, the JVM, testing techniques, the JDK,
community, history, agile thinking, implementation know-how, professional‐
ism, style, substance, programming paradigms, programmers as people,

xiii

http://shop.oreilly.com/product/9780596809492.do

software architecture, skills beyond code, tooling, GC mechanics, non-Java
JVM languages…and more.

Permissions
In the spirit of the first 97 Things books, each contribution in this volume
follows a nonrestrictive, open source model. Each contribution is licensed
under a Creative Commons Attribution 4.0 license. Many of the contribu‐
tions also first appeared in the 97 Things Medium publication.

All these things are fuel and fire for your thoughts and your code.

O’Reilly Online Learning

For more than 40 years, O’Reilly Media has provided
technology and business training, knowledge, and
insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training cour‐
ses, in-depth learning paths, interactive coding environments, and a vast col‐
lection of text and video from O’Reilly and 200+ other publishers. For more
information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/97Tejpsk.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

Prefacexiv

https://oreil.ly/zPsKK
https://medium.com/97-things
http://oreilly.com
http://oreilly.com
https://oreil.ly/97Tejpsk
mailto:bookquestions@oreilly.com

Visit http://oreilly.com for news and information about our books and cour‐
ses.

Find us on Facebook: http://facebook.com/oreilly.

Follow us on Twitter at http://twitter.com/oreillymedia, and also check out
http://twitter.com/97_Things.

Watch us on YouTube: http://youtube.com/oreillymedia.

Acknowledgments
Many people have contributed their time and their insight, both directly and
indirectly, to the 97 Things Every Java Programmer Should Know project.
They all deserve credit.

We would like to thank all those who took the time and effort to contribute
to this book. We are also grateful for the additional feedback, comments, and
suggestions provided by Brian Goetz.

Thanks to O’Reilly for the support they have provided for this project,
including Zan McQuade and Corbin Collins for their guidance and for nur‐
turing contributors and content, and Rachel Roumeliotis, Susan Conant, and
Mike Loukides for their contributions on this journey.

Kevlin would also like to thank his wife, Carolyn, for making sense of his
nonsense, and his sons, Stefan and Yannick, for making sense of their
parents.

Trisha would like to add thanks to her husband, Isra, for helping her to see
that stressing about not doing enough was not helping her to do anything,
and her daughters, Evie and Amy, for providing unconditional love and
cuddles.

We hope this book will be informative, insightful, and inspirational.

Enjoy!

Preface xv

http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://twitter.com/97_Things
http://www.youtube.com/oreillymedia

All You Need Is Java
Anders Norås

While working on the first major revision of Visual Studio, the team at
Microsoft introduced the world to three developer personas: Mort, Elvis, and
Einstein.

Mort was the opportunistic developer, doing quick fixes and making things
up as he went along. Elvis was the pragmatic programmer, building solutions
for the ages while learning on the job. Einstein was the paranoid program‐
mer, obsessed with designing the most efficient solution and figuring every‐
thing out before writing his code.

On the Java side of the religious divide of programming languages, we
laughed at Morts, and we wanted to be Einsteins building frameworks to
make sure the Elvises wrote their code the “right way.”

This was the dawn of the age of the frameworks, and unless you were profi‐
cient with the latest, greatest object relational mapper and inversion of con‐
trol framework, you weren’t a proper Java programmer. Libraries grew into
frameworks with prescripted architectures. And as these frameworks became
technology ecosystems, many of us forgot about the little language that
could—Java.

Java is a great language and its class library has something for every occasion.
Need to work with files? java.nio’s got you covered. Databases? java.sql is
the place to go. Almost every Java distribution even sports a full-blown
HTTP server, even if you have to climb off the Java-named branch and onto
com.sun.net.httpserver.

As our applications move toward serverless architectures, where the deploy‐
ment units can be single functions, the benefits we get from application
frameworks diminish. This is because we’ll likely spend less time on handling
technical and infrastructural concerns, focusing our programming efforts
toward the business capabilities our programs realize.

As Bruce Joyce put it:

1

We have to reinvent the wheel every once in a while, not because we need a
lot of wheels; but because we need a lot of inventors.

Many have set out to build generic business logic frameworks to maximize
reuse. Most have failed since there really aren’t any generic business prob‐
lems. Doing something special in a specific way is what sets one business
apart from the next. This is why you’re guaranteed to be writing business
logic on just about every project. In the name of coming up with something
generic and reusable, one might be tempted to introduce a rules engine or
similar. At the end of the day, configuring a rules engine is programming,
often in a language inferior to Java. Why not try to just write Java instead?
You’ll be surprised to find that the end result will be easy to read, which in
turn makes the code easy to maintain—even by non-Java programmers.

Quite often you’ll find that Java’s class library is a little limited, and you
might need something to make working with dates, networking, or some‐
thing else a little more comfortable. That’s fine. Use a library. The difference
is that you’ll now be using that library because a specific need occurred, not
because it was part of the stack you’ve always been using.

The next time an idea for a small program springs to mind, awaken your
knowledge of the Java class library from hibernation rather than reaching for
that JHipster scaffold. Hipsterism is passé; living a simple life is where it’s at
now. I bet Mort loved the simple life.

97 Things Every Java Programmer Should Know2

Approval Testing
Emily Bache

Have you ever written a test assertion with a dummy or blank expectation?
Something like this:

assertEquals("", functionCall())

Where functionCall is returning a string and you’re not sure exactly what
that string should be, but you’ll know it’s right when you see it? When you
run the test the first time, of course, it fails because functionCall returns a
string that isn’t empty. (You might have several tries, until the return value
looks correct.) Then you paste this value instead of the empty string in the
assertEquals. Now the test should pass. Result! That’s what I’d call approval
testing.

The crucial step here is when you decide the output is correct and use it as
the expected value. You “approve” a result—it’s good enough to keep. I expect
you’ve done this kind of thing without really thinking about it. Perhaps you
call it by a different name: it’s also called snapshot testing or golden master
testing. In my experience, if you have a testing framework specifically
designed to support it, then a lot of things fall into place and testing this way
gets easier.

With a classic unit testing framework like JUnit, it can be a bit painful to
update those expected strings when they change. You end up pasting stuff
around in the source code. With an approval testing tool, the approved string
gets stored in a file instead. That immediately opens up new possibilities. You
can use a proper diff tool to go through changes and merge them one by one.
You can get syntax highlighting for JSON strings and such. You can search
and replace updates across several tests in different classes.

So, what are good situations for approval testing? Here are a few:

Code without unit tests that you need to change
If the code is in production, then anything it does is, by default, consid‐
ered correct and can be approved. The hard part about creating tests

3

turns into a problem of finding seams and carving out pieces of logic
that return something interesting you can approve.

REST APIs and functions that return JSON or XML
If the result is a longer string, then storing it outside the source code is a
big win. JSON and XML can both be formatted with consistent white
space so they are easy to compare against an expected value. If there are
values in the JSON or XML that vary a lot—dates and times, for
example—you might need to check them separately before replacing
them with a fixed string and approving the remainder.

Business logic that builds a complex return object
Start by writing a Printer class that can take your complex return object
and format it as a string. Think of a Receipt or a Prescription or an
Order. Any of those could be represented well as a human-readable mul‐
tiline string. Your Printer can choose to only print a summary—
traverse the object graph to pull out relevant details. Your tests will then
exercise various business rules and use the Printer to create a string for
approval. If you have a noncoding product owner or business analyst,
they could even read the test results and verify that they are correct.

If you already have tests that make assertions about strings that are longer
than one line, then I recommend finding out more about approval testing
and starting to use a tool that supports it.

97 Things Every Java Programmer Should Know4

Augment Javadoc with
AsciiDoc
James Elliott

Java developers already know Javadoc. Those who’ve been around a long
time remember how transformative it was, as Java became the first main‐
stream language to integrate a documentation generator right into the com‐
piler and standard toolchain. The resulting explosion of API documentation
(even if not always great or polished) has hugely benefited us all, and the
trend has spread to many other languages. As James Gosling reported,
Javadoc was initially controversial because “a good tech writer could do a lot
better job”—but there are vastly more APIs than tech writers to document
them, and the value of having something universally available has been well
established.

Sometimes you need more than API documentation, though—much more
than you can fit in the package and project overview pages Javadoc offers.
End-user-focused guides and walk-throughs, detailed background on archi‐
tecture and theory, explanations of how to fit together multiple compo‐
nents…none of these fit comfortably within Javadoc.

So what can we use to meet these other needs? The answers have changed
over time. FrameMaker was a groundbreaking cross-platform GUI technical
document powerhouse in the ʼ80s. Javadoc even used to include a MIF
Doclet for generating attractive printed API documentation with Frame‐
Maker—but only a vestigial Windows version remains. DocBook XML offers
similar structural and linking power, with an open specification and cross-
platform toolchain, but its raw XML format is impractical to work with
directly. Keeping up with its editing tools became expensive and tedious, and
even the good ones felt clunky and hampered the flow of writing.

I’m thrilled to have found a better answer: AsciiDoc offers all the power of
DocBook in an easy-to-write (and read) text format, where doing simple
things is trivial and doing complex things is possible. Most AsciiDoc con‐
structs are as immediately readable and accessible as other lightweight

5

https://oreil.ly/Y_7rk
https://oreil.ly/NYrJI

markup formats like Markdown, which are becoming familiar through
online discussion forums. And when you need to get fancy, you can include
complex equations using MathML or LaTeX formats, formatted source code
listings with numbered and linked callouts to text paragraphs, admonition
blocks of different kinds, and more.

AsciiDoc was introduced with a Python implementation in 2002. The cur‐
rent official implementation (and steward of the language) is Asciidoctor,
released in 2013. Its Ruby code can also be run in the JVM through Asciidoc‐
torJ (with Maven and Gradle plug-ins) or transpiled to JavaScript, all of
which work nicely in continuous integration environments. When you need
to build an entire site of related documentation (even from multiple reposi‐
tories), tools like Antora make it shockingly easy. The community is friendly
and supportive, and watching its growth and progress over the past year has
been inspiring. And, if it matters to you, the process of standardizing a for‐
mal AsciiDoc specification is underway.

I like creating rich, attractive documentation for the projects that I share.
AsciiDoc has made that so much easier, and given me such rapid turnaround
cycles, that polishing and perfecting that documentation has become fun. I
hope you find the same. And, coming full circle, if you decide to go all in
with AsciiDoc, there’s even a Doclet named Asciidoclet that lets you write
Javadoc using AsciiDoc!

97 Things Every Java Programmer Should Know6

https://oreil.ly/aRRvG
https://oreil.ly/UT8EP
https://oreil.ly/UT8EP
https://oreil.ly/E_6qn
https://antora.org
https://oreil.ly/PtWwa
https://oreil.ly/BaXa8
https://oreil.ly/H_rSW
https://oreil.ly/7sbtj
https://oreil.ly/9KgQq

Be Aware of Your
Container Surroundings
David Delabassee

There is a danger to containerizing legacy Java applications as is, with their
legacy Java Virtual Machine (JVM), because the ergonomics of those older
JVMs will be fooled when running inside Docker containers.

Containers have become the de facto runtime packaging mechanism. They
provide many benefits: a certain level of isolation, improved resource utiliza‐
tion, the ability to deploy applications across different environments, and
more. Containers also help reduce the coupling between an application and
the underlying platform, as that application can be packaged into a portable
container. This technique is sometimes used to modernize legacy applica‐
tions. In the case of Java, a container embeds a legacy Java application along
with its dependencies, including an older version of the JVM used by that
application.

The practice of containerizing legacy Java applications with their environ‐
ments can certainly help keep older applications running on modern, sup‐
ported infrastructure by decoupling them from older, unsupported
infrastructure. But the potential benefits of such a practice come with their
own set of risks due to the JVM ergonomics.

JVM ergonomics enables the JVM to tune itself by looking at two key envi‐
ronmental metrics: the number of CPUs and the available memory. With
these metrics, the JVM determines important parameters such as which
garbage collector to use, how to configure it, the heap size, the size of the
ForkJoinPool, and so on.

Linux Docker container support, added in JDK 8 update 191, allows the JVM
to rely on Linux cgroups to get the metrics of resources allocated to the con‐
tainer it runs in. Any JVM older than that is not aware that it is running
within a container and will access metrics from the host OS and not from the
container itself. And, given that in most cases a container is configured to

7

https://oreil.ly/h3hTh
https://oreil.ly/C_1AW
https://oreil.ly/nDIwb

only use a subset of the host resources, the JVM will rely on incorrect metrics
to tune itself. This quickly leads to an unstable situation in which the con‐
tainer will likely get killed by the host as it tries to consume more resources
than are available.

The following command shows which JVM parameters are configured by
the JVM ergonomics:

java -XX:+PrintFlagsFinal -version | grep ergonomic

JVM container support is enabled by default but can be disabled by using the
-XX:-UseContainerSupport JVM flag. Using this JVM flag in a container
with restricted resources (CPU and memory) allows you to observe and
explore the impact of JVM ergonomics with and without container support.

Running legacy JVMs in Docker containers is clearly not recommended. But
if that is the only option, the legacy JVM should at least be configured to not
exceed the resources allocated to the container it runs in. The ideal, obvious
solution is to use a modern, supported JVM (for example, JDK 11 or later)
that will not only be container-aware by default but will also provide an up-
to-date and secure runtime.

97 Things Every Java Programmer Should Know8

Behavior Is “Easy”;
State Is Hard
Edson Yanaga

When I was first introduced to object-oriented programming, some of the
very first concepts taught were the triple of polymorphism, inheritance, and
encapsulation. And to be honest, we spent quite some time trying to under‐
stand and code with them. But, at least for me, too much emphasis was
given to the first two, and very little to the third and most important of all:
encapsulation.

Encapsulation allows us to tame the growing state and complexity that is a
constant in the software development field. The idea that we can internalize
the state, hide it from other components, and offer only a carefully designed
API surface for any state mutation is core to the design and coding of com‐
plex information systems.

But, at least in the Java world, we have failed to spread some of the best prac‐
tices about the construction of well-encapsulated systems. JavaBean proper‐
ties on anemic classes that simply expose internal state through getters and
setters are common, and with Java Enterprise architectures we seem to have
popularized the concept that most—if not all—business logic should be
implemented in service classes. Within them we use getters to extract the
information, process them to get a result, and then put the result back into
our objects with setters.

And when the bugs bite, we dig through log files, use debuggers, and try to
figure out what’s happening with our code in production. It’s fairly “easy” to
spot bugs caused by behavior issues: pieces of code doing something they’re
not supposed to do. On the other hand, when our code seems to be doing the
right thing and we still have bugs, it becomes much more complicated. From
my experience, the hardest bugs to solve are the ones caused by inconsistent
state. You’ve reached a state in your system that shouldn’t happen, but there it
is—a NullPointerException for a property that was never supposed to be
null, a negative value that should only be positive, and so on.

9

The odds of finding the steps that led to such an inconsistent state are low.
Our classes have surfaces that are too mutable and too easily accessed: any
piece of code, anywhere in the system, can mutate our state without any kind
of checks or balances.

We sanitize user-provided inputs through validation frameworks, but that
“innocent” setter is still there allowing any piece of code to call it. And I
won’t even discuss the likelihood of someone using UPDATE statements
directly on the database to change some columns in database-mapped
entities.

How can we solve this problem? Immutability is one of the possible answers.
If we can guarantee that our objects are immutable, and the state consistency
is checked on object creation, we’ll never have an inconsistent state in our
system. But we have to take into account that most Java frameworks do not
cope very well with immutability, so we should at least aim to minimize
mutability. Having properly coded factory methods and builders can also
help us to achieve this minimally mutable state.

Therefore, don’t generate your setters automatically. Take time to think about
them. Do you really need that setter in your code? And if you decide that you
do, perhaps because of some framework requirement, consider using an anti‐
corruption layer to protect and validate your internal state after those setter
interactions.

97 Things Every Java Programmer Should Know10

Benchmarking Is Hard—
JMH Helps
Michael Hunger

Benchmarking on the JVM, especially microbenchmarking, is hard. It’s not
enough to throw a nanosecond measurement around a call or loop and be
done. You have to take into account warm-up, HotSpot compilation, code
optimizations like inlining and dead code elimination, multithreading, con‐
sistency of measurement, and more.

Fortunately, Aleksey Shipilëv, the author of many great JVM tools, contrib‐
uted JMH, the Java Microbenchmarking Harness, to the OpenJDK. It con‐
sists of a small library and a build system plug-in. The library provides
annotations and utilities to declare your benchmarks as annotated Java
classes and methods, including a BlackHole class to consume generated val‐
ues to avoid code elimination. The library also offers correct state handling
in the presence of multithreading.

The build system plug-in generates a JAR with the relevant infrastructure
code for running and measuring the tests correctly. That includes dedicated
warm-up phases, proper multithreading, running multiple forks and averag‐
ing across them, and much more.

The tool also outputs important advice on how to use the gathered data and
limitations thereof. Here is an example for measuring the impact of presizing
collections:

public class MyBenchmark {

 static final int COUNT = 10000;

 @Benchmark

 public List<Boolean> testFillEmptyList() {

 List<Boolean> list = new ArrayList<>();

 for (int i=0;i<COUNT;i++) {

 list.add(Boolean.TRUE);

 }

11

https://oreil.ly/gR0fd

 return list;

 }

 @Benchmark

 public List<Boolean> testFillAllocatedList() {

 List<Boolean> list = new ArrayList<>(COUNT);

 for (int i=0;i<COUNT;i++) {

 list.add(Boolean.TRUE);

 }

 return list;

 }

}

To generate the project and run it, you can use the JMH Maven archetype:

mvn archetype:generate \

-DarchetypeGroupId=org.openjdk.jmh \

-DarchetypeArtifactId=jmh-java-benchmark-archetype \

-DinteractiveMode=false -DgroupId=com.example \

-DartifactId=coll-test -Dversion=1.0

cd coll-test

add com/example/MyBenchmark.java

mvn clean install

java -jar target/benchmarks.jar -w 1 -r 1

...

JMH version: 1.21

...

Warmup: 5 iterations, 1 s each

Measurement: 5 iterations, 1 s each

Timeout: 10 min per iteration

Threads: 1 thread, will synchronize iterations

Benchmark mode: Throughput, ops/time

Benchmark: com.example.MyBenchmark.testFillEmptyList

...

Result "com.example.MyBenchmark.testFillEmptyList":

 30966.686 ±(99.9%) 2636.125 ops/s [Average]

97 Things Every Java Programmer Should Know12

 (min, avg, max) = (18885.422, 30966.686, 35612.643), stdev = 3519.152

 CI (99.9%): [28330.561, 33602.811] (assumes normal distribution)

Run complete. Total time: 00:01:45

REMEMBER: The numbers below are just data. To gain reusable insights,

you need to follow up on

why the numbers are the way they are. Use profilers (see -prof,

-lprof), design factorial

experiments, perform baseline and negative tests that provide

experimental control, make sure

the benchmarking environment is safe on JVM/OS/HW level, ask for

reviews from the domain experts.

Do not assume the numbers tell you what you want them to tell.

Benchmark Mode Cnt Score Error Units

MyBenchmark.testFillAllocatedList thrpt 25 56786.708 ± 1609.633 ops/s

MyBenchmark.testFillEmptyList thrpt 25 30966.686 ± 2636.125 ops/s

So we see that our preallocated collection is almost twice as fast as the default
instance because it doesn’t have to be resized during the addition of elements.

JMH is a powerful tool in your toolbox to write correct microbenchmarks. If
you run them in the same environment, they are even comparable, which
should be the main way of interpreting their results. They can also be used
for profiling purposes, as they provide stable, repeatable results. Aleksey has
much more to say about the topic if you’re interested.

Collective Wisdom from the Experts 13

https://oreil.ly/5zWU1

The Benefits of Codifying
and Asserting
Architectural Quality
Daniel Bryant

Your continuous delivery build pipeline should be the primary location
where agreed-upon architectural qualities for your applications are codified
and enforced. However, these automated quality assertions shouldn’t replace
continued team discussions about standards and quality levels, and they
should definitely not be used to avoid intra- or inter-team communication.
That said, checking and publishing quality metrics within the build pipeline
can prevent the gradual decay of architectural quality that might otherwise
be hard to notice.

If you’re wondering why you should test your architecture, the ArchUnit
motivation page has you covered. It starts with a familiar story: once upon a
time, an architect drew a series of nice architectural diagrams that illustrated
the components of the system and how they should interact. Then the
project got bigger and use cases more complex, new developers dropped in
and old developers dropped out. This eventually led to new features being
added in any way that fit. Before long, everything depended on everything,
and any change could have an unforeseeable effect on any other component.
I’m sure many readers will recognize this scenario.

ArchUnit is an open source, extensible library for checking the architecture
of your Java code by using a Java unit-test framework like JUnit or TestNG.
ArchUnit can check for cyclic dependencies and check dependencies
between packages and classes, and layers and slices, and more. It does all this
by analyzing Java bytecode and importing all classes for analysis.

To use ArchUnit in combination with JUnit 4, include the following depend‐
ency from Maven Central:

<dependency>

 <groupId>com.tngtech.archunit</groupId>

14

https://oreil.ly/q1OCY
https://oreil.ly/q1OCY
https://www.archunit.org

 <artifactId>archunit-junit</artifactId>

 <version>0.5.0</version>

 <scope>test</scope>

</dependency>

At its core, ArchUnit provides infrastructure to import Java bytecode into
Java code structures. You can do this using ClassFileImporter. You can
make architectural rules such as “services should be accessed only by con‐
trollers” by using a DSL-like fluent API, which can in turn be evaluated
against imported classes:

import static com.tngtech.archunit.lang.syntax.ArchRuleDefinition;

// ...

@Test

public void Services_should_only_be_accessed_by_Controllers() {

 JavaClasses classes =

 new ClassFileImporter().importPackages("com.mycompany.myapp");

 ArchRule myRule = ArchRuleDefinition.classes()

 .that().resideInAPackage("..service..")

 .should().onlyBeAccessed()

 .byAnyPackage("..controller..", "..service..");

 myRule.check(classes);

}

Extending the preceding example, you can also enforce more layer-based
access rules using this test:

@ArchTest

public static final ArchRule layer_dependencies_are_respected =

layeredArchitecture()

.layer("Controllers").definedBy("com.tngtech.archunit.eg.controller..")

.layer("Services").definedBy("com.tngtech.archunit.eg.service..")

.layer("Persistence").definedBy("com.tngtech.archunit.eg.persistence..")

.whereLayer("Controllers").mayNotBeAccessedByAnyLayer()

.whereLayer("Services").mayOnlyBeAccessedByLayers("Controllers")

.whereLayer("Persistence").mayOnlyBeAccessedByLayers("Services");

You can also ensure that naming conventions such as class name prefixes are
followed, or specify that a class named a certain way must be in an
appropriate package. GitHub contains a host of ArchUnit examples to get
you started and give you ideas.

You could attempt to detect and fix all of the architectural issues mentioned
here by having an experienced developer or architect look at the code once a

Collective Wisdom from the Experts 15

https://oreil.ly/Xv8CI

week, identify violations, and correct them. However, humans are notorious
for not acting consistently and, when the inevitable time pressures are placed
on a project, often the first thing to be sacrificed is manual verification.

A more practical method is to codify the agreed-upon architectural guide‐
lines and rules using automated tests, using ArchUnit or another tool, and
include them as part of your continuous integration build. Any issues can
then be quickly detected and fixed by the engineer who caused the issue.

97 Things Every Java Programmer Should Know16

Break Problems and Tasks
into Small Chunks
Jeanne Boyarsky

You’re learning to program. You receive a small assignment. You write under
a thousand lines of code. You type it in and test. Then you add print state‐
ments or use a debugger. Maybe you get coffee. Then you puzzle over what
you were thinking.

Sound familiar? And that’s just a toy problem. Work tasks and systems are
far larger. Big problems take time to solve. And worse, there is too much to
hold in your brain’s RAM.

A good way to deal with this is to break the problem into small chunks. The
smaller the better. If you can get that one small piece working, then you don’t
have to think about it anymore and can move on to the next piece. When
doing this well, you want to write automated tests for each small problem.
You should also commit frequently. That gives you a rollback point when
things don’t work as expected.

I remember helping out a teammate who was stuck. I asked when he had last
committed, because the easiest fix would be to roll back and reapply the
change. The answer was “a week ago.” Then he had two problems: the origi‐
nal one and that I wouldn’t help him debug a week’s worth of work.

After that experience, I ran a training session for my team on how to break
tasks into smaller chunks. I was told by the senior developers that their tasks
were “special” and “couldn’t possibly be broken up.” When you hear the word
special in relation to a task, you should immediately be suspicious.

I decided to schedule a second meeting. Everyone was responsible for bring‐
ing an example of a “special” task, and I would help them break it up. The
first example was a screen that was scheduled to take two weeks to develop. I
split it up like this:

17

• Create a hello world screen at the right URL—no fields, just prints hello
world.

• Add functionality to display a list from a database.
• Add a text area.
• Add a select pull-down.
• <A long list of more tiny tasks>

And guess what? After each of these tiny tasks, there could be a commit. This
means commits could happen many times a day.

Then I was told that this could be done for screens, but file processing was
“special.” Now what did I say about the word special? I split that up as well:

• Read a line from the file.
• Validate the first field, including the database call.
• Validate the second field and transform it using business logic.
• <A bunch of fields later>
• Apply the first business logic rule to all fields.
• <A bunch of rules later>
• Add a message to the queue.

Again, the task wasn’t special. If you think a task is special, pause and think
about why. Often you will find this technique still applies.

Finally, a developer told me he couldn’t commit his code in any less than a
week. The task wound up being reassigned to me. I did some extra commit‐
ting to make a point. Counting, I committed 22 times in the 2 days it took to
me complete the task. Maybe if he’d committed more frequently, it would
have been done faster!

97 Things Every Java Programmer Should Know18

Build Diverse Teams
Ixchel Ruiz

Years ago, a good doctor knew it all, did it all: set a fracture, performed sur‐
gery, drew blood. A good doctor was independent and self-sufficient, and
autonomy was highly valued.

Fast forward to today. Knowledge has exploded, surpassing the individual
and bringing about specialization. In order to provide an adequate solution
from beginning to end, many specialists will be involved, and different teams
will have to interact.

This is true in software development as well.

Cooperation is now one of the highest-valued traits in “good” professionals.
In the past, independence and self-sufficiency was enough to be “good.” Now
we all need to behave like pit crews: team members.

The challenge is to build teams that are both successful and diverse.

Four types of diversity—industry background, country of origin, career path,
and gender—positively correlate with innovation. In a homogenous team,
regardless of academic background, there may be redundant perspectives.
Women, for example, bring disruptive innovation.

How big is the impact? In management teams with a high gender diversity,
an increase of 8% in revenue from innovation has been observed.

Differences among group members can also be a source of insight—mem‐
bers with different backgrounds, experiences, and ideas increase the pool of
information, skills, and networks. With more perspectives, reaching consen‐
sus requires constructive debate. If the environment where ideas are
exchanged is positive, creative solutions will emerge naturally.

But increasing group diversity is not an easy task. Conflict can arise when
heterogeneous groups don’t communicate effectively or divide themselves
into factions. People prefer to collaborate with those similar to them. A
close-knit group will develop its own language and culture, and outsiders
will be distrusted. Distance, along with the pitfalls of mishaps in digital

19

communication, make software teams especially prone to the problems of
“us versus them” and incomplete information.

So how do we get the benefits of diversity and avoid the drawbacks?

The key in collaboration is developing psychological safety and trust within
your team.

When we are surrounded with people we can trust, even if they are different
from us, we’re more confident to take risks and experiment. When we trust
each other, we can look to others to provide information or perspective that
will help solve a challenging problem, thus creating opportunities for coop‐
eration. We can overcome vulnerable situations when feedback is requested.

In teams with psychological safety, it’s easier for people to believe that the
benefits of speaking up outweigh the costs. Participation leads to less resist‐
ance to change, and the more frequently people participate, the more likely
they are to offer novel ideas.

Personality matters in software development, too; it’s equally important to
build an environment of trust for different personalities. We all have a collea‐
gue who is willing to test every new library, framework, or tool, someone
thinking how to use or explore the new shiny red toy, sometimes with sur‐
prising results. Some are inclined to establish new processes, code format
styles, or templates for commit messages, and will remind us when we are
not following proper procedure. You may have teammates who will under‐
promise and overdeliver, and ones who are thinking of everything that can
go wrong: updating dependencies, installing patches, security risks, etc. Con‐
sider everyone’s differences, and don’t push too hard.

We can increase diversity in our teams in two dimensions: background and
personality. If we have good team dynamics and continue to build trust in
each other, we will be more successful as programmers.

97 Things Every Java Programmer Should Know20

Builds Don’t Have To Be
Slow and Unreliable
Jenn Strater

A while back, I was working at an early-stage start-up where the codebase
and development team were growing every day. As we added more and more
tests, the builds were taking longer and longer to run. At around the eight-
minute mark I started to notice it, which is why I remember that specific
number. From eight minutes, build times nearly doubled. At first, it was
kinda nice. I would kick off a build, go grab a coffee, and chat with cowork‐
ers on other teams. But after a few months, it became irritating. I’d had
enough coffee and I knew what everyone was working on, so I would check
Twitter or help other developers on my team while waiting for my builds to
finish. I would then have to context switch when I went back to my work.

The build was also unreliable. As is normal for any software project, we had
a number of flaky tests. The first, albeit naive, solution was to turn off the
tests (i.e., @Ignore) that were failing. Eventually, it got to the point where it
was easier to push the changes and rely on the continuous integration (CI)
server than to run the tests locally. The problem with this tactic was that it
moved the problem further down the line. If a test failed at the CI step, it
took much longer to debug. And if a flaky test passed initially and only
showed up after merging, it blocked the entire team until we determined
whether it was a legitimate issue.

Frustrated, I tried to fix some of the problematic tests. One test in particular
stands out in my mind. It only appeared when the entire test suite ran, so
each time I made a change, I had to wait 15-plus minutes for feedback. These
incredibly long feedback cycles and a general lack of relevant data meant I
wasted days tracking down this bug.

This isn’t just about one company, though. One of the advantages of being a
job hopper is that I’ve seen the way many different teams work. I thought
these issues were normal until I started at a company where we work on
exactly these problems.

21

Teams that follow Developer Productivity Engineering, the practice and phi‐
losophy of improving developer experience through data, are able to
improve their slow and unreliable builds. These teams are happier and have
higher throughput, making the business happier too.

No matter what build tool they are using, the people responsible for devel‐
oper productivity can effectively measure build performance and track outli‐
ers and regressions for both local and CI builds. They spend time analyzing
the results and finding bottlenecks in the build process. When something
does go wrong, they share the reports (e.g., Gradle build scans) with team‐
mates and compare failing and passing builds to pinpoint the exact
problem—even if they can’t reproduce the issues on their own machines.

With all this data, they can actually do something to optimize the process
and reduce the frustration developers are facing. This work is never done, so
they keep iterating to maintain developer productivity. It’s not an easy task,
but the teams who work at it are able to prevent the problems I described
from happening in the first place.

97 Things Every Java Programmer Should Know22

“But It Works on My
Machine!”
Benjamin Muschko

Have you ever joined a new team or project and had to try to find your way
around the infrastructure needed to build the source code on your develo‐
per’s machine? You’re not alone, and you may have had questions:

• What JDK version and distribution are required to compile the code?
• What if I’m running Linux, but everyone else is on Windows?
• What IDE do you use, and which version do I need?
• What version of Maven or other build tool do I need to install to prop‐

erly run through developer workflows?

I hope the answer you got to these questions wasn’t “Let me have a look at
the tools installed on my machine”—every project should have a clearly
defined set of tools that are compatible with the technical requirements to
compile, test, execute, and package the code. If you’re lucky, these require‐
ments are documented in a playbook or wiki, although as we all know, docu‐
mentation easily becomes outdated, and keeping the instructions in sync
with the latest changes takes concerted effort.

There’s a better way to solve the problem. In the spirit of infrastructure as
code, tooling providers came up with the wrapper, a solution that helps with
provisioning a standardized version of the build tool runtime without man‐
ual intervention. It wraps the instructions required to download and install
the runtime. In the Java space, you’ll find the Gradle Wrapper and the Maven
Wrapper. Even other tooling, like Bazel, Google’s open source build tool,
provides a launching mechanism.

Let’s see how the Maven Wrapper works in practice. You have to have the
Maven runtime installed on your machine to generate the so-called Wrapper
files. Wrapper files represent the scripts, configuration, and instructions
every developer of the project uses to build the project with a predefined

23

https://oreil.ly/CmZP1
https://oreil.ly/xu50T
https://oreil.ly/xu50T
https://oreil.ly/OY7R7

version of the Maven runtime. Consequently, those files should be checked
into SCM alongside the project source code for further distribution.

The following runs the Wrapper goal provided by the Takari Maven plug-in:

mvn -N io.takari:maven:0.7.6:wrapper

The following directory structure shows a typical Maven project augmented
by the Wrapper files, marked in bold:

.

├── .mvn

│ └── wrapper

│ ├── MavenWrapperDownloader.java

│ ├── maven-wrapper.jar

│ └── maven-wrapper.properties

├── mvnw

├── mvnw.cmd

├── pom.xml

└── src

 └── ...

With the Wrapper files in place, building the project on any machine is
straightforward: run your desired goal with the mvnw script. The script
automatically ensures the Maven runtime will be installed with the prede‐
fined version set in maven-wrapper.properties. Of course, the installation
process is only invoked if the runtime isn’t already available on the system.

The following command execution uses the script to run the goals clean and
install on a Linux, Unix, or macOS system:

./mvnw clean install

On Windows, use the batch script ending with the file extension .cmd:

mvnw.cmd clean install

What about running typical tasks in the IDE or from your CI/CD pipeline?
You’ll find other execution environments derive the same runtime configura‐
tion from the Wrapper definition as well. You just have to ensure the
Wrapper scripts are called to invoke the build.

Gone are the days of “But it works on my machine!”—standardize once,
build everywhere! Introduce the wrapper concept to any JVM project to
improve build reproducibility and maintainability.

97 Things Every Java Programmer Should Know24

https://oreil.ly/sI2pO

The Case Against Fat
JARs
Daniel Bryant

In modern Java web development, the thought of packaging and running
applications in anything other than a fat JAR is almost becoming heretical.
However, there can be distinct disadvantages to building and deploying these
artifacts. One obvious issue is the typically large size of fat JARs, which can
consume excess storage space and network bandwidth. In addition, the
monolithic build process can take a long time and cause developers to con‐
text switch while waiting. The lack of shared dependencies can also cause
inconsistency across the use of utilities, such as logging, and challenges with
integration of communication or serialization across services.

The use of fat JARs for deploying Java applications became popular alongside
the rise of the microservice architecture style, DevOps, and cloud-native
technologies, such as public cloud, containers, and orchestration platforms.
As applications were being decomposed into a collection of smaller services
that were being run and managed independently, it made sense from an
operational perspective to bundle all of the application code into a single exe‐
cutable binary. A single artifact is easier to keep track of, and the standalone
execution removes the need to run additional application servers. However,
some organizations are now bucking the trend and creating “skinny JARs.”

The HubSpot engineering team has discussed how the challenges listed
above were impacting their development life cycle in a blog post, “The Fault
in Our JARs: Why We Stopped Building Fat JARs”. They ultimately created a
new Maven plug-in: SlimFast. This plug-in differs from the classic Maven
Shade plug-in that the majority of Java developers are familiar with, in that it
separates the application code from the associated dependencies and accord‐
ingly builds and uploads two separate artifacts. It may sound inefficient to
build and upload the application dependencies separately, but this step
occurs only if the dependencies have changed. With many applications the
dependencies change infrequently, and so this step is often a no-op; the

25

https://oreil.ly/WqX2D
https://oreil.ly/WqX2D
https://oreil.ly/3Kf5Y

package dependencies’ JAR file is uploaded to remote storage only a minimal
number of times.

The SlimFast plug-in uses the Maven JAR plug-in to add a Class-Path mani‐
fest entry to the skinny JAR that points to the dependencies’ JAR file, and
generates a JSON file with information about all the dependency artifacts in
S3 so that these can be downloaded later. At deploy time, the build down‐
loads all of the application’s dependencies, but then caches these artifacts on
each of the application servers, so this step is usually a no-op as well. The net
result is that at build time, only the application’s skinny JAR is uploaded to
the remote storage, which is typically only a few hundred kilobytes. At
deploy time, only this same thin JAR needs to be downloaded to the target
deployment environment, which takes a fraction of a second.

One of the core ideas behind the emergence of DevOps is that the develop‐
ment and operations team (and all the other teams) should work together for
a common goal. The choice of deployment artifact format is an important
decision within the goal of being able to continuously deploy functionality to
end users. Everyone should collaborate in order to understand the require‐
ments in relation to how this impacts the developer experience and ability to
manage resources involved in deploying.

The SlimFast plug-in is currently tied to AWS S3 for the storage of artifacts,
but the code is available on GitHub, and the principles can be adapted for
any type of external storage.

97 Things Every Java Programmer Should Know26

The Code Restorer
Abraham Marin-Perez

Always remember, the person we’re really working for is the person who’s restor‐
ing the piece a hundred years from now. He’s the one we want to impress.

That quote is from Hobie, a character in Donna Tartt’s novel The Goldfinch.
Hobie is an antique furniture restorer. I am particularly thankful for this
quote because it beautifully expresses what I’ve always thought about code:
the best code is written thinking about the programmers that come after.

I think current software practices suffer from an illness caused by too much
haste. Much like trees in a crowded jungle, the aim is to outgrow the compe‐
tition. Trees competing for light often overstretch themselves, growing tall
and thin and becoming susceptible to small disturbances. Strong winds or
mild disease can make them collapse. I’m not saying we don’t need to look at
short-term benefits—in fact, I encourage it—just not at the expense of long-
term stability.

Today’s software industry is like these trees. Many “modern” teams focus
only on the next week or month. Companies struggle just to live another day,
another sprint, another cycle. And nobody seems to worry about this. Devel‐
opers can always find another job, and so can managers. Entrepreneurs can
try and cash out before the company has lost its value. So can the VC that
backed the initial investment. Too often, the key to success lies in timing the
exit so as to leave just before people realize that the amazing growth was just
a tumor.

On the other hand, maybe that’s not so bad. Some pieces of furniture are
meant to last hundreds of years, and some will likely crumble within a dec‐
ade. You can spend thousands at Sotheby’s on a china cabinet—or go to
IKEA and probably furnish your whole house. Maybe we just need to under‐
stand this new economy we’ve created, where everything is ephemeral and
transient. Assets aren’t expected to last long, just long enough. We aren’t sup‐
posed to create things that stand the test of time, just the test of profit.

27

And yet I believe there is a middle point, a new role beginning to take form:
the code restorer. Doing something that lasts forever at the first go is so
expensive that it isn’t worth it, but focusing only on short-term profit will
create code that collapses under its own weight. This is where the code
restorer comes in, somebody whose job isn’t to “recreate the same thing but
better” (a common wish that almost always fails), but rather to take the exist‐
ing codebase and slowly reshape it to make it manageable again. Add some
tests here, break down that ugly class there, remove unused functionality,
and give it back improved.

We, as programmers, have to decide what kind of software we want to build.
We can focus on profit for a while, build up something that holds, but at
some point we have to choose between durability, carefully reshaping the
code, or profit, abandoning it and starting afresh. After all, profits are essen‐
tial, but some things are bigger than money.

97 Things Every Java Programmer Should Know28

Concurrency on the JVM
Mario Fusco

Originally, raw threads were the only concurrency model available on the
JVM, and they’re still the default choice for writing parallel and concurrent
programs in Java. When Java was designed 25 years ago, however, the hard‐
ware was dramatically different. The demand for running parallel applica‐
tions was lower, and the concurrency advantages were limited by the lack of
multicore processors—tasks could be decoupled, but not executed
simultaneously.

Nowadays, the availability and expectation of parallelization has made the
limitations of explicit multithreading clear. Threads and locks are too low-
level: using them correctly is hard; understanding the Java Memory Model
even harder. Threads that communicate through shared mutable state are
unfit for massive parallelism, leading to nondeterministic surprises when
access isn’t properly synchronized. Moreover, even if your locks are arranged
correctly, the purpose of a lock is to restrict threads running in parallel, thus
reducing the degree of parallelism of your application.

Because Java does not support distributed memory, it’s impossible to scale
multithreaded programs horizontally across multiple machines. And if writ‐
ing multithreaded programs is difficult, testing them thoroughly is nearly
impossible—they frequently become a maintenance nightmare.

The simplest way to overcome the shared memory limitations is to coordi‐
nate threads via distributed queues instead of locks. Here, message passing
replaces shared memory, which also improves decoupling. Queues are good
for unidirectional communication but may introduce latency.

Akka makes the actor model, popularized by Erlang, available on the JVM,
and is more familiar to Scala programmers. Each actor is an object responsi‐
ble for manipulating only its own state. Concurrency is implemented with
message flow between actors, so they can be seen as a more structured way of
using queues. Actors can be organized in hierarchies, providing for built-in
fault tolerance and recovery through supervision. Actors also have some
drawbacks: untyped messages don’t play well with Java’s current lack of

29

pattern matching, message immutability is necessary but cannot currently be
enforced in Java, composition can be awkward, and deadlocking between
actors is still possible.

Clojure takes a different approach with its built-in software transactional
memory, turning the JVM heap into a transactional data set. Like a regular
database, data is modified with (optimistic) transactional semantics. A trans‐
action is automatically retried when it runs into some conflict. This has the
advantage of being nonblocking, eliminating many problems associated with
explicit synchronization. This makes them easy to compose. Additionally,
many developers are familiar with transactions. Unfortunately, this approach
is inefficient in massively parallel systems where concurrent writes are more
likely. In these situations retries are increasingly costly and performance can
become unpredictable.

Java 8 lambdas promote the use of functional programming properties in
code, such as immutability and referential transparency. While the actor
model reduces the consequences of mutable state by preventing sharing,
functional programming makes the state shareable because it prohibits
mutability. Parallelizing code made of pure, side-effect-free functions can be
trivial, but a functional program can be less time efficient than its imperative
equivalent and may place a bigger burden on the garbage collector. Lambdas
also facilitate the use of the reactive programming paradigm in Java consist‐
ing in asynchronous processing of streams of events.

There is no silver bullet for concurrency, but there are many different
options with different trade-offs. Your duty as a programmer is to know
them and choose the one that best fits the problem at hand.

97 Things Every Java Programmer Should Know30

CountDownLatch—Friend
or Foe?
Alexey Soshin

Let’s imagine a situation in which we’d like to launch multiple concurrent
tasks, and then wait on their completion before proceeding further. The
ExecutorService makes the first part easy:

ExecutorService pool = Executors.newFixedThreadPool(8);

Future<?> future = pool.submit(() -> {

 // Your task here

});

But how do we wait for all of them to complete? CountDownLatch comes to
our rescue. A CountDownLatch takes the number of invocations as a con‐
structor argument. Each task then holds a reference to it, calling the count
Down method when the task completes:

int tasks = 16;

CountDownLatch latch = new CountDownLatch(tasks);

for (int i = 0; i < tasks; i++) {

 Future<?> future = pool.submit(() -> {

 try {

 // Your task here

 }

 finally {

 latch.countDown();

 }

 });

}

if (!latch.await(2, TimeUnit.SECONDS)) {

 // Handle timeout

}

31

This example code will launch 16 tasks, then wait for them to finish before
proceeding further. There are some important points to take note of, though:

1. Make sure that you release the latch in a finally block. Otherwise, if an
exception occurs, your main thread may wait forever.

