
Kasun Indrasiri
& Danesh Kuruppu

gRPC
Up & Running
Building Cloud Native Applications with
Go and Java for Docker and Kubernetes

Kasun Indrasiri and Danesh Kuruppu

gRPC: Up and Running
Building Cloud Native Applications with
Go and Java for Docker and Kubernetes

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05833-5

[LSI]

gRPC: Up and Running
by Kasun Indrasiri and Danesh Kuruppu

Copyright © 2020 Kasun Indrasiri and Danesh Kuruppu. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Ryan Shaw
Development Editor: Melissa Potter
Production Editor: Deborah Baker
Copyeditor: Charles Roumeliotis
Proofreader: Kim Cofer

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrators: Rebecca Demarest and Jenny Bergman

February 2020: First Edition

Revision History for the First Edition
2020-01-23: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492058335 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. gRPC: Up and Running, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492058335

Table of Contents

Preface. vii

1. Introduction to gRPC. 1
What Is gRPC? 2

Service Definition 4
gRPC Server 5
gRPC Client 7
Client–Server Message Flow 8

Evolution of Inter-Process Communication 8
Conventional RPC 8
SOAP 9
REST 9
Inception of gRPC 11
Why gRPC? 11
gRPC Versus Other Protocols: GraphQL and Thrift 14

gRPC in the Real World 15
Netflix 16
etcd 16
Dropbox 17

Summary 17

2. Getting Started with gRPC. 19
Creating the Service Definition 20

Defining Messages 21
Defining Services 22

Implementation 24
Developing a Service 25
Developing a gRPC Client 36

iii

Building and Running 39
Building a Go Server 40
Building a Go Client 40
Running a Go Server and Client 40
Building a Java Server 41
Building a Java Client 41
Running a Java Server and Client 41

Summary 42

3. gRPC Communication Patterns. 43
Simple RPC (Unary RPC) 43
Server-Streaming RPC 46
Client-Streaming RPC 49
Bidirectional-Streaming RPC 53
Using gRPC for Microservices Communication 58
Summary 60

4. gRPC: Under the Hood. 61
RPC Flow 62
Message Encoding Using Protocol Buffers 63

Encoding Techniques 67
Length-Prefixed Message Framing 69
gRPC over HTTP/2 71

Request Message 72
Response Message 74
Understanding the Message Flow in gRPC Communication Patterns 76

gRPC Implementation Architecture 79
Summary 80

5. gRPC: Beyond the Basics. 81
Interceptors 81

Server-Side Interceptors 82
Client-Side Interceptors 87

Deadlines 90
Cancellation 93
Error Handling 95
Multiplexing 99
Metadata 101

Creating and Retrieving Metadata 102
Sending and Receiving Metadata: Client Side 103
Sending and Receiving Metadata: Server Side 104
Name Resolver 106

iv | Table of Contents

Load Balancing 107
Load-Balancer Proxy 108
Client-Side Load Balancing 109
Compression 111

Summary 111

6. Secured gRPC. 113
Authenticating a gRPC Channel with TLS 113

Enabling a One-Way Secured Connection 114
Enabling an mTLS Secured Connection 117

Authenticating gRPC Calls 122
Using Basic Authentication 122
Using OAuth 2.0 127
Using JWT 130
Using Google Token-Based Authentication 131

Summary 132

7. Running gRPC in Production. 135
Testing gRPC Applications 135

Testing a gRPC Server 135
Testing a gRPC Client 137
Load Testing 138
Continuous Integration 139

Deployment 139
Deploying on Docker 140
Deploying on Kubernetes 142

Observability 148
Metrics 148
Logs 156
Tracing 157

Debugging and Troubleshooting 161
Enabling Extra Logging 161

Summary 162

8. The gRPC Ecosystem. 163
gRPC Gateway 163
HTTP/JSON Transcoding for gRPC 170
The gRPC Server Reflection Protocol 171
gRPC Middleware 174
Health Checking Protocol 176
gRPC Health Probe 178
Other Ecosystem Projects 180

Table of Contents | v

Summary 180

Index. 183

vi | Table of Contents

Preface

Nowadays software applications are often connected with each other over computer
networks using inter-process communication technologies. gRPC is a modern inter-
process communication style based on high-performance RPCs (remote procedure
calls) for building distributed applications and microservices. With the advent of
microservices and cloud native applications, the adoption of gRPC is exponentially
growing.

Why Did We Write This Book?
With the increasing adoption of gRPC, we felt that developers need a comprehensive
book on gRPC, a book that you can use as the ultimate reference guide in every stage
of the development cycle of your gRPC applications. There are a lot of resources and
code samples for gRPC all over the place (documentation, blogs, articles, conference
talks, and so on), but there’s no single resource that you can use to build gRPC appli‐
cations. Also, there aren’t any resources on the internals of the gRPC protocol and
how it works under the hood.

We wrote this book to overcome those challenges and give you a comprehensive
understanding of the fundamentals of gRPC, how it differs from conventional inter-
process communication technologies, real-world gRPC communication patterns,
how to build gRPC applications using Go and Java, how it works under the hood,
how to run gRPC applications in production, and how gRPC works with Kubernetes
and the rest of the ecosystem.

Who Is This Book For?
The book is most directly relevant to developers who are building distributed applica‐
tions and microservices using different inter-process communication technologies.
When it comes to building such applications and services, developers need to learn
the fundamentals of gRPC, when and how to use it for inter-service communication,

vii

best practices for running gRPC services in production, and so on. Also, architects
who are adopting microservices or cloud native architecture and designing how the
services should communicate will get a lot of insight from the book because it com‐
pares and contrasts gRPC with other technologies and provides guidelines on when
to use and when to avoid it.

We assume that both developers and architects have a basic understanding of the fun‐
damentals of distributed computing such as inter-process communication techni‐
ques, service-oriented architecture (SOA), and microservices.

How This Book Is Organized
The book is written in such a way that the theoretical concepts are explained using
real-world use cases. Throughout the book, we have extensively used code examples
featuring Go and Java to give readers hands-on experience with each of the concepts
that they learn. We have organized the book into eight chapters.

Chapter 1, Introduction to gRPC
This chapter gives you a basic understanding of gRPC fundamentals and com‐
pares it with similar inter-process communication styles such as REST, GraphQL,
and other RPC technologies.

Chapter 2, Getting Started with gRPC
This chapter is where you get the first hands-on experience with building a com‐
plete gRPC application using either Go or Java.

Chapter 3, gRPC Communication Patterns
In this chapter, you will explore gRPC communication patterns using real-world
examples.

Chapter 4, gRPC: Under the Hood
If you are an advanced gRPC user interested in knowing the internals of gRPC,
this is the chapter to learn them. This chapter teaches you every step of gRPC
communication between server and client and how it works over the network.

Chapter 5, gRPC: Beyond the Basics
This chapter teaches you some of the most important advanced features of gRPC
such as interceptors, deadlines, metadata, multiplexing, load balancing, and so
on.

Chapter 6, Secured gRPC
This chapter gives you a comprehensive understanding of how to secure commu‐
nication channels and how we authenticate and control the access of users to
gRPC applications.

viii | Preface

Chapter 7, Running gRPC in Production
This chapter walks you through the entire development life cycle of gRPC appli‐
cations. We cover testing gRPC applications, integration with CI/CD, deploying
and running on Docker and Kubernetes, and observing gRPC applications.

Chapter 8, The gRPC Ecosystem
In this chapter, we discuss some of the helpful supporting components built
around gRPC. Most of these projects are useful when building real-world appli‐
cations using gRPC.

Using Code Examples
All the code examples and supplemental materials for this book are available for
download at https://grpc-up-and-running.github.io. We highly recommend trying out
the samples available in this repository as you are reading the book. It will give you a
better understanding of the concepts that you’re learning.

These code examples are maintained and kept up to date with the latest versions of
the libraries, dependencies, and development tools. Occasionally you may find that
the code examples in the text and the examples in the repository slightly differ. We
highly encourage you to send a pull request (PR) if you come across any issues or
improvements related to the code samples.

You may use this book’s example code in your own programs and documentation.
You do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “gRPC: Up and Running
by Kasun Indrasiri and Danesh Kuruppu (O’Reilly). Copyright 2020 Kasun Indrasiri
and Danesh Kuruppu, 978-1-492-05833-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Conventions Used in This Book
The following typographical conventions are used in this book:

Preface | ix

https://grpc-up-and-running.github.io
mailto:permissions@oreilly.com

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

x | Preface

http://oreilly.com
http://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/gRPC_Up_and_Running.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Our grateful thanks go to the tech reviewers of this book, Julien Andrieux, Tim Ray‐
mond, and Ryan Michela. Also, we would like to thank our Development Editor
Melissa Potter for her guidance and support, and our Acquisitions Editor Ryan Shaw
for all the support given. Last but not least we thank the entire gRPC community for
creating such a great open source project.

Preface | xi

https://oreil.ly/gRPC_Up_and_Running
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

1 K. Indrasiri and P. Siriwardena, Microservices for the Enterprise (Apress, 2018).

CHAPTER 1

Introduction to gRPC

Modern software applications rarely operate in isolation. Rather, they are connected
with each other through computer networks and communicate and coordinate their
actions by passing messages to one another. Therefore, a modern software system is a
collection of distributed software applications that are running at different network
locations and communicate with each other with message passing using different
communication protocols. For example, an online retail software system comprises
multiple distributed applications such as an order management application, catalog
application, databases, and so on. To implement the business functionalities of an
online retail system, it is required to have interconnectivity between those distributed
applications.

Microservices Architecture
Microservices architecture is about building a software application
as a collection of independent, autonomous (developed, deployed,
and scaled independently), business capability–oriented, and
loosely coupled services.1

With the advent of microservices architecture and cloud native architecture,
conventional software applications that are built for multiple business capabilities are
further segregated into a collection of fine-grained, autonomous, and business capa‐
bility–oriented entities known as microservices. Therefore, a microservices-based
software system also requires the microservices to be connected through the network
using inter-process (or inter-service or inter-application) communication techniques.
As an example, if we consider the same online retail system implemented using

1

https://oreil.ly/q6N1P
https://oreil.ly/8Ow2T

microservices architecture, you will find multiple interconnected microservices such
as order management, search, checkout, shipping, and so on. Unlike conventional
applications, the number of network communication links proliferates because of the
fine-grained nature of microservices. Therefore, no matter the architectural style
(conventional or microservices architecture) you use, inter-process communication
techniques are one of the most important aspects of modern distributed software
applications.

Inter-process communications are usually implemented using message passing with a
synchronous request-response style or asynchronous event-driven styles. In the syn‐
chronous communication style, the client process sends a request message to the
server process over the network and waits for a response message. In asynchronous
event-driven messaging, processes communicate with asynchronous message passing
by using an intermediary known as an event broker. Depending on your business use
case, you can select the communication pattern that you want to implement.

When it comes to building synchronous request-response style communication for
modern cloud native applications and microservices, the most common and conven‐
tional approach is to build them as RESTful services, where you model your applica‐
tion or service as a collection of resources that can be accessed and have their state
changed via network calls that take place over the HTTP protocol. However, for most
use cases RESTful services are quite bulky, inefficient, and error-prone for building
inter-process communication. It is often required to have a highly scalable, loosely
coupled inter-process communication technology that is more efficient than RESTful
services. This is where gRPC, a modern inter-process communication style for build‐
ing distributed applications and microservices, comes into the picture (we’ll compare
and contrast gRPC with RESTful communication later in this chapter). gRPC primar‐
ily uses a synchronous request-response style for communication but can operate in
fully asynchronous or streaming mode once the initial communication is established.

In this chapter, we’ll explore what gRPC is and the key motivations behind inventing
such an inter-process communication protocol. We dive into the key building blocks
of the gRPC protocol with the help of some real-world use cases. Also, it’s important
to have a solid understanding of inter-process communication techniques and how
they have evolved over time so that you can understand the key problems that gRPC
is trying to solve. So, we’ll walk through those techniques and compare and contrast
each of them. Let’s begin our discussion on gRPC by looking at what gRPC is.

What Is gRPC?
gRPC (the “g” stands for something different in every gRPC release) is an inter-
process communication technology that allows you to connect, invoke, operate, and
debug distributed heterogeneous applications as easily as making a local function call.

2 | Chapter 1: Introduction to gRPC

https://oreil.ly/IKCi3

When you develop a gRPC application the first thing that you do is define a service
interface. The service interface definition contains information on how your service
can be consumed by consumers, what methods you allow the consumers to call
remotely, what method parameters and message formats to use when invoking those
methods, and so on. The language that we specify in the service definition is known
as an interface definition language (IDL).

Using that service definition, you can generate the server-side code known as a server
skeleton, which simplifies the server-side logic by providing low-level communication
abstractions. Also, you can generate the client-side code, known as a client stub,
which simplifies the client-side communication with abstractions to hide low-level
communication for different programming languages. The methods that you specify
in the service interface definition can be remotely invoked by the client side as easily
as making a local function invocation. The underlying gRPC framework handles all
the complexities that are normally associated with enforcing strict service contracts,
data serialization, network communication, authentication, access control, observa‐
bility, and so on.

To understand the fundamental concepts of gRPC, let’s take a look at a real-world use
case of a microservice implemented with gRPC. Suppose we are building an online
retail application comprised of multiple microservices. As illustrated in Figure 1-1,
suppose that we want to build a microservice that gives the details of the products
that are available in our online retail application (we will implement this use case
from the ground up in Chapter 2). The ProductInfo service is modeled in such a way
that it is exposed over the network as a gRPC service.

Figure 1-1. A microservice and a consumer based on gRPC

The service definition is specified in the ProductInfo.proto file, which is used by both
the server and client sides to generate the code. In this example, we have assumed
that the service is implemented using the Go language and that the consumer is

What Is gRPC? | 3

implemented using Java. The network communication between the service and con‐
sumer takes place over HTTP/2.

Now let’s delve into the details of this gRPC communication. The first step of building
a gRPC service is to create the service interface definition with the methods that are
exposed by that service along with input parameters and return types. Let’s move on
to the details of the service definition.

Service Definition
gRPC uses protocol buffers as the IDL to define the service interface. Protocol buffers
are a language-agnostic, platform-neutral, extensible mechanism to serializing struc‐
tured data (we’ll cover some of the fundamentals of protocol buffers in detail in
Chapter 4, but for now you can think of it as a data serialization mechanism). The
service interface definition is specified in a proto file—an ordinary text file with
a .proto extension. You define gRPC services in ordinary protocol buffer format, with
RPC method parameters and return types specified as protocol buffer messages.
Since the service definition is an extension to the protocol buffer specification, a spe‐
cial gRPC plug-in is used to generate code from your proto file.

In our example use case, the ProductInfo service’s interface can be defined using pro‐
tocol buffers as shown in Example 1-1. The service definition of ProductInfo is com‐
prised of a service interface definition where we specify the remote methods, their
input and output parameters, and the type definition (or message formats) of those
parameters.

Example 1-1. gRPC service definition of ProductInfo service using protocol buffers

// ProductInfo.proto
syntax = "proto3";
package ecommerce;

service ProductInfo {
 rpc addProduct(Product) returns (ProductID);
 rpc getProduct(ProductID) returns (Product);
}

message Product {
 string id = 1;
 string name = 2;
 string description = 3;
}

message ProductID {
 string value = 1;
}

4 | Chapter 1: Introduction to gRPC

https://oreil.ly/iFi-b

The service definition begins with specifying the protocol buffer version (proto3)
that we use.

Package names are used to prevent name clashes between protocol message types
and also will be used to generate code.

Defining the service interface of a gRPC service.

Remote method to add a product that returns the product ID as the response.

Remote method to get a product based on the product ID.

Definition of the message format/type of Product.

Field (name-value pair) that holds the product ID with unique field numbers that
are used to identify your fields in the message binary format.

User-defined type for product identification number.

A service is thus a collection of methods (e.g., addProduct and getProduct) that can
be remotely invoked. Each method has input parameters and return types that we
define as either part of the service or that can be imported into the protocol buffer
definition.

The input and return parameters can be a user-defined type (e.g., Product and Pro
ductID types) or a protocol buffer well-known type defined in the service definition.
Those types are structured as messages, where each message is a small logical record
of information containing a series of name-value pairs called fields. These fields are
name-value pairs with unique field numbers (e.g., string id = 1) that are used to
identify your fields in the message binary format.

This service definition is used to build the server and client side of your gRPC appli‐
cation. In the next section, we’ll go into the details of gRPC server implementation.

gRPC Server
Once you have a service definition in place, you can use it to generate the server- or
client-side code using the protocol buffer compiler protoc. With the gRPC plug-in for
protocol buffers, you can generate gRPC server-side and client-side code, as well as
the regular protocol buffer code for populating, serializing, and retrieving your mes‐
sage types.

On the server side, the server implements that service definition and runs a gRPC
server to handle client calls. Therefore, on the server side, to make the ProductInfo
service do its job you need to do the following:

What Is gRPC? | 5

https://oreil.ly/0Uc3A

1. Implement the service logic of the generated service skeleton by overriding the
service base class.

2. Run a gRPC server to listen for requests from clients and return the service
responses.

When implementing service logic, the first thing to do is generate the service skeleton
from the service definition. For example, in the code snippet in Example 1-2, you can
find the generated remote functions for the ProductInfo service built with Go. Inside
the body of these remote functions you can implement the logic of each function.

Example 1-2. gRPC server-side implementation of ProductInfo service with Go

import (
 ...
 "context"
 pb "github.com/grpc-up-and-running/samples/ch02/productinfo/go/proto"
 "google.golang.org/grpc"
 ...
)

// ProductInfo implementation with Go

// Add product remote method
func (s *server) AddProduct(ctx context.Context, in *pb.Product) (
 *pb.ProductID, error) {
 // business logic
}

// Get product remote method
func (s *server) GetProduct(ctx context.Context, in *pb.ProductID) (
 *pb.Product, error) {
 // business logic
}

Once you have the service implementation ready, you need to run a gRPC server to
listen for requests from clients, dispatch those requests to the service implementation,
and return the service responses back to the client. The code snippet in Example 1-3
shows a gRPC server implementation with Go for the ProductInfo service use case.
Here we open up a TCP port, start the gRPC server, and register the ProductInfo
service with that server.

Example 1-3. Running a gRPC server for ProductInfo service with Go

func main() {
 lis, _ := net.Listen("tcp", port)
 s := grpc.NewServer()
 pb.RegisterProductInfoServer(s, &server{})

6 | Chapter 1: Introduction to gRPC

 if err := s.Serve(lis); err != nil {
 log.Fatalf("failed to serve: %v", err)
 }
}

That’s all you have to do on the server side. Let’s move on to the gRPC client-side
implementation.

gRPC Client
Similar to the server side, we can generate the client-side stub using the service defi‐
nition. The client stub provides the same methods as the server, which your client
code can invoke; the client stub translates them to remote function invocation net‐
work calls that go to the server side. Since gRPC service definitions are language-
agnostic, you can generate clients and servers for any supported language (via the
third-party implementations) of your choice. So for the ProductInfo service use case,
we can generate the client stub for Java while our server side is implemented with Go.
In the code snippet in Example 1-4, you find the code for Java. Despite the program‐
ming language we use, the simple steps involved in a client-side implementation
involve setting up a connection with the remote server, attaching the client stub with
that connection, and invoking the remote method using the client stub.

Example 1-4. gRPC client to invoke a remote method of service

// Create a channel using remote server address
ManagedChannel channel = ManagedChannelBuilder.forAddress("localhost", 8080)
 .usePlaintext(true)
 .build();

// Initialize blocking stub using the channel
ProductInfoGrpc.ProductInfoBlockingStub stub =
 ProductInfoGrpc.newBlockingStub(channel);

// Call remote method using the blocking stub
StringValue productID = stub.addProduct(
 Product.newBuilder()
 .setName("Apple iPhone 11")
 .setDescription("Meet Apple iPhone 11." +
 "All-new dual-camera system with " +
 "Ultra Wide and Night mode.")
 .build());

As you now have a good sense of the key concepts of gRPC, let’s try to understand the
gRPC client–server message flow in detail.

What Is gRPC? | 7

https://oreil.ly/psi72

Client–Server Message Flow
When a gRPC client invokes a gRPC service, the client-side gRPC library uses the
protocol buffer and marshals the remote procedure call protocol buffer format, which
is then sent over HTTP/2. On the server side, the request is unmarshaled and the
respective procedure invocation is executed using protocol buffers. The response fol‐
lows a similar execution flow from the server to the client. As the wire transport pro‐
tocol, gRPC uses HTTP/2, which is a high-performance binary message protocol
with support for bidirectional messaging. We will further discuss the low-level details
of the message flow between gRPC clients and servers along with protocol buffers
and how gRPC uses HTTP/2 in Chapter 4.

Marshaling is the process of packing parameters and a remote func‐
tion into a message packet that is sent over the network, while
unmarshaling unpacks the message packet into the respective
method invocation.

Before we go further into the gRPC protocol, it’s important to have a broad under‐
standing of different inter-process communication technologies and how they have
evolved with time.

Evolution of Inter-Process Communication
Inter-process communication techniques have been drastically evolving over time.
There are various such techniques emerging to address modern needs and to provide
a better and more efficient development experience. So, it’s important to have a good
understanding of how inter-process communication techniques have evolved and
how they made their way to gRPC. Let’s look at some of the most commonly used
inter-process communication techniques and try to compare and contrast them with
gRPC.

Conventional RPC
RPC was a popular inter-process communication technique for building client-
service applications. With RPC a client can remotely invoke a function of a method
just like calling a local method. There were popular RPC implementations in the early
days such as the Common Object Request Broker Architecture (CORBA) and Java
Remote Method Invocation (RMI), which were used for building and connecting
services or applications. However, most such conventional RPC implementations are
overwhelmingly complex, as they are built on top of communication protocols such
as TCP, which hinders interoperability, and are based on bloated specifications.

8 | Chapter 1: Introduction to gRPC

SOAP
Owing to the limitations of conventional RPC implementations such as CORBA,
Simple Object Access Protocol (SOAP) was designed and heavily promoted by large-
scale enterprises such as Microsoft, IBM, etc. SOAP is the standard communication
technique in a service-oriented architecture (SOA) to exchange XML-based struc‐
tured data between services (usually called web services in the context of SOA) and
communicates over any underlying communication protocol such as HTTP (most
commonly used).

With SOAP you can define the service interface, operations of that service, and an
associated XML message format to be used to invoke those operations. SOAP was
quite a popular technology but the complexity of message format, as well as the com‐
plexities of specifications built around SOAP, hinders the agility of building dis‐
tributed applications. Therefore, in the context of modern distributed application
development, SOAP web services are considered a legacy technology. Rather than
using SOAP, most of the existing distributed applications are now being developed
using the REST architecture style.

REST
Representational State Transfer (REST) is an architectural style that originated from
Roy Fielding’s PhD dissertation. Fielding is one of the principal authors of the HTTP
specification and the originator of the REST architectural style. REST is the founda‐
tion of the resource-oriented architecture (ROA), where you model distributed appli‐
cations as a collection of resources and the clients that access those resources can
change the state (create, read, update, or delete) of those resources.

The de facto implementation of REST is HTTP, and in HTTP you can model a REST‐
ful web application as a collection of resources accessible using a unique identifier
(URL). The state-changing operations are applied on top of those resources in the
form of the HTTP verbs (GET, POST, PUT, DELETE, PATCH, and so on). The
resource state is represented in textual formats such as JSON, XML, HTML, YAML,
and so on.

Building applications using the REST architectural style with HTTP and JSON has
become the de facto method of building microservices. However, with the prolifera‐
tion of the number of microservices and their network interactions RESTful services
have not been able to meet the expected modern requirements. There are a couple of
key limitations of RESTful services that hinder the ability to use them as the messag‐
ing protocol for modern microservices-based applications.

Evolution of Inter-Process Communication | 9

https://oreil.ly/6tRrt

Inefficient text-based message protocols
Inherently, RESTful services are built on top of text-based transport protocols such as
HTTP 1.x and leverage human-readable textual formats such as JSON. When it
comes to service-to-service communication, it is quite inefficient to use a textual for‐
mat such as JSON because both parties to that communication do not need to use
such human-readable textual formats.

The client application (source) produces binary content to be sent to the server, then
it converts the binary structure into text (because with HTTP 1.x you have to send
textual messages) and sends it over the network in text (over HTTP) to a machine
that parses and turns it back into a binary structure on the service (target) side.
Rather, we could have easily sent a binary format that can be mapped to a service’s
and consumer’s business logic. One popular argument for using JSON is that it is eas‐
ier to use because it’s “human-readable.” This is more a tooling problem than a prob‐
lem with the binary protocols.

Lacks strongly typed interfaces between apps
With the increasing number of services interacting over the network that are built
with disparate polyglot technologies, the lack of well-defined and strongly typed ser‐
vice definitions was a major setback. Most of the existing service definition technolo‐
gies that we have in RESTful services, such as OpenAPI/Swagger, are afterthoughts
and not tightly integrated with the underlying architectural style or messaging
protocols.

This leads to many incompatibilities, runtime errors, and interoperability issues in
building such decentralized applications. For instance, when you develop RESTful
services, it is not required to have a service definition and type definition of the infor‐
mation that is shared between the applications. Rather, you develop your RESTful
applications either looking at the textual format on the wire or third-party API defi‐
nition technologies such as OpenAPI. Therefore, having a modern strongly typed
service definition technology and a framework that generates the core of the server-
and client-side code for polyglot technologies is a key necessity.

REST architectural style is hard to enforce
As an architectural style, REST has a lot of “good practices” that you need to follow to
make a real RESTful service. But they are not enforced as part of the implementation
protocols (such as HTTP), which makes it hard to enforce them at the implementa‐
tion phase. Therefore, in practice, most of the services that claim to be RESTful are
not properly following the foundations of the REST style. So, most of the so-called
RESTful services are merely HTTP services exposed over the network. Therefore,
development teams have to spend a lot of time maintaining the consistency and
purity of a RESTful service.

10 | Chapter 1: Introduction to gRPC

With all these limitations of inter-process communication techniques in building
modern cloud native applications, the quest for inventing a better message protocol
began.

Inception of gRPC
Google had been using a general-purpose RPC framework called Stubby to connect
thousands of microservices that are running across multiple data centers and built
with disparate technologies. Its core RPC layer was designed to handle an internet
scale of tens of billions of requests per second. Stubby has many great features, but it
is not standardized to be used as a generic framework as it is too tightly coupled to
Google’s internal infrastructure.

In 2015, Google released gRPC as an open source RPC framework; it is a standar‐
dized, general-purpose, and cross-platform RPC infrastructure. gRPC was intended
to provide the same scalability, performance, and functionality that Stubby offered,
but to the community at large.

Since then, the popularity of gRPC has grown dramatically over the past few years
with large-scale adoption from major companies such as Netflix, Square, Lyft,
Docker, Cisco, and CoreOS. Later, gRPC joined the Cloud Native Computing Foun‐
dation (CNCF), one of the most popular open source software foundations dedicated
to making cloud native computing universal and sustainable; gRPC gained a lot of
traction from CNCF ecosystem projects.

Now let’s look at some of the key reasons for using gRPC over the conventional inter-
process communication protocols.

Why gRPC?
gRPC is designed to be an internet-scale, inter-process communication technology
that can overcome most of the shortcomings of conventional inter-process communi‐
cation technologies. Owing to the benefits of gRPC, most modern applications and
servers are increasingly converting their inter-process communication protocol to
gRPC. So, why would somebody select gRPC as a communication protocol when
there are so many other options available? Let’s look more closely at some of the key
advantages that gRPC brings to the table.

Advantages of gRPC
The advantages that gRPC brings are key to the increasing adoption of gRPC. These
advantages include the following:

It’s efficient for inter-process communication
Rather than using a textual format such as JSON or XML, gRPC uses a protocol
buffer–based binary protocol to communicate with gRPC services and clients.

Evolution of Inter-Process Communication | 11

https://oreil.ly/vat5r
https://oreil.ly/cUZSG
https://oreil.ly/GFffo

Also, gRPC implements protocol buffers on top of HTTP/2, which makes it even
faster for inter-process communication. This makes gRPC one of the most effi‐
cient inter-process communication technologies out there.

It has simple, well-defined service interfaces and schema
gRPC fosters a contract-first approach for developing applications. You first
define the service interfaces and then work on the implementation details after‐
ward. So, unlike OpenAPI/Swagger for RESTful service definition and WSDL for
SOAP web services, gRPC offers a simple but consistent, reliable, and scalable
application development experience.

It’s strongly typed
Since we use protocol buffers to define gRPC services, gRPC service contracts
clearly define the types that you will be using for communication between the
applications. This makes distributed application development much more stable,
as static typing helps to overcome most of the runtime and interoperability errors
that you would encounter when you build cloud native applications that span
across multiple teams and technologies.

It’s polyglot
gRPC is designed to work with multiple programming languages. A gRPC ser‐
vice definition with protocol buffers is language-agnostic. Hence, you can pick
the language of your choice but can interoperate with any existing gRPC service
or client.

It has duplex streaming
gRPC has native support for client- or server-side streaming, which is baked into
the service definition itself. This makes it much easier to develop streaming serv‐
ices or streaming clients. And the ability to build conventional request–response
style messaging and client- and server-side streaming is a key advantage over the
conventional RESTful messaging style.

It has built-in commodity features
gRPC offers built-in support for commodity features such as authentication,
encryption, resiliency (deadlines and timeouts), metadata exchange, compres‐
sion, load balancing, service discovery, and so on (we’ll explore these in Chap‐
ter 5).

It’s integrated with cloud native ecosystems
gRPC is part of the CNCF and most of the modern frameworks and technologies
offer native support for gRPC out of the box. For instance, many projects under
CNCF such as Envoy support gRPC as a communication protocol; for cross-
cutting features such as metrics and monitoring, gRPC is supported by most such
tools (e.g., using Prometheus to monitor gRPC applications).

12 | Chapter 1: Introduction to gRPC

https://oreil.ly/vGQsj
https://oreil.ly/AU3-7

It’s mature and has been widely adopted
gRPC has been matured by its heavy battle-testing at Google, and many other
major tech companies such as Square, Lyft, Netflix, Docker, Cisco, and CoreOS
have adopted it.

As with any technology, gRPC comes with a certain set of drawbacks as well. Know‐
ing those drawbacks during application development is quite useful. So, let’s take a
look at some of the limitations of gRPC.

Disadvantages of gRPC
Here are some of the disadvantages of gRPC that you need to be mindful of when you
select it for building applications. These include the following:

It may not be suitable for external-facing services
When you want to expose the application or services to an external client over
the internet, gRPC may not be the most suitable protocol as most of the external
consumers are quite newly about gRPC and REST/HTTP. The contract-driven,
strongly typed nature of gRPC services may hinder the flexibility of the services
that you expose to the external parties, and consumers get far less control (unlike
protocols such as GraphQL, which is explained in the next section). The gRPC
gateway is designed as a workaround to overcome this issue. We’ll discuss it in
detail in Chapter 8.

Drastic service definition changes are a complicated development process
Schema modifications are quite common in modern inter-service communica‐
tion use cases. When there are drastic gRPC service definition changes, usually
we need to regenerate code for both client and server. This needs to be incorpo‐
rated into the existing continuous integration process and may complicate the
overall development life cycle. However, most gRPC service definition changes
can be accommodated without breaking the service contract, and gRPC will hap‐
pily interoperate with clients and servers using different versions of a proto, as
long as no breaking changes are introduced. So code regeneration is not required
in most cases.

The ecosystem is relatively small
The gRPC ecosystem is still relatively small compared to the conventional REST/
HTTP protocol. The support for gRPC in browser and mobile applications is still
in the primitive stages.

You must be mindful about these limitations when it comes to the development of
applications. So, obviously, gRPC is not a technique that you should use for all your
inter-process communication requirements. Rather, you need to evaluate the business
use case and requirements and pick the appropriate messaging protocol. We’ll explore
some of these guidelines in Chapter 8.

Evolution of Inter-Process Communication | 13

As we discussed in previous sections, there are many existing and emerging inter-
process communication techniques out there. It’s important to have a good under‐
standing of how we can compare gRPC with other similar technologies that have
gained popularity in the modern application development landscape, as this will help
you in finding the most appropriate protocol for your services.

gRPC Versus Other Protocols: GraphQL and Thrift
We have discussed in detail some of the key limitations of REST, which laid the foun‐
dation to the inception of gRPC. Similarly, there are quite a few inter-process com‐
munication technologies emerging to fulfill the same needs. So, let’s look at some of
the popular technologies and compare them with gRPC.

Apache Thrift
Apache Thrift is an RPC framework (initially developed at Facebook and later dona‐
ted to Apache) similar to gRPC. It uses its own interface definition language and
offers support for a wide range of programming languages. Thrift allows you to
define data types and service interfaces in a definition file. By taking the service defi‐
nition as the input, the Thrift compiler generates code for the client and server sides.
The Thrift transport layer provides abstractions for network I/O and decouples Thrift
from the rest of the system, which means it can run on any transport implementation
such as TCP, HTTP, and so on.

If you compare Thrift with gRPC, you will find both pretty much follow the same
design and usage goals. However, there are several important differentiators between
the two:

Transport
gRPC is more opinionated than Thrift and offers first-class support for HTTP/2.
Its implementations on HTTP/2 leverage the protocol’s capabilities to achieve
efficiency and support for messaging patterns such as streaming.

Streaming
gRPC service definitions natively support bidirectional streaming (client and
server) as part of the service definition itself.

Adoption and community
When it comes to adoption gRPC seems to have a pretty good momentum and
has managed to build a good ecosystem around CNCF projects. Also, commu‐
nity resources such as good documentation, external presentations, and sample
use cases are quite common for gRPC, which makes the adoption process
smooth compared to Thrift.

14 | Chapter 1: Introduction to gRPC

https://thrift.apache.org

Performance
While there are no official results comparing gRPC versus Thrift, there are a few
online resources with performance comparisons between the two that show bet‐
ter numbers for Thrift. However, gRPC is also being heavily benchmarked for
performance in almost all releases. So performance is unlikely to be a deciding
factor when it comes to selecting Thrift over gRPC. Also, there are other RPC
frameworks that offer similar capabilities but gRPC is currently leading the way
as the most standardized, interoperable, and widely adopted RPC technology.

GraphQL
GraphQL is another technology (invented by Facebook and standardized as an open
technology) that is becoming quite popular for building inter-process communica‐
tion. It is a query language for APIs and a runtime for fulfilling those queries with
your existing data. GraphQL offers a fundamentally different approach for conven‐
tional client–server communication by allowing clients to determine what data they
want, how they want it, and in what format they want it. gRPC, on the other hand,
has a fixed contract for the remote methods that enable communication between the
client and the server.

GraphQL is more suitable for external-facing services or APIs that are exposed to
consumers directly where the clients need more control over the data that consume
from the server. For example, in our online retail application scenario, suppose that
the consumers of the ProductInfo service need only specific information about the
products but not the entire set of attributes of a product, and the consumers also need
a way to specify the information they want. With GraphQL you can model a service
so that it allows consumers to query the service using the GraphQL query language
and obtain the required information.

In most of the pragmatic use cases of GraphQL and gRPC, GraphQL is being used for
external-facing services/APIs while internal services that are backing the APIs are
implemented using gRPC.

Now let’s have a look at some of the real-world adopters of gRPC and their use cases.

gRPC in the Real World
The success of any inter-process communication protocol is largely dependent on
industry-wide adoption and the user and developer community behind that project.
gRPC has been widely adopted for building microservices and cloud native applica‐
tions. Let’s look at some of the key success stories of gRPC.

gRPC in the Real World | 15

https://oreil.ly/Hy3mJ
https://graphql.org

Netflix
Netflix, a subscription-based video streaming company, is one of the pioneers in
practicing microservices architecture at scale. All of its video streaming capabilities
are offered to consumers through an external-facing managed service (or APIs) and
there are hundreds of backend services that are backing its APIs. Therefore, inter-
process (or inter-service) communication is one of the most important aspects of its
use case. During the initial stage of microservices implementation, Netflix developed
its own technology stack for inter-service communication using RESTful services on
HTTP/1.1, which backs almost 98% of the business use cases of the Netflix product.

However, Netflix has observed several limitations of the RESTful services–based
approach when they operate at internet scale. The consumers of RESTful microservi‐
ces were often written from scratch by inspecting the resources and required message
formats of the RESTful services. This was very time-consuming, hindered developer
productivity, and also increased the risk for more error-prone code. Service imple‐
mentation and consumption was also challenging because of the lack of technologies
for a comprehensive definition of a service interface. So, it initially tried to overcome
most of these limitations by building an internal RPC framework, but after evaluating
available technology stacks, it chose gRPC as its inter-service communication tech‐
nology. During its evaluation, Netflix found that gRPC was comfortably at the top in
terms of encapsulating all the required responsibilities together in one easy-to-
consume package.

