
Sam Newman

Monolith to
Microservices
Evolutionary Patterns to Transform
Your Monolith

Sponsored by

Download at nginx.com/freetrial

Cost Savings
Over 80% cost savings
compared to hardware
application delivery con-
trollers and WAFs, with
all the performance and

features you expect.

Get high‑performance application delivery for
microservices. NGINX Plus is a software load
balancer, web server, and content cache.
The NGINX Web Application Firewall (WAF)
protects applications against sophisticated
Layer 7 attacks.

 Try NGINX Plus
 and NGINX WAF
 free for 30 days

NGINX WAF
A trial of the

NGINX WAF, based
on ModSecurity,

is included when you
download a trial of

NGINX Plus.

Exclusive Features
JWT authentication,
high availability, the

NGINX Plus API, and
other advanced

functionality are only
available in NGINX Plus.

Reduced Complexity
The only all-in-one

load balancer, content
cache, web server,

and web application
firewall helps reduce
infrastructure sprawl.

Download at nginx.com/freetrial

Cost Savings
Over 80% cost savings
compared to hardware
application delivery con-
trollers and WAFs, with
all the performance and

features you expect.

Get high‑performance application delivery for
microservices. NGINX Plus is a software load
balancer, web server, and content cache.
The NGINX Web Application Firewall (WAF)
protects applications against sophisticated
Layer 7 attacks.

 Try NGINX Plus
 and NGINX WAF
 free for 30 days

NGINX WAF
A trial of the

NGINX WAF, based
on ModSecurity,

is included when you
download a trial of

NGINX Plus.

Exclusive Features
JWT authentication,
high availability, the

NGINX Plus API, and
other advanced

functionality are only
available in NGINX Plus.

Reduced Complexity
The only all-in-one

load balancer, content
cache, web server,

and web application
firewall helps reduce
infrastructure sprawl.

Download at nginx.com/freetrial

Cost Savings
Over 80% cost savings
compared to hardware
application delivery con-
trollers and WAFs, with
all the performance and

features you expect.

Get high‑performance application delivery for
microservices. NGINX Plus is a software load
balancer, web server, and content cache.
The NGINX Web Application Firewall (WAF)
protects applications against sophisticated
Layer 7 attacks.

 Try NGINX Plus
 and NGINX WAF
 free for 30 days

NGINX WAF
A trial of the

NGINX WAF, based
on ModSecurity,

is included when you
download a trial of

NGINX Plus.

Exclusive Features
JWT authentication,
high availability, the

NGINX Plus API, and
other advanced

functionality are only
available in NGINX Plus.

Reduced Complexity
The only all-in-one

load balancer, content
cache, web server,

and web application
firewall helps reduce
infrastructure sprawl.

https://www.nginx.com/free-trial-request/?utm_source=oreilly&utm_campaign=production-ready-microservices&utm_medium=ebook
https://www.nginx.com/products/?utm_source=oreilly&utm_campaign=production-ready-microservices&utm_medium=ebook
https://www.nginx.com/freetrial/

Sam Newman

Monolith to Microservices
Evolutionary Patterns to Transform

Your Monolith

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-07554-7

[LSI]

Monolith to Microservices
by Sam Newman

Copyright © 2020 Sam Newman. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Developmental Editor: Chris Guzikowski
Developmental Editor: Alicia Young
Production Editor: Nan Barber
Copyeditor: Jasmine Kwityn
Proofreader: Sharon Wilkey

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

October 2019: First Edition

Revision History for the First Edition
2019-10-11: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492047841 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Monolith to Microservices, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and NGINX. See our statement of editorial inde‐
pendence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492047841
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Foreword. ix

Preface. xi

1. Just Enough Microservices. 1
What Are Microservices? 1

Independent Deployability 2
Modeled Around a Business Domain 2
Own Their Own Data 5
What Advantages Can Microservices Bring? 6
What Problems Do They Create? 6
User Interfaces 7
Technology 8
Size 8
And Ownership 10

The Monolith 12
The Single Process Monolith 12
The Distributed Monolith 14
Third-Party Black-Box Systems 14
Challenges of Monoliths 15
Advantages of Monoliths 15

On Coupling and Cohesion 16
Cohesion 17
Coupling 17

Just Enough Domain-Driven Design 28
Aggregate 29
Bounded Context 31
Mapping Aggregates and Bounded Contexts to Microservices 31

iii

Further Reading 32
Summary 32

2. Planning a Migration. 33
Understanding the Goal 33

Three Key Questions 35
Why Might You Choose Microservices? 35

Improve Team Autonomy 35
Reduce Time to Market 37
Scale Cost-Effectively for Load 37
Improve Robustness 38
Scale the Number of Developers 40
Embrace New Technology 41

When Might Microservices Be a Bad Idea? 42
Unclear Domain 43
Startups 43
Customer-Installed and Managed Software 44
Not Having a Good Reason! 45

Trade-Offs 45
Taking People on the Journey 47
Changing Organizations 47

Establishing a Sense of Urgency 48
Creating the Guiding Coalition 48
Developing a Vision and Strategy 49
Communicating the Change Vision 50
Empowering Employees for Broad-Based Action 51
Generating Short-Term Wins 51
Consolidating Gains and Producing More Change 52
Anchoring New Approaches in the Culture 52

Importance of Incremental Migration 53
It’s Production That Counts 53

Cost of Change 54
Reversible and Irreversible Decisions 54
Easier Places to Experiment 56

So Where Do We Start? 56
Domain-Driven Design 56

How Far Do You Have to Go? 57
Event Storming 58
Using a Domain Model for Prioritization 58

A Combined Model 60
Reorganizing Teams 62

Shifting Structures 62

iv | Table of Contents

It’s Not One Size Fits All 63
Making a Change 65
Changing Skills 68

How Will You Know if the Transition Is Working? 71
Having Regular Checkpoints 71
Quantitative Measures 72
Qualitative Measures 72
Avoiding the Sunk Cost Fallacy 73
Being Open to New Approaches 73

Summary 74

3. Splitting the Monolith. 75
To Change the Monolith, or Not? 76

Cut, Copy, or Reimplement? 76
Refactoring the Monolith 77

Migration Patterns 78
Pattern: Strangler Fig Application 79

How It Works 79
Where to Use It 81
Example: HTTP Reverse Proxy 83
Data? 86
Proxy Options 86
Changing Protocols 90
Example: FTP 93
Example: Message Interception 94
Other Protocols 97
Other Examples of the Strangler Fig Pattern 97

Changing Behavior While Migrating Functionality 97
Pattern: UI Composition 98

Example: Page Composition 99
Example: Widget Composition 99
Example: Micro Frontends 103
Where to Use It 104

Pattern: Branch by Abstraction 104
How It Works 105
As a Fallback Mechanism 111
Where to Use It 112

Pattern: Parallel Run 113
Example: Comparing Credit Derivative Pricing 113
Example: Homegate Listings 115
Verification Techniques 116
Using Spies 116

Table of Contents | v

GitHub Scientist 117
Dark Launching and Canary Releasing 118
Where to Use It 118

Pattern: Decorating Collaborator 118
Example: Loyalty Program 119
Where to Use It 120

Pattern: Change Data Capture 120
Example: Issuing Loyalty Cards 120
Implementing Change Data Capture 121
Where to Use It 124

Summary 124

4. Decomposing the Database. 125
Pattern: The Shared Database 125

Coping Patterns 127
Where to Use It 127

But It Can’t Be Done! 127
Pattern: Database View 128

The Database as a Public Contract 129
Views to Present 130
Limitations 131
Ownership 131
Where to Use It 132

Pattern: Database Wrapping Service 132
Where to Use It 134

Pattern: Database-as-a-Service Interface 135
Implementing a Mapping Engine 136
Compared to Views 137
Where to Use It 137

Transferring Ownership 137
Pattern: Aggregate Exposing Monolith 138
Pattern: Change Data Ownership 141

Data Synchronization 143
Pattern: Synchronize Data in Application 145

Step 1: Bulk Synchronize Data 145
Step 2: Synchronize on Write, Read from Old Schema 146
Step 3: Synchronize on Write, Read from New Schema 147
Where to Use This Pattern 148
Where to Use It 148

Pattern: Tracer Write 149
Data Synchronization 152
Example: Orders at Square 154

vi | Table of Contents

Where to Use It 158
Splitting Apart the Database 158

Physical Versus Logical Database Separation 158
Splitting the Database First, or the Code? 160

Split the Database First 161
Split the Code First 165
Split Database and Code Together 170
So, Which Should I Split First? 170

Schema Separation Examples 171
Pattern: Split Table 171

Where to Use It 173
Pattern: Move Foreign-Key Relationship to Code 173

Moving the Join 175
Data Consistency 176
Where to Use It 178
Example: Shared Static Data 178

Transactions 187
ACID Transactions 187
Still ACID, but Lacking Atomicity? 188
Two-Phase Commits 190
Distributed Transactions—Just Say No 193

Sagas 193
Saga Failure Modes 195
Implementing Sagas 199
Sagas Versus Distributed Transactions 205

Summary 205

5. Growing Pains. 207
More Services, More Pain 207
Ownership at Scale 209

How Can This Problem Show Itself? 209
When Might This Problem Occur? 210
Potential Solutions 210

Breaking Changes 210
How Can This Problem Show Itself? 211
When Might This Problem Occur? 211
Potential Solutions 212

Reporting 215
When Might This Problem Occur? 216
Potential Solutions 216

Monitoring and Troubleshooting 217
When Might These Problems Occur? 218

Table of Contents | vii

How Can These Problems Occur? 218
Potential Solutions 218

Local Developer Experience 222
How Can This Problem Show Itself? 223
When Might This Occur? 223
Potential Solutions 223

Running Too Many Things 224
How Might This Problem Show Itself? 224
When Might This Problem Occur? 224
Potential Solutions 224

End-to-End Testing 226
How Can This Problem Show Itself? 226
When Might This Problem Occur? 226
Potential Solutions 227

Global Versus Local Optimization 229
How Can This Problem Show Itself? 229
When Might This Problem Occur? 229
Potential Solutions 230

Robustness and Resiliency 232
How Can This Problem Show Itself? 232
When Might This Problem Occur? 232
Potential Solutions 232

Orphaned Services 233
How Can This Problem Show Itself? 233
When Might This Problem Occur? 234
Potential Solutions 234

Summary 236

6. Closing Words. 237

A. Bibliography. 239

B. Pattern Index. 243

Index. 245

viii | Table of Contents

Foreword

We are on the cusp of a revolution in application architecture. According to IDC, by
2022, 90% of all new applications will be based on microservices architectures. As
with DevOps, adopting microservices improves agility and flexibility, enabling enter‐
prises to bring their products and services to market faster.

Many enterprises are thinking about migrating their existing apps to microservices-
based architectures. But there are many critical questions to ask first. How do you re-
architect an existing system without having to stop all other work on it? How big
should a microservice be? When might microservices be a bad idea? What are some
of the migration patterns you could adopt when splitting up a monolith?

Monolith to Microservices answers those questions and more. It’s a must-have for
application developers and architects, as well as DevOps engineers. Not only does this
book provide details about the implementation of microservices, it also sheds light on
the challenges associated with a microservices architecture, and helps you understand
if starting this journey is even right for you.

Sam Newman, the author of the O’Reilly bestseller Building Microservices, brings a
wealth of experience to guide your path from monolith to microservices in a holistic
fashion. He provides in-depth guidance in an incremental and logical manner, from
planning to implementation and beyond—how best to manage the growing pains as
you scale your microservices.

NGINX can help enable you to achieve enterprise-grade traffic management for your
microservices-based applications. NGINX is widely used to manage traffic among
microservices, with more than 250 users running more than 3 million NGINX
instances in production microservices environments. NGINX is also the most popu‐
lar Ingress controller for Kubernetes (a container orchestration platform used to
deploy and operate microservices), running in 64% of all Kubernetes environments.
Additionally, NGINX supports OpenShift, a container application platform from Red
Hat.

ix

http://bit.ly/2pDUz08

As you embrace microservices, NGINX enables you to achieve enterprise-grade traf‐
fic management for your microservices-based applications. We sincerely hope you
enjoy this book as you migrate your monolithic applications to distributed applica‐
tions based on microservices.

— Karthik Krishnaswamy
Director, Product Marketing, NGINX

October 2019

x | Foreword

Preface

A few years ago, some of us were chatting about microservices being an interesting
idea. The next thing you know it’s become the default architecture for hundreds of
companies around the world (many probably launched as startups aiming to solve
the problems microservices cause), and has everyone running to jump on a band‐
wagon that they are worried is about to disappear over the horizon.

I must admit, I’m partly to blame. Since I wrote my own book on this subject, Build‐
ing Microservices, back in 2015, I’ve made a living working with people to help them
understand this type of architecture. What I’ve always tried to do is to cut through the
hype, and help companies decide if microservices are right for them. For many of my
clients with existing (non-microservice-oriented) systems, the challenge has been
about how to adopt microservice architectures. How do you take an existing system
and rearchitect it without having to stop all other work? That is where this book
comes in. As importantly, I’ll aim to give you an honest appraisal of the challenges
associated with microservice architecture, and help you understand whether starting
this journey is even right for you.

What You Will Learn
This book is designed as a deep dive into how you think about, and execute, breaking
apart existing systems into a microservice architecture. We will touch on many topics
related to microservice architecture, but the focus is on the decomposition side of
things. For a more general guide to microservice architectures, my previous book
Building Microservices would be a good place to start. In fact, I strongly recommend
that you consider that book to be a companion to this one.

Chapter 1 contains an overview of what microservices are, and explores further the
ideas that led us to these sorts of architectures. It should work well for people who are
new to microservices, but I also strongly urge those of you with more experience to
not skip this chapter. I feel that in the flurry of technology, some of the important

xi

https://oreil.ly/building-microservices-2e
https://oreil.ly/building-microservices-2e

core ideas of microservices often get missed: these are concepts that the book will
return to again and again.

Understanding more about microservices is good, but knowing if they are right for
you is something else. In Chapter 2, I walk you through how to go about assessing
whether or not microservices are right for you, and also give you some really impor‐
tant guidelines for how to manage a transition from a monolith to a microservice
architecture. Here we’ll touch on everything from domain-driven design to organiza‐
tional change models—vital underpinnings that will stand you in good stead even if
you decide not to adopt a microservice architecture.

In Chapters 3 and 4 we dive deeper into the technical aspects associated with decom‐
posing a monolith, exploring real-world examples and extracting out migration pat‐
terns. Chapter 3 focuses on application decomposition aspects, where Chapter 4 is a
deep dive on data issues. If you really want to move from a monolithic system to a
microservice architecture, we’ll need to pull some databases apart!

Finally, Chapter 5 looks at the sorts of challenges you will face as your microservice
architecture grows. These systems can offer huge benefits, but they come with a lot of
complexity and problems you won’t have had to face before. This chapter is my
attempt at helping you spot these problems as they start to occur, and at offering ways
to deal with the growing pains associated with microservices.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

xii | Preface

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Monolith to Microservi‐
ces by Sam Newman (O’Reilly). Copyright 2020 Sam Newman, 978-1-492-07554-7.”

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text

Preface | xiii

http://oreilly.com

and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/monolith-to-microservices.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Without the help and understanding of my wonderful wife, Lindy Stephens, this book
would not have been possible. This book is for her. Lindy, sorry for being so grouchy
when various deadlines came and went. I’d also like to thank the lovely Gillman
Staynes clan for all their support—I’m lucky to have such a great family.

This book benefited hugely from people who kindly volunteered their time and
energy to read various drafts and provide valuable insights. I especially want to call
out Chris O’Dell, Daniel Bryant, Pete Hodgson, Martin Fowler, Stefan Schrass, and
Derek Hammer for their efforts in this area. There were also people who directly con‐
tributed in numerous ways, so I’d also like to thank Graham Tackley, Erik Doernen‐
berg, Marcin Zasepa, Michael Feathers, Randy Shoup, Kief Morris, Peter Gillard-
Moss, Matt Heath, Steve Freeman, Rene Lengwinat, Sarah Wells, Rhys Evans, and
Berke Sokhan. If you find errors in this book, the mistakes are mine, not theirs.

xiv | Preface

http://oreilly.com
https://oreil.ly/monolith-to-microservices
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

The team at O’Reilly has also been incredibly supportive, and I would like to high‐
light my editors Eleanor Bru and Alicia Young, in addition to Christopher Guzikow‐
ski, Mary Treseler, and Rachel Roumeliotis. I also want to say a big thanks to Helen
Codling and her colleagues elsewhere in the world for continuing to drag my books
to various conferences, Susan Conant for keeping me sane while navigating the
changing world of publishing, and Mike Loukides for initially getting me involved
with O’Reilly. I know there are many more people behind the scenes who have hel‐
ped, so thanks as well to you all.

Beyond those who directly contributed to this book, I also want to call out others
who, whether they realized it or not, helped this book come about. So I would like to
thank (in no particular order) Martin Kelppmann, Ben Stopford, Charity Majors,
Alistair Cockburn, Gregor Hohpe, Bobby Woolf, Eric Evans, Larry Constantine,
Leslie Lamport, Edward Yourdon, David Parnas, Mike Bland, David Woods, John All‐
spaw, Alberto Brandolini, Frederick Brooks, Cindy Sridharan, Dave Farley, Jez Hum‐
ble, Gene Kim, James Lewis, Nicole Forsgren, Hector Garcia-Molina, Sheep &
Cheese, Kenneth Salem, Adrian Colyer, Pat Helland, Kresten Thorup, Henrik Kni‐
berg, Anders Ivarsson, Manuel Pais, Steve Smith, Bernd Rucker, Matthew Skelton,
Alexis Richardson, James Governor, and Kane Stephens.

As is always the case with these things, it seems highly likely that I’ve missed someone
who has materially contributed to this book. To those people, all I can say is I’m very
sorry for forgetting to thank you by name, and that I hope you can forgive me.

Finally, some people ask me from time to time about the tools I used to write this
book. I wrote in AsciiDoc using Visual Studio Code along with João Pinto’s AsciiDoc
plug-in. The book was source controlled in Git, using O’Reilly’s Atlas system. I wrote
mostly on my laptop, using an external Razer mechanical keyboard, but toward the
end also made heavy use of an iPad Pro running Working Copy to finish off the last
few things. This enabled me to write while traveling, allowing me on one memorable
occasion to write about database refactoring on a ferry to the Orkneys. The resulting
seasickness was totally worth it.

Preface | xv

CHAPTER 1

Just Enough Microservices

Well, that escalated quickly, really got out of hand fast!
—Ron Burgundy, Anchorman

Before we dive into how to work with microservices, it is important that we have a
common, shared understanding about what microservice architectures are. I’d like to
address some common misconceptions I see on a regular basis, as well as nuances
that are often missed. You’ll need this firm foundation of knowledge to get the most
out of what follows in the rest of the book. As such, this chapter will provide an
explanation of microservice architectures, look briefly at how microservices devel‐
oped (which means, naturally, taking a look at monoliths), and examine some of the
advantages and challenges of working with microservices.

What Are Microservices?
Microservices are independently deployable services modeled around a business
domain. They communicate with each other via networks, and as an architecture
choice offer many options for solving the problems you may face. It follows that a
microservice architecture is based on multiple collaborating microservices.

They are a type of service-oriented architecture (SOA), albeit one that is opinionated
about how service boundaries should be drawn, and that independent deployability is
key. Microservices also have the advantage of being technology agnostic.

From a technology viewpoint, microservices expose the business capabilities that they
encapsulate via one or more network endpoints. Microservices communicate with
each other via these networks—making them a form of distributed system. They also
encapsulate data storage and retrieval, exposing data, via well-defined interfaces. So
databases are hidden inside the service boundary.

1

There is a lot to unpack in all of that, so let’s dig a bit deeper into some of these ideas.

Independent Deployability
Independent deployability is the idea that we can make a change to a microservice and
deploy it into a production environment without having to utilize any other services.
More importantly, it’s not just that we can do this; it’s that this is actually how you
manage deployments in your system. It’s a discipline you practice for the bulk of your
releases. This is a simple idea that is nonetheless complex in execution.

If there is only one thing you take out of this book, it should be
this: ensure you embrace the concept of independent deployability
of your microservices. Get into the habit of releasing changes to a
single microservice into production without having to deploy any‐
thing else. From this, many good things will follow.

To guarantee independent deployability, we need to ensure our services are loosely
coupled—in other words, we need to be able to change one service without having to
change anything else. This means we need explicit, well-defined, and stable contracts
between services. Some implementation choices make this difficult—the sharing of
databases, for example, is especially problematic. The desire for loosely coupled serv‐
ices with stable interfaces guides our thinking about how we find service boundaries
in the first place.

Modeled Around a Business Domain
Making a change across a process boundary is expensive. If you need to make a
change to two services to roll out a feature, and orchestrate the deployment of these
two changes, that takes more work than making the same change inside a single ser‐
vice (or, for that matter, a monolith). It therefore follows that we want to find ways of
ensuring we make cross-service changes as infrequently as possible.

Following the same approach I used in Building Microservices, this book uses a fake
domain and company to illustrate certain concepts when it isn’t possible to share real-
world stories. The company in question is Music Corp, a large multi-national organi‐
zation that somehow remains in business, despite it focusing almost entirely on
selling CDs.

We’ve decided to move Music Corp kicking and screaming into the 21st century, and
as part of that we’re assessing the existing system architecture. In Figure 1-1, we see a
simple three-tiered architecture. We have a web-based user interface, a business logic
layer in the form of a monolithic backend, and data storage in a traditional database.
These layers, as is common, are owned by different teams.

2 | Chapter 1: Just Enough Microservices

Figure 1-1. Music Corp’s systems as a traditional three-tiered architecture

We want to make a simple change to our functionality: we want to allow our custom‐
ers to specify their favorite genre of music. This change requires us to change the user
interface to show the genre choice UI, the backend service to allow for the genre to be
surfaced to the UI and for the value to be changed, and the database to accept this
change. These changes will need to be managed by each team, as outlined in
Figure 1-2, and those changes will need to be deployed in the correct order.

Figure 1-2. Making a change across all three tiers is more involved

What Are Microservices? | 3

Now this architecture isn’t bad. All architecture ends up getting optimized around
some set of goals. The three-tiered architecture is so common partly because it is uni‐
versal—everyone’s heard about it. So picking a common architecture you may have
seen elsewhere is often one reason we keep seeing this pattern. But I think the biggest
reason we see this architecture again and again is because it is based on how we orga‐
nize our teams.

The now famous Conway’s law states
Any organization that designs a system…will inevitably produce a design whose struc‐
ture is a copy of the organization’s communication structure.

—Melvin Conway, How Do Committees Invent?

The three-tiered architecture is a good example of this in action. In the past, the pri‐
mary way IT organizations grouped people was in terms of their core competency:
database admins were in a team with other database admins; Java developers were in
a team with other Java developers; and frontend developers (who nowadays know
exotic things like JavaScript and native mobile application development) were in yet
another team. We group people based on their core competency, so we create IT
assets that can be aligned to those teams.

So that explains why this architecture is so common. It’s not bad; it’s just optimized
around one set of forces—how we traditionally grouped people, around familiarity.
But the forces have changed. Our aspirations around our software have changed. We
now group people in poly-skilled teams, to reduce hand-offs and silos. We want to
ship software much more quickly than ever before. That is driving us to make differ‐
ent choices about how we organize our teams, and therefore in terms of how we
break our systems apart.

Changes in functionality are primarily about changes in business functionality. But in
Figure 1-1 our business functionality is in effect spread across all three tiers, increas‐
ing the chance that a change in functionality will cross layers. This is an architecture
in which we have high cohesion of related technology, but low cohesion of business
functionality. If we want to make it easier to make changes, instead we need to change
how we group code—we choose cohesion of business functionality, rather than tech‐
nology. Each service may or may not then end up containing a mix of these three lay‐
ers, but that is a local service implementation concern.

Let’s compare this with a potential alternative architecture illustrated in Figure 1-3.
We have a dedicated Customer service, which exposes a UI to allow customers to
update their information, and the state of the customer is also stored within this ser‐
vice. The choice of a favorite genre is associated with a given customer, so this change
is much more localized. In Figure 1-3 we also show the list of available genres being
fetched from a Catalog service, likely something that would already be in place. We

4 | Chapter 1: Just Enough Microservices

also see a new Recommendation service accessing our favorite genre information,
something that could easily follow in a subsequent release.

Figure 1-3. A dedicated Customer service may make it much easier to record the favorite
musical genre of a customer

In such a situation, our Customer service encapsulates a thin slice of each of the three
tiers—it has a bit of UI, a bit of application logic, and a bit of data storage—but these
layers are all encapsulated in the single service.

Our business domain becomes the primary force driving our system architecture,
hopefully making it easier to make changes, and making it easier for us to organize
our teams around our business domain. This is so important that before we finish
this chapter, we’ll revisit the concept of modeling software around a domain, so I can
share some ideas around domain-driven design that shape how we think about our
microservice architecture.

Own Their Own Data
One of the things I see people having the hardest time with is the idea that microser‐
vices should not share databases. If one service wants to access data held by another
service, then it should go and ask that service for the data it needs. This gives the ser‐
vice the ability to decide what is shared and what is hidden. It also allows the service
to map from internal implementation details, which can change for various arbitrary
reasons, to a more stable public contract, ensuring stable service interfaces. Having
stable interfaces between services is essential if we want independent deployability—if
the interface a service exposes keeps changing, this will have a ripple effect causing
other services to need to change as well.

Don’t share databases, unless you really have to. And even then do
everything you can to avoid it. In my opinion, it’s one of the worst
things you can do if you’re trying to achieve independent deploya‐
bility.

What Are Microservices? | 5

As we discussed in the previous section, we want to think of our services as end-to-
end slices of business functionality, that where appropriate encapsulate the UI, appli‐
cation logic, and data storage. This is because we want to reduce the effort needed to
change business-related functionality. The encapsulation of data and behavior in this
way gives us high cohesion of business functionality. By hiding the database that
backs our service, we also ensure we reduce coupling. We’ll be coming back to cou‐
pling and cohesion in a moment.

This can be hard to get your head around, especially when you have an existing mon‐
olithic system that has a giant database you have to deal with. Luckily, Chapter 4 is
entirely dedicated to moving away from monolithic databases.

What Advantages Can Microservices Bring?
The advantages of microservices are many and varied. The independent nature of the
deployments opens up new models for improving the scale and robustness of sys‐
tems, and allows you to mix and match technology. As services can be worked on in
parallel, you can bring more developers to bear on a problem without them getting in
each other’s way. It can also be easier for those developers to understand their part of
the system, as they can focus their attention on just one part of it. Process isolation
also makes it possible for us to vary the technology choices we make, perhaps mixing
different programming languages, programming styles, deployment platforms, or
databases to find the right mix.

Perhaps, above all, microservice architectures give you flexibility. They open up many
more options regarding how you can solve problems in the future.

However, it’s important to note that none of these advantages come for free. There are
many ways you can approach system decomposition, and fundamentally what you
are trying to achieve will drive this decomposition in different directions. Under‐
standing what you are trying to get from your microservice architecture therefore
becomes important.

What Problems Do They Create?
Service-oriented architecture became a thing partly because computers got cheaper,
so we had more of them. Rather than deploy systems on single, giant mainframes, it
made more sense to make use of multiple cheaper machines. Service-oriented archi‐
tecture was an attempt to work out how best to build applications that spanned multi‐
ple machines. One of the main challenges in all of this is the way in which these
computers talk to each other: networks.

Communication between computers over networks is not instantaneous (this appa‐
rently has something to do with physics). This means we have to worry about laten‐
cies—and specifically, latencies that far outstrip the latencies we see with local, in-

6 | Chapter 1: Just Enough Microservices

process operations. Things get worse when we consider that these latencies will vary,
which can make system behavior unpredictable. And we also have to address the fact
that networks sometimes fail—packets get lost; network cables are disconnected.

These challenges make activities that are relatively simple with a single-process mon‐
olith, like transactions, much more difficult. So difficult, in fact, that as your system
grows in complexity, you will likely have to ditch transactions, and the safety they
bring, in exchange for other sorts of techniques (which unfortunately have very dif‐
ferent trade-offs).

Dealing with the fact that any network call can and will fail becomes a headache, as
will the fact that the services you might be talking to could go offline for whatever
reason or otherwise start behaving oddly. Adding to all this, you also need to start
trying to work out how to get a consistent view of data across multiple machines.

And then, of course, we have a huge wealth of new microservice-friendly technology
to take into account—new technology that, if used badly, can help you make mistakes
much faster and in more interesting, expensive ways. Honestly, microservices seem
like a terrible idea, except for all the good stuff.

It’s worth noting that virtually all of the systems we categorize as “monoliths” are also
distributed systems. A single-process application likely reads data from a database
that runs on a different machine, and presents data on to a web browser. That’s at
least three computers in the mix there, with communication between them over net‐
works. The difference is the extent to which monolithic systems are distributed com‐
pared to microservice architectures. As you have more computers in the mix,
communicating over more networks, you’re more likely to hit the nasty problems
associated with distributed systems. These problems I’ve briefly discussed may not
appear initially, but over time, as your system grows, you’ll likely hit most, if not all,
of them.

As my old colleague, friend, and fellow microservice-expert James Lewis put it,
“Microservices buy you options.” James was being deliberate with his words—they
buy you options. They have a cost, and you have to decide if the cost is worth the
options you want to take up. We’ll explore this topic in more detail in Chapter 2.

User Interfaces
All too often, I see people focus their work in embracing microservices purely on the
server side—leaving the user interface as a single, monolithic layer. If we want an
architecture that makes it easier for us to more rapidly deploy new features, then leav‐
ing the UI as a monolithic blob can be a big mistake. We can, and should, look at
breaking apart our user interfaces too, something we’ll explore in Chapter 3.

What Are Microservices? | 7

1 For more on this topic, I recommend PHP Web Services by Lorna Jane Mitchell (O’Reilly) There is far too
much technical snobbery out there toward some technology stacks that can unfortunately border on con‐
tempt for people who work with particular tools.footnote:[After reading Aurynn Shaw’s “Contempt Culture”
blog post, I recognized that in the past I have been guilty of showing some degree of contempt toward differ‐
ent technologies, and by extension the communities around them.

Technology
It can be all too tempting to grab a whole load of new technology to go along with
your shiny new microservice architecture, but I strongly urge you not to fall into this
temptation. Adopting any new technology will have a cost—it will create some
upheaval. Hopefully, that will be worth it (if you’ve picked the right technology, of
course!), but when first adopting a microservice architecture, you have enough going
on.

Working out how to properly evolve and manage a microservice architecture involves
tackling a multitude of challenges related to distributed systems—challenges you may
not have faced before. I think it’s much more useful to get your head around these
issues as you encounter them, making use of a technology stack you are familiar with,
and then consider whether changing your existing technology may help address those
problems as you find them.

As we’ve already touched on, microservices are fundamentally technology agnostic.
As long as your services can communicate with each other via a network, everything
else is up for grabs. This can be a huge advantage—allowing you to mix and match
technology stacks if you wish.

You don’t have to use Kubernetes, Docker, containers, or the public cloud. You don’t
have to code in Go or Rust or whatever else. In fact, your choice of programming lan‐
guage is fairly unimportant when it comes to microservice architectures, over and
above how some languages may have a richer ecosystem of supporting libraries and
frameworks. If you know PHP best, start building services with PHP!1 Don’t be part
of the problem! Choose the approach that works for you, and change things to
address problems as and when you see them.

Size
“How big should a microservice be?” is probably the most common question I get.
Considering the word “micro” is right there in the name, this comes as no surprise.
However, when you get into what makes microservices work as a type of architecture,
the concept of size is actually one of the least interesting things.

How do you measure size? Lines of code? That doesn’t make much sense to me.
Something that might require 25 lines of code in Java could possibly be written in 10

8 | Chapter 1: Just Enough Microservices

http://bit.ly/2oeICgL
http://bit.ly/2oeICgL

lines of Clojure. That’s not to say Clojure is better or worse than Java, but rather that
some languages are more expressive than others.

The closest I think I get to “size” having any meaning in terms of microservices is
something fellow microservices expert Chris Richardson once said—that the goal of
microservices is to have “as small an interface as possible.” That chimes with the con‐
cept of information hiding (which we’ll discuss in a moment) but does represent an
attempt to find meaning after the fact—when we were first talking about these things,
our main focus, initially at least, was on these things being really easy to replace.

Ultimately, the concept of “size” is highly contextual. Speak to a person who has
worked on a system for 15 years, and they’ll feel that their 100K line code system is
really easy to understand. Ask the opinion of someone brand-new to the project, and
they’ll feel it’s way too big. Likewise, ask a company that has just embarked on its
microservice transition, with perhaps ten of fewer microservices, and you’ll get a dif‐
ferent answer than you would from a similar-sized company in which microservices
have been the norm for many years, and they now have hundreds.

I urge people not to worry about size. When you are first starting out, it’s much more
important that you focus on two key things. First, how many microservices can you
handle? As you have more services, the complexity of your system will increase, and
you’ll have to learn new skills (and perhaps adopt new technology) to cope with this.
It’s for this reason I am a strong advocate for incremental migration to a microservice
architecture. Second, how do you define microservice boundaries to get the most out
of them, without everything becoming a horribly coupled mess? These are topics
we’ll cover throughout the rest of this chapter.

History of the Term “Microservices”
Back in 2011, when I was still working at a consultancy called ThoughtWorks, my
friend and then-colleague James Lewis became really interested in something he was
calling “micro-apps.” He had spotted this pattern being utilized by a few companies
that were using service-oriented architecture—they were optimizing this architecture
to make services easy to replace. The companies in question were interested in getting
specific functionality deployed quickly, but with a view that it could be rewritten in
other technology stacks if and when everything needed to scale.

At the time, the thing that stood out was how small in scope these services were.
Some of these services could be written (or rewritten) in a few days. James went on to
say that “services should be no bigger than my head.” The idea being that the scope of
functionality should be easy to understand, and therefore easy to change.

Later, in 2012, James was sharing these ideas at an architectural summit where a few
of us were present. In that session, we discussed the fact that really these things

What Are Microservices? | 9

2 I can’t recall the first time we actually wrote down the term, but I vividly recall my insistence, in the face of all
logic around grammar, that the term should not be hyphenated. In hindsight, it was a hard-to-justify position,
which I nonetheless stuck to. I stand by my unreasonable, but ultimately victorious choice.

weren’t self-contained applications, so “micro-apps” wasn’t quite right. Instead,
“microservices” seemed a more appropriate name.2

And Ownership
With microservices modeled around a business domain, we see alignment between
our IT artifacts (our independently deployable microservices) and our business
domain. This idea resonates well when we consider the shift toward technology com‐
panies breaking down the divides between “The Business” and “IT.” In traditional IT
organizations, the act of developing software is often handled by an entirely separate
part of the business from that which actually defines requirements and has a connec‐
tion with the customer, as Figure 1-4 shows. The dysfunctions of these sorts of organ‐
izations are many and varied, and probably don’t need to be expanded upon here.

Figure 1-4. An organizational view of the traditional IT/business divide

Instead, we’re seeing true technology organizations totally combine these previous
disparate organizational silos, as we see in Figure 1-5. Product owners now work
directly as part delivery teams, with these teams being aligned around customer-
facing product lines, rather than around arbitrary technical groupings. Rather than
centralized IT functions being the norm, the existence of any central IT function is to
support these customer-focused delivery teams.

10 | Chapter 1: Just Enough Microservices

Figure 1-5. An example of how true technology companies are integrating software deliv‐
ery

While not all organizations have made this shift, microservice architectures make this
change much easier. If you want delivery teams aligned around product lines, and the
services are aligned around the business domain, then it becomes easier to clearly
assign ownership to these product-oriented delivery teams. Reducing services that
are shared across multiple teams is key to minimizing delivery contention—business-
domain-oriented microservice architectures make this shift in organizational struc‐
tures much easier.

What Are Microservices? | 11

The Monolith
We’ve spoken about microservices, but this book is all about moving from monoliths
to microservices, so we also need to establish what is meant by the term monolith.

When I talk about the monoliths in this book, I am primarily referring to a unit of
deployment. When all functionality in a system had to be deployed together, we con‐
sider it a monolith. There are at least three types of monolithic systems that fit the
bill: the single-process system, the distributed monolith, and third-party black-box
systems.

The Single Process Monolith
The most common example that comes to mind when discussing monoliths is a sys‐
tem in which all of the code is deployed as a single process, as in Figure 1-6. You may
have multiple instances of this process for robustness or scaling reasons, but funda‐
mentally all the code is packed into a single process. In reality, these single-process
systems can be simple distributed systems in their own right, as they nearly always
end up reading data from or storing data into a database.

Figure 1-6. A single-process monolith: all code is packaged into a single process

These single-process monoliths probably represent the vast majority of the mono‐
lithic systems that I see people struggling with, and hence are the types of monoliths
we’ll focus most of our time on. When I use the term “monolith” from now on, I’ll be
talking about these sorts of monoliths unless I say otherwise.

And the modular monolith
As a subset of the single process monolith, the modular monolith is a variation: the
single process consists of separate modules, each of which can be worked on inde‐
pendently, but which still need to be combined for deployment, as shown in

12 | Chapter 1: Just Enough Microservices

3 For an overview of Shopify’s thinking behind the use of a modular monolith rather than microservices, Kirs‐
ten Westeinde’s talk on YouTube has some useful insights.

Figure 1-7. The concept of breaking down software into modules is nothing new;
we’ll come back to some of the history around this later in this chapter.

Figure 1-7. A modular monolith: the code inside the process is broken down into mod‐
ules

For many organizations, the modular monolith can be an excellent choice. If the
module boundaries are well defined, it can allow for a high degree of parallel work‐
ing, but sidesteps the challenges of the more distributed microservice architecture
along with much simpler deployment concerns. Shopify is a great example of an
organization that has used this technique as an alternative to microservice decompo‐
sition, and it seems to work really well for that company.3

One of the challenges of a modular monolith is that the database tends to lack the
decomposition we find in the code level, leading to significant challenges that can be
faced if you want to pull the monolith in the future. I have seen some teams attempt
to push the idea of the modular monolith further, having the database decomposed
along the same lines as the modules, as shown in Figure 1-8. Fundamentally, making
a change like this to an existing monolith can still be very challenging even if you’re
leaving the code alone—many of the patterns we’ll explore in Chapter 4 can help if
you want to try to do something similar yourself.

The Monolith | 13

http://bit.ly/2oauZ29

4 Email message sent to a DEC SRC bulletin board at 12:23:29 PDT on May 28, 1987 (see https://www.micro
soft.com/en-us/research/publication/distribution/ for more).

Figure 1-8. A modular monolith with a decomposed database

The Distributed Monolith
A distributed system is one in which the failure of a computer you didn’t even know
existed can render your own computer unusable.4

—Leslie Lamport

A distributed monolith is a system that consists of multiple services, but for whatever
reason the entire system has to be deployed together. A distributed monolith may
well meet the definition of a service-oriented architecture, but all too often fails to
deliver on the promises of SOA. In my experience, distributed monoliths have all the
disadvantages of a distributed system, and the disadvantages of a single-process mon‐
olith, without having enough upsides of either. Encountering distributed monoliths
in my work has in large part influenced my own interest in microservice architecture.

Distributed monoliths typically emerge in an environment where not enough focus
was placed on concepts like information hiding and cohesion of business functional‐
ity, leading instead to highly coupled architectures in which changes ripple across ser‐
vice boundaries, and seemingly innocent changes that appear to be local in scope
break other parts of the system.

Third-Party Black-Box Systems
We can also consider some third-party software as monoliths that we may want to
“decompose” as part of a migration effort. These might include things like payroll sys‐
tems, CRM systems, and HR systems. The common factor here is that it’s software
developed by other people, and you don’t have the ability to change the code. It could
be off-the-shelf software you’ve deployed on your own infrastructure, or could be a

14 | Chapter 1: Just Enough Microservices

https://www.microsoft.com/en-us/research/publication/distribution/
https://www.microsoft.com/en-us/research/publication/distribution/

5 Microsoft Research has carried out studies in this space, and I recommend all of them. As a starting point, I
suggest “Don’t Touch My Code! Examining the Effects of Ownership on Software Quality” by Christian Bird
et al.

Software-as-a-Service (SaaS) product you are using. Many of the decomposition tech‐
niques we’ll explore in this book can be used even with systems where you cannot
change the underlying code.

Challenges of Monoliths
The monolith, be it a single-process monolith or a distributed monolith, is often
more vulnerable to the perils of coupling—specifically, implementation and deploy‐
ment coupling, topics we’ll explore more shortly.

As you have more and more people working in the same place, they get in each oth‐
er’s way. Different developers wanting to change the same piece of code, different
teams wanting to push functionality live at different times (or delay deployments).
Confusion around who owns what, and who makes decisions. A multitude of studies
show the challenges of confused lines of ownership.5 I refer to this problem as delivery
contention.

Having a monolith doesn’t mean you will definitely face the challenges of delivery
contention, any more than having a microservice architecture means that you won’t
ever face the problem. But a microservice architecture does give you more concrete
boundaries in a system around which ownership lines can be drawn, giving you
much more flexibility regarding how you reduce this problem.

Advantages of Monoliths
The single-process monolith, though, has a whole host of advantages, too. Its much
simpler deployment topology can avoid many of the pitfalls associated with dis‐
tributed systems. It can result in much simpler developer workflows; and monitoring,
troubleshooting, and activities like end-to-end testing can be greatly simplified as
well.

Monoliths can also simplify code reuse within the monolith itself. If we want to reuse
code within a distributed system, we have to decide whether we want to copy code,
break out libraries, or push the shared functionality into a service. With a monolith,
our choices are much simpler, and many people like that simplicity—all the code is
there, so just use it!

Unfortunately, people have come to view the monolith as something to be avoided—
as something that is inherently problematic. I’ve met multiple people for whom the
term monolith is synonymous with legacy. This is a problem. A monolithic architec‐
ture is a choice, and a valid one at that. It may not be the right choice in all circum‐

The Monolith | 15

http://bit.ly/2p5RlT1

stances, any more than microservices are—but it’s a choice nonetheless. If we fall into
the trap of systematically denigrating the monolith as a viable option for delivering
our software, then we’re at risk of not doing right by ourselves or the users of our
software. We’ll further explore the trade-offs around monoliths and microservices in
Chapter 3, and discuss some tools that will help you better assess what is right for
your own context.

On Coupling and Cohesion
Understanding the balancing forces between coupling and cohesion is important
when defining microservice boundaries. Coupling speaks to how changing one thing
requires a change in another; cohesion talks to how we group related code. These con‐
cepts are directly linked. Constantine’s law articulates this relationship well:

A structure is stable if cohesion is high, and coupling is low.
—Larry Constantine

This seems like a sensible and useful observation. If we have two pieces of tightly
related code, cohesion is low as the related functionality is spread across both. We
also have tight coupling, as when this related code changes, both things need to
change.

If the structure of our code system is changing, that will be expensive to deal with, as
the cost of change across service boundaries in distributed systems is so high. Having
to make changes across one or more independently deployable services, perhaps deal‐
ing with the impact of breaking changes for service contracts, is likely to be a huge
drag.

The problem with the monolith is that all too often it is the opposite of both. Rather
than tend toward cohesion, and keep things together that tend to change together, we
acquire and stick together all sorts of unrelated code. Likewise, loose coupling doesn’t
really exist: if I want to make a change to a line of code, I may be able to do that easily
enough, but I cannot deploy that change without potentially impacting much of the
rest of the monolith, and I’ll certainly have to redeploy the entire system.

We also want system stability because our goal, where possible, is to embrace the con‐
cept of independent deployability—that is, we’d like to be able to make a change to
our service and deploy that service into production without having to change anything
else. For this to work, we need stability of the services we consume, and we need to
provide a stable contract to those services that consume us.

Given the wealth of information out there about these terms, it would be silly of me
to revisit things too much here, but I think a summary is in order, especially to place
these ideas in the context of microservice architectures. Ultimately, these concepts of
cohesion and coupling influence hugely how we think about microservice architec‐

16 | Chapter 1: Just Enough Microservices

ture. And this is no surprise—cohesion and coupling are concerns regarding modular
software, and what is microservice architecture other than modules that communi‐
cate via networks and can be independently deployed?

A Brief History of Coupling and Cohesion
The concepts of cohesion and coupling have been around in computing for a long
time, with the concepts initially outlined by Larry Constantine in 1968. These twin
ideas of coupling and cohesion went on to form the basis of much of how we think
about writing computer programs. Books like Structured Design by Larry Constantine
& Edward Yourdon (Prentice Hall, 1979) subsequently influenced generations of pro‐
grammers subsequently (this was required reading for my own university degree,
almost 20 years after it was first published).

Larry first outlined his concepts of cohesion and coupling in 1968 (an especially aus‐
picious year for computing) at the National Symposium on Modular Programming,
the same conference where Conway’s law first got its name. That year also gave us two
now infamous NATO-sponsored conferences during which software engineering as a
concept also rose to prominence (a term previously coined by Margaret H. Hamil‐
ton).

Cohesion
One of the most succinct definitions I’ve heard for describing cohesion is this: “the
code that changes together, stays together.” For our purposes, this is a pretty good def‐
inition. As we’ve already discussed, we’re optimizing our microservice architecture
around ease of making changes in business functionality—so we want the functional‐
ity grouped in such a way that we can make changes in as few places as possible.

If I want to change how invoice approval is managed, I don’t want to have to hunt
down the functionality that needs changing across multiple services, and then coordi‐
nate the release of those newly changed services in order to roll out our new func‐
tionality. Instead, I want to make sure the change involves modifications to as few
services as possible to keep the cost of change low.

Coupling
Information Hiding, like dieting, is somewhat more easily described than done.

—David Parnas, The Secret History Of Information Hiding

We like cohesion we like, but we’re wary of coupling. The more things are “coupled”,
the more they have to change together. But there are different types of coupling, and
each type may require different solutions.

On Coupling and Cohesion | 17

6 Although Parnas’s well known 1972 paper “On the Criteria to be Used in Decomposing Systems into Mod‐
ules” is often cited as the source, he first shared this concept in “Information Distributions Aspects of Design
Methodology”, Proceedings of IFIP Congress ‘71, 1971.

7 See Parnas, David, “The Secret History of Information Hiding.” Published in Software Pioneers, eds. M. Broy
and E. Denert (Berlin Heidelberg: Springer, 2002).

There has been a lot of prior art when it comes to categorizing types of coupling,
notably work done by Meyer, Yourdan, and Constantine. I present my own, not to say
that the work done previously is wrong, more than I find this categorization more
useful when helping people understand aspects associated to the coupling of dis‐
tributed systems. As such, it isn’t intended to be an exhaustive classification of the dif‐
ferent forms of coupling.

Information Hiding
A concept that comes back again and again when it comes to discussions around cou‐
pling is the technique called information hiding. This concept, first outlined by David
Parnas in 1971, came out of his work looking into how to define module boundaries.6

The core idea with information hiding is to separate the parts of the code that change
frequently from the ones that are static. We want the module boundary to be stable,
and it should hide those parts of the module implementation that we expect to change
more often. The idea is that internal changes can be made safely as long as module
compatibility is maintained.

Personally, I adopt the approach of exposing as little as possible from a module (or
microservice) boundary. Once something becomes part of a module interface, it’s
hard to walk that back. But if you hide it now, you can always decide to share it later.

Encapsulation as a concept in object-oriented (OO) software is related, but depending
on whose definition you accept may not be quite the same thing. Encapsulation in
OO programming has come to mean the bundling together of one or more things
into a container—think of a class containing both fields and the methods that act on
those fields. You could then use visibility at the class definition to hide parts of the
implementation.

For a longer exploration of the history of information hiding, I recommend Parnas’s
“The Secret History of Information Hiding.”7

Implementation coupling
Implementation coupling is typically the most pernicious form of coupling I see, but
luckily for us it’s often one of the easiest to reduce. With implementation coupling, A

18 | Chapter 1: Just Enough Microservices

is coupled to B in terms of how B is implemented—when the implementation of B
changes, A also changes.

The issue here is that implementation detail is often an arbitrary choice by develop‐
ers. There are many ways to solve a problem; we choose one, but we may change our
minds. When we decide to change our minds, we don’t want this to break consumers
(independent deployability, remember?).

A classic and common example of implementation coupling comes in the form of
sharing a database. In Figure 1-9, our Order service contains a record of all orders
placed in our system. The Recommendation service suggests records to our custom‐
ers that they might like to buy based on previous purchases. Currently, the Recom‐
mendation service directly accesses this data from the database.

Figure 1-9. The Recommendation service directly accesses the data stored in the Order
service

Recommendations require information about which orders have been placed. To an
extent, this is unavoidable domain coupling, which we’ll touch on in a moment. But
in this particular situation, we are coupled to a specific schema structure, SQL dialect,

On Coupling and Cohesion | 19

and perhaps even the content of the rows. If the Order service changes the name of a
column, splits the Customer Order table apart, or whatever else, it conceptually still
contains order information, but we break how the Recommendation service fetches
this information. A better choice is to hide this implementation detail, as Figure 1-10
shows—now the Recommendation service accesses the information it needs via an
API call.