2. Use the await method that accepts a timeout period. That way, even if
you forget about the first point, your thread will wake up sooner or later.

3. Check the return value of the method. It returns false if the time has
elapsed, or true if all the tasks managed to complete on time.

As mentioned earlier, CountDownLatch receives its count on creation. It can
be neither increased nor reset. If you’re looking for capabilities that are simi‐
lar to those of CountDownLatch but with the ability to reset the count, you
should check out CyclicBarrier instead.

CountDownLatch is useful in many different situations. It becomes especially
useful when you’re testing your concurrent code, since it allows you to make
sure that all the tasks are complete before checking their results.

Consider the following real-world example. You have a proxy and an embed‐
ded server, and you’d like to test that when the proxy is called, it invokes the
correct endpoint on your server.

Obviously, it doesn’t make much sense to issue a request before both the
proxy and server have started. One solution is to pass a CountDownLatch to
both methods, and continue with the test only when both parties are ready:

CountDownLatch latch = new CountDownLatch(2);

Server server = startServer(latch);

Proxy proxy = startProxy(latch);

boolean timedOut = !latch.await(1, TimeUnit.SECONDS);

assertFalse(timedOut, "Timeout reached");

// Continue with test if assertion passes

You just need to make sure that both the startServer and startProxy
methods call latch.countDown once they have successfully started.

CountDownLatch is very useful, but there’s one important catch: you shouldn’t
use it in production code that makes use of concurrent libraries or frame‐
works, such as Kotlin’s coroutines, Vert.x, or Spring WebFlux. This is because
CountDownLatch blocks the current thread. Different concurrency models
don’t play well together.

97 Things Every Java Programmer Should Know32

Declarative Expression Is
the Path to Parallelism
Russel Winder

In the beginning, Java was an imperative, object-based programming
language. Indeed, it still is. Over the years, though, Java has evolved, at
each stage becoming more and more a language of declarative expression.
Imperative is all about the code explicitly telling the computer what to do.
Declarative is about the code expressing a goal abstracting over the way in
which the goal is achieved. Abstraction is at the heart of programming, and
so the move from imperative code to declarative code is a natural one.

At the core of declarative expression is the use of higher-order functions,
functions that take functions as parameters and/or return functions. This
was not an integral part of Java originally, but with Java 8 it moved front and
center: Java 8 was a turning point in the evolution of Java, allowing replace‐
ment of imperative expression with declarative expression.

An example—trivial but nonetheless indicative of the main issue—is to write
a function that returns a List containing the squares of the argument List
to the function. Imperatively, we might write:

List<Integer> squareImperative(final List<Integer> datum) {

 var result = new ArrayList<Integer>();

 for (var i = 0; i < datum.size(); i++) {

 result.add(i, datum.get(i) * datum.get(i));

 }

 return result;

}

The function creates an abstraction over some low-level code, hiding the
details from the code that uses it.

With Java 8 and beyond, we can use streams and express the algorithm in a
more declarative way:

33

List<Integer> squareDeclarative(final List<Integer> datum) {

 return datum.stream()

 .map(i -> i * i)

 .collect(Collectors.toList());

}

This sets out at a higher level of expression of what is to be done; the details
of how are left to the library implementation. Classic abstraction. True, the
implementation is within a function that already abstracts and hides, but
which would you rather maintain: the low-level imperative implementation
or the high-level declarative implementation?

Why is this such a big deal? The above is a classic example of an embarrass‐
ingly parallel computation. The evaluation of each result depends only on
one item of input; there is no coupling. So we can write:

List<Integer> squareDeclarative(final List<Integer> datum) {

 return datum.parallelStream()

 .map(i -> i * i)

 .collect(Collectors.toList());

}

Doing so, we will get the maximum parallelism that the library is able to
extract from the platform. Because we are abstracting away from the details
of how, focusing only on the goal, we can turn a sequential data-parallel
computation into a parallel one trivially.

It will be left as an exercise for the reader to (attempt to) write a parallel ver‐
sion of the imperative code should they so wish. Why? Because for data par‐
allel problems, using Streams is the right abstraction. To do anything else is
to deny the Java 8 evolution of Java.

97 Things Every Java Programmer Should Know34

Deliver Better Software,
Faster
Burk Hufnagel

For me, Deliver Better Software, Faster is a guiding principle, and one I
strongly recommend you adopt because it describes what must happen to
keep your users happy. In addition (and perhaps more importantly), follow‐
ing it can result in a more enjoyable and interesting career. To see how, let’s
examine the three parts of this important idea:

1. Deliver means taking responsibility for more than just writing and
debugging code. Despite appearances, you aren’t paid to write code.
You’re paid to make it easier for your users to do something they find
valuable, and until your code is running in production, they won’t bene‐
fit from your hard work.
Changing your focus from writing code to delivering software requires
understanding the overall process for getting your changes into produc‐
tion and then doing two key things:
• Making sure you aren’t doing things that hinder the process, like

guessing the meaning of a vague requirement instead of asking for
clarification before implementing it.

• Making sure you are doing things that speed up the process, like writ‐
ing and running automated tests to show your code meets the accept‐
ance criteria.

2. Better Software is shorthand for two ideas you should already be familiar
with: “building the right thing” and “building the thing right.” The first
means ensuring that what you’ve written meets all the requirements and
acceptance criteria. The second is about writing code that is easily
understood by another programmer so they can successfully fix bugs or
add new features.

35

While this may sound easy to do, especially if you follow a practice like
test-driven development (TDD), many teams tend to lean one way or the
other:
• Nonprogrammers might push developers to take shortcuts to deliver

new features sooner, with promises to come back and “do it right”
later.

• Sometimes programmers who just learned something will try to use it
everywhere possible, even if they know a simpler solution would work
just as well.

In either case, the balance is lost and the resulting technical debt increa‐
ses the time needed to deliver value to your users until the balance is
regained.

3. Faster refers to both Deliver and Better Software, and could be a chal‐
lenging goal because people trying to do complicated things quickly tend
to make mistakes. To me, the obvious solution includes:
• Using a process like TDD to create automated tests, then regularly

running the automated unit, integration, and user acceptance tests to
verify the system’s behavior.

• Building and running an automated process that runs all the tests in
multiple environments and, assuming they all pass, deploys the code
to production.

Both of these processes will be done multiple times and require great
attention to detail—just the sort of task a computer does faster and more
accurately than a person. That’s good because I have one more recom‐
mendation: deploy changes to production more often so each deploy‐
ment has fewer changes and is therefore less likely to have problems, and
your users get the benefits of your work sooner.

Adopting Deliver Better Software, Faster as a guiding principle is both chal‐
lenging and fun. Be aware that it will take time to find and fix all the places
that need work, but the rewards are worth it.

97 Things Every Java Programmer Should Know36

Do You Know What Time
It Is?
Christin Gorman

At what time does the Scandinavian Airlines plane from Oslo to Athens
arrive on Monday? Why are questions that seem so easy in day-to-day life so
difficult in programming? Time should be simple, just seconds passing,
something a computer is very good at measuring:

System.currentTimeMillis() = 1570964561568

Although correct, 1570964561568 is not what we want when we ask what
time it is. We prefer 1:15 p.m., October 13, 2019.

It turns out that time is two separate things. On the one hand, we have sec‐
onds passing. On the other, we have an unhappy marriage between astron‐
omy and politics. Answering the question “What time is it?” depends on the
location of the sun in the sky relative to your position along with the political
decisions made in that region up to that point in time.

Many of the problems we have with date and time in code come from mixing
these two concepts. Using the latest java.time library (or Noda Time
in .NET) will help you. Here are three main concepts to help you reason cor‐
rectly about time: LocalDateTime, ZonedDateTime, and Instant.

LocalDateTime refers to the concept 1:15 p.m., October 13, 2019. There can
be any number of these on the timeline. Instant refers to a specific point on
the timeline. It is the same in Boston as in Beijing. To get from a LocalDate
Time to an Instant, we need a TimeZone, which comes with Coordinated
Universal Time (UTC) offsets and daylight saving time (DST) rules at the
time. ZonedDateTime is a LocalDateTime with a TimeZone.

Which ones do you use? There are so many pitfalls. Let me show you a few.
Let’s say we’re writing software to organize an international conference. Will
this work?

37

https://nodatime.org

public class PresentationEvent {

 final Instant start, end;

 final String title;

}

Nope.

Although we need to represent a particular point in time, for future events,
even when we know the time and the time zone, we cannot know the instant
ahead of time because DST rules or UTC offsets might change between now
and then. We need a ZonedDateTime.

How about regularly occurring events, like a flight? Will this work?

public class Flight {

 final String flightReference;

 final ZonedDateTime departure, arrival;

}

Nope.

This can fail twice a year. Imagine a flight leaving Saturday at 10:00 p.m. and
arriving Sunday at 6:00 a.m. What happens when we move the clock back an
hour because of daylight savings? Unless the aircraft circles uselessly during
the extra hour, it’s going to land at 5:00 a.m., not 6:00 a.m. When we move
ahead one hour, it’ll arrive at 4:00 a.m. For recurring events with duration,
we cannot fix both the start and the end. Here’s what we need:

public class Flight {

 final String flightReference

 final ZonedDateTime departure;

 final Duration duration;

}

What about events that start at 2:30 a.m.? Which one? There may be two, or
it might not exist at all. In Java, the following methods handle the autumnal
DST transition:

ZonedDateTime.withEarlierOffsetAtOverlap()

ZonedDateTime.withLaterOffsetAtOverlap()

In Noda Time, specify both DST transitions explicitly with Resolvers.

I have only scratched the surface of potential issues, but as they say, good
tools are half the work. Use java.time (or Noda Time), and you’ve saved
yourself a lot of errors.

97 Things Every Java Programmer Should Know38

Don’t hIDE Your Tools
Gail Ollis

What is the one essential tool every Java programmer needs? Eclipse? IntelliJ
IDEA? NetBeans? No. It’s javac. Without it, all you have is files of weird-
looking text. It is possible to do the job without integrated development envi‐
ronments (IDEs)—ask people like me who programmed in the olden days. It
is not possible to program without essential development tools.

Given that they are central to the task, it’s surprising how rarely people use
tools like javac directly. While knowing how to make effective use of an IDE
is important, understanding what it is doing, and how, is crucial.

Once upon a time, I worked on a project with two subsystems, one in C++
and the other in Java. C++ programmers worked with their editor of choice
and the command line. Java programmers used an IDE. One day, the incan‐
tation to interact with the version control system changed. It was a simple
command-line change for the C++ programmers, who went on their way
without delay. The Java team spent the whole morning wrestling with their
Eclipse configuration. They finally got back to productive work in the
afternoon.

This unfortunate story doesn’t reflect well on the Java team’s mastery of their
chosen tools. But it also illustrates how distanced they were in their day-to-
day work from the essential tools of their trade by working exclusively in an
IDE. Information hiding is a great principle for enabling focus on a useful
abstraction rather than a mass of detail, for sure. But it implies a choice to
delve into details only when relevant, not ignorance of the details.

Relying solely on an IDE can undermine a programmer’s mastery of their
tools because the IDE purposely hides the nuts and bolts. The configuration
—often just a case of following someone else’s instructions—can be forgotten
as soon as it’s done. There are many advantages to also knowing how to use
the essential tools directly:

• “It works on my machine” scenarios are less likely and simpler to resolve
if you understand the relationships among tools, source code, other

39

resources, and generated files. It also helps with knowing what to pack‐
age for installation.

• It’s extraordinarily quick and easy to set different options. Start with
commands like javac --help so you can see what those options are.

• Familiarity with the essential tools is valuable when helping people who
use a different environment. It also helps when something goes wrong;
it’s hard to troubleshoot when integrated tools are not working. Visibility
is better on the command line and you can isolate parts of the process,
just as you would when debugging code.

• You have access to a richer tool set. You can integrate any combination
of tools that have a command-line interface (for example, scripts or
Linux commands), not just those supported in the IDE.

• End users will not run your code in an IDE! In the interest of good user
experience, test from the start by running the code as it will be run on a
user’s machine.

None of this denies the benefits of an IDE. But to be truly skilled at your
craft, understand your essential tools and don’t let them get rusty.

97 Things Every Java Programmer Should Know40

Don’t Vary Your Variables
Steve Freeman

I try to make as many variables as possible final because I find it easier to
reason about immutable code. It makes my coding life simpler, which is a
high priority for me—I’ve spent too much time trying to figure out exactly
how the contents of a variable change throughout a block of code. Of course,
Java’s support for immutability is more limited than some other languages,
but there are still things we can do.

Assign Once
Here’s a small example of a structure I see everywhere:

Thing thing;

if (nextToken == MakeIt) {

 thing = makeTheThing();

} else {

 thing = new SpecialThing(dependencies);

}

thing.doSomethingUseful();

To me this doesn’t irrevocably express that we’re going to set the value of
thing before we use it and not change it again. It takes me time to walk
through the code and figure out that it won’t be null. It’s also an accident
waiting to happen when we need to add more conditions and don’t quite get
the logic right. Modern IDEs will warn about an unset thing—but then lots
of programmers ignore warnings. A first fix would be to use a conditional
expression:

final var thing = nextToken == MakeIt

 ? makeTheThing()

 : new SpecialThing(dependencies);

thing.doSomething();

The only way through this code is to assign thing a value.

41

A next step is to wrap up this behavior in a function to which I can give a
descriptive name:

final var thing = aThingFor(nextToken);

thing.doSomethingUseful();

private Thing aThingFor(Token aToken) {

 return aToken == MakeIt

 ? makeTheThing()

 : new SpecialThing(dependencies);

}

Now the life cycle of thing is easy to see. Often this refactoring shows that
thing is only used once, so I can remove the variable:

aThingFor(aToken).doSomethingUseful();

This approach sets us up for when, inevitably, the condition becomes more
complicated; note that the switch statement is simpler without the need for
repeated break clauses:

private Thing aThingFor(Token aToken) {

 switch (aToken) {

 case MakeIt:

 return makeTheThing();

 case Special:

 return new SpecialThing(dependencies);

 case Green:

 return mostRecentGreenThing();

 default:

 return Thing.DEFAULT;

 }

}

Localize Scope
Here’s another variant:

var thing = Thing.DEFAULT;

// lots of code to figure out nextToken

if (nextToken == MakeIt) {

 thing = makeTheThing();

}

thing.doSomethingUseful();

97 Things Every Java Programmer Should Know42

This is worse because the assignments to thing aren’t close together and
might not even happen. Again, we extract this into a supporting method:

final var thing = theNextThingFrom(aStream);

private Thing theNextThingFrom(Stream aStream) {

 // lots of code to figure out nextToken

 if (nextToken == MakeIt) {

 return makeTheThing();

 }

 return Thing.DEFAULT;

}

Alternatively, separating concerns further:

final var thing = aThingForToken(nextTokenFrom(aStream));

Localizing the scope of anything that is variable into a supporting method
makes the top-level code predictable. Finally, although some coders aren’t
used to it, we could try a streaming approach:

final var thing = nextTokenFrom(aStream)

 .filter(t -> t == MakeIt)

 .findFirst()

 .map(t -> makeTheThing())

 .orElse(Thing.DEFAULT);

I’ve regularly found that trying to lock down anything that does not vary
makes me think more carefully about my design and flushes out potential
bugs. It forces me to be clear about where things can change and to contain
such behavior into local scopes.

Collective Wisdom from the Experts 43

Embrace SQL Thinking
Dean Wampler

Look at this query:

SELECT c.id, c.name, c.address, o.items FROM customers c

JOIN orders o

ON o.customer_id = c.id

GROUP BY c.id

We acquire all the customers who have orders, including their names and
addresses, along with the details of their orders. Four lines of code. Anyone
with a little SQL experience, including nonprogrammers, can understand
this query.

Now think about a Java implementation. We might declare classes for
Customer and Order. I remember well-meaning consultants saying we
should also create classes to encapsulate collections of them, rather than
use “naked” Java collections. We still need to query the database, so we pull
in an object-relational mapper (ORM) tool and write code for that. Four
lines of code quickly turn into dozens or even hundreds of lines. The few
minutes it took to write and refine the SQL query stretch into hours or days
of editing, writing unit tests, code reviews, and so on.

Can’t we just implement the whole solution with only the SQL query? Are we
sure we can’t? Even if we really can’t, can we eliminate waste and write only
what’s essential? Consider the qualities of the SQL query:

We don’t need a new table for the join output, so we don’t create one.
The biggest failing of applied object-oriented programming has been the
belief that you should faithfully reproduce your domain model in code.
In reality, a few core type definitions are useful for encapsulation and
understanding, but tuples, sets, arrays, and so forth are all we need the
rest of the time. Unnecessary classes become a burden as the code
evolves.

44

The query is declarative.
Nowhere does it tell the database how to do the query; it just states the
relational constraints the database must satisfy. Java is an imperative lan‐
guage, so we tend to write code that says what to do. Instead, we should
declare constraints and desired outcomes, and then isolate the how
implementation in one place or delegate to a library that can implement
it for us. Like functional programming, SQL is declarative. In functional
programming, equivalent declarative implementations are achieved
using composable primitives, such as map, filter, reduce, and so on.

The domain-specific language (DSL) is well matched to the problem.
DSLs can be somewhat controversial. It’s very hard to design a good one,
and the implementations can be messy. SQL is a data DSL. It’s quirky, but
its longevity is proof of how well it expresses typical data-processing
needs.

All applications are really data applications. At the end of the day, everything
we write is a data manipulation program, whether or not we think of it that
way. Embrace that fact and the unnecessary boilerplate will reveal itself,
allowing you to write only what’s essential.

Collective Wisdom from the Experts 45

Events Between Java
Components
A.Mahdy AbdelAziz

One of the core concepts of object orientation in Java is that every class can
be considered to be a component. Components can be extended or included
to form bigger components. The final application is also considered a com‐
ponent. Components are like Lego blocks that build up a bigger structure.

An event in Java is an action that changes the state of a component. For
example, if your component is a button, then clicking on that button is an
event that changes the state of the button to be clicked.

Events do not necessarily happen only on visual components. For example,
you can have an event on a USB component that a device is connected. Or an
event on a network component that data is transferred. Events help to decou‐
ple the dependencies between components.

Assume we have an Oven component and a Person component. These two
components exist in parallel and work independently of one another. We
should not make Person part of Oven, nor the other way around. To build a
smart house, we want the Oven to prepare food once Person is hungry. Here
are two possible implementations:

1. Oven checks Person in fixed, short intervals. This annoys Person and is
also expensive for Oven if we want it to check on multiple instances of
Person.

2. Person comes with a public event, Hungry, to which Oven is subscribed.
Once Hungry is fired, Oven is notified and starts preparing food.

The second solution uses the event architecture to handle the listening and
communication between components efficiently and without a direct cou‐
pling between Person and Oven, because Person will fire the event, and any

46

component, such as Oven, Fridge, and Table, can listen to that event without
any special handling from the Person component.

Implementing events for a Java component can take different forms, depend‐
ing on how they are expected to be handled. To implement a minimal Hunger
Listener in the Person component, first, create a listener interface:

@FunctionalInterface

public interface HungerListener {

 void hungry();

}

Then, in the Person class, define a list to store the listeners:

private List<HungerListener> listeners = new ArrayList<>();

Define an API to insert a new listener:

public void addHungerListener(HungerListener listener) {

 listeners.add(listener);

}

You can create a similar API for removing a listener. Also, add a method to
trigger the action of being hungry to notify all listeners of the event:

public void becomesHungry() {

 for (HungerListener listener : listeners)

 listener.hungry();

}

Finally, from the Oven class, add code that listens to the event and imple‐
ments the action when the event is fired:

Person person = new Person();

person.addHungerListener(() -> {

 System.err.println("The person is hungry!");

 // Oven takes action here

});

And to try it out:

person.becomesHungry();

For fully decoupled code, the last section should be in an independent class
that has an instance of Person and Oven, and handles the logic between
them. Similarly, we can add other actions for Fridge, Table, and so on. They
all will get notified only once the Person becomesHungry.

Collective Wisdom from the Experts 47

Feedback Loops
Liz Keogh

• Because our product managers don’t know what they want, they find out
from the customers. They sometimes get this wrong.

• Because our product managers don’t know everything about systems,
they invite other experts to become stakeholders in the project. The
stakeholders get it wrong.

• Because I don’t know what to code, I find out from our product manag‐
ers. We sometimes get this wrong.

• Because I make mistakes while writing code, I work with an IDE. My
IDE corrects me when I’m wrong.

• Because I make mistakes in understanding the existing code, I use a stat‐
ically typed language. The compiler corrects me when I’m wrong.

• Because I make mistakes while thinking, I work with a pair. My pair cor‐
rects me when I’m wrong.

• Because my pair is human and also makes mistakes, we write unit tests.
Our unit tests correct us when we’re wrong.

• Because we have a team that is also coding, we integrate with their code.
Our code won’t compile if we’re wrong.

• Because our team makes mistakes, we write acceptance tests that exer‐
cise the whole system. Our acceptance tests will fail if we’re wrong.

• Because we make mistakes writing acceptance tests, we get three amigos
together to talk through them. Our amigos will tell us if we’re wrong.

• Because we forget to run the acceptance tests, we get our build to run
them for us. Our build will tell us if we’re wrong.

• Because we didn’t think of every scenario, we get testers to explore the
system. Testers will tell us if it’s wrong.

• Because we only made it work on Henry’s laptop, we deploy the system
to a realistic environment. The tests will tell us if it’s wrong.

48

• Because we sometimes misunderstand our product manager and other
stakeholders, we showcase the system. Our stakeholders will tell us if
we’re wrong.

• Because our product manager sometimes misunderstands the people
that want the system, we put the system in production. The people who
want it tell us if we’re wrong.

• Because people notice things going wrong more than things going right,
we don’t just rely on opinions. We use analytics and data. The data will
tell us if we’re wrong.

• Because the market keeps changing, even if we were right before, eventu‐
ally we’ll be wrong.

• Because it costs money to get it wrong, we do all these things as often as
we can. That way we are only ever a little bit wrong.

• Don’t worry about getting it right. Worry about how you’ll know it’s
wrong, and how easy it will be to fix when you find out. Because it’s
probably wrong.

• It’s OK to be wrong.

Collective Wisdom from the Experts 49

Firing on All Engines
Michael Hunger

Traditional Java profilers use either byte code instrumentation or sampling
(taking stack traces at short intervals) to determine where time was spent.
Both approaches add their own skews and oddities. Understanding the out‐
put of those profilers is an art of its own and requires quite some experience.

Fortunately, Brendan Gregg, a performance engineer at Netflix, came up
with flame graphs, an ingenious kind of diagram for stack traces that can be
gathered from almost any system.

A flame graph sorts and aggregates the traces up to each stack level, so that
their count per level represents the percentage of the total time spent in that
part of the code. Rendering those blocks as actual blocks (rectangles) with
the width being proportional to the percentage and stacking the blocks onto
each other turned out to be very useful.

The “flames” represent from bottom to top the progression from the entry
point of the program or thread (main or an event loop) to the leaves of the
execution in the tips of the flames. Note that the left-to-right order has no
significance; often, it’s just alphabetical sorting. The same is true for colors.
Only the relative widths and stack depths are relevant.

You can immediately see if certain parts of the program take an unexpectedly
large amount of time. The higher up in the diagram that happens, the worse

50

https://oreil.ly/dhd5O
https://oreil.ly/2kCDd

it is. Especially if you have a flame that’s very wide on top, you know you’ve
found a bottleneck that is not delegating work elsewhere. After fixing the
issue, measure again, and if the overall performance issue persists, revisit the
diagram for new indications.

To address the shortcomings of traditional profilers, many modern tools
make use of an internal JVM feature (AsyncGetCallTrace) that allows the
gathering of stack traces outside of safepoints. Additionally, they combine
measurement of JVM operations with native code and system calls to the
operating system so that time spent in network, input/output (I/O), or
garbage collection can become part of the flame graph as well.

Tools like Honest Profiler, perf-map-agent, async-profiler, and even IntelliJ
IDEA make capturing the information and generating flame graphs really
easy.

In most cases, you just download the tool, provide the process ID (PID) of
your Java process, and tell the tool to run for a certain amount of time and
generate the interactive scalable vector graphics (SVG):

download and unzip async profiler for your OS from:

https://github.com/jvm-profiling-tools/async-profiler

./profiler.sh -d <duration> -f flamegraph.svg -s -o svg <pid> && \

open flamegraph.svg -a "Google Chrome"

The SVG that the tools produce is not just colorful but also interactive. You
can zoom into sections, search for symbols, and more.

Flame graphs are an impressively powerful tool to quickly get an overview of
the performance characteristics of your programs; you can see hotspots
immediately and focus on those. Including non-JVM aspects also helps with
the bigger picture.

Collective Wisdom from the Experts 51

Follow the Boring
Standards
Adam Bien

At the beginning of the Java age, there were dozens of incompatible applica‐
tion servers on the market, and the server vendors followed completely dif‐
ferent paradigms. Some servers were even partially implemented in native
languages like C++. Understanding multiple servers was hard, and porting
an application from one server to another was nearly impossible.

APIs like JDBC (introduced with JDK 1.1), JNDI (introduced with JDK 1.3),
JMS, JPA, or Servlets abstracted, simplified, and unified already established
products. EJBs and CDI made the deployment and programming models
vendor agnostic. J2EE, later Java EE and now Jakarta EE, and MicroProfile
defined a minimal set of APIs an application server had to implement. With
the advent of J2EE, a developer only had to know a set of J2EE APIs to
develop and deploy an application.

Although the servers evolved, the J2EE and Java EE APIs remained compati‐
ble. You never had to migrate your application to run on a newer release of
the application server. Even upgrading to a higher Java EE version was pain‐
less. You only had to re-test the application without even recompiling it.
Only if you wanted to take advantage of newer APIs did you have to refactor
the application. With the introduction of J2EE, developers could master mul‐
tiple application servers without delving too deep into their specifics.

We have a very similar situation in the web/JavaScript ecosystem right now.
Frameworks like jQuery, Backbone.js, AngularJS 1, Angular 2+ (completely
different from AngularJS 1), ReactJS, Polymer, Vue.js, and Ember.js follow
completely different conventions and paradigms. It has become hard to mas‐
ter multiple frameworks at the same time. The initial goal of many frame‐
works was to address incompatibility issues among different browsers. As
browsers became surprisingly compatible, frameworks started to support
data binding, unidirectional data flow, and even enterprise Java features like
dependency injection.

52

At the same time, browsers became not only more compatible but also pro‐
vided features previously available only with third-party frameworks. The
function querySelector is available in all browsers and provides comparable
functionality to jQuery’s DOM access capabilities. Web Components with
Custom Elements, Shadow DOM, and Templates enable developers to define
new elements containing UI and behavior, and even to structure entire appli‐
cations. As of ECMAScript 6, JavaScript became more similar to Java, and
ES6 modules made bundling optional. The MDN (Mozilla Developer’s
Framework) became a unified effort from Google, Microsoft, Mozilla, W3C,
and Samsung to provide a home for web standards.

Now it’s possible also to build frontends without frameworks. Browsers have
an excellent track record for being backward compatible. All the frameworks
have to use the browser APIs regardless, so by learning the standards you
also understand the frameworks better. As long as browsers don’t introduce
any breaking changes, just relying on web standards without any frameworks
is enough to make your application last.

Focusing on standards allows you to gain knowledge incrementally over time
—an efficient way to learn. Evaluating popular frameworks is exciting, but
the gained knowledge isn’t necessarily applicable to the next “hot thing.”

Collective Wisdom from the Experts 53

Frequent Releases
Reduce Risk
Chris O’Dell

“Frequent releases reduce risk”—this is something you hear all the time in
conversations about continuous delivery. How exactly is this the case? It
sounds counterintuitive. Surely, releasing more often is introducing more
volatility into production? Isn’t it less risky to hold off releasing as long as
possible, taking your time with testing to guarantee confidence in the pack‐
age? Let’s think about what we mean by risk.

What Is Risk?
Risk is a factor of the likelihood of a failure happening combined with the
worst-case impact of that failure:

Risk = Likelihood of failure × Worst-case impact of failure

Therefore, an extremely low-risk activity is when failure is incredibly
unlikely to happen and the impact of the failure is negligible. Low-risk activi‐
ties also include those where either of these factors—likelihood or impact—is
so low that it severely reduces the effect of the other.

Playing the lottery is low-risk: the chance of failing (i.e., not winning) is very
high, but the impact of failing (i.e., losing the cost of the ticket) is minimal,
so playing the lottery has few adverse consequences.

Flying is also low-risk due to the factors being balanced the opposite way.
The chance of a failure is extremely low—flying has a very good safety record
—but the impact of a failure is extremely high. We fly often, as we consider
the risk to be very low.

High-risk activities are when both sides of the product are high—a high like‐
lihood of failure and high impact. For example, they include extreme sports
such as free solo climbing and cave diving.

54

Large, Infrequent Releases Are Riskier
Rolling a set of changes into a single release package increases the likelihood
of a failure occurring—a lot of change is happening all at once.

The worst-case impact of a failure includes the release causing an outage, or
severe data loss. Each change in a release could cause this to happen.

The reaction to try and test for every failure is a reasonable one, but it is
impossible. We can test for the known scenarios, but we can’t test for scenar‐
ios we don’t know about until they are encountered (the “unknown
unknowns”).

This is not to say that testing is pointless—on the contrary, it provides confi‐
dence that the changes have not broken expected, known behavior. The
tricky part is balancing the desire for thorough testing against the likelihood
of tests finding a failure, and the time taken to perform and maintain them.

Build up an automated suite of tests that protect against the failure scenarios
you know about. Each time a new failure is encountered, add it to the test
suite. Increase your suite of regression tests, but keep them light, fast, and
repeatable.

No matter how much you test, production is the only place where success
counts. Small, frequent releases reduce the likelihood of a failure. A release
containing as small a change as possible reduces the likelihood that the
release will contain a failure.

There’s no way to reduce the impact of a failure—the worst case is still that
the release could bring the whole system down and incur severe data loss—
but we lower the overall risk with the smaller releases.

Release small changes often to reduce the likelihood of a failure and,
therefore, the risk of change.

Collective Wisdom from the Experts 55

From Puzzles to Products
Jessica Kerr

I went into programming because it was easy. I solved puzzles all day, then
went home at five thirty and hung out with my friends. Twenty years later, I
stay in software because it is hard.

It is hard because I moved from solving puzzles to growing products, from
obsessing over correctness to optimizing for change.

Early in my career, I focused on one area of the system. My team leader gave
me requirements for new features. This defined “correct,” and when the code
achieved it, my task was done.

The available means were restricted: we worked in C, with the standard
library plus Oracle. For bonus points, we made the code look like everyone
else’s.

Within a few years, my perspective broadened: I met with customers; I par‐
ticipated in the negotiation between design and implementation. If a particu‐
lar new feature took the code in an awkward direction, then we went back to
the customer with other suggestions to solve the same problem. I now help
define the puzzles, as well as solve them.

Puzzle solving is a prerequisite, not the essence of my work. The essence of
my work is to provide a capability to the rest of the organization (or to the
world); I do this by operating a useful product.

Puzzles have an end state as a goal—like a game of baseball, there is a fixed
end. With products, the goal is to continue being useful—like a career in
baseball, we want to keep playing.

Puzzles have defined means, like a board game. Growing products, we have
the world of libraries and services, a plethora of puzzles solved for us. It is
more like a game of pretend, open to what we can find.

Later in my career, my perspective broadened.

56

When I push satisfactory code, this is only the beginning of my work. I want
more than code change: I aim for system change. A new feature in my app
must work with the current systems that depend on mine. I work with the
people who own those systems to help them start using the new feature.

Now I see my job as designing change, not code. Code is a detail.

Designing change means feature flags, backward compatibility, data migra‐
tions, and progressive deployment. It means documentation, helpful error
messages, and social contact with adjacent teams.

A plus: all those if statements for feature flags, deprecated methods, and
backward compatibility handling? These are no longer ugly. They express
change—and change is the point, not some particular state of the code.

Designing change means building in observability so I can tell who is still
using the deprecated feature, and who is getting value from the new one. In
puzzle solving, I didn’t have to care whether people liked the feature, or even
whether it was in production. Growing a product, I care very much. From
experience in production, we learn how to make our products more useful.

Products don’t have one definition of “correct.” Many things are definitely
not correct, so we can be careful about “not broken.” Beyond that, we aim for
“better.”

Growing a product is hard in different ways than solving puzzles. Instead of
hard work followed by a feeling of accomplishment, there is a slog of mushy
work, through ambiguity and politics and context. The reward is more than
a feeling, though: it can have a real impact on your company and thereby the
world. That is more satisfying than ordinary fun.

Collective Wisdom from the Experts 57

“Full-Stack Developer” Is
a Mindset
Maciej Walkowiak

In 2007—the year I started working my first job as a Java developer—the
spectrum of technologies involved in day-to-day web development was quite
narrow. Relational databases were in most cases the only type of database a
developer needed to know. Frontend development was limited to HTML and
CSS, spiced with a bit of JavaScript. Java development itself meant primarily
working with Hibernate plus either Spring or Struts. This set of technologies
covered almost everything necessary for building applications at that time.
Most Java developers were actually full-stack developers, though that term
had not yet been coined.

Things have changed significantly since 2007. We started building more and
more complex user interfaces and handling this complexity with advanced
JavaScript frameworks. We now use NoSQL databases, and almost every one
of them is very different from the others. We stream data with Kafka, mes‐
sage with RabbitMQ, and do a lot more. In many cases, we also are responsi‐
ble for setting up or maintaining the infrastructure with Terraform or
CloudFormation, and we use or even configure Kubernetes clusters. Overall
complexity has grown to the point that we have separate positions for front‐
end developer, backend developer, and DevOps engineer. Is it still possible to
be a full-stack developer? That depends on how you understand the term.

You can’t be an expert in everything. Considering how much the Java ecosys‐
tem has grown, it’s hard to even be an expert in Java itself. The good thing is
that you don’t have to be one. For many projects, especially in smaller com‐
panies, the most beneficial team setup is when each area of expertise is cov‐
ered by at least one expert, but these experts don’t limit themselves to
working only on that one area. Developers specialized in developing backend
services can write frontend code—even if the code isn’t perfect—and the
same thing goes for frontend developers. This helps move projects forward
more quickly, as one person can develop a change that requires touching

58

every layer of the application. It also leads to greater engagement during
refinement meetings, as there are no tasks isolated only to a certain group of
people.

Most importantly, not being strictly limited to one area changes how you
approach tasks. There are no “It’s not my job” discussions anymore—devel‐
opers are encouraged to learn. Having one person go on vacation is not an
issue because there are always others who can cover for them—maybe not as
efficiently, and maybe with results that aren’t quite as good, but enough to
keep things moving forward. It also means that when there is a need to intro‐
duce a new technology to the stack, you don’t need to find a new team mem‐
ber, because existing team members are already comfortable leaving the
comfort zone of their expertise.

Full-stack developer is therefore a mindset. It’s being senior and junior at the
same time, with a can-do attitude.

Collective Wisdom from the Experts 59

Garbage Collection Is
Your Friend
Holly Cummins

Poor old garbage collection. One of the unsung heroes of Java, often blamed,
rarely praised. Before Java made garbage collection mainstream, program‐
mers had little choice but to track all the memory they’d allocated manually,
and deallocate it once nothing was using it anymore. This is hard. Even with
discipline, manual deallocation is a frequent cause of memory leaks (if too
late) and crashes (if too early).

Java GC (garbage collection) is often thought of as a necessary cost, and
“reduce time spent in GC” is common performance guidance. However,
modern garbage collection can be faster than malloc/free, and time spent in
GC can speed everything up. Why? Garbage collectors do more than mem‐
ory deallocation: they also handle the allocation of memory and the arrange‐
ment of objects in memory. A good memory management algorithm can
make allocation efficient by reducing fragmentation and contention. It can
also boost throughput and lower response times by rearranging objects.

Why does the location of an object in memory affect application perfor‐
mance? A high proportion of a program’s execution time is spent stalled in
hardware, waiting for memory access. Heap access is geologically slow com‐
pared to instruction processing, so modern computers use caches. When an
object is fetched into a processor’s cache, its neighbors are also brought in; if
they happen to be accessed next, that access will be fast. Having objects that
are used at the same time near each other in memory is called object locality,
and it’s a performance win.

The benefits of efficient allocation are more obvious. If the heap is fragmen‐
ted, when a program tries to create an object, it will have a long search to
find a chunk of free memory big enough, and allocation becomes expensive.
As an experiment, you can force GC to compact more; it will massively
increase GC overhead, but often application performance will improve.

60

GC strategies vary by JVM implementation, and each JVM offers a range of
configurable options. JVM defaults are usually a good start, but it is worth
understanding some of the mechanics and variations possible. Throughput
may be traded off against latency, and workload affects the optimum choice.

Stop-the-world collectors halt all program activity so they can collect safely.
Concurrent collectors offload collection work to application threads, so there
are no global pauses; instead, each thread will experience tiny delays.
Although they do not have obvious pauses, concurrent collectors are less
efficient than stop-the-world ones, so they’re suitable for applications where
pauses would be noticed (such as music playback or a GUI).

Collection itself is done by copying or by marking and sweeping. With mark-
and-sweep, the heap is crawled to identify free space, and new objects get
allocated into those gaps. Copying collectors divide the heap into two areas.
Objects are allocated in the “new space.” When that space is full, its nongar‐
bage contents are copied to the reserve space and the spaces are swapped. In
a typical workload, most objects die young (this is known as the generational
hypothesis). With short-lived objects, the copying step will be super fast
(there’s nothing to copy!). However, if objects hang around, collection will be
inefficient. Copying collectors are great for immutable objects and a disaster
with object pooling “optimizations” (usually a bad idea anyway). As a bonus,
copying collectors compact the heap, which allows near-instant object alloca‐
tion and fast object access (fewer cache misses).

When evaluating performance, it should be related to business value. Opti‐
mize transactions per second, mean service time, or worst-case latency. But
don’t try to micro-optimize time spent in GC, because time invested in GC
can actually help program speed.

Collective Wisdom from the Experts 61

Get Better at Naming
Things
Peter Hilton

What is above all needed is to let the meaning choose the word, and not the
other way around…the worst thing one can do with words is surrender to them.

—George Orwell

Getting better at naming things improves the maintainability of the code you
write more than anything else. There’s more to maintainable code than good
naming, but naming things is famously hard, and usually neglected. Fortu‐
nately, programmers like a challenge.

First, avoid names that are meaningless (foo) or too abstract (data), duplica‐
ted (data2) or vague (DataManager), abbreviated or short (dat). Single letters
(d) are the worst of all. These names are ambiguous, which slows everyone
down because programmers spend more time reading code than writing
code.

Next, adopt guidelines for better names—words with precise meanings that
make the code say what it means.

Use up to four words for each name, and don’t use abbreviations (except for
id and those you adopt from the problem domain). One word is rarely
enough; using more than four is clumsy and stops adding meaning. Java pro‐
grammers use long class names but often prefer short local variable names,
even when they’re worse.

Learn and use problem domain terminology—domain-driven design’s ubiq‐
uitous vocabulary. This is often concise: in publishing, the correct term for
text changes might be revision or edit, depending on who makes the change.
Instead of making words up, read the topic’s Wikipedia page, talk to people
who work in that domain, and add the words they use to your glossary.

Replace plurals with collective nouns (e.g., rename appointment_list to
calendar). More generally, enlarge your English vocabulary so you can make

62

names shorter and more precise. This is harder if you’re a non-native English
speaker, but everyone has to learn the domain jargon anyway.

Rename pairs of entities with relationship names (for instance, rename
company_person to employee, owner, shareholder). When this is a field,
you’re naming the relationship between the field’s type and the class it’s a
member of. In general, it’s often worth extracting a new variable, method, or
class just so you can explicitly name it.

Java helps you with good naming because you name classes separately from
objects. Don’t forget to actually name your types instead of relying on primi‐
tive and JDK classes: instead of String, you should usually introduce a class
with a more specific name, such as CustomerName. Otherwise, you need com‐
ments to document unacceptable strings, such as empty ones.

Don’t mix up class and object names: rename a date field called dateCreated
to created, and a Boolean field called isValid to valid, to avoid duplicate
type noise. Give objects different names: instead of a Customer called
customer, use a more specific name, such as recipient when sending a noti‐
fication or reviewer when posting a product review.

The first step in naming is to apply the basic naming conventions,
such as using noun phrases for class names. The next step is good naming
technique using guidelines like these. But guidelines have limits. The
JavaBeans specification taught a generation of Java programmers to break
object encapsulation and use vague method names, like setRating when
rate might be better, for example. You don’t need to name methods
that aren’t imperative with verb phrases, as in builder APIs like
Customer.instance().rating(FIVE_STARS).active(). In the end, naming
mastery is about choosing which rules to break.

Collective Wisdom from the Experts 63

Hey Fred, Can You Pass
Me the HashMap?
Kirk Pepperdine

Picture the scene: an old, cramped office with several old wooden desks set
back-to-back. Each desk equipped with an old black rotary phone and ash‐
trays dotted about. On one of the desks is a black HashMap that contains an
ArrayList filled with customer data. Sam, needing to contact Acme Inc.,
scans the office looking for the HashMap. Eyes darting, he spots the HashMap
and shouts out, “Hey Fred, can you please pass me the HashMap?” Can you
picture that…yup, I didn’t think so…

An important part of writing a program is the development of a vocabulary.
Each word in that vocabulary should be an expression of something that is
part of the domain we’re modeling. After all, it is this code expression of our
model that others will have to read and understand. Consequently, our
choice of vocabulary can either help or hinder understanding of our code.
Oddly enough, the choice of vocabulary impacts much more than readabil‐
ity: the words we use affect how we think about the problem at hand, which,
in turn, impacts the structure of our code, our choice of algorithms, how we
shape our APIs, how well the system will fit our purpose, how easily it will be
maintained and extended, and, finally, how well it will perform. Yes, the
vocabulary we develop when writing code matters a lot. So much so that
keeping a dictionary at hand can be strangely useful when writing code.

Returning to the ridiculous example, of course, no one would ask for the
HashMap. You’d most likely draw a blank stare from Fred if you asked him to
pass the HashMap. Yet when we look at how to model the domain, we hear
about the need to look up customer contact data that is organized by name.
That screams HashMap. If we dig deeper into the domain, then we’ll likely dis‐
cover that the contact information is written on an index card that is neatly
packed away in a Rolodex. Replacing the word HashMap with the word
Rolodex not only offers a better abstraction in our code but it will also have

64

an immediate impact on how we think about the problem at hand, and it
offers a better way to express our thoughts to the reader of our code.

The takeaway here is that technical classes rarely have a place in the vocabu‐
lary of the domains we’re working in. Instead, what they offer are building
blocks for deeper, more meaningful abstractions. The need for utility classes
should be a red flag that you’re missing an abstraction. Additionally, techni‐
cal classes in APIs should also be a red flag.

For example, consider the case where a method signature takes a String to
represent a first name and a String for a last name. These are used to look
up data held in a HashMap:

return listOfNames.get(firstName + lastName);

The question is, what is the missing abstraction? Having two fields forming a
key is commonly known as a composite key. Using this abstraction we get:

return listOfNames.get(new CompositeKey(firstName, lastName));

When you make this change in a benchmark, the code runs three times
faster. I would argue it is also more expressive: using CompositeKey better
expresses the essence of the problem at hand.