With the adoption of gRPC, Netflix has seen a massive boost in developer productiv‐
ity. For example, for each client, hundreds of lines of custom code are replaced by just
two to three lines of configuration in the proto. Creating a client, which could take up
to two to three weeks, takes a matter of minutes with gRPC. The overall stability of
the platform has also improved a lot because handwritten code for most of the com‐
modity features is no longer needed and there is a comprehensive and safe way of
defining service interfaces. Owing to the performance boost that gRPC provides, the
overall latency of Netflix’s entire platform has reduced. Since it has adopted gRPC for
most of its inter-process communication use cases, it seems that Netflix has put some
of its homegrown projects (for example, Ribbon) that are built for inter-process com‐
munication using REST and HTTP protocols into maintenance mode (not in active
development) and are using gRPC instead.

etcd
etcd is a distributed reliable key-value store for the most critical data of a distributed
system. It’s one of the most popular open source projects in CNCF and heavily adop‐
ted by many other open source projects such as Kubernetes. One key factor in gRPC’s
success is that it has a simple, well-defined, easy-to-consume, user-facing API. etcd
uses a gRPC user-facing API to leverage the full power of gRPC.

16 | Chapter 1: Introduction to gRPC

https://oreil.ly/xK3Ds
https://oreil.ly/qKgv4
https://oreil.ly/wo4gM
https://oreil.ly/v-H-K

Dropbox
Dropbox is a file-hosting service that offers cloud storage, file synchronization, per‐
sonal cloud, and client software. Dropbox runs hundreds of polyglot microservices,
which exchange millions of requests per second. It was using multiple RPC frame‐
works initially, including a homegrown RPC framework with a custom protocol for
manual serialization and deserialization, Apache Thrift, and a legacy RPC framework
that was an HTTP/1.1-based protocol with protobuf-encoded messages.

Rather than using any of those, Dropbox has switched to gRPC (which also allows it
to reuse some of the existing protocol buffer definitions of its message formats). It has
created Courier, a gRPC-based RPC framework. Courier is not a new RPC protocol
but a project that integrates gRPC with Dropbox’s existing infrastructure. Dropbox
has augmented gRPC to cater to its specific requirements related to authentication,
authorization, service discovery, service statistics, event logging, and tracing tools.

These success stories of gRPC tell us that it’s an inter-process messaging protocol that
is simple, boosts productivity and reliability, and scales and operates at the internet
scale. These are some of the well-known early adopters of gRPC, but the use cases
and adoption of gRPC are increasingly growing.

Summary
Modern software applications or services rarely live in isolation and the inter-process
communication techniques that connect them are one of the most important aspects
of modern distributed software applications. gRPC is a scalable, loosely coupled, and
type-safe solution that allows for more efficient inter-process communication than
conventional REST/HTTP-based communication. It allows you to connect, invoke,
operate, and debug distributed heterogeneous applications as easy as making a local
method call via network transport protocols such as HTTP/2.

gRPC can also be considered as an evolution of conventional RPCs and has managed
to overcome their limitations. gRPC is being widely adopted by various internet-scale
companies for their inter-process communication requirements and is most com‐
monly used for building internal service-to-service communications.

The knowledge you gain from this chapter will be a good entry point for the rest of
the chapters, where you will dive deep into different aspects of gRPC communication.
This knowledge will be put into practice in the next chapter where we build a real-
world gRPC application from the ground up.

Summary | 17

https://oreil.ly/msjcZ

CHAPTER 2

Getting Started with gRPC

Enough with the theory on gRPC; let’s apply what you learned in Chapter 1 to build a
real-world gRPC application from the ground up. In this chapter, you will use both
Go and Java to build a simple gRPC service and a client application that invokes the
service you developed. In the process you’ll learn about specifying a gRPC service
definition using protocol buffers, generating a server skeleton and client stub, imple‐
menting a service’s business logic, running a gRPC server with the service you imple‐
mented, and invoking the service through the gRPC client application.

Let’s use the same online retail system from Chapter 1, where we need to build a ser‐
vice that is responsible for managing the products of a retail store. The service can be
remotely accessed and the consumers of that service can add new products to the sys‐
tem and also retrieve product details from the system by providing the product ID.
We’ll model this service and consumer using gRPC. You may pick the programming
language of your choice to implement this, but in this chapter, we will use both the
Go and Java languages to implement this sample.

You can try out both the Go and Java implementations of the sam‐
ple in the source code repository for this book.

In Figure 2-1, we illustrate the client–server communication patterns of the Produc
tInfo service for each method invocation. The server hosts a gRPC service that offers
two remote methods: addProduct(product) and getProduct(productId). The client
can invoke either of those remote methods.

19

Figure 2-1. Client–server interaction of ProductInfo service

Let’s start building this sample by creating the service definition of the ProductInfo
gRPC service.

Creating the Service Definition
As you learned in Chapter 1, when you develop a gRPC application, the first thing
you do is define the service interface, which contains the methods that allow consum‐
ers to call remotely, the method parameters and message formats to use when invok‐
ing those methods, and so on. All these service definitions are recorded as a protocol
buffer’s definition, which is the interface definition language (IDL) used in gRPC.

We will further dive into service definition techniques for different
messaging patterns in Chapter 3. We will also cover the details of
protocol buffers and gRPC implementation details in Chapter 4.

Once you identify the business capabilities of the service, you can define the service
interface to fulfill the business need. In our sample, we can identify two remote meth‐
ods (addProduct(product) and getProduct(productId)) in the ProductInfo service
and two message types (Product and ProductID) that both methods accept and
return.

The next step is to specify these service definitions as a protocol buffer definition.
With protocol buffers, we can define services and message types. A service consists of

20 | Chapter 2: Getting Started with gRPC

https://oreil.ly/1X5Ws
https://oreil.ly/1X5Ws

its methods and each method is defined by its type, input, and output parameters.
The message consists of its fields and each field is defined by its type and a unique
index value. Let’s dive into the details of defining message structures.

Defining Messages
The message is the data structure that is exchanged between client and service. As you
can see in Figure 2-1, our ProductInfo use case has two message types. One is the
product information (Product), which is required when adding a new product to the
system and is returned when retrieving a particular product. The other is a unique
identification (ProductID) of the product, which is required when retrieving a partic‐
ular product from the system and is returned when adding a new product:

ProductID

ProductID is a unique identifier of the product that can be a string value. We can
either define our own message type that contains a string field or use the well-
known message type google.protobuf.StringValue, provided by the protocol
buffer library. In this example, we are going to define our own message type that
contains a string field. The ProductID message type definition is shown in
Example 2-1.

Example 2-1. Protocol Buffer definition of ProductID message type.

message ProductID {
 string value = 1;
}

Product

Product is a custom message type that represents the data that should exist in a
product in our online retail application. It can have a set of fields that represent
the data associated with each product. Suppose the Product message type has the
following fields:

ID

Unique identifier of the product

Name

Product name

Description

Product description

Price

Product price

Creating the Service Definition | 21

Then we can define our custom message type using a protocol buffer as shown in
Example 2-2.

Example 2-2. Protocol buffer definition of Product message type

message Product {
 string id = 1;
 string name = 2;
 string description = 3;
 float price = 4;
}

Here the number assigned to each message field is used to uniquely identify the field
in the message. So, we can’t use the same number in two different fields in the same
message definition. We will further dive into the details of the message definition
techniques of protocol buffers and explain why we need to provide a unique number
for each field in Chapter 4. For now, you can think of it as a rule when defining a
protocol buffer message.

The protobuf library provides a set of protobuf message types for
well-known types. So we can reuse them instead of defining such
types again in our service definition. You can get more details
about these well-known types in the protocol buffers documenta‐
tion.

Since we have completed defining message types for the ProductInfo service, we can
move on to the service interface definition.

Defining Services
A service is a collection of remote methods that are exposed to a client. In our sample,
the ProductInfo service has two remote methods: addProduct(product) and get
Product(productId). According to the protocol buffer rule, we can only have one
input parameter in a remote method and it can return only one value. If we need to
pass multiple values to the method like in the addProduct method, we need to define
a message type and group all the values as we have done in the Product message type:

addProduct

Creates a new Product in the system. It requires the details of the product as
input and returns the product identification number of the newly added product,
if the action completed successfully. Example 2-3 shows the definition of the add
Product method.

22 | Chapter 2: Getting Started with gRPC

https://oreil.ly/D8Ysn
https://oreil.ly/D8Ysn

Example 2-3. Protocol buffer definition of addProduct method

rpc addProduct(Product) returns (google.protobuf.StringValue);

getProduct

Retrieves product information. It requires the ProductID as input and returns
Product details if a particular product exists in the system. Example 2-4 shows
the definition of the getProduct method.

Example 2-4. Protocol buffer definition of getProduct method

rpc getProduct(google.protobuf.StringValue) returns (Product);

Combining all messages and services, we now have a complete protocol buffer defini‐
tion for our ProductInfo use case, as shown in Example 2-5.

Example 2-5. gRPC service definition of ProductInfo service using protocol buffers

syntax = "proto3";
package ecommerce;

service ProductInfo {
 rpc addProduct(Product) returns (ProductID);
 rpc getProduct(ProductID) returns (Product);
}

message Product {
 string id = 1;
 string name = 2;
 string description = 3;
}

message ProductID {
 string value = 1;
}

The service definition begins with specifying the protocol buffer version (proto3)
that we use.

Package names are used to prevent name clashes between protocol message types
and also will be used to generate code.

Definition of the service interface of the service.

Remote method to add a product that returns the product ID as the response.

Remote method to get a product based on the product ID.

Creating the Service Definition | 23

Definition of the message format/type of Product.

Field (name-value pair) that holds the product ID with unique field numbers that
are used to identify your fields in the message binary format.

Definition of the message format/type of ProductID.

In the protocol buffer definition, we can specify a package name (e.g., ecommerce),
which helps to prevent naming conflicts between different projects. When we gener‐
ate code for our services or clients using this service definition with a package, the
same packages (unless we explicitly specify a different package for code generation)
are created in the respective programming language (of course only if the language
supports the notion of a package) with which our code is generated. We can also
define package names with version numbers like ecommerce.v1 and ecommerce.v2.
So future major changes to the API can coexist in the same codebase.

Commonly used IDEs (integrated development environments)
such as IntelliJ IDEA, Eclipse, VSCode, etc., now have plug-ins to
support protocol buffers. You can install the plug-in to your IDE
and easily create a protocol buffer definition for your service.

One other process that should be mentioned here is importing from another proto
file. If we need to use the message types defined in other proto files, we can import
them and our protocol buffer definition. For example, if we want to use the String
Value type (google.protobuf.StringValue) defined in the wrappers.proto file, we
can import the google/protobuf/wrappers.proto file in our definition as follows:

syntax = "proto3";

import "google/protobuf/wrappers.proto";

package ecommerce;
...

Once you complete the specification of the service definition, you can proceed to the
implementation of the gRPC service and the client.

Implementation
Let’s implement a gRPC service with the set of remote methods that we specified in
the service definition. These remote methods are exposed by the server and the gRPC
client connects to the server and invokes those remote methods.

As illustrated in Figure 2-2, we first need to compile the ProductInfo service defini‐
tion and generate source code for the chosen language. Out of the box, gRPC is

24 | Chapter 2: Getting Started with gRPC

supported by all the popular languages like Java, Go, Python, Ruby, C, C++, Node,
etc. You can choose which language to use when implementing the service or client.
gRPC also works across multiple languages and platforms, which means you can have
your server written in one language and your client written in another language in
your application. In our sample, we will develop our client and server in both the Go
and Java languages, so you can follow whichever implementation you prefer to use.

In order to generate source code from the service definition, we can either manually
compile the proto file using the protocol buffer compiler or we can use build automa‐
tion tools like Bazel, Maven, or Gradle. Those automation tools already have a set of
rules defined to generate the code when building the project. Often it is easier to inte‐
grate with an existing build tool to generate the source code of the gRPC service and
client.

Figure 2-2. A microservice and a consumer based on a service definition

In this sample, we’ll use Gradle to build the Java application and use the Gradle pro‐
tocol buffer plug-in to generate the service and client code. For the Go application,
we’ll use the protocol buffer compiler and generate the code.

Let’s walk through implementing a gRPC server and client in Go and Java. Before we
do this, make sure you have installed Java 7 or higher and Go 1.11 or higher on your
local machine.

Developing a Service
When you generate the service skeleton code, you will get the low-level code required
to establish the gRPC communication, relevant message types, and interfaces. The
task of service implementation is all about implementing the interfaces that are gen‐
erated with the code generation step. Let’s start with implementing the Go service and
then we will look at how to implement the same service in the Java language.

Implementation | 25

https://oreil.ly/CYEbY

Implementing a gRPC service with Go
Implementing the Go service has three steps. First, we need to generate the stubs for
the service definition, then we implement the business logic of all the remote meth‐
ods of the service, and finally, we create a server listening on a specified port and reg‐
ister the service to accept client requests. Let’s start by creating a new Go module.
Here we are going to create one module and a subdirectory inside the module; the
module productinfo/service is used to keep the service code and the subdirectory
(ecommerce) is used to keep the autogenerated stub file. Create a directory inside the
productinfo directory and call it service. Navigate inside to the service directory and
execute the following command to create the module productinfo/service:

go mod init productinfo/service

Once you create the module and create a subdirectory inside the module, you will get
a module structure as follows:

└─ productinfo
 └─ service
 ├── go.mod
 ├ . . .
 └── ecommerce
 └── . . .

We also need to update the go.mod file with the dependencies with the specific ver‐
sion as shown in the following:

module productinfo/service

require (
 github.com/gofrs/uuid v3.2.0
 github.com/golang/protobuf v1.3.2
 github.com/google/uuid v1.1.1
 google.golang.org/grpc v1.24.0
)

From Go 1.11 onwards, a new concept called modules has been
introduced that allows developers to create and build Go projects
outside GOPATH. To create a Go module, we need to create a new
directory anywhere outside $GOPATH/src and inside the directory,
we need to execute the command to initialize the module with a
module name like the following:
go mod init <module_name>

Once you initialize the module, a go.mod file will be created inside
the root of the module. And then we can create our Go source file
inside the module and build it. Go resolves imports by using the
specific dependency module versions listed in go.mod.

26 | Chapter 2: Getting Started with gRPC

Generating client/server stubs. Now we’ll generate client/server stubs manually, using
the protocol buffer compiler. To do that, we need to fulfill a set of prerequisites as lis‐
ted here:

• Download and install the latest protocol buffer version 3 compiler from the Git‐
Hub release page.

When downloading the compiler, you need to choose the compiler
that suits your platform. For example, if you are using a 64-bit
Linux machine and you need to get a protocol buffer compiler ver‐
sion x.x.x, you need to download the protoc-x.x.x-linux-x86_64.zip
file.

• Install the gRPC library using the following command:

go get -u google.golang.org/grpc

• Install the protoc plug-in for Go using the following command:

go get -u github.com/golang/protobuf/protoc-gen-go

Once we fulfill all the prerequisites, we can generate the code for the service defini‐
tion by executing the protoc command as shown here:

protoc -I ecommerce \
 ecommerce/product_info.proto \
 --go_out=plugins=grpc:<module_dir_path>/ecommerce

Specifies the directory path where the source proto file and dependent proto files
exist (specified with the --proto_path or -I command-line flag). If you do not
specify a value, the current directory is used as the source directory. Inside the
directory, we need to arrange the dependent proto files in accordance with the
package name.

Specifies the proto file path you want to compile. The compiler will read the file
and generate the output Go file.

Specifies the destination directory where you want the generated code to go.

When we execute the command, a stub file (product_info.pb.go) will be generated
inside the given subdirectory (ecommerce) in the module. Now that we have gener‐
ated the stubs, we need to implement our business logic using the generated code.

Implementation | 27

https://oreil.ly/Ez8qu
https://oreil.ly/Ez8qu

Implementing business logic. First, let’s create a new Go file named productinfo_ser‐
vice.go inside the Go module (productinfo/service) and implement the remote
methods as shown in Example 2-6.

Example 2-6. gRPC service implementation of ProductInfo service in Go

package main

import (
 "context"
 "errors"
 "log"

"github.com/gofrs/uuid"
pb "productinfo/service/ecommerce"

)

// server is used to implement ecommerce/product_info.
type server struct{
 productMap map[string]*pb.Product
}

// AddProduct implements ecommerce.AddProduct
func (s *server) AddProduct(ctx context.Context,
 in *pb.Product) (*pb.ProductID, error) {
 out, err := uuid.NewV4()
 if err != nil {
 return nil, status.Errorf(codes.Internal,
 "Error while generating Product ID", err)
 }
 in.Id = out.String()
 if s.productMap == nil {
 s.productMap = make(map[string]*pb.Product)
 }
 s.productMap[in.Id] = in
 return &pb.ProductID{Value: in.Id}, status.New(codes.OK, "").Err()

}

// GetProduct implements ecommerce.GetProduct
func (s *server) GetProduct(ctx context.Context, in *pb.ProductID)
 (*pb.Product, error) {
 value, exists := s.productMap[in.Value]
 if exists {
 return value, status.New(codes.OK, "").Err()
 }
 return nil, status.Errorf(codes.NotFound, "Product does not exist.", in.Value)

}

28 | Chapter 2: Getting Started with gRPC

Import the package that contains the generated code we just created from the
protobuf compiler.

The server struct is an abstraction of the server. It allows attaching service meth‐
ods to the server.

The AddProduct method takes Product as a parameter and returns a ProductID.
Product and ProductID structs are defined in the product_info.pb.go file, which is
autogenerated from the product_info.proto definition.

The GetProduct method takes ProductID as a parameter and returns a Product.

Both methods also have a Context parameter. A Context object contains meta‐
data such as the identity of the end user authorization tokens and the request’s
deadline, and it will exist during the lifetime of the request.

Both methods return an error in addition to the return value of the remote
method (methods have multiple return types). These errors are propagated to the
consumers and can be used for error handling at the consumer side.

That’s all you have to do to implement the business logic of the ProductInfo service.
Then we can create a simple server that hosts the service and accepts requests from
the client.

Creating a Go server. To create the server in Go, let’s create a new Go file named
main.go inside the same Go package (productinfo/service) and implement the
main method as shown in Example 2-7.

Example 2-7. gRPC server implementation to host ProductInfo service in Go

package main

import (
 "log"
 "net"

 pb "productinfo/service/ecommerce"
 "google.golang.org/grpc"
)

const (
 port = ":50051"
)

func main() {
 lis, err := net.Listen("tcp", port)

Implementation | 29

 if err != nil {
 log.Fatalf("failed to listen: %v", err)
 }
 s := grpc.NewServer()
 pb.RegisterProductInfoServer(s, &server{})

 log.Printf("Starting gRPC listener on port " + port)
 if err := s.Serve(lis); err != nil {
 log.Fatalf("failed to serve: %v", err)
 }
}

Import the package that contains the generated code we just created from the
protobuf compiler.

TCP listener that we want the gRPC server to bind to is created on the port
(50051).

New gRPC server instance is created by calling gRPC Go APIs.

The service implemented earlier is registered to the newly created gRPC server
by calling generated APIs.

Start listening to the incoming messages on the port (50051).

Now we have completed building a gRPC service for our business use case in the Go
language. And also we created a simple server that will expose service methods and
accept messages from gRPC clients.

If you prefer using Java for building a service, we can implement the same service
using Java. The implementation procedure is quite similar to Go. So, let’s create the
same service using the Java language. However, if you are interested in building a cli‐
ent application in Go instead, go directly to “Developing a gRPC Client” on page 36.

Implementing a gRPC Service with Java
When creating a Java gRPC project, the best approach is to use an existing build tool
like Gradle, Maven, or Bazel because it manages all dependencies and code genera‐
tion, etc. In our sample, we will use Gradle to manage the project and we’ll discuss
how to create a Java project using Gradle and how to implement the business logic of
all remote methods of the service. Finally, we’ll create a server and register the service
to accept client requests.

30 | Chapter 2: Getting Started with gRPC

Gradle is a build automation tool that supports multiple languages,
including Java, Scala, Android, C/C++, and Groovy, and is closely
integrated with development tools like Eclipse and IntelliJ IDEA.
You can install Gradle on your machine by following the steps
given on the official page.

Setting up a Java project. Let’s first create a Gradle Java project (product-info-
service). Once you have then created the project, you will get a project structure like
the following:

 product-info-service

 ├── build.gradle
 ├ . . .
 └── src
 ├── main
 │ ├── java
 │ └── resources
 └── test
 ├── java
 └── resources

Under the src/main directory, create a proto directory and add our ProductInfo ser‐
vice definition file (.proto file) inside the proto directory.

Next, you need to update the build.gradle file and add dependencies and the protobuf
plug-in for Gradle. Update the build.gradle file as shown in Example 2-8.

Example 2-8. Gradle configuration for gRPC Java project

apply plugin: 'java'
apply plugin: 'com.google.protobuf'

repositories {
 mavenCentral()
}

def grpcVersion = '1.24.1'

dependencies {
 compile "io.grpc:grpc-netty:${grpcVersion}"
 compile "io.grpc:grpc-protobuf:${grpcVersion}"
 compile "io.grpc:grpc-stub:${grpcVersion}"
 compile 'com.google.protobuf:protobuf-java:3.9.2'
}

buildscript {
 repositories {

Implementation | 31

https://gradle.org/install

 mavenCentral()
 }
 dependencies {

 classpath 'com.google.protobuf:protobuf-gradle-plugin:0.8.10'
 }
}

protobuf {
 protoc {
 artifact = 'com.google.protobuf:protoc:3.9.2'
 }
 plugins {
 grpc {
 artifact = "io.grpc:protoc-gen-grpc-java:${grpcVersion}"
 }
 }
 generateProtoTasks {
 all()*.plugins {
 grpc {}
 }
 }
}

sourceSets {
 main {
 java {
 srcDirs 'build/generated/source/proto/main/grpc'
 srcDirs 'build/generated/source/proto/main/java'
 }
 }
}

jar {
 manifest {
 attributes "Main-Class": "ecommerce.ProductInfoServer"
 }
 from {
 configurations.compile.collect { it.isDirectory() ? it : zipTree(it) }
 }
}

apply plugin: 'application'

startScripts.enabled = false

gRPC Java library version used in the Gradle project.

External dependencies we need to use in this project.

32 | Chapter 2: Getting Started with gRPC

Gradle protobuf plug-in version we are using in the project. Use plug-in version
0.7.5 if your Gradle version is lower than 2.12.

In the protobuf plug-in, we need to specify the protobuf compiler version and
protobuf Java executable version.

This is to inform IDEs like IntelliJ IDEA, Eclipse, or NetBeans about the gener‐
ated code.

Configure the main class to use when running the application.

Then run the following command to build the library and generate stub code from
the protobuf build plug-in:

$./gradle build

Now we have the Java project ready with autogenerated code. Let’s implement the ser‐
vice interface and add business logic to the remote methods.

Implementing business logic. To start with, let’s create the Java package (ecommerce)
inside the src/main/java source directory and create a Java class (ProductIn‐
foImpl.java) inside the package. Then we’ll implement the remote methods as shown
in Example 2-9.

Example 2-9. gRPC service implementation of ProductInfo service in Java

package ecommerce;

import io.grpc.Status;
import io.grpc.StatusException;

import java.util.HashMap;
import java.util.Map;
import java.util.UUID;

public class ProductInfoImpl extends ProductInfoGrpc.ProductInfoImplBase {

 private Map productMap = new HashMap<String, ProductInfoOuterClass.Product>();

 @Override
 public void addProduct(
 ProductInfoOuterClass.Product request,
 io.grpc.stub.StreamObserver
 <ProductInfoOuterClass.ProductID> responseObserver) {
 UUID uuid = UUID.randomUUID();
 String randomUUIDString = uuid.toString();
 productMap.put(randomUUIDString, request);
 ProductInfoOuterClass.ProductID id =
 ProductInfoOuterClass.ProductID.newBuilder()

Implementation | 33

 .setValue(randomUUIDString).build();
 responseObserver.onNext(id);
 responseObserver.onCompleted();
 }

 @Override
 public void getProduct(
 ProductInfoOuterClass.ProductID request,
 io.grpc.stub.StreamObserver
 <ProductInfoOuterClass.Product> responseObserver) {
 String id = request.getValue();
 if (productMap.containsKey(id)) {
 responseObserver.onNext(
 (ProductInfoOuterClass.Product) productMap.get(id));
 responseObserver.onCompleted();
 } else {
 responseObserver.onError(new StatusException(Status.NOT_FOUND));
 }
 }
}

Extend the abstract class (ProductInfoGrpc.ProductInfoImplBase) that is gen‐
erated from the plug-in. This will allow adding business logic to AddProduct and
GetProduct methods defined in the service definition.

The AddProduct method takes Product(ProductInfoOuterClass.Product) as a
parameter. The Product class is defined in the ProductInfoOuterClass class,
which is generated from the service definition.

The GetProduct method takes ProductID(ProductInfoOuterClass.ProductID)
as a parameter. The ProductID class is defined in the ProductInfoOuterClass
class, which is generated from the service definition.

The responseObserver object is used to send the response back to the client and
close the stream.

Send a response back to the client.

End the client call by closing the stream.

Send an error back to the client.

That’s all you need to do to implement the business logic of the ProductInfo service
in Java. Then we can create a simple server that hosts the service and accepts requests
from the client.

34 | Chapter 2: Getting Started with gRPC

Creating a Java server. In order to expose our service to the outside, we need to create
a gRPC server instance and register our ProductInfo service to the server. The server
will listen on the specified port and dispatch all requests to the relevant service. Let’s
create a main class (ProductInfoServer.java) inside the package as shown in
Example 2-10.

Example 2-10. gRPC server implementation to host ProductInfo service in Java

package ecommerce;

import io.grpc.Server;
import io.grpc.ServerBuilder;

import java.io.IOException;

public class ProductInfoServer {

 public static void main(String[] args)
 throws IOException, InterruptedException {
 int port = 50051;
 Server server = ServerBuilder.forPort(port)
 .addService(new ProductInfoImpl())
 .build()
 .start();
 System.out.println("Server started, listening on " + port);
 Runtime.getRuntime().addShutdownHook(new Thread(() -> {
 System.err.println("Shutting down gRPC server since JVM is " +
 "shutting down");
 if (server != null) {
 server.shutdown();
 }
 System.err.println(“Server shut down");
 }));
 server.awaitTermination();
 }
}

Server instance is created on port 50051. This is the port we want the server to
bind to and where it will listen to incoming messages. Our ProductInfo service
implementation is added to the server.

A runtime shutdown hook is added to shut down the gRPC server when JVM
shuts down.

At the end of the method, the server thread is held until the server gets
terminated.

Implementation | 35

Now we are done with the implementation of the gRPC service in both languages. We
can then proceed to the implementation of the gRPC client.

Developing a gRPC Client
As we did with the gRPC service implementation, we can now discuss how to create
an application to talk with the server. Let’s start off with the generation of the client-
side stubs from the service definition. On top of the generated client stub, we can cre‐
ate a simple gRPC client to connect with our gRPC server and invoke the remote
methods that it offers.

In this sample, we are going to write client applications in both the Java and Go lan‐
guages. But you don’t need to create your server and client in the same language, or
run them on the same platform. Since gRPC works across languages and platforms,
you can create them in any supported language. Let’s discuss the Go implementation
first. If you are interested in the Java implementation, you may skip the next section
and go directly into the Java client.

Implementing a gRPC Go client

Let’s start by creating a new Go module (productinfo/client) and subdirectory
(ecommerce) inside the module. In order to implement the Go client application, we
also need to generate the stub as we have done when implementing the Go service.
Since we need to create the same file (product_info.pb.go) and need to follow the same
steps to generate the stubs, we are not going to mention it here. Please refer to “Gen‐
erating client/server stubs” on page 27 to generate stub files.

Let’s create a new Go file named productinfo_client.go inside the Go module (produc
tinfo/client) and implement the main method to invoke remote methods as shown
in Example 2-11.

Example 2-11. gRPC client application in Go

package main

import (
 "context"
 "log"
 "time"

 pb "productinfo/client/ecommerce"
 "google.golang.org/grpc"

)

const (
 address = "localhost:50051"

36 | Chapter 2: Getting Started with gRPC

)

func main() {

 conn, err := grpc.Dial(address, grpc.WithInsecure())
 if err != nil {
 log.Fatalf("did not connect: %v", err)
 }
 defer conn.Close()
 c := pb.NewProductInfoClient(conn)

 name := "Apple iPhone 11"
 description := `Meet Apple iPhone 11. All-new dual-camera system with
 Ultra Wide and Night mode.`
 price := float32(1000.0)
 ctx, cancel := context.WithTimeout(context.Background(), time.Second)
 defer cancel()
 r, err := c.AddProduct(ctx,
 &pb.Product{Name: name, Description: description, Price: price})
 if err != nil {
 log.Fatalf("Could not add product: %v", err)
 }
 log.Printf("Product ID: %s added successfully", r.Value)

 product, err := c.GetProduct(ctx, &pb.ProductID{Value: r.Value})
 if err != nil {
 log.Fatalf("Could not get product: %v", err)
 }
 log.Printf("Product: ", product.String())

}

Import the package that contains the generated code we created from the proto‐
buf compiler.

Set up a connection with the server from the provided address (“localhost:
50051”). Here we create an unsecured connection between client and server.

Pass the connection and create a stub. This stub instance contains all the remote
methods to invoke the server.

Create a Context to pass with the remote call. Here the Context object contains
metadata such as the identity of the end user, authorization tokens, and the
request’s deadline and it will exist during the lifetime of the request.

Call addProduct method with product details. This returns a product ID if the
action completed successfully. Otherwise it returns an error.

Implementation | 37

Call getProduct with the product ID. This returns product details if the action
completed successfully. Otherwise it returns an error.

Close the connection when everything is done.

Now we have completed building the gRPC client in the Go language. Let’s next cre‐
ate a client using the Java language. This is not a mandatory step to follow. If you are
also interested in building a gRPC client in Java, you can continue; otherwise, you can
skip the next section and go directly to “Building and Running” on page 39.

Implementing a Java client
In order to create a Java client application, we also need to set up a Gradle project
(product-info-client) and generate classes using the Gradle plug-in as we did
when implementing the Java service. Please follow the steps in “Setting up a Java
project” on page 31 to set up a Java client project.

Once you generate the client stub code for your project via the Gradle build tool, let’s
create a new class called ProductInfoClient inside the ecommerce package and add
the content in Example 2-12.

Example 2-12. gRPC client application in Java

package ecommerce;

import io.grpc.ManagedChannel;
import io.grpc.ManagedChannelBuilder;

import java.util.logging.Logger;

/**
* gRPC client sample for productInfo service.
*/
public class ProductInfoClient {

 public static void main(String[] args) throws InterruptedException {
 ManagedChannel channel = ManagedChannelBuilder
 .forAddress("localhost", 50051)
 .usePlaintext()
 .build();

 ProductInfoGrpc.ProductInfoBlockingStub stub =
 ProductInfoGrpc.newBlockingStub(channel);

 ProductInfoOuterClass.ProductID productID = stub.addProduct(
 ProductInfoOuterClass.Product.newBuilder()
 .setName("Apple iPhone 11")
 .setDescription("Meet Apple iPhone 11. " +
 All-new dual-camera system with " +

38 | Chapter 2: Getting Started with gRPC

 "Ultra Wide and Night mode.");
 .setPrice(1000.0f)
 .build());
 System.out.println(productID.getValue());

 ProductInfoOuterClass.Product product = stub.getProduct(productID);
 System.out.println(product.toString());
 channel.shutdown();
 }
}

Create a gRPC channel specifying the server address and port we want to con‐
nect to. Here we are trying to connect to a server running on the same machine
and listening on port 50051. We also enable plaintext, which means we are set‐
ting up an unsecured connection between client and server.

Create the client stub using the newly created channel. We can create two types of
stubs. One is the BlockingStub, which waits until it receives a server response.
The other one is the NonBlockingStub, which doesn’t wait for server response,
but instead registers an observer to receive the response. In this example, we use
a BlockingStub to make the client simple.

Call addProduct method using the product details. This returns a product ID if
the action completed successfully.

Call getProduct with the product ID. Returns the product details if the action
completed successfully.

Close the connection when everything is done so that the network resources that
we used in our application are safely returned back after we are finished.

Now we have finished developing the gRPC client. Let’s make the client and server
talk to each other.

Building and Running
It’s time to build and run the gRPC server and client applications that we have cre‐
ated. You can deploy and run a gRPC application on your local machine, on a virtual
machine, on Docker, or on Kubernetes. In this section, we will discuss how to build
and run the gRPC server and client applications on a local machine.

We will cover how to deploy and run gRPC applications on Docker
and Kubernetes environments in Chapter 7.

Building and Running | 39

Let’s run the gRPC server and client applications that we have just developed in your
local machine. Since our server and client applications are written in two languages,
we are going to build the server application separately.

Building a Go Server
When we implement a Go service, the final package structure in the workspace looks
like the following:

└─ productinfo
 └─ service
 ├─ go.mod
 ├─ main.go
 ├─ productinfo_service.go
 └─ ecommerce
 └── product_info.pb.go

We can build our service to generate a service binary (bin/server). In order to build,
first go to the Go module root directory location (productinfo/service) and execute the
following shell command:

$ go build -i -v -o bin/server

Once the build is successful, an executable file (bin/server) is created under the bin
directory.

Next, let’s set up the Go client!

Building a Go Client
When we implement a Go client, the package structure in the workspace looks like:

└─ productinfo
 └─ client
 ├─ go.mod
 ├──main.go
 └─ ecommerce
 └── product_info.pb.go

We can build the client code the same way we built the Go service using the following
shell command:

$ go build -i -v -o bin/client

Once the build is successful, an executable file (bin/client) is created under the bin
directory. The next step is to run the files!

Running a Go Server and Client
We’ve just built a client and a server. Let’s run them on separate terminals and make
them talk to each other:

40 | Chapter 2: Getting Started with gRPC

// Running Server
$ bin/server
2019/08/08 10:17:58 Starting gRPC listener on port :50051

// Running Client
$ bin/client
2019/08/08 11:20:01 Product ID: 5d0e7cdc-b9a0-11e9-93a4-6c96cfe0687d
added successfully
2019/08/08 11:20:01 Product: id:"5d0e7cdc-b9a0-11e9-93a4-6c96cfe0687d"
 name:"Apple iPhone 11"
 description:"Meet Apple iPhone 11. All-new dual-camera system with
 Ultra Wide and Night mode."
 price:1000

Next we’ll build a Java server.

Building a Java Server
Since we implement the Java service as a Gradle project, we can easily build the
project using the following command:

$ gradle build

Once the build is successful, the executable JAR (server.jar) file is created under the
build/libs directory.

Building a Java Client
Just as with a service, we can easily build the project using the following command:

$ gradle build

Once the build is successful, the executable JAR (client.jar) file is created under the
build/libs directory.

Running a Java Server and Client
We’ve now built both a client and server in the Java language. Let’s run them:

$ java -jar build/libs/server.jar
INFO: Server started, listening on 50051

$ java -jar build/libs/client.jar
INFO: Product ID: a143af20-12e6-483e-a28f-15a38b757ea8 added successfully.
INFO: Product: name: "Apple iPhone 11"
description: "Meet Apple iPhone 11. All-new dual-camera system with
Ultra Wide and Night mode."
price: 1000.0

Now we have built and run our sample successfully on local machines. Once we suc‐
cessfully run the client and server, the client application first invokes the addProduct
method with product details and receives the product identifier of the newly added

Building and Running | 41

product as the response. Then it retrieves the newly added product details by calling
the getProduct method with the product identifier. As we mentioned earlier in this
chapter, we don’t need to write the client in the same language to talk with the server.
We can run a gRPC Java server and Go client and it will work without any issue.

That brings us to the end of the chapter!

Summary
When you develop a gRPC application, you first define a service interface definition
using protocol buffers, a language-agnostic, platform-neutral, extensible mechanism
for serializing structured data. Next, you generate server-side and client-side code for
the programming language of your choice, which simplifies the server- and client-
side logic by providing the low-level communication abstractions. From the server
side, you implement the logic of the method that you expose remotely and run a
gRPC server that binds the service. On the client side, you connect to the remote
gRPC server and invoke the remote method using the generated client-side code.

This chapter is mainly about getting hands-on experience with developing and run‐
ning gRPC server and client applications. The experience you gain by following the
session is quite useful when building a real-world gRPC application because irrespec‐
tive of which language you are using, you need similar steps to build a gRPC applica‐
tion. So, in the next chapter, we will further extend the concepts and technologies you
learned to build real-world use cases.

42 | Chapter 2: Getting Started with gRPC

CHAPTER 3

gRPC Communication Patterns

In the first couple of chapters, you learned the basics of gRPC’s inter-process commu‐
nication techniques and got some hands-on experience in building a simple gRPC-
based application. So far what we have done is define a service interface, implement a
service, run a gRPC server, and invoke service operations remotely through a gRPC
client application. The communication pattern between the client and the server is a
simple request–response style communication, where you get a single response for a
single request. However, with gRPC, you can leverage different inter-process commu‐
nication patterns (or RPC styles) other than the simple request–response pattern.

In this chapter, we’ll explore four fundamental communication patterns used in
gRPC-based applications: unary RPC (simple RPC), server-side streaming, client-side
streaming, and bidirectional streaming. We’ll use some real-world use cases to show‐
case each pattern, define a service definition using a gRPC IDL, and implement both
the service and client side using Go.

Go and Java Code Samples
To maintain consistency, all the code samples in this chapter are
written using Go. But if you are a Java developer, you can also find
the complete Java code samples for the same use cases in the source
code repository for this book.

