

Hands-On Server-Side Web
Development with Swift

Build dynamic web apps by leveraging two popular Swift web
frameworks: Vapor 3.0 and Kitura 2.5

Angus Yeung

BIRMINGHAM - MUMBAI

Hands-On Server-Side Web Development
with Swift
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Karan Gupta
Content Development Editor: Francis Carneiro
Technical Editor: Akhil Nair
Copy Editor: Safis Editing
Project Coordinator: Pragati Shukla
Proofreader: Safis Editing
Indexer: Mariammal Chettiyar
Graphics: Alishon Mendonsa
Production Coordinator: Nilesh Mohite

First published: November 2018

Production reference: 1301118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-117-1

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical ebooks and videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free ebook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers ebook versions of every book published, with PDF and
ePub files available? You can upgrade to the ebook version at www.packt.com and as a print
book customer, you are entitled to a discount on the ebook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
ebooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Angus Yeung works for Intel, and is responsible for the architectural design of backend
cloud services for virtual reality sports broadcasting. He is also a computer science lecturer
at San Jose State University. Prior to Intel, he held CTO and engineering director positions
at several companies, including a start-up he founded in 2002.

Angus' technical interests include mobile computing, distributed computing, computer
vision, and artificial intelligence. He holds an BS, MS, and PHD in Electrical Engineering
from Univ. of Rochester, and an MBA from UC Berkeley. Angus owns 18 pending and
granted patents. Angus lives with his lovely wife and three handsome boys in Palo Alto,
California.

Many thanks to my publishers, Isha and Francis. Without their encouragement and
persistence I wouldn't have even started my journey of writing this book. My thanks also
go to Francis and his team for tediously reviewing this book and dutifully running the
code in each chapter. Finally, thanks to my wife, Leslie, and my sons, Neil, Ryan, and
Kyle, for their endless patience and support.

About the reviewer
Tibor Bödecs is an enthusiastic software developer with more than a decade of experience
in the IT industry. In his past, Tibor was the technology leader at one of the biggest mobile
development-focused companies in Hungary. He is a self-taught programmer with a true
passion for Swift from the very beginning. He has a good ability to work with different
languages, technologies, and extensive experience in product management. Nowadays he is
a freelancer developer focusing mostly on web, mobile, and server-side Swift projects.
Tibor has a personal blog where he regularly writes about the Swift programming
language.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introducing Server-Side Swift 8
Introducing Swift 9

Open sourcing Swift and components 10
Swift compiler 11
Swift standard library 11
Swift foundation framework 12
Dispatch framework 12
XCTest testing framework 12
Swift Package Manager 13
LLDB debugger 13
CommonMark documentation 13

Bringing Swift to the server-side 13
SwiftNIO 14

Surveying Swift server-side frameworks 15
Vapor 15
Kitura 16
Perfect 16

Choosing the right framework 17
Performance 17
Feature sets 18
Ecosystem 18
Community support 19

Vapor 20
Kitura 20
Perfect 20

Summary 20

Chapter 2: Getting Started with Vapor and Kitura 21
Installing Vapor and Kitura on Mac 21

Preparing your Mac for server-side Swift development 22
Installing the Xcode IDE on your Mac 22
Installing Xcode Command Line Tools 23
Installing Homebrew 24

Installing Vapor Toolbox on Mac 24
Checking your system's compatibility with Vapor 24
Installing Vapor Toolbox using Homebrew 24
Verifying Vapor installation 25

Installing the Kitura CLI on Mac 25
Installing Vapor and Kitura on Ubuntu 26

Working with the Ubuntu APT 26

Table of Contents

[ii]

Installing the Swift Toolchain on Linux 26
Installing Vapor on Ubuntu 27

Option 1 – using script to clone Vapor packages 27
Option 2 – cloning Vapor packages manually 27
Installing Vapor on Ubuntu 27

Installing Kitura on Ubuntu 28
Installing required Linux system packages 28

Exploring Vapor Toolbox and the Kitura CLI 29
Using Vapor Toolbox Commands 29

Getting help on a specific Vapor command 31
Exploring the Kitura CLI 32

Using KAG 32
Selecting a scaffolded application 33
Choosing additional services 34

Summary 35

Chapter 3: Building Your First Web App 36
Creating an app using Vapor CLI 36

Creating a hello world app from a template 37
Building the hello world app 38
Running the hello world app 38
Converting to the Xcode project on a Mac 39

Reviewing source code in Vapor boilerplate 41
Adding more routes in Vapor 42
Creating an app using Kitura CLI 44

Creating a hello world app from a default template 44
Running your Kitura app from a Terminal 46
Running your Kitura app from Xcode 46
Testing the app with a web browser client 48

Reviewing source code in Kitura boilerplate 49
Adding more routes in Kitura 50
Summary 53

Chapter 4: Debugging and Testing 54
Writing tests for server-side Swift projects 55

Preparing a test executable target 55
Writing tests using XCTest 56
Checking out test cases in a Vapor boilerplate project 57
Learning useful assertion macros 58
Adding a unit test to your project 59
Running unit tests in Xcode 61
Checking code coverage 62

Turning on code coverage 62
Generating a coverage report 64

Reviewing Kitura boilerplate tests 67
Handling asynchronous tests 69

Table of Contents

[iii]

Using extensions for functions common to all tests 71
Debugging in a server-side Swift project 73

Using the Logging API in a Vapor project 73
Using the Logger API in a Kitura Project 74
Debugging using the HTTP traffic monitoring tool 76

Debugging using Postman 77
Debugging using the curl command in the Terminal 78

Summary 79

Chapter 5: Setting Up Routes and Controllers 80
Adding custom routes in a Vapor project 80

Modeling your data with content type 81
Using controller for logical operations 83
Using Vapor's route collection 84
Grouping related routes 86
Implementing route handlers 86

Retrieving all entries 87
Creating a new entry with a unique ID 87
Retrieving an entry 88
Updating an entry 89
Deleting an entry 89

Testing the routes 90
Adding custom routes in a Kitura project 91

Modeling Codable data 91
Using controllers for logical operations 92
Implementing Codable routing 93
Handling Kitura routes 96

Summary 99

Chapter 6: Working with Template Engines 100
Using the Leaf templating engine in Vapor 100

Configuring the Leaf templating engine 101
Using the basic functions of the Leaf templating engine 102
Using variables and tags in Leaf templating 104

Setting a variable 104
Working with context 105
Looping through a collection 105
Checking conditions 106
Embedding other templates 106

Adding more Leaf templates 107
Displaying all journal entries 108
Completing the features 110

Templating with Stencil in a Kitura project 116
Learning the basic functions of the Stencil templating engine 117

Using variables and tags in Stencil templating 117
Summarizing useful filters and tags in Stencil 118

Configuring the Stencil templating engine 119

Table of Contents

[iv]

Developing code working with Stencil templates 119
Adding Stencil templates to your Kitura project 120
Displaying all journal entries 122

Completing the features 124
Creating a new journal entry 124
Editing a journal entry 126
Removing a journal entry 128

Summary 128

Chapter 7: Bootstrapping Your Design 129
Getting started with the Bootstrap framework 129

Setting up for Bootstrap 130
Inserting the stylesheet 130
Adding dependency for JavaScript files 131
Using a starter template in Bootstrap 131

Using basic Bootstrap components 133
Organizing content into grids 133
Displaying a jumbotron with parallax animation 135
Adding a navigation bar 137
Using form controls 139
Reusing glyphicons 141

Using Bootstrap for a Vapor application 144
Enhancing Leaf templates with Bootstrap 145

header.leaf 145
footer.leaf 147
main.leaf 148
new.leaf 149
entry.leaf 151

Using Bootstrap for Kitura 153
Enhancing Stencil templates with Bootstrap 154

header.stencil 154
footer.stencil 156
main.stencil 157
new.stencil 158
entry.stencil 159

Summary 161

Chapter 8: Employing Storage Framework 162
Installing databases 162

Installing PostgreSQL 163
Installing SQLite 163
Installing MySQL 164

Working with the Fluent Framework in Vapor 165
Choosing a database driver 165

Using the PostgreSQL database driver 165
Using the SQLite database driver 167
Using the MySQL database driver 168

Conforming to the Fluent Model 169

Table of Contents

[v]

Creating a new Model 169
Creating Fluent Migrations 170
Using Fluent Model Helpers 171

Implementing CRUD operations for Vapor 172
Implementing the create operation 172
Implementing the read operation 172
Implementing the update operation 173
Implementing the delete operation 174

Working with the Database Abstraction Layer in Kitura 174
Choosing a database driver 174

Using the PostgreSQL database driver 175
Setting up the SQLite database driver 178
Using the MySQL database driver 178

Conforming to the Swift-Kuery-ORM Model 179
Creating a new model 179

Implementing the CRUD operations 180
Displaying all records 180
Displaying a single record 182
Creating a new record 182
Updating an existing record 184
Deleting a record 187

Summary 188

Chapter 9: Adding Authentication 189
Introducing the authentication API for Vapor 189

Using web authentication 190
Setting up AuthenticationProvider 191
Configuring for SessionMiddleware 191

Constructing a Model 192
Accessing protected content 193

Adding public routes 194
Adding the login page 195
Checking login credentials 197
Logging out of the current session 197
Specifying protected routes 198
Using the authenticated state 198

Managing accounts 201
Listing all accounts 202
Adding a New Account 203
Removing an account 205

Seeding databases 205
Introducing authentication for Kitura 207

Setting up HTTP basic authentication 207
Constructing a Model 209
Using TypeSafe HTTP authentication 212

Summary 213

Chapter 10: Understanding Technologies for Web Services 214

Table of Contents

[vi]

Serving clients with web services 215
Designing three-tier architecture for web service 215

The frontend layer 216
The application layer 216
The data storage layer 216

Reviewing HTTP protocols 217
Designing the cloud frontend with pattern 218

The backends for frontends pattern 219
API gateway 220

Encapsulating business logic into microservices 222
Implementing a microservice-oriented architecture 223

Designing microservice with key principles 224
Cloud deployment 224

Containing microservices with Docker 225
Continuously deploying to the cloud 226

Working with a sample workflow 226
Summary 227

Chapter 11: Designing for API Gateway 228
Serving clients with the RESTful API 228

Understanding the server/client model based on HTTP 229
Designing the RESTful API 230

Identifying object models 230
Defining resource endpoints 231

Defining endpoints for top-level resources 231
Defining Endpoints for Sub-resources 232

Assigning HTTP methods 232
Browsing all journal entries 233
Creating a new journal entry 233
Getting a specific journal entry 233
Editing a specific journal entry 233
Deleting a specific journal entry 234

Implementing the endpoints and responses 234
Implementing Handlers for Public Routes 235
Implementing handlers for admin routes 235

Creating a new item 235
Retrieving an item by ID 236
Updating an item 236
Deleting an Item 237

Implementing API endpoints for Kitura 238
Creating a new project for the Kitura web service application 238
Working with the Kitural model 239
Setting up a database 240
Adding route handlers 240

Retrieving all items 241
Creating a new item 242
 Retrieving an item by ID 243

Table of Contents

[vii]

Updating an item 243
Deleting an item 244
Deleting All items 245

Summary 245

Chapter 12: Deploying to the Cloud 246
Deploying Vapor web service to Vapor Cloud 246

Checking out Vapor Cloud features 247
Database and Cache Support 247
Application Monitoring 247
Recurrent Job Scheduling 247
Accessible to File Storage and CDN Services 248
Zero-Downtime Deployment 248

Signing up Vapor Cloud 248
Deploying to Vapor Cloud 249

Using the Vapor Cloud commands 249
Creating Your First Deployment 250
Creating an Application from Git Remote 251
Working with Slug and Environment 251
Choosing a Replica Size and Database 252
Choosing a Build Type 252

Managing Your Cloud application 253
Getting live log output 253
Working with environment variables 254
Adding a custom domain 255
Scheduling a New cronjob 255

Deploying the Kitura web service to IBM Cloud 256
Working with an IBM Cloud Account 256

Registering for an Account on IBM Cloud 256
Working with the IBM Cloud Dashboard 257

Readying the Local System for IBM Cloud Deployment 257
Installing IBM Cloud Developer Tools 258
Using IBM Cloud Developer Tools 259

Creating a Kitura app that is deployable to IBM Cloud 261
Generating a Starter Kitura Web Application 261
Logging into IBM Cloud 264
Building Your App with the IBM Cloud Tool 265

Running the Kitura App in the Local Container 266
Deploying Your app 267

Summary 269

Chapter 13: Developing an iPhone Client 270
Developing an iOS App for a server-side Swift application 270

Creating a new project 271
Creating a new TableViewController 273

Adding content to TableViewController 279
Preparing your data model 279
Configuring table properties 280

Table of Contents

[viii]

Adding a label to the prototype cell 281
Constructing route handlers for web services 285

Adding domain exceptions for App Transport Security 287
Testing the Vapor Server app 290
Running the iOS app 290

Adding a new entry to journal 290
Designing the user interface for a new entry 291

Using the Delegate Pattern 299
Hooking up new functionalities for UI items 301

Steps to Make Requests to the server 304
Preparing for Encoded JSON Data 304
Configuring an Upload Request 304
Starting an Upload Task 304
Putting Everything Together for the upload task 305

Finishing the CRUD operations 305
Editing an existing entry 306

Creating the EditEntry segue 306
Adding a new function to the delegate protocol 307
Making an HTTP PUT request 309
Configuring the user interface to edit an entry 309

Deleting an existing entry 311
Summary 313

Chapter 14: Developing Microservices 314
Leveraging Microservices in Backend Applications 314

The microservice-oriented architecture 315
Design Principles of the Microservice Framework 315

Deploying a Containerized Application to a Cluster 316
Working with Containers and Orchestrations 316
Understanding the Container Deployment workflow 317
Publishing a Docker image to IBM Cloud Registry 319

Logging into IBM Cloud 319
Working with the Docker CLI 320
Tagging Your Docker Image 321
Deploying a Docker Image to IBM Cloud Registry 322

Creating a Cluster on IBM Cloud 324
Setting up the Kubernetes CLI 326
Downloading the Cluster Configuration 328
Creating a Deployment Using Container Registry 329

Exposing the deployment and launching the app 331
Summary 334

Appendix A: Vapor Boilerplate Project 335
Reviewing Vapor-generated files 336

Installing tree to view the file structure 336
Reviewing a Vapor project's file structure 337
Understanding the file structure in a Vapor project 338

Table of Contents

[ix]

Configuring Swift Package Manager 339
Package dependencies 340
Build targets 344

Starting with an entry point 345
Instantiating an application object 345
Configuring before instantiating application 346
Adding initialization code after application instantiation 348
Registering the application's routes 349
Implementing endpoint logic in controllers 350
Using a data model 351

Appendix B: Kitura Boilerplate Project 353
Reviewing Kitura-generated files 353

Reviewing a Kitura project's file structure 354
Understanding the file structure in a Kitura project 356

Understanding generated sourcecode in Kitura 357
Configuring using Swift Package Manager (SPM) 357
Starting with the entry point 360
Declaring application classes 361
Handling errors 363
Setting up monitoring metrics 363
Setting up health check endpoints 365

Other Books You May Enjoy 367

Index 370

Preface
Swift is a strongly and statically typed programming language that has been used
extensively for client-side development in iOS, macOS, tvOS, and watchOS. The open
source developer community has brought Swift to the Linux platforms, making Swift a
cross-platform programming language. This book will get you started with Vapor and
Kitura by teaching you about development workflows, unit tests, and the build and release
process. You'll then dive into the details of designing web applications with template
engines, the Bootstrap framework, databases, and user authentication. Finally, you'll move
on to building APIs for web services, full-stack development with iOS applications, and
deploying web services as containerized application.

Who this book is for
This book is for anyone interested in building professional web applications and web
services using Swift and two popular Swift web frameworks: Vapor 3.0 and Kitura 2.5.

What this book covers
Chapter 1, Introducing Server-Side Swift, explains why you should extend Swift for server-
side development on Linux and take advantage of using Swift for both server- and client-
side development. You will survey an array of popular web frameworks in Swift and learn
about the merits of each of them. If you are interested in starting the journey of developing
web apps and services using Swift, you will find the chapter's recommendations for
references, online resources, forums for discussion and technical questions, and the list of
developer community support very helpful.

Chapter 2, Getting Started with Vapor and Kitura, aims at getting you started with
both Vapor, a server-side framework with very strong developer community support,
and Kitura, a server-side framework with backing from IBM. You'll be introduced to Vapor
Toolbox, a command line interface (CLI) that allows you to rapidly develop Vapor apps
from boilerplate Vapor projects. You'll follow step-by-step guidance to install Vapor
Toolbox on macOS or Linux, and then check your system's readiness by using Vapor CLI
tools to verify system compatibility with required development environment. Similarly,
you'll be introduced to Kitura development workflows and follow step-by-step instructions
to install Kitura tools and libraries on your system.

Preface

[2]

 Chapter 3, Building Your First Web App, takes you directly to server-side Swift coding with
detailed instructions on creating a new web app project from a template provided in a web
framework. You'll be guided on how to create, build, run, and test a "Hello World!" web
app using Vapor 3.0. After that, you'll learn how to expand the features of the web app by
adding more new routes to handle additional requests from clients. You will continue your
journey to create a similar "Hello World!" web app with the Kitura web framework. After
going through the exercises of building a simple web app with both Vapor and Kitura,
you'll be able to note the similarities between the two web frameworks and appreciate the
different approaches taken by them.

Chapter 4, Debugging and Testing, introduces the basics of the agile development process
and recommends some of best practices in developing, debugging, and testing server-side
Swift code. When it comes to web development frameworks, both Vapor and Kitura offer
very good logging and debugging support. You are going to learn how to use the logging
and unit test features to help in debugging and error-proofing your code.

Chapter 5, Setting Up Routes and Controllers, dives into the details of handling custom
requests with routes and controllers. A route is an object used to represent a custom request
embedded in a URL and a controller is the component that contains the business logic to
handle the request routed to it. You'll learn how to add custom routes for requests, create
controllers to handle the routes, and construct responses for the requests. You'll manipulate
custom parameter types and process a group of routes in a collection. Finally, you'll learn
how to take advantage of the Codable class in Swift to encode and decode complex
JavaScript Object Notation (JSON) objects in easy ways.

Chapter 6, Working with Template Engines, introduces you to two template engines: Leaf for
Vapor and Stencil for Kitura. Templating languages allow you to work with content
automatically generated by a script. For dynamic content, you'll learn how template
engines help in accelerating the development of dynamic web pages. Dynamic content
creation is useful when presenting results of data that is generated at runtime and not
known beforehand. For static content, you'll learn how template engines help ensure a
consistent structure with features such as headers, footers, color schemes, and
backgrounds. You'll also be introduced to the nuts and bolts of Leaf and Stencil templating
languages and learn how to use variables in template scripts to communicate information
between Swift classes and script functions.

Chapter 7, Bootstrapping Your Design, introduces you to the Bootstrap framework, which is
a collection of CSS and JavaScript libraries, and explains how the Bootstrap framework
allows you to build responsive website easily. You'll follow step-by-step instructions to
insert Bootstrap components into your templates and learn how to beautify different UI
elements in your template with Bootstrap. Toward the end of the chapter, you'll learn how
to include Bootstrap in your project when you are ready to deploy your web apps.

Preface

[3]

Chapter 8, Employing Storage Frameworks, has you take advantage of the Object Relational
Mapping (ORM) abstraction between the web application and the database to streamline
your workflow when working with a database. One of the major advantages of using an
ORM tool is that you don't have to deal with a database directly, avoiding the painful
process of writing different querying commands for each type of database. Swift web
frameworks support a number of database engines, and sometimes you can use multiple
databases in the same session. In this chapter, you'll learn how to work with the Fluent
abstraction framework in Vapor and the Kuery database abstraction layer in Kitura. You'll
interact with your model with Create, Retrieve, Update, and Delete (CRUD) operations
using these abstraction layers.

Chapter 9, Adding Authentication, introduces you to the key features in user-access
management: user authentication, cookies, and sessions management. You'll learn how to
set up a user model and password-protected content. With the authentication API, you're
going to grant and remove access for different users. You'll then learn how to manipulate
cookies and manage user login sessions, and implement logic to authenticate user to get
access to protected content.

Chapter 10, Understanding Technologies for Web Services, reviews the underlying
technologies that empower web apps and web services. You'll learn the server/client model
based on HTTP/HTTPS in more details. For the architecture and design of web services, it'd
better to divide the design into a three-tiered architecture consisting of a frontend API
gateway, some business logic in the middle, and then backend database services. You'll
learn how a typical frontend API gateway is designed, how to encapsulate a middle
component with business logic into a standalone microservice, and how to design and
work with a backend storage framework.

Chapter 11, Designing for API Gateway, teaches you how to build a RESTful API, introduce
you to the basic rules for API design, teach you how to create endpoints for requests that a
client sends to a server, and explain how to define response status codes. You'll then learn
how the design of a RESTful API can be extended, specifically through the building of API
Gateway, which is the single entry point for all clients and routes client requests to different
MVC components or microservices.

Chapter 12, Deploying to the Cloud, tells you how to deploy your web services to the cloud.
You'll be introduced to popular hosted cloud solutions: Vapor Cloud (AWS) and IBM
Cloud (Bluemix). Vapor Cloud is the official hosting service for Vapor and there is built-in
support in Vapor CLI to let you deploy and manage your Vapor instance easily without
installing additional libraries and tools. Similarly, IBM Cloud is a natural choice of hosted
solution for Kitura web services, since both IBM Cloud (Bluemix) and Kitura are IBM cloud
solutions.

Preface

[4]

 Chapter 13, Developing an iPhone Client, puts everything you'll have learned so far about
server-side Swift together and uses an iOS app to show how a client "journal" app can
leverage your PostgreSQL database, and other cloud services that you can build with a
Swift web framework. You'll first get started with building a journal iOS app, adding logic
and UI components to the app design. You'll create a model for journal data and add the
support of CRUD operations for a PostgreSQL database. At the end of this chapter, you'll
have a functional journal app that works seamlessly with your web services.

Chapter 14, Developing Microservices, teaches you how to build independent microservices
and add them to a Swift web framework. Container technology, such as Docker, is used to
deploy and run a Swift package artifact as a microservice. You'll learn how to deploy a
Docker container and use container orchestration tool such as Kubernetes to manage and
scale the deployment of containerized applications in a cluster.

Appendix A, Vapor Boilerplate Project, gives you a clear understanding of the boilerplate code
in Vapor: you'll review Vapor-generated files, examine the file structure in a typical Vapor
project, check out the project's configuration in manifest file, and go through the sequence
of initialization steps before and after application instantiation. It also explains to you the
sample routes, controllers and data model included in the boilerplate project.

Appendix B, Kitura Boilerplate Project, provides you with a better idea with the boilerplate
project generated using kitura init. You'll review Kitura-generated files, file structure in
a Kitura project, and configuration in the project's manifest file. The work flow in the
boilerplate project will be carefully examined. At the end, you'll also check out the metrics-
monitoring and diagnostic services already included in the boilerplate code.

To get the most out of this book
Some working knowledge of the Swift programming language would be required. You
could be a beginner in terms of Swift programming, a seasoned iOS or macOS developer, or
a software developer who wants to work on practical Swift applications while learning the
language itself. By the end of the book, you will be able to successfully create your own
web applications and web services by leveraging the powerful ecosystem of Swift.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

http://www.packt.com
http://www.packt.com/support

Preface

[5]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Hands- On- Server- Side- Web-Development- with- Swift. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The decode() function returns a future for HTTPStatus".

A block of code is set as follows:

router.post("new") { req -> Future<HTTPStatus> in
 return req.content.decode(Entry.self).map { entry in
 print("Appended a new entry: \(entry)")
 return HTTPStatus.ok
 }
}

http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

import Foundation

struct Entry: Codable {
 var id: String
 var title: String?
 var content: String?
 init(id: String, title: String? = nil, content: String? = nil) {
 self.id = id
 self.title = title
 self.content = content
 }
}

Any command-line input or output is written as follows:

 $ vapor build
 $ vapor run

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Navigate down the list and click on the Swift Web App with Kitura icon".

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[7]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Introducing Server-Side Swift

Swift is a strongly and statically typed programming language that has been used
extensively for client-side development in iOS, macOS, tvOS, and watchOS. The open
source developer community has brought Swift to the Linux platforms, making Swift a
cross-platform programming language. In this chapter, we will explain why the open
source developer community has extended Swift for server-side development, and how
they have streamlined the workflow for both server and client-side development using the
same programming language.

There are several server-side Swift frameworks, and most of them are developed and
maintained by the Swift developer community. We will take a closer look at the three top
server-side Swift frameworks: Vapor, Kitura, and Perfect. Each of these frameworks has a
different set of features and benefits. We hope that you feel comfortable with choosing the
right Swift server-side framework for your next server-side project.

In this chapter, we will cover the following topics:

Introducing Swift
Surveying Swift server-side frameworks
Choosing the right framework

Introducing Server-Side Swift Chapter 1

[9]

Introducing Swift
Swift is a high-performance modern programming language that was first announced at
the Apple World Wide Developers Conference (WWDC) in September 2014. Thanks to
Apple's strong support and endorsement from the developer community, Swift has become
one of the fastest growing new languages in computer science history. Swift 2.0 was
released in September 2015, followed by Swift 3.0 a year later, and Swift 4.0 in September
2017. There have been two additional releases: Swift 4.1 in March 2018 and Swift 4.2 in
September 2018.

As a modern language, Swift offers a clean syntax and many modern programming
language constructs. Even though Swift is inspired by many other popular programming
languages, Swift is an independent language completed with all the core features of a
modern language. We will find the familiar low-level constructs in Swift, such as data
structure, classes, functions, enums, as well as many useful modern features, such as
protocols, optionals, closures, and generics.

Type safety is enforced from the ground up in Swift. The emphasis of type safety shifts the
detection of many nasty errors from runtime to compile time. As a result of dramatically
reduced runtime errors, Swift developers enjoy relatively increased productivity and an
ease of programming.

Swift keeps many of the constructs found in modern programming languages, but also
eliminates some features that are frequently seen in other languages. One example is that
Swift uses modules instead of headers, eliminating code duplication often seen in using
headers. Moreover, Swift does not support exceptions and an automatic garbage collector.
In Swift, memory safety is ensured by default. Instead of a garbage collector, Swift uses a
thread-safe Automatic Reference Counting (ARC) for an object's life cycle management.

As a compiled language, Swift is very fast at execution. The source code of Swift is first
checked for type safety, then compiled into a machine-independent intermediate code in a
Low Level Virtual Machine (LLVM) for optimization, and eventually used to generate
machine code that is native to the system. Swift's execution performance often matches that
of modern native programming languages and exceeds that of interpreted programming
languages.

Introducing Server-Side Swift Chapter 1

[10]

Open sourcing Swift and components
The official version of open source Swift was first launched in December 2015. Since being
opened up to wider community support and development, open source Swift continues to
grow in both popularity and maturity in terms of the contribution of open source
community and the addition of new features. The contributors to open source Swift include
Apple, IBM, PayPal, and other industry and academic institutions.

The effort of the open source developer community is coordinated through the Swift
programming language evolution (https:/ /github. com/ apple/ swift- evolution) process.
The process governs the evolution of Swift by defining the process for accepting new
proposals, stating the goals for upcoming Swift releases, reviewing and tracking the status
of proposals, and specifying the decision-making procedure for accepting or rejecting a
proposal. The evolution process ensures that Swift can evolve into a robust language while
imposing constraints to maintain application binary interface (ABI) stability. With ABI
stability, the binary compatibility between applications and libraries is ensured with
different Swift versions.

Open source Swift includes more than the specification of the Swift programming
language. On the official website of open source Swift, https:/ /swift. org/, there is
information on the fundamental components for the language, including the Swift
compiler, standard library, package manager, core libraries, test framework, and
REPL/debugger.

The source code repositories for the fundamental Swift components are hosted on GitHub
at https://github. com/ apple/ swift. The following diagram shows the main components
in open source Swift:

https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://swift.org/
https://swift.org/
https://swift.org/
https://swift.org/
https://swift.org/
https://swift.org/
https://swift.org/
https://swift.org/
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift

Introducing Server-Side Swift Chapter 1

[11]

The license for the open source Swift projects is Apache 2.0 with a runtime library
exception (https:/ /github. com/ apple/ swift/ blob/ master/ LICENSE. txt) .The runtime
library exception clause in such a license allows you to compile the code into the binary
product and distribute it.