Collective Wisdom from the Experts 65

How to Avoid Null
Carlos Obregón

Tony Hoare calls null the “billion-dollar mistake.” It’s a mistake, and that’s
why you should get in the habit of forbidding code from using null. If you
have a reference to an object that might be null, you have to remember to do
a null check before trying to call any method of it. But since there’s no obvi‐
ous difference between a null reference and a non-null one, it’s too easy to
forget and get a NullPointerException.

The most future-proof way to avoid issues is to use an alternative when
possible.

Avoid Initializing Variables to Null
It is usually not a good idea to declare a variable until you know what value it
should hold. For complex initialization, move all the initialization logic to a
method. For example, instead of doing this:

public String getEllipsifiedPageSummary(Path path) {

 String summary = null;

 Resource resource = this.resolver.resolve(path);

 if (resource.exists()) {

 ValueMap properties = resource.getProperties();

 summary = properties.get("summary");

 } else {

 summary = "";

 }

 return ellipsify(summary);

}

Do the following:

public String getEllipsifiedPageSummary(Path path) {

 var summary = getPageSummary(path);

 return ellipsify(summary);

}

66

public String getPageSummary(Path path) {

 var resource = this.resolver.resolve(path);

 if (!resource.exists()) {

 return "";

 }

 var properties = resource.getProperties();

 return properties.get("summary");

}

Initializing a variable to null might leak null unintentionally if you are not
careful with your error-handling code. Another developer might change the
control flow without realizing the issue—and that other developer might be
you three months after the code was first written.

Avoid Returning Null
When you read the signature of a method, you should be able to understand
if it always returns a T or if sometimes it doesn’t. Returning an Optional<T>
is a better option that makes the code more explicit. Optional’s API makes it
very easy to deal with the scenario where no T was produced.

Avoid Passing and Receiving Null Parameters
If you need a T, ask for it; if you can get by without one, then don’t ask for it.
For an operation that can have an optional parameter, create two methods:
one with the parameter and one without.

For example, the method drawImage from the Graphics class in the JDK
has a version that receives five parameters and a sixth parameter, an
ImageObserver, which is optional. If you don’t have an ImageObserver, you
need to pass null like this:

g.drawImage(original, X_COORD, Y_COORD, IMG_WIDTH, IMG_HEIGHT, null);

It would have been better to have another method with just the first five
parameters.

Acceptable Nulls
When is it acceptable to use null, then? As an implementation detail of a
class, i.e., the value of an attribute. The code that needs to be aware of that
absence of value is contained to the same file, and it’s much more simple to
reason about it and not leak null.

Collective Wisdom from the Experts 67

So remember, unless you have an attribute, it’s always possible to avoid
using null using a superior construct in your code. If you stop using null
where you don’t need it, then it becomes impossible to leak null and have
a NullPointerException. And if you avoid these exceptions, you’ll be part of
the solution to the billion-dollar problem instead of being part of it.

97 Things Every Java Programmer Should Know68

How to Crash Your JVM
Thomas Ronzon

There are so many new APIs, cool libraries, and must-try techniques you
need to know that it can be hard to stay up-to-date.

But is this really all you need to know as a Java developer? What about the
environment your software is running in? Couldn’t it be that a problem here
could crash your software, and you wouldn’t even be able to understand or
find that problem because it’s outside the world of libraries and code? Are
you prepared to consider another perspective?

Here is a challenge: try to find ways to crash your Java Virtual Machine! (Or,
at least, bring its normal execution to a sudden and unexpected stop.) The
more ways you know, the better you understand your surroundings and
appreciate what can go wrong with a running software system.

Here are a few to get you started:

1. Try to allocate as much memory as you can. RAM is not endless—if no
more RAM can be allocated, your allocation will fail.

2. Try to write data to your hard disk until it is full. Same problem as with
RAM: though bigger than RAM, disk space is not endless either.

3. Try to open as many files as you can. Do you know the maximum num‐
ber of file descriptors for your environment?

4. Try to create as many threads as you can. On a Linux system, you can
look at /proc/sys/kernel/pid_max and you will see how many pro‐
cesses may be running on your system. How many threads are you
allowed to create on your system?

5. Try to modify your own .class files in the filesystem—the current run of
your application will be its last!

6. Try to find your own process ID, and then try to kill it by using
Runtime.exec (e.g., by calling kill -9 on your process ID).

69

7. Try to create a class at runtime that only calls System.exit, load that
class dynamically via the class loader, then call it.

8. Try to open as many socket connections as possible. On a Unix system,
the maximum number of possible socket connections equals the maxi‐
mum number of file descriptors (often 2,048). How many are available
where your application is running?

9. Try to hack your system. Download an exploit via code or by using wget.
Execute the exploit, and then call shutdown -h as root on a Unix system
or shutdown /s as administrator on a Windows system.

10. Try jumping without a safety net. Part of Java’s safety comes from its lan‐
guage design and part from the bytecode verification in your JVM. Run
your JVM with -noverify or -Xverify:none, which disables all byte‐
code verification, and write something that would otherwise not be
allowed to run.

11. Try using Unsafe. This backdoor class is used to get access to low-level
facilities such as memory management. All the syntax of Java, all the
safety of C!

12. Try going native. Write some native code. All the syntax of C, all the
safety of C!

Try to find your own ways to crash your JVM and ask colleagues for their
ideas. Also consider asking job interview candidates how they might go
about this. Whatever their answer, you will soon learn whether the inter‐
viewee is able to see the world outside their IDE window.

P.S. If you find other creative ways to crash a JVM, please let me know!

97 Things Every Java Programmer Should Know70

Improving Repeatability
and Auditability with
Continuous Delivery
Billy Korando

Handcrafting is valued because of the time and effort involved and small
imperfections that give character and uniqueness. While these qualities
might be valued in food, furniture, or art, when it comes to delivering code,
these qualities are serious impediments to an organization’s success.

Humans are not well suited to performing repetitive tasks. No matter how
detail-oriented a person might be, mistakes happen when performing the
series of complex steps required to deploy an application. A step might be
skipped, run in the wrong environment, or otherwise performed incorrectly,
leading to a deployment failure.

When deployment failures happen, a considerable amount of time can be
spent investigating what went wrong. This investigative process is hindered
as manual processes often lack a central point of control and can be opaque.
When a root cause is determined, the typical resolution is to add more layers
of control to prevent the problem from happening again, but this usually
only succeeds in making the deployment process more complicated and
painful!

Organizations struggling to deliver code is not news, so to address this,
organizations have begun to migrate to continuous delivery (CD). CD is an
approach of automating the steps of delivering code to production. From the
time when a developer commits a change to when that change is deployed to
production, any step that can be automated, should be—testing, change con‐
trol, the process of deployment, etc.

When migrating to CD, a primary motivation is to reduce the time and effort
required to deploy code. While reduced time and effort are significant
advantages to CD, they aren’t the only ones! CD also improves the

71

repeatability and auditability of your deployment process. Here is why you
should care about these qualities.

Repeatable
Automating the steps to deploy code means scripting each step so it can be
executed by a computer instead of a human. This greatly improves the
repeatability of the deployment process, as computers excel at performing
repetitive tasks.

A repeatable process is inherently less risky, which can encourage organiza‐
tions to release more often and with smaller changesets. This can lead to
second-order benefits of targeting a release to fix specific issues, such as per‐
formance. A release can contain only performance changes, which can make
it possible to measure if those changes improved, degraded, or had no
impact on performance.

Auditable
Automating deployments greatly improves transparency, which naturally
improves auditability. The scripts used to execute steps and values supplied
to them can be stored in version control, allowing for easy review. Automa‐
ted deployments can also generate reports that can also help with auditing.
The improved auditability of the deployment process is what moves CD
from a niche concept for start-ups and non-mission-critical applications to
essential in even the most tightly regulated and controlled industries.

When I first heard about CD, I found the deployments on demand concept
intoxicating. After reading Continuous Delivery by Jez Humble and David
Farley (Addison-Wesley), I learned that the reduced time and effort are in
many ways secondary to the repeatability and auditability that CD offers. If
your organization has been struggling to deliver code to production, I hope
this can help build your case to management for why you should switch
to CD.

97 Things Every Java Programmer Should Know72

In the Language Wars,
Java Holds Its Own
Jennifer Reif

We all pick our favorites and downplay other options (colors, cars, sports
teams, and so on). Programming language choice is not exempt. Whether it’s
the one we are most comfortable with or the one that got us a job, we cling to
that choice.

Today, we will focus on Java. There are perfectly valid complaints and praises
for this language. These are my experiences, and others may see things
differently.

My History with Java
First, let’s see the lens through which I view this language.

My introduction to programming applications was in college using—wait for
it—Java. Prior to that, I had a couple of intro classes using HTML, Alice, and
Visual Basic. None of those was designed to dive into complex code
structures.

So, Java was my first exposure to programming for enterprise environments
and critical processes. I’ve since had experience with many other languages,
but I still go back to Java.

Java’s Design and Background
Java was created in 1995 with a C-like syntax and following the WORA prin‐
ciple (write once, run anywhere). Its goal was to simplify complex program‐
ming required in C-family languages and achieve platform independence via
the JVM.

I think knowing a language’s history helps put positives and negatives into
context, as understanding the background shows what the creators sacrificed
to reach other goals.

73

Java’s Downsides
Most complaints are that deployables are larger and the syntax is verbose.
While valid, I think the previous paragraph on Java’s history explains why
these exist.

First, Java deployables are larger overall. As we saw in Java’s history, it was
created to “write once, run anywhere” so the same application could run on
any JVM. This means all dependencies have to be included for deployment,
whether rolled into a single JAR or across various components (WAR file +
app server + JRE + dependencies). This affects the size of the deployment.

Second, Java is verbose. Again, I attribute this to its design. It was created
when C and similar languages ruled the space, which required developers to
specify low-level details. Java’s goal was to be more user-friendly by abstract‐
ing some of those details.

Why I Like Java

• Java tells me what I am building and how. With other languages, I may
be able to write something in fewer lines, but I’m less sure what it’s doing
under the hood, which I don’t like as much.

• It’s a widely applicable skill. Dealing with Java in various capacities has
given me knowledge in both the business and the technical market. Java
is not the only language with this benefit, but it seems the most enduring
one with this property.

• Java allows me to play with technology in all stacks and areas. It seems to
bridge all those. I like to dabble and explore, and Java has enabled that.

What Does It Mean for Developers?
The market is diverse, with many options fitting business needs. One size
does not (and should not) fit all, so each developer needs to decide the best
language for the job. Even if you don’t favor Java as a primary language, I still
think it’s a valuable skill to have.

97 Things Every Java Programmer Should Know74

Inline Thinking
Patricia Aas

Computers changed. They changed in many ways, but for the purpose of this
text they changed in one significant way: the relative cost of reading from
RAM became extremely high.

This was something that happened gradually, until RAM accesses could com‐
pletely dominate the performance metrics of an application. The CPU was
constantly waiting for memory accesses to finish. And as the cost of going to
RAM, relative to registers, grew and grew, chip manufacturers introduced
more and more levels of cache and made them bigger and bigger.

And caches are great! If what you need is in them…

Caches are complex, but as a rule they will predict that a subsequent memory
access will be close to, or preferably adjacent to, a recent, previous access.
This is done by fetching a bit more than needed from memory and storing
this excess in the cache, often called prefetching. If a later access can get its
value from the cache instead of RAM, it is referred to as a “cache-friendly”
access.

Imagine that you need to iterate through a big array of relatively small
objects, maybe a bunch of triangles. In Java today, you don’t really have an
array of triangles; you have an array of pointers to triangle objects because
regular objects in Java are “reference types,” meaning you access them
through Java pointers/references. So even though the array is probably a con‐
tiguous section of memory, the triangle objects themselves can be anywhere
on the Java heap. Looping through this array will be “cache-unfriendly” since
we will be jumping around in memory from triangle object to triangle object,
and the cache prefetching will probably not help us much.

Imagine instead that the array contained the actual triangle objects, not
pointers to them. Now they are close in memory, and looping over them is
much more “cache-friendly.” The next triangle might be waiting for us right
there in the cache. Object types that can be stored directly into an array like
that are called “value types” or “inline types.” Java already has several inline

75

types, for example int and char, and will soon have user-defined ones, prob‐
ably called “inline classes.” These will be similar to regular classes but
simpler.

Another way to be cache-friendly is to store objects in your stack frame or
directly in registers. A difference between inline types and reference types is
that you don’t have to allocate inline types on the heap. This is useful for
objects that live only for the scope of this method call. Since the relevant
parts of the stack are probably in the cache, access to objects on the stack will
tend to be cache-friendly. As a bonus, objects that are not allocated on the
Java heap do not need to be garbage collected.

These cache-friendly behaviors are already present in Java when using so-
called “primitive types,” like ints and chars. Primitive types are inline types
and come with all of their advantages. So even though inline types may seem
foreign in the beginning, you have worked with them before; you just might
not have thought of them as objects. So, when “inline classes” seem confus‐
ing, you could try thinking, “What would an int do?”

97 Things Every Java Programmer Should Know76

Interop with Kotlin
Sebastiano Poggi

In recent years, Kotlin has been a hot-button topic in the JVM community;
the usage of the language is constantly increasing, from mobile to backend
projects. One of Kotlin’s advantages is its great degree of interoperability with
Java right off the bat.

Calling into any Java code from Kotlin just works. Kotlin understands Java
perfectly well, but there’s one minor annoyance that may present itself if
you’re not following Java best practices to the letter: the lack of non-nullable
types in Java. If you don’t apply nullability annotations in Java, Kotlin
assumes all those types have unknown nullability—they’re so-called platform
types. If you’re certain they will never be null, you can coerce them into a
non-null type with the !! operator or by casting them to a non-null type.
In either case, you’ll get a crash if the value is null at runtime. The best way
to handle this scenario is to add nullability annotations such as @Nullable
and @NotNull to your Java APIs. There are a variety of supported annota‐
tions: JetBrains, Android, JSR-305, FindBugs, and more. This way, Kotlin will
know the type nullability, and when coding in Java you’ll receive additional
IDE insights and warnings about potential nulls. Win-win!

When invoking Kotlin code from Java, you should find that while the major‐
ity of the code will work just fine, you may see quirks with some advanced
Kotlin language features that don’t have a direct equivalent in Java. The
Kotlin compiler has to adopt some creative solutions to implement them in
bytecode. These are hidden when in Kotlin, but Java isn’t aware of these
mechanisms and lays them bare, resulting in a usable but suboptimal API.

Top-level declarations are an example. Since the JVM bytecode doesn’t sup‐
port methods and fields outside of classes, the Kotlin compiler puts them in a
synthetic class with the same name as the file they’re in. For example, all top-
level symbols in a FluxCapacitor.kt file will appear as static members of the
FluxCapacitorKt class, from Java. You can change the synthetic class name

77

https://oreil.ly/hKoXx
https://oreil.ly/hKoXx

to something nicer by annotating the Kotlin file with @file:JvmName("Flux
CapacitorFuncs").

You may expect members defined in a (companion) object to be static in
bytecode, but that’s not the case. Kotlin under the hood moves them into a
field named INSTANCE, or a synthetic Companion inner class. If you need to
access them as static members, just annotate them with @JvmStatic. You can
also make (companion) object properties appear as fields in Java by annotat‐
ing them as @JvmField.

Lastly, Kotlin offers optional parameters with default values. It’s a very con‐
venient feature, but unfortunately, Java doesn’t support it. In Java, you need
to provide values for all the parameters, including the ones that are supposed
to be optional. To avoid this, you can use the @JvmOverloads annotation,
which tells the compiler to generate telescopic overloads for all optional
parameters. Ordering of the parameters is important as you don’t get all pos‐
sible permutations in the overloads, but rather one extra overload for each
optional parameter, in the order in which they appear in Kotlin.

To summarize, Kotlin and Java are almost entirely interoperable out of the
box: that’s one of Kotlin’s advantages over other JVM languages. In some sce‐
narios, though, a minute of work on your APIs will make its usage much
more pleasant from the other language. There’s really no reason not to go the
extra mile, given how big of an impact you can make with such little effort!

97 Things Every Java Programmer Should Know78

It’s Done, But…
Jeanne Boyarsky

How many times have you been to a stand-up, daily Scrum or status meeting
and heard the phrase “It’s done, but...”? When I hear that, my first thought is
“So, it’s not done.” There are three issues with using the word done when it
isn’t done.

1. Communication and Clarity
Ideally your team has a definition of done. But even if they don’t, there is
probably some expectation of what done means. And, even better, the person
reporting on status knows that. Otherwise, we wouldn’t have a disclaimer on
the task’s done-ness.

Common things that aren’t done include writing tests, documentation, and
edge cases. Take a moment and see if you can think of any more. Similarly, I
don’t like the term done done. It implicitly blesses the idea that done doesn’t
actually mean done. Be a clear communicator. If something isn’t done, don’t
say it’s done.

This is an opportunity for you to convey more information. For example, “I
coded the happy path and next I will add validation” or “I finished all the
code—the only thing remaining is for me to update the user manual” or even
“I thought I was done and then discovered the widget doesn’t work on Tues‐
days.” All of these give information to your team.

2. Perception
Managers like hearing the word done. It means you are free to take on more
work. Or help a teammate. Or pretty much anything that does not include
spending more time on the task. As soon as they hear done, that becomes the
perception. The but either gets forgotten or becomes a small thing.

Now you are moving on to the next thing when you didn’t finish the first
thing. That’s where technical debt comes from! Sometimes technical debt is a

79

choice. However, making that choice by discussing it is far better than having
it made for you because you claimed to be done.

OK. I’m done with this article, but I still have to write the last part. See how
that worked? I’m not actually done at all.

3. There’s No Partial Credit for Done
Done is a binary state. It’s either done or it isn’t. There’s no such thing as half
done. Suppose you are building a pair of stilts and say you are 50% done.
Think about what that means. It could mean you have one stilt. Not particu‐
larly useful. More likely it means that you think you have one stilt but still
have to build the other one and then test. Testing is likely to reveal that you
have to go back and change something. This rework means you weren’t even
50% done. You were optimistic.

Remember: don’t say you are done until you are done!

97 Things Every Java Programmer Should Know80

Java Certifications:
Touchstone in Technology
Mala Gupta

Imagine you need to undergo a robotic surgery. The surgeon is experienced
and qualified but has no credentials with robotic equipment for surgery.
Would you still move forward with the robotic surgery with that surgeon?
Unless I was convinced of the surgeon’s skills on robotic equipment, I
wouldn’t.

Taking the analogy further, how would you ascertain a candidate’s skills
before adding them to your critical projects? A university degree in com‐
puter science is not enough. The gap in skills gained through a university
curriculum and a job’s requirements is wide.

Independent skill training organizations are stepping in to bridge this gap.
But it is not enough. Who would measure the quality of their content and
how? This is where the industry steps in.

An apt metaphor would be the touchstone—the wonderstone used in ancient
times to measure the purity of gold and other precious metals that were used
as currency. A metal coin was rubbed against a dark siliceous stone like jas‐
per, and a colorful residue would be indicative of the metal’s purity.

Organizations like Oracle have defined these benchmarks in the form of pro‐
fessional certifications, to play the role of touchstones, measuring IT skills in
a standardized manner.

People often ask whether these professional certifications are necessary for
computer science graduates or postgraduates. Has the university curriculum
covered the content already? Here one needs to put the short-term and long-
term objectives in perspective. Graduation or postgraduation in computer
science at a university can be a strategic choice to chalk out a long-term
career path, whereas earning professional certifications are tactical choices to
gain proven skills in technologies that need to be applied in immediate
projects and achieve short-term goals.

81

Professional certifications in Java by the Oracle Corporation are in great
demand. They are awarded when a candidate meets the defined require‐
ments. Depending on the certification, a candidate may be required to com‐
plete a course or project, or pass an examination. The purpose is to establish
that the individual is qualified to hold certain types of positions or work on
certain projects. Certified skills bridge the gap between their existing skills
and skills required by the industry, resulting in a higher rate of success on
projects. These certifications are regularly updated.

Oracle offers multiple options in Java certifications, which define topics and
a pathway to be followed by developers. Developers can choose the right cer‐
tification as per their interest.

Validated skills establish the credibility of an individual’s ability in program‐
ming in a particular language or their understanding of a platform, method‐
ology, or practice to prospective employers. They help professionals to clear
the initial hurdle of résumé reviews and selections for interviews.

Java certifications help an individual advance in their career. When people
are searching for jobs and organizations and teams are trying to find talent
with verified skills, these certifications can be a first step.

97 Things Every Java Programmer Should Know82

Java Is a ’90s Kid
Ben Evans

There are only two kinds of languages: the ones people complain about and the
ones nobody uses.

—Bjarne Stroustrup

Whether Stroustrup’s insight says more about programming languages or
human nature, I’m not sure. However, it does draw attention to the often-
forgotten truism that the design of programming languages is a human
endeavor. As such, languages always carry traces of the environment and
context in which they were created.

So it shouldn’t come as a surprise that traces of the late 1990s can be seen
everywhere in the design of Java, if you know where to look.

For example, the sequence of bytes to load an object reference from local
variable 0 onto the temporary evaluation stack is this two-byte sequence:

19 00 // aload 00

However, the JVM’s bytecode instruction set provides a variant form that is
one byte shorter:

2A // aload_0

One byte saved may not sound like much, but it can start to add up over an
entire class file.

Now, remember, in the late ’90s, Java classes (often applets) were downloa‐
ded over dial-up modems, incredible devices that were capable of reaching
blistering speeds of 14.4 kilobits per second. With that kind of bandwidth,
saving bytes wherever possible was a huge motivation for Java.

You could even argue that the entire concept of primitive types is a combina‐
tion of a performance hack and a sop to C++ programmers newly arrived in
the Java world—products of the 1990s, when Java was created.

83

Even the “magic number” (the first few bytes of a file, which allow the oper‐
ating system to identify the file type) for all Java class files feels dated:

CA FE BA BE

“Cafe babe” is maybe not a great look for Java today. Unfortunately, it’s not
something that can realistically be changed now.

It’s not only the bytecode: in the Java standard library (especially the older
parts of it), APIs that replicate equivalent C APIs are everywhere. Every pro‐
grammer who’s been forced to read the contents of a file by hand knows that
only too well. Worse yet, the mere mention of java.util.Date is enough to
break many Java programmers out in a rash.

Through the lens of 2020 and beyond, Java is sometimes seen as a main‐
stream, middle-of-the-road language. What that narrative misses is that the
world of software has radically changed since Java’s debut. Big ideas such as
virtual machines, dynamic self-management, JIT compilation, and garbage
collection are now part of the general landscape of programming languages.

Though some may view Java as The Establishment, it’s really the mainstream
that has moved to encompass the space where Java has always been. Under‐
neath the veneer of enterprise respectability, Java is still a ’90s kid.

97 Things Every Java Programmer Should Know84

Java Programming from a
JVM Performance
Perspective
Monica Beckwith

Tip #1: Don’t Obsess Over Garbage
I find that sometimes Java developers obsess over the amount of garbage
their applications produce. Very few cases warrant this sort of obsession. A
garbage collector (GC) helps the Java Virtual Machine (JVM) in memory
management. For OpenJDK HotSpot VM, the GC along with the dynamic
just-in-time (JIT) tiered compiler (client (C1) + server class (C2)) and the
interpreter make up its execution engine. There are a slew of optimizations
that a dynamic compiler can perform on your behalf. For example, C2 can
utilize dynamic branch prediction and have a probability (“always” or
“never”) for code branches taken (or not). Similarly, C2 excels in optimiza‐
tions related to constants, loops, copies, deoptimizations, and so on.

Trust the adaptive compiler, but when in doubt verify using “serviceability,”
“observability,” logging, and all the other such tools that we have thanks to
our rich ecosystem.

What matters to a GC is an object’s liveness/age, its “popularity,” the “live set
size” for your application, the long-lived transients, allocation rate, marking
overhead, your promotion rate (for the generational collector), and so forth.

Tip #2: Characterize and Validate Your
Benchmarks
A peer of mine once brought in some observations of a benchmarking suite
with various sub-benchmarks. One of these was characterized as a “start-up
and related” benchmark. After taking a look at the performance numbers
and the premise that was the comparison between OpenJDK 8u and
OpenJDK 11u LTS releases, I realized that the difference in numbers could

85

have been due to the default GC changing from Parallel GC to G1 GC. So, it
seems that the (sub-)benchmark either was not properly characterized or
wasn’t validated. Both are important benchmarking exercises and help iden‐
tify and isolate the “unit of test” (UoT) from other components of the test
system that could act as detractors.

Tip #3: Allocation Size and Rate Still Matter
In order to be able to get to the bottom of the issue discussed above, I asked
to see the GC logs. Within minutes, it was clear that the (fixed) region size,
which is based on the heap size of the application, was categorizing the “reg‐
ular” objects as “humongous.” For the G1 GC, humongous objects are
objects that span 50% or more of a G1 region. Such objects don’t follow the
fast path for allocations and are allocated out of the old generation. Hence,
allocation size matters for regionalized GCs.

A GC keeps up with the live object graph mutation and moves objects from
the “From” space into the “To” space. If your application is allocating at a rate
faster than your GC’s (concurrent) marking algorithm can keep up with,
then that can become a problem. Also, a generational GC may prematurely
promote short-lived objects or not age transients properly due to the influx
of allocations. OpenJDK’s G1 GC is still working on not being dependent on
its fallback, fail-safe, nonincremental, full heap traversing, (parallel) stop-
the-world collector.

Tip #4: An Adaptive JVM Is Your Right and You
Should Demand It
It’s great to see an adaptive JIT and all the advancements geared toward start-
up, ramp-up, JIT availability, and footprint optimizations. Similarly, various
GC-level algorithmic smartness is available. Those GCs that aren’t there yet
should get there soon, but that won’t happen without our help. As Java devel‐
opers, please provide feedback on your use case to the community and help
drive innovation in this area. Also, do test out the features that are continu‐
ally getting added to the JIT.

97 Things Every Java Programmer Should Know86

Java Should Feel Fun
Holly Cummins

I started my Java career using J2EE 1.2. I had questions. Why were there four
classes and hundreds of lines of generated code for each bean? Why did
compiling tiny projects take half an hour? It wasn’t productive, and it wasn’t
fun. Those two often go together: things feel un-fun because we know they’re
waste. Think about meetings where nothing is decided, status reports no one
reads…

If un-fun is bad, what is fun? Is it good? And how do we get it? Fun can have
different faces:

• Exploration (focused investigation)
• Play (for its own sake, no goal)
• Puzzles (rules and a goal)
• Games (rules and a winner)
• Work (a satisfying goal)

Java allows all of these—the work part is obvious, and anyone who’s
debugged a Java program knows about the puzzle part. (Debugging isn’t nec‐
essarily fun, but finding the solution is great.) We learn through exploration
(when we’re new to something) and play (when we know enough to do
stuff).

Leaving aside the fun we can have with it, is Java inherently fun? Java is ver‐
bose compared to younger languages. Boilerplate isn’t fun, but some of it is
fixable. For example, Lombok neatly generates getters and setters, as well as
hashCode and equals methods (tedious and error-prone otherwise). Man‐
ually writing entry and exit trace is un-fun, but aspects or tracing libraries
can instrument dynamically (and massively improve code readability).

What makes something fun to use? In part it’s about being expressive and
understandable, but there’s more to it than that. I’m not convinced lambdas
are generally shorter or clearer than class-based alternatives. But they’re fun!

87

When Java 8 came out, developers dove into lambdas like kids in a ball pit.
We wanted to learn how it worked (exploration) and the challenge of
expressing algorithms in a functional style (puzzles).

With Java, the fun thing to do is often also the best thing (win). Autoinstru‐
menting trace bypasses un-fun, eliminating method-name copy-and-paste
errors and improving clarity. Or consider performance. For niche scenarios,
weird, complicated code is needed to scrape every inch of speed. In most
cases, however, the simplest code is also the fastest. (Which is not necessarily
true for languages like C.) The Java JIT optimizes code as it runs; it’s smartest
for clean, idiomatic code. Straightforward code is nicely readable, so errors
will be more obvious.

Misery-making code has a knock-on effect. Psychological research shows
happiness and workplace success go together. One study showed that people
with a positive mindset were 31% more productive than those with neutral
or negative mindsets. You’ll achieve less using poorly designed libraries, and
then you’ll continue to achieve less afterward because the bad code made you
miserable.

Is “fun is good” an excuse to be irresponsible? Not at all! Consider whether
everyone is having fun: everyone includes customers, colleagues, and future
maintainers of your code. Compared to dynamically typed scripting lan‐
guages, which can be fast and loose, Java already ticks the safe and responsi‐
ble box. But the programs we write also need to be responsibly coded.

The good news is that for almost all boring tasks, computers can do the job
faster and more correctly than people. Computers don’t expect to have fun
(yet), so take advantage of them! Don’t accept tedium. If something seems
un-fun, look for a better way. If there isn’t one, invent one. We’re program‐
mers: we can fix boring.

97 Things Every Java Programmer Should Know88

https://oreil.ly/pmfaZ

Java’s Unspeakable Types
Ben Evans

What is null?

New Java programmers often struggle with this idea. A simple example
reveals the truth:

String s = null;

Integer i = null;

Object o = null;

The symbol null must therefore be a value.

As every value in Java has a type, null must therefore have a type. What is it?

It obviously cannot be any type that we ordinarily encounter. A variable of
type String cannot hold a value of type Object—the Liskov substitution
properties simply do not work that way.

Nor does Java 11 local variable type inference help:

jshell> var v = null;

| Error:

| cannot infer type for local variable v

| (variable initializer is 'null')

| var v = null;

| ^ — — — — — -^

The pragmatic Java programmer may simply scratch their head and decide,
as many have done, that it doesn’t really matter all that much. Instead, they
can pretend “null is merely a special literal that can be of any reference
type.”

However, for those of us who find this approach unsatisfying, the true
answer can be found in the Java Language Specification (JLS), in Section 4.1:

There is also a special null type, the type of the expression null (§3.10.7,
§15.8.1), which has no name.

89

Because the null type has no name, it is impossible to declare a variable of the
null type or to cast to the null type.

There it is. Java allows us to write down values whose types we cannot
declare as the types of variables. We might call these “unspeakable types” or,
formally, nondenotable types.

As null shows, we’ve actually been using them all along. There are two more
obvious places where this sort of types appear. The first arrived in Java 7, and
the JLS has this to say about them:

An exception parameter may denote its type as either a single class type or a
union of two or more class types (called alternatives).

The true type of a multicatch parameter is the union of the distinct possible
types being caught. In practice, only code that conforms to the API contract
of the nearest common supertype of the alternatives will compile. The real
type of the parameter is not something we can use as the type of a variable.

In the following, what is the type of o?

jshell> var o = new Object() {

...> public void bar() { System.out.println("bar!"); }

...> }

o ==> $0@3bfdc050jshell> o.bar();

bar!

It can’t be Object, because we can call bar() on it, and the Object type has
no such method. Instead, the true type is nondenotable—it doesn’t have a
name we can use as the type of a variable in Java code. At runtime, the type is
just a compiler-assigned placeholder ($0 in our example).

By using var as a “magic type,” the programmer can preserve type informa‐
tion for each distinct usage of var, until the end of the method. We cannot
carry the types from method to method. To do so, we would have to declare
the return type—and that’s precisely what we can’t do!

The applicability of these types is therefore restricted—Java’s type system
remains very much a nominal system, and it seems unlikely that true struc‐
tural types will ever appear in the language.

Finally, we should point out that many of the more advanced uses of generics
(including the mysterious “capture of ?” errors) are really best understood in
terms of nondenotable types as well—but that’s another story.

97 Things Every Java Programmer Should Know90

The JVM Is a
Multiparadigm Platform:
Use This to Improve Your
Programming
Russel Winder

Java is an imperative language: Java programs tell the JVM what to do and
when to do it. But computing is all about building abstractions. Java is touted
as an object-oriented language: the abstractions of Java are objects, methods,
and message passing via method call. Over the years, people have built larger
and larger systems using objects, methods, updatable state, and explicit itera‐
tion, and the cracks have appeared. Many are “papered over” using high
quality testing, but still programmers end up “hacking” to get around various
problems.

With the arrival of Java 8, Java underwent an extremely revolutionary
change: it introduced method references, lambda expressions, default meth‐
ods on interfaces, higher order functions, implicit iteration, and various
other things. Java 8 introduced a very different way of thinking about the
implementation of algorithms.

Imperative and declarative thinking are very different ways of expressing
algorithms. During the 1980s and 1990s, these mindsets were seen as being
distinct and irreconcilable: we had the object-oriented versus functional pro‐
gramming war. Smalltalk and C++ were the champions of object-orientation,
and Haskell was the champion of functional. Later, C++ stopped being an
object-oriented language and marketed itself as a multiparadigm language;
Java took over as the champion of object-oriented. With Java 8, though, Java
has become multiparadigm.

Back in the early 1990s, the JVM was constructed as the way of making Java
portable—we can gloss over the history of the Green project and the Oak
programming language. Initially, this was for making web browser plug-ins,

91

but it rapidly moved to creating server-side systems. Java compiles to
hardware-independent JVM bytecode, and an interpreter executes the byte‐
code. Just-in-time (JIT) compilers enable the whole interpretation model to
execute much faster without changing the computational model of the JVM.

As the JVM became the hugely popular platform it is, other languages were
created that made use of the bytecode as a target platform: Groovy, JRuby,
and Clojure are dynamic languages using the JVM for execution; Scala,
Ceylon, and Kotlin are static languages. Scala, in particular, showed in the
late 2000s that object-orientation and functional programming can be inte‐
grated into a single, multiparadigm language. While Clojure is a functional
language, Groovy and JRuby were multiparadigm from the outset. Kotlin is
taking the lessons of Java, Scala, Groovy, etc. to create languages for the
2010s and 2020s on the JVM.

To use the JVM to its best effect, we should choose the right programming
language for the problem. This doesn’t necessarily mean one language for the
whole problem: we can use different languages for different bits—all because
of the JVM. So, we can use Java or Kotlin for the bits that are best expressed
as static code, and Clojure or Groovy for the bits that are best handled by
dynamic code. Trying to write dynamic code in Java is a pain, so use the right
tool for the job given that all the programming languages can interoperate on
the JVM.

97 Things Every Java Programmer Should Know92

Keep Your Finger on
the Pulse
Trisha Gee

I learned Java version 1.1 at university (I wish this was because my university
was using old technology instead of it being because I’m old). At that time
Java was small enough, and I was naïve enough, that it was possible to believe
I had learned all the Java I needed to know, and that I was set for life as a Java
programmer.

During my first job, while I was still at university and had been using Java for
less than a year, Java 1.2 was released. It had an entirely different user inter‐
face (UI) library, called Swing, so I spent that summer learning Swing in
order to use it to provide our users with a better experience.

A couple of years later, in my first job as a graduate, I discovered that applets
were out and servlets were in. I spent the next six months learning about
servlets and JSPs so we could give our users an online registration form.

In my next job, I found out that apparently we didn’t use Vector any more—
we used ArrayList. This shook me to my core. How can the very fundamen‐
tals of the language, the data structures themselves, be changing underneath
me? My first two discoveries involved learning additions to the language.
This third one was about changes to things I thought I already knew. If I
wasn’t at university anymore being taught things, how was I supposed to just
know this stuff?

I was fortunate in those early jobs to have people around me who were aware
of the technology changes that impacted the Java projects I worked on. That
should be the role of senior team members—not simply to do what they’re
told but to make suggestions on how to do it and to help the rest of the team
improve too.

To survive as a Java programmer, you need to accept that Java is not a sta‐
tionary language. It evolves, not only into new versions but as libraries,
frameworks, and even new JVM languages. At first, this can be intimidating

93

https://oreil.ly/6bJM0
https://oreil.ly/G_LNk
https://oreil.ly/uFBk4
https://oreil.ly/VrWT3

and overwhelming. But staying up-to-date doesn’t mean you have to learn
everything that’s out there—it just means keeping your finger on the pulse,
listening for common keywords, and understanding technology trends. You
only need to drill down deeper when it’s relevant for your job or when it’s
something that’s personally interesting to you (or ideally both).

Knowing what’s available in the current version of Java and what is planned
for upcoming ones can help you implement features or functionality that will
help your users do what they need to do. Which means it helps you as a
developer be more productive. Java now releases a new version every six
months. Keeping your finger on that pulse can actually make your life easier.

97 Things Every Java Programmer Should Know94

Kinds of Comments
Nicolai Parlog

Assume you want to put some comments into your Java code. Do you
use /**, /*, or //? And where exactly do you put them? Beyond syntax, there
are established practices that attach semantics to which is used where.

Javadoc Comments for Contracts
Javadoc comments (the ones enclosed in /** ... */) are exclusively used
on classes, interfaces, fields, and methods and are placed directly above
them. Here is an example from Map::size:

/**

 * Returns the number of key-value mappings in this map. If the

 * map contains more than Integer.MAX_VALUE elements, returns

 * Integer.MAX_VALUE.

 *

 * @return the number of key-value mappings in this map

 */

int size();

The example demonstrates syntax as well as semantics: a Javadoc comment is
a contract. It promises API users what they can expect while keeping the
type’s central abstraction intact by not talking about implementation details.
At the same time, it binds implementers to provide the specified behavior.

Java 8 relaxed this strictness a little while formalizing different interpreta‐
tions by introducing the (nonstandardized) tags @apiNote, @implSpec, and
@implNote. The prefixes, api or impl, specify whether the comment
addresses users or implementers. The suffixes, Spec or Note, clarify whether
this is actually a specification or only for illustration. Notice how @apiSpec is
missing? That’s because the comment’s untagged text is supposed to fulfill
that role: specifying the API.

95

Block Comments for Context
Block comments are enclosed in /* ... */. There are no restrictions on
where to put them, and tools usually ignore them. A common way to use
them is at the beginning of a class or even a method to give insights into its
implementation. These can be technical details but can also outline the con‐
text in which the code was created (the famous why from code tells you what,
comments tell you why) or paths not taken. A good example for providing
implementation details can be found in HashMap, which starts like this:

/*

 * Implementation notes.

 *

 * This map usually acts as a binned (bucketed) hash table,

 * but when bins get too large, they are transformed into bins

 * of TreeNodes, each structured similarly to those in

 * java.util.TreeMap.

 * [...]

 */

As a rule of thumb, when your first solution isn’t your last, when you make a
trade-off, or when a weird requirement or a dependency’s awkward API
shapes your code, consider documenting that context. Your colleagues and
your future self will thank you. (Silently.)

Line Comments for Weird Things
Line comments start with a //, which must be repeated on every line. There
are no restrictions on where to use them, but it is common to put them
above the commented line or block (as opposed to at the end). Tools ignore
them—many developers do as well. Line comments are often used to narrate
what the code does, which has rightfully been identified as a bad practice in
general. It can still be helpful in specific cases, such as where the code has to
use arcane language features or is easy to break in a subtle way (concurrency
is the prime example for this).

Last Words

• Make sure to pick the right kind of comment.
• Don’t break expectations.
• Comment your &#!*@$ code!

97 Things Every Java Programmer Should Know96

Know Thy flatMap
Daniel Hinojosa

Job titles morph constantly. As in the medical community, where the focus
may be broader or more specialized, some of us who were once just pro‐
grammers are now filling other job titles. One of the newest specialized disci‐
plines is data engineer. The data engineer shepherds in the data, building
pipelines, filtering data, transforming it, and molding it into what they or
others need to make real-time business decisions with stream processing.

Both the general programmer and data engineer must master the flatMap,
one of the most important tools for any functional, capable language like our
beloved Java, but also for big data frameworks and streaming libraries. flat
Map, like its partners map and filter, is applicable for anything that is a “con‐
tainer of something”—for example, Stream<T> and CompletableFuture<T>.
If you want to look beyond the standard library, there is also Observable<T>
(RXJava) and Flux<T> (Project Reactor).

In Java, we will use Stream<T>. The idea for map is simple—take all elements
of a stream or collection and apply a function to it:

Stream.of(1, 2, 3, 4).map(x -> x * 2).collect(Collectors.toList())

This produces:

[2, 4, 6, 8]

What happens if we do the following?

Stream.of(1, 2, 3, 4)

 .map(x -> Stream.of(-x, x, x + 1))

 .collect(Collectors.toList())

Unfortunately, we get a List of Stream pipelines:

[java.util.stream.ReferencePipeline$Head@3532ec19,

 java.util.stream.ReferencePipeline$Head@68c4039c,

 java.util.stream.ReferencePipeline$Head@ae45eb6,

 java.util.stream.ReferencePipeline$Head@59f99ea]

97

But, thinking about it, of course for every element of the Stream we’re creat‐
ing another Stream. And take a deeper look in the map(x ->

Stream.of(...)). For every singular element, we’re creating a plural. If you
perform a map with a plural, it’s time to break out the flatMap:

Stream.of(1, 2, 3, 4)

 .flatMap(x -> Stream.of(-x, x, x+1))

 .collect(Collectors.toList())

That will produce what we were aiming for:

[-1, 1, 2, -2, 2, 3, -3, 3, 4, -4, 4, 5]

The opportunities for using flatMap are immense.

Let’s move on to something more challenging that is apt for any functional
programming or data engineering task. Consider the following relationship,
where getters, setters, and toString are elided:

class Employee {

 private String firstName, lastName;

 private Integer yearlySalary;

 // getters, setters, toString

}

class Manager extends Employee {

 private List<Employee> employeeList;

 // getters, setters, toString

}

Suppose we are given only a Stream<Manager> and our goal is to determine
all the salaries of all employees, including Managers and their Employees. We
might be tempted to jump right to the forEach and start digging through
those salaries. This, unfortunately, would model our code to the structure of
the data and would cause needless complexity. A better solution would be to
go the opposite way and structure the data to that of our code. That is where
flatMap comes in:

List.of(manager1, manager2).stream()

 .flatMap(m ->

 Stream.concat(m.getEmployeeList().stream(), Stream.of(m)))

 .distinct()

 .mapToInt(Employee::getYearlySalary)

 .sum();

97 Things Every Java Programmer Should Know98

This code takes every manager and returns a plural—the manager and their
employees. We then flatMap these collections to make one Stream and
perform a distinct to filter out all duplicates. Now we can treat them all as
one collection. The rest is easy. First we perform a Java-specific call, map
ToInt, that extracts their yearlySalary and returns an IntStream, a special‐
ized Stream type for integers. Finally, we sum the Stream. Concise code.

Whether you use Stream or another kind of C<T>, where C is any stream or
collection, keep processing your data using map, filter, flatMap, or groupBy
before reaching for the forEach or any other terminal operation like
collect. If you go with the terminal operation prematurely, you’ll lose any
laziness and optimization that Java Streams, streaming libraries, or big data
frameworks grant you.

Collective Wisdom from the Experts 99

Know Your Collections
Nikhil Nanivadekar

Collections are a staple in any programming language. They constitute one
of the basic building blocks of commonly developed code. The Java language
introduced the Collections framework a long time ago in JDK 1.2. Many pro‐
grammers reach for ArrayList as their de facto collection to use. However,
there’s more to collections than ArrayList, so let’s explore.

Collections can be classified as ordered or unordered. Ordered collections
have a predictable iteration order; unordered collections do not have a pre‐
dictable iteration order. Another way to classify collections is sorted or unsor‐
ted. The elements in a sorted collection are sequenced from start to end
based on a comparator; unsorted collections have no particular sequence
based on elements. Although sorted and ordered have similar meanings in
English, they cannot always be used interchangeably for collections. The
important distinction is that ordered collections have a predictable iteration
order but no sort order. Sorted collections have a predictable sort order,
hence they have a predictable iteration order. Remember: all sorted collec‐
tions are ordered collections, but not all ordered collections are sorted col‐
lections. There are various ordered, unordered, sorted, and unsorted
collections in the JDK. Let’s take a look at a few of them.