Simple RPC (Unary RPC)
Let’s begin our discussion on gRPC communication patterns with the simplest RPC
style, simple RPC, which is also known as unary RPC. In simple RPC, when a client
invokes a remote function of a server, the client sends a single request to the server
and gets a single response that is sent along with status details and trailing metadata.
In fact, this is exactly the same communication pattern that you learned in Chapters 1

43

and 2. Let’s try to understand the simple RPC pattern further with a real-world use
case.

Suppose we need to build an OrderManagement service for an online retail application
based on gRPC. One of the methods that we have to implement as part of this service
is a getOrder method, where the client can retrieve an existing order by providing the
order ID. As shown in Figure 3-1, the client is sending a single request with the order
ID and the service responds with a single response that contains the order informa‐
tion. Hence, it follows the simple RPC pattern.

Figure 3-1. Simple/unary RPC

Now let’s proceed to the implementation of this pattern. The first step is to create the
service definition for the OrderManagement service with the getOrder method. As
shown in the code snippet in Example 3-1, we can define the service definition using
protocol buffers, and the getOrder remote method takes a single request order ID
and responds with a single response, which comprises the Order message. The Order
message has the required structure to represent the order in this use case.

Example 3-1. Service definition of OrderManagement with getOrder method that uses
simple RPC pattern

syntax = "proto3";

import "google/protobuf/wrappers.proto";

package ecommerce;

service OrderManagement {
 rpc getOrder(google.protobuf.StringValue) returns (Order);
}

message Order {
 string id = 1;
 repeated string items = 2;
 string description = 3;
 float price = 4;

44 | Chapter 3: gRPC Communication Patterns

 string destination = 5;
}

Use this package to leverage the well-known types such as StringValue.

Remote method for retrieving an order.

Define the Order type.

repeated is used to represent the fields that can be repeated any number of times
including zero in a message. Here one order message can have any number of
items.

Then, using the gRPC service definition proto file, you can generate the server skele‐
ton code and implement the logic of the getOrder method. In the code snippet in
Example 3-2, what we have shown is the Go implementation of the OrderManagement
service. As the input of the getOrder method, you get a single order ID (String) as
the request and you can simply find the order from the server side and respond with
an Order message (Order struct). The Order message can be returned along with a nil
error to tell gRPC that we’ve finished dealing with the RPC and the Order can be
returned to the client.

Example 3-2. Service implementation of OrderManagement with getOrder in Go

// server/main.go
func (s *server) GetOrder(ctx context.Context,
 orderId *wrapper.StringValue) (*pb.Order, error) {
 // Service Implementation.
 ord := orderMap[orderId.Value]
 return &ord, nil
}

The low-level details of the complete message flow of a gRPC
server and client are explained in Chapter 4. In addition to the
method parameters that we have specified for the getOrder
method in your service definition, you can observe that there is
another Context parameter passed to the method in the preceding
Go implementation of the OrderManagement service. Context car‐
ries some of the constructs such as deadlines and cancellations that
are used to control gRPC behavior. We’ll discuss those concepts in
detail in Chapter 5.

Now let’s implement the client-side logic to invoke the getOrder method remotely. As
with the server-side implementation, you can generate code for the preferred lan‐
guage to create the client-side stub and then use that stub to invoke the service. In

Simple RPC (Unary RPC) | 45

Example 3-3, we have used a Go gRPC client to invoke the OrderManagement service.
The first steps, of course, are to set up the connection to the server and initiate the
client stub to invoke the service. Then you can simply invoke the client stub’s getOr
der method to invoke the remote method. As the response, you get an Order message
that contains the order information that we define using protocol buffers in our ser‐
vice definition.

Example 3-3. Client implementation to invoke remote method getOrder using Go

// Setting up a connection to the server.
...
orderMgtClient := pb.NewOrderManagementClient(conn)
...

// Get Order
retrievedOrder , err := orderMgtClient.GetOrder(ctx,
 &wrapper.StringValue{Value: "106"})
log.Print("GetOrder Response -> : ", retrievedOrder)

The simple RPC pattern is quite straightforward to implement and fits well for most
inter-process communication use cases. The implementation is quite similar across
multiple programming languages, and you can find the source code for Go and Java
in the sample source code repository of the book.

Now, since you have a good understanding of the simple RPC communication pat‐
tern, let’s move on to server-streaming RPC.

Server-Streaming RPC
In simple RPC you always had a single request and single response in the communi‐
cation between the gRPC server and gRPC client. In server-side streaming RPC, the
server sends back a sequence of responses after getting the client’s request message.
This sequence of multiple responses is known as a “stream.” After sending all the
server responses, the server marks the end of the stream by sending the server’s status
details as trailing metadata to the client.

Let’s take a real-world use case to understand server-side streaming further. In our
OrderManagement service suppose that we need to build an order search capability
where we can provide a search term and get the matching results (Figure 3-2). Rather
than sending all the matching orders at once, the OrderManagement service can send
the orders as and when they are found. This means the order service client will
receive multiple response messages for a single request that it has sent.

46 | Chapter 3: gRPC Communication Patterns

Figure 3-2. Server-streaming RPC

Now let’s include a searchOrder method in our gRPC service definition of the Order
Management service. As shown in Example 3-4, the method definition is quite similar
to simple RPC, but as the return parameter, you have to specify a stream of orders by
using returns (stream Order) in the proto file of the service definition.

Example 3-4. Service definition with server-side streaming RPC

syntax = "proto3";

import "google/protobuf/wrappers.proto";

package ecommerce;

service OrderManagement {
 ...
 rpc searchOrders(google.protobuf.StringValue) returns (stream Order);
 ...
}

message Order {
 string id = 1;
 repeated string items = 2;
 string description = 3;
 float price = 4;
 string destination = 5;
}

Defining server-side streaming by returning a stream of Order messages.

From the service definition, you can generate the server-side code and then by imple‐
menting the generated interfaces you build the logic of the searchOrder method of
the OrderManagement gRPC service. In the Go implementation shown in
Example 3-5, the SearchOrders method has two parameters: searchQuery, a string
value, and a special parameter OrderManagement_SearchOrdersServer to write our

Server-Streaming RPC | 47

responses to. OrderManagement_SearchOrdersServer acts as a reference object to the
stream that we can write multiple responses to. The business logic here is to find the
matching orders and send them one by one via the stream. When a new order is
found, it is written to the stream using the Send(…) method of the stream reference
object. Once all the responses are written to the stream you can mark the end of the
stream by returning nil, and the server status and other trailing metadata will be sent
to the client.

Example 3-5. Service implementation of OrderManagement with searchOrders in Go

func (s *server) SearchOrders(searchQuery *wrappers.StringValue,
 stream pb.OrderManagement_SearchOrdersServer) error {

 for key, order := range orderMap {
 log.Print(key, order)
 for _, itemStr := range order.Items {
 log.Print(itemStr)
 if strings.Contains(
 itemStr, searchQuery.Value) {
 // Send the matching orders in a stream
 err := stream.Send(&order)
 if err != nil {
 return fmt.Errorf(
 "error sending message to stream : %v",
 err)
 }
 log.Print("Matching Order Found : " + key)
 break
 }
 }
 }
 return nil
}

Find matching orders.

Send matching order through the stream.

Check for possible errors that could occur when streaming messages to the client.

The remote method invocation from the client side is quite similar to simple RPC.
However, here you have to process multiple responses as the server writes multiple
responses to the stream. So in the Go implementation of the gRPC client
(Example 3-6), we retrieve messages from the client-side stream using the Recv()
method and keep doing so until we reach the end of the stream.

48 | Chapter 3: gRPC Communication Patterns

Example 3-6. Client implementation of OrderManagement with searchOrders in Go

// Setting up a connection to the server.
...
 c := pb.NewOrderManagementClient(conn)
...
 searchStream, _ := c.SearchOrders(ctx,
 &wrapper.StringValue{Value: "Google"})

 for {
 searchOrder, err := searchStream.Recv()
 if err == io.EOF {
 break
 }
 // handle other possible errors
 log.Print("Search Result : ", searchOrder)
 }

The SearchOrders function returns a client stream of OrderManagement_Search
OrdersClient, which has a Recv method.

Calling the client stream’s Recv() method to retrieve Order responses one by one.

When the end of the stream is found Recv returns an io.EOF.

Now let’s look at client-streaming RPC, which is pretty much the opposite of server-
streaming RPC.

Client-Streaming RPC
In client-streaming RPC, the client sends multiple messages to the server instead of a
single request. The server sends back a single response to the client. However, the
server does not necessarily have to wait until it receives all the messages from the cli‐
ent side to send a response. Based on this logic you may send the response after read‐
ing one or a few messages from the stream or after reading all the messages.

Let’s further extend our OrderManagement service to understand client-streaming
RPC. Suppose you want to include a new method, updateOrders, in the OrderManage
ment service to update a set of orders (Figure 3-3). Here we want to send the order list
as a stream of messages to the server and server will process that stream and send a
message with the status of the orders that are updated.

Client-Streaming RPC | 49

Figure 3-3. Client-streaming RPC

Then we can include the updateOrders method in our service definition of the Order
Management service as shown in Example 3-7. You can simply use stream order as
the method parameter of updateOrders to denote that updateOrders will get multi‐
ple messages as the input from the client. As the server only sends a single response,
the return value is a single string message.

Example 3-7. Service definition with client-side streaming RPC

syntax = "proto3";

import "google/protobuf/wrappers.proto";

package ecommerce;

service OrderManagement {
...
 rpc updateOrders(stream Order) returns (google.protobuf.StringValue);
...
}

message Order {
 string id = 1;
 repeated string items = 2;
 string description = 3;
 float price = 4;
 string destination = 5;
}

Once we update the service definition, we can generate the server- and client-side
code. At the server side, you need to implement the generated method interface of the
UpdateOrders method of the OrderManagement service. In the Go implementation
shown in Example 3-8, UpdateOrders has an OrderManagement_UpdateOrdersServer
parameter, which is the reference object to the incoming message stream from the cli‐
ent. Therefore, you can read messages via that object by calling the Recv() method.

50 | Chapter 3: gRPC Communication Patterns

Depending on the business logic, you may read a few messages or all the messages
until the end of the stream. The service can send its response simply by calling the
SendAndClose method of the OrderManagement_UpdateOrdersServer object, which
also marks the end of the stream for server-side messages. If the server decides to
prematurely stop reading from the client’s stream, the server should cancel the client
stream so the client knows to stop producing messages.

Example 3-8. Service implementation of OrderManagement with updateOrders method
in Go

func (s *server) UpdateOrders(stream pb.OrderManagement_UpdateOrdersServer) error {

 ordersStr := "Updated Order IDs : "
 for {
 order, err := stream.Recv()
 if err == io.EOF {
 // Finished reading the order stream.
 return stream.SendAndClose(
 &wrapper.StringValue{Value: "Orders processed "
 + ordersStr})
 }
 // Update order
 orderMap[order.Id] = *order

 log.Printf("Order ID ", order.Id, ": Updated")
 ordersStr += order.Id + ", "
 }
}

Read message from the client stream.

Check for end of stream.

Now let’s look at the client-side implementation of the client-streaming RPC use case.
As shown in the following Go implementation (Example 3-9), the client can send
multiple messages via the client-side stream reference using the updateStream.Send
method. Once all the messages are streamed the client can mark the end of the stream
and receive the response from the service. This is done using the CloseAndRecv
method of the stream reference.

Example 3-9. Client implementation of OrderManagement with updateOrders method
in Go

// Setting up a connection to the server.
...
 c := pb.NewOrderManagementClient(conn)
...

Client-Streaming RPC | 51

 updateStream, err := client.UpdateOrders(ctx)

 if err != nil {
 log.Fatalf("%v.UpdateOrders(_) = _, %v", client, err)
 }

 // Updating order 1
 if err := updateStream.Send(&updOrder1); err != nil {
 log.Fatalf("%v.Send(%v) = %v",
 updateStream, updOrder1, err)
 }

 // Updating order 2
 if err := updateStream.Send(&updOrder2); err != nil {
 log.Fatalf("%v.Send(%v) = %v",
 updateStream, updOrder2, err)
 }

 // Updating order 3
 if err := updateStream.Send(&updOrder3); err != nil {
 log.Fatalf("%v.Send(%v) = %v",
 updateStream, updOrder3, err)
 }

 updateRes, err := updateStream.CloseAndRecv()
 if err != nil {
 log.Fatalf("%v.CloseAndRecv() got error %v, want %v",
 updateStream, err, nil)
 }
 log.Printf("Update Orders Res : %s", updateRes)

Invoking UpdateOrders remote method.

Handling errors related to UpdateOrders.

Sending order update via client stream.

Handling errors when sending messages to stream.

Closing the stream and receiving the response.

As a result of this function invocation, you get the response message of the service.
Since now you have a good understanding of both server-streaming and client-
streaming RPC, let’s move on to bidirectional-streaming RPC, which is sort of a com‐
bination of the RPC styles that we discussed.

52 | Chapter 3: gRPC Communication Patterns

Bidirectional-Streaming RPC
In bidirectional-streaming RPC, the client is sending a request to the server as a
stream of messages. The server also responds with a stream of messages. The call has
to be initiated from the client side, but after that, the communication is completely
based on the application logic of the gRPC client and the server. Let’s look at an
example to understand bidirectional-streaming RPC in detail. As illustrated in
Figure 3-4, in our OrderManagement service use case, suppose we need order process‐
ing functionality where you can send a continuous set of orders (the stream of
orders) and process them into combined shipments based on the delivery location
(i.e., orders are organized into shipments based on the delivery destination).

Figure 3-4. Bidirectional-streaming RPC

We can identify the following key steps of this business use case:

• The client application initiates the business use case by setting up the connection
with the server and sending call metadata (headers).

• Once the connection setup is completed, the client application sends a continu‐
ous set of order IDs that need to be processed by the OrderManagement service.

• Each order ID is sent to the server as a separate gRPC message.
• The service processes each order for the specified order ID and organizes them

into combined shipments based on the delivery location of the order.
• A combined shipment may contain multiple orders that should be delivered to

the same destination.
• Orders are processed in batches. When the batch size is reached, all the currently

created combined shipments will be sent back to the client.
• For example, an ordered stream of four where two orders addressed to location X

and two to location Y can be denoted as X, Y, X, Y. And if the batch size is three,

Bidirectional-Streaming RPC | 53

then the created combined orders should be shipment [X, X], shipment [Y], ship‐
ment [Y]. These combined shipments are also sent as a stream back to the client.

The key idea behind this business use case is that once the RPC method is invoked
either the client or service can send messages at any arbitrary time. (This also
includes the end of stream markings from either of the parties.)

Now, let’s move on to the service definition for the preceding use case. As shown in
Example 3-10, we can define a processOrders method so that it takes a stream of
strings as the method parameter to represent the order ID stream and a stream of
CombinedShipments as the return parameter of the method. So, by declaring both the
method parameter and return parameters as a stream, you can define a bidirectional-
streaming RPC method. The combined shipment message is also declared in the ser‐
vice definition and it contains a list of order elements.

Example 3-10. Service definition for bidirectional-streaming RPC

syntax = "proto3";

import "google/protobuf/wrappers.proto";

package ecommerce;

service OrderManagement {
 ...
 rpc processOrders(stream google.protobuf.StringValue)
 returns (stream CombinedShipment);
}

message Order {
 string id = 1;
 repeated string items = 2;
 string description = 3;
 float price = 4;
 string destination = 5;
}

message CombinedShipment {
 string id = 1;
 string status = 2;
 repeated Order ordersList = 3;
}

Both method parameters and return parameters are declared as streams in bidir‐
ectional RPC.

Structure of the Order message.

54 | Chapter 3: gRPC Communication Patterns

Structure of the CombinedShipment message.

Then we can generate the server-side code from the updated service definition. The
service should implement the processOrders method of the OrderManagement ser‐
vice. In the Go implementation shown in Example 3-11, processOrders has an Order
Management_ProcessOrdersServer parameter, which is the reference object to the
message stream between the client and the service. Using this stream object, the ser‐
vice can read the client’s messages that are streamed to the server as well as write the
stream server’s messages back to the client. Using that stream reference object, the
incoming message stream can be read using the Recv() method. In the processOr
ders method, the service can keep on reading the incoming message stream while
writing to the same stream using Send.

To simplify the demonstration, some of the logic of Example 3-10
is not shown. You can find the full code example in this book’s
source code repository.

Example 3-11. Service implementation of OrderManagement with processOrders
method in Go

func (s *server) ProcessOrders(
 stream pb.OrderManagement_ProcessOrdersServer) error {
 ...
 for {
 orderId, err := stream.Recv()
 if err == io.EOF {
 ...
 for _, comb := range combinedShipmentMap {
 stream.Send(&comb)
 }
 return nil
 }
 if err != nil {
 return err
 }

 // Logic to organize orders into shipments,
 // based on the destination.
 ...
 //

 if batchMarker == orderBatchSize {
 // Stream combined orders to the client in batches
 for _, comb := range combinedShipmentMap {
 // Send combined shipment to the client
 stream.Send(&comb)

Bidirectional-Streaming RPC | 55

 }
 batchMarker = 0
 combinedShipmentMap = make(
 map[string]pb.CombinedShipment)
 } else {
 batchMarker++
 }
 }
}

Read order IDs from the incoming stream.

Keep reading until the end of the stream is found.

When the end of the stream is found send all the remaining combined shipments
to the client.

Server-side end of the stream is marked by returning nil.

Orders are processed in batches. When the batch size is met, all the created com‐
bined shipments are streamed to the client.

Writing the combined shipment to the stream.

Here we process incoming orders based on the ID, and when a new combined ship‐
ment is created the service writes it to the same stream (unlike client-streaming RPC
where we write and close the stream with SendAndClose.). The end of the stream at
the server side is marked when we return nil when the client’s end of the stream is
found.

The client-side implementation (Example 3-12) is also quite similar to the previous
examples. When the client invokes the method processOrders via the OrderManage
ment client object, it gets a reference to the stream (streamProcOrder) that is used in
sending messages to the server as well as reading messages from the server.

Example 3-12. Client implementation of OrderManagement with processOrders method
in Go

// Process Order
streamProcOrder, _ := c.ProcessOrders(ctx)
 if err := streamProcOrder.Send(
 &wrapper.StringValue{Value:"102"}); err != nil {
 log.Fatalf("%v.Send(%v) = %v", client, "102", err)
 }

 if err := streamProcOrder.Send(
 &wrapper.StringValue{Value:"103"}); err != nil {

56 | Chapter 3: gRPC Communication Patterns

 log.Fatalf("%v.Send(%v) = %v", client, "103", err)
 }

 if err := streamProcOrder.Send(
 &wrapper.StringValue{Value:"104"}); err != nil {
 log.Fatalf("%v.Send(%v) = %v", client, "104", err)
 }

 channel := make(chan struct{})
 go asncClientBidirectionalRPC(streamProcOrder, channel)
 time.Sleep(time.Millisecond * 1000)

 if err := streamProcOrder.Send(
 &wrapper.StringValue{Value:"101"}); err != nil {
 log.Fatalf("%v.Send(%v) = %v", client, "101", err)
 }

 if err := streamProcOrder.CloseSend(); err != nil {
 log.Fatal(err)
 }

<- channel

func asncClientBidirectionalRPC (
 streamProcOrder pb.OrderManagement_ProcessOrdersClient,
 c chan struct{}) {
 for {
 combinedShipment, errProcOrder := streamProcOrder.Recv()
 if errProcOrder == io.EOF {
 break
 }
 log.Printf("Combined shipment : ", combinedShipment.OrdersList)
 }
 <-c
}

Invoke the remote method and obtain the stream reference for writing and read‐
ing from the client side.

Send a message to the service.

Create a channel to use for Goroutines.

Invoke the function using Goroutines to read the messages in parallel from the
service.

Mimic a delay when sending some messages to the service.

Mark the end of stream for the client stream (order IDs).

Bidirectional-Streaming RPC | 57

Read service’s messages on the client side.

Condition to detect the end of the stream.

The client can send messages to the service and close the stream at any arbitrary time.
The same applies for reading as well. In the prior example, we execute the client mes‐
sage writing and message reading logic in two concurrent threads using the Go lan‐
guage’s Goroutines terminology.

Goroutines

In Go, Goroutines are functions or methods that run concurrently
with other functions or methods. They can be thought of as light‐
weight threads.

So, the client can read and write to the same stream concurrently and both incoming
and outgoing streams operate independently. What we have shown is a somewhat
complex use case to showcase the power of bidirectional RPC. It’s important to
understand that the client and server can read and write in any order—the streams
operate completely independently. Therefore, it is completely up to the client and ser‐
vice to decide the communication pattern between the client and service once the ini‐
tial connection is established.

With that, we have covered all the possible communication patterns that we can use
to build interactions with gRPC-based applications. There is no hard-and-fast rule
when it comes to selecting a communication pattern, but it’s always good to analyze
the business use case and then select the most appropriate pattern.

Before we conclude this discussion on gRPC communication patterns, it’s important
to take a look at how gRPC is used for microservices communication.

Using gRPC for Microservices Communication
One of the main usages of gRPC is to implement microservices and their inter-service
communication. In microservices inter-service communication, gRPC is used along
with other communication protocols and usually gRPC services are implemented as
polyglot services (implemented with different programming languages). To under‐
stand this further, let’s take a real-world scenario (Figure 3-5) of an online retail sys‐
tem, which is an extended version of what we have discussed so far.

In this scenario, we have a number of microservices serving specific business capabil‐
ities of the online relation system. There are services such as the Product service,
which is implemented as a gRPC service, and there are composite services such as the
Catalog service, which calls multiple downstream services to build its business

58 | Chapter 3: gRPC Communication Patterns

capability. As we discussed in Chapter 1, for most of the synchronous message pass‐
ing scenarios, we can use gRPC. When you have certain asynchronous messaging sce‐
narios that may require persistent messaging, then you can use event brokers or
message brokers, such as Kafka, Active MQ, RabbitMQ, and NATS. When you have
to expose certain business functionalities to the external world, then you can use the
conventional REST/OpenAPI-based services or the GraphQL service. Thus services
such as Catalog and Checkout are consuming gRPC-based backend services, and also
exposing RESTful or GraphQL-based external-facing interfaces.

Figure 3-5. A common microservices deployment pattern with gRPC and other protocols

In most of the real-world use cases, these external-facing services are exposed
through an API gateway. That is the place where you apply various nonfunctional
capabilities such as security, throttling, versioning, and so on. Most such APIs lever‐
age protocols such as REST or GraphQL. Although it’s not very common, you may
also expose gRPC as an external-facing service, as long as the API gateway supports
exposing gRPC interfaces. The API gateway implements cross-cutting functionality
such as authentication, logging, versioning, throttling, and load balancing. By using
an API gateway with your gRPC APIs, you are able to deploy this functionality out‐
side of your core gRPC services. One of the other important aspects of this architec‐
ture is that we can leverage multiple programming languages but share the same
service contract between then (i.e., code generation from the same gRPC service

Using gRPC for Microservices Communication | 59

https://kafka.apache.org
https://activemq.apache.org
https://www.rabbitmq.com
http://nats.io

definition). This allows us to pick the appropriate implementation technology based
on the business capability of the service.

Summary
gRPC offers a diverse set of RPC communication styles for building inter-process
communication between gRPC-based applications. In this chapter, we explored four
main communication patterns. Simple RPC is the most basic one; it is pretty much a
simple request–response style remote procedure invocation. Server-streaming RPC
allows you to send multiple messages from the service to the consumer after the first
invocation of the remote method, while client streaming allows you to send multiple
messages from the client to the service. We delve into the details of how we can
implement each of these patterns using some real-world use cases.

The knowledge you gained in this chapter is quite useful for implementing any gRPC
use case so that you can select the most appropriate communication pattern for your
business. While this chapter gave you a solid understanding of gRPC communication
patterns, the low-level communication details that are transparent to the user were
not covered in this chapter. In the next chapter, we will dive deep into how low-level
communication takes place when we have gRPC-based inter-process communication.

60 | Chapter 3: gRPC Communication Patterns

CHAPTER 4

gRPC: Under the Hood

As you have learned in previous chapters, gRPC applications communicate using
RPC over the network. As a gRPC application developer, you don’t need to worry
about the underlying details of how RPC is implemented, what message-encoding
techniques are used, and how RPC works over the network. You use the service defi‐
nition to generate either server- or client-side code for the language of your choice.
All the low-level communication details are implemented in the generated code and
you get some high-level abstractions to work with. However, when building complex
gRPC-based systems and running them in production, it’s vital to know how gRPC
works under the hood.

In this chapter, we’ll explore how the gRPC communication flow is implemented,
what encoding techniques are used, how gRPC uses the underlying network commu‐
nication techniques, and so on. We’ll walk you through the message flow where the
client invokes a given RPC, then discuss how it gets marshaled to a gRPC call that
goes over the network, how the network communication protocol is used, how it is
unmarshaled at the server, how the corresponding service and remote function is
invoked, and so on.

We’ll also look at how we use protocol buffers as the encoding technique and HTTP/2
as the communication protocol for gRPC. Finally, we’ll dive into the implementation
architecture of gRPC and the language support stack built around it. Although the
low-level details that we are going to discuss here may not be of much use in most
gRPC applications, having a good understanding of the low-level communication
details is quite helpful if you are designing a complex gRPC application or trying to
debug existing applications.

61

RPC Flow
In an RPC system, the server implements a set of functions that can be invoked
remotely. The client application can generate a stub that provides abstractions for the
same functions offered from the server so that the client application can directly call
stub functions that invoke the remote functions of the server application.

Let’s look at the ProductInfo service that we discussed in Chapter 2 to understand
how a remote procedure call works over the network. One of the functions that we
implemented as part of our ProductInfo service is getProduct, where the client can
retrieve product details by providing the product ID. Figure 4-1 illustrates the actions
involved when the client calls a remote function.

Figure 4-1. How a remote procedure call works over the network

As shown in Figure 4-1, we can identify the following key steps when the client calls
the getProduct function in the generated stub:

The client process calls the getProduct function in the generated stub.

The client stub creates an HTTP POST request with the encoded message. In
gRPC, all requests are HTTP POST requests with content-type prefixed with
application/grpc. The remote function (/ProductInfo/getProduct) that it
invokes is sent as a separate HTTP header.

The HTTP request message is sent across the network to the server machine.

62 | Chapter 4: gRPC: Under the Hood

When the message is received at the server, the server examines the message
headers to see which service function needs to be called and hands over the mes‐
sage to the service stub.

The service stub parses the message bytes into language-specific data structures.

Then, using the parsed message, the service makes a local call to the getProduct
function.

The response from the service function is encoded and sent back to the client.
The response message follows the same procedure that we observed on the client
side (response→encode→HTTP response on the wire); the message is unpacked
and its value returned to the waiting client process.

These steps are quite similar to most RPC systems like CORBA, Java RMI, etc. The
main difference between gRPC here is the way that it encodes the message, which we
saw in Figure 4-1. For encoding messages, gRPC uses protocol buffers. Protocol buf‐
fers are a language-agnostic, platform-neutral, extensible mechanism for serializing
structured data. You define how you want your data to be structured once, then you
can use the specially generated source code to easily write and read your structured
data to and from a variety of data streams.

Let’s dive into how gRPC uses protocol buffers to encode messages.

Message Encoding Using Protocol Buffers
As we discussed in previous chapters, gRPC uses protocol buffers to write the service
definition for gRPC services. Defining the service using protocol buffers includes
defining remote methods in the service and defining messages we want to send across
the network. For example, let’s take the getProduct method in the ProductInfo ser‐
vice. The getProduct method accepts a ProductID message as an input parameter
and returns a Product message. We can define those input and output message struc‐
tures using protocol buffers as shown in Example 4-1.

Example 4-1. Service definition of ProductInfo service with getProduct function

syntax = "proto3";

package ecommerce;

service ProductInfo {
 rpc getProduct(ProductID) returns (Product);
}

message Product {

Message Encoding Using Protocol Buffers | 63

https://oreil.ly/u9YJI
https://oreil.ly/u9YJI

 string id = 1;
 string name = 2;
 string description = 3;
 float price = 4;
}

message ProductID {
 string value = 1;
}

As per Example 4-1, the ProductID message carries a unique product ID. So it has
only one field with a string type. The Product message has the structure required to
represent the product. It is important to have a message defined correctly, because
how you define the message determines how the messages get encoded. We will dis‐
cuss how message definitions are used when encoding messages later in this section.

Now that we have the message definition, let’s look at how to encode the message and
generate the equivalent byte content. Normally this is handled by the generated
source code for the message definition. All the supported languages have their own
compilers to generate source code. As an application developer, you need to pass the
message definition and generate source code to read and write the message.

Let’s say we need to get product details for product ID 15; we create a message object
with value equal to 15 and pass it to the getProduct function. The following code
snippet shows how to create a ProductID message with value equal to 15 and pass it
to the getProduct function to retrieve product details:

product, err := c.GetProduct(ctx, &pb.ProductID{Value: “15”})

This code snippet is written in Go. Here, the ProductID message definition is in the
generated source code. We create an instance of ProductID and set the value as 15.
Similarly in the Java language, we use generated methods to create a ProductID
instance as shown in the following code snippet:

ProductInfoOuterClass.Product product = stub.getProduct(
 ProductInfoOuterClass.ProductID.newBuilder()
 .setValue("15").build());

In the ProductID message structure that follows, there is one field called value with
the field index 1. When we create a message instance with value equal to 15, the
equivalent byte content consists of a field identifier for the value field followed by its
encoded value. This field identifier is also known as a tag:

message ProductID {
 string value = 1;
}

This byte content structure looks like Figure 4-2, where each message field consists of
a field identifier followed by its encoded value.

64 | Chapter 4: gRPC: Under the Hood

Figure 4-2. Protocol buffer encoded byte stream

This tag builds up two values: the field index and the wire type. The field index is the
unique number we assigned to each message field when defining the message in the
proto file. The wire type is based on the field type, which is the type of data that can
enter the field. This wire type provides information to find the length of the value.
Table 4-1 shows how wire types are mapped to field types. This is the predefined
mapping of wire types and field types. You can refer to the official protocol buffers
encoding document to get more insight into the mapping.

Table 4-1. Available wire types and corresponding field types

Wire type Category Field types
0 Varint int32, int64, uint32, uint64, sint32, sint64, bool, enum

1 64-bit fixed64, sfixed64, double

2 Length-delimited string, bytes, embedded messages, packed repeated fields

3 Start group groups (deprecated)

4 End group groups (deprecated)

5 32-bit fixed32, sfixed32, float

Once we know the field index and wire type of a certain field, we can determine the
tag value of the field using the following equation. Here we left shift the binary repre‐
sentation of the field index by three digits and perform a bitwise union with the
binary representation of the wire type value:

Tag value = (field_index << 3) | wire_type

Figure 4-3 shows how field index and wire type are arranged in a tag value.

Message Encoding Using Protocol Buffers | 65

https://oreil.ly/xeLBr
https://oreil.ly/xeLBr

Figure 4-3. Structure of the tag value

Let’s try to understand this terminology using the example that we used earlier. The
ProductID message has one string field with field index equal to 1 and the wire type
of string is 2. When we convert them to binary representation, the field index looks
like 00000001 and the wire type looks like 00000010. When we put those values into
the preceding equation, the tag value 10 is derived as follows:

Tag value = (00000001 << 3) | 00000010
 = 000 1010

The next step is to encode the value of the message field. Different encoding techni‐
ques are used by protocol buffers to encode the different types of data. For example, if
it is a string value, the protocol buffer uses UTF-8 to encode the value and if it is an
integer value with the int32 field type, it uses an encoding technique called varints.
We will discuss different encoding techniques and when those techniques are applied
in the next section in detail. For now, we will discuss how to encode a string value to
complete the example.

In protocol buffers encoding, string values are encoded using UTF-8 encoding tech‐
nique. UTF (Unicode Transformation Format) uses 8-bit blocks to represent a char‐
acter. It is a variable-length character encoding technique that is also a preferred
encoding technique in web pages and emails.

In our example, the value of the value field in the ProductID message is 15 and the
UTF-8 encoded value of 15 is \x31 \x35. In UTF-8 encoding, the encoded value
length is not fixed. In other words, the number of 8-bit blocks required to represent
the encoded value is not fixed. It varies based upon the value of the message field. In
our example, it is two blocks. So we need to pass the encoded value length (number of
blocks the encoded value spans) before the encoded value. The hexadecimal repre‐
sentation of the encoded value of 15 will look like this:

A 02 31 35

The two righthand bytes here are the UTF-8 encoded value of 15. Value 0x02 repre‐
sents the length of the encoded string value in 8-bit blocks.

When a message is encoded, its tags and values are concatenated into a byte stream.
Figure 4-2 illustrates how field values are arranged into a byte stream when a message
has multiple fields. The end of the stream is marked by sending a tag valued 0.

66 | Chapter 4: gRPC: Under the Hood

We have now completed encoding a simple message with a string field using protocol
buffers. The protocol buffers support various field types and some field types have
different encoding mechanisms. Let’s quickly go through the encoding techniques
used by protocol buffers.

Encoding Techniques
There are many encoding techniques supported by protocol buffers. Different encod‐
ing techniques are applied based on the type of data. For example, string values are
encoded using UTF-8 character encoding, whereas int32 values are encoded using a
technique called varints. Having knowledge about how data is encoded in each data
type is important when designing the message definition because it allows us to set
the most appropriate data type for each message field so that the messages are effi‐
ciently encoded at runtime.

In protocol buffers, supported field types are categorized into different groups and
each group uses a different technique to encode the value. Listed in the next section
are a few commonly used encoding techniques in protocol buffers.

Varints
Varints (variable length integers) are a method of serializing integers using one or
more bytes. They’re based on the idea that most numbers are not uniformly dis‐
tributed. So the number of bytes allocated for each value is not fixed. It depends on
the value. As per Table 4-1, field types like int32, int64, uint32, uint64, sint32, sint64,
bool, and enum are grouped into varints and encoded as varints. Table 4-2 shows
what field types are categorized under varints, and what each type is used for.

Table 4-2. Field type definitions

Field type Definition

int32 A value type that represents signed integers with values that range from negative 2,147,483,648 to positive
2,147,483,647. Note this type is inefficient for encoding negative numbers.

int64 A value type that represents signed integers with values that range from negative 9,223,372,036,854,775,808 to
positive 9,223,372,036,854,775,807. Note this type is inefficient for encoding negative numbers.

uint32 A value type that represents unsigned integers with values that range from 0 to 4,294,967,295.

uint64 A value type that represents unsigned integers with values that range from 0 to 18,446,744,073,709,551,615.

sint32 A value type that represents signed integers with values that range from negative 2,147,483,648 to positive
2,147,483,647. This more efficiently encodes negative numbers than regular int32s.

sint64 A value type that represents signed integers with values that range from negative 9,223,372,036,854,775,808 to
positive 9,223,372,036,854,775,807. This more efficiently encodes negative numbers than regular int64s.

bool A value type that represents two possible values, normally denoted as true or false.

enum A value type that represents a set of named values.

Message Encoding Using Protocol Buffers | 67

In varints, each byte except the last byte has the most significant bit (MSB) set to
indicate that there are further bytes to come. The lower 7 bits of each byte are used to
store the two’s complement representation of the number. Also, the least significant
group comes first, which means that we should add a continuation bit to the low-
order group.

Signed integers
Signed integers are types that represent both positive and negative integer values.
Field types like sint32 and sint64 are considered signed integers. For signed types, zig‐
zag encoding is used to convert signed integers to unsigned ones. Then unsigned
integers are encoded using varints encoding as mentioned previously.

In zigzag encoding, signed integers are mapped to unsigned integers in a zigzag way
through negative and positive integers. Table 4-3 shows how mapping works in zigzag
encoding.

Table 4-3. The zigzag encoding used in signed integers

Original value Mapped value
0 0

-1 1

1 2

-2 3

2 4

As shown in Table 4-3, value zero is mapped to the original value of zero and other
values are mapped to positive numbers in a zigzag way. The negative original values
are mapped to odd positive numbers and positive original values are mapped to even
positive numbers. After zigzag encoding, we get a positive number irrespective of the
sign of the original value. Once we have a positive number, we perform varints to
encode the value.

For negative integer values, it is recommended to use signed integer types like sint32
and sint64 because if we use a regular type such as int32 or int64, negative values are
converted to binary using varints encoding. Varints encoding for a negative integer
value needs more bytes to represent an equivalent binary value than a positive integer
value. So the efficient way of encoding negative value is to convert the negative value
to a positive number and then encode the positive value. In signed integer types like
sint32, the negative values are first converted to positive values using zigzag encoding
and then encoded using varints.

68 | Chapter 4: gRPC: Under the Hood

Nonvarint numbers
Nonvarint types are just the opposite of the varint type. They allocate a fixed number
of bytes irrespective of the actual value. Protocol buffers use two wire types that cate‐
gorize as nonvarint numbers. One is for the 64-bit data types like fixed64, sfixed64,
and double. The other is for 32-bit data types like fixed32, sfixed32, and float.

String type
In protocol buffers, the string type belongs to the length-delimited wire type, which
means that the value is a varint-encoded length followed by the specified number of
bytes of data. String values are encoded using UTF-8 character encoding.