Swift compiler
The Swift compiler translates Swift source code into efficient machine code in an executable
way. When parsing the source code, the Swift compiler will perform full type-checking and
generate an intermediate language called the Swift Intermediate Language (SIL) for
further code analysis and optimization. The intermediate code will then be reduced to Low
Level Virtual Machine Intermediate Representation (LLVM IR) (http:/ / llvm. org/) for
the LLVM to turn that into machine code:

Swift standard library
The standard library provides basic language and type system support. The core of the
standard library includes the definitions of fundamental data types, collections, protocols,
algorithm, and low-level primitives. There is also the language support runtime, which is
layered between the compiler and the core of the standard library. This runtime handles the
dynamic features of Swift, such as typecasting, generics, reflection, and memory
management.

https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
https://github.com/apple/swift/blob/master/LICENSE.txt
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/

Introducing Server-Side Swift Chapter 1

[12]

Swift foundation framework
The foundation framework comprises features outside of the language and runtime that
are common to all applications. The base layer of functionality provided in the foundation
framework includes data storage and persistence, string handling, data formatting, date
and time support, sorting and filtering, and networking. The design principle for the
foundation framework is to keep the features in small sets of utility class, consistent across
in convention, and with internationalization and localization support. As such, the
foundation framework is highly portable for cross-platform support. There are two
foundation frameworks: Objective-C and the open source Swift foundation.

Dispatch framework
The libdispatch is the wrapper for Grand Central Dispatch (GCD), the concurrency library
used across all Swift platforms to provide support for concurrent code execution in
multicore processors. GCD uses a dispatch queue to achieve the goal of executing tasks in
parallel. Each queue is a block of code (task) that can be executed synchronously or
asynchronously on the main thread or worker thread. Tasks submitted to dispatch queues
are executed efficiently on a pool of threads managed by the system. Submitted tasks are
executed serially by default, but several tasks can be configured to run concurrently when
submitted to the dispatch queue.

XCTest testing framework
The XCTest library is a common framework for writing unit tests in Swift. Usually, we just
have to write the unit tests once and they can be executed across different platforms
without rewriting. Each test is organized into an XCTestCase subclass with many different
test methods. Each method shall be started with a prefix "test". We can run the tests from a
Terminal on Linux or macOS. For Linux, an extra Linux main file with an array containing
all available tests is needed. For macOS, XCode CLI tools to execute the tests are required.
The XCTest framework is also well integrated into the workflow in XCode. We can use the
scheme editor to specify which targets, classes, and methods to include a test, and use the
XCode test navigator to run tests and view the results.

Introducing Server-Side Swift Chapter 1

[13]

Swift Package Manager
We use the Swift Package Manager (SPM) to manage the distribution of Swift projects. The
Swift package manager integrates the package dependencies into the Swift build system,
automating the downloading, compiling, and linking the other packages that are required
in a Swift project. In a typical Swift project, the source code is organized into packages. We
use the Swift package manager to set up target executable modules in a project and specify
each executable's dependent modules. An executable is a Swift program that can be run by
the host's platform. For example, we build one executable module for product release and
another executable module for testing.

LLDB debugger
In open source Swift, the LLDB debugger is both a full-featured debugger for Swift and a
read-eval-print-loop (REPL) tool for the language. The LLDB debugger is tightly coupled
to the Swift compiler itself, in order for it to inspect Swift types accurately and evaluate
expressions correctly. REPL takes advantage of the robust debugging features such as
breakpoint settings, interactive context during failures, evaluating expressions, reporting,
and formatting results at breakpoints.

CommonMark documentation
CommonMark is the built-in Markdown syntax for documenting source code in open
source Swift. Markdown is a plain text format for writing structured documents using very
straightforward formatting conventions. Open source Swift adopts CommonMark as the
implementation of a strongly defined, unambiguous, and highly compatible specification of
Markdown.

Bringing Swift to the server-side
Swift has been used extensively for client-side development in iOS, macOS, tvOS, and
watchOS. Since the open source developer community brought Swift to the Linux
platforms and made Swift a cross-platform programming language, it makes sense for
developers to use Swift for server-side development as well.

Introducing Server-Side Swift Chapter 1

[14]

Client developers that are already skillful with the Swift language and are accustomed to
the tools and libraries used in Swift projects, will find the transition to server-side
development straightforward. They can enjoy the same benefits offered by Swift in server-
side projects: type-safety, ease of programming, and compiled performance. By using Swift
in both client- and server-side development, developers are expected to be more productive
and more skillful.

Of course, the client developers are required to learn some new server-side skills. The
workflow on the client side is very different from that of server-side development. On the
client side, developers often work to enhance user interfaces, build data models and
develop application logic that works with remote cloud services. For server-side
development, they need to be able to implement and test network requests, add logic to
handle the requests, and route the requests to other backend modules to handle them.

As developers gain expertise in writing both server and client code, they will share code
between the server and a client's modules, and optimize the code for both client and server-
side development.

SwiftNIO
It is worth mentioning SwiftNIO here, together with other Swift technologies. Apple's
SwiftNIO is an open source server-side kernel that provides low-level networking support
to the high-level event-driven network application framework. Even though SwiftNIO is
not part of open source Swift, this server-side kernel is the fundamental building block for
Swift server-side frameworks such as Vapor 3.0. Support for SwiftNIO was also added to
Kitura 2.5 in August 2018.

SwiftNIO targets high-performance protocol servers and clients with Netty-like event loops
and asynchronous non-blocking calls. The rationale for SwiftNIO is that using the thread-
per-connection model of concurrency for low-utilization connections in any server is highly
inefficient. SwiftNIO uses the non-blocking I/O model, so we do not need to wait for data to
be sent from the network or received from it. The kernel will notify us when an I/O
operation is complete.

Under the hood of SwiftNIO, the event processing for managing the execution of work
items is conceptualized into EventLoop, which is similar to a dispatch queue in Swift. There
are usually a few event loops per CPU core. Event loops run for the entire lifetime of the
application, dispatching events to all the objects they own in a SwiftNIO application. Event
loops are grouped into an EventLoopGroup. When an EventLoopGroup receives tasks, it
will distribute work around the event loops while ensuring thread safety in doing so.

Introducing Server-Side Swift Chapter 1

[15]

We usually ask EventLoop to schedule work but the work itself will be done by
ChannelHandlers in a Channel. Each file descriptor (socket, file, or pipe) in SwiftNIO is
associated with a Channel, which performs operations on top of it. The Channel uses
ChannelHandler to process each work item. ChannelHandler can handle either inbound
or outbound data traffic or both. A sequence of ChannelHandler objects forms a
ChannelPipeline so the data in a channel can be transformed as it passes through each
ChannelHandler object in the pipeline.

There are several implementations of Channels in SwiftNIO, which are listed as follows:

ServerSocketChannel: A channel for sockets that accepts connections like a
server
SocketChannel: A channel for TCP connections
DatagramChannel: A channel for UDP sockets
EmbeddedChannel: A channel for testing purposes

In a summary, SwiftNIO implements basic I/O primitives and protocols at low levels of
abstraction. It is narrowly focused on providing a powerful building block for high-level
networked applications.

Surveying Swift server-side frameworks
There are many Swift web frameworks that aim to bring the benefits of Swift to server-side
development. We will take a quick survey of several top Swift server-side frameworks now.

Vapor
Vapor is one of the most popular frameworks, and it enjoys the support of a very active
developer community. The support from a developer community means that there are a lot
of releases, bug fixes, and help that can be expected. In fact, the development of Vapor has
been closely following the Swift evolution development. With the launch of SwiftNIO from
Apple, as well as Swift 4.1, the Vapor developer community quickly launched Vapor 3.0
(https://github.com/ vapor/ vapor/ releases/ tag/ 3.0. 0), which adopts asynchronous
and non-blocking event-driven networking stacks, alongside futures and promises
throughout the framework, fully aligning with the latest technology in the Swift ecosystem.

Overall, Vapor caters for both beginner and veteran server-side Swift developers with
simple and concise syntax, strong community support, and the appeal of pure Swift
implementation.

https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0
https://github.com/vapor/vapor/releases/tag/3.0.0

Introducing Server-Side Swift Chapter 1

[16]

Kitura
Kitura, a Swift server-side framework from IBM that is Apache 2.0 licensed, is the result of
the enterprise partnership between IBM and Apple, announced in 2014. It goes without
saying that the framework has a strong backing from IBM. Kitura is well integrated into
IBM's cloud product offerings, including Watson and IBM Cloud. It offers native
connectors for some Watson API services, and it is easy to deploy a Kitura project to
Bluemix hosting platforms using Kitura CLI. On IBM's website, there are also plenty of
educational resources and support for Kitura.

The Kitura framework was migrated to support Swift 4.0 in the Kitura 2.0 that was
released in October 2017. In Kitura 2.5, released in August 2018, the framework also added
the support of SwiftNIO (enabled using env KITURA_NIO=1 swift build). The
development of Kitura follows closely with the evolution of Swift itself.

For many Swift server-side developers, Kitura is an ideal framework choice for tapping into
IBM's extensive cloud technology ecosystem and developing with enterprise applications in
mind.

Perfect
Perfect (https://github. com/ PerfectlySoft/ Perfect) stands out as a mature and
powerful Swift server-side framework. The first version of Perfect was released to the
public even before Apple made Swift open source in 2015. It offers a complete array of
features that a software developer may need for developing a lightweight and maintainable
web application. Perfect uses a high-performance asynchronous networking engine called
Perfect-Net (https:/ /github. com/ PerfectlySoft/ Perfect- Net), supports secure sockets
layer encryption, and adds the option for WebSockets and iOS push notifications that are
commonly required by internet servers. Perfect even provides a macOS desktop
application, Perfect Assistant, to help server-side developers with the deployment of their
Perfect projects to AWS and Google Cloud.

We see Perfect as a good choice for Swift server-side developers who are looking for a
mature and well-balanced framework for developing a scalable and solid web application.

https://github.com/PerfectlySoft/Perfect
https://github.com/PerfectlySoft/Perfect
https://github.com/PerfectlySoft/Perfect
https://github.com/PerfectlySoft/Perfect
https://github.com/PerfectlySoft/Perfect
https://github.com/PerfectlySoft/Perfect
https://github.com/PerfectlySoft/Perfect
https://github.com/PerfectlySoft/Perfect
https://github.com/PerfectlySoft/Perfect
https://github.com/PerfectlySoft/Perfect
https://github.com/PerfectlySoft/Perfect
https://github.com/PerfectlySoft/Perfect-Net
https://github.com/PerfectlySoft/Perfect-Net
https://github.com/PerfectlySoft/Perfect-Net
https://github.com/PerfectlySoft/Perfect-Net
https://github.com/PerfectlySoft/Perfect-Net
https://github.com/PerfectlySoft/Perfect-Net
https://github.com/PerfectlySoft/Perfect-Net
https://github.com/PerfectlySoft/Perfect-Net
https://github.com/PerfectlySoft/Perfect-Net
https://github.com/PerfectlySoft/Perfect-Net
https://github.com/PerfectlySoft/Perfect-Net
https://github.com/PerfectlySoft/Perfect-Net
https://github.com/PerfectlySoft/Perfect-Net

Introducing Server-Side Swift Chapter 1

[17]

Choosing the right framework
When it comes to choosing the right Swift server-side framework to work with, we shall
compare the different frameworks in terms of the several factors that follow:

How fast is the framework's execution performance?
How complete are the features that the framework offers?
What kind of ecosystem does the framework adopt?
What kind of community support is there for the framework?

Performance
Since Swift is a compiled language, server-side frameworks written in pure Swift are not
necessarily slower than frameworks written in other native programming languages.
However, different Swift server-side frameworks may adopt different low-level software
stacks or handle events differently.

A collection of benchmarks for popular web frameworks, including both Swift and non-
Swift implementations, are documented here: https:/ /medium. com/ @codevapor/ vapor- 3-
0-0-released-8356fa619a5d. As we can see, Swift frameworks perform better than most of
the web frameworks that are written in interpreted languages such as JavaScript and
Python. The benchmarks were based on processing plain text and demonstrated how fast
Swift can process HTTP headers. All three Swift server-side frameworks, Vapor, Perfect,
and Kitura, are comparable in their performance of plain text processing.

If you are interested in evaluating different aspects of a web framework, for example, the
performance for handling routing and parsing path parameters, you can use the
Benchmark tool (https:/ /github. com/ vapor/ benchmarks) to generate specific benchmarks
for comparison.

https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d
https://github.com/vapor/benchmarks
https://github.com/vapor/benchmarks
https://github.com/vapor/benchmarks
https://github.com/vapor/benchmarks
https://github.com/vapor/benchmarks
https://github.com/vapor/benchmarks
https://github.com/vapor/benchmarks
https://github.com/vapor/benchmarks
https://github.com/vapor/benchmarks
https://github.com/vapor/benchmarks
https://github.com/vapor/benchmarks

Introducing Server-Side Swift Chapter 1

[18]

Feature sets
Performance is not the only factor we should consider. A production release of web
application includes a complete set of robust features. Swift server-side frameworks often
offer many useful functions that are common to most applications. Some common feature
sets for Swift frameworks are listed as follows:

CLI tool: Offers tools for generating boilerplates, building, and deploying an
application
Templating engine: Supports templating language for web content
Networking I/O: Facilitates the handling of requests over the network
Database ORM: Simplifies the querying for the back-end database
Logging framework: Helps catch useful information during runtime
Test framework: Creates unit tests for testing the web application
Authentication: Provides authentication features, such as user login or social
login
Security framework: Adds encryption to communication and messaging
pipelines, and sockets
Monitoring and diagnostics: Offers real-time monitoring and diagnostics
User session management: Manages a user's session after login
Cloud deployment: Helps deploy a server application in an automated way
Swift support: Updates to the latest Swift version quickly

When choosing the right server-side framework, we will need to check whether any of the
features mentioned have already been integrated in the framework, or if integration of
third-party libraries that implement such features are easy and straightforward.

Ecosystem
Ecosystem here can be interpreted as the choices of libraries or tools that a Swift server-side
adopts and integrates into the framework. We may have preferences for some technologies,
and at the same time, we may have reasons for avoiding other technologies as trade-offs in
the design of our application. Sometimes, the effort will be daunting if we want to integrate
a third-party library into the chosen framework that does not have the library included
already. The best time-saving tip is to choose the framework that has the most preferred
libraries so we can minimize the effort to do integration ourselves.

Introducing Server-Side Swift Chapter 1

[19]

The main components and choices of third-party libraries in Vapor and Kitura are listed in
the following table:

Feature Vapor Kitura
OS support macOS, Linux macOS, Linux

CLI Vapor Toolbox CLI, Vapor
Console API

Kitura CLI, Project Generator

Templating engine Leaf Stencil, Mustache, Markdown

Networking I/O SwiftNIO
Kitura-NIO (use SwiftNIO and
NIOOpenSSL), BlueSocket, Kitura-net

ORM
Fluent: SQLite, MySQL,
PostgreSQL, Redis

Swift-Kuery-ORM, Swift-Kuery:,
PostgreSQL, SQLite, Redis

Logging Logging API, PrintLogger,
SwiftyBeaver Logging

LoggerAPI, HeliumLogger

Route-type validation Vapor Validation n/a

Authentication Turnstile
Kitura-Credentials: HTTP, Facebook,
Google, GitHub

Security Vapor-Crypto / SwiftNIO SSL BlueSSLService

User session SessionMiddleware Kitura-Session

Monitoring &
diagnostics n/a SwiftMetrics, Health

Container Docker Docker

Orchestration n/a Kubernetes / Helm
Cloud deployment Vapor Cloud IBM Cloud

In the rest of this book, we will visit most of the previously mentioned technologies again
when we learn how to build web applications and services with Vapor and Kitura.

Community support
Developer community support is sometimes a deciding factor in the choice of a Swift
server-side framework. Strong developer community support means that a framework's
feature set is more complete, and there will be enough support when we encounter hurdles
in working with the framework.

https://github.com/vapor/toolbox
https://github.com/vapor/console
https://github.com/vapor/console
https://github.com/IBM-Swift/Kitura-StencilTemplateEngine
https://github.com/IBM-Swift/generator-swiftserver
https://github.com/vapor/leaf
https://github.com/IBM-Swift/Kitura-StencilTemplateEngine
https://github.com/IBM-Swift/Kitura-MustacheTemplateEngine
https://github.com/IBM-Swift/Kitura-Markdown
https://github.com/apple/swift-nio
https://github.com/IBM-Swift/Kitura-NIO
https://github.com/apple/swift-nio
https://github.com/apple/swift-nio-ssl
https://github.com/IBM-Swift/BlueSocket
https://github.com/IBM-Swift/Kitura-net
https://github.com/vapor/fluent
https://docs.vapor.codes/3.0/sqlite/fluent/
https://docs.vapor.codes/3.0/mysql/fluent/
https://docs.vapor.codes/3.0/postgresql/fluent/
https://docs.vapor.codes/3.0/redis/basics/
https://github.com/IBM-Swift/Swift-Kuery-ORM
https://github.com/IBM-Swift/Swift-Kuery
https://github.com/IBM-Swift/Swift-Kuery-PostgreSQL
https://github.com/IBM-Swift/Swift-Kuery-SQLite
https://github.com/IBM-Swift/Kitura-redis
https://docs.vapor.codes/3.0/logging/overview/
https://api.vapor.codes/console/latest/Logging/Classes/PrintLogger.html
https://github.com/SwiftyBeaver/SwiftyBeaver-Vapor
https://github.com/IBM-Swift/LoggerAPI
https://github.com/IBM-Swift/HeliumLogger
https://docs.vapor.codes/3.0/validation/getting-started/
https://github.com/stormpath/Turnstile
https://github.com/IBM-Swift/Kitura-Credentials
https://github.com/IBM-Swift/Kitura-CredentialsHTTP
https://github.com/IBM-Swift/Kitura-CredentialsFacebook
https://github.com/IBM-Swift/Kitura-CredentialsGoogle
https://github.com/IBM-Swift/Kitura-CredentialsGitHub
https://github.com/vapor/crypto
https://github.com/apple/swift-nio-ssl
https://github.com/IBM-Swift/BlueSSLService
https://docs.vapor.codes/3.0/vapor/sessions/
https://github.com/IBM-Swift/Kitura-Session
https://github.com/RuntimeTools/SwiftMetrics
https://github.com/IBM-Swift/Health
https://www.docker.com/
https://www.docker.com/
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/helm
https://vapor.cloud/
https://www.ibm.com/cloud/

Introducing Server-Side Swift Chapter 1

[20]

Vapor
Vapor enjoys healthy developer community support. Vapor users are well-known for their
support and eagerness to help newcomers to Vapor community. There is a lot of activity in
social channels. The Vapor community has recently moved their forums from Slack to
Discord (http://discord. gg/ BnXmVGA). There are also plenty of online learning resources,
sample codes, tutorials, books, and community-contributed library plugins available to
Vapor users. A word of caution, though: many of the tutorial and learning material for
Vapor 2.0 or earlier, are outdated. Due to the substantial changes in Vapor 3.0, especially
the migration to asynchronous non-blocking stacks based on SwiftNIO, many of the
tutorials need to be revised and updated for Vapor 3.0.

Kitura
Kitura may have smaller community involvement currently, but IBM's engineers have been
active and helpful on GitHub and online forums for new learners of server-side Swift.
Kitura has a more complete cloud computing stack. It is easy for users to find the
documentation and learning materials for not only the Swift server-side framework but also
for other cloud technologies that are often used together with the Swift framework.

Perfect
Perfect stands out as having extensive tutorials, documentation, and training materials
available on its website (https:/ /perfect. org/ tutorials. html) for Swift server-side
developers. The Perfect framework is more mature, and its learning materials are well-
organized. Currently, the Perfect user community has 69 repositories in the Perfect
examples (https:/ /github. com/ PerfectExamples) repository on GitHub. New Perfect
users can use the Slack (http:/ / www. perfect. ly/) channels to interact with other
developers and to get help from others.

Summary
In this chapter, we have covered open source Swift and its components and learned about
the advantages of using Swift in server-side development. We have also reviewed three
top server-side Swift frameworks: Vapor, Kitura, and Perfect, and explained how to choose
a suitable Swift web framework for your own project. The background material in this
chapter helps prepare you for hands-on server-side development. In the next chapter, you
will roll your sleeves up and install both Vapor and Kitura frameworks on your system.

http://discord.gg/BnXmVGA
http://discord.gg/BnXmVGA
http://discord.gg/BnXmVGA
http://discord.gg/BnXmVGA
http://discord.gg/BnXmVGA
http://discord.gg/BnXmVGA
http://discord.gg/BnXmVGA
http://discord.gg/BnXmVGA
http://discord.gg/BnXmVGA
https://perfect.org/tutorials.html
https://perfect.org/tutorials.html
https://perfect.org/tutorials.html
https://perfect.org/tutorials.html
https://perfect.org/tutorials.html
https://perfect.org/tutorials.html
https://perfect.org/tutorials.html
https://perfect.org/tutorials.html
https://perfect.org/tutorials.html
https://perfect.org/tutorials.html
https://perfect.org/tutorials.html
https://github.com/PerfectExamples
https://github.com/PerfectExamples
https://github.com/PerfectExamples
https://github.com/PerfectExamples
https://github.com/PerfectExamples
https://github.com/PerfectExamples
https://github.com/PerfectExamples
https://github.com/PerfectExamples
https://github.com/PerfectExamples
http://www.perfect.ly/
http://www.perfect.ly/
http://www.perfect.ly/
http://www.perfect.ly/
http://www.perfect.ly/
http://www.perfect.ly/
http://www.perfect.ly/
http://www.perfect.ly/
http://www.perfect.ly/
http://www.perfect.ly/

2
Getting Started with Vapor and

Kitura
This chapter aims at getting you started with both Vapor and Kitura. You'll be introduced
to Vapor Toolbox, a command-line interface (CLI), which allows you to rapidly develop
Vapor apps from several boilerplate Vapor projects. You'll follow a step-by-step guideline
to install Vapor Toolbox on macOS or Linux, and then check your system's readiness by
using Vapor CLI tools to verify system compatibility with the required development
environment. Similarly, you'll get introduced to the Kitura development environment and
follow step-by-step instructions to install Kitura tools and libraries on your system.

In this chapter, we'll cover the following topics:

Installing Vapor and Kitura on macOS
Installing Vapor and Kitura on Ubuntu
Exploring Vapor Toolbox and the Kitura CLI

Installing Vapor and Kitura on Mac
Even though you can start server-side Swift development on either macOS or Linux, you'll
find it more convenient to develop server-side Swift projects on macOS with Apple's free
Integrated Development Environment (IDE) tool, Xcode. Xcode has integrated many
powerful editing and debugging features to streamline the workflow for code development
with Swift; for example, syntax highlight, auto completion, refactoring, and code coverage
for unit tests.

Follow the steps in the following sections to prepare your Mac for server-side Swift
development with both Vapor 3.0 and Kitura 2.5. Skip the installation steps for macOS and
go directly to the next section if you want to use the Linux environment instead.

Getting Started with Vapor and Kitura Chapter 2

[22]

Preparing your Mac for server-side Swift
development
If you choose macOS as the platform for server-side Swift development, you're
recommended to use Xcode 10.0 or greater for this book. The Xcode IDE is available only on
macOS and not available on Linux.

Installing the Xcode IDE on your Mac
Download Xcode 10.1 or greater from Apple's Mac App Store:

After downloading, you must launch Xcode to continue the installation process. This may
take a while.

Once Xcode is installed successfully on your macOS, you can verify the version of installed
Swift by running the following command on the Terminal:

Step 1a: Check Swift installation after have Xcode installed
$ swift --version

Getting Started with Vapor and Kitura Chapter 2

[23]

You should expect to see output similar to the following:

Apple Swift version 4.2.1 (swiftlang-1000.11.42 clang-1000.11.45.1)
Target: x86_64-apple-darwin17.7.0

The code samples in this book require Swift 4.2.1 or greater installed on your macOS.

Installing Xcode Command Line Tools
It is also useful for you to install Xcode Command Line Tools on your Mac. The Command
Line Tools Package is a self-contained package from the Xcode installation. It allows you to
do command-line development in macOS. You must download it separately from your
Apple Developer Account.

Point your web browser to https:/ /developer. apple. com/download/ more/ . Enter
Command Line Tools in the search box. A list of Command Line Tools downloads will be
shown:

Choose the latest Command Line Tools download for your macOS version. For example,
you should download Command Line Tools (macOS 10.13) for Xcode 10.1 if you're using
macOS High Sierra (version 10.13).

https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/

Getting Started with Vapor and Kitura Chapter 2

[24]

Installing Homebrew
Homebrew is a free open source software package manager for macOS. Run the following
in the Terminal if you don't already have Homebrew installed:

Step 1b: Install Homebrew package manager
$ /usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

You'll need Homebrew to install the Vapor CLI tools or many useful libraries on your Mac.
If you encounter any problem installing Homebrew, you may want to visit Homebrew's
official website, https:/ /brew. sh/ . With the Homebrew software package manager, you're
ready to finish the rest of the installation process on your Mac.

Installing Vapor Toolbox on Mac
Vapor Toolbox is a CLI tool for you to develop Vapor apps and make your life easier in
deploying them to Vapor Cloud, an optional hosting service created by Vapor.

Checking your system's compatibility with Vapor
To prepare for the installation, you can run the following command in the Terminal to
check for Vapor compatibility:

Step 2a: Check system compatibility with Vapor
$ eval "$(curl -sL check.vapor.sh)"

The output is as follows:

Xcode 10.1 is compatible with Vapor 2.
Xcode 10.1 is compatible with Vapor 3.
Swift 4.2.1 is compatible with Vapor 2.
Swift 4.2.1 is compatible with Vapor 3.

Installing Vapor Toolbox using Homebrew
If the previous step shows that your Xcode and Swift versions are compatible with Vapor
3.0, you're ready to continue the installation. Use Homebrew to install Vapor Toolbox:

Step 2b: Install Vapor Toolbox
$ brew install vapor/tap/vapor

https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/

Getting Started with Vapor and Kitura Chapter 2

[25]

Homebrew tap is a tool to tap into another repository. The previous one-liner install
command gives Homebrew installation access to all of Vapor's macOS packages.

Verifying Vapor installation
You're now done with Vapor 3.0 installation on Mac. Double check the installation by
running the following Vapor Toolbox command in the Terminal:

Step 2c: Check Vapor installation
$ vapor --help

If your installation of Vapor Toolbox is completed properly, the help command should list
the available commands and flags.

Installing the Kitura CLI on Mac
Similar to Vapor Toolbox, you can install the Kitura CLI to simplify the process of creating
Kitura applications.

With Homebrew on your Mac, go ahead and install the Kitura CLI:

Step 3a: Install Kitura on macOS
$ brew install ibm-swift/kitura/kitura

The output is as follows:

==> Installing dependencies for ibm-swift/kitura/kitura: node
 ==> Installing ibm-swift/kitura/kitura dependency: node
 ==> Downloading https://homebrew.bintray.com/bottles/node-11.2.0.high_sierra.bottle.tar.gz
 ## 100.0%
 ==> Pouring node-11.2.0.high_sierra.bottle.tar.gz
 ==> Caveats
 Bash completion has been installed to:
 /usr/local/etc/bash_completion.d
 ==> Summary
 /usr/local/Cellar/node/11.2.0: 3,936 files, 47MB
 ==> Installing ibm-swift/kitura/kitura
 ==> Downloading https://registry.npmjs.org/kitura-cli/-/kitura-cli-0.0.12.tgz
 ## 100.0%
 ==> npm install -ddd --global --build-from-source --
cache=/Users/fyeung1/Library/Caches/Homebrew/npm_cache --
prefix=/usr/local/Cellar/kitura/0.0.12/libexec /pri
 /usr/local/Cellar/kitura/0.0.12: 676 files, 4.1MB, built in 9 seconds
 ==> Caveats
 ==> node

Getting Started with Vapor and Kitura Chapter 2

[26]

 Bash completion has been installed to:
 /usr/local/etc/bash_completion.d

Installing Vapor and Kitura on Ubuntu
This section is for installing Vapor and Kitura on Ubuntu. Skip this section if you intend to
develop on your Mac only.

Working with the Ubuntu APT
You're going to work with the Advanced Packaging Tool (APT) library to perform
installation of Vapor and Kitura. APT is a package manager for Debian-based Linux
operating systems such as Ubuntu. The package manager keeps a list of packages that it can
install in repository or cache and sorts out the dependencies required for the software
packages. Run the following at Command Prompt:

$ sudo apt-get install <package>

The apt-get install command checks for the repository for the package specified as
<package>. If the package is available in the list, it will proceed to download and install
the software and all of the required dependencies. The sudo command in the previous code
temporarily grants you elevated privileges as root or superuser in the installation step.