List is an interface for ordered collections with a stable indexing order. Lists
allow duplicate elements to be inserted and provide a predictable iteration
order. The JDK offers List implementations like ArrayList and Linked
List. To find a particular element, the contains method can be used. The
contains operation traverses the list from the beginning, hence finding ele‐
ments in a List is an O(n) operation.

Map is an interface that maintains key-to-value relationships, and retains only
unique keys. If the same key and different value is added to a map, the old
value is replaced by the new value. The JDK offers Map implementations like
HashMap, LinkedHashMap, and TreeMap. A HashMap is unordered, whereas a
LinkedHashMap is ordered; both rely on hashCode and equals to determine

100

unique keys. A TreeMap is sorted: the keys are sorted according to a compara
tor or by the sort order of Comparable keys. TreeMap relies on compareTo to
determine sort order and uniqueness of keys. To find a particular element,
Map provides the containsKey and containsValue methods. For HashMap,
containsKey looks up the key in the internal hash table. If the look-up
results in a non-null object, it is checked for equality with the object passed
to containsKey. The containsValue operation traverses all the values from
the beginning. Hence, finding keys in a HashMap is an O(1) operation,
whereas finding values in a HashMap is an O(n) operation.

Set is an interface for collections of unique elements. In the JDK, sets are
backed by maps where the keys are the elements and values are null. The
JDK offers Set implementations like HashSet (backed by HashMap), Linked
HashSet (backed by LinkedHashMap), and TreeSet (backed by TreeMap). To
find a particular element, the contains method can be used for Set. The con
tains method on a Set delegates to containsKey of a Map and therefore is an
O(1) operation.

Collections are an important piece of a software puzzle. To use them effec‐
tively, it is necessary to understand their functionality, their implementation,
and last but not least, the implications of using an iteration pattern. Remem‐
ber to read the documentation, and write tests while using these versatile and
basic building blocks of code.

Collective Wisdom from the Experts 101

Kotlin Is a Thing
Mike Dunn

Java is maybe the most mature and vetted language still in common use, and
that is unlikely to change dramatically in the foreseeable future. To facilitate
modern notions of what a programming language should do, some smart
folks decided to write a new language that did all the Java Things, plus some
cool new Things that would be fairly painless to learn and be largely intero‐
perable. Someone like me, who’s been working on the same huge Android
app for years, can decide to write a single class in Kotlin without committing
to a complete migration.

Kotlin is meant to let you write shorter, cleaner, more modern code. While
modern and preview versions of Java do address a lot of the issues Kotlin
manages, Kotlin can be especially useful for Android developers, who are
stuck somewhere between Java 7 and Java 8.

Let’s look at a few examples, like Kotlin’s property constructor pattern for
models, starting with a simple example of what a Java model may look like:

public class Person {

 private String name;

 private Integer age;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public Integer getAge() {

 return age;

 }

 public void setAge(int age) {

 this.age = age;

 }

}

102

We could create a special constructor to take some initial values:

public class Person {

 public Person(String name, Integer age) {

 this.name = name;

 this.age = age;

 }

 ...

}

Not too bad, but you can probably see how a few more properties could
make the definition for this pretty simple class get bloated really quickly. Let’s
take a look at that class in Kotlin:

class Person(val name:String, var age:Int)

That’s it! Another neat example is delegation. Kotlin delegates allow you to
provide logic for any number of read operations. One example is the lazy ini‐
tialization, a concept sure to be familiar to Java developers. It might look like
this:

public class SomeClass {

 private SomeHeavyInstance someHeavyInstance = null;

 public SomeHeavyInstance getSomeHeavyInstance() {

 if (someHeavyInstance == null) {

 someHeavyInstance = new SomeHeavyInstance();

 }

 return someHeavyInstance;

 }

}

Again, not too terrible, done simply and without configuration, but chances
are you’ll repeat this same code several times in your code, violating the DRY
principle (Don’t Repeat Yourself). Also, not thread-safe. Here’s the Kotlin
version:

val someHeavyInstance by lazy {

 return SomeHeavyInstance()

}

Short and sweet and readable. All that boilerplate is tucked away nicely
under the covers. Oh, and it’s thread-safe too. null safety is also a big
upgrade. You’ll see a lot of question mark operators following a nullable ref‐
erence in Kotlin:

val something = someObject?.someMember?.anotherMember

Collective Wisdom from the Experts 103

Here’s the same thing in Java:

Object something = null;

if (someObject != null) {

 if (someObject.someMember != null) {

 if (someObject.someMember.anotherMember != null) {

 something = someObject.someMember.anotherMember;

 }

 }

}

The null-check operator (?) will stop evaluating immediately and return
null as soon as any of the referents in the chain resolve to null.

Let’s close out with another killer feature: coroutines. In a nutshell, a corou‐
tine performs work asynchronous to the calling code, although that work
may be handed off to some number of threads. It’s important to note that
even if a single thread handles multiple coroutines, Kotlin performs some
context-switching magic that runs multiple jobs concurrently. While specific
behavior is configurable, coroutines naturally use a dedicated thread pool,
but use context switching within a single thread (so hot). Since they’re Kot‐
lin, they also can be fancy and sophisticated and overengineered, but by
default they’re also super simple:

launch {

 println("Hi from another context")

}

Be aware of the differences between threads and coroutines though—for
example, an object.wait() invocation in one job will pause all the other
jobs working in the containing thread. Give Kotlin a spin and see what you
think.

97 Things Every Java Programmer Should Know104

Learn Java Idioms and
Cache in Your Brain
Jeanne Boyarsky

As programmers, there are some tasks we need to do frequently. For exam‐
ple, going through data and applying a condition are common. Here are two
ways to count how many positive numbers are in a list:

public int loopImplementation(int[] nums) {

 int count = 0;

 for (int num : nums) {

 if (num > 0) {

 count++;

 }

 }

 return count;

}

public long streamImplementation(int[] nums) {

 return Arrays.stream(nums)

 .filter(n -> n > 0)

 .count();

}

Both of these accomplish the same thing, and they both use common Java
idioms. An idiom is a common way of expressing some small piece of func‐
tionality that the community has general agreement on. Knowing how to
write these quickly without having to think about them enables you to write
code much faster. As you write code, look for patterns like these. You can
even practice them to get faster and learn them by heart.

Some idioms, like looping, conditions, and streams, apply to all Java pro‐
grammers. Others are more specific to the types of code you work on. For
example, I do a lot with regular expressions and file I/O. The following idiom

105

is one I commonly use in file I/O. It reads a file, removes any blank lines, and
writes it back:

Path path = Paths.get("words.txt");

List<String> lines = Files.readAllLines(path);

lines.removeIf(t -> t.trim().isEmpty());

Files.write(path, lines);

If I were on a team where files didn’t fit in memory, I’d have to use a different
programming idiom. However, I deal with small files where this is not an
issue, so the convenience of four lines to do something powerful is worth it.

Notice with these idioms that much of the code is common regardless of
your task. If I want to get negative numbers or odd numbers, I just change
the if statement or filter. If I want to remove all lines that are more than 60
characters long, I just change the condition in removeIf:

lines.removeIf(t -> t.length() <= 60);

Regardless, I’m thinking about what I want to accomplish. I’m not looking
up how to read a file or how to count values. That’s an idiom I learned long
ago.

An interesting thing about idioms is that you don’t always learn them inten‐
tionally. I never sat down and decided to learn the idiom for reading/writing
a file. I learned it from using it a lot. Looking up information repeatedly
helps you learn it. Or at least helps you know where to find it. For example, I
have trouble remembering the regular expression flags. I know what they do,
but mix up ?s and ?m. I have looked it up enough times that I know I should
google “javadoc pattern” to get the answer.

In conclusion, let your brain serve as a cache. Learn the idioms and common
library API calls. Know where to look up the rest quickly. This will free you
up to let your brain work on the hard stuff!

97 Things Every Java Programmer Should Know106

Learn to Kata and
Kata to Learn
Donald Raab

Every Java developer needs to learn new skills and keep their existing skills
sharp. The Java ecosystem is enormous and continues to evolve. With so
much to learn, the prospect of keeping up may seem daunting. We can help
each other keep up in this rapidly changing space if we work together as a
community, sharing knowledge and practice. Taking, creating, and sharing
code katas is one of the ways we can do this.

A code kata is a hands-on programming exercise that helps you hone specific
skills through practice. Some code katas will provide you structure to vali‐
date that a skill has been acquired by getting unit tests to pass. Code katas are
a great way for developers to share practice exercises with their future selves
and other developers to learn from.

Here’s how to create your first code kata:

1. Select a topic you want to learn.
2. Write a passing unit test that demonstrates some piece of knowledge.
3. Refactor the code repeatedly until you are satisfied with the final solu‐

tion. Make sure the test passes after each refactoring.
4. Delete the solution in the exercise and leave a failing test.
5. Commit the failing test with supporting code and build artifacts to a ver‐

sion control system (VCS).
6. Open source the code to share with others.

Now I’ll demonstrate how to create a small kata by following the first four
steps:

1. Topic: Learn how to join strings in a List.

2. Write a passing JUnit test that shows how to join strings in a List:

107

@Test

public void joinStrings() {

 List<String> names = Arrays.asList("Sally", "Ted", "Mary");

 StringBuilder builder = new StringBuilder();

 for (int i = 0; i < names.size(); i++) {

 if (i > 0) {

 builder.append(", "); }

 builder.append(names.get(i));

 }

 String joined = builder.toString();

 Assert.assertEquals("Sally, Ted, Mary", joined);

}

3. Refactor the code to use StringJoiner in Java 8. Rerun the test:
StringJoiner joiner = new StringJoiner(", ");

for (String name : names) {

 joiner.add(name);

}

String joined = joiner.toString();

Refactor the code to use Java 8 streams. Rerun the test:
String joined = names.stream().collect(Collectors.joining(", "));

Refactor the code to use String.join. Rerun the test:
String joined = String.join(", ", names);

4. Delete the solution and leave a failing test with a comment:
@Test

public void joinStrings() {

 List<String> names = Arrays.asList("Sally", "Ted", "Mary");

 // Join the names and separate them by ", "

 String joined = null;

 Assert.assertEquals("Sally, Ted, Mary", joined);

}

Pay it forward—I’ll leave steps 5 and 6 as an exercise for the reader.

This example should be simple enough to illustrate how to create your own
katas of varying complexity, leveraging unit tests to provide the structure
necessary to build confidence and understanding.

97 Things Every Java Programmer Should Know108

Value your own learning and knowledge. When you learn something useful,
write it down. Saving practice exercises to recall how things work can be
quite helpful. Capture your knowledge and exploration in code katas. Katas
you have used to sharpen your own skills may also be valuable to others.

We all have things to learn and that we can teach. When we share what we
learn with others, we improve the whole Java community. This is vitally
important to helping ourselves and our fellow Java developers collectively
improve our coding skills.

Collective Wisdom from the Experts 109

Learn to Love Your
Legacy Code
Uberto Barbini

What is a legacy system? It is old software that is very hard to maintain, to
extend, and to improve. On the other hand, it is also a system that is working
and is serving the business; otherwise, it would not have survived.

Perhaps, when it was first created, a legacy system had an excellent design, a
design so good that people started to say, “OK, maybe we can use it also for
this, and this, and this.” It becomes overloaded with technical debt, but it still
works. These systems can be amazingly resilient.

Still, developers hate working on legacy systems. It can seem there’s more
technical debt than anybody could ever repay. Perhaps we should just declare
bankruptcy and move on. Much easier.

What if you really have to maintain it? What do you do when you have to fix
a bug?

Solution number one: duct tape. Hold your nose, fix the defect—“OK, we
may regret this one day, but let’s do this copy–paste now, just to fix it.” From
there it will only get worse. Like in an abandoned building, it may stay
undamaged for a long time, but as soon as there is a single broken window, it
will soon be left without any windows intact. Just seeing one broken window
encourages people to break others. This is the law of broken windows.

Solution number two: forget the old system and rewrite from scratch. Can
you imagine what the problem with this solution is? More often than not, the
rewrite will not work or it will never be finished. This comes from survival
bias. You see the old system code and say, “Oh, come on, if whoever wrote
this terrible code was able to make it work, it must be quite easy.” But it’s not.
You may consider the code horrible, but it’s code that has already survived
many battles. When you start from scratch, you don’t know the battle stories,
and you’ve lost a lot of knowledge about the domain.

110

https://oreil.ly/lKSDd
https://oreil.ly/lKSDd

So what should we do? In Japan, there is an art called kintsugi. When a pre‐
cious object breaks, instead of throwing it away, it is put back together using
gold powder along its cracking lines. The gold emphasizes that it was broken,
but it’s still beautiful.

Perhaps we are looking at the legacy code from the wrong point of view? I
am not saying we should goldplate the old code, but we should learn how to
fix it in a way that makes us proud of it.

The strangler pattern allows us to do precisely this. It is named for a fig tree
(not for homicide!) that wraps around other trees. Its growth progressively
surrounds the host tree, which withers away until all that is left are the fig
vines around a hollow core.

Similarly, we start replacing a smelly line of code with a new, clean one that
has been thoroughly tested. And then, proceeding from there, we create a
new application that creeps on top of the previous one until it completely
replaces the old one.

But even if we don’t complete it, the mix of new and old is much better than
letting the old one rot. It is much safer than a complete rewrite because we
will validate the new behavior continuously, and we can always roll back the
latest version in case we introduced bugs.

Legacy code deserves a little love.

Collective Wisdom from the Experts 111

https://oreil.ly/F4AZX
https://oreil.ly/SWJFc
https://oreil.ly/jficR

Learn to Use New Java
Features
Gail C. Anderson

Java 8 introduced lambdas and streams, two game-changing features that
give Java programmers significant language constructs. From Java 9 onward,
release cycles occur every six months with more features popping up in each
release. You should care about these new features because they help you write
better code. And, your skills will improve as you incorporate new language
paradigms into your programming arsenal.

Much has been written about streams and how they support a functional
programming style, reduce bulky code, and make code more readable. So,
let’s look at an example with streams, not so much to convince you to use
streams everywhere but to entice you to learn about this and other Java fea‐
tures introduced since Java 8.

Our example computes the maximum, average, and minimum for systolic,
diastolic, and pulse values from collected blood-pressure monitoring data.
We want to visualize these computed summary statistics with a JavaFX bar
chart.

Here’s a portion of our BPData model class, showing just the getter methods
we need:

public class BPData {

 ...

 public final Integer getSystolic() {

 return systolic.get();

 }

 public final Integer getDiastolic() {

 return diastolic.get();

 }

 public final Integer getPulse() {

 return pulse.get();

112

 }

 ...

}

The JavaFX bar chart creates the magic for this visualization. First, we need
to build the correct series and feed our transformed data to the bar chart
object. Since the operation is repeated for each series, it makes sense to create
a single method to parameterize both the bar chart series and the specific
BPData getter required to access this data. Our source data is stored in the
variable sortedList, a date-sorted collection of BPData elements. Here’s the
computeStatData method that builds our chart data:

 private void computeStatData(

 XYChart.Series<String, Number> targetList,

 Function<BPData, Integer> f) {

 // Set Maximum

 targetList.getData().get(MAX).setYValue(sortedList.stream()

 .mapToInt(f::apply)

 .max()

 .orElse(1));

 // Set Average

 targetList.getData().get(AVG).setYValue(sortedList.stream()

 .mapToInt(f::apply)

 .average()

 .orElse(1.0));

 // Set Minimum

 targetList.getData().get(MIN).setYValue(sortedList.stream()

 .mapToInt(f::apply)

 .min()

 .orElse(1));

 }

Parameter targetList is the bar chart series data that corresponds to one of
systolic, diastolic, or pulse data. We want to create a bar chart with the maxi‐
mum, average, and minimum corresponding to each of these series. Thus, we
set the chart’s Y-value to these computed values. The second parameter is the
specific getter from BPData, passed as a method reference. We use this in the
stream mapToInt method to access the specific values for that series. Each
stream sequence returns the maximum, average, or minimum of the source
data. Each terminating stream method returns orElse, an Optional object,
making our bar chart display a placeholder value of 1 (or 1.0) if the source
data stream is empty.

Collective Wisdom from the Experts 113

Here’s how to invoke this computeStatData method. The convenient method
reference notation makes it easy to specify which BPData getter method to
invoke for each data series:

computeStatData(systolicStats, BPData::getSystolic);

computeStatData(diastolicStats, BPData::getDiastolic);

computeStatData(pulseStats, BPData::getPulse);

Prior to Java 8, this code was much more tedious to write. So, learning and
using new Java features is a worthwhile skill to embrace as Java continues to
improve.

For your next feature, how about checking out Java 14’s record syntax, a pre‐
view feature, to simplify the BPData class?

97 Things Every Java Programmer Should Know114

Learn Your IDE to Reduce
Cognitive Load
Trisha Gee

I work for a firm that sells IDEs, so of course I’m going to say you should
know how your IDE works and use it properly. Before that, I spent 15 years
working with multiple IDEs, learning how they help developers create some‐
thing useful and how to use them to easily automate tasks.

We all know IDEs provide code highlighting and show errors and potential
problems, but any Java IDE can do so much more than that. Learning what
your IDE is capable of and using the features that apply to your daily work
can help level up your productivity.

For example, your IDE:

• Can generate code for you so you don’t have to type it. Getters and set‐
ters, equals and hashCode, and toString are the most frequent
examples.

• Has refactoring tools that can automatically move your code in a partic‐
ular direction while keeping the compiler happy.

• Can run your tests and help you debug problems. If you’re using
System.out for debugging, it’s going to take you much longer than if
you’re inspecting the values of objects at runtime.

• Should integrate with your build and dependency management system
so your development environment works the same way as your testing
and production environments.

• Can even help you with tools or systems external to your application
code—for example, version control, database access, or code review
(remember, the I in IDE stands for integrated). You don’t have to leave
the tool to work with all aspects of your software delivery pipeline.

Using the IDE, you can navigate through the code naturally—finding the
methods that call this piece of code, or moving into the method that this

115

code calls. You can move directly to files (or even to specific code snippets)
using a few keystrokes instead of the mouse to navigate a file structure.

The tool you choose to write code in should be helping you focus on what
you’re developing. You shouldn’t be thinking about the intricacies of how you
code it. By offloading the tedious stuff onto the IDE, you reduce your cogni‐
tive load and can spend more brain power on the business problem you’re
trying to solve.

97 Things Every Java Programmer Should Know116

Let’s Make a Contract:
The Art of Designing a
Java API
Mario Fusco

An API is what developers use to achieve some task. More precisely, it estab‐
lishes a contract between them and the designers of the software, exposing its
services through that API. In this sense, we’re all API designers: our software
doesn’t work in isolation but becomes useful only when it interacts with
other software written by other developers. When writing software, we’re not
only consumers but also providers of one or more APIs, which is why every
developer should know the characteristics of good APIs and how to achieve
them.

Firstly, a good API should be easily understandable and discoverable. It
should be possible to start using it and, ideally, learn how it works without
reading its documentation. To this end, it’s important to use consistent nam‐
ing and conventions. This sounds pretty obvious; nevertheless, it’s easy to
find, even in the standard Java API, situations where this suggestion hasn’t
been followed. For instance, since you can invoke skip(n) to skip the first n
items of a Stream, what could be a good name for the method that skips all
the Stream’s items until one of them doesn’t satisfy a predicate p? A reason‐
able name could be skipWhile(p), but actually this method is called drop
While(p). There’s nothing wrong with the name dropWhile per se, but it isn’t
consistent with skip performing a very similar operation. Don’t do this.

Keeping your API minimal is another way to make it easy to use. This
reduces both the concepts to be learned and its maintenance costs. Once
again, you can find examples breaking this simple principle in the standard
Java API. Optional has a static factory method of(object) that creates an
Optional wrapping the object passed to it. Incidentally, using factory meth‐
ods instead of constructors is another valuable practice since it allows greater
flexibility: doing so, you can also return an instance of a subclass or even a

117

null when the method is called with illegal arguments. Unfortunately,
Optional.of throws a NullPointerException when invoked with null,
something unexpected from a class designed to prevent NullPointerExcep
tions (NPEs). This not only breaks the principle of least astonishment—
another thing to consider when designing your API—but requires the intro‐
duction of a second method ofNullable returning an empty Optional when
called with null. The of method has an inconsistent behavior and, if imple‐
mented correctly, the ofNullable one could have been left out.

Other good hints that could improve your API are: break apart large inter‐
faces into smaller pieces; consider implementing a fluent API, for which, this
time, Java Streams is a very good example; never return null, use empty col‐
lections and Optional instead; limit usage of exceptions, and possibly avoid
checked ones. Regarding method arguments: avoid long lists of them, espe‐
cially of the same type; use the weakest possible type; keep them in consistent
order among different overloads; consider varargs. Moreover, the fact that a
good API is self-explanatory doesn’t mean that you shouldn’t document it
clearly and extensively.

Finally, don’t expect to write a great API the first time. Designing an API is
an iterative process, and dogfooding is the only way to validate and improve
it. Write tests and examples against your API and discuss them with collea‐
gues and users. Iterate multiple times to eliminate unclear intentions, redun‐
dant code, and leaky abstraction.

97 Things Every Java Programmer Should Know118

Make Code Simple and
Readable
Emily Jiang

I am a big fan of simple and readable code. Every line of code should be as
self-explanatory as possible. Every line of code should be necessary. To ach‐
ieve readable and simple code, there are two aspects: format and content.
Here are some tips to help you write code that is readable and simple:

Use indentation to lay out your code clearly.
Use it consistently. If you work in a project, there should be a code tem‐
plate. Everyone on the team should adopt the same code format. Don’t
mix spaces with tabs. I always have the IDE configured to display spaces
and tabs so that I can spot the mix and fix them. (Personally, I love
spaces.) Choose either spaces or tabs, and stick to it.

Use meaningful variable names and method names.
The code is much easier to maintain if it is self-explanatory. With mean‐
ingful identifiers, your code can talk for itself instead of needing a sepa‐
rate comment line to explain what it does. Steer clear of single-letter
variable names. If your variable and method names have clear meaning,
you will not normally need comments to explain what your code does.

Comment your code if necessary.
If the logic is very complex, such as regex queries, etc., use documenta‐
tion to explain what the code is trying to do. Once there are comments,
you need to ensure they are maintained. Unmaintained comments cause
confusion. If you need to warn a maintainer about something, make sure
you document it and make it stand out, such as adding “WARNING” at
the start of a comment. Sometimes a bug can be spotted and fixed more
easily if the original author expresses their intention or puts a warning
somewhere.

119

Don’t check in commented-out code.
Delete it to improve the readability. One of the common arguments for
the commented-out code is that some day the commented-out code
might be needed. The truth is that it might stay there for years, unmain‐
tained and causing confusion. Even if one day you want to uncomment
it, the code block might not compile or work as expected as the base
might have changed significantly. Don’t hesitate. Just delete it.

Don’t overengineer by adding might-be-useful-in-the-future code.
If you are tasked to deliver some functionality, don’t overdo it by includ‐
ing additional speculative logic. Any extra code runs the risk of intro‐
ducing bugs and maintenance overhead.

Avoid writing verbose code.
Aim to write fewer lines of code to achieve a task. More lines introduce
more bugs. Prototype first via brainstorming to get the task done, and
then polish the code. Make sure each line has a strong reason to exist. If
you are a manager or architect, don’t judge your developers by how
many lines of code they deliver but by how clean and readable their code
is.

Learn functional programming, if you have not already.
One of the advantages of using features introduced in Java 8, such as
lambdas and streams, is that these features can help to improve your
code readability.

Adopt pair programming.
Pair programming is a great way for a junior developer to learn from
someone who is more experienced. It is also a great way to write mean‐
ingful code, as you need to explain your choices and reasoning to the
other person. A great process encourages you to write code with care
instead of dumping code.

Code will have fewer bugs if it is simple and readable: code that is complex is
likely to have more bugs; code that is not easily understood is likely to have
more bugs. Hopefully, these tips can help you to improve your skills and
your code, to deliver code that is simple and readable!

97 Things Every Java Programmer Should Know120

Make Your Java Groovier
Ken Kousen

The screen was the color of a cyberpunk novel opened to the first line. I
stared at it, worried I would never finish tonight. There was a knock on the
wall of my cubicle. My boss stood there, waiting.

“How’s it going?” she said.

“Java is so verbose,” I sighed. “I just want to download some data from a ser‐
vice and save it to a database. I’m swimming in builders, factories, library
code, try/catch blocks…”

“Just add Groovy.”

“Huh? How would that help?”

She sat down. “Mind if I drive?”

“Please.”

“Let me give you a quick demo.” She opened a command prompt and typed
groovyConsole. A simple GUI appeared on the screen. “Say you want to
know how many astronauts are in space at the moment. There’s a service at
Open Notify that gives you that.”

She executed the following in the Groovy console:

def jsonTxt = 'http://api.open-notify.org/astros.json'.toURL().text

The JSON response came back with the number of astronauts, a status mes‐
sage, and nested objects relating each astronaut to a craft.

“Groovy adds toURL to String to generate a java.net.URL, and getText to
URL to retrieve the data, which you access as text.”

“Sweet,” I said. “Now I have to map that to Java classes and use a library like
Gson or Jackson—”

“Nah. If all you want is the number of people in space, just use a Json
Slurper.”

121

https://oreil.ly/oysGk

“A what?”

She typed:

def number = new JsonSlurper().parseText(jsonTxt).number

“The parseText method returns Object,” she said, “but we don’t care about
the type here, so just drill down.”

It turned out there were six people in space, all aboard the International
Space Station.

“OK,” I said. “Say I want to parse the response into classes. What then? Is
there a port of Gson to Groovy?”

She shook her head. “Don’t need it. It’s all bytecodes under the hood. Just
instantiate the Gson class and invoke methods as usual:

@Canonical

class Assignment { String name; String craft }

@Canonical

class Response { String message; int number; Assignment[] people }

new Gson().fromJson(jsonTxt, Response).people.each { println it }

“The Canonical annotation adds toString, equals, hashCode, a default con‐
structor, a named argument constructor, and a tuple constructor to each
class.”

“Awesome! Now how do I save the astronauts in a database?”

“Easy enough. Let’s use H2 for this sample:

Sql sql = Sql.newInstance(url: 'jdbc:h2:~/astro',

 driver: 'org.h2.Driver')

sql.execute '''

 create table if not exists ASTRONAUTS(

 id int auto_increment primary key,

 name varchar(50),

 craft varchar(50)

)

'''

response.people.each {

 sql.execute "insert into ASTRONAUTS(name, craft)" +

 "values ($it.name, $it.craft)"

}

sql.close()

97 Things Every Java Programmer Should Know122

“The Groovy Sql class creates a table using a multiline string and inserts val‐
ues using interpolated strings:

sql.eachRow('select * from ASTRONAUTS') {

 row -> println "${row.name.padRight(20)} aboard ${row.craft}"

}

“Done,” she said, “with a formatted print and everything.”

I stared at the result. “Do you have any idea how many lines of Java that
would have been?” I asked.

She smirked. “A lot. By the way, all exceptions in Groovy are unchecked, so
you don’t even need a try/catch block. If we use withInstance rather than
newInstance, the connection will close automatically too. Good enough?”

I nodded.

“Now just wrap the different parts into a class, and you can call it from Java.”

She left, and I looked forward to making the rest of my Java groovier.

Collective Wisdom from the Experts 123

Minimal Constructors
Steve Freeman

A pattern I regularly see is significant work done in the constructor: take in a
set of arguments and convert them into values for the fields. It often looks
like this:

public class Thing {

 private final Fixed fixed;

 private Details details;

 private NotFixed notFixed;

 // more fields

 public Thing(Fixed fixed,

 Dependencies dependencies,

 OtherStuff otherStuff) {

 this.fixed = fixed;

 setup(dependencies, otherStuff);

 }

}

I assume that setup initializes the remaining fields based on dependencies
and otherStuff, but it’s not clear to me from the constructor signature
exactly what values are necessary to create a new instance. It’s also not obvi‐
ous which fields can change during the life of the object, as they cannot be
made final unless they’re initialized in a constructor. Finally, this class is
harder to unit test than it should be because instantiating it requires creating
the right structure in the arguments to be passed to setup.

Worse, I occasionally used to see constructors like this:

public class Thing {

 private Weather currentWeather;

 public Thing(String weatherServiceHost) {

 currentWeather = getWeatherFromHost(weatherServiceHost);

124

 }

}

which requires an internet connection and a service to create an instance.
Thankfully, this is now rare.

All of this was done with the best of intentions to make creating instances
easier by “encapsulating” behavior. I believe this approach is a legacy from
C++ where programmers can use constructors and destructors creatively to
control resources. It’s easier to combine classes in an inheritance hierarchy if
each manages its own internal dependencies.

I prefer to use an approach inspired by my experience of Modula-3, which is
that all a constructor does is assign values to fields: its only job is to create a
valid instance. If there’s more work to do, I use a factory method:

public class Thing {

 private final Fixed fixed;

 private final Details details;

 private NotFixed notFixed;

 public Thing(Fixed fixed, Details details, NotFixed notFixed) {

 this.fixed = fixed;

 this.details = details;

 this.notFixed = notFixed;

 }

 public static Thing forInternationalShipment(

 Fixed fixed,

 Dependencies dependencies,

 OtherStuff otherStuff) {

 final var intermediate = convertFrom(dependencies, otherStuff);

 return new Thing(fixed,

 intermediate.details(),

 intermediate.initialNotFixed());

 }

 public static Thing forLocalShipment(Fixed fixed,

 Dependencies dependencies) {

 return new Thing(fixed,

 localShipmentDetails(dependencies),

 NotFixed.DEFAULT_VALUE);

 }

Collective Wisdom from the Experts 125

https://oreil.ly/t2t4G

}

final var internationalShipment =

 Thing.forInternationalShipment(fixed, dependencies, otherStuff);

final var localShipment = Thing.forLocalShipment(fixed, dependencies);

The advantages are that:

• I’m now very clear about the life cycle of the instance fields.
• I’ve separated code for the instantiation of an object from its use.
• The name of the factory method describes itself, unlike a constructor.
• The class and its instantiation are easier to unit test separately.

There is a disadvantage around not being able to share constructor imple‐
mentation in inheritance hierarchies, but that can be addressed by making
the supporting helper methods accessible and, more usefully, by taking the
hint to avoid deep inheritance.

Finally, to me, this is also a reason to be careful about how to work with
dependency injection frameworks. If creating an object is complicated, then
putting everything in the constructor because that makes reflection-based
tooling easier to use feels backward to me. One can usually register the fac‐
tory method instead as a way to create new instances. Similarly, using reflec‐
tion to set private fields directly for “encapsulation” (or to avoid writing a
constructor) breaks the type system and makes unit testing more difficult; it’s
better to set the fields through a minimal constructor. Use @Inject or
@Autowired cautiously and make everything explicit.

97 Things Every Java Programmer Should Know126

Name the Date
Kevlin Henney

As java.util.Date is slowly but surely deprecated into the Sun-set, with
java.time taking up its mantle, it’s worth pausing to learn some lessons
from its troubled life before letting it rest in peace.

The most obvious lesson is that date–time handling is harder than people
expect—even when they’re expecting it. It is a truth universally acknowl‐
edged that a single programmer in possession of the belief they understand
dates and times must be in want of a code review. But that’s not what I want
to focus on here, nor is it the importance of immutability for value types,
what makes a class (un)suitable for subclassing, or how to use classes rather
than integers to express a rich domain.

Source code is made up of spacing, punctuation, and names. All these convey
meaning to the reader, but names are where most meaning is carried (or
dropped). Names matter. A lot.

Given its name, it would be nice if a Date represented a calendar date, i.e., a
specific day…but it doesn’t. It represents a point in time that can be viewed as
having a date component. This is more commonly referred to as a date–time
or, if you want to put it into code, a DateTime. Time also works, as it is the
overarching concept. Sometimes finding the right name is hard; in this case
it’s not.

Now we understand what we mean by date, date–time, and Date, what does
getDate do? Does it return the whole date–time value? Or perhaps just the
date component? Neither: it returns the day of the month. In programming
circles, this value is more commonly and specifically referred to as day of
month, not date, a term normally reserved for representing a calendar date.

And while we’re here, yes, getDay would have been better named getDayOf
Week. Not only is it important to choose a name that is correct but it is
important to recognize and resolve ambiguous terms such as day (of week, of
month, of year…?). Note that it is better to resolve naming issues by choos‐
ing a better name rather than by Javadoc.

127

Names are tied to conventions, and conventions are tied to names. When it
comes to conventions, prefer one (not many), prefer to express it clearly, and
prefer one that is widely recognized and easy to use rather than one that is
niche and error-prone (yeah, C, I’m looking at you).

For example, Apollo 11 landed on the moon at 20:17 on the twentieth day of
July (the seventh month) in 1969 (CE, UTC, etc.). But if you call getTime,
getDate, getMonth, and getYear expecting these numbers, expect disap‐
pointment: getTime returns a negative number of milliseconds from the start
of 1970; getDate returns 20 (as expected, it counts from 1); getMonth returns
6 (months count from 0); and getYear returns 69 (years count from 1900,
not 0 and not 1970).

Good naming is part of design. It sets expectations and communicates a
model, showing how something should be understood and used. If you mean
to tell the reader getMillisSince1970, don’t say getTime. Specific names
inspire you to consider alternatives, to question whether you’re capturing the
right abstraction in the right way. It’s not just labeling, and it’s not just
java.util.Date: this is about the code you write and the code you use.

97 Things Every Java Programmer Should Know128

The Necessity of
Industrial-Strength
Technologies
Paul W. Homer

Java may have been called the next COBOL, but that’s not necessarily a bad
thing.

COBOL has been an incredibly successful technology. Reliable, consistent,
and easy to read, it has been the workhorse of the Information Age, manag‐
ing the bulk of the world’s mission-critical systems. If the syntax requires lots
of extra typing, that is offset by the sheer number of readers that have had to
ponder its behavior.

Trendy software stacks sound cool—and, as most are quite immature, there
is always plenty to learn—but the world needs reliable industrial-strength
software to function. A new clever idiom or slightly obfuscated paradigm can
be great fun to play with, but by definition they are shrouded in unknowns.
We’re obsessed with finding some magical way to just snap our fingers and
will the next enterprise-class system into existence, but we keep forgetting
that over three decades ago Frederick Brooks Jr. said those kinds of magic
bullets—silver or otherwise—just can’t exist.

We don’t need the next trendy toy to solve real problems for people. We need
to put in the thinking and the work to fully understand and codify reliable
solutions. Systems that only work on sunny days, or that need to be rewritten
every year or so, don’t satisfy our growing needs for managing the complexi‐
ties of modern society. It doesn’t matter how it works if it is unpredictable
when it fails. Instead, we have to fully encapsulate our knowledge into relia‐
ble, reusable, recomposable components, leveraging them for as long as pos‐
sible to keep up with the chaotic nature of our current period in history. If
the code doesn’t last, it probably wasn’t worth writing.

Java is a great technology for this purpose: new enough to contain modern
language features, but mature enough to be trustworthy. We’ve gotten better

129

at organizing large codebases well, and there is a great enough wealth of sup‐
porting products, tools, and ecosystems to shift the focus back to real busi‐
ness problems and away from the purely technical ones. It’s a strong stack for
decoupling the systems from their environments, yet standard enough to
find experienced staff. If it isn’t the talk of the town, it is at least a very relia‐
ble, stable platform on which to build systems that last for decades, and that,
it seems, is what we both want and need for our current development efforts.

Fashion should not dictate engineering. Software development is a discipline
of knowledge and organization. If you don’t know how the parts will behave,
you can’t ensure that the whole will behave. If the solution is unreliable, then
it really just adds to the problem rather than solving it. It may be fun just to
toss together some code that kinda works, but it is only professional if we
build stuff that can withstand reality and keep humming along.

97 Things Every Java Programmer Should Know130

Only Build the Parts
That Change and
Reuse the Rest
Jenn Strater

As Java programmers, we spend a lot of time waiting for builds to run, often
because we don’t run them efficiently. We can make small improvements by
changing our behavior. For example, we could only run a submodule instead
of the entire project, and not run clean before every build. To make a bigger
difference, we should take advantage of the build caching offered by our
build tools, namely Gradle, Maven, and Bazel.

Build caching is the reuse of results from a previous run to minimize the
number of build steps (e.g., Gradle tasks, Maven goals, Bazel actions) exe‐
cuted during the current run. Any build step that is idempotent, meaning
that it produces the same output for a given set of inputs, can be cached.

The output of Java compilation, for example, is the tree of class files gener‐
ated by the Java compiler, and the inputs are factors that impact the pro‐
duced class files, such as the source code itself, Java version, operating
system, and any compiler flags. Given the same run conditions and source
code, the Java compilation step produces the same class files every time. So
instead of running the compilation step, the build tool can look in the cache
for any previous runs with the same inputs and reuse the output.

Build caching isn’t limited to compilation. Build tools define standard inputs
and outputs for other common build steps, like static analysis and documen‐
tation generation, and also allow us to configure the inputs and outputs for
any cacheable build step.

This type of caching is especially useful for multimodule builds. In a project
with 4 modules, each of which has 5 build steps, a clean build must execute
20 steps. Most of the time, though, we are only modifying the source code in
one module. If no other projects depend on that module, then that means we
only need to execute the steps downstream from source code generation; in

131

this example, only 4: the outputs of the other 16 steps can be pulled from the
cache, saving time and resources.

Gradle’s incremental build, which we see as UP-TO-DATE in the build output,
implements build caching at the project level. A local cache, like the one built
into Gradle and available as an extension to Maven, works even when chang‐
ing workspaces, Git branches, and command-line options.

The collaborative effect of remote build caching available in Gradle, Maven,
and Bazel adds additional benefits. One of the common use cases for remote
caching is the first build after pulling from a remote version control reposi‐
tory. After we pull from the remote, we have to build the project on our
machine to take advantage of those changes. But since we have never built
those changes on our machine, they aren’t in our local cache yet. However,
the continuous integration system has already built those changes and uploa‐
ded the results to the shared remote cache so we get a cache hit from the
remote cache, saving the time required to execute those build steps locally.

By using build caching in our Java builds, we can share the results across our
local builds, the agents of the CI server, and the entire team, resulting in
faster builds for everyone and fewer resources computing the same opera‐
tions over and over again.

97 Things Every Java Programmer Should Know132

1 Arthur C. Clarke, Profiles of the Future: An Inquiry into the Limits of the Possible. (London: Pan
Books, 1973). Now, yes, there is a formal definition in computer science that refers to hiding the
implementation details through abstraction, but most people misuse the term “magic” to describe
any technology that they find difficult to understand.

Open Source Projects
Aren’t Magic
Jenn Strater

One of my biggest pet peeves is hearing people say that X technology, lan‐
guage, build tool, etc., works by magic. If that project is open source, then
what I hear is “I’m too lazy to look up how it works,” and I’m reminded of
Clarke’s Third Law that “any sufficiently advanced technology is indistin‐
guishable from magic.”1

In the days of the modern web, it is easier than ever before to look up the
reference guides and source code and find out how that technology works.
Many open source projects like the Apache Groovy programming language,
for example, have a website (in this case, groovy-lang.org) that lists where
you can find the documentation, reference guides, bug tracker, and even
links to the source code itself.

If you’re looking for help getting started, guides and tutorials are a great
place to begin. If you are more of a visual or hands-on learner, many online
learning platforms offer introductory courses for learning new languages
through labs, exercises, and group work. Sometimes these are even freely
available so that the technologies will be more widely known.

After learning the basic syntax and data structures and starting to use them
in your own projects, you’ll likely start encountering unexpected behaviors
or even bugs. No matter which ecosystem you choose, this will happen at
some point. It’s just a part of the world we live in. You should first look for an
issue tracker like Jira or GitHub issues to see if others are having the same
problem. If so, there may be workarounds, a fix in a newer version, or a
timeline for when this issue will be fixed.

133

https://groovy-lang.org

It may take a little work to find out where your technology’s community col‐
laborates. Sometimes it is in chat rooms, forums, or mailing lists. Projects in
the Apache foundation, in particular, tend to use Apache infrastructure
rather than commercial products. Finding this place is the best way to move
from “magic” to clarity.

Even after you master a particular technology, learning is a continuous pro‐
cess and you’ll need to keep doing it. New releases may add new features or
change behaviors in ways you will need to understand. Join the mailing list
or attend conferences with the open source committers to learn what you
need for upgrading your projects. If you are already a subject matter expert,
this is a great way you can also contribute to uncovering the “magic” for
everyone else.

Lastly, if you find something is unclear or missing, many projects are happy
to accept contributions, especially to documentation. The project leads are
often people with regular day jobs and other priorities, so they may not
respond right away, but this is the best way to help everyone succeed and to
uncover the “magic” for the next generation of users.

97 Things Every Java Programmer Should Know134

Optional Is a Lawbreaking
Monad but a Good Type
Nicolai Parlog

In most programming languages, empty-or-not-empty types are well-
behaved monads. (Yes, I used the M-word—don’t worry, no math.) This
means their mechanics fulfill a couple of definitions and follow a number of
laws that guarantee safe (de)composition of computations.

Optional’s methods fulfill these definitions but break the laws. Not without
consequences...

Monad Definition
You need three things to define a monad—in Optional’s terms:

1. The type Optional<T> itself

2. The method ofNullable(T) that wraps a value T into an Optional<T>

3. The method flatMap(Function<T, Optional<U>>) that applies the
given function to the value that is wrapped by the Optional on which it
is called

There’s an alternative definition using map instead of flatMap, but it’s too
long to fit here.

Monad Laws
Now it gets interesting—a monad has to fulfill three laws to be one of the
cool kids. In Optional’s terms:

1. For a Function<T, Optional<U>> f and a value v, f.apply(v) must
equal Optional.ofNullable(v).flatMap(f). This left identity guaran‐
tees it doesn’t matter whether you apply a function directly or let
Optional do it.

135

2. Calling flatMap(Optional::ofNullable) returns an Optional that
equals the one you called it on. This right identity guarantees applying
no-ops doesn’t change anything.

3. For an Optional<T> o and two functions Function<T, Optional<U>> f
and Function<U, Optional<V>> g, the results of o.flatMap(f).flat
Map(g) and o.flatMap(v -> f.apply(v).flatMap(g)) must be equal.
This associativity guarantees that it doesn’t matter whether functions are
flat-mapped individually or as a composition.

While Optional holds up in most cases, it doesn’t for a specific edge case.
Have a look at flatMap’s implementation:

public <U> Optional<U> flatMap(Function<T, Optional<U>> f) {

 if (!isPresent()) {

 return empty();

 } else {

 return f.apply(this.value);

 }

}

You can see that it doesn’t apply the function to an empty Optional, which
makes it easy to break left identity:

Function<Integer, Optional<String>> f =

 i -> Optional.of(i == null ? "NaN" : i.toString());

// the following are not equal

Optional<String> containsNaN = f.apply(null);

Optional<String> isEmpty = Optional.ofNullable(null).flatMap(f);

That’s not great, but it’s even worse for map. Here, associativity means that
given an Optional<T> o and two functions Function<T, U> f and Func
tion<U, V> g, the results of o.map(f).map(g) and o.map(f.andThen(g))
must be equal:

Function<Integer, Integer> f = i -> i == 0 ? null : i;

Function<Integer, String> g = i -> i == null ? "NaN" : i.toString();

// the following are not equal

Optional<String> containsNaN = Optional.of(0).map(f.andThen(g));

Optional<String> isEmpty = Optional.of(0).map(f).map(g);

97 Things Every Java Programmer Should Know136

So What?
The examples may seem contrived and the importance of the laws unclear,
but the impact is real: in an Optional chain, you can’t mechanically merge
and split operations because that may change the code’s behavior. That is
unfortunate because proper monads let you ignore them when you want to
focus on readability or domain logic.