Figure 1-10. The Recommendation service now accesses order information via an API,
hiding internal implementation detail

We could also have the Order service publish a dataset, in the form of a database,
which is meant to be used for bulk access by consumers—just as we see in
Figure 1-11. As long as the Order service can publish data accordingly, any changes
made inside the Order service are invisible to consumers, as it maintains the public
contract. This also opens up the opportunity to improve the data model exposed for
consumers, tuning to their needs. We’ll be exploring patterns like this in more detail
in Chapters 3 and 4.

20 | Chapter 1: Just Enough Microservices

Figure 1-11. The Recommendation service now accesses order information via an
exposed database, which is structured differently from the internal database

In effect, with both of the preceding examples, we are making use of information hid‐
ing. The act of hiding a database behind a well-defined service interface allows the
service to limit the scope of what is exposed, and can allow us to change how this data
is represented.

Another helpful trick is to use “outside-in” thinking when it comes to defining a ser‐
vice interface—drive the service interface by thinking of things from the point of the
service consumers first, and then work out how to implement that service contract.
The alternative approach (which I have observed is all too common, unfortunately) is
to do the reverse. The team working on the service takes a data model, or another
internal implementation detail, then thinks to expose that to the outside world.

With “outside-in” thinking, you instead first ask, “What do my service consumers
need?” And I don’t mean you ask yourself what your consumers need; I mean you
actually ask the people that will call your service!

On Coupling and Cohesion | 21

Treat the service interfaces that your microservice exposes like a
user interface. Use outside-in thinking to shape the interface design
in partnership with the people who will call your service.

Think of your service contract with the outside world as a user interface. When
designing a user interface, you ask the users what they want, and iterate on the design
of this with your users. You should shape your service contract in the same way. Aside
from the fact it means you end up with a service that is easier for your consumers to
use, it also helps keep some separation between the external contract and the internal
implementation.

Temporal coupling
Temporal coupling is primarily a runtime concern that generally speaks to one of the
key challenges of synchronous calls in a distributed environment. When a message is
sent, and how that message is handled is connected in time, we are said to have tem‐
poral coupling. That sounds a little odd, so let’s take a look at an explicit example in
Figure 1-12.

Figure 1-12. Three services making use of synchronous calls to perform an operation can
be said to be temporally coupled

Here we see a synchronous HTTP call made from our Warehouse service to a down‐
stream Order service to fetch required information about an order. To satisfy the
request, the Order service in turn has to fetch information from the Customer ser‐
vice, again via a synchronous HTTP call. For this overall operation to complete, the
Warehouse, Order, and Customer services all needed to be up, and contactable. They
are temporally coupled.

We could reduce this problem in various ways. We could consider the use of caching
—if the Order service cached the information it needed from the Customer service,
then the Order service would be able to avoid temporal coupling on the downstream
service in some cases. We could also consider the use of an asynchronous transport to
send the requests, perhaps using something like a message broker. This would allow a
message to be sent to a downstream service, and for that message to be handled after
the downstream service is available.

22 | Chapter 1: Just Enough Microservices

8 See Jez Humble and David Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation (Upper Saddle River: Addison Wesley, 2010) for more details.

A full exploration of the types of service-to-service communication is outside the
scope of this book, but is covered in more detail in Chapter 4 of Building
Microservices.

Deployment coupling
Consider a single process, which consists of multiple statically linked modules. A
change is made to a single line of code in one of the modules, and we want to deploy
that change. In order to do that, we have to deploy the entire monolith—even includ‐
ing those modules that are unchanged. Everything must be deployed together, so we
have deployment coupling.

Deployment coupling may be enforced, as in the example of our statically linked pro‐
cess, but can also be a matter of choice, driven by practices like a release train. With a
release train, preplanned release schedules are drawn up in advance, typically with a
repeating schedule. When the release is due, all changes made since the last release
train gets deployed. For some people, the release train can be a useful technique, but I
strongly prefer to see it as a transitional step toward proper release-on-demand tech‐
niques, rather than viewing it as an ultimate goal. I even have worked in organiza‐
tions that would deploy all services in a system all at once as part of these release train
processes, without any thought to whether those services need to be changed.

Deploying something carries risk. There are lots of ways to reduce the risk of deploy‐
ment, and one of those ways is to change only what needs to be changed. If we can
reduce deployment coupling, perhaps through decomposing larger processes into
independently deployable microservices, we can reduce the risk of each deployment
by reducing the scope of deployment.

Smaller releases make for less risk. There is less to go wrong. If something does go
wrong, working out what went wrong and how to fix it is easier because we changed
less. Finding ways to reduce the size of release goes to the heart of continuous
delivery, which espouses the importance of fast feedback and release-on-demand
methods.8 The smaller the scope of the release, the easier and safer it is to roll out,
and the faster feedback we’ll get. My own interest in microservices comes from a pre‐
vious focus on continuous delivery—I was looking for architectures that made adop‐
tion of continuous delivery easier.

Reducing deployment coupling doesn’t require microservices, of course. Runtimes
like Erlang allow for the hot-deployment of new versions of modules into a running

On Coupling and Cohesion | 23

9 Greenspun’s 10th rule states, “Any sufficiently complicated C or Fortran program contains an ad hoc, infor‐
mally specified, bug-ridden, slow implementation of half of Common Lisp.” This has morphed into a newer
joke: “Every microservice architecture contains a half-broken reimplementation of Erlang.” I think there is a
lot of truth to this.

process. Eventually, perhaps more of us may have access to such capabilities in the
technology stacks we use day to day.9

Domain coupling
Fundamentally, in a system that consists of multiple independent services, there has
to be some interaction between the participants. In a microservice architecture,
domain coupling is the result—the interactions between services model the interac‐
tions in our real domain. If you want to place an order, you need to know what items
were in a customer’s shopping basket. If you want to ship a product, you need to
know where you ship it. In our microservice architecture, by definition this informa‐
tion may be contained in different services.

To give a concrete example, consider Music Corp. We have a warehouse that stores
goods. When customers place orders for CDs, the folks working in the warehouse
need to understand what items need to be picked and packaged, and where the pack‐
age needs to be sent. So, information about the order needs to be shared with the peo‐
ple working in the warehouse.

Figure 1-13 shows an example of this: an Order Processing service sends all the
details of the order to the Warehouse service, which then triggers the item to be pack‐
aged up. As part of this operation, the Warehouse service uses the customer ID to
fetch information about the customer from the separate Customer service so that we
know how to notify them when the order is sent out.

In this situation, we are sharing the entire order with the warehouse, which may not
make sense—the warehouse needs only information about what to package and
where to send it. They don’t need to know how much the item cost (if they need to
include an invoice with the package, this could be passed along as a pre-rendered
PDF). We’d also have problems with information that we have to control access to
being too widely shared—if we shared the full order, we could end up exposing credit
card details to services that don’t need it, for example.

24 | Chapter 1: Just Enough Microservices

Figure 1-13. An order is sent to the warehouse to allow packaging to commence

So instead, we might come up with a new domain concept of a Pick Instruction con‐
taining just the information the Warehouse service needs, as we see in Figure 1-14.
This is another example of information hiding.

On Coupling and Cohesion | 25

Figure 1-14. Using a Pick Instruction to reduce how much information we send to the
Warehouse service

We could further reduce coupling by removing the need for the Warehouse service to
even need to know about a customer if we wanted to—we could instead provide all
appropriate details via the Pick Instruction, as Figure 1-15 shows.

26 | Chapter 1: Just Enough Microservices

Figure 1-15. Putting more information into the Pick Instruction can avoid the need for a
call to the Customer service

For this approach to work, it probably means that at some point Order Processing has
to access the Customer service to be able to generate this Pick Instruction in the first
place, but it’s likely that Order Processing would need to access customer information
for other reasons anyway, so this is unlikely to be much of an issue. This process of
“sending” a Pick Instruction implies an API call being made from Order Processing
to the Warehouse service.

An alternative could be to have Order Processing emit some kind of event that the
Warehouse consumes, in Figure 1-16. By emitting an event that the Warehouse con‐
sumes, we effectively flip the dependencies. We go from Order Processing depending
on the Warehouse service to be able to ensure an order gets sent, to the Warehouse
listening to events from the Order Processing service. Both approaches have their
merits, and which I would choose would likely depend on a wider understanding of
the interactions between the Order Processing logic and the functionality encapsula‐
ted in the Warehouse service—that’s something that some domain modeling can help
with, a topic we’ll explore next.

On Coupling and Cohesion | 27

Figure 1-16. Firing an event that the Warehouse service can receive, containing just
enough information for the order to be packaged and sent

Fundamentally, some information is needed about an order for the Warehouse ser‐
vice to do any work. We can’t avoid that level of domain coupling. But by thinking
carefully about what and how we share these concepts, we can still aim to reduce the
level of coupling being used.

Just Enough Domain-Driven Design
As we’ve already discussed, modeling our services around a business domain has sig‐
nificant advantages for our microservice architecture. The question is how to come
up with that model—and this is where domain-driven design (DDD) comes in.

The desire to have our programs better represent the real world in which the pro‐
grams themselves will operate is not a new idea. Object-oriented programming lan‐
guages like Simula were developed to allow us to model real domains. But it takes
more than program language capabilities for this idea to really take shape.

28 | Chapter 1: Just Enough Microservices

10 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (Boston: Addison-Wesley,
2004).

Eric Evans’ Domain-Driven Design,10 presented a series of important ideas that helped
us better represent the problem domain in our programs. A full exploration of these
ideas is outside the scope of this book, but I’ll provide a brief overview of the most
important ideas involved in considering microservice architectures.

Aggregate
In DDD, an aggregate is a somewhat confusing concept, with many different defini‐
tions out there. Is it just an arbitrary collection of objects? The smallest unit I should
take out of a database? The model that has always worked for me is to first consider
an aggregate as a representation of a real domain concept—think of something like
an Order, Invoice, Stock Item, etc. Aggregates typically have a life cycle around them,
which opens them up to being implemented as a state machine. We want to treat
aggregates as self-contained units; we want to ensure that the code that handles the
state transitions of an aggregate are grouped together, along with the state itself.

When thinking about aggregates and microservices, a single microservice will handle
the life cycle and data storage of one or more different types of aggregates. If func‐
tionality in another service wants to change one of these aggregates, it needs to either
directly request a change in that aggregate, or else have the aggregate itself react to
other things in the system to initiate its own state transitions—examples we see illus‐
trated in Figure 1-17.

The key thing to understand here is that if an outside party requests a state transition
in an aggregate, the aggregate can say no. You ideally want to implement your aggre‐
gates in such a way that illegal state transitions are impossible.

Aggregates can have relationships with other aggregates. In Figure 1-18, we have a
Customer aggregate, which is associated with one or more Orders. We have decided
to model Customer and Order as separate aggregates, which could be handled by dif‐
ferent services.

Just Enough Domain-Driven Design | 29

Figure 1-17. Different ways in which our Payment service may trigger a Paid transition
in our Invoice aggregate

Figure 1-18. One Customer aggregate may be associated with one or more Order aggre‐
gates

There are lots of ways to break a system into aggregates, with some choices being
highly subjective. You may, for performance reasons or ease of implementation,
decide to reshape aggregates over time. To start with, though, I consider implementa‐
tion concerns to be secondary, initially letting the mental model of the system users
be my guiding light on initial design until other factors come into play. In Chapter 2,

30 | Chapter 1: Just Enough Microservices

I’ll introduce Event Storming as a collaborative exercise to help shape these domain
models with the help of your nondeveloper colleagues.

Bounded Context
A bounded context typically represents a larger organizational boundary inside an
organization. Within the scope of that boundary, explicit responsibilities need to be
carried out. That’s all a bit wooly, so let’s look at another specific example.

At Music Corp, our warehouse is a hive of activity—managing orders being shipped
out (and the odd return), taking delivery of new stock, having forklift truck races, and
so on. Elsewhere, the finance department is perhaps less fun-loving, but still has an
important function inside our organization, handling payroll, paying for shipments,
and the like.

Bounded contexts hide implementation detail. There are internal concerns—for
example, the types of forklift trucks used is of little interest to anyone other than the
folks in the warehouse. These internal concerns should be hidden from the outside
world—they don’t need to know, nor should they care.

From an implementation point of view, bounded contexts contain one or more aggre‐
gates. Some aggregates may be exposed outside the bounded context; others may be
hidden internally. As with aggregates, bounded contexts may have relationships with
other bounded contexts—when mapped to services, these dependencies become
inter-service dependencies.

Mapping Aggregates and Bounded Contexts to Microservices
Both the aggregate and the bounded context give us units of cohesion with well-
defined interfaces with the wider system. The aggregate is a self-contained state
machine that focuses on a single domain concept in our system, with the bounded
context representing a collection of associated aggregates, again with an explicit inter‐
face to the wider world.

Both can therefore work well as service boundaries. When starting out, as I’ve already
mentioned, I think you want to reduce the number of services you work with. As a
result, I think you should probably target services that encompass entire bounded
contexts. As you find your feet, and decide to break these services into smaller serv‐
ices, look to split them around aggregate boundaries.

A trick here is that even if you decide to split a service that models an entire bounded
context into smaller services later on, you can still hide this decision from the outside
world—perhaps by presenting a coarser-grained API to consumers. The decision to
decompose a service into smaller parts is arguably an implementation decision, so we
might as well hide it if we can!

Just Enough Domain-Driven Design | 31

11 See Vaughn Vernon, Domain-Driven Design Distilled (Boston: Addison-Wesley, 2014).

Further Reading
A thorough exploration of domain-driven design is a worthwhile activity, but outside
the scope of this book. If you want to follow this further, I suggest reading either Eric
Evans’s original Domain Driven Design or Vaughn Vernon’s Domain-Driven Design
Distilled.11

Summary
As we’ve discussed in this chapter, microservices are independently deployable serv‐
ices modeled around a business domain. They communicate with each other via net‐
works. We use the principles of information hiding together with domain-driven
design to create services with stable boundaries that are easier to work on independ‐
ently, and we do what we can to reduce the many forms of coupling.

We also looked at a brief history of where they came from, and even found time to
look at a small fraction of the huge amount of prior work that they build upon. We
also looked briefly at some of the challenges associated with microservice architec‐
tures. This is a topic I’ll explore in more detail in our next chapter, where I will also
discuss how to plan a transition to a microservice architecture—as well as providing
guidance to help you decide whether they’re even right for you in the first place.

32 | Chapter 1: Just Enough Microservices

CHAPTER 2

Planning a Migration

It’s all too easy to dive straight into the nitty-gritty technical sides of monolithic
decomposition—and this will be the focus of the rest of the book! But first we really
need to explore several less technical issues. Where should you start the migration?
How should you manage the change? How do you bring others along on the journey?
And the important question to be asked early on—should you even use microservices
in the first place?

Understanding the Goal
Microservices are not the goal. You don’t “win” by having microservices. Adopting a
microservice architecture should be a conscious decision, one based on rational
decision-making. You should be thinking of migrating to a microservice architecture
in order to achieve something that you can’t currently achieve with your existing sys‐
tem architecture.

Without having a handle on what you are trying to achieve, how are you going to
inform your decision-making process about what options you should take? What you
are trying to achieve by adopting microservices will greatly change where you focus
your time, and how you prioritize your efforts.

It will also help you avoid becoming a victim of analysis paralysis—being overbur‐
dened by choices. You also risk falling into a cargo cult mentality, just assuming that
“If microservices are good for Netflix, they’re good for us!”

33

A Common Failing
Several years ago, I was running a microservices workshop at a conference. As I do
with all my classes, I like to get a sense of why people are there and what they’re hop‐
ing to get out of the workshop. In this particular class several people had come from
the same company, and I was curious to find out why their company had sent them.
“Why are you at the workshop? Why are you interested in using microservices?” I
asked one of them. Their answer? “We don’t know; our boss told us to come!”
Intrigued, I probed further. “So, any idea why your boss wanted you here?” “Well, you
could ask him—he’s sitting behind us,” the attendee responded. I switched my line of
questioning to their boss, asking the same question, “So, why are you looking to use
microservices?” The boss’s response? “Our CTO said we’re doing microservices, so I
thought we should find out what they are!”

This true story, while at one level funny, is unfortunately all too common. I encounter
many teams who have made the decision to adopt a microservice architecture
without really understanding why, or what they are hoping to achieve.

The problems with not having a clear view as to why you are using microservices are
varied. It can require significant investment, either directly, in terms of adding more
people or money, or in terms of prioritizing the transition work over and above
adding features. This is further complicated by the fact that it can take a while to see
the benefits of a transition. Occasionally this leads to the situation where people are a
year or more into a transition but can’t remember why they started it in the first
place. It’s not simply a matter of the sunk cost fallacy; they literally don’t know why
they’re doing the work.

At the same time, I get asked by people to share the return on investment (ROI) of
moving to a microservice architecture. Some people want hard facts and figures to
back up why they should even consider this approach. The reality is that quite aside
from the fact that detailed studies on these sorts of things are few and far between,
even when they do exist, the observations from such studies are rarely transferable
because of the different contexts people might find themselves in.

So where does that leave us, guess work? Well, no. I am convinced that we can and
should have better studies into the efficacy of our development, technology, and
architecture choices. Some work is already being done to this end in the form of
things like “The State of DevOps Report”, but that looks at architecture only in pass‐
ing. In lieu of these rigorous studies, we should at least strive to apply more critical
thinking to our decision making, and at the same time embrace more of an experi‐
mental frame of mind.

34 | Chapter 2: Planning a Migration

http://bit.ly/2ojVq5o

You need a clear understanding as to what you are hoping to achieve. No ROI calcu‐
lation can be done without properly assessing what the return is that you are looking
for. We need to focus on the outcomes we hope to achieve, and not slavishly, dogmat‐
ically stick to a single approach. We need to think clearly and sensibly about the best
way to get what we need, even if it means ditching a lot of work, or going back to the
good old-fashioned boring approach.

Three Key Questions
When working with an organization to help them understand if they should consider
adopting a microservice architecture, I tend to ask the same set of questions:

What are you hoping to achieve?
This should be a set of outcomes that are aligned to what the business is trying to
achieve, and can be articulated in a way that describes the benefit to the end users
of the system.

Have you considered alternatives to using microservices?
As we’ll explore later, there are often many other ways to achieve some of the
same benefits that microservices bring. Have you looked at these things? If not,
why not? Quite often you can get what you need by using a much easier, more
boring technique.

How will you know if the transition is working?
If you decide to embark on this transition, how will you know if you’re going in
the right direction? We’ll come back to this topic at the end of the chapter.

More than once I’ve found that asking these questions is enough for companies to
think again regarding whether to go any further with a microservice architecture.

Why Might You Choose Microservices?
I can’t define the goals you may have for your company. You know better the aspira‐
tions of your company and the challenges you are facing. What I can outline are the
reasons that often get stated as to why microservices are being adopted by companies
all over the world. In the spirit of honesty, I’ll also outline other ways you could
potentially achieve these same outcomes using different approaches.

Improve Team Autonomy
Whatever industry you operate in, it is all about your people, and catching them doing
things right, and providing them with the confidence, the motivation, the freedom and
desire to achieve their true potential.

—John Timpson

Why Might You Choose Microservices? | 35

1 Which famously even Spotify doesn’t use anymore.

Many organizations have shown the benefits of creating autonomous teams. Keeping
organizational groups small, allowing them to build close bonds and work effectively
together without bringing in too much bureaucracy, has helped many organizations
grow and scale more effectively than some of its peers. Gore has found great success
by making sure none of their business units ever gets to more than 150, to make sure
that everyone knows each other. For these smaller business units to work, they have
to be given power and responsibility to work as autonomous units.

Timpsons, a highly successful UK retailer, has achieved massive scale by empowering
its workforce, reducing the need for central functions and allowing the local stores to
make decisions for themselves, things like giving them power over how much to
refund unhappy customers. Now chairman of the company, John Timpson was
famous for scrapping internal rules and replacing them with just two:

• Look the part and put the money in the till.
• You can do anything else to best serve customers.

Autonomy works at the smaller scale too, and most modern organizations I work
with are looking to create more autonomous teams within their organizations, often
trying to copy models from other organizations like Amazon’s two-pizza team model,
or the Spotify model.1

If done right, team autonomy can empower people, help them step up and grow, and
get the job done faster. When teams own microservices, and have full control over
those services, they increase the amount of autonomy they can have within a larger
organization.

How else could you do this?
Autonomy—distribution of responsibility—can play out in many ways. Working out
how you can push more responsibility into the team doesn’t require a shift in archi‐
tecture. Essentially, though, it’s a process of identifying what responsibilities can be
pushed into the teams, and this could play out in many ways. Giving ownership to
parts of the codebase to different teams could be one answer (a modular monolith
could still benefit you here): this could also be done by identifying people empowered
to make decisions for parts of the codebase on functional grounds (e.g., Ryan knows
display ads best, so he’s responsible for that; Jane knows the most about tuning our
query performance, so run anything in that area past her first).

Improving autonomy can also play out in simply not having to wait for other people
to do things for you, so adopting self-service approaches to provisioning machines or

36 | Chapter 2: Planning a Migration

environments can be a huge enabler, avoiding the need for central operations teams
to have to field tickets for day-to-day activities.

Reduce Time to Market
By being able to make and deploy changes to individual microservices, and deploy
these changes without having to wait for coordinated releases, we have the potential
to release functionality to our customers more quickly. Being able to bring more peo‐
ple to bear on a problem is also a factor—we’ll cover that shortly.

How else could you do this?
Well, where do we start? There are so many variables that go into play when consider‐
ing how to ship software more quickly. I always suggest you carry out some sort of
path-to-production modeling exercise, as it may help show that the biggest blocker
isn’t what you think.

I remember on one project many years ago at a large investment bank, we had been
brought in to help speed up delivery of software. “The developers take too long to get
things into production!” we were told. One of my colleagues, Kief Morris, took the
time to map out all the stages involved in delivering software, looking at the process
from the moment a product owner comes up with an idea to the point where that
idea actually got into production.

He quickly identified that it took around six weeks on average from when a developer
started on a piece of work to it being deployed into a production environment. We
felt that we could shave a couple of weeks off of this process through the use of suit‐
able automation, as manual processes were involved. But Kief found a much bigger
problem in the path to production—often it took over 40 weeks for the ideas to get
from the product owner to the point where developers could even start on the work.
By focusing our efforts on improving that part of the process, we’d help the client
much more in improving the time to market for new functionality.

So think of all the steps involved with shipping software. Look at how long they take,
the durations (both elapsed time and busy time) for each step, and highlight the pain
points along the way. After all of that, you may well find that microservices could be
part of the solution, but you’ll probably find many other things you could try in par‐
allel.

Scale Cost-Effectively for Load
By breaking our processing into individual microservices, these processes can be
scaled independently. This means we can also hopefully cost-effectively scale—we
need to scale up only those parts of our processing that are currently constraining our
ability to handle load. It also follows that we can then scale down those microservices

Why Might You Choose Microservices? | 37

that are under less load, perhaps even turning them off when not required. This is in
part why so many companies that build SaaS products adopt microservice architec‐
ture—it gives them more control over operational costs.

How else could you do this?
Here we have a huge number of alternatives to consider, most of which are easier to
experiment with before committing to a microservices-oriented approach. We could
just get a bigger box for a start—if you’re on a public cloud or other type of virtual‐
ized platform, you could simply provision bigger machines to run your process on.
This “vertical” scaling obviously has its limitations, but for a quick short-term
improvement, it shouldn’t be dismissed outright.

Traditional horizontal scaling of the existing monolith—basically running multiple
copies—could prove to be highly effective. Running multiple copies of your monolith
behind a load-distribution mechanism like a load balancer or a queue could allow for
simple handling of more load, although this may not help if the bottleneck is in the
database, which, depending on the technology, may not support such a scaling mech‐
anism. Horizontal scaling is an easy thing to try, and you really should give it a go
before considering microservices, as it will likely be quick to assess its suitability, and
has far fewer downsides than a full-blown microservice architecture.

You could also replace technology being used with alternatives that can handle load
better. This is typically not a trivial undertaking, however—consider the work to port
an existing program over to a new type of database or programming language. A shift
to microservices may actually make changing technology easier, as you can change
the technology being used only inside the microservices that require it, leaving the
rest untouched and thereby reducing the impact of the change.

Improve Robustness
The move from single-tenant software to multitenant SaaS applications means the
impact of system outages can be significantly more widespread. The expectations of
our customers for their software to be available, as well as the importance of software
in their lives, has increased. By breaking our application into individual, independ‐
ently deployable processes, we open up a host of mechanisms to improve the robust‐
ness of our applications.

By using microservices, we are able to implement a more robust architecture because
functionality is decomposed—that is, an impact on one area of functionality need not
bring down the whole system. We also get to focus our time and energy on those
parts of the application that most require robustness—ensuring critical parts of our
system remain operational.

38 | Chapter 2: Planning a Migration

2 See David Woods, “Four Concepts for Resilience and the Implications for the Future of Resilience Engineer‐
ing.” Reliability Engineering & System Safety 141 (2015) 5–9.

3 See the competing consumer pattern for one such example, in Enterprise Integration Patterns by Gregor
Hohpe and Bobby Woolf, page 502.

Resilience Versus Robustness
Typically, when we want to improve a system’s ability to avoid outages, handle failures
gracefully when they occur, and recover quickly when problems happen, we often talk
about resilience. Much work has been done in the field of what is now known as resil‐
ience engineering, looking at the topic as a whole as it applies to all fields, not just
computing. The model for resilience pioneered by David Woods looks more broadly
at the concept of resilience, and points to the fact that being resilient isn’t as simple as
we might first think, by separating out our ability to deal with known and unknown
sources of failure, among other things.2

John Allspaw, a colleague of David Woods, helps distinguish between the concepts of
robustness and resilience. Robustness is the ability to have a system that is able to react
to expected variations. Resilience is having an organization capable of adapting to
things that haven’t been thought of, which could well include creating a culture of
experimentation through things like chaos engineering. For example, we are aware
that a specific machine could die, so we might bring redundancy into our system by
load balancing an instance. That is an example of addressing robustness. Resiliency is
the process of an organization preparing itself for the fact that it cannot anticipate all
potential problems.

An important consideration here is that microservices do not necessarily give you
robustness for free. Rather, they open up opportunities to design a system in such a
way that it can better tolerate network partitions, service outages, and the like. Just
spreading your functionality across multiple separate processes and separate
machines does not guarantee improved robustness; quite the contrary—it may just
increase your surface area of failure.

How else could you do this?
By running multiple copies of your monolith, perhaps behind a load balancer or
another load distribution mechanism like a queue,3 we add redundancy to our sys‐
tem. We can further improve robustness of our applications by distributing instances
of our monolith across multiple failure planes (e.g., don’t have all machines in the
same rack or same data center).

Why Might You Choose Microservices? | 39

4 See Frederick P. Brooks, The Mythical Man-Month, 20th Anniversary Edition (Boston: Addison-Wesley, 1995).

Investment in more reliable hardware and software could likewise yield benefits, as
could a thorough investigation of existing causes of system outages. I’ve seen more
than a few production issues caused by an overreliance on manual processes, for
example, or people “not following protocol,” which often means an innocent mistake
by an individual can have significant impacts. British Airways suffered a massive out‐
age in 2017, causing all of its flights into and out of London Heathrow and Gatwick to
be canceled. This problem was apparently inadvertently triggered by a power surge
resulting from the actions of one individual. If the robustness of your application
relies on human beings never making a mistake, you’re in for a rocky ride.

Scale the Number of Developers
We’ve probably all seen the problem of throwing developers at a project to try to
make it go faster—it so often backfires. But some problems do need more people to
get them done. As Frederick Brooks outlines in his now seminal book, The Mythical
Man Month,”4 adding more people will only continue to improve how quickly you can
deliver, if the work itself can be partitioned into separate pieces of work with limited
interactions between them. He gives the example of harvesting crops in a field—it’s a
simple task to have multiple people working in parallel, as the work being done by
each harvester doesn’t require interactions with other people. Software rarely works
like this, as the work being done isn’t all the same, and often the output from one
piece of work is needed as the input for another.

With clearly identified boundaries, and an architecture that has focused around
ensuring our microservices limit their coupling with each other, we come up with
pieces of code that can be worked on independently. Therefore, we hope we can scale
the number of developers by reducing the delivery contention.

To successfully scale the number of developers you bring to bear on the problem
requires a good degree of autonomy between the teams themselves. Just having
microservices isn’t going to be good enough. You’ll have to think about how the
teams align to the service ownership, and what coordination between teams is
required. You’ll also need to break up work in such a way that changes don’t need to
be coordinated across too many services.

How else could you do this?
Microservices work well for larger teams as the microservices themselves become
decoupled pieces of functionality that can be worked on independently. An alterna‐
tive approach could be to consider implementing a modular monolith: different

40 | Chapter 2: Planning a Migration

5 The term “burning platform” is typically used to denote a technology that is considered end-of-life. It may be
too hard or expensive to get support for the technology, too difficult to hire people with the relevant experi‐
ence. A common example of a technology most organizations consider a burning platform is a COBOL main‐
frame application.

teams own each module, and as long as the interface with other modules remains sta‐
ble, they could continue to make changes in isolation.

This approach is somewhat limited, though. We still have some form of contention
between the different teams, as the software is still all packaged together, so the act of
deployment still requires coordination between the appropriate parties.

Embrace New Technology
Monoliths typically limit our technology choices. We normally have one program‐
ming language on the backend, making use of one programming idiom. We’re fixed
to one deployment platform, one operating system, one type of database. With a
microservice architecture, we get the option to vary these choices for each service.

By isolating the technology change in one service boundary, we can understand the
benefits of the new technology in isolation, and limit the impact if the technology
turns out to have issues.

In my experience, while mature microservice organizations often limit how many
technology stacks they support, they are rarely homogeneous in the technologies in
use. The flexibility in being able to try new technology in a safe way can give them
competitive advantage, both in terms of delivering better results for customers and in
helping keep their developers happy as they get to master new skills.

How else could you do this?
If we still continue to ship our software as a single process, we do have limits on
which technologies we can bring in. We could safely adopt new languages on the
same runtime, of course—the JVM as one example can happily host code written in
multiple languages within the same running process. New types of databases become
more problematic, though, as this implies some sort of decomposition of a previously
monolithic data model to allow for an incremental migration, unless you’re going for
a complete, immediate switchover to a new database technology, which is compli‐
cated and risky.

If the current technology stack is considered a “burning platform,” you may have no
choice other than to replace it with a newer, better-supported technology stack.5 Of
course, there is nothing to stop you from incrementally replacing your existing mon‐
olith with the new monolith—patterns like the strangler fig approach outlined in
Chapter 3 can work well for that.

Why Might You Choose Microservices? | 41

Reuse?
Reuse is one of the most oft-stated goals for microservice migration, and in my opin‐
ion is a poor goal in the first place. Fundamentally, reuse is not a direct outcome peo‐
ple want. Reuse is something people hope will lead to other benefits. We hope that
through reuse, we may be able to ship features more quickly, or perhaps reduce costs,
but if those things are your goals, track those things instead, or you may end up opti‐
mizing the wrong thing.

To explain what I mean, let’s take a deeper look into one of the usual reasons reuse is
chosen as an objective. We want to ship features more quickly. We think that by opti‐
mizing our development process around reusing existing code, we won’t have to write
as much code—and with less work to do, we can get our software out the door more
quickly, right? But let’s take a simple example. The Customer Services team in Music
Corp needs to format a PDF in order to provide customer invoices. Another part of
the system already handles PDF generation: we produce PDFs for printing purposes
in the warehouse, to produce packing slips for orders shipped to customers and to
send order requests to suppliers.

Following the goal of reuse, our team may be directed to use the existing PDF genera‐
tion capability. But that functionality is currently managed by a different team, in a
different part of the organization. So now we have to coordinate with them to make
the required changes to support our features. This may mean we have to ask them to
do the work for us, or perhaps we have to make the changes ourselves and submit a
pull request (assuming our company works like that). Either way, we have to coordi‐
nate with another part of the organization to make the change.

We could spend the time to coordinate with other people and get the changes made,
all so we could roll out our change. But we work out that we could actually just write
our own implementation much faster and ship the feature to the customer more
quickly than if we spend the time to adapt the existing code. If your actual goal is
faster time to market, this may be the right choice. But if you optimize for reuse hop‐
ing you get faster time to market, you may end up doing things that slow you down.

Measuring reuse in complex systems is difficult, and as I’ve outlined, it is typically
something we’re doing to achieve something else. Spend your time focusing on the
actual objective instead, and recognize that reuse may not always be the right answer.

When Might Microservices Be a Bad Idea?
We’ve spent ages exploring the potential benefits of microservice architectures. But in
a few situations I recommend that you not use microservices at all. Let’s look at some
of those situations now.

42 | Chapter 2: Planning a Migration

Unclear Domain
Getting service boundaries wrong can be expensive. It can lead to a larger number of
cross-service changes, overly coupled components, and in general could be worse
than just having a single monolithic system. In Building Microservices, I shared the
experiences of the SnapCI product team at ThoughtWorks. Despite knowing the
domain of continuous integration really well, their initial stab at coming up with ser‐
vice boundaries for their hosted-CI solution wasn’t quite right. This led to a high cost
of change and high cost of ownership. After several months fighting this problem, the
team decided to merge the services back into one big application. Later, when the
feature-set of the application had stabilized somewhat and the team had a firmer
understanding of the domain, it was easier to find those stable boundaries.

SnapCI was a hosted continuous integration and continuous delivery tool. The team
had previously worked on another similar tool, Go-CD, a now open source continu‐
ous delivery tool that can be deployed locally rather than being hosted in the cloud.
Although there was some code reuse early on between the SnapCI and Go-CD
projects, in the end SnapCI turned out to be a completely new codebase. Nonetheless,
the previous experience of the team in the domain of CD tooling emboldened them
to move more quickly in identifying boundaries, and building their system as a set of
microservices.

After a few months, though, it became clear that the use cases of SnapCI were subtly
different enough that the initial take on the service boundaries wasn’t quite right. This
led to lots of changes being made across services, and an associated high cost of
change. Eventually, the team merged the services back into one monolithic system,
giving them time to better understand where the boundaries should exist. A year
later, the team was then able to split the monolithic system into microservices, whose
boundaries proved to be much more stable. This is far from the only example of this
situation I have seen. Prematurely decomposing a system into microservices can be
costly, especially if you are new to the domain. In many ways, having an existing
codebase you want to decompose into microservices is much easier than trying to go
to microservices from the beginning.

If you feel that you don’t yet have a full grasp of your domain, resolving that before
committing to a system decomposition may be a good idea. (Yet another reason to do
some domain modeling! We’ll discuss that more shortly.)

Startups
This might seem a bit controversial, as so many of the organizations famous for their
use of microservices are considered startups, but in reality many of these companies
including Netflix, Airbnb, and the like moved toward microservice architecture only
later in their evolution. Microservices can be a great option for “scale-ups”—startup

When Might Microservices Be a Bad Idea? | 43

companies that have established at least the fundamentals of their product/market fit,
and are now scaling to increase (or likely simply achieve) profitability.

Startups, as distinct from scale-ups, are often experimenting with various ideas in an
attempt to find a fit with customers. This can lead to huge shifts in the original vision
for the product as the space is explored, resulting in huge shifts in the product
domain.

A real startup is likely a small organization with limited funding, which needs to
focus all its attention on finding the right fit for its product. Microservices primarily
solve the sorts of problems startups have once they’ve found that fit with their cus‐
tomer base. Put a different way, microservices are a great way of solving the sorts of
problems you’ll get once you have initial success as a startup. So focus initially on
being a success! If your initial idea is bad, it doesn’t matter whether you built it with
microservices or not.

It is much easier to partition an existing, “brownfield” system than to do so up front
with a new, greenfield system that a startup would create. You have more to work
with. You have code you can examine, and you can speak to people who use and
maintain the system. You also know what good looks like—you have a working sys‐
tem to change, making it easier for you to know when you may have made a mistake
or been too aggressive in your decision-making process.

You also have a system that is actually running. You understand how it operates and
how it behaves in production. Decomposition into microservices can cause some
nasty performance issues, for example, but with a brownfield system you have a
chance to establish a healthy baseline before making potentially performance-
impacting changes.

I’m certainly not saying never do microservices for startups, but I am saying that these
factors mean you should be cautious. Only split around those boundaries that are
clear at the beginning, and keep the rest on the more monolithic side. This will also
give you time to assess how mature you are from an operational point of view—if you
struggle to manage two services, managing ten is going to be difficult.

Customer-Installed and Managed Software
If you create software that is packaged and shipped to customers who then operate it
themselves, microservices may well be a bad choice. When you migrate to a microser‐
vice architecture, you push a lot of complexity into the operational domain. Previous
techniques you used to monitor and troubleshoot your monolithic deployment may
well not work with your new distributed system. Now teams who undertake a migra‐
tion to microservices offset these challenges by adopting new skills, or perhaps adopt‐
ing new technology—these aren’t things you can typically expect of your end
customers.

44 | Chapter 2: Planning a Migration

Typically, with customer-installed software, you target a specific platform. For exam‐
ple, you might say “requires Windows 2016 Server” or “needs macOS 10.12 or above.”
These are well-defined target deployment environments, and you are quite possibly
packaging your monolithic software using mechanisms that are well understood by
people who manage these systems (e.g., shipping Windows services, bundled up in a
Windows Installer package). Your customers are likely familiar with purchasing and
running software in this way.

Imagine the trouble you have if you go from giving them one process to run and
manage, to then giving them 10 or 20? Or perhaps even more aggressively, expecting
them to run your software on a Kubernetes cluster or similar?

The reality is that you cannot expect your customers to have the skills or platforms
available to manage microservice architectures. Even if they do, they may not have
the same skills or platform that you require. There is a large variation between Kuber‐
netes installs, for example.

Not Having a Good Reason!
And finally, we have the biggest reason not to adopt microservices, and that is if you
don’t have a clear idea of what exactly it is that you’re trying to achieve. As we’ll
explore, the outcome you are looking for from your adoption of microservices will
define where you start that migration and how you decompose the system. Without a
clear vision of your goals, you are fumbling around in the dark. Doing microservices
just because everyone else is doing it is a terrible idea.

Trade-Offs
So far, I’ve outlined the reasons people may want to adopt microservices in isolation,
and laid out (however briefly) the case for also considering other options. However,
in the real world, it’s common for people to be trying to change not one thing, but
many things, all at once. This can lead to confusing priorities that can quickly
increase the amount of change needed and delay seeing any benefits.

It all starts innocently enough. We need to rearchitect our application to handle a sig‐
nificant increase in traffic, and decide microservices are the way forward. Someone
else comes up and says, “Well, if we’re doing microservices, we can make our teams
more autonomous at the same time!” Another person chimes in, “And this gives us a
great chance to try out Kotlin as a programming language!” Before you know it, you
have a massive change initiative that is attempting to roll out team autonomy, scale
the application, and bring in new technology all at once, along with other things peo‐
ple have tacked on to the program of work for good measure.

Moreover, in this situation, microservices become locked in as the approach. If you
focus on just the scaling aspect, during your migration you may come to realize that

Trade-Offs | 45

you’d be better off just horizontally scaling out your existing monolithic application.
But doing that won’t help the new secondary goals of improving team autonomy or
bringing in Kotlin as a programming language.

It is important, therefore, to separate the core driver behind the shift from any secon‐
dary benefits you might also like to achieve. In this case, handling improved scale of
the application is the most important thing—work done to make progress on the
other secondary goals (like improving team autonomy) may be useful, but if they get
in the way or detract from the key objective, they should take a back seat.

The important thing here is to recognize that some things are more important than
others. Otherwise, you can’t properly prioritize. One exercise I like here is to think of
each of your desired outcomes as a slider. Each slider starts in the middle. As you
make one thing more important, you have to drop the priority of another—you can
see an example of this in Figure 2-1. This clearly articulates, for example, that while
you’d like to make polyglot programming easier, it’s not as important as ensuring the
application has improved resiliency. When it comes to working out how you’re going
to move forward, having these outcomes clearly articulated and ranked can make
decision-making much easier.

Figure 2-1. Using sliders to balance the competing priorities you may have

These relative priorities can change (and should change as you learn more). But they
can help guide decision-making. If you want to distribute responsibility, pushing
more power into newly autonomous teams, simple models like this can help inform
their local decision-making and help them make better choices that line up with what
you’re trying to achieve across the company.

46 | Chapter 2: Planning a Migration

6 Kotter’s change model is laid out in detail in his book Leading Change (Harvard Business Review Press, 1996).

Taking People on the Journey
I am frequently asked, “How can I sell microservices to my boss?” This question typi‐
cally comes from a developer—someone who has seen the potential of microservice
architecture and is convinced it’s the way forward.

Often, when people disagree about an approach, it’s because they may have different
views of what you are trying to achieve. It’s important that you and the other people
you need to bring on the journey with you have a shared understanding about what
you’re trying to achieve. If you’re on the same page about that, then at least you know
you are disagreeing only about how to get there. So it comes back to the goal again—
if the other folks in the organization share the goal, they are much more likely to be
onboard for making a change.

In fact, it’s worth exploring in more detail about how you can both help sell the idea,
and make it happen, by looking for inspiration at one of the better-known models for
helping make organizational change. Let’s take a look at that next.

Changing Organizations
Dr. John Kotter’s eight-step process for implementing organizational change is a sta‐
ple of change managers the world over, partly as it does a good job of distilling the
required activities into discrete, comprehensible steps. It’s far from the only such
model out there, but it’s the one I find the most helpful.

A wealth of content out there describes the process, outlined in Figure 2-2, so I won’t
dwell on it too much here.6 However, it is worth briefly outlining the steps and think‐
ing about how they may help us if we’re considering adopting a microservice archi‐
tecture.

Before I outline the process here, I should note that this model for change is typically
used to institute large-scale organizational shifts in behavior. As such, it may well be
huge overkill if all you’re trying to do is bring microservices to a team of 10 people.
Even in these smaller-scoped settings, though, I’ve found this model to be useful,
especially the earlier steps.

Taking People on the Journey | 47

Figure 2-2. Kotter’s eight-step process for making organizational change

Establishing a Sense of Urgency
People may think your idea of moving to microservices is a good one. The problem is
that your idea is just one of many good ideas that are likely floating around the orga‐
nization. The trick is to help people understand that now is the time to make this par‐
ticular change.

Looking for “teachable” moments here can help. Sometimes the right time to bolt the
stable door is after the horse has bolted, because people suddenly realize that horses
running off is a thing they need to think about, and now they realize they even have a
door, and “Oh look, it can be closed and everything!” In the moments after a crisis
has been dealt with, you have a brief moment in people’s consciousness where push‐
ing for change can work. Wait too long, and the pain—and causes of that pain—will
diminish.

Remember, what you’re trying to do is not say, “We should do microservices now!”
You’re trying to share a sense of urgency about what you want to achieve—and as I’ve
stated, microservices are not the goal!

Creating the Guiding Coalition
You don’t need everyone on board, but you need enough to make it happen. You need
to identify the people inside your organization who can help you drive this change
forward. If you’re a developer, this probably starts with your immediate colleagues in
your team, and perhaps someone more senior—it might be a tech lead, an architect,

48 | Chapter 2: Planning a Migration

or a delivery manager. Depending on the scope of the change, you may not need
loads of people involved. If you’re just changing how your team does something, then
ensuring you have enough air cover may be enough. If you’re trying to transform the
way software is developed in your company, you may need someone at the exec level
to be championing this (perhaps a CIO or CTO).

Getting people on board to help make this change may not be easy. No matter how
good you think the idea is, if the person has never heard of you, or never worked with
you, why should they back your idea? Trust is earned. Someone is much more likely
to back your big idea if they’ve already worked with you on smaller, quick wins.

It’s important here that you have involvement of people outside software delivery. If
you are already working in an organization where the barriers between “IT” and “The
Business” have been broken down, this is probably OK. On the other hand, if these
silos still exist, you may need to reach across the aisle to find a supporter elsewhere.
Of course, if your adoption of microservice architecture is focused on solving prob‐
lems the business is facing, this will be a much easier sell.

The reason you need involvement from people outside the IT silo is that many of the
changes you make can potentially have significant impacts on how the software
works and behaves. You’ll need to make different trade-offs around how your system
behaves during failure modes, for example, or how you tackle latency. For example,
caching data to avoid making a service call is a good way to ensure you reduce the
latency of key operations in a distributed system, but the trade-off is that this can
result in users of your system seeing stale data. Is that the right thing to do? You’ll
probably have to discuss that with your users—and that will be a tough discussion to
have if the people who champion the cause of your users inside your organization
don’t understand the rationale behind the change.

Developing a Vision and Strategy
This is where you get your folks together and agree on what change you’re hoping to
bring (the vision) and how you’re going to get there (the strategy). Visions are tricky
things. They need to be realistic yet aspirational, and finding the balance between the
two is key. The more widely shared the vision, the more work will need to go into
packaging it up to get people onboard. But a vision can be a vague thing and still
work with smaller teams (“We’ve got to reduce our bug count!”).

The vision is mostly about the goal—what it is you’re aiming for. The strategy is
about the how. Microservices are going to achieve that goal (you hope; they’ll be part
of your strategy). Remember that your strategy may change. Being committed to a
vision is important, but being overly committed to a specific strategy in the face of
contrary evidence is dangerous, and can lead to significant sunk cost fallacy.

Changing Organizations | 49

7 For a more detailed history of the change initiative to roll out testing at Google, Mike Bland has an excellent
write-up that is well worth a read. Mike wrote up a detailed history of Testing on The Toilet as well.

Communicating the Change Vision
Having a big vision can be great, but don’t make it so big that people won’t believe it’s
possible. I saw a statement put out by the CEO of a large organization recently that
said (paraphrasing somewhat)

In the next 12 months, we will reduce costs and deliver faster by moving to microservi‐
ces and embracing cloud-native technologies,

—Unnamed CEO

None of the staff in the company I spoke to believed anything of the sort was possible.
Part of the problem in the preceding statement is the potentially contradictory goals
that are outlined—a wholesale change of how software is delivered may help you
deliver faster, but doing that in 12 months isn’t going to reduce costs, as you’ll likely
have to bring in new skills, and you’ll probably suffer a negative impact in productiv‐
ity until the new skills are bedded in. The other issue is the time frame outlined here.
In this particular organization, the speed of change was slow enough that a 12-month
goal was considered laughable. So whatever vision you share has to be somewhat
believable.

You can start small when it comes to sharing a vision. I was part of a program called
the “Test Mercenaries” to help roll out test automation practices at Google many
years ago. The reason that program even got started was because of previous endeav‐
ors by what we would now call a community of practice (a “Grouplet” in Google
nomenclature) to help share the importance of automated testing. One of the pro‐
gram’s early efforts in sharing information about testing was an initiative called “Test‐
ing on the Toilet.” It consisted of brief, one-page articles pinned to the back of the
toilet doors so folks could read them “at their leisure”! I’m not suggesting this techni‐
que would work everywhere, but it worked well at Google—and it was a really effec‐
tive way of sharing small, actionable advice.7

One last note here. There is an increasing trend away from face-to-face communica‐
tion in favor of systems like Slack. When it comes to sharing important messages of
this sort, face-to-face communication (ideally in person, but perhaps by video) will be
significantly more effective. It makes it easier to understand people’s reaction to hear‐
ing these ideas, and helps to calibrate your message and avoid misunderstandings.
Even if you may need other forms of communication to broadcast your vision across
a larger organization, do as much face to face as possible first. This will help you
refine your message much more efficiently.

50 | Chapter 2: Planning a Migration

http://bit.ly/2omkxVy
http://bit.ly/2omkxVy
http://bit.ly/2ojpWwm

Empowering Employees for Broad-Based Action
“Empowering employees” is management consultancy speak for helping them do
their job. Most often this means something pretty straightforward—removing road‐
blocks.

You’ve shared your vision and built up excitement—and then what happens? Things
get in the way. One of the most common problems is that people are too busy doing
what they do now to have the bandwidth to change—this is often why companies
bring new people into an organization (perhaps through hires or as consultants) to
give teams extra bandwidth and expertise to make a change.

As a concrete example, when it comes to microservice adoption, the existing pro‐
cesses around provisioning of infrastructure can be a real problem. If the way your
organization handles the deployment of a new production service involves placing an
order for hardware six months in advance, then embracing technology that allows for
the on-demand provisioning of virtualized execution environments (like virtual
machines or containers) could be a huge boon, as could the shift to a public cloud
vendor.

I do want to echo my advice from the previous chapter, though. Don’t throw new
technology into the mix for the sake of it. Bring it in to solve concrete problems you
see. As you identify obstacles, bring in new technology to fix those problems. Don’t
fall into the trap of spending a year defining The Perfect Microservice Platform only
to find that it doesn’t actually solve the problems you have.

As part of the Test Mercenaries program at Google, we ended up creating frameworks
to make test suite creation and management easier, promoted visibility of tests as part
of the code review system, and even ended up driving the creation of a new company-
wide CI tool to make test execution easier. We didn’t do this all at once, though. We
worked with a few teams, saw the pain points, learned from that, and then invested
time in bringing in new tools. We also started small—making test suite creation easier
was a pretty simple process, but changing the company-wide code review system was
a much bigger ask. We didn’t try that until we’d had some successes elsewhere.