Installing the Swift Toolchain on Linux
The Swift 4 Toolchain is hosted on www.Swift.org and it contains the Swift compiler CLI,
libraries, debugger, and package manager for Ubuntu platforms. Go to swift.org and
download the latest stable Swift release for your Ubuntu version: https:/ /swift. org/
download/.

Go ahead and extract the .tar.gz file of Swift 4 toolchain. You'll need to update your
PATH environment variable in order to include the Toolchain:

Step 1a: Update PATH environment after installing Swift 4 toolchain
$ export PATH=<path to the extracted tool chain>/usr/bin:$PATH

Check that the expected version of Swift by entering the following Swift command:

Step 1b: Check the installed version of Swift
$ swift --version

http://www.Swift.org
https://swift.org/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/
https://swift.org/download/

Getting Started with Vapor and Kitura Chapter 2

[27]

Next, go on installing Vapor and Kitura on your Ubuntu.

Installing Vapor on Ubuntu
Installing Vapor on Ubuntu is straightforward. Vapor supports the same versions of
Ubuntu that Swift does: Ubuntu 14.04, 16.04, and 16.10.

Option 1 – using script to clone Vapor packages
On Ubuntu, you can use Vapor's APT repository to get access to all of Vapor's packages.

If you don't have curl on your system, use this command to install curl first:

Step 2a: Prepare the curl tool on Ubuntu
$ sudo apt-get install curl

Now, you can use this script to add Vapor's APT repository to the source list:

Step 2b: Use script to add Vapor APT repo
$ eval "$(curl -sL https://apt.vapor.sh)"

If you have any problem with the script approach here, you can jump to option 2 in the next
section to clone Vapor packages manually on Ubuntu. Otherwise, you're all set to continue
the installation of Vapor on your Ubuntu.

Option 2 – cloning Vapor packages manually
Optionally, you can add Vapor's APT repository manually if you have a problem using the
script approach in the previous section:

Step 2a: Add Vapor APT repo manually (optional)
$ wget -q https://repo.vapor.codes/apt/keyring.gpg -O- | sudo apt-key add -
echo "deb https://repo.vapor.codes/apt $(lsb_release -sc) main" | sudo tee
/etc/apt/sources.list.d/vapor.list
$ sudo apt-get update

Installing Vapor on Ubuntu
You can install the Vapor packages after you have added the APT repository:

Step 3a: Install Vapor on Ubuntu
$ sudo apt-get install vapor

Getting Started with Vapor and Kitura Chapter 2

[28]

That's it. You now have Vapor properly installed on your Ubuntu. Try the following
commands to double-check that the Vapor CLI works as expected:

Step 3b: Check Swift and Vapor installation
$ vapor --help

Installing Kitura on Ubuntu
Kitura is fully tested on Ubuntu 14.04 LTS and Ubuntu 16.04 LTS. After you've downloaded
and installed the Swift 4 Toolchain, install the following packages using the apt-get
install command on Ubuntu.

Installing required Linux system packages
Step 3a: Install required packages for Kitura
$ sudo apt-get update
$ sudo apt-get install clang libicu-dev libcurl4-openssl-dev libssl1.0-dev

These are the prerequisites for your Kitura installation. Kitura requires OpenSSL v1.0.x so it
won't work with a newer version such as OpenSSL v1.1.x in some of the latest Linux
system.

In order to install the Kitura CLI itself, you need to install Node.js and its package
manager, npm, first. Node Package Manager (npm) is a CLI for managing modules in a
Node.js project.

Install Node.js and npm using the apt package manager on Ubuntu:

Step 3b: Install the NPM package
$ sudo apt install nodejs npm

With the npm package manager properly installed on your machine, proceed to install the
Kitura CLI via npm:

Step 3c: Install the Kitura package
$ npm install -g kitura-cli

The previous command will do a global installation of the Kitura CLI.

Run the following command to test the Kitura CLI tool you've just installed:

Step 3d: Test the installed Kitura
$ kitura --help

Getting Started with Vapor and Kitura Chapter 2

[29]

Exploring Vapor Toolbox and the Kitura CLI
Vapor Toolbox and the Kitura CLI are provided to make your life easy with extensive
command-line tools and to accelerate your server-side Swift project development effort
with many useful boilerplate projects. Since Vapor and Kitura projects are built with Swift
Toolchains, you also have access to an array of tools in Swift Package Manager (SPM), the
standard software package manager for managing the distribution of Swift projects.

SPM includes the following handy commands:

Useful CLI Commands Usage
swift build Compiles the package in the current directory

swift run Runs the executable in this package (for only one
executable in the package)

swift run Runs the executable in this package

swift package resolve Resolves the dependencies and download missing
packages

swift package xcode-generateproj Creates an Xcode project and reset build scheme (Mac
only)

swift package init --
type=executable

Starts a new standard Swift application

swift package init --type=library Starts a new standard Swift library
swift package describe Parses Package.swift and lists all modules
swift package show-dependencies Shows the dependency tree

For example, the swift package describe command is used to parse the content of
Package.swift and it may be useful to verify whether the file can be parsed correctly.

Using Vapor Toolbox Commands
The Vapor CLI command, vapor --help, comes in handy if you want to check out all
available Vapor commands.

The output of this Vapor command looks like this:

Usage: vapor command
Join our Slack if you have questions, need help,
or want to contribute: http://vapor.team
Commands:
new Creates a new Vapor application from a template.
 Use --template=repo/template for github templates
 Use --template=full-url-here.git for non github templates

Getting Started with Vapor and Kitura Chapter 2

[30]

 Use --web to create a new web app
 Use --auth to create a new authenticated API app
 Use --api (default) to create a new API
 build Compiles the application.
 run Runs the compiled application.
 fetch Fetches the application's dependencies.
 update Updates your dependencies.
 clean Cleans temporary files--usually fixes
 a plethora of bizarre build errors.
 test Runs the application's tests.
 xcode Generates an Xcode project for development.
 Additionally links commonly used libraries.
 version Displays Vapor CLI version
 cloud Commands for interacting with Vapor Cloud.
 heroku Commands to help deploy to Heroku.
 provider Commands to help manage providers.
Use `vapor command --help` for more information on a command.

The following table lists all of the useful Terminal commands for managing your Vapor
projects:

Useful CLI Commands Usage

vapor --help Lists all available commands and flags
supported in the Vapor CLI

vapor [command] --help Prints the usage for the given command
vapor version Checks the current Vapor CLI version

vapor new [name] Creates a new Vapor project with the
supplied name

vapor new [name] --template=api Creates a new project from the API
template (default)

vapor new [name] --template=web Creates a new project from the web
template

vapor new [name] --template=auth Creates a new project for the authenticated
app

vapor new [name] --
template=[repo/template]

Creates a new project from a GitHub
template

vapor build Builds the project in the current path
vapor run Runs the compiled app in the current path
vapor test Runs the unit tests contained in this project

vapor xcode Creates Xcode project files for the project in
the current path

vapor clean Cleans up all temporary files

vapor fetch Fetches the project's dependencies (but do
not update)

Getting Started with Vapor and Kitura Chapter 2

[31]

Useful CLI Commands Usage

vapor update Updates all dependencies of the current
project

vapor cloud [command] Executes a Vapor Cloud command
vapor heroku [command] Executes a Heroku command
vapor [provider] [command] Executes a provider's command
brew upgrade vapor Upgrades Vapor on macOS
sudo apt-get update; sudo apt-get install
vapor

Upgrades Vapor on Ubuntu

Getting help on a specific Vapor command
You can also get detailed information on a specific Vapor CLI command by inserting the
command before the --help flag. For example, you use the following command to learn
more about the vapor new feature:

$ vapor new --help

Vapor then prints out the detailed usage information about the new toolbox command:

Usage: vapor new <name> [--template] [--branch] [--tag] [--web] [--auth] [-
-api]
Creates a new Vapor application from a template.
 Use --template=repo/template for github templates
 Use --template=full-url-here.git for non github templates
 Use --web to create a new web app
 Use --auth to create a new authenticated API app
 Use --api (default) to create a new API
Arguments:
 name The application's executable name.
Options:
 --template The template repository to clone.
 Default: https://github.com/vapor/api-template.
 --branch An optional branch to specify when cloning
 --tag An optional tag to specify when cloning
 --web Sets the template to the web template:
https://github.com/vapor/web-template
 --auth Sets the template to the auth template:
https://github.com/vapor/auth-template
 --api (Default) Sets the template to the api template:
https://github.com/vapor/api-template

Getting Started with Vapor and Kitura Chapter 2

[32]

Exploring the Kitura CLI
Most of the CLI features in Kitura are encompassed in Kitura Application Generator
(KAG), which allows you to configure a new Kitura project in a question and answer way.
If you just need a basic starter project, you can simply use the kitura init command:

Useful CLI Commands Usage
kitura init Creates a basic starter project
kitura create Creates an application using KAG

The rest of this section will cover the usage of KAG.

Using KAG
The kitura create command will launch Kitura's powerful application generator. If you
don't want to customize the boilerplate for your Kitura project, you can simply skip this
tool and use kitura init to create a basic starter project.

Once you've launched the application generator using the kitura create command, it's
going to take a few minutes for KAG to extract dependent packages. Then, you'll be
prompted for the name and directory of your project:

Initialization prompts? What's the name of your application? newWorld?
Enter the name of the directory to contain the project: newWorld

In the previous output, you use newWorld as your application name and choose
newWorld as the directory name for your project.

Next, choose either one of the project types:

Select type of project: (Use arrow keys)
 Scaffold a starter
Generate a CRUD application

The scaffolded application option allows you to create a boilerplate with frontend and
backend-for-frontend features you can choose.

The CRUD application option assumes your web service to have a data model and the
application generator will provide endpoints to perform CRUD (Create, Retrieve, Update,
and Delete) operations for your data.

Getting Started with Vapor and Kitura Chapter 2

[33]

Let's choose to build a scaffolded application here. You'll use a CRUD application boilerplate
only if you want to create a Kitura application that serves as a backend database server.

Selecting a scaffolded application
For a scaffolded application, the application generator allows you to choose from one of the
three preset options:

Basic Preset:
Embedded metrics dashboard
Docker files

Web Preset:
Static web file serving
Embedded metrics dashboard
Docker files

Backend for Frontend (BFF) Preset:
Static web file serving
Swagger UI
Embedded metrics dashboard
Docker files

The Basic Preset adds embedded metrics dashboard capability to gather application and
system metrics and adds several Docker files for easy deployment of your project using
container technology.

The Web Preset is a superset to Basic Preset and has additional file structure for serving
static web content.

The Backend for Frontend (BFF) Preset adds Swagger UI to the Web Preset. Swagger UI is
also known as an Open API (https:/ / www. openapis. org), which is an industry initiative to
create vendor-neutral and open specification for providing technical metadata for RESTful
APIs. RESTful API stands for a programmatic interface using representational state transfer
(REST) technology. We will cover the topic more in Chapter 12, Deploying to Cloud when
we discuss API Gateway.

For the newWorld application, choose the Basic Preset.

https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org

Getting Started with Vapor and Kitura Chapter 2

[34]

Choosing additional services
Once you have selected one of the presets, the application generator will prompt you to
select which additional services you want to include:

Generate Boilerplate for Services:

[] Cloudant / CouchDB
[] Redis
[] MongoD
[] PostgreSQL
[] ElephantSQL
[] Object Storage
[] AppID
[] Auto-scaling
[] Watson Conversation
[] Alert Notifications
[] Push Notification

Skip all of these additional services for the newWorld application. Also, select default
options for the rest of the prompts.

Now, KAG is ready to create the project for you. The output looks like the following:

 create .swiftservergenerator-project
... [deleted]
create Jenkinsfile
Apple Swift version 4.1.2 (swiftlang-902.0.54 clang-902.0.39.2)
Target: x86_64-apple-darwin17.4.0
Fetching https://github.com/IBM-Swift/Kitura.git
... [deleted]
Compile Swift Module 'newWorld' (1 sources)
Linking ./.build/x86_64-apple-macosx10.10/debug/newWorld
swift build command completed
generated: ./newWorld.xcodeproj
generate .xcodeproj command completed
Next steps:Change directory to your app
$ cd /Users/fyeung1/Downloads/Packt/ch3/kitura/newWorld
Run your app
$.build/debug/newWorld

Getting Started with Vapor and Kitura Chapter 2

[35]

As you can see, KAG will create a basic boilerplate project similar to that generated by
kitura init. However, KAG allows you to add more features to the starting project.
You'll find it very useful to start a new project quickly.

Summary
In this chapter, you've been provided with step-by-step instructions on how to install both
Vapor Toolbox and the Kitura CLI on Mac or Linux. Whether Mac or Linux, your system is
now ready for some serious server-side Swift project development. You've also learned the
usage of some of the most useful command-line tools offered by the Swift Package
Manager, Vapor Toolbox, and the Kitura CLI. In the next chapter, you're going to explore
these tools to develop your first web applications using the Vapor and Kitura frameworks.

3
Building Your First Web App

This chapter takes you directly to server-side Swift coding with detailed instructions on
creating a new web app project from a template provided in the web framework. You'll be
guided to create, build, run, and test a Hello World! web app using Vapor 3.0. The files and
directories in a typical Vapor web app will be reviewed, and their usages will be further
explained. After that, you'll learn how to expand the features of the web app by adding
more new routes to handle additional requests from client. You will continue your journey
to create a similar Hello World! web app with the Kitura web framework. After going
through an exercise showing you how to build a simple web app with both Vapor and
Kitura, you'll take note of the similarities between the two web frameworks and appreciate
the different approaches taken by them.

Before we move ahead, let's take a look at the topics that will be covered in this chapter:

Creating an app using Vapor CLI
Reviewing source code in Vapor boilerplate
Adding more routes in Vapor
Creating an app using Kitura CLI
Reviewing source code in Kitura boilerplate
Adding more routes in Kitura

Creating an app using Vapor CLI
By now, you should have the Vapor Toolbox installed on your system. Let's start creating a
Hello World application using a boilerplate project provided by Vapor Toolbox.

Building Your First Web App Chapter 3

[37]

Creating a hello world app from a template
Use the vapor new command to create a new project from the default template:

Step 1: Create helloWorld app from the default template
vapor new helloWorld

You'll see the following output on the Terminal:

Vapor created the project helloWorld and put it in a new directory with the same name.

Building Your First Web App Chapter 3

[38]

Building the hello world app
Your helloWorld Vapor app is already functional.

Enter the project directory and type in the vapor build command to build
the helloWorld app:

Step 2: Build the current project
cd helloWorld
vapor build

The first command, cd is to change the current directory to the helloWorld directory. The
second command tells Vapor to start fetching and installing all the dependencies and then
building the project itself.

The building process may take a few minutes:

No .build folder, fetch may take a while...
Fetching Dependencies [Done]
 Building Project [Done]

Since you are building the application for the first time, the Swift compiler will create the
.build folder in your current directory to store all installed dependencies, temporary files,
and executables.

Running the hello world app
Now you are ready to use the vapor run command to execute the app in the current
directory:

Step 3: Run the app in the current directory
vapor run

Your helloWorld app will be running:

Running helloWorld ...
 [INFO] Migrating 'sqlite' database (FluentProvider.swift:28)
 [INFO] Preparing migration 'Todo' (MigrationContainer.swift:50)
 [INFO] Migrations complete (FluentProvider.swift:32)
 Running default command: .build/debug/Run serve
 Server starting on http://localhost:8080

Building Your First Web App Chapter 3

[39]

To see your app in action, launch your web browser and go to the
URL http://localhost:8080/hello:

The hello path in the URL is the name of a route that is handled in the application to print
out the string Hello, world!.

If you want to stop the execution of the application, use the Ctrl + C command in the
Terminal.

Converting to the Xcode project on a Mac
As explained before, you can optionally take advantage of the powerful editing and
debugging features of Xcode if you use macOS. The Vapor Toolbox CLI provides a
convenient way for you to generate an Xcode project file from a generic Vapor project.

In the current directory of your Vapor project, run the following Vapor Toolbox1.
CLI command:

Step 4: Generate Xcode project files
vapor xcode

After a few minutes, Xcode project files will be generated. When you are2.
prompted with the question Open Xcode project?, Press Y to open your project
in Xcode:

Building Your First Web App Chapter 3

[40]

From the toolbar at the top left corner of Xcode, select the Run scheme and My3.
Mac device. Then, click on the Play button (command + R) at the top left of Xcode
to build and run your Xcode project. You should see the message Running Run :
Run at the top.

Open the URL http://localhost:8080/hello again in your web browser; you should
see the Hello, world! message. It confirms that Xcode is running your helloWorld Vapor
app.

Building Your First Web App Chapter 3

[41]

Reviewing source code in Vapor boilerplate
The following diagram gives you an overview of the boilerplate generated from Vapor's
default template:

The Package.swift is used by Swift Package Manager during build time to configure
your project's package. The package description comprises essential information such as
application name, dependencies on other packages, and different build targets supported in
your project.

There are three modules in the project: helloWorld, App, and AppTests. (The diagram
only shows the helloWorld and App modules, but the AppTests module will be soon
reviewed in the next chapter.) The functions and classes in the files in helloWorld and App
modules are invoked in the following order:

The helloWorld executable contains a single entry point in main.swift that1.
calls app() to create an application instance and invokes the instance's run()
method to boot your app server.
The App module contains all of your server application logic. The app() function2.
in app.swift first calls configure() to register all services properly, then it
will create an application instance, followed by a call to boot().

Building Your First Web App Chapter 3

[42]

configure() in configure.swift registers all services required for your3.
application:routes, middleware, Fluent providers, SQLite database, and
migrations.
The routes() in routes.swift is called to register routes and configure4.
controllers that handle all the requests routed to them.
Vapor includes a sample controller, TodoController class5.
in /Controllers/TodoController.swift, in the default project to show how
to interact with the data model and perform operations such as query, create, and
delete.
The data model, Todo class in /Models/Todo.swift, is a sample model6.
subclassing from SQLiteModel. It is also extended to support migration, content,
and parameter to take advantage of the rich built-in features offered by Vapor.
The boot() in boot.swift has no any code implementation. It is a placeholder7.
for you to put any initialization code after the application instance is created.

See Appendix A: Vapor Boilerplate Project, for a more detailed review of the files
generated in a Vapor boilerplate project.

Adding more routes in Vapor
This section will show you how to add more routes in Vapor:

Open the routes.swift file from Project Navigator on Xcode's left panel and1.
add the following code to the line right before the closing brace at the bottom:

. . .
router.get("greet", String.parameter) { req -> String in // [1]
 let guest = try req.parameters.next(String.self) // [2]
 return "Hi \(guest), greetings! Thanks for visiting us." // [3]
}
. . .

The preceding code does three things:2.
Add a new route using greet as the first parameter from the path1.
components and specifying the second parameter to be a string.
Extract the guest string from the request's next item in its parameters2.
list.
Interpolate the guest string in the string returning to the client.3.

Building Your First Web App Chapter 3

[43]

If you build and run your project again, you can see the following output by
directing your web browser to http://localhost:8080/greet/Neil. Take
note that the path is case-sensitive. For example, the N in Neil is capitalized:

Now, you can add another route to show how your application will respond to3.
different requests. Add the following code to the line right after the greet route
but before the final ending brace:

. . .
router.get("student", String.parameter) { req -> String in
 let studentName = try req.parameters.next(String.self) // [1]
 let studentRecords = [// [2]
 "Peter" : 3.42,
 "Thomas" : 2.98,
 "Jane" : 3.91,
 "Ryan" : 4.00,
 "Kyle" : 4.00
]
 if let gpa = studentRecords[studentName] { // [3]
 return "The student \(studentName)'s GPA is \(gpa)" // [4]
 } else {
 return "The student's record can't be found!" // [5]
 }
}
. . .

The new route, student, will be added. Depending on the student's name, the4.
logic handling the route will respond differently:

Assign the next item on the request's parameters list to be the student1.
name studentName
Create a new array studentRecords that contains key-value pairs for2.
the student's names and their GPA
Unwrap the studentRecords using a student's name3.
Format queryResponse with a student's name and their GPA4.
Format queryResponse if the student's record can't be found5.

Building Your First Web App Chapter 3

[44]

If you point your web browser to localhost:8080/student/Jane, you'll get an output
text that looks like this:

Alternatively, you can run the curl command in a Terminal:

$ curl "http://localhost:8080/student/Jane"
The student Jane's GPA is 3.91

The student's name in client's request is used to check against the keys in an array with key-
value pairs. You'll see in future chapters how we create controllers to implement logic in
processing such query. The array of key-value pairs can be also replaced with a database
for data recording and retrieval.

Creating an app using Kitura CLI
After your first Hello World application in Vapor, let's do the same using Kitura CLI to
create a similar Hello World application in Kitura.

Creating a hello world app from a default
template

First, create a new directory called helloWorld and change the directory to1.
helloWorld:

Step 1a: Create a new directory for your project
$ mkdir helloWorld
$ cd helloWorld

Kitura CLI will use the current directory's name to create your project and put all
the files in the same directory.

Next, use the kitura init command to create a new project from the default2.
Kitura template:

Step 1b: Create helloWorld app using the default Kitura template
$ kitura init

Building Your First Web App Chapter 3

[45]

This step not only creates the project by fetching dependencies and setting up the
project environment for you but also builds the project right away. It takes Kitura
several minutes to fetch dependencies and build the helloWorld project for you:

create .swiftservergenerator-project
 create .gitignore
 create .swift-version
 create LICENSE
 create Sources/Application/InitializationError.swift
 create Sources/Application/Application.swift
 create spec.json
 create Tests/ApplicationTests/RouteTests.swift
 create Tests/LinuxMain.swift
 create Sources/Application/Metrics.swift
 create Sources/Application/Routes/HealthRoutes.swift
 create README.md
 create Sources/Application/Routes/.keep
 create iterative-dev.sh
 create Sources/kitura/main.swift
 create Package.swift
 create cli-config.yml
 create Dockerfile
 create Dockerfile-tools
 create .dockerignore
 create manifest.yml
 create .cfignore
 create .bluemix/toolchain.yml
 create .bluemix/deploy.json
 create .bluemix/scripts/container_build.sh
 create .bluemix/scripts/kube_deploy.sh
 create .bluemix/pipeline.yml
 create chart/kitura/Chart.yaml
 create chart/kitura/templates/deployment.yaml
 create chart/kitura/templates/service.yaml
 create chart/kitura/templates/hpa.yaml
 create chart/kitura/templates/istio.yaml
 create chart/kitura/templates/basedeployment.yaml
 create chart/kitura/values.yaml
 create chart/kitura/bindings.yaml
 create Jenkinsfile
 Apple Swift version 4.1.2 (swiftlang-902.0.54 clang-902.0.39.2)
 Target: x86_64-apple-darwin17.4.0
 Fetching https://github.com/IBM-Swift/HeliumLogger.git
 Fetching https://github.com/IBM-Swift/CloudEnvironment.git
 Fetching https://github.com/RuntimeTools/SwiftMetrics.git
 Fetching https://github.com/IBM-Swift/Health.git
 swift build command completed
 Updating https://github.com/IBM-Swift/HeliumLogger.git

Building Your First Web App Chapter 3

[46]

 Updating https://github.com/IBM-Swift/Health.git
 Updating https://github.com/RuntimeTools/SwiftMetrics.git
 Updating https://github.com/IBM-Swift/CloudEnvironment.git
 generate .xcodeproj command completed
 Next steps:
Change directory to your app
$ cd /Users/fyeung1/Code/kitura
Run your app
$.build/debug/kitura

After the build of the Kitura application is successful, the command outputs the
recommended next steps for running the application.

Running your Kitura app from a Terminal
When the building process finishes, you are ready to launch the app server and test it with
a web browser or the curl command in the Terminal.

Launch the debug version of your helloWorld app:

Step 2a: Run the app from Terminal
$.build/debug/helloWorld

Alternatively, you can run the swift run command to launch the application:

Step 2b: Run the app from Terminal
$ swift run

Running your Kitura app from Xcode
Unlike Vapor Toolbox, which takes an additional step to create Xcode project files, the
Kitura init command automatically creates Xcode project file for you. If you don't want to
launch the app from the Terminal, you can open the Xcode project file and run it from
Xcode:

Step 2b: Open helloWorld.xcodeproject to launch Xcode
$ open ./helloWorld.xcodeproj

Building Your First Web App Chapter 3

[47]

The Xcode screen looks as follows:

From the toolbar at the top-left corner of Xcode, select the helloWorld scheme and then My
Mac device. After clicking on the Play button (command + R), you should see the message
Running helloWorld : helloWorld at the top.

Building Your First Web App Chapter 3

[48]

Testing the app with a web browser client
Once your helloWorld app server is running, you can use a web browser and go to the
URL http://localhost:8080.

If you see a screen that looks as follows, it confirms that your Kitura build environment has
been set up correctly and that the helloWorld Kitura application is running as expected:

Building Your First Web App Chapter 3

[49]

Reviewing source code in Kitura boilerplate
The following diagram illustrates the source code files generated from the last section:

The Package.swift is used in the same way as that in a Vapor project. Your application's
name, required package dependencies, and different build targets are configured in this
manifest file.

A typical Kitura project is partitioned in a similar fashion as in a Vapor project; an
application executable module, a test-executable module, and a core application module
with all of your application logics:

There is only one Swift file in the helloWorld executable module. It serves as an1.
entry point for your project and does several things: It configures Kitura's
Helium logger to be used in this project, creates an App() instance, and calls the
instance's run() function. The entry point is implemented in a do-try-catch block
to catch any runtime errors in your project. In run(), it first calls
the postInit() function, then it will configure a HTTP server and start running
a Kitura application instance.

Building Your First Web App Chapter 3

[50]

The App() class used in the main.swift file's do-try-catch block is defined in2.
Application.swift. Before an instance of App() is being constructed, the
initializer function init() will be called. The init() function will in turn call
initializeMetrics().
The initializeMetrics() function is implemented in Metrics.swift. It3.
creates three metrics monitoring instances: a SwiftMetrics to gather
performance metrics, a SwiftMetricsDash to enable a dashboard web page that
displays the performance metrics, and a SwiftMetricsPrometheus to allow the
performance metrics to be used in application clusters monitoring tool.
In the basic template, the postInit() function in main.swift sets up only one4.
endpoint: Health Route, by calling the initializeHealthRoutes(app:)
function that is defined in HealthRoutes.swift.
initializeHealthRoutes(app:) handles the response to the /health
endpoint. Any routes such as this Health Route are initialized after an app
instance is created, but before a Kitura server is started.
Initialization.swift contains only one struct InitializationError()5.
that is inherited from Error() struct. It gives you a chance to modify error
messages when there is an error during initialization.

See Appendix B: Kitura Boilerplate Project, for a more detailed review of the files
generated in a Kitura boilerplate project.

Adding more routes in Kitura
You can add more routes to your project as follows:

Open Application.swift in Xcode and add the following code to the line right1.
after initializeHealthRoutes(app: self) in the PostInit() function:

. . .
// add after initializeHealthRoutes(app: self)
router.get("/greet") { request, response, next in // [1]
 if let guest = request.queryParameters["guest"] { // [2]
 response.send("Hi \(guest), greetings! Thanks for visiting
us.") // [3]
 } else {
 response.send("Hi stranger, It's nice meeting with you.")
 }
}

router.get("/student/:name") { request, response, next in // [4]

Building Your First Web App Chapter 3

[51]

let studentName = request.parameters["name"]!

let studentRecords = [// [5]
 "Peter" : 3.42,
 "Thomas" : 2.98,
 "Jane" : 3.91,
 "Ryan" : 4.00,
 "Kyle" : 4.00
]

var queryResponse : String

if let gpa = studentRecords[studentName] {
 queryResponse = "The student \(studentName)'s GPA is \(gpa)" //
[6]
} else {
 queryResponse = "The student's record can't be found!"
}
response.send(queryResponse) // [7]
. . .

Similar to what you have done in the helloWorld Vapor project, the preceding2.
code adds two routes, greet and student, to your Kitura project and processes
them in the following ways:

[1] Add the path greet with the query parameter guest1.
[2] Retrieve the guest parameter from the request using2.
queryParameters()

[3] Send a response using response.send()3.
[4] Add the path student followed by the path parameter's name4.
[5] Create a dictionary with a name and GPA key-value pairs5.
[6] Use the name as a key to retrieve the GPA and customize the6.
response
[7] Send the response with a customized message using7.
response.send()

The first endpoint handles a request with query parameter and returns a response
like this:

$ curl "http://localhost:8080/greet?guest=Neil"
Hi Neil, greetings! Thanks for visiting us. Unfortunately, there is
nothing too much to see here.

Building Your First Web App Chapter 3

[52]

The second endpoint handles a request with path parameter and returns the
following response:

$ curl "http://localhost:8080/student/Jane"
The student Jane's GPA is 3.91

There are three parameters that are passed to a router's closure: request, response, and next
in.