But why is Optional a broken monad? Because null-safety is more impor‐
tant! To uphold the laws, an Optional would have to be able to contain null
while being nonempty. And it would have to pass it to functions given to map
and flatMap. Imagine if everything you did in map and flatMap had to check
for null! That Optional would be a great monad, but provide zero null-
safety.

No, I’m happy we got the Optional that we got.

Collective Wisdom from the Experts 137

Package-by-Feature
with the Default Access
Modifier
Marco Beelen

A lot of business applications are written using a three-tier architecture:
view, business, and data layers, and all model objects are used by all three
layers.

In some codebases, the classes for these applications are organized by layer.
In some applications, which have the need to register various users and the
company they work for, the code structure would result in something like:

tld.domain.project.model.Company

tld.domain.project.model.User

tld.domain.project.controllers.CompanyController

tld.domain.project.controllers.UserController

tld.domain.project.storage.CompanyRepository

tld.domain.project.storage.UserRepository

tld.domain.project.service.CompanyService

tld.domain.project.service.UserService

Using such a package-by-layer structure for your classes requires a lot of
methods to be public. The UserService needs to be able to read and write
Users into storage and, since the UserRepository is in another package,
almost all methods of the UserRepository would need to be public.

The organization might have a policy to send an email to a user to notify
them when their password has been changed. Such a policy might be imple‐
mented in the UserService. Since the methods in the UserRepository are
public, there is no protection against another part of the application invoking
a method in UserRepository, which changes the password but does not trig‐
ger the notification to be sent.

138

When this application is updated to include some customer-care module or a
web-care interface, some of the features in those modules might want to reset
the password. Since these features are built at a later point in time, perhaps
after new developers have joined the team, these developers might be
tempted to access the UserRepository directly from a CustomerCareService
instead of calling the UserService and triggering the notification.

The Java language provides a mechanism to prevent this: access modifiers.

The default access modifier means we do not explicitly declare an access
modifier for a class, field, method, etc. A variable or method declared
without any access control modifier is available only to other classes in the
same package. This is also called package-private.

In order to benefit from that access protection mechanism, the code base
should be organized into a package-by-feature package hierarchy.

The same classes as before would be packaged like this:

tld.domain.project.company.Company

tld.domain.project.company.CompanyController

tld.domain.project.company.CompanyService

tld.domain.project.company.CompanyRepository

tld.domain.project.user.User

tld.domain.project.user.UserController

tld.domain.project.user.UserService

tld.domain.project.user.UserRepository

When organized like this, none of the methods in the UserRepository
would have to be public. They all could be package-private and still be avail‐
able to the UserService. The methods of the UserService could be made
public.

Any developer building the CustomerCareService, in the package
tld.domain.project.support, would not be able to invoke methods on the
UserRepository and should call the methods of the UserService. This way
the code structure and the access modifiers help to ensure that the applica‐
tion still adheres to the policy to send the notification.

This strategy for organizing the classes in your codebase will help reduce the
coupling in your codebase.

Collective Wisdom from the Experts 139

Production Is the
Happiest Place on Earth
Josh Long

Production is my first favorite place on the internet. I love production. You
should love production. Go as early and often as possible. Bring the kids.
Bring the family. The weather is amazing. It’s the happiest place on Earth. It’s
better than Disneyland!

Getting there isn’t always easy, but trust me: once you get there, you’re going
to want to stay. It’s like Mauritius. You’ll love it! Here are some tips to make
your journey as pleasant as possible:

Take the continuous delivery highway.
There’s no faster way to production. Continuous delivery lets you move
quickly and consistently from the latest Git commit to production. In a
continuous delivery pipeline, code moves automatically from developer
to deployment, and every step in between, in one smooth motion. Con‐
tinuous integration tools like Travis CI or Jenkins help, but try to mine
information gleaned while in production. Canary releases are a techni‐
que to reduce the risk of introducing a new software version in produc‐
tion by slowly rolling out the change to a small cross-section of users.
Continuous delivery tools like Netflix’s Spinnaker can automate this sort
of nuanced deployment strategy.

Production can be surprising.
Be prepared! Services will fail. Don’t leave your clients in the lurch. Spec‐
ify aggressive client-side timeouts. Service-level agreements (SLAs)
dominate a lot of technical discussions. Use service-hedging—a pattern
in which multiple idempotent calls to identically configured service
instances on discrete nodes are launched and all but the fastest response
discarded—to meet SLAs. Failures will happen. Use circuit breakers to
explicitly define failure modes and isolate failures. Spring Cloud has an
abstraction, Spring Cloud Circuit Breaker, that supports reactive and
nonreactive circuits.

140

1 Divina Paredes, “Amazon CTO: Stop Spending Money on ‘Undifferentiated Heavy Lifting,’” CIO,
June 9, 2013.

In production, nobody can hear your application scream.
Embrace observability from the get-go. Production is a busy place! If
everything goes well, you’ll have more users and demand than you’ll
know what to do with. As demand increases, scale. Cloud infrastructure
like Cloud Foundry, Heroku, and Kubernetes have long supported hori‐
zontal scale out by fronting an ensemble of nodes with a load balancer.
This is particularly easy if you’re building stateless, 12-Factor-style
microservices. This strategy works even if your application monopolizes
otherwise precious resources like threads.

Your code shouldn’t monopolize threads.
Threads are super expensive. The best solutions to this problem—coop‐
erative multithreading—are about giving signals to the runtime about
when it can move work on and off a finite set of actual, operating-system
threads. Learn about things like reactive programming as supported by
Project Reactor (fairly common on the server side) and Spring Webflux
and RxJava (fairly common on Android). If you understand how reac‐
tive programming works, it’s a natural next step to embrace things like
Kotlin’s coroutines. Cooperative multithreading lets you multiply the
number of users supported or divide infrastructure costs.

Autonomy is a key to success.
Microservices enable small, singly-focused teams, able to release soft‐
ware to production autonomously.

Ninety percent of your application is mundane.
Embrace frameworks like Spring Boot to let you focus on the bottom-
line production deliverables, and not on supporting code. Is the Java
programming language not your cup of tea—er—coffee? The JVM eco‐
system is rich with productive alternatives like Kotlin.

Remove the friction of going to production. Eschew what Amazon CTO
Werner Vogels calls “undifferentiated heavy lifting.”1 Clear the path to pro‐
duction and people will want to go early and often. They’ll yearn for what
has been called Antoine de Saint-Exupéry’s “vast and endless seas.”

Collective Wisdom from the Experts 141

https://oreil.ly/M0cyS

Program with GUTs
Kevlin Henney

So you’re writing unit tests? Great! Are they any good? To borrow a term
from Alistair Cockburn, do you have GUTs? Good unit tests? Or have you
landed someone (future you?) with interest-accumulating technical debt in
their testbase?

What do I mean by good? Good question. Hard question. Worth an answer.

Let’s start with names. Reflect what is being tested in the name. Yup, you
don’t want test1, test2, and test3 as your naming scheme. In fact, you
don’t want test in your test names: @Test already does that. Tell the reader
what you’re testing, not that you’re testing.

Ah, no, I don’t mean name it after the method under test: tell the reader what
behavior, property, capability, etc. is under test. If you’ve got a method
addItem, you don’t want a corresponding addItemIsOK test. That’s a common
test smell. Identify the cases of behavior, and test only one case per test case.
Oh, and no, that doesn’t mean addItemSuccess and addItemFailure.

Let me ask you, what’s the purpose of your test? To test that “it works”? That’s
only half the story. The biggest challenge in code is not to determine whether
“it works,” but to determine what “it works” means. You have the chance to
capture that meaning, so try additionOfItemWithUniqueKeyIsRetained and
additionOfItemWithExistingKeyFails.

Because these names are long, and also aren’t production code, consider
using underscores to improve readability—camel case doesn’t scale—so
Addition_of_item_with_unique_key_is_retained. With JUnit 5 you can
use DisplayNameGenerator.ReplaceUnderscores with @DisplayName

Generation to pretty-print as “Addition of item with unique key is retained.”
You can see that naming as a proposition has a nice property: if the test
passes, you have some confidence the proposition might be true; if it fails,
the proposition is false.

142

1 Edsger W. Dijkstra, “Notes on Structured Programming.” In Structured Programming, O.-J. Dahl,
E.W. Dijkstra, and C.A.R. Hoare, eds. (London and New York: Academic Press, 1972), 6.

Which is a good point. Passing tests don’t guarantee that the code works. But,
for a unit test to be good, the meaning of failure should be clear: it should
mean the code doesn’t work. Like Dijkstra said, “Program testing can be used
to show the presence of bugs, but never to show their absence!”1

In practice, this means a unit test shouldn’t depend on things that can’t be
controlled within the test. Filesystem? Network? Database? Asynchronous
ordering? You may have influence, but not control. The unit under test
shouldn’t depend on things that could cause failure when the code is correct.

Also, watch out for overfitting tests. You know the ones: brittle assertions on
implementation details rather than required features. You update something
—spelling, a magic value, a quality outcome—and tests fail. They fail because
the tests were at fault, not the production code.

Oh, and keep your eyes open for underfitting tests too. They’re vague, pass‐
ing at the drop of a hat, even with code that’s wildly and obviously wrong.
You successfully add your first item. Don’t just test the number of items is
greater than zero. There’s only one right outcome: one item. Many integers
are greater than zero; billions are wrong.

Speaking of outcome, you may find many tests follow a simple three-act
play: arrange–act–assert, aka given–when–then. Keeping this in mind helps
you focus on the story that the test is trying to tell. Keeps it cohesive,
suggests other tests, and helps with the name. Oh, and as we’re back on
names, you may find names get repetitive. Factor out the repetition. Use it
to group tests into inner classes with @Nested. So, you could nest
with_unique_key_is_retained and with_existing_key_fails inside
Addition_of_item.

I hope that’s been useful. You’re off to revisit some tests? OK, catch you later.

Collective Wisdom from the Experts 143

Read OpenJDK Daily
Heinz M. Kabutz

OpenJDK consists of millions of lines of Java code. Almost every class viola‐
tes some “clean code” guidelines. The real world is messy. There is no such
thing as “clean code,” and we will struggle to even define what that is.

Experienced Java programmers can read code that follows different styles.
OpenJDK has over a thousand authors. Even though there is some consis‐
tency in the formatting, they code in disparate ways.

For example, consider the Vector.writeObject method:

private void writeObject(java.io.ObjectOutputStream s)

 throws java.io.IOException {

 final java.io.ObjectOutputStream.PutField fields = s.putFields();

 final Object[] data;

 synchronized (this) {

 fields.put("capacityIncrement", capacityIncrement);

 fields.put("elementCount", elementCount);

 data = elementData.clone();

 }

 fields.put("elementData", data);

 s.writeFields();

}

Why did the programmer mark the local variables fields and data as
final? There is no reason why this was necessary. It is a coding style deci‐
sion. Good programmers can read code equally well, whether the local vari‐
ables are final or not. It does not bother them either way.

Why is fields.put("elementData", data) outside of the synchronized
block? This may have been due to a premature optimization, wanting to
reduce the serial section of code. Or perhaps the programmer was careless? It
is easy to want to optimize everything we see, but we need to resist this urge.

144

Here is another method from the Spliterator inside ArrayList:

public Spliterator<E> trySplit() {

 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;

 return (lo >= mid) ? null : // divide range in half unless too small

 new RandomAccessSpliterator<>(this, lo, index = mid);

}

This method would definitely raise all sorts of “clean code” warning bells.
Those in love with final would complain that hi, lo, and mid could be
final. Yeah, they could. But they are not. In OpenJDK they generally do not
mark local variables as final.

Why do we have this obscure (lo + hi) >>> 1? Could we not rather say
(lo + hi) / 2? (Answer: it’s not exactly the same.)

And why are all three local variables declared on a single line? Is that not vio‐
lating all that is good and proper?

Turns out, according to research, the number of bugs is in proportion to the
lines of code. Spread out your method the way that your university professor
asked you to, and you have more lines of code (LOC). And with more LOC,
you also end up with more bugs for the same functionality. It can also be that
rookie programmers tend to spread their code over many pages. Experts
write tight, compact code.

We need to learn to read many different styles of coding, and for that, I rec‐
ommend OpenJDK. Read the java.util classes, java.io, and so many oth‐
ers out there.

Collective Wisdom from the Experts 145

Really Looking Under
the Hood
Rafael Benevides

Java is a complete platform and should be treated that way. In my Java devel‐
opment career, I’ve met hundreds of developers who are deeply familiar with
the language’s syntax. They understand lambdas and streams and know every
API from String to nio off the top of their heads. But understanding the fol‐
lowing would make them more complete professionals:

Garbage collection algorithms
The JVM GC has improved a lot since its first versions. The JVM’s ergo‐
nomics allow it to automatically adjust to have optimal parameters for
the detected environment. A good understanding of what is going on
can sometimes improve the JVM performance further.

JVM profilers
JVM tuning is not a guessing game. You should understand how the
application is behaving before you make any changes. Knowing how to
connect and interpret the profiler’s data will help you tune the JVM for
better performance, find memory leaks, or understand why a method is
taking so long to execute.

Cloud-native applications make it clear that code can be executed on multi‐
ple machines across a network over different operating systems. Knowing
the following can help Java pros develop a resilient and portable application:

Character encoding
Different OSs can work with different character encodings. Understand‐
ing what they are and how to set them up can prevent your application
from presenting weird characters.

TCP/IP networking
Cloud-native applications are distributed systems. In a world of cloud,
internet, and network, understanding how to route tables, latency, fire‐

146

walls, and everything related to TCP/IP networking is important, espe‐
cially when things don’t work as expected.

HTTP protocol
In a world where the browser is the client, understanding how HTTP 1.1
and 2.0 work can help you design your application better. Knowing what
happens when you store your data in an HTTP session, especially in a
multiclustered environment, can be quite helpful.

It’s even good to know what frameworks are doing under the hood. Here we
can take object relational mapping (ORM) frameworks like JPA and Hiber‐
nate as examples:

Enable SQL output during development
With SQL output enabled, you can see what commands are being sent to
the database before finding out an odd SQL call is behaving badly.

Query fetch size
Most JPA/Hibernate implementations have a default fetch size of one (1).
That means that if your query brings 1,000 entities from the database,
1,000 SQL commands will be executed to populate those entities. You
can tune the fetch size to reduce the number of SQL instructions per‐
formed. You can identify this problem by having the SQL output enabled
(see previous item).

One-to-many and many-to-one relationships
Although one-to-many relationships are lazy loaded by default, some
developers make the mistake of changing the relationship to eager load
the entities or manually initialize them before returning the collection of
entities. Be careful about doing that because each eager-loaded entity can
also create the many-to-one relationship, causing you to fetch almost
every table/entity from the database. Enabling SQL output can help you
to identify this problem as well (again, see first item).

In short, don’t let yourself be controlled—be in control!

Collective Wisdom from the Experts 147

The Rebirth of Java
Sander Mak

Java has been declared dead perhaps more than any other programming lan‐
guage, it seems. Perhaps unsurprisingly, reports of its death are greatly exag‐
gerated. Java has an enormous footprint in backend development, and most
enterprises develop systems in Java. However, there’s a kernel of truth in
every rumor—Java was a slow-moving language in the age of dynamic lan‐
guages like Ruby and JavaScript. Traditionally, major Java releases spanned
three to four years of development. It’s hard to keep up with other platforms
at this pace.

In 2017, all this changed. Oracle—Java’s steward—announced the Java plat‐
form would be released twice a year. Java 9, released toward the end of 2017,
was the last big and long-awaited release. After Java 9, every year in March
and September a new major Java release is delivered. Like clockwork.

Switching to this time-based release schedule has many consequences. Relea‐
ses can no longer wait on features that are not yet complete. Also, because
there’s less time between releases and the team developing Java remains the
same size, fewer features make it into a release. But that’s OK—we get
another release in only six months. A steady stream of new features and
improvements is what we can count on.

Interestingly, new language features are now also delivered incrementally.
The Java language is now evolving in a more agile manner. For example, Java
12 shipped Switch Expressions as a preview language feature, with the
express intent of later extending this feature to support full pattern matching.

One of the reasons why Java releases took so much time and effort is that the
platform became somewhat ossified in its 20-plus years of existence. In Java
9, the platform is fully modularized. Every part of the platform is now put
into its own module, with explicit dependencies on other parts. The module
system introduced in Java 9 ensures this platform architecture is adhered to
from now on.

148

Platform internals are now safely encapsulated inside modules, preventing
(ab)use by application and library code. Previously, many applications and
libraries depended on these platform internals, making it hard to evolve Java
without breaking lots of existing code. It’s also possible to use the module
system for your own applications. It can make your codebase more main‐
tainable, flexible, and future-proof as well.

Moving from a long and unpredictable release cycle to regular calendar-
based releases is a great achievement by the Java team. Adapting to this new
reality has definitely taken time for us as a developer community. Fortu‐
nately, the changes in Java are now smaller and more incremental. These
more frequent and regular releases are easier to adopt and adapt to.

For slower movers, a version of Java is marked as Long-Term Supported
(LTS) every six releases, starting with Java 11. Meaning, you can move
between LTS releases every three years if you want. It’s important to under‐
stand that the LTS commitment is offered by vendors like Oracle, Red Hat,
or even Amazon, and is not necessarily free of charge. In any case, the
vendor-neutral OpenJDK project keeps producing supported builds for the
latest Java release that is developed. Many things may and will change in
releases between the LTS releases, though. If you can, hop on the frequent-
release train and enjoy a steady stream of better Java. It’s not as scary as it
may sound.

Collective Wisdom from the Experts 149

Rediscover the JVM
Through Clojure
James Elliott

Sometime around 2007, my office book club read Java Concurrency in Prac‐
tice by Brian Goetz (Addison-Wesley). We weren’t far past the preface of this
important book when we panicked about how wrong our naive understand‐
ing of Java’s memory model had been, and how easily bugs are introduced
into multithreaded code. There were audible gasps, and at least one reported
nightmare.

In developing a highly concurrent cloud offering, we needed a language that
wouldn’t litter our codebase with landmines of shared, mutable state. We
chose Clojure: it has solid concurrency answers and favors functional, effi‐
cient transformation of immutable data. It runs on the familiar JVM, inter‐
operating smoothly with the huge ecosystem of Java libraries. Though some
were hesitant about the unfamiliar Lisp syntax and about relearning how to
program without mutating variables, it was a great decision.

We discovered the benefits of a REPL-centric (read–eval–print loop)
workflow:

• No rebuilding or relaunching to test changes
• Exploring the running system and trying variations instantly
• Building and refining ideas incrementally

We appreciated Clojure’s bias toward working with data using standard
structures and its rich, opinionated core library. You don’t have to create lots
of classes—each with its own mutually incompatible API—to model
anything.

I rediscovered joy and energy in programming. A talk at the Strange Loop
conference about live-coding musical performances in Clojure using Over‐
tone made me wonder: if Clojure was fast enough to make music, surely it
could run stage lighting? That led to Afterglow, a project that consumed me

150

https://oreil.ly/VcM79
https://oreil.ly/VcM79
https://oreil.ly/L9wjF

for a while. Figuring out how to write lighting effects in a functional style
was a puzzle, but Overtone’s functional metronome inspired my effect func‐
tions, mapping musical time to lighting positions, colors, and intensities.

I relearned trigonometry and linear algebra to aim different lights at the
same point in space. I discovered how to create a desired color using a fix‐
ture’s different-hued LEDs. Live-coding stage lighting is a ton of fun.

Then I wanted to synchronize Afterglow’s metronome with tracks playing on
the CDJs (today’s digital DJ turntables) I use to mix music. Their protocol is
proprietary and undocumented, but I was determined. I set up a network
sniffer and figured it out. Early success led to excited contributions from
around the world, so I wrote the library Beat Link to make using what we
learned easy. I wrote it in Java to be widely understandable but discovered
that using Clojure had made writing Java feel cumbersome.

People built on it and ported it to other languages. I created a quick demo for
a show producer on using Beat Link to trigger MIDI events that his video
software and lighting console could respond to. It became my most popular
project because it’s useful to nonprogrammers. Artists are still doing cool
new things with Beat Link Trigger all the time, and as a guest at music festi‐
vals and touring shows, I’ve seen the results. Since it’s Clojure, users can
extend it, and their code gets byte-compiled and loaded into the JVM as if it
were part of the project all along—another secret weapon Clojure can give
you.

I encourage anyone working in Java to take a serious look at Clojure, and see
how it can change your experience of life on the JVM.

Collective Wisdom from the Experts 151

https://oreil.ly/utaDV
https://oreil.ly/FIIIk
https://oreil.ly/fhvT2
https://oreil.ly/JEK1H

Refactor Boolean Values
to Enumerations
Peter Hilton

You wouldn’t use “magic numbers” in your code, so don’t use magic Booleans
either! Boolean literals are worse than hardcoded numbers: a 42 in the code
might look familiar, but false could be anything, and anything could be
false.

When two variables are both true, you don’t know whether that’s a coinci‐
dence or whether they’re both “true” for the same reason and should change
together. This makes the code harder to read, and causes bugs when you read
it wrong. As with magic numbers, you should refactor to named constants.

Refactoring 42 to an ASCII_ASTERISK or EVERYTHING constant improves code
readability, and so does refactoring true to a Boolean constant called
AVAILABLE in a Product class, for example. However, you probably shouldn’t
have any Boolean fields in your domain model: some Boolean values aren’t
really Boolean.

Suppose your Product entity has a Boolean available field, to indicate
whether the product is currently being sold. This isn’t really a Boolean: it’s an
optional “available” value, which isn’t the same thing because “not available”
really means something else, like “out of stock.”

When a type has two possible values, that’s a coincidence, and can change—
by adding a “discontinued” option, for example. The existing Boolean field
cannot accommodate the additional value.

Beware: using null to mean something is the worst possible way to imple‐
ment a third value. You’ll end up needing a code comment like “true when
the product is available, false when out of stock, null when discontinued.”
Please don’t do that.

The most obvious model for products you no longer sell is a Boolean
discontinued field, in addition to the available field. This works, but is

152

harder to maintain because there’s no hint that these fields are related. Fortu‐
nately, Java has a way to group named constants.

Refactor related Boolean fields like these to a Java enum type:

enum ProductAvailability {

 AVAILABLE, OUT_OF_STOCK, DISCONTINUED, BANNED

}

Enum types are great because then you get more things to name. Also, the
values are more readable than a true that means that the value is really some
other value, such as AVAILABLE. Enum types also turn out to be more conve‐
nient than you might expect, which makes laziness a weak excuse for not
refactoring.

The enum type can still have Boolean convenience methods, which you
might want if your original code had lots of conditional checks for available
products. In fact, enum types go further than simply grouping constants,
with fields, constructors, and methods. A less obvious but more important
benefit is that you now have a destination for other refactorings that move
availability-related logic to the ProductAvailability type.

Serializing an enum type is more work, e.g., than using JSON or a database.
However, it’s less than you might expect. You’re probably already using a
library that handles this nicely and lets you choose how to serialize to a Sin‐
gle Value Object representation.

Domain models often suffer from primitive obsession—overuse of Java primi‐
tive types. Refactoring numbers and dates to domain classes allows your
code to become more expressive and readable, and the new types provide a
better home for related code, such as validations and comparisons.

In the problem domain’s language, Boolean types are false, and enumerated
types are the truth.

Collective Wisdom from the Experts 153

Refactoring Toward
Speed-Reading
Benjamin Muskalla

A casual reader usually reaches 150–200 wpm (words per minute) with a
good comprehension rate. People who are into speed-reading can easily
reach up to 700 wpm. But don’t worry, we don’t need to set a new world
record for speed-reading to learn the basic concepts and apply them to our
code. We’ll look at three areas that are particularly helpful when it comes to
reading code: skimming, meta guiding, and visual fixation.

So what makes speed-reading that fast? One of the first steps is to suppress
subvocalization. Subvocalization? Exactly. That voice in your head that just
tried to properly articulate that word. And yes, you’re now aware of that
voice. But don’t worry, it will go away soon! Subvocalization can be
unlearned and is an essential first step to seriously improve reading speed.

Let’s look at this method with three parameters, which all need validating.
One way to read the code is to follow where and how the input parameters
are used:

public void printReport(Header header, Body body, Footer footer) {

 checkNotNull(header, "header must not be null");

 validate(body);

 checkNotNull(footer, "footer must not be null");

}

After locating header, we have to find the next parameter, body, which
requires us to look down and left. We can start with a simple refactoring to
align the first and third check so we only break the horizontal flow once:

public void printReport(Header header, Body body, Footer footer) {

 checkNotNull(header, "header must not be null");

 checkNotNull(footer, "footer must not be null");

 validate(body);

}

154

Alternatively, given that checking for null is a validation of the parameter as
well, we could extract the checkNotNull method calls into their own prop‐
erly named methods to help guide the reader. Whether these are the same or
overloaded version of the method depends on the code at hand:

public void printReport(Header header, Body body, Footer footer) {

 validateReportElement(header);

 validateReportElement(body);

 validateReportElement(footer);

}

Meta guiding is another technique for speed-reading. Instead of trying to
read word by word in a book, you try to capture the whole line at once. Chil‐
dren usually do that by using their finger to keep track of the word they’re
reading. Using some sort of guidance helps us to keep moving forward and
avoid jumping back a word or two. Funny enough, code itself can act as such
a device as it has an inherent structure that we can leverage to guide our eye:

List<String> items = new ArrayList<>(zeros);

items.add("one");

items.add("two");

items.add("three");

How many items are in the list? One, two, three! Actually, it’s four. Maybe
more. Oops, missed that zeros argument too? The structure that should help
us actually gets in our way. While we have allowed our reader to be guided by
the alignment of the add methods, we totally misguided the eye and missed
the constructor argument. Rewriting this allows the reader to follow the
guide easily without missing any important information:

List<String> items = new ArrayList<>();

items.addAll(zeros);

items.add("one");

items.add("two");

items.add("three");

Next time you write a piece of code, see if you can speed-read it. Keep in
mind the basics about visual fixation and meta guiding. Try to find a struc‐
ture that makes logical sense while guiding the eye to see the relevant infor‐
mation. Not only will it help you to read code faster in the future but it also
helps keep you in the flow.

Collective Wisdom from the Experts 155

Simple Value Objects
Steve Freeman

Classes that represent Value Objects don’t need getters or setters. Java devel‐
opers are usually taught to use getters for accessing fields, like this:

public class Coordinate {

 private Latitude latitude;

 private Longitude longitude;

 public Coordinate(Latitude latitude, Longitude longitude) {

 this.latitude = latitude;

 this.longitude = longitude;

 }

 /**

 * @return the latitude of the Coordinate

 */

 public Latitude getLatitude() {

 return latitude;

 }

 /**

 * @return the longitude of the Coordinate

 */

 public Longitude getLongitude() {

 return longitude;

 }

}

System.out.println(thing.getLatitude());

The idea is that getters encapsulate how values are represented in an object,
providing a consistent approach across a codebase. It also allows for

156

protection against aliasing, for example, by cloning collections before return‐
ing them.

The style has its origins in the early days of JavaBeans, when there was a lot
of interest in graphical tooling using reflection. There might also have been
some influence from Smalltalk (the classic object-oriented language), in
which all fields are private unless exposed via an accessor; read-only fields
have getters, but no setters.

In practice, not all classes play the same role and, lacking an alternative
structure in the language, many coders write Java classes that are actually
Value Objects: a simple set of fields that never change, where equality is based
on value rather than identity. In our example, two Coordinate objects that
have the same latitude and longitude are effectively the same. I can use
instances of Coordinate as constants throughout my code because they’re
immutable.

Some years ago, I, like many of my colleagues, started to tire of the boiler‐
plate duplication that getters require and simplified my style for Value
Objects. I made all the fields public final, like a C struct:

public class Coordinate {

 public final Latitude latitude;

 public final Longitude longitude;

 public Coordinate(Latitude latitude, Longitude longitude) {

 this.latitude = latitude;

 this.longitude = longitude;

 }

}

System.out.println(coordinate.latitude);

I can do this because the object is immutable (again, one has to be careful
about aliasing if any of the values are structured), and I tend to avoid inheri‐
tance or implementing much behavior. This represents a change in approach
from the earlier days of Java. For example, java.awt.Point is mutable, and
the move method updates its x and y fields in place. Nowadays, after twenty
years of improvements in the JVM and wider adoption of functional pro‐
gramming, such transient objects are cheap enough that we would expect
move to return a new immutable copy with the new location. An example for
our Coordinate would be:

Collective Wisdom from the Experts 157

public class Coordinate {

 public Coordinate atLatitude(Latitude latitude) {

 return new Coordinate(latitude, this.longitude);

 }

}

I’ve found simplified Value Objects to be a useful convention for clarifying
the role of a type, with less distracting noise in the code. They’re easy to
refactor into and often provide a useful target for accumulating methods that
express the domain of the code better. Occasionally, the behavioral features
of a Value Object become more significant, and I find I can express what I
need with methods and make the fields private.

It also turns out that the Java language team has recognized this too and
introduced a record structure in Java 14. Until this is widespread, we’ll have
to rely on convention.

97 Things Every Java Programmer Should Know158

Take Care of Your Module
Declarations
Nicolai Parlog

If you’re creating Java modules, your module declarations (module-info.java
files) are easily your most important source files. Each one represents an
entire JAR and governs how it interacts with other JARs, so take good care of
your declarations! Here are a few things to look out for.

Keep Module Declarations Clean
Module declarations are code and should be treated as such, so make sure
your code style is applied. Beyond that, rather than placing directives ran‐
domly, structure your module declarations. Here’s the order the JDK uses:

1. Requires, including static and transitive
2. Exports
3. Exports to
4. Opens
5. Opens to
6. Uses
7. Provides

Whatever you decide, if you have a document defining your code style,
record the decision there. If you have your IDE, build tool, or code analyzer
check such things for you, even better. Try to bring it up to speed so it can
automatically check—or even apply—your chosen style.

Comment Module Declarations
Opinions on code documentation, like Javadoc or inline comments, vary
wildly, but whatever your team’s position on comments is, extend it to mod‐
ule declarations. If you like abstractions to have a sentence or two explaining

159

their meaning and importance, add such a Javadoc comment to each mod‐
ule. Even if that’s not your style, most people agree that it’s good to document
why a specific decision was made. In a module declaration, that could mean
adding an inline comment to:

• An optional dependency to explain why the module might be absent
• A qualified export to explain why it isn’t public API, but is partially

accessible
• An open package explaining which frameworks are expected to access it

Module declarations present a new opportunity: never before has it been this
easy to document the relationships of your project’s artifacts in code.

Review Module Declarations
Module declarations are the central representation of your modular struc‐
ture, and examining them should be an integral part of any kind of code
review you do. Whether it’s looking over your changes before a commit or
before opening a pull request, wrapping up after a pair-programming ses‐
sion, or during a formal code review, anytime you inspect a body of code,
pay special attention to module-info.java:

• Are new module dependencies necessary (consider replacement with
services) and in line with the project’s architecture?

• Is the code prepared to handle the absence of optional dependencies?
• Are new package exports necessary? Are all public classes in there ready

for use? Can you reduce the API surface area?
• Does it make sense that an export is qualified, or is it a cop-out to get

access to an API that’s not ready to be public?
• Were changes made that could cause problems for downstream consum‐

ers that are not part of the build process?

Investing time into diligently reviewing module descriptors might sound like
waste, but I see it as an opportunity: never before has it been this easy to ana‐
lyze and review the relationships of your project’s artifacts and its structure.
And not the photographed whiteboard sketch that was uploaded to your
wiki a few years ago; no, the real deal, the actual relationships between your
artifacts. Module declarations show the naked reality instead of outdated
good intentions.

97 Things Every Java Programmer Should Know160

Take Good Care of Your
Dependencies
Brian Vermeer

Modern Java development is heavily dependent on third-party libraries. By
using Maven or Gradle, we have easy mechanisms in place to import and use
published packages. As developers do not want to create and maintain
boilerplate functionality but rather focus on the specific business logic, using
frameworks and libraries can be a wise choice.

When looking at an average project, the amount of your code can be as little
as 1%, and the rest will be imported libraries and frameworks. A lot of code
that is put into production is simply not ours, but we do depend on it heavily.

As we look at our code and the way we treat contributions by team members,
we often turn to processes like code reviews before we merge new code into
our master branch as a first-pass quality assurance measure. Alternatively,
this quality control process might also be covered by practicing pair pro‐
gramming. The way we treat our dependencies, however, is very different
from how we treat our own code. Dependencies are often just used without
any form of validation. Importantly, the top-level dependencies, on many
occasions, in turn pull in transitive dependencies that can go many levels
deep. For example, a 200-line Spring application with 5 direct dependencies
can end up using 60 dependencies in total, which amounts to almost half a
million lines of code being shipped to production.

By only using these dependencies we blindly trust other people’s code, which
is odd compared to how we handle our own code.

Vulnerable Dependencies
From a security point of view, you should scan your dependencies for known
vulnerabilities. If a vulnerability in a dependency is found and disclosed, you
should be aware of this and replace or update those dependencies. Using out‐
dated dependencies with known vulnerabilities can be disastrous if you look
at some examples in the past.

161

By scanning your dependencies during every step in your development pro‐
cess, you might prevent that vulnerable dependency surprise before you ship
your code to production.

You should also keep scanning your production snapshot, as new vulnerabil‐
ities may be disclosed while you are already using it in your production
environment.

Updating Dependencies
You should choose your dependencies wisely. Look at how well a library or
framework is maintained and how many contributors are working on it.
Depending on outdated or poorly maintained libraries is a large risk. If you
want to stay up-to-date, you can use your package manager to help you
detect if newer versions are available. By using the Maven or Gradle version
plug-in, you can use the following commands to check for newer versions:

• Maven: mvn versions:display-dependency-updates

• Gradle: gradle dependencyUpdates -Drevision=release

A Strategy for Your Dependencies
When handling dependencies in your system, you should have a strategy in
place. Questions about dependency health and the reason why a particular
dependency is used should be made explicit. Next, you should also carefully
think about what your update strategy should be. Updating often is consid‐
ered less painful in general. Last, but not least, you should have tooling in
place that scans your libraries for known vulnerabilities to prevent being
breached.

In any case, you should take good care of your dependencies and choose the
right library with the right version for the right reason.

97 Things Every Java Programmer Should Know162

1 “Separation of concerns” was first mentioned by Edsger W. Dijkstra in his 1974 paper “On the Role
of Scientific Thought,” which was published in Selected Writings on Computing: A Personal Perspec‐
tive (New York: Springer-Verlag, 1982), 60–66.

Take “Separation of
Concerns” Seriously
Dave Farley

If you studied computer science, you may have learned about an idea called
separation of concerns.1 This is best characterized by the sound byte “One
class one thing, one method one thing.” The idea is that your classes and
methods (and functions) should always be focused on a single outcome.

Think carefully about the responsibilities of your classes and methods. I
sometimes teach classes in test-driven design. I use adding fractions as a sim‐
ple coding kata to explore TDD. The most common first test I see people
write often looks something like this:

assertEquals("2/3", Fractions.addFraction("1/3", "1/3"));

For me, this test is screaming “poor design.” First, where is the fraction? It
only exists implicitly, presumably inside the addFraction function.

Worse than this, let’s think about what is going on here. How would we
describe the behavior of the addFraction function? Perhaps something like
“It takes two strings, parses them, and calculates their sum.” As soon as you
see, or think, the word “and” in the description of a function, method, or
class, you should hear alarm bells ringing inside your head. There are two
concerns here: one is string parsing, and the other is fraction adding.

What if we wrote our test like this instead:

Fraction fraction = new Fraction(1, 3);

assertEquals(new Fraction(2,3), fraction.add(new Fraction(1, 3)));

How would we describe the add method in this second example? Perhaps, “It
returns the sum of the two fractions.” This second solution is simpler to

163

https://oreil.ly/Hyfse

implement, simpler to test, and the code inside will be simpler to understand.
It is also significantly more flexible because it is more modular and therefore
more composable. For example, if we wanted to add three fractions instead
of two, how would that work? In the first example, we would have to add a
second method or refactor the first, so we could call something like:

assertEquals("5/6", Fractions.addFraction("1/3", "1/3", "1/6"));

In the second case, no code changes are necessary:

Fraction fraction1 = new Fraction(1, 3);

Fraction fraction2 = new Fraction(1, 3);

Fraction fraction3 = new Fraction(1, 6);

assertEquals(new Fraction(5,6),

 fraction1.add(fraction2).add(fraction3));

Let’s imagine that we did want to start with a string representation. We could
add a new, second class called something like FractionParser or StringTo
Fraction:

assertEquals(new Fraction(1, 3),

 StringFractionTranslator.createFraction("1/3"));

StringFractionTranslator.createFraction converts a string representa‐
tion of a fraction into a Fraction. We could imagine other methods on this
class that take a Fraction and render a String. Now we can test this code
more thoroughly, and we can test it separately from the complexity of adding
fractions, or multiplying them or anything else.

Test-driven development is very helpful in this respect because it highlights
issues of poor separation of concerns clearly. It is often the case that if you
are finding it difficult to write a test, it is a result of either poor coupling in
your design or poor separation of concerns.

Separating concerns is a very effective design strategy to employ in any code.
Code with good separation of concerns is, by definition, more modular, and
it’s usually much more composable, flexible, testable, and readable too.

Always strive to make every single method, class, and function focused on a
single outcome. As soon as you notice that your code is trying to do two
things, pull out a new class or method to make it simpler and clearer.

97 Things Every Java Programmer Should Know164

Technical Interviewing Is
a Skill Worth Developing
Trisha Gee

I’m going to let you into a secret: our industry is horrible at interviewing
developers. What’s really silly is that we almost never sit a candidate down to
write actual code in the actual environment they’re going to be developing
in. That’s like testing a musician on theory but never listening to them play.

The good news is that interviewing is a skill like any other, meaning it can be
learned. As with acquiring any other skill, you can research what’s involved
and practice, practice, practice. If you get rejected during interviews, it
doesn’t mean you’re not a good developer. It might just mean you’re not good
at interviews. That’s something you can improve on, and each interview is
another opportunity to gather more data and to practice.

Interviewers will often ask similar sorts of questions. Here are three that are
fairly typical:

Multithreading gotchas
It’s still common to be asked to inspect code with synchronized scat‐
tered liberally around and find the race condition or deadlock. Organi‐
zations with this sort of code have bigger problems than hiring
developers (although if they show that code in interviews, they’ll defi‐
nitely have a problem hiring developers), so maybe you don’t want to
work there anyway. Having a working understanding of concurrency in
Java will help you navigate most of these interview questions. If you
don’t know old-school Java concurrency, talk about how modern Java
has abstracted away these problems and explain how you might use
Fork/Join or parallel streams instead.

Compiler gotchas
“Does this code compile?” Well, I dunno, that’s what a computer and
IDE are for—the tools can answer the question while I worry about
other things. If you get asked these sorts of questions in interviews, use

165

https://oreil.ly/n54xA
https://oreil.ly/n54xA
https://oreil.ly/CEQjL
https://oreil.ly/epUKa

some of the Java Certification study materials (for example, actual
books) to learn how to answer them.

Data structures
Java data structures are fairly straightforward: understanding the differ‐
ence between a List, a Set, and a Map is a good place to start. Knowing
what a hash code is for helps, and so does how equals is used in the con‐
texts of collections.

A quick web search for common java interview questions will also give you a
good set of topics to research.

Is this cheating? If you learn just enough to get through the interview, will
you really know enough to do the job? Remember: our industry is horrible at
interviewing developers. The interview experience is often miles away from
the job experience. Ask plenty of questions to see if you can get a glimpse of
what working there is really like. You can learn new technologies easily
enough—that’s what we do all the time. It’s all that people-related stuff that
often determines whether you’ll succeed. But that’s a topic for another article.

97 Things Every Java Programmer Should Know166

https://oreil.ly/tc6p4
https://oreil.ly/KP1BA
https://oreil.ly/37mGa
https://oreil.ly/DvSYa
https://oreil.ly/QvlLo

Test-Driven Development
Dave Farley

Test-driven development (TDD) is widely misunderstood. Before TDD, the
only thing that applied pressure for high quality in software was the knowl‐
edge, experience, and commitment of a programmer. After TDD, there was
something else.

High quality in software is widely agreed to include the following properties
in code:

• Modularity
• Loose coupling
• Cohesion
• Good separation of concerns
• Information hiding

Testable code has those properties. TDD is development (design) driven by
tests. In TDD, we write the test before writing code that makes the test pass.
TDD is much more than “good unit testing.”

Writing the test first is important; it means that we always end up with “test‐
able” code. It also means that coverage is never an issue. If we write the test
first, we always have great coverage and don’t need to worry about it as a
metric—and it is a poor metric.

TDD amplifies the talent of a software developer. It doesn’t make bad pro‐
grammers great, but it makes any programmer better.

TDD is very simple—the process is Red, Green, Refactor:

• We write a test and see it fail (Red).
• We write the minimum code to make it pass and see it pass (Green).
• We refactor the code, and the test, to make them as clean, expressive,

elegant, and simple as we can (Refactor).

167

These steps represent three distinct phases in the design of our code. We
should be thinking differently during each of these steps.

Red
Focus on expressing the behavioral intent of your code. Concentrate only on
the public interface of your code. That is all that we are designing at this
point—nothing else.

Think only about how to write a nice, clear test that captures just what you
would like your code to do.

Focus on the design of the public interface by making the test simple to
write. If your ideas are easy to express in your test, they will also be easy to
express when someone uses your code.

Green
Do the simplest thing that makes the test pass. Even if that simple thing
seems naive. As long as the test is failing, your code is broken, and you are at
an unstable point in the development. Get back to safety (Green) as quickly
and simply as you can.

Your tests should grow to form a “behavioral specification” for your code.
Adopting the discipline of writing code only when you have a failing test
helps to better elaborate and evolve that specification.

Refactor
Once back to Green, you can safely refactor. This keeps you honest and stops
you from wandering off into the weeds and getting lost! Make small simple
steps, and then rerun the tests to confirm that everything still works.

Refactoring is not an afterthought. This is an opportunity to think more stra‐
tegically about your design. If the setup of your tests is too complex, your
code probably has poor separation of concerns and may be too tightly cou‐
pled to other things. If you need to include too many other classes to test
your code, perhaps your code is not very cohesive.

Practice a pause for refactoring every time you achieve a passing test. Always
look and reflect, “Could I do this better?” The three phases of TDD are dis‐
tinct, and your mental focus should also be distinct to maximize the benefit
of each phase.