We just summarized the techniques used to encode commonly used data types. You
can find a detailed explanation about protocol buffer encoding on the official page.

Now that we have encoded the message using protocol buffers, the next step is to
frame the message before sending it to the server over the network.

Length-Prefixed Message Framing
In common terms, the message-framing approach constructs information and com‐
munication so that the intended audience can easily extract the information. The
same thing applies to gRPC communication as well. Once we have the encoded data
to send to the other party, we need to package the data in a way that other parties can
easily extract the information. In order to package the message to send over the net‐
work, gRPC uses a message-framing technique called length-prefix framing.

Length-prefix is a message-framing approach that writes the size of each message
before writing the message itself. As you can see in Figure 4-4, before the encoded
binary message there are 4 bytes allocated to specify the size of the message. In gRPC
communication, 4 additional bytes are allocated for each message to set its size. The
size of the message is a finite number, and allocating 4 bytes to represent the message
size means gRPC communication can handle all messages up to 4 GB in size.

Length-Prefixed Message Framing | 69

https://oreil.ly/hH_gL

Figure 4-4. How a gRPC message frame uses length-prefix framing

As illustrated in Figure 4-4, when the message is encoded using protocol buffers, we
get the message in binary format. Then we calculate the size of the binary content and
add it before the binary content in big-endian format.

Big-endian is a way of ordering binary data in the system or mes‐
sage. In big-endian format, the most significant value (the largest
powers of two) in the sequence is stored at the lowest storage
address.

In addition to the message size, the frame also has a 1-byte unsigned integer to indi‐
cate whether the data is compressed or not. A Compressed-Flag value of 1 indicates
that the binary data is compressed using the mechanism declared in the Message-
Encoding header, which is one of the headers declared in HTTP transport. The value
0 indicates that no encoding of message bytes has occurred. We will discuss HTTP
headers supported in gRPC communication in detail in the next section.

So now the message is framed and it’s ready to be sent over the network to the recipi‐
ent. For a client request message, the recipient is the server. For a response message,
the recipient is the client. On the recipient side, once a message is received, it first

70 | Chapter 4: gRPC: Under the Hood

needs to read the first byte to check whether the message is compressed or not. Then
the recipient reads the next four bytes to get the size of the encoded binary message.
Once the size is known, the exact length of bytes can be read from the stream. For
unary/simple messages, we will have only one length-prefixed message, and for
streaming messages, we will have multiple length-prefixed messages to process.

Now you have a good understanding of how messages are prepared to deliver to the
recipient over the network. In the next section, we are going to discuss how gRPC
sends those length-prefixed messages over the network. Currently, the gRPC core
supports three transport implementations: HTTP/2, Cronet, and in-process. Among
them, the most common transport for sending messages is HTTP/2. Let’s discuss how
gRPC utilizes the HTTP/2 network to send messages efficiently.

gRPC over HTTP/2
HTTP/2 is the second major version of the internet protocol HTTP. It was introduced
to overcome some of the issues encountered with security, speed, etc. in the previous
version (HTTP/1.1). HTTP/2 supports all of the core features of HTTP/1.1 but in a
more efficient way. So applications written in HTTP/2 are faster, simpler, and more
robust.

gRPC uses HTTP/2 as its transport protocol to send messages over the network. This
is one of the reasons why gRPC is a high-performance RPC framework. Let’s explore
the relationship between gRPC and HTTP/2.

In HTTP/2, all communication between a client and server is per‐
formed over a single TCP connection that can carry any number of
bidirectional flows of bytes. To understand the HTTP/2 process,
you should be familiar with the following important terminology:

• Stream: A bidirectional flow of bytes within an established
connection. A stream may carry one or more messages.

• Frame: The smallest unit of communication in HTTP/2. Each
frame contains a frame header, which at a minimum identifies
the stream to which the frame belongs.

• Message: A complete sequence of frames that map to a logical
HTTP message that consists of one or more frames. This
allows the messages to be multiplexed, by allowing the client
and server to break down the message into independent
frames, interleave them, and then reassemble them on the
other side.

gRPC over HTTP/2 | 71

https://oreil.ly/D0laq
https://oreil.ly/lRgXF

As you can see in Figure 4-5, the gRPC channel represents a connection to an end‐
point, which is an HTTP/2 connection. When the client application creates a gRPC
channel, behind the scenes it creates an HTTP/2 connection with the server. Once the
channel is created we can reuse it to send multiple remote calls to the server. These
remote calls are mapped to streams in HTTP/2. Messages that are sent in the remote
call are sent as HTTP/2 frames. A frame may carry one gRPC length-prefixed mes‐
sage, or if a gRPC message is quite large it might span multiple data frames.

Figure 4-5. How gRPC semantics relate to HTTP/2

In the previous section, we discussed how to frame our message to a length-prefixed
message. When we send them over the network as a request or response message, we
need to send additional headers along with the message. Let’s discuss how to struc‐
ture request/response messages and which headers need to pass for each message in
the next sections.

Request Message
The request message is the one that initiates the remote call. In gRPC, the request
message is always triggered by the client application and it consists of three main
components: request headers, the length-prefixed message, and the end of stream flag
as shown in Figure 4-6. The remote call is initiated once the client sends request
headers. Then, length-prefixed messages are sent in the call. Finally, the EOS (end of
stream) flag is sent to notify the recipient that we finished sending the request
message.

Figure 4-6. Sequence of message elements in request message

72 | Chapter 4: gRPC: Under the Hood

Let’s use the same getProduct function in the ProductInfo service to explain how
the request message is sent in HTTP/2 frames. When we call the getProduct func‐
tion, the client initiates a call by sending request headers as shown here:

HEADERS (flags = END_HEADERS)
:method = POST
:scheme = http
:path = /ProductInfo/getProduct
:authority = abc.com
te = trailers
grpc-timeout = 1S
content-type = application/grpc
grpc-encoding = gzip
authorization = Bearer xxxxxx

Defines the HTTP method. For gRPC, the :method header is always POST.

Defines the HTTP scheme. If TLS (Transport Level Security) is enabled, the
scheme is set to “https,” otherwise it is “http.”

Defines the endpoint path. For gRPC, this value is constructed as “/” {service
name} “/” {method name}.

Defines the virtual hostname of the target URI.

Defines detection of incompatible proxies. For gRPC, the value must be “trailers.”

Defines call timeout. If not specified, the server should assume an infinite
timeout.

Defines the content-type. For gRPC, the content-type should begin with applica
tion/grpc. If not, gRPC servers will respond with an HTTP status of 415
(Unsupported Media Type).

Defines the message compression type. Possible values are identity, gzip,
deflate, snappy, and {custom}.

This is optional metadata. authorization metadata is used to access the secure
endpoint.

gRPC over HTTP/2 | 73

Some other notes on this example:

• Header names starting with “:” are called reserved headers and
HTTP/2 requires reserved headers to appear before other
headers.

• Headers passed in gRPC communication are categorized into
two types: call-definition headers and custom metadata.

• Call-definition headers are predefined headers supported by
HTTP/2. Those headers should be sent before custom meta‐
data.

• Custom metadata is an arbitrary set of key-value pairs defined
by the application layer. When you are defining custom meta‐
data, you need to make sure not to use a header name starting
with grpc-. This is listed as a reserved name in the gRPC core.

Once the client initiates the call with the server, the client sends length-prefixed mes‐
sages as HTTP/2 data frames. If the length-prefixed message doesn’t fit one data
frame, it can span to multiple data frames. The end of the request message is indica‐
ted by adding an END_STREAM flag on the last DATA frame. When no data remains to be
sent but we need to close the request stream, the implementation must send an empty
data frame with the END_STREAM flag:

DATA (flags = END_STREAM)
<Length-Prefixed Message>

This is just an overview of the structure of the gRPC request message. You can find
more details in the official gRPC GitHub repository.

Similar to the request message, the response message also has its own structure. Let’s
look at the structure of response messages and the related headers.

Response Message
The response message is generated by the server in response to the client’s request.
Similar to the request message, in most cases the response message also consists of
three main components: response headers, length-prefixed messages, and trailers.
When there is no length-prefixed message to send as a response to the client, the
response message consists only of headers and trailers as shown in Figure 4-7.

Figure 4-7. Sequence of message elements in a response message

74 | Chapter 4: gRPC: Under the Hood

https://oreil.ly/VIhYs

Let’s look at the same example to explain the HTTP/2 framing sequence of the
response message. When the server sends a response to the client, it first sends
response headers as shown here:

HEADERS (flags = END_HEADERS)
:status = 200
grpc-encoding = gzip
content-type = application/grpc

Indicates the status of the HTTP request.

Defines the message compression type. Possible values include identity, gzip,
deflate, snappy, and {custom}.

Defines the content-type. For gRPC, the content-type should begin with appli
cation/grpc.

Similar to the request headers, custom metadata that contains an
arbitrary set of key-value pairs defined by the application layer can
be set in the response headers.

Once the server sends response headers, length-prefixed messages are sent as
HTTP/2 data frames in the call. Similar to the request message, if the length-prefixed
message doesn’t fit one data frame, it can span to multiple data frames. As shown in
the following, the END_STREAM flag isn’t sent with data frames. It is sent as a separate
header called a trailer:

DATA
<Length-Prefixed Message>

In the end, trailers are sent to notify the client that we finished sending the response
message. Trailers also carry the status code and status message of the request:

HEADERS (flags = END_STREAM, END_HEADERS)
grpc-status = 0 # OK
grpc-message = xxxxxx

Defines the gRPC status code. gRPC uses a set of well-defined status codes. You
can find the definition of status codes in the official gRPC documentation.

Defines the description of the error. This is optional. This is only set when there
is an error in processing the request.

gRPC over HTTP/2 | 75

https://oreil.ly/3MH72

Trailers are also delivered as HTTP/2 header frames but at the end
of the response message. The end of the response stream is indica‐
ted by setting the END_STREAM flag in trailer headers. Additionally, it
contains the grpc-status and grpc-message headers.

In certain scenarios, there can be an immediate failure in the request call. In those
cases, the server needs to send a response back without the data frames. So the server
sends only trailers as a response. Those trailers are also delivered as an HTTP/2
header frame and also contain the END_STREAM flag. Additionally, the following head‐
ers are included in trailers:

• HTTP-Status → :status
• Content-Type → content-type
• Status → grpc-status
• Status-Message → grpc-message

Now that we know how a gRPC message flows over an HTTP/2 connection, let’s try
to understand the message flow of different communication patterns in gRPC.

Understanding the Message Flow in gRPC Communication Patterns
In the previous chapter, we discussed four communication patterns supported by
gRPC. They are simple RPC, server-streaming RPC, client-streaming RPC, and
bidirectional-streaming RPC. We also discussed how those communication patterns
work using real-world use cases. In this section, we are going to look at those patterns
again from a different angle. Let’s discuss how each pattern works at the transport
level with the knowledge we collected in this chapter.

Simple RPC
In simple RPC you always have a single request and a single response in the commu‐
nication between the gRPC server and gRPC client. As shown in Figure 4-8, the
request message contains headers followed by a length-prefixed message, which can
span one or more data frames. An end of stream (EOS) flag is added at the end of the
message to half-close the connection at the client side and mark the end of the
request message. Here “half-close the connection” means the client closes the connec‐
tion on its side so the client is no longer able to send messages to the server but still
can listen to the incoming messages from the server. The server creates the response
message only after receiving the complete message on the server side. The response
message contains a header frame followed by a length-prefixed message. Communi‐
cation ends once the server sends the trailing header with status details.

76 | Chapter 4: gRPC: Under the Hood

Figure 4-8. Simple RPC: message flow

This is the simplest communication pattern. Let’s move on to a bit more complex
server-streaming RPC scenario.

Server-streaming RPC
From the client perspective, both simple RPC and server-streaming RPC have the
same request message flow. In both cases, we send one request message. The main
difference is on the server side. Rather than sending one response message to the cli‐
ent, the server sends multiple messages. The server waits until it receives the comple‐
ted request message and sends the response headers and multiple length-prefixed
messages as shown in Figure 4-9. Communication ends once the server sends the
trailing header with status details.

Figure 4-9. Server-streaming RPC: message flow

gRPC over HTTP/2 | 77

Now let’s look at client-streaming RPC, which is pretty much the opposite of server-
streaming RPC.

Client-streaming RPC
In client-streaming RPC, the client sends multiple messages to the server and the
server sends one response message in reply. The client first sets up the connection
with the server by sending the header frames. Once the connection is set up, the cli‐
ent sends multiple length-prefixed messages as data frames to the server as shown in
Figure 4-10. In the end, the client half-closes the connection by sending an EOS flag
in the last data frame. In the meantime, the server reads the messages received from
the client. Once it receives all messages, the server sends a response message along
with the trailing header and closes the connection.

Figure 4-10. Client-streaming RPC: message flow

Now let’s move onto the last communication pattern, bidirectional RPC, in which the
client and server are both sending multiple messages to each other until they close the
connection.

Bidirectional-streaming RPC
In this pattern, the client sets up the connection by sending header frames. Once the
connection is set up, the client and server both send length-prefixed messages
without waiting for the other to finish. As shown in Figure 4-11, both client and
server send messages simultaneously. Both can end the connection at their side,
meaning they can’t send any more messages.

78 | Chapter 4: gRPC: Under the Hood

Figure 4-11. Bidirectional-streaming RPC: message flow

With that, we have come to the end of our in-depth tour of gRPC communication.
Network and transport-related operations in communication are normally handled at
the gRPC core layer and you don’t need to be aware of the details as a gRPC applica‐
tion developer.

Before wrapping up this chapter, let’s look at the gRPC implementation architecture
and the language stack.

gRPC Implementation Architecture
As shown in Figure 4-12, gRPC implementation can be divided into multiple layers.
The base layer is the gRPC core layer. It is a thin layer and it abstracts all the network
operations from the upper layers so that application developers can easily make RPC
calls over the network. The core layer also provides extensions to the core functional‐
ity. Some of the extension points are authentication filters to handle call security and
a deadline filter to implement call deadlines, etc.

gRPC is natively supported by the C/C++, Go, and Java languages. gRPC also pro‐
vides language bindings in many popular languages such as Python, Ruby, PHP, etc.
These language bindings are wrappers over the low-level C API.

Finally, the application code goes on top of language bindings. This application layer
handles the application logic and data encoding logic. Normally developers generate
source code for data encoding logic using compilers provided by different languages.
For example, if we use protocol buffers for encoding data, the protocol buffer com‐
piler can be used to generate source code. So developers can write their application
logic by invoking the methods of generated source code.

gRPC Implementation Architecture | 79

Figure 4-12. gRPC native implementation architecture

With that, we have covered most of the low-level implementation and execution
details of gRPC-based applications. As an application developer, it is always better to
have an understanding of the low-level details about the techniques you’re going to
use in the application. It not only helps to design robust applications, but also helps in
troubleshooting application issues easily.

Summary
gRPC builds on top of two fast and efficient protocols called protocol buffers and
HTTP/2. Protocol buffers are a data serialization protocol that is a language-agnostic,
platform-neutral, and extensible mechanism for serializing structured data. Once
serialized, this protocol produces a binary payload that is smaller in size than a nor‐
mal JSON payload and is strongly typed. This serialized binary payload then travels
over the binary transport protocol called HTTP/2.

HTTP/2 is the next major version of the internet protocol HTTP. HTTP/2 is fully
multiplexed, which means that HTTP/2 can send multiple requests for data in paral‐
lel over a single TCP connection. This makes applications written in HTTP/2 faster,
simpler, and more robust than others.

All these factors make gRPC a high-performance RPC framework.

In this chapter we covered low-level details about gRPC communication. These
details may be not essential to develop a gRPC application, because they are already
handled by the library, but understanding low-level gRPC message flow is absolutely
essential when it comes to troubleshooting gRPC communication-related issues when
you use gRPC in production. In the next chapter, we’ll discuss some advanced capa‐
bilities provided by gRPC to cater to real-world requirements.

80 | Chapter 4: gRPC: Under the Hood

CHAPTER 5

gRPC: Beyond the Basics

When you build real-world gRPC applications you may have to augment them with
various capabilities to meet requirements such as intercepting incoming and outgo‐
ing RPC, handling network delays resiliently, handling errors, sharing metadata
between services and consumers, and so on.

To maintain consistency, all samples in this chapter are explained
using Go. If you’re more familiar with Java, you can refer to the
Java samples in the source code repository for the same use cases.

In this chapter, you will learn some key advanced gRPC capabilities including using
gRPC interceptors to intercept RPCs on the server and client sides, using deadlines to
specify the wait time for an RPC to complete, error-handling best practices on the
server and client sides, using multiplexing to run multiple services on the same
server, sharing custom metadata between applications, using load-balancing and
name resolution techniques when calling other services, and compressing RPC calls
to effectively use the network bandwidth.

Let’s begin our discussion with gRPC interceptors.

Interceptors
As you build gRPC applications, you may want to execute some common logic before
or after the execution of the remote function, for either client or server applications.
In gRPC you can intercept that RPC’s execution to meet certain requirements such as
logging, authentication, metrics, etc., using an extension mechanism called an inter‐
ceptor. gRPC provides simple APIs to implement and install interceptors in your

81

client and server gRPC applications. They are one of the key extension mechanisms
in gRPC and are quite useful in use cases such as logging, authentication, authoriza‐
tion, metrics, tracing, and any other customer requirements.

Interceptors are not supported in all languages that support gRPC,
and the implementation of interceptors in each language may be
different. In this book we only cover Go and Java.

gRPC interceptors can be categorized into two types based on the type of RPC calls
they intercept. For unary RPC you can use unary interceptors, while for streaming
RPC you can use streaming interceptors. These interceptors can be used on the gRPC
server side or on the gRPC client side. First, let’s start by looking at using interceptors
on the server side.

Server-Side Interceptors
When a client invokes a remote method of a gRPC service, you can execute a com‐
mon logic prior to the execution of the remote methods by using a server-side inter‐
ceptor. This helps when you need to apply certain features such as authentication
prior to invoking the remote method. As shown in Figure 5-1, you can plug one or
more interceptors into any gRPC server that you develop. For example, to plug a new
server-side interceptor into your OrderManagement gRPC service, you can implement
the interceptor and register it when you create the gRPC server.

Figure 5-1. Server-side interceptors

82 | Chapter 5: gRPC: Beyond the Basics

On the server side, the unary interceptor allows you to intercept the unary RPC call
while the streaming interceptor intercepts the streaming RPC. Let’s first discuss
server-side unary interceptors.

Unary interceptor
If you want to intercept the unary RPC of your gRPC service at the server side, you’ll
need to implement a unary interceptor for your gRPC server. As shown in the Go
code snippet in Example 5-1, you can do this by implementing a function of type
UnaryServerInterceptor and registering that function when you create a gRPC
server. UnaryServerInterceptor is the type for a server-side unary interceptor with
the following signature:

func(ctx context.Context, req interface{}, info *UnaryServerInfo,
 handler UnaryHandler) (resp interface{}, err error)

Inside this function you get full control of all unary RPC calls that are coming to your
gRPC server.

Example 5-1. gRPC server-side unary interceptor

// Server - Unary Interceptor
func orderUnaryServerInterceptor(ctx context.Context, req interface{},
 info *grpc.UnaryServerInfo, handler grpc.UnaryHandler)
 (interface{}, error) {

 // Preprocessing logic
 // Gets info about the current RPC call by examining the args passed in
 log.Println("======= [Server Interceptor] ", info.FullMethod)

 // Invoking the handler to complete the normal execution of a unary RPC.
 m, err := handler(ctx, req)

 // Post processing logic
 log.Printf(" Post Proc Message : %s", m)
 return m, err
}

// ...

func main() {

...
 // Registering the Interceptor at the server-side.
 s := grpc.NewServer(
 grpc.UnaryInterceptor(orderUnaryServerInterceptor))
...

Interceptors | 83

Preprocessing phase: this is where you can intercept the message prior to invok‐
ing the respective RPC.

Invoking the RPC method via UnaryHandler.

Postprocessing phase: you can process the response from the RPC invocation.

Sending back the RPC response.

Registering the unary interceptor with the gRPC server.

The implementation of a server-side unary interceptor can usually be divided into
three parts: preprocessing, invoking the RPC method, and postprocessing. As the
name implies, the preprocessor phase is executed prior to invoking the remote
method intended in the RPC call. In the preprocessor phase, users can get info about
the current RPC call by examining the args passed in, such as RPC context, RPC
request, and server information. Thus, during the preprocessor phase you can even
modify the RPC call.

Then, in the invoker phase, you have to call the gRPC UnaryHandler to invoke the
RPC method. Once you invoke the RPC, the postprocessor phase is executed. This
means that the response for the RPC call goes through the postprocessor phase. In
the phase, you can deal with the returned reply and error when required. Once the
postprocessor phase is completed, you need to return the message and the error as
the return parameters of your interceptor function. If no postprocessing is required,
you can simply return the handler call (handler(ctx, req)).

Next, let’s discuss streaming interceptors.

Stream interceptor
The server-side streaming interceptor intercepts any streaming RPC calls that the
gRPC server deals with. The stream interceptor includes a preprocessing phase and a
stream operation interception phase.

As shown in the Go code snippet in Example 5-2, suppose that we want to intercept
streaming RPC calls of the OrderManagement service. StreamServerInterceptor is
the type for server-side stream interceptors. orderServerStreamInterceptor is an
interceptor function of type StreamServerInterceptor with the signature:

func(srv interface{}, ss ServerStream, info *StreamServerInfo,
 handler StreamHandler) error

Similar to a unary interceptor, in the preprocessor phase, you can intercept a stream‐
ing RPC call before it goes to the service implementation. After the preprocessor
phase, you can then invoke the StreamHandler to complete the execution of RPC

84 | Chapter 5: gRPC: Beyond the Basics

invocation of the remote method. After the preprocessor phase, you can intercept the
streaming RPC message by using an interface known as a wrapper stream that imple‐
ments the grpc.ServerStream interface. You can pass this wrapper structure when
you invoke grpc.StreamHandler with handler(srv, newWrappedStream(ss)). The
wrapper of grpc.ServerStream intercepts the streaming messages sent or received by
the gRPC service. It implements the SendMsg and RecvMsg functions, which will be
invoked when the service receives or sends an RPC streaming message.

Example 5-2. gRPC server-side streaming interceptor

// Server - Streaming Interceptor
// wrappedStream wraps around the embedded grpc.ServerStream,
// and intercepts the RecvMsg and SendMsg method call.

type wrappedStream struct {
 grpc.ServerStream
}

func (w *wrappedStream) RecvMsg(m interface{}) error {
 log.Printf("====== [Server Stream Interceptor Wrapper] " +
 "Receive a message (Type: %T) at %s",
 m, time.Now().Format(time.RFC3339))
 return w.ServerStream.RecvMsg(m)
}

func (w *wrappedStream) SendMsg(m interface{}) error {
 log.Printf("====== [Server Stream Interceptor Wrapper] " +
 "Send a message (Type: %T) at %v",
 m, time.Now().Format(time.RFC3339))
 return w.ServerStream.SendMsg(m)
}

func newWrappedStream(s grpc.ServerStream) grpc.ServerStream {
 return &wrappedStream{s}
}

func orderServerStreamInterceptor(srv interface{},
 ss grpc.ServerStream, info *grpc.StreamServerInfo,
 handler grpc.StreamHandler) error {
 log.Println("====== [Server Stream Interceptor] ",
 info.FullMethod)
 err := handler(srv, newWrappedStream(ss))
 if err != nil {
 log.Printf("RPC failed with error %v", err)
 }
 return err

Interceptors | 85

}

...
// Registering the interceptor
s := grpc.NewServer(
 grpc.StreamInterceptor(orderServerStreamInterceptor))

…

Wrapper stream of the grpc.ServerStream.

Implementing the RecvMsg function of the wrapper to process messages received
with stream RPC.

Implementing the SendMsg function of the wrapper to process messages sent with
stream RPC.

Creating an instance of the new wrapper stream.

Streaming interceptor implementation.

Preprocessor phase.

Invoking the streaming RPC with the wrapper stream.

Registering the interceptor.

To understand the behavior of the streaming interceptor on the server side, look at
the following output from the gRPC server logs. Based on the order in which each log
message is printed you can identify the behavior of the streaming interceptor. The
streaming remote method that we have invoked here is SearchOrders, which is a
server-streaming RPC:

[Server Stream Interceptor] /ecommerce.OrderManagement/searchOrders
[Server Stream Interceptor Wrapper] Receive a message

Matching Order Found : 102 -> Writing Order to the stream ...
[Server Stream Interceptor Wrapper] Send a message...
Matching Order Found : 104 -> Writing Order to the stream ...
[Server Stream Interceptor Wrapper] Send a message...

Client-side interceptor terminology is quite similar to that of server-side interceptors,
with some subtle variations as to the interfaces and function signatures. Let’s move on
to the details of client-side interceptors.

86 | Chapter 5: gRPC: Beyond the Basics

Client-Side Interceptors
When a client invokes an RPC call to invoke a remote method of a gRPC service, you
can intercept those RPC calls on the client side. As shown in Figure 5-2, with client-
side interceptors, you can intercept unary RPC calls as well as streaming RPC calls.

Figure 5-2. Client-side interceptors

This is particularly useful when you need to implement certain reusable features, such
as securely calling a gRPC service outside the client application code.

Unary interceptor
A client-side unary RPC interceptor is used for intercepting the unary RPC client
side. UnaryClientInterceptor is the type for a client-side unary interceptor that has
a function signature as follows:

func(ctx context.Context, method string, req, reply interface{},
 cc *ClientConn, invoker UnaryInvoker, opts ...CallOption) error

As we saw with the server-side unary interceptor, the client-side unary interceptor
has different phases. Example 5-3 shows the basic Go implementation of a unary
interceptor on the client side. In the preprocessor phase, you can intercept the RPC
calls before invoking the remote method. Here you will have access to the informa‐
tion about the current RPC call by examining the args passed in, such as RPC con‐
text, method string, request to be sent, and CallOptions configured. So, you can even
modify the original RPC call before it is sent to the server application. Then using the
UnaryInvoker argument you can invoke the actual unary RPC. In the postprocessor
phase, you can access the response or the error results of the RPC invocation.

Interceptors | 87

Example 5-3. gRPC client-side unary interceptor

func orderUnaryClientInterceptor(
 ctx context.Context, method string, req, reply interface{},
 cc *grpc.ClientConn,
 invoker grpc.UnaryInvoker, opts ...grpc.CallOption) error {
 // Preprocessor phase
 log.Println("Method : " + method)

 // Invoking the remote method
 err := invoker(ctx, method, req, reply, cc, opts...)

 // Postprocessor phase
 log.Println(reply)

 return err
}
...

func main() {
 // Setting up a connection to the server.
 conn, err := grpc.Dial(address, grpc.WithInsecure(),
 grpc.WithUnaryInterceptor(orderUnaryClientInterceptor))
...

Preprocessing phase has access to the RPC request prior to sending it out to the
server.

Invoking the RPC method via UnaryInvoker.

Postprocessing phase where you can process the response or error results.

Returning an error back to the gRPC client application along with a reply, which
is passed as an argument.

Setting up a connection to the server by passing a unary interceptor as a dial
option.

Registering the interceptor function is done inside the grpc.Dial operation using
grpc.WithUnaryInterceptor.

Stream interceptor
The client-side streaming interceptor intercepts any streaming RPC calls that the
gRPC client deals with. The implementation of the client-side stream interceptor is
quite similar to that of the server side. StreamClientInterceptor is the type for a
client-side stream interceptor; it is a function type with this signature:

88 | Chapter 5: gRPC: Beyond the Basics

func(ctx context.Context, desc *StreamDesc, cc *ClientConn,
 method string, streamer Streamer,
 opts ...CallOption) (ClientStream, error)

As shown in Example 5-4, the client-side stream interceptor implementation includes
preprocessing and stream operation interception.

Example 5-4. gRPC client-side stream interceptor

func clientStreamInterceptor(
 ctx context.Context, desc *grpc.StreamDesc,
 cc *grpc.ClientConn, method string,
 streamer grpc.Streamer, opts ...grpc.CallOption)
 (grpc.ClientStream, error) {
 log.Println("======= [Client Interceptor] ", method)
 s, err := streamer(ctx, desc, cc, method, opts...)
 if err != nil {
 return nil, err
 }
 return newWrappedStream(s), nil
}

type wrappedStream struct {
 grpc.ClientStream
}

func (w *wrappedStream) RecvMsg(m interface{}) error {
 log.Printf("====== [Client Stream Interceptor] " +
 "Receive a message (Type: %T) at %v",
 m, time.Now().Format(time.RFC3339))
 return w.ClientStream.RecvMsg(m)
}

func (w *wrappedStream) SendMsg(m interface{}) error {
 log.Printf("====== [Client Stream Interceptor] " +
 "Send a message (Type: %T) at %v",
 m, time.Now().Format(time.RFC3339))
 return w.ClientStream.SendMsg(m)
}

func newWrappedStream(s grpc.ClientStream) grpc.ClientStream {
 return &wrappedStream{s}
}

...

func main() {
 // Setting up a connection to the server.
 conn, err := grpc.Dial(address, grpc.WithInsecure(),

Interceptors | 89

 grpc.WithStreamInterceptor(clientStreamInterceptor))
...

Preprocessing phase has access to the RPC request prior to sending it out to the
server.

Calling the passed-in streamer to get a ClientStream.

Wrapping around the ClientStream, overloading its methods with intercepting
logic, and returning it to the client application.

Wrapper stream of grpc.ClientStream.

Function to intercept messages received from streaming RPC.

Function to intercept messages sent from streaming RPC.

Registering a streaming interceptor.

Intercepting for stream operations is done via a wrapper implementation of the
stream where you have to implement a new structure wrapping grpc.ClientStream.
Here you implement two wrapped stream methods, RecvMsg and SendMsg, that can be
used to intercept streaming messages received or sent from the client side. The regis‐
tration of the interceptor is the same as for the unary interceptor and is done with the
grpc.Dial operation.

Let’s look at deadlines, another capability you’ll often need to apply when calling
gRPC services from the client application.

Deadlines
Deadlines and timeouts are two commonly used patterns in distributed computing.
Timeouts allow you to specify how long a client application can wait for an RPC to
complete before it terminates with an error. A timeout is usually specified as a dura‐
tion and locally applied at each client side. For example, a single request may consist
of multiple downstream RPCs that chain together multiple services. So we can apply
timeouts, relative to each RPC, at each service invocation. Therefore, timeouts cannot
be directly applied for the entire life cycle of the request. That’s where we need to use
deadlines.

A deadline is expressed in absolute time from the beginning of a request (even if the
API presents them as a duration offset) and applied across multiple service invoca‐
tions. The application that initiates the request sets the deadline and the entire
request chain needs to respond by the deadline. gRPC APIs supports using deadlines

90 | Chapter 5: gRPC: Beyond the Basics

for your RPC. For many reasons, it is always good practice to use deadlines in your
gRPC applications. gRPC communication happens over the network, so there can be
delays between the RPC calls and responses. Also, in certain cases the gRPC service
itself can take more time to respond depending on the service’s business logic. When
client applications are developed without using deadlines, they infinitely wait for a
response for RPC requests that are initiated and resources will be held for all in-flight
requests. This puts the service as well as the client at risk of running out of resources,
increasing the latency of the service; this could even crash the entire gRPC service.

The example scenario shown in Figure 5-3 illustrates a gRPC client application call‐
ing a product management service that again invokes the inventory service.

The client application sets a deadline offset (i.e., deadline = current time + offset) of
50 ms. The network latency between the client and ProductMgt service is 0 ms and
the processing latency of the ProductMgt service is 20 ms. The product management
service has to set a deadline offset of 30 ms. Since the inventory service takes 30 ms to
respond, the deadline event would occur on both client sides (ProductMgt invokes
the Inventory service and the client application).

The latency added from the business logic of the ProductMgt service is 20 ms. Then
the ProductMgt service’s invocation logic triggers the deadline-exceeded scenario and
propagates it back to the client application as well. Therefore, when using deadlines,
make sure that they are applied across all services.

Figure 5-3. Using deadlines when calling services

A client application can set a deadline when it initiates a connection with a gRPC ser‐
vice. Once the RPC call is made, the client application waits for the duration specified
by the deadline; if the response for the RPC call is not received within that time, the
RPC call is terminated with a DEADLINE_EXCEEDED error.

Let’s look at a real-world example of using deadlines when invoking gRPC services. In
the same OrderManagement service use case, suppose the AddOrder RPC takes a sig‐
nificant amount of time to complete (we’ve simulated this with the introduction of a
delay into the AddOrder method of the OrderManagement gRPC service). But the cli‐
ent application only waits until the response is no longer useful to it. For example, the
duration that AddOrder takes to respond is two seconds, while the client only waits
two seconds for a response. To implement this (as shown in the Go code snippet
shown in Example 5-5), the client application can set the two-second timeout with

Deadlines | 91

the context.WithDeadline operation. We have used the status package to process
error code; we’ll discuss this in detail in the error-handling section.

Example 5-5. gRPC deadlines for the client application

conn, err := grpc.Dial(address, grpc.WithInsecure())
if err != nil {
 log.Fatalf("did not connect: %v", err)
}
defer conn.Close()
client := pb.NewOrderManagementClient(conn)

clientDeadline := time.Now().Add(
 time.Duration(2 * time.Second))
ctx, cancel := context.WithDeadline(
 context.Background(), clientDeadline)

defer cancel()

// Add Order
order1 := pb.Order{Id: "101",
 Items:[]string{"iPhone XS", "Mac Book Pro"},
 Destination:"San Jose, CA",
 Price:2300.00}
res, addErr := client.AddOrder(ctx, &order1)

if addErr != nil {
 got := status.Code(addErr)
 log.Printf("Error Occured -> addOrder : , %v:", got)
} else {
 log.Print("AddOrder Response -> ", res.Value)
}

Setting a two-second deadline on the current context.

Invoking the AddOrder remote method and capturing any possible errors into
addErr.

Using the status package to determine the error code.

If the invocation exceeds the specified deadline, it should return an error of the
type DEADLINE_EXCEEDED.

So how should we determine the ideal value for the deadline? There is no single
answer to that question, but you need to consider several factors in making that
choice; mainly, the end-to-end latency of each service that we invoke, which RPCs are
serial and which RPCs can be made in parallel, the latency of the underlying network,
and the deadline values of the downstream services. Once you are able to come up

92 | Chapter 5: gRPC: Beyond the Basics

with the initial value for the deadline, fine-tune it based on the operating condition of
the gRPC applications.

Setting the gRPC deadline in Go is done through Go’s context
package, where WithDeadline is a built-in function. In Go, context
is often used to pass down common data that can be used by all
downstream operations. Once this is called from the gRPC client
application, the gRPC library at the client side creates a required
gRPC header to represent the deadline between the client and
server applications. In Java, this is slightly different, as the imple‐
mentation directly comes from the io.grpc.stub.* package’s stub
implementation where you will set the gRPC deadline with block
ingStub.withDeadlineAfter(long, java.util.concur

rent.TimeUnit). Please refer to the code repository for details of
the Java implementation.

When it comes to deadlines in gRPC, both the client and server can make their own
independent and local determination about whether the RPC was successful; this
means their conclusions may not match. For instance, in our example, when the cli‐
ent meets the DEADLINE_EXCEEDED condition, the service may still try to respond. So,
the service application needs to determine whether the current RPC is still valid or
not. From the server side, you can also detect when the client has reached the dead‐
line specified when invoking the RPC. Inside the AddOrder operation, you can check
for ctx.Err() == context.DeadlineExceeded to find out whether the client has
already met the deadline exceeded state, and then abandon the RPC at the server side
and return an error (this is often implemented using a nonblocking select construct
in Go).

Similar to deadlines, there can be certain situations in which your client or server
application wants to terminate the ongoing gRPC communication. This is where
gRPC cancellation becomes useful.

Cancellation
In a gRPC connection between a client and server application, both the client and
server make independent and local determinations of the success of the call. For
instance, you could have an RPC that finishes successfully on the server side but fails
on the client side. Similarly, there can be various conditions where the client and
server may end up with different conclusions on the results of an RPC. When either
the client or server application wants to terminate the RPC this can be done by can‐
celing the RPC. Once the RPC is canceled, no further RPC-related messaging can be
done and the fact that one party has canceled the RPC is propagated to the other side.

Cancellation | 93

https://oreil.ly/OTrmY
https://oreil.ly/OTrmY

In Go, similar to deadlines, the cancellation capability is provided
via the context package where WithCancel is a built-in function.
Once this is called from the gRPC application, the gRPC library on
the client side creates a required gRPC header to represent the
gRPC termination between the client and server applications.

Let’s take the example of bidirectional streaming between the client and server appli‐
cations. In the Go code sample shown in Example 5-6, you can obtain the cancel
function from the context.WithTimeout call. Once you have the reference to cancel,
you can call it at any location where you intend to terminate the RPC.