The request parameter contains all the information about the incoming HTTP
request. The /greet endpoint demonstrates a path with query parameters, that
is, localhost:8080/greet?guest=Neil, you can use the request's
queryParameter() to retrieve it. Kitura also allows you to use a path with a
parameter, as shown in the /student endpoint. A path parameter is the
parameter name prefixed with a colon. In the preceding code, you use the
request object's parameters array to retrieve the path parameter. If you want, you
can add as many path parameters as you want, as long as each path parameter is
unique.
The response parameter provides you with a flexible way to return data going
out to the requestor. In this example, your response is simply a string message.
However, you can also include status code, formatted headers, [String: Any]
dictionary, or even a JSON object in your response.
The next parameter is the next handler that should be invoked for the route.
Kitura allows more than one handler for each endpoint. To let the next handler
have an opportunity to run its code, you need to call next() right before you
have finished using your router code:

. . .
router.get("/greet") { request, response, next in
 if let guest = request.queryParameters["guest"] {
 response.send("Hi \(guest), greetings! Thanks for visiting
us.")
 } else {
 response.send("Hi stranger, It's nice meeting with you.")
 }
 next() // [1]
}
router.get("/greet") { request, response, next in
 response.send(" Unfortunately, there is nothing too much to see
here.")
}
. . .

Building Your First Web App Chapter 3

[53]

In the preceding code, there are two handlers for the /greet endpoint. The next() call at
[1] is added to the first handler of the /greet endpoint so the second handler of the
/greet endpoint has a chance to handle the request. The output will look like this:

Try removing the next() statement and you will see that the second handler no longer
works.

Summary
You've started doing a lot of hands-on coding in this chapter. First, you learned how to use
the vapor new command to create a Hello World application from a boilerplate project.
You moved on to add more routes to the application, and then used the commands vapor
build and vapor run to build and run the application. Next, you did the same exercise
with Kitura CLI; you used kitura init to construct a starter boilerplate, added the same
routes as you did in Vapor, then used swift build and swift run commands to build
and run your Kitura application. Overall, this is a good introductory chapter to some
hands-on coding with Vapor and Kitura. In the next chapter, let's learn some good
techniques for debugging and testing your server-side Swift projects.

4
Debugging and Testing

A seasonal developer spends far more time on debugging and testing code than writing
code, in a typical software project. This chapter introduces the basics of writing tests for a
server-side Swift project and recommends the best practice in debugging server-side Swift
code. When it comes to a web development framework, both the Vapor and Kitura
frameworks offer very good testing and debugging support. You are going to learn how to
use the test framework in Swift and logging features in Vapor and Kitura to help
debugging and error-proofing your code.

This chapter covers writing tests for server-side Swift projects as well as debugging in
server-side Swift.

The following is a list of topics on debugging for server-side Swift:

Using the Logging API in a Vapor project
Using the Logger API in a Kitura project
Debugging using the HTTP traffic monitoring tool

Debugging and Testing Chapter 4

[55]

Writing tests for server-side Swift projects
Writing tests is an important part in server-side Swift development. A server-side test is
different from that of a client side test because server-side code involves a lot of querying
different APIs by clients, or writing calls to other backend cloud services or microservices.
You need to write tests that intercept calls dynamically. To do that, you instantiate and run
a server instance, then you simulate the runtime environment using known data and match
the output with the expected result.

If the data required for a test is not available, you can make up something using fake data
or simulated data. A test is passed only if the results are validated and matched with your
expectation. You don't just test if a feature works correctly when presented with valid data.
You should also check if a feature fails gracefully and consistently with invalid data.
Graceful failure is part of the overall user experience for your server product.

When writing each test, keep in mind that each test is independent from each other. One
test cannot rely on the result from another test. This approach is called unit testing.
Sometimes it is helpful to construct helper methods to handle repetitive steps common to
all unit tests. It is okay to repeat some operations in every unit test so that each test is totally
decoupled from each other. You'll see shortly that there are good coding techniques that
promote code re-using in writing tests in Swift.

Besides unit tests, there is another kind of test called an integration test. Integration testing
is useful when you want to validate how different methods work correctly together. Since
more business logic is involved in integration testing, you can expect to have more
complicated test cases. Therefore, it is beneficial for you to have good coverage in unit tests.
Unit testing helps you identify problems earlier and reduce the need for complicated
debugging efforts for the defects discovered later in integration testing.

Preparing a test executable target
In general, you want to create two executable targets for your project: one for the main
application and another for the test application. Since Swift builds and runs one application
at a time, you have to make your code testable by splitting the code into an application and
library. The library will contain most of your business logic. The test executable file is
separated from the main executable file. Both executable targets will be dependent on the
core library you've just created.

Debugging and Testing Chapter 4

[56]

In Package.swift of your Vapor 3 boilerplate project, you can see a test executable target
defined:

 .testTarget(name: "AppTests", dependencies: ["App"])

This test target is named AppTests and it is dependent on a library called App.

You can add more test targets to a project by inserting a new test target into
Package.swift. You simply choose one of the targets to run the tests contained in the
target.

Writing tests using XCTest
The following diagram illustrates how you can build a test using the XCTest framework in
Swift:

Debugging and Testing Chapter 4

[57]

When running tests, XCTest finds all the test classes in our application. Each test class is a
subclass of XCTestCase [1]. XCTest runs the setUp() method [2] and then all of the class's
test methods.

Each test method [3] that implements a test always has the prefix test, takes no parameters,
and returns no values. A test method may have an optional block called
addTeardownBlock(_:) for us to add additional cleanup code. This is useful if we need to
destroy a resource created locally in the test method.

If XCTest runs out of all the test methods, it will run the class teardown method [4] and
move on to the next class. This process is repeated until all test classes are executed.

The static array allTests [5] is an object XCTest used to know which tests to execute. It is
there to keep the tests compatible for a Linux environment. If you would like to run a Swift
test in Linux, you'll need to create the LinuxMain.swift file that calls allTests.
The LinuxMain.swift file shown here is automatically generated by Kitura CLI:

// LinuxMain.swift file for Linux
import XCTest

@testable import ApplicationTests

XCTMain([
 testCase(RouteTests.allTests), // [1]
])

LinuxMain.swift acts as the test runner for Linux platforms. It calls XCMain(_:) which
lists all your test cases [1].

Checking out test cases in a Vapor boilerplate
project
Now that you've learned the basic workflow of how XCTest runs tests, it makes sense for
you to check out the default test cases in a Vapor boilerplate project. The default test case
template in a Vapor project gives you a bare-bones implementation of tests without any
testing logic. It serves as a simple starting point for you to add more real tests to your
project.

Debugging and Testing Chapter 4

[58]

File: /Tests/AppTests/AppTests.swift

import App
import XCTest // [1]

final class AppTests: XCTestCase { // [2]
 func testNothing() throws { // [3]
 // add your tests here
 XCTAssert(true) // [4]
 }

 static let allTests = [// [5]
 ("testNothing", testNothing)
]
}

The following is a list of what the preceding bare-bones source code does:

Imports the XCTest module1.
Declares a new class by subclassing from XCTestCase2.
Defines the first test function with a test prefix3.
Adds a dummy assertion that always turns out to be true4.
Defines a static array that contains all test functions5.

The macro XCTAssert() in [4] asserts a given Boolean expression to be true. Swift actually
provides many different macros for test assertions. Next, you'll check out some of the
assertion macros useful for your tests.

Learning useful assertion macros
Swift test assertions are useful in checking expected results in test methods. There is a
family of macros similar to XCTAssert() to help evaluate any given conditions. Each
macro optionally allows a literal NSString to describe what happens when there is a
failure. For XCTAssert(), a failure is when the Boolean expression == false:

Macro Usage
XCTAssertTrue() Assert an expression to be true
XCTAssertFalse() Assert an expression to be false
XCTAssertNil() Assert an expression to be nil
XCTAssertNotNil() Assert an expression to be not nil
XCTAssertEqual() Assert two expressions to have the same value

Debugging and Testing Chapter 4

[59]

Macro Usage
XCTAssertNotEqual() Assert two expressions to have the different value
XCTAssertEqualObjects() Assert two objects to be equal
XCTAssertNotEqualObjects() Assert two expressions to be different
XCTAssertGreaterThan() Assert the value of one expression to be greater than another

XCTAssertGreaterThanOrEqual() Assert the value of one expression to be greater than or equal
to another

XCTAssertLessThan() Assert the value of one expression to be less than another

XCTAssertLessThanOrEqual() Assert the value of one expression to be less than or equal to
another

XCTAssertThrows() Assert an expression to throw an NSException
XCTAssertNoThrows() Assert an expression not to throw an NSException

XCTAssertThrowsSpecific() Assert an expression to throw an NSException with a specific
name

XCTAssertNoThrowsSpecific() Assert an expression not to throw an NSException with a
specific name

Adding a unit test to your project
Now you're ready to add your own unit tests to the Vapor 3 project you created in the last
chapter. Previously, you added a new route called "student" and your web application
allows a user to query for a student's record that was stored in the
array studentRecords. You can add a unit test to AppTests.swift and check if this
feature works as expected:

@testable import App // [1]
import XCTest
import Vapor // [2]

final class AppTests: XCTestCase {
 func testNothing() throws {
 // add your tests here
 XCTAssert(true)
 }
 func testStudent() throws { // [3]
 let myApp = try app(Environment.testing) // [4]
 let studentRecords = [// [5]
 "Peter" : 3.42,
 "Thomas" : 2.98,
 "Jane" : 3.91,
 "Ryan" : 4.00,
 "Kyle" : 4.00
]

Debugging and Testing Chapter 4

[60]

 for (studentName, gpa) in studentRecords { // [6]
 let query = "/student/" + studentName;
 let request = Request(http: HTTPRequest(method: .GET,
 url: URL(string:
query)!),
 using: myApp) // [7]
 // [8]
 let response = try myApp.make(Responder.self).respond(to:
request).wait()
 guard let data = response.http.body.data else { // [9]
 XCTFail("No data in response")
 return
 }
 let expectedResponse = "The student \(studentName)'s GPA is
\(gpa)"
 // [10]
 if let responseString = String(data: data, encoding: .utf8) {
 XCTAssertEqual(responseString, expectedResponse)
 }
 }
 }

 static let allTests = [
 ("testNothing", testNothing),
 ("testStudent", testStudent)
]
}

The following steps are used to unit test the /student route:

Add the @testable attribute to the import statement for a high level of access1.
Import the Vapor framework2.
Add the testStudent() test function3.
Create an app instance by calling the app() function4.
Copy studentRecords[] from the routes() function in routes.swift5.
Use a for loop to make queries for all students in studentRecords[]6.
Construct an HTTP request7.
Make the HTTP request and retrieve an HTTP response8.
Unwrap the data optional of the HTTP response9.
Assert the string of the HTTP response data to be the expected string10.

Debugging and Testing Chapter 4

[61]

The @testable attribute in [1] is to elevate the access to the App module. Swift prevents an
external entity from accessing anything declared as internal in a compiled module. If you
elevate the access level to "public" for testability, it's going to reduce the benefits of type
safety. Swift provides an alternative way to work around the access control problem of a
module, if you enable the testability (use the -enable-testing compilation flag or set
Build Settings | Enable Testability in Xcode) during its compilation. You'll be able to
elevate the access when you add the @testable attribute to an import statement for the
testing enabled module.

The implementation of a new test in [3] is straightforward. It illustrates the essential steps
in making an HTTP request and handling its HTTP response. First, a new instance of app is
created in [4] by calling the app()function in app.swift. Next, you copy the
studentRecords[] array from routes.swift you used in the previous chapter and
iterate each entry of the array for an HTTP request to the Vapor application. Since the
request takes a definite time, you use the wait()function in [8] to make sure that you have
received a valid HTTP response. In [10], the data of the HTTP response is then compared
with the expected response.

Running unit tests in Xcode
Xcode automatically scans all of your XCtestCase tests with a prefix of test, for example,
testNothing(), and links them to a specific test target. You can use a new scheme
configured by Xcode to use that target and run it within Xcode.

In Xcode, use + U or select from the menu Product | Test to run the tests in this test
target:

Debugging and Testing Chapter 4

[62]

The highlighted numbered sections in the image have a specific role.These roles are listed
here:

The AppTests class is inherited from XCTestCase1.
The testNothing() function with the prefix test will be executed2.
Icons will show whether or not AppTests and testNothing() have been3.
executed successfully
You can also run an individual test using the test's play button in Test Navigator4.

Use Test Navigator to give you an overview of all the available tests in a test target. It has a
play button next to each individual test; you can choose to run a specific test individually.

Check the results of your test runs. In Xcode's console window, it prints out how many tests
were run and how many of them failed.

Checking code coverage
Xcode includes a convenient feature for you to check the coverage of your tests. The test
coverage metric measures how much of your code is covered by the unit tests already
implemented in your project. This metric gives you confidence that any code changes you
made will be adequately tested. Even though you may not find it too useful to have a
perfect test coverage, you generally want to maintain a high percentage of code coverage
throughout your development. In this way, it is less likely for you to break any code as you
make progress in adding incremental enhancements to your project.

Turning on code coverage
The code coverage report option is not turned on by default because code coverage data
collection incurs a performance penalty. You can turn on code coverage in the build target's
scheme.

Click on the helloWorldPackageTests build target:

Debugging and Testing Chapter 4

[63]

Then select the Edit Scheme option from the pull-down menu:

Choose the Test option from the left panel and enable the checkbox for the Gather coverage
for all targets option at the bottom of the right panel:

Debugging and Testing Chapter 4

[64]

Generating a coverage report
When you run all the unit tests again, a code coverage report will be generated:

Go to the Reports Navigator in Xcode and click on the { } Coverage item of the1.
latest test:

Debugging and Testing Chapter 4

[65]

2. A list of modules and functions is displayed:

If you expand the item list of App.framework, you'll see the percentage of
coverage of your unit tests.

Debugging and Testing Chapter 4

[66]

3. Double-click on the routes.swift file and Xcode will take you to the source
editor:

You'll notice that some code is highlighted in red to bring your attention to them. They are
the lines of code that haven't been executed by your tests.

The lines of code that have been executed before are highlighted in green, with the number
of executions listed on the right. For example, in our testStudent()unit test, the "student"
route is executed five times. It corresponds to the number of element pairs in
studentRecords[].

Your goal is to increase the code coverage by adding additional testing logic that invokes
the highlighted code missed in your previous tests.

Debugging and Testing Chapter 4

[67]

In ensuring the proper coverage of unit tests in your project, you want to have every public
method covered by at least one corresponding test. Each time, after writing a test for each
public method, you can run the tests again and check the coverage.

If you follow this approach to cover as much code as possible, you're going to bring the
total percentage of test coverage up. It is a very good habit for you to add new unit tests
right after each new feature you have added to the project. Typically, a developer spends
twice the amount of time on writing tests or debugging than writing the code. By adding
unit tests incrementally and in a disciplined fashion, you will be eventually saving more
time by reducing the number of defects occurring during runtime.

Reviewing Kitura boilerplate tests
Writing tests for server-side Swift projects starting with the Kitura framework will be the
same as what you've just learned with the Vapor framework, since both Kitura and Vapor
use the same XCTest framework.

If you check out the boilerplate project created with kitura init, you will find more tests
there. The first test, testGetStatic, shows you how to test a Kitura server running static
content. The second test, testHealthRoute, demonstrates how to test the probing results
of health on a Kitura server instance:

Now open the RouteTests.swift file, and you will see a typical XCTestCase
implementation:

// ...
class RouteTests: XCTestCase { // [1]
 static var port: Int!
 static var allTests : [(String, (RouteTests) -> () throws -> Void)] {
// [2]
 return [

Debugging and Testing Chapter 4

[68]

 ("testGetStatic", testGetStatic)
 override func setUp() { // [3]
 super.setUp()

 HeliumLogger.use()
 do {
 // ... [not shown]
 let app = try App()
 RouteTests.port = app.cloudEnv.port
 try app.postInit()
 Kitura.addHTTPServer(onPort: RouteTests.port, with: app.router)
 Kitura.start()
 } catch {
 XCTFail("Couldn't start Application test server: \(error)")
 }
 }

 override func tearDown() { // [4]
 Kitura.stop()
 super.tearDown()
 }

 func testGetStatic() { // [5]
 // ... [not shown]
 }
 func testHealthRoute() { // [6]
 // ... [not shown]
 }
}
private extension URLRequest { // [7]
 // ... [not shown]
}

If you put aside the implementation details in the preceding code, you'll see the high-level
constructs of XCTestCase class clearly:

Declare RouteTests by subclassing from XCTestCase1.
Include all tests that contains all target tests (for LINUX compatibility)2.
Set up and run a new Kitura server instance3.
Stop and tear down the current server instance4.
Implement the logic for testing static content5.
Implement the probe for the current server instance's health6.
Use extensions to include implementation common to both tests7.

Debugging and Testing Chapter 4

[69]

The RouteTests class takes advantage of setUp() and tearDown() methods in
implementing a Kitura server instance used by each test. As explained before, each unit test
will be independent from each other. You need to set up a new instance of the Kitura server
each time a test is executed. The setUp() and tearDown() methods help you avoid
writing repetitive code by reusing the server setup and teardown code.

Next, try to run the tests to see what results the two tests output. In Xcode, select the test
target:

When you use the command + U command to run the test target in Xcode, the console
window prints the following output:

Handling asynchronous tests
Given the non-blocking asynchronous communication model in most of the server-side
frameworks, each test often involves an asynchronous call to an API method. The callback
of an asynchronous call contains the results of a test run. This means that the validation of
the returned results of a test happen at an undetermined time later. You need to take
precautionary measures to ensure that the thread for validating the result doesn't terminate
prematurely.

Debugging and Testing Chapter 4

[70]

The Kitura test boilerplate code shows you how to handle a non-blocking asynchronous
situation elegantly:

func testGetStatic() {
 let printExpectation = expectation(description: "The /route will serve
static HTML content.") // [1]

 URLRequest(forTestWithMethod: "GET")?
 .sendForTestingWithKitura { data, statusCode in // [2]
 if let getResult = String(data: data, encoding:
String.Encoding.utf8){ // [3]
 XCTAssertEqual(statusCode, 200)
 XCTAssertTrue(getResult.contains("<html"))
 XCTAssertTrue(getResult.contains("</html>"))
 } else {
 XCTFail("Return value from / was nil!")
 }
 printExpectation.fulfill() // [4]
 }

 waitForExpectations(timeout: 10.0, handler: nil) // [5]
}

In this code, XCTestCase uses the class XCTestExpectation to help facilitate the
communication to you when asynchronous test tasks are complete:

Creates a new expectation1.
Uses an URLRequest extension function to process the HTTP request/response2.
Receives the HTTP response result asynchronously3.
Marks an expectation instance as fulfilled4.
Waits for the expectation to finish5.

You use the method expectation(description:) in [1] to create a new expectation with
an associated description. The method returns an instance of XCTestExpectation that
you can use. The description in the string will be displayed in the test log for this
expectation to help diagnose failures.

When the asynchronous tasks in your test are done, call the expectation instance's
fulfill() method in [4] to signal that the expectation is fulfilled.

To instruct XCTestCase not to end your test prematurely, you call
waitForExpectation(timeout:handler:) in [5] and specify how much time you want
to wait.

Debugging and Testing Chapter 4

[71]

Using extensions for functions common to all
tests
Besides the setUp() and tearDown() methods in the Kitura test boilerplate code, you'll
also find the same code reusing strategy in the extension URLRequest. Extensions in Swift
add new functionality to an existing class for which you do not have access to the source
code. In the URLRequest extension, the Kitura test boilerplate code extends the class
URLRequest in the Swift Foundation library to include URL parsing and handling code
specific to the Kitura server environment:

private extension URLRequest { // [1]
 // [2]
 init?(forTestWithMethod method: String, route: String = "", body: Data?
= nil) {
 if let url = URL(string: "http://127.0.0.1:\(RouteTests.port)/" +
route){ // [3]
 self.init(url: url)
 addValue("application/json", forHTTPHeaderField: "Content-
Type")
 httpMethod = method
 cachePolicy = .reloadIgnoringCacheData
 if let body = body {
 httpBody = body
 }
 } else {
 XCTFail("URL is nil...")
 return nil
 }
 }

 func sendForTestingWithKitura(fn: @escaping (Data, Int) -> Void) { //
[4]

 guard let method = httpMethod, var path = url?.path, let headers =
allHTTPHeaderFields else {
 XCTFail("Invalid request params")
 return
 }

 if let query = url?.query {
 path += "?" + query
 }

 let requestOptions: [ClientRequest.Options] = [.method(method),
.hostname("localhost"), \
 .port(8080), .path(path),

Debugging and Testing Chapter 4

[72]

.headers(headers)]

 let req = HTTP.request(requestOptions) { resp in

 if let resp = resp, resp.statusCode == HTTPStatusCode.OK ||
resp.statusCode ==
HTTPStatusCode.accepted {
 do {
 var body = Data()
 try resp.readAllData(into: &body)
 fn(body, resp.statusCode.rawValue)
 } catch {
 print("Bad JSON document received from Kitura-
Starter.")
 }
 } else {
 if let resp = resp {
 print("Status code: \(resp.statusCode)")
 var rawUserData = Data()
 do {
 let _ = try resp.read(into: &rawUserData)
 let str = String(data: rawUserData, encoding:
String.Encoding(rawValue:
String.Encoding.utf8.rawValue))
 print("Error response from Kitura-Starter:
\(String(describing: str))")
 } catch {
 print("Failed to read response data.")
 }
 }
 }
 }
 if let dataBody = httpBody {
 req.end(dataBody)
 } else {
 req.end()
 }
 }
}

The following explains what this extension does:

Declares an extension to URLRequest1.
Includes a failable initializer2.
Wraps the URL optional and retrieves its associated networking parameters3.
Implements a function that constructs an HTTP request and processes its4.
corresponding HTTP response

Debugging and Testing Chapter 4

[73]

The init?() method in [2] is called a failable initializer. It means that the initialization can
fail. For example, failure may occur when the networking parameters are incorrect or when
a required external resource is not present. The pass/fail condition is checked when the
supplied URL optional is unwrapped and validated.

The function in [4] is used by each test when sending an HTTP request and waiting for its
HTTP response. It is a manifestation of the Separation of Concerns concept so each test can
focus on validating the test results while the URLRequest extension function can focus on
handling the HTTP request/response.

Debugging in a server-side Swift project
There are in general two types of errors: one occurs in runtime and the other takes place
during code compilation. Runtime errors are expensive because they are difficult to track
and tackle. Swift enforces strong type checking to reduce the chance of your mistake
slipping through compilation error checking and become a runtime error. Unit tests with
good code coverage also help you discover problems during development time. However,
when a runtime error does occur, you'll need a better strategy to cope with it.

This is especially true for a server-side project because it is hard to reproduce the same
condition that caused a runtime error to happen when there could be so many different
kinds of networking conditions and situations. Normally, you'll set breakpoints in your
code for some conditions which you suspect to have caused an error, and then inspect the
state of your code when an error did get triggered. In a server-side project, not all
conditions are reproducible if a condition is caused by some external factors, such as the
available capacity in the network infrastructure or the network bandwidth availability in
the data center, which are out of your control.

Given the nature of problems common to server projects, there are some debugging
techniques that could be more useful than others. Logging is one of those debugging
techniques that is useful for a server-side Swift project. A logging framework provides
useful utility functions that allow you to record, manage, and store useful logging
information in your project. When a runtime error occurs, it allows you to trace back the
steps that lead to a failure.

Using the Logging API in a Vapor project
Vapor has its own pluggable logger framework. Since the Logging module is part of
Vapor's Console package, it is included in all Vapor projects by default. You'll have access
to all Logging APIs after you include import Vapor in a Swift file.

Debugging and Testing Chapter 4

[74]

Vapor's Logging module includes the Logger protocol that declares common interfaces for
all logger implementations. One example is SwiftyBeaver Logger for Vapor 3.0, https:/ /
swiftybeaver.com/ . In Vapor 3.0, it includes a simple implementation, PrintLogger for
the Logger protocol that prints out logging information on the Terminal screen.

The Logging module is intended to provide logging information while your Vapor app is
running. It offers different log levels for you to classify different types of log messages:

Log Level Usage
verbose For logging messages including unimportant information
debug For logging a diagnostic message for debugging
info For logging an informational message
warning For logging a warning message that needs your attention
error For logging an error message
fatal For logging a fatal error message

Typical Vapor Logger usage looks like this:

let logger = try container.make(Logger.self)
logger.info("Logger created!")

You can get an instance of Logger from any container in Vapor. A container in Vapor refers
to a collection of registered services on an event loop and which are prescribed with specific
configurations and environments.

Some common containers are application, request, and response. For example, you can get
a Logger instance from Application:

let logger = try app.make(Logger.self)

Where app is an instance of your application.

Using the Logger API in a Kitura Project
Similarly, Kitura provides a unified interface for different kinds of logger implementations.
Kitura uses the LoggerAPI as the Logging API throughout its implementation. In a typical
Kitura project, HeliumLogger is often used. HeliumLogger is a lightweight
implementation of LoggerAPI and it is available as an open source project.

https://swiftybeaver.com/
https://swiftybeaver.com/
https://swiftybeaver.com/
https://swiftybeaver.com/
https://swiftybeaver.com/
https://swiftybeaver.com/
https://swiftybeaver.com/

Debugging and Testing Chapter 4

[75]

If you use kitura init to create a boilerplate for your project, you do not need to import
LoggerAPI and HeliumLogger specifically, as the packages have already been included as
dependencies in your Kitura project.

You'll find the import LoggerAPI and import HeliumLogger statements at the beginning
of main.swift:

...
// main.swift
import LoggerAPI
import HeliumLogger

do {
 HeliumLogger.use(LoggerMessageType.info) // [1]
...
} catch let error {
 Log.error(error.localizedDescription) // [2]
}

This code snippet shows how LoggerAPI and HeliumLogger are used in your project:

HeliumLogger is configured to use LoggerMessageType.info1.
Calls Log.error() to log an error message2.

The LoggerMessageType is an enum consisting of the following message types:

Message type Usage
entry For logging entering into a function
exit For logging exiting a function
debug For logging a diagnostic message for debugging
verbose For logging messages including unimportant information
info For logging informational messages
warning For logging a warning message that needs your attention
error For logging an error message

The message types are listed in ascending order of severity levels. If you choose to use a
message type with a higher severity level, messages with lower severity will not be shown.
Consider the verbose severity level:

HeliumLogger.use(LoggerMessageType.verbose)

Debugging and Testing Chapter 4

[76]

When the verbose severity level is chosen, the debug messages will not be shown because
the debug message type has a lower severity level.

If you change the HeliumLogger message type setting from LoggerMessageType.info to
LoggerMessageType.verbose in [1] and rebuild your project using command + R, you're
going to see additional information logged and printed on screen with the [VERBOSE]
message type:

. . .
 [Mon Jun 25 11:31:32 2018] com.ibm.diagnostics.healthcenter.loader INFO:
Swift Application Metrics
 [2018-06-25T11:31:32.154+08:00] [VERBOSE] [Router.swift:108
init(mergeParameters:)] Router initialized
 [2018-06-25T11:31:32.200+08:00] [VERBOSE] [Router.swift:108
init(mergeParameters:)] Router initialized
 [2018-06-25T11:31:32.200+08:00] [INFO] [Metrics.swift:20
initializeMetrics(router:)] Initialized metrics.
 [2018-06-25T11:31:32.201+08:00] [VERBOSE] [Kitura.swift:104 run()]
Starting Kitura framework...
 [2018-06-25T11:31:32.201+08:00] [VERBOSE] [Kitura.swift:118 start()]
Starting an HTTP Server on port 8080...
 [2018-06-25T11:31:32.202+08:00] [INFO] [HTTPServer.swift:124 listen(on:)]
Listening on port 8080
 [2018-06-25T11:31:32.202+08:00] [VERBOSE] [HTTPServer.swift:125
listen(on:)] Options for port 8080: maxPendingConnections: 100,
allowPortReuse: false

Throughout your project, you can log different types of logging messages. Some examples
are:

Log.warning("The input parameter is out of range!")
Log.debug("Variable x increments by 100.")
Log.error("Bummer! Something is not working well.")

Logging is a useful server-side development technique. Since your server application will
be deployed and running on a hosted server remotely in a data center, logging is perhaps
one of the best ways to detect problems and find out their root causes.

Debugging using the HTTP traffic monitoring tool
If the logging information leads you to believe that an error was caused by a specific
network condition, you shall take a further step to investigate the networking cause. Since
all server-side Swift frameworks accept HTTP requests and return HTTP responses, you'll
find the HTTP traffic monitoring tool useful.