97 Things Every Java Programmer Should Know168

There Are Great Tools in
Your bin/ Directory
Rod Hilton

Every Java developer is familiar with javac for compiling, java for running,
and probably jar for packaging Java applications. However, many other use‐
ful tools come installed with the JDK. They are already on your computer in
your JDK’s bin/ directory and are invokable from your PATH. It’s good to get
acquainted with some of these tools so you know what’s at your disposal:

jps

If you’ve ever found yourself running ps aux | grep java to find the
running JVMs, you probably just want to run jps. This dedicated tool
lists all the running JVMs, but instead of showing you a lengthy com‐
mand with CLASSPATHs and arguments, jps simply lists the process ID
and the application’s main class name, making it far easier to figure out
which process is which. jps -l will list the fully qualified main class
name, jps -m will show the arguments passed to the main method, and
jps -v will show all the arguments passed to the JVM itself.

javap

The JDK comes with a Java class file disassembler. Run javap <class
file> to see that class file’s fields and methods, which can often be very
enlightening for understanding what code written in JVM-based lan‐
guages such as Scala, Clojure, or Groovy is turned into under the hood.
Run javap -c <class file> to see the complete bytecode of those
methods.

jmap

Running jmap -heap <process id> will print a summary of the JVM
process’s memory space, such as how much memory is being used in
each of the JVM’s memory generations, as well as the heap configuration
and type of GC being used. jmap -histo <process id> will print a his‐
togram of each class in the heap, how many instances there are of that

169

class, and how many bytes of memory are consumed. Most critically,
running jmap -dump:format=b,file=<filename> <process id> will
dump a snapshot of the entire heap to a file.

jhat

Running jhat <heap dump file> will take the file generated by jmap
and run a local web server. You can connect to this server in a browser to
explore the heap space interactively, grouped by package name. The
“Show instance counts for all classes (excluding platform)” link shows
only instances of classes outside of Java itself. You can also run “OQL”
queries, allowing you to query the heap space via SQL-esque syntax.

jinfo

Run jinfo <process id> to see all system properties the JVM loaded
with and JVM command-line flags.

jstack

Running jstack <process id> will print stack traces for all current Java
threads running in a JVM.

jconsole and jvisualvm
These are graphical tools that allow connecting to JVMs and interac‐
tively monitoring running JVMs. They offer visual graphs and histo‐
grams of various aspects of a running process and are a mouse-friendly
alternative to many of the tools listed above.

jshell

As of Java 9, Java has an honest-to-goodness REPL—a great tool to check
syntax, run quick Java-based commands, or try out code and experiment
without building full programs.

Many of these tools can run not only locally but against JVM processes run‐
ning on remote machines as well. These are only some of the useful pro‐
grams you already have installed; take some time to see what else is in your
JDK’s directory of executables and read their man pages—it’s always handy
to know what tools are in your toolbelt.

97 Things Every Java Programmer Should Know170

Think Outside the Java
Sandbox
Ian F. Darwin

“Java is the best language ever, for every purpose.” If you believe this, you
need to get out more. Sure, Java’s a great language, but it’s not the only good
language, nor the best for every purpose. In fact, every so often you should—
as a professional developer—take the time to learn and use a new language,
either at work or on your own. Go deep enough to recognize how it differs in
some fundamental way from what you’re used to and whether it might be
useful in your projects. In other words: try it, you might like it. Here are a
few languages you may want to learn:

• JavaScript is the language of the browser. Despite similar names and a
dozen or so keywords, JavaScript and Java are very different. JavaScript
comes with hundreds of different web frameworks, some of which go
beyond the frontend. For example, Node.js lets you run JavaScript
server-side, which opens up many new possibilities.

• Kotlin is a JVM language that, like most of these languages, has a more
relaxed syntax than Java, along with other features that can give it an
advantage over Java. Google uses Kotlin for much of its work in Android
and encourages its use in Android apps. ‛Nuff said!

• Dart and Flutter: Dart is a compiled scripting language from Google.
Originally for web programming, it didn’t blossom until Flutter began
using Dart for Android and iOS apps (and browser-side, someday) from
one codebase.

• Python, Ruby, and Perl have been around for decades and remain
among the most popular languages. The first two have JVM implemen‐
tations, Jython and JRuby, though the former isn’t being actively main‐
tained.

• Scala, Clojure, and Frege (an implementation of Haskell) are JVM func‐
tional programming (FP) languages. FP has a long, narrow history, but

171

https://nodejs.org
https://kotlinlang.org
https://dartlang.org
https://flutter.dev
https://www.python.org
https://oreil.ly/jtdUQ
https://www.perl.org
https://oreil.ly/iJX8Q
http://clojure.org
https://oreil.ly/vXlmZ
https://www.haskell.org
https://oreil.ly/u0BQX
https://oreil.ly/u0BQX

has been making inroads into the mainstream in recent years. Many FP
languages don’t run on the JVM as of this writing, such as Idris and
Agda. Learning FP may help you to use the functional facilities in Java
8+, if you’re not really comfortable there.

• R is an interpreted language for data manipulation. Cloned from Bell
Labs’ S for statisticians, R is now popular with data scientists or anyone
going “beyond the spreadsheet.” Lots of stats, math, and graphics func‐
tions built-ins and add-ons.

• Rust is a compiled language aimed at systems development with features
for concurrency and strong typing.

• Go (“Golang”) is a compiled language invented at Google by Robert
Griesemer, Rob Pike, and Ken Thompson (cocreator of Unix). There are
multiple compilers, targeting different operating systems natively and
web development by compiling down to JavaScript and WebAssembly.

• C is ancestral to C++, Objective-C, and, to some extent, Java, C#, and
Rust. (C gave these languages the basic syntax of built-in types, method
syntax, and curly braces for code blocks and is the language to blame for
int i = 077; having the value 63 in Java.) If you didn’t learn assembly
language, “C level” is a place to start understanding memory models that
will give you an appreciation for Java’s way of doing things.

• JShell isn’t a language, per se—it’s a different way of doing Java. Instead
of having to write out public class Mumble { and public static
void main(String[] args) { just to try out an expression or some new
API, just forget all the ceremony and boilerplate and use JShell.

So go on. Step outside of Java.

97 Things Every Java Programmer Should Know172

https://oreil.ly/YS0vJ
https://oreil.ly/X8wti
https://oreil.ly/eh0Tw
https://oreil.ly/PbWQW
https://oreil.ly/yDxJZ
https://oreil.ly/Shxzu
https://golang.org
https://oreil.ly/vkgl3

Thinking in Coroutines
Dawn Griffiths and
David Griffiths

Coroutines are functions or methods that can be suspended and resumed. In
Kotlin, they can be used in place of threads for asynchronous work because
many coroutines can run efficiently on a single thread.

To see how coroutines work, we’re going to create an example program that
plays these drum sequences in parallel:

Instrument Sequence

Toms x-x-x-x-x-x-x-x-

High hat x-x-x---x-x-x---

Crash cymbal ----------------x----

We could use threads to do this, but in most systems, the sound is played by
the sound subsystem, while the code pauses until it can play the next sound.
It’s wasteful to block a valuable resource like a thread in this way.

Instead, we’re going to create a set of coroutines: one for each of the instru‐
ments. We’ll have a method called playBeats, which takes a drum sequence
and the name of a sound file. The full code is at https://oreil.ly/6x0GK; a sim‐
plified version looks like this:

suspend fun playBeats(beats: String, file: String) {

 for (...) { // for each beat

 ...

 playSound(file)

 ...

 delay(<time in milliseconds>)

 ...

 }

}

173

https://oreil.ly/6x0GK

Call this with playBeats("x-x-x---x-x-x---", "high_hat.aiff"), and it
will play the sequence using the high_hat.aiff sound file. There are two things
in this code that you find in any Kotlin coroutine:

• It begins with the suspend keyword, which means that the function can
suspend its operation at some point until some external code restarts it.

• It includes a nonblocking call to the delay function.

The delay function is analogous to something like Thread.sleep, except it
works by handing back control to the outside world, with a request to
resume again after the specified pause.

If that’s what a coroutine looks like, how do you call it? What calls the corou‐
tine, copes with it suspending, and then reschedules it when it needs to
restart? The launch function takes care of everything for us. The main
method to run the coroutines looks like this:

fun main() {

 runBlocking {

 launch { playBeats("x-x-x-x-x-x-x-x-", "toms.aiff") }

 launch { playBeats("x-x-x---x-x-x---", "high_hat.aiff") }

 launch { playBeats("----------------x----", "crash_cymbal.aiff") }

 }

}

Each call to launch accepts a block of code that calls the coroutine. A block
of code in Kotlin is like a lambda in Java. The launch function registers the
coroutine call with a scope provided by the runBlocking function.

runBlocking runs a scheduling loop on the main thread, which coordinates
the calls to each of the coroutines. It calls each of the playBeats coroutines
in turn and waits for it to suspend by calling delay. runBlocking then waits
until some other playBeats coroutine needs to resume. runBlocking does
this until all the coroutines complete.

You can think of coroutines as lightweight threads: they allow you to men‐
tally split work into separate simple tasks, which appear to run concurrently
while running on the same thread.

Coroutines are invaluable when writing code for Android, which enforces a
strict threading model in which some operations must run on the main UI
thread. But they’re also useful for creating scalable server-side applications
that must make efficient use of existing threads.

97 Things Every Java Programmer Should Know174

Threads Are
Infrastructure;
Treat Them as Such
Russel Winder

How many Java programmers manage—or even think about—stack use dur‐
ing their programming? More or less none. The vast majority of Java pro‐
grammers leave stack management to the compiler and runtime system.

How many Java programmers manage—or even think about—heap use dur‐
ing their programming? Very few. The majority of Java programmers assume
the garbage collection system will deal with all heap management.

So why are so many Java programmers managing all their threads manually?
Because that is what they were taught to do. From the beginning, Java sup‐
ported shared memory multithreading, which was almost certainly a big
error.

Almost all that most Java programmers know about concurrency and paral‐
lelism is founded on the theory of constructing operating systems from the
1960s. If you are writing an operating system then this is all good stuff, but
are most Java programs actually operating systems? No. So a rethink is in
order.

If your code has any synchronized statements, locks, mutexes—all the para‐
phernalia of operating systems—then in all likelihood, you are doing it
wrong. This is the wrong level of abstraction for most Java programmers.
Just as stack space and heap space are managed resources, threads should be
considered managed resources. Instead of creating threads explicitly and
managing them, construct tasks and submit them to a thread pool. Tasks
should be single threaded—obviously! If you have many tasks that need to
communicate with one another, then rather than using shared memory, use a
thread-safe queue instead.

175

All of this was already known in the 1970s, culminating in Sir Charles
Antony (Tony) Richard Hoare creating Communicating Sequential Processes
(CSP) as an algebra for describing concurrent and parallel computation.
Sadly, it was ignored by the majority of programmers in the rush to use
shared memory multithreading, with every program being a new operating
system. During the 2000s, though, many looked to get back to sequential
processes communicating. Perhaps the most high profile advocate of this in
recent years has been the Go programming language. It is all about sequen‐
tial processes communicating, made to execute via an underlying thread
pool.

Many use the terms actors, dataflow, CSP, or active objects, all of which are
variations on the sequential process and communication theme. Akka,
Quasar, and GPars are all frameworks providing various forms of task over a
thread pool. The Java platform comes with the Fork/Join framework, which
can be used explicitly and also underpins the Streams library, the revolution
of Java introduced in Java 8.

Threads as a managed resource is the correct level of abstraction for the vast
majority of Java programmers. Actors, dataflow, CSP, and active objects are
the abstractions for the vast majority of programmers to use. Giving up
manual control over threads releases Java programmers to write simpler,
more comprehensible, more maintainable systems.

97 Things Every Java Programmer Should Know176

The Three Traits of Really,
Really Good Developers
Jannah Patchay

My undergraduate degree was in computer science and math, and the first
few years of my career were spent working as a Java developer. I really
enjoyed my time as a developer. Like many mathematicians, I had an obses‐
sion with writing clean and elegant code, and I would refactor my code for
ages until it was as near to perfection as it could get. I was aware of the end
users, but only to the extent that they provided the requirements that created
the challenges that I would then have to solve.

Fast-forward to 20 years after I graduated, and I’m now on a completely dif‐
ferent path, consulting on financial markets regulation and market structure,
with a particular interest in financial innovation, which also keeps me in
touch with my techie roots. I’ve worked with many developers over the years,
from the other side of the fence as the person who provides and clarifies the
requirements. And over time, I’ve developed a greater appreciation of certain
traits that really, really good developers have that go beyond technical ability.

The first and most important is curiosity. The same drive that causes you to
want to solve problems, to understand how things work, and to build new
things, can and should be applied to your interactions with your clients and
stakeholders. It’s great when developers ask lots of questions about the busi‐
ness domain because it shows that they really want to understand and to
learn. It also leads to a better understanding of the business domain and the
ability to address the problems of end users more effectively. I’ve encoun‐
tered loads of development managers who actively dissuade their teams from
“bothering” the business too much with questions. That’s so wrong.

The second and third are empathy and imagination. It’s about the ability to
put yourself in your end user’s shoes and try to understand their priorities
and experience of using your software. It’s also the ability to then come up
with creative solutions to the challenges that they face, using your technical
expertise. Many developers tend to dismiss a lot of this stuff as unimportant

177

or to assume that it’s for someone else to deal with. But it’s much more effec‐
tive, and makes you a better developer, if you are able to communicate
directly with the business yourself.

These might sound like obvious things. But they are so important. I recently
attended a conference on tech and innovation that focused on the impor‐
tance of collaboration between technology and the business in order to best
leverage emerging technologies like the cloud, distributed ledger technology,
and artificial intelligence/machine learning. Many speakers emphasized the
importance of breaking down walls between developers and end users. Some
now embed developers into their business teams and expect them to know
just as much about the business domain. So this is also about the future and
about how to work smarter. If you can cultivate these skills, it can also open
doors for you.

97 Things Every Java Programmer Should Know178

Trade-Offs in a
Microservices
Architecture
Kenny Bastani

Is there an optimal software architecture? What does it look like? How do
we measure “optimal” when it comes to building and operating software? An
optimal software architecture is one that has maximal flexibility for change
at the lowest possible cost. Here, cost is measured in terms of certain quali‐
ties that represent a software architecture’s design and implementation—in
addition to the cost of the infrastructure to operate it. The defining trait of a
software quality is that it can be tangibly measured and has an impact on
other qualities.

For example, if a software architecture requires strong consistency guaran‐
tees, there is an impact on qualities like performance and availability. Eric
Brewer created the CAP theorem to describe a set of measurable trade-offs
where you can only choose two out of three guarantees for running a data‐
base: consistency, availability, and partition tolerance. The theorem states that
when applications share state across the boundaries of a network, you must
choose between consistency or availability, but you cannot have both.

One of the main problems with microservices is that there is no single com‐
prehensive definition. Moreover, microservices are a collection of concepts
and ideas that are based on a set of constraints for delivering a services archi‐
tecture. A microservice, or any piece of software you build, is a history of
choices—which will affect your ability to make new choices today.

Microservices may not have a single definition, but they do most commonly
have the following characteristics:

• Independent deployability
• Organized around business capabilities
• Database per service

179

• One application, one team
• API-first
• Continuous delivery

As you go out into the world of software development, you will eventually
find that there is no such thing as the right choice. Indeed, most developers
or operators might believe there is a best choice, and you may find that they
argue strongly in favor of that choice. As you encounter more and more
opportunities to make a decision between multiple choices, for instance,
which database to use, you’ll eventually come to discover that all available
options introduce certain trade-offs. That is, you will usually have to lose
something to gain something.

Here is a short list of trade-offs you might encounter when making a deci‐
sion to include a dependency for your microservice:

Availability How often is my system available to its users?

Performance What is the overall performance of my system?

Consistency What guarantees does my system provide about consistency?

Speed How fast can I deploy a single line of code change to production?

Composability What percentage of an architecture and codebase can be reused instead of duplicated?

Compute What is the cost of my system’s compute under peak load?

Scalability What is the cost of adding capacity if peak load continues to increase?

Marginality What is the average diminishing marginal return of adding developers to my team?

Partition tolerance If a partition in the network causes an outage or latency, will my application experience
or cause a cascading failure?

How does answering one question affect answering the others?

You will find each of these questions often has some kind of relation to the
other questions. If you ever find yourself making a tough decision in a soft‐
ware architecture that uses microservices, come back to this list of questions.

97 Things Every Java Programmer Should Know180

Uncheck Your Exceptions
Kevlin Henney

If you ever want to walk to hell, the journey will be easy on your feet. The
whole road is very well paved, with good intentions as far as the eye can see.
At least one of those paving stones is dedicated to Java’s checked exception
model.

A checked exception is one that, if not handled within a method, must
appear in the method’s throws clause. Any class descended from Throwable
can be listed after throws, but unhandled checked exceptions (not descended
from either RuntimeException or Error) must appear. This is a feature of the
Java language, but it has no meaning for the JVM and is not a requirement
for JVM languages.

The good intention here promotes a method’s failures to the same type-level
significance as its success-scenario inputs and outputs. At first sight, this
seems reasonable. Indeed, in a small and closed codebase, this type-level
confidence that some exceptions are not overlooked is an easy goal to meet
and, once met, offers some (very) basic reassurance about the completeness
of the code.

Practices that might work in the small, however, are under no obligation to
scale. Java’s checked exceptions were an experiment in combining control
flow with types, and experiments produce results. The designers of C#
learned from the experience:

C# neither requires nor allows such exception specifications. Examination of
small programs leads to the conclusion that requiring exception specifica‐
tions could both enhance developer productivity and enhance code quality,
but experience with large software projects suggests a different result—
decreased productivity and little or no increase in code quality.

The designers of C#, of other JVM languages, of other non-JVM languages…
whatever the original intent, the day-to-day reality of checked exceptions is
they’re perceived as obstacles. And if there’s one thing programmers are
skilled at, it’s working around obstacles.

181

https://oreil.ly/rCT18
https://oreil.ly/rCT18

Compiler complaining about an unhandled checked exception? One IDE
shortcut later, the obstacle is gone! In its place, you have an ever-lengthening
throws clause that pushes incidental information into published signatures,
often leaking details that should be encapsulated.

Or perhaps you add throws Exception or throws OurCompanyException to
every method, noisily defeating the goal of being specific about failure?

How about catch-and-kill? If you’re in a rush to push your code, there’s noth‐
ing an empty catch block can’t fix! You are Gandalf to the checked excep‐
tion’s Balrog—“You shall not pass!”

Checked exceptions bring and inspire syntactic baggage. But the issues run
deeper. This is not simply a matter of programmer discipline or tolerating
verbosity: for frameworks and extensible code, checked exceptions are
flawed from the outset.

When publishing an interface, you’re committing to a contract signed with
method signatures. As Tolstoy recognized in Anna Karenina, the rainy-day
scenarios are not as simple, as certain, or as knowable up front as the happy-
day scenarios:

All happy families are alike; each unhappy family is unhappy in its own way.

Interface stability is hard. Interface evolution is hard. Adding throws makes
everything harder.

If someone plugs code into yours, and uses your code in their application,
they know what they might be throwing, but you neither know nor care.
Your code should let exceptions pass from their plugged-in code through to
the handlers in their main application code. Open inversion of control
demands exception transparency.

If they’re using checked exceptions, however, they can’t use your interfaces
unless you add throws Exception to every method—noise that creates a
burden on all dependent code—or unless they tunnel their exceptions wrap‐
ped in a RuntimeException…or unless they change their approach, stand‐
ardizing on unchecked exceptions instead.

This last option is the lightest, most stable, and most open approach of all.

97 Things Every Java Programmer Should Know182

Unlocking the Hidden
Potential of Integration
Testing Using Containers
Kevin Wittek

Most Java developers have probably encountered the testing pyramid at one
point in their career, whether as part of a computer science curriculum or
mentioned in conference talks, articles, or blog posts. We can find a multi‐
tude of origin stories and variations of this metaphor (with a deep dive into
those worthy of an article on its own) but, in general, it boils down to having
a sizeable foundation of unit tests, followed by a smaller chunk of integration
tests on top of that, and an even smaller tip of end-to-end UI tests.

This shape is proposed as an ideally optimal ratio of the different test classes.
However, as with everything in software and computers, these guidelines
need to be assessed in context, which means assuming integration tests to be
slow and brittle. And this assumption is probably true if integration tests are
expected to be run in a shared testing environment or require an extensive
setup of local dependencies. But would the ideal shape still be a pyramid if
we challenge these assumptions?

With ever more powerful machines, we can either use virtual machines
(VMs) to wholly contain the complete development environment or use
them to manage and run the external dependencies necessary for integration
testing (such as databases or message brokers). But since most VM imple‐
mentations aren’t overhead free, this will add considerable load and resource
consumption to the developer workstation. Also, start and creation times of
VMs are too high for an ad hoc setup of a required environment as part of
test execution.

The advent of user-friendly container technology, on the other hand, allows
new testing paradigms to emerge. These low-overhead container implemen‐
tations (being essentially an isolated process with its own self-contained file
system) enable the creation and instrumentation of required services on

183

demand and the usage of uniform tooling. Still, this instrumentation has
been mostly done manually and laboriously outside of the actual test execu‐
tion, slowing onboarding of new developers and introducing the potential
for clerical mistakes.

In my opinion, the goal we as a community should strive for is to make the
setup and instrumentation of the test environment an integral part of the test
execution and even of the test code itself. In the case of Java, this means that
executing a JUnit test suite, whether done by the IDE or the build tool,
would implicitly lead to the creation and configuration of a set of containers
necessary for the tests. And this goal is achievable with today’s technology!

We can interact directly with the container engine using existing APIs or
command-line tools, thereby writing our own “container driver”—note,
however, the distinction between starting a container and the readiness of
the service inside the container for testing. Alternatively, there is also the
opportunity to explore the Java ecosystem for existing projects that deliver
these functionalities on a higher level of abstraction. Either way, it’s time to
unleash the power of good integration tests and to emancipate them from
the shackles of their past!

97 Things Every Java Programmer Should Know184

1 Adnan Causevic, Rakesh Shukla, Sasikumar Punnekkat, and Daniel Sundmark, “Effects of Nega‐
tive Testing on TDD: An Industrial Experiment.” In Hubert Baumeister and Barbara Weber, eds.,
Agile Processes in Software Engineering and Extreme Programming: 14th International Conference,
XP 2013, Vienna, Austria, June 3–7, 2013. (Berlin: Springer, 2013), 91–105, https://oreil.ly/qX_4n.

2 Laura Marie Leventhal, Barbee M. Teasley, Diane S. Rohlman, and Keith Instone, “Positive Test
Bias in Software Testing among Professionals: A Review.” In Leonard.J. Bass, Juri Gornostaev, and
Claus Unger, eds., Human-Computer Interaction EWHCI 1993 Lecture Notes in Computer Science,
vol 753. (Berlin: Springer, 1993), 210–218, https://oreil.ly/FTecF.

3 Michael Sutton, Adam Greene, and Pedram Amini, Fuzzing: Brute Force Vulnerability Discovery
(Upper Saddle River, NJ: Addison-Wesley Professional, 2007).

The Unreasonable
Effectiveness of
Fuzz Testing
Nat Pryce

Whether using test-driven development or not, programmers writing auto‐
mated tests suffer from positive test bias:1, 2 they are more likely to test that
the software behaves correctly when given valid input than that the software
is robust when given invalid input. As a result, our test suites fail to detect
entire classes of defects. Fuzz testing3 is an unreasonably effective technique
for negative testing that is easy to include in existing automated test suites.
Including fuzz tests in your test-driven development process will help you
build more robust systems.

For example, we were extending the software of a widely used consumer
product to fetch data from web services. Although we were careful to write
robust networking code and test-drove negative as well as positive cases,
fuzzing immediately uncovered a surprising number of inputs that would
make the software throw unexpected exceptions. Many of the standard Java
APIs that parse data throw unchecked exceptions, so the type checker hadn’t
been able to ensure that the application handled all possible parsing errors.
These unexpected exceptions could leave the device in an unknown state. In

185

https://oreil.ly/qX_4n
https://oreil.ly/FTecF

4 Charlie Miller and Zachary N.J. Peterson, “Analysis of Mutation and Generation-Based Fuzzing”
(DefCon 15, 2007), 1–7.

a consumer device, even one that can be updated remotely, that can mean an
expensive increase in customer support calls or engineer callouts.

A fuzz test generates many random inputs, feeds them into the software
under test, and checks that the software continues to exhibit acceptable
behavior. To provide useful coverage, a fuzzer must generate inputs that are
valid enough not to be rejected by the software immediately, but invalid
enough to uncover corner cases that are not covered or defects in error-
handling logic.

There are two ways to approach this:

• Mutation-based fuzzers mutate examples of good input to create possibly
invalid test inputs.

• Generation-based fuzzers generate inputs from a formal model, such as a
grammar, that defines the structure of valid inputs.

Mutation-based fuzzers are considered impractical for black box testing
because it is difficult to obtain enough samples of valid input.4 However,
when we test-drive our code, the positive test cases provide a ready-made
collection of valid inputs that exercise many of the control paths in the soft‐
ware. Mutation-based fuzzing becomes not just practical, but easy to apply.

Running thousands of random inputs through the entire system can take a
long time. Again, if we fuzz during development, we can fuzz test particular
functions of our system and design them so they can be tested in isolation.
We then use fuzzing to check the correct behavior of those units and type
checking to ensure that they compose correctly with the rest of the system.

Here’s an example fuzz test that, along with the type checker, ensures a JSON
message parser will throw only the checked exceptions declared in its
signature:

@Test public void

only_throws_declared_exceptions_on_unexpected_json() {

 JsonMutator mutator = new JsonMutator();

 mutator.mutate(validJsonMessages(), 1000)

 .forEach(possiblyInvalidJsonMessage -> {

 try {

 // we don't care about the parsed result in this test

97 Things Every Java Programmer Should Know186

 parseJsonMessage(possiblyInvalidJsonMessage);

 }

 catch (FormatException e) {

 // allowed

 }

 catch (RuntimeException t) {

 fail("unexpected exception: " + t +

 " for input: " + possiblyInvalidJsonMessage);

 }

 });

}

Fuzz testing is now an essential part of my test-driven development toolbox.
It helps eliminate defects and guides the design of the system to be more
compositional.

A simple library for doing mutation-based fuzz testing in Java and Kotlin
projects is available on GitHub.

Collective Wisdom from the Experts 187

https://oreil.ly/nxVuC

Use Coverage to Improve
Your Unit Tests
Emily Bache

Measuring the coverage of your tests is easier than ever. In a modern IDE,
the button to run your tests with coverage is right next to the ones to run or
debug them. The coverage results are presented class by class with little chart
graphics, as well as relevant lines being highlighted in color in the source
code.

Coverage data is easy to get hold of. What is the best way to use it, though?

When You’re Writing New Code
Most people agree that you should deliver unit tests together with all the
code you write. You can argue about which order to do things in, but in my
experience, what works best is short feedback loops. Write a little test code,
write a little production code, and build up the functionality together with
the tests. When I’m working like this, I will run the tests with coverage from
time to time as additional insurance that I haven’t forgotten to test some new
code I’ve just written.

The main danger here is that you become very satisfied with a high coverage
number and don’t notice you’re missing both code and tests for a crucial
piece of functionality. Perhaps you forgot to add error handling. Perhaps you
missed out on a business rule. If you never wrote the production code in the
first place, then coverage measurements can’t discover that for you.

When You Have to Change Code You Didn’t Write
Modifying code that you didn’t write yourself that has poor or missing tests
can be challenging—particularly if you don’t really understand what it does
but you still have to change it. When I’m faced with this situation, test cover‐
age is one of the ways I learn about how good the tests are and which parts I
can refactor more confidently.

188

I can also lean on the coverage data to discover new test cases and increase
the covered areas. This can get dangerous, though. If I write tests purely to
increase coverage, I can end up coupling the tests quite closely to the
implementation.

When You’re Working in a Team
One of the characteristics of a team is that you have “norms” or accepted
behaviors that everyone agrees on, whether implicitly or explicitly. One of
your team norms could be that you make coverage measurements part of
your code and test review process. It can help you to see where tests are miss‐
ing—perhaps some team members need more support and training to write
better tests. It can also be encouraging when you see that complicated new
functionality is well covered.

If you regularly measure test coverage for your whole codebase, I would
encourage you to look at trends more than absolute numbers. I’ve seen arbi‐
trary coverage targets lead to people preferring to test only what’s easy to test.
People can avoid doing refactoring because it will introduce new lines of
code and lower their coverage overall. I’ve seen tests written with missing or
very weak assertions just to improve the coverage numbers.

Coverage is supposed to help you improve your unit tests, and unit tests are
supposed to make it easier to refactor. Coverage measurements are a tool to
help you improve your unit tests and make your life easier.

Collective Wisdom from the Experts 189

Use Custom Identity
Annotations Liberally
Mark Richards

Annotations in Java are easy to write, easy to use, and very powerful—at
least, some are. Traditionally, annotations in Java have provided a convenient
way to implement aspect-oriented programming (AOP), a technique
intended to separate out common behavioral concerns by injecting behavior
at specified points in the code. However, most developers have largely aban‐
doned AOP due to undesirable side effects as well as the desire to have all the
code in one place—the class file.

Identity annotations are entirely different in that they don’t contain any func‐
tionality. Instead, they only provide programmatic information that can be
used to govern, analyze, or document some aspect of the code or architec‐
ture. You can use identity annotations to identify transaction boundaries or a
domain or subdomain, describe a service taxonomy, denote framework code,
and employ them in dozens of other use cases.

For example, identifying classes that are part of the underlying framework
(or template code in microservices) is often important so changes can be
closely monitored or guarded. The following annotation does just this:

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.TYPE)

public @interface Framework {}

@Framework

public class Logger {...}

Wait—this annotation does nothing! Or does it? It denotes this class as a
framework-related class, meaning changes to this class can impact almost all
other classes. You can write automated tests to send a notification if any
framework code has changed this iteration. It also lets developers know they
are modifying a class that is part of the underlying framework code.

190

The following is a list of other common identity annotations I use on a regu‐
lar basis (all of these are specified at the class level):

public @interface ServiceEntrypoint {}

Identifies the entry point of a microservice. It’s also used as a placeholder
for other service description annotations listed below.
Usage: @ServiceEntrypoint

public @interface Saga {public Transaction[] value()...}

Identifies services that are involved in a distributed transaction. The
Transaction value lists the transactions that span multiple services. It’s
added to classes that contain an @ServiceEntrypoint annotation.
Usage: @Saga({Transaction.CANCEL_ORDER})

public @interface ServiceDomain {public Domain value()...}

Identifies the logical domain (e.g., Payment, Shipping, Issuer, etc.) that
the service belongs to (identified by the Domain value). It’s added to
classes that contain an @ServiceEntrypoint annotation.
Usage: @ServiceDomain(Domain.PAYMENT)

public @interface ServiceType {public Type value()...}

Identifies the classification of a service. The Type value enumerates the
defined service types (classification). It’s added to classes that contain an
@ServiceEntrypoint annotation.
Usage: @ServiceType(Type.ORCHESTRATION)

public @interface SharedService {}

Identifies a class as one that contains common (shared) code across the
application (e.g., formatters, calculators, logging, security, etc.).
Usage: @SharedService

Identity annotations are a form of programmatic documentation. Unlike
unstructured class comments, identity annotations provide a consistent
means to ensure compliance or perform analytics, or they can be used to
inform a developer of the context of a class or service. For example, you can
leverage annotations when writing fitness functions using ArchUnit to
ensure all shared classes reside in the services layer of the application:

Collective Wisdom from the Experts 191

https://www.archunit.org

@Test

public void shared_services_should_reside_in_services_layer() {

 classes().that().areAnnotatedWith(SharedService.class)

 .should().resideInAPackage("..services..").check(myClasses);

}

Instead of comments, consider embracing identity annotations. Use them
liberally to gain information, analytics, and programmatic control over your
services or applications.

97 Things Every Java Programmer Should Know192

Use Testing to Develop
Better Software Faster
Marit van Dijk

Testing your code will help you verify that your code does what you expect it
to do. Tests will also help you to add, change, or remove functionality
without breaking anything. But testing can have additional benefits.

Merely thinking about what to test will help to identify different ways the
software will be used, discover things that are not clear yet, and better under‐
stand what the code should (and shouldn’t) do. Thinking about how to test
these things before even starting your implementation could also improve
your application’s testability and architecture. All of this will help you build a
better solution before the tests and code are written.

Alongside the architecture of your system, think not only about what to test
but also where to test. Business logic should be tested as close as possible to
where it lives: unit tests to test small units (methods and classes), integration
tests to test the integration between different components, contract tests to
prevent breaking your API, etc.

Consider how to interact with your application in the context of a test, and
use tools designed for that particular layer, from unit test (e.g., JUnit,
TestNG), to API (e.g., Postman, REST-assured, RestTemplate), to UI (e.g.,
Selenium, Cypress).

Keep the goal of a particular test type in mind, and use the tools for that pur‐
pose, such as Gatling or JMeter for performance tests, Spring Cloud Contract
testing or Pact for contract testing, and PITest for mutation testing.

But it is not enough to just use those tools: they should be used as intended.
You could take a hammer to a screw, but both the wood and the screw will be
worse off.

Test automation is part of your system and will need to be maintained along‐
side production code. Make sure those tests add value, and consider the cost
of running and maintaining them.

193

Tests should be reliable and increase confidence. If a test is flaky, either fix it
or delete it. Don’t ignore it—you’ll waste time later wondering why that test
is being ignored. Delete tests (and code) that are no longer valuable.

A failing test should tell you exactly what is wrong quickly, without you hav‐
ing to spend a lot of time analyzing the failure. This means:

• Each test should test one thing.
• Use meaningful, descriptive names. Don’t just describe what the test

does either (we can read the code); tell us why it does this. This can help
decide whether a test should be updated inline with changed functional‐
ity or whether an actual failure that should be fixed has been found.

• Matcher libraries, such as Hamcrest, can help provide detailed informa‐
tion about the difference between expected and actual results.

• Never trust a test you haven’t seen fail.

Not everything can (or should) be automated. No tool can tell you what it’s
actually like to use your application. Don’t be afraid to fire up your applica‐
tion and explore; humans are way better at noticing things that are slightly
“off ” than machines. And besides, not everything will be worth the effort of
automating.

Testing should give you the right feedback at the right time to provide
enough confidence to take the next step in your software development life
cycle, from committing to merging to deploying and unlocking features.
Doing this well will help you deliver better software faster.

97 Things Every Java Programmer Should Know194

Using Object-Oriented
Principles in Test Code
Angie Jones

When writing test code, it’s important to exercise the same care that you’d
use when developing production code. Here are common ways to use object-
oriented (OO) principles when implementing test code.

Encapsulation
The Page Object Model design pattern is commonly used in test automation.
This pattern prescribes creating a class to interact with a page of the applica‐
tion under test. Within this class are the locator objects for the elements of
the web page and the methods to interact with those elements.

It’s best to properly encapsulate by restricting access to the locators them‐
selves and only exposing their corresponding methods:

public class SearchPage {

 private WebDriver driver;

 private By searchButton = By.id("searchButton");

 private By queryField = By.id("query");

 public SearchPage(WebDriver driver){

 this.driver = driver;

 }

 public void search(String query) {

 driver.findElement(queryField).sendKeys(query);

 driver.findElement(searchButton).click();

 }

}

195

https://oreil.ly/guEVi

Inheritance
While inheritance should not be abused, it can certainly be useful in test
code. For example, given there are header and footer components that exist
on every page, it’s redundant to create fields and methods for interacting
with these components within every Page Object class. Instead, create a base
Page class containing the common members that exist on every page, and
have your Page Object classes inherit from this class. Your test code will now
have access to anything in the header and footer no matter what Page Object
they are currently interacting with.

Another good use case for inheritance within test code is when a given page
has various implementations. For example, your app may contain a User
Profile page that has different functionality based on roles (e.g.,
Administrator, Member). While there are differences, there could also be
overlap. Duplicating code across two classes is not ideal. Instead, create a
ProfilePage class that contains the common elements/interactions, and cre‐
ate subclasses (e.g., AdminProfilePage, MemberProfilePage) that implement
the unique interactions and inherit the common ones.

Polymorphism
Assume we have a convenience method that goes to the User Profile page.
This method doesn’t know what type of profile page it is—an Administrator
or a Member.

You’re faced with a design decision here. Do you make two methods—one
for each of the profile types? This seems like overkill since they both would
do the exact same thing but just have a different return type.

Instead, return the superclass (ProfilePage) since both AdminProfilePage
and MemberProfilePage are both subclasses of ProfilePage. The test
method that is calling this convenience method has more context and can
cast accordingly:

@Test

public void badge_exists_on_admin_profile() {

 var adminProfile = (AdminProfilePage)page.goToProfile("@admin");

 ...

}

97 Things Every Java Programmer Should Know196

Abstraction
Abstraction is used sparingly in test code, but there are valid use cases. Con‐
sider a type of widget that has been customized for different usages through‐
out the app. Creating an abstract class that specifies the behaviors expected is
helpful when developing classes that interact with specific implementations
of that widget:

public abstract class ListWidget {

 protected abstract List<WebElement> getItems();

 int getNumberOfItems() {

 return getItems().size();

 }

}

public class ProductList extends ListWidget {

 private By productLocator = By.cssSelector(".product-item");

 @Override

 protected List<WebElement> getItems() {

 return driver.findElements(productLocator);

 }

}

Test code is indeed code, meaning that it has to be maintained, enhanced,
and scaled. Therefore, it’s in your best interest to follow good programming
practices when developing it—including the foundational OO principles.

Collective Wisdom from the Experts 197

Using the Power of
Community to Enhance
Your Career
Sam Hepburn

It’s no longer enough to just be a great Java developer. If you want to advance
your career, you need to be blogging, speaking at conferences, engaging on
social media, committing to open source, and the list goes on. This can feel
like a daunting task and you’re probably asking yourself, “Why? Why is my
technical ability not enough?” Well, the short answer is that a lot of the time,
the people making decisions about your career will never see your code. You
need to ensure that those people are hearing and seeing your name.

The Silver Lining
You don’t need to do it all, and there are communities to help you along the
way. If the idea of standing on a stage in front of 10, 50, 100, or more people
literally puts you into a panic attack, don’t do it.

On the other hand, if you’re nervous and feel like you’ve got nothing to say,
that’s something that a community can help with. Have you ever fixed an
issue you’ve been fighting with and thought to yourself, “If only I could have
learned from someone who’s done this already”? Everyone has these
thoughts; they make for great subjects to cover in a talk or blog post.

If it’s the fear of talking on stage, then start off small: present something to
your team before submitting to a local Java User Group (JUG) or conference.

How Can Community Help?
As well as building your profile, another reason why engaging in community
is so valuable is the content shared and conversations had. Technology is
moving so fast that being a part of a community means you don’t need to
wait for a book to be published to get access to great content. The people

198

writing those books, researching the latest technologies, are sharing their
insights at community events, on blogs, and discussing them on forums.

The people in the communities that you’re likely already involved with can
all help you become better. From the speakers to the attendees, the things
you learn from each other are sometimes more valuable than the overarch‐
ing content of the event. Don’t be afraid to ask questions of everyone in the
room. Thought leadership can be shared in so many ways, and the people sit‐
ting next to you may have the answers you’ve been looking for.

If you’re from a location that does not have a thriving Java community, don’t
panic—check out the Virtual JUG.

Looking for Your Next Challenge?
If you’re after a new challenge, then community can really help you in your
job search. If a hiring manager can avoid looking through the hundred appli‐
cations on their desk to hire someone they know will fit in the team with the
right skills, they’ll do it.

What’s the best way to get to the top of the pile? Find ways to interact outside
of the application process. Meeting in person at local user groups will also
allow you to understand what it’s really like to work with the team. None of
this candy-coated interview process only to find out on your first day that
you’re not in an environment that’s right for you.

This circles back to where we started: the people making decisions about
your career don’t always see your code!

Collective Wisdom from the Experts 199

https://virtualjug.com

What Is the JCP Program
and How to Participate
Heather VanCura

The Java Community Process (JCP) Program is the process by which the
international Java community standardizes and ratifies the specifications for
Java technologies. The JCP Program ensures high-quality specifications are
developed using an inclusive, consensus-based approach. Specifications rati‐
fied by the JCP Program must be accompanied by a Reference Implementa‐
tion (to prove the Specification can be implemented) and a Technology
Compatibility Kit (a suite of tests, tools, and documentation used to test
implementations for compliance with the Specification).

Experience has shown that the best way to produce a technology specifica‐
tion is to use an open and inclusive process to develop a specification and
implementation, informed by a group of industry experts with a variety of
viewpoints. This also includes giving the community opportunities to review
and comment, and also a strong technical lead to ensure the technical goals
are met and the specification integrates with other relevant specifications.

An Executive Committee (EC) representing a cross-section of major stake‐
holders—such as Java vendors, large financial institutions utilizing Java to
run their business, open source groups, and other members of the Java com‐
munity, including individuals and user groups—is responsible for approving
the passage of Specifications through the JCP Program’s various stages and
for reconciling discrepancies between Specifications and their associated test
suites.

After being introduced in 1999, the JCP Program has continued to evolve
over time using the process itself, through an effort called JCP.next, with the
work being carried out in the open by the JCP EC. JCP.next is a series of Java
Specification Requests (JSRs) designed to focus on transparency, streamlin‐
ing the JCP program, and broadening its membership. These JSRs modify
the JCP’s processes by modifying the JCP Process Document. Once the

200

https://oreil.ly/t6agC
https://oreil.ly/vzEzX
https://oreil.ly/J7Sng
https://oreil.ly/8Xg8c
https://oreil.ly/8Xg8c

changes are complete, they apply to all new JSRs and to future Maintenance
Releases of existing JSRs for the Java platform.

For example, JSR 364, Broadening JCP Membership, was put into effect as JCP
version 2.10. This JSR broadened JCP participation by defining new mem‐
bership classes, enabling greater participation by the community, and help‐
ing ensure the appropriate intellectual property commitments from JCP
Members. Any Java developer can join the JCP Program, and depending on
the type of membership, JCP Members can participate as a JSR Spec Lead,
Expert Group Member, or Contributor.

JSR 387, Streamline the JCP Program, was put into effect as version 2.11. This
JSR streamlines the JSR life cycle process to bring it in line with the way Java
technology is developed today, specifically enabling JSRs to be able to com‐
plete and keep up with the six-month Java platform release cycle cadence.
Through this JSR we also resized the JCP EC.

With many changes in the Java community, the continuation of the JCP Pro‐
gram remains constant. Anyone can apply to join and participate in the JCP
Program—either as a Corporation or Non-Profit (Full Member), Java User
Group (Partner Member), or Individual (Associate Member). The stability of
the JCP Program and participation from community members ensures con‐
tinued success of the Java platform and its future. Standards enable execution
of technical strategies, and the JCP enables collaboration of industry and
participation from the developer community.

Compatibility matters—the Spec, RI, and TCK required by the JCP Program
enable an ecosystem to be built up around Java technologies. The JCP Pro‐
gram provides the foundation and structure for this—IP rights and obliga‐
tions are covered, and choice in implementations that pass the TCK benefits
the ecosystem—this is key to success and continued popularity of Java
technology.

Collective Wisdom from the Experts 201

https://oreil.ly/q3X1U
https://oreil.ly/ce2ag
https://oreil.ly/eSzdV
https://oreil.ly/z8rot

Why I Don’t Hold Any
Value in Certifications
Colin Vipurs

Some time back—it must have been around the mid-noughties—one of my
friends had taken and passed the Java Certified Programmer exam with an
impressive score of 98%. Eager to keep up, I took one of the practice tests
during a lunch break and, although I didn’t score as high, I got a passing
grade. One question on the exam has always stuck in my mind. It was to do
with the inheritance hierarchy in Swing applications, something I had no
problem answering as my day job was working with Swing, but it did strike
me as odd to ask something that could easily be looked up in your IDE. I
never did get around to taking the exam, mostly due to being partway
through studying for my master’s degree at the time.