Generating Short-Term Wins
If it takes too long for people to see progress being made, they’ll lose faith in the
vision. So go for some quick wins. Focusing initially on small, easy, low-hanging fruit
will help build momentum. When it comes to microservice decomposition, function‐
ality that can easily be extracted from our monolith should be high on your list. But
as we’ve already established, microservices themselves aren’t the goal—so you’ll need
to balance the ease of extraction of some piece of functionality versus the benefit that
will bring. We’ll come back to that idea later in this chapter.

Changing Organizations | 51

Of course, if you choose something you think is easy and end up having huge prob‐
lems with making it happen, that could be valuable insight into your strategy, and
may make you reconsider what you’re doing. This is totally OK! The key thing is that
if you focus something easy first, you’re likely to gain this insight early. Making mis‐
takes is natural—all we can do is structure things to make sure we learn from those
mistakes as quickly as possible.

Consolidating Gains and Producing More Change
Once you’ve got some success, it becomes important not to sit on your laurels. Quick
wins might be the only wins if you don’t continue to push on. It’s important you pause
and reflect after successes (and failures) so you can think about how to keep driving
the change. You may need to change your approach as you reach different parts of the
organization.

With a microservice transition, as you cut deeper, you may find it harder going. Han‐
dling decomposition of a database may be something you put off initially, but it can’t
be delayed forever. As we’ll explore in Chapter 4, you have many techniques at your
disposal, but working out which is the right approach will take careful consideration.
Just remember that decomposition technique that worked for you in one area of your
monolith may not work somewhere else—you’ll need to be constantly trying new
ways of making forward progress.

Anchoring New Approaches in the Culture
By continuing to iterate, roll out changes, and share the stories of successes (and fail‐
ures), the new way of working will start to become business as usual. A large part of
this is about sharing stories with your colleagues, with other teams and other folks in
the organization. It’s all too often that once we’ve solved a hard problem, we just move
on to the next. For change to scale—and stick—continually finding ways to share
information inside your organization is essential.

Over time, the new way of doing something becomes the way that things are done. If
you look at companies that are a long way down the road of adopting microservice
architectures, whether or not it’s the right approach has ceased to be a question. This
is the way things are now done, and the organization understands how to do them
well.

This, in turn, can create a new problem. Once the Big New Idea becomes the Estab‐
lished Way of Working, how can you make sure that future, better approaches have
space to emerge and perhaps displace how things are done?

52 | Chapter 2: Planning a Migration

Importance of Incremental Migration
If you do a big-bang rewrite, the only thing you’re guaranteed of is a big bang.

—Martin Fowler

If you get to the point of deciding that breaking apart your existing monolithic sys‐
tem is the right thing to do, I strongly advise you to chip away at these monoliths,
extracting a bit at a time. An incremental approach will help you learn about micro‐
services as you go, and will also limit the impact of getting something wrong (and you
will get things wrong!). Think of our monolith as a block of marble. We could blow
the whole thing up, but that rarely ends well. It makes much more sense to just chip
away at it incrementally.

The issue is that the cost of an experiment to move a nontrivial monolithic system
over to a microservice architecture can be large, and if you’re doing everything at
once, it can be difficult to get good feedback about what is (or isn’t) working well. It’s
much easier to break such a journey into smaller stages; each one can be analyzed and
learned from. It’s for this reason that I have been a huge fan of iterative software
delivery since even before the advent of agile—accepting that I will make mistakes,
and therefore need a way to reduce the size of those mistakes.

Any transition to a microservice architecture should bear these principles in mind.
Break the big journey into lots of little steps. Each step can be carried out and learned
from. If it turns out to be a retrograde step, it was only a small one. Either way, you
learn from it, and the next step you take will be informed by those steps that came
before.

As we discussed earlier, breaking things into smaller pieces also allows you to identify
quick wins and learn from them. This can help make the next step easier and can help
build momentum. By splitting out microservices one at a time, you also get to unlock
the value they bring incrementally, rather than having to wait for some big bang
deployment.

All of this leads to what has become almost stock advice for people looking at micro‐
services. If you think it’s a good idea, start somewhere small. Choose one or two areas
of functionality, implement them as microservices, get them deployed into produc‐
tion, and reflect on whether it worked. I’ll take you through a model for identifying
which microservices you should start with later in the chapter.

It’s Production That Counts
It is really important to note that the extraction of a microservice can’t be considered
complete until it is in production and being actively used. Part of the goal of incre‐
mental extraction is to give us chances to learn from and understand the impact of

Importance of Incremental Migration | 53

the decomposition itself. The vast majority of the important lessons will not be
learned until your service hits production.

Microservice decomposition can cause issues with troubleshooting, tracing flows,
latency, referential integrity, cascading failures, and a host of other things. Most of
those problems are things you’ll notice only after you hit production. In the next cou‐
ple of chapters, we will look at techniques that allow you to deploy into a production
environment but limit the impact of issues as they occur. If you make a small change,
it’s much easier to spot (and fix) a problem you create.

Cost of Change
There are many reasons why, throughout the book, I promote the need to make
small, incremental changes, but one of the key drivers is to understand the impact of
each alteration we make and change course if required. This allows us to better miti‐
gate the cost of mistakes, but doesn’t remove the chance of mistakes entirely. We
can—and will—make mistakes, and we should embrace that. What we should also do,
though, is understand how best to mitigate the costs of those mistakes.

Reversible and Irreversible Decisions
Jeff Bezos, Amazon CEO, provides interesting insights into how Amazon works in his
yearly shareholder letters. The 2015 letter held this gem:

Some decisions are consequential and irreversible or nearly irreversible—one-way
doors—and these decisions must be made methodically, carefully, slowly, with great
deliberation and consultation. If you walk through and don’t like what you see on the
other side, you can’t get back to where you were before. We can call these Type 1 deci‐
sions. But most decisions aren’t like that—they are changeable, reversible—they’re two-
way doors. If you’ve made a suboptimal Type 2 decision, you don’t have to live with the
consequences for that long. You can reopen the door and go back through. Type 2
decisions can and should be made quickly by high judgment individuals or small
groups.

—Jeff Bezos, Letter to Amazon Shareholders (2015)

Bezos goes on to say that people who don’t make decisions often may fall into the trap
of treating Type 2 decisions like Type 1 decisions. Everything becomes life or death;
everything becomes a major undertaking. The problem is that adopting a microser‐
vice architecture brings with it loads of options regarding how you do things—which
means you may need to make many more decisions than before. And if you—or your
organization—isn’t used to that, you may find yourself falling into this trap, and pro‐
gress will grind to a halt.

54 | Chapter 2: Planning a Migration

8 Hat tip to Martin Fowler for the names here!

The terms aren’t terribly descriptive, and it can be hard to remember what Type 1 or
Type 2 actually means, so I prefer the names Irreversible (for Type 1) or Reversible (for
Type 2).8

While I like this concept, I don’t think decisions always fall neatly into either of these
buckets; it feels slightly more nuanced than that. I’d rather think in terms of Irreversi‐
ble and Reversible as being on two ends of a spectrum, as shown in Figure 2-3.

Figure 2-3. The differences between Irreversible and Reversible decisions, with examples
along the spectrum

Assessing where you are on that spectrum can be challenging initially, but fundamen‐
tally it all comes back to understanding the impact if you decide to change your mind
later. The bigger the impact a later course correction will cause, the more it starts to
look like an Irreversible decision.

The reality is, the vast number of decisions you will make as part of a microservice
transition will be toward the Reversible end of the spectrum. Software has a property
where rollbacks or undos are often possible; you can roll back a software change or a
software deployment. What you do need to take into account is the cost of changing
your mind later.

The Irreversible decisions will need more involvement, careful thought, and consid‐
eration, and you should (rightly) take more time over them. The further we get to the
right on this spectrum, toward our Reversible decisions, the more we can just rely on
our colleagues who are close to the problem at hand to make the right call, knowing
that if they make the wrong decision, it’s an easy thing to fix later.

Cost of Change | 55

Easier Places to Experiment
The cost involved in moving code around within a codebase is pretty small. We have
lots of tools that support us, and if we cause a problem, the fix is generally quick.
Splitting apart a database, however, is much more work, and rolling back a database
change is just as complex. Likewise, untangling an overly coupled integration
between services, or having to completely rewrite an API that is used by multiple con‐
sumers can be a sizeable undertaking. The large cost of change means that these oper‐
ations are increasingly risky. How can we manage this risk? My approach is to try to
make mistakes where the impact will be lowest.

I tend to do much of my thinking in the place where the cost of change and the cost
of mistakes is as low as it can be: the whiteboard. Sketch out your proposed design.
See what happens when you run use cases across what you think your service bound‐
aries will be. For our music shop, for example, imagine what happens when a cus‐
tomer searches for a record, registers with the website, or purchases an album. What
calls get made? Do you start seeing odd circular references? Do you see two services
that are overly chatty, which might indicate they should be one thing?

So Where Do We Start?
OK, so we’ve spoken about the importance of clearly articulating our goals and
understanding the potential trade-offs that might exist. What next? Well, we need a
view of what pieces of functionality we may want to extract into services, so that we
can start thinking rationally about what microservices we might create next. When it
comes to decomposing an existing monolithic system, we need to have some form of
logical decomposition to work with, and this is where domain-driven design can
come in handy.

Domain-Driven Design
In Chapter 1, I introduced domain-driven design as an important concept in helping
define boundaries for our services. Developing a domain model also helps us when it
comes to working out how to prioritize our decomposition too. In Figure 2-4, we
have an example high-level domain model for Music Corp. What you’re seeing is a
collection of bounded contexts identified as a result of a domain modeling exercise.
We can clearly see relationships between these bounded contexts, which we’d imagine
would represent interactions within the organization itself.

56 | Chapter 2: Planning a Migration

Figure 2-4. The bounded contexts and the relationships between them for Music Corp

Each of these bounded contexts represents a potential unit of decomposition. As we
discussed previously, bounded contexts make great starting points for defining
microservice boundaries. So already we have our list of things to prioritize. But we
have useful information in the form of the relationships between these bounded con‐
texts too—which can help us assess the relative difficulty in extracting the different
pieces of functionality. We’ll come back to this idea shortly

I consider coming up with a domain model as a near-essential step that’s part of
structuring a microservice transition. What can often be daunting is that many peo‐
ple have no direct experience of creating such a view. They also worry greatly about
how much work is involved. The reality is that while having experience can greatly
help in coming up with a logical model like this, even a small amount of effort exer‐
ted can yield some really useful benefits.

How Far Do You Have to Go?
When approaching the decomposition of an existing system, it’s a daunting prospect.
Many people probably built and continue to build the system, and in all likelihood, a
much larger group of people actually use it in a day-to-day fashion. Given the scope,
trying to come up with a detailed domain model of the entire system may be daunt‐
ing.

It’s important to understand that what we need from a domain model is just enough
information to make a reasonable decision about where to start our decomposition.
You probably already have some ideas of the parts of your system that are most in
need of attention, and therefore it may be enough to come up with a generalized
model for the monolith in terms of high-level groupings of functionality, and pick the
parts that you want to dive deeper into. There is always a danger that if you look only
at part of the system you may miss larger systemic issues that require addressing. But
I wouldn’t obsess about it—you don’t have to get it right first time; you just need

Domain-Driven Design | 57

enough information to make some informed next steps. You can—and should—con‐
tinuously refine your domain model as you learn more, and keep it fresh to reflect
new functionality as it’s rolled out.

Event Storming
Event Storming, created by Alberto Brandolini, is a collaborative exercise involving
technical and nontechnical stakeholders who together define a shared domain model.
Event Storming works from the bottom up. Participants start by defining the
“Domain Events”—things that happen in the system. Then these events are grouped
into aggregates, and the aggregates are then grouped into bounded contexts.

It’s important to note that Event Storming doesn’t mean you have to then build an
event-driven system. Instead, it focuses on understanding what (logical) events occur
in the system—identifying the facts that you care about as a stakeholder of the sys‐
tem. These domain events can map to events fired as part of an event-driven system,
but they could be represented in different ways.

One of the things Alberto is really focusing on with this technique is the idea of the
collective defining the model. The output of this exercise isn’t just the model itself; it
is the shared understanding of the model. For this process to work, you need to get the
right stakeholders in the room—and often that is the biggest challenge.

Exploring Event Storming in more detail is outside the scope of this book, but it’s a
technique I’ve used and like very much. If you want to explore more, you could read
Alberto’s Introducing EventStorming (currently in progress).

Using a Domain Model for Prioritization
We can gain some useful insights from diagrams like Figure 2-4. Based on the num‐
ber of upstream or downstream dependencies, we can extrapolate a view regarding
which functionality is likely to be easier—or harder—to extract. For example, if we
consider extracting Notification functionality, then we can clearly see a number of
inbound dependencies, as indicated in Figure 2-5—lots of parts of our system require
the use of this behavior. If we want to extract out our new Notification service, we’d
therefore have a lot of work to do with the existing code, changing calls from being
local calls to the existing notification functionality and making them service calls
instead. We’ll be looking at multiple techniques regarding these sorts of changes in
Chapter 3.

58 | Chapter 2: Planning a Migration

https://leanpub.com/introducing_eventstorming

Figure 2-5. Notification functionality seems logically coupled from our domain model
point of view, so may be harder to extract

So Notification may not be a good place to start. On the other hand, as highlighted in
Figure 2-6, Invoicing may well represent a much easier piece of system behavior to
extract; it has no in-bound dependencies, which would reduce the required changes
we’d need to make to the existing monolith. A pattern like the strangler fig could be
effective in these cases, as we can easily proxy these inbound calls before they hit the
monolith. We’ll explore that pattern, and many others, in the next chapter.

Figure 2-6. Invoicing appears to be easier to extract

Domain-Driven Design | 59

When assessing likely difficulty of extraction, these relationships are a good way to
start, but we have to understand that this domain model represents a logical view of
an existing system. There is no guarantee that the underlying code structure of our
monolith is structured in this way. This means that our logical model can help guide
us in terms of pieces of functionality that are likely to be more (or less) coupled, but
we may still need to look at the code itself to get a better assessment of the degree of
entanglement of the current functionality. A domain model like this won’t show us
which bounded contexts store data in a database. We might find for that Invoicing
manages lots of data, meaning we’d need to consider the impact of database decom‐
position work. As we’ll discuss in Chapter 4, we can and should look to break apart
monolithic datastores, but this may not be something we want to start off with for
our first couple of microservices.

So we can look at things through a lens of what looks easy and what looks hard, and
this is a worthwhile activity—we want to find some quick wins after all! However, we
have to remember that we’re looking at microservices as a way of achieving some‐
thing specific. We may identify that Invoicing does, in fact, represent an easy first
step, but if our goal is to help improve time to market, and the Invoicing functionality
is hardly ever changed, then this may not be a good use of our time.

We need, therefore, to combine our view of what is easy and what is hard, together
with our view of what benefits microservice decomposition will bring.

A Combined Model
We want some quick wins to make early progress, to build a sense of momentum, and
to get early feedback on the efficacy of our approach. This will push us toward want‐
ing to choose easier things to extract. But we also need to gain some benefits from the
decomposition—so how do we factor that into our thinking?

Fundamentally, both forms of prioritization make sense, but we need a mechanism
for visualizing both together and making appropriate trade-offs. I like to use a simple
structure for this, as shown in Figure 2-7. For each candidate service to be extracted,
you place it along the two axes displayed. The x-axis represents the value that you
think the decomposition will bring. Along the y-axis, you order things based on their
difficulty.

60 | Chapter 2: Planning a Migration

Figure 2-7. A simple two-axis model for prioritizing service decomposition

By working through this process as a team, you can come up with a view of what
could be good candidates for extraction—and like every good quadrant model, it’s the
stuff in the top right we like, as Figure 2-8 shows. Functionality there, including
Invoicing, represents functionality we think should be easy to extract, and will also
deliver some benefit. So, choose one (or maybe two) services from this group as your
first services to extract.

As you start to make changes, you’ll learn more. Some of the things you thought were
easy will turn out to be hard. Some of the things you thought would be hard turn out
to be easy. This is natural! But it does mean that it’s important to revisit this prioriti‐
zation exercise and replan as you learn more. Perhaps as you chip away, you realize
that Notifications might be easier to extract than you thought.

A Combined Model | 61

Figure 2-8. An example of the prioritization quadrant in use

Reorganizing Teams
After this chapter, we’ll mostly be focusing on the changes that you’ll need to make to
your architecture and code to create a successful transition to a microservices. But as
we’ve already explored, aligning architecture and organization can be key to getting
the most out of a microservice architecture.

However, you might be in a situation where your organization needs to change to
take advantage of these new ideas. While an in-depth study of organizational change
is outside the scope of this book, I want to leave you with a few ideas before we dive
into the deeper technical side of things.

Shifting Structures
Historically, IT organizations were structured around core competency. Java develop‐
ers were in a team with other Java developers. Testers were in a team with other test‐
ers. The DBAs were all in a team by themselves. When creating software, people from
these teams would be assigned to work on these often-short lived initiatives.

62 | Chapter 2: Planning a Migration

The act of creating software therefore required multiple hand-offs between teams.
The business analyst would speak to a customer and find out what they wanted. The
analyst then write up a requirement and hand it to the development team to work on.
A developer would finish some work and hand that to the test team. If the test team
found an issue, it would be sent back. If it was OK, it might proceed to the operations
team to be deployed.

This siloing seems quite familiar. Consider the layered architectures we discussed in
the previous chapter. Layered architectures could require multiple services to need to
be changed when rolling out simple changes. The same applies with organizational
silos: the more teams that need to be involved in creating or changing a piece of soft‐
ware, the longer it can take.

These silos have been breaking down. Dedicated test teams are now a thing of the
past for many organizations. Instead, test specialists are becoming an integrated part
of delivery teams, enabling developers and testers to work more closely together. The
DevOps movement has also led in part to many organizations shifting away from
centralized operations teams, instead pushing more responsibility for operational
considerations onto the delivery teams.

In situations where the roles of these dedicated teams have been pushed into the
delivery teams, the roles of these centralized teams have shifted. They’ve gone from
doing the work themselves to helping the delivery teams do the work instead. This
can involve embedding specialists with the teams, creating self-service tooling, pro‐
viding training, or a whole host of other activities. Their responsibility has shifted
from doing to enabling.

Increasingly, therefore, we’re seeing more independent, autonomous teams, able to be
responsible for more of the end-to-end delivery cycle than ever before. Their focus is
on different areas of the product, rather than a specific technology or activity—just in
the same way that we’re switching from technical-oriented services toward services
modeled around vertical slices of business functionality. Now, the important thing to
understand is that while this shift is a definite trend that has been evident for many
years, it isn’t universal, nor is such a shift a quick transformation.

It’s Not One Size Fits All
We started this chapter by discussing how your decision about whether to use micro‐
services should be rooted in the challenges you are facing, and the changes you want
to bring about. Making changes in your organizational structure is just as important.
Understanding if and how your organization needs to change needs to be based on
your context, your working culture, and your people. This is why just copying other
people’s organizational design can be especially dangerous.

Reorganizing Teams | 63

Earlier, we touched very briefly on the Spotify model. Interest grew in how Spotify
organized itself in the well-known 2012 paper “Scaling Agile @ Spotify” by Henrik
Kniberg and Anders Ivarsson. This is the paper that popularized the notion of
Squads, Chapters, and Guilds, terms that are now commonplace (albeit misunder‐
stood) in our industry. Ultimately, this led to people christening this “the Spotify
model,” even though this was never a term used by Spotify.

Subsequently, there was a rush of companies adopting this structure. But as with
microservices, many organizations gravitated to the Spotify model without sufficient
thought as to the context in which Spotify operates, their business model, the chal‐
lenges they are facing, or the culture of the company. It turns out that an organiza‐
tional structure that worked well for a Swedish music streaming company may not
work for an investment bank. In addition, the original paper showed a snapshot of
how Spotify worked in 2012 and things have changed since. It turns out not even
Spotify uses the Spotify model.

The same needs to apply to you. Take inspiration from what other organizations have
done, absolutely, but don’t assume that what worked for someone else will work in
your context. As Jessica Kerr once put it, in relation to the Spotify model, “Copy the
questions, not the answers”. The snapshot of Spotify’s organizational structure reflec‐
ted changes its had carried out to solve its problems. Copy that flexible, questioning
attitude in how you do things, and try new things, but make sure the changes you
apply are rooted in an understanding of your company, its needs, its people, and its
culture.

To give a specific example, I see a lot of companies saying to their delivery teams,
“Right, now you all need to deploy your software and run 24/7 support.” This can be
incredibly disruptive and unhelpful. Sometimes, making big, bold statements can be a
great way to get things moving, but be prepared for the chaos it can bring. If you’re
working in an environment where the developers are used to working 9–5, not being
on call, have never worked in a support or operations environment, and wouldn’t
know their SSH from their elbow, then this is a great way to alienate your staff and
lose a lot of people. If you think that this is the right move for your organization, then
great! But talk about it as an aspiration, a goal you want to achieve, and explain why.
Then work with your people to craft a journey toward that goal.

If you really want to make a shift toward teams more fully owning the whole life cycle
of their software, understand that the skills of those teams need to change. You can
provide help and training, add new people to the team (perhaps by embedding people
from the current operations team in delivery teams). No matter what change you
want to bring about, just as with our software, you can make this happen in an incre‐
mental fashion.

64 | Chapter 2: Planning a Migration

http://bit.ly/2ogAz3d
http://bit.ly/2AKTaXP
http://bit.ly/2AKTaXP

9 Manuel Pais and Matthew Skelton, Team Topologies (IT Revolution Press, 2019).
10 Gene Kim, Jez Humble, and Patrick Debois, The DevOps Handbook (IT Revolution Press, 2016).

DevOps Doesn’t Mean NoOps!
There is widespread confusion around DevOps, with some people assuming that it
means that developers do all the operations, and that operations people are not
needed. This is far from the case. Fundamentally, DevOps is a cultural movement
based on the concept of breaking down barriers between development and opera‐
tions. You may still want specialists in these roles, or you might not, but whatever you
want to do, you want to promote common alignment and understanding across the
people involved in delivering your software, no matter what their specific responsibil‐
ities are.

For more on this, I recommend Team Topologies,9 which explores DevOps organiza‐
tional structures. Another excellent resource on this topic, albeit broader in scope, is
The Devops Handbook.10

Making a Change
So if you shouldn’t just copy someone else’s structure, where should you start? When
working with organizations that are changing the role of delivery teams, I like to
begin with explicitly listing all the activities and responsibilities that are involved in
delivering software within that company. Next, map these activities to your existing
organizational structure.

If you’ve already modeled your path to production (something I am a big fan of), you
could overlay those ownership boundaries on an existing view. Alternatively, some‐
thing simple like Figure 2-9 could work well. Just get stakeholders from all the roles
involved, and brainstorm as a group all the activities that go into shipping software in
your company.

Reorganizing Teams | 65

Figure 2-9. Showing a subset of the delivery-related responsibilities, and how they map
to existing teams

Having this understanding of the current “as-is” state is very important, as it can help
give everyone a shared understanding of all the work involved. The nature of a siloed
organization is that you can struggle to understand what one silo does when you’re in
a different silo. I find that this really helps organizations be honest with themselves as
to how quickly things can change. You’ll likely find that not all teams are equal too—
some may already do a lot for themselves, and others may be entirely dependent on
other teams for everything from testing to deployment.

If you find your delivery teams are already deploying software themselves for test and
user testing purposes, then the step to production deployments may not be that large.
On the other hand, you still have to consider the impact of taking on tier 1 support
(carrying a pager), diagnosing production issues, and so on. These skills are built up
by people over years of work, and expecting developers to get up to speed with this
overnight is totally unrealistic.

Once you have your as-is picture, redraw things with your vision for how things
should be in the future, within some sensible timescale. I find that six months to a
year is probably as far forward as you’ll want to explore in detail. What responsibili‐
ties are changing hands? How will you make that transition happen? What is needed
to make that shift? What new skills will the teams need? What are the priorities for
the various changes you want to make?

66 | Chapter 2: Planning a Migration

Taking our earlier example, in Figure 2-10 we see that we’ve decided to merge front‐
end and backend team responsibilities. We also want teams to be able to provision
their own test environments. But to do that, the operations team will need to provide
a self-service platform for the delivery team to use. We want the delivery team to ulti‐
mately handle all support for their software, and so we want to start the teams getting
happier with the work involved. Having them owning their own test deployments is a
good first step. We’ve also decided they’ll handle all incidents during the working day,
giving them a chance to come up to speed with that process in a safe environment,
where the existing operations team is on hand to coach them.

Figure 2-10. One example of how we might want to reassign responsibilities within our
organization

The big picture views can really help when starting out with the changes you want to
bring, but you’ll also need to spend time with the people on the ground to work out
whether these changes are feasible, and if so, how to bring them about. By dividing
things among specific responsibilities, you can also take an incremental approach to
this shift. For you, focusing first on eliminating the need for the operations teams to
provision test environments is the right first step.

Reorganizing Teams | 67

Changing Skills
When it comes to assessing the skills that people need, and helping them bridge the
gap, I’m a big fan of having people self-assess and use that to build a wider under‐
standing of what support the team may need to carry out that change.

A concrete example of this in action is a project I was involved with during my time
at ThoughtWorks. We were hired to help The Guardian newspaper rebuild its online
presence (something we’ll come back to in the next chapter). As part of this, they
needed to get up to speed with a new programming language and associated technol‐
ogies.

At the start of the project, our combined teams came up with a list of core skills that
were important for The Guardian developers to work on. Each developer then
assessed themselves against these criteria, ranking themselves from 1 (“This means
nothing to me!”) to 5 (“I could write a book about this”). Each developer’s score was
private; this was shared only with the person who was mentoring them. The goal was
not that each developer should get each skill to 5; it was more that they themselves
should set targets to reach.

As a coach, it was my job to ensure that if one of the developers I was coaching
wanted to improve their Oracle skills, I would make sure they had the chance to do
that. This could involve making sure they worked on stories that made use of that
technology, recommending videos for them to watch, consider attending a training
course or conference, etc.

You can use this process to build up a visual representation of the areas where an
individual may want to focus their time and effort. In Figure 2-11, we see such an
example, which shows that I really want to focus my time and energy in growing my
Kubernetes and Lambda experience, perhaps indicative of the fact that I’m now hav‐
ing to manage deployment of my own software. Just as important is highlighting
those areas you are happy with—in this example, I feel that my Go coding is not
something I need to focus on right now.

68 | Chapter 2: Planning a Migration

Figure 2-11. An example skills chart, showing those areas that I want to improve

Keeping these sorts of self-assessments private is very important. The point isn’t for
someone to rate themselves against someone else; it’s for people to help guide their
own development. Make this public, and you drastically change the parameters of
this exercise. Suddenly, people will be worried about giving themselves a low mark as
it may impact their performance review, for example.

Although each score is private, you can still use this to build up a picture of the team
as a whole. Take the anonymized self-assessment ratings and develop a skill map for
the overall team. This can help highlight gaps that may need addressing at a more sys‐
temic level. Figure 2-12 shows us that while I might be happy with my level of PACT
skill, as a whole the team wants to improve more in that area, while Kafka and Kuber‐
netes is another space that may need some intensive focus. This might highlight the
need for some group learning, and perhaps justify a bigger investment such as run‐
ning an internal training course. Sharing this overall picture with your team can also
help individuals understand how they can be part of helping the team as a whole find
the balance it needs.

Reorganizing Teams | 69

Figure 2-12. Looked at as a whole, the team has a need to improve its Kafka, Kuber‐
netes, and PACT Testing skills

Changing the skill set of the existing team members isn’t the only way forward, of
course. What we’re often aiming for is a delivery team that as a whole takes on more
responsibilities. It doesn’t necessarily mean that every individual is doing more. The
right answer could be to bring new people into the team that have the skills you need.
Rather than helping the developers learn more about Kafka, you could hire a Kafka
expert to join your team. This could solve the short-term problem, and you then have
an in-team expert who can help their colleagues learn more in this area too.

Far more can be explored in this topic, but I hope I’ve shared enough to get you
started. Above all, it starts with understanding your own people and culture, as well
as the needs of your users. By all means, be inspired by case studies from other com‐
panies, but don’t be surprised if slavishly copying someone else’s answers to their
problems ends up not working out well for you.

70 | Chapter 2: Planning a Migration

How Will You Know if the Transition Is Working?
We all make mistakes. Even if you start the journey toward microservices with all the
best intentions, you have to accept that you can’t know everything and that sometime
down the path you may realize things might not be working out. The questions are
these: Do you know if it is working? Have you made a mistake?

Based on the outcomes you are hoping to achieve, you should try defining some
measures that can be tracked and can help you answer these questions. We’re going to
explore some example measures shortly, but I do want to take this opportunity to
highlight the fact that we aren’t just talking about quantitative metrics here. You also
need to take into account qualitative feedback from the people at the coalface.

These measures, quantitative and qualitative, should inform an ongoing review pro‐
cess. You need to establish checkpoints that will allow your team time to reflect on
whether you’re heading in the right direction. The question to ask yourself during
these checkpoints isn’t just “Is this working?” but “Should we try something else
instead?”

Let’s take a look at how you might organize these checkpoint activities, as well as at
some example measures we can track.

Having Regular Checkpoints
As part of any transition, it is important to build into your delivery process some time
for pause and reflection in order to analyze the available information and determine
whether a change of course is required. For small teams, this could be informal, or
perhaps folded into regular retrospective exercises. For larger programs of work, they
may need to be planned in as explicit activities on a regular cadence—perhaps bring‐
ing together the leadership from various activities for monthly sessions to review how
things are going.

No matter how frequently you run these exercises, and no matter how formal (or
informal) you make them, I suggest making sure you cover the following things:

1. Restate what you are expecting the transition to microservices to achieve. If the
business has changed direction such that the direction you’re going in no longer
makes sense, then stop!

2. Review any quantitative measures you have in place to see whether you’re making
progress.

3. Ask for qualitative feedback—do people think things are still working out?
4. Decide what, if anything, you’re going to change going forward.

How Will You Know if the Transition Is Working? | 71

11 Yes, this has happened. It’s not all fun and games and Kubernetes….

Quantitative Measures
The measures you select for tracking progress will depend on the goals you’re trying
to achieve. If you’re focused on improving time to market, for example, measuring
cycle time, number of deployments, and failure rates make sense. If you’re trying to
scale the application to handle more load, reporting back on the latest performance
tests would be sensible.

It’s worth noting that metrics can be dangerous because lf that old adage “You get
what you measure.” Metrics can be gamed—inadvertently, or on purpose. I recall my
wife telling me of a company she worked at where an external vendor was tracked
based on the number of tickets they closed, and paid based on these results. What
happened? The vendor would close tickets even if the issue wasn’t resolved, getting
people to open up new tickets instead.

Other metrics may be hard to change in a short period of time. I’d be surprised if you
see much improvement in cycle time as part of a microservice migration in the first
few months; in fact, I’d likely expect to see this get worse initially. Introducing a
change in how things are done often negatively impacts productivity in the short
term, while the team comes up to speed with the new way of working. That’s another
reason why taking small incremental steps is so important: the smaller the change, the
smaller the potential negative impacts you’ll see, and the faster you can address them
when they occur.

Qualitative Measures
…Software is made of feelings.

—Astrid Atkinson (@shinynew_oz)

Whatever our data shows us, it’s people who build the software, and it’s important
that their feedback is included in measuring success. Are they enjoying the process?
Do they feel empowered? Or do they feel overwhelmed? Are they getting the support
they need to take on new responsibilities or master new skills?

When reporting up any sort of scorecards to upper management for these sorts of
transitions,11 you should include a sense check of what is coming from your team. If
they’re loving it, then great! If they aren’t, you may need to do something about it.
Ignoring what your people are telling you in favor of relying entirely on quantitative
metrics is a great way to get yourself into a lot of trouble.

72 | Chapter 2: Planning a Migration

Avoiding the Sunk Cost Fallacy
You need to be aware of sunk cost fallacy, and having a review process is part of keep‐
ing you honest and, hopefully, helping you avoid this phenomenon. Sunk cost fallacy
occurs when people become so invested in a previous approach to doing something
that even if evidence shows the approach isn’t working, they’ll still proceed anyway.
Sometimes we justify it to ourselves: “It’ll change any minute!” Other times we may
have excreted so much political capital within our organization to make a change that
we can’t backpedal now. Either way, it’s certainly arguable that sunk cost fallacy is all
about emotional investment: we’re so bought into an old way of thinking that we just
can’t give it up.

In my experience, the bigger the bet, and bigger the accompanying fanfare, the harder
it is to pull out when it’s going wrong. Sunk cost fallacy is also known as the Con‐
corde fallacy, named for the failed project backed at great expense by the British and
French governments to build a supersonic passenger plane. Despite all evidence that
the project would never deliver financial returns, more and more money was pumped
into the project. Whatever the engineering successes that may have come out of Con‐
corde, it never worked as a viable aircraft for commercial passenger flight.

If you make each step a small one, it becomes easier to avoid the pitfalls of the sunk
cost fallacy. It’s easier to change direction. Use the checkpoint mechanism discussed
previously to reflect on what is happening. You don’t need to pull out or change
course at the first sign of trouble, but ignoring evidence you are gathering regarding
the success (or otherwise) of the change you’re trying to bring about is arguably more
foolish than not gathering any evidence in the first place.

Being Open to New Approaches
As I hope won’t be a surprise to you if you’ve made it this far, there are several vari‐
ables involved in breaking apart a monolithic system and multiple different paths we
could take. The one certainty is that not everything will go smoothly, and you will
need to be open to reverting changes you make, trying new things, or sometimes just
letting things settle for a moment to let you see what impact it is having.

If you try to embrace a culture of constant improvement, to always have something
new you’re trying, then it becomes much more natural to change direction when
needed. If you ghettoize the concept of change or process improvements into discrete
streams of work, rather than building it into everything you do, then you run the risk
of seeing change as one-off transactional activities. Once that work is done, that’s it!
No more change for us! That way of thinking is how you’ll find yourself in another
few years way behind all your competitors and with another mountain to climb.

How Will You Know if the Transition Is Working? | 73

Summary
This chapter has covered a lot of ground. We looked at why you might want to adopt
a microservice architecture, and how that decision-making may impact how you pri‐
oritize your time. We considered the key questions teams must ask themselves when
deciding whether microservices are right for them, and these questions bear repeat‐
ing:

• What are you hoping to achieve?
• Have you considered alternatives to using microservices?
• How will you know if the transition is working?

In addition, the importance of adopting an incremental approach to extracting
microservices cannot be overstated. Mistakes are inevitable, so if accepting that as a
given, you should aim to make small mistakes rather than big ones. Breaking a transi‐
tion to a microservice architecture into small incremental steps ensures that the mis‐
takes we make will be small and easier to recover from.

Most of us also work on systems that have real-world customers. We can’t afford to
spend months or years on a big bang rewrite of our application, letting the existing
application that our customers use lie fallow. The goal should be incremental creation
of new microservices, and getting them deployed as part of your production solution
so that you start learning from the experience and getting the benefits as soon as pos‐
sible.

I’m very clear about the idea that when breaking out functionality into a new service,
the job isn’t done until it’s in production and is being used. You learn a huge amount
from the process of having your first few services actually used. Early on, that needs
to be your focus.

All this means we need to develop a series of techniques that allow us to create new
microservices and integrate them with our (hopefully) shrinking monolith, and get
them shipped to production. What we’re looking at next are patterns that show how
you can make this work, all while continuing to keep your system up and running,
serve your customers, and take on board new functionality.

74 | Chapter 2: Planning a Migration

CHAPTER 3

Splitting the Monolith

In Chapter 2, we explored how to think about migration to a microservice architec‐
ture. More specifically, we explored whether it was even a good idea, and if it was,
then how you should go about it in terms of rolling out your new architecture and
making sure you’re going in the right direction.

We’ve discussed what a good service looks like, and why smaller services may be bet‐
ter for us. But how do we handle the fact that we may already have a large number of
applications lying about that don’t follow these patterns? How do we go about decom‐
posing these monolithic applications without having to embark on a big bang
rewrite?

Throughout the rest of this chapter, we’ll explore a variety of migration patterns and
tips that can help you adopt a microservice architecture. We’ll look at patterns that
will work for black-box vendor software, legacy systems, or monoliths that you plan
to continue to maintain and evolve. For incremental rollout to work, though, we have
to ensure that we can continue to work with, and make use of, the existing monolithic
software.

Remember that we want to make our migration incremental. We
want to migrate over to a microservice architecture in small steps,
allowing us to learn from the process and change our minds if
needed.

75

To Change the Monolith, or Not?
One of the first things you’re going to have to consider as part of your migration is
whether or not you plan (or are able) to change the existing monolith.

If you have the ability to change the existing system, this will give you the most flexi‐
bility in terms of the various patterns at your disposal. In some situations, however,
there will be a hard constraint in place, denying you this opportunity. The existing
system may be a vendor product for which you don’t have the source code, or it may
also be written in a technology that you no longer have the skills for.

There may also be softer drivers that might divert you away from changing the exist‐
ing system. It’s possible that the current monolith is in such a bad state that the cost of
change is too high—as a result, you want to cut your losses and start again (although
as I detailed earlier, I worry that people reach this conclusion far too easily). Another
possibility is that the monolith itself is being worked on by many other people, and
you’re worried about getting in their way. Some patterns, like the Branch by Abstrac‐
tion pattern we’ll explore shortly, can mitigate these issues, but you may still judge
that the impact to others is too great.

In one memorable situation, I was working with some colleagues to help scale a com‐
putationally heavy system. The underlying calculations were performed by a C library
we were given. Our job was to collect the various inputs, pass them into the library,
and retrieve and store the results. The library itself was riddled with problems. Mem‐
ory leaks and horrendously inefficient API design were just two of the major causes
of problems. We asked for many months for the source code for the library so we
could fix these issues, but we were rebuffed.

Many years later, I caught up with the project sponsor, and asked why they hadn’t let
us change the underlying library. It was at that point the sponsor finally admitted
they’d lost the source code but were too embarrassed to tell us! Don’t let this happen
to you.

So, hopefully, we’re in a position where we can work with, and change, the existing
monolithic codebase. But if we can’t, does this mean we’re stuck? Quite the contrary
—several patterns can help us here. We’ll be covering some of those shortly.

Cut, Copy, or Reimplement?
Even if you have access to the existing code in the monolith, when you start migrat‐
ing functionality to your new microservices, it’s not always clear cut as to what to do
with the existing code. Should we move the code as is, or re-implement the function‐
ality?

76 | Chapter 3: Splitting the Monolith

If the existing monolithic codebase is sufficiently well factored, you may be able to
save significant time by moving the code itself. The key thing here is to understand
that we want to copy the code from the monolith, and at this stage, at least, we don’t
want to remove this functionality from the monolith itself. Why? Because leaving the
functionality in the monolith for a period of time gives you more options. It can give
us a rollback point, or perhaps the opportunity to run both implementations in paral‐
lel. Further down the line, once you’re happy that the migration has been successful,
you can remove the functionality from the monolith.

Refactoring the Monolith
I’ve observed that often the biggest barrier to making use of existing code in the mon‐
olith in your new microservices is that existing codebases are traditionally not organ‐
ized around business domain concepts. Technical categorizations are more
prominent (think of all the Model, View, Controller package names you’ve seen, for
example). When you’re trying to move business domain functionality, this can be dif‐
ficult: the existing codebase doesn’t match that categorization, so even finding the
code you’re trying to move can be problematic!

If you do go down the route of reorganizing your existing monolith along business
domain boundaries, I thoroughly recommend Working Effectively with Legacy Code
by Michael Feathers (Prentice Hall, 2004). In his book, Michael defines the concept of
a seam—that is, a place where you can change the behavior of a program without
having to edit the existing behavior. Essentially, you define a seam around the piece of
code you want to change, work on a new implementation of the seam, and swap it in
after the change has been made. He features techniques to work safely with seams as a
way of helping clean up codebases.

While generically Michael’s concept of seams could be applied at many scopes, the
concept does fit very well with bounded contexts, which we discussed in Chapter 1.
So while Working Effectively with Legacy Code may not refer directly to domain-
driven design concepts, you can use the techniques in that book to organize your
code along these principles.

A modular monolith?
Once you’ve started to make sense of your existing codebase, an obvious next step
that is worth considering is to take your newly identified seams and start to extract
them as separate modules, making your monolith a modular monolith. You still have a
single unit of deployment, but that deployed unit consists of multiple statically linked
modules. The exact nature of these modules depends on your underlying technology
stack—for Java, my modular monolith would consist of multiple JAR files; for a Ruby
app, it might be a collection of Ruby gems.

To Change the Monolith, or Not? | 77

As we touched on briefly at the start of the book, having a monolith broken into
modules that can be developed independently can deliver many benefits while side‐
stepping many of the challenges of a microservice architecture, and can be the sweet
spot for many organizations. I’ve spoken to more than one team that has started
breaking its monolith apart into a modular monolith, with a view to eventually move
to a microservice architecture, only to find that the modular monolith solved most of
its problems!

Incremental rewrites
My general inclination is always to attempt to salvage the existing codebase first,
before resorting to just reimplementing functionality, and the advice I gave in my
previous book, Building Microservices, was along these lines. Sometimes teams find
that they get enough benefit from this work to not need microservices in the first
place!

However, I have to accept that, in practice, I find very few teams take the approach of
refactoring their monolith as a precursor to moving to microservices. Instead, what
seems more common is that once teams have identified the responsibilities of the
newly created microservice, they instead do a new clean-room implementation of
that functionality.

But aren’t we in danger of repeating the problems associated with big bang rewrites if
we start reimplementing our functionality? The key is to ensure you’re rewriting only
small pieces of functionality at a time, and shipping this reworked functionality to
your customers regularly. If the work to reimplement the behavior of the service is a
few days or weeks, it’s probably fine. If the timelines start looking more like several
months, I’d be reexamining my approach.

Migration Patterns
I have seen used many techniques used as part of a microservice migration. For the
rest of the chapter, we’ll explore these patterns, looking at where they may be useful
and how they can be implemented. Remember, as with all patterns, these aren’t uni‐
versally “good” ideas. For each one, I’ve attempted to give enough information to help
you understand whether they make sense in your context.

Make sure you understand the pros and cons of each of these pat‐
terns. They are not universally the “right” way to do things.

We’ll start with looking at techniques to allow you to migrate and integrate with the
monolith; we will deal primarily with where the application code lives. To start with,

78 | Chapter 3: Splitting the Monolith

though, we’ll look at one of the most useful and commonly used techniques: the
strangler fig application.

Pattern: Strangler Fig Application
A technique that has seen frequent use when doing system rewrites is called the
strangler fig application. Martin Fowler first captured this pattern, inspired by a cer‐
tain type of fig that seeds itself in the upper branches of trees. The fig then descends
toward the ground to take root, gradually enveloping the original tree. The existing
tree becomes initially a support structure for the new fig, and if taken to the final
stages, you may see the original tree die and rot away, leaving only the new, now self-
supporting fig in its place.

In the context of software, the parallel here is to have our new system initially be sup‐
ported by, and wrapping, the existing system. The idea is that the old and the new can
coexist, giving the new system time to grow and potentially entirely replace the old
system. The key benefit to this pattern, as we’ll see shortly, is that it supports our goal
of allowing for incremental migration to a new system. Moreover, it gives us the abil‐
ity to pause and even stop the migration altogether, while still taking advantage of the
new system delivered so far.

As we’ll see shortly, when we implement this idea for our software, we strive to not
only take incremental steps toward our new application architecture, but also ensure
that each step is easily reversible, reducing the risk of each incremental step.

How It Works
While the strangler fig pattern has been commonly used to migrate from one mono‐
lithic system to another, we will look to migrate from a monolith to a series of micro‐
services. This may involve actually copying the code from the monolith (if possible),
or else reimplementing the functionality in question. In addition, if the functionality
in question requires the persistence of state, then consideration needs to be given to
how that state can be migrated to the new service, and potentially back again. We’ll
explore aspects related to data in Chapter 4.

Implementing a strangler fig pattern relies on three steps, as outlined in Figure 3-1.
First, identify parts of the existing system that you wish to migrate. You’ll need to use
judgement as to which parts of the system to tackle first, using the sort of trade-off
activity we discussed in Chapter 2. You then need to implement this functionality in
your new microservice. With your new implementation ready, you need to be able to
reroute calls from the monolith over to your shiny new microservice.

Pattern: Strangler Fig Application | 79

http://bit.ly/2p5xMKo

Figure 3-1. An overview of the strangler pattern

It’s worth noting that until the call to the moved functionality is redirected, that the
new functionality isn’t technically live—even if it is deployed into a production envi‐
ronment. This means you could take your time getting that functionality right, work‐
ing on implementing this functionality over a period of time. You could push these
changes into a production environment, safe in the knowledge that it isn’t yet being
used, allowing us to get happy with the deployment and management aspects of your
new service. Once your new service implements the same equivalent functionality as
your monolith, you could then consider using a pattern like parallel run (which we
explore shortly) to give you confidence that the new functionality is working as
intended.

Separating the concepts of deployment from release is important.
Just because software is deployed into a given environment doesn’t
mean it’s actually being used by customers. By treating the two
things as separate concepts, you enable the ability to validate your
software in the final production environment before it is being
used, allowing you to de-risk the rollout of the new software. Pat‐
terns like the strangler fig, parallel run, and canary release are
among those patterns that make use of the fact that deployment and
release are separate activities.

A key point of this strangler application approach is not just that we can incremen‐
tally migrate new functionality to the new system, but that we can also roll back this
change very easily if required. Remember, we all make mistakes—so we want techni‐
ques that allow us to not only make mistakes as cheaply as possible (hence lots of
small steps), but also fix our mistakes quickly.

If the functionality being extracted is also used by other functionality inside the mon‐
olith, you need to change how those calls are made as well. We’ll cover a few techni‐
ques for this later in the chapter.

80 | Chapter 3: Splitting the Monolith

Where to Use It
The strangler fig pattern allows you to move functionality over to your new services
architecture without having to touch or make any changes to your existing system.
This has benefits when the existing monolith itself may be being worked on by other
people, as this can help reduce contention. It’s also very useful when the monolith is
in effect a black-box system—such as third-party software or a SaaS service.

Occasionally, you can extract an entire end-to-end slice of functionality in one piece,
as we see in Figure 3-2. This simplifies the extraction greatly, aside from concerns
around data, which we’ll look at later in this book.

Figure 3-2. Straightforward end-to-end abstraction of Inventory Management function‐
ality

In order to perform a clean end-to-end extraction like this, you might be inclined to
extract larger groups of functionality to simplify this process. This can result in a
tricky balancing act—by extracting larger slices of functionality, you are taking on
more work, but may simplify some of your integration challenges.

If you do want to take a smaller bite, you may have to consider more “shallow”
extractions, like those we see in Figure 3-3. Here we are extracting Payroll functional‐
ity, despite the fact it makes use of other functionality that remains inside the mono‐
lith—in this example, the ability to send User Notifications.

Pattern: Strangler Fig Application | 81

Figure 3-3. Extraction of functionality that still needs to use the monolith

Rather than also reimplementing the User Notifications functionality, we expose this
functionality to our new microservice by exposing it from the monolith—something
that obviously would require changes to the monolith itself.

For the strangler to work, though, you need to be able to clearly map the inbound call
to the functionality you care about to the asset that you want to move. For example,
in Figure 3-4, we’d ideally like to move out the ability to send User Notifications to
our customers into a new service. However, notifications are fired as a result of multi‐
ple inbound calls to the existing monolith. Therefore, we can’t clearly redirect the
calls from outside the system itself. Instead, we’d need to look at a technique like the
one described in the section “Pattern: Branch by Abstraction” on page 104.

Figure 3-4. The strangler fig pattern doesn’t work too well when the functionality to be
moved is deeper inside the existing system

You will also need to consider the nature of the calls being made into the existing sys‐
tem. As we explore shortly, a protocol such as HTTP is very amenable to redirection.

82 | Chapter 3: Splitting the Monolith

HTTP itself has the concepts of transparent redirection built in, and proxies can be
used to clearly understand the nature of an inbound request and divert it accordingly.
Other types of protocols, such as some RPCs, may be less amenable to redirection.
The more work you have to do in the proxy layer to understand and potentially trans‐
form the inbound call, the less viable this option becomes.

Despite these restrictions, the strangler fig application has proven itself time and
again to be a very useful migration technique. Given the light touch, and easy
approach to handle incremental change, it’s often my first port of call when exploring
how to migrate a system.

Example: HTTP Reverse Proxy
HTTP has some interesting capabilities, among them that it is very easy to intercept
and redirect in a way that can be made transparent to the calling system. This means
that an existing monolith with an HTTP interface is amenable to migration through
use of a strangler fig pattern.

In Figure 3-5, we see an existing monolithic system that exposes an HTTP interface.
This application may be headless, or the HTTP interface may, in fact, be being called
by an upstream UI. Either way, the goal is the same: to insert an HTTP reverse proxy
between the upstream calls and the downstream monolith.

Figure 3-5. A simple overview of an HTTP-driven monolith prior to a strangler being
implemented

Pattern: Strangler Fig Application | 83

Step 1: Insert proxy
Unless you already have an appropriate HTTP proxy in place that you can reuse, I
suggest getting one in place first, as seen in Figure 3-6. In this first step, the proxy will
just allow any calls to pass through without change.