Debugging and Testing Chapter 4

[77]

Debugging using Postman
One of such tools is Postman which you'll find very handy for all of your server-side Swift
projects. You can download the tool at https:/ /www. getpostman. com/ .

The following screenshot shows you how to use Postman to analyze the HTTP response of
a request using HTTP GET and the parameter localhost:8080/student/Ryan:

Run your helloWorld application for either Vapor or Kitura in the background. A response is
available at the bottom after clicking on the Send button to send out the HTTP request
you've created. You can check the headers as well as the body of the HTTP response from
the server application.

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/

Debugging and Testing Chapter 4

[78]

Debugging using the curl command in the Terminal
Another tool is the curl command that you can use to make HTTP requests in the
Terminal.

Run your helloWorld application for Vapor with curl:

$ curl "http://localhost:8080/student/Jane"

Here is the output you expected:

The student Jane's GPA is 3.91

When verbose mode is enabled with the -v flag, curl will give out more information on
the HTTP request and response:

$ curl -v "http://localhost:8080/student/Jane"
* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 8080 (#0)
> GET /student/Jane HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.55.1
> Accept: */*
>
< HTTP/1.1 200 OK
< content-type: text/plain; charset=utf-8
< content-length: 30
< date: Wed, 21 Nov 2018 06:46:44 GMT
<
* Connection #0 to host localhost left intact
The student Jane's GPA is 3.91

The curl command is extremely powerful. As you'll see in the next chapter, you can
specify a curl command with HTTP POST and JSON data:

$ curl --header "Content-Type: application/json" --request POST --data
'{"id":"2","title":"New Test","content":"New Content"}'
http://localhost:8080/journal/

Debugging and Testing Chapter 4

[79]

Summary
In this chapter, you learned how to write tests for server-side Swift applications using the
XCTest framework. Sample tests are provided in Vapor and Kitura boilerplate projects,
giving you a head start in adding unit tests to your project. In addition, you learned how to
run unit tests in Xcode and use the code coverage feature in Xcode to improve your code's
overall coverage. Next, you learned about the logging frameworks in Vapor and Kitura,
and then HTTP traffic monitoring tools, such as Postman and curl. These unit tests and
debugging techniques for server-side Swift projects are useful as you develop complex
server-side Swift projects in the next chapters.

5
Setting Up Routes and

Controllers
This chapter dives into the details of handling custom requests with routes and controllers.
A route in a web framework is an object used to represent a custom request embedded in a
URL, and a controller is the component that contains the business logic to handle the request
routed to it. You'll learn how to add custom routes for requests, create controllers to handle
the routes, and construct responses for the requests. You'll manipulate custom parameter
types and process a group of routes in a collection. Finally, you'll learn how to take
advantage of the Codable an class in Swift to encode and decode complex JavaScript
Object Notation (JSON) objects in easy way.

Let's take a look at the topics covered in this chapter:

Adding custom routes in a Vapor project
Adding custom routes in a Kitura project

Adding custom routes in a Vapor project
In a typical model–view–controller architecture, you'll consciously separate data from the
controller code that handles the data and from the view that represents a snapshot of the
data. The data structure of your custom data is defined by its model. Routes are the
endpoints for a client to query for the data:

Component Usage Recommended path in Vapor
Model Description of data Sources/App/Models/

View Representation of data Resources/Views/

Controller Business logic of data Sources/App/Controllers

Routes Endpoints for data querying Sources/App/Routes

Setting Up Routes and Controllers Chapter 5

[81]

In this chapter, you'll learn how to define the model of custom data used in a new
application called myJournal, which is a server-side Swift power web application for
personal journals.

Modeling your data with content type
As a starter, use the following commands in the Terminal to create a new application
myJournal from Vapor's boilerplate project:

$ vapor new myJournal
$ cd myJournal
$ vapor xcode

Create a new directory, /Sources/App/Models, in Xcode, and add a new Swift
file, Entry.swift, to the newly created directory:

// Entry.swift
import Vapor

struct Entry {
 var id: String // [1]
 var title: String?
 var content: String?
 init(id: String, title: String? = nil, content: String? = nil) {
 self.id = id
 self.title = title
 self.content = content
 }
}

Entry is a simple structure representing a journal entry. It has three fields and an
initializer. The id string field is a Universal Unique Identifier (UUID) that will uniquely
identify an Entry item.

Vapor 3 offers the Content type for you to parse and serialize specific data types
conveniently. Content is built upon Codable to take advantage of the new data-handling
infrastructure introduced in Swift 4.0. Codable makes encoding and parsing JSON
extremely easy.

Setting Up Routes and Controllers Chapter 5

[82]

To add the implicit JSON format conversion to your data structure, you simply make sure
your data structure conforms to the Content type:

struct Entry: Content {
 ...
}

In addition to JSON, the Content type can be used to represent various other format types,
such as protobuf, URLEncodedForm, and multipart. You can parse and serialize content
of all supported types using the same API in Vapor.

Vapor would parse the following HTTP request sent to your application:

POST /new HTTP/1.1
Content-Type: application/json
{
 "id": "999",
 "title": "My First Day at College",
 "content": "Met with a lot of people."
}

The key names and data types of input data exactly matches with that of the struct you've
created.

Every HTTP request has a content container. When you conform Entry to Content type,
Vapor will be able to decode the HTTP request message and create a new Entry object that
represents the decoded content.

The following code shows how to process a request via an HTTP POST:

router.post("new") { req -> Future<HTTPStatus> in
 return req.content.decode(Entry.self).map { entry in
 print("Appended a new entry: \(entry)")
 return HTTPStatus.ok
 }
}

The decode() function returns a future for HTTPStatus. Future is the value you'll receive
at a later time when an asynchronous process is complete. Decoding content from a request
is considered to be asynchronous because it takes time to process the multiple parts
decomposed from the content.

The following shows how a HTTP GET request is handled:

router.get("get") { req -> Entry in
 return Entry(id: "999", title: "First Day", content: "Lots of fun")
}

Setting Up Routes and Controllers Chapter 5

[83]

It will return JSON-encoded data of Entry and adds a default HTTP response with a 200
OK status code.

Using controller for logical operations
For simplicity, your myJournal application persists data in memory. You'll use database
operations for permanent data storage later on.

Even though you are not using a database operation, you'll implement the typical Create,
Read, Update, and Delete (CRUD) operations for your data. Create the
JournalController.swift file in the /Sources/App/Controllers directory:

// Journal controller
import Vapor

final class JournalController {
 var entries : Array<Entry> = Array() // [1]
 //: Get total number of entries
 func total() -> Int { // [2]
 return entries.count
 }
 //: Create a new journal entry
 func create(_ entry: Entry) -> Entry? { // [3]
 entries.append(entry)
 return entries.last
 }
 //: Read a journal entry
 func read(index: Int) -> Entry? { // [5]
 if let entry = entries.get(index: index) {
 return entry
 }
 return nil
 }
 //: Update the journal entry
 func update(index: Int, entry: Entry) -> Entry? { // [6]
 if let entry = entries.get(index: index) {
 entries[index] = entry
 return entry
 }
 return nil
 }
 //: Delete a journal entry
 func delete(index: Int) -> Entry? { // [7]
 if let _ = entries.get(index: index) {
 return entries.remove(at: index)

Setting Up Routes and Controllers Chapter 5

[84]

 }
 return nil
 }
}

extension Array {
 func get(index: Int) -> Element? { // [4]
 if index >= 0 && index < count {
 return self[index]
 }
 return nil
 }
}

The journalController class performs the following operations:

Declares an array to hold all the instances of Entry in memory
Returns the number of entries in the array
Appends a new Entry item to the array
Adds a safe get(index:) function to the Array extension that checks for
bounds
Retrieves an Entry item identified by a zero-based index from the array
Replaces a current item in the array with the supplied Entry item
Deletes an item from the array

An array in [1] will be used as in memory persistence and holds the references for all
Entry instances. The total() method in [2] gives out the total number of entries in the
array. In [4], a safe get(index:) function is implemented as an extension to Array. It
checks for the given index against the bounds of entries array. The functions in [3],
[5],[6] and [7] implement the CRUD operations on the array.

Using Vapor's route collection
Vapor allows you to use route collection in managing the collection of related routes. With
route collection, you can divide your routes and let one sub-router that implements
RouteCollection protocol handle a segment of routes. Each sub-router doesn't need to
handle all routes, as it is responsible for the routes that it can handle only.

Setting Up Routes and Controllers Chapter 5

[85]

In /Sources/App/routes.swift, instantiate a RouteCollection and register it with the
router:

import Vapor

/// Register your application's routes here
public func routes(_ router: Router) throws {

 let journalRoutes = JournalRoutes()
 try router.register(collection: journalRoutes)
}

Create the Routes directory under /Sources/App and add JournalRoutes.swift to this
new directory:

// JournalRoutes.swift
import Vapor

struct JournalRoutes : RouteCollection { // [1]
 let journal = JournalController() // [2]
 func boot(router: Router) throws { // [3]
 // to be implemented later
 }
 // Add route handlers here // [4]
}

All the routes and their handlers will go to this new file. The JournalRoutes struct does
several things:

Implements the RouteCollection protocol1.
Creates an instance of JournalController that works with in-memory2.
persistence
Adds the boot(router:) function to for one-time set up. Routes will be3.
implemented here
Adds the rest of the route handlers right after the boot(router:) function4.

Even though the implementation of RouteCollection is straightforward, it is extremely
useful for organizing your routes into different functional areas. For example, you may
want to use RouteCollection to conveniently designate user access level to different
content areas.

Setting Up Routes and Controllers Chapter 5

[86]

Grouping related routes
You'll find it convenient to group all routes for JournalController together. Vapor
actually offers route grouping exactly for that.

Add the following route handlers to the JournalRoutes struct in the
/Sources/App/Routes/JournalRoutes.swift file you've just created:

import Vapor

struct JournalRoutes : RouteCollection {
 let journal = JournalController()
 func boot(router: Router) throws {
 let topRouter = router.grouped("journal") // [1]
 topRouter.get(use: getTotal)
 topRouter.post(use: newEntry)
 let entryRouter = router.grouped("journal", Int.parameter) // [2]
 entryRouter.get(use: getEntry)
 entryRouter.put(use: editEntry)
 entryRouter.delete(use: removeEntry)
 }
 // Add route handlers here // [3]

The JournalRoutes struct lays out two groups of routes, as follows:

It creates the route group /journal for routes that retrieve all entries with HTTP1.
GET and posts a new entry with HTTP POST
It creates the second route group, /journal/Int.parameter, for routes that2.
retrieve an entry with HTTP GET, updates an entry with HTTP UPDATE, and
removes an entry with HTTP DELETE
It adds all the required route-handler functions right after the boot(router:)3.
function

The first route group in [1] tells Vapor to direct all URL requests to /journal, while the
second group in [2] directs all requests to /journal/Int.parameter itself. The path,
Int.parameter, is a dynamic parameter. The closures in a route group can access this
dynamic parameter using req.parameters.next().

Implementing route handlers
Next, you will implement the handlers used in both route groups.

Setting Up Routes and Controllers Chapter 5

[87]

Retrieving all entries
Append the getTotal() function to the line right after boot(router:):

func getTotal(_ req: Request) -> String {
 let total = journal.total()
 print("Total Records: \(total)")
 return "\(total)"
}

The function simply calls the JournalController total() function and return the total
count of entries.

Creating a new entry with a unique ID
Following getTotal(), add the following handler for creating a new entry:

func newEntry(_ req: Request) throws -> Future<HTTPStatus> { // [1]
 let newID = UUID().uuidString // [2]
 return try req.content.decode(Entry.self).map(to: HTTPStatus.self) {
entry in // [3]
 let newEntry = Entry(id: newID,
 title: entry.title,
 content: entry.content) // [4]
 guard let result = self.journal.create(newEntry) else { // [5]
 throw Abort(.badRequest) // [6]
 }
 print("Created: \(result)")
 return .ok // [7]
 }
}

The newEntry(_ req:) function handles the creation of a new entry in several steps:

Constructs a throwable function that returns a Future of HTTPStatus1.
Uses Swift's UUID() to create a unique ID for the new entry2.
Decodes the JSON object embedded in an HTTP request and serializes to an3.
entry instance
Instantiates a new entry object using the new ID4.
Invokes the create() function of RouteController to add the new entry5.
object to in-memory storage
Throws an Abort if the last step returns nil6.
Returns HTTPStatus.ok when reaching the end of the function7.

Setting Up Routes and Controllers Chapter 5

[88]

In [4], whatever ID that has been submitted is simply ignored, since the id field is always
over-written with a new UUID. This guarantees that the id is unique, and this is very
useful for you to debug the CRUD operations you've implemented.

The Abort in [6] is a default implementation of the AboutError protocol. Vapor always
displays any error code specified in Abort to the end user, even in production mode where
most error messages are suppressed.

Retrieving an entry
The handlers in the route group /journal/Int.parameter deal with a specific entry. The
first handler belonging to this route group is getEntry():

func getEntry(_ req: Request) throws -> Entry {
 let index = try req.parameters.next(Int.self) // [1]
 let res = req.makeResponse() // [2]
 guard let entry = journal.read(index: index) else {
 throw Abort(.badRequest)
 }
 print("Read: \(entry)")
 try res.content.encode(entry, as: .formData) // [3]
 return entry
}

There are several interesting steps in the preceding implementation:

Retrieve the index of an Entry object, using the req.parameters.next()1.
command
Create a response instance by calling the makeResponse() method2.
Serialize the Entry object that conforms to Content into a JSON object and3.
return

All handlers in this route group use the same req.parameters.next() command in [1]
to work with a specific Entry object. The line at [3] demonstrates how easy it is to serialize
a data model into a JSON object once the model conforms to the Content protocol.

Setting Up Routes and Controllers Chapter 5

[89]

Updating an entry
The handler for updating an entry is the second handler belonging to the
/journal/Int.parameter route group:

func editEntry(_ req: Request) throws -> Future<HTTPStatus> {
 let index = try req.parameters.next(Int.self)
 let newID = UUID().uuidString
 return try req.content.decode(Entry.self).map(to: HTTPStatus.self) {
entry in // [1]
 let newEntry = Entry(id: newID,
 title: entry.title,
 content: entry.content)
 guard let result = self.journal.update(index: index, entry:
newEntry) else {
 throw Abort(.badRequest)
 }
 print("Updated: \(result)")
 return .ok
 }
}

The line at [1] shows that the JSON object is decoded and serialized into an Entry object,
and then an array containing HTTPStatus is returned from the mapping of a result using
map(to:).

Deleting an entry
The last handler in the /journal/Int.parameter route group implements the deletion of
an entry using the element's index:

func removeEntry(_ req: Request) throws -> HTTPStatus {
 let index = try req.parameters.next(Int.self)
 guard let result = self.journal.delete(index: index) else {
 throw Abort(.badRequest)
 }
 print("Deleted: \(result)")
 return .ok
}

Setting Up Routes and Controllers Chapter 5

[90]

Testing the routes
Build and run your Vapor application:

 $ vapor build
 $ vapor run

You can check all the route handlers using Postman. For example, create a HTTP POST
request to localhost:8080/journal/ while your Vapor application is running locally:

Setting Up Routes and Controllers Chapter 5

[91]

Alternatively, you can use the curl tool to make a request in the Terminal:

$ curl --header "Content-Type: application/json" --request POST --data
'{"id":"2","title":"New Test","content":"New Content"}'
http://localhost:8080/journal/

The output of the two tests looks like the following:

Server starting on http://localhost:8080
Created: Entry(id: "4BCDD028-ECF0-4D43-81FD-2C8318781480", title:
Optional("11111"), content: Optional("111111"))
Created: Entry(id: "85EC887F-D0D5-4E10-A3B7-A76E0AF3D654", title:
Optional("New Test"), content: Optional("New Content"))

Adding custom routes in a Kitura project
Kitura offers powerful route-handling features similar to what you've learned about in the
previous Vapor project. All Kitura versions since Kitura 2.0 take advantage of Codable in
Swift 4.1 for JSON encoding and parsing, in a way similar to Content type in Vapor. In
previous versions prior to Kitura 2.0, you would need to use a third-party library such as
SwiftyJSON and write more tedious code for JSON encoding and decoding.

Just as Codable routing dramatically simplifies the handling of JSON-encoded data from a
client's HTTP requests in the server, Kitura also provides a connector called KituraKit
that mirrors Codable routing in the implementation of a client. With KituraKit, it
simplifies the programming for JSON encoding and decoding via a concept called a
client/server Contract.

Next, you'll conform your data model to Codable, implement Controller for logical
operations, adding Codable routes, and handling Kitura routes.

Modeling Codable data
You can run the following commands on the Terminal to create your myJournal
application from the Kitura boilerplate project:

$ mkdir myJournal
$ cd myJournal
$ kitura init
$ swift run
$ open ./myJournal.xcodeproj

Setting Up Routes and Controllers Chapter 5

[92]

Create a new directory, /Sources/Application/Models, and add a new Swift file,
Entry.swift, to the directory:

import Foundation

struct Entry: Codable {

 var id: String
 var title: String?
 var content: String?

 init(id: String, title: String? = nil, content: String? = nil) {
 self.id = id
 self.title = title
 self.content = content
 }
}

The implementation of the Entry data structure is similar to that in the myJournal Vapor
project. While Kitura's Entry implements Codable protocol directly, Vapor's Entry
implements Content, which builds on top of Codable.

Using controllers for logical operations
Create the /Source/Application/Controllers directory and add the same
JournalController.swift you have used in your myJournal Vapor project to this new
directory:

File: /Sources/Application/Controllers/JournalController.swift:

import Foundation

final class JournalController {
 var entries : Array<Entry> = Array()
 //: Get total number of entries
 func total() -> Int {
 return entries.count
 }
 //: Create a new journal entry
 func create(_ entry: Entry) -> Entry? {
 entries.append(entry)
 return entries.last
 }
 //: Read a journal entry
 func read(index: Int) -> Entry? {

Setting Up Routes and Controllers Chapter 5

[93]

 if let entry = entries.get(index: index) {
 return entry
 }
 return nil
 }
 //: Update the journal entry
 func update(index: Int, entry: Entry) -> Entry? {
 if let entry = entries.get(index: index) {
 entries[index] = entry
 return entry
 }
 return nil
 }
 //: Delete a journal entry
 func delete(index: Int) -> Entry? {
 if let _ = entries.get(index: index) {
 return entries.remove(at: index)
 }
 return nil
 }
}

extension Array {
 func get(index: Int) -> Element? {
 if index >= 0 && index < count {
 return self[index]
 }
 return nil
 }
}

As you can see, the implementation of JournalController is agnostic to either the Vapor
or Kitura framework. The JournalController.swift file here is identical to the same file in
your previous Vapor project. Refer to the previous sections if you are looking for more
details of the JournalController class.

Implementing Codable routing
Now, you can proceed to implement route handlers that work with the controller's CRUD
operations. Create another new directory, /Sources/Application/Routes, and add the
following JournalRoute.swift file to it:

import Foundation
import Kitura

Setting Up Routes and Controllers Chapter 5

[94]

struct JournalRoutes {

 let journal = JournalController()
 func newEntry(entry: Entry, completion: (Entry?, RequestError?) -> Void
) {
 let newID = UUID().uuidString
 if let result = journal.create(Entry(id: newID,
 title: entry.title,
 content: entry.content)) {
 print("Created: \(result)")
 completion(result, nil)
 } else {
 completion(Entry(id: "-1"), nil)
 }
 }

 func editEntry(id: Int, new: Entry, completion: (Entry?, RequestError?)
-> Void) -> Void {
 let newID = UUID().uuidString
 if let result = journal.update(index: id,
 entry: Entry(id: newID,
 title: new.title,
 content: new.content))
{
 print("Updated: \(result)")
 completion(result, nil)
 } else {
 completion(nil, .notFound)
 }
 }
 func getEntry(index: Int, completion: (Entry?, RequestError?) -> Void)
{
 if let entry = journal.read(index: index) {
 completion(entry, nil)
 return
 }
 completion(nil, .notFound)
 return
 }

 func removeEntry(id: Int, completion: (RequestError?) -> Void) -> Void
{
 if let result = self.journal.delete(index: id) {
 print("Deleted: \(result)")
 completion(nil)
 return
 }
 completion(.notFound)

Setting Up Routes and Controllers Chapter 5

[95]

 }
}

The previous code is the implementation of four Codable CRUD routes. The Codable
routing function that handles a HTTP POST request for a new entry takes in two
arguments: an Entry object, and a completion closure:

func newEntry(entry: Entry, completion: (Entry?, RequestError?) -> Void) {
 let newID = UUID().uuidString
 if let result = journal.create(Entry(id: newID,
 title: entry.title,
 content: entry.content)) {
 print("Created: \(result)")
 completion(result, nil)
 } else {
 completion(Entry(id: "-1"), nil)
 }
 }

When the provided Entry object is successfully added to the in-memory array, the
newEntry(entry:completion:) function calls completion(), which then automatically
sends the HTTP response back to the client.

If an entry exists, an additional argument for the ID of existing entry is required. For the
editEntry(id:new:completion:) function, it takes three arguments, the id of an
existing Entry object, a new Entry object that is going to replace the existing one, and a
completion closure:

func editEntry(id: Int, new: Entry, completion: (Entry?, RequestError?) ->
Void) -> Void {
 let newID = UUID().uuidString
 if let result = journal.update(index: id,
 entry: Entry(id: newID,
 title: new.title,
 content: new.content)) {
 print("Updated: \(result)")
 completion(result, nil)
 } else {
 completion(nil, .notFound)
 }
}

Setting Up Routes and Controllers Chapter 5

[96]

The editEntry(id:new:completion:) function simply calls
JournalController.update(index:entry:) to update the object in the in-memory
array with the specified index. The function calls a completion() closure with an optional
of Entry when the Entry object is successfully updated; otherwise, it calls a
completion() closure with nil and .notFound error code.

The next two functions, getEntry(id:completion:) and
removeEntry(id:completion), are also applicable to an existing Entry object so they
both take in id and completion as arguments. The getEntry(id:completion:)
function calls JournalController.read(index) to retrieve the existing Entry object:

func getEntry(index: Int, completion: (Entry?, RequestError?) -> Void) {
 if let entry = journal.read(index: index) {
 completion(entry, nil)
 return
 }
 completion(nil, .notFound)
 return
 }

Similarly, the removeEntry(id:completion:) function calls
JournalController.delete(index) to delete the existing Entry object from the in-
memory array:

func removeEntry(id: Int, completion: (RequestError?) -> Void) -> Void {
 if let result = self.journal.delete(index: id) {
 print("Deleted: \(result)")
 completion(nil)
 return
 }
 completion(.notFound)
 }

That's all the route handlers you're going to use. Next, you'll move on to define the
endpoints.

Handling Kitura routes
Finally, you can put everything together by specifying all the endpoints that connect routes
to handlers.

Setting Up Routes and Controllers Chapter 5

[97]

In the postInit() method of the App class, you're going to tell the router to direct
appropriate HTTP requests to the CRUD Codable routes defined in
JournalRoutes.swift:

func postInit() throws {
 let journalRoutes = JournalRoutes() // [1]
 // Endpoints
 initializeHealthRoutes(app: self)
 router.get("/journal") { _, response, _ in // [2]
 let total = journalRoutes.getTotal()
 response.send("\(total)")
 }
 router.post("/journal", handler: journalRoutes.newEntry) // [3]
 router.get("/journal", handler: journalRoutes.getEntry) // [4]
 router.put("/journal", handler: journalRoutes.editEntry) // [5]
 router.delete("/journal", handler: journalRoutes.removeEntry) // [6]
}

The following operations are added to the previous code:

Instantiate the JournalRoutes object1.
Define a normal route handling closure2.
Direct the handling of HTTP POST /journal to newEntry() of JournalRoute3.
Direct the handling of HTTP GET /journal to getEntry() of JournalRoute4.
Direct the handling of HTTP PUT /journal to editEntry() of JournalRoute5.
Direct the handling of HTTP DELETE /journal to removeEntry()6.
of JournalRoute

Both normal and Codable routing handlers are implemented. Since the normal route
handling in [2] doesn't require its response data to be Codable, we can use a string in
response.send(). The handlers in [3-6] direct route handling to the functions that use
Codable data directly.

Setting Up Routes and Controllers Chapter 5

[98]

You can check Kitura's route handlers using Postman. For route handling in Kitura, it
expects the HTTP request data to be URL encoded. Make sure that you choose the second
option, as shown in the following screenshot:

Setting Up Routes and Controllers Chapter 5

[99]

Summary
In this chapter, you learned how to add custom routes and controllers to your Vapor and
Kitura applications. For simplicity, in-memory storage was used in both applications, but
the controller classes can be later adopted to work with databases, which we will see in
Chapter 8, Employing the Storage Framework. Both Vapor and Kitura make their data models
conform to the Codable for Encodable and Decodable protocols, making the handling of
JSON conversion to data models extremely easy. In the next chapter, you'll continue to
build upon the routes and controllers code you have and apply template engines to create
and render web pages automatically.

6
Working with Template Engines

This chapter introduces you to two templating engines: Leaf for Vapor and Stencil for
Kitura. Templating languages allow you to work with content automatically generated by a
script. For dynamic content, you'll learn how template engines help to accelerate
development for dynamic web pages. Dynamic content creation is useful when presenting
results of data generated at run-time and that are not known beforehand. For static content,
you'll learn how templating engines help to ensure a consistent structure, such as headers
and footers, and appearance characteristics, such as color scheme and background. You'll
further get introduced to the nuts and bolts of the Leaf and Stencil templating languages
and learn how to use variables and tags in template scripts to communicate information
between Swift classes and script functions.

Let's take a look at the topics covered in this chapter:

Using the Leaf templating engine in Vapor
Templating with Stencil in a Kitura project

Using the Leaf templating engine in Vapor
Leaf is Vapor's official templating engine and it was created specifically for Vapor. With the
template engine, you'll find it easy to pass information from the Swift source code to the
Leaf template. The compiled templating source code will then be used to render the final
HTML content automatically for you.

There are many different reasons for using a template language. First, you can use
templates to help reuse code that's shared across multiple web pages. Next, you can use
various tagging syntax to help generate code dynamically and programmatically. Finally,
you can embed one template into another and doing so helps you accelerate the
development of content.

You will continue the myJournal project from the previous chapter and use the Leaf
template engine to enhance the project's features.

Working with Template Engines Chapter 6

[101]

Configuring the Leaf templating engine
In order to use Leaf template engine in your Vapor project, you're required to configure for
it using the Swift Package Manager.

In Package.swift, add the Leaf template engine as one of the package dependencies and
include Leaf in the App build target:

// swift-tools-version:4.0
import PackageDescription

let package = Package(
 name: "myJournal",
 dependencies: [
 // A server-side Swift web framework.
 .package(url: "https://github.com/vapor/vapor.git", from: "3.0.0"),
 // Swift ORM (queries, models, relations, etc) built on SQLite 3.
 .package(url: "https://github.com/vapor/fluent-sqlite.git", from:
"3.0.0"),
 // Leaf template engine
 .package(url: "https://github.com/vapor/leaf.git", from: "3.0.0")
],
 targets: [
 .target(name: "App", dependencies: ["FluentSQLite", "Vapor", "Leaf"]),
 .target(name: "Run", dependencies: ["App"]),
 .testTarget(name: "AppTests", dependencies: ["App"])
]
)

You'll typically put your Leaf template files in the /Resources/Views directory. You
won't find this directory if you start your project from Vapor's boilerplate code. Create this
directory now.

In configure.swift, add the code to register and configure the Leaf templating engine:

// File: configure.swift
import Leaf . // [1]
...
public func configure(_ config: inout Config, _ env: inout Environment, _
services: inout Services) throws {
 ...
 /// Register Leaf templating engine
 try services.register(LeafProvider()) // [2]
 ...
 config.prefer(LeafRenderer.self, for: ViewRenderer.self) // [3]
}

Working with Template Engines Chapter 6

[102]

Don't forget to import the Leaf package [1] at the beginning of configure.swift. In
configure(), use services.register() function to register the Leaf templating engine
[2] and add the config.prefer() line towards the end of the configure() function [3].

The Leaf templating engine is ready for you to use.

Using the basic functions of the Leaf templating
engine
After registering and configuring for the Leaf templating engine, you're about to explore
some basic functions offered by Leaf.