Example 5-6. gRPC cancellation

ctx, cancel := context.WithTimeout(context.Background(), 10*time.Second)

streamProcOrder, _ := client.ProcessOrders(ctx)
_ = streamProcOrder.Send(&wrapper.StringValue{Value:"102"})
_ = streamProcOrder.Send(&wrapper.StringValue{Value:"103"})
_ = streamProcOrder.Send(&wrapper.StringValue{Value:"104"})

channel := make(chan bool, 1)

go asncClientBidirectionalRPC(streamProcOrder, channel)
time.Sleep(time.Millisecond * 1000)

// Canceling the RPC
cancel()
log.Printf("RPC Status : %s", ctx.Err())

_ = streamProcOrder.Send(&wrapper.StringValue{Value:"101"})
_ = streamProcOrder.CloseSend()

<- channel

func asncClientBidirectionalRPC (
 streamProcOrder pb.OrderManagement_ProcessOrdersClient, c chan bool) {
...
 combinedShipment, errProcOrder := streamProcOrder.Recv()
 if errProcOrder != nil {
 log.Printf("Error Receiving messages %v", errProcOrder)
...
}

Obtaining the reference to cancel.

Invoking the streaming RPC.

94 | Chapter 5: gRPC: Beyond the Basics

https://oreil.ly/OTrmY

Sending messages to the service via the stream.

Canceling RPC/terminating RPC from the client side.

Status of the current context.

Returning context canceled error when trying to receive messages from a can‐
celed context.

When one party cancels the RPC, the other party can determine it by checking the
context. In this example, the server application can check whether the current context
is canceled by using stream.Context().Err() == context.Canceled.

As you have seen in the application of deadlines as well as cancellation, handling
errors with RPC is a very common requirement. In the next section, we look at gRPC
error-handling techniques in detail.

Error Handling
When we invoke a gRPC call, the client receives a response with a successful status or
an error with the corresponding error status. The client application needs to be writ‐
ten in such a way that you handle all the potential errors and error conditions. The
server application requires you to handle errors as well as generate the appropriate
errors with corresponding status codes.

When an error occurs, gRPC returns one of its error-status codes with an optional
error message that provides more details of the error condition. The status object is
composed of an integer code and a string message that are common to all gRPC
implementations for different languages.

gRPC uses a set of well-defined gRPC-specific status codes. This includes status codes
such as the following:

OK

Successful status; not an error.

CANCELLED

The operation was canceled, typically by the caller.

DEADLINE_EXCEEDED

The deadline expired before the operation could complete.

INVALID_ARGUMENT

The client specified an invalid argument.

Error Handling | 95

Table 5-1 shows the available gRPC error codes and the description of each error
code. The complete list of error codes can be found in the gRPC official documenta‐
tion, or in the documentation for Go and Java.

Table 5-1. gRPC error codes

Code Number Description
OK 0 Success status.

CANCELLED 1 The operation was canceled (by the caller).

UNKNOWN 2 Unknown error.

INVALID_ARGUMENT 3 The client specified an invalid argument.

DEADLINE_EXCEEDED 4 The deadline expired before the operation could complete.

NOT_FOUND 5 Some requested entity was not found.

ALREADY_EXISTS 6 The entity that a client attempted to create already exists.

PERMISSION_DENIED 7 The caller does not have permission to execute the specified
operation.

UNAUTHENTICATED 16 The request does not have valid authentication credentials for
the operation.

RESOURCE_EXHAUSTED 8 Some resource has been exhausted.

FAILED_PRECONDITION 9 The operation was rejected because the system is not in a state
required for the operation’s execution.

ABORTED 10 The operation was aborted.

OUT_OF_RANGE 11 The operation was attempted past the valid range.

UNIMPLEMENTED 12 The operation is not implemented or is not supported/enabled
in this service.

INTERNAL 13 Internal errors.

UNAVAILABLE 14 The service is currently unavailable.

DATA_LOSS 15 Unrecoverable data loss or corruption.

The error model provided with gRPC out of the box is quite limited and independent
of the underlying gRPC data format (where the most common format is protocol buf‐
fers). If you are using protocol buffers as your data format then you can leverage the
richer error model the Google APIs provide under the google.rpc package. How‐
ever, the error model is supported only in the C++, Go, Java, Python, and Ruby libra‐
ries, so be mindful of this if you plan to use other languages than these.

Let’s look at how these concepts can be used in a real-world gRPC error-handling use
case. In our order management use case, suppose that we need to handle a request
with invalid order IDs in the AddOrder remote method. As shown in Example 5-7,
suppose that if the given order ID equals -1 then you need to generate an error and
return it to the consumer.

96 | Chapter 5: gRPC: Beyond the Basics

https://oreil.ly/LiNLn
https://oreil.ly/LiNLn
https://oreil.ly/E61Q0
https://oreil.ly/Ugtg0

Example 5-7. Error creation and propagation on the server side

if orderReq.Id == "-1" {
 log.Printf("Order ID is invalid! -> Received Order ID %s",
 orderReq.Id)

 errorStatus := status.New(codes.InvalidArgument,
 "Invalid information received")
 ds, err := errorStatus.WithDetails(
 &epb.BadRequest_FieldViolation{
 Field:"ID",
 Description: fmt.Sprintf(
 "Order ID received is not valid %s : %s",
 orderReq.Id, orderReq.Description),
 },
)
 if err != nil {
 return nil, errorStatus.Err()
 }

 return nil, ds.Err()
 }
 ...

Invalid request, needs to generate an error and send it back to the client.

Create a new error status with error code InvalidArgument.

Include any error details with an error type BadRequest_FieldViolation from
google.golang.org/genproto/googleapis/rpc/errdetails.

Returning the generated error.

You can simply create an error status from grpc.status packages with the required
error code and details. In the example here we have used status.New(codes.Invalid
Argument, "Invalid information received"). You just need to send this error
back to the client with return nil, errorStatus.Err(). However, to include a
richer error model, you can use Google API’s google.rpc package. In this example,
we have set an error detail with a specific error type from google.golang.org/genproto/
googleapis/rpc/errdetails.

For error handling on the client side, you simply process the error returned as part of
your RPC invocation. For example, in Example 5-8, you can find the Go implementa‐
tion of the client application of this order management use case. Here we invoked the
AddOrder method and assigned the returned error to the addOrderError variable. So,
the next step is to inspect the results of addOrderError and gracefully handle the

Error Handling | 97

error. For that, you can obtain the error code and specific error type that we have set
from the server side.

Example 5-8. Error handling on the client side

order1 := pb.Order{Id: "-1",
 Items:[]string{"iPhone XS", "Mac Book Pro"},
 Destination:"San Jose, CA", Price:2300.00}
res, addOrderError := client.AddOrder(ctx, &order1)

if addOrderError != nil {
 errorCode := status.Code(addOrderError)
 if errorCode == codes.InvalidArgument {
 log.Printf("Invalid Argument Error : %s", errorCode)
 errorStatus := status.Convert(addOrderError)
 for _, d := range errorStatus.Details() {
 switch info := d.(type) {
 case *epb.BadRequest_FieldViolation:
 log.Printf("Request Field Invalid: %s", info)
 default:
 log.Printf("Unexpected error type: %s", info)
 }
 }
 } else {
 log.Printf("Unhandled error : %s ", errorCode)
 }
} else {
 log.Print("AddOrder Response -> ", res.Value)
}

This is an invalid order.

Invoke the AddOrder remote method and assign the error to addOrderError.

Obtain the error code using the grpc/status package.

Check for InvalidArgument error code.

Obtain the error status from the error.

Check for BadRequest_FieldViolation error type.

It’s always good practice to use the appropriate gRPC error codes and a richer error
model whenever possible for your gRPC applications. gRPC error status and details
are normally sent via the trailer headers at the transport protocol level.

98 | Chapter 5: gRPC: Beyond the Basics

Now let’s look at multiplexing, a service-hosting mechanism on the same gRPC server
runtime.

Multiplexing
In terms of gRPC services and client applications, we’ve seen so far a given gRPC
server with a gRPC service registered on it and a gRPC client connection being used
by a single client stub only. However, gRPC allows you to run multiple gRPC services
on the same gRPC server (see Figure 5-4), as well as use the same gRPC client con‐
nection for multiple gRPC client stubs. This capability is known as multiplexing.

Figure 5-4. Multiplexing multiple gRPC services in the same server application

For example, in our OrderManagement service example, suppose that you want to run
another service that is required for order-management purposes on the same gRPC
server, so that the client application can reuse the same connection to invoke both the
services as required. Then you can register both services on the same gRPC server by
using their respective server register functions (i.e., ordermgt_pb.RegisterOrderMa
nagementServer and hello_pb.RegisterGreeterServer). Using this method, you
can register one or more gRPC services on the same gRPC server (as shown in
Example 5-9).

Example 5-9. Two gRPC services sharing the same grpc.Server

func main() {
 initSampleData()
 lis, err := net.Listen("tcp", port)
 if err != nil {
 log.Fatalf("failed to listen: %v", err)
 }
 grpcServer := grpc.NewServer()

Multiplexing | 99

 // Register Order Management service on gRPC orderMgtServer
 ordermgt_pb.RegisterOrderManagementServer(grpcServer, &orderMgtServer{})

 // Register Greeter Service on gRPC orderMgtServer
 hello_pb.RegisterGreeterServer(grpcServer, &helloServer{})

 ...
}

Creating the gRPC server.

Registering the OrderManagement service with the gRPC server.

Registering the Hello service with the same gRPC server.

Similarly, from the client side you can share the same gRPC connection between two
gRPC client stubs.

As shown in Example 5-10, since both gRPC services are running in the same gRPC
server, you can create a gRPC connection and use it when creating the gRPC client
instance for different services.

Example 5-10. Two gRPC client stubs sharing the same grpc.ClientConn

// Setting up a connection to the server.
conn, err := grpc.Dial(address, grpc.WithInsecure())
...

orderManagementClient := pb.NewOrderManagementClient(conn)

...

// Add Order RPC
 ...
res, addErr := orderManagementClient.AddOrder(ctx, &order1)

...

helloClient := hwpb.NewGreeterClient(conn)

 ...
 // Say hello RPC
helloResponse, err := helloClient.SayHello(hwcCtx,
 &hwpb.HelloRequest{Name: "gRPC Up and Running!"})
...

Creating a gRPC connection.

100 | Chapter 5: gRPC: Beyond the Basics

Using the created gRPC connection to create an OrderManagement client.

Using the same gRPC connection to create the Hello service client.

Running multiple services or using the same connection between multiple stubs is a
design choice that is independent of gRPC concepts. In most everyday use cases such
as microservices, it is quite common to not share the same gRPC server instance
between two services.

One powerful use for gRPC multiplexing in a microservice archi‐
tecture is to host multiple major versions of the same service in one
server process. This allows a service to accommodate legacy clients
after a breaking API change. Once the old version of the service
contract is no longer in use, it can be removed from the server.

In the next section, we’ll talk about how to exchange data that is not part of RPC
parameters and responses between client and service applications.

Metadata
gRPC applications usually share information via RPC calls between gRPC services
and consumers. In most cases, information directly related to the service’s business
logic and consumer is part of the remote method invocation arguments. However, in
certain conditions, you may want to share information about the RPC calls that are
not related to the business context of the RPC, so they shouldn’t be part of the RPC
arguments. In such cases, you can use gRPC metadata that you can send or receive
from either the gRPC service or the gRPC client. As illustrated in Figure 5-5, the
metadata that you create on either the client or server side can be exchanged between
the client and server applications using gRPC headers. Metadata is structured in the
form of a list of key(string)/value pairs.

One of the most common usages of metadata is to exchange security headers between
gRPC applications. Similarly, you can use it to exchange any such information
between gRPC applications. Often gRPC metadata APIs are heavily used inside the
interceptors that we develop. In the next section, we’ll explore how gRPC supports
sending metadata between the client and server.

Metadata | 101

Figure 5-5. Exchanging gRPC metadata between client and server applications

Creating and Retrieving Metadata
The creation of metadata from a gRPC application is quite straightforward. In the fol‐
lowing Go code snippet, you will find two ways of creating metadata. Metadata is rep‐
resented as a normal map in Go and can be created with the format
metadata.New(map[string]string{"key1": "val1", "key2": "val2"}). Also, you
can use metadata.Pairs to create metadata in pairs, so that metadata with the same
key will get merged into a list:

// Metadata Creation : option I
md := metadata.New(map[string]string{"key1": "val1", "key2": "val2"})

// Metadata Creation : option II
md := metadata.Pairs(
 "key1", "val1",
 "key1", "val1-2", // "key1" will have map value []string{"val1", "val1-2"}
 "key2", "val2",
)

You can also set binary data as metadata values. The binary data that we set as meta‐
data values will be base64 encoded before sending, and will be decoded after being
transferred.

Reading metadata from either the client or server side can be done using the incom‐
ing context of the RPC call with metadata.FromIncomingContext(ctx), which
returns the metadata map in Go:

func (s *server) AddOrder(ctx context.Context, orderReq *pb.Order)
 (*wrappers.StringValue, error) {

md, metadataAvailable := metadata.FromIncomingContext(ctx)
// read the required metadata from the ‘md’ metadata map.

102 | Chapter 5: gRPC: Beyond the Basics

Now let’s dive into how metadata sending and receiving happens on the client or
server side for different unary and streaming RPC styles.

Sending and Receiving Metadata: Client Side
You can send metadata from the client side to the gRPC service by creating metadata
and setting it into the context of the RPC call. In a Go implementation, you can do
this in two different ways. As shown in Example 5-11, you can create a new context
with the new metadata using NewOutgoingContext, or simply append the metadata to
the existing context using AppendToOutgoingContext. Using NewOutgoingContext,
however, replaces any existing metadata in the context. Once you create a context
with the required metadata, it can be used either for unary or streaming RPC. As you
learned in Chapter 4, the metadata that you set in the context is translated into gRPC
headers (on HTTP/2) or trailers at the wire level. So when the client sends those
headers they are received by the recipient as headers.

Example 5-11. Sending metadata from the gRPC client side

md := metadata.Pairs(
 "timestamp", time.Now().Format(time.StampNano),
 "kn", "vn",
)
mdCtx := metadata.NewOutgoingContext(context.Background(), md)

ctxA := metadata.AppendToOutgoingContext(mdCtx,
 "k1", "v1", "k1", "v2", "k2", "v3")

// make unary RPC
response, err := client.SomeRPC(ctxA, someRequest)

// or make streaming RPC
stream, err := client.SomeStreamingRPC(ctxA)

Creating metadata.

Creating a new context with the new metadata.

Appending some more metadata to the existing context.

Unary RPC using the new context with the metadata.

The same context can be used for a streaming RPC, too.

Therefore, when it comes to receiving metadata from the client side, you need to treat
them as either headers or trailers. In Example 5-12, you can find Go code examples
on receiving metadata for both unary and streaming RPC styles.

Metadata | 103

Example 5-12. Reading metadata on the gRPC client side

var header, trailer metadata.MD

// ***** Unary RPC *****

r, err := client.SomeRPC(
 ctx,
 someRequest,
 grpc.Header(&header),
 grpc.Trailer(&trailer),
)

// process header and trailer map here.

// ***** Streaming RPC *****

stream, err := client.SomeStreamingRPC(ctx)

// retrieve header
header, err := stream.Header()

// retrieve trailer
trailer := stream.Trailer()

// process header and trailer map here.

Variable to store header and trailer returned from the RPC call.

Pass header and trailer reference to store the returned values for unary RPC.

Getting the headers from the stream.

Getting the trailers from the stream. Trailers are used to send status codes and
the status message.

Once the values are obtained from the respective RPC operations, you can process
them as a generic map and process the required metadata.

Now let’s move on to metadata handling on the server side.

Sending and Receiving Metadata: Server Side
Receiving metadata on the server side is quite straightforward. Using Go, you can
simply obtain the metadata with metadata.FromIncomingContext(ctx) inside your
remote method implementations (see Example 5-13).

104 | Chapter 5: gRPC: Beyond the Basics

Example 5-13. Reading metadata on the gRPC server side

func (s *server) SomeRPC(ctx context.Context,
 in *pb.someRequest) (*pb.someResponse, error) {
 md, ok := metadata.FromIncomingContext(ctx)
 // do something with metadata
}

func (s *server) SomeStreamingRPC(
 stream pb.Service_SomeStreamingRPCServer) error {
 md, ok := metadata.FromIncomingContext(stream.Context())
 // do something with metadata
}

Unary RPC.

Read the metadata map from the incoming context of the remote method.

Streaming RPC.

Obtain the context from the stream and read metadata from it.

To send metadata from the server side, send a header with metadata or set a trailer
with metadata. The metadata creation method is the same as what we discussed in the
previous section. In Example 5-14, you can find Go code examples of sending meta‐
data from a unary and a streaming remote method implementation on the server
side.

Example 5-14. Sending metadata from the gRPC server side

func (s *server) SomeRPC(ctx context.Context,
 in *pb.someRequest) (*pb.someResponse, error) {
 // create and send header
 header := metadata.Pairs("header-key", "val")
 grpc.SendHeader(ctx, header)
 // create and set trailer
 trailer := metadata.Pairs("trailer-key", "val")
 grpc.SetTrailer(ctx, trailer)
}

func (s *server) SomeStreamingRPC(stream pb.Service_SomeStreamingRPCServer) error {
 // create and send header
 header := metadata.Pairs("header-key", "val")
 stream.SendHeader(header)
 // create and set trailer
 trailer := metadata.Pairs("trailer-key", "val") stream.SetTrailer(trailer)
}

Send metadata as a header.

Metadata | 105

Send metadata along with the trailer.

Send metadata as a header in the stream.

Send metadata along with the trailer of the stream.

In both the unary and streaming cases, you can send metadata using the grpc.Send
Header method. If you want to send metadata as part of the trailer, you need to set the
metadata as part of the trailer of the context using the grpc.SetTrailer or Set
Trailer method of the respective stream.

Now let’s discuss another commonly used technique when calling gRPC applications:
name resolving.

Name Resolver
A name resolver takes a service name and returns a list of IPs of the backends. The
resolver used in Example 5-15 resolves lb.example.grpc.io to localhost:50051
and localhost:50052.

Example 5-15. gRPC name resolver implementation in Go

type exampleResolverBuilder struct{}

func (*exampleResolverBuilder) Build(target resolver.Target,
 cc resolver.ClientConn,
 opts resolver.BuildOption) (resolver.Resolver, error) {

 r := &exampleResolver{
 target: target,
 cc: cc,
 addrsStore: map[string][]string{
 exampleServiceName: addrs,
 },
 }
 r.start()
 return r, nil
}
func (*exampleResolverBuilder) Scheme() string { return exampleScheme }

type exampleResolver struct {
 target resolver.Target
 cc resolver.ClientConn
 addrsStore map[string][]string
}

func (r *exampleResolver) start() {
 addrStrs := r.addrsStore[r.target.Endpoint]

106 | Chapter 5: gRPC: Beyond the Basics

 addrs := make([]resolver.Address, len(addrStrs))
 for i, s := range addrStrs {
 addrs[i] = resolver.Address{Addr: s}
 }
 r.cc.UpdateState(resolver.State{Addresses: addrs})
}
func (*exampleResolver) ResolveNow(o resolver.ResolveNowOption) {}
func (*exampleResolver) Close() {}

func init() {
 resolver.Register(&exampleResolverBuilder{})
}

Name resolver builder that creates the resolver.

Creating the example resolver that resolves lb.example.grpc.io.

This resolves lb.example.grpc.io to localhost:50051 and localhost:50052.

This resolver is created for scheme example.

Structure of the name resolver.

Thus, based on this name resolver implementation, you can implement resolvers for
any service registry of your choice such as Consul, etcd, and Zookeeper. The gRPC
load-balancing requirements may be quite dependent on the deployment patterns
that you use or on the use cases. With the increasing adoption of container orchestra‐
tion platforms such as Kubernetes and more higher-level abstractions such as service
mesh, the need to implement load-balancing logic on the client side is becoming
quite rare. We’ll explore some best practices for deploying gRPC applications locally
on containers, as well as Kubernetes, in Chapter 7.

Now let’s discuss one of the most common requirements of your gRPC applications,
load balancing, in which we can use name resolvers in certain cases.

Load Balancing
Often when you develop production-ready gRPC applications, you need to make sure
that your application can cater to high availability and scalability needs. Therefore,
you always run more than one gRPC server in production. So, distributing RPC calls
between these services needs to be taken care of by some entity. That’s where load bal‐
ancing comes into play. Two main load-balancing mechanisms are commonly used in
gRPC: a load-balancer (LB) proxy and client-side load balancing. Let’s start by discus‐
sing the LB proxy.

Load Balancing | 107

https://www.consul.io
https://etcd.io
https://zookeeper.apache.org

Load-Balancer Proxy
In proxy load balancing (Figure 5-6), the client issues RPCs to the LB proxy. Then the
LB proxy distributes the RPC call to one of the available backend gRPC servers that
implements the actual logic for serving the call. The LB proxy keeps track of load on
each backend server and offers a different load-balancing algorithm for distributing
the load among the backend services.

Figure 5-6. Client application invokes a load balancer that fronts multiple gRPC services

The topology of the backend services is not transparent to the gRPC clients, and they
are only aware of the load balancer’s endpoint. Therefore, on the client side, you don’t
need to make any changes to cater to a load-balancing use case, apart from using the
load balancer’s endpoint as the destination for all your gRPC connections. The back‐
end services can report the load status back to the load balancer so that it can use that
information for the load-balancing logic.

In theory, you can select any load balancer that supports HTTP/2 as the LB proxy for
your gRPC applications. However, it must have full HTTP/2 support. Thus it’s always
a good idea to specifically choose load balancers that explicitly offer gRPC support.
For instance, you can use load-balancing solutions such as Nginx, Envoy proxy, etc.,
as the LB proxy for your gRPC applications.

If you don’t use a gRPC load balancer, then you can implement the load-balancing
logic as part of the client applications you write. Let’s look more closely at client-side
load balancing.

108 | Chapter 5: gRPC: Beyond the Basics

https://oreil.ly/QH_1c
https://www.envoyproxy.io

Client-Side Load Balancing
Rather than having an intermediate proxy layer for load balancing, you can imple‐
ment the load-balancing logic at the gRPC client level. In this method, the client is
aware of multiple backend gRPC servers and chooses one to use for each RPC. As
illustrated in Figure 5-7, the load-balancing logic may be entirely developed as part of
the client application (also known as thick client) or it can be implemented in a dedi‐
cated server known as lookaside load balancer. Then the client can query it to obtain
the best gRPC server to connect to. The client directly connects to the gRPC server
address obtained by the lookaside load balancer.

Figure 5-7. Client-side load balancing

To understand how you can implement client-side load balancing, let’s look at an
example of a thick client implemented using Go. In this use case, suppose we have
two backend gRPC services running an echo server on :50051 and :50052. These
gRPC services will include the serving address of the server as part of the RPC
response. So we can consider these two servers as two members of an echo gRPC ser‐
vice cluster. Now, suppose we want to build a gRPC client application that uses the
round-robin (executed in turn against every other) algorithm when selecting the
gRPC server endpoint and another client that uses the first endpoint of the server
endpoint list. Example 5-16 shows the thick client load-balancing implementation.
Here you can observe that the client is dialing example:///lb.example.grpc.io. So, we
are using the example scheme name and lb.example.grpc.io as the server name.
Based on this scheme, it will look for a name resolver to discover the absolute value
for the backend service address. Based on the list of values the name resolver returns,
gRPC runs different load-balancing algorithms against those servers. The behavior is
configured with grpc.WithBalancerName("round_robin").

Load Balancing | 109

Example 5-16. Client-side load balancing with a thick client

pickfirstConn, err := grpc.Dial(
 fmt.Sprintf("%s:///%s",
 // exampleScheme = "example"
 // exampleServiceName = "lb.example.grpc.io"
 exampleScheme, exampleServiceName),
 // "pick_first" is the default option.
 grpc.WithBalancerName("pick_first"),

 grpc.WithInsecure(),)
if err != nil {
 log.Fatalf("did not connect: %v", err)
}
defer pickfirstConn.Close()

log.Println("==== Calling helloworld.Greeter/SayHello " +
 "with pick_first ====")
makeRPCs(pickfirstConn, 10)

// Make another ClientConn with round_robin policy.
roundrobinConn, err := grpc.Dial(
 fmt.Sprintf("%s:///%s", exampleScheme, exampleServiceName),
 // "example:///lb.example.grpc.io"
 grpc.WithBalancerName("round_robin"),
 grpc.WithInsecure(),
)
if err != nil {
 log.Fatalf("did not connect: %v", err)
}
defer roundrobinConn.Close()

log.Println("==== Calling helloworld.Greeter/SayHello " +
 "with round_robin ====")
makeRPCs(roundrobinConn, 10)

Creating a gRPC connection with a scheme and the service name. The scheme is
resolved from a scheme resolver, which is part of the client application.

Specifying a load-balancing algorithm that picks the first server on the server
endpoint list.

Using the round-robin load-balancing algorithm.

There are two load-balancing policies supported in gRPC by default: pick_first and
round_robin. pick_first tries to connect to the first address, uses it for all RPCs if it
connects, or tries the next address if it fails. round_robin connects to all the addresses
it sees and sends an RPC to each backend one at a time in order.

110 | Chapter 5: gRPC: Beyond the Basics

In the client-side load-balancing scenario in Example 5-16, we have a name resolver
to resolve scheme example, which contains the logic of discovering the actual values
of the endpoint URLs. Now let’s talk about compression, another commonly used fea‐
ture of gRPC, for sending large amounts of content over RPC.

Compression
To use network bandwidth efficiently, use compression when performing RPCs
between client and services. Using gRPC compression on the client side can be imple‐
mented by setting a compressor when you do the RPC. For example, in Go, this is as
easy as using client.AddOrder(ctx, &order1, grpc.UseCompressor(gzip.Name)),
where "google.golang.org/grpc/encoding/gzip" provides the gzip package.

From the server side, registered compressors will be used automatically to decode
request messages and encode the responses. In Go, registering a compressor is as sim‐
ple as importing "google.golang.org/grpc/encoding/gzip" into your gRPC server
application. The server always responds using the same compression method speci‐
fied by the client. If the corresponding compressor has not been registered, an Unim
plemented status will be returned to the client.

Summary
Building production-ready, real-world gRPC applications often requires you to
include various capabilities besides defining the service interface, generating the
server and client code, and implementing the business logic. As you saw in this chap‐
ter, gRPC offers a wide range of capabilities that you will need when building gRPC
applications, including interceptors, deadlines, cancellations, and error handling.

However, we haven’t yet discussed how to secure gRPC applications and how to con‐
sume them. So, in the next chapter we’ll cover this topic in detail.

Summary | 111

CHAPTER 6

Secured gRPC

gRPC-based applications communicate with each other remotely over the network.
This requires each gRPC application to expose its entry point to others who need to
communicate with it. From a security point of view, this is not a good thing. The
more entry points we have, the broader the attack surface, and the higher the risk of
being attacked. Therefore, securing communication and securing the entry points is
essential for any real-world use case. Every gRPC application must be able to handle
encrypted messages, encrypt all internode communications, and authenticate and
sign all messages, etc.

In this chapter, we’ll cover a set of security fundamentals and patterns to address the
challenge we face in enabling application-level security. In simple terms, we are going
to explore how we can secure communication channels between microservices and
authenticate and control access by users.

So let’s start with securing the communication channel.

Authenticating a gRPC Channel with TLS
Transport Level Security (TLS) aims to provide privacy and data integrity between two
communicating applications. Here, it’s about providing a secure connection between
gRPC client and server applications. According to the Transport Level Security Proto‐
col Specification, when the connection between a client and a server is secure, it
should have one or more of the following properties:

The connection is private
Symmetric cryptography is used for data encryption. It is a type of encryption
where only one key (a secret key) is used to both encrypt and decrypt. These keys
are generated uniquely for each connection based on a shared secret that was
negotiated at the start of the session.

113

https://oreil.ly/n4iIE
https://oreil.ly/n4iIE

The connection is reliable
This occurs because each message includes a message integrity check to prevent
undetected loss or alteration of the data during transmission.

So it is important to send data through a secure connection. Securing gRPC connec‐
tions with TLS is not a difficult task, because this authentication mechanism is built
into the gRPC library. It also promotes the use of TLS to authenticate and encrypt
exchanges.

How, then, do we enable transport-level security in gRPC connections? Secure data
transfer between a client and server can be implemented as either one way or two way
(this is also known as mutual TLS, or mTLS). In the following sections, we’ll discuss
how to enable security in each of these ways.

Enabling a One-Way Secured Connection
In a one-way connection, only the client validates the server to ensure that it receives
data from the intended server. When establishing the connection between the client
and the server, the server shares its public certificate with the client, who then vali‐
dates the received certificate. This is done through a certificate authority (CA), for
CA-signed certificates. Once the certificate is validated, the client sends the data
encrypted using the secret key.

The CA is a trusted entity that manages and issues security certificates and public
keys that are used for secure communication in a public network. Certificates signed
or issued by this trusted entity are known as CA-signed certificates.

To enable TLS, first we need to create the following certificates and keys:

server.key

A private RSA key to sign and authenticate the public key.

server.pem/server.crt

Self-signed X.509 public keys for distribution.

The acronym RSA stands for the names of three inventors: Rivest,
Shamir, and Adleman. RSA is one of the most popular public-key
cryptosystems, being widely used in secure data transmission. In
RSA, a public key (that can be known by everyone) is used to
encrypt data. A private key is then used to decrypt data. The idea is
that messages encrypted with the public key can only be decrypted
in a reasonable amount of time by using the private key.

To generate the keys, we can use the OpenSSL tool, which is an open source toolkit
for the TLS and Secure Socket Layer (SSL) protocols. It has support for generating
private keys with different sizes and pass phrases, public certificates, etc. There are

114 | Chapter 6: Secured gRPC

other tools like mkcert and certstrap, which can also be used to generate the keys and
certificates easily.

We won’t describe here how to generate keys that are self-signed certificates, as step-
by-step details on generating those keys and certificates are described in the
README file in the source code repository.

Assume we created both a private key and public certificate. Let’s use them and secure
communication between the gRPC server and client for our online product manage‐
ment system discussed in Chapters 1 and 2.

Enabling a one-way secured connection in a gRPC server
This is the simplest way to encrypt communication between client and server. Here
the server needs to be initialized with a public/private key pair. We are going to
explain how it is done using our gRPC Go server.

To enable a secured Go server, let’s update the main function of the server implemen‐
tation, as shown in Example 6-1.

Example 6-1. gRPC secured server implementation for hosting ProductInfo service

package main

import (
 "crypto/tls"
 "errors"
 pb "productinfo/server/ecommerce"
 "google.golang.org/grpc"
 "google.golang.org/grpc/credentials"
 "log"
 "net"
)

var (
 port = ":50051"
 crtFile = "server.crt"
 keyFile = "server.key"
)

func main() {
 cert, err := tls.LoadX509KeyPair(crtFile,keyFile)
 if err != nil {
 log.Fatalf("failed to load key pair: %s", err)
 }
 opts := []grpc.ServerOption{
 grpc.Creds(credentials.NewServerTLSFromCert(&cert))
 }

 s := grpc.NewServer(opts...)

Authenticating a gRPC Channel with TLS | 115

https://mkcert.dev
https://oreil.ly/Mu4Q6

 pb.RegisterProductInfoServer(s, &server{})

 lis, err := net.Listen("tcp", port)
 if err != nil {
 log.Fatalf("failed to listen: %v", err)
 }

 if err := s.Serve(lis); err != nil {
 log.Fatalf("failed to serve: %v", err)
 }
}

Read and parse a public/private key pair and create a certificate to enable TLS.

Enable TLS for all incoming connections by adding certificates as TLS server
credentials.

Create a new gRPC server instance by passing TLS server credentials.

Register the implemented service to the newly created gRPC server by calling
generated APIs.

Create a TCP listener on the port (50051).

Bind the gRPC server to the listener and start listening to incoming messages on
the port (50051).

Now we have modified the server to accept requests from clients who can verify the
server certificate. Let’s modify our client code to talk with this server.

Enabling a one-way secured connection in a gRPC client
In order to get the client connected, the client needs to have the server’s self-certified
public key. We can modify our Go client code to connect with the server as shown in
Example 6-2.

Example 6-2. gRPC secured client application

package main

import (
 "log"

 pb "productinfo/server/ecommerce"
 "google.golang.org/grpc/credentials"
 "google.golang.org/grpc"
)

116 | Chapter 6: Secured gRPC

var (
 address = "localhost:50051"
 hostname = "localhost
 crtFile = "server.crt"
)

func main() {
 creds, err := credentials.NewClientTLSFromFile(crtFile, hostname)
 if err != nil {
 log.Fatalf("failed to load credentials: %v", err)
 }
 opts := []grpc.DialOption{
 grpc.WithTransportCredentials(creds),
 }

 conn, err := grpc.Dial(address, opts...)
 if err != nil {
 log.Fatalf("did not connect: %v", err)
 }
 defer conn.Close()
 c := pb.NewProductInfoClient(conn)

 // Skip RPC method invocation.
}

Read and parse a public certificate and create a certificate to enable TLS.

Add transport credentials as a DialOption.

Set up a secure connection with the server, passing dial options.

Pass the connection and create a stub. This stub instance contains all the remote
methods to invoke the server.

Close the connection when everything is done.

This is a fairly straightforward process. We only need to add three lines and modify
one from the original code. First, we create a credential object from the server public
key file, then pass the transport credentials into the gRPC dialer. This will initiate the
TLS handshake every time the client sets up a connection between the server.

In one-way TLS, we only authenticate server identity. Let’s authenticate both parties
(the client and the server) in the next section.

Enabling an mTLS Secured Connection
The main intent of an mTLS connection between client and server is to have control
of clients who connect to the server. Unlike a one-way TLS connection, the server is
configured to accept connections from a limited group of verified clients. Here both

Authenticating a gRPC Channel with TLS | 117

parties share their public certificates with each other and validate the other party. The
basic flow of connection is as follows:

1. Client sends a request to access protected information from the server.
2. The server sends its X.509 certificate to the client.
3. Client validates the received certificate through a CA for CA-signed certificates.
4. If the verification is successful, the client sends its certificate to the server.
5. Server also verifies the client certificate through the CA.
6. Once it is successful, the server gives permission to access protected data.

To enable mTLS in our example, we need to figure out how to deal with client and
server certificates. We need to create a CA with self-signed certificates, we need to
create certificate-signing requests for both client and server, and we need to sign
them using our CA. As in the previous one-way secured connection, we can use the
OpenSSL tool to generate keys and certificates.

Assume we have all the required certificates to enable mTLS for client-server commu‐
nication. If you generated them correctly, you will have the following keys and certifi‐
cates created in your workspace:

server.key
Private RSA key of the server.

server.crt
Public certificate of the server.

client.key
Private RSA key of the client.

client.crt
Public certificate of the client.

ca.crt
Public certificate of a CA used to sign all public certificates.

Let’s first modify the server code of our example to create X.509 key pairs directly and
create a certificate pool based on the CA public key.

Enabling mTLS in a gRPC server
To enable mTLS in the Go server, let’s update the main function of the server imple‐
mentation as shown in Example 6-3.

118 | Chapter 6: Secured gRPC

Example 6-3. gRPC secured server implementation for hosting ProductInfo service in Go

package main

import (
 "crypto/tls"
 "crypto/x509"
 "errors"
 pb "productinfo/server/ecommerce"
 "google.golang.org/grpc"
 "google.golang.org/grpc/credentials"
 "io/ioutil"
 "log"
 "net"
)

var (
 port = ":50051"
 crtFile = "server.crt"
 keyFile = "server.key"
 caFile = "ca.crt"
)

func main() {
 certificate, err := tls.LoadX509KeyPair(crtFile, keyFile)
 if err != nil {
 log.Fatalf("failed to load key pair: %s", err)
 }

 certPool := x509.NewCertPool()
 ca, err := ioutil.ReadFile(caFile)
 if err != nil {
 log.Fatalf("could not read ca certificate: %s", err)
 }

 if ok := certPool.AppendCertsFromPEM(ca); !ok {
 log.Fatalf("failed to append ca certificate")
 }

 opts := []grpc.ServerOption{
 // Enable TLS for all incoming connections.
 grpc.Creds(
 credentials.NewTLS(&tls.Config {
 ClientAuth: tls.RequireAndVerifyClientCert,
 Certificates: []tls.Certificate{certificate},
 ClientCAs: certPool,
 },
)),
 }

 s := grpc.NewServer(opts...)
 pb.RegisterProductInfoServer(s, &server{})

Authenticating a gRPC Channel with TLS | 119

 lis, err := net.Listen("tcp", port)
 if err != nil {
 log.Fatalf("failed to listen: %v", err)
 }

 if err := s.Serve(lis); err != nil {
 log.Fatalf("failed to serve: %v", err)
 }
}

Create X.509 key pairs directly from the server certificate and key.

Create a certificate pool from the CA.

Append the client certificates from the CA to the certificate pool.

Enable TLS for all incoming connections by creating TLS credentials.

Create a new gRPC server instance by passing TLS server credentials.

Register the gRPC service to the newly created gRPC server by calling generated
APIs.

Create a TCP listener on the port (50051).

Bind the gRPC server to the listener and start listening to the incoming messages
on the port (50051).

Now we have modified the server to accept requests from verified clients. Let’s mod‐
ify our client code to talk with this server.

Enabling mTLS in a gRPC client
In order to get the client connected, the client needs to follow similar steps as the
server. We can modify our Go client code as shown in Example 6-4.