Fast-forward a few years, and I had just started a new job. During the first
week, I was asked by one of my new colleagues if I was Java 5 certified. “No,”
I replied, “but I have been using it for the last year.” Turns out he was certi‐
fied, so good news for me that someone on my team would have a base level
of knowledge and skill. It was less than two weeks later that he asked why we
have to bother overriding hashCode when we override equals. He genuinely
didn’t understand the relationship between the two methods. This was just
the tip of what he didn’t know, yet he was certified!

Fast-forward another few years, and I’m contracting at a place where the
company policy was that every permanent employee be certified, at least to
what was then the Java Certified Programmer level. I did meet some good
developers there, and good developers had passed through the ranks, but
there were some truly awful developers as well—all of whom were certified.

A quick look at the Oracle site for Java Certification tells you that being certi‐
fied will “Help you position yourself with validation that you posses the full
skill set and knowledge to be a Professional Java Developer” and “Earn you
more credibility, help you perform better in your daily job, and lead your
team and company forward.” Rubbish. Being a “professional developer” and

202

performing “better in your day job” have little to do with what you’ll need in
order to become certified. You can learn enough to pass the exams without
ever writing a line of code. As an industry, we can’t even definitively tell you
what “good” and “bad” are, so a piece of paper claiming to do so is worthless.

There are, of course, exceptions to every rule. I have met a few people—well,
at least one—who have used Java certification as a way to bolster their own
knowledge. They used it as a way to learn things they otherwise wouldn’t
have had to as part of their day job, and to those people I take my hat off. In
over twenty years of writing software professionally, one thing about certifi‐
cations has never changed: the good developers don’t need it, but the bad
ones can easily achieve it.

Collective Wisdom from the Experts 203

Write One-Sentence
Documentation
Comments
Peter Hilton

A common fallacy is to assume authors of incomprehensible code will somehow be
able to express themselves lucidly and clearly in comments.

—Kevlin Henney

You’re probably either writing too many comments in your code, or none at
all. Too many generally means too many to maintain, which risk becoming
dangerously inaccurate comments that you’re better off deleting. Too many is
also likely to mean that they’re badly written and unimproved, because it’s
hard to write “lucidly and clearly.” None at all means relying on perfect nam‐
ing, code structure, and tests, which is even harder than it sounds.

We’ve all seen a lot of code whose authors didn’t write any comments at all,
whether to save time, because they didn’t want to, or because they thought
their code was self-documenting. Sometimes code really is that well written:
the first thousand lines of a new project, the hobby project written in artisa‐
nal handcrafted code, and maybe the mature well-maintained library project
whose narrow focus keeps the codebase small.

Large applications are different, especially enterprise business applications.
Comments are a problem when you’re maintaining 100,000 lines of code that
other people wrote and are still adding to. That code isn’t all going to be per‐
fect, and needs some explanation. The hard question is how much explana‐
tion: how many comments?

The answer to commenting large application codebases is to write one-
sentence documentation comments, as follows:

1. Write the best code you can.

204

1 97 Things Every Programmer Should Know (O’Reilly)

2. Write a one-sentence documentation comment for every public class
and method/function.

3. Refactor the code.
4. Delete unnecessary comments.
5. Rewrite bad comments (because all good writing requires rewriting).
6. Only add detail where absolutely necessary.

This approach helps you discover which comments are necessary, either
because the code cannot explain things like why it exists or because you
haven’t had time to refactor it yet. You find out when you write the one-
sentence comment: if a good comment takes several minutes to write, then
it’s necessary and will save you and other readers time in the future.

If you wrote a good comment as fast as you can type, then you identified
“obvious” code that doesn’t need the comment, which you must immediately
delete. The trick is that this discovery requires actually writing the comment,
however obvious you think the code is, and especially if you wrote it your‐
self. Do not skip this step!

You always need a minimum number of comments that comment only what
the code cannot say,1 answering the why questions that you can’t answer in
code. Limiting these to one sentence per public interface makes the writing,
code review, and maintenance effort realistic, and lets you focus on quality
and brevity.

Don’t write more than one sentence unless you really have to. There might be
more why questions, unusual complexity, or obscure domain language jar‐
gon to explain, especially abbreviations. Delegate where you can: problem
domains often have Wikipedia pages you can link to.

Comments are amazingly useful if they’re good, mainly because we spend
more time reading code than writing it. Comments are also the only feature
common to all general programming languages. When programming, use
the best language for the job. Sometimes, it’s English.

Collective Wisdom from the Experts 205

https://oreil.ly/71NUx

Write “Readable Code”
Dave Farley

We have all heard that good code is “readable,” but what does that really
mean?

The first principle of readability is to keep the code simple. Avoid lengthy
methods and functions; instead, break them into smaller pieces. Name the
pieces for what they do.

Automate your coding standards so you can test them in your deployment
pipeline. For example, you could fail your build if you have a method of
more than 20 to 30 lines of code, or parameter lists of more than 5 or 6
parameters.

Another way toward better readability is to take “readable” literally. Don’t
interpret it as meaning “Can I read my code five minutes after I wrote it?”
Rather, try to write code that a nonprogrammer could understand.

Here is a simple function:

void function(X x, String a, double b, double c) {

 double r = method1(a, b);

 x.function1(a, r);

}

What does it do? Without looking into the implementation of X and method1,
you have no way of telling, programmer or not.

But if instead I wrote this:

void displayPercentage(Display display, String message,

 double value, double percentage) {

 double result = calculatePercentage(value, percentage);

 display.show(message, result);

}

it would be clear what was going on. Even a nonprogrammer could probably
guess from the names what is happening here. Some things are still hidden—

206

we don’t know how the display works or how the percentage is calculated—
but that is a good thing. We can understand what this code is attempting to
do.

For simple examples like this, this kind of change looks too trivial to discuss,
but how much of the code you see at work looks like this?

Taking naming seriously, combined with simple refactoring techniques,
allows you to quickly gain deeper insight into what is happening in your
code.

Here is another example, in this case from some real-world code:

if (unlikely(!ci)) {

 // 361 lines of code

} else {

 // 45 lines of 'else'

}

Highlight the unlikely(!ci) and create a new method called noConnection.

Highlight the 361 lines in the if statement and name it createConnection,
and you end up with:

if (noConnection(ci)) {

 ci = createConnection();

} else {

 // 45 line of 'else'

}

Naming things sensibly, even if that means pulling out a function that is only
used once in order to name it, creates clarity in code that is missing other‐
wise. It will also often highlight the fact that there are significant opportuni‐
ties to simplify the code. In this example, there were five other places in the
same file that could have reused the new createConnection method. I would
take this further and rename ci to connection or something more
appropriate.

Because we have improved the code’s modularity, this approach also gives us
more options for further change. For example, we could now decide to hide
some more of the complexity in this method and simply use the connection,
whether created here for the first time or not:

ci = createConnection(ci);

// 45 lines of code

Collective Wisdom from the Experts 207

Make functions and methods simple. Make all names meaningful in the con‐
text of the problem you are solving: functions, methods, variables, parame‐
ters, constants, fields, anything!

Imagine your nontechnical grandpa or grandma reading the code: could they
guess at what it was doing? If not, make the code simpler through refactor‐
ing, and more expressive through the selection of good names.

97 Things Every Java Programmer Should Know208

The Young, the Old, and
the Garbage
María Arias de Reyna

One of the major advantages of Java is that developers have not had to worry
(much) about memory. In contrast to many other languages around at the
time of its launch, Java has, since the beginning, freed unused memory auto‐
matically. But that doesn’t mean Java developers don’t need to know the
basics of how Java handles memory. There can still be memory leaks and
bottlenecks.

Java divides its memory into two segments:

Heap Instances, variables…your data

Nonheap/perm Code, metadata…for the JVM

To care about memory in Java, we should focus on the heap. It is divided into
two generations depending on their lifetime: young and old. The young gen‐
eration (aka the nursery) contains short-lived objects. The old generation
contains structures that have survived longer.

The young generation is divided in two:

Eden Where objects are created

Survivor An in-between, limbo state through which an instance will pass when moving from the young to the
old space

The Garbage Collector
The garbage collector (GC) is the system cleaning the memory. There are
different implementations, but in general it performs two tasks:

Minor collection Reviews the young generation

Major collection Reviews all memory, young and old

209

The GC runs at the same time as the normal app execution. Each execution
of the GC involves a pause (usually milliseconds) in all running threads.
While your application remains healthy, the GC usually limits its actions to
minor collections as not to interfere with it.

GC Strategies
For proper operation and cleaning of memory, we should have small, short-
lived objects rather than objects that live a long time. The temporary objects
will stay in Eden, so the GC will remove them earlier and faster.

Having unused objects in memory doesn’t disrupt the execution of your app,
but it may affect your hardware performance. It may also slow down the GC
execution, as it will process them over and over again on each execution.

It may seem tempting to force a GC execution calling System.gc. However,
this will force a major collection, disrupting heuristics and stopping your
application while this collection lasts.

References
The GC frees instances that are no longer referenced, meaning if you create
an instance with an attribute referencing a second instance, both instances
will be either removed at the same time or never. The more cross-referenced
instances, the more complex and error-prone the GC task is. You can help
the GC by nulling attributes on objects to break links between instances.

All static objects live forever. This means all their referenced attributes will
also live forever.

To help the GC collect unwanted objects, there are special types of references
whose corresponding classes can be found in java.lang.ref:

Weak reference Does not count as a reference for cleanup. For example, we can use WeakHashMap, which

works as a HashMap, but using weak references. So, if the map contains an object that is
only referenced in the map, it can be removed.

Soft reference The GC respects the link and removes the instance, depending on demand for memory.

Phantom reference Always returns null. The link doesn’t really point to the object. Used to clear instances
before taking the object that binds it.

Remember that the garbage collector is your friend. It tries to make your life
easier. You can return the favor by making its job easier too.

97 Things Every Java Programmer Should Know210

https://oreil.ly/6PGRj
https://oreil.ly/B_6ss

Contributors

Abraham Marin-Perez
Abraham Marin-Perez is a Java programmer, consultant,
author, and public speaker with over 10 years of experience
in industries ranging from finance to publishing to the public
sector. After graduating in computer science at the University
of Valencia, Spain, Abraham relocated to London to work

at J.P. Morgan, while also getting a BSc in telecommunications. After three
years in finance, he switched to online betting for another three years, and
then became an independent contractor. Abraham benefited greatly from
the London programming community, and decided to give back and share
his experience by becoming a Java news editor at InfoQ, speaking at confer‐
ences like Devoxx or CodeOne (née JavaOne), authoring Real-World Main‐
tainable Software (O’Reilly), and coauthoring Continuous Delivery in Java
(O’Reilly). Always the learner, Abraham is currently studying for a degree in
physics. He also helps run the London Java Community and provides career
advice at the Meet a Mentor group.

The Code Restorer, page 27

Adam Bien
Adam Bien (adambien.blog) is a developer, consultant,
author, podcaster, and Java enthusiast. He’s been using Java
since JDK 1.0 and JavaScript since LiveScript and still enjoys
writing code. Adam regularly organizes Java EE, WebStan‐
dards, and JavaScript workshops at Munich airport

(airhacks.com) and runs a monthly Q&A live streaming show at airhacks.tv.

Follow the Boring Standards, page 52

211

https://oreil.ly/_UQZG
https://oreil.ly/_UQZG
https://oreil.ly/gNfQA
http://blog.adam-bien.com/
http://airhacks.com/
http://airhacks.tv/

Alexey Soshin
Alexey Soshin is a software architect with 15 years of experi‐
ence in the industry. He is the author of the book Hands-On
Design Patterns with Kotlin (Packt Publishing) and the Web
Development with Kotlin video course. Alexey is a Kotlin and
Vert.x enthusiast and an experienced conference speaker.

CountDownLatch—Friend or Foe?, page 31

A.Mahdy AbdelAziz
A.Mahdy AbdelAziz is a technical trainer and a public
speaker. He has more than 12 years of experience in the
software field, including Google, Oracle, and three start-ups.
A.Mahdy cofounded @ExtraVerd and is interested in modern
technologies such as PWA, offline-first design, machine

learning, and the cloud stack. If he is not talking in front of a microphone or
sitting in an airplane, you can find him playing basketball. Reach him on
Twitter as @__amahdy or GitHub as @amahdy.

Events Between Java Components, page 46

Anders Norås
Originally educated in arts and design, Anders has spent the
last 20 years writing code. He currently works for Itera as
chief technology officer. He has given numerous talks and
keynotes at conferences such as JavaZone, NDC, J-Fall,
Øredev, and many more. He has given 100-plus conference

talks to a variety of audiences including media, design, and hardcore com‐
puter science. He is known for his energetic and highly engaging presenta‐
tions. This is his second feature for the 97 Things series.

All You Need Is Java, page 1

Angie Jones
Angie Jones is a senior developer advocate who specializes
in test automation strategies and techniques. She shares her
wealth of knowledge by speaking and teaching at software
conferences all over the world, writing tutorials and technical
articles on angiejones.tech, and leading the online learning

platform, Test Automation University. As a Master Inventor, Angie is

Contributors212

http://www.angiejones.tech/

known for her innovative and out-of-the-box thinking style, which has
resulted in more than 25 patented inventions in the US and China. In
her spare time, Angie volunteers with Black Girls Code to teach coding
workshops to young girls in an effort to attract more women and minorities
to tech.

Using Object-Oriented Principles in Test Code, page 195

Ben Evans
Ben Evans is principal engineer and architect for JVM tech‐
nologies at New Relic. Prior to joining New Relic, Ben
cofounded jClarity (acquired by Microsoft) and was chief
architect (Listed Derivatives) at Deutsche Bank. Ben is
the author of The Well-Grounded Java Developer (Manning

Publications), Java: The Legend (O’Reilly), Optimizing Java (O’Reilly), and
the recent editions of Java in a Nutshell (O’Reilly). He is the track lead for
Java/JVM at InfoQ, writes regularly for industry publications, and is a
frequent speaker at technical conferences worldwide. Ben has been active
in free and open source software for over 20 years, cofounded the
AdoptOpenJDK initiative (with Martijn Verburg), and served on the JCP
Executive Committee for six years.

Java Is a ’90s Kid, page 83
Java’s Unspeakable Types, page 89

Benjamin Muschko
Benjamin Muschko is a software engineer and a consultant
and trainer with over 15 years of experience in the industry.
He’s passionate about project automation, testing, and Con‐
tinuous Delivery. Ben is a frequent speaker at conferences
and is an avid open source advocate. Software projects some‐

times feel like climbing a mountain. In his free time, Ben loves hiking Colo‐
rado’s 14ers and enjoys conquering long-distance trails.

“But It Works on My Machine!”, page 23

Contributors 213

https://oreil.ly/t5RYp
https://oreil.ly/wEzT0

Benjamin Muskalla
Benjamin Muskalla (“Benny,” @bmuskalla) for the past 12
years has been following his passion of building tools for
improving developer productivity. He has been an active
committer of the world-class Eclipse IDE. Over the years, he’s
spent a lot of time building tools, frameworks, and test

approaches to help his peers become more effective. TDD and API design
are dear to his heart as well as working on open source software. Benny
currently works for Gradle Inc. on the Gradle Build Tool.

Refactoring Toward Speed-Reading, page 154

Billy Korando
Billy Korando is a developer advocate with IBM with more
than a decade of experience. Billy is passionate about helping
developers find ways to reduce mental capacity waste from
tedious work, such as project initiation, deployment, testing
and validation, and so on through automation and good

management practices. Outside of work, Billy enjoys traveling, playing kick‐
ball, and cheering on the Kansas City Chiefs. Billy also co-organizes the
Kansas City Java Users Group.

Improving Repeatability and Auditability with Continuous Delivery, page 71

Brian Vermeer
Brian Vermeer is a developer advocate for Snyk and a soft‐
ware engineer with over 10 years of hands-on experience in
creating and maintaining software. He is passionate about
Java, (pure) functional programming, and cybersecurity.
Brian is an Oracle Groundbreaker Ambassador, Utrecht JUG

co-lead, Virtual JUG organizer, and co-lead at MyDevSecOps. He is a regular
international speaker on mostly Java-related conferences like JavaOne,
Devoxx, Devnexus, Jfokus, JavaZone, and many more. Besides all that, Brian
is a military reserve for the Royal Netherlands Air Force and a Taekwondo
Master/Teacher.

Take Good Care of Your Dependencies, page 161

Contributors214

Burk Hufnagel
Burk Hufnagel is a programmer and solution architect with
Daugherty Business Solutions, where he’s focused on finding
ways to deliver better code, faster, and teaching others how
to do the same. He’s on the board of directors for the Atlanta
Java User Group and helps run the Devnexus conference.

He’s presented at user group meetings and technical conferences including
Connect.Tech, Devnexus, JavaOne, and Oracle Code One. In 2010, Burk
was recognized as a JavaOne Rock Star. As a writer, Burk contributed
multiple articles to 97 Things Every Software Architect Should Know and 97
Things Every Programmer Should Know (O’Reilly). He’s also served as a
technical reviewer for several books, including Head First Software Develop‐
ment (O’Reilly) and Kathy Sierra and Bert Bates’s Sun Certified Programmer
for Java Study Guide (McGraw-Hill), for which he received an unexpected
compliment: “Burk fixed more of our code than we care to admit.”

Deliver Better Software, Faster, page 35

Carlos Obregón
Carlos Obregón has been working in software development
since 2008. Because he has always had a passion for sharing
knowledge, he started a Java User Group in Bogotá, now
called Bogotá JVM, where he has given talks primarily
on best practices in the Java language. Besides developing

software, he coordinates bootcamps related to topics about web develop‐
ment. He first started dating C++ but, before graduating from university, he
found true love with Java. After some years, he tried dating other JVM lan‐
guages but found that no other language gave him as much joy as Java.
Besides coding, he also loves spending time with family and friends playing
board games and video games. He also tries to read at least a book per
month, mainly technical books but also literature. Nothing is more impor‐
tant to him than Lina, Mariajosé, and Evie—his wife, daughter, and dog.

How to Avoid Null, page 66

Contributors 215

http://shop.oreilly.com/product/9780596522704.do
http://shop.oreilly.com/product/9780596809492.do
http://shop.oreilly.com/product/9780596809492.do
http://shop.oreilly.com/product/9780596527358.do
http://shop.oreilly.com/product/9780596527358.do

Chris O’Dell
Chris O’Dell has spent nearly 15 years as a backend engineer,
primarily with Microsoft technologies, but recently with Go
on a large microservices platform. She has led teams deliver‐
ing highly available web APIs, distributed systems, and
cloud-based services. She has also led teams developing

internal build and deployment tooling with the goal of improving the develo‐
per’s experience. Chris currently works at Monzo helping to build the future
of banking. Chris is a regular conference speaker on the topics of Continu‐
ous Delivery and development practices. She is a contributor to the book
Build Quality In (Leanpub) and coauthored the book Continuous Delivery
with Windows and .NET (O’Reilly).

Frequent Releases Reduce Risk, page 54

Christin Gorman
Christin Gorman has been writing software professionally
for 20 years and has gained experience in everything from
start-ups to large enterprises, always hands-on, writing code.
She is best known for her enthusiastic public speaking style
and for blogging about software. A common underlying

theme of hers is the importance of developers being involved in the software
they are creating. Software developers are tragically underutilized—relegated
to picking isolated tasks from a board someone else has set up, writing code
in styles, languages, and frameworks they had no say in choosing, and never
once getting to meet the users of their software. Christin is passionate about
getting developers more involved, unleashing their potential, and making
them care about every aspect of what they are working on, not just so they
have more fun at work but more importantly so the products they create are
more useful. Christin currently works for the Norwegian consultancy
Kodemaker.

Do You Know What Time It Is?, page 37

Contributors216

https://learning.oreilly.com/library/view/continuous-delivery-with/9781492042327/
https://learning.oreilly.com/library/view/continuous-delivery-with/9781492042327/

Colin Vipurs
Colin Vipurs just celebrated his twenty-first anniversary as a
developer. He’s been around a lot in the UK, worked in
finance, press, music, and aeronautics, and currently works
at Masabi, in the public transit space. Back in the day he used
to do a lot of C/Perl, then moved to Java, dabbled in Scala for

a bit, and now does mostly full-time Kotlin. He wrote a book once and does
conference speaking when he can be bothered to put some material together.
His passions are TDD/BDD, building scalable, high performance systems,
and food.

Why I Don’t Hold Any Value in Certifications, page 202

Daniel Bryant
Daniel Bryant works as a product architect at Datawire, and
is the news manager at InfoQ and chair for QCon London.
His current technical expertise focuses on “DevOps” tooling,
cloud/container platforms, and microservice implementa‐
tions. Daniel is a Java Champion and leader within the Lon‐

don Java Community (LJC). He also contributes to several open source
projects, writes for well-known technical websites such as InfoQ, O’Reilly,
and DZone, and regularly presents at international conferences such as
QCon, JavaOne, and Devoxx.

The Benefits of Codifying and Asserting Architectural Quality, page 14
The Case Against Fat JARs, page 25

Daniel Hinojosa
Daniel Hinojosa is a programmer, consultant, instructor,
speaker, and author. With over 20 years of experience,
he does work for private, educational, and government insti‐
tutions. Daniel loves JVM languages like Java, Groovy,
and Scala, but also works with non-JVM languages like

Haskell, Ruby, Python, LISP, C, and C++. He is an avid Pomodoro Technique
practitioner and makes every attempt to learn a new programming language
every year. Daniel is the author of Testing in Scala (O’Reilly) and the video of
the Beginning Scala Programming video series for O’Reilly Media. For
downtime, he enjoys reading, swimming, Legos, football, and cooking.

Know Thy flatMap, page 97

Contributors 217

http://shop.oreilly.com/product/0636920022602.do
http://shop.oreilly.com/product/0636920043386.do

Dave Farley
Dave Farley is a thought leader in the field of Continuous
Delivery. He is coauthor of the Jolt-award winning book
Continuous Delivery (Addison-Wesley), a regular conference
speaker and blogger, one of the authors of the Reactive
Manifesto, and a contributor to the thinking behind BDD.

Dave has been having fun with computers for over 35 years and has worked
on most types of software, firmware, commercial applications, and low-
latency trading systems. He started working in large-scale distributed
systems more than 30 years ago, researching the development of loose-
coupled, message-based systems—a forerunner of microservices. Dave is a
former director of innovation at ThoughtWorks and head of software devel‐
opment at LMAX Ltd., home of the OSS Disruptor, a company well known
for the excellence of their code and the exemplary nature of its development
process. Dave is now an independent consultant, and founder and director of
Continuous Delivery Ltd.

Take “Separation of Concerns” Seriously, page 163
Test-Driven Development, page 167
Write “Readable Code”, page 206

David Delabassee
David Delabassee has been involved in the Java ecosystem for
more than two decades. He lives and breathes Java! These
days he works as a developer advocate in the Java Platform
Group at Oracle. Over the years, he has championed Java
extensively throughout the world by presenting at conferen‐

ces and user groups. David has authored numerous technical articles and
trainings, and he occasionally blogs at delabassee.com. In his spare time, he is
actively involved in multiple nonprofit organizations focused on improving
rights for individuals with disabilities. He is also an accessibility activist.
David lives in Belgium, where he enjoys playing video games with Lylou, his
lovely (but challenging to beat) daughter.

Be Aware of Your Container Surroundings, page 7

Contributors218

https://delabassee.com/

Dawn and David Griffiths
Dawn and David Griffiths are the authors of
Head First Kotlin and Head First Android
Development (O’Reilly). They have also writ‐
ten other books in the Head First series and
developed the animated video course The

Agile Sketchpad as a way of teaching key concepts and techniques in a way
that keeps your brain active and engaged.

Thinking in Coroutines, page 173

Dean Wampler
Dean Wampler (@deanwampler) is an expert in streaming
systems, focusing on ML/AI. He is head of developer rela‐
tions at Anyscale.io, which is developing Ray for distributed
Python. Previously, he was an engineering VP at Lightbend,
where he led the development of Lightbend Cloudflow, an

integrated system for streaming data applications with popular open source
tools. Dean has written books for O’Reilly and contributed to several open
source projects. He is a frequent conference speaker and tutorial teacher,
and a co-organizer of several conferences and user groups in Chicago. Dean
has a PhD in physics from the University of Washington.

Embrace SQL Thinking, page 44

Donald Raab
Donald Raab has more than 18 years of experience as a soft‐
ware engineer in the financial services industry. He started
programming with Java in 1997 and has programmed in 20-
plus programming languages over the years. He is a member
of the JSR 335 Expert Group and is also the creator of

the Eclipse Collections Java Library that was originally open sourced as GS
Collections in 2012 and migrated to the Eclipse Foundation in 2015. Donald
was selected as a 2018 Java Champion, and he is a frequent speaker and guest
trainer at key Java conferences and user group meetups including Oracle
CodeOne, JavaOne, QCon New York, Devnexus, Devoxx US, EclipseCon,
JVM Language Summit, and Great Indian Developer Summit (GIDS).

Learn to Kata and Kata to Learn, page 107

Contributors 219

http://shop.oreilly.com/product/0636920102786.do
http://shop.oreilly.com/product/0636920329220.do
http://shop.oreilly.com/product/0636920329220.do
http://Anyscale.io

Edson Yanaga
Edson Yanaga, Red Hat’s director of developer experience,
is a Java Champion and a Microsoft MVP. He is also a pub‐
lished author and a frequent speaker at international confer‐
ences, discussing Java, microservices, cloud computing,
DevOps, and software craftsmanship. Yanaga considers him‐

self a software craftsman, and is convinced that we all can create a better
world for people with better software. His life’s purpose is to deliver and help
developers worldwide to deliver better software faster and safely—and he
can even call that a job!

Behavior Is “Easy”; State Is Hard, page 9

Emily Bache
Emily Bache is a technical agile coach with ProAgile. She
helps teams to improve the way they write code together, and
teaches test-driven development. Emily lives in Gothenburg,
Sweden, but is originally from the UK. She is the author of
The Coding Dojo Handbook (self-published) and often speaks

at international conferences.

Approval Testing, page 3
Use Coverage to Improve Your Unit Tests, page 188

Emily Jiang
Emily Jiang is a Java Champion. She is also a Liberty Micro‐
services Architect and Advocate, senior technical staff mem‐
ber (STSM) for IBM, based at Hursley Lab in the UK. Emily
is a MicroProfile guru and has been working on MicroProfile
since 2016. She leads the specifications of MicroProfile Con‐

fig, Fault Tolerance, and Service Mesh. She is also a CDI Expert Group mem‐
ber. Emily is passionate about Java, MicroProfile, and Jakarta EE. She
regularly speaks at conferences such as QCon, Code One, Devoxx, Dev‐
nexus, JAX, Voxxed, EclipseCon, GeeCON, JFokus, and more. You can find
her on Twitter @emilyfhjiang and LinkedIn.

Make Code Simple and Readable, page 119

Contributors220

https://oreil.ly/HheKg
http://www.linkedin.com/in/emily-jiang-60803812

Gail C. Anderson
Gail C. Anderson is a Java Champion, Oracle Groundbreaker
Ambassador, and past member of the NetBeans Dream
Team. She is director of research and founding member
of the Anderson Software Group, a leading provider of train‐
ing courses in Java, JavaFX, Python, Go, Modern C++,

and other programming languages. Gail enjoys researching and writing
about leading-edge Java technologies. Her current passion includes JavaFX
with GraalVM for cross-platform mobile applications. She is the coauthor
of eight textbooks on software programming. Most recently, she is a contri‐
buting author to The Definitive Guide to Modern Java Clients with JavaFX:
Cross-Platform Mobile and Cloud Development (Apress). Gail has presented
at various Java conferences and JUGS including Devoxx, Devnexus, JCrete,
and Oracle Code/JavaOne worldwide. Twitter: @gail_asgteach. Website:
asgteach.com.

Learn to Use New Java Features, page 112

Dr. Gail Ollis
Dr. Gail Ollis has been programming ever since she learned
BASIC on the school’s one computer in the math storeroom.
Many programming languages later, her career has spanned
professional software development, research into the psy‐
chology of software development, and lecturing to under‐

graduate and master’s students on programming and cyberpsychology. The
continuous thread throughout this is her passion to help people do program‐
ming better across a wide range of experience, from tutoring in computer
science and coaching early career developers, to conducting industry-
relevant academic research to develop practical support for cybersecurity in
professional software development.

Don’t hIDE Your Tools, page 39

Heather VanCura
Heather VanCura is the director and chairperson of the
Java Community Process (JCP) program. In her role she
is responsible for leadership of the community. She also
serves as an international speaker, mentor, and leader of hack
days. VanCura oversees the work of the JCP Executive

Committee, the JCP.org website, JSR management, community building,

Contributors 221

https://asgteach.com/
http://JCP.org

events, communications, and growth of the membership. She is also a
contributor and leader of the community-driven user group adoption
programs. She is the spec lead for JSRs as part of the ongoing JCP.Next effort
to evolve the JCP program itself. Heather is based in the Bay Area of Califor‐
nia, is passionate about Java and developer communities, and enjoys trying
new sports and fitness activities in her free time. You can find her on Twitter:
@heathervc.

What Is the JCP Program and How to Participate, page 200

Dr. Heinz M. Kabutz
Dr. Heinz M. Kabutz is the author of the mildly entertaining
and somewhat useful #Java Specialists’ Newsletter, which can
be found at javaspecialists.eu. He can be reached via email at
heinz@javaspecialists.eu.

Read OpenJDK Daily, page 144

Holly Cummins
Holly Cummins is an IBMer and leads the developer commu‐
nity in the IBM Garage. As part of the Garage, Holly uses
technology to enable innovation for clients across a range
of industries, from banking to catering to retail to NGOs.
She has led projects to count fish using AI, help a blind

athlete run ultramarathons in the desert solo, improve health care for the
elderly, and change how city parking works. Holly is also an Oracle Java
Champion, IBM Q Ambassador, and JavaOne Rock Star. Before joining the
IBM Garage, she was delivery lead for the WebSphere Liberty Profile (now
Open Liberty). Holly coauthored Manning’s Enterprise OSGi in Action and is
still happy to explain why OSGi is great. Before joining IBM, Holly comple‐
ted a DPhil in quantum computation. Holly is organized with her woolly
scarves, and hasn’t lost one yet—but she regularly loses her winter coat
(brrr).

Garbage Collection Is Your Friend, page 60
Java Should Feel Fun, page 87

Contributors222

https://www.javaspecialists.eu/
mailto:heinz@javaspecialists.eu

Ian F. Darwin
Ian F. Darwin has worked in the computer field for ages,
on systems of almost every size, shape, and OS. He codes
in multiple languages including Java, Python, Dart/Flutter,
and shell scripting, and has made open source contributions
to OpenBSD, Linux, and other projects. He’s worked at

Toronto’s University Health Network, where he built the first Android
version of Medly, a lifesaving mHealth app. Best known for the Java Cook‐
book and the Android Cookbook (O’Reilly), he’s written and taught Unix and
Java courses for Learning Tree, and an undergrad course on Unix and C for
the University of Toronto. Ian also writes on travel, electric cars, medieval
literature, and any other “smoother pebble or prettier shell than ordinary”
that he trips over at the seashore. Find him at darwinsys.com or on Twitter as
@Ian_Darwin.

Think Outside the Java Sandbox, page 171

Ixchel Ruiz
Ixchel Ruiz has developed software applications and tools
since 2000. Her research interests include Java, dynamic
languages, client-side technologies, and testing. She is a
Java Champion, Groundbreaker Ambassador, Hackergarten
enthusiast, open source advocate, JUG leader, public speaker,

and mentor.

Build Diverse Teams, page 19

James Elliot
James Elliott is a senior software engineer at Singlewire in
Madison, Wisconsin, with 30 years professional experience as
a systems developer. Loving everything from 6502 assembler
through Java, he’s delighted to find himself working in
Clojure today, both at work and in his open source side

projects as Deep Symmetry, occasionally DJing, and producing electronic
music shows with his partner, Chris. James has written and coauthored sev‐
eral books and updated editions for O’Reilly and enjoys mentoring new gen‐
erations of developers in the ever-changing (yet fundamentally timeless)
world of software.

Augment Javadoc with AsciiDoc, page 5
Rediscover the JVM Through Clojure, page 150

Contributors 223

http://shop.oreilly.com/product/0636920304371.do
http://shop.oreilly.com/product/0636920304371.do
http://shop.oreilly.com/product/0636920038092.do
https://www.darwinsys.com/

Jannah Patchay
Jannah Patchay is an industry-recognized subject matter
expert and consultant in the financial markets sector, special‐
izing in financial markets innovation and in helping firms
define, develop, and execute their commercial strategies in a
highly regulated environment. Her particular passion is for

market structure—the participants in financial markets, how they interact,
and the consequences of the ways in which they interact—and for finding
creative solutions to the challenges around access to markets and liquidity.
This encompasses both traditional financial markets and asset classes, and
the emerging field of digital asset markets. Jannah is also a director and
regulatory advocacy ambassador for the London Blockchain Foundation,
and she writes on financial and technology innovation topics for Best Execu‐
tion magazine. Jannah has a BSc in mathematics and computer science from
the University of Cape Town, and an LLM in international banking and
finance law from the University of Liverpool.

The Three Traits of Really, Really Good Developers, page 177

Jeanne Boyarsky
Jeanne Boyarsky is a Java Champion and lives in New York
City. She has written five books about Java certification.
Jeanne has been paid to do Java for 17 years. She volunteers
at coderanch.com and with a FIRST robotics team. Jeanne
regularly speaks at conferences and is a Distinguished Toast‐

master, which involves giving over 50 speeches.

Break Problems and Tasks into Small Chunks, page 17
It’s Done, But…, page 79
Learn Java Idioms and Cache in Your Brain, page 105

Jenn Strater
Jenn Strater is a longtime Groovy community member and
manager of the Groovy Community slack. She has contrib‐
uted to various open source projects including CodeNarc,
Gradle, Groovy, and Spring REST Docs. As a conference
speaker, Jenn has presented at events such as Devoxx

Belgium, the Grace Hopper Celebration of Women in Computing, Spring‐
One Platform, and the O’Reilly Velocity Conference. In 2013, she founded
the organization GR8Ladies (now GR8DI) through which she mentors

Contributors224

https://coderanch.com/

students and junior developers. She is a graduate of Hamilton College in
Clinton, NY, and was a Fulbright grant recipient in 2016-2017. She currently
resides in the Twin Cities.

Builds Don’t Have To Be Slow and Unreliable, page 21
Only Build the Parts That Change and Reuse the Rest, page 131
Open Source Projects Aren’t Magic, page 133

Jennifer Reif
Jennifer Reif is an avid developer and problem-solver. She
has contributed to projects for both developer communities
and large enterprises to organize and make sense of wide‐
spread data assets and leverage them for maximum value. She
has worked with a variety of commercial and open source

tools and enjoys learning new technologies, sometimes on a daily basis!
Learning and writing code are core parts of her daily activities, and she
enjoys creating content to share with others. Frequently, her content includes
speaking at conferences and developer-focused events, as well as writing. Her
passions are finding ways to organize chaos and delivering software more
effectively. Other passions include her cats, traveling with family, hiking,
reading, baking, and horseback riding.

In the Language Wars, Java Holds Its Own, page 73

Jessica Kerr
Jessica Kerr is a symmathecist, in the medium of code. She
believes in learning systems made of learning parts: enthusi‐
astic people and evolving software. In 20 years of professional
software development, she has worked in languages from
Java to Scala and Clojure, from Ruby to Elixir and Elm, from

Bash to TypeScript and PowerShell. In her years as a conference keynoter
and speaker, she has talked about all of these, plus the deeper work of soft‐
ware development. She finds inspiration in resilience engineering, systems
thinking, and art. She loves helping developers automate the boring bits of
our work and express more creativity in the rest. Find her learning out loud
on Twitter (@jessitron), live coding on Twitch (jessitronica), writing at
blog.jessitron.com, and raising two new unpredictable people in her home in
St. Louis, MO.

From Puzzles to Products, page 56

Contributors 225

https://blog.jessitron.com/

Josh Long
Josh Long (@starbuxman) is an engineer with decades of
experience writing code. He’s also the first Spring Developer
Advocate, a Java Champion, an author of books (including
O’Reilly’s Cloud Native Java: Designing Resilient Systems with
Spring Boot, Spring Cloud, and Cloud Foundry and the

self-published Reactive Spring) and numerous best-selling video trainings
(including Building Microservices with Spring Boot Livelessons with Spring
Boot cocreator Phil Webb). Josh is a frequent face at conferences, having
spoken in hundreds of cities around the world, on every continent (except
Antarctica). Josh loves to write code. He’s an open source contributor (Spring
Framework, Spring Boot, Spring Integration, Spring Cloud, Activiti, Vaadin,
MyBatis, etc.), a podcaster (A Bootiful Podcast) and a YouTuber (Spring Tips).

Production Is the Happiest Place on Earth, page 140

Ken Kousen
Ken Kousen is a Java Champion, Oracle Groundbreaker
Ambassador, Java RockStar, and Grails Rock Star. He is the
author of the O’Reilly books Kotlin Cookbook, Modern Java
Recipes, and Gradle Recipes for Android, and the Manning
book Making Java Groovy, as well as several video courses

on the O’Reilly Learning Platform. He is a regular presenter on the No Fluff
Just Stuff conference tour, and has spoken at conferences all over the world.
Through his company, Kousen IT, Inc., he has taught software development
to thousands of students and working professionals.

Make Your Java Groovier, page 121

Kenny Bastani
Kenny Bastani is a passionate technology evangelist and an
open source software advocate in Silicon Valley. As an enter‐
prise software consultant, he has applied a diverse set of skills
needed for projects requiring a full-stack web developer in
Agile mode. As a passionate blogger and open source con‐

tributor, Kenny engages a community of passionate developers who are look‐
ing to take advantage of newer graph processing techniques to analyze data.

Trade-Offs in a Microservices Architecture, page 179

Contributors226

http://bit.ly/spring-tips-playlist

Kevin Wittek
Kevin Wittek is a Testcontainers co-maintainer and a
Testcontainers-Spock author who is passionate about FLOSS
and Linux. He received the Oracle Groundbreaker Ambassa‐
dor award for his contributions to the open source commu‐
nity. Kevin is a Software Craftsman and testing fan. He fell

in love with TDD because of Spock. Kevin believes in Extreme Programming
as one of the best Agile methodologies. He likes to write MATLAB programs
to support his wife in performing behavioral science experiments with
pigeons. Kevin plays the electric guitar and is a musician in his second life.
After many years working in the industry as an engineer, Kevin is now doing
his PhD at RWTH Aachen on the topic of verification of Smart Contracts
and is leading the Blockchain Research Lab at the Institute for Internet
Security in Gelsenkirchen at the Westphalian University of Applied Sciences.

Unlocking the Hidden Potential of Integration Testing Using Containers, page
183

Kevlin Henney
Kevlin Henney (@KevlinHenney) is an independent consul‐
tant, trainer, coder, and writer. His development interests are
in programming, languages, and practice, helping individu‐
als, teams, and organizations to get better at these. He has a
deep love of programming and languages, which he is deligh‐

ted to have found has also worked out as a profession for over three decades.
Kevlin has given keynotes, tutorials, and workshops at hundreds of conferen‐
ces and meetups around the world. He has been a columnist for various
magazines, journals, and websites, a contributor to open and closed-source
software, and a member of more groups, organizations, and committees than
is probably healthy (it has been said that “a committee is a cul-de-sac down
which ideas are lured and then quietly strangled”). He is coauthor of A Pat‐
tern Language for Distributed Computing and On Patterns and Pattern Lan‐
guages, two volumes in the Pattern-Oriented Software Architecture series
(Wiley), and editor of 97 Things Every Programmer Should Know (O’Reilly).

Name the Date, page 127
Program with GUTs, page 142
Uncheck Your Exceptions, page 181

Contributors 227

http://shop.oreilly.com/product/9780596809492.do

Kirk Pepperdine
Kirk Pepperdine has been performance-tuning Java applica‐
tions for more than 20 years. He is the author of the original
Java Performance Tuning Workshop. In 2006, Kirk was
named a Java Champion for his thought leadership in the
Java performance space. He speaks frequently at user groups

and conferences and has been named a JavaOne Rockstar numerous times.
Kirk continues to be an ardent supporter of the Java community as the
cofounder of JCrete, a Java unconference that has been used as a template for
a number of other unconferences in Europe, Asia, and North America. In
2019 Kirk’s start-up, jClarity, was acquired by Microsoft, where he is now
employed as a principal engineer.

Hey Fred, Can You Pass Me the HashMap?, page 64

Liz Keogh
Liz Keogh is a Lean and Agile consultant based in London.
She is a well-known blogger and international speaker, a core
member of the BDD community, and a passionate advocate
of the Cynefin framework and its ability to change mindsets.
She has a strong technical background with 20 years of expe‐

rience in delivering value and coaching others to deliver, from small start-
ups to global enterprises. Most of her work now focuses on Lean, Agile, and
organizational transformations, and the use of transparency, positive lan‐
guage, well-formed outcomes, and safe-to-fail experiments in making change
innovative, easy, and fun.

Feedback Loops, page 48

Maciej Walkowiak
Maciej Walkowiak is an independent software consultant. He
helps companies take architectural decisions as well as
designing and developing systems based primarily on Spring
stack. An active Spring community member, he has been a
contributor to several Spring projects. In recent years, he has

become more and more passionate about teaching and sharing knowledge.
Maciej runs a YouTube channel (Spring Academy), speaks at conferences,
and spends too much time on Twitter.

“Full-Stack Developer” Is a Mindset, page 58

Contributors228

Mala Gupta
Mala Gupta is a developer advocate at JetBrains and founder
and lead mentor at eJavaGuru.com, coaching Java Certifica‐
tions aspirants to succeed. A Java Champion, she promotes
learning and usage of the Java technologies at various
platforms through her Java books, courses, lectures, and

speaking engagements. She is a firm believer in the equality of responsibili‐
ties and opportunities for all. She has over 19 years of experience in the
software industry as an author, speaker, mentor, consultant, technology
leader, and developer. As an author with Manning Publications, her Java
titles books are top-rated for Oracle Certification around the globe. A fre‐
quent speaker at industry conferences, she co-leads the Java User Group-
Delhi chapter. A strong supporter of Women in Technology, she drives
initiatives of Women Who Code, Delhi Chapter, to augment the participa‐
tion of women in tech.

Java Certifications: Touchstone in Technology, page 81

Marco Beelen
Marco Beelen is a software crafter, with a passion for main‐
tainable and readable code. Marco has been working as a
software developer since 2005. Prior to that Marco was a
system administrator, which instilled in him the importance
of observability of software systems. Marco has been the

host of various Code Retreats and meetups, including a miniseries on
test-driven development. Marco is married and the father of two children.
He prefers “Drink your own champagne” over “Eat your own dog food”
(especially since he likes to drink champagne). He can be found online as
@mcbeelen.

Package-by-Feature with the Default Access Modifier, page 138

María Arias de Reyna
María Arias de Reyna is a Java senior software engineer,
geospatial enthusiast, and open source advocate. She has been
a community leader and core maintainer of several free and
open source projects since 2004. María is currently working
at Red Hat, where she focuses on Middleware and maintains

Apache Camel and Syndesis. She is an experienced keynoter and speaker.
Between 2017 and 2019, María was the elected president of OSGeo, the Open

Contributors 229

http://www.ejavaguru.com/

Source Geospatial Foundation, which serves as an umbrella for many of the
most relevant geospatial software. She is also a feminist and a Women In
Technology activist.