Figure 3-6. Step 1: Inserting a proxy between the monolith and the upstream system

This step will allow you to assess the impact of inserting an additional network hop
between the upstream calls and the downstream monolith, set up any required moni‐
toring of your new component, and basically, sit with it a while. From a latency point
of view, we will be adding a network hop and a process in the processing path of all
calls. With a decent proxy and network, you’d expect a minimal impact on latency
(perhaps in the order of a few milliseconds), but if this turns out not to be the case,
you have a chance to stop and investigate the issue before you go any further.

If you already have an existing proxy in place in front of your monolith, you can skip
this step—although do make sure you understand how this proxy can be reconfig‐
ured to redirect calls later on. I suggest at the very least experimenting with the redi‐
rection to make sure it will work as intended before assuming that this can be done
later on. It would be a nasty surprise to discover that this is impossible just before you
plan to send your new service live!

Step 2: Migrate functionality
With our proxy in place, next you can start extracting your new microservice, as we
see in Figure 3-7.

84 | Chapter 3: Splitting the Monolith

Figure 3-7. Step 2: Incremental implementation of the functionality to be moved

This step itself can be broken into multiple stages. First, get a basic service up and
running without any of the functionality being implemented. Your service will need
to accept the calls made to the matching functionality, but at this stage you could just
return a 501 Not Implemented. Even at this step, I’d get this service deployed into the
production environment. This allows you to get comfortable with the production
deployment process, and test the service in situ. At this point, your new service isn’t
released, as you haven’t redirected the existing upstream calls yet. Effectively, we are
separating the step of software deployment from software release, a common release
technique that we’ll revisit later on.

Step 3: Redirect calls
It’s only once you’ve completed movement of all the functionality that you reconfig‐
ure the proxy to redirect the call, as we see in Figure 3-8. If this fails for whatever
reason, then you can switch the redirection back—for most proxies, this is a very
quick and easy process, giving you a fast rollback.

Pattern: Strangler Fig Application | 85

Figure 3-8. Step 3: Redirecting the call to Payroll functionality, completing the migration

You may decide to implement the redirection using something like a feature toggle,
which can make your desired configuration state much more obvious. The use of a
proxy to redirect the calls is also a great location to consider incremental rollout of
the new functionality through a canary rollout, or even a full-blown parallel run,
another pattern we discuss in this chapter.

Data?
So far, we haven’t talked about data. In Figure 3-8, what happens if our newly migra‐
ted Payroll service needs access to data that is currently held in the monolith’s data‐
base? We’ll explore options for this more fully in Chapter 4.

Proxy Options
How you implement the proxy is in part going to depend on the protocol used by the
monolith. If the existing monolith uses HTTP, then we’re off to a good start. HTTP is
such a widely supported protocol that you have a wealth of options out there for
managing the redirection. I would probably opt for a dedicated proxy like NGINX,
which has been created with exactly these sorts of use cases in mind, and can support
a multitude of redirection mechanisms that are tried and tested and likely to perform
fairly well.

86 | Chapter 3: Splitting the Monolith

Some redirections will be simpler than others. Consider redirection around URI
paths, perhaps as would be exhibited making use of REST resources. In Figure 3-9,
we move the entire Invoice resource over to our new service, and this is easy to parse
from the URI path.

Figure 3-9. Redirection by resources

Pattern: Strangler Fig Application | 87

If, however, the existing system buries information about the nature of the function‐
ality being called somewhere in the request body (perhaps in a form parameter), our
redirection rule will need to be able to switch on a parameter in the POST—some‐
thing that is possible, but more complicated. It is certainly worth checking the proxy
options available to you to make sure they are able to handle this if you find yourself
in this situation.

If the nature of interception and redirection is more complex, or in situations where
the monolith is using a less well-supported protocol, you might be tempted to code
something yourself, but you should be very cautious about this approach. I’ve written
a couple of network proxies by hand before (one in Java, the other in Python), and
while it may say more about my coding ability than anything else, in both situations
the proxies were incredibly inefficient, adding significant lag into the system. Nowa‐
days if I needed more custom behavior, I’d be more likely to consider adding custom
behavior to a dedicated proxy—for example, NGINX allows you to use code written
in Lua to add custom behavior.

Incremental rollout
As you can see in Figure 3-10, this technique allows for architectural changes to be
made via a series of small steps, each of which can be done alongside other work on
the system.

You might consider the switchover to a new implementation of the Payroll function‐
ality to still be too big, in which case you can take smaller slices of functionality. You
can consider, for example, migrating only part of the Payroll functionality and divert‐
ing calls appropriately—having some of the behavior implemented in the monolith,
and part in the microservice, as shown in Figure 3-11. This can cause issues if both
the functionality in the monolith and in the microservice need to see the same set of
data, as this will likely require a shared database and all the problems this can bring.

No big bang, stop-the-line re-platforming required. This makes it much easier to
break this work into stages that can be delivered alongside other delivery work.
Rather than breaking your backlog into “feature” and “technical” stories, fold all this
work together. Get good at making incremental changes to your architecture while
still delivering new features!

88 | Chapter 3: Splitting the Monolith

Figure 3-10. An overview of implementing an HTTP-based strangler

Pattern: Strangler Fig Application | 89

Figure 3-11. An overview of implementing an HTTP-based strangler

Changing Protocols
You could also use your proxy to transform the protocol. For example, you may cur‐
rently expose a SOAP-based HTTP interface, but your new microservice is going to
support a gRPC interface instead. You could then configure the proxy to transform
requests and responses accordingly, as shown in Figure 3-12.

90 | Chapter 3: Splitting the Monolith

Figure 3-12. Using a proxy to change communication protocol as part of a strangler
migration

I do have concerns about this approach, primarily due to the complexity and logic
that starts to build up in the proxy itself. For a single service, this doesn’t look too
bad, but if you start transforming the protocol for multiple services, the work being
done in the proxy builds up and up. We’re typically optimizing for independent
deployability of our services, but if we have a shared proxy layer that multiple teams
need to edit, this can slow down the process of making and deploying changes. We
need to be careful that we aren’t just adding a new source of contention. There is the
oft-stated mantra of “Keep the pipes dumb, the endpoints smart” when we discuss
microservice architecture. We want to reduce how much functionality gets pushed
into shared middleware layers, as this can really slow down feature development.

If you want to migrate the protocol being used, I’d much rather push the mapping
into the service itself—with the service supporting both your old communication
protocol and the new protocol. Inside the service, calls to our old protocol could just
get remapped internally to the new communication protocol, as we see in
Figure 3-13. This avoids the need to manage changes in proxy layers used by other
services and puts the service in full control over how this functionality changes over
time. You can see microservices as a collection of functionality on a network end‐
point. You might expose that same functionality in different ways to different con‐
sumers; by supporting different message or request formats inside this service, we’re
basically just supporting the different needs of our upstream consumers.

Pattern: Strangler Fig Application | 91

1 For a more thorough explanation, see “The Road to an Envoy Service Mesh” by Snow Pettersen at Square’s
developer blog.

Figure 3-13. If you want to change protocol type, consider having a service expose its
capabilities over multiple types of protocol

By pushing service-specific request and response mapping inside the service, this
keeps the proxy layer simple and much more generic. Additionally, by a service pro‐
viding both types of endpoints, you give yourself time to migrate upstream consum‐
ers before potentially retiring the old API.

And service meshes
At Square, they adopted a hybrid approach to solve this problem.1 They had decided
to migrate away from their own homegrown RPC mechanism for service-to-service
communication, in favor of adopting gRPC, a well-supported open source RPC
framework with a very broad ecosystem. To make this as painless as possible, they
wanted to reduce the amount of change needed in each service. To do this, they made
use of a service mesh.

With a service mesh, shown in Figure 3-14, each service instance communicates with
other service instances via its own, dedicated local proxy. Each proxy instance can be
configured specifically for the service instance it is partnered with. You can also pro‐
vide centralized control and monitoring of these proxies by using a control plane. As
there is no central proxy layer, you avoid the pitfalls regarding having a shared
“smart” pipe—effectively, each service can own its own piece of the service-to-service

92 | Chapter 3: Splitting the Monolith

https://squ.re/2nts1Gc

pipe if needed. It’s worth noting that because of the way Square’s architecture had
evolved, the company ended up having to create its own service mesh specific to its
needs, albeit making use of the Envoy open source proxy, rather than being able to
use an established solution like Linkerd or Istio.

Figure 3-14. An overview of a service mesh

Service meshes are growing in popularity, and conceptually I think the idea is spot
on. They can be a great way to handle common service-to-service communication
concerns. My worry is that despite a lot of work by some very smart people, it has
taken a while for the tooling in this space to stabilize. Istio seems to be the clear
leader, but it’s far from the only option in this space, and there are new tools emerg‐
ing on what seems to be a weekly basis. My general advice has been to give the service
mesh space a bit more time to stabilize if you can before making your choice.

Example: FTP
Although I’ve spoken at length regarding the use of the strangler pattern for HTTP-
based systems, there is nothing to stop you from intercepting and redirecting other
forms of communication protocols. Homegate, a Swiss real estate company, used a
variation of this pattern to change how customers uploaded new real estate listings.

Pattern: Strangler Fig Application | 93

Homegate’s customers uploaded listings via FTP, with an existing monolithic system
handling the uploaded files. The company was keen to move over to microservices,
and also wanted to start to support a new upload mechanism that, rather than sup‐
porting batch FTP upload, was going to use a REST API that matched a soon-to-be-
ratified standard.

The real estate company didn’t want to have to change things from the customer
point of view—it wanted to make any changes seamless. This means that FTP still
needed to be the mechanism by which customers interacted with the system, at least
for the moment. In the end, the company intercepted FTP uploads (by detecting
changes in the FTP server log), and directed newly uploaded files to an adapter that
converted the uploaded files into requests to the new REST API, as shown in
Figure 3-15.

Figure 3-15. Intercepting an FTP upload and diverting it to a new listings service for
Homegate

From a customer point of view, the upload process itself didn’t change. The benefit
came from the fact that the new service that handled the upload was able to publish
the new data much more quickly, helping customers get their adverts live much faster.
Later on, there is a plan to directly expose the new REST API to customers. Interest‐
ingly, during this period, both listing upload mechanisms were enabled. This allowed
the team to make sure the two upload mechanisms were working appropriately. This
is a great example of a pattern we’ll explore later in “Pattern: Parallel Run” on page
113.

Example: Message Interception
So far we’ve looked at intercepting synchronous calls, but what if your monolith is
driven from some other form of protocol, perhaps receiving messages via a message
broker? The fundamental pattern is the same—we need a method to intercept the
calls, and to redirect them to our new microservice. The main difference is the nature
of the protocol itself.

94 | Chapter 3: Splitting the Monolith

2 Bobby Woolf and Gregor Hohpe, Enterprise Integration Patterns (Addison-Wesley, 2003).

Content-based routing
In Figure 3-16, our monolith receives numerous messages, a subset of which we need
to intercept.

Figure 3-16. A monolith receiving calls via a queue

A simple approach would be to intercept all messages intended for the downstream
monolith, and filter the messages on to the appropriate location, as outlined in
Figure 3-17. This is basically an implementation of the content-based router pattern,
as described in Enterprise Integration Patterns.2

Figure 3-17. Using a content-based router to intercept messaging calls

This technique allows us to leave the monolith untouched, but we’re placing another
queue on our request path, which could add additional latency and is another thing
we need to manage. The other concern is how many “smarts” are we placing into our
messaging layer? In Chapter 4 of Building Microservices, I spoke about the challenges
caused by systems making use of too many smarts in the networks between your
services, as this can make systems harder to understand and harder to change.

Pattern: Strangler Fig Application | 95

Instead I urged you to embrace the mantra of “smart endpoints, dumb pipes,” some‐
thing that I still push for. It’s arguable here that the content-based router is us imple‐
menting a “smart pipe”—adding complexity in terms of how calls are routed between
our systems. In some situations, this is a highly useful technique, but it’s up to you
find a happy balance.

Selective consumption
An alternative would be to change the monolith and have it ignore messages sent
which should be received by our new service, as we see in Figure 3-18. Here, we have
both our new service and our monolith share the same queue, and locally they use
some sort of pattern-matching process to listen to the messages they care about. This
sort of filtering is quite a common requirement in message-based systems and can be
implemented using something like a Message Selector in JMS or using equivalent
technology on other platforms.

Figure 3-18. Using a content-based router to intercept messaging calls

This filtering approach reduces the need to create an additional queue but has a cou‐
ple of challenges. First, your underlying messaging technology may or may not let
you share a single queue subscription like this (although this is a common feature, so
I would be surprised if this was the case). Second, when you want to redirect the calls,
it requires two changes to be fairly well coordinated. You need to stop your monolith
from reading the calls meant for the new service, and then have the service pick them
up. Likewise, reverting the call interception requires two changes to roll back.

The more types of consumers you have for the same queue, and the more complex
the filtering rules, the more problematic things can become. It can be easy to imagine
a situation in which two consumers start receiving the same message due to overlap‐
ping rules, or even the opposite—some messages are being ignored altogether. For
this reason, I would likely consider using selective consumption with only a small
number of consumers and/or with a simple set of filtering rules. A content-based

96 | Chapter 3: Splitting the Monolith

routing approach is likely to make more sense as the number of types of consumers
increases, although beware of the potential downsides cited previously, especially fall‐
ing into the “smart pipes” problem.

The added complication with either this solution or content-based routing is that if
we are using an asynchronous request-response style of communication, we’ll need to
make sure we can route the request back to the client, hopefully without them realiz‐
ing anything has changed. There are other options for call routing in message-driven
systems, many of which can help you implement strangler fig pattern migrations. I
thoroughly recommend Enterprise Integration Patterns as a great resource here.

Other Protocols
As I hope you can understand from this example, there are lots of ways to intercept
calls into your existing monolith, even if you use different types of protocols. What if
your monolith is driven by a batch file upload? Intercept the batch file, extract the
calls that you want to intercept, and remove them from the file before you forward it
on. True, some mechanisms make this process more complicated, and it’s much easier
if using something like HTTP, but with some creative thinking the strangler fig pat‐
tern can be used in a surprising number of situations.

Other Examples of the Strangler Fig Pattern
The strangler fig pattern is highly useful in any context where you are looking to
incrementally re-platform an existing system, and its use isn’t limited to teams imple‐
menting microservice architectures. The pattern was in use for a long time before
Martin Fowler wrote it up in 2004. At my previous employer, ThoughtWorks, we
often used it to help rebuild monolithic applications. Paul Hammant has authored a
collated nonexhaustive list of projects where we used this pattern over on his blog.
They include a trading company’s blotter, an airline booking application, a rail ticket‐
ing system, and a classified ad portal.

Changing Behavior While Migrating Functionality
Here and elsewhere in the book, I focus on patterns that I chose specifically because
they can be used to incrementally migrate an existing system to a microservice archi‐
tecture. One of the main reasons for this is it lets you mix in migration work with
ongoing feature delivery. But there is still a problem that occurs when you want to
change or enrich system behavior that is actively being migrated.

Imagine, for example, that we are going to make use of the strangler fig pattern to
move our existing Payroll functionality out of the monolith. The strangler fig pattern
allows us to do this in multiple steps, with each step theoretically allowing us to roll
back. If we’d rolled out a new Payroll service to our customers and found an issue

Changing Behavior While Migrating Functionality | 97

http://bit.ly/2paBpyP

with it, we could divert calls to Payroll functionality back to the old system. This
works well if the monolith and microservice Payroll functionality is functionally
equivalent, but what if we’d changed how Payroll behaves as part of the migration?

If the Payroll microservice had a few bug fixes applied to how it works that hadn’t
been back-ported to the equivalent functionality in the monolith, then a rollback
would also cause those bugs to reappear in the system. This can get more problematic
if you’d added new functionality to the Payroll microservice—a rollback would then
require removing features from your customers.

There is no easy fix here. If you allow for changes in functionality you are moving
before the migration is complete, then you have to accept that you are making any
rollback harder. It’s easier if you don’t allow for any changes until the migration is
complete. The longer the migration takes, the harder it can be to enforce a “feature
freeze” in this part of the system—if there is a demand for part of your system to
change, that demand is unlikely to go away. The longer it takes you to complete the
migration, the more pressure you’ll be under to “just slip this feature in while you’re
at it.” The smaller you make each migration, the less pressure you’ll be under to
change the functionality being migrated before the migration has completed.

When migrating functionality, try to eliminate any changes in the
behavior being moved—delay new features or bug fixes until the
migration is complete if you can. Otherwise, you may reduce your
ability to roll back changes to your system.

Pattern: UI Composition
With the techniques we’ve considered so far, we’ve primarily pushed the work of
incremental migration to the server—but the user interface presents us with some
useful opportunities to splice together functionality served in part from an existing
monolith or new microservice architecture.

Many years ago, I was involved in helping move The Guardian online from its exist‐
ing content management system over to a new, custom Java-based platform. This was
going to coincide with the rollout of a whole new look and feel for the online newspa‐
per to tie in with the relaunch of the print edition. As we wanted to embrace an incre‐
mental approach, the cut-over from the existing CMS to the new website served from
the brand-new was phased in parts, targeting specific verticals (travel, news, culture,
etc.). Even within those verticals, we also looked for opportunities to break the migra‐
tion into smaller chunks.

We ended up using two compositional techniques that were useful. From speaking to
other companies, it’s become clear to me over the past several years that variations on

98 | Chapter 3: Splitting the Monolith

https://www.guardian.co.uk/

3 It was nice to hear from Graham Tackley at The Guardian that the “new” system I initially helped implement
lasted almost 10 years before being entirely replaced with the current architecture. As a reader of the website,
I reflected that I never really noticed anything changing during this period!

these techniques are a significant part of how many organizations adopt microservice
architectures.

Example: Page Composition
With The Guardian, although we started by rolling out a single widget (which we’ll
discuss shortly), the plan had always been to mostly use a page-based migration in
order to allow a brand-new look and feel to go live. This was done on a vertical-by-
vertical basis, with Travel being the first we sent live. Visitors to the website during
this transition time would have been presented with a different look and feel when
they went to the new parts of the site. Great pains were also taken to ensure that all
old page links were redirected to the new locations (where URLs had changed).

When The Guardian made another change in technology, moving away from the Java
monolith some years later, they again used a similar technique of migrating a vertical
at a time. At this point, they made use of the Fastly content delivery network (CDN)
to implement the new routing rules, effectively using the CDN much as you might
use an in-house proxy.3

REA Group in Australia, which provides online listings for real estate, has different
teams responsible for commercial or residential listings, owning those whole chan‐
nels. In such a situation, a page-based composition approach makes sense, as a team
can own the whole end-to-end experience. REA actually employs subtly different
branding for the different channels, which means that page-based decomposition
makes even more sense as you can deliver quite different experiences to different cus‐
tomer groups.

Example: Widget Composition
At The Guardian, the Travel vertical was the first one identified to be migrated to the
new platform. The rationale was partly that it had some interesting challenges around
categorization, but also that it wasn’t the most high-profile part of the site. Basically,
we were looking to get something live, learn from that experience, but also make sure
that if something did go wrong, then it wouldn’t affect the prime parts of the site.

Rather than go live with the whole travel part of the website, replete with in-depth
reportage of glamorous destinations all over the world, we wanted a much more low-
key release to test out the system. Instead, we deployed a single widget displaying the
top 10 travel destinations, defined using the new system. This widget was spliced into
the newspaper’s old travel pages, as shown in Figure 3-19. In our case, we made use of

Pattern: UI Composition | 99

4 See Steve Hoffman and Rick Fast, “Enabling Microservices at Orbitz”, YouTube, August 11, 2016.

a technique called Edge-Side Includes (ESI), using Apache. With ESI, you define a
template in your web page, and a web server splices in this content.

Figure 3-19. Using Edge-Side Includes to splice in content from the new Guardian CMS

Nowadays, splicing in a widget purely on the server side seems less common. This is
largely because browser-based technology has become more sophisticated, allowing
for much more composition to be done in the browser itself (or in the native app—
more on that later). This means for widget-based web UIs, the browser itself is often
making multiple calls to load various widgets using a multitude of techniques. This
has the further benefit that if one widget fails to load—perhaps because the backing
service is unavailable—the other widgets can still be rendered, allowing for only a
partial, rather than total, degradation of service.

Although in the end we mostly used page-based composition at The Guardian, many
other companies make heavy use of widget-based composition with supporting back‐
end services. Orbitz (now part of Expedia), for example, created dedicated services
just to serve up a single widget.4 Prior to its move to microservices, the Orbitz website
was already broken into separate UI “modules” (in Orbitz nomenclature). These
modules could represent a search form, booking form, map, etc. These UI modules
were initially served directly from the Content Orchestration service, as we see in
Figure 3-20.

100 | Chapter 3: Splitting the Monolith

http://bit.ly/2nGNgnI

Figure 3-20. Before migration to microservices, Orbitz’s Content Orchestration service
served up all modules

The Content Orchestration service was in effect a large monolith. Teams that owned
these modules all had to coordinate changes being made inside the monolith, causing
significant delays in rolling out changes. This is a classic example of the Delivery
Contention problem I highlighted in Chapter 1—whenever teams have to coordinate
to roll out a change, the cost of change goes up. As part of a drive toward faster
release cycles, when Orbitz decided to try microservices, they focused their decompo‐
sition along these module lines—starting with the editorial module. The Content
Orchestration service was changed to delegate responsibility for transitioned modules
to downstream services, as we see in Figure 3-21.

Pattern: UI Composition | 101

Figure 3-21. Modules were migrated one at a time, with the Content Orchestration ser‐
vice delegating to the new backing services

The fact that the UI was already decomposed visually along these lines made this
work easier to do in an incremental fashion. This transition was further helped as the
separate modules already had clean lines of ownership, making it easier to perform
migrations without interfering with other teams.

It’s worth noting that not all user interfaces suit decomposition into clean widgets—
but when they can, it makes the work of incremental migration to microservices
much easier.

And mobile applications
While we’ve spoken primarily about web-based UIs, some of these techniques can
work well for mobile-based clients too. Both Android and iOS, for example, provide
the ability to componentize parts of their user interfaces, making it easier for these
parts of the UI to be worked on in isolation, or recombined in different ways.

One of the challenges with deploying changes with native mobile applications is that
both the Apple App Store and Google Play store require applications to be submitted
and vetted prior to new versions being made available. While the times for applica‐
tions to be signed off by the app stores have in general reduced significantly over the
last several years, this still adds time before new releases of software can be deployed.

102 | Chapter 3: Splitting the Monolith

5 See John Sundell, “Building Component-Driven UIs at Spotify”, published August 25, 2016.

The app itself is also at this point a monolith: if you want to change one single part of
a native mobile application, the whole application still needs to be deployed. You also
have to consider the fact that users have to download the new app to see the new fea‐
tures—something you typically don’t have to deal with when using a web-based appli‐
cation, as changes are seamlessly delivered to the users’ browser.

Many organizations have dealt with this by allowing them to make dynamic changes
to an existing native mobile application without having to resort to deploying a new
version of a native application. By deploying changes on the server side, client devices
can immediately see the new functionality without necessarily having to deploy a new
version of the native mobile application. This can be achieved simply using things
like embedded web views, although some companies use more sophisticated techni‐
ques.

Spotify’s UI across all platforms is heavily component-oriented, including its iOS and
Android applications. Pretty much everything you see is a separate component, from
a simple text header, to album artwork, or a playlist.5 Some of these modules are, in
turn, backed by one or more microservices. The configuration and layout of these UI
components is defined in a declarative fashion on the server side; Spotify engineers
are able to change the views that users see and roll that change quickly, without need‐
ing to submit new versions of their application to the app store. This allows them to
much more rapidly experiment and try out new features.

Example: Micro Frontends
As bandwidth and the capability of web browsers have improved, so has the sophisti‐
cation of the code running in browsers improved. Many web-based user interfaces
now make use of some form of single-page application framework, which does away
with the concept of an application consisting of different web pages. Instead, you
have a more powerful user interface, where everything runs in a single pane—effec‐
tively in-browser user experiences that previously were available only to those of us
working with “thick” UI SDKs like Java’s Swing.

By delivering an entire interface in a single page, we obviously can’t consider page-
based composition, so we have to consider some form of widget-based composition.
Attempts have been made to codify common widget formats for the web—most
recently, the Web Components specification is attempting to define a standard com‐
ponent model supported across browsers. It has taken a long while, though, for this
standard to gain any traction, with browser support (among other things) being a
considerable stumbling block.

Pattern: UI Composition | 103

http://bit.ly/2nDpJUP

People making use of single-page app frameworks like Vue, Angular, or React haven’t
sat around waiting for Web Components to solve their problems. Instead, many peo‐
ple have tried to tackle the problem of how to modularize UIs built with SDKs that
were initially designed to own the whole browser pane. This has led to the push
toward what some people have called Micro Frontends.

At first glance, Micro Frontends really are just about breaking down a user interface
into different components that can be worked on independently. In that, they are
nothing new—component-oriented software predates my birth by several years!
What is more interesting is that people are working out how to make web browsers,
SPA SDKs, and componentization work together. How exactly do you create a single
UI out of bits of Vue and React without having their dependencies clash, but still
allow them to potentially share information?

Covering this topic in depth is out of scope for this book, partly because the exact way
you make this work will vary based on the SPA frameworks being used. But if you
find yourself with a single-page application that you want to break apart, you’re not
alone, and there are many people out there sharing techniques and libraries to make
this work.

Where to Use It
UI composition as a technique to allow for re-platforming systems is highly effective,
as it allows for whole vertical slices of functionality to be migrated. For it to work,
though, you need to have the ability to change the existing user interface to allow for
new functionality to be safely inserted. We’ll cover compositional techniques later in
the book, but it’s worth noting that which techniques you can use will often depend
on the nature of the technology used to implement the user interface. A good old-
fashioned website makes UI composition easy, whereas single-page app technology
does add some complexity and an often bewildering array of implementation
approaches!

Pattern: Branch by Abstraction
For the useful strangler fig pattern, to work, we need to be able to intercept calls at the
perimeter of our monolith. However, what happens if the functionality we want to
extract is deeper inside our existing system? Coming back to a previous example,
consider the desire to extract the Notification functionality, as seen in Figure 3-4.

In order to perform this extraction, we will need to make changes to the existing sys‐
tem. These changes could be significant, and disruptive to other developers working
on the codebase at the same time. We have competing tensions here. On the one
hand, we want to make our changes in incremental steps. On the other hand, we want

104 | Chapter 3: Splitting the Monolith

to reduce the disruption to other people working on other areas of the codebase. This
will naturally drive us toward wanting to complete the work quickly.

Often, when reworking parts of an existing codebase, people will do that work on a
separate source code branch. This allows the changes to be made without disrupting
the work of other developers. The challenge is that once the change in the branch has
been completed, these changes have to be merged back, which can often cause signifi‐
cant challenges. The longer the branch exists, the bigger these problems are. I won’t
go into detail now as to the problems associated with long-lived source code
branches, other than to say they run contrary to the principles of continuous integra‐
tion. I could also throw in that data gathered from “The 2017 State of DevOps
Report” shows that embracing trunk-based development (where changes are made
directly on the main line and branches are avoided) and using short-lived branches
contributes to higher performance of IT teams. Let’s just say that I am not a fan of
long-lived branches, and I’m not alone.

So, we want to be able to make changes to our codebase in an incremental fashion,
but also keep disruption to a minimum for developers working on other parts of our
codebase. There is another pattern we can use that allows us to incrementally make
changes to our monolith without resorting to source code branching. The branch by
abstraction pattern instead relies on making changes to the existing codebase to allow
the implementations to safely coexist alongside each other, in the same version of
code, without causing too much disruption.

How It Works
Branch by abstraction consists of five steps:

1. Create an abstraction for the functionality to be replaced.
2. Change clients of the existing functionality to use the new abstraction.
3. Create a new implementation of the abstraction with the reworked functionality.

In our case, this new implementation will call out to our new microservice.
4. Switch over the abstraction to use our new implementation.
5. Clean up the abstraction and remove the old implementation.

Let’s take a look at these steps with respect to moving our Notification functionality
out into a service, as detailed in Figure 3-4.

Step 1: Create abstraction
The first task is to create an abstraction that represents the interactions between the
code to be changed and the callers of that code, as we see in Figure 3-22. If the exist‐
ing Notification functionality is reasonably well factored, this could be as simple as

Pattern: Branch by Abstraction | 105

http://bit.ly/2pctNfn
http://bit.ly/2pctNfn

applying an Extract Interface refactoring in our IDE. If not, you may need to extract a
seam, as mentioned earlier. This might have you searching your codebase for calls
being made to APIs that send emails, SMSs, or whatever other notification mecha‐
nism you might have. Finding this code and creating an abstraction that the other
code uses is a required step.

Figure 3-22. Step 1: Create an abstraction

Step 2: Use abstraction
With our abstraction created, we now need to refactor the existing clients of the Noti‐
fication functionality to use this new abstraction point, as we see in Figure 3-23. It’s
possible that an Extract Interface refactoring could have done this for us automati‐
cally—but in my experience, it’s more common that this will need to be an incremen‐
tal process, involving manually tracking inbound calls to the functionality in
question. The nice thing here is that these changes are small and incremental; they’re
easy to make in small steps without making too much impact on the existing code. At
this point, there should be no functional change in system behavior.

Step 3: Create new implementation
With our new abstraction in place, we can now start work on our new service-calling
implementation. Inside the monolith, our implementation of the Notification func‐
tionality will mostly just be a client calling out to the external service, as in
Figure 3-24—the bulk of the functionality will be in the service itself.

The key thing to understand at this point is that although we have two implementa‐
tions of the abstraction in the codebase at the same time, only one implementation is
currently active in the system. Until we’re happy that our new service-calling imple‐
mentation is ready to send live, it is in effect dormant. While we work to implement
all the equivalent functionality in our new service, our new implementation of the
abstraction could return Not Implemented errors. This doesn’t stop us writing tests

106 | Chapter 3: Splitting the Monolith

for the functionality we have written, of course, and this is one of the benefits of get‐
ting this work integrated as early as possible.

Figure 3-23. Step 2: Change existing clients to use new abstraction

Figure 3-24. Step 3: Create a new implementation of the abstraction

During this process, we can also deploy our work-in-progress User Notification ser‐
vice into production, just as we did with the strangler fig pattern. The fact that it isn’t
finished is fine—at this point, as our implementation of the Notifications abstraction
isn’t live, the service isn’t actually being called. But we can deploy it, test it in situ, and
verify the parts of the functionality we have implemented are working correctly.

Pattern: Branch by Abstraction | 107

This phase could last a significant amount of time. Jez Humble details the use of the
branch by abstraction pattern to migrate the database persistence layer used in the
continuous delivery application GoCD (at the time called Cruise). The switch from
using iBatis to Hibernate lasted several months—during which the application was
still being shipped to clients on a twice weekly basis.

Step 4: Switch implementation
Once we are happy that our new implementation is working correctly, we switch our
abstraction point so that our new implementation is active, and the old functionality
is no longer being used, as seen in Figure 3-25.

Figure 3-25. Step 4: Switch the active implementation to use our new microservice

Ideally, as with the strangler fig pattern, we’d want to use a switching mechanism that
can be toggled easily. This allows us to quickly switch back to the old functionality if
we found a problem with it. A common solution to this would be to use feature tog‐
gles. In Figure 3-26, we see toggles being implemented using a configuration file,
allowing us to change the implementation being used without having to change code.
If you want to know more about feature toggles and how to implement them, then
Pete Hodgson has an excellent write-up.

108 | Chapter 3: Splitting the Monolith

http://bit.ly/2p95lv7

Figure 3-26. Step 5: Using feature toggles to switch between implementations

At this stage, we have two implementations of the same abstraction, which we hope
should be functionality equivalent. We can use tests to verify equivalency, but we also

Pattern: Branch by Abstraction | 109

have the option here to use both implementations in production to provide additional
verification. This idea is explored further in “Pattern: Parallel Run” on page 113.

Step 5: Clean up
With our new microservice now providing all notifications for our users, we can turn
our attention to cleaning up after ourselves. At this point, our old User Notifications
functionality is no longer being used, so an obvious step would be to remove it, as
shown in Figure 3-27. We are starting to shrink the monolith!

Figure 3-27. Step 6: Remove the old implementation

110 | Chapter 3: Splitting the Monolith

When removing the old implementation, it would also make sense to remove any fea‐
ture flag switching we may have implemented. One of the real problems associated
with the use of feature flags is leaving old ones lying around—don’t do that! Remove
flags you don’t need anymore to keep things simple.

Finally, with the old implementation gone, we have the option of removing the
abstraction point itself, as in Figure 3-28. It’s possible, however, that the creation of
the abstraction may have improved the codebase to the point where you’d rather keep
it in place. If it’s something as simple as an interface, retaining it will have minimal
impact on the existing codebase.

Figure 3-28. Step 7: (Optional) Remove the abstraction point

As a Fallback Mechanism
The ability for us to switch back to our previous implementation if our new service
isn’t behaving is useful, but is there a way we could do that automatically? Steve Smith

Pattern: Branch by Abstraction | 111

details a variation of the branch by abstraction pattern called verify branch by
abstraction that also implements a live verification step—we can see an example of
this in Figure 3-29. The idea is that if calls to the new implementation fail, then the
old implementation could be used instead.

Figure 3-29. Verify branch by abstraction

This clearly adds some complexity, not only in terms of code but also in terms of rea‐
soning about the system. Effectively, both implementations might be active at any
given point in time, which can make understanding system behavior more difficult. If
the two implementations are in anyway stateful, then we also have data consistency to
consider. Although data consistency is a challenge in any situation where we are
switching between implementations, The verify branch by abstraction pattern allows
for us to switch back and forth between implementations on a request-by-request
basis, which means you’ll need a consistent shared set of data that both implementa‐
tions can access.

We’ll explore this idea in more detail in just a moment when we look at the more
generic parallel run pattern.

Where to Use It
Branch by abstraction is a fairly general-purpose pattern, useful in any situation
where changes to the existing codebase are likely going to take time to carry out, but

112 | Chapter 3: Splitting the Monolith

http://bit.ly/2mLVevz
http://bit.ly/2mLVevz

where you want to avoid disrupting your colleagues too much. In my opinion, it is a
better option than the use of long-lived code branches in nearly all circumstances.

For migration to a microservice architecture, I’d nearly always look to use a strangler
fig pattern first, as it’s simpler in many regards. However, there are some situations, as
with Notifications here, where that just isn’t possible.

This pattern also assumes that you can change the code of the existing system. If you
can’t, for whatever reason, you may need to look at other options, some of which we
explore in the rest of this chapter.

Pattern: Parallel Run
There is only so much testing you can do of your new implementation before you
deploy it. You’ll do your best to ensure that your prerelease verification of your new
microservice is done in as production-like a way as possible as part of a normal test‐
ing process, but we all understand that it isn’t always possible to think of every sce‐
nario that could occur in a production setting. But there are other techniques
available to us.

Both the strangler fig pattern and branch by abstraction pattern allow old and new
implementations of the same functionality to coexist in production at the same time.
Typically, both of these techniques allow us to execute either the old implementation
in the monolith or the new microservice-based solution. To mitigate the risk of
switching over to the new service-based implementation, these techniques allow us to
quickly switch back to the previous implementation.

When using a parallel run, rather than calling either the old or the new implementa‐
tion, instead we call both, allowing us to compare the results to ensure they are equiv‐
alent. Despite calling both implementations, only one is considered the source of
truth at any given time. Typically, the old implementation is considered the source of
truth until the ongoing verification reveals that we can trust our new implementation.

This pattern has been used in different forms for decades, although typically it is used
to run two systems in parallel. I’d argue this pattern can be just as useful within a sin‐
gle system, when comparing two implementations of the same functionality.

This technique can be used to verify not just that our new implementation is giving
the same answers as the existing implementation, but that it is also operating within
acceptable nonfunctional parameters. For example, is our new service responding
quickly enough? Are we seeing too many time-outs?

Example: Comparing Credit Derivative Pricing
Many years ago, I was involved in a project to change the platform being used to per‐
form calculations on a type of financial product called credit derivatives. The bank I

Pattern: Parallel Run | 113

6 Turned out we were terrible at this as an industry. I recommend Martin Lewis’s The Big Short (W. W. Norton &
Company, 2010) as an excellent overview of the part that credit derivatives played in the global financial crisis
of 2007–2008. I often look back at the small part I played in this industry with a great deal of regret. It turns
out not knowing what you’re doing and doing it anyway can have some pretty disastrous implications.

was working at needed to make sure the various derivatives it was offering would be a
sensible deal for them. Would we make money on this trade? Was the trade too risky?
Once issued, market conditions would also change. So they also needed to assess the
value of current trades to make sure they weren’t vulnerable to huge losses as market
conditions changed.6

We were almost entirely replacing the existing system that performed these important
calculations. Because of the amount of money involved, and the fact that some peo‐
ple’s bonuses were based in part on the value of the trades that had been made, there
was a great degree of concern over the changes. We made the decision to run the two
sets of calculations side by side and carry out daily comparisons of the results. The
pricing events were triggered via events, which were easy to duplicate such that both
systems carried out the calculations, as we see in Figure 3-30.

Figure 3-30. An example of a parallel run—both pricing systems are invoked, with the
results compared offline

114 | Chapter 3: Splitting the Monolith

Each morning, we’d run a batch reconciliation of the results, and would then need to
account for any variations in results. We actually wrote a program to perform the rec‐
onciliation. We presented the results in an Excel spreadsheet, making it easy to dis‐
cuss the variations with the experts at the bank.

It turned out we did have a few issues that we had to fix, but we also found a larger
number of discrepancies caused by bugs in the existing system. This meant that some
of the different results were actually correct, but we had to show our work (made
much easier due to surfacing the results in Excel). I remember having to sit down
with analysts and explain why our results were correct by working things out from
first principles.

Eventually, after a month, we switched over to using our system as the source of truth
for the calculations, and some time later we retired the old system (we kept it around
for a few more months in case we needed to carry out any auditing of calculations
done on the old system).

Example: Homegate Listings
As we discussed earlier in “Example: FTP” on page 93, Homegate ran both its listing
import systems in parallel, with the new microservice that handled list imports being
compared against the existing monolith. A single FTP upload by a customer would
cause both systems to be triggered. Once they had confirmed that the new microser‐
vice was behaving in an equivalent fashion, the FTP import was disabled in the old
monolith.

N-Version Programming
It could be argued that a variation of parallel run exists in certain safety critical con‐
trol systems, such as fly-by-wire aircraft. Rather than relying on mechanical controls,
airliners increasingly rely on digital control systems. When a pilot uses the controls,
rather than this pulling cables to control the rudder, instead fly-by-wire aircraft this
sends inputs to control systems that decide how much to turn the rudder by. These
control systems have to interpret the signals they are being sent and carry out the
appropriate action.

Obviously, a bug in these control systems could be extremely dangerous. To offset the
impact of defects, for some situations multiple implementations of the same function‐
ality are used side by side. Signals are sent to all implementations of the same subsys‐
tem, which then send their response. These results are compared and the “correct”

Pattern: Parallel Run | 115

7 See Liming Chen and Algirdas Avizienis, “N-Version Programming: A Fault-Tolerance Approach to Reliabil‐
ity of Software Operation,” published in the Twenty-Fifth International Symposium on Fault-Tolerant Com‐
puting (1995).

one selected, normally by looking for a quorum among the participants. This is a
technique known as N-version programming.7

The end goal with this approach is not to replace any of the implementations, unlike
the other patterns we have looked at in this chapter. Instead, the alternative imple‐
mentations will continue to exist alongside each other, with the alternative implemen‐
tations hopefully reducing the impact of a bug in any one given subsystem.

Verification Techniques
With a parallel run, we want to compare functional equivalence of the two implemen‐
tations. If we take the example of the credit derivative pricer from before, we can treat
both versions as functions—given the same inputs, we expect the same outputs. But
we also can (and should) validate the nonfunctional aspects, too. Calls made across
network boundaries can introduce significant latency and can be the cause of lost
requests due to time-outs, partitions, and the like. So our verification process should
also extend to making sure that the calls to the new microservice complete in a timely
manner, with an acceptable failure rate.

Using Spies
In the case of our previous notification example, we wouldn’t want to send an email
to our customer twice. In that situation, a Spy could be handy. A pattern from unit
testing, a Spy can stand in for a piece of functionality, and allows us to verify after the
fact that certain things were done. The Spy stands in and replaces a piece of function‐
ality, stubbing it out.

So for our Notification functionality, we could use a Spy to replace the low-level code
that is used to actually send the email, as shown in Figure 3-31. Our new Notifica‐
tions service would then use this Spy during the parallel run phase to allow us to ver‐
ify that this side effect (the sending of the email) would be triggered when the
sendNotification call is received by the service.

116 | Chapter 3: Splitting the Monolith

Figure 3-31. Using a Spy to verify that emails would have been sent during a parallel run

Note that we could have decided to use the Spy inside the monolith, and avoid our
RemoteNotification code ever making a service call. However this is likely not what
you want, as you actually do want to take into account the impact of the remote calls
being made—to understand if time-outs, failures, or general latency to our new Noti‐
fications service is causing us issues.

One added complexity here is the fact that our Spy is running in a separate process,
which will complicate when the verification process could be carried out. If we
wanted this to happen live, within the scope of the original request, we’d likely need to
expose methods on the Notifications service to allow for verification to be carried out
after the initial call is sent to our Notifications service. This could be a significant
amount of work, and in many cases you don’t need live verification. A more likely
model for verification of out-of-process spies would be to record the interactions to
allow for the verification to be done out of band—perhaps on a daily basis. Obviously,
if we did use the Spy to replace the call to the Notifications service, the verification
gets easier, but we’re testing less! The more functionality you replace with a Spy, the
less functionality is actually being tested.

GitHub Scientist
GitHub’s Scientist library is a notable library to help implement this pattern at a code
level. It’s a Ruby library that allows you to run implementations side by side and cap‐
ture information about the new implementation to help you understand if it is work‐
ing properly. I’ve not used it myself, but I can see how having a library like this would
really help in verifying your new microservice-based functionality against the existing
system—ports now exist for multiple languages including Java, .NET, Python,
Node.JS, and many more besides.

Pattern: Parallel Run | 117

https://github.com/github/scientist

Dark Launching and Canary Releasing
It’s worth calling out that a parallel run is different from what is traditionally called
canary releasing. A canary release involves directing some subset of your users to the
new functionality, with the bulk of your users seeing the old implementation. The
idea is that if the new system has a problem, then only a subset of requests are impac‐
ted. With a parallel run, we call both implementations.

Another related technique is called dark launching. With dark launching, you deploy
the new functionality and test it, but the new functionality is invisible to your users.
So a parallel run is a way of implementing dark launching, as the “new” functionality
is in effect invisible to your users until you’ve switched over what system is live.

Dark launching, parallel runs, and canary releasing are techniques that can be used to
verify that our new functionality is working correctly, and reduce the impact if this
turns out not to be the case. All these techniques fall under the banner of what is
called progressive delivery—an umbrella term coined by James Governor to describe
methods to help control how software is rolled out to your users in a more nuanced
fashion, allowing you to release software more quickly while validating its efficacy
and reducing the impact of problems should they occur.

Where to Use It
Implementing a parallel run is rarely a trivial affair, and is typically reserved for those
cases where the functionality being changed is considered to be high risk. We’ll exam‐
ine an example of this pattern being used for medical records in Chapter 4. I’d cer‐
tainly be fairly selective about where I used this pattern—the work to implement this
needs to be traded off against the benefits you gain. I’ve used this pattern myself only
once or twice, but in those situations it has been hugely useful.

Pattern: Decorating Collaborator
What happens if you want to trigger some behavior based on something happening
inside the monolith, but you are unable to change the monolith itself? The decorating
collaborator pattern can help greatly here. The widely known decorator pattern allows
you to attach new functionality to something without the underlying thing knowing
anything about it. We are going to use a decorator to make it appear that our mono‐
lith is making calls to our services directly, even though we haven’t actually changed
the underlying monolith.

Rather than intercepting these calls before they reach the monolith, we allow the call
to go ahead as normal. Then, based on the result of this call, we can call out to our
external microservices through whatever collaboration mechanism we choose. Let’s
explore this idea in detail with an example from Music Corp.

118 | Chapter 3: Splitting the Monolith

http://bit.ly/2lZjrxK

Example: Loyalty Program
Music Corp is all about our customers! We want to add the ability for them to earn
points based on orders being placed, but our current order placement functionality is
complex enough that we’d rather not change it right now. So the order placement
functionality will stay in the existing monolith, but we will use a proxy to intercept
these calls, and based on the outcome decide how many points to deliver, as shown in
Figure 3-32.

Figure 3-32. When an order is placed successfully, our proxy calls out to the Loyalty ser‐
vice to add points for the customer

With the strangler fig pattern, the proxy was fairly simplistic. Now our proxy is hav‐
ing to embody quite a few more “smarts.” It needs to make its own calls out to the
new microservice and tunnel responses back to the customer. As before, keep an eye
on complexity that sits in the proxy. The more code you start adding here, the more it
ends up becoming a microservice in its own right, albeit a technical one, with all the
challenges we’ve discussed previously.

Another potential challenge is that we need enough information from the inbound
request to be able to make the call to the microservice. For example, if we want to
reward points based on the value of the order, but the value of the order isn’t clear
from either the Place Order request or response, we may need to look up additional
information—perhaps calling back into the monolith to extract the required informa‐
tion as in Figure 3-33.

Pattern: Decorating Collaborator | 119

Figure 3-33. Our Loyalty service needs to load additional order details to work out how
many points to award

Given that this call could generate additional load, and arguably introduces a circular
dependency, it might be better to change the monolith to provide the required infor‐
mation when order placement completes. This, though, would either require chang‐
ing the code of the monolith, or else perhaps using a more invasive technique like
change data capture.

Where to Use It
When kept simple, it is a more elegant and less coupled approach than change data
capture. This pattern works best where the required information can be extracted
from the inbound request, or the response back from the monolith. Where more
information is required for the right calls to be made to your new service, the more
complex and tangled this implementation ends up being. My gut feeling is that if the
request and response to and from the monolith don’t contain the information you
need, then think carefully before using this pattern.

Pattern: Change Data Capture
With change data capture, rather than trying to intercept and act on calls made into
the monolith, we react to changes made in a datastore. For change data capture to
work, the underlying capture system has to be coupled to the monolith’s datastore.
That’s really an unavoidable challenge with this pattern.

Example: Issuing Loyalty Cards
We want to integrate some functionality to print out loyalty cards for our users when
they sign up. At present, a loyalty account is created when a customer is enrolled. As
we can see in Figure 3-34, when enrollment returns from the monolith, we know only

120 | Chapter 3: Splitting the Monolith

that the customer has been successfully enrolled. For us to print a card, we need more
details about the customer. This makes inserting this behavior upstream, perhaps
using a decorating collaborator, more difficult—at the point where the call returns,
we’d need to make additional queries to the monolith to extract the other information
we need, and that information may or may not be exposed via an API.

Figure 3-34. Our monolith doesn’t share much information when a customer is enrolled

Instead, we decide to use change data capture. We detect any insertions into the Loy‐
altyAccount table, and on insertion, we make a call to our new Loyalty Card Printing
service, as we see in Figure 3-35. In this particular situation, we decide to fire a Loy‐
alty Account Created event. Our printing process works best in batch, so this allows
us to build up a list of printing to be done in our message broker.

Figure 3-35. How change data capture could be used to call our new printing service

Implementing Change Data Capture
We could use various techniques to implement change data capture, all of which have
different trade-offs in terms of complexity, reliability, and timeliness. Let’s take a look
at a couple of options.

Pattern: Change Data Capture | 121

Database triggers
Most relational databases allow you to trigger custom behavior when data is changed.
Exactly how these triggers are defined, and what they can trigger varies, but all
modern relational databases support these in one way or another. In the example in
Figure 3-36, our service is called whenever an INSERT is made into the LoyaltyAc‐
count table.

Figure 3-36. Using a database trigger to call our microservice when data is inserted

Triggers need to be installed into the database itself, just like any other stored proce‐
dure. There may also be limitations as to what these triggers can do, although at least
with Oracle they are quite happy for you to call web services or custom Java code.

At first glance, this can seem like quite a simple thing to do. No need to have any
other software running, no need to introduce any new technology. However like
stored procedures, database triggers can be a slippery slope.

A friend of mine, Randy Shoup, once said something along the lines of “Having one
or two database triggers isn’t terrible. Building a whole system off them is a terrible
idea.” And this is often the problem associated with database triggers. The more of
them you have, the harder it can be to understand how your system actually works.
The issue is often with the tooling and change management of database triggers—use
too many, and your application can become some baroque edifice.

So if you’re going to use them, use them very sparingly.

122 | Chapter 3: Splitting the Monolith

Transaction log pollers
Inside most databases, certainly all mainstream transactional databases, there exists a
transaction log. This is normally a file, into which is written a record of all the
changes that have been made. For change data capture, the most sophisticated tooling
tends to make use of this transaction log.

These systems run as a separate process, and their only interaction with the existing
database is via this transaction log, as we see in Figure 3-37. It’s worth noting here
that only committed transactions will show up in the transaction log (which is sort of
the point).

Figure 3-37. A change data capture system making use of the underlying transaction log

These tools will require an understanding of the underlying transaction log format,
and this typically varies across different types of databases. As such, exactly what
tools you’ll have available here will depend on what database you use. A huge array of
tools exist in this space, although many of them are used to support data replication.
There are also a number of solutions designed to map changes to the transaction log
to messages to be placed onto a message broker; this could be very useful if your
microservice is asynchronous in nature.