Example 6-4. gRPC secured client application in Go

package main

import (
 "crypto/tls"
 "crypto/x509"
 "io/ioutil"
 "log"

 pb "productinfo/server/ecommerce"

120 | Chapter 6: Secured gRPC

 "google.golang.org/grpc"
 "google.golang.org/grpc/credentials"
)

var (
 address = "localhost:50051"
 hostname = "localhost"
 crtFile = "client.crt"
 keyFile = "client.key"
 caFile = "ca.crt"
)

func main() {
 certificate, err := tls.LoadX509KeyPair(crtFile, keyFile)
 if err != nil {
 log.Fatalf("could not load client key pair: %s", err)
 }

 certPool := x509.NewCertPool()
 ca, err := ioutil.ReadFile(caFile)
 if err != nil {
 log.Fatalf("could not read ca certificate: %s", err)
 }

 if ok := certPool.AppendCertsFromPEM(ca); !ok {
 log.Fatalf("failed to append ca certs")
 }

 opts := []grpc.DialOption{
 grpc.WithTransportCredentials(credentials.NewTLS(&tls.Config{
 ServerName: hostname, // NOTE: this is required!
 Certificates: []tls.Certificate{certificate},
 RootCAs: certPool,
 })),
 }

 conn, err := grpc.Dial(address, opts...)
 if err != nil {
 log.Fatalf("did not connect: %v", err)
 }
 defer conn.Close()
 c := pb.NewProductInfoClient(conn)

 // Skip RPC method invocation.
}

Create X.509 key pairs directly from the server certificate and key.

Create a certificate pool from the CA.

Authenticating a gRPC Channel with TLS | 121

Append the client certificates from the CA to the certificate pool.

Add transport credentials as connection options. Here the ServerName must be
equal to the Common Name on the certificate.

Set up a secure connection with the server, passing options.

Pass the connection and create a stub. This stub instance contains all the remote
methods to invoke the server.

Close the connection when everything is done.

Now we have secured the communication channel between the client and server of
the gRPC application using both basic one-way TLS and mTLS. The next step is to
enable authentication on a per-call basis, which means credentials are attached to the
call. Each client call has authentication credentials and the server side checks the cre‐
dentials of the call and makes a decision whether to allow the client to call or deny.

Authenticating gRPC Calls
gRPC is designed to use serious authentication mechanisms. In the previous section,
we covered how to encrypt data exchanged between the client and server using TLS.
Now, we’re going to talk about how to verify the identity of the caller and apply access
control using different call credential techniques like token-based authentication, etc.

In order to facilitate verification of the caller, gRPC provides the capability for the cli‐
ent to inject his or her credentials (like username and password) on every call. The
gRPC server has the ability to intercept a request from the client and check these cre‐
dentials for every incoming call.

First, we will review a simple authentication scenario to explain how authentication
works per client call.

Using Basic Authentication
Basic authentication is the simplest authentication mechanism. In this mechanism,
the client sends requests with the Authorization header with a value that starts with
the word Basic followed by a space and a base64-encoded string username:pass
word. For example, if the username is admin and the password is admin, the header
value looks like this:

Authorization: Basic YWRtaW46YWRtaW4=

In general, gRPC doesn’t encourage us to use a username/password for authenticating
to services. This is because a username/password doesn’t have control in time as

122 | Chapter 6: Secured gRPC

opposed to other tokens (JSON Web Tokens [JWTs], OAuth2 access tokens). This
means when we generate a token, we can specify how long it is valid. But for a user‐
name/password, we cannot specify a validity period. It is valid until we change the
password. If you need to enable basic authentication in your application, it’s advised
that you share basic credentials in a secure connection between client and server. We
pick basic authentication because it is easier to explain how authentication works in
gRPC.

Let’s first discuss how to inject user credentials (in basic authentication) into the call.
Since there is no built-in support for basic authentication in gRPC, we need to add it
as custom credentials to the client context. In Go, we can easily do this by defining a
credential struct and implementing the PerRPCCredentials interface as shown in
Example 6-5.

Example 6-5. Implement PerRPCCredentials interface to pass custom credentials

type basicAuth struct {
 username string
 password string
}

func (b basicAuth) GetRequestMetadata(ctx context.Context,
 in ...string) (map[string]string, error) {
 auth := b.username + ":" + b.password
 enc := base64.StdEncoding.EncodeToString([]byte(auth))
 return map[string]string{
 "authorization": "Basic " + enc,
 }, nil
}

func (b basicAuth) RequireTransportSecurity() bool {
 return true
}

Define a struct to hold the collection on fields you want to inject in your RPC
calls (in our case, it is user credentials like username and password).

Implement the GetRequestMetadata method and convert user credentials to
request metadata. In our case, “Authorization” is the key and the value is “Basic”
followed by base64 (<username>:<password>).

Specify whether channel security is required to pass these credentials. As men‐
tioned earlier, it is advisable to use channel security.

Once we implement a credentials object, we need to initiate it with valid credentials
and pass it when creating the connection as shown in Example 6-6.

Authenticating gRPC Calls | 123

Example 6-6. gRPC secured client application with basic authentication

package main

import (
 "log"
 pb "productinfo/server/ecommerce"
 "google.golang.org/grpc/credentials"
 "google.golang.org/grpc"
)

var (
 address = "localhost:50051"
 hostname = "localhost"
 crtFile = "server.crt"
)

func main() {
 creds, err := credentials.NewClientTLSFromFile(crtFile, hostname)
 if err != nil {
 log.Fatalf("failed to load credentials: %v", err)
 }

 auth := basicAuth{
 username: "admin",
 password: "admin",
 }

 opts := []grpc.DialOption{
 grpc.WithPerRPCCredentials(auth),
 grpc.WithTransportCredentials(creds),
 }

 conn, err := grpc.Dial(address, opts...)
 if err != nil {
 log.Fatalf("did not connect: %v", err)
 }
 defer conn.Close()
 c := pb.NewProductInfoClient(conn)

 // Skip RPC method invocation.
}

Initialize the auth variable with valid user credentials (username and password).
The auth variable holds the values we are going to use.

Pass the auth variable to the grpc.WithPerRPCCredentials function. The
grpc.WithPerRPCCredentials() function takes an interface as a parameter.
Since we define our authentication structure to comply with the interface, we can
pass our variable.

124 | Chapter 6: Secured gRPC

Now the client is pushing extra metadata during its calls to the server, but the server
does not care. So we need to tell the server to check metadata. Let’s update our server
to read the metadata as shown in Example 6-7.

Example 6-7. gRPC secured server with basic user credential validation

package main

import (
 "context"
 "crypto/tls"
 "encoding/base64"
 "errors"
 pb "productinfo/server/ecommerce"
 "google.golang.org/grpc"
 "google.golang.org/grpc/codes"
 "google.golang.org/grpc/credentials"
 "google.golang.org/grpc/metadata"
 "google.golang.org/grpc/status"
 "log"
 "net"
 "path/filepath"
 "strings"
)

var (
 port = ":50051"
 crtFile = "server.crt"
 keyFile = "server.key"
 errMissingMetadata = status.Errorf(codes.InvalidArgument, "missing metadata")
 errInvalidToken = status.Errorf(codes.Unauthenticated, "invalid credentials")
)

type server struct {
 productMap map[string]*pb.Product
}

func main() {
 cert, err := tls.LoadX509KeyPair(crtFile, keyFile)
 if err != nil {
 log.Fatalf("failed to load key pair: %s", err)
 }
 opts := []grpc.ServerOption{
 // Enable TLS for all incoming connections.
 grpc.Creds(credentials.NewServerTLSFromCert(&cert)),

 grpc.UnaryInterceptor(ensureValidBasicCredentials),
 }

Authenticating gRPC Calls | 125

 s := grpc.NewServer(opts...)
 pb.RegisterProductInfoServer(s, &server{})

 lis, err := net.Listen("tcp", port)
 if err != nil {
 log.Fatalf("failed to listen: %v", err)
 }

 if err := s.Serve(lis); err != nil {
 log.Fatalf("failed to serve: %v", err)
 }
}

func valid(authorization []string) bool {
 if len(authorization) < 1 {
 return false
 }
 token := strings.TrimPrefix(authorization[0], "Basic ")
 return token == base64.StdEncoding.EncodeToString([]byte("admin:admin"))
}

func ensureValidBasicCredentials(ctx context.Context, req interface{}, info
*grpc.UnaryServerInfo,
 handler grpc.UnaryHandler) (interface{}, error) {
 md, ok := metadata.FromIncomingContext(ctx)
 if !ok {
 return nil, errMissingMetadata
 }
 if !valid(md["authorization"]) {
 return nil, errInvalidToken
 }
 // Continue execution of handler after ensuring a valid token.
 return handler(ctx, req)
}

Add a new server option (grpc.ServerOption) with the TLS server certificate.
grpc.UnaryInterceptor is a function where we add an interceptor to intercept
all requests from the client. We pass a reference to a function (ensureValidBasic
Credentials) so the interceptor passes all client requests to that function.

Define a function called ensureValidBasicCredentials to validate caller iden‐
tity. Here, the context.Context object contains the metadata we need and that
will exist during the lifetime of the request.

Extract the metadata from the context, get the value of the authentication, and
validate the credentials. The keys within metadata.MD are normalized to lower‐
case. So we need to check the value for the lowercase key.

126 | Chapter 6: Secured gRPC

Now the server is validating client identity in each call. This is a very simple example.
You can have complex authentication logic inside the server interceptor to validate
client identity.

Since you have a basic understanding of how client authentication works, per request,
let’s talk about commonly used and recommended token-based authentication
(OAuth 2.0).

Using OAuth 2.0
OAuth 2.0 is a framework for access delegation. It allows users to grant limited access
to services on their behalf, rather than giving them total access like with a username
and password. Here we are not going to discuss OAuth 2.0 in detail. It is helpful if
you have some basic knowledge about how OAuth 2.0 works to enable it in your
application.

In the OAuth 2.0 flow, there are four main characters: the client,
the authorization server, the resource server, and the resource
owner. The client wants to access the resource in a resource server.
To access the resource, the client needs to get a token (which is an
arbitrary string) from the authorization server. This token must be
of a proper length and should not be predictable. Once the client
receives the token, the client can send a request to the resource
server with the token. The resource server then talks to the corre‐
sponding authorization server and validates the token. If it is vali‐
dated by this resource owner, the client can access the resource.

gRPC has built-in support to enable OAuth 2.0 in a gRPC application. Let’s first dis‐
cuss how to inject a token into the call. Since we don’t have an authorization server in
our example, we are going to hardcode an arbitrary string for the token value.
Example 6-8 illustrates how to add an OAuth token to a client request.

Example 6-8. gRPC secured client application with OAuth token in Go

package main

import (
 "google.golang.org/grpc/credentials"
 "google.golang.org/grpc/credentials/oauth"
 "log"

 pb "productinfo/server/ecommerce"
 "golang.org/x/oauth2"
 "google.golang.org/grpc"
)

Authenticating gRPC Calls | 127

https://oauth.net/2

var (
 address = "localhost:50051"
 hostname = "localhost"
 crtFile = "server.crt"
)

func main() {
 auth := oauth.NewOauthAccess(fetchToken())

 creds, err := credentials.NewClientTLSFromFile(crtFile, hostname)
 if err != nil {
 log.Fatalf("failed to load credentials: %v", err)
 }

 opts := []grpc.DialOption{
 grpc.WithPerRPCCredentials(auth),
 grpc.WithTransportCredentials(creds),
 }

 conn, err := grpc.Dial(address, opts...)
 if err != nil {
 log.Fatalf("did not connect: %v", err)
 }
 defer conn.Close()
 c := pb.NewProductInfoClient(conn)

 // Skip RPC method invocation.
}

func fetchToken() *oauth2.Token {
 return &oauth2.Token{
 AccessToken: "some-secret-token",
 }
}

Set up the credentials for the connection. We need to provide an OAuth2 token
value to create the credentials. Here we use a hardcoded string value for the
token.

Configure gRPC dial options to apply a single OAuth token for all RPC calls on
the same connection. If you want to apply an OAuth token per call, then you
need to configure the gRPC call with CallOption.

Note that we also enable channel security because OAuth requires the underlying
transport to be secure. Inside gRPC, the provided token is prefixed with the token
type and attached to the metadata with the key authorization.

In the server, we add a similar interceptor to check and validate the client token that
comes with the request as shown in Example 6-9.

128 | Chapter 6: Secured gRPC

Example 6-9. gRPC secured server with OAuth user token validation

package main

import (
 "context"
 "crypto/tls"
 "errors"
 "log"
 "net"
 "strings"

 pb "productinfo/server/ecommerce"
 "google.golang.org/grpc"
 "google.golang.org/grpc/codes"
 "google.golang.org/grpc/credentials"
 "google.golang.org/grpc/metadata"
 "google.golang.org/grpc/status"
)

// server is used to implement ecommerce/product_info.
type server struct {
 productMap map[string]*pb.Product
}

var (
 port = ":50051"
 crtFile = "server.crt"
 keyFile = "server.key"
 errMissingMetadata = status.Errorf(codes.InvalidArgument, "missing metadata")
 errInvalidToken = status.Errorf(codes.Unauthenticated, "invalid token")
)

func main() {
 cert, err := tls.LoadX509KeyPair(crtFile, keyFile)
 if err != nil {
 log.Fatalf("failed to load key pair: %s", err)
 }
 opts := []grpc.ServerOption{
 grpc.Creds(credentials.NewServerTLSFromCert(&cert)),
 grpc.UnaryInterceptor(ensureValidToken),
 }

 s := grpc.NewServer(opts...)
 pb.RegisterProductInfoServer(s, &server{})

 lis, err := net.Listen("tcp", port)
 if err != nil {
 log.Fatalf("failed to listen: %v", err)
 }

 if err := s.Serve(lis); err != nil {

Authenticating gRPC Calls | 129

 log.Fatalf("failed to serve: %v", err)
 }
}

func valid(authorization []string) bool {
 if len(authorization) < 1 {
 return false
 }
 token := strings.TrimPrefix(authorization[0], "Bearer ")
 return token == "some-secret-token"
}

func ensureValidToken(ctx context.Context, req interface{}, info *grpc.UnaryServerInfo,
 handler grpc.UnaryHandler) (interface{}, error) {
 md, ok := metadata.FromIncomingContext(ctx)
 if !ok {
 return nil, errMissingMetadata
 }
 if !valid(md["authorization"]) {
 return nil, errInvalidToken
 }
 return handler(ctx, req)
}

Add the new server option (grpc.ServerOption) along with the TLS server cer‐
tificate. With the grpc.UnaryInterceptor function, we add an interceptor to
intercept all requests from the client.

Define a function called ensureValidToken to validate the token. If the token is
missing or invalid, the interceptor blocks the execution and gives an error. Other‐
wise, the interceptor invokes the next handler passing the context and interface.

It is possible to configure token validation for all RPCs using an interceptor. A server
may configure either a grpc.UnaryInterceptor or a grpc.StreamInterceptor
depending on the service type.

Similar to OAuth 2.0 authentication, gRPC also supports JSON Web Token (JWT)-
based authentication. In the next section, we’ll discuss what changes we need to make
to enable JWT-based authentication.

Using JWT
JWT defines a container to transport identity information between the client and
server. A signed JWT can be used as a self-contained access token, which means the
resource server doesn’t need to talk to the authentication server to validate the client
token. It can validate the token by validating the signature. The client requests access
from the authentication server, which verifies the client’s credentials, creates a JWT,
and sends it to the client. The client application with JWT allows access to resources.

130 | Chapter 6: Secured gRPC

gRPC has built-in support for JWT. If you have the JWT file from the authentication
server, you need to pass that token file and create JWT credentials. The code snippet
in Example 6-10 illustrates how to create JWT credentials from the JWT token file
(token.json) and pass them as DialOptions in a Go client application.

Example 6-10. Setting up a connection using a JWT in a Go client application

jwtCreds, err := oauth.NewJWTAccessFromFile(“token.json”)
if err != nil {
 log.Fatalf("Failed to create JWT credentials: %v", err)
}

creds, err := credentials.NewClientTLSFromFile("server.crt",
 "localhost")
if err != nil {
 log.Fatalf("failed to load credentials: %v", err)
}
opts := []grpc.DialOption{
 grpc.WithPerRPCCredentials(jwtCreds),
 // transport credentials.
 grpc.WithTransportCredentials(creds),
}

// Set up a connection to the server.
conn, err := grpc.Dial(address, opts...)
if err != nil {
 log.Fatalf("did not connect: %v", err)
}
 // Skip Stub generation and RPC method invocation.

Call oauth.NewJWTAccessFromFile to initialize a credentials.PerRPCCreden
tials. We need to provide a valid token file to create the credentials.

Configure a gRPC dial with DialOption WithPerRPCCredentials to apply a
JWT token for all RPC calls on the same connection.

In addition to these authentication techniques, we can add any authentication mecha‐
nism by extending RPC credentials on the client side and adding a new interceptor
on the server side. gRPC also provides special built-in support for calling gRPC serv‐
ices deployed in Google Cloud. in the next section, we’ll discuss how to call those
services.

Using Google Token-Based Authentication
Identifying the users and deciding whether to let them use the services deployed on
the Google Cloud Platform is controlled by the Extensible Service Proxy (ESP). ESP
supports multiple authentication methods, including Firebase, Auth0, and Google ID

Authenticating gRPC Calls | 131

tokens. In each case, the client needs to provide a valid JWT in their requests. In
order to generate authenticating JWTs, we must create a service account for each
deployed service.

Once we have the JWT token for the service, we can call the service method by send‐
ing the token along with the request. We can create the channel passing the creden‐
tials as shown in Example 6-11.

Example 6-11. Setting up a connection with a Google endpoint in a Go client application

perRPC, err := oauth.NewServiceAccountFromFile("service-account.json", scope)
if err != nil {
 log.Fatalf("Failed to create JWT credentials: %v", err)
}

pool, _ := x509.SystemCertPool()
creds := credentials.NewClientTLSFromCert(pool, "")

opts := []grpc.DialOption{
 grpc.WithPerRPCCredentials(perRPC),
 grpc.WithTransportCredentials(creds),
}

conn, err := grpc.Dial(address, opts...)
if err != nil {
 log.Fatalf("did not connect: %v", err)
}
.... // Skip Stub generation and RPC method invocation.

Call oauth.NewServiceAccountFromFile to initialize credentials.PerRPCCre
dentials. We need to provide a valid token file to create the credentials.

Similar to authentication mechanisms discussed earlier, we configure a gRPC dial
with DialOption WithPerRPCCredentials to apply the authentication token as
metadata for all RPC calls on the same connection.

Summary
When building a production-ready gRPC application, it is essential to have at least
minimum security requirements for the gRPC application to ensure secure commu‐
nication between the client and server. The gRPC library is designed to work with dif‐
ferent kinds of authentication mechanisms and capable of extending support by
adding a custom authentication mechanism. This makes it easy to safely use gRPC to
talk to other systems.

There are two types of credential supports in gRPC, channel and call. Channel cre‐
dentials are attached to the channels such as TLS, etc. Call credentials are attached to

132 | Chapter 6: Secured gRPC

the call, such as OAuth 2.0 tokens, basic authentication, etc. We even can apply both
credential types to the gRPC application. For example, we can have TLS enable the
connection between client and server and also attach credentials to each RPC call
made on the connection.

In this chapter, you learned how to enable both credential types to your gRPC appli‐
cation. In the next chapter, we’ll expand on the concepts and technologies you’ve
learned to build and run real-world gRPC applications in production. We’ll also dis‐
cuss how to write test cases for service and client applications, how to deploy an
application on Docker and Kubernetes, and how to observe the system when it runs
in production.

Summary | 133

CHAPTER 7

Running gRPC in Production

In previous chapters, we focused on various aspects of designing and developing
gRPC-based applications. Now, it’s time to dive into the details of running gRPC
applications in production. In this chapter, we’ll discuss how you can develop unit
testing or integration testing for your gRPC services and client as well as how you can
integrate them with continuous integration tools. Then we’ll move into the continu‐
ous deployment of a gRPC application where we explore some deployment patterns
on virtual machines (VMs), Docker, and Kubernetes. Finally, to operate your gRPC
applications in production environments, you need to have a solid observability plat‐
form. This is where we will discuss different observability tools for gRPC applications
and explore troubleshooting and debugging techniques for gRPC applications. Let’s
begin our discussion with testing these applications.

Testing gRPC Applications
Any software application that you develop (including gRPC applications) needs to
have associated unit testing along with the application. As gRPC applications always
interact with the network, the testing should also cover the network RPC aspect of
both the server and client gRPC applications. We’ll start by testing the gRPC server.

Testing a gRPC Server
gRPC service testing is often done using a gRPC client application as part of the test
cases. The server-side testing consists of starting a gRPC server with the required
gRPC service and then connecting to the server using the client application where
you implement your test cases. Let’s take a look at a sample test case written for the
Go implementation of our ProductInfo service. In Go, the implementation of the
gRPC test case should be implemented as a generic test case of Go using the testing
package (see Example 7-1).

135

Example 7-1. gRPC server-side test using Go

func TestServer_AddProduct(t *testing.T) {
 grpcServer := initGRPCServerHTTP2()
 conn, err := grpc.Dial(address, grpc.WithInsecure())
 if err != nil {

 grpcServer.Stop()
 t.Fatalf("did not connect: %v", err)
 }
 defer conn.Close()
 c := pb.NewProductInfoClient(conn)

 name := "Sumsung S10"
 description := "Samsung Galaxy S10 is the latest smart phone, launched in
 February 2019"
 price := float32(700.0)
 ctx, cancel := context.WithTimeout(context.Background(), time.Second)
 defer cancel()
 r, err := c.AddProduct(ctx, &pb.Product{Name: name,
 Description: description, Price: price})
 if err != nil {
 t.Fatalf("Could not add product: %v", err)
 }

 if r.Value == "" {
 t.Errorf("Invalid Product ID %s", r.Value)
 }
 log.Printf("Res %s", r.Value)
 grpcServer.Stop()
}

Conventional test that starts a gRPC server and client to test the service with
RPC.

Starting a conventional gRPC server running on HTTP/2.

Connecting to the server application.

Sends RPC for AddProduct method.

Verification of the response message.

As gRPC test cases are based on standard language test cases, the way in which you
execute them will not be different from a standard test case. One special thing about
the server-side gRPC tests is that they require the server application to open up a port
the client application connects to. If you prefer not to do this, or your testing environ‐
ment doesn’t allow it, you can use a library to help avoid starting up a service with a
real port number. In Go, you can use the bufconn package, which provides a

136 | Chapter 7: Running gRPC in Production

https://oreil.ly/gOq46

net.Conn implemented by a buffer and related dialing and listening functionality. You
can find the full code sample in the source code repository for this chapter. If you are
using Java you can use a test framework such as JUnit and follow the exact same pro‐
cedure to write a server-side gRPC test. However, if you prefer to write the test case
without starting a gRPC server instance, then you can use the gRPC in-process server
of the Java implementation. You can find a complete Java code example for this in the
code repository of this book.

It is also possible to unit test the business logic of the remote functions that you
develop without going through the RPC network layer. You can instead directly test
the functions by invoking them without using a gRPC client.

With this, we have learned how to write tests for gRPC services. Now let’s talk about
how to test your gRPC client applications.

Testing a gRPC Client
When we are developing tests for a gRPC client, one of the possible approaches to
testing would be to start a gRPC server and implement a mock service. However, this
won’t be a very straightforward task as it will have the overhead of opening a port and
connecting to a server. Therefore, to test client-side logic without the overhead of
connecting to a real server, you can use a mocking framework. Mocking of the gRPC
server side enables developers to write lightweight unit tests to check functionalities
on the client side without invoking RPC calls to a server.

If you are developing a gRPC client application with Go, you can use Gomock to
mock the client interface (using the generated code) and programmatically set its
methods to expect and return predetermined values. Using Gomock, you can gener‐
ate mock interfaces for the gRPC client application using:

mockgen github.com/grpc-up-and-running/samples/ch07/grpc-docker/go/proto-gen \
ProductInfoClient > mock_prodinfo/prodinfo_mock.go

Here, we’ve specified ProductInfoClient as the interface to be mocked. Then the test
code you write can import the package generated by mockgen along with the gomock
package to write unit tests around client-side logic. As shown in Example 7-2, you
can create a mock object to expect a call to its method and return a response.

Example 7-2. gRPC client-side test with Gomock

func TestAddProduct(t *testing.T) {
 ctrl := gomock.NewController(t)
 defer ctrl.Finish()
 mocklProdInfoClient := NewMockProductInfoClient(ctrl)
 ...
 req := &pb.Product{Name: name, Description: description, Price: price}

Testing gRPC Applications | 137

https://oreil.ly/8GAWB

 mocklProdInfoClient.
 EXPECT().AddProduct(gomock.Any(), &rpcMsg{msg: req},).
 Return(&wrapper.StringValue{Value: "ABC123" + name}, nil)

 testAddProduct(t, mocklProdInfoClient)
}

func testAddProduct(t *testing.T, client pb.ProductInfoClient) {
 ctx, cancel := context.WithTimeout(context.Background(), time.Second)
 defer cancel()
 ...

 r, err := client.AddProduct(ctx, &pb.Product{Name: name,
 Description: description, Price: price})

 // test and verify response.
}

Creating a mock object to expect calls to remote methods.

Programming the mock object.

Expect a call to the AddProduct method.

Return a mock value for product ID.

Call the actual test method that invokes the remote method of the client stub.

If you are using Java, you can test the client application using Mockito and the in-
process server implementation for the Java implementation of gRPC. You can refer to
the source code repository for more details of these samples. Once you have the
required server- and client-side testing in place you can integrate them with the con‐
tinuous integration tools that you use.

It is important to keep in mind that mocking gRPC servers will not give you the exact
same behavior as with a real gRPC server. So certain capabilities may not be able to be
verified via test unless you re-implement all the error logic present in gRPC servers.
In practice, you can verify a selected set of capabilities via mocking and the rest needs
to be verified against the actual gRPC server implementation. Now let’s look at how
you can do load testing and benchmarking of your gRPC applications.

Load Testing
It is difficult to conduct load testing and benchmarking for gRPC applications using
conventional tools, as these applications are more or less bound to specific protocols
such as HTTP. Therefore, for gRPC we need tailor-made load-testing tools that can
load test the gRPC server by generating a virtual load of RPCs to the server.

138 | Chapter 7: Running gRPC in Production

https://site.mockito.org

ghz is such a load-testing tool; it is implemented as a command-line utility using Go.
It can be used for testing and debugging services locally, and also in automated con‐
tinuous integration environments for performance regression testing. For example,
using ghz you can run a load test with the following command:

ghz --insecure \
 --proto ./greeter.proto \
 --call helloworld.Greeter.SayHello \
 -d '{"name":"Joe"}'\
 -n 2000 \
 -c 20 \

 0.0.0.0:50051

Here we invoke a SayHello remote method of the Greeter service insecurely. We can
specify the total number of requests (-n 2000) and concurrency (20 threads). The
results can also be generated in various output formats.

Once you have the required server- and client-side testing in place, you can integrate
them with the continuous integration tools that you use.

Continuous Integration
If you are new to continuous integration (CI), it is a development practice that
requires developers to frequently integrate code into a shared repository. During each
check-in the code is then verified by an automated build, allowing teams to detect
problems early. When it comes to gRPC applications, often the server- and client-side
applications are independent and may be built with disparate technologies. So, as part
of the CI process, you will have to verify the gRPC client- or server-side code using
the unit and integration testing techniques that we learned in the previous section.
Then based on the language that you use to build the gRPC application, you can inte‐
grate the testing (e.g., Go testing or Java JUnit) of those applications with the CI tool
of your choice. For instance, if you have written tests using Go, then you can easily
integrate your Go tests with tools such as Jenkins, TravisCI, Spinnaker, etc.

Once you establish a testing and CI procedure for your gRPC application, the next
thing that you need to look into is the deployment of your gRPC applications.

Deployment
Now, let’s look into the different deployment methods for the gRPC applications that
we develop. If you intend to run a gRPC server or client application locally or on
VMs, the deployment merely depends on the binaries that you generate for the corre‐
sponding programming language of your gRPC application. For local or VM-based
deployment, the scaling and high availability of gRPC server applications is usually

Deployment | 139

https://ghz.sh
https://jenkins.io
https://travis-ci.com
https://www.spinnaker.io

achieved using standard deployment practices such as using load balancers that sup‐
port the gRPC protocol.

Most modern applications are now deployed as containers. Therefore, it’s quite useful
to take a look at how you can deploy your gRPC applications on containers. Docker is
the standard platform for container-based application deployment.

Deploying on Docker
Docker is an open platform for developing, shipping, and running applications.
Using Docker, you can separate your applications from your infrastructure. It offers
the ability to package and run an application in an isolated environment called a con‐
tainer so that you can run multiple containers on the same host. Containers are much
more lightweight than conventional VMs and run directly within the host machine’s
kernel.

Let’s look at some examples of deploying a gRPC application as a Docker container.

The fundamentals of Docker are beyond the scope of this book.
Hence, we recommend you refer to the Docker documentation and
other resources if you are not familiar with Docker.

Once you develop a gRPC server application, you can create a Docker container for
it. Example 7-3 shows a Dockerfile of a Go-based gRPC server. There are many
gRPC-specific constructs in the Dockerfile. In this example, we have used a multi‐
stage Docker build where we build the application in stage 1, and then run the appli‐
cation in stage 2 as a much more lightweight runtime. The generated server-side code
is also added into the container prior to building the application.

Example 7-3. Dockerfile for Go gRPC server

Multistage build

Build stage I:
FROM golang AS build
ENV location /go/src/github.com/grpc-up-and-running/samples/ch07/grpc-docker/go
WORKDIR ${location}/server

ADD ./server ${location}/server
ADD ./proto-gen ${location}/proto-gen

RUN go get -d ./...
RUN go install ./...

RUN CGO_ENABLED=0 go build -o /bin/grpc-productinfo-server

140 | Chapter 7: Running gRPC in Production

https://www.docker.com
https://docs.docker.com

Build stage II:
FROM scratch
COPY --from=build /bin/grpc-productinfo-server /bin/grpc-productinfo-server

ENTRYPOINT ["/bin/grpc-productinfo-server"]
EXPOSE 50051

Only the Go language and Alpine Linux is needed to build the program.

Download all the dependencies.

Install all the packages.

Building the server application.

Go binaries are self-contained executables.

Copy the binary that we built in the previous stage to the new location.

Once you create the Dockerfile you can build the Docker image using:

docker image build -t grpc-productinfo-server -f server/Dockerfile

The gRPC client application can be created using the same approach. One exception
here is that, since we are running our server application on Docker, the hostname and
port that the client application uses to connect to gRPC is now different.

When we run both the server and client gRPC applications on Docker, they need to
communicate with each other and the outside world via the host machine. So there
has to be a layer of networking involved. Docker supports different types of networks,
each fit for certain use cases. So, when we run the server and client Docker contain‐
ers, we can specify a common network so that the client application can discover the
location of the server application based on the hostname. This means that the client
application code has to change so that it connects to the hostname of the server. For
example, our Go gRPC application must be modified to call the service hostname
instead of localhost:

conn, err := grpc.Dial("productinfo:50051", grpc.WithInsecure())

You may read the hostname from the environment rather than hardcoding it in your
client application. Once you are done with the changes to the client application, you
need to rebuild the Docker image and then run both the server and client images as
shown here:

docker run -it --network=my-net --name=productinfo \
 --hostname=productinfo
 -p 50051:50051 grpc-productinfo-server

Deployment | 141

docker run -it --network=my-net \
 --hostname=client grpc-productinfo-client

Running the gRPC server with hostname productinfo, port 50051 on Docker
network my-net.

Running the gRPC client on Docker network my-net.

When starting Docker containers, you can specify a Docker network that a given
container runs on. If the service shares the same network, then the client application
can discover the actual address of the host service using the hostname provided along
with the docker run command.

When the number of containers you run is small and their interactions are relatively
simple, then you can possibly build your solution entirely on Docker. However, most
real-world scenarios require the management of multiple containers and their inter‐
actions. Building such solutions solely based on Docker is quite tedious. That’s where
a container orchestration platform comes into the picture.

Deploying on Kubernetes
Kubernetes is an open source platform for automating deployment, scaling, and man‐
agement of containerized applications. When you run a containerized gRPC applica‐
tion using Docker, there’s no scalability or high-availability guarantee provided out of
the box. You need to build those things outside the Docker containers. Kubernetes
provides a wide range of such capabilities, so that you can offload most container-
management and orchestration tasks to the underlying Kubernetes platform.

Kubernetes provides a reliable and scalable platform for running
containerized workloads. Kubernetes takes care of scaling require‐
ments, failover, service, discovery, configuration management,
security, deployment patterns, and much more.
The fundamentals of Kubernetes are beyond the scope of this book.
Hence, we recommend that you refer to the Kubernetes documen‐
tation and other such resources to learn more.

Let’s look at how your gRPC server application can be deployed into Kubernetes.

Kubernetes deployment resource for a gRPC server
To deploy in Kubernetes, the first thing you need to do is create a Docker container
for your gRPC server application. We did exactly this in the previous section, and you
can use the same container here. You can push the container image to a container
registry such as Docker Hub.

142 | Chapter 7: Running gRPC in Production

https://kubernetes.io
https://oreil.ly/csW_8
https://oreil.ly/csW_8

For this example, we have pushed the gRPC server Docker image to Docker Hub
under the tag kasunindrasiri/grpc-productinfo-server. The Kubernetes platform
doesn’t directly manage containers, rather, it uses an abstraction called pods. A pod is
a logical unit that may contain one or more containers; it is the unit of replication in
Kubernetes. For example, if you need multiple instances of the gRPC server applica‐
tion, then Kubernetes will create more pods. The containers running on a given pod
share the same resources and local network. However, in our case, we only need to
run a gRPC server container in our pod. So, it’s a pod with a single container. Kuber‐
netes doesn’t manage pods directly. Rather, it uses another abstraction called a deploy‐
ment. A deployment specifies the number of pods that should be running at a time.
When a new deployment is created, Kubernetes spins up the number of pods speci‐
fied in the deployment.

To deploy our gRPC server application in Kubernetes, we need to create a Kubernetes
deployment using the YAML descriptor shown in Example 7-4.

Example 7-4. Kubernetes deployment descriptor of a Go gRPC server application

apiVersion: apps/v1
kind: Deployment
metadata:
 name: grpc-productinfo-server
spec:
 replicas: 1
 selector:
 matchLabels:
 app: grpc-productinfo-server
 template:
 metadata:
 labels:
 app: grpc-productinfo-server
 spec:
 containers:
 - name: grpc-productinfo-server
 image: kasunindrasiri/grpc-productinfo-server
 resources:
 limits:
 memory: "128Mi"
 cpu: "500m"
 ports:
 - containerPort: 50051
 name: grpc

Declaring a Kubernetes Deployment object.

Name of the deployment.

Deployment | 143

Number of gRPC server pods that should be running at a time.

Name of the associated gRPC server container.

Image name and tag of the gRPC server container.

When you apply this descriptor in Kubernetes using kubectl apply -f server/
grpc-prodinfo-server.yaml, you get a Kubernetes deployment of one gRPC server
pod running in your Kubernetes cluster. However, if the gRPC client application has
to access a gRPC server pod running in the same Kubernetes cluster, it has to find out
the exact IP address and port of the pod and send the RPC. However, the IP address
may change when the pod gets restarted, and if you are running multiple replicas you
have to deal with multiple IP addresses of each replica. To overcome this limitation,
Kubernetes provides an abstraction called a service.

Kubernetes service resource for a gRPC server
You can create a Kubernetes service and associate it with the matching pods (gRPC
server pods in this case) and you will get a DNS name that will automatically route
the traffic to any matching pod. So, you can think of a service as a web proxy or a
load balancer that forwards the requests to the underlying pods. Example 7-5 shows
the Kubernetes service descriptor for the gRPC server application.

Example 7-5. Kubernetes service descriptor of a Go gRPC server application

apiVersion: v1
kind: Service
metadata:
 name: productinfo
spec:
 selector:
 app: grpc-productinfo-server
 ports:
 - port: 50051
 targetPort: 50051
 name: grpc
 type: NodePort

Specifying a Service descriptor.

Name of the service. This will be used by the client application when connecting
to the service.

This tells the service to route requests to the pods for matching label grpc-
productinfo-server.

144 | Chapter 7: Running gRPC in Production

Service runs on port 50051 and forwards the requests to target port 50051.

So, once you have created both the Deployment and Service descriptor, you can
deploy this application into Kubernetes using kubectl apply -f server/grpc-
prodinfo-server.yaml (you can have both descriptors in the same YAML file). A
successful deployment of these objects should give you a running gRPC server pod, a
Kubernetes service for a gRPC server, and a deployment.

The next step is deploying the gRPC client into Kubernetes cluster.

Kubernetes Job for running a gRPC Client
When you have the gRPC server up and running on the Kubernetes cluster, then you
can also run the gRPC client application in the same cluster. The client can access the
gRPC server via the gRPC service productinfo that we created in the previous step.
So from the client’s code, you should refer to the Kubernetes service name as the
hostname and use the service port as the port name of the gRPC server. Therefore,
the client will be using grpc.Dial("productinfo:50051", grpc.WithInsecure())
when connecting to the server in the Go implementation of the client. If we assume
that our client application needs to run a specified number of times (i.e., just calls the
gRPC service, logs the response, and exits), then rather than using a Kubernetes
Deployment, we may use a Kubernetes job. A Kubernetes job is designed to run a Pod
a specified number of times.