Follow these steps to render the main page using Leaf:

First, you need to import the Leaf module into your file. Add this line to1.
routes.swift:

import Leaf

The following shows you the basic syntax of rendering a Leaf template from a2.
route:

router.get { req -> Future<View> in // [1]
 let leaf = try req.make(LeafRenderer.self) // [2]
 let context = [String: String]() // [3]
 return leaf.render("main", context) // [4]
}

There are four steps involved in rendering a page:

Return a future view object in a route's closure1.
Get a handler to the Leaf templating engine from a container2.
Create a Context dictionary used to pass parameters into the template3.
Render the specific Leaf template file with the Context dictionary4.

Since the rendering of a template takes some time, Leaf always renders a template
asynchronously and returns the Future of View [1]. The HTTP request is a
Container in Vapor, so you are able to retrieve a leaf handler from req [2].
The dictionary in [3] is a flexible and direct way for you to pass parameters into
the templating engine during the rendering of the template [4].

Working with Template Engines Chapter 6

[103]

Following the same four-step processing, you can now modify the getTotal()
route handler in /Sources/App/Routes/JournalRoutes.swift from Chapter
5, Setting up Routes and Controllers. Instead of returning String as the HTTP
response, you now add count to the context of template rendering:

...
import Leaf

struct JournalRoutes : RouteCollection {
...
 func getAll(_ req: Request) throws -> Future<View> {
 let total = journal.total()
 let leaf = try req.make(LeafRenderer.self)
 let context = ["count": total]
 return leaf.render("main", context)
 }
...
}

Create the corresponding main.leaf file in the /Resources/Views directory:3.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Hello World</title>
</head>
<body>
<h1>Hello World</h1>
Count: #(count)
</body>
</html>

It looks like a normal HTML page, except that you see tag #(count), which
instructs the Leaf templating engine to replace it with the count value passing in
via Context.

Use your web browser and direct it to localhost:8080/journal/total:4.

Working with Template Engines Chapter 6

[104]

Viola! Your myJournal application now returns a real web page for your client's request.

Using variables and tags in Leaf templating
The Leaf templating engine uses the # token to represent a tag, as seen in #(count) from
the previous HTML code. The Leaf tag has general syntax: #Name(Args){ Body },
where Name is the tag's name, Arg is a list of expected arguments, and Body is an optional
element that often includes additional content.

Vapor provides many useful tagging usages and they are summarized in the following:

Tag Usage
#capitalize(Var) Converts Var into capitals #capitalize(title)

#uppercase(Var)
Converts Var into all
uppercase

#uppercase(title)

#lowercase(Var)
Converts Var into all
lowercase

#lowercase(title)

#if(Condition)
Executes only if Condition
is met

#if(title) {
The title is #(title) }

#contains(Array, Val)
Returns true if Val is
contained in Array

#if(contains(users,
"John")) { Welcome! }

#for(Var in Array) {} Loops Var over Array #for(user in users){
#(user) }

#count(Array)
Returns the number of items in
Array

We have #count(users)
participants

#set(Tag){} Sets up a tag to be used by Leaf
#set("title"){ Welcome to
My Home }

#get(Tag)
Gets the content associated
with Tag #get("title")

#embed(Page)
Inserts another Page into the
current one

#embed("footer")

Setting a variable
Use #set(){} to declare a new tag (variable). For example, you can set the title of a page,
as follows:

\#set("title") { Welcome to my home page }

Working with Template Engines Chapter 6

[105]

Working with context
The context dictionary allows you to pass custom data to the renderer for main.leaf:

let context = ["title": "Welcome to my homepage", "user": "John Doe"]
return try leaf.make("main", context)

The previous code will expose title and user to your Leaf template.

In main.leaf, you can use the title and user tags passed in using Context:

<h1>#(title)</h1>
<p>Greetings, #(user). Welcome to my homepage.</p>

Looping through a collection
To loop through a collection, you can use the #for tag. For example, you can pass three
users in Context:

let context = ["users": ["John", "Angus", "Mary"]]

In the HTML code, you can loop through an array of items using Leaf's #for tag:

<h2>Event Participants</h2>
#for(user in users){ #(user) }

Within the #for loop, you could use the following loop variables to handle more complex
situation:

isFirst: true if the current iteration is the first one
isLast: true if the current iteration is the last one
index: count of the current iteration

The following HTML sample code shows how to use the isLast variable to format the last
user in a list:

This year's participants are
#for(user in users){
 #if(isLast) { and #(user). }
 else { #(user), }

Working with Template Engines Chapter 6

[106]

Checking conditions
Vapor template uses #if(){} else {} to check a condition, as in the following
example:

#set("guest") { John }
#if(user == guest) {
 You're welcome.
} else {
 Sorry, this site is not open to public.
}

When the tag is part of your condition, you can omit # for the inner tag, like this:

#if(lowercase(user) == lowercase(guest)) {
 ...
}

Embedding other templates
Leaf also allows you to insert another Leaf template into your template file using the
#embed tag:

#embed("another")

When doing this, you should omit the template's file extension.

A common practice for template embedding is to include header and footer templates in
each of your pages:

#embed("header")
#embed("footer")

This makes it easy for updating and propagating changes to all of your web pages.

You can also automate the creation of a child page using a master template:

#set("user") { John Doe }
#embed("master")

master.leaf may look like this:

<html>
<head><title>Welcome to My Homepage</title></head>
<body>Hi #get(user), have a great day!</body>
</html>

Working with Template Engines Chapter 6

[107]

You can use #set() to set up and assign a variable, then use #get() to retrieve it later on.

Adding more Leaf templates
Now you can add more Leaf templates to the myJournal application:

Create header and footer templates that will be shared by every other web pages.1.
The following is a sample header template:

//File: header.leaf
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>#(title)</title>
</head>
<body>

Similarly, following is a sample footer template:

// footer.leaf
<hr>
<center>
#(title) Application by #(author)
</center>
</body>
</html>

Modify the main.leaf template to embed both the header and footer templates:2.

// main.leaf
#embed("header")
<h1>#(title)</h1>
Count: #(count)
#embed("footer")

In the getTotal() route handler, add title, author, and count to the3.
context dictionary for the templating engine:

// journalroutes.swift
let title = "My Journal"
let author = "Angus"
func boot(router: Router) throws {
...
 func getTotal(_ req: Request) throws -> Future<View> {
 let total = journal.total()

Working with Template Engines Chapter 6

[108]

 let count = "\(total)"
 let leaf = try req.make(LeafRenderer.self)
 let context = ["title": title, "author": author, "count":
count]
 return leaf.render("main", context)
 }
...

Execute localhost:8080/journal/total again to check everything is4.
running as expected:

Displaying all journal entries
You can further enhance the getTotal() feature by turning it into a main page that
displays all journal entries in a single web page:

Create the JournalContext struct that is Encodable:1.

struct JournalRoutes : RouteCollection {
...
 struct JournalContext : Encodable {
 let title: String
 let author: String
 let count: String
 let entries: [Entry]
 }
...
}

You use the Encodable struct to represent all parameters you pass into the Leaf
templating engine. The last parameter is the entire dictionary of Entry.

Working with Template Engines Chapter 6

[109]

Add a new function, readAll(), in your JournalController() class:2.

//: Read all journal entries
func readAll() -> [Entry] {
 return entries
}

In getTotal(), it simply passes everything including the entries dictionary to3.
the Leaf engine:

func getTotal(_ req: Request) throws -> Future<View> {
 let total = journal.total()
 let entries : [Entry] = journal.readAll()
 let count = "\(total)"
 let leaf = try req.make(LeafRenderer.self)
 let context = JournalContext(title: title, author: author,
count: count, entries: entries)
 return leaf.render("main", context)
}
```

You use the #for() tag to loop through each item of entries, displaying each4.
item's title and content:

// main.leaf
#embed("header")
<h1>#(title)</h1>

#for(entry in entries) {
    <hr>
    <h2>#(entry.title)</h2>
    #(entry.content)
}
#embed("footer")

The result looks like the following screenshot:5.



Working with Template Engines Chapter 6

[ 110 ]

Completing the features
Following the similar steps in the previous example, you can complete the template
rendering for all other CRUD routes:

The updated JournalRoutes is shown in the following:1.

import Vapor
import Leaf

struct JournalRoutes : RouteCollection {
    let journal = JournalController()
    let mainPage = "/journal/all"
    let title = "My Journal"
    let author = "Angus"
    struct JournalContext : Encodable {
        let title: String
        let author: String
        let count: String
        let entries: [Entry]
    }
    struct EntryContext : Encodable {
        let title: String
        let author: String



Working with Template Engines Chapter 6

[ 111 ]

        let index: Int
        let entry: Entry
    }
    func boot(router: Router) throws {
        let topRouter = router.grouped("journal")
        topRouter.get("", use: getAll)
        topRouter.get("all", use: getAll)
        topRouter.get("create", use: createEntry)
        topRouter.post("new", use: newEntry)
        let entryRouter = router.grouped("journal", Int.parameter)
        entryRouter.get("get", use: getEntry)
        entryRouter.post("edit", use: editEntry)
        entryRouter.get("remove", use: removeEntry)
    }
    func getAll(_ req: Request) throws -> Future<View> {
        let total = journal.total()
        let entries : [Entry] = journal.readAll()
        let count = "\(total)"
        let leaf = try req.make(LeafRenderer.self)
        let context = JournalContext(title: title, author: author,
count: count, entries: entries)
        return leaf.render("main", context)
    }
    func createEntry(_ req: Request) throws -> Future<View> {
        let leaf = try req.make(LeafRenderer.self)
        let context = ["title": title, "author": author]
        return leaf.render("new", context)
    }
    func newEntry(_ req: Request) throws -> Future<Response> {
        let newID = UUID().uuidString
        return try req.content.decode(Entry.self).map(to:
Response.self) { entry in
            if let result = self.journal.create(Entry(id: newID,
                                                      title:
entry.title,
                                                      content:
entry.content)) {
                print("Created: \(result)")
            }
            return req.redirect(to: self.mainPage) // [1]
        }
    }
    func getEntry(_ req: Request) throws -> Future<View> {
        let index = try req.parameters.next(Int.self)
        let leaf = try req.make(LeafRenderer.self)
        var entry = Entry(id: "-1")
        if let result = journal.read(index: index) {
            entry = result



Working with Template Engines Chapter 6

[ 112 ]

        }
        let context = EntryContext(title: title, author: author,
index: index, entry: entry)
        return leaf.render("entry", context)
    }
    func editEntry(_ req: Request) throws -> Future<Response> {
        let index = try req.parameters.next(Int.self)
        return try req.content.decode(Entry.self).map(to:
Response.self) { entry in
            if let result = self.journal.update(index: index,
                                                entry: Entry(id:
entry.id,
                                                             title:
entry.title,
content: entry.content)) {
                print("Updated: \(result)")
            }
            return req.redirect(to: self.mainPage)
        }
    }

    func removeEntry(_ req: Request) throws -> Response {
        let index = try req.parameters.next(Int.self)
        if let result = self.journal.delete(index: index) {
            print("Deleted: \(result)")
        }
        return req.redirect(to: mainPage)
    }
}

Once a new entry has been added to your local storage, as shown in the2.
newEntry() function [1], you can redirect the response to the main page like
this: 

return req.redirect(to: self.mainPage)



Working with Template Engines Chapter 6

[ 113 ]

Now add all of the templates for the main page, as shown in the following. First3.
is the header template:

// header.leaf
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>#(title)</title>
</head>
<body>

This is followed by the footer template:

// footer.leaf
<hr>
<center>
#(title) Application by #(author).
</center>
</body>
</html>

And then there's the main template:

// main.leaf
#embed("header")
<h1>#(title)</h1>

[  <a href="/journal/create">Add New Entry</a> ]
<P>
#for(entry in entries) {
    <hr>
    <h2>#(entry.title)</h2>
    #(entry.content)
    <BR> [  <a href="./#(index)/get">Edit</a> |  <a
href="./#(index)/remove">Remove</a> ]
    <BR> <em>Index:#(index) out of #(count); ID: #(entry.id);</em>
}
#embed("footer")

The rendering output of the main page looks like the following screenshot:



Working with Template Engines Chapter 6

[ 114 ]

There are links for adding a new entry or editing/removing each existing entry.

The Add New Entry link takes a user to a form for submitting new entries4.
for title and content:

// new.leaf
#embed("header")
<h1>Create a Journal Entry</h1>
<form action="/journal/new/" method="post">
<input name="id" type="hidden" value="-1" />
<input name="title" type="text" placeholder="Enter title here" />
<P>
<textarea name="content" placeholder="Enter your journal content
here..." rows="5">

</textarea>
<P>
<button type="submit" class="btn btn-lg btn-
primary">Submit</button>
</form>
#embed("footer")

The previous code is a simple HTML form that contains different types of
elements, including a hidden text field for id, a text field for title, a textarea
for content, and a Submit button.



Working with Template Engines Chapter 6

[ 115 ]

When rendered, the new.leaf template displays a form for a user to enter the
title and content:

After form submission, the user will be redirected to the main page.

If the user clicks on the Edit link underneath an entry, another form will be used:5.

// entry.leaf
#embed("header")
<h1>Edit a Journal Entry</h1>
<form action="/journal/#(index)/edit/" method="post">
<input name="id" type="hidden" value=#(entry.id)" />
<input name="title" type="text" value="#(entry.title)" />
<P>
<textarea name="content" rows="5">
#(entry.content)
</textarea>
<P>
<button type="submit" class="btn btn-lg btn-
primary">Submit</button>
<BR>
<em>Index:#(index); ID: #(entry.id)</em>

#embed("footer")

The HTML form for editing an entry is similar to that of creating an entry, except
that all of the input and textarea elements will be populated with the original
values.

The output of entry.leaf template is rendered as follows:



Working with Template Engines Chapter 6

[ 116 ]

The hidden id input field is populated with the actual id value of entry that the
user selected so the updated entry will continue to use the same ID even after
updating. The form will also be populated with the current title and content. 

That's all. Now you have a quite functional web application that allows users to submit a
new journal entry and edit or remove an existing entry.

Templating with Stencil in a Kitura project
Unlike Vapor, which adopts Leaf as its own templating engine, Kitura allows support for
multiple templating engines through its TemplateEngine protocol. Kitura's
templating engine API provides a unified interface for multiple templating engines.
Currently three templating engines are included in Kitura:

Stencil
Mustache
Markdown

You'll learn about Stencil extensively in this chapter because Stencil has the best coverage
and support among the three templating engines in the Kitura's developer community.
Stencil works similarly to Vapor's Leaf in generating dynamic frontend web pages. The
templating engine scans for variables and tags in a template file and replaces them with
actual values or places control flows that render filtered content. Given Stencil's maturity, it
offers a richer set of features such as loops, conditions, blocks, filters, and tags. Like Vapor's
Leaf, Stencil is also easy to extend its features by adding your own custom filters and tags.



Working with Template Engines Chapter 6

[ 117 ]

While the template is useful for your Kitura project, it is also limited in programmability.
So, don't add too much data handling logic to your template code. Limit your template
code to handle mainly displaying logic.

Learning the basic functions of the Stencil
templating engine
The Stencil templating engine replaces variables and tags in a template file with actual
values in runtime or places control flows that render filtered content.

All Stencil template files have the *.stencil file extension. Typically, you'll start a Stencil
template file from a HTML file and instrument the HTML syntax with Stencil variables,
tags, and filters. For communicating to the template from your Swift code, you'll pass a
context to a template when calling the function to render the template file. The context
contains values for variables and data structures that will be used in the template.

Using variables and tags in Stencil templating
Stencil uses double curly braces like : {{ Var }} for a variable that prints to the template
output. For example, Stencil looks up the variable title in the context and evaluates it:

<title>{{ title }}</title>

Stencil also uses {% ... %} for tags and {# ... #} for comments.

The following tag allows you to have a loop through every element in the entries array:

{% for entry in entries %}
  {{ entry.title }}
{% endfor %}

The following comment will be ignored and not included in the rendering of the template:

{# This comment will be hidden. #}



Working with Template Engines Chapter 6

[ 118 ]

Summarizing useful filters and tags in Stencil
The following table is a list of useful built-in filters in Stencil:

Filter Description Usage
{{Var|capitalize}} Converts Var into capitals {{"hobbies"|capitalize}}

{{Var|uppercase}} Converts Var into uppercase {{"hobbies"|uppercase}}

{{Var|lowercase}} Converts Var into lowercase {{"hobbies"|lowercase}}

{{Var|default:Str}} Uses Str if Var not found {{name|default:"nobody"}}

{{Array|join:", "}} Joins an Array of items {{entries|join:", " }},
entries is an array

{{String|split:", "}}
Splits a String into substrings
by separator

{{"Apple, Orange,
Pear"|split:", " }}

The following table is a list of useful built-in tags:

Tag Description Usage
{% for Var in Array %}
Block{% endfor %} Loop Var over Array {% for entry in entries %} ID

is entry.id {% endfor %}
{% if Var %} Block{%
endif %}

if condition {% if entry %} ID is entry.id {%
endif %}

{% include Str %} Include another template {% include "header.html" %}

{% extends Str %} Extends the template from
a parent template {% extends "base.html" %}

{% filter Var %} Block
{% endfilter %}

Filters the contents of a
block

{% filter
lowercase|captialize %} Text
goes to here: {% endfilter %}

The functionality of some of these tags can be further expanded. For example, the if built-
in tag can be combined with the and, or, and not operators:

{% if A and B %}
    Both A and B are present.
{% endif %}

{% if not A or B %}
    None of A or B is there.
{% endif %}



Working with Template Engines Chapter 6

[ 119 ]

Configuring the Stencil templating engine
With the introduction of Stencil template language in the previous section, you're now
ready to add code to your myJournal Kitura application.

First of all, you're required to add Stencil as a dependency for your project. You can start
with the same myJournal project from the last chapter. To add Stencil to your project, open
the Package.swift file in Xcode and add the Stencil package to the dependencies and
target arguments as shown in the following code:

// swift-tools-version:4.0
import PackageDescription

let package = Package(
    // ...
      .package(url:
"https://github.com/IBM-Swift/Kitura-StencilTemplateEngine.git", from:
"1.10.0"),
    ],
    targets: [
      .target(name: "myJournal", dependencies: [ .target(name:
"Application"), "Kitura" , "HeliumLogger", "KituraStencil"]),
      // ...
    ]
)

Next, you'll develop code that works with Stencil templates and implement those
templates.

Developing code working with Stencil templates
After configuring your project for Stencil template engine, there are a couple of steps to
take before you can use Stencil.

First, you need to import the KituraStencil module into your Application.swift file.
Add this line after the import Dispatch statement:

import KituraStencil

Next, you need to tell Kitura to use the default Stencil templating engine since Kitura has
three built-in templating engines you can choose from.

Add this line before you call initializeHealthRoutes(app: self):

router.setDefault(templateEngine: StencilTemplateEngine())



Working with Template Engines Chapter 6

[ 120 ]

Adding Stencil templates to your Kitura project
Since your project has been configured for the Stencil templating engine, you can now add
several Stencil templates that you'll need later. All of the templates should be placed under
the Views folder in a Kitura project.

First of all, add the header and footer templates that are shared by other Stencil templates.

Add the /Views/header.stencil template:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>{{ title }}</title>
</head>
<body>

Also, add the /Views/footer.stencil template:

<hr>
<center>
{{ title }} Application by {{ author }}.
</center>
</body>
</html>

Now, add the /Views/main.stencil template:

% include "header.stencil" %}

<h1>{{ title }}</h1>

[  <a href="/journal/create">Add New Entry</a> ]
<P>
{% for entry in entries %}
<hr>
<h2>{{ entry.title }}</h2>
{{ entry.content }}
<BR> [  <a href="/journal/get/{{ forloop.counter0 }}">Edit</a> |  <a
href="/journal/remove/{{ forloop.counter0 }}">Remove</a> ]
<BR> <em>Index:{{ forloop.counter0 }} out of {{ count }}; ID: {{ entry.id
}};</em>
{% endfor %}

{% include "footer.stencil" %}



Working with Template Engines Chapter 6

[ 121 ]

The main.stencil template is used to render the main web page, which lists all of your
journal entries using the for loop syntax, {% for entry in entries %}.

Next, you need a template that renders a form for the user to create a new journal entry.

Add the /Views/new.stencil template:

{% include "header.stencil" %}
<h1>Create a Journal Entry</h1>
<form action="/journal/new" method="post" enctype="application/x-www-form-
urlencoded" target="/journal/all">
<input name="id" type="hidden" value="-1" />
<input name="title" type="text" placeholder="Enter title here" />
<P>
<textarea name="content" placeholder="Enter your journal content here..."
rows="5">

</textarea>
<P>
<button type="submit" class="btn btn-lg btn-primary">Submit</button>
</form>
{% include "footer.stencil" %}

When creating a new entry, the id field will be automatically generated. In the Create a
Journal Entry form, the value of the hidden id input element will be simply ignored. After
a new entry is submitted and created, Kitura will take you back to the main screen.

The last template you're going to need is a form for the user to edit a journal entry.

Add the /Views/entry.stencil template:

{% include "header.stencil" %}
<h1>Edit a Journal Entry</h1>
<form action="/journal/edit/{{ index }}" method="post"
enctype="application/x-www-form-urlencoded">
<input name="id" type="hidden" value="{{ entry.id }}" />
<input name="title" type="text" value="{{ entry.title }}" />
<P>
<textarea name="content" rows="5">
{{ entry.content }}
</textarea>
<P>
<button type="submit" class="btn btn-lg btn-primary">Submit</button>
</form>
<BR> <em>Index:{{ index }}; ID: {{ entry.id }};</em>
{% include "footer.stencil" %}



Working with Template Engines Chapter 6

[ 122 ]

Those are all of the templates you will need. Next, you'll learn how to interact with the
Stencil templates from your Swift source code.

Displaying all journal entries
With all of the templates in place, you can now proceed to add all of the required routes
and their handler functions:

Create a new file, JournalRoutes.swift, in the /Application/Routes1.
directory.
Add the following code to the newly create file:2.

// file: /Application/Routes/JournalRoutes.swift
import Foundation
import KituraStencil
import Kitura

func initializeJournalRoutes(app: App, journal: JournalController)
{ // [1]
    let mainPage = "/journal/all" // [2]
    let title = "My Journal" // [3]
    let author = "Angus" // [4]
    struct JournalContext : Encodable { // [5]
        let title: String
        let author: String
        let count: String
        let entries: [Entry]
    }

    app.router.get("/journal/all") { ... } // [6]
    app.router.get("/journal/create") { ... }
    app.router.post("/journal/new") { ... }
    app.router.get("/journal/get/:index?") { ... }
    app.router.post("/journal/edit/:index?") { ... }
    app.router.get("/journal/remove/:index?") { ... }
}

The new file has the following design steps:3.
Implement the initializeJournalRoute(app, journal) function1.
that takes in the application's context and a reference to the persistence
encapsulated in JournalController
Declare the master return path2.
Declare the title setting3.
Declare the author setting4.



Working with Template Engines Chapter 6

[ 123 ]

Declare the JournalContext Encodable structure5.
Process different routes6.

The JournalContext Encodable structure in [5] previously is used to store and
pass context into the template. You'll see how JournalContext is filled and gets 
passed to response.render() during the rendering of a template:

app.router.get("/journal/all") { _, response, _ in
        let total = journal.total() // [1]
        let entries : [Entry] = journal.readAll() // [2]
        let count = "\(total)"
        let context = JournalContext(title: title,
                                      author: author,
                                      count: count,
                                      entries: entries) // [3]
        do {
            try response.render("main", with: context) // [4]
        } catch let error {
            response.send(error.localizedDescription)
        }
    }

The previous Display All code does the following:4.
Queries JournalController for the total number of entries1.
Gets all entries into an array2.
Instantiates a new JournalContext object initialized with3.
appropriate data
Gets response to render the main.stencil template with the Encodable4.
structure context

The raw route handling allows you to work with lower level operations
compared to the codable route handling using the objects request, response, and
next. In the previous code, you have used response to render a template page
but didn't have a chance to use request and next. As you can see, these two
objects are marked with _ in the function's arguments.

When rendering the Display All route, you'll see a web page similar to the5.
following:



Working with Template Engines Chapter 6

[ 124 ]

Completing the features
You'll continue to finish the other five routes in initializeJournalRoutes(). The
/journal/create route will display a form for the user to create a new entry and its
companion route, /journal/new, will process the form. For an existing entry, the
/journal/get/:index? route will display a form for the user to make changes to an
existing form and the /journal/edit/:index? route will process the changes. Lastly, the
/journal/remove/:index? route will delete an existing entry and bring you back to the
main page.

Creating a new journal entry
This route renders a new form so a user can submit a new entry:

app.router.get("/journal/create") { request, response, next in
        response.headers["Content-Type"] = "text/html; charset=utf-8"



Working with Template Engines Chapter 6

[ 125 ]

        try response.render("new", context: ["title": title, "author":
author])
    }

It doesn't do too much except tell the response to render the new.stencil template. The
follow web page will be generated if you point your web browser to
localhost8080:/journal/create:

Once the form's data is filled and submitted to /journal/new via HTTP POST, the data will
be processed accordingly to create a new entry in JournalController:

app.router.post("/journal/new") { request, response, next in
        guard let entry = try? request.read(as: Entry.self) // [1]
            else {
                return try response.status(.unprocessableEntity).end()
        }

        let newID = UUID().uuidString // [2]
        if let result = journal.create(Entry(id: newID,
                                             title: entry.title,
                                             content: entry.content)) { //
[3]
            print("Created: \(result)")
            try response.redirect(mainPage) // [4]
        }
    }



Working with Template Engines Chapter 6

[ 126 ]

The previous piece of code creates a new entry in the following steps:

An Optional of the Entry Codable data structure is read from the request1.
object and unwrapped
A new ID is created using Swift's UUID utility function2.
A new Entry object is created and fed into the create() function of3.
JournalController

This redirect the response to the default path stored in mainPage4.

This route handler simply processes the HTTP request it has, creates a new UUID, and then
delegates the creation of a new entry to JournalController.  

Editing a journal entry
Similarly, an existing entry can be edited and updated. The following route handling code
renders a form filled with your requested entry:

app.router.get("/journal/get/:index?") { request, response, next in
    guard let index = request.parameters["index"] else {
        return try response.status(.badRequest).send("Missing entry
index").end()
    }
    guard let idx = Int(index) else {
        return try response.status(.badRequest).send("Invalid entry
index").end()
    }
    guard let entry = journal.read(index: idx) else {
        return try response.status(.unprocessableEntity).end()
    }
    try response.render("entry", context: ["title": title, "author":
author, "index": idx, "entry": entry])
}

Kitura allows you to pass the URL parameter to your route handling code. Use the
":index?" format to encode a URL parameter. To retrieve the parameter, you use
request.parameters["index"] in your Swift code.



Working with Template Engines Chapter 6

[ 127 ]

The entry.stencil template is used to render the form:

Once the user submits the form, the filled data in the form will be used to replace the entry
data by index:

app.router.post("/journal/edit/:index?") { request, response, next in
    guard let index = request.parameters["index"] else {
        return try response.status(.badRequest).send("Missing entry
index").end()
    }
    guard let idx = Int(index) else {
        return try response.status(.badRequest).send("Invalid entry
index").end()
    }
    if let entry = try? request.read(as: Entry.self) {
        if let result = journal.update(index: idx, entry: entry) {
            print("Updated: Entry[\(index)]: \(result)")
            try response.redirect(mainPage)
        }
    }
    try response.status(.unprocessableEntity).end()
}

The implementation is similar to the route handling code used to create a new entry. It uses
the update() function of JournalController to replace the entry by index.



Working with Template Engines Chapter 6

[ 128 ]

Removing a journal entry
Finally, the following code demonstrates how the entry is removed:

app.router.get("/journal/remove/:index?") { request, response, next in
    guard let index = request.parameters["index"] else {
        return try response.status(.badRequest).send("Missing entry
index").end()
    }
    guard let idx = Int(index) else {
        return try response.status(.badRequest).send("Invalid entry
index").end()
    }
    if let entry = journal.delete(index: idx) {
        print("Deleted: Entry[\(index)]: \(entry)")
        try response.redirect(mainPage)
    }
    try response.status(.unprocessableEntity).end()
}

The route handling process follows the similar step to decipher the URL parameter from
request. Then it calls JournalController.delete() to update the deletion of that entry
by index.

Summary
In this chapter, you learned all of the basic coding techniques you need to work with
templating engines. For your Vapor project, you learned how to set up the Leaf templating
engine and create Leaf templates. You also modified your code from the previous chapter
to work with the Leaf templates. In the second part of this chapter, you continued your
coding exercise with Kitura's Stencil templating engine. You were introduced to the usage
of Stencil and then proceeded to create Stencil templates and add code that works with
them.

In the next chapter, you are going to learn how to make the rendered web pages more
professional-looking with Bootstrap. 



7
Bootstrapping Your Design

Bootstrap is an open source frontend framework, developed by Twitter, to add pre-
designed components to your web pages, making it easy to beautify your web content,
even if you are not a digital artist. You can buy components in various styles developed by
professional artists from Bootstrap marketplaces and add purchased stylish components to
your web app for rapid design and development. This chapter will introduce you to the
Bootstrap framework, consisting of a collection of CSS and JavaScript libraries, and explain
how the Bootstrap framework allows you to build responsive websites easily. You'll follow
step-by-step instructions for inserting Bootstrap components into your templates and learn
how to beautify different UI elements in your template with Bootstrap. At the end, you'll
learn how to include Bootstrap in your project when you are ready to deploy your web
apps.

The following topics will be covered in this chapter:

Getting started with the Bootstrap framework
Using Bootstrap for a Vapor application
Using Bootstrap for Kitura

Getting started with the Bootstrap
framework
You've learned about Leaf and Stencil templating engines in Chapter 6, Working with
Template Engines. The templating engines provide you with a very convenient way to 
interact and render raw HTML pages. But that is not sufficient if you want to deliver a
professional-looking design for your web content. For professional-looking design, you'll
have to leverage a frontend component library for web styling. One of the most popular
web styling component libraries is Bootstrap, an open source library from Twitter. It
provides enhanced styling and interactivity features for frontend user interface
development. In addition, Bootstrap is highly optimized for mobile devices.



Bootstrapping Your Design Chapter 7

[ 130 ]

A Bootstrap application builds on top of existing web technologies, such as HTML for web
content, CSS for styling, JavaScript and jQuery for scripting, and Sass for stylesheet
language. Bootstrap adds a complete portfolio of UI components:

Layout: Grid, Breakpoints, Z-Index, Code, Images, Tables, and Figures
UI elements: Button, Badge, Dropdown, Form, Input, Progress, NavBar, and
Tooltips
Utilities: Border, Carousel, Colors, Display, Position, Sizing, Spacing, Vertical
Align, and Visibility

While this is not a complete list of components in Bootstrap, it does show an extended
coverage of UI components by the Bootstrap library. You're encouraged to visit Bootstrap's
official website for examples, detailed documentation, and other useful information:
https://getbootstrap. com.

Setting up for Bootstrap
There are different ways to set up your project in preparation for use of the Bootstrap
component library. You may download the official version of CSS and JavaScript libraries
and include them as part of your third-party library dependency. A recommended
approach, however, is to skip the download, and use the Bootstrap CDN service to deliver
a cached version of compiled and minimized CSS and JavaScript files. Most web browsers
have been optimized, so popular libraries such as Bootstrap are available almost
immediately.

For simplicity, we'll use the CDN approach in this chapter.

Inserting the stylesheet
It's actually very easy to set up your web project for Bootstrap. First, add this stylesheet link
to your header section, marked with <head>, before all other stylesheets. It instructs the
web browser to load the Bootstrap stylesheet first:

<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.
css" integrity="sha384-
Smlep5jCw/wG7hdkwQ/Z5nLIefveQRIY9nfy6xoR1uRYBtpZgI6339F5dgvm/e9B"
crossorigin="anonymous">

As you can see, the stylesheet is downloaded directly from stackpath.bootstrapcdn.com.

https://getbootstrap.com
https://getbootstrap.com
https://getbootstrap.com
https://getbootstrap.com
https://getbootstrap.com
https://getbootstrap.com
https://getbootstrap.com
http://stackpath.bootstrapcdn.com


Bootstrapping Your Design Chapter 7

[ 131 ]

Adding dependency for JavaScript files
Next up, we'll add the following three scripts to the end of the body section, right
before  <body>:

<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
integrity="sha384-
q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
crossorigin="anonymous"></script>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min
.js" integrity="sha384-
ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
crossorigin="anonymous"></script>
<script
src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/js/bootstrap.min.js
" integrity="sha384-
o+RDsa0aLu++PJvFqy8fFScvbHFLtbvScb8AjopnFD+iEQ7wo/CG0xlczd+2O/em"
crossorigin="anonymous"></script>

The first two scripts are used by Bootstrap:

jQuery is a small and fast library that helps HTML document traversal and1.
processing extremely easy
Popper is a positioning engine that makes it possible to position an element near2.
a reference element

The last one is the Bootstrap script, which is also available from
stackpath.bootstrapcdn.com.

That's all required that's for you to start using Bootstrap in your web project!

Using a starter template in Bootstrap
Listed here is a starter template that you can use as a basis for your own work:

<!doctype html>
<html lang="en">
  <head>
    <!-- Required meta tags -->
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width, initial-scale=1,
shrink-to-fit=no">

    <!-- Bootstrap CSS -->
    <link rel="stylesheet"

http://stackpath.bootstrapcdn.com


Bootstrapping Your Design Chapter 7

[ 132 ]

href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.
css" integrity="sha384-
Smlep5jCw/wG7hdkwQ/Z5nLIefveQRIY9nfy6xoR1uRYBtpZgI6339F5dgvm/e9B"
crossorigin="anonymous">

    <title>Hello, world!</title>
  </head>
  <body>
    <h1>Hello, world!</h1>

    <!-- Optional JavaScript -->
    <!-- jQuery first, then Popper.js, then Bootstrap JavaScript  -->
    <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
integrity="sha384-
q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
crossorigin="anonymous"></script>
    <script
src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min
.js" integrity="sha384-
ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
crossorigin="anonymous"></script>
    <script
src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/js/bootstrap.min.js
" integrity="sha384-
o+RDsa0aLu++PJvFqy8fFScvbHFLtbvScb8AjopnFD+iEQ7wo/CG0xlczd+2O/em"
crossorigin="anonymous"></script>
  </body>
</html>

The starter HTML template begins with the <!DOCTYPE> tag to specify the HTML5
language and version. The HTML template is divided into the header
section, <head></head>, and the body section, <body></body>. You'll put all of your
meta tags, CSS, and links for fonts and images in the header section. For enhanced
performance, the JavaScript files are usually placed at the bottom of the document, just
before the closing tag, </body>.

In the header, there is a responsive viewport meta tag added for optimized mobile-display
rendering:

<meta name="viewport" content="width=device-width, initial-scale=1, shrink-
to-fit=no">

This line allows mobile web browsers to render Bootstrap elements appropriately.
Bootstrap follows the principle of "mobile first", so the design of all user interface elements
have been optimized and tested for an array of major mobile devices.

Next, you're going to use a couple of major features that Bootstrap has to offer.



Bootstrapping Your Design Chapter 7

[ 133 ]

Using basic Bootstrap components
Bootstrap offers a big collection of responsive frontend components for your web user
interface. The library is organized into four categories:

Layout
Content
Component
Utilities

You'll learn how to use Bootstrap's grid system to organize the layout, then apply
jumbotron, the navigation bar, form controls, and glyphicons to the web content.

Organizing content into grids
Bootstrap wraps web content into its basic layout element, called containers. The container
layout is required for its powerful grid system, so you'll see the container syntax 
extensively in any Bootstrap empowered web content. Here are the basics of container
usage:

A basic container has the following syntax:1.

<div class="container">
  <!-- Content here -->
</div>

You can specify a container to occupy the entire width of the viewport using2.
container-fluid:

<div class="container-fluid">
  <!-- Content here -->
</div>

With the container layout, you can organize a web page into several sections:3.

<body>
<section class="sec1" id="sec1">
<div class="container">
   <!-- Section 1 goes to here -->
   Container 1
</div>
</section>
<section class="sec2" id="sec2">
<div class="container">



Bootstrapping Your Design Chapter 7

[ 134 ]

   <!-- Section 2 goes to here -->
   Container 2
</div>
</section>
...
<section class="secN" id="secN">
<div class="container">
   <!-- Section N goes to here -->
   Container N
</div>
</section>
</body>

To illustrate the effect of the preceding container code for you, a CSS file has been4.
used to create the following diagram, with a colored bounding box for each
container:

With Bootstrap's grid system, you can layout and align content with containers,5.
rows, and columns. For example, the following layout code arranges the content
in a container into one row and three columns:

<div class="container">
  <div class="row">
    <div class="col-4">
      One of three columns
    </div>
    <div class="col-4">
      One of three columns
    </div>
    <div class="col-4">
      One of three columns
    </div>
  </div>
</div>

The result looks like this:



Bootstrapping Your Design Chapter 7

[ 135 ]

Bootstrap divides a row into roughly 12 columns. For three equally-spaced6.
columns, you'll assign four original columns to each new column using "col-4".
There are also other grid options, such as .col-sm, .col-md, .col-lg, and
.col-xl, for small, medium, large, and extra-large columns.
To create an equal-width multi-row grid, you can insert a .w-100 to the column7.
break, as shown here:

<div class="container">
  <div class="row">
    <div class="col-6">
      first column of first row
    </div>
    <div class="col-6">
      second column of first row
    </div>
    <div class="w-100"></div>
    <div class="col-6">
      first column of second row
    </div>
    <div class="col-6">
      second column of second row
    </div>
  </div>
</div>

And here is the result:

Displaying a jumbotron with parallax animation
A jumbotron is a big banner that draws the viewer's attention to special information in
your web content. You'll typically add a jumbotron at the beginning of a page for heading
information, as shown here:

<!--Jumbotron-->
<div class="jumbotron banner-align-top" id="myBanner">



Bootstrapping Your Design Chapter 7

[ 136 ]

  <div class="banner-background text-center" style="background-image:
url(img/pier.png);">
      <div class="container text-center" id="banner-size">
        <h2 class="banner-title">My Journal</h2>
        <h3 class="banner-subtitle">The Path of Heart!</h3>
      </div>

  </div>
</div>

The jumbotron banner is marked with a pair of <div class="jumbotron"></div> tags.
A background image, pier.png, is used. When rendering, the banner look like this when
scrolling down the web page:

The following is the CSS stylesheet used for the banner:

/*----------- BANNER ---------*/

header {
    padding-bottom:40px;
}

.banner-align-top {
    padding:0;
}



Bootstrapping Your Design Chapter 7

[ 137 ]

.banner-background {
    text-align:center;
    background-position:center center;
    background-repeat:no-repeat;
    background-size:cover;
    background-attachment:fixed;
    overflow:hidden;
}

#banner-size {
    height:600px;
    padding-top:160px;
}

.banner-title {
    font-family:sans-serif;
    font-size:72px;
    line-height:1;
    font-weight:300;
    color:#fff
}

.banner-subtitle {
    font-family:sans-serif;
    font-size:30px;
    line-height:1.4;
    font-weight:300;
    color:#fff;
}

The .banner-background has a fixed background-attachment attribute. This creates a
parallax visual effect, as if the background image is fixed while the foreground content is
moving up, when scrolling down the web page.

Adding a navigation bar
A navigation bar consists of navigation menu items in a tray, typically at the top of a web
page. To use a navigation bar, we wrap a section with .navbar and use parameters such as
.navbar-expand{-sm|-md|-lg|xl}, fixed-top, and scrolling-navbar. The
navigation bar is attached to the top and is fluid (taking up the maximum allowable width)
by default:

<nav class="navbar navbar-expand-lg navbar-dark fixed-top scrolling-
navbar">
    <div class="container">
        <a class="navbar-brand" href="#"><strong>myJournal</strong></a>



Bootstrapping Your Design Chapter 7

[ 138 ]

        <button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#myNavbar" aria-controls="myNavbar" aria-expanded="false"
aria-label="Toggle navigation">
            <span class="navbar-toggler-icon"></span>
        </button>
        <div class="collapse navbar-collapse" id="myNavbar">
            <ul class="navbar-nav mr-auto">
                <li class="nav-item active">
                    <a class="nav-link" href="#">Home <span class="sr-
only">(current)</span></a>
                </li>
                <li class="nav-item">
                    <a class="nav-link" href="#">Admin</a>
                </li>
                <li class="nav-item">
                    <a class="nav-link" href="#">About</a>
                </li>
            </ul>
        </div>
    </div>
</nav>

The navigation bar is collapsible, so the menu items will be hidden when the width of web
page is reduced:

A toggle button, marked with the <button></button> tag, is used to expand the list of
menu items. The menu items will be listed vertically when the view is toggled on:



Bootstrapping Your Design Chapter 7

[ 139 ]

Using form controls
Bootstrap customizes the feel and look of a form with form controls. Form controls enforce
more or less consistent rendering of form displays across different user devices.

Here is an example of Bootstrap's form style:

<!--form-->
<section class="form" id="myForm">
<div class="container">
  <div class="row">
    <div class="col-lg-12">
      <div class="heading">
        <h2>Submit a New Entry</h2>
      </div>
    </div>
  </div>
</div>
<div class="container max-width">
  <div class="row">
  <div class="done">
    <div class="alert alert-success"> <!-- [1] -->
      <button type="button" class="close" data-dismiss="alert">X</button>
      Your message has been submitted.
    </div>
  </div>
   <div class="col-md-12">
        <form>
            <fieldset class="form-group">
                <input type="text" class="form-control" id="title"
placeholder="Title">
            </fieldset>

            <fieldset class="form-group">
                <textarea class="form-control" rows="3" id="content"
placeholder="Content"></textarea>
            </fieldset>
            <button type="submit" class="contact submit">Submit</button>
        </form>
    </div>
  </div>
</div>
</section>



Bootstrapping Your Design Chapter 7

[ 140 ]

The form has a text input field for title and a textarea element for content. Both of them
are styled with the .form-control class. The example also shows how the form uses a
Bootstrap Alert component to display a success message with alert alert-success [1] if
the form has been submitted successfully.

The following are the style elements for the form:

/*----------- FORM ---------*/
input.form-control {
    background:#ccddcc;
    border:solid 1px #557755;
    color:#000000;
    padding:15px 30px;
    margin-right:3%;
    margin-bottom:30px;
    outline:none;
    border-radius: 3;
}

textarea.form-control {
    background:#ccddcc;
    color:#000000;
    border:solid 1px #557755;
    padding:15px 30px;
    margin-bottom:40px;
    outline:none;
    height:200px;
    border-radius: 3;
}

button.entryform.submit {
    background:#557755;
    font-family: sans-serif;
    color:#fff;
    font-size:1em;
    font-weight:400;
    text-align:center;
    margin:0;
    border:none;
    border-radius:3px;
    padding:15px 45px;
}

button.entryform.submit:hover {
    background:#339933;
}



Bootstrapping Your Design Chapter 7

[ 141 ]

.form-control:focus{
    border-color: #339933;
    outline: 0;
}

.done {
    display:none;
}

The rendering of this Bootstrap form control looks like the following:

Reusing glyphicons
Bootstrap 4.0 does not include any glyphicon library by default. However, it recommends
several libraries. One of the recommended glyphicon libraries is Font Awesome. Visit Font
Awesome's official website at https:/ / fontawesome. com and search for the icon you would
like to use in your project. The site even offers a cheat sheet for its massive icon library,
making finding the right icon for your project extremely easy and effortless.

https://fontawesome.com
https://fontawesome.com
https://fontawesome.com
https://fontawesome.com
https://fontawesome.com
https://fontawesome.com
https://fontawesome.com


Bootstrapping Your Design Chapter 7

[ 142 ]

To include Font Awesome in your project, you need to do the following:

You can include this CDN library in the header section of your HTML file for a1.
cached version of the Font Awesome library:

<link rel="stylesheet"
href="https://use.fontawesome.com/releases/v5.2.0/css/all.css"
integrity="sha384-
hWVjflwFxL6sNzntih27bfxkr27PmbbK/iSvJ+a4+0owXq79v+lsFkW54bOGbiDQ"
crossorigin="anonymous">

Then you can use Font Awesome icons directly in your project. The following2.
HTML code shows the usage of five glyphicons:

<!--footer-->
<section class="footer" id="footer">
  <div class="container">
    <div class="row">
      <div class="col-sm">
      <ul>
        <li><i class="fas fa-envelope"></i></li>
        <li><i class="fab fa-facebook"></i></li>
        <li><i class="fab fa-google-plus-g"></i></li>
        <li><i class="fab fa-linkedin"></i></li>
        <li><i class="fab fa-twitter"></i></li>
      </ul>
      <p>
      &copy; 2018 - Simply You<br>
      </p>
          </div>
    </div>
  </div>
</section>

When you reference an icon, you should specify its style prefix, followed by the
icon's name prefixed with "fa-". There are two styles that are free of charge to you:
style prefix "fas" for solid rendering style, and style prefix "fab" for brands style. In
the preceding code, there is a "fas" icon type, followed by four "fab" icons.

The following CSS style attributes are used to format the footer user interface:3.

/*----------- FOOTER ---------*/
.footer {
    background:#557755;
    margin-top:100px;
    position:relative
}



Bootstrapping Your Design Chapter 7

[ 143 ]

.footer .container {
    padding:60px 0 20px;
}

.footer ul {
    margin:0 auto;
    margin-bottom:30px;
    margin-top:10px;
    text-align:center;
    list-style-type:none;
    padding-left:0;
}

/* icon list */
.footer ul li {
  text-align:center;
    display:inline-block;
    background:rgba(0,0,0,0.2);
    color:#fff;