Restrictions aside, in many ways this is the neatest solution for implementing change
data capture. The transaction log itself shows only changes to the underlying data, so
you aren’t worried about working out what has changed. The tooling runs outside the

Pattern: Change Data Capture | 123

database itself, and can run off a replica of the transaction log, so you have fewer con‐
cerns regarding coupling or contention.

Batch delta copier
Probably the most simplistic approach is to write a program that on a regular sched‐
ule scans the database in question for what data has changed, and copies this data to
the destination. These jobs are often run using tools like cron or similar batch sched‐
uling tools.

The main problem is working out what data has actually changed since the batch
copier last ran. The schema design might make this obvious, or may not. Some data‐
bases allow you to view table metadata to see when parts of the database have
changed, but this is far from universal, and may give you change timestamps at only
the table level when you’d rather have information at a row level. You could start
adding these timestamps yourself, but this could add significant work, and a change
data capture system would handle this problem much more elegantly.

Where to Use It
Change data capture is a useful general-purpose pattern, especially if you need to rep‐
licate data (something we’ll explore more in Chapter 4). In the case of microservice
migration, the sweet spot is where you need to react to a change in data in your mon‐
olith, but are unable to intercept this either at the perimeter of the system using a
strangler or decorator, and cannot change the underlying codebase.

In general, I try to keep the use of this pattern to a minimum because of the chal‐
lenges around some of the implementations of this pattern. Database triggers have
their downsides, and the full-blown change data capture tools that work off transac‐
tion logs can add significant complexity to your solution. Nonetheless, if you under‐
stand these potential challenges, this can be a useful tool to have at your disposal.

Summary
As we’ve seen, a vast array of techniques allow for the incremental decomposition of
existing codebases, and can help you ease into the world of microservices. In my
experience, most folks end up using a mix of approaches; it’s rare that one single tech‐
nique will handle every situation. Hopefully, what I’ve been able to do so far is give
you a variety of approaches and enough information to work out which techniques
may work best for you.

We have glossed over one of the bigger challenges in migrating to a microservice
architecture—data. We can’t put it off any longer! In Chapter 4, we’ll explore how to
migrate data and break apart the databases.

124 | Chapter 3: Splitting the Monolith

CHAPTER 4

Decomposing the Database

As we’ve already explored, there are a host of ways to extract functionality into micro‐
services. However, we need to address the elephant in the room: namely, what do we
do about our data? Microservices work best when we practice information hiding,
which in turn typically leads us toward microservices totally encapsulating their own
data storage and retrieval mechanisms. This leads us to the conclusion that when
migrating toward a microservice architecture, we need to split our monolith’s data‐
base apart if we want to get the best out of the transition.

Splitting a database apart is far from a simple endeavor, however. We need to consider
issues of data synchronization during transition, logical versus physical schema
decomposition, transactional integrity, joins, latency, and more. Throughout this
chapter, we’ll take a look at these issues and explore patterns that can help us.

Before we start with splitting things apart, though, we should look at the challenges—
and coping patterns—for managing a single shared database.

Pattern: The Shared Database
As we discussed in Chapter 1, we can think of coupling in terms of domain coupling,
temporal coupling, or implementation coupling. Of the three, it’s implementation
coupling that often occupies us most when considering databases, because of the
prevalence of people sharing a database among multiple schemas, as we see in
Figure 4-1.

On the face of it, there are a number of issues related to sharing a single database
among multiple services. The major issue, though, is that we deny ourselves the
opportunity to decide what is shared and what is hidden—which flies in the face of
our drive toward information hiding. This means it can be difficult to understand
what parts of a schema can be changed safely. Knowing an external party can access

125

your database is one thing, but not knowing what part of your schema they use is
another. This can be mitigated through the use of views, which we’ll discuss shortly,
but it’s not a total solution.

Figure 4-1. Multiple services all directly accessing the same database

Another issue is that it becomes unclear as to who “controls” the data. Where is the
business logic that manipulates this data? Is it now spread across services? That in
turn implies a lack of cohesion of business logic. As we discussed previously, when
thinking about a microservice as being a combination of behavior and state, encapsu‐
lating one or more state machines. If the behavior that changes this state is now
spread around the system, making sure this state machine can be properly imple‐
mented is a tricky issue.

If, as in Figure 4-1, three services can directly change order information, what hap‐
pens if that behavior is inconsistent across the services? What happens when this
behavior does need to change—do I have to apply those changes to all these services?
As we spoke about earlier, we’re aiming for high cohesion of business functionality,
and all too often a shared database implies the opposite.

126 | Chapter 4: Decomposing the Database

Coping Patterns
Although it can be a difficult activity, splitting the database apart to allow for each
microservice to own its own data is nearly always preferred. If this isn’t possible, the
use of the database view pattern (see the section “Pattern: Database View” on page
128), or adopting the database wrapping service pattern (see the section “Pattern:
Database Wrapping Service” on page 132), can help.

Where to Use It
I think direct sharing of a database is appropriate for a microservice architecture in
only two situations. The first is when considering read-only static reference data.
We’ll explore this topic in more detail shortly, but consider a schema holding country
currency code information, postal code or zip code lookup tables, and the like. Here,
the data structure is highly stable, and change control of this data is typically handled
as an administration task.

The other place where I think multiple services directly accessing the same database
can be appropriate is when a service is directly exposing a database as a defined end‐
point that is designed and managed in order to handle multiple consumers. We’ll
expose this idea further when we discuss the database as a service interface pattern
(see the section “Pattern: Database-as-a-Service Interface” on page 135).

But It Can’t Be Done!
So, ideally, we want our new services to have their own independent schemas. But
that’s not where we start with an existing monolithic system. Does that mean we
should always split these schemas apart? I remain convinced that in most situations
this is the appropriate thing to do, but it isn’t always feasible initially.

Sometimes, as we’ll explore shortly, the work involved will take too long, or involves
changing especially sensitive parts of the system. In such cases, it can be useful to use
a variety of coping patterns that will at the very least stop things from getting any
worse, and at best can be sensible stepping stones toward something better in the
future.

Schemas and Databases
I’ve been guilty in the past of using the terms “database” and “schema” interchangea‐
bly. This can sometimes lead to confusion, as there is some ambiguity in these terms.
Technically, we can consider a schema to be a logically separated set of tables that
hold data, as shown in Figure 4-2. Multiple schemas can then be hosted on a single
database engine. Depending on your context, when people say “database,” they could
be referring to the schema or the database engine (“The database is down!”).

But It Can’t Be Done! | 127

Figure 4-2. A single instance of a database engine can host multiple schemas, each of
which provides logical isolation

As this chapter mostly focuses on logical database concepts, and because the term
“database” is commonly used in this context to relate effectively to a logically isolated
schema, I’ll stick to that usage in this chapter. So where I say “database,” you can think
“logically isolated schema.” For the sake of brevity, I’ll be omitting the concept of a
database engine from our diagrams, unless explicitly called out otherwise.

It’s worth noting that the various NoSQL databases out there may or may not have the
same concept of logical separation, especially when dealing with databases provided
by cloud providers. For example, on AWS, DynamoDB has only the concept of a
table, with role-based access controls being used to limit who can see or change the
data. This can cause challenges in how we think about logical separation in such sit‐
uations.

You’re going to encounter problems with your current system that
seem impossible to deal with right now. Address the problem with
the rest of your team so that everyone can come to an agreement
that this is a problem you’d like to fix, even if you can’t see how
right now. Then make sure you at least start doing the right thing
now. Over time, problems that initially seemed insurmountable
will become easier to deal with once you have some new skills and
experience.

Pattern: Database View
In a situation where we want a single source of data for multiple services, a view can
be used to mitigate the concerns regarding coupling. With a view, a service can be

128 | Chapter 4: Decomposing the Database

1 When you’re relying on network analysis to determine who is using your database, you’re in trouble.

presented with a schema that is a limited projection from an underlying schema. This
projection can limit the data that is visible to the service, hiding information it
shouldn’t have access to.

The Database as a Public Contract
Back in Chapter 3, I discussed my experiences in helping re-platform an existing
credit derivative system for a now defunct investment bank. We hit the issue of data‐
base coupling in a big way: we had a need to increase the throughput of the system in
order to provide faster feedback to the traders who used the system. After some anal‐
ysis, we found that the bottleneck in the processing was the writes being made into
our database. After a quick spike, we realized we could drastically increase the write
performance of our system if we restructured the schema.

It was at this point we found that multiple applications outside our control had read
access to our database, and in some cases read/write access. Unfortunately, we found
that all these external systems had been given the same username and password cre‐
dentials, so it was impossible to understand who these users were, or what they were
accessing. We had an estimate of “over 20” applications as being involved, but that
was derived from some basic analysis of the inbound network calls.1

If each actor (e.g., a human or an external system) has a different
set of credentials, it becomes much easier to restrict access to cer‐
tain parties, reduce the impact of revoking and rotating credentials,
and better understand what each actor is doing. Managing different
sets of credentials can be painful, especially in a microservice sys‐
tem that may have multiple sets of credentials to manage per ser‐
vice. I like the use of dedicated secret stores to solve this problem.
HashiCorp’s Vault is an excellent tool in this space, as it can gener‐
ate per-actor credentials for things like databases that can be short
lived and limited in scope.

So we didn’t know who these users were, but we had to contact them. Eventually,
someone had the idea of disabling the shared account they were using, and waiting
for people to contact us to complain. This is clearly not a great solution to a problem
we shouldn’t have had in the first place, but it worked—mostly. However, we soon
realized that most of these applications weren’t undergoing active maintenance,
meaning there was no chance that they would be updated to reflect a new schema

Pattern: Database View | 129

https://www.vaultproject.io

2 It was rumored that one of the systems using our database was a Python-based neural net that no one under‐
stood but “just worked.”

design.2 In effect, our database schema had become a public-facing contract that
couldn’t change: we had to maintain that schema structure going forward.

Views to Present
Our solution was to first resolve those situations where external systems were writing
into our schema. Luckily, in our case they were easy to resolve. For all those clients
who wanted to read data, though, we created a dedicated schema hosting views that
looked like the old schema, and had clients point at that schema instead, as Figure 4-3
shows. That allowed us to make changes in our own schema, as long as we could
maintain the view. Let’s just say that lots of stored procedures were involved.

Figure 4-3. Using views to allow the underlying schema to change

In our investment banking example, the view and the underlying schema ended up
differing a fair amount. You can, of course, use a view much more simply, perhaps to
hide pieces of information you don’t want made visible to outside parties. As a simple
example, in Figure 4-4, our loyalty service just was a list of loyalty cards in our sys‐
tem. Presently, this information is stored in our customer table as a column. So we
define a view that exposes just the customer ID and the loyalty ID mapping in a sin‐
gle table, without exposing any other information in the customer table. Likewise, any
other tables that may be in the monolith’s database are entirely hidden from the Loy‐
alty service.

130 | Chapter 4: Decomposing the Database

Figure 4-4. A database view projecting a subset of an underlying schema

The ability of a view to project only limited information from the underlying source
allows us to implement a form of information hiding. It gives us control over what is
shared, and what is hidden. This is not a perfect solution, however-there are restric‐
tions with this approach.

Depending on the nature of the database, you may have the option to create a materi‐
alized view. With a materialized view, the view is precomputed—typically, through
the use of a cache. This means a read from a view doesn’t need to generate a read on
the underlying schema, which can improve performance. The trade-off then is
around how this pre-computed view is updated; it may well mean you could be read‐
ing a “stale” set of data from the view.

Limitations
How views are implemented can vary, but typically they are the result of a query. This
means that the view itself is read-only. This immediately limits their usefulness. In
addition, while this is a common feature for relational databases, and many of the
more mature NoSQL databases support views (both Cassandra and Mongo do, for
example), not all do. Even if your database engine does support views, there will likely
be other limitations, such as the need for both the source schema and view to be in
the same database engine. This could increase your physical deployment coupling,
leading to a potential single point of failure.

Ownership
It’s worth noting that changes to the underlying source schema may require the view
to be updated, and so careful consideration should be given to who “owns” the view. I

Pattern: Database View | 131

suggest considering any published database views to be akin to any other service
interface, and therefore something that should be kept up-to-date by the team look‐
ing after the source schema.

Where to Use It
I typically make use of a database view in situations where I think it is impractical to
decompose the existing monolithic schema. Ideally, you should try to avoid the need
for a view if possible, if the end goal is to expose this information via a service inter‐
face. Instead, it’s better to push forward with proper schema decomposition. The lim‐
itations of this technique can be significant. Nonetheless, if you feel that the effort of
full decomposition is too great, then this can be a step in the right direction.

Pattern: Database Wrapping Service
Sometimes, when something is too hard to deal with, hiding the mess can make
sense. With the database wrapping service pattern, we do exactly that: hide the data‐
base behind a service that acts as a thin wrapper, moving database dependencies to
become service dependencies, as we see in Figure 4-5.

Figure 4-5. Using a service to wrap a database

I was working at a large bank in Australia a few years ago on a short engagement to
help one part of the organization implement an improved path to production. On the
first day, we set up a few interviews with key people to understand the challenges they
were facing and to build up an overview of the current process. Between meetings,
someone came up and introduced themselves as the head DBA for that area of the
company. “Please” he said, “Stop them from putting things into the database!”

We grabbed a coffee, and the DBA laid out the problems. Over something like a 30-
year period, a business banking system, one of the crown jewels of the organization,

132 | Chapter 4: Decomposing the Database

had taken shape. One of the more important parts of this system was managing what
they called “entitlements.” In business banking, managing which individuals can
access which accounts, and working out what they are allowed to do with those
accounts, was very complex. To give you an idea of what these entitlements might
look like, consider a bookkeeper who is allowed to view the accounts for companies
A, B, and C, but for company B they can transfer up to $500 between accounts, and
for company C they can make unlimited transfers between accounts but also with‐
draw up to $250. The maintenance and application of these entitlements were man‐
aged almost exclusively in stored procedures in the database. All data access was
gated through this entitlement logic.

As the bank had scaled, and the amount of logic and state had grown, the database
had started to buckle under the load. “We’ve given all the money it’s possible to give
to Oracle, and it’s still not enough.” The worry was that given projected growth, and
even counting for the improvements in performance of hardware, they would eventu‐
ally get to a place where the needs of the organization would outstrip the capabilities
of the database.

As we explored the problem further, we discussed the idea of splitting out parts of the
schema to reduce load. The issue was that the tangled nest in the middle of all of this
was this entitlements system. It would be a nightmare to try to untangle, and the risks
associated with making mistakes in this area were huge: make a wrong step, and
someone could be blocked from accessing their accounts, or worse still, someone
could gain access to your money who shouldn’t.

We came up with a plan to try to resolve the situation. We accepted that in the near
term, we weren’t going to be able to make changes to the entitlements system, so it
was imperative that we at least not make the problem any worse. So we needed to
stop people from putting more data and behavior into the entitlements schema. Once
this was in place, we could consider removing those parts of the entitlements schema
that were easier to extract, hopefully reducing the load enough that the concerns
about the long-term viability were reduced. That would then give some breathing
room to consider the next steps.

We discussed introducing a new Entitlements service, which would allow us to “hide”
the problematic schema. This service would have very little behavior at first, as the
current database already had implemented a lot of behavior in the form of stored pro‐
cedures. But the goal was to encourage the teams writing the other applications to
think of the entitlements schema as someone else’s, and encourage them to store their
own data locally, as we see in Figure 4-6.

Pattern: Database Wrapping Service | 133

Figure 4-6. Using the database wrapping service pattern to reduce dependence on a cen‐
tral database

Just as with our use of database views, the use of a wrapping service allows us to con‐
trol what is shared and what is hidden. It presents an interface to consumers that can
be fixed, while changes are made under the hood to improve the situation.

Where to Use It
This pattern works really well where the underlying schema is just too hard to con‐
sider pulling apart. By placing an explicit wrapper around the schema, and making it
clear that the data can be accessed only through that schema, you at the very least can
put a brake on the database growing any further. It clearly delineates what is “yours”
versus what is “someone else’s.” I think this approach also works best when you align
ownership of both the underlying schema and the service layer to the same team. The
service API needs to be properly embraced as a managed interface with appropriate
oversight over how this API layer changes. This approach also has benefits for the
upstream applications, as they can more easily understand how they are using the
downstream schema. This makes activities like stubbing for test purposes much more
manageable.

This pattern has advantages over the use of a simple database view. First, you aren’t
constrained to presenting a view that can be mapped to existing table structures; you
can write code in your wrapping service to present much more sophisticated projec‐

134 | Chapter 4: Decomposing the Database

tions on the underlying data. The wrapping service can also take writes (via API
calls). Of course, adopting this pattern does require upstream consumers to make
changes; they have to shift from direct DB access to API calls.

Ideally, using this pattern would be a stepping stone to more fundamental changes,
giving you time to break apart the schema underneath your API layer. It could be
argued we’re just putting a bandage over the problem, rather than addressing the
underling issues. Nonetheless, in the spirit of making incremental improvement, I
think this pattern has a lot going for it.

Pattern: Database-as-a-Service Interface
Sometimes, clients just need a database to query. It could be because they need to
query or fetch large amounts of data, or perhaps because external parties are already
using tool chains that require a SQL endpoint to work against (think about tools like
Tableau, which are often used to gain insights into business metrics). In these situa‐
tions, allowing clients to view data that your service manages in a database can make
sense, but we should take care to separate the database we expose from the database
we use inside our service boundary.

One approach I have seen work well is to create a dedicated database designed to be
exposed as a read-only endpoint, and have this database populated when the data in
the underlying database changes. In effect, in the same way that a service could
expose a stream of events as one endpoint, and a synchronous API as another end‐
point, it could also expose a database to external consumers. In Figure 4-7, we see an
example of the Orders service, which exposes a read/write endpoint via an API, and a
database as a read-only interface. A mapping engine takes changes in the internal
database, and works out what changes need to be made in the external database.

Reporting Database Pattern
Martin Fowler has already documented this under the reporting database pattern, so
why did I use a different name here? As I spoke to more people, I realized that
although reporting is a common application of this pattern, it’s not the only reason
people use this technique. The ability to allow clients to define ad hoc queries has
broader scope than traditional batch-oriented workflows. So although this pattern is
probably most widely used to support these reporting use cases, I wanted a different
name to reflect the fact that it may have wider applicability.

Pattern: Database-as-a-Service Interface | 135

http://bit.ly/2kWW9Ir

Figure 4-7. Exposing a dedicated database as an endpoint, allowing the internal data‐
base to remain hidden

The mapping engine could ignore the changes entirely, expose the change directly, or
something in between. The key thing is that the mapping engine acts as an abstrac‐
tion layer between the internal and external databases. When our internal database
changes structure, the mapping engine will need to change to ensure that the public-
facing database remains consistent. In virtually all cases, the mapping engine will lag
behind writes made to the internal database; typically, the choice of mapping engine
implementation will determine this lag. Clients reading from the exposed database
need to understand that they are therefore seeing potentially stale data, and you may
find it appropriate to programmatically expose information regarding when the
external database was last updated.

Implementing a Mapping Engine
The detail here is in working out how to update—namely, how you implement the
mapping engine. We’ve already looked at a change data capture system, which would
be an excellent choice here. In fact, that is likely to be the most robust solution while
also providing the most up-to-date view. Another option would be to have a batch
process just copy the data over, although this can be problematic as it is likely to lead
to a longer lag between internal and external databases, and determining which data
needs to be copied over can be difficult with some schemas. A third option could be
to listen to events fired from the service in question, and use that to update the exter‐
nal database.

In the past, I would have used a batch job to handle this. Nowadays, though, I’d prob‐
ably utilize a dedicated change data capture system, perhaps something like
Debezium. I’ve been bitten too many times by batch processes not running or taking
too long to run. With the world moving away from batch jobs, and wanting data

136 | Chapter 4: Decomposing the Database

https://github.com/debezium/debezium

faster, batch is giving way to real time. Getting a change data capture system in place
to handle this makes sense, especially if you are considering using it to expose events
outside your service boundary.

Compared to Views
This pattern is more sophisticated than a simple database view. Database views are
typically tied to a particular technology stack: if I want to present a view of an Oracle
database, both the underlying database and the schema hosting the views both run on
Oracle. With this approach, the database we expose can be a totally different technol‐
ogy stack. We could use Cassandra inside our service, but present a traditional SQL
database as a public-facing endpoint.

This pattern gives more flexibility than database views, but at an added cost. If the
needs of your consumers can be satisfied with a simple database view, this is likely to
be less work to implement in the first instance. Just be aware that this may place
restrictions on how this interface can evolve. You could start with the use of a data‐
base view and consider a shift to a dedicated reporting database later on.

Where to Use It
Obviously, as the database that is exposed as an endpoint is read-only, this is useful
only for clients who need read-only access. It fits reporting use cases very well—situa‐
tions where your clients may need to join across large amounts of data that a given
service holds. This idea could be extended to then import this database’s data into a
larger data warehouse, allowing for data from multiple services to be queried. I dis‐
cuss this in more detail in Chapter 5 of Building Microservices.

Don’t underestimate the work required to ensure that this external database projec‐
tion is kept properly up-to-date. Depending on how your current service is imple‐
mented, this might be a complex undertaking.

Transferring Ownership
So far, we’ve really not tackled the underlying problem. We’ve just put a variety of dif‐
ferent bandages on a big, shared database. Before we start considering the tricky task
of pulling data out of the giant monolithic database, we need to consider where the
data in question should actually live. As you split services out from the monolith,
some of the data should come with you—and some of it should stay where it is.

If we embrace the idea of a microservice encapsulating the logic associated with one
or more aggregates, we also need to move the management of their state and associ‐
ated data into the microservice’s own schema. On the other hand, if our new micro‐
service needs to interact with an aggregate that is still owned by the monolith, we

Transferring Ownership | 137

need to expose this capability via a well-defined interface. Let’s look at these two
options now.

Pattern: Aggregate Exposing Monolith
In Figure 4-8, our new Invoicing service needs to access a variety of information that
isn’t directly related to managing invoicing. At the very least, it needs information on
our current Employees to manage approval workflows. This data is currently all
inside the monolith database. By exposing information about our Employees via a
service endpoint (it could be an API or a stream of events) on the monolith itself, we
make explicit what information the Invoice service needs.

Figure 4-8. Exposing information from the monolith via a proper service interface,
allowing our new microservice to access it

We want to think of our microservices as combinations of behavior and state; I’ve
already discussed the idea of thinking of microservices as containing one or more
state machines that manage domain aggregates. When exposing an aggregate from
the monolith, we want to think in the same terms. The monolith still “owns” the con‐
cept of what is and isn’t an allowable change in state; we don’t want to treat it just like
a wrapper around a database.

Beyond just exposing data, we’re exposing operations that allow external parties to
query the current state of an aggregate, and to make requests for new state transi‐
tions. We can still decide to restrict what state of an aggregate is exposed from our

138 | Chapter 4: Decomposing the Database

service boundary and to limit what state transition operations can be requested from
the outside.

As a pathway to more services
By defining the needs of the Invoice service, and explicitly exposing the information
needed in a well-defined interface, we’re on a path to potentially discovering future
service boundaries. In this example, an obvious step might be to next extract an
Employee service, as we see in Figure 4-9. By exposing an API to employee-related
data, we’ve already gone a long way to understanding what the needs of the consum‐
ers of the new Employee service might be.

Of course, if we do extract those employees from the monolith, and the monolith
needs that employee data, it may need to be changed to use this new service!

Where to use it
When the data you want to access is still “owned” by the database, this pattern works
well to allow your new services the access they need. When extracting services, hav‐
ing the new service call back to the monolith to access the data it needs is likely little
more work than directly accessing the database of the monolith—but in the long term
is a much better idea. I’d consider using a database view over this approach only if the
monolith in question cannot be changed to expose these new endpoints. In such
cases, a database view on the monolith’s database could work, as could the previously
discussed change data capture pattern (see the section “Pattern: Change Data Cap‐
ture” on page 120), or creating a dedicated database wrapping service pattern (see the
section “Pattern: Database Wrapping Service” on page 132) on top of the monolith’s
schema, exposing the Employee information we want.

Transferring Ownership | 139

Figure 4-9. Using the scope of an existing endpoint to drive extraction of a new Employee
service

140 | Chapter 4: Decomposing the Database

Where to use it
When the data you want to access is still “owned” by the database, this pattern works
well to allow your new services the access they need. When extracting services, hav‐
ing the new service call back to the monolith to access the data it needs is likely little
more work than directly accessing the database of the monolith—but in the long term
is a much better idea. I’d consider using a database view over this approach only if the
monolith in question cannot be changed to expose these new endpoints. In such
cases, a database view on the monolith’s database could work, as could the previously
discussed change data capture pattern (see the section “Pattern: Change Data Cap‐
ture” on page 120), or creating a dedicated database wrapping service pattern (see the
section “Pattern: Database Wrapping Service” on page 132) on top of the monolith’s
schema, exposing the Employee information we want.

Pattern: Change Data Ownership
We’ve looked at what happens when our new Invoice service needs to access data that
is owned by other functionality, as in the previous section, where we needed to access
Employee data. However, what happens when we consider data that is currently in the
monolith that should be under the control of our newly extracted service?

In Figure 4-10, we outline the change that needs to happen. We need to move our
invoice-related data out of the monolith and into our new Invoice, as that is where
the life cycle of the data should be managed. We’d then need to change the monolith
to treat the Invoice service as the source of truth for invoice-related data, and change
it such that it called out to the Invoice service endpoint to read the data or request
changes.

Transferring Ownership | 141

Figure 4-10. Our new Invoice service takes ownership of the related data

Untangling the invoicing data from the existing monolithic database can be a com‐
plex problem, however. We may have to consider the impact of breaking foreign-key
constraints, breaking transactional boundaries, and more—all topics we’ll be coming
back to later in this chapter. If the monolith can be changed such that it needs only
read access to Invoice-related data, you could consider projecting a view from the
Invoice service’s database, as Figure 4-11 shows. All the limitations of database views
will apply, however; changing the monolith to make calls to the new Invoice service
directly is greatly preferred.

142 | Chapter 4: Decomposing the Database

Figure 4-11. Projecting Invoice data back into the monolith as a view

Where to use it
This one is a little more clear-cut. If your newly extracted service encapsulates the
business logic that changes some data, that data should be under the new service’s
control. The data should be moved from where it is, over into the new service. Of
course, the process of moving data out of an existing database is far from a simple
process. In fact, this will be the focus of the remainder of this chapter.

Data Synchronization
As we discussed in Chapter 3, one of the benefits of something like a strangler fig pat‐
tern is that when we switch over to the new service, we can then switch back if there
is an issue. The problem occurs when the service in question manages data that will
need to be kept in sync between both the monolith and the new service.

In Figure 4-12, we see an example of this. We are in the process of switching over to a
new Invoice service. But the new service, and the existing equivalent code in the
monolith also manages this data. To maintain the ability to switch between imple‐
mentations, we need to ensure that both sets of code can see the same data, and that
this data can be maintained in a consistent way.

Data Synchronization | 143

Figure 4-12. We want to use a strangler pattern to migrate to a new Invoice service, but
the service manages state

So what are our options here? Well, first, we need to consider the degree to which the
data needs to be consistent between the two views. If either set of code needs to
always see a totally consistent view of invoice data, one of the most straightforward
approaches would be to ensure the data is kept in one place. This would lead us
toward probably having our new Invoice service read its data directly from the mono‐
lith for a short space of time, perhaps making use of a view, as we explored in the
section “Pattern: Database View” on page 128. Once we are happy that the switch has
been successful, we can then migrate the data, as we discussed earlier in the section
“Pattern: Change Data Ownership” on page 141. However, the concerns about using a
shared database cannot be overstated: you should consider this only as a very short-
term measure, as part of a more complete extraction; leaving a shared database in
place for too long can lead to significant long-term pain.

If we were doing a big-bang switchover (something I’d try to avoid), migrating both
the application code and the data at the same time, we could use a batch process to
copy the data over in advance of switching to the new microservice. Once the
invoice-related data has been copied over into our new microservice, it can start serv‐
ing traffic. However, what happens if we need to fall back to using the functionality in
the existing monolithic system? Data changed in the microservices’ schema will not
be reflected in the state of the monolithic database, so we could end up losing state.

144 | Chapter 4: Decomposing the Database

3 For a detailed presentation on this topic, you can view a recording of Kresten Krab Thorup’s talk “Riak on
Drugs (and the Other Way Around)”.

Another approach could be to consider keeping the two databases in sync via our
code. So we would have either the monolith or the new Invoice service make writes to
both databases. This involves some careful thought.

Pattern: Synchronize Data in Application
Switching data from one location to another can be a complex undertaking at the best
of times, but it can be even more fraught the more valuable the data is. When you
start thinking about looking after medical records, thinking carefully about how you
migrate data is even more important.

Several years ago, the consultancy Trifork was involved in a project to help store a
consolidated view of Danish citizens’ medical records.3 The initial version of this sys‐
tem had stored the data in a MySQL database, but over time it became clear that this
may not be suitable for the challenges the system would face. A decision was made to
use an alternative database, Riak. The hope was that Riak would allow the system to
better scale to handle expected load, but would also offer improved resiliency charac‐
teristics.

An existing system stored data in one database, but there were limits to how long the
system could be offline, and it was vital that data wasn’t lost. So a solution was needed
that allowed the company to move the data to a new database, but also build in mech‐
anisms to verify the migration, and have fast rollback mechanisms along the way.

The decision was made that the application itself would perform the synchronization
between the two data sources. The idea is that initially the existing MySQL database
would remain the source of truth, but for a period of time the application would
ensure that data in MySQL and Riak were kept in sync. After a period of time, Riak
would move to being the source of truth for the application, prior to MySQL being
retired. Let’s look at this process in a bit more detail.

Step 1: Bulk Synchronize Data
The first step is to get to the point where you have a copy of the data in the new data‐
base. For the medical record project, this involved doing a batch migration of data
from the old system into the new Riak database. While the batch import was going
on, the existing system was kept running, so the source of data for the import was a
snapshot of data taken from the existing MySQL system (Figure 4-13). This causes a
challenge, as when the batch import finishes, the data in the source system could well

Pattern: Synchronize Data in Application | 145

http://bit.ly/2m1CvLP
http://bit.ly/2m1CvLP

have changed. In this case, however, it wasn’t practical to take the source system off‐
line.

Figure 4-13. Preparing the new datastore for application-based synchronization

Once the batch import completed, a change data capture process was implemented
whereby changes since the import could be applied. This allowed Riak to be brought
in sync. Once this was achieved, it was time to deploy the new version of the applica‐
tion.

Step 2: Synchronize on Write, Read from Old Schema
With both databases now in sync, a new version of the application was deployed that
would write all data to both databases, as we see in Figure 4-14. At this stage, the goal
was to ensure that the application was correctly writing to both sources and make
sure that Riak was behaving within acceptable tolerances. By still reading all data
from MySQL, this ensured that even if Riak fell over in a heap, data could still be
retrieved from the existing MySQL database.

146 | Chapter 4: Decomposing the Database

Figure 4-14. The application keeps both databases in sync, but uses one only for reads

Only once enough confidence had been built up in the new Riak system did they
move to the next step.

Step 3: Synchronize on Write, Read from New Schema
At this stage, it’s been verified that reads to Riak are working fine. The last step is to
make sure that reads work too. A simple change to the application now has Riak as
being the source of truth, as we see in Figure 4-15. Note that we still write to both
databases, so if there is an issue, you have a fallback option.

Figure 4-15. The new database is now the source of truth, but the old database is still
kept in synchronization

Once the new system has bedded in enough, the old schema could be safely removed.

Pattern: Synchronize Data in Application | 147

Where to Use This Pattern
With the Danish medical record system, we had a single application to deal with. But
we’ve been talking about situations where we are looking to split out microservices.
So does this pattern really help? The first thing to consider is that this pattern may
make a lot of sense if you want to split the schema before splitting out the application
code. In Figure 4-16, we see exactly such a situation, where we duplicate the invoice-
related data first.

Figure 4-16. Example of a monolith keeping two schemas in sync

If implemented correctly, both data sources should always be in sync, offering us sig‐
nificant benefits in situations where we need fast switching between sources for roll‐
back scenarios, etc. The use of this pattern in the example of the Danish medical
records system seems sensible because of the inability to take the application offline
for any length of time.

Where to Use It
Now you could consider using this pattern where you have both your monolith and
microservice accessing the data, but this gets extremely complicated. In Figure 4-17,
we have such a situation. Both the monolith and microservice have to ensure proper
synchronization across the databases for this pattern to work. If either one makes a
mistake, you could be in trouble. This complexity is greatly mitigated if you can be
sure that at any point in time either the Invoice service is making writes, or the mon‐
olith’s Invoice functionality is—which would work well if using a simple switchover
technique, as we discussed with the strangler fig pattern. If, however, requests could
hit either the monolith’s Invoice functionality or the new Invoice functionality, per‐
haps as part of a canary, then you may not want to use this pattern, as the resulting
synchronization will be tricky.

148 | Chapter 4: Decomposing the Database

Figure 4-17. Example of a monolith and microservice both trying to keep the same two
schemas in sync

Pattern: Tracer Write
The tracer write pattern, outlined in the section Figure 4-18, is arguably a variation of
the synchronize data in application pattern (see the section “Pattern: Synchronize
Data in Application” on page 145. With a tracer write, we move the source of truth for
data in an incremental fashion, tolerating there being two sources of truth during the
migration. You identify a new service that will host the relocated data. The current
system still maintains a record of this data locally, but when making changes also
ensures this data is written to the new service via its service interface. Existing code
can be changed to start accessing the new service, and once all functionality is using
the new service as the source of truth, the old source of truth can be retired. Careful
consideration needs to be given regarding how data is synchronized between the two
sources of truth.

Pattern: Tracer Write | 149

Figure 4-18. A tracer write allows for incremental migration of data from one system to
another by accommodating two sources of truth during the migration

Wanting a single source of truth is a totally rational desire. It allows us to ensure con‐
sistency of data, to control access to that data, and can reduce maintenance costs. The
problem is that if we insist on only ever having one source of truth for a piece of data,
then we are forced into a situation that changing where this data lives becomes a sin‐
gle big switchover. Before the release, the monolith is the source of truth. After the
release, our new microservice is the source of truth. The issue is that various things
can go wrong during this change over. A pattern like the tracer write allows for a
phased switchover, reducing the impact of each release, in exchange for being more
tolerant of having more than one source of truth.

The reason this pattern is called a tracer write is that you can start with a small set of
data being synchronized and increase this over time, while also increasing the num‐
ber of consumers of the new source of data. If we take the example outlined in
Figure 4-12, where invoice-related data was being moved from the monolith over to
our new Invoice microservice, we could first synchronize the basic invoice data, then
migrate the contact information for the invoice, and finally synchronize payment
records, as outlined in Figure 4-19.

150 | Chapter 4: Decomposing the Database

Figure 4-19. Incrementally moving invoice-related information from the monolith over
to our Invoice service

Other services that wanted invoice-related information would have a choice to source
this from either the monolith or the new service itself, depending on what informa‐
tion they need. If they still needed information available only in the monolith, they

Pattern: Tracer Write | 151

would have to wait until that data and the supporting functionality was moved. Once
the data and functionality are available in the new microservice, the consumers can
switch to the new source of truth.

The goal in our example is to migrate all consumers to use the Invoice service,
including the monolith itself. In Figure 4-20, we see an example of a couple of stages
during the migration. Initially, we’re writing only basic invoice information to both
sources of truth. Once we’ve established that this information is being properly
synchronized, the monolith can start to read its data from the new service. As more
data is synchronized, the monolith can use the new service as a source of truth for
more and more of the data. Once all the data is synchronized, and the last consumer
of the old source of truth has been switched over, we can stop synchronizing the data.

Figure 4-20. Retiring the old source of truth as part of a tracer write

Data Synchronization
The biggest problem that needs to be addressed with the tracer write pattern is the
issue that plagues any situation where data is duplicated-inconsistency. To resolve
this, you have a few options:

152 | Chapter 4: Decomposing the Database

Write to one source
All writes are sent to one of the sources of truth. Data is synchronized to the
other source of truth after the write occurs.

Send writes to both sources
All write requests made by upstream clients are sent to both sources of truth.
This occurs by making sure the client makes a call to each source of truth itself,
or by relying on an intermediary to broadcast the request to each downstream
service.

Seed writes to either source
Clients can send write requests to either source of truth, and behind the scenes
the data is synchronized in a two-way fashion between the systems.

The two separate options of sending writes to both sources of truth, or sending to one
source of truth and relying on some form of background synchronization, seem like
workable solutions, and the example we’ll explore in a moment uses both of these
techniques. However, although it’s technically an option, this situation—where writes
are made to either one source of truth or the other—should be avoided, as it requires
two-way synchronization (something that can be very difficult to achieve).

In all of these cases, there will be some delay in the data being consistent in both
sources of truth. The duration of this window of inconsistency will depend on several
factors. For example, if you use a nightly batch process to copy updates from one
source to another, the second source of truth could contain data that is up to 24 hours
out-of-date. If you are constantly streaming updates from one system to another, per‐
haps using a change data capture system, the windows of inconsistency could be
measured in seconds or less.

However long this window of inconsistency is, such synchronization gives us what is
called eventual consistency—eventually, both sources of truth will have the same data.
You will have to understand what period of inconsistency is appropriate in your case,
and use that to drive how you implement the synchronization.

It’s important that when maintaining two sources of truth like this
that you have some kind of reconciliation process to ensure that
the synchronization is working as intended. This may be some‐
thing as simple as a couple of SQL queries you can run against each
database. But without checking that the synchronization is working
as expected, you may end up with inconsistencies between the two
systems and not realize it until it is too late. Running your new
source of truth for a period of time when it has no consumers until
you are satisfied with how things are working—which, as we’ll
explore in the next section, is something that Square did, for exam‐
ple—is very sensible.

Pattern: Tracer Write | 153

4 Sangeeta Handa shared how Netflix used this pattern as part of its data migrations at the QCon SF conference,
and Daniel Bryant subsequently did a nice write-up of this.

Example: Orders at Square
This pattern was originally shared with me by Derek Hammer, a developer at Square,
and since then I’ve found other examples of this pattern being used in the wild.4 He
detailed its usage to help untangle part of Square’s domain related to ordering take-
out food for delivery. In the initial system, a single Order concept was used to manage
multiple workflows: one for customers ordering food, another for the restaurant pre‐
paring the food, and a third workflow-managed state related to delivery drivers pick‐
ing up the food and dropping it off to customers. The needs of the three stakeholders
are different, and although all these stakeholders work with the same Order, what that
Order means to each of them is different. For the customer, it’s something they have
chosen to be delivered, and something they need to pay for. For a restaurant it’s some‐
thing that needs to be cooked and picked up. And for the delivery driver, it’s some‐
thing that needs to be taken from the restaurant to the customer in a timely manner.
Despite these different needs, the code and associated data for the order was all
bound together.

Having all these workflows bundled into this single Order concept was the source of a
great degree of what I’ve previously referred to as delivery contention—different devel‐
opers trying to make changes for different use cases would get in each other’s way, as
they all needed to make changes in the same part of the codebase. Square wanted to
break apart an Order so changes to each workflow could be made in isolation, and
also enable different scaling and robustness needs.

Creating the new service
The first step was to create a new Fulfillments service as seen in Figure 4-21, which
would manage the Order data associated with restaurant and delivery drivers. This
service would become the new source of truth going forward for this subset of the
Order data. Initially, this service just exposed functionality to allow for Fulfillments-
related entities to be created. Once the new service was live, the company had a back‐
ground worker copy the Fulfillments-related data from the existing system to the new
Fulfillments service. This background worker just made use of an API exposed by the
Fulfillments service rather than doing a direct insertion into the database, avoiding
the need for direct database access.

154 | Chapter 4: Decomposing the Database

http://bit.ly/2m1EwHT

Figure 4-21. The new Fulfillments service was used to replicate fulfillment-related data
from the existing system

The background worker was controlled via a feature flag that could be enabled or dis‐
abled to stop this copying process. This allowed them to ensure that if the worker
caused any issues in production, the process would be easy to turn off. They ran this
system in production for sufficient time to be confident that the synchronization was
working correctly. Once they were happy that the background worker was working as
expected, they removed the feature flag.

Synchronizing the data
One of the challenges with this sort of synchronization is that it is one way. Changes
made to the existing system resulted in the fulfillment-related data being written to
the new Fulfillments service via its API. Square resolved this by ensuring that all
updates were made to both systems, as in Figure 4-22. Not all updates needed to be
made to both systems, however. As Derek explained, now that the Fulfillments ser‐
vice represented only a subset of the Order concept, only changes made to the order
that delivery or restaurant clients cared about needed to be copied.

Pattern: Tracer Write | 155

Figure 4-22. Subsequent updates were synchronized by ensuring that all consumers
made appropriate API calls to both services

Any code that changed restaurant- or delivery-oriented information needed to be
changed to make two sets of API calls—one to the existing system, the other to the
same microservice. These upstream clients would also need to handle any error con‐
ditions if the write to one worked but the other failed. These changes to the two
downstream systems (the existing order system and the new Fulfillments service)
were not done in an atomic fashion. This means there could be a brief window in
which a change would be visible in one system, but not yet the other. Until both
changes have been applied, you can see an inconsistency between the two systems;
this is a form of eventual consistency, which we discussed earlier.

In terms of the eventual consistent nature of the Order information, this wasn’t a
problem for this particular use case. Data was synchronized quickly enough between
the two systems that it didn’t impact the users of the system.

If Square had been using an event-driven system for managing Order updates, rather
than making use of API calls, they could have considered an alternative implementa‐
tion. In Figure 4-23, we have a single stream of messages that could trigger changes in
the Order state. Both the existing system and the new Fulfillments service receive the
same messages. Upstream clients don’t need to know that there are multiple consum‐
ers for these messages; this is something that could be handled through the use of a
pub-sub style broker.

156 | Chapter 4: Decomposing the Database

Figure 4-23. An alternative synchronization approach could be for both sources of truth
to subscribe to the same events

Retrofitting Square’s architecture to be event-based just to satisfy this sort of use case
would be a lot of work. But if you are already making use of an event-based system,
you may have an easier time managing the synchronization process. It’s also worth
noting that such an architecture would still exhibit eventually consistent behavior, as
you cannot guarantee that both the existing system and Fulfillments service would
process the same event at the same time.

Migrating consumers
With the new Fulfillments service now holding all the required information for the
restaurant and delivery driver workflows, code that managed those workflows could
start switching over to use the new service. During this migration, more functionality
can be added to support these consumers’ needs; initially, the Fulfillments service
needed only to implement an API that enabled creation of new records for the back‐
ground worker. As new consumers migrate, their needs can be assessed and new
functionality can be added to the service to support them.

This incremental migration of both data, as well as changing the consumers to use the
new source of truth, proved in the case of Square to be highly effective. Derek said
that getting to the point where all consumers had switched over ended up being
pretty much a non-event. It was just another small change done during a routine
release (another reason I’ve been advocating for incremental migration patterns so
strongly in this book!).

From a domain-driven design point of view, you could certainly argue that the func‐
tionality associated with delivery drivers, customers, and restaurants all represented

Pattern: Tracer Write | 157

different bounded contexts. From that viewpoint, Derek suggested that he would ide‐
ally have considered splitting this Fulfillments service further, into two services—one
for Restaurants, and another for the Delivery Drivers. Nonetheless, although there is
scope for further decomposition, this migration seemed to be very successful.

In Square’s case, it decided to keep the duplicated data. Leaving restaurant- and
delivery-related order information in the existing system allowed the company to
provide visibility of this information in the event of the Fulfillments service being
unavailable. This requires keeping the synchronization in place, of course. I do won‐
der if this will be revisited over time. Once there is sufficient confidence in the availa‐
bility of the Fulfillments service, removing the background worker and need for
consumers to make two sets of update calls may well help streamline the architecture.

Where to Use It
Implementation of the synchronization is likely to be where most of the work lies. If
you can avoid the need for two-way synchronization, and instead use some of the
simpler options outlined here, you’ll likely find this pattern much easier to imple‐
ment. If you are already making use of an event-driven system, or have a change data
capture pipeline available, then you probably already have a lot of the building blocks
available to you to get the synchronization working.

Careful thought does need to be given regarding how long you can tolerate inconsis‐
tency between the two systems. Some use cases might not care, others may want the
replication to be almost immediate. The shorter the window of acceptable inconsis‐
tency, the more difficult this pattern will be to implement.

Splitting Apart the Database
We’ve already discussed at length the challenges of using databases as a method of
integrating multiple services. As should by now be very clear, I am not a fan! This
means we need to find seams in our databases too so we can split them out cleanly.
Databases, however, are tricky beasts. Before we get into some examples of
approaches, we should briefly discuss how logical separation and physical deploy‐
ment may be related.

Physical Versus Logical Database Separation
When we talk about breaking apart our databases in this context, we’re primarily try‐
ing to achieve logical separation. A single database engine is perfectly capable of host‐
ing more than one logically separated schema, as we see in Figure 4-24.

158 | Chapter 4: Decomposing the Database

Figure 4-24. Two services making use of separate logical schemas, both running on the
same physical database engine

We could take this further, and have each logical schema also on separate database
engines, giving us physical separation too, as we see in Figure 4-25.

Why would you want to logically decompose your schemas but still have them on a
single database engine? Well, fundamentally, logical and physical decomposition ach‐
ieve different goals. Logical decomposition allows for simpler independent change and
information hiding, whereas physical decomposition potentially improves system
robustness, and could help remove resource contention allowing for improved
throughput or latency.

When we logically decompose our database schemas but keep them on the same
physical database engine, as in Figure 4-24, we have a potential single point of failure.
If the database engine goes down, both services are affected. However, the world isn’t
that simple. Many database engines have mechanisms to avoid single points of failure,
such as multiprimary database modes, warm failover mechanisms, and the like. In
fact, significant effort may have been put into creating a highly resilient database clus‐
ter in your organization, and it may be hard to justify having multiple clusters
because of the time, effort, and cost that may be involved (those pesky license fees can
add up!).

Splitting Apart the Database | 159

Figure 4-25. Two services making use of separate logical schemas, each running on its
own physical database engine

Another consideration is that having multiple schemas sharing the same database
engine may be required if you want to expose views of your database. Both the source
database and the schemas hosting the views may need to be located on the same data‐
base engine.

Of course, for you to even have the option of running separate services on different
physical database engines, you need to have already logically decomposed their sche‐
mas!

Splitting the Database First, or the Code?
So far, we’ve spoken about patterns to help work with shared databases, and hopefully
move on to less coupled models. In a moment, we need to look in detail at patterns
around database decomposition. Before we do that, though, we need to discuss
sequencing. Extracting a microservice isn’t “done” until the application code is run‐
ning in its own service, and the data it controls is extracted into its own logically iso‐
lated database. But with this being a book largely about enabling incremental change,
we have to explore a little how this extraction should be sequenced. We have a few
options:

• Split the database first, then the code.
• Split the code first, then the database.

160 | Chapter 4: Decomposing the Database

• Split them both at once.

Each has its pros and cons. Let’s look at these options now, along with some patterns
that may help, depending on the approach you take.

Split the Database First
With a separate schema, we’ll be potentially increasing the number of database calls
to perform a single action. Whereas before we might have been able to have all the
data we wanted in a single SELECT statement, now we may need to pull the data back
from two locations and join in memory. Also, we end up breaking transactional
integrity when we move to two schemas, which could have significant impact on our
applications; we’ll be discussing these challenges later in this chapter, as we cover top‐
ics like distributed transactions and sagas, and how they might be able to help. By
splitting the schemas out but keeping the application code together, as in Figure 4-26,
we give ourselves the ability to revert our changes or continue to tweak things
without impacting any consumers of our service if we realize we’re heading down the
wrong path. Once we are satisfied that the DB separation makes sense, we could then
think about splitting out the application code into two services.

Figure 4-26. Splitting schema first may allow you to spot issues with performance and
transactional integrity earlier

The flip side is that this approach is unlikely to yield much short-term benefit. We
still have a monolithic code deployment. Arguably, the pain of a shared database is
something you feel over time, so we’re spending time and effort now to give us return
in the long run, without getting enough of the short-term benefit. For this reason, I’d
likely go this route only if I’m especially concerned about the potential performance
or data consistency issues. We also need to consider that if the monolith itself is a
black-box system, like a piece of commercial software, this option isn’t available to us.

Splitting the Database First, or the Code? | 161

A Note on Tooling
Changing databases is difficult for many reasons, one of which is that limited tools
remain available to allow us to make changes easily. With code, we have refactoring
tooling built into our IDEs, and we have the added benefit that fundamentally the sys‐
tems we are changing are stateless. With a database, the things we are changing have
state, but we also lack good refactoring-type tooling.

Many years ago, this gap in tooling drove myself and two colleagues, Nick Ashley and
Graham Tackley, to create an open source tool called DBDeploy. Now defunct (creat‐
ing an open source tool is very different from maintaining one!), it worked by allow‐
ing changes to be captured in SQL scripts that could be run in a deterministic fashion
on schemas. Each schema had a special table in it that was used to track which
schema scripts had been applied.

The goal of DBDeploy was to allow you to make incremental changes to a schema, to
have each change version controlled, and to allow the changes to be executed on mul‐
tiple schemas at different times (think developer, test, and production schemas).