You can create the client application container the same way we did in the gRPC
server. Once you have the container pushed into the Docker registry, then you can
specify the Kubernetes Job descriptor as shown in Example 7-6.

Example 7-6. gRPC client application runs as a Kubernetes job

apiVersion: batch/v1
kind: Job
metadata:
 name: grpc-productinfo-client
spec:
 completions: 1
 parallelism: 1
 template:
 spec:
 containers:
 - name: grpc-productinfo-client
 image: kasunindrasiri/grpc-productinfo-client
 restartPolicy: Never
 backoffLimit: 4

Specifying a Kubernetes Job.

Deployment | 145

Name of the job.

Number of times that the pod needs to run successfully before the job is consid‐
ered completed.

How many pods should run in parallel.

Name of the associated gRPC client container.

Container image that this job is associated with.

Then you can deploy the Job for the gRPC client application using kubectl apply -f
client/grpc-prodinfo-client-job.yaml and check the status of the pod.

Successful completion of the execution of this Job sends an RPC to add a product in
our ProductInfo gRPC service. So you can observe the logs for both server and client
pods to see whether we get the expected information.

Then we can proceed to exposing your gRPC services outside the Kubernetes cluster
using ingress resources.

Kubernetes Ingress for exposing a gRPC service externally
So far what we have done is deploy a gRPC server on Kubernetes and make it accessi‐
ble to another pod (which is running as a Job) running in the same cluster. What if
we want to expose the gRPC service to the external applications outside the Kuber‐
netes cluster? As you learned, the Kubernetes service construct is only meant to
expose given Kubernetes pods to the other pods running in the cluster. So, the Kuber‐
netes service is not accessible by the external applications that are outside the Kuber‐
netes cluster. Kubernetes gives another abstraction called an ingress to serve this
purpose.

We can think of an ingress as a load balancer that sits between the Kubernetes service
and the external applications. Ingress routes the external traffic to the service; the
service then routes the internal traffic between the matching pods. An ingress con‐
troller manages the ingress resource in a given Kubernetes cluster. The type and the
behavior of the ingress controller may change based on the cluster you use. Also,
when you expose a gRPC service to the external application, one of the mandatory
requirements is to support gRPC routing at the ingress level. Therefore, we need to
select an ingress controller that supports gRPC.

For this example, we’ll use the Nginx ingress controller, which is based on the Nginx
load balancer. (Based on the Kubernetes cluster you use, you may select the most
appropriate ingress controller that supports gRPC.) Nginx Ingress supports gRPC for
routing external traffic into internal services.

146 | Chapter 7: Running gRPC in Production

https://oreil.ly/0UC0a
https://www.nginx.com
https://oreil.ly/wZo5w

So, to expose our ProductInfo gRPC server application to the external world (i.e.,
outside the Kubernetes cluster), we can create an Ingress resource as shown in
Example 7-7.

Example 7-7. Kubernetes Ingress resource of a Go gRPC server application

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 annotations:
 kubernetes.io/ingress.class: "nginx"
 nginx.ingress.kubernetes.io/ssl-redirect: "false"
 nginx.ingress.kubernetes.io/backend-protocol: "GRPC"
 name: grpc-prodinfo-ingress
spec:
 rules:
 - host: productinfo
 http:
 paths:
 - backend:
 serviceName: productinfo
 servicePort: grpc

Specifying an Ingress resource.

Annotations related to Nginx Ingress controller and specifying gRPC as the back‐
end protocol.

Name of the Ingress resource.

This is the hostname exposed to the external world.

Name of the associated Kubernetes service.

Name of the service port specified in the Kubernetes service.

You will need to install the Nginx Ingress controller prior to deploying the preceding
ingress resource. You can find more details on installing and using the Nginx Ingress
with gRPC in the Ingress-Nginx repository of Kubernetes. Once you deploy this
Ingress resource, any external application can invoke the gRPC server via the host‐
name (productinfo) and the default port (80).

With that, you have learned all the fundamentals related to deploying a production-
ready gRPC application on Kubernetes. As you have seen, owing to the capabilities
that Kubernetes and Docker offer, we don’t really have to worry much about most
nonfunctional requirements such as scalability, high availability, load balancing, fail‐
over, etc., because Kubernetes is providing them as part of the underlying platform.

Deployment | 147

https://oreil.ly/l-vFp

Hence, certain concepts that we learned in Chapter 6, such as load balancing, name
resolving at the gRPC code level, etc., are not required if you are running your gRPC
applications on Kubernetes.

Once you have a gRPC-based application up and running, you need to ensure the
smooth operation of the application in production. To accomplish that goal, you need
to consistently observe your gRPC application and take the necessary actions when
required. Let’s look into the details of the observability aspects of gRPC applications.

Observability
As we discussed in the previous section, gRPC applications are normally deployed
and run in containerized environments where there are multiples of such containers
running and talking to each other over the network. Then comes the problem of how
to keep track of each container and make sure they are actually working. This is
where observability comes into the picture.

As the Wikipedia definition states, “observability is a measure of how well internal
states of a system can be inferred from knowledge of its external outputs.” Basically,
the purpose of having observability into a system is to answer the question, “Is any‐
thing wrong in the system right now?” If the answer is yes, we should also be able to
answer a bunch of other questions like “What is wrong?” and “Why is it happening?”
If we can answer those questions at any given time and in any part of the system, we
can say that our system is observable.

It is also important to note that observability is an attribute of a system that is as
important as efficiency, usability, and reliability. So it must be considered from the
beginning when we are building gRPC applications.

When talking about observability, there are three main pillars that we normally talk
about: metrics, logging, and tracing. These are the main techniques used to gain the
observability of the system. Let’s discuss each of them separately in the following
sections.

Metrics
Metrics are a numeric representation of data measured over intervals of time. When
talking about metrics, there are two types of data we can collect. One is system-level
metrics like CPU usage, memory usage, etc. The other one is application-level met‐
rics like inbound request rate, request error rate, etc.

System-level metrics are normally captured when the application is running. These
days, there are lots of tools to capture those metrics, and they’re usually captured by
the DevOps team. But application-level metrics differ between applications. So when
designing a new application, it is the task of an application developer to decide what

148 | Chapter 7: Running gRPC in Production

https://oreil.ly/FVPTN

kind of application-level metrics need to be captured to get an understanding of the
behavior of a system. In this section, we are going to focus on how to enable
application-level metrics in our applications.

OpenCensus with gRPC
For gRPC applications, there are standard metrics that are provided by the OpenCen‐
sus library. We can easily enable them by adding handlers to both the client and
server applications. We can also add our own metrics collector (Example 7-8).

OpenCensus is a set of open source libraries for collecting applica‐
tion metrics and distributed traces; it supports various languages. It
collects metrics from the target application and transfers the data
to the backend of your choice in real time. Supported backends
currently available include Azure Monitor, Datadog, Instana,
Jaeger, SignalFX, Stackdriver, and Zipkin. We can also write our
own exporter for other backends.

Example 7-8. Enable OpenCensus monitoring for the gRPC Go server

package main

import (
 "errors"
 "log"
 "net"
 "net/http"

 pb "productinfo/server/ecommerce"
 "google.golang.org/grpc"
 "go.opencensus.io/plugin/ocgrpc"
 "go.opencensus.io/stats/view"
 "go.opencensus.io/zpages"
 "go.opencensus.io/examples/exporter"
)

const (
 port = ":50051"
)

// server is used to implement ecommerce/product_info.
type server struct {
 productMap map[string]*pb.Product
}

func main() {

 go func() {

Observability | 149

https://oreil.ly/EMfF-
https://oreil.ly/EMfF-
https://opencensus.io

 mux := http.NewServeMux()
 zpages.Handle(mux, "/debug")
 log.Fatal(http.ListenAndServe("127.0.0.1:8081", mux))
 }()

 view.RegisterExporter(&exporter.PrintExporter{})

 if err := view.Register(ocgrpc.DefaultServerViews...); err != nil {
 log.Fatal(err)
 }

 grpcServer := grpc.NewServer(grpc.StatsHandler(&ocgrpc.ServerHandler{}))
 pb.RegisterProductInfoServer(grpcServer, &server{})

 lis, err := net.Listen("tcp", port)
 if err != nil {
 log.Fatalf("Failed to listen: %v", err)
 }

 if err := grpcServer.Serve(lis); err != nil {
 log.Fatalf("failed to serve: %v", err)
 }
}

Specify external libraries we need to add to enable monitoring. gRPC OpenCen‐
sus provides a predefined set of handlers to support OpenCensus monitoring.
Here we are going to use those handlers.

Register stat exporters to export the collected data. Here we add PrintExporter
and it logs exported data to the console. This is only for demonstration purposes;
normally it’s not recommended that you log all production loads.

Register the views to collect the server request count. These are the predefined
default service views that collect received bytes per RPC, sent bytes per RPC,
latency per RPC, and completed RPC. We can write our own views to collect
data.

Create a gRPC server with a stats handler.

Register our ProductInfo service to the gRPC server.

Start listening to incoming messages on the port (50051).

Starts a z-Pages server. An HTTP endpoint starts with the context of /debug in
port 8081 for metrics visualization.

150 | Chapter 7: Running gRPC in Production

Similar to the gRPC server, we can enable OpenCensus monitoring in gRPC clients
using client-side handlers. Example 7-9 provides the code snippet for adding a met‐
rics handler to a gRPC client written in Go.

Example 7-9. Enable OpenCensus monitoring for the gRPC Go server

package main

import (
 "context"
 "log"
 "time"

 pb "productinfo/server/ecommerce"
 "google.golang.org/grpc"
 "go.opencensus.io/plugin/ocgrpc"
 "go.opencensus.io/stats/view"
 "go.opencensus.io/examples/exporter"
)

const (
 address = "localhost:50051"
)

func main() {
 view.RegisterExporter(&exporter.PrintExporter{})

 if err := view.Register(ocgrpc.DefaultClientViews...); err != nil {
 log.Fatal(err)
 }

 conn, err := grpc.Dial(address,
 grpc.WithStatsHandler(&ocgrpc.ClientHandler{}),
 grpc.WithInsecure(),
)
 if err != nil {
 log.Fatalf("Can't connect: %v", err)
 }
 defer conn.Close()

 c := pb.NewProductInfoClient(conn)

 // Skip RPC method invocation.
}

Specify external libraries we need to add to enable monitoring.

Observability | 151

Register stats and trace exporters to export the collected data. Here we will add
PrintExporter, which logs exported data to the console. This is only for demon‐
stration purposes. Normally it is not recommended to log all production loads.

Register the views to collect server request count. These are the predefined
default service views that collect received bytes per RPC, sent bytes per RPC,
latency per RPC, and completed RPC. We can write our own views to collect
data.

Set up a connection to the server with client stats handlers.

Create a client stub using the server connection.

Close the connection when everything is done.

Once we run the server and client, we can access the server and client metrics
through the created HTTP endpoint (e.g., RPC metrics on http://localhost:8081/
debug/rpcz and traces on http://localhost:8081/debug/tracez).

As mentioned before, we can use predefined exporters to publish data to the sup‐
ported backend or we can write our own exporter to send traces and metrics to any
backend that is capable of consuming them.

In the next section we’ll discuss another popular technology, Prometheus, which is
commonly used for enabling metrics for gRPC applications.

Prometheus with gRPC
Prometheus is an open source toolkit for system monitoring and alerting. You can
use Prometheus for enabling metrics for your gRPC application using the gRPC
Prometheus library. We can easily enable this by adding an interceptor to both the
client and server applications and we can also add our own metrics collector, too.

Prometheus collects metrics from the target application by calling
an HTTP endpoint that starts with the context /metrics. It stores
all collected data and runs rules over this data to either aggregate
and record new time series from existing data or generate alerts.
We can visualize those aggregated results using tools like Grafana.

Example 7-10 illustrates how to add a metrics interceptor and a custom metrics col‐
lector to our product management server written in Go.

152 | Chapter 7: Running gRPC in Production

http://localhost:8081/debug/rpcz
http://localhost:8081/debug/rpcz
http://localhost:8081/debug/tracez)
https://prometheus.io
https://oreil.ly/nm84_
https://oreil.ly/nm84_
https://grafana.com

Example 7-10. Enable Prometheus monitoring for the gRPC Go server

package main

import (
 ...
 "github.com/grpc-ecosystem/go-grpc-prometheus"
 "github.com/prometheus/client_golang/prometheus"
 "github.com/prometheus/client_golang/prometheus/promhttp"
)

var (
 reg = prometheus.NewRegistry()

 grpcMetrics = grpc_prometheus.NewServerMetrics()

 customMetricCounter = prometheus.NewCounterVec(prometheus.CounterOpts{
 Name: "product_mgt_server_handle_count",
 Help: "Total number of RPCs handled on the server.",
 }, []string{"name"})
)

func init() {
 reg.MustRegister(grpcMetrics, customMetricCounter)
}

func main() {
 lis, err := net.Listen("tcp", port)
 if err != nil {
 log.Fatalf("failed to listen: %v", err)
 }

 httpServer := &http.Server{
 Handler: promhttp.HandlerFor(reg, promhttp.HandlerOpts{}),
 Addr: fmt.Sprintf("0.0.0.0:%d", 9092)}

 grpcServer := grpc.NewServer(
 grpc.UnaryInterceptor(grpcMetrics.UnaryServerInterceptor()),
)

 pb.RegisterProductInfoServer(grpcServer, &server{})
 grpcMetrics.InitializeMetrics(grpcServer)

 // Start your http server for prometheus.
 go func() {
 if err := httpServer.ListenAndServe(); err != nil {
 log.Fatal("Unable to start a http server.")
 }
 }()

 if err := grpcServer.Serve(lis); err != nil {
 log.Fatalf("failed to serve: %v", err)

Observability | 153

 }
}

Specifies external libraries we need to add to enable monitoring. The gRPC eco‐
system provides a predefined set of interceptors to support Prometheus monitor‐
ing. Here we are going to use those interceptors.

Creates a metrics registry. This holds all data collectors registered in the system.
If we need to add a new collector, we need to register it in this registry.

Creates standard client metrics. These are the predefined metrics defined in the
library.

Creates a custom metrics counter with the name product_mgt_server_han
dle_count.

Registers standard server metrics and custom metrics collector to the registry
created in step 2.

Creates an HTTP server for Prometheus. An HTTP endpoint starts with the con‐
text /metrics on port 9092 for metrics collection.

Creates a gRPC server with a metrics interceptor. Here we use grpcMetrics.Unar
yServerInterceptor, since we have unary service. There is another interceptor
called grpcMetrics.StreamServerInterceptor() for streaming services.

Initializes all standard metrics.

Using the custom metrics counter created in step 4, we can add more metrics for
monitoring. Let’s say we want to collect how many products with the same name are
added to our product management system. As shown in Example 7-11, we can add a
new metric to customMetricCounter in the addProduct method.

Example 7-11. Add new metrics to the custom metric counter

// AddProduct implements ecommerce.AddProduct
func (s *server) AddProduct(ctx context.Context,
 in *pb.Product) (*wrapper.StringValue, error) {
 customMetricCounter.WithLabelValues(in.Name).Inc()
 ...
}

Similar to the gRPC server, we can enable Prometheus monitoring in gRPC clients
using client-side interceptors. Example 7-12 provides the code snippet for adding a
metrics interceptor to the gRPC client written in Go.

154 | Chapter 7: Running gRPC in Production

Example 7-12. Enable Prometheus monitoring for the gRPC Go client

package main

import (
 ...
 "github.com/grpc-ecosystem/go-grpc-prometheus"
 "github.com/prometheus/client_golang/prometheus"
 "github.com/prometheus/client_golang/prometheus/promhttp"
)

const (
 address = "localhost:50051"
)

func main() {
 reg := prometheus.NewRegistry()
 grpcMetrics := grpc_prometheus.NewClientMetrics()
 reg.MustRegister(grpcMetrics)

 conn, err := grpc.Dial(address,
 grpc.WithUnaryInterceptor(grpcMetrics.UnaryClientInterceptor()),
 grpc.WithInsecure(),
)
 if err != nil {
 log.Fatalf("did not connect: %v", err)
 }
 defer conn.Close()

 // Create a HTTP server for prometheus.
 httpServer := &http.Server{
 Handler: promhttp.HandlerFor(reg, promhttp.HandlerOpts{}),
 Addr: fmt.Sprintf("0.0.0.0:%d", 9094)}

 // Start your http server for prometheus.
 go func() {
 if err := httpServer.ListenAndServe(); err != nil {
 log.Fatal("Unable to start a http server.")
 }
 }()

 c := pb.NewProductInfoClient(conn)
 ...
}

Specifies external libraries we need to add to enable monitoring.

Creates a metrics registry. Similar to server code, this holds all data collectors
registered in the system. If we need to add a new collector, we need to register it
to this registry.

Observability | 155

Creates standard server metrics. These are the predefined metrics defined in the
library.

Registers standard client metrics to the registry created in step 2.

Sets up a connection to the server with the metrics interceptor. Here we use
grpcMetrics.UnaryClientInterceptor, since we have a unary client. Another
interceptor, called grpcMetrics.StreamClientInterceptor(), is used for
streaming clients.

Creates an HTTP server for Prometheus. An HTTP endpoint starts with the con‐
text /metrics on port 9094 for metrics collection.

Once we run the server and client, we can access the server and client metrics
through the created HTTP endpoint (e.g., server metrics on http://localhost:9092/
metrics and client metrics on http://localhost:9094/metrics).

As we mentioned before, Prometheus can collect metrics by accessing the preceding
URLs. Prometheus stores all metrics data locally and applies a set of rules to aggregate
and create new records. And, using Prometheus as a data source, we can visualize
metrics in a dashboard using tools like Grafana.

Grafana is an open source metrics dashboard and graph editor for
Graphite, Elasticsearch, and Prometheus. It allows you to query,
visualize, and understand your metrics data.

One advantage of metrics-based monitoring in the system is that the cost of handling
metrics data doesn’t increase with the activities of the system. For example, an
increase in the application’s traffic will not increase handling costs like disk utiliza‐
tion, processing complexity, speed of visualization, operational costs, etc. It has
constant overhead. Also, once we collect metrics, we can do numerous mathematical
and statistical transformations and create valuable conclusions about the system.

Another pillar of observability is logs, which we’ll discuss in the next section.

Logs
Logs are immutable, time-stamped records of discrete events that happened over
time. We, as application developers, normally dump data into logs to tell where and
what the internal state of the system is at a given point. The benefit of logs is they are
the easiest to generate and more granular than metrics. We can attach specific actions
or a bunch of context to it like unique IDs, what we are going to do, stack traces, etc.

156 | Chapter 7: Running gRPC in Production

http://localhost:9092/metrics
http://localhost:9092/metrics
http://localhost:9094/metrics)

The downside is that they are very expensive because we need to store and index
them in a way that makes it easy to search and use them.

In gRPC applications, we can enable logging using interceptors. As we discussed in
Chapter 5, we can attach a new logging interceptor on both the client side and server
side and log request and response messages of each remote call.

The gRPC ecosystem provides a set of predefined logging intercep‐
tors for Go applications. This includes grpc_ctxtags, a library that
adds a Tag map to context, with data populated from the request
body; grpc_zap, integration of the zap logging library into gRPC
handlers; and grpc_logrus, integration of the logrus logging
library into gRPC handlers. For more information about these
interceptors, check out the gRPC Go Middleware repository.

Once you add logs in your gRPC application, they’ll print in either the console or log‐
file, depending on how you configure logging. How to configure logging depends on
the logging framework you used.

We’ve now discussed two pillars of observability: metrics and logs. These are suffi‐
cient for understanding the performance and behavior of individual systems, but they
aren’t sufficient to understand the lifetime of a request that traverses multiple sys‐
tems. Distributed tracing is a technique that brings visibility of the lifetime of a
request across several systems.

Tracing
A trace is a representation of a series of related events that constructs the end-to-end
request flow through a distributed system. As we discussed in the section “Using
gRPC for Microservices Communication” on page 58, in a real-world scenario we
have multiple microservices serving different and specific business capabilities.
Therefore, a request starting from the client is normally going through a number of
services and different systems before the response going back to the client. All these
intermediate events are part of the request flow. With tracing, we gain visibility into
both the path traversed by a request as well as the structure of a request.

In tracing, a trace is a tree of spans, which are the primary building blocks of dis‐
tributed tracing. The span contains the metadata about the task, the latency (the time
spent to complete the task), and other related attributes of the task. A trace has its
own ID called TraceID and it is a unique byte sequence. This traceID groups and dis‐
tinguishes spans from each other. Let’s try to enable tracing in our gRPC application.

Like metrics, the OpenCensus library provides support to enable tracing in gRPC
applications. We will use OpenCensus to enable tracing in our Product Management

Observability | 157

https://oreil.ly/XMlIg
https://oreil.ly/oKJX5
https://oreil.ly/8lNaH

application. As we said earlier, we can plug any supported exporters to export tracing
data to different backends. We will use Jaeger for the distributed tracing sample.

By default, tracing is enabled in gRPC Go. So it only requires registering an exporter
to start collecting traces with gRPC Go integration. Let’s initiate a Jaeger exporter in
both client and server applications. Example 7-13 illustrates how we can initiate the
OpenCensus Jaeger exporter using the library.

Example 7-13. Initialize OpenCensus Jaeger exporter

package tracer

import (
 "log"

 "go.opencensus.io/trace"
 "contrib.go.opencensus.io/exporter/jaeger"

)

func initTracing() {

 trace.ApplyConfig(trace.Config{DefaultSampler: trace.AlwaysSample()})
 agentEndpointURI := "localhost:6831"
 collectorEndpointURI := "http://localhost:14268/api/traces"
 exporter, err := jaeger.NewExporter(jaeger.Options{
 CollectorEndpoint: collectorEndpointURI,
 AgentEndpoint: agentEndpointURI,
 ServiceName: "product_info",

 })
 if err != nil {
 log.Fatal(err)
 }
 trace.RegisterExporter(exporter)

}

Import the OpenTracing and Jaeger libraries.

Create the Jaeger exporter with the collector endpoint, service name, and agent
endpoint.

Register the exporter with the OpenCensus tracer.

Once we register the exporter with the server, we can instrument the server by trac‐
ing. Example 7-14 illustrates how to instrument tracing in service method.

158 | Chapter 7: Running gRPC in Production

Example 7-14. Instrument gRPC service method

// GetProduct implements ecommerce.GetProduct
func (s *server) GetProduct(ctx context.Context, in *wrapper.StringValue) (
 *pb.Product, error) {
 ctx, span := trace.StartSpan(ctx, "ecommerce.GetProduct")
 defer span.End()
 value, exists := s.productMap[in.Value]
 if exists {
 return value, status.New(codes.OK, "").Err()
 }
 return nil, status.Errorf(codes.NotFound, "Product does not exist.", in.Value)
}

Start new span with span name and context.

Stop the span when everything is done.

Similar to the gRPC server, we can instrument the client by tracing as shown in
Example 7-15.

Example 7-15. Instrument gRPC client

package main

import (
 "context"
 "log"
 "time"

 pb "productinfo/client/ecommerce"
 "productinfo/client/tracer"
 "google.golang.org/grpc"
 "go.opencensus.io/plugin/ocgrpc"
 "go.opencensus.io/trace"
 "contrib.go.opencensus.io/exporter/jaeger"

)

const (
 address = "localhost:50051"
)

func main() {
 tracer.initTracing()

 conn, err := grpc.Dial(address, grpc.WithInsecure())
 if err != nil {
 log.Fatalf("did not connect: %v", err)
 }

Observability | 159

 defer conn.Close()
 c := pb.NewProductInfoClient(conn)

 ctx, span := trace.StartSpan(context.Background(),
 "ecommerce.ProductInfoClient")

 name := "Apple iphone 11"
 description := "Apple iphone 11 is the latest smartphone,
 launched in September 2019"
 price := float32(700.0)
 r, err := c.AddProduct(ctx, &pb.Product{Name: name,
 Description: description, Price: price})
 if err != nil {
 log.Fatalf("Could not add product: %v", err)
 }
 log.Printf("Product ID: %s added successfully", r.Value)

 product, err := c.GetProduct(ctx, &pb.ProductID{Value: r.Value})
 if err != nil {
 log.Fatalf("Could not get product: %v", err)
 }
 log.Printf("Product: ", product.String())
 span.End()

}

Import the OpenTracing and Jaeger libraries.

Call the initTracing function and initialize the Jaeger exporter instance and reg‐
ister with trace.

Start new span with span name and context.

Stop the span when everything is done.

Invoke addProduct remote method by passing new product details.

Invoke getProduct remote method by passing productID.

Once we run the server and client, trace spans are published to the Jaeger agent for
which a daemon process acts as a buffer to abstract out batch processing and routing
from the clients. Once the Jaeger agent receives trace logs from the client, it forwards
them to the collector. The collector processes the logs and stores them. From the
Jaeger server, we can visualize tracing.

From that, we are going to conclude the discussion of observability. Logs, metrics,
and traces serve their own unique purpose, and it’s better to have all three pillars
enabled in your system to gain maximum visibility of the internal state.

160 | Chapter 7: Running gRPC in Production

Once you have a gRPC-based observable application running in production, you can
keep watching its state and easily find out whenever there is an issue or system out‐
age. When you diagnose an issue in the system, it is important to find the solution,
test it, and deploy it to production as soon as possible. To accomplish that goal, you
need to have good debugging and troubleshooting mechanisms. Let’s look into the
details of these mechanisms for gRPC applications.

Debugging and Troubleshooting
Debugging and troubleshooting is the process to find out the root cause of a problem
and solve the issue that occurred in applications. In order to debug and troubleshoot
the issue, we first need to reproduce the same issue in lower environments (referred
to as dev or test environments). So we need a set of tools to generate similar kinds of
request loads as the production environment.

This process is relatively harder in gRPC services than in the HTTP service, because
tools need to support both encoding and decoding messages based on the service def‐
inition, and be able to support HTTP/2. Common tools like curl or Postman, which
are used to test HTTP services, cannot be used to test gRPC services.

But there are a lot of interesting tools available for debugging and testing gRPC serv‐
ices. You can find a list of those tools in the awesome gRPC repository. It contains a
great collection of resources available for gRPC. One of the most common ways of
debugging gRPC applications is by using extra logging.

Enabling Extra Logging
We can enable extra logs and traces to diagnose the problem of your gRPC applica‐
tion. In the gRPC Go application, we can enable extra logs by setting the following
environment variables:

GRPC_GO_LOG_VERBOSITY_LEVEL=99
GRPC_GO_LOG_SEVERITY_LEVEL=info

Verbosity means how many times any single info message should print every five
minutes. The verbosity is set to 0 by default.

Sets log severity level to info. All the informational messages will be printed.

In the gRPC Java application, there are no environment variables to control the log
level. We can turn on extra logs by providing a logging.properties file with log-level
changes. Let’s say we want to troubleshoot transport-level frames in our application.
We can create a new logging.properties file in our application and set the lower log
level to a specific Java package (netty transport package) as follows:

Debugging and Troubleshooting | 161

https://oreil.ly/Ki2aZ

handlers=java.util.logging.ConsoleHandler
io.grpc.netty.level=FINE
java.util.logging.ConsoleHandler.level=FINE
java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

Then start up the Java binary with the JVM flag:

-Djava.util.logging.config.file=logging.properties

Once we set the lower log level in our application, all the logs in which the level is
equal or higher than the configured log level will print in the console/logfile. We can
gain valuable insight into the state of the system by reading the logs.

With that, we have covered most of what you should know when running a gRPC
application in production.

Summary
Making production-ready gRPC applications requires us to focus on multiple aspects
related to application development. We start by designing the service contract and
generating code for the service or the client, then implementing our service’s business
logic. Once we implement the service, we need to focus on the following to make the
gRPC application production ready. Testing of gRPC server and client applications is
essential.

The deployment of gRPC applications follows the standard application development
methodologies. For local and VM deployments, simply use the generated binaries of
the server or client program. You can run gRPC applications as a Docker container,
and find the sample standard Dockerfiles for deploying Go and Java applications on
Docker. Running gRPC on Kubernetes is similar to standard Kubernetes deployment.
When you run a gRPC application on Kubernetes, you use underlying features such
as load balancing, high availability, ingress controllers,etc. Making gRPC applications
observable is critical to using them in production, and gRPC application-level metrics
are often used when gRPC applications operate in production.

In one of the most popular implementations for metrics support in gRPC, the gRPC-
Prometheus library, we use an interceptor at the server and client side to collect met‐
rics, while logging in gRPC is also enabled using an interceptor. For gRPC
applications in production, you may need to troubleshoot or debug by enabling extra
logging. In the next chapter, we’ll explore some of the gRPC ecosystem components
that are useful in building gRPC applications.

162 | Chapter 7: Running gRPC in Production

CHAPTER 8

The gRPC Ecosystem

In this chapter, we’ll explore some of the projects that are not part of the core gRPC
implementation but could be quite useful in building and running gRPC applications
for a real-world use case. These projects are part of the gRPC Ecosystem parent
project, and none of the technologies mentioned here are mandatory to run gRPC
applications. If you have a similar requirement that a given project offers, explore and
evaluate those technologies.

Let’s begin our discussion with the gRPC gateway.

gRPC Gateway
The gRPC gateway plug-in enables the protocol buffer compiler to read the gRPC
service definition and generate a reverse proxy server, which translates a RESTful
JSON API into gRPC. This is specifically written for Go, to support invoking gRPC
service from both gRPC and HTTP client applications. Figure 8-1illustrates how it
provides the ability to invoke gRPC service in both gRPC and RESTful ways.

As shown in the figure, we have a ProductInfo service contract and using the con‐
tract we build a gRPC service called ProductInfoService. Earlier we built a gRPC
client to talk with this gRPC service. But here, instead of building a gRPC client we
will build a reverse proxy service, which exposes RESTful API for each remote
method in the gRPC service and accepts HTTP requests from REST clients. Once it
receives an HTTP request, it translates the request into a gRPC message and calls the
remote method in the backend service. The response message from the backend
server again converts back to an HTTP response and replies to the client.

163

Figure 8-1. gRPC gateway

To generate a reverse proxy service for the service definition, we first need to map the
gRPC methods to the HTTP resources by updating the service definition. Let’s get the
same ProductInfo service definition we created, to add mapping entries.
Example 8-1 shows the updated protocol buffer definition.

Example 8-1. Updates protocol buffer definition of ProductInfo service

syntax = "proto3";

import "google/protobuf/wrappers.proto";
import "google/api/annotations.proto";

package ecommerce;

service ProductInfo {
 rpc addProduct(Product) returns (google.protobuf.StringValue) {
 option (google.api.http) = {
 post: "/v1/product"
 body: "*"
 };
 }
 rpc getProduct(google.protobuf.StringValue) returns (Product) {
 option (google.api.http) = {
 get:"/v1/product/{value}"
 };
 }
}

164 | Chapter 8: The gRPC Ecosystem

message Product {
 string id = 1;
 string name = 2;
 string description = 3;
 float price = 4;
}

Import the google/api/annotations.proto proto file to add annotation support to
the protocol definition.

Add gRPC/HTTP mapping to the addProduct method. Specify the URL path
template (/v1/product), the HTTP method (“post”), and what the message body
looks like. * is used in the body mapping to define that every field not bound by
the path template should be mapped to the request body.

Add gRPC/HTTP mapping to the getProduct method. Here it is a GET method
with the URL path template as /v1/product/{value} and the ProductID passed
as the path parameter.

There are additional rules we need to know when we are mapping gRPC methods to
HTTP resources. A few important rules are listed next. You can refer to the Google
API Documentation for more details about HTTP to gRPC mapping:

• Each mapping needs to specify a URL path template and an HTTP method.
• The path template can contain one or more fields in the gRPC request message.

But those fields should be nonrepeated fields with primitive types.
• Any fields in the request message that are not in the path template automatically

become HTTP query parameters if there is no HTTP request body.
• Fields that are mapped to URL query parameters should be either a primitive

type or a repeated primitive type or a nonrepeated message type.
• For a repeated field type in query parameters, the parameter can be repeated in

the URL as ...?param=A¶m=B.
• For a message type in query parameters, each field of the message is mapped to a

separate parameter, such as ...?foo.a=A&foo.b=B&foo.c=C.

Once we write the service definition, we need to compile it using the protocol buffer
compiler and generate a source code of reverse proxy service. Let’s talk about how to
generate code and implement the server in the Go language.

Before we can compile the service definition, we need to get a few dependent pack‐
ages. Use the following command to download the packages:

gRPC Gateway | 165

https://oreil.ly/iYyZC
https://oreil.ly/iYyZC

go get -u github.com/grpc-ecosystem/grpc-gateway/protoc-gen-grpc-gateway
go get -u github.com/grpc-ecosystem/grpc-gateway/protoc-gen-swagger
go get -u github.com/golang/protobuf/protoc-gen-go

After downloading the packages, execute the following command to compile the ser‐
vice definition (product_info.proto) and to generate the stub:

protoc -I/usr/local/include -I. \
-I$GOPATH/src \
-I$GOPATH/src/github.com/grpc-ecosystem/grpc-gateway/third_party/googleapis \
--go_out=plugins=grpc:. \
product_info.proto

Once we execute the command, it will generate a stub (product_info.pb.go) in the
same location. Apart from the generated stub, we also need to create a reverse proxy
service to support RESTful client invocation. This reverse proxy service can be gener‐
ated by the gateway plug-in supported in the Go compiler.

The gRPC gateway is only supported in Go, which means we can‐
not compile and generate a reverse proxy service for the gRPC
gateway in other languages.

Let’s generate a reverse proxy service from service definition by executing the follow‐
ing command:

protoc -I/usr/local/include -I. \
-I$GOPATH/src \
-I$GOPATH/src/github.com/grpc-ecosystem/grpc-gateway/third_party/googleapis \
--grpc-gateway_out=logtostderr=true:. \
product_info.proto

Once we execute the command, it will generate a reverse proxy service (prod‐
uct_info.pb.gw.go) in the same location.

Let’s create the listener endpoint for the HTTP server and run the reverse proxy ser‐
vice we just created. Example 8-2 illustrates how to create a new server instance and
register the service to listen to the inbound HTTP requests.

Example 8-2. HTTP reverse proxy in Go language

package main

import (
 "context"
 "log"
 "net/http"

 "github.com/grpc-ecosystem/grpc-gateway/runtime"

166 | Chapter 8: The gRPC Ecosystem

 "google.golang.org/grpc"

 gw "github.com/grpc-up-and-running/samples/ch08/grpc-gateway/go/gw"
)

var (
 grpcServerEndpoint = "localhost:50051"
)

func main() {
 ctx := context.Background()
 ctx, cancel := context.WithCancel(ctx)
 defer cancel()

 mux := runtime.NewServeMux()
 opts := []grpc.DialOption{grpc.WithInsecure()}
 err := gw.RegisterProductInfoHandlerFromEndpoint(ctx, mux,
 grpcServerEndpoint, opts)
 if err != nil {
 log.Fatalf("Fail to register gRPC gateway service endpoint: %v", err)
 }

 if err := http.ListenAndServe(":8081", mux); err != nil {
 log.Fatalf("Could not setup HTTP endpoint: %v", err)
 }
}

Import the package to where the generated reverse-proxy code exists.

Specify the gRPC server endpoint URL. Make sure the backend gRPC server is
running properly in the mentioned endpoint. Here we used the same gRPC ser‐
vice created in Chapter 2.

Register the gRPC server endpoint with the proxy handler. At runtime, the
request multiplexer matches HTTP requests to patterns and invokes the corre‐
sponding handler.

Start listening to the HTTP requests on the port (8081).

Once we build an HTTP reverse-proxy server, we can test it by running both the
gRPC server and the HTTP server. In this case, the gRPC server is listening on port
50051 and the HTTP server is listening on port 8081.