The Young, the Old, and the Garbage, page 209

Mario Fusco
Mario Fusco is a principal software engineer at Red Hat,
working as Drools project lead. He has huge experience as
a Java developer, having been involved in (and often leading)
many enterprise-level projects in several industries ranging
from media companies to the financial sector. His interests

include functional programming and Domain-Specific Languages. By
leveraging these two passions, he created the open source library lambdaj
with the purposes of providing an internal Java DSL for manipulating collec‐
tions and allowing a bit of functional programming in Java. He is also a Java
Champion, the JUG Milano coordinator, a frequent speaker, and the coau‐
thor of Modern Java in Action published by Manning.

Concurrency on the JVM, page 29
Let’s Make a Contract: The Art of Designing a Java API, page 117

Marit van Dijk
Marit van Dijk has almost 20 years of experience in software
development in different roles and companies. She loves
building awesome software with amazing people, and is
an open source core contributor to Cucumber, as well as an
incidental contributor to other projects. She enjoys learning

new things, as well as sharing knowledge on programming, test automation,
Cucumber/BDD, and software engineering. She speaks at international
conferences, in webinars, and on podcasts, and blogs at medium.com/
@mlvandijk. Marit is currently employed as a software engineer at bol.com.

Use Testing to Develop Better Software Faster, page 193

Contributors230

https://medium.com/@mlvandijk
https://medium.com/@mlvandijk
https://www.bol.com/nl/

Mark Richards
Mark Richards is an experienced, hands-on software archi‐
tect involved in the architecture, design, and implementation
of microservices architectures, event-driven architectures,
and distributed systems. He has been in the software industry
since 1983 and has a master’s degree in computer science.

Mark is the founder of DeveloperToArchitect.com, a free website devoted to
helping developers in the journey to software architect. He is also an author
and conference speaker, having spoken at hundreds of conferences world‐
wide and written numerous books and videos on microservices and software
architecture, including his latest book, Fundamentals of Software Architecture
(O’Reilly).

Use Custom Identity Annotations Liberally, page 190

Michael Hunger
Michael Hunger has been passionate about software develop‐
ment for more than 35 years, 25 of which have been within
the Java ecosystem. For the last 10 years, he has been working
on the open source Neo4j graph database, filling many roles,
most recently leading the Neo4j Labs efforts. As caretaker of

the Neo4j community and ecosystem, he especially loves to work with graph-
related projects, users, and contributors. As a developer, Michael enjoys
many aspects of programming languages, learning new things every day, par‐
ticipating in exciting and ambitious open source projects, and contributing
to and writing software-related books and articles. Michael has helped orga‐
nize conferences and has spoken at many more. His efforts got him accepted
to the Java Champions program. Michael helps kids learn to program by
running weekly girls-only coding classes at local schools.

Benchmarking Is Hard—JMH Helps, page 11
Firing on All Engines, page 50

Mike Dunn
Mike Dunn is the principal mobile engineer and Android
technical lead at O’Reilly Media. He is a recognized member
of the AOSP community and a dedicated contributor to
the Android open source ecosystem. He is the original
creator of the popular and longstanding tiling image library,

TileView. Mike is also the coauthor of Native Mobile Development: A Cross-

Contributors 231

http://www.developertoarchitect.com/
http://shop.oreilly.com/product/0636920259169.do

Reference for Android and iOS Native Development with Shaun Lewis
(O’Reilly), and the upcoming Programming Android with Kotlin: Java to Kot‐
lin by Example with Pierre-Olivier Laurence (O’Reilly). He’s contributed
to Google’s Closure JavaScript library, and provided open source support
ranging from color management libraries to fast-seeking, block-level encryp‐
tion with Google’s next-gen Android media player ExoPlayer, to a tightly
compact PHP routing engine. Mike has been programming professionally
for nearly 20 years, and is continuing to study computer science in the mas‐
ter’s program at the Georgia Institute of Technology. You can find several
levels of variously antiquated and aging-into-obsolescence code snippets,
open source and client projects, as well as his blog, at Mike’s home page.

Kotlin Is a Thing, page 102

Monica Beckwith
Monica Beckwith is a Java Champion, First Lego League
Coach, and coauthor of Java Performance Companion
(Addison-Wesley). She is the sole author of the upcoming
Java 11 LTS+—A Performance Perspective. She is passionate
about JVM performance at Microsoft.

Java Programming from a JVM Performance Perspective, page 85

Nat Pryce
Nat Pryce has been programming for <coughty-cough>
years, many of those using Java and/or the JVM. He has
worked as consulting developer and architect in a variety
of industries, and delivered business-critical systems that
range in scale from embedded consumer devices to large

compute farms supporting global business. He is a regular conference
speaker and one of the authors of Growing Object-Oriented Software, Guided
by Tests (Addison-Wesley), a popular book on object-oriented design and
test-driven development.

The Unreasonable Effectiveness of Fuzz Testing, page 185

Contributors232

http://shop.oreilly.com/product/0636920259169.do
http://moagrius.com

Nicolai Parlog
Nicolai Parlog (aka nipafx) is a Java Champion with a passion
for learning and sharing. He does that in blog posts, articles,
newsletters, and books; in tweets, repos, videos, and streams;
at conferences and in-house trainings—more on all of that on
nipafx.dev. That aside, he’s best known for his haircut.

Kinds of Comments, page 95
Optional Is a Lawbreaking Monad but a Good Type, page 135
Take Care of Your Module Declarations, page 159

Nikhil Nanivadekar
Nikhil Nanivadekar is a committer and project lead for the
open source Eclipse Collections framework. He has been
working in the financial sector as a Java developer since 2012.
Prior to starting his career as a software developer, Nikhil
received his bachelor’s degree in mechanical engineering

from the University of Pune, India, and a master’s degree in mechanical
engineering with a specialization in robotics from the University of Utah.
Nikhil was designated as a Java Champion in 2018. He is a regular on the
local and international speaker circuit. He is also a strong advocate for child‐
ren’s education and mentorship, and hosts several workshops teaching robot‐
ics to kids at events like JCrete4Kids, JavaOne4Kids, OracleCodeOne4Kids,
and Devoxx4Kids. Nikhil enjoys cooking with his family, hiking, skiing,
motorcycle riding, and working with animal rescue and relief organizations.

Know Your Collections, page 100

Patricia Aas
Patricia Aas is an experienced C++ programmer who started
off as a Java programmer. She has worked on two browsers,
Opera and Vivaldi, and built embedded telepresence systems
at Cisco. An extremely curious person, she’s always excited to
learn new things. Today she works as a consultant and trainer

for TurtleSec, a company she cofounded, where she specializes in application
security.

Inline Thinking, page 75

Contributors 233

http://nipafx.dev

Paul W. Homer
Paul W. Homer has been a professional software developer
for the last 30 years. He has built commercial products
for finance, marketing, printing, and health care and has
spent the last 15 years blogging about it. At some point or
another, he’s dabbled in just about every aspect of software

development as well as often being the lead programmer. His blog The
Programmer’s Paradox is an attempt to synthesize some sanity from these
diverse experiences. It discusses the larger patterns he’s encountered while
moving between different organizations. He prefers backend algorithmic
coding but often takes pleasure in trying to make domain interfaces fully
dynamic. When he is not buried in complex code, he tries to spend his time
talking to developers and entrepreneurs about the foundations of software
development.

The Necessity of Industrial-Strength Technologies, page 129

Peter Hilton
Peter Hilton is a product manager, developer, writer, speaker,
trainer, and musician. His professional interests are product
management, workflow automation, software functional
design, Agile software development methods, and software
maintainability and documentation. Peter consults for

software companies and development teams, and delivers the occasional pre‐
sentation and workshop. Peter has previously presented at numerous Euro‐
pean developer conferences, and he coauthored the book Play for Scala
(Manning Publications). He has taught Fast Track to Play with Scala and,
more recently, his own training course, How to Write Maintainable Code.

Get Better at Naming Things, page 62
Refactor Boolean Values to Enumerations, page 152
Write One-Sentence Documentation Comments, page 204

Rafael Benevides
Rafael Benevides is a cloud native developer advocate at
Oracle. With many years of experience in several fields of
the IT industry, he helps developers and companies all over
the world to be more effective in software development.
Rafael considers himself a problem-solver who has a big love

for sharing. He is a member of Apache DeltaSpike PMC, a Duke’s Choice

Contributors234

Award project winner, and is a speaker at conferences like JavaOne, Devoxx,
TDC, Devnexus, and many others. He is on Twitter as @rafabene.

Really Looking Under the Hood, page 146

Rod Hilton
Rod Hilton is a software engineer working with Scala and
Java at Twitter. He blogs about software, technology, and
sometimes Star Wars at nomachetejuggling.com. You can find
him on Twitter as @rodhilton.

There Are Great Tools in Your bin/ Directory, page 169

Dr. Russel Winder
Dr. Russel Winder was first a theoretical high energy particle
physicist and then retrained himself as a Unix systems
programmer. This led to him becoming a computer science
academic (University College London, then King’s College
London) interested in programming; programming lan‐

guages, tools, and environments; concurrency; parallelism; build; human–
computer interaction; and sociotechnical systems. Having been Professor
of Computing Science and head of the department of computer science at
King’s College London, he left academia to dabble with start-ups as CTO
or CEO. After this he was an independent consultant, analyst, author,
trainer, and expert witness for a decade before retiring in 2016. He is still
very interested in programming; programming languages, tools, and envi‐
ronments; concurrency; parallelism; and build—it keeps him active during
retirement.

Declarative Expression Is the Path to Parallelism, page 33
The JVM Is a Multiparadigm Platform: Use This to Improve Your Program‐
ming, page 91
Threads Are Infrastructure; Treat Them as Such, page 175

Contributors 235

https://www.nomachetejuggling.com/

Sam Hepburn
Sam Hepburn has spent the past nine years in London
becoming a well-known face of the tech start-up scene.
She has worked with a variety of organizations within
London and now works further afield in the US, UK, and
Poland, building some of the largest tech communities in the

world. Her main aim is to create environments for individuals to feel wel‐
come and for communities to flourish. She’s currently leading the commu‐
nity team at Snyk.io helping developers adopt security into their
development workflows. In her personal time, she is the cofounder of Circle,
a network for advancing women’s careers in our new world of work, and the
host of Busy Being Human, a podcast covering the unedited, honest, human
story behind how our favorite humans became who they are.

Using the Power of Community to Enhance Your Career, page 198

Sander Mak
Sander Mak is director of technology at Picnic, a Dutch
online grocery scale-up, building Java-based systems at
scale. He also is a Java Champion and author of the O’Reilly
book Java 9 Modularity. As an avid conference speaker, blog‐
ger, and Pluralsight author, Sander loves sharing knowledge.

The Rebirth of Java, page 148

Sebastiano Poggi
Sebastiano Poggi, emerging from the foggy plains of northern
Italy, cut his teeth working at an early days smartwatch start-
up. He moved with his curls to London to help on big clients’
Android apps at renowned agencies AKQA and Novoda. A
Google Developer Expert since 2014, he frequently speaks at

conferences and sporadically writes blog articles. Being back in Italy, these
days he’s working for JetBrains on both a tooling product and an Android
app. He’s got a knack for good design, typography, and photography, and has
a past as a videomaker. Sebastiano can often be found expressing unreques‐
ted opinions on twitter.com/seebrock3r.

Interop with Kotlin, page 77

Contributors236

https://snyk.io/
https://twitter.com/seebrock3r?lang=en

Steve Freeman
Steve Freeman, coauthor of Growing Object-Oriented Soft‐
ware, Guided by Tests (Addison-Wesley), was a pioneer of
Agile software development in the UK. His experience
includes working for consultancies and software vendors, as
an independent consultant and trainer, and prototyping for

major research laboratories. Steve has a PhD from Cambridge University.
Currently, he is a distinguished consultant with Zuhlke Engineering Ltd.,
based in the UK. Steve’s main pastime is trying not to buy any more
trombones.

Don’t Vary Your Variables, page 41
Minimal Constructors, page 124
Simple Value Objects, page 156

Thomas Ronzon
Thomas Ronzon has focused on the modernization of
business-critical applications for more than 20 years. In
addition, he publishes articles and speaks at conferences.
Thomas dives passionately, gladly, and deeply into technical
aspects, with professionalism. With empathy, experience,

and concrete proposals for solutions, he helps build the bridge between busi‐
ness and IT.

How to Crash Your JVM, page 69

Trisha Gee
Trisha Gee has developed Java applications for a range of
industries, including finance, manufacturing, software, and
nonprofit, for companies of all sizes. She has expertise in Java
high-performance systems and is passionate about enabling
developer productivity. Trisha is a developer advocate for Jet‐

Brains, a leader of the Sevilla Java User Group, and a Java Champion. She
believes healthy communities and sharing ideas help us to learn from mis‐
takes and build on successes.

Keep Your Finger on the Pulse, page 93
Learn Your IDE to Reduce Cognitive Load, page 115
Technical Interviewing Is a Skill Worth Developing, page 165

Contributors 237

Uberto Barbini
Uberto Barbini is a polyglot programmer with more than 20
years of experience designing and building successful soft‐
ware products in many industries. He discovered that he
loves programming when he created his first video game on
the ZX Spectrum, and he is still very passionate about how to

write the best code to deliver value to the business, not only once but at a
regular pace. When not coding, Uberto loves public speaking, writing, and
teaching. He’s currently writing a book about pragmatic functional Kotlin.

Learn to Love Your Legacy Code, page 110

Contributors238

Index

A
abstractions, 33

missing, 65
using in test code, 197

acceptance tests, 48
access modifiers, 139
actor model, 29
Akka, 29
algorithms, 91
aliasing, 156
allocation size and rate, 86
analytics and data, using to test software,

49
Android, 77, 174

using Kotlin in development, 102
annotations

nullability, 77
using custom identity annotations, 190

anticorruption layer, 10
Apache Groovy (see Groovy)
APIs

designing, 117
documentation with Javadoc, 5

application frameworks, 1
application servers, 52
approval testing, 3
architectural quality, benefits of codifying

and asserting, 14

ArchUnit, 14, 191
arrange–act–assert (tests), 143
AsciiDoc

benefits of, 5
origin and evolution of, 6

aspect-oriented programming (AOP), 190
AsyncGetCallTrace, 51
auditability, improving with continuous

delivery, 72
automated testing, 17, 193
autonomy, 141
@Autowired annotation, 126
availability, 179

B
backend developers, 58
backward compatibility, 57
Bazel, 131

remote build caching, 132
benchmarking

characterizing and validating bench‐
marks, 85

difficulty of on JVM, 11
measuring impact of presizing collec‐

tions, 11
better software, 35
big data frameworks, 97
bin/ directory, 169

239

block comments, 96
boilerplate, 45, 87, 103, 157, 161
Boolean values, refactoring to enumera‐

tions, 152
browsers, backward compatibility of, 53
bugs in proportion to lines of code, 145
build tool runtime, standardized version

of, 23
builds

improving efficiency with build cach‐
ing, 131

reproducibility and maintainability
wih standardized tools, 23

running acceptance tests in, 48
slow and unreliable, fixing, 21

business logic frameworks, 2
byte code instrumentation, 50
bytecode

as target platform, languages making
use of, 92

saving bytes in early Java, 83
verification in the JVM, disabling, 70

C
C, 172
C#, 181
caching, 75

build caching, 131
CAP theorem, 179
certifications in Java, 81

why I hold no value in, 202
character encodings, 146
checked exceptions, 181
CI/CD

continuous delivery (CD), 140
improving repeatability and auditabil‐

ity with continuous delivery, 71
running wrappers on pipeline, 24

class files, modifying in the filesystem, 69
class libraries in Java, 1
classes

naming, 63
representing value objects, 156
thinking carefully about responsibili‐

ties of, 163
unnecessary, 44

Clojure, 171
built-in software transactional mem‐

ory, 30
rediscovering the JVM through, 150

cloud-native applications, 146
code

making simple and readable, 119
reading OpenJDK daily, 144
writing readable code, 206

code change vs. system change, 57
code katas, 107
code restorers, 28
collections

importance of, 100
presizing, measuring impact of, 11

command line, 39
comments, 95

block comments, 96
commenting code when necessary, 119
in module declarations, 159
Javadoc comments, 95
line comments, 96
using identity notations instead of, 191
writing one sentence documentation

comments, 204
commits, frequent, 17
common Java interview questions, 166
Communicating Sequential Processes

(CSP), 176
communication and clarity, 79
community

JCP, and how to participate, 200
using to enhance your career, 198

compilation, build tool caching of, 131
compilers

Index240

dynamic, optimizations performed by,
85

gotchas in interview questions, 165
components, events between, 46
composite keys, 65
computeStatData method, 114
concurrency

concurrent and parallel computation,
176

on the JVM, 29
mixing concurrency models, problems

with, 32
working understanding of, 165

concurrent garbage collectors, 61
conditions, 105
consistency, 179
constructors, minimal, 124
containers

benefits of, 7
container support in the JVM, 8
danger in containerizing legacy appli‐

cations, 7
using to unlock potential of integration

testing, 183
continuous integration (CI) builds, 21
contract testing, tools for, 193
contributors, 211-238
cooperation as highly valued trait, 19
Coordinated Universal Time (UTC), 37
copying, garbage collection by, 61
coroutines, 104

thinking in, 173
value in coding for Android, 174

correctness, obsessing over, vs. optimizing
for change, 56

CountDownLatch, 31
limitations of, 32

coverage, improving unit tests, 188
curiosity, 177
CyclicBarrier, 32

D
Dart, 171
data engineers, 97
data migrations, 57
data structures, interview questions about,

166
data types

nondenotable, 90
nulls and, 89

databases, 58
date and time

java.util.Date and java.time, 127
problems with, 37

daylight saving time (DST), 37
debugging

bugs caused by behavior issues, 9
unexpected behaviors or bugs, dealing

with, 133
declarative programming, 33

declarative SQL queries, 45
definition of done, 79
delivering better software, faster, 35
dependencies

heavy reliance on third-party libraries,
161

managing with ArchUnit, 14
strategy for, 162
updating, 162
vulnerable, 161

dependency injection frameworks, caution
with, 126

deployment
artifact format, 26
larger Java deployables, disadvantage

of, 74
progressive, 57

designing change, 57
Developer Productivity Engineering, 22
developers, really good, traits of, 177
DevOps engineers, 58
disk space, filling up, 69

Index 241

diversity on development teams, 19
DocBook XML, 5
Docker containers

danger in containerizing legacy appli‐
cations, 7

Linux Docker container support in
JDK 8, 7

documentation
creating with AsciiDoc, 6
one-sentence documentation com‐

ments, 204
domain models, primitive obsession in,

153
domain-driven design, ubiquitous vocabu‐

lary, 62
domain-specific languages (DSLs), 45
done, definition of, 79

E
Eden, 209
Einstein (developer persona), 1
Elvis (developer persona), 1
empathy and imagination, 177
encapsulation

importance of, 9
using in test code, 195

enumerations, refactoring Boolean values
to, 152

environment your software is running in,
experimenting with, 69

events between Java components, 46
implementing, 47

exceptions, 181
checked, 181
CountDownLatch and, 32
NullPointerException, 9, 66
parameter types, 90
unchecked, 182

ExecutorService, 31

F
failing tests, 194
failures, testing against, 55
faster delivery of better software, 36
fat JARs, case against, 25
feature flags, 57
feedback loops, 48
file I/O, idiom for, 105
files, opening as many as possible, 69
filters, 97
final fields in value objects, 157
final variables, 41, 145
flaky tests, 21
flame graphs, 50
flatMap, 136

importance of, 97
Flutter, 171
Fork/Join framework, 176
fractions, adding, as simple coding kata,

163
FrameMaker, 5
frameworks

age of, 1
embracing for production deliverables,

141
identity notation for classses from, 190
in web/JavaScript ecosystem, lack of

standardization in , 52
Java frameworks not coping well with

immutability, 10
Frege, 171
frontend developers, 58
frontend development, 58
frontends, building without frameworks,

53
full-stack deveopers, 58

mindset of, 59
fun with Java, 87
functional programming, 120

Java 8 lamdas and, 30
languages, 171

Index242

object-orientation integrated with, 92
using streams, 112

fuzz testing, 185

G
garbage collection

algorithms for, 146
JVM performance and, 85
references and, 210
strategies, 210
tasks of garbage collector, 209
unsung hero of Java, 60

generation-based fuzzers, 186
generational hypothesis, 61
getter methods, 112
getters and setters

imposing internal state through, 9
no need for in value objects, 156

given–when–then, 143
Go language, 172
golden master testing, 3

(see also approval testing)
Gradle, 131

checking for updates in dependencies,
162

incremental builds, 132
remote build caching, 132

Gradle Wrapper, 23
Groovy, 133

using with Java code, 121
GUTs (good unit tests), 142

H
hacking your system, 70
HashMaps, 64

implementation details in HashMap, 96
heap, 209

compaction by garbage collectors, 60
young generation and old generation

objects, 209

higher-order functions in declarative
expressions, 33, 91

HTTP protocol, 147

I
idioms (Java), 105
imagination, 177
immutability

final variables and, 41
for value types, 127
Java 8 lambdas promoting, 30
message, 30
of value objects, 157
using to prevent inconsistent state, 10

imperative and declarative thinking, 91
imperative programming, 33
implicit iteration, 91
inconsistent state, difficulty of debugging,

9
indentation in code, 119
industrial-strength technologies, necessity

of, 129
infrastructure as code, 23
inheritance, 9

using in test code, 196
initializing variables to null, avoiding, 66
@Inject annotation, 126
inline types, 76
Instant, 37
integrated development environments

(IDEs)
benefits and limitations of, 39
learning, importance of, 115
over-reliance on, 39
running wrappers on, 24
seeing beyond the IDE window, 70

integration testing, 183, 193
interfaces, large, breaking into smaller

pieces, 118
interoperability with Kotlin, 77
interviewing developers, 165

Index 243

issue trackers, 133

J
JARs, 74

fat, case against, 25
skinny, 25

Java
advantages of, 74
certifications in, 81, 202
class libraries, 1
design and background, 73
disadvantages of, 74
evolving nature of, 93
interoperability with Kotlin, 77
learning idioms, 105
learning to use new features, 112
making code simple and readable, 119
1990s design, 83
programming from JVM performance

perspective, 85
programming that is fun, 87
really looking under the hood, 146
rebirth of, 148
revolutionary changes in, 91
using Groovy with, 121

Java Memory Model, 29
java.time library, 37, 127
java.util.Date, 84, 127
javac, 39
Javadoc, 5

writing using AsciiDoc, 6
JavaFX bar chart, 113
javap, 169
JavaScript, 171
jconsole, 170
JCP (Java Community Process) Program

and how to participate, 200
jhat, 170
jinfo, 170
jmap, 169

JMH (Java Microbenchmarking Harness),
11
using JMH Maven archetype, 12

Joyce, Bruce, 1
JPA/Hibernate implementations, 147
jps, 169
jshell, 170, 172
JsonSlurper, 121
jstack, 170
JUnit testing framework, 3, 14
jvisualvm, 170
JVMs

adaptive JVM, demanding, 86
AsyncGetCallTrace feature, 51
concurrency on, 29
difficulty of benchmarking and

microbenchmarking on, 11
finding ways to crash the JVM, 69
GC strategies varying by implementa‐

tion, 61
graphical tools for connecting to/

running JVMs, 170
Java programming from JVM perfor‐

mance perspective, 85
JVM ergonomics, 7
multiparadigm JVM, using to improve

programming, 91
older, running inside Docker contain‐

ers, 7
parameters configured by JVM ergo‐

nomics, 8
profilers, 146
rediscovering the JVM through Clo‐

jure, 150

K
katas, 107
keys, composite, 65
kintsugi, 111
Kotlin, 92, 102-104, 171

coroutines, 104, 173

Index244

delegation in, 103
interoperability with, 77
property constructor pattern for mod‐

els, 102

L
lambda expressions, 91
lambdas, 30, 87, 112, 120, 146

Kotlin code blocks and, 174
LaTeX formats, use with AsciiDoc, 6
launching multiple concurrent tasks, 31
layer-based access rules, enforcing with

ArchUnit, 15
legacy code, 110
libraries, 1
line comments, 96
listeners

creating, 47
removing, 47

lists
List interface and implementations of,

100
LocalDateTime, 37
localizing variable scope, 43
locks, 175
long-term stability in development,

encouraging, 27
Long-Term Supported (LTS) Java versions,

149
looping, 105

M
magic type, using var as, 90
many-to-one relationships, 147
maps, 97

Map interface, 100
mark-and-sweep garbage collection, 61
markup formats (lightweight), 5
MathML formats, using wih AsciiDoc, 6
Maven, 131

checking for updates in dependencies,
162

project augmented by Wrapper files,
directory structure, 24

remote build caching, 132
SlimFast, 25
Takari, 24

Maven Wrapper, 23
memory

allocating as much memory as possible,
69

garbage collectors and memory alloca‐
tion/deallocation, 60

how Java handles memory, 209
overcoming shared memory limita‐

tions, 29
shared memory multithreading, 175

message flow between actors, implement‐
ing concurrency, 29

meta guiding in speed-reading, 155
method references, 91, 114
methods

default methods on interfaces, 91
meaningful names for, 119
naming, 63
responsibilities of, 163

microbenchmarking, 11
microservices, 141

characteristics of, 179
trade-offs with, 180

module declarations, 159
commenting, 159
reviewing, 160

monads, 135
Mort (developer persona), 1
multiparadigm languages, 91
multithreading

correct handling of state using JMH, 11
gotchas in interview questions, 165
limitations of, 29
shared memory multithreading, 175

Index 245

mutation testing, tool for, 193
mutation-based fuzzers, 186
mutexes, 175

N
naming

getting better at, 62
using meaningful names, 206

naming conventions
enforcing with ArchUnit, 15
following for APIs, 117

native code, writing, 70
Noda Time (.NET), 37
Node.js, 171
non-heap/perm (memory), 209
nondenotable types, 90
NoSQL databases, 58
noun phrases for class names, 63
nulls, 66

acceptable uses of, 67
avoiding initializing variables to null,

66
avoiding passing and receiving null

parameters, 67
avoiding returning null, 67
data types and, 89
never returning in APIs, 118
non-nullable types in Java, 77
Optional and, 137

O
object locality, 60
object-oriented langauges, 91
object-oriented principles, using in test

code, 195
object-relational mappers (ORMs), 44
objects

allocation size and rate, 86
garbage collection and, 61
naming, 63

observability, 57, 141

old generation, 209
one-to-many relationships, 147
open source projects, 133

contributions to, 134
OpenJDK, 144

supported builds for latest Java release,
149

Optional, 67, 117
as broken monad, 137
fulfilling monad definitions, 135
monad laws, 135

Oracle Corporation, professional certifica‐
tions in Java, 82, 202

ordered collections, 100
overengineering, avoiding, 120
overfitting tests, 143

P
package-by-feature with default access

modifier, 138
package-private access, 139
Page Object Model design pattern, 195
pair programming, 48, 120
parallelism

concurrency on he JVM, 29
declarative expression as path to, 33

parameters
null, avoiding passing and receiving, 67
type of multicatch parameter, 90

partition tolerance, 179
performance tests, tools for, 193
performance, improvement through effi‐

cient garbage collection, 60
Perl, 171
personalities within development teams,

20
phantom references, 210
polymorphism, 9

using in test code, 196
primitive types, 83

cache-friendly behaviors, 76

Index246

domain models suffering from primi‐
tive obsession, 153

problems, breaking into chunks, 17
process ID, finding and killing, 69
production environment, loving, 140
profilers (JVM), 146
profiling code, 50
profit, focus on, 27
programmatic documentation, identity

notations as, 191
programming languages

choosing right one to use JVM to best
effect, 92

learning others besides Java, 171
psychological safety, 20
puzzles to products, 56
Python, 171

Q
query fetch size, 147
questions often asked in interviewing

developers, 165

R
R, 172
RAM, high cost of reading from, 75
reactive programming, 30
readable and simple code, 119
readable code, writing, 206
reading code using speed-reading, 154
record syntax (Java 14), 114, 158
Red, Green, Refactor process in TDD, 167
refactoring, 168

techniques for understanding code,
207

reference types, 76
references, GC collection of, 210
relational constraints in SQL queries, 45
relational databases, 58
relationship names for entity pairs, 63
release cycles for Java, 112, 148

releases
frequent, reducing risk, 54
large, infrequent, increased risk with,

55
repeatability, improving with continuous

delivery, 71
REPL (read–eval–print loop), 150
REST APIs, 4
returning null, avoiding, 67
risk

defined, 54
greater risk with large, infrequent

releases, 55
Ruby, 171
Rust, 172

S
sampling by Java profilers, 50
Scala, 92, 171
scalable vector graphics (SVGs), genera‐

tion by profiler tools, 51
scope, localizing for variables, 42
separation of concerns, taking seriously,

163
serverless architectures, 1
servlets, 93
Set, 101
shared memory multithreading, 175
short-term focus in development, prob‐

lems with, 27
SlimFast (Maven plug-in), 25
snapshot testing, 3
sockets, opening as many as possible, 70
soft references, 210
software architectures, 179
sorted collections, 100
specifications for Java technologies, 200
speed-reading, refactoring toward, 154
SQL

embracing SQL thinking, 44

Index 247

enabling SQL output during develop‐
ment, 147

stack traces
autoinstrumenting, 88
flame graphs for, 50
jstack tool, 170
using JVM feature AsyncGetCallTrace,

51
standards

for Java technologies, 200
reliance on web standards, 52

state
correct handling in multithreading

using JMH, 11
difficulty of resolving bugs caused by

inconsistent state, 9
growth and complexity of, taming with

encapsulation, 9
stop-the-world garbage collectors, 61
strangler pattern, 111
streaming libraries, 97
streams, 105, 118, 120, 146

example with, 112
use for data parallel problems, 34

subvocalization, 154
survivors, 209
Swing, 93
synchronized statements, 175
system change, 57
System.exit, creating class at runtime that

calls, 70

T
Takari (Maven plug-in), 24
tasks, breaking into chunks, 17
TCP/IP networking, 146
teams, successful and diverse, building, 19
technical interviewing, learning skills in,

165
test automation, 193
test-driven development (TDD), 167

code properties of high quality soft‐
ware, 167

proess of (Red, Green, Refactor), 167
testing

advantages and limitations of, 55
effectiveness of fuzz testing, 185
tests making assertions about strings, 4
unlocking potential of integration test‐

ing using containers, 183
using coverage to improve unit tests,

188
using object-oriented principles in test

code, 195
using to develop better software faster,

193
testing frameworks, classic, 3
threads

code not monopolizing threads, 141
couroutines versus, 104
creating as many as possible, 69
treating as infrastructure, 175
using coroutines in place of, 173

three-tier architecture, business applica‐
tions, 138

Throwable class, 181
throws clause, 181
time, 37

problems with date and time in code,
37

TimeZone with UTC offsets and daylight
saving time rules, 37

tools
clearly defined set for each project, 23
great tools in bin/ directory, 169
understanding essential tools for Java

programmers, 39
touchstone, 81
traits of really good developers, 177
trust among team members, 20

Index248

U
ubiquitous vocabulatory, 62
unchecked exceptions, 182
underfitting tests, 143
undifferentiated heavy lifting, 141
unhandled checked exceptions, 181
unit of test (UoT), isolating, 86
unit testing frameworks

JUnit, 3
using with ArchUnit, 14

unit tests, 48
good unit tests (GUTs), 142
using coverage to improve, 188
using with katas, 107

unknown unknowns, testing and, 55
unordered collections, 100
unreliable builds, 21
Unsafe class, 70
unsorted collections, 100

V
value objects, simple, 156
varargs, 118
variables

local variables not marked as final in
OpenJDK, 145

meaningful names for, 119
variables, not varying, 41

assigning once, 41
localizing scope, 42

verbose code, avoiding, 120
verbosity of Java, 74, 87, 121
vocabulary, development in writing pro‐

grams, 64
vulnerabilities in dependencies, 161

W
weak references, 210
web development technologies, 58
web/JavaScript ecosystem, lack of stand‐

ardization in frameworks, 52
Windows, running Maven Wrapper goals

on, 24
WORA (write once, run anywhere) princi‐

ple, 73
wrappers, 23

Y
young generation, 209

Z
ZonedDateTime, 37

Index 249

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning
©

20
19

 O
’R

ei
lly

 M
ed

ia
, I

nc
. O

’R
ei

lly
 is

 a
 re

gi
st

er
ed

 tr
ad

em
ar

k
of

 O
’R

ei
lly

 M
ed

ia
, I

nc
. |

 17
5

https://learning.oreilly.com/home/

	Copyright
	Table of Contents
	Preface
	Chapter 1. All You Need Is Java
	Anders Norås

	Chapter 2. Approval Testing
	Emily Bache

	Chapter 3. Augment Javadoc with AsciiDoc
	James Elliott

	Chapter 4. Be Aware of Your Container Surroundings
	David Delabassee

	Chapter 5. Behavior Is “Easy”; State Is Hard
	Edson Yanaga

	Chapter 6. Benchmarking Is Hard—JMH Helps
	Michael Hunger

	Chapter 7. The Benefits of Codifying and Asserting Architectural Quality
	Daniel Bryant

	Chapter 8. Break Problems and Tasks into Small Chunks
	Jeanne Boyarsky

	Chapter 9. Build Diverse Teams
	Ixchel Ruiz

	Chapter 10. Builds Don’t Have To Be Slow and Unreliable
	Jenn Strater

	Chapter 11. “But It Works on My Machine!”
	Benjamin Muschko

	Chapter 12. The Case Against Fat JARs
	Daniel Bryant

	Chapter 13. The Code Restorer
	Abraham Marin-Perez

	Chapter 14. Concurrency on the JVM
	Mario Fusco

	Chapter 15. CountDownLatch—Friend or Foe?
	Alexey Soshin

	Chapter 16. Declarative Expression Is the Path to Parallelism
	Russel Winder

	Chapter 17. Deliver Better Software, Faster
	Burk Hufnagel

	Chapter 18. Do You Know What Time It Is?
	Christin Gorman

	Chapter 19. Don’t hIDE Your Tools
	Gail Ollis

	Chapter 20. Don’t Vary Your Variables
	Steve Freeman
	Assign Once
	Localize Scope

	Chapter 21. Embrace SQL Thinking
	Dean Wampler

	Chapter 22. Events Between Java Components
	A.Mahdy AbdelAziz

	Chapter 23. Feedback Loops
	Liz Keogh

	Chapter 24. Firing on All Engines
	Michael Hunger

	Chapter 25. Follow the Boring Standards
	Adam Bien

	Chapter 26. Frequent Releases Reduce Risk
	Chris O’Dell
	What Is Risk?
	Large, Infrequent Releases Are Riskier

	Chapter 27. From Puzzles to Products
	Jessica Kerr

	Chapter 28. “Full-Stack Developer” Is a Mindset
	Maciej Walkowiak

	Chapter 29. Garbage Collection Is Your Friend
	Holly Cummins

	Chapter 30. Get Better at Naming Things
	Peter Hilton

	Chapter 31. Hey Fred, Can You Pass Me the HashMap?
	Kirk Pepperdine

	Chapter 32. How to Avoid Null
	Carlos Obregón
	Avoid Initializing Variables to Null
	Avoid Returning Null
	Avoid Passing and Receiving Null Parameters
	Acceptable Nulls

	Chapter 33. How to Crash Your JVM
	Thomas Ronzon

	Chapter 34. Improving Repeatability and Auditability with Continuous Delivery
	Billy Korando
	Repeatable
	Auditable

	Chapter 35. In the Language Wars, Java Holds Its Own
	Jennifer Reif
	My History with Java
	Java’s Design and Background
	Java’s Downsides
	Why I Like Java
	What Does It Mean for Developers?

	Chapter 36. Inline Thinking
	Patricia Aas

	Chapter 37. Interop with Kotlin
	Sebastiano Poggi

	Chapter 38. It’s Done, But…
	Jeanne Boyarsky
	1. Communication and Clarity
	2. Perception
	3. There’s No Partial Credit for Done

	Chapter 39. Java Certifications: Touchstone in Technology
	Mala Gupta

	Chapter 40. Java Is a ’90s Kid
	Ben Evans

	Chapter 41. Java Programming from a JVM Performance Perspective
	Monica Beckwith
	Tip #1: Don’t Obsess Over Garbage
	Tip #2: Characterize and Validate Your Benchmarks
	Tip #3: Allocation Size and Rate Still Matter
	Tip #4: An Adaptive JVM Is Your Right and You Should Demand It

	Chapter 42. Java Should Feel Fun
	Holly Cummins

	Chapter 43. Java’s Unspeakable Types
	Ben Evans

	Chapter 44. The JVM Is a Multiparadigm Platform: Use This to Improve Your Programming
	Russel Winder

	Chapter 45. Keep Your Finger on the Pulse
	Trisha Gee

	Chapter 46. Kinds of Comments
	Nicolai Parlog
	Javadoc Comments for Contracts
	Block Comments for Context
	Line Comments for Weird Things
	Last Words

	Chapter 47. Know Thy flatMap
	Daniel Hinojosa

	Chapter 48. Know Your Collections
	Nikhil Nanivadekar

	Chapter 49. Kotlin Is a Thing
	Mike Dunn

	Chapter 50. Learn Java Idioms and Cache in Your Brain
	Jeanne Boyarsky

	Chapter 51. Learn to Kata and Kata to Learn
	Donald Raab

	Chapter 52. Learn to Love Your Legacy Code
	Uberto Barbini

	Chapter 53. Learn to Use New Java Features
	Gail C. Anderson

	Chapter 54. Learn Your IDE to Reduce Cognitive Load
	Trisha Gee

	Chapter 55. Let’s Make a Contract: The Art of Designing a Java API
	Mario Fusco

	Chapter 56. Make Code Simple and Readable
	Emily Jiang

	Chapter 57. Make Your Java Groovier
	Ken Kousen

	Chapter 58. Minimal Constructors
	Steve Freeman

	Chapter 59. Name the Date
	Kevlin Henney

	Chapter 60. The Necessity of Industrial-Strength Technologies
	Paul W. Homer

	Chapter 61. Only Build the Parts That Change and Reuse the Rest
	Jenn Strater

	Chapter 62. Open Source Projects Aren’t Magic
	Jenn Strater

	Chapter 63. Optional Is a Lawbreaking Monad but a Good Type
	Nicolai Parlog
	Monad Definition
	Monad Laws
	So What?

	Chapter 64. Package-by-Feature with the Default Access Modifier
	Marco Beelen

	Chapter 65. Production Is the Happiest Place on Earth
	Josh Long

	Chapter 66. Program with GUTs
	Kevlin Henney

	Chapter 67. Read OpenJDK Daily
	Heinz M. Kabutz

	Chapter 68. Really Looking Under the Hood
	Rafael Benevides

	Chapter 69. The Rebirth of Java
	Sander Mak

	Chapter 70. Rediscover the JVM Through Clojure
	James Elliott

	Chapter 71. Refactor Boolean Values to Enumerations
	Peter Hilton

	Chapter 72. Refactoring Toward Speed-Reading
	Benjamin Muskalla

	Chapter 73. Simple Value Objects
	Steve Freeman

	Chapter 74. Take Care of Your Module Declarations
	Nicolai Parlog
	Keep Module Declarations Clean
	Comment Module Declarations
	Review Module Declarations

	Chapter 75. Take Good Care of Your Dependencies
	Brian Vermeer
	Vulnerable Dependencies
	Updating Dependencies
	A Strategy for Your Dependencies

	Chapter 76. Take “Separation of Concerns” Seriously
	Dave Farley

	Chapter 77. Technical Interviewing Is a Skill Worth Developing
	Trisha Gee

	Chapter 78. Test-Driven Development
	Dave Farley
	Red
	Green
	Refactor

	Chapter 79. There Are Great Tools in Your bin/ Directory
	Rod Hilton

	Chapter 80. Think Outside the Java Sandbox
	Ian F. Darwin

	Chapter 81. Thinking in Coroutines
	Dawn Griffiths and
David Griffiths

	Chapter 82. Threads Are Infrastructure; Treat Them as Such
	Russel Winder

	Chapter 83. The Three Traits of Really, Really Good Developers
	Jannah Patchay

	Chapter 84. Trade-Offs in a Microservices Architecture
	Kenny Bastani

	Chapter 85. Uncheck Your Exceptions
	Kevlin Henney

	Chapter 86. Unlocking the Hidden Potential of Integration Testing Using Containers
	Kevin Wittek

	Chapter 87. The Unreasonable Effectiveness of Fuzz Testing
	Nat Pryce

	Chapter 88. Use Coverage to Improve Your Unit Tests
	Emily Bache
	When You’re Writing New Code
	When You Have to Change Code You Didn’t Write
	When You’re Working in a Team

	Chapter 89. Use Custom Identity Annotations Liberally
	Mark Richards

	Chapter 90. Use Testing to Develop Better Software Faster
	Marit van Dijk

	Chapter 91. Using Object-Oriented Principles in Test Code
	Angie Jones
	Encapsulation
	Inheritance
	Polymorphism
	Abstraction

	Chapter 92. Using the Power of Community to Enhance Your Career
	Sam Hepburn
	The Silver Lining
	How Can Community Help?
	Looking for Your Next Challenge?

	Chapter 93. What Is the JCP Program and How to Participate
	Heather VanCura

	Chapter 94. Why I Don’t Hold Any Value in Certifications
	Colin Vipurs

	Chapter 95. Write One-Sentence Documentation Comments
	Peter Hilton

	Chapter 96. Write “Readable Code”
	Dave Farley

	Chapter 97. The Young, the Old, and the Garbage
	María Arias de Reyna
	The Garbage Collector
	GC Strategies
	References

	Contributors
	Abraham Marin-Perez
	Adam Bien
	Alexey Soshin
	A.Mahdy AbdelAziz
	Anders Norås
	Angie Jones
	Ben Evans
	Benjamin Muschko
	Benjamin Muskalla
	Billy Korando
	Brian Vermeer
	Burk Hufnagel
	Carlos Obregón
	Chris O’Dell
	Christin Gorman
	Colin Vipurs
	Daniel Bryant
	Daniel Hinojosa
	Dave Farley
	David Delabassee
	Dawn and David Griffiths
	Dean Wampler
	Donald Raab
	Edson Yanaga
	Emily Bache
	Emily Jiang
	Gail C. Anderson
	Dr. Gail Ollis
	Heather VanCura
	Dr. Heinz M. Kabutz
	Holly Cummins
	Ian F. Darwin
	Ixchel Ruiz
	James Elliot
	Jannah Patchay
	Jeanne Boyarsky
	Jenn Strater
	Jennifer Reif
	Jessica Kerr
	Josh Long
	Ken Kousen
	Kenny Bastani
	Kevin Wittek
	Kevlin Henney
	Kirk Pepperdine
	Liz Keogh
	Maciej Walkowiak
	Mala Gupta
	Marco Beelen
	María Arias de Reyna
	Mario Fusco
	Marit van Dijk
	Mark Richards
	Michael Hunger
	Mike Dunn
	Monica Beckwith
	Nat Pryce
	Nicolai Parlog
	Nikhil Nanivadekar
	Patricia Aas
	Paul W. Homer
	Peter Hilton
	Rafael Benevides
	Rod Hilton
	Dr. Russel Winder
	Sam Hepburn
	Sander Mak
	Sebastiano Poggi
	Steve Freeman
	Thomas Ronzon
	Trisha Gee
	Uberto Barbini

	Index