Nowadays, I point people to FlywayDB or something that provides similar capabili‐
ties, but whatever tool you choose, I strongly urge you to make sure it allows you to
capture each change in a version-controllable delta script.

Pattern: Repository per bounded context
A common practice is to have a repository layer, backed by some sort of framework
like Hibernate, to bind your code to the database, making it easy to map objects or
data structures to and from the database. Rather than having a single repository layer
for all our data access concerns, there is value in breaking down these repositories
along the lines of bounded contexts, as shown in Figure 4-27.

Having the database mapping code colocated inside the code for a given context can
help us understand what parts of the database are used by what bits of code. Hiber‐
nate, for example, can make this very clear if you are using something like a mapping
file per bounded context. We can see, therefore, which bounded contexts access
which tables in our schema. This can help us greatly understand what tables need to
move as part of any future decomposition.

162 | Chapter 4: Decomposing the Database

https://flywaydb.org

Figure 4-27. Splitting out our repository layers

This doesn’t give us the whole story, however. For example, we may be able to tell that
the finance code uses the ledger table, and that the catalog code uses the line item
table, but it might not be clear that the database enforces a foreign-key relationship
from the ledger table to the line item table. To see these database-level constraints,
which may be a stumbling block, we need to use another tool to visualize the data. A
great place to start is to use a tool like the freely available SchemaSpy, which can gen‐
erate graphical representations of the relationships between tables.

All this helps you understand the coupling between tables that may span what will
eventually become service boundaries. But how do you cut those ties? And what
about cases where the same tables are used from multiple bounded contexts? We’re
going to explore this topic in great length later in this chapter.

Where to use it. This pattern is really effective in any situation where you are looking
to rework the monolith in order to better understand how to split it apart. Breaking
down these repository layers along the lines of domain concepts will go a long way to
helping you understand where seams for microservices may exist not only in your
database, but also in the code itself.

Pattern: Database per bounded context
Once you’ve clearly isolated data access from the application point of view, it makes
sense to continue this approach into the schema. Central to the idea of microservices’
independent deployability is the fact that they should own their own data. Before we

Splitting the Database First, or the Code? | 163

http://schemaspy.sourceforge.net

get to separating out the application code, we can start this decomposition by clearly
separating our databases around the lines of our identified bounded contexts.

At ThoughtWorks, we were implementing some new mechanisms to calculate and
forecast revenue for the company. As part of this, we’d identified three broad areas of
functionality that needed to be written. I discussed the problem with the lead for this
project, Peter Gillard-Moss. Peter explained that the functionality felt quite separate,
but that he had concerns regarding the extra work that having this functionality
would bring if they were put in separate microservices. At this time, his team was
small (only three people), and it was felt that the team couldn’t justify splitting out
these new services. In the end, they settled on a model in which the new revenue
functionality was effectively deployed as a single service, containing three isolated
bounded contexts (each of which ended up as separate JAR files), as shown in
Figure 4-28.

Figure 4-28. Each bounded context in the Revenue service had its own separate database
schema, allowing separation later on

Each bounded context had its own, totally separate databases. The idea was that if
there was a need to separate them into microservices later, this would be much easier.
However, it turned out that this was never needed. Several years later, this revenue
service remains as it is, a monolith with multiple associated databases—a great exam‐
ple of a modular monolith.

Where to use it. At first glance, the extra work in maintaining the separate databases
doesn’t make much sense if you keep things as a monolith. I view this as a pattern that
is all about hedging your bets. It’s a bit more work than a single database, but keeps

164 | Chapter 4: Decomposing the Database

your options open regarding moving to microservices later. Even if you never move
to microservices, having the clear separation of schema backing the database can
really help, especially if you have lots of people working on the monolith itself.

This is a pattern I nearly always recommend for people building brand-new systems
(as opposed to reimplementing an existing system). I’m not a fan of implementing
microservices for new products or startups; your understanding of the domain is
unlikely to be mature enough to identify stable domain boundaries. With startups
especially, the nature of the thing you are building can change drastically. This pat‐
tern can be a nice halfway point, though. Keep schema separation where you think
you may have service separation in the future. That way, you get some of the benefits
of decoupling these ideas, while reducing the complexity of the system.

Split the Code First
In general, I find that most teams split the code first, then the database, as shown in
Figure 4-29. They get the short-term improvement (hopefully) from the new service,
which gives them confidence to complete the decomposition by separating out the
database.

Figure 4-29. Splitting the application tier first leaves us with a single shared schema

Splitting the Database First, or the Code? | 165

By splitting out the application tier, it becomes much easier to understand what data
is needed by the new service. You also get the benefit of having an independently
deployable code artifact earlier. The concerns I’ve always had with this approach is
that teams may get this far and then stop, leaving a shared database in play on an
ongoing basis. If this is the direction you take, you have to understand that you’re
storing up trouble for the future if you don’t complete the separation into the data
tier. I’ve seen teams that have fallen into this trap, but can happily also report speak‐
ing to organizations that have done the right thing here. JustSocial is one such organi‐
zation that used this approach as part of its own microservices migration. The other
potential challenge here is that you may be delaying finding out nasty surprises
caused by pushing join operations up into the application tier.

If this is the direction you take, be honest with yourself: are you confident that you
will be able to make sure that any data owned by the microservice gets split out as
part of the next step?

Pattern: Monolith as data access layer
Rather than accessing the data from the monolith directly, we can just move to a
model in which we create an API in the monolith itself. In Figure 4-30, the Invoice
service needs information about employees in our Customer service, so we create an
Employee API allowing for the Invoice service to access them. Susanne Kaiser from
JustSocial shared this pattern with me as that company had used successfully as part
of its microservices migration. The pattern has so many things going for it that I’m
surprised it doesn’t seem as well-known as it should be.

Part of the reason this isn’t used more widely is likely because people sort of have in
their minds the idea that the monolith is dead, and of no use. They want to move
away from it. They don’t consider making it more useful! But the upsides here are
obvious: we don’t have to tackle data decomposition (yet) but get to hide information,
making it easier to keep our new service isolated from the monolith. I’d be more
inclined to adopt this model if I felt that the data in the monolith was going to stay
there. But it can work well, especially if you think that your new service will effec‐
tively be pretty stateless.

166 | Chapter 4: Decomposing the Database

Figure 4-30. Exposing an API on the monolith allows the service to avoid direct data
binding

It’s not too hard to see this pattern as a way of identifying other candidate services.
Extending this idea, we could see the Employee API splitting out from the monolith
to become a microservice in its own right, as shown in Figure 4-31.

Where to use it. This pattern works best when the code managing this data is still in
the monolith. As we talked about previously, one way to think of a microservice when
it comes to data is the encapsulation of the state and the code that manages the transi‐
tions of that state. So if the state transitions of this data are still provided in the mon‐
olith, it follows that the microservice that wants to access (or change) that state needs
to go via the state transitions in the monolith.

If the data you’re trying to access in the monolith’s database should really be “owned”
by the microservice instead, I’m more inclined to suggest skipping this pattern and
instead looking to split the data out.

Splitting the Database First, or the Code? | 167

Figure 4-31. Using the Employee API to identify the boundary of an Employee service to
be split from the monolith

168 | Chapter 4: Decomposing the Database

Pattern: Multischema storage
As we’ve already discussed, it’s a good idea not to make a bad situation any worse. If
you are still making direct use of the data in a database, it doesn’t mean that new data
stored by a microservice should go in there too. In Figure 4-32, we see an example of
our Invoice service. The invoice core data still lives in the monolith, which is where
we (currently) access it from. We’ve added the ability to add reviews to Invoices; this
represents brand-new functionality not in the monolith. To support this, we need to
store a table of reviewers, mapping employees to Invoice IDs. If we put this new table
in the monolith, we’d be helping grow the database! Instead, we’ve put this new data
in our own schema.

Figure 4-32. The Invoice service puts new data in its own schema, but still accesses old
data directly in the monolith

In this example, we have to consider what happens when a foreign-key relationship
effectively spans a schema boundary. Later in this chapter, we’ll explore this very
problem in more depth.

Pulling out the data from a monolithic database will take time, and may not be some‐
thing you can do in one step. You should therefore feel quite happy to have your
microservice access data in the monolithic DB while also managing its own local
storage. As you manage to drag clear the rest of the data from the monolith, you can
migrate it a table at a time into your new schema.

Where to use it. This pattern works well when adding brand-new functionality to
your microservice that requires the storage of new data. It’s clearly not data the mon‐
olith needs (the functionality isn’t there), so keep it separate from the beginning. This
pattern also makes sense as you start moving data out of the monolith into your own
schema—a process that may take some time.

Splitting the Database First, or the Code? | 169

If the data you are accessing in the monolith’s schema is data that you never planned
to move into your schema, I strongly recommend use of the monolith as data access
layer pattern (see the section “Pattern: Monolith as data access layer” on page 166) in
conjunction with this pattern.

Split Database and Code Together
From a staging point of view, of course, we have the option to just break things apart
in one big step as in Figure 4-33. We split both the code and data at once.

Figure 4-33. Splitting out both the code and data in one step

My concern here is that this is a much bigger step to take, and it will be longer before
you can assess the impact of your decision as a result. I strongly suggest avoiding this
approach, and instead splitting either the schema or application tier first.

So, Which Should I Split First?
I get it: you’re probably tired of all this “It depends” stuff, right? I can’t blame you.The
problem is, everyone’s situation is different, so I’m trying to arm you with enough
context and discussion of various pros and cons to help you make up your own mind.
However, I know sometimes what people want is a bit of a hot take on these things, so
here it is.

If I’m able to change the monolith, and if I am concerned about the potential impact
to performance or data consistency, I’ll look to split the schema apart first. Otherwise,
I’ll split the code out, and use that to help understand how that impacts data owner‐
ship. But it’s important that you also think for yourself and take into account any fac‐
tors that might impact the decision-making process in your particular situation.

170 | Chapter 4: Decomposing the Database

Schema Separation Examples
So far, we’ve looked at schema separation at a fairly high level, but there are complex
challenges associated with database decomposition and a few tricky issues to explore.
We’re going to look at some more low-level data decomposition patterns now and
explore the impact they can have.

Relational Databases Versus NoSQL
Many of the example refactorings that I detail in this chapter explore challenges that
occur when working with relational schemas. The nature of these types of databases
create additional challenges in terms of pulling schemas apart. Many of you may well
be using alternative types of nonrelational databases. However, many of the following
patterns may still apply. You may have fewer constraints in how the changes can be
made, but I hope that the advice is still useful.

Pattern: Split Table
Sometimes you’ll find data in a single table that needs to be split across two or more
service boundaries, and that can get interesting. In Figure 4-34, we see a single shared
table, Item, where we store information about not only the item being sold, but also
the stock levels.

Figure 4-34. A single table that bridges two bounded contexts being split

In this example, we want to split out Catalog and Warehouse as new services, but the
data for both is mixed into this single table. So, we need to split this data into two
separate tables, as Figure 4-34 shows. In the spirit of incremental migration, it may

Schema Separation Examples | 171

make sense to split the tables apart in the existing schema, before separating the sche‐
mas. If these tables existed in a single schema, it would make sense to declare a
foreign-key relationship from the Stock Item SKU column to the Catalog Item table.
However, because we plan to move these tables ultimately into separate databases, we
may not gain much from this as we won’t have a single database enforcing the data
consistency (we’ll explore this idea in more detail shortly).

This example is fairly straightforward; it was easy to separate ownership of data on a
column-by-column basis. But what happens when multiple pieces of code update the
same column? In Figure 4-35, we have a Customer table, which contains a Status col‐
umn.

Figure 4-35. Both customer management and finance code can change the status in the
Customer table

This column is updated during the customer sign-up process to indicate that a given
person has (or hasn’t) verified their email, with the value going from NOT_VERI‐
FIED → VERIFIED. Once a customer is VERIFIED, they are able to shop. Our
finance code handles suspending customers if their bills are unpaid, so they will on
occasion change the status of a customer to SUSPENDED. In this instance, a custom‐
er’s Status still feels like it should be part of the customer domain model, and as such
it should be managed by the soon-to-be-created Customer service. Remember, we
want, where possible, to keep the state machines for our domain entities inside a sin‐
gle service boundary, and updating a Status certainly feels like part of the state
machine for a customer! This means that when the service split has been made, our
new Finance service will need to make a service call to update this status, as we see in
Figure 4-36.

172 | Chapter 4: Decomposing the Database

Figure 4-36. The new Finance service has to make service calls to suspend a customer

A big problem with splitting tables like this is that we lose the safety given to us by
database transactions. We’ll explore this topic in more depth toward the end of this
chapter, when we look at “Transactions” on page 187 and “Sagas” on page 193.

Where to Use It
On the face of it, these seem pretty straightforward. When the table is owned by two
or more bounded contexts in your current monolith, you need to split the table along
those lines. If you find specific columns in that table that seem to be updated by mul‐
tiple parts of your codebase, you need to make a judgment call as to who should
“own” that data. Is it an existing domain concept you have in scope? That will help
determine where this data should go.

Pattern: Move Foreign-Key Relationship to Code
We’ve decided to extract our Catalog service—something that can manage and expose
information about artists, tracks, and albums. Currently, our catalog-related code
inside the monolith uses an Albums table to store information about the CDs which
we might have available for sale. These albums end up getting referenced in our
Ledger table, which is where we track all sales. You can see this in Figure 4-37. The
rows in the Ledger table just record the amount we receive for a CD, along with an
identifier that refers to the item sold; the identifier in our example is called a SKU (a
stock keeping unit), a common practice in retail systems.

Pattern: Move Foreign-Key Relationship to Code | 173

Figure 4-37. Foreign-key relationship

At the end of each month, we need to generate a report outlining our biggest-selling
CDs. The Ledger table helps us understand which SKU sold the most copies, but the
information about that SKU is over in the Albums table. We want to make the reports
nice and easy to read, so rather than saying, “We sold 400 copies of SKU 123 and
made $1,596,” we’d like to add more information about what was sold, instead saying,
“We sold 400 copies of Bruce Springsteen’s Born to Run and made $1,596.” To do this,
the database query triggered by our finance code needs to join information from the
Ledger table to the Albums table, as Figure 4-37 shows.

We have defined a foreign-key relationship in our schema, such that a row in the
Ledger table is identified as having a relationship to a row in the Albums table. By
defining such a relationship, the underlying database engine is able to ensure data
consistency—namely, that if a row in the Ledger table refers to a row in the Albums
table, we know that row exists. In our situation, that means we can always get infor‐
mation about the album that was sold. These foreign-key relationships also let the
database engine carry out performance optimizations to ensure that the join opera‐
tion is as fast as possible.

We want to split out the Catalog and Finance code into their own corresponding
services, and that means the data has to come too. The Albums and Ledger tables will
end up living in different schemas, so what happens with our foreign-key relation‐
ship? Well, we have two key problems to consider. First, when our new Finance ser‐
vice wants to generate this report in the future, how does it retrieve Catalog-related
information if it can no longer do this via a database join? The other problem is, what
do we do about the fact that data inconsistency could now exist in the new world?

174 | Chapter 4: Decomposing the Database

Moving the Join
Let’s look at replacing the join first. With a monolithic system, in order to join a row
from the Album table with the sales information in the Ledger, we’d have the database
perform the join for us. We’d perform a single SELECT query, where we’d join to the
Albums table. This would require a single database call to execute the query and pull
back all the data we need.

In our new microservice-based world, our new Finance service has the responsibility
of generating the best-sellers report, but doesn’t have the album data locally. So it will
need to fetch this from our new Catalog service, as we see in Figure 4-38. When gen‐
erating the report, the Finance service first queries the Ledger table, extracting the list
of best-selling SKUs for the last month. At this point, all we have is a list of SKUs, and
the number of copies sold for each; that’s the only information we have locally.

Figure 4-38. Replacing a database join operation with service calls

Next, we need to call the Catalog service, requesting information on each of these
SKUs. This request in turn would cause the Catalog service to make its own local
SELECT on its own database.

Logically, the join operation is still happening, but it is now happening inside the
Finance service, rather than in the database. Unfortunately, it isn’t going to be any‐
where near as efficient. We’ve gone from a world where we have a single SELECT
statement, to a new world where we have a SELECT query against the Ledger table,
followed by a service call to the Catalog service, which in turn triggers a SELECT
statement against the Albums table, as we see in Figure 4-38.

In this situation, I’d be very surprised if the overall latency of this operation didn’t
increase. This may not be a significant problem in this particular case, as this report is

Pattern: Move Foreign-Key Relationship to Code | 175

generated monthly, and could therefore be aggressively cached. But if this is a fre‐
quent operation, that could be more problematic. We can mitigate the likely impact of
this increase in latency by allowing for SKUs to be looked up in the Catalog service in
bulk, or perhaps even by caching the required album information locally.

Ultimately, whether or not this increase in latency is a problem is something only you
can decide. You need to have an understanding of acceptable latency for key opera‐
tions, and be able to measure what the latency currently is. Distributed systems like
Jaeger can really help here, as they provide the ability to get accurate timing of opera‐
tions that span multiple services. Making an operation slower may be acceptable if it
is still fast enough, especially if as a trade-off you gain some other benefits.

Data Consistency
A trickier consideration is that with Catalog and Finance being separate services, with
separate schemas, we may end up with data inconsistency. With a single schema, I
wouldn’t be able to delete a row in the Albums table if there was a reference to that
row in the Ledger table. My schema was enforcing data consistency. In our new
world, no such enforcement exists. What are our options here?

Check before deletion
Our first option might be to ensure that when removing a record from the Albums
table, we check with the Finance service to ensure that it doesn’t already have a refer‐
ence to the record. The problem here is that guaranteeing we can do this correctly is
difficult. Say we want to delete SKU 683. We send a call to Finance saying, “Are you
using 683?” It responds that this record is not used. We then delete the record, but
while we are doing it, a new reference to 683 gets created in the Finance system. To
stop this from happening, we’d need to stop new references being created on record
683 until the deletion has happened—something that would likely require locks, and
all the challenges that implies in a distributed system.

Another issue with checking if the record is already in use is that creates a de facto
reverse dependency from the Catalog service. Now we’d need to check with any other
service that uses our records. This is bad enough if we have only one other service
using our information, but becomes significantly worse as we have more consumers.

I strongly urge you not to consider this option, because of the difficulty in ensuring
that this operation is implemented correctly as well as the high degree of service cou‐
pling that this introduces.

Handle deletion gracefully
A better option is just to have the Finance service handle the fact that the Catalog ser‐
vice may not have information on the Album in a graceful way. This could be as sim‐

176 | Chapter 4: Decomposing the Database

https://www.jaegertracing.io

5 Maintaining historical data in a relational database like this can get complicated, especially if you need to pro‐
grammatically reconstitute old versions of your entities. If you have heavy requirements in this space, explor‐
ing event sourcing as an alternative way of maintaining state would be worthwhile.

ple as having our report show “Album Information Not Available” if we can’t look up
a given SKU.

In this situation, the Catalog service could tell us when we request a SKU that used to
exist. This would be the good use of a 410 GONE response code if using HTTP, for
example. A 410 response code differs from the commonly used 404. A 404 denotes
that the requested resource is not found, whereas a 410 means that the requested
resource was available but isn’t any longer. The distinction can be important, espe‐
cially when tracking down data inconsistency issues! Even if not using an HTTP-
based protocol, consider whether or not you’d benefit from supporting this sort of
response.

If we wanted to get really advanced, we could ensure that our Finance service is
informed when a Catalog item is removed, perhaps by subscribing to events. When
we pick up a Catalog deletion event, we could decide to copy the now deleted Album
information into our local database. This feels like overkill in this particular situation,
but could be useful in other scenarios, especially if you wanted to implement a dis‐
tributed state machine to perform something like a cascading deletion across service
boundaries.

Don’t allow deletion
One way to ensure that we don’t introduce too much inconsistency into the system
could be to simply not allow records in the Catalog service to be deleted. If in the
existing system deleting an item was akin to ensuring it wasn’t available for sale or
something similar, we could just implement a soft delete capability. We could do this
by using a status column to mark that row as being unavailable, or perhaps even
moving the row into a dedicated “graveyard” table.5 The album’s record could still be
requested by the Finance service in this situation.

So how should we handle deletion?
Basically, we have created a failure mode that couldn’t exist in our monolithic system.
In looking at ways to solve this, we must consider the needs of our users, as different
solutions could impact our users in different ways. Choosing the right solution there‐
fore requires an understanding of your specific context.

Personally, in this specific situation, I’d likely solve this in two ways: by not allowing
deletion of album information in the Catalog, and by ensuring that the Finance ser‐
vice can handle a missing record. You could argue that if a record can’t be removed
from the Catalog service, the lookup from Finance could never fail. However, there is

Pattern: Move Foreign-Key Relationship to Code | 177

a possibility that, as a result of corruption, the Catalog service may be recovered to an
earlier state, meaning the record we are looking for no longer exists. In that situation,
I wouldn’t want the Finance service to fall over in a heap. It seems an unlikely set of
circumstances, but I’m always looking to build in resiliency, and consider what hap‐
pens if a call fails; handling this gracefully in the Finance service seems a pretty easy
fix.

Where to Use It
When you start considering effectively breaking foreign-key relationships, one of the
first things you need to ensure is that you aren’t breaking apart two things that really
want to be one. If you’re worried that you are breaking apart an aggregate, pause and
reconsider. In the case of the Ledger and Albums here, it seems clear we have two
separate aggregates with a relationship between them. But consider a different case:
an Order table, and lots of associated rows in an Order Line table containing details
of the items we have ordered. If we split out order lines into a separate service, we’d
have data integrity issues to consider. Really, the lines of an order are part of the order
itself. We should therefore see them as a unit, and if we wanted to move them out of
the monolith, they should be moved together.

Sometimes, by taking a bigger bite out of the monolithic schema, you may be able to
move both sides of a foreign-key relationship with you, making your life much easier!

Example: Shared Static Data
Static reference data (which changes infrequently, yet is typically critical) can create
some interesting challenges, and I’ve seen multiple approaches for managing it. More
often than not, it finds its way into the database. I have seen perhaps as many country
codes stored in databases (shown in Figure 4-39) as I have written my own StringU
tils classes for Java projects.

I’ve always questioned why small amounts of infrequently changing data like country
codes need to exist in databases, but whatever the underlying reason, these examples
of shared static data being stored in databases come up a lot. So what do we do in our
music shop many parts of our code need the same static reference data? Well, it turns
out we have a lot of options here.

178 | Chapter 4: Decomposing the Database

Figure 4-39. Country codes in the database

Pattern: duplicate static reference data
Why not just have each service have its own copy of the data, as in Figure 4-40? This
is likely to elicit a sharp intake of breath from many of you. Duplicate data? Am I
mad? Hear me out! It’s less crazy than you’d think.

Figure 4-40. Each service has its own Country Code schema

Concerns around duplication of data tend to come down to two things. First, each
time I need to change the data, I have to do so in multiple places. But in this situation,
how often does the data change? The last time a country was created and officially
recognized was in 2011, with the creation of South Sudan (the short code of which is
SSD). So I don’t think that’s much of a concern, is it? The bigger worry is, what

Pattern: Move Foreign-Key Relationship to Code | 179

happens if the data is inconsistent? For example, the Finance service knows that
South Sudan is a country, but inexplicably, the Warehouse service is living in the past
and knows nothing about it.

Whether or not inconsistency is an issue comes down to how the data is used. In our
example, consider that the Warehouse uses this country code data to record where
our CDs are manufactured. It turns out that we don’t stock any CDs that are made in
South Sudan, so the fact that we’re missing this data isn’t an issue. On the other hand,
the Finance service needs country code information to record information about
sales, and we have customers in South Sudan, so we need that updated entry.

When the data is used only locally within each service, the inconsistency is not a
problem. Think back to our definition of a bounded context: it’s all about information
being hidden within boundaries. If, on the other hand, the data is part of the commu‐
nication between these services, then we have different concerns. If both Warehouse
and Finance need the same view of country information, duplication of this nature is
definitely something I’d worry about.

We could also consider keeping these copies in sync using some sort of background
process, of course. In such a situation, we are unlikely to guarantee that all copies will
be consistent, but assuming our background process runs frequently (and quickly)
enough, then we can reduce the potential window of inconsistency in our data, and
that might be good enough.

As developers, we often react badly when we see duplication. We
worry about the extra cost of managing duplicate copies of infor‐
mation, and are even more concerned if this data diverges. But
sometimes duplication is the lesser of two evils. Accepting some
duplication in data may be a sensible trade-off if it means we avoid
introducing coupling.

Where to use it. This pattern should be used only rarely, and you should prefer some
of the options we consider later. It is sometimes useful for large volumes of data,
when it’s not essential for all services to see the exact same set of data. Something like
postal code files in the UK might be a good fit, where you periodically get updates of
the mapping from postal codes to addresses. That’s a fairly large dataset that would
probably be painful to manage in a code form. If you want to join to this data directly,
that may be another reason to select this option, but I’ll be honest and say I can’t
remember ever doing it myself!

180 | Chapter 4: Decomposing the Database

Pattern: Dedicated reference data schema
If you really want one source of truth for your country codes, you could relocate this
data to a dedicated schema, perhaps one set aside for all static reference data, as we
can see in Figure 4-41.

We do have to consider all the challenges of a shared database. To an extent, the con‐
cerns around coupling and change are somewhat offset by the nature of the data. It
changes infrequently, and is simply structured, and therefore we could more easily
consider this Reference Data schema to be a defined interface. In this situation, I’d
manage the Reference Data schema as its own versioned entity, and ensure that peo‐
ple understood that the schema structure represents a service interface to consumers.
Making breaking changes to this schema is likely to be painful.

Figure 4-41. Using a dedicated shared schema for reference data

Having the data in a schema does open up the opportunity for services to still use this
data as part of join queries on their own local data. For this to happen, though, you’d
likely need to ensure that the schemas are located on the same underlying database
engine. That adds a degree of complexity in terms of how you map from the logical to
the physical world, quite aside from the potential single-point-of-failure concerns.

Where to use it. This option has a lot of merits. We avoid the concerns around dupli‐
cation, and the format of the data is highly unlikely to change, so some of our cou‐
pling concerns are mitigated. For large volumes of data, or when you want the option
of cross-schema joins, it’s a valid approach. Just remember, any changes to the schema
format will likely cause significant impact across multiple services.

Pattern: Move Foreign-Key Relationship to Code | 181

6 That’s ISO 3166-1 for all you ISO fans out there!

Pattern: Static reference data library
When you get down to it, there aren’t many entries in our country code data. Assum‐
ing we’re using the ISO standard listing, we’re looking at only 249 countries being
represented.6 This would fit nicely in code, perhaps as a simple static enumerated
type. In fact, storing small volumes of static reference data in code form is something
that I’ve done a number of times, and something I’ve seen done for microservice
architectures.

Of course, we’d rather not duplicate this data if we don’t have to, so this leads us to
consider placing this data into a library that can be statically linked by any services
that want this data. Stitch Fix, a US-based fashion retailer, makes frequent use of
shared libraries like this to store static reference data.

Randy Shoup, who was VP of engineering at Stitch Fix said the sweet spot for this
technique was for types of data that were small in volume and that changed infre‐
quently or not at all (and if it did change, you had a lot of up-front warning about the
change). Consider classic clothes sizing—XS, S, M, L, XL for general sizes, or inseam
measurements for trousers.

In our case, we define our country code mappings in a Country enumerated type, and
bundle this into a library for use in our services, as shown in Figure 4-42.

Figure 4-42. Store reference data in a library that can be shared between services

This is a neat solution, but it’s not without drawbacks. Obviously, if we have a mix of
technology stacks, we may not be able to share a single shared library. Also, remem‐

182 | Chapter 4: Decomposing the Database

ber the golden rule of microservices? We need to ensure that our microservices are
independently deployable. If we needed to update our country codes library, and have
all services pick up the new data immediately, we’d need to redeploy all services at the
moment the new library is available. This is a classic lock-step release, and exactly
what we’re trying to avoid with microservice architectures.

In practice, if we need the same data to be available everywhere, then sufficient notice
of the change may help. An example Randy gave was the need to add a new color to
one of Stitch Fix’s datasets. This change needed to be rolled out to all services that
made use of this datatype, but they had significant lead time to make sure all the
teams pulled in the latest version. If you consider the country codes example, again
we’d likely have a lot of advanced notice if a new country needed to be added. For
example, South Sudan became an independent state in July 2011 after a referendum
six months earlier, giving us a lot of time to roll out our change. New countries are
rarely created on a whim!

If your microservices use shared libraries, remember that you have
to accept that you might have different versions of the library
deployed in production!

This means that if we need to update our country codes library, we would need to
accept that not all microservices can be guaranteed to have the same version of the
library, as we see in Figure 4-43. If this doesn’t work for you, perhaps the next option
may help.

Figure 4-43. Differences between shared reference data libraries may cause issues

Pattern: Move Foreign-Key Relationship to Code | 183

In a simple variation of this pattern, the data in question is held in a configuration
file, perhaps a standard properties file or, if required, in a more structured JSON for‐
mat.

Where to use it. For small volumes of data, where you can be relaxed about different
services seeing different versions of this data, this is an excellent but often overlooked
option. The visibility regarding which service has what version of data is especially
useful.

Pattern: Static reference data service
I suspect you can see where this is ending up. This is a book about creating microser‐
vices, so why not consider creating a dedicated service just for country codes, as in
Figure 4-44?

Figure 4-44. Serving country codes from a dedicated service

I’ve run through this exact scenario with groups all over the world, and it tends to
divide the room. Some people immediately think, “That could work!” Typically,
though, a larger portion of the group will start shaking their heads and saying some‐
thing along the lines of, “That looks crazy!” When digging deeper, we get to the heart
of their concern; this seems like a lot of work and potential added complexity for not
much benefit. The word “overkill” comes up frequently!

So let’s explore this a bit further. When I chat to people and try to understand why
some people are fine with this idea, and others are not, it typically comes down to a
couple of things. People who work in an environment where creating and managing a
microservice is low are much more likely to consider this option. If, on the other
hand, creating a new service, even one as simple as this, requires days or even weeks
of work, then people will understandably push back on creating a service like this.

184 | Chapter 4: Decomposing the Database

7 Kief wrote Infrastructure as Code: Managing Servers in the Cloud (Sebastopol: O’Reilly, 2016).

Ex-colleague and fellow O’Reilly author Kief Morris7 told me about his experiences at
a project for a large international bank based in the UK, where it took nearly a year to
get approval for the first release of some software. Over 10 teams inside the bank had
to be consulted first before anything could go live—everything from getting designs
signed off, to getting machines provisioned for deployment. Such experiences are far
from uncommon in larger organizations, unfortunately.

In organizations where deploying new software requires lots of manual work, appro‐
vals, and perhaps even the need to procure and configure new hardware, the inherent
cost of creating services is significant. In such an environment, I would therefore
need to be highly selective in creating new services; they’d have to be delivering a lot
of value to justify the extra work. This may make the creation of something like the
country code unjustifiable. If, on the other hand, I could spin up a service template
and push it to production in the space of a day or less, and have everything done for
me, then I’d be much more likely to consider this as a viable option.

Even better, a Country Code service would be a great fit for something like a
Function-as-a-Service platform like Azure Cloud Functions or AWS Lambda. The
lower operations cost for functions is attractive, and they’re a great fit for simple serv‐
ices like the Country Code service.

Another concern cited is that by adding a service for country codes, we’d be adding
yet another networked dependency that could impact latency. I think that this
approach is no worse, and may be faster, than having a dedicated database for this
information. Why? Well, as we’ve already established, there are only 249 entries in
this dataset. Our Country Code service could easily hold this in memory and serve it
up directly. Our Country Code service would likely just store these records in code,
no baking datastore needed.

This data can, of course, also be aggressively cached at the client side. We don’t add
new entries to this data often, after all! We could also consider using events to let con‐
sumers know when this data has changed, as shown in Figure 4-45. When the data
changes, interested consumers can be alerted via events and use this to update their
local caches. I suspect that a traditional TTL-based client cache is likely to be good
enough in this scenario, given the low change frequency, but I have used a similar
approach for a general-purpose Reference Data service many years ago to great effect.

Pattern: Move Foreign-Key Relationship to Code | 185

Figure 4-45. Firing update events to allow consumers to update local caches

Where to use it. I’d reach for this option if I was managing the life cycle of this data
itself in code. For example, if I wanted to expose an API to update this data, I’d need
somewhere for that code to live, and putting that in a dedicated microservice makes
sense. At that point, we have a microservice encompassing the state machine for this
state. This also makes sense if you want to emit events when this data changes, or just
where you want to provide a more convenient contact against which to stub for test‐
ing purposes.

The major issue here always seems to come down to the cost of creating yet another
microservice. Does it add enough to justify the work, or would one of these other
approaches be a more sensible option?

What would I do?
OK, again I’ve given you lots of options. So what would I do? I suppose I can’t sit on
the fence forever, so here goes. If we assume that we don’t need to ensure that the
country codes are consistent across all services at all times, then I’d likely keep this
information in a shared library. For this sort of data, it seems to make much more
sense than duplicating this data in local service schemas; the data is simple in nature,
and small in volume (country codes, dress sizes, and the like). For more complex ref‐
erence data or for larger volumes, this might tip me toward putting this into the local
database for each service.

If the data needs to be consistent between services, I’d look to create a dedicated ser‐
vice (or perhaps serve up this data as part of a larger-scoped static reference service).

186 | Chapter 4: Decomposing the Database

I’d likely resort to having a dedicated schema for this sort of data only if it was diffi‐
cult to justify the work to create a new service.

What we have covered in the preceding examples are a few data‐
base refactorings that can help you separate your schemas. For a
more detailed discussion of the subject, you may want to take a
look at Refactoring Databases by Scott J. Ambler and Pramod J.
Sadalage (Addison-Wesley).

Transactions
When breaking apart our databases, we’ve already touched on some of the problems
that can result. Maintaining referential integrity becomes problematic, latency can
increase, and we can make activities like reporting more complex. We’ve looked at
various coping patterns for some of these challenges, but one big one remains: what
about transactions?

The ability to make changes to our database in a transaction can make our systems
much easier to reason about, and therefore easier to develop and maintain. We rely
on our database ensuring the safety and consistency of our data, leaving us to worry
about other things. But when we split data across databases, we lose the benefit of
using a database transaction to apply changes in state in an atomic fashion.

Before we explore how to tackle this issue, let’s look briefly at what a normal database
transaction gives us.

ACID Transactions
Typically, when we talk about database transactions, we are talking about ACID
transactions. ACID is an acronym outlining the key properties of database transac‐
tions that lead to a system we can rely on to ensure the durability and consistency of
our data storage. ACID stands for atomicity, consistency, isolation, and durability, and
here is what these properties give us:

Atomicity
Ensures that all operations completed within the transaction either all complete
or all fail. If any of the changes we’re trying to make fail for some reason, then the
whole operation is aborted, and it’s as though no changes were ever made.

Consistency
When changes are made to our database, we ensure it is left in a valid, consistent
state.

Transactions | 187

8 This has now changed with support for multidocument ACID transactions, which was released as part of
Mongo 4.0. I haven’t used this feature of Mongo myself; I just know it exists!

9 See Martin Kleppmann, Designing Data-Intensive Applications (Sebastopol, O’Reilly Media, Inc., 2017).

Isolation
Allows multiple transactions to operate at the same time without interfering.
This is achieved by ensuring that any interim state changes made during one
transaction are invisible to other transactions.

Durability
Makes sure that once a transaction has been completed, we are confident the data
won’t get lost in the event of some system failure.

It’s worth noting that not all databases provide ACID transactions. All relational data‐
base systems I’ve ever used do, as do many of the newer NoSQL databases like Neo4j.
MongoDB for many years supported ACID transactions around only a single docu‐
ment, which could cause issues if you wanted to make an atomic update to more than
one document.8

This isn’t the book for a detailed, deep dive into these concepts; I’ve certainly simpli‐
fied some of these descriptions for the sake of brevity. For those of you who would
like to explore these concepts further, I recommend Designing Data-Intensive Applica‐
tions.9 We’ll mostly concern ourselves with atomicity in what follows. That’s not to say
that the other properties aren’t also important, but that atomicity tends to be the first
issue we hit when splitting apart transactional boundaries.

Still ACID, but Lacking Atomicity?
I want to be clear that we can still use ACID-style transactions when we split data‐
bases apart, but the scope of these transactions is reduced, as is their usefulness. Con‐
sider Figure 4-46. We are keeping track of the process involved in onboarding a new
customer to our system. We’ve reached the end of the process, which involves chang‐
ing the Status of the customer from PENDING to VERIFIED. As the enrollment is
now complete, we also want to remove the matching row from the PendingEnroll‐
ments table. With a single database, this is done in the scope of a single ACID data‐
base transaction—either both the new rows are written, or neither are written.

Compare this with Figure 4-47. We’re making exactly the same change, but now each
change is made in a different database. This means there are two transactions to con‐
sider, each of which could work or fail independently of the other.

188 | Chapter 4: Decomposing the Database

Figure 4-46. Updating two tables in the scope of a single ACID transaction

Figure 4-47. Changes made to both Invoice and Order are now done in the scope of two
different transactions

Transactions | 189

We could decide to sequence these two transactions, of course, removing a row from
the PendingEnrollments table only if we were able to change the row in the Customer
table. But we’d still have to reason about what to do if the deletion from the Pendin‐
gEnrollments table then failed—all logic that we’d need to implement ourselves. Being
able to reorder steps to make handling these use cases can be a really useful idea,
though (one we’ll come back to when we explore sagas). But fundamentally by
decomposing this operation into two separate database transactions, we have to
accept that we’ve lost guaranteed atomicity of the operation as a whole.

This lack of atomicity can start to cause significant problems, especially if we are
migrating systems that previously relied on this property. It’s at this point that people
start to look for other solutions to give them some ability to reason about changes
being made to multiple services at once. Normally, the first option that people start
considering is distributed transactions. Let’s look at one of the most common algo‐
rithms for implementing distributed transactions, the two-phase commit, as a way of
exploring the challenges associated with distributed transactions as a whole.

Two-Phase Commits
The two-phase commit algorithm (sometimes shortened to 2PC) is frequently used to
attempt to give us the ability to make transactional changes in a distributed system,
where multiple separate processes may need to be updated as part of the overall oper‐
ation. I want to let you know up front that 2PCs have limitations, which we’ll cover,
but they’re worth knowing about. Distributed transactions, and two-phased commits
more specifically, are frequently raised by teams moving to microservice architectures
as a way of solving challenges they face. But as we’ll see, they may not solve your
problems, and may bring even more confusion to your system.

The algorithm is broken into two phases (hence the name two-phase commit): a vot‐
ing phase and a commit phase. During the voting phase, a central coordinator con‐
tacts all the workers who are going to be part of the transaction, and asks for
confirmation as to whether or not some state change can be made. In Figure 4-48, we
see two requests, one to change a customer status to VERIFIED, another to remove a
row from our PendingEnrollments table. If all the workers agree that the state change
they are asked for can take place, the algorithm proceeds to the next phase. If any
workers say the change cannot take place, perhaps because the requested state change
violates some local condition, the entire operation aborts.

190 | Chapter 4: Decomposing the Database

Figure 4-48. In the first phase of a two-phase commit, workers vote to decide if they can
carry out some local state change

It’s important to highlight that the change does not take effect immediately after a
worker indicates that it can make the change. Instead, the worker is guaranteeing that
it will be able to make that change at some point in the future. How would the worker
make such a guarantee? In Figure 4-48, for example, Worker A has said it will be able
to change the state of the row in the Customer table to update that specific customer’s
status to be VERIFIED. What if a different operation at some later point deletes the
row, or makes another smaller change that nonetheless means that a change to VERI‐
FIED later is invalid? To guarantee that this change can be made later, Worker A will
likely have to lock that record to ensure that such a change cannot take place.

If any workers didn’t vote in factor of the commit, a rollback message needs to be sent
to all parties, to ensure that they can clean up locally, which allows the workers to
release any locks they may be holding. If all workers agreed to make the change, we
move to the commit phase, as in Figure 4-49. Here, the changes are actually made,
and associated locks are released.

Transactions | 191

Figure 4-49. In the commit phase of a two-phase commit, changes are actually applied

It’s important to note that in such a system, we cannot in any way guarantee that these
commits will occur at exactly the same time. The coordinator needs to send the com‐
mit request to all participants, and that message could arrive at and be processed at
different times. This means it’s possible that we could see the change made to Worker
A, but not yet see the change to Worker B, if we allow for you to view the states of
these workers outside the transaction coordinator. The more latency there is between
the coordinator, and the slower it is for the workers to process the response, the wider
this window of inconsistency might be. Coming back to our definition of ACID, iso‐
lation ensures that we don’t see intermediate states during a transaction. But with this
two-phase commit, we’ve lost that.

When two-phase commits work, at their heart they are very often just coordinating
distributed locks. The workers need to lock local resources to ensure that the commit
can take place during the second phase. Managing locks, and avoiding deadlocks in a
single-process system, isn’t fun. Now imagine the challenges of coordinating locks
among multiple participants. It’s not pretty.

There are a host of failure modes associated with two-phase commits that we don’t
have time to explore. Consider the problem of a worker voting to proceed with the
transaction, but then not responding when asked to commit. What should we do
then? Some of these failure modes can be handled automatically, but some can leave
the system in such a state that things need to be manually unpicked.

The more participants you have, and the more latency you have in the system, the
more issues a two-phase commit will have. They can be a quick way to inject huge
amounts of latency into your system, especially if the scope of locking is large, or the
duration of the transaction is large. It’s for this reason two-phase commits are typi‐

192 | Chapter 4: Decomposing the Database

10 See Hector Garcia-Molina and Kenneth Salem, “Sagas,” in ACM Sigmod Record 16, no. 3 (1987): 249–259.

cally used only for very short-lived operations. The longer the operation takes, the
longer you’ve got resources locked for!

Distributed Transactions—Just Say No
For all these reasons outlined so far, I strongly suggest you avoid the use of dis‐
tributed transactions like the two-phase commit to coordinate changes in state across
your microservices. So what else can you do?

Well, the first option could be to just not split the data apart in the first place. If you
have pieces of state that you want to manage in a truly atomic and consistent way, and
you cannot work out how to sensibly get these characteristics without an ACID-style
transaction, then leave that state in a single database, and leave the functionality that
manages that state in a single service (or in your monolith). If you’re in the process of
working out where to split your monolith, and working out what decompositions
might be easy (or hard), then you could well decide that splitting apart data that is
currently managed in a transaction is just too hard to handle right now. Work on
some other area of the system, and come back to this later.

But what happens if you really do need to break this data apart, but you don’t want all
the pain of managing distributed transactions? How can we carry out operations in
multiple services but avoid locking? What if the operation is going to take minutes,
days, or perhaps even months? In cases like this, we can consider an alternative
approach: sagas.

Sagas
Unlike a two-phase commit, a saga is by design an algorithm that can coordinate
multiple changes in state, but avoids the need for locking resources for long periods
of time. We do this by modeling the steps involved as discrete activities that can be
executed independently. It comes with the added benefit of forcing us to explicitly
model our business processes, which can have significant benefits.

The core idea, first outlined by Hector Garcia-Molina and Kenneth Salem,10 reflected
on the challenges of how best to handle operations of what they referred to as long
lived transactions (LLTs). These transactions might take a long time (minutes, hours,
or perhaps even days), and as part of that process require changes to be made to a
database.

If you directly mapped an LLT to a normal database transaction, a single database
transaction would span the entire life cycle of the LLT. This could result in multiple
rows or even full tables being locked for long periods of time while the LLT is taking

Sagas | 193

place, causing significant issues if other processes are trying to read or modify these
locked resources.

Instead, the authors of the paper suggest we should break down these LLTs into a
sequence of transactions, each of which can be handled independently. The idea is
that the duration of each of these “sub” transactions will be shorter lived, and will
modify only part of the data affected by the entire LLT. As a result, there will be far
less contention in the underlying database as the scope and duration of locks is
greatly reduced.

While sagas were originally envisaged as a mechanism to help with LLTs acting
against a single database, the model works just as well for coordinating change across
multiple services. We can break a single business process into a set of calls that will be
made to collaborating services as part of a single saga.

Before we go any further, you need to understand that a saga does
not give us atomicity in ACID terms we are used to with a normal
database transaction. As we break the LLT into individual transac‐
tions, we don’t have atomicity at the level of the saga itself. We do
have atomicity for each subtransaction inside the LLT, as each one
of them can relate to an ACID transactional change if needed.
What a saga gives us is enough information to reason about which
state it’s in; it’s up to us to handle the implications of this.

Let’s take a look at a simple order fulfillment flow, outlined in Figure 4-50, which we
can use to further explore sagas in the context of a microservice architecture.

Here, the order fulfillment process is represented as a single saga, with each step in
this flow representing an operation that can be carried out by a different service.
Within each service, any state change can be handled within a local ACID transac‐
tion. For example, when we check and reserve stock using the Warehouse service,
internally the Warehouse service might create a row in its local Reservation table
recording the reservation; this change would be handled within a normal transaction.

194 | Chapter 4: Decomposing the Database

Figure 4-50. An example order fulfillment flow, along with the services responsible for
carrying out the operation

Saga Failure Modes
With a saga being broken into individual transactions, we need to consider how to
handle failure—or, more specifically, how to recover when a failure happens. The
original saga paper describes two types of recovery: backward recovery and forward
recovery.

Backward recovery involves reverting the failure, and cleaning up afterwards—a roll‐
back. For this to work, we need to define compensating actions that allow us to undo
previously committed transactions. Forward recovery allows us to pick up from the
point where the failure occurred, and keep processing. For that to work, we need to
be able to retry transactions, which in turn implies that our system is persisting
enough information to allow this retry to take place.

Depending on the nature of the business process being modeled, you may consider
that any failure mode triggers a backward recovery, a forward recovery, or perhaps a
mix of the two.

Sagas | 195

Saga rollbacks
With an ACID transaction, a rollback occurs before a commit. After the rollback, it is
like nothing ever happened: the change we were trying to make didn’t take place.
With our saga, though, we have multiple transactions involved, and some of those
may have already committed before we decide to roll back the entire operation. So
how can we roll back transactions after they have already been committed?

Let’s come back to our example of processing an order, as outlined in Figure 4-50.
Consider a potential failure mode. We’ve gotten as far as trying to package the item,
only to find the item can’t be found in the warehouse, as shown in Figure 4-51. Our
system thinks the item exists, but it’s just not on the shelf!

Figure 4-51. We’ve tried to package our item, but we can’t find it in the warehouse

Now, let’s assume we decide we want to just roll back the entire order, rather than giv‐
ing the customer the option for the item to be placed on back order. The problem is
that we’ve already taken payment and awarded loyalty points for the order.

If all of these steps had been done in a single database transaction, a simple rollback
would clean this all up. However, each step in the order fulfillment process was han‐

196 | Chapter 4: Decomposing the Database

dled by a different service call, each of which operated in a different transactional
scope. There is no simple “rollback” for the entire operation.

Instead, if you want to implement a rollback, you need to implement a compensating
transaction. A compensating transaction is an operation that undoes a previously
committed transaction. To roll back our order fulfillment process, we would trigger
the compensating transaction for each step in our saga that has already been commit‐
ted, as shown in Figure 4-52.

Figure 4-52. Triggering a rollback of the entire saga

It’s worth calling out the fact that these compensating transactions can’t have exactly
the same behavior as that of a normal database rollback. A database rollback happens
before the commit; and after the rollback, it is as though the transaction never hap‐
pened. In this situation, of course, these transactions did happen. We are creating a
new transaction that reverts the changes made by the original transaction, but we
can’t roll back time and make it as though the original transaction didn’t occur.

Because we cannot always cleanly revert a transaction, we say that these compensat‐
ing transactions are semantic rollbacks. We cannot always clean up everything, but we

Sagas | 197

11 You really can’t. I’ve tried!

do enough for the context of our saga. As an example, one of our steps may have
involved sending an email to a customer to tell them their order was on the way. If we
decide to roll that back, you can’t unsend an email!11 Instead, your compensating
transaction could cause a second email to be sent to the customer, informing them
that there had been a problem with the order and it had been canceled.

It is totally appropriate for information related to the rollback saga to persist in the
system. In fact, this may be very important information. You may want to keep a
record in the Order service for this aborted order, along with information about what
happened, for a whole host of reasons.

Reordering steps to reduce rollbacks
In Figure 4-52, we could have made our likely rollback scenarios somewhat simpler
by reordering the steps. A simple change would be to award points only when the
order was actually dispatched, as seen in Figure 4-53. This way, we’d avoid having to
worry about that stage being rolled back if we had a problem while trying to package
and send the order. Sometimes you can simplify your rollback operations just by
tweaking how the process is carried out. By pulling forward those steps that are most
likely to fail and failing the process earlier, you avoid having to trigger later compen‐
sating transactions as those steps weren’t even triggered in the first place.

These changes, if they can be accommodated, can make your life much easier, avoid‐
ing the need to even create compensating transactions for some steps. This can be
especially important if implementing a compensating transaction is difficult. You may
be able to move the step later in the process to a stage where it never needs to be rol‐
led back.