Let’s make a few HTTP requests from curl and observe the behavior:

1. Add a new product to the ProductInfo service.
$ curl -X POST http://localhost:8081/v1/product
 -d '{"name": "Apple", "description": "iphone7", "price": 699}'

gRPC Gateway | 167

"38e13578-d91e-11e9"

2. Get the existing product using ProductID:
$ curl http://localhost:8081/v1/product/38e13578-d91e-11e9

{"id":"38e13578-d91e-11e9","name":"Apple","description":"iphone7",
"price":699}

3. Added to the reverse proxy service, the gRPC gateway also supports generating
the swagger definition of the reverse proxy service by executing the following
command:

protoc -I/usr/local/include -I. \
 -I$GOPATH/src \
 -I$GOPATH/src/github.com/grpc-ecosystem/grpc-gateway/\
 third_party/googleapis \
 --swagger_out=logtostderr=true:. \
 product_info.proto

4. Once we execute the command, it generates a swagger definition for the reverse
proxy service (product_info.swagger.json) in the same location. For our Produc
tInfo service, generated swagger definition looks like this:

{
 "swagger": "2.0",
 "info": {
 "title": "product_info.proto",
 "version": "version not set"
 },
 "schemes": [
 "http",
 "https"
],
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "paths": {
 "/v1/product": {
 "post": {
 "operationId": "addProduct",
 "responses": {
 "200": {
 "description": "A successful response.",
 "schema": {
 "type": "string"
 }
 }

168 | Chapter 8: The gRPC Ecosystem

 },
 "parameters": [
 {
 "name": "body",
 "in": "body",
 "required": true,
 "schema": {
 "$ref": "#/definitions/ecommerceProduct"
 }
 }
],
 "tags": [
 "ProductInfo"
]
 }
 },
 "/v1/product/{value}": {
 "get": {
 "operationId": "getProduct",
 "responses": {
 "200": {
 "description": "A successful response.",
 "schema": {
 "$ref": "#/definitions/ecommerceProduct"
 }
 }
 },
 "parameters": [
 {
 "name": "value",
 "description": "The string value.",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "tags": [
 "ProductInfo"
]
 }
 }
 },
 "definitions": {
 "ecommerceProduct": {
 "type": "object",
 "properties": {
 "id": {
 "type": "string"
 },
 "name": {

gRPC Gateway | 169

 "type": "string"
 },
 "description": {
 "type": "string"
 },
 "price": {
 "type": "number",
 "format": "float"
 }
 }
 }
 }
}

So now we have implemented the HTTP reverse proxy service for our gRPC service
using the gRPC gateway. This way we can expose our gRPC server to use in HTTP
client applications. You can get more information about gateway implementation
from the gRPC gateway repository.

As we mentioned earlier, the gRPC gateway is only supported in Go. The same con‐
cept is also known as HTTP/JSON transcoding. Let’s talk more about HTTP/JSON
transcoding in the next section.

HTTP/JSON Transcoding for gRPC
Transcoding is the process of translating HTTP JSON calls to RPC calls and passing
them to the gRPC service. This is useful when the client applications don’t have sup‐
port for gRPC and need to provide access to talk to the gRPC service via JSON over
HTTP. There is a library written in C++ languages to support the HTTP/JSON trans‐
coding called grpc-httpjson-transcoding, and it is currently used in Istio and Google
cloud endpoint.

The Envoy proxy also supports transcoding by providing an HTTP/JSON interface to
the gRPC service. Similar to the gRPC gateway, we need to provide the service defini‐
tion with HTTP mapping for the gRPC service. It uses the same mapping rules speci‐
fied in the Google API documentation. So the service definition we modified in
Example 8-1 can also be applied to the HTTP/JSON transcoding.

For example, the Product Info service’s getProduct method is defined in the .proto
file with its request and response types like the following:

 rpc getProduct(google.protobuf.StringValue) returns (Product) {
 option (google.api.http) = {
 get:"/v1/product/{value}"
 };
 }

170 | Chapter 8: The gRPC Ecosystem

https://oreil.ly/rN1WK
https://oreil.ly/vWllM
https://oreil.ly/KR5_X
https://oreil.ly/KR5_X
https://oreil.ly/33hyY
https://oreil.ly/H6ysW

If a client calls this method by sending a GET to the URL http://localhost:8081/v1/
product/2, the proxy server creates a google.protobuf.StringValue with a value of 2 and
then calls the gRPC method getProduct() with it. The gRPC backend then returns
the requested Product with the ID 2, which the proxy server converts to JSON format
and returns to the client.

Now that we’ve covered HTTP/JSON transcoding, in the next section, we’ll discuss
another important concept, called gRPC server reflection.

The gRPC Server Reflection Protocol
Server reflection is a service defined on a gRPC server that provides information
about publicly accessible gRPC services on that server. In simple terms, server reflec‐
tion provides service definitions of the services registered on a server to the client
application. So the client doesn’t need precompiled service definitions to communi‐
cate with the services.

As we discussed in Chapter 2, for the client application to connect and communicate
with the gRPC service, it must have the service definition of that service. We first
need to compile the service definition and generate the corresponding client stub.
Then we need to create client application calling methods of the stub. With the gRPC
server reflection, we don’t need to precompile service definitions to communicate
with the service.

The service reflection is useful when we build a command-line (CLI) tool for debug‐
ging the gRPC server. We don’t need to provide service definitions for the tool, but
instead we provide the method and the text payload. It sends the binary payload to
the server and takes the response back to the user in a human-readable format. In
order to use service reflection, we first need to enable it on the server side.
Example 8-3 illustrates how to enable server reflection.

Example 8-3. Enable server reflection in the gRPC Go server

package main

import (
 ...

 pb "productinfo/server/ecommerce"
 "google.golang.org/grpc"
 "google.golang.org/grpc/reflection"
)

func main() {
 lis, err := net.Listen("tcp", port)
 if err != nil {

The gRPC Server Reflection Protocol | 171

 log.Fatalf("failed to listen: %v", err)
 }
 s := grpc.NewServer()
 pb.RegisterProductInfoServer(s, &server{})
 reflection.Register(s)
 if err := s.Serve(lis); err != nil {
 log.Fatalf("failed to serve: %v", err)
 }
}

Import the reflection package to access reflection APIs.

Register reflection service on your gRPC server.

After enabling server reflection in your server application, you can use the gRPC CLI
tool to check your server.

The gRPC CLI tool comes with the gRPC repository. It supports
many functionalities, such as the list server services and methods,
and sending and receiving RPC calls with metadata. As of this writ‐
ing, you need to build the tool from the source code. For details on
how to build and use the tool, refer to the gRPC CLI tool reposi‐
tory.

Once you build the gRPC CLI tool from the source code, you can use it to check serv‐
ices. Let’s try to understand this using our product management service that we built
in Chapter 2. Once you start the gRPC server of the product management service,
then you can run the CLI tool to retrieve the service information.

Here are the actions that you can execute from the CLI tool:

List services
Run the following command to list all public services in endpoint localhost:
50051:

$./grpc_cli ls localhost:50051

Output:
ecommerce.ProductInfo
grpc.reflection.v1alpha.ServerReflection

List service details
Run the following command by giving the service’s full name (in the format of
<package>.<service>) to inspect the service:

$./grpc_cli ls localhost:50051 ecommerce.ProductInfo -l

Output:

172 | Chapter 8: The gRPC Ecosystem

https://oreil.ly/jYl0h
https://oreil.ly/jYl0h
https://github.com/grpc/grpc

package: ecommerce;
service ProductInfo {
rpc addProduct(ecommerce.Product) returns
(google.protobuf.StringValue) {}
rpc getProduct(google.protobuf.StringValue) returns
(ecommerce.Product) {}
}

List method details
Run the following command by giving the method’s full name (in the format of
<package>.<service>.<method>) to method details:

$./grpc_cli ls localhost:50051 ecommerce.ProductInfo.addProduct -l

Output:
rpc addProduct(ecommerce.Product) returns
(google.protobuf.StringValue) {}

Inspect message types
Run the following commands by giving the full name of the message type (in the
format of <package>.<type>) to inspect the message type:

$./grpc_cli type localhost:50051 ecommerce.Product

Output:
message Product {
string id = 1[json_name = "id"];
string name = 2[json_name = "name"];
string description = 3[json_name = "description"];
float price = 4[json_name = "price"];
}

Call remote methods
Run the following commands to send remote calls to the server and get the
response:

1. Call the addProduct method in the ProductInfo service:
$./grpc_cli call localhost:50051 addProduct "name:
 'Apple', description: 'iphone 11', price: 699"

Output:
connecting to localhost:50051
value: "d962db94-d907-11e9-b49b-6c96cfe0687d"

Rpc succeeded with OK status

2. Call getProduct method in the ProductInfo service:
$./grpc_cli call localhost:50051 getProduct "value:
 'd962db94-d907-11e9-b49b-6c96cfe0687d'"

The gRPC Server Reflection Protocol | 173

Output:
connecting to localhost:50051
id: "d962db94-d907-11e9-b49b-6c96cfe0687d"
name: "Apple"
description: "iphone 11"
price: 699

Rpc succeeded with OK status

Now we can enable server reflection in the gRPC Go server and test it using the CLI
tool. We can also enable server reflection in our gRPC Java server. If you are more
familiar with Java, you can refer to the Java samples in the source code repository.

Let’s discuss another interesting concept called gRPC middleware.

gRPC Middleware
In basic terms, the middleware is a software component in a distributed system that is
used to connect different components to route requests generated by the client to the
backend server. In gRPC Middleware, we are also talking about running code before
and after the gRPC server or client application.

In fact, gRPC middleware is based on the interceptor concept that we learned in
Chapter 5. It’s a Go-based collection of interceptors, helpers, and utils that you will
require when building gRPC-based applications. It allows you to apply multiple inter‐
ceptors at the client or server side as a chain of interceptors. Also, as interceptors are
commonly used for implementing common patterns such as auth, logging, message,
validation, retries, or monitoring, the gRPC Middleware project acts as the go-to
point for such reusable functionalities for Go. In Example 8-4, we have shown the
common usage of the gRPC Middleware package. Here we have used it for applying
multiple interceptors for both unary and streaming messaging.

Example 8-4. interceptor chaining at the server side with Go gRPC Middleware

import "github.com/grpc-ecosystem/go-grpc-middleware"

orderMgtServer := grpc.NewServer(
 grpc.Unaryinterceptor(grpc_middleware.ChainUnaryServer(
 grpc_ctxtags.UnaryServerinterceptor(),
 grpc_opentracing.UnaryServerinterceptor(),
 grpc_prometheus.UnaryServerinterceptor,
 grpc_zap.UnaryServerinterceptor(zapLogger),
 grpc_auth.UnaryServerinterceptor(myAuthFunction),
 grpc_recovery.UnaryServerinterceptor(),
)),
 grpc.Streaminterceptor(grpc_middleware.ChainStreamServer(
 grpc_ctxtags.StreamServerinterceptor(),

174 | Chapter 8: The gRPC Ecosystem

https://oreil.ly/EqnCQ

 grpc_opentracing.StreamServerinterceptor(),
 grpc_prometheus.StreamServerinterceptor,
 grpc_zap.StreamServerinterceptor(zapLogger),
 grpc_auth.StreamServerinterceptor(myAuthFunction),
 grpc_recovery.StreamServerinterceptor(),
)),
)

Add a unary interceptor chain for the server.

Add a streaming interceptor chain for the server.

The interceptors are invoked in the same order that they have registered with the Go
gRPC Middleware. The project also offers some reusable interceptors for common
patterns. Here are some of those common patterns and interceptor implementations:

Auth

grpc_auth

A customizable (via AuthFunc) piece of auth middleware.

Logging

grpc_ctxtags

A library that adds a Tag map to context, with data populated from the
request body.

grpc_zap

Integration of zap logging library into gRPC handlers.

grpc_logrus

Integration of logrus logging library into gRPC handlers.

Monitoring

grpc_prometheus

Prometheus client-side and server-side monitoring middleware.

grpc_opentracing

OpenTracing client-side and server-side interceptors with support for
streaming and handler-returned tags.

Client

grpc_retry

A generic gRPC response code retry mechanism, client-side middleware.

gRPC Middleware | 175

Server

grpc_validator

Codegen inbound message validation from .proto options.

grpc_recovery

Turn panics into gRPC errors.

ratelimit

gRPC rate-limiting by your own limiter.

The usage of Go gRPC Middleware at the client side is exactly the same. Example 8-5
shows a code snippet of the client-side interceptor chaining with Go gRPC Middle‐
ware.

Example 8-5. interceptor chaining at the client side with Go gRPC Middleware

import "github.com/grpc-ecosystem/go-grpc-middleware"

clientConn, err = grpc.Dial(
 address,
 grpc.WithUnaryinterceptor(grpc_middleware.ChainUnaryClient(
 monitoringClientUnary, retryUnary)),
 grpc.WithStreaminterceptor(grpc_middleware.ChainStreamClient(
 monitoringClientStream, retryStream)),
)

Client-side unary interceptor chaining.

Client-side streaming interceptor chaining.

Similar to the server side, the interceptors are executed in the order that they regis‐
tered with the client.

Next, we will talk about how we can expose the health status of the gRPC server. In a
high-availability system, it is essential to have a way to check the health status of the
server, so that we can periodically check and take actions to mitigate the damage.

Health Checking Protocol
gRPC defines a health checking protocol (Health Checking API) that allows the gRPC
services to expose the server status so that the consumers can probe the server’s
health information. The health of the server is determined if the server responds with
an unhealthy status when it is not ready to handle the RPC or does not respond at all
for the health probe request. The client can act accordingly if the response denotes an
unhealthy status or a response is not received within some time window.

176 | Chapter 8: The gRPC Ecosystem

The gRPC Health Checking Protocol defines an API based on gRPC. Then a gRPC
service is used as the health checking mechanism for both simple client-to-server sce‐
narios and other control systems such as load balancing. Example 8-6 shows the stan‐
dard service definition of the gRPC health checking interface.

Example 8-6. gRPC service definition of the Health Checking API

syntax = "proto3";

package grpc.health.v1;

message HealthCheckRequest {
 string service = 1;
}

message HealthCheckResponse {
 enum ServingStatus {
 UNKNOWN = 0;
 SERVING = 1;
 NOT_SERVING = 2;
 }
 ServingStatus status = 1;
}

service Health {
 rpc Check(HealthCheckRequest) returns (HealthCheckResponse);

 rpc Watch(HealthCheckRequest) returns (stream HealthCheckResponse);
}

The health check request message structure.

The health check response with the serving status.

The client can query the server’s health status by calling the Check method.

The client can call the Watch method to perform a streaming health check.

The implementation of the health check service is very similar to any conventional
gRPC service. Often you will run a health checking service and related gRPC business
services together in the same gRPC server instance using multiplexing (which we dis‐
cussed in Chapter 5). Since it is a gRPC service, doing a health check is the same as
doing normal RPC. It also offers a granular service health semantics that includes
details such as per-service health status. Also, it is able to reuse all the existing infor‐
mation on the server and have full control over it.

Health Checking Protocol | 177

Based on the server interface shown in Example 8-6, a client can call the Check
method (with an optional parameter service name) to check the health status of a
particular service or the server.

Additionally, the client can also call the Watch method to perform a streaming health
check. This uses a server streaming messaging pattern, which means once the client
calls this method, the server starts sending messages indicating the current status and
sends subsequent new messages whenever the status changes.

These are the key points to know in the gRPC Health Checking Protocol:

• To serve the status of each service registered in the server, we should manually
register all the services, along with their status in the server. We also need to set
the server’s overall status with an empty service name.

• Each health check request from the client should have a deadline set to it, so the
client can determine the server status as unhealthy if the RPC is not finished
within the deadline period.

• For each health check request, the client can either set a service name or set as
empty. If the request has a service name and it is found in the server registry, a
response must be sent back with an HTTP OK status and the status field of the
HealthCheckResponse message should be set to the status of the particular ser‐
vice (either SERVING or NOT_SERVING). If the service is not found in the server
registry, the server should respond with a NOT_FOUND status.

• If the client needs to query the overall status of the server instead of a specific
service, the client can send the request with an empty string value so the server
responds back with the server’s overall health status.

• If the server doesn’t have a health check API, then the client should deal with it
themselves.

The health check services are consumed by other gRPC consumer or intermediate
subsystems such as load balancers or proxies. Rather than implementing a client from
scratch, you can use the existing implementation of health checking clients such as
grpc_health_probe.

gRPC Health Probe
The grpc_health_probe is a utility provided by the community to check the health
status of a server that exposes its status as a service through the gRPC Health Check‐
ing Protocol. It’s a generic client that can communicate with the gRPC standard
health check service. You can use the grpc_health_probe_ binary as a CLI utility as
shown in the following:

178 | Chapter 8: The gRPC Ecosystem

https://oreil.ly/I84Ui

$ grpc_health_probe -addr=localhost:50051

healthy: SERVING

$ grpc_health_probe -addr=localhost:50052 -connect-timeout 600ms \
 -rpc-timeout 300ms

failed to connect service at "localhost:50052": context deadline exceeded
exit status 2

A health checking request for gRPC server running on localhost port 50051.

A health checking request with few more additional parameters related to the
connectivity.

As shown in the preceding CL output, grpc_health_probe_ makes an RPC to /
grpc.health.v1.Health/Check. If it then responds with a SERVING status, the
grpc_health_probe will exit with success; otherwise, it exits with a nonzero exit
code.

If you are running your gRPC applications on Kubernetes, then you can run the
grpc_health_probe to check to define Kubernetes’s liveness and readiness checks for
your gRPC server pods.

For that, you can bundle the gRPC health probe along with your Docker image as
shown following in the Dockerfile snippet:

RUN GRPC_HEALTH_PROBE_VERSION=v0.3.0 && \
 wget -qO/bin/grpc_health_probe \
 https://github.com/grpc-ecosystem/grpc-health-probe/releases/download/
 ${GRPC_HEALTH_PROBE_VERSION}/grpc_health_probe-linux-amd64 && \
 chmod +x /bin/grpc_health_probe

Then in the Kubernetes deployment’s pod specification, you can define livenessP
robe and/or readinessProbe like this:

spec:
 containers:
 - name: server
 image: "kasunindrasiri/grpc-productinfo-server"
 ports:
 - containerPort: 50051
 readinessProbe:
 exec:
 command: ["/bin/grpc_health_probe", "-addr=:50051"]
 initialDelaySeconds: 5
 livenessProbe:
 exec:
 command: ["/bin/grpc_health_probe", "-addr=:50051"]
 initialDelaySeconds: 10

gRPC Health Probe | 179

https://oreil.ly/a7bOC

Specify grpc_health_probe as the readiness probe.

Specify grpc_health_probe as the liveness probe.

When you have liveness and readiness probes set using the gRPC health probe, then
Kubernetes can make decisions based on the health of your gRPC server.

Other Ecosystem Projects
There are quite a few other ecosystem projects that can be useful when building
gRPC-based applications. Customer protoc plugging is a similar ecosystem require‐
ment where projects such as protoc-gen-star (PG*) started getting some traction. Also,
libraries such as protoc-gen-validate (PGV) offer a protoc plug-in to generate polyglot
message validators. The ecosystem has kept on growing with new projects for various
requirements in gRPC application development.

With this, we conclude our discussion of the gRPC ecosystem components. It’s
important to keep in mind that these ecosystem projects are not part of the gRPC
project. You need to evaluate them properly prior to using them in production. Also,
these are subject to change: some projects may become obsolete, others may become
mainstream, and other, completely new projects, may emerge in the gRPC ecosystem.

Summary
As you can see, though gRPC ecosystem projects are not part of the core gRPC imple‐
mentation, they can be quite useful in building and running gRPC applications for
real-world use cases. These projects are built around gRPC to overcome problems or
limitations encountered while building a production system using gRPC. For exam‐
ple, when we are moving our RESTful services to gRPC services, we need to consider
our existing client who used to call our service in a RESTful manner. In order to over‐
come this issue, HTTP/JSON transcoding and gRPC gateway concepts are intro‐
duced, so that both existing RESTful clients and new gRPC clients can call the same
service. Similarly, service reflection is introduced to overcome the limitation in test‐
ing gRPC services using a command-line tool.

Since gRPC is a very popular topic in the cloud-native world and developers are now
gradually moving toward gRPC from REST services, we will see more projects like
these built around gRPC in the future.

Congratulations! You have just completed reading gRPC: Up and Running, and have
pretty much covered the entire development life cycle of the gRPC application along
with numerous code examples based on Go and Java. We hope this book laid the
foundation in the journey of using gRPC as an inter-process communication technol‐
ogy for your applications and microservices. What you learned in this book will help

180 | Chapter 8: The gRPC Ecosystem

https://oreil.ly/9eRq8
https://oreil.ly/KlGy7

you to rapidly build gRPC applications, understand how they can coexist with other
technologies, and run them in production.

So, it’s time to explore gRPC further. Try building real-world applications by applying
the techniques that you learned in this book. There’s a significant amount of features
of gRPC that are dependent on the programming language that you use to develop
gRPC applications, so you will have to learn certain techniques that are specific to the
language that you use. Also, the gRPC ecosystem is exponentially growing and it will
be helpful to stay up to date on the latest technologies and frameworks that support
gRPC. Go forth and explore!

Summary | 181

Index

A
Apache Thrift, 14
application example (online retail system),

19-42
building a Go client, 40
building a Go server, 40
building a Java client, 41
building a Java server, 41
building/running, 39-42
developing a client, 36-36
developing a service, 25-39
implementation, 24-39
implementing a gRPC service with Go,

26-30
running a Go server and client, 40
running a Java server and client, 41
service definition, 20-24

application layer, 79
application-level metrics, 148
asynchronous event-driven messaging, 2
authentication

authenticating gRPC calls, 122-132
basic, 122-127
enabling a one-way secured connection,

114-117
Google token-based, 131
JWT for, 130
OAuth 2.0 for, 127-130
TLS for authenticating a gRPC channel,

113-122
authorization server, 127

B
bandwidth, compression and, 111

basic authentication, 122-127
bidirectional-streaming RPC, 53-58

client-side implementation, 56-58
message flow in, 78
service definition for, 54-56

big-endian format, 70
business logic

implementing with Go, 28
implementing with Java, 33-34

C
CA (certificate authority), 114
call definition headers, 74
calls, authenticating, 122-132

using basic authentication, 122-127
using Google token-based authentication,

131
using JWT, 130
using OAuth 2.0, 127-130

cancellation, 93
certificate authority (CA), 114
CI (continuous integration), 139
CLI (command-line interface), 172
client, 7

bidirectional-streaming RPC, 56-58
building with Go, 40
building with Java, 41
compression, 111
developing for online retail system applica‐

tion, 36-36
enabling a one-way secured connection, 116
enabling mTLS in, 120-122
error handling, 97
implementation with Java, 38

183

implementing with Go, 36-38
interceptor chaining, 176
Kubernetes Job for running, 145
load balancing, 109-111
metadata: sending/receiving, 103
OAuth 2.0 flow, 127
running with Go, 40
testing, 137

client stub, 3, 7
client-side interceptors, 87-90

stream interceptor, 88
unary interceptor, 87

client-streaming RPC, 49-52, 78
client/server stubs, generating, 27
client–server architecture, message flow, 8
Cloud Native Computing Foundation (CNCF),

11
command-line interface (CLI), 172
communication patterns, 43-60

bidirectional-streaming RPC, 53-58
client-streaming RPC, 49-52
message flow in, 76-79
server-streaming RPC, 46-49
simple RPC, 43-46
using gRPC for microservices communica‐

tion, 58-60
compression, 70, 111
containers, 148-160

(see also Docker; Kubernetes)
continuous integration (CI), 139
core layer, 79
Courier, 17
cryptography, symmetric, 113
Custom metadata, 74

D
deadline offset, 91
deadlines, 90-93
debugging and troubleshooting, 161
deployment (Kubernetes abstraction), 143
deployment of gRPC applications, 139-148

on Docker, 140-142
on Kubernetes, 142-148

Docker, 140-142
Dropbox, 17

E
ecosystem, 163-181

gRPC gateway, 163-170

gRPC Middleware package, 174-176
gRPC server reflection protocol, 171-174
grpc_health_probe, 178
Health Checking Protocol, 176-178
HTTP/JSON transcoding, 170
predefined logging interceptors, 157

encoding
nonvarint numbers, 69
signed integers, 68
string type, 69
techniques for, 67-69
using protocol buffers, 63-69
varints for, 67

Envoy proxy, 170
error codes, 96
error handling, 95-98, 161
ESP (Extensible Service Proxy), 131
etcd, 16
event-driven (asynchronous) messaging, 2

F
Facebook, GraphQL and, 15
field index, 65
frame (HTTP/2), 71
framing (see length-prefixed message framing)

G
ghz (load-testing tool), 139
Go

client building with, 40
client implementation with, 36-38
generating client/server stubs, 27
implementing a gRPC service with, 26-30
implementing business logic, 28
metrics handler code, 151
metrics interceptor code, 152, 154
modules, 26
running a server and client, 40
server building with, 40
server creation with, 29

Gomock, 137
Google Cloud Platform, authentication for

using services on, 131
Google, gRPC and, 11
Goroutines, 58
Gradle

about, 31
implementing a gRPC service with Java,

30-36

184 | Index

implementing a Java client with, 38
Grafana, 156
GraphQL, 15
gRPC (generally), 1-17

advantages of, 11-13
Apache Thrift versus, 14
application example (see application exam‐

ple [online retail system])
basic elements, 2-8
client, 7
client–server message flow, 8
disadvantages of, 13
Dropbox and, 17
etcd and, 16
GraphQL versus, 15
inception of, 11
inter-process communication, 8-15
Netflix and, 16
real-world applications, 15
server, 5
service definition, 4

gRPC Ecosystem parent project, 163
(see also ecosystem)

gRPC gateway, 163-170
gRPC Middleware package, 174-176
grpc_health_probe, 178

H
half closing, defined, 76
Health Checking Protocol, 176-178
health probe, 178
HTTP/2, 71-76

client–server message flow, 8
request message, 72-74
response message, 74-76

HTTP/JSON transcoding, 170

I
IDL (interface definition language), 3, 20
implementation

gRPC implementation architecture, 79
online retail system application, 24-39

integrated development environments (IDEs),
24

inter-process communication, 1, 8-15
conventional RPC, 8
evolution of, 8-15
REST, 9-11
SOAP, 9

interceptors, 81-90
chaining with gRPC Middleware, 174-176
client-side, 87-90
server-side, 82-86

interface definition language (IDL), 3, 20

J
Java

building a client with, 41
building a server with, 41
client implementation with, 38
implementing a gRPC service with, 30-36
implementing business logic, 33-34
running a server and client, 41
server creation with, 35
setting up a project, 31-33
testing client application with Mockito, 138

JSON
HTTP/JSON transcoding, 170
RESTful services and, 10

JWT (JSON Web Token), 130, 132

K
Kubernetes

deployment on, 142-148
deployment resource for a gRPC server, 142
etcd and, 16
grpc_health_probe, 179
ingress for exposing a gRPC service exter‐

nally, 146-147
job for running a gRPC client, 145
service resource for a gRPC server, 144

Kubernetes Deployment, 143
Kubernetes Ingress, 146-147
Kubernetes Job, 145
Kubernetes Pod, 143
Kubernetes Service, 144

L
LB (load-balancer) proxy, 108
length-prefixed message framing, 69-71
load balancing, 107-111

client-side, 109-111
compression, 111
load-balancer proxy, 108

load testing, 138
load-balancer (LB) proxy, 108
logs and logging

Index | 185

enabling extra logs/traces, 161
observability, 156

M
marshaling, 8
message

defining, 21
encoding using protocol buffers, 63-69
in HTTP/2, 71

message flow
bidirectional-streaming RPC, 78
client-streaming RPC, 78
client–server, 8
in gRPC communication patterns, 76-79
server-streaming RPC, 77
simple RPC, 76

message framing, length-prefixed, 69-71
metadata, 101-107

basic authentication and, 125
creating/retrieving, 102
name resolver, 106
sending/receiving: client side, 103
sending/receiving: server side, 104

metrics
observability and, 148-156
OpenCensus with gRPC, 149-152
Prometheus with gRPC, 152-156

microservices architecture
defined, 1
using gRPC for communication, 58-60

middleware, 174-176
mocking, 137
Mockito, 138
modules (Go concept), 26
mTLS (mutual TLS)

enabling an mTLS secured connection,
117-122

enabling in a gRPC client, 120-122
enabling in a gRPC server, 118-120

multiplexing, 99-101

N
name resolver, 106
Netflix, 16
Nginx, 146
nonvarint numbers, 69

O
OAuth 2.0, 127-130
observability, 148-160

defined, 148
logs and, 156
metrics, 148-156
tracing and, 157-160

one-way connection
enabling secured connection in gRPC client,

116
enabling secured connection in gRPC

server, 115
enabling with TLS, 114-117

OpenCensus
metrics provided by, 149-152
tracing support, 157

OpenSSL tool, 114

P
pods, 143
production, running gRPC in, 135-162

debugging and troubleshooting, 161
deployment, 139-148
observability, 148-160
testing gRPC applications, 135-139

Prometheus, 152-156
protobuf library, 22
protoc, 5, 27, 180
protocol buffers

about, 4
defined, 63
encoding techniques, 67-69
message encoding with, 63-69
protoc plug-in, 5

proxy load balancing, 108

R
real-world applications (see application exam‐

ple [online retail system])
remote procedure call (see RPC)
request headers, 73
request message, HTTP/2, 72-74
request-response (synchronous) communica‐

tion style, 2
reserved headers, 74
resource owner, 127
resource server, 127
resource-oriented architecture (ROA), 9

186 | Index

response headers, 75
response message, 74-76
REST (Representation State Transfer), 2, 9-11

difficulties enforcing architectural style, 10
inefficient text-based message protocols, 10
lack of strongly typed interfaces between

apps, 10
limitations of, 9-11

RESTful services, 2
reverse proxy service, 163-170
ROA (resource-oriented architecture), 9
RPC (remote procedure call)

bidirectional-streaming, 53-58, 78
client-streaming, 49-52, 78
communication flow, 62-63
conventional, 8
server-streaming, 46-49, 77
simple, 43-46, 76

RSA Key, 114

S
Secure Socket Layer (SSL), 114
security, 113-133

(see also authentication)
authenticating a gRPC channel with TLS,

113-122
authenticating gRPC calls, 122-132

server, 5
building with Go, 40
building with Java, 41
compression, 111
creating with Go, 29
creating with Java, 35
enabling a one-way secured connection, 115
enabling mTLS in, 118-120
error creation/propagation, 96
interceptor chaining, 174
Kubernetes deployment resource for, 142
Kubernetes Ingress for exposing a gRPC

service externally, 146-147
Kubernetes Service resource for a gRPC

server, 144
metadata: sending/receiving, 104
running with Go, 40
running with Java, 41
testing, 135-137

server reflection protocol, 171-174
server skeleton, 3, 6
server-side interceptors, 82-86

stream interceptor, 84-86
unary interceptor, 83

server-streaming RPC, 46-49, 77
service

defining, 22-24
developing, 25-39
implementing with Go, 26-30
implementing with Java, 30-36

Service (Kubernetes abstraction), 144
service definition, 4

bidirectional-streaming RPC, 54-56
defining messages, 21
defining services, 22-24
for online retail system application, 20-24

service interface, 3
service skeleton, 6
service-oriented architecture (SOA), 9
signed integers, 68
simple RPC, 43-46, 76
SOAP (Simple Object Access Protocol), 9
SSL (Secure Socket Layer), 114
status codes, 95
stream

defined, 46
in HTTP/2, 71

stream interceptor
client-side, 88
server-side, 84-86

streaming
bidirectional-streaming RPC, 53-58, 78
client-streaming RPC, 49-52, 78
server-streaming RPC, 46-49, 77

string type, 69
symmetric cryptography, 113
synchronous request-response communication

style, 2
system-level metrics, 148

T
testing, 135-139

continuous integration, 139
load testing, 138
testing a client, 137
testing a server, 135-137

Thrift (Apache Thrift), 14
timeouts, 90
TLS (Transport Level Security)

authenticating a gRPC channel with,
113-122

Index | 187

enabling a one-way secured connection,
114-117

enabling an mTLS secured connection,
117-122

trace, defined, 157
tracing

enabling extra logs/traces, 161
observability and, 157-160

trailers, 75
Transport Level Security (see TLS)
troubleshooting (see debugging and trouble‐

shooting)

U
unary interceptor

client-side, 87
server-side, 83

unary RPC, 43-46
username/password authentication, 122
UTF (Unicode Transformation Format), 66

V
varints (variable length integers), 67

W
wire type, 65

Z
zigzag encoding, 68

188 | Index

About the Authors
Kasun Indrasiri is an author and architect with extensive experience in microservi‐
ces, cloud native and enterprise integration architecture. He is the director of integra‐
tion architecture at WSO2 and the product manager of the WSO2 Enterprise
Integrator. He has authored Microservices for Enterprise (Apress, 2018) and has been a
speaker at several conferences, including the O’Reilly Software Architecture Confer‐
ence 2019 in San Jose and GOTO Con 2019 in Chicago, as well as WSO2 Conferen‐
ces. Kasun lives in San Jose, California, and is the founder of the “Silicon Valley
Microservices, APIs and Integration” Meetup, one of the largest microservices meet‐
ups in the San Francisco Bay area.

Danesh Kuruppu is an associate technical lead at WSO2 with over five years of expe‐
rience in enterprise integration and microservices technologies. Danesh is the main
designer and developer for adding gRPC support for the open source, cloud native
programming language Ballerina. He is part of the gRPC community and a key con‐
tributor to the WSO2 Microservices Framework for Java and the WSO2 Governance
Registry.

Colophon
The animal on the cover of gRPC: Up and Running is the greater American scaup
(Aythya marila). This duck species breeds in spring and summer in the circumpolar
tundra environments of Alaska, Canada, and Europe, then migrates south to winter
off the coasts of North America, Europe, and Asia.

Males have yellow eyes, a bright blue bill, an iridescent black head with a distinctly
dark green cast, white sides, and finely patterned grey and white feathers on their
backs. Females are subtly colored to protect them while nesting, with a pale blue beak
and small white face patch, and a brown head and body. These ducks average about
20 inches long with a 30-inch wingspan, and on average weigh two pounds.

Greater American scaups form pairs in spring, and the female lays on average eight
eggs in a ground nest lined with down pulled from her own body. The ducklings leave
the nest immediately after hatching, and are able to feed themselves from birth. As
they take more than forty days to fledge, and though the young birds are protected by
their mother, at this time they are vulnerable to birds of prey and terrestrial predators
such as foxes.

Scaups are part of a group known as diving ducks; though they do feed on land or at
the water’s surface, they also dive underwater to feed. Like other diving ducks, scaups
have legs set further back on their compact bodies to help propel themselves under‐
water. Their physiology is also adapted so that they use less oxygen during their dives.
The greater American scaup can dive to a depth of up to 20 feet, and can hold their

breath for about a minute, enabling them to forage at greater depths than some other
diving ducks.

Though populations have been declining for the last forty years, these ducks are cur‐
rently noted as being of “Least Concern” by the IUCN Red List. Many of the animals
on O’Reilly covers are endangered; all of them are important to the world.

The color illustration on the cover is by Karen Montgomery, based on a black and
white engraving from British Birds. The cover fonts are Gilroy Semibold and Guard‐
ian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://www.oreilly.com/online-learning/

	Copyright
	Table of Contents
	Preface
	Why Did We Write This Book?
	Who Is This Book For?
	How This Book Is Organized
	Using Code Examples
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to gRPC
	What Is gRPC?
	Service Definition
	gRPC Server
	gRPC Client
	Client–Server Message Flow

	Evolution of Inter-Process Communication
	Conventional RPC
	SOAP
	REST
	Inception of gRPC
	Why gRPC?
	gRPC Versus Other Protocols: GraphQL and Thrift

	gRPC in the Real World
	Netflix
	etcd
	Dropbox

	Summary

	Chapter 2. Getting Started with gRPC
	Creating the Service Definition
	Defining Messages
	Defining Services

	Implementation
	Developing a Service
	Developing a gRPC Client

	Building and Running
	Building a Go Server
	Building a Go Client
	Running a Go Server and Client
	Building a Java Server
	Building a Java Client
	Running a Java Server and Client

	Summary

	Chapter 3. gRPC Communication Patterns
	Simple RPC (Unary RPC)
	Server-Streaming RPC
	Client-Streaming RPC
	Bidirectional-Streaming RPC
	Using gRPC for Microservices Communication
	Summary

	Chapter 4. gRPC: Under the Hood
	RPC Flow
	Message Encoding Using Protocol Buffers
	Encoding Techniques

	Length-Prefixed Message Framing
	gRPC over HTTP/2
	Request Message
	Response Message
	Understanding the Message Flow in gRPC Communication Patterns

	gRPC Implementation Architecture
	Summary

	Chapter 5. gRPC: Beyond the Basics
	Interceptors
	Server-Side Interceptors
	Client-Side Interceptors

	Deadlines
	Cancellation
	Error Handling
	Multiplexing
	Metadata
	Creating and Retrieving Metadata
	Sending and Receiving Metadata: Client Side
	Sending and Receiving Metadata: Server Side
	Name Resolver

	Load Balancing
	Load-Balancer Proxy
	Client-Side Load Balancing
	Compression

	Summary

	Chapter 6. Secured gRPC
	Authenticating a gRPC Channel with TLS
	Enabling a One-Way Secured Connection
	Enabling an mTLS Secured Connection

	Authenticating gRPC Calls
	Using Basic Authentication
	Using OAuth 2.0
	Using JWT
	Using Google Token-Based Authentication

	Summary

	Chapter 7. Running gRPC in Production
	Testing gRPC Applications
	Testing a gRPC Server
	Testing a gRPC Client
	Load Testing
	Continuous Integration

	Deployment
	Deploying on Docker
	Deploying on Kubernetes

	Observability
	Metrics
	Logs
	Tracing

	Debugging and Troubleshooting
	Enabling Extra Logging

	Summary

	Chapter 8. The gRPC Ecosystem
	gRPC Gateway
	HTTP/JSON Transcoding for gRPC
	The gRPC Server Reflection Protocol
	gRPC Middleware
	Health Checking Protocol
	gRPC Health Probe
	Other Ecosystem Projects
	Summary

	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