Mixing fail-backward and fail-forward situations
It is totally appropriate to have a mix of failure recovery modes. Some failures may
require a rollback; others may be fail forward. For the order processing, for example,
once we’ve taken money from the customer, and the item has been packaged, the only
step left is to dispatch the package. If for whatever reason we can’t dispatch the pack‐
age (perhaps the delivery firm we have doesn’t have space in their vans to take an
order today), it seems very odd to roll the whole order back. Instead, we’d probably
just retry the dispatch, and if that fails, require human intervention to resolve the sit‐
uation.

198 | Chapter 4: Decomposing the Database

Figure 4-53. Moving steps later in the saga can reduce what has to be rolled back in case
of a failure

Implementing Sagas
So far, we’ve looked at the logical model for how sagas work, but we need to go a bit
deeper to examine ways of implementing the saga itself. We can look at two styles of
saga implementation. Orchestrated sagas more closely follow the original solution
space and rely primarily on centralized coordination and tracking. These can be com‐
pared to choreographed sagas, which avoid the need for centralized coordination in
favor of a more loosely coupled model, but which can make tracking the progress of a
saga more complicated.

Sagas | 199

Orchestrated sagas
Orchestrated sagas use a central coordinator (what we’ll call an orchestrator from now
on) to define the order of execution and to trigger any required compensating action.
You can think of orchestrated sagas as a command-and-control approach: the central
orchestrator controls what happens and when, and with that comes a good degree of
visibility as to what is happening with any given saga.

Taking the order fulfillment process shown in Figure 4-50, let’s see how this central
coordination process would work as a set of collaborating services, as in Figure 4-54.

Figure 4-54. An example of how an orchestrated saga may be used to implement our
order-fulfillment process

Here, our central Order Processor, playing the role of the orchestrator, coordinates
our fulfillment process. It knows what services are needed to carry out the operation,
and it decides when to make calls to those services. If the calls fail, it can decide what
to do as a result. These orchestrated processors tend to make heavy use of request/
response calls between services: the Order Processor sends a request to services (such
as a Payment Gateway), and expects a response letting it know if the request was suc‐
cessful and providing the results of the request.

200 | Chapter 4: Decomposing the Database

Having our business process explicitly modeled inside the Order Processor is
extremely beneficial. It allows us to look at one place in our system and understand
how this process is supposed to work. That can make onboarding of new people eas‐
ier, and help impart a better understanding of the core parts of the system.

There are a few downsides to consider, though. First, by its nature, this is a somewhat
coupled approach. Our Order Processor needs to know about all the associated serv‐
ices, resulting in a higher degree of what we discussed in Chapter 1 as domain cou‐
pling. While not inherently bad, we’d still like to keep domain coupling to a minimum
if possible. Here, our Order Processor needs to know about and control so many
things that this form of coupling is hard to avoid.

The other issue, which is more subtle, is that logic that should otherwise be pushed
into the services can start to instead become absorbed in the orchestrator. If this starts
happening, you may find your services becoming anemic, with little behavior of their
own, just taking orders from orchestrators like the Order Processor. It’s important
you still consider the services that make up these orchestrated flows as entities that
have their own local state and behavior. They are in charge of their own local state
machines.

If logic has a place where it can be centralized, it will become cen‐
tralized!

One of the ways to avoid too much centralization with orchestrated flows can be to
ensure you have different services playing the role of the orchestrator for different
flows. You might have an Order Processor service that handles placing an order, a
Returns service to handle the return and refund process, a Goods Receiving service
that handles new stock arriving at the warehouse and being put on the shelves, and so
on. Something like our Warehouse service may be used by all those orchestrators;
such a model makes it easier for you to keep functionality in the Warehouse service
itself to allow you to reuse functionality across all those flows.

BPM Tools?
Business process modeling (BPM) tools have been available for many years. By and
large, they are designed to allow nondevelopers to define business process flows,
often using visual drag-and-drop tools. The idea is developers would create the build‐
ing blocks of these processes, and then nondevelopers would wire these building
blocks together into the larger process flows. The use of such tools seems to line up
really nicely as a way of implementing orchestrated sagas, and indeed process orches‐

Sagas | 201

tration is pretty much the main use case for BPM tools (or, in reverse, the use of BPM
tools results in you having to adopt orchestration).

In my experience, I’ve come to greatly dislike BPM tools. The main reason is that the
central conceit—that nondevelopers will define the business process—has in my
experience almost never been true. The tooling aimed at nondevelopers ends up get‐
ting used by developers, and they can have a host of issues. They often require the use
of GUIs to change the flows, the flows they create may be difficult (or impossible) to
version control, the flows themselves may not be designed with testing in mind, and
more.

If your developers are going to be implementing your business processes, let them use
tooling that they know and understand and is fit for their workflows. In general, this
means just letting them use code to implement these things! If you need visibility as
to how a business process has been implemented, or how it is operating, then it is far
easier to project a visual representation of a workflow from code than it is to use a
visual representation of your workflow to describe how your code should work.

There are efforts to create more developer-friendly BPM tools. Feedback on these
tools from developers seems to be mixed, but they have worked well for some, and it’s
good to see people trying to improve on these frameworks. If you feel the need to
explore these tools further, do take a look at Camunda and Zeebe, both of which are
open source orchestration frameworks targeting microservice developers.

Choreographed sagas
Choreographed sagas aim to distribute responsibility for the operation of the saga
among multiple collaborating services. If orchestration is command-and-control,
choreographed sagas represent a trust-but-verify architecture. As we’ll see in our
example in Figure 4-55, choreographed sagas will often make heavy use of events for
collaboration between services.

There’s quite a bit going on here, so it’s worth exploring in more detail. First, these
services are reacting to events being received. Conceptually, events are broadcast in
the system, and interested parties are able to receive them. You don’t send events to a
service; you just fire them out, and the services that are interested in these events are
able to receive them and act accordingly. In our example, when the Warehouse ser‐
vice receives that first Order Placed event, it knows its job to reserve the appropriate
stock and fire an event once that is done. If the stock couldn’t be received, the Ware‐
house would need to raise an appropriate event (an Insufficient Stock event perhaps),
which might lead to the order being aborted.

202 | Chapter 4: Decomposing the Database

https://camunda.com/
https://zeebe.io

Figure 4-55. An example of a choreographed saga for implementing order fulfillment

Typically, you’d use some sort of message broker to manage the reliable broadcast and
delivery of events. It’s possible that multiple services may react to the same event, and
that is where you would use a topic. Parties interested in a certain type of event would
subscribe to a specific topic without having to worry about where these events came
from, and the broker ensures the durability of the topic and that the events on it are
successfully delivered to subscribers. As an example, we might have a Recommenda‐
tion service that also listens to Order Placed events and uses that to construct a data‐
base of music choices you might like.

In the preceding architecture, no one service knows about any other service. They
only need to know what to do when a certain event is received. Inherently, this makes
for a much less coupled architecture. As the implementation of the process is decom‐
posed and distributed among the four services here, we also avoid the concerns about
centralization of logic (if you don’t have a place where logic can be centralized, then it
won’t be centralized!).

The flip side of this is that it can now be harder to work out what is going on. With
orchestration, our process was explicitly modeled in our orchestrator. Now, with this
architecture as it is presented, how would you build up a mental model of what the
process is supposed to be? You’d have to look at the behavior of each service in isola‐
tion and reconstitute this picture in your own head—far from a straightforward pro‐
cess even with a simple business process like this one.

Sagas | 203

12 It’s outside the scope of this book, but Hector Garcia-Molina and Kenneth Salem went on to explore how mul‐
tiple sagas could be “nested” to implement more complex processes. To read more on this topic, see Hector
Garcia-Molina et al, “Modeling Long-Running Activities as Nested Sagas,” Data Engineering 14, no. 1 (March
1991: 14–18.

The lack of an explicit representation of our business process is bad enough, but we
also lack a way of knowing what state a saga is in, which can also deny us the chance
to attach compensating actions when required. We can push some responsibility to
the individual services for carrying out compensating actions, but fundamentally we
need a way of knowing what state a saga is in for some kinds of recovery. The lack of
a central place to interrogate around the status of a saga is a big problem. We get that
with orchestration, so how do we solve that here?

One of the easiest ways of doing this is to project a view regarding the state of a saga
from the existing system by consuming the events being emitted. If we generate a
unique ID for the saga, we can put this into all of the events that are emitted as part of
this saga-this is what is known as a correlation ID. We could then have a service
whose job it is to just vacuum up all these events and present a view of what state each
order is in, and perhaps programmatically carry out actions to resolve issues as part
of the fulfillment process if the other services couldn’t do it themselves.

Mixing styles
While it may seem that orchestrated and choreographed sagas are diametrically
opposing views on how sagas could be implemented, you could easily consider mix‐
ing and matching models. You may have some business processes in your system that
more naturally fit one model or another. You may also have a single saga that has a
mix of styles. In the order fulfillment use case, for example, inside the boundary of
the Warehouse service, when managing the packaging and dispatch of a package, we
may use an orchestrated flow even if the original request was made as part of a larger
choreographed saga.12

If you do decide to mix styles, it’s important that you still have a clear way to under‐
stand what has happened as part of the saga. Without this, understanding failure
modes becomes complex, and recovery from failure difficult.

Should I use choreography or orchestration?
Implementing choreographed sagas can bring with it ideas that may be unfamiliar to
you and your team. They typically assume heavy use of event-driven collaboration,
which isn’t widely understood. However, in my experience, the extra complexity asso‐
ciated with tracking the progress of a saga is almost always outweighed by the benefits
associated with having a more loosely coupled architecture.

204 | Chapter 4: Decomposing the Database

13 See Pat Helland, “Life Beyond Distributed Transactions,” acmqueue 14, no. 5.
14 Sagas are not mentioned explicitly in either book, but orchestration and choreography are both covered.

While I can’t speak to the experience of the authors of Enterprise Integration Patterns, I personally was
unaware of sagas when I wrote Building Microservices.

Stepping aside from my own personal tastes, though, the general advice I give regard‐
ing orchestration versus choreography is that I am very relaxed in the use of orches‐
trated sagas when one team owns implementation of the entire saga. In such a
situation, the more inherently coupled architecture is much easier to manage within
the team boundary. If you have multiple teams involved, I greatly prefer the more
decomposed choreographed saga as it is easier to distribute responsibility for imple‐
menting the saga to the teams, with the more loosely coupled architecture allowing
these teams to work more in isolation.

Sagas Versus Distributed Transactions
As I hope I have broken down by now, distributed transactions come with some sig‐
nificant challenges, and outside of some very specific situations are something I tend
to avoid. Pat Helland, a pioneer in distributed systems, distills the fundamental chal‐
lenges with implementing distributed transactions for the kinds of applications we
build today:13

In most distributed transaction systems, the failure of a single node causes transaction
commit to stall. This in turn causes the application to get wedged. In such systems, the
larger it gets, the more likely the system is going to be down. When flying an airplane
that needs all of its engines to work, adding an engine reduces the availability of the
airplane.

—Pat Helland, Life Beyond Distributed Transactions

In my experience, explicitly modeling business processes as a saga avoids many of the
challenges of distributed transactions, while at the same time has the added benefit of
making what might otherwise be implicitly modeled processes much more explicit
and obvious to your developers. Making the core business processes of your system a
first-class concept will have a host of benefits.

A fuller discussion of implementing orchestration and choreography, along with the
various implementation details, is outside the scope of this book. It is covered in
Chapter 4 of Building Microservices, but I also recommend Enterprise Integration Pat‐
terns for a deep dive into many aspects of this topic.14

Summary
We decompose our system by finding seams along which service boundaries can
emerge, and this can be an incremental approach. By getting good at finding these

Summary | 205

seams and working to reduce the cost of splitting out services in the first place, we
can continue to grow and evolve our systems to meet whatever requirements come
down the road. As you can see, some of this work can be painstaking, and it can cause
significant issues that we will need to address. But the fact that it can be done incre‐
mentally means there is no need to fear this work.

In splitting our services, we’ve introduced some new problems too. In our next chap‐
ter, we’ll take a look at the various challenges that will emerge as you break down your
monolith. But don’t worry, I’ll also give you a host of ideas to help you deal with these
problems as they arise.

206 | Chapter 4: Decomposing the Database

CHAPTER 5

Growing Pains

As you adopt a microservice architecture, you’ll experience challenges along the way.
We’ve looked at some of these problems in passing already, but I want to explore
them further to help give you some forewarning.

What I’m hoping to do with this chapter is give you just enough information about
the sorts of issues you may face. I can’t solve them all in this book, and many of the
problems I outline here already have a more detailed treatment in Building Microser‐
vices, which was very much written with these challenges in mind.

I also want to give you some signs to look for to help you spot when these issues may
need addressing, as well as an indication of where along your journey these issues are
most likely to arise.

More Services, More Pain
When exactly problems will occur with a microservice architecture is related to a
multitude of factors. The complexity of service interactions, size of the organization,
number of services, technology choices, latency, and uptime requirements are just a
subset of the forces that can bring forth pain, suffering, excitement, and stress. This
means it’s difficult to say when, or indeed if, you’ll actually encounter these issues.

In general, though, I’ve realized that the sorts of problems that arise in a company
with ten services tend to be quite different from the ones seen at a company with
hundreds of services. The number of services seems to be as good a measure as any
for indicating when certain issues are most likely to manifest themselves. I should
note here that when I talk about the number of services, unless otherwise specified
I’m taking about different logical services. When those services are deployed into
production, they may then be deployed as multiple service instances.

207

Don’t think of adopting microservices as flipping a switch; think about it as turning a
dial. As you turn that dial, and have more services, you’ll hopefully have more oppor‐
tunity to get the good stuff out of microservices. But as you turn up that dial, you’ll
hit different pain points as you go. As you do, you’ll need to find ways to resolve these
problems that might require new ways of thinking, new skills, different techniques, or
perhaps new technology.

Figure 5-1 roughly maps the pain points we’ll cover in the rest of this chapter based
on where in your service growth these issues are most likely to arise. This is deeply
unscientific, and based heavily on anecdotal experience, but I still think it’s useful as
an overview.

Figure 5-1. Showing at a high level where some of the pain points often manifest

I’m not saying that you’ll definitely see all of these problems at these times, or at all.
There are certain variables involved that a simple diagram like this can’t really articu‐
late. One factor in particular that may change when these issues will strike is how
coupled your architecture ends up being. With a more coupled architecture, issues
around robustness, testing, tracing, and the like may manifest themselves earlier. All
I’m hoping to do is shine a light on the potential pitfalls that might be out there.

However, keep in mind that you should use this as a general indicator. You need to
make sure you’re building in feedback mechanisms to look for some of the potential
indicators I outline here.

Now that I’ve fully caveated the preceding diagram, let’s take a look at each of these
issues in a little more detail. I’m going to give you some pointers about which factors
are likely to bring these problems to the fore, an understanding of how these issues
may impact you, and some pointers for solving these challenges as they come up.

208 | Chapter 5: Growing Pains

Ownership at Scale
As you have more and more developers working on your microservice architecture,
you’ll get to a place where you may want to reconsider how you handle ownership.

Martin Fowler has previously differentiated different types of ownership from the
point of view of generic code ownership, and I find that, broadly speaking, they work
within the context of microservice ownership too. Here, primarily we’re looking at
ownership from a point of view of making code changes, not ownership in terms of
who handles deployments, first-line support, and so on. Before we talk about the
sorts of problems that crop up, let’s first take a look at the concepts Martin outlines,
and put them in the context of microservice architecture:

Strong code ownership
All services have owners. If someone outside that ownership group wants to
make a change, they have to submit that change to the owners, who decide
whether it is allowed. The use of a pull request for people outside the ownership
group is one example of how this could be handled.

Weak code ownership
Most, if not all, services are owned by someone, but anyone can still directly
change their modules without resorting to the need for things like pull requests.
Effectively, source control is set up to still allow anyone to change anything, but
there is the expectation that if you change someone else’s service, you’ll speak to
them first.

Collective code ownership
No one owns anything, and anyone can change anything they want.

How Can This Problem Show Itself?
As you grow your number of services and number of developers, you may start to
experience problems with collective ownership. For collective ownership to work, the
collective needs to be well-connected enough to have a common shared understand‐
ing of what a good change looks like, and in which direction you want to take a spe‐
cific service from a technical point of view.

Left alone, at scale I’ve seen collective code ownership be disastrous for a microser‐
vice architecture. One fintech company I spoke to shared stories of a small team
experiencing rapid growth, moving from 30–40 developers to over 100, but without
any assigned responsibilities for different parts of the system or any concept of own‐
ership other than “people know what is right.”

What emerged was no clear vision for the system architecture as it evolved, and a
horribly tangled “distributed monolith.” One of the developers there referred to their
architecture as “colander architecture” because it was so full of holes—people would

Ownership at Scale | 209

http://bit.ly/2n5pSAf

1 A colander is a bowl with lots of holes, used for straining pasta, for example.

just “punch a new hole” whenever they felt like it by exposing data or just making lots
of point-to-point calls.1 The reality is these sorts of challenges are easier to fix with a
monolithic system, but far harder with a distributed system—the cost of detangling a
distributed monolith is much higher.

When Might This Problem Occur?
For many teams starting out small, a collective code ownership model makes sense.
With a small number of colocated developers (around 20), I’m happy with this model.
As the number of developers increases, or those developers are distributed, it
becomes harder to keep everyone on the same page regarding things like what makes
for a good commit or how individual services should evolve.

For teams experiencing fast growth, a collective ownership model is problematic. The
issue is that for collective ownership to work, you need time and space for the con‐
sensus to emerge, and be updated as new things are learned. This becomes harder
with more people in general, and really hard if you’re hiring new people at a rapid
pace (or transferring them to the project).

Potential Solutions
In my experience, strong code ownership is almost universally the model adopted by
organizations implementing large-scale microservice architectures consisting of mul‐
tiple teams and over 100 developers. It becomes easier for the rules of what consti‐
tutes a good change to be decided by each team; you can view each team as adopting
collective code ownership locally. This model also allows for product-oriented teams;
if your team owns some services, and those services are oriented around the business
domain, then your team becomes more focused on one area of the business domain.
This makes it easier to maintain customer-focused teams who build domain exper‐
tise, often with embedded product owners guiding their work.

Breaking Changes
A microservice exists as part of a wider system. It either consumes functionality pro‐
vided by other microservices, exposes its own functionality to other microservice
consumers, or possibly does both. With a microservice architecture, we are striving
for independent deployability, but for that to happen, we need to make sure that
when we make a change to a microservice we don’t break our consumers.

We can think of the functionality we expose to other microservices in terms of a con‐
tract. It’s not just about saying, “This is the data I’ll return.” It’s also about defining the

210 | Chapter 5: Growing Pains

expected behavior of your service. Whether or not you’ve made this contract with
your consumers explicit, it exists. When you make a change to your service, you need
to make sure you don’t break this contract; otherwise, nasty production issues can
occur.

Sooner or later, you’ll need to deal with the challenges that breaking changes cause—
either because you’ve made a conscious decision to make a backward-incompatible
change, or perhaps because you made an innocent change that you thought would
impact just your local service, only to find it broke other services in ways you didn’t
imagine.

How Can This Problem Show Itself?
The worst occurrence of this issue is when you see production outages caused by new
microservices being sent live which break compatibility with existing services. This is
a sign that you’re not catching accidental contract breakages early enough. These
issues can be catastrophic if you don’t have a fast rollback mechanism in place. The
only positive to take out of these failure modes is that they normally manifest quite
quickly after a release, unless the backward-incompatible change is made to a part of
a service contract that is rarely used.

Another sign is if you start seeing people try to orchestrate simultaneous deploy‐
ments of multiple services together (sometimes called a lock-step release).This could
also be a sign that this is happening due to trying to manage contract changes
between client and server. The occasional lock-step release isn’t too bad within a
team, but if it is common, something needs to be investigated.

When Might This Problem Occur?
I find this to be a fairly early growing pain that teams encounter, especially when
development is spread across more than one team. Within a single team, people tend
to be a bit more aware when they make breaking changes, partly because there is a
good chance the developers work on both the service being changed and the consum‐
ing service. When you get into situations where one team is changing a service that is
then consumed by other teams, this problem can come up more often.

Over time, as teams become more mature, they get more diligent about making
changes to avoid breakages in the first place, and also put mechanisms in place to
catch problems early.

Breaking Changes | 211

Potential Solutions
I have a set of rules for managing breaking contracts. They’re pretty simple:

1. Don’t break contracts.
2. See rule 1.

OK, I kid, but only slightly. Making breaking changes to the contracts you expose isn’t
great and is a pain to manage. You really want to keep it to a minimum if you can.
That said, these are more realistic rules:

1. Eliminate accidental breaking changes.
2. Think twice before making a breaking change—can you possibly avoid it?
3. If you need to make a breaking change, give your consumers time to migrate.

Let’s look at these steps in a bit more detail.

Eliminate accidental breaking changes
Having an explicit schema for your microservice can quickly detect structural break‐
ages in your contract. If you expose a calculate method that is used to take two inte‐
gers as parameters but now takes only a single integer, this is obviously a breaking
change, which should be obvious from the new schema. Making this schema explicit
to developers can help with early detection of this sort of thing; if they have to go in
and make a change to the schema by hand, that becomes an explicit step that will
hopefully cause them to pause for a moment and think about a change. If you have a
formal schema format, there is the option to handle this programmatically too, of
course, although this isn’t done as much as I’d like. protolock is an example of one
such tool, which will actually prohibit making incompatible changes to your protocol
buffers.

The default choice for many people is to use schema-less interchange formats, with
JSON being the most common example. Although theoretically you can define
explicit schemas for JSON, these aren’t used in practice. Developers tend to curse the
constraints of formal schemas initially—after they’ve had to deal with breaking
changes across services, they’ll change their minds. It’s also worth noting that some of
the serialization formats that make use of schemas are able to achieve performance
improvements in deserializing data because of the formal types—something worth
considering.

Structural breakages are only part of it, though. You also have semantic breakages to
consider. If our calculate method still takes two integers, but the latest version of our
microservice multiplies those two integers whereas it used to just add them, this is

212 | Chapter 5: Growing Pains

http://bit.ly/2kUxvbq

also a break in contract. In practice, testing is one of the best ways of detecting this.
We’ll look at that shortly.

Whatever you do, the quickest win is to make it as obvious to developers as possible
when they make changes to the external contract. This may mean avoiding technol‐
ogy that magically serializes data or generates schemas from code, preferring to hand-
roll these things instead. Trust me—making it hard to change a service contract is
better than constantly breaking consumers.

Think twice before making a breaking change
If possible, prefer expansion changes to your contract if you can. Add new methods,
resources, topics, or whatever that support the new functionality without removing
the old. Try to find ways to support the old while still supporting the new. This may
mean you end up having to support old code, but that still may be less work than
handling a breaking change. Remember, if you decide to break a contract, it’s on you
to handle the implications of that.

Give consumers time to migrate
As I’ve been clear about from the beginning, microservices are designed to be inde‐
pendently deployable. When you make a change to a microservice, you need to be able
to deploy that microservice into a production environment without having to deploy
anything else. For that to work, you need to change your service contract in such a
way that existing consumers are not impacted—so it follows that you need to allow
consumers to still use the old contract even if your newer contract is available. You’ll
then need to give all consumers time to change their services to migrate over to your
newer service version.

I’ve seen this done in two ways. The first is to run two versions of your microservice,
as outlined in Figure 5-2: two builds of the Notifications service are available at the
same time, each one exposing different incompatible endpoints that consumers can
choose between. The primary challenges with this approach are that you have to have
more infrastructure to run the extra services, you probably have to maintain data
compatibility between the service versions, and bug fixes may need to be made to all
running versions, which inevitably requires source code branching. These issues are
somewhat mitigated if you are only coexisting the two versions for short periods of
time, which is the only situation where I’d consider this approach.

Breaking Changes | 213

Figure 5-2. Coexisting two versions of the same microservice to support backward-
incompatible changes

The approach I prefer is to have one running version of your microservice, but have
it support both contracts, as we see in Figure 5-3. This could involve exposing two
APIs on different ports, for example. This pushes complexity into your microservices
implementation, but avoids the challenges of the earlier approach. I’ve spoken to
some teams that are supporting three or more old contracts in the same service years
later, due to external consumers being unable to change. That’s not a fun position to
be in, but if you do find yourself with consumers who won’t change, I still think this is
the best option.

Figure 5-3. One service exposing two contracts

214 | Chapter 5: Growing Pains

Of course, if the same team handles both consumer and producer, you could do a
lock-step release and deploy new versions of both consumer and producer at the
same time. It’s not something I’d want to do often, but at least within a single team it
can be easier to manage the release coordination—just don’t make a habit of it!

Changes within a team are easier to manage, as you control both sides of the equa‐
tion. As the microservice you want to change is used more widely, the cost of manag‐
ing the change becomes greater. As a result, you can be more relaxed about making
breaking changes within a team, but breaking an API you expose to third-party
organizations is likely to be quite painful.

However you do it, you need good communication with the people who manage the
services that consume your service. You’re likely going to inconvenience them (at
best), so it’s a good idea to be on good terms with them. Treat consumers of your ser‐
vice like customers—and you should treat your customers well!

Get This Sorted—Fast!
As organizations have increasing numbers of microservices, they eventually work out
how to mostly eliminate accidental breaking changes, and come up with a managed
mechanism for handling purposeful changes. If they don’t, the impacts become so sig‐
nificant that a microservice architecture is untenable. Put a different way, I highly sus‐
pect that small microservice organizations that don’t sort this stuff out won’t last long
enough to become large microservice organizations.

Reporting
With a monolithic system, you typically have a monolithic database. This means that
stakeholders who want to analyze all of the data together, often involving large join
operations across data, have a ready-made schema against which to run their reports.
They can just run them directly against the monolithic database, perhaps against a
read replica, as shown in Figure 5-4. With a microservice architecture, we have bro‐
ken up this monolithic schema. That doesn’t mean that the need for reporting across
all of our data has gone away; we’ve just made it much more difficult, as now our data
is scattered across multiple logically isolated schemas.

Reporting | 215

Figure 5-4. Reporting being carried out directly on the database of a monolith

When Might This Problem Occur?
This one tends to bite fairly early, and normally comes at the stage when you’re start‐
ing to consider decomposing a monolithic schema. Hopefully, this is discovered
before it becomes an issue, but I’ve seen more than one project where the team
doesn’t realize until halfway through that the architecture direction was going to cre‐
ate misery for stakeholders interested in reporting use cases. All too often, the needs
for downstream reporting are not considered early enough, as it happens outside the
realm of normal software development and system maintenance—out of sight, out of
mind.

You may be able to sidestep this problem if your monolith already uses a dedicated
data source for reporting purposes, like a data warehouse or data lake. Then all you
need to ensure is that your microservices are able to copy the appropriate data to the
existing data sources.

Potential Solutions
For many situations, the stakeholders who care about having access to all your data in
one place probably also have an investment in a tool chain and processes that expect
direct access to the database, normally making use of SQL. It also follows that their
reporting is likely tied to the schema design of your monolithic database. This means
that unless you want to change how they work, you’re going to still need to present a
single database for reporting, and quite possibly one that matches the old schema
design to limit the impact of any changes.

The most straightforward approach for solving this problem is to first separate the
need for a single database to store data for reporting purposes, from the databases

216 | Chapter 5: Growing Pains

your microservices use to store and retrieve data, as Figure 5-5 shows. This allows the
content and design of your reporting database to be decoupled from the design and
evolution of each service’s data storage requirements. This also allows for this new
reporting database to be changed with the specific requirements of reporting users in
mind. All you then need to do is to work out how your microservices can “push” data
into your new schema.

Figure 5-5. A dedicated reporting database with data being pushed to it from different
microservices

We’ve already looked at potential solutions to this problem in Chapter 4. A change
data capture system is an obvious potential solution for solving this, but techniques
like views can also be useful, as you may be able to project a single reporting schema
from views exposed from the schemas of multiple microservice databases. You may
also consider the use of other techniques, like having the data copied to your report‐
ing schema programmatically as part of the code of your microservices, or perhaps
having intermediary components that may populate the reporting database by listen‐
ing to events of upstream services.

I further explore the challenges and potential solutions around this topic in a lot
more detail in Chapter 5 of Building Microservices.

Monitoring and Troubleshooting
We replaced our monolith with microservices so that every outage could be more like a
murder mystery.

—Honest Status Page (@honest_update), http://bit.ly/2mldxqH

With a standard monolithic application, we can have a fairly simplistic approach to
monitoring. We have a small number of machines to worry about, and the failure
mode of the application is somewhat binary—the application is often either all up or
all down. With a microservice architecture, we can have the failure of just one service
instance, or just one type of instance to consider—can we pick those up properly?

Monitoring and Troubleshooting | 217

With a monolithic system, if our CPU is stuck at 100% for a long time, we know that’s
a big problem. With a microservice architecture with tens or hundreds of processes,
can we say the same thing? Do we need to wake someone up at 3 a.m. when just one
process is stuck at 100% CPU?

Working out where you have problems, and understanding whether those problems
you are seeing are actually things you need to worry about becomes much more com‐
plicated as you have more moving parts. The way you approach monitoring and
troubleshooting will need to change as your microservice architecture grows. This is
an area that will require constant attention and investment.

When Might These Problems Occur?
It’s a bit trickier to predict exactly when you’ll start having a problem with this. The
simple answer can be “the first time something goes wrong in production,” but trying
to work out what went wrong where is something developers and testers may have to
deal with before you even get to production. You could hit these limitations when you
have a couple of services, or perhaps not until you hit 20 or more.

Because it can be hard to predict exactly when your existing monitoring approach
will start to let you down, all I can suggest is that you prioritize implementing some
basic improvements ahead of time.

How Can These Problems Occur?
This is fairly easy to spot, in a way. You’ll see production issues that you can’t explain
or understand, you’ll have alerts that trigger despite the system being apparently
healthy, and it will become harder to answer the simple question “Is everything OK?”

Potential Solutions
A multitude of mechanisms—some easy to implement, others more complex—can
help change how you monitor and troubleshoot problems with a microservice archi‐
tecture. What follows is a nonexhaustive overview of some key things to consider.

Log aggregation
With a small number of machines, especially machines that are long-lived, when we
needed to check logs, we would normally go to the machines themselves and fetch
the information. The problem with a microservice architecture is that we have many
more processes, often running on more machines, which can be short lived (e.g., vir‐
tual machines or containers).

A log aggregation system will allow you to capture all your logs and forward them to a
central location where they can be searched, and in some cases can even be used to
generate alerts. Many options exist, from the open source ELK stack (Elastic search,

218 | Chapter 5: Growing Pains

https://www.elastic.co/elk-stack

Logstash/Fluent D, and Kibana) to my personal favorite Humio, these systems can be
incredibly useful.

Strongly consider implementing log aggregation as the first thing
you do before implementing a microservice architecture. It’s
incredibly useful, and is a good test of your organization’s ability to
implement change in the operational space.

Log aggregation is one of the simplest mechanisms to implement, and it’s something
you should do early on. In fact, I suggest it’s the first thing you should do when imple‐
menting a microservice architecture. This is partly because it’s so useful right from
the start. In addition, if your organization struggles to implement a suitable log aggre‐
gation system, you might want to reconsider whether you’re ready for microservices.
The work required to implement a log aggregation system is fairly straightforward,
and if you aren’t ready for that as an organization, microservices are likely a step too
far.

Tracing
Understanding where a sequence of calls between microservices failed, or which ser‐
vice caused a latency spike can be difficult if you can analyze information only from
each service in isolation. Being able to collate a series of flows and look at them as a
whole is incredibly useful.

As a starting point, generate correlation IDs for all calls coming into your system, as
shown in Figure 5-6. When the Invoice service receives a call, it is given a correlation
ID. When it dispatches a call to the Notification microservice, it passes that correla‐
tion ID along—this could be done via an HTTP header, or a field in a message pay‐
load, or some other mechanism. Typically, I’d look to an API gateway or service mesh
to generate the initial correlation ID.

When the Notification service handles the call, it can log information about what it is
doing in conjunction with that same correlation ID, allowing you to use a log aggre‐
gation system to query for all logs associated with a given correlation ID (assuming
you put the correlation ID in a standard place in your log format). You can, of course,
do other things with correlation IDs, such as managing sagas (as we discussed in
Chapter 4).

Monitoring and Troubleshooting | 219

https://humio.com

Figure 5-6. Using correlation IDs to ensure that information about a specific chain of
calls can be collected

Taking this idea further, we can use tools to also trace the time taken for calls. Due to
the way log aggregation systems work, where logs are batched and forwarded to a
central agent on a regular basis, it isn’t possible to get accurate information to allow
you to determine exactly where time may be getting spent during a chain of calls.
Distributed tracing systems like the open source Jaeger, shown in Figure 5-7, can
help.

The more latency sensitive your application is, the sooner I’d be looking to implement
a distributed tracing tool like Jaeger. It’s worth noting that if you’ve worked correla‐
tion ID generation and use into your existing microservice architectures (which in
general is something I advocate for well before you need a distributed tracing tool),
then you’ve likely already got the places in your existing service stack that can be
easily changed to push data to a suitable tool. The use of a service mesh can also help,
as it can at least handle inbound and outbound tracing for you, even if it can’t do
much about instrumenting calls inside individual microservices.

220 | Chapter 5: Growing Pains

https://www.jaegertracing.io

Figure 5-7. Jaeger is an open source tool for capturing information for distributed traces
and analyzing the performance of individual calls

Test in production
Functional automated tests are typically used to give us feedback before deployment
regarding whether or not our software is of sufficient quality to be deployed. But once
it hits production, we still want that same feedback! Even if a given feature worked
once in production, a new service deployment or environmental change could break
that functionality later on.

By injecting fake user behavior into our system, in the form of what is often called
synthetic transactions, we can define the behavior we expect, and alert accordingly if
this isn’t the case. At one of my previous companies, Atomist, we had a somewhat
complex onboarding process for new customers that required authorizing our soft‐
ware with both their GitHub and Slack accounts. There were enough moving parts
that early on this process would hit issues, with things like being rate limited against
the GitHub APIs. One of my colleagues, Sylvain Hellegouarch, scripted enrollment of
fake customers. On a regular basis we would trigger a sign-up process for one of these
fake customers, which scripted the whole process end to end. When this failed, it was
often a sign that something was wrong in our systems and it was much better catch‐
ing this with a “fake” user than a real one!

A good starting point for testing in production could be to take existing end-to-end
test cases and rework them for use in a production environment. An important con‐
sideration is to ensure that these “tests” don’t cause unforeseen impact in production.
With Atomist, we created GitHub and Slack accounts that we controlled for use in the
synthetic transactions, so no real human was involved or impacted, and it was easy

Monitoring and Troubleshooting | 221

2 See Cindy Sridharan, Distributed Systems Observability (Sebastopol: O’Reilly Media, Inc., 2018).

for our scripts to clean up these accounts afterward. On the other hand, I did hear
reports of a company that ended up accidentally ordering 200 washing machines to
be delivered to their head office because they hadn’t properly accounted for the fact
that the test orders would actually end up getting sent out. So be careful!

Toward observability
With traditional monitoring and alerting processes, we think about what might go
wrong, collect information to tell us when this is the case, and use this to fire off
alerts. So we are primarily setting ourselves up to handle known causes of problems—
disk space running out, a service instance not responding, or perhaps a spike in
latency.

As our systems become more complicated, it becomes increasingly difficult to predict
all the nasty ways in which our system might let us down. What becomes important
at that point is to allow us to ask open-ended questions of our systems when these
issues occur, to help us in the first instance to stop the bleeding and make sure the
system can continue to operate, but to also allow us to gather enough information to
fix the problem going forward.

So we need to be able to gather lots of information about what our system is doing,
allowing us to after the fact ask questions of the data that we didn’t know we’d have to
ask in the first place. Tracing and logs can form an important source of data from
which we can ask questions and use real information rather than conjecture to deter‐
mine what the problem is. The secret is in making this information easy to query and
view in context.

Don’t assume you know the answers up front. Rather, adopt the view that you can
and will get surprised, so get good at asking questions of your system, and make sure
you use toolchains that allow for ad hoc querying of information. If you’d like to
explore this concept in more detail, I recommend Distributed Systems Observability as
an excellent starting point.2

Local Developer Experience
As you have more and more services, the developer experience can start to suffer.
More resource-intensive runtimes like the JVM can limit the number of microservi‐
ces that can be run on a single developer machine. I could probably run four or five
JVM-based microservices as separate processes on my laptop, but could I run ten or
twenty? Probably not. Even with less-taxing runtimes, there is a limit to how many
things you can run locally, which inevitably will start conversations about what to do
when you can’t run the entire system on one machine.

222 | Chapter 5: Growing Pains

How Can This Problem Show Itself?
The day-to-day development process can start to slow down, with local builds and
execution taking longer, due to more services having to be stood up. Developers will
start requesting bigger machines to handle the number of services they have to han‐
dle, and while that might be OK for a short-term fix, that will only buy you some time
if your service estate continues to grow.

When Might This Occur?
When exactly this will manifest itself is likely a function of the number of services a
developer wants running locally, combined with the resource footprint of those serv‐
ices. A team using Go, Node, or Python may well find they can have more services
running locally before hitting resource constraints—but a team using the JVM may
hit this problem earlier.

I also think teams practicing collective ownership of multiple services are more sus‐
ceptible to this problem. They are more likely to require the ability to switch between
different services during their development. Teams with strong ownership of a few
services will mostly focus only on their own services, and will be more likely to
develop mechanisms for stubbing out services that are outside their control.

Potential Solutions
If I want to develop locally but reduce the number of services that I have to run, a
common technique is to “stub out” those services I don’t want to run myself, or else
have a way to point them against instances running elsewhere. A pure remote devel‐
oper setup allows for you to develop against lots of services hosted on more capable
infrastructure. However, with that comes associated challenges of needing connectiv‐
ity (which can be a problem for remote workers or frequent travelers), potentially
having slower feedback cycles with the need to deploy software remotely before you
can see it working, and a potential explosion in resources (and associated costs)
needed for developer environments.

Telepresence is an example of a tool that is aiming to make a hybrid local/remote
developer workflow easier for Kubernetes users. You can develop your service locally,
but Telepresence can proxy calls to other services to a remote cluster, allowing you
(hopefully) the best of both worlds. Azure’s cloud functions can be run locally too,
but connected to remote cloud resources, allowing you to create services made out of
functions with a fast local developer workflow, while still having them run against a
potentially extensive cloud environment.

Seeing how the developer experience changes as the number of services increases is
important—so you need feedback mechanisms put in place. You’ll need to continu‐

Local Developer Experience | 223

https://www.telepresence.io

ally invest to ensure that developers remain as productive as possible as the number
of services they are working with increases.

Running Too Many Things
As you have more services, and more service instances of those services, you have
more processes that need to be deployed, configured, and managed. Your existing
techniques for handling the deployment and configuration of your monolithic appli‐
cation may well not scale well as you increase the number of moving parts that need
to be managed.

Desired state management in particular becomes increasingly important. Desired state
management is the ability for you to specify the number and location of service
instances that you require, and ensure that this is maintained over time. You may cur‐
rently manage this with your monolith using manual processes—but that isn’t going
to scale well when you have tens or hundreds of microservices, especially if each of
them has a different desired state.

How Might This Problem Show Itself?
You’ll start to see an increasing percentage of time spent managing deployments and
troubleshooting the issues that occur during these deployments. Mistakes will always
be made if processes rely on manual activities—and the impact to distributed systems
of innocent mistakes can be hard to predict.

As you add more services and service instances, you’ll find yourself needing more
people to manage the activities associated with deploying and maintaining your pro‐
duction fleet. This could result in requests for more people to support your operation
team, or perhaps seeing a higher percentage of time being spent on deployment con‐
cerns by your delivery team.

When Might This Problem Occur?
This is all about scale. The more microservices you have, and the more instances you
have of those microservices, the more manual processes or more traditional automa‐
ted configuration management tools like Chef and Puppet no longer fit the bill.

Potential Solutions
You want a tool that allows for a high degree of automation, that can allow developers
ideally to self-service provision deployments, and that handles automated desired
state management.

For microservices, Kubernetes has emerged as the tool of choice in this space. It
requires that you containerize your services, but once you do, you can use Kubernetes

224 | Chapter 5: Growing Pains

to manage the deployment of your service instances across multiple machines, ensur‐
ing you can scale to improve robustness and handle load (assuming you have enough
hardware).

Vanilla Kubernetes isn’t what I would consider developer-friendly. A multitude of
people are working on higher-order, more developer-friendly abstractions, and I
expect that work to continue. In the future, I expect that many developers who are
running software on Kubernetes won’t even realize, as it will just become an imple‐
mentation detail. I tend to see larger organizations adopt a packaged version of
Kubernetes, such as OpenShift from RedHat, which bundles Kubernetes with tooling
that makes it easier to work with within a corporate environment—perhaps handling
corporate identity and access management controls. Some of these packaged versions
also provide simplified abstractions for developers to work with.

If you’re lucky enough to be on the public cloud, you could use the many different
options there to handle deployments of your microservice architecture, including
managed Kubernetes offerings. Both AWS and Azure, for example, offer multiple
options in this space. I’m a big fan of Function-as-a-Service (FaaS), a subset of what is
called serverless. With a suitable platform, developers just worry about code, and the
underlying platform handles most of the operational work. While the current crop of
FaaS offerings do have limitations, they nonetheless offer the prospect of drastically
reduced operational overhead.

For teams I work with who are already on the public cloud, I tend to not start with
Kubernetes or similar container-based platforms. Instead, I’ve adopted an approach
of serverless-first—try to make use of serverless technology like FaaS as a default
choice, because of the reduction in operational work. If your problem doesn’t fit the
limitations of the serverless products available to you, then look for other options.
Not all problem spaces are equal, obviously, but I feel that if you’re already on the
public cloud, you may not always need the complexity of a container-based platform
like Kubernetes.

I do see people reaching for Kubernetes and the like a bit too early
in the process of adopting microservices, often assuming it is a pre‐
requisite. Far from it—platforms like Kubernetes excel at helping
you manage multiple processes, but you should wait until you have
enough processes that your current approach and technology are
starting to strain. You might find that you need only five microser‐
vices, and that you can happily handle this with your existing solu‐
tions—in which case, great! Don’t adopt a Kubernetes-based
platform just because you see everyone else doing it, which can also
be said for microservices!

Running Too Many Things | 225

End-to-End Testing
With any type of automated functional test, you have a delicate balancing act. The
more functionality a test executes—the broader the scope of the test—the more confi‐
dence you have in your application. On the other hand, the larger the scope of the
test, the longer it can take to run, and the harder it can be to work out what is broken
when it fails.

End-to-end tests for any type of system are at the extreme end of the scale in terms of
functionality they cover, and we are used to them being more problematic to write
and maintain than smaller-scoped unit tests. Often this is worth it, though, as we
want the confidence that comes from having an end-to-end test use our systems in
the same way a user might.

But with a microservice architecture, the “scope” of our end-to-end tests gets very
large. We are now having to run tests across multiple services, all of which need to be
deployed and appropriately configured for the test scenarios. We also have to be pre‐
pared for the false negatives that occur when environmental issues, such as service
instances dying or network time-outs of failed deployments, cause our tests to fail. I’d
argue that we are much more vulnerable to issues outside of our control when run‐
ning end-to-end tests against a microservice architecture than we are with a standard
monolithic architecture.

As the scope of the tests increase, you’ll spend more of your time fighting the prob‐
lems that arise, to the point where trying to create and maintain end-to-end tests
becomes a huge time sink.

How Can This Problem Show Itself?
One sign is that your end-to-end test suite grows, taking longer and longer to com‐
plete. This is caused by multiple teams being unsure of what scenarios are covered
and adding new ones “just in case.” You see more failures in the end-to-end test suite
that are not highlighting issues with your code—and developers often just run the
tests again to see if they pass.

The amount of time being spent on end-to-end tests takes longer and longer, to the
point where you start seeing pressure for more testers and perhaps even a separate
test team.

When Might This Problem Occur?
This problem tends to sneak up on you, but I see it most keenly felt in situations
where the work for different user journeys is handled by multiple teams. The more
isolated each team is in its work, the easier it is for them to manage their own tests

226 | Chapter 5: Growing Pains

locally. The more you need to test cross-team flows, the more problematic end-to-
end, large scoped tests become.

Potential Solutions
I outlined a number of options for helping change how you handle testing in Building
Microservices, and in fact have a whole chapter dedicated to it, but here is a brief sum‐
mary to get you started.

Limit scope of functional automated tests
If you are going to write test cases that cover multiple services, try to ensure that
these tests are kept inside the team that manages these services—in other words,
avoid larger-scoped tests that cross team boundaries. Keeping ownership of tests
within a single team makes it easier to understand what scenarios are properly cov‐
ered, ensures that developers can run and debug the tests, and more clearly articulates
responsibility for who should make sure the tests run and pass.

Use consumer-driven contracts
You may want to consider the use of consumer-driven contracts (CDCs) to replace
the need for cross-service test cases. With CDCs, you have the consumer of your
microservice define their expectations of how your service should behave in terms of
an executable specification—a test. When you change your service, you ensure that
these tests still pass.

As these tests are defined from the consumer point of view, we get good coverage for
picking up accidental contract breakage. We can also understand our consumer
requirements from their point of view, and importantly understand how different
consumers might want different things from us.

You can implement CDCs by using a simple development workflow, but this can be
made easier through the use of tooling designed to support this technique. The best
example is probably Pact.

It’s worth noting that I’ve seen some teams have huge success with this approach, but
it’s been difficult for others to adopt. The idea is sound, and I know it can work well,
but I haven’t yet fully understood the challenges that some people have had in adopt‐
ing this technique. It remains a poorly underused practice for solving a really difficult
problem.

Use automated release remediation and progressive delivery
With automated testing, we are typically trying to find problems before they impact
production, but it can become increasingly difficult to do that as your system

End-to-End Testing | 227

https://pact.io

becomes more complex. Therefore, it can be worth spending effort in reducing the
impact of production issues if they do occur.

As we touched on in Chapter 3, progressive delivery is the umbrella term for control‐
ling how you roll out new versions of your software incrementally to your customers.
The idea is that you can assess the impact of your new release with a smaller group of
customers, deciding if and when to continue or revert the rollback. An example of a
progressive delivery technique could be a canary release.

By defining acceptable measures for how your service should behave, it then becomes
possible to control the progressive delivery in an automated fashion. As a simple
example, you might define an acceptable threshold for 95th percentile latencies and
error rates, and continue the rollout only if these measures are met. Otherwise, you
may automatically roll back the latest release, giving you time to analyze what hap‐
pened.

Many organizations use these automated release remediation techniques. Netflix, in
particular, has spoken at length about using this idea. It developed Spinnaker as a
deployment management tool partly to help control progressive delivery for its serv‐
ices, but there are many other ways you can put these ideas into practice.

I’m not saying you should consider automated release remediation instead of testing,
just that you should think about where you get the best return on your effort. You
may end up with a far more robust system by putting some work into catching prob‐
lems if they do occur, rather than just focusing on stopping problems from happening
in the first place.

It’s important to note that while these techniques work well together, even if you
think automated remediation isn’t something you can do right now, there is still huge
value to be had from implementing some form of progressive delivery. Even manually
controlling progressive delivery can be a big step up from just rolling the new soft‐
ware out to everyone.

Continually refine your quality feedback cycles
Understanding how and where you should test is an ongoing challenge. You need
people who have the context to look holistically across the development process to
adapt how and where you are testing your application. This means having people
who can identify the need to add new tests to cover areas of the system where they are
seeing an increase in production defects, but also who can remove tests when there is
already coverage in an effort to improve feedback cycles.

In short, it’s about balancing the need for fast feedback with safety. You need to be
just as willing to identify, and remove or replace, the wrong test as you are to add a
new test.

228 | Chapter 5: Growing Pains

Global Versus Local Optimization
Assuming you embrace the model of teams having more responsibility for local
decision-making, perhaps owning the entire life cycle of the microservices they man‐
age, you’ll get to the point where you start to need to balance local decision-making
with more global concerns.

As an example of how this problem might manifest, consider three teams who man‐
age the Invoicing, Notifications, and Fulfillment services. The Invoicing team decides
to use Oracle as a database, as they know it well. The Notifications team wants to use
MongoDB because it fits their programming model well. Meanwhile, the Fulfillment
team wants to use PostgreSQL, as they already have it. When you look at each deci‐
sion in turn, it makes perfect sense, and you understand how that team would have
made that choice.

If you step back and look at the big picture, though, you have to ask yourself whether
or not as an organization you want to build skills, and pay license fees, for three data‐
bases with somewhat similar capabilities. Would you be better off adopting just one
database, accepting that it isn’t perfect for everyone, but is good enough for most?
Without the ability to see what is happening locally, and being able to put this into a
global context, how would you ever be able to make these sorts of decisions?

How Can This Problem Show Itself?
The most common way I’ve seen this problem come to light is when someone sud‐
denly realizes that multiple teams have solved the same problem in different ways, but
were never aware that they were all trying to fix the same issue. Over time this can be
incredibly inefficient.

I remember speaking to people at REA, a real estate company in Australia. After
many years building microservices, they got to the point where they realized that
there were many ways that teams would deploy services. This caused problems when
people moved from one team to another, as they had to learn the new way of doing
things. It also became hard to justify the duplicate work that each team was doing. As
a result, they decided to put some work into coming up with a common way to han‐
dle this.

You’ll typically find out about these things accidentally, after a passing comment you
overhear at lunch, perhaps. You can spot these problems much earlier if you have
some sort of cross-team technical group, such as a community of practice.

When Might This Problem Occur?
This problem tends to arise in multiteam organizations over time, especially in
organizations that give teams more freedom in how they go about their work. Don’t

Global Versus Local Optimization | 229

expect to see this issue early on in your microservice journey. You’ll start out proba‐
bly with a clear shared understanding of how things should be done. Over time, each
team will be increasingly focused on their local problems, and will optimize how they
solve problems based on this, so that core shared view of “this is how we do things”
will start to shift.

I often see this problem being raised and discussed after organizations have gone
through a period of scaling. The influx of a lot of developers in a short space of time
makes it harder for ad hoc information sharing to scale. This can lead to more infor‐
mation silos that may need to be bridged.

If you practice collective ownership of services, that will likely help avoid or at least
limit these problems, as collective ownership of services requires a degree of consis‐
tency in terms of how problems are solved. Put another way, if you want collective
ownership, you have to solve this problem; otherwise, your collective ownership
won’t scale.

Potential Solutions
We’ve already touched on some ideas that can help in this area. In Chapter 2, we
explored the idea of irreversible and reversible decisions, as shown again in
Figure 5-8. The higher the cost of change, the larger the impact, and the more you’ll
want a broader consensus behind decision-making. The smaller the impact, the easier
it is to roll back, and the more decisions can be left to local teams.

Figure 5-8. The differences between irreversible and reversible decisions, with examples
along the spectrum

230 | Chapter 5: Growing Pains

The trick is helping people in teams realize where their decisions might tend toward
the irreversible or reversible ends of this spectrum. The more a decision tends toward
irreversible, the more important it might be for them to involve other people outside
their team boundary in their decision-making. For this to work well, teams need to
have at least a basic understanding of the bigger-picture concerns to see where they
may overlap, and they’ll also need a network where they can surface these issues and
get involvement from their colleagues in other teams.

As a simple mechanism, having at least one technical leader from each team being
part of a technical cross-cutting group where these concerns can be addressed is a
sensible approach. This group may be chaired by a CTO, chief architect, or other per‐
son who is responsible for the overall technical vision of the company.

This cross-cutting group can work both ways. In addition to offering a place where
teams can surface local issues that they want to discuss in a larger forum, it is also
somewhere people can pick up cross-cutting issues. Without some communication
between teams, how would we realize that we’re solving problems in different ways
locally, and that perhaps solving them at a global level might make more sense?

Depending on the nature of your organization, you may be able to rely on a more ad
hoc, informal process. At Monzo, for example, people can submit free-form docu‐
ments referred to internally as “proposals.” These are published into a shared space
that in turn alerts the whole company via Slack that a new proposal is available. Inter‐
ested parties can then discuss the proposal and help refine it. The expectation is that
these proposals aren’t the finished artifact, and in fact must be open to change. This
seems to work well for Monzo, in part because of its culture around communication
and sharing of responsibility.

Fundamentally, each organization needs to find the right balance between global and
local decision-making. How much responsibility are you happy to push into the
teams? How much control do you want to hold centrally? The more responsibility
you push to the teams, the more you’ll get the benefits of greater autonomy, but the
trade-off is that you may have less consistency in how problems are solved. The more
you drive things from the center, the more you’ll need to build consensus and that
will likely slow you down. I can’t tell you how to achieve balance between these two
forces in a way that is right for you; you’ll need to work that out for yourself. You just
need to be aware that this balance exists, and you need to make sure you’re gathering
the right information to make sure you can adjust this balance over time.

Global Versus Local Optimization | 231

Robustness and Resiliency
Distributed systems can exhibit a whole host of failure modes that may be unfamiliar
to you if you are more accustomed to monolithic systems. Network packets can get
lost, network calls can time out, machines can die or stop responding. These situa‐
tions may be rare with simple distributed systems, such as a traditional monolithic
application, but as the number of services increases, rare occurrences become more
commonplace.

How Can This Problem Show Itself?
These problems are, unfortunately, most likely to arise in a production setting. Dur‐
ing traditional development and test cycles, we’re re-creating production-like circum‐
stances only for short periods of time. Those rare occurrences are less likely to
emerge, and when they do, they often get dismissed.

When Might This Problem Occur?
I’ll be honest here—if I could tell you in advance when your system will suffer from
instability I wouldn’t be writing this book, as I’d likely be spending my time on a
beach somewhere drinking mojitos. All I can say is that as the number of services
increases, and the number of service calls increase, you’ll become more and more vul‐
nerable to resiliency issues. The more interconnected your services are, the more
likely you’ll suffer from things like cascading failures and back pressure.

Potential Solutions
A good starting point is to ask yourself a couple of questions about each service call
you make. First, do I know the way in which this call might fail? Second, if the call
does fail, do I know what I should do?

Once you’ve answered these questions, you can then start looking at a host of solu‐
tions. Isolating services more from each other can help, perhaps including the intro‐
duction of asynchronous communication to avoid temporal coupling (a topic we
touched on in Chapter 1). Using sensible time-outs can avoid resource contention
with slow downstream services, and in conjunction with patterns like circuit break‐
ers, you can start failing fast to avoid problems with back pressure.

Running multiple copies of services can help with instances dying, as can a platform
that can implement desired state management (which can ensure that services get
restarted if they crash).

To restate a point made in Chapter 2, resiliency is more than just implementing a few
patterns. It’s about a whole way of working—building an organization that not only is
ready to handle the unforeseeable problems that will inevitably crop up, but also

232 | Chapter 5: Growing Pains

evolves working practices as necessary. One concrete way you can put this idea into
practice is by documenting production issues when they arise and keeping a record of
what you learned. All too often I see organizations move on too quickly once the ini‐
tial problem has been solved or worked around—only for those same problems to
come back again some months later.

To be honest, I’ve just scratched the surface here. For a more detailed examination of
these ideas I recommend reading Chapter 11 in Building Microservices, or taking a
look at Release It! by Michael Nygard (Pragmatic Bookshelf, 2018).

Orphaned Services
It seems odd, given some of the amazing technology that we have and the incredibly
complex and massively scalable systems we are now building, that we also still see
problems with some of the most prosaic issues. One example is that I see many
organizations struggle with knowing exactly what they have, where it is, and who
owns it.

As microservices become even more focused in their purpose, you’ll find more and
more services have been happily running for weeks, months, or perhaps years
without any changes being made to them. On the one hand, this is exactly what we
want; independent deployability is such an appealing concept partly because it allows
the rest of the system to remain stable, and maintaining stability of the parts of our
system that don’t need to change is a good idea.

I refer to these services as orphaned services, as fundamentally no one in the company
is taking ownership or responsibility for them.

How Can This Problem Show Itself?
I remember hearing (perhaps apocryphal) stories of old servers being discovered wal‐
led up in old offices. No one remembers they were there, but they are still happily
running, doing whatever it is they do. As no one remembers exactly what these newly
discovered computers do, people are scared to turn them off. Microservices can
exhibit some of the same characteristics; they’re out there and they’re working (we
assume), but we have the same problem that we may not know what to do with them,
and that fear can put us off changing them.

The fundamental problem is that if this service does stop working, or does require a
change, people are at a loss as to what to do. I’ve spoken to more than one team that
shared stories of not knowing where the source code was for the service in question,
which is a pretty big problem.

Orphaned Services | 233

When Might This Problem Occur?
This problem typically occurs with organizations that have been using microservices
for a long period of time—long enough that the collective memory regarding what
this service did has long since diminished. The people involved with this microser‐
vice have either forgotten what they did to it or perhaps left the company.

Potential Solutions
I have an (untested) hypothesis that organizations that practice collective ownership
of services might be less prone to this problem, primarily because they will already
have to have implemented mechanisms to allow developers to move from service to
service and make changes. These sorts of organizations already probably restrict lan‐
guage and technology choice to reduce the cost of context switching between serv‐
ices. They may also have common tooling around making changes to a service,
testing it, and deploying it. If those common practices have changed since the service
was last changed, of course this may not help.

I’ve spoken with a number of companies that have had these issues, and that ended
up creating simple in-house registries to help collate metadata around services. Some
of these registries simply crawl source code repositories, looking for metadata files to
build up a list of services out there. This information can be merged with real data
coming from service discovery systems like consul or etcd to build up a richer picture
of what is running, and who you could speak to about it.

The Financial Times created Biz Ops to help address this problem. The company has
several hundred services developed by teams all over the world. The Biz Ops tool
(Figure 5-9), gives them a single place where you can find out lots of useful informa‐
tion about their microservices, in addition to information about other IT infrastruc‐
ture services like networks and file servers. Built on top of a graph database, they have
a lot of flexibility about what data they gather and how the information can be mod‐
eled.

234 | Chapter 5: Growing Pains

Figure 5-9. The Financial Times Biz Ops tool, which collates information about its
microservices

The Biz Ops tool goes further than most I have seen, however. They calculate what
they call a System Operability Score, as shown in Figure 5-10. The idea is that there
are certain things that services and their teams should do to ensure the service can be
easily operated. This can go from making sure the teams have provided the correct
information in the registry to ensuring the services have proper health checks. These
scores are calculated, allowing teams to see at a glance if there are things that need to
be fixed.

Orphaned Services | 235

Figure 5-10. An example of the Service Operability Score for a microservice at The
Financial Times

Having something like a service registry can help, but what happens if your orphaned
service predates your registry? The key thing is to bring these newly discovered
“orphaned” services into line with how other services are managed, and that requires
you to either assign ownership to an existing team (if practicing strong ownership),
or raise work items for the service to be improved (if practicing collective owner‐
ship).

Summary
What we’ve covered in this chapter isn’t meant to be an exhaustive list of all the issues
that microservices can cause, nor have I listed all the potential solutions. Instead, the
focus has been on the most common problems that I see people struggle with.

I hope I’ve also made it clear that there isn’t a hard-and-fast rule about exactly when
you’ll see these problems. Every situation is different, and a multitude of factors come
into play. What I’ve tried to do is highlight that while you can’t see the future, you can
at least be forewarned. What is more challenging is finding the right balance between
fixing problems before they occur versus spending time fixing problems you’ll never
have. I hope you walk away from this chapter knowing what warning to watch for.

236 | Chapter 5: Growing Pains

CHAPTER 6

Closing Words

So we’ve come to the end of the book. Throughout it all, I’ve hoped to get across two
key messages. First, give yourself enough space and gather the right information to
make rational decisions. Don’t just copy others; think instead about your problem
and your context, assess the options, and move forward, while being open to change
if you need to later. Second, remember that incremental adoption of microservices,
and many of the associated technologies and practices, is key. No two microservice
architectures are alike—while there are lessons to be learned from the work done by
others, you need to take the time to find an approach that works well in your context.
By breaking the journey into manageable steps, you give yourself the best chance of
success, as you can adapt your approach as you go.

Microservices are definitely not for everyone. But, hopefully, after reading this book,
you’ll have not only a better sense of whether they are right for you, but also some
ideas about how to get started on the journey.

237

APPENDIX A

Bibliography

Bird, Christian, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and Premku‐
mar Devanbu. “Don’t Touch My Code! Examining the Effects of Ownership on Soft‐
ware Quality.” http://bit.ly/2p5RlT1.

Bland, Mike. “Test Mercenaries.” http://bit.ly/2omkxVy.

Bland, Mike. “Testing On The Toilet.” http://bit.ly/2ojpWwm.

Brandolini, Alberto. Introducing EventStorming. Leanpub, 2019. http://bit.ly/2n0zCLU.

Brooks, Frederick P. The Mythical Man-Month, 20th Anniversary Edition. Addison
Wesley, 1995.

Bryant, Daniel. “Building Resilience in Netflix Production Data Migrations: Sangeeta
Handa at QCon SF.” http://bit.ly/2m1EwHT.

Devops Research & Assessment. Accelerate: State Of Devops Report 2018. http://bit.ly/
2nPDNLe.

Evans, Eric. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley, 2003.

Feathers, Michael. Working Effectively with Legacy Code. Prentice-Hall, 2004.

Fowler, Martin. “Strangler Fig Application.” http://bit.ly/2p5xMKo.

Fowler, Martin. “Reporting Database.” http://bit.ly/2kWW9Ir.

Garcia-Molina, Hector, and Kenneth Salem. “Sagas.” ACM Sigmod Record 16, no. 3
(1987): 249–259.

Garcia-Molina, Hector, Dieter Gawlick, Johannes Klein, Karl Kleissner, Kenneth
Salem. “Modeling Long-Running Activities as Nested Sagas.” Data Engineering 14, no,
1 (March 1991): 14–18.

239

http://bit.ly/2p5RlT1
http://bit.ly/2omkxVy
http://bit.ly/2ojpWwm
http://bit.ly/2n0zCLU
http://bit.ly/2m1EwHT
http://bit.ly/2nPDNLe
http://bit.ly/2nPDNLe
http://bit.ly/2p5xMKo
http://bit.ly/2kWW9Ir

Helland, Pat. “Life Beyond Distributed Transactions.” Acmqueue 14, no. 5.

Hodgson, Peter. “Feature Toggles (aka Feature Flags).” http://bit.ly/2m316zB.

Hohpe, Gregor, and Bobby Woolf. Enterprise Integration Patterns. Addison-Wesley,
2003.

Humble, Jez, and David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley, 2010.

Humble, Jez. “Make Large-Scale Changes Incrementally with Branch by Abstraction.”
http://bit.ly/2p95lv7.

Kim, Gene, Patrick Debois, Jez Humble, and John Willis. The Devops Handbook. IT
Revolution Press, 2016.

Kleppmann, Martin. Designing Data-Intensive Applications. O’Reilly, 2017.

Kniberg, Henrik, and Anders Ivarsson. “Scaling Agile @ Spotify.” October 2012.
http://bit.ly/2ogAz3d.

Kotter, John P. Leading Change. Harvard Business Review Press, 1996.

Mitchell, Lorna Jane. PHP Web Services, Second Edition. O’Reilly, 2016.

Newman, Sam. Building Microservices. O’Reilly, 2015.

Nygard, Michael T. Release It!: Design and Deploy Production-Ready Software, Second
Edition. Pragmatic Bookshelf, 2018.

Parnas, David. “On the Criteria to be Used in Decomposing Systems into Modules.”
Information Distributions Aspects of Design Methodology, Proceedings of IFIP Con‐
gress ‘71 (1972).

Parnas, David. “The Secret History of Information Hiding.” David Parnas. In Soft‐
ware Pioneers, edited by M. Broy and E. Denert. (Berlin: Springer, 2002).

Pettersen, Snow. “The Road to an Envoy Service Mesh.” https://squ.re/2nts1Gc.

Skelton, Matthew, and Manuel Pais. Team Topologies. IT Revolution Press, 2019.

Smith, Steve. “Application Pattern: Verify Branch By Abstraction.” http://bit.ly/
2mLVevz.

Sridharan, Cindy. Distributed Systems Observability. O’Reilly, 2018. http://bit.ly/
2nPZ73d.

Thorup, Kresten. “Riak on Drugs (and the Other Way Around).” http://bit.ly/
2m1CvLP.

Vernon, Vaughn. Domain-Driven Design Distilled. Addison-Wesley, 2016.

240 | Appendix A: Bibliography

http://bit.ly/2m316zB
http://bit.ly/2p95lv7
http://bit.ly/2ogAz3d
https://squ.re/2nts1Gc
http://bit.ly/2mLVevz
http://bit.ly/2mLVevz
http://bit.ly/2nPZ73d
http://bit.ly/2nPZ73d
http://bit.ly/2m1CvLP
http://bit.ly/2m1CvLP

Woods, David, “Four concepts for resilience and the implications for the future of
resilience engineering.” Reliability Engineering & System Safety 141 (2015): 5–9.

Yourdon, Edward, and Larry Constantine. Structured Design: Fundamentals of a Dis‐
cipline of Computer Program and Systems Design. Prentice-Hall, 1979.

Bibliography | 241

APPENDIX B

Pattern Index

Aggregate exposing
monolith

Exposing domain aggregates from a monolith to allow microservices to access entities managed
by the monolith.

Branch by abstraction Coexisting two implementations of the same functionality in the same codebase at the same
time, allowing for a new implementation to be incrementally developed until it can replace the
old implementation.

Change data capture Transmit changes made to an underlying datastore to other interested parties.

Change data ownership Moving the source of truth from the monolith to a microservice.

Database as a Service
interface

Using a dedicated database to provide read-only access to internal service data.

Database view A view is projected from an underlying database, allowing for parts of the database to be hidden.

Database wrapping
service

A facade service is placed in front of an existing shared database, allowing for services to migrate
away from direct use of the database.

Decorating collaborator Trigger functionality running in a separate microservice by sniffing requests sent to the monolith,
and the responses that are sent back in return.

Dedicated reference data
schema

A dedicated database to house all static reference data. This database can be accessed by
multiple different services.

Duplicate static reference
data

Copy static reference data into microservice databases.

Monolith as data access
layer

Accessing data managed by the monolith via APIs rather than directly accessing the database.

Move foreign key to code Move management and enforcement of foreign-key relationships from a single database up into
your service tier.

Multischema storage Managing data in different databases, typically while migrating from a shared database to a
database-per-service model.

Parallel run Run two implementations of the same functionality side by side, to ensure that the new
functionality behaves appropriately.

Repository per bounded
context

Break apart a single repository layer around different parts of the domain, making decomposition
into services easier.

243

Shared database A single database is shared between more than one service.

Split table Breaking a table into two parts prior to service decomposition.

Static reference data
library

Move static reference data into a library or configuration file that can be packaged with each
microservice that needs it.

Static reference data
service

A dedicated microservice that provides access to static reference data.

Strangler fig application Wrap your new microservice architecture around the existing monolith. Calls to use functionality
that has been migrated from the monolith to your microservices are diverted; other calls are left
unchanged.

Synchronize data in
application

Synchronize data between two sources of truth from inside a single application.

Tracer write Incrementally migrate data from one source of truth to another, tolerating two sources of truth
during the migration.

UI composition Presenting a single user interface by assembling many small parts together.

244 | Appendix B: Pattern Index

Index

A
abstractions, 106

(see also branch by abstraction pattern)
ACID transactions, 187

lacking atomicity, 188
sagas and atomicity, 194

aggregate exposing monolith pattern, 138, 243
as a pathway to more services, 139
where to use it, 139, 141

aggregates, 29
in bounded contexts, 31
mapping with bounded contexts to micro‐

services, 31
alternatives to using microservices, 35
analysis paralysis, 33
Apache server, edge-side includes with, 100
API, exposing on monolithic database, 166
asynchronous operations, using to avoid tem‐

poral coupling, 22
atomicity, 187

lacking atomicity in transactions, 188
sagas and, 194

Atomicity, Consistency, Isolation, and Durabil‐
ity (see ACID transactions)

automated release remediation, 228
automated tests, limiting scope of, 227
autonomy of teams, improving, 63

with adoption of microservices, 36
without adopting microservices, 36

AWS Lambda, 128, 185
Azure cloud functions, 223

B
batch delta copier implementation, change-data

capture pattern, 124
batch jobs

bulk synchronize data, 145
replacing with change data capture system,

136
behavior, changing while migrating functional‐

ity, 97
Bezos, Jeff, 54
Biz Ops tool (Financial Times), 234
Bland, Mike, 50
bounded contexts, 31

database per bounded context pattern, 163
mapping with aggregates to microservices,

31
relationships between, in example Music

Corp domain model, 56
repository per bounded context pattern, 162

BPM (business process modeling) tools, 201
branch by abstraction pattern, 104-113, 243

cleanup, removing old implementation, 110
creating an abstraction, 105
creating new service calling implementa‐

tion, 106
fallback to previous implementation, 111
how it works, 105
switching implementation, 108
using the new abstraction, 106
where to use it, 112

Brandolini, Alberto, 58
breaking changes, 210-215

how the problem shows itself, 211
potential solutions, 212

245

eliminating accidental breaking changes,
212

giving consumers time to migrate, 213
thinking twice before making breaking

changes, 213
when the problem might occur, 211

Brooks, Frederick P., 40
Building Microservices (Newman), 2, 137, 205,

207
“burning platform”, 41
business domains

domain-driven design, 28
microservices modeled around, 2

business process modeling (BPM) tools, 201

C
caching

client-side caches, firing updates for, 185
using to avoid temporal coupling, 22

canary releases, parallel run pattern and, 118
cargo cult mentality, 33
change data capture systems, 136
change data ownership pattern, 141, 243
change-data capture pattern, 120-124, 243

example, issuing loyalty cards, 120
implementing, 121

batch delta copier, 124
database triggers, 122
transaction log pollers, 123

where to use it, 124
changes, breaking (see breaking changes)
choreographed sagas, 202

deciding between orchestrated style and,
204

mixing with orchestrated style, 204
cloud, 50, 51

Azure cloud functions, 223
databases from cloud providers, 128
Function-as-a-Service platforms, 185
public, handling deployments of microser‐

vice architecture, 225
scaling for load on, 38

co-existing microservice versions, 213
code ownership, microservices at scale, 209-210
code reuse, 42

within monoliths, 15
cohesion, 16

defined, 17
colander architecture, 210

commit phase (two-phase commits), 190
communicating the change vision in organiza‐

tions, 50
compensating transactions, 197
competing consumer pattern, 39
component-driven UIs, 103
consistency (ACID transactions), 187
Constantine's law, 16
consumer-driven contracts (CDCs), 227
content-based router, using to intercept mes‐

saging calls, 95
continuous delivery (CD), 23
Continuous Delivery (Humble and Farley), 23
contracts, 210

consumer-driven, 227
one microservice exposing two contracts,

214
Conway's law, 4
copying code from the monolith, 77
core competency, teams structured around, 62
correlation IDs (CIDs), 204, 219
costs

avoiding the sunk cost fallacy, 73
cost-effective scaling for load, 37
of change, 54-56

easier places to experiment, 56
reversible and irreversible decisions, 54

coupling
about, 17
and cohesion, balancing, 16
deployment, 23
domain, 24
implementation, 18
temporal, 22

credentials, separate, for database access, 129
credit derivative pricing, comparing using par‐

allel run, 113
culture (organizational)

anchoring new approaches in the culture, 52
and adaptability to change or process

improvements, 73
customer-installed software, 44

D
dark launching, parallel run pattern and, 118
data consistency, 112

eventual consistency, 153, 156
in ACID transactions, 187

246 | Index

in move foreign key relationship to code
pattern, 176
check before deletion, 176
deciding how to handle deletion, 177
handling deletion gracefully, 176
not allowing deletion, 177

tolerating inconsistency between two sys‐
tems, 158

data synchronization, 143-149
in tracer write pattern, 152

Square orders example, 155
synchronize data in application pattern,

145-149
Database as a Service interface pattern,

135-137, 243
comparison to database views, 137
implementing a mapping engine, 136
where to use it, 137

database per bounded context pattern, 163
database triggers implementation, change-data

capture pattern, 122
database view pattern, 128-132, 243

comparison to Database as a Service inter‐
face pattern, 137

database as public contract, 129
limitations, 131
ownership issues, 131
views to present, 130
where to use it, 132

database wrapping service pattern, 132-135,
243
using to reduce dependence on central data‐

base, 133
where to use it, 134

databases
decomposing, 125-206

data synchronization, 143-145
Database as a Service interface pattern,

135-137
database view pattern, 128-132
inability to split the database, 127
move foreign key relationship to code

pattern, 173-187
sagas, 193-205
schema separation examples, 171
shared database pattern, 125-128
split table pattern, 171-173
splitting apart the database, which to

split first, 160-170

synchronize data in application pattern,
145-149

tracer write pattern, 149-158
transactions, 187-193
transferring data ownership, 137-143

dedicated reporting database, 216
in modular monoliths, 13
no sharing by microservices, 5
schemas, 127
sharing, in implementation coupling, 19

decisions, reversible and irreversible, 54, 230
decomposition

being open to new approaches, 73
bounded contexts as potential unit of, 57
combined model for prioritizing service

decomposition, 60-61
database (see databases; monolithic applica‐

tions)
deciding how far to go, 57

decorating collaborator pattern, 118-120, 243
example, loyalty program, 119
where to use it, 120

dedicated reference data schema pattern, 181,
243

delivery contention, 11, 15, 101, 154
delivery-related responsibilities, mapping to

existing teams, 65
deployments

deployment coupling, 23
examining durations of pre-deployment

processes, 37
independent deployability of microservices,

2, 210, 213
of monoliths, 12
releases versus, 80
simultaneous, of multiple microservices,

211
developers

local developer experience problem,
222-224

scaling number of, 40
DevOps, 63

not meaning NoOps, 65
DevOps Handbook, The (Kim, Humble, and

Debois), 65
distributed monoliths, 14
distributed systems, 14

evolution to microservices, 8

Index | 247

Distributed Systems Observability (Sridharan),
222

distributed transactions
avoiding use of, 193
problems with, 205
sagas versus, 205

domain-driven design (DDD), 28, 56-60
aggregates, 29
bounded contexts, 31
deciding how far to go in decomposing

existing system, 57
event storming, 58
example high-level domain model for Music

Corp, 56
mapping aggregates and bounded contexts

to microservices, 31
resources for further reading, 32
using domain model for prioritization, 58

Domain-Driven Design (Evans), 28
Domain-Driven Design Distilled (Vernon), 32
domains, 28

(see also business domains; domain-driven
design)

domain coupling in microservices, 24
unclear, getting service boundaries wrong,

43
duplicate static reference data pattern, 179
durability (ACID transactions), 188

E
edge-side includes (ESI), 100
empowering employees, 51
encapsulation, 18
end-to-end testing, problem with microservi‐

ces, 226-228
how the problem might occur, 226
how the problem shows itself, 226
potential solutions, 227-228

automated release remediation and pro‐
gressive delivery, 228

consumer-driven contracts, 227
continually refining quality feedback

cycles, 228
limiting scope of automated tests, 227

endpoints
dedicated database exposed as endpoint,

135-137
service directly exposing database as defined

endpoint, 127

Enterprise Integration Patterns (Hohpe and
Woolf), 39, 97, 205

Erlang, 23
event storming, 58
events, 114, 121, 135

listening for and using to update external
database, 136

subscribing to, 177
two sources of truth subscribing to same

events, 156
using to reduce domain coupling, 27

eventual consistency, 153, 156

F
feature toggles, 86

using to switch between implementations,
108

Financial Times, Biz Ops tool, 234
FlywayDB, 162
foreign key relationship, moving to code,

173-187
Fowler, Martin, 79, 135, 209
FTP example, strangler fig migration pattern,

93
Function as a Service (FaaS), 225

G
GitHub, 221

Scientist library, 117
global vs. local optimization of microservices,

229-231
Google, rolling out test automation at, 50
Greenspun’s 10th rule, 24
Guardian, The (newspaper), 99, 102

H
Hammant, Paul, 97
Hashicorp Vault, 129
Helland, Pat, 205
Homegate real estate listings example, using

parallel run, 115
horizontal scaling of existing monoliths, 38
HTTP reverse proxy example, strangler fig

migration pattern, 83-93
changing protocols, 90

service meshes, 92
data, 86
inserting the proxy, 84

248 | Index

migrating functionality, 84
proxy options, 86

incremental rollout, 88
redirecting calls, 85

I
implementation coupling, 18
incremental migration, importance of, 53
incremental rewrites of monolithic code, 78
independently deployable (microservices), 2,

213
information hiding, 18
irreversible decisions, 54, 230
isolation (ACID transactions), 188
IT/business divide, 10

J
Jaeger, 220
joins, replacing database join operation with

service calls, 175
JSON, 212

K
Kotter’s 8 step process for organizational

change, 47
Kubernetes

using too early in microservices adoption,
225

using with microservices, 224

L
Leading Change (Kotter), 47
library, reference data, shared between services,

182
“Life Beyond Distributed Transactions” (Hel‐

land), 205
local developer experience, 222

how the problem shows itself, 223
potential solutions to the problem, 223
when the problem might occur, 223

local vs. global optimization of microservices,
229-231

local/remote developer workflows (hybrid), 223
lock-step releases, 211
log aggregation in microservices, 218
logical versus physical database separation, 158
long lived transactions, 193
loose coupling of services, 2

loyalty cards, issuing (example), change-data
capture pattern, 120

loyalty program example, decorating collabora‐
tor pattern, 119

M
mapping engines

implementing for internal and external
databases, 136

mapping changes in internal database to
external database, 135

materialized views, 131
message interception example, strangler fig

migration pattern, 94
content-based routing, 95
selective consumption of messages, 96

micro frontends example, UI composition
migration pattern, 103

microservices
about, 1
advantages of, 6
aggregates and, 29
database sharing, 127
deciding whether to adopt, 33

failing to understand why, 34
key questions to ask, 35
reasons to choose and alternatives, 35-42

history of the term, 9
independent deployability, 2
key takeaway points, 237
mapping aggregates and bounded contexts

to, 31
modeled around a business domain, 2
modeled around databases, 5
ownership within the organization, 10
problems created by, 6
situations not appropriate for use, 42-45

customer-installed and managed soft‐
ware, 44

not having a good reason to use them, 45
startups, 43
unclear domain, 43

size of, 8
technologies, 8
user interfaces, 7
using shared libraries, 183

microservices, problems with, 207-236
breaking changes, 210-215

how the problem shows itself, 211

Index | 249

potential solutions, 212-215
when the problem might occur, 211

end-to-end testing, 226-228
how the problem might occur, 226
how the problem shows itself, 226
potential solutions, 227-228

global versus local optimization, 229-231
how the problem shows itself, 229
potential solutions, 230
when the problem might occur, 229

local developer experience, 222
monitoring and troubleshooting, 217-222

how the problems show up, 218
potential solutions, 218-222
when the problems might occur, 218

more services, more pain, 207-208
orphaned services, 233-236
ownership at scale, 209-210

how the problem shows itself, 209
possible solutions, 210
when the problem might occur, 210

reporting, 215-217
potential solutions, 216
when the problem might occur, 216

robustness and resiliency, 232-233
running too many things, 224-225

migration
changing behavior while migrating func‐

tionality, 97
planning, 33-74

changing organizations, 47-52
combined model for prioritizing service

decomposition, 60-61
cost of change, 54-56
deciding where to start, 56
domain-driven design, 56-60
finding out if transition is working,

71-73
importance of incremental migration, 53
reasons to adopt microservices and

alternatives, 35-42
reorganizing teams, 62-70
selling the idea and making it happen, 47
trade-offs, 45-46
understanding the goal, 33-35

migration patterns, 78-124
branch by abstraction, 104-113

cleanup, removing old implementation,
110

creating an abstraction, 105
creating new service calling implementa‐

tion, 106
fallback to previous implementation, 111
how it works, 105
switching implementation, 108
using the abstraction, 106
where to use it, 112

change-data capture, 120-124
batch delta copier implementation, 124
database triggers implementation, 122
example, issuing loyalty cards, 120
transaction log pollers implementation,

123
where to use it, 124

decorating collaborator, 118-120
example, loyalty program, 119
where to use it, 120

parallel run, 113-118
comparison with dark launching and

canary releasing, 118
example, comparing credit derivative

pricing, 113
example, Homegate listings, 115
verification techniques, 116
verifying using Scientist library, 117
verifying using Spies, 116
where to use it, 118

reference index of, 243
strangler fig application, 79-97

example, FTP, 93
example, message interception, 94
example, reverse HTTP proxy, 83-93
how it works, 79
other examples of use, 97
using with protocols other than HTTP,

97
where to use it, 81

UI composition, 98-104
and mobile applications, 102
example, micro frontends, 103
example, widget composition, 99
page composition, 99
where to use it, 104

modular monoliths, 12, 77
Content Orchestration Service of The

Guardian, 101
monitoring and troubleshooting, problems

with microservices, 217-222

250 | Index

how the problems show themselves, 218
potential solutions, 218-222

log aggregation, 218
testing in production, 221
tracing, 219
working toward observability, 222

when the problems might occur, 218
monolith as data access layer pattern, 166, 243
monolithic applications, 12

advantages of, 15
challenges of, 15
decomposing the database, 125-206

data synchronization, 143-145
Database as a Service interface pattern,

135-137
database view pattern, 128-132
database wrapping service pattern,

132-135
sagas, 193
split table pattern, 171-173
splitting apart the database, which to

split first, 160-170
synchronize data in application pattern,

145-149
tracer write pattern, 149-158
transactions, 187-193
transferring data ownership, 137-143

distributed, 14
horizontal scaling, cost effective, 38
monitoring and troubleshooting, 217
single process, 12

modular monoliths, 12
splitting, 75-124

branch by abstraction migration pattern,
104-113

change-data capture migration pattern,
120-124

changing behavior while migrating func‐
tionality, 97

deciding whether to change the mono‐
lith, 76-78

decorating collaborator pattern, 118-120
migration patterns, 78
strangler fig migration pattern, 79-97
UI composition migration pattern,

98-104
third-party black box systems, 14

Morris, Kief, 185

move foreign key relationship to code pattern,
173-187, 243
data consistency, 176-178
example, shared static data, 178-187

dedicated reference data schema pattern,
181

duplicate static reference data pattern,
179

static reference data library pattern, 182
static reference data service pattern, 184
what to do, author's option, 186

moving the join, 175
where to use it, 178

multi-schema storage pattern, 169, 243

N
N-version programming, 115
networks

latencies and failures, 6
microservices communicating via, 1

NGINX proxy, 86
NoSQL databases, 171

O
observability, 222
operations

DevOps not meaning NoOps, 65
embedding operations team members in

delivery teams, 64
operations team provisioning test environ‐

ment, eliminating, 67
optimization of microservices, global vs. local,

229-231
how the problem shows itself, 229
potential solutions, 230
when the problem might occur, 229

orchestrated sagas, 200
deciding between choreographed style and,

204
mixing with choreographed style, 204

organizations
changing, 47-52

anchoring new approaches in the cul‐
ture, 52

communicating the change vision, 50
consolidating gains and producing more

change, 52
creating guiding coalition, 48
developing a vision and strategy, 49

Index | 251

empower employees for broad-based
action, 51

establishing sense of urgency, 48
generating short-term wins, 51

orphaned services, 233-236
how the problem shows itself, 233
potential solutions to the problem, 234
when the problem might occur, 234

“outside-in” thinking in defining service inter‐
faces, 21

ownership
collective ownership of services, 230
confused lines with monoliths, 15
database and database views, 131
microservice code ownership at scale,

209-210
of data, transferring when splitting the data‐

base, 137-143
orphaned microservices and, 233-236
teams more fully owning whole life cycle of

software, 64

P
page composition example, UI composition

pattern, 99
pain points for microservices, 208

(see also microservices, problems with)
parallel run pattern, 86, 113-118, 243

dark launching and canary releasing, com‐
parison to, 118

example, comparing credit derivative pric‐
ing, 113

example, Homegate listings, 115
verification techniques, 116
verifying using Scientist library on GitHub,

117
verifying using Spies, 116
where to use it, 118

Parnas, David, 18
patterns, index of, 243
physical versus logical database separation, 158
prioritization

combined model for prioritizing service
decomposition, 60-61

trade-offs in process of adopting microser‐
vices, 45

using domain model for, 58
production

getting microservice transition into produc‐
tion, 53

testing in, 221
programming languages, 6, 28, 234

choice of, microservices and, 8
size of microservices and, 9

progressive delivery, 118, 228
protocols

changing in HTTP reverse proxy strangler
fig migration, 90-93
service meshes, 92

multiple, service exposing capabilities over,
91

other than HTTP, using strangler fig migra‐
tion pattern, 97

Q
qualitative measures of success, 72
quality feedback cycles, continually refining,

228

R
Refactoring Databases (Ambler and Sadalage),

187
refactoring the monolith, 77
registries for microservices, 234
relational databases, 171
Release It! (Nygard), 233
release-on-demand techniques, 23
releases

automated release remediation, 228
deployment versus, 80
smaller, reducing risks with, 23

reporting
problems with microservices, 215-217

potential solutions, 216
when the problem might occur, 216

reporting database pattern, 135
repository per bounded context pattern, 162,

243
resilience

resilience and robustness in microservices,
232-233

versus robustness, 39
return on investment (ROI) of moving to

microservices, 34
reuse of code (see code reuse)
reversible decisions, 54, 230
rewrites, incremental, of monolithic code, 78

252 | Index

robustness
improving with use of microservices, 38
improving without using microservices, 39
resilience versus, 39

robustness and resiliency, problem with micro‐
services, 232-233

rollbacks
in sagas, 196

reordering steps to reduce, 198
in two-phase commits, 191

routing, content-based, in message interception
strangler fig migration, 95

running too many things in microservices,
224-225
how the problem shows itself, 224
potential solutions to the problem, 224
when the problem might occur, 224

runtimes, allowing hot deployment of new ver‐
sions of modules, 23

S
sagas, 193-205

versus distributed transactions, 205
failure modes, 195

mixing fail backward and fail forward,
198

reordering steps to reduce rollbacks, 198
rollbacks, 196

implementing, 199
choreographed sagas, 202
deciding between choreographed and

orchestrated, 204
mixing choreographed and orchestrated

styles, 204
orchestrated sagas, 200

scaling
cost-effective scaling for load with microser‐

vices, 37
cost-effective scaling for load without using

microservices, 38
Scaling Agile @ Spotify (Kniberg and Ivarsson),

64
schema-less interchange formats, 212
schemas

database view projecting subset of underly‐
ing schema, 130

databases and, 127
dedicated shared schema for reference data,

181

explicit schemas for microservices, 212
monolith and microservice trying to keep

same two schemas in sync, 148
using database views to allow underlying

schema to change, 130
SchemaSpy, 163
Scientist library, 117
semantic breakages, 212
service meshes, 92
shared database, 125-128, 244
shared static data example, move foreign key

relationship to code pattern, 178-187
dedicated reference data schema, 181
duplicate static reference data pattern, 179
static reference data library, 182
static reference data service pattern, 184
what to do, author's opinion, 186

siloing of teams, 63
single process monoliths, 12

modular, 12
skills

assessing and improving for team members,
68

keeping developers happy by mastering new
skills, 41

Spies, using to verify parallel run, 116
split table pattern, 171-173, 244
Spotify model for teams, 36, 64
Spotify UI, componentized, 103
Square orders example, tracer write pattern,

154-158
startups, microservices and, 43
State of DevOps Report (2017), 105
static reference data library pattern, 182, 244
static reference data service pattern, 184, 244
strangler fig application pattern, 41, 79-97, 113,

244
example, FTP, 93
example, message interception, 94

content-based routing, 95
selective consumption of messages, 96

example, reverse HTTP proxy, 83-93
changing protocols, 90-93
data, 86
inserting the proxy, 84
migrating the functionality, 84
proxy options, 86-88
redirecting calls, 85

how it works, 79

Index | 253

other examples of use, 97
using with protocols other than HTTP, 97
where to use it, 81

strategies, developing for organizational
change, 49

structural breakages, 212
Structured Design (Constantine and Yourdon),

17
sunk cost fallacy, 34

arising from being overly committed to spe‐
cific strategy, 49

avoiding, 73
synchronize data in application pattern,

145-149, 244
bulk synchronize data, 145
synchronize on write, read from new data‐

base, 147
synchronize on write, read from old data‐

base, 146
where to use this pattern, 148

synchronous calls, 22

T
Team Topologies (Pais and Skelton), 65
teams

code ownership and, 210
improving autonomy with microservices, 36
improving autonomy without adopting

microservices, 36
local developer experience problem, 223
organization of, three-tiered architecture

reflecting, 4
qualitative measures of transition success,

72
reorganizing for transition to microservices,

62-70
changing skills, 68
deciding where to start, 65
no one-size-fits-all, 63
shifting structures, 62

scaling number of developers, 40
technical-oriented services, switch to modeling

around business functionality, 63
technology

changing to better handle load, 38
deciding when to change technology when

using microservices, 8
embracing new technology using microser‐

vices, 41

embracing new technology without using
microservices, 41

Telepresence, 223
temporal coupling, 22
testing

end-to-end testing of microservices,
226-228

in production, 221
integration of test teams into other teams,

63
third-party monoliths, 14
time to market, improving

using microservices, 37
without adopting microservices, 37

Timpson, John, 35
tools

BPM (business process modeling), 201
distributed tracing systems, 220
for changing databases, 162
log aggregation systems, 218

tracer write pattern, 149-158, 244
data synchronization, 152
example, orders at Square, 154-158

creating new Fulfillments service, 154
migrating consumers, 157
synchronizing the data, 155

retiring old source of truth, 152
where to use it, 158

tracing sequences of calls between microservi‐
ces, 219

transaction log pollers implementation,
change-data capture pattern, 123

transactions, 187-193, 193
(see also sagas)
ACID, 187

lacking atomicity, 188
avoiding use of distributed transactions, 193
compensating, 197
two-phase commits, 190

“The 2017 State of DevOps Report”, 105
two-phase commits (2PCs), 190

U
UI composition pattern, 98-104, 244

example, micro frontends, 103
example, page composition, 99
example, widget composition, 99
using with mobile applications, 102
where to use it, 104

254 | Index

user interfaces (UIs)
leaving monolithic, problems with, 7
Music Corp example, 2
treating microservice interfaces as, 22

V
Vault, Hashicorp, 129
verify branch by abstraction pattern, 111
vertical scaling, 38
vision, 49

communicating the change vision, 50

W
widget composition example, UI composition

migration pattern, 99
Woods, David, 39
Working Effectively with Legacy Code (Feath‐

ers), 77

Y
Yourdon, Edward, 17

Index | 255

About the Author
Sam Newman is a developer, architect, writer, and speaker who has worked with var‐
ious companies in different domains across the world. He works independently,
focusing mostly on the cloud, continuous delivery, and microservices. Before this
book, he wrote the best-selling Building Microservices, also published by O’Reilly.

When not jumping from one bandwagon to the next, he can be found in the East
Kent countryside, getting cross about various forms of sport.

Colophon
The animal on the cover of Monolith to Microservices is the stinging cauliflower jelly‐
fish (Drymonema dalmatinum). This subtropical jellyfish lives in the Central Atlantic
Ocean and the Mediterranean Sea. It was first identified in 1880 off the coast of Cro‐
atia (then Dalmatia). Sightings of the stinging cauliflower have been rare since WWII,
but a giant specimen was photographed off the coast of Italy in 2014.

This jellyfish is also nicknamed “the big pink” because of its brownish-pink coloring
and impressive size—up to three feet in diameter. The class name Scyphozoa comes
from a Greek word meaning “cup,” alluding to the animal’s body shape. The name of
the subphylum Medusozoa comes from the jellyfish’s long tentacles, which resemble
the snakes growing from the mythological monster’s head.

Like other jellyfish, the stinging cauliflower uses both sexual and asexual reproduc‐
tion. In sexual reproduction, males release sperm and females release eggs that then
connect in the water. The fertilized eggs become polyps, which reproduce asexually
by budding before they mature. The stinging cauliflower is believed to feed on other
jellyfish, usually moon jellyfish.

Jellyfish are found only in bodies of saltwater; never in fresh water.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white image
from Medusae of the World. The cover fonts are Gilroy Semibold and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Foreword
	Preface
	What You Will Learn
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Just Enough Microservices
	What Are Microservices?
	Independent Deployability
	Modeled Around a Business Domain
	Own Their Own Data
	What Advantages Can Microservices Bring?
	What Problems Do They Create?
	User Interfaces
	Technology
	Size
	And Ownership

	The Monolith
	The Single Process Monolith
	The Distributed Monolith
	Third-Party Black-Box Systems
	Challenges of Monoliths
	Advantages of Monoliths

	On Coupling and Cohesion
	Cohesion
	Coupling

	Just Enough Domain-Driven Design
	Aggregate
	Bounded Context
	Mapping Aggregates and Bounded Contexts to Microservices
	Further Reading

	Summary

	Chapter 2. Planning a Migration
	Understanding the Goal
	Three Key Questions

	Why Might You Choose Microservices?
	Improve Team Autonomy
	Reduce Time to Market
	Scale Cost-Effectively for Load
	Improve Robustness
	Scale the Number of Developers
	Embrace New Technology

	When Might Microservices Be a Bad Idea?
	Unclear Domain
	Startups
	Customer-Installed and Managed Software
	Not Having a Good Reason!

	Trade-Offs
	Taking People on the Journey
	Changing Organizations
	Establishing a Sense of Urgency
	Creating the Guiding Coalition
	Developing a Vision and Strategy
	Communicating the Change Vision
	Empowering Employees for Broad-Based Action
	Generating Short-Term Wins
	Consolidating Gains and Producing More Change
	Anchoring New Approaches in the Culture

	Importance of Incremental Migration
	It’s Production That Counts

	Cost of Change
	Reversible and Irreversible Decisions
	Easier Places to Experiment

	So Where Do We Start?
	Domain-Driven Design
	How Far Do You Have to Go?
	Event Storming
	Using a Domain Model for Prioritization

	A Combined Model
	Reorganizing Teams
	Shifting Structures
	It’s Not One Size Fits All
	Making a Change
	Changing Skills

	How Will You Know if the Transition Is Working?
	Having Regular Checkpoints
	Quantitative Measures
	Qualitative Measures
	Avoiding the Sunk Cost Fallacy
	Being Open to New Approaches

	Summary

	Chapter 3. Splitting the Monolith
	To Change the Monolith, or Not?
	Cut, Copy, or Reimplement?
	Refactoring the Monolith

	Migration Patterns
	Pattern: Strangler Fig Application
	How It Works
	Where to Use It
	Example: HTTP Reverse Proxy
	Data?
	Proxy Options
	Changing Protocols
	Example: FTP
	Example: Message Interception
	Other Protocols
	Other Examples of the Strangler Fig Pattern

	Changing Behavior While Migrating Functionality
	Pattern: UI Composition
	Example: Page Composition
	Example: Widget Composition
	Example: Micro Frontends
	Where to Use It

	Pattern: Branch by Abstraction
	How It Works
	As a Fallback Mechanism
	Where to Use It

	Pattern: Parallel Run
	Example: Comparing Credit Derivative Pricing
	Example: Homegate Listings
	Verification Techniques
	Using Spies
	GitHub Scientist
	Dark Launching and Canary Releasing
	Where to Use It

	Pattern: Decorating Collaborator
	Example: Loyalty Program
	Where to Use It

	Pattern: Change Data Capture
	Example: Issuing Loyalty Cards
	Implementing Change Data Capture
	Where to Use It

	Summary

	Chapter 4. Decomposing the Database
	Pattern: The Shared Database
	Coping Patterns
	Where to Use It

	But It Can’t Be Done!
	Pattern: Database View
	The Database as a Public Contract
	Views to Present
	Limitations
	Ownership
	Where to Use It

	Pattern: Database Wrapping Service
	Where to Use It

	Pattern: Database-as-a-Service Interface
	Implementing a Mapping Engine
	Compared to Views
	Where to Use It

	Transferring Ownership
	Pattern: Aggregate Exposing Monolith
	Pattern: Change Data Ownership

	Data Synchronization
	Pattern: Synchronize Data in Application
	Step 1: Bulk Synchronize Data
	Step 2: Synchronize on Write, Read from Old Schema
	Step 3: Synchronize on Write, Read from New Schema
	Where to Use This Pattern
	Where to Use It

	Pattern: Tracer Write
	Data Synchronization
	Example: Orders at Square
	Where to Use It

	Splitting Apart the Database
	Physical Versus Logical Database Separation

	Splitting the Database First, or the Code?
	Split the Database First
	Split the Code First
	Split Database and Code Together
	So, Which Should I Split First?

	Schema Separation Examples
	Pattern: Split Table
	Where to Use It

	Pattern: Move Foreign-Key Relationship to Code
	Moving the Join
	Data Consistency
	Where to Use It
	Example: Shared Static Data

	Transactions
	ACID Transactions
	Still ACID, but Lacking Atomicity?
	Two-Phase Commits
	Distributed Transactions—Just Say No

	Sagas
	Saga Failure Modes
	Implementing Sagas
	Sagas Versus Distributed Transactions

	Summary

	Chapter 5. Growing Pains
	More Services, More Pain
	Ownership at Scale
	How Can This Problem Show Itself?
	When Might This Problem Occur?
	Potential Solutions

	Breaking Changes
	How Can This Problem Show Itself?
	When Might This Problem Occur?
	Potential Solutions

	Reporting
	When Might This Problem Occur?
	Potential Solutions

	Monitoring and Troubleshooting
	When Might These Problems Occur?
	How Can These Problems Occur?
	Potential Solutions

	Local Developer Experience
	How Can This Problem Show Itself?
	When Might This Occur?
	Potential Solutions

	Running Too Many Things
	How Might This Problem Show Itself?
	When Might This Problem Occur?
	Potential Solutions

	End-to-End Testing
	How Can This Problem Show Itself?
	When Might This Problem Occur?
	Potential Solutions

	Global Versus Local Optimization
	How Can This Problem Show Itself?
	When Might This Problem Occur?
	Potential Solutions

	Robustness and Resiliency
	How Can This Problem Show Itself?
	When Might This Problem Occur?
	Potential Solutions

	Orphaned Services
	How Can This Problem Show Itself?
	When Might This Problem Occur?
	Potential Solutions

	Summary

	Chapter 6. Closing Words
	Appendix A. Bibliography
	Appendix B. Pattern Index
	Index
	About the Author
	Colophon