    line-height:45px;
    margin:0 4px;
    width:45px;
    height:45px;
    -webkit-border-radius:3px;
    border-radius:3px;
}

.footer ul li:hover {
    background:#339933;
}

/* Copyright */
.footer p {
    color:#fff;
    font-size:.9em;
    line-height:24px;
    font-weight:300;
    text-align:center;
    text-transform:uppercase;
}



Bootstrapping Your Design Chapter 7

[ 144 ]

The rendered footer looks like this:

Using Bootstrap for a Vapor application
After learning the basics of Bootstrap and choosing icons from the Font Awesome library,
you can start putting everything together to upgrade the feel and look of web pages
rendered by the Leaf templating engine.

To use Bootstrap in your Vapor project, you're required to use the file server middleware.
Simply uncomment the following line in configure.swift:

middlewares.use(FileMiddleware.self) // Serves files from `Public/`
directory

The file server will make all the resource in /Public available for HTTP1.
requests.
Create two subdirectories, /css and /img, under /Public.2.
Copy custom.css and pier.png from the resources for this chapter to3.
/Public/css and /Public/img, respectively.
The CSS stylesheet will be included in header.leaf:4.

<link rel="stylesheet" href="/css/custom.css">

Remember the path for Vapor has to start with /. A common mistake is omitting
it as css/custom.css.

The background image pier.png is used in the banner in header.leaf:5.

<div class="banner-background text-center" style="background-image:
url(/img/pier.png);">

That's it. You can now update all the five Leaf templates with the Bootstrap-enhanced web
design that you finished in previous chapters.



Bootstrapping Your Design Chapter 7

[ 145 ]

Enhancing Leaf templates with Bootstrap
Now, apply the Bootstrap framework to the Leaf templates you created in Chapter 6,
Working with Templating Engines. The application logics in the myJournal application from
the last chapter largely remain unchanged. All changes in this chapter apply to the
templates that will be rendered into web pages for client web browsers.

The rest of the Bootstrap enhanced Leaf templates are described in the following sub-
sections.

header.leaf
First, upgrade the header template Bootstrap elements. Since the header template will be
included by other templates, it reduces a lot of code that is common to every template:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>#(title)</title>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">

<!-- Bootstrap CSS -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.
css" integrity="sha384-
Smlep5jCw/wG7hdkwQ/Z5nLIefveQRIY9nfy6xoR1uRYBtpZgI6339F5dgvm/e9B"
crossorigin="anonymous">

<link rel="stylesheet"
href="https://use.fontawesome.com/releases/v5.2.0/css/all.css"
integrity="sha384-
hWVjflwFxL6sNzntih27bfxkr27PmbbK/iSvJ+a4+0owXq79v+lsFkW54bOGbiDQ"
crossorigin="anonymous">
<!-- Custom CSS -->
<link rel="stylesheet" href="/css/custom.css">

</head>

<body>
<!--wrapper start-->
<div class="wrapper" id="wrapper">



Bootstrapping Your Design Chapter 7

[ 146 ]

<!--Banner-->
<header>

<!--Navbar-->
<nav class="navbar navbar-expand-lg navbar-dark fixed-top scrolling-
navbar">
<div class="container">
<a class="navbar-brand" href="#"><strong>myJournal</strong></a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-
target="#myNavbar" aria-controls="myNavbar" aria-expanded="false" aria-
label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="myNavbar">
<ul class="navbar-nav mr-auto">
<li class="nav-item active">
<a class="nav-link" href="#">Home <span class="sr-
only">(current)</span></a>
</li>
<li class="nav-item">
<a class="nav-link" href="#">Admin</a>
</li>
<li class="nav-item">
<a class="nav-link" href="#">About</a>
</li>
</ul>
</div>
</div>
</nav>

<!--Jumbotron-->
<div class="jumbotron banner-align-top" id="myBanner">
<div class="banner-background text-center" style="background-image:
url(/img/pier.png);">
<div class="container text-center" id="banner-size">
<h2 class="banner-title">My Journal</h2>
<h3 class="banner-subtitle">The Path of Heart!</h3>
</div>

</div>
</div>

</header>



Bootstrapping Your Design Chapter 7

[ 147 ]

Several new elements are added to the header template. First, links to Bootstrap and Font
Awesome stylesheets are added. Next, Bootstrap's navigation bar element, which is used in
every web page, is defined. Lastly, a jumbotron is added to display the banner on our web
pages.

footer.leaf
Like the header template in header.leaf, the footer template in footer.leaf is used in every
web page in this project. Change the footer template to the following:

<!--footer-->
<section class="footer" id="footer">
<div class="container">
<div class="row">
<div class="col-sm"> <!-- [1] -->
<ul>
<li><i class="fas fa-envelope"></i></li>
<li><i class="fab fa-facebook"></i></li>
<li><i class="fab fa-google-plus-g"></i></li>
<li><i class="fab fa-linkedin"></i></li>
<li><i class="fab fa-twitter"></i></li>
</ul>
<p>
&copy; 2018 - #(title) Application by #(author)<br>
</p>
</div>
</div>
</div>
</section>

</div><!--wrapper end-->

<!-- Optional JavaScript --> <-- [2] -->
<!-- jQuery first, then Popper.js, then Bootstrap JavaScript  -->
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
integrity="sha384-
q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
crossorigin="anonymous"></script>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min
.js" integrity="sha384-
ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
crossorigin="anonymous"></script>
<script
src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/js/bootstrap.min.js



Bootstrapping Your Design Chapter 7

[ 148 ]

" integrity="sha384-
o+RDsa0aLu++PJvFqy8fFScvbHFLtbvScb8AjopnFD+iEQ7wo/CG0xlczd+2O/em"
crossorigin="anonymous"></script>

</body>
</html>

The new footer template added a new row of icons [1]: Email, Facebook, Google, LinkedIn,
and Twitter. You can add personalized links to these icons, so the user to your website can
reach you. At the end of template and right before the </body> tag, a couple of links to the
required JavaScript libraries in this project, including Bootstrap and Font Awesome, are
added [2].  

main.leaf
The main.leaf includes the header, footer, and main templates. It renders all journal
entries in a single page, as follows:

#embed("header")
[  <a href="/journal/create">Add New Entry</a> ]
<P>
#for(entry in entries) {
<!--Section #(index)-->
<section class="sec#(index)" id="sec#(index)">
<div class="Container entry">
<h2>#(entry.title)</h2>
#(entry.content)
<BR> [  <a href="./#(index)/get">Edit</a> |  <a
href="./#(index)/remove">Remove</a> ]
    <BR> <em>Index:#(index) out of #(count); ID: #(entry.id);</em>
</div>
</section>
}
#embed("footer")



Bootstrapping Your Design Chapter 7

[ 149 ]

The Bootstrap-enhanced rendering looks like the following:

new.leaf
The new.leaf consists of a header, a footer, and a form:

#embed("header")
<!--form-->
<section class="form" id="myForm">
<div class="container">
<div class="row">
<div class="col-lg-12">



Bootstrapping Your Design Chapter 7

[ 150 ]

<div class="heading">
<h1>Create a Journal Entry</h1>
</div>
</div>
</div>
</div>
<div class="container max-width">
<div class="row">
<div class="done">
<div class="alert alert-success">
<button type="button" class="close" data-dismiss="alert">X</button>
Your message has been submitted.
</div>
</div>
<div class="col-md-12">
<form action="/journal/new/" method="post">
<fieldset class="form-group">
<input name="id" type="hidden" value="-1" />
<input type="text" class="form-control" name="title" placeholder="Enter
title here">
</fieldset>

<fieldset class="form-group">
<textarea class="form-control" rows="5" name="content" placeholder="Enter
your journal content here..."></textarea>
</fieldset>

<button type="submit" class="entryform submit">Submit</button>
</form>
</div>
</div>
</div>
</section>
#embed("footer")



Bootstrapping Your Design Chapter 7

[ 151 ]

The Bootstrap-enhanced rendering looks like the following:

entry.leaf
The entry.leaf is similar to new.leaf. However, the existing entry's ID, title, and
content are already filled in the form for you:

#embed("header")
<!--form-->
<section class="form" id="myForm">
<div class="container">



Bootstrapping Your Design Chapter 7

[ 152 ]

<div class="row">
<div class="col-lg-12">
<div class="heading">
<h1>Edit a Journal Entry</h1>
</div>
</div>
</div>
</div>
<div class="container max-width">
<div class="row">
<div class="done">
<div class="alert alert-success">
<button type="button" class="close" data-dismiss="alert">X</button>
Your message has been submitted.
</div>
</div>
<div class="col-md-12">
<form action="/journal/#(index)/edit/" method="post">
<fieldset class="form-group">
<input name="id" type="hidden" value=#(entry.id)" />
<input name="title" type="text" class="form-control" value="#(entry.title)"
/>
</fieldset>

<fieldset class="form-group">
<textarea class="form-control" rows="5" name="content">
#(entry.content)
</textarea>
</fieldset>

<button type="submit" class="entryform submit">Submit</button>
</form>
</div>
</div>
</div>
</section>
#embed("footer")



Bootstrapping Your Design Chapter 7

[ 153 ]

This'll be what it looks like when you edit an entry:

Using Bootstrap for Kitura
Enabling Bootstrap for Kitura is straightforward. Kitura serves all static web pages using
the middleware StaticFileServer. In the postInit() function of the app, add the 
following line after router.setDefault(templateEngine:) in
/Sources/Application/Application.swift:

router.get("/", middleware: StaticFileServer())



Bootstrapping Your Design Chapter 7

[ 154 ]

The static file server will look for all the resources under the folder called /public. Take
note that while this folder, in a Vapor project, is capitalized as /Public, the folder name is
a Kitura project and is not capitalized.

Create it at the top directory of myJournal and create /css and /img subdirectories under
/pubic.

You can proceed to copy custom.css and pier.png to /public/css and /public/img,
respectively.

Enhancing Stencil templates with Bootstrap
After updating all the five Stencil templates with Bootstrap, similar to what you've done for
Vapor's Leaf templates, you will see the same rendered images and web content generated
by Vapor 3.0.

header.stencil
The header.stencil contains the header elements shared by all web pages in the
myJournal application:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>{{ title }}</title>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">

<!-- Bootstrap CSS -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.
css" integrity="sha384-
Smlep5jCw/wG7hdkwQ/Z5nLIefveQRIY9nfy6xoR1uRYBtpZgI6339F5dgvm/e9B"
crossorigin="anonymous">

<link rel="stylesheet"
href="https://use.fontawesome.com/releases/v5.2.0/css/all.css"
integrity="sha384-
hWVjflwFxL6sNzntih27bfxkr27PmbbK/iSvJ+a4+0owXq79v+lsFkW54bOGbiDQ"
crossorigin="anonymous">
<!-- Custom CSS -->



Bootstrapping Your Design Chapter 7

[ 155 ]

<link rel="stylesheet" href="/css/custom.css">

</head>

<body>
<!--wrapper start-->
<div class="wrapper" id="wrapper">

<!--Banner-->
<header>

<!--Navbar-->
<nav class="navbar navbar-expand-lg navbar-dark fixed-top scrolling-
navbar">
<div class="container">
<a class="navbar-brand" href="#"><strong>myJournal</strong></a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-
target="#myNavbar" aria-controls="myNavbar" aria-expanded="false" aria-
label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="myNavbar">
<ul class="navbar-nav mr-auto">
<li class="nav-item active">
<a class="nav-link" href="#">Home <span class="sr-
only">(current)</span></a>
</li>
<li class="nav-item">
<a class="nav-link" href="#">Admin</a>
</li>
<li class="nav-item">
<a class="nav-link" href="#">About</a>
</li>
</ul>
</div>
</div>
</nav>

<!--Jumbotron-->
<div class="jumbotron banner-align-top" id="myBanner">
<div class="banner-background text-center" style="background-image:
url(/img/pier.png);">
<div class="container text-center" id="banner-size">
<h2 class="banner-title">My Journal</h2>
<h3 class="banner-subtitle">The Path of Heart!</h3>
</div>



Bootstrapping Your Design Chapter 7

[ 156 ]

</div>
</div>

</header>

Similar to what you've done in the Vapor project, you are going to add the stylesheets for
Bootstrap and Font Awesome, followed by a Bootstrap navigation bar and a jumbotron.

footer.stencil
Just like header.stencil, the footer.stencil file also contains the elements shared by
all the web pages in this project:

<!--footer-->
<section class="footer" id="footer">
<div class="container">
<div class="row">
<div class="col-sm">
<ul>
<li><i class="fas fa-envelope"></i></li>
<li><i class="fab fa-facebook"></i></li>
<li><i class="fab fa-google-plus-g"></i></li>
<li><i class="fab fa-linkedin"></i></li>
<li><i class="fab fa-twitter"></i></li>
</ul>
<p>
&copy; 2018 - {{ title }} Application by {{ author }}<br>
</p>
</div>
</div>
</div>
</section>

</div><!--wrapper end-->

<!-- Optional JavaScript -->
<!-- jQuery first, then Popper.js, then Bootstrap JavaScript  -->
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
integrity="sha384-
q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
crossorigin="anonymous"></script>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min
.js" integrity="sha384-
ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"



Bootstrapping Your Design Chapter 7

[ 157 ]

crossorigin="anonymous"></script>
<script
src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/js/bootstrap.min.js
" integrity="sha384-
o+RDsa0aLu++PJvFqy8fFScvbHFLtbvScb8AjopnFD+iEQ7wo/CG0xlczd+2O/em"
crossorigin="anonymous"></script>

</body>
</html>

This shared template adds a row of Font Awesome icons, followed by the CDN links to
JavaScript libraries, such as Bootstrap, Popper, and jQuery.

main.stencil
The main.stencil file contains the template for displaying all journal entries in a single
page:

{% include "header.stencil" %}
[ <a class="fas fa-plus-square" href="/journal/create"> Add New Entry</a> ]
<P>
{% for entry in entries %}
<!--Section {{ forloop.counter0 }}-->
<section class="sec{{ forloop.counter0 }}" id="sec{{ forloop.counter0 }}">
<div class="Container entry">
<h2>{{ entry.title }}</h2>
{{ entry.content }}
<BR> [ ID: {{ entry.id }}
: <a class="fas fa-edit" href="/journal/get/{{ forloop.counter0 }}">
Edit</a>
| <a class="fas fa-trash-alt" href="/journal/remove/{{ forloop.counter0
}}"> Remove</a> ]
</div>
</section>
{% endfor %}
Total: {{ count }};
{% include "footer.stencil" %}

The new main template replaces the Edit and Remove icons with those from Font Awesome.
Apart from this change, the template remains the same as the main template you used in
Chapter 6, Working with Templating Engines.



Bootstrapping Your Design Chapter 7

[ 158 ]

new.stencil
The new.stencil file contains the template that renders a web page with a submission
form for creating a new journal entry:

{% include "header.stencil" %}
<!--form-->
<section class="form" id="myForm">
<div class="container">
<div class="row">
<div class="col-lg-12">
<div class="heading">
<h1>Create a Journal Entry</h1>
</div>
</div>
</div>
</div>
<div class="container max-width">
<div class="row">
<div class="done">
<div class="alert alert-success">
<button type="button" class="close" data-dismiss="alert">X</button>
Your message has been submitted.
</div>
</div>
<div class="col-md-12">
<form action="/journal/new" method="post" enctype="application/x-www-form-
urlencoded" target="/journal/all">
<fieldset class="form-group">
<input name="id" type="hidden" value="-1" />
<input type="text" class="form-control" name="title" placeholder="Enter
title here">
</fieldset>

<fieldset class="form-group">
<textarea class="form-control" rows="5" name="content" placeholder="Enter
your journal content here..."></textarea>
</fieldset>

<button type="submit" class="entryform submit">Submit</button>
</form>
</div>
</div>
</div>
</section>
{% include "footer.stencil" %}



Bootstrapping Your Design Chapter 7

[ 159 ]

The new template basically is the same as the one you used in the last chapter. It is still
listed here for completeness.

entry.stencil
The template in the entry.stencil file is used to render an HTML form, populated with
the elements of an existing journal entry:

{% include "header.stencil" %}
<!--form-->
<section class="form" id="myForm">
<div class="container">
<div class="row">
<div class="col-lg-12">
<div class="heading">
<h1>Edit a Journal Entry</h1>
</div>
</div>
</div>
</div>
<div class="container max-width">
<div class="row">
<div class="done">
<div class="alert alert-success">
<button type="button" class="close" data-dismiss="alert">X</button>
Your message has been submitted.
</div>
</div>
<div class="col-md-12">
<form action="/journal/edit/{{ index }}" method="post"
enctype="application/x-www-form-urlencoded" target="/journal/all">
<fieldset class="form-group">
<input name="id" type="hidden" value="{{ entry.id }}" />
<input name="title" type="text" class="form-control" value="{{ entry.title
}}" />
</fieldset>

<fieldset class="form-group">
<textarea class="form-control" rows="5" name="content">
{{ entry.content }}
</textarea>
</fieldset>

<button type="submit" class="entryform submit">Submit</button>
</form>
</div>



Bootstrapping Your Design Chapter 7

[ 160 ]

</div>
</div>
</section>
{% include "footer.stencil" %}

Again, there is no change required in the Edit template, since it is sufficient to leave
Bootstrap code to the header and footer templates. This is another reason why you want to 
separate out all of the HTML and templating code that is common to all web pages in
shared templates like header and footer.

The main screen of the myJournal for Kitura application is shown here: 



Bootstrapping Your Design Chapter 7

[ 161 ]

As you can see from the preceding screenshot, the Bootstrap-enhanced rendering output by
myJournal for Kitura is almost indistinguishable from that of myJournal for Vapor.

Summary
In this chapter, you learned how to use the Bootstrap library to enhance the look and feel of
rendered web pages by the myJournal applications you developed in Chapter 6, Working
with the Templating Engines. Except for some minor details, the integration of Bootstrap into
Leaf and Stencil templates is exactly the same. In the next chapter, you're going to replace
the temporary local storage in the myJournal applications with a database.



8
Employing Storage Framework

This chapter encourages you to take advantage of the Object Relational Mapping (ORM)
abstraction between the web application and the database to streamline your workflow
when working with a database. One of the major benefits of using the ORM tool is that you
don't have to deal with a database directly, avoiding the painful way of writing different
querying commands specific to each type of database. Swift web frameworks support a
number of database engines and sometimes you can use multiple databases in the same
session.

In this chapter, you'll learn how to work with the Fluent abstraction framework in Vapor,
and the Kuery framework in Kitura. You'll interact with your model in Create, Retrieve,
Update, and Delete (CRUD) operations using these frameworks.

In this chapter, we will cover the following topics:

Installing databases
Working with the Fluent Framework in Vapor
Working with the Database Abstraction Layer in Kitura

Installing databases
At the time of writing, both Vapor Fluent and Kitura Kuery support three popular
implementations of relational databases: PostgreSQL, SQLite, and MySQL. A relational
database uses a fixed-data format specified in the database's schema, compared to a non-
relational (NoSQL) database, which doesn't require a fixed-data format. A relational
database is much faster and more proven.



Employing Storage Framework Chapter 8

[ 163 ]

Installing PostgreSQL
PostgreSQL is the recommended native database driver for both Vapor and Kitura. The
database is an open source project designed for enterprise use. PostgreSQL is designed for
reliability, extensibility, and standards-compliance. Most cloud hosting services include
PostgreSQL as one of the database provider options.

To use PostgreSQL on your system, you must install the PostgreSQL client locally. On
macOS, use brew to install the PostgreSQL client and start the postgresql service:

$ brew install postgresql
$ brew services start postgresql

On Linux, use apt-get to install the PostgreSQL client and then start the service:

$ sudo apt-get install libpq-dev
$ sudo service postgresql start

If you have the pgAdmin 4 GUI client application installed on your system, you can also
use it to launch and connect to a PostgreSQL database.

Installing SQLite
SQLite is an open source SQL database. It covers a reduced but essential feature set of the
full SQL database. Since it is lightweighted and embedded, it has been chosen as the default
database for mobile operating systems such as Android and iOS.

In Vapor, you can choose SQLite as either memory or file-based. That makes SQLite an
ideal candidate for prototyping and testing your Fluent code. Once you are ready for
production deployment, you can switch your database provider to one hosted on the cloud.
Vapor uses its embedded SQLite so you do not need to install SQLite on your system.

Kitura's Kuery also position SQLite as a lightweight SQL implementation that is ideal for
prototyping and testing your database's operation. Kuery requires you to install SQLite on
your system:

On macOS, use brew to install sqlite3:1.

$ brew install sqlite

macOS provides an older version of sqlite3.



Employing Storage Framework Chapter 8

[ 164 ]

To instruct your project to use your installed sqlite3, add its path to your2.
.bash_profile:

echo 'export PATH="/usr/local/opt/sqlite/bin:$PATH"' >>
~/.bash_profile

Remember to use source ~/.bash_profile to refresh your system with the
change.

On Linux, use apt-get to install sqlite3 and its static development library:3.

$ sudo apt-get install sqlite3 libsqlite3-dev

If SQLite is installed properly on your system, you can test it by running the4.
following command on the Terminal:

$ sqlite3

You should get an output similar to the following:5.

SQLite version 3.20.1 2017-08-24 16:21:36
 Enter ".help" for usage hints.
 Connected to a transient in-memory database.
 Use ".open FILENAME" to reopen on a persistent database.
 sqlite>

By default, the SQLite instance will connect to a transient in-memory database unless you
use the ".open FILENAME" command to explicitly open a persistent database.

Installing MySQL
MySQL is another database driver officially supported by both Vapor and Kitura; like
SQLite and PostgresQL, it is also an open source database. MySQL is very popular because
it is one of the main components in web services that is based on LAMP software stacks.
LAMP stands for Linux, Apache Web Server, MySQL, and PHP Scripting Language. The
MySQL database is available on most cloud hosting providers.
To have a MySQL database running on your system, install mysql with brew and start
the mysql server:

$ brew install mysql
$ brew services start mysql



Employing Storage Framework Chapter 8

[ 165 ]

If you are using Linux, get the latest mysql package from one of the repositories, use apt-
get to install it, and start mysql service:

$ wget https://repo.mysql.com//mysql-apt-config_0.8.4-1_all.deb
$ sudo dpkg -i mysql-apt-config_0.8.4-1_all.deb
$ sudo apt-get update
$ sudo apt-get install mysql-server libmysqlclient-dev
$ sudo service mysql start

To improve the security of your MySQL installation, run the following program:

$ mysql_secure_installation

Now you should have mysql installed and running on your system.  Next, we'll see how to
connect to a database from your code using an appropriate database driver.

Working with the Fluent Framework in Vapor
Fluent is Vapor's object-relational mapping (ORM) framework that abstracts the interaction
with various database engines. By working with a single interface that abstracts many
different database engines, your code will be more reusable and portable. With Fluent, you
do not need to write low-level instructions, such as structured query language (SQL), to
work with a database engine. Unlike the traditional way of querying a database using
untyped arrays or dictionaries, Fluent build upon Swift's model-driven data-handling
infrastructure and extends it to the querying of the database. This is a more natural way for
you to interact with database using models.

Choosing a database driver
Fluent supports PostgreSQL, SQLite, and MySQL. You need to configure each database
driver in order to use it properly in your Vapor project.

Using the PostgreSQL database driver
Let's start by using PostgreSQL database driver:

Add the PostgreSQL core as a dependency in your project's SPM package1.
manifest file:

import PackageDescription



Employing Storage Framework Chapter 8

[ 166 ]

let package = Package(
    name: "MyJournal",
    dependencies: [
        ...
        .package(url: "https://github.com/vapor/fluent-
postgresql.git", from: "1.0.0"),
    ],
    targets: [
        .target(name: "App", dependencies: ["FluentPostgreSQL",
...]),
        .target(name: "Run", dependencies: ["App"]),
        .testTarget(name: "AppTests", dependencies: ["App"]),
    ]
)

After modifying Package.swift, remember to regenerate your Xcode project2.
files to reflect the changes:

$ vapor xcode

Register PostgreSQLProvider in configure.swift in order for the3.
PostgreSQL driver to work properly:

import PostgreSQL

try services.register(PostgresSQLProvider())

When you register for PostgreSQL service, it automatically instantiates a4.
database config struct using standard credentials.
You can configure for your PostgreSQL database manually and use it to create an5.
instance of PostgreSQLDatabase:

let config = PostgreSQLDatabaseConfig(hotname: "localhost",
                                      username: "admin",
                                      database: "myjournal",
                                      password: "password")
let postgresql = try PostgreSQLDatabase(config: config)

The preceding configuration code shows you how to set the database's credential.

Add the PostgreSQLDatabase instance to the list of databases you're going6.
to support in your project:

var databases = DatabasesConfig()
databases.add(database: postgresql, as: .psql)
services.register(databases)



Employing Storage Framework Chapter 8

[ 167 ]

These steps should get you set up for using PostgreSQL in your myJournal application.

Using the SQLite database driver
If you develop your project from Vapor's boilerplate project using the vapor
new command, the SQLite database has already been configured and implemented. You
can follow the steps here if you want to add SQLiteDatabase to your project from scratch:

To add the support of SQLite database, you need to add it as a dependency in1.
your SPM package manifest file:

import PackageDescription

let package = Package(
 name: "MyJournal",
 dependencies: [
 ...
 .package(url: "https://github.com/vapor/fluent-sqlite.git", from:
"3.0.0"),
 ],
 targets: [
 .target(name: "App", dependencies: ["FluentSQLite", ...]),
 .target(name: "Run", dependencies: ["App"]),
 .testTarget(name: "AppTests", dependencies: ["App"]),
 ]
)

Update your Xcode project files with the changes you just made in Package.swift:2.

$ vapor xcode

Register FluentSQLiteProvider in configure.swift:3.

import FluentSQLite

try services.register(FluentSQLiteProvider())

Since SQLite is an embedded database and built on top of Vapor's DatabaseKit,
you don't need to supply additional login credentials. You can choose either
memory or file-based storage when setting up SQLiteDatabase.

Configure a memory-based SQLite database in configure.swift:4.

let sqlite = try SQLiteDatabase(storage: .memory))



Employing Storage Framework Chapter 8

[ 168 ]

Alternatively, configure the database by specifying a local file to use:5.

let sqlite = try SQLiteDatabase(storage: .file(path:
"myjournal.sqlite"))

Add your SQLiteDatabase to one of the databases supported in your project: 6.

var databases = DatabasesConfig()
databases.add(database: sqlite, as: .sqlite)
services.register(databases)

The SQLite default database identifier is .sqlite. Since Vapor allows you to use
more than one database in a single project, you can add other databases to the
services following the preceding code. While you can have a mixed database
environment and configure each database separately, you cannot add or change
database dynamically.

Using the MySQL database driver
The steps to configure MySQL are similar to the steps for configuring SQLite and
PostgreSQL. Let's get started:

Add it as a dependency in Package.swift:1.

import PackageDescription

let package = Package(
    name: "MyJournal",
    dependencies: [
        ...
        .package(url: "https://github.com/vapor/fluent-mysql.git",
from: "3.0.0"),
    ],
    targets: [
        .target(name: "App", dependencies: ["FluentMySQL", ...]),
        .target(name: "Run", dependencies: ["App"]),
        .testTarget(name: "AppTests", dependencies: ["App"]),
    ]
)

Regenerate your Xcode project files after modifying Package.swift:2.

$ vapor xcode



Employing Storage Framework Chapter 8

[ 169 ]

Register MySQLProvider in configure.swift:3.

import MySQL

try services.register(MySQLProvider())

This will enable all of the services required for MySQL to work properly. It also
assumes standard credentials. 

If you want to override the default configuration, you can register a4.
MySQLDatabaseConfig struct to your services:

let config = MySQLDatabaseConfig(hostname: "localhost",
                                 username: "admin",
                                 database: "myjournal",
                                 password: "password")
let mysql = try MySQLDatabase(config: config)

var databases = DatabasesConfig()
databases.add(database: mysql, as: .mysql)
services.register(databases)

That's all for adding and registering MySQL database in myJournal for Vapor.

Conforming to the Fluent Model
Fluent's model is the protocol that represents data used by Fluent when interacting with the
database. Fluent takes advantage of data-model-centric features in the Swift library, such as
Codable, which facilitates the handling of JSON objects, and extends the data model to
support querying the database.

Creating a new Model
You can use either struct or class to conform to Model. Since struct is value-typed, a
new copy of the struct model will be returned each time you query the database. Class is
reference-typed so there won't be a new copy created when the class model is returned as
the result for querying the database:

A new model looks like the following:1.

import FluentPostgreSQL
import Vapor



Employing Storage Framework Chapter 8

[ 170 ]

final class JournalEntry: PostgreSQLModel {
    var id: Int?
    var title: String
    var content: String
    init(id: Int? = nil, title: String, content: String) {
        self.id = id
        self.title = title
        self.content = content
    }
}

The final modifier prevents anyone from subclassing your model.

Specify the id field:2.

var id: Int?

Fluent uses id for the internal indexing of each data entry.

Add other data fields in your model:3.

var title: String
var content: String

Add an initializer for your model:4.

init(id: Int? = nil, title: String, content: String) {
    self.id = id
    self.title = title
    self.content = content
}

That's all you need for your data model.  Next, you're going to explore some Fluent model
helpers.

Creating Fluent Migrations
Fluent Migration provides you with convenient ways of creating a table for your model
and making changes to your database's structure. The table description for your model is
called a database schema. Migrations help you prepare a database schema for your model.
You can also use them to make normal queries to your database.

There is a shortcut for declaring database migrations for your model. To conform Model to
Migration, add an extension to conform to Migration:

extension JournalEntry: Migration {}



Employing Storage Framework Chapter 8

[ 171 ]

Fluent can infer the schema of your model automatically.

Add the following to tell Migration to create a table:

var migrations = MigrationConfig()
migrations.add(model: JournalEntry.self, database: .psql)
services.register(migrations)

In the preceding code, PostgreSQLDatabase is added to your model's migrations.

Migration just needs to run this once when a table is created. Fluent supports a mixed
environment, so you can use more than one database in your project. If you have more than
one database, you need to set up each database migration properly.

Using Fluent Model Helpers
Fluent provides many other convenient Model Helper protocols for database providers in
Vapor. 

For example, you may want to conform your model to Codable by extending your model
to the Content type:

extension JournalEntry: Content {}

Vapor 3.0 supports many Content types (JSON, Multipart, protobuf) and treats them the
same for encoding and decoding the content.

As another example, you may want to support a dynamic component in your route path
with the Parameter extension:

extension JournalEntry: Parameter {}

Your model, with all the Fluent model helpers, now looks like the following:

import FluentPostgreSQL
import Vapor

final class JournalEntry: PostgreSQLModel {
    var id: Int?
    var title: String
    var content: String
    init(id: Int? = nil, title: String, content: String) {
        self.id = id
        self.title = title
        self.content = content
    }



Employing Storage Framework Chapter 8

[ 172 ]

}

extension JournalEntry: Migration { }
extension JournalEntry: Content { }
extension JournalEntry: Parameter { }

Next, you're going to use the JournalEntry model defined here to handle CRUD
operations.

Implementing CRUD operations for Vapor
Fluent Model supports basic CRUD methods. Based on the same myJournal code you used
in last chapter, you'll replace the in-memory persistence with the Fluent model using
SQLiteDatabase and modify the route handlers to call CRUD methods directly.

Implementing the create operation
To create a new item for an instance of your model in the database, call the .save(on:)
method:

func newEntry(_ req: Request) throws -> Future<Response> {
    return try req.content.decode(JournalEntry.self).flatMap { entry in
        return entry.save(on: req)
    }.transform(to: req.redirect(to: self.mainPage))
}

When the save() method completes, Fluent will automatically have filled in its id with a
new, unique value, and it's safe to return.

In order for Fluent to work properly, you're required to remove the default ID in
new.leaf:

<input name="id" type="hidden" value="-1" />

Now, let's proceed to implementing the Read operation.

Implementing the read operation
To read all of your records in a database, use query(on:) to query the database and all()
to list all of them:

func getAll(_ req: Request) throws -> Future<View> {
    return JournalEntry.query(on: req).all().flatMap(to: View.self) {



Employing Storage Framework Chapter 8

[ 173 ]

entries in
        let context = JournalContext(title: self.title,
                                     author: self.author,
                                     count: String(entries.count),
                                     entries: entries)
        let leaf = try req.make(LeafRenderer.self)
        return leaf.render("main", context)
    }
}

If you know the ID of an item, you can use find(_:on:) instead of query(on:). The
following code shows you how to retrieve an item by its id:

func getEntry(_ req: Request) throws -> Future<View> {
    let id = try req.parameters.next(Int.self)
    return JournalEntry.find(id, on: req).flatMap(to: View.self) { entry in
        guard let entry = entry else { throw Abort(.notFound) }
        let leaf = try req.make(LeafRenderer.self)
        let context : EntryContext
        context = EntryContext(title: self.title,
                               author: self.author,
                               entry: entry)
        return leaf.render("entry", context)
    }
}

In the preceding code, the .notFound status code will be set in HTTP Response if an entry
can't be found after calling JournalEntry.find(_:on:).

Implementing the update operation
Continue to implement the update operation that works with an existing entry:

func editEntry(_ req: Request) throws -> Future<Response> {
    let id = try req.parameters.next(Int.self)
    return try req.content.decode(JournalEntry.self).flatMap { updated in
        return JournalEntry.find(id, on: req)
                           .flatMap(to: JournalEntry.self) { original in
                            guard let original = original else { throw
Abort(.notFound) }
                            original.title = updated.title
                            original.content = updated.content
                            return original.save(on: req)
        }
    }.transform(to: req.redirect(to: self.mainPage))
}



Employing Storage Framework Chapter 8

[ 174 ]

The update method matches the existing item associated with an instance of your model,
makes any necessary changes, and then saves it back to the database.

Implementing the delete operation
The delete method is similar to the update method by matching with an existing entry.
Once found, you'll call delete(on:) to remove it the item from the database:

func removeEntry(_ req: Request) throws -> Future<Response> {
    let id = try req.parameters.next(Int.self)
    return JournalEntry.find(id, on: req).flatMap { entry in
        guard let entry = entry else { throw Abort(.notFound) }
        return entry.delete(on: req).transform(to: req.redirect(to:
self.mainPage))
    }
}

After an entry is successfully deleted, the user will be redirected to the application's main
screen.  

Working with the Database Abstraction
Layer in Kitura
Swift-Kuery-ORM is an ORM Framework that simplifies your interaction with the
database using model objects. Similar to Vapor's Fluent, Swift-Kuery-ORM provides you
with a single interface for many different database engines and relieves you from the
burden of writing tedious low-level queries to the database. The framework itself is built on
top of Swift-query, which is a lower-level abstraction layer that allows you to customize
SQL queries for the database. Normally it is sufficient for you to use Swift-Kuery-ORM
only for the persistence of model objects with your server, but you can always switch to
Swift-Kuery when you have to customize SQL queries.

Choosing a database driver
Kitura Kuery supports SQLite, PostgreSQL, and MySQL. For each database driver, you
need to add the dependencies to Swift Package Manager and import the ORM and database
plugin packages into your Kitura project.



Employing Storage Framework Chapter 8

[ 175 ]

Using the PostgreSQL database driver
Follow these steps to use PostgreSQL in your project:

Add SwiftKueryORM and SwiftKuerySQLite to the dependencies and targets1.
in your application's Package.swift:

import PackageDescription

let package = Package(
    name: "myJournal",
    dependencies: [
      .package(url: "https://github.com/IBM-Swift/Kitura.git",
.upToNextMinor(from: "2.5.0")),
      .package(url:
"https://github.com/IBM-Swift/HeliumLogger.git",
.upToNextMinor(from: "1.7.1")),
      .package(url:
"https://github.com/IBM-Swift/CloudEnvironment.git", from:
"8.0.0"),
      .package(url:
"https://github.com/RuntimeTools/SwiftMetrics.git", from: "2.0.0"),
      .package(url: "https://github.com/IBM-Swift/Health.git",
from: "1.0.0"),
      .package(url:
"https://github.com/IBM-Swift/Kitura-StencilTemplateEngine.git",
from: "1.8.0"),
      .package(url:
"https://github.com/IBM-Swift/Swift-Kuery-ORM.git",
.upToNextMinor(from: "0.3.1")),
      .package(url:
"https://github.com/IBM-Swift/Swift-Kuery-PostgreSQL.git", from:
"1.2.0"),
    ],
    targets: [
      .target(name: "myJournal", dependencies: [ .target(name:
"Application"), "Kitura" , "HeliumLogger", "KituraStencil"]),
      .target(name: "Application", dependencies: [ "Kitura",
"CloudEnvironment","SwiftMetrics","Health", "SwiftKueryORM",
"SwiftKueryPostgreSQL"]),

      .testTarget(name: "ApplicationTests" , dependencies:
[.target(name: "Application"), "Kitura","HeliumLogger" ])
    ]
)



Employing Storage Framework Chapter 8

[ 176 ]

Create a database for your application after you've started a postgresql service:2.

brew install postgresql
brew services start postgresql
createdb journalbook

This makes sure that postgresql is running and a table named
journalbook exists on your system. By default, postgresql uses port 5432.

Create the JournalRoutes.swift file in  /Sources/Application/Routes/,3.
in the same directory as HealthRoutes.swift:

import Foundation
import Kitura
import KituraStencil
import SwiftKueryORM
import SwiftKueryPostgreSQL
import LoggerAPI

func initializeJournalRoutes(app: App) {
    let mainPage = "/journal/all"
    let title = "My Journal"
    let author = "Angus"

    let poolOptions = ConnectionPoolOptions(initialCapacity: 1,
                                                maxCapacity: 5,
                                                timeout: 10000)
    // Set up database connection
    let psqlPool = PostgreSQLConnection.createPool(host:
"localhost",
                                               port: 5432,
                                               options:
[.databaseName("journalbook")],
                                               poolOptions:
poolOptions)
    Database.default = Database(psqlPool)

    do {
        try JournalItem.createTableSync()
    } catch let error {
        Log.error("Failed to create table in database: \(error)")
    }
}

Both the SwiftKueryORM and SwiftKueryPostgreSQL headers are included
before you can call .createPool() to set up a database connection.



Employing Storage Framework Chapter 8

[ 177 ]

Import both SwiftKueryORM and SwiftKuerySQLite:4.

import SwiftKueryORM
import SwiftKueryPostgreSQL

Configure an poolOptions object for the PostgreSQL Connection instance:5.

let poolOptions = ConnectionPoolOptions(initialCapacity: 1,
                                        maxCapacity: 5,
                                        timeout: 10000)

Create the instance of the PostgreSQL Connection itself:6.

// Set up database connection
let psqlPool = PostgreSQLConnection.createPool(host: "localhost",
                                               port: 5432,
                                               options:
[.databaseName("journalbook")],
                                               poolOptions:
poolOptions)

You've specified a PostgreSQL database that is called journalbook and runs on
localhost at port 5432.

Assign the database connection you've just created as the default database7.
connection to use:

Database.default = Database(psqlPool)

Create a table in the database:8.

do {
  try JournalItem.createTableSync()
} catch let error {
  Log.error("Failed to create table in database: \(error)")
}

You can create a table synchronously using the createTableSync() method, or
asynchronously using createTable(). The preceding implementation throws an
error if a table has been created already. You can either ignore the error or handle
it gracefully by printing out a warning message and continue the rest of the
operation.



Employing Storage Framework Chapter 8

[ 178 ]

Setting up the SQLite database driver
You may follow the same steps for setting up a PostgreSQL database connection to create a
SQLite database. All the setup for the SQLite database goes to the
initializeJournalRoutes(app:) function in JournalRoutes.swift.

Create an instance of Swift-Kuery-SQLite by calling the .createPool method1.
of SQLiteConnection:

let pool = SQLiteConnection.createPool(filename: "sqlite.db",
                                       poolOptions:
ConnectionPoolOptions(initialCapacity: 10,
maxCapacity: 30,
timeout: 10000))

 Database.default = Database(pool)

ConnectionPool allows you to support multiple connections to your SQLite
database. If you omit a filename, your database will be in-memory.

If you want a single connection, you can create SQLiteConnection as follows:2.

let connection = SQLiteConnection(filename: "myjournal.sqlite")

That's all for setting up a SQLite database driver in the Kitura project. Read on if you need a
MySQL database driver in your project.

Using the MySQL database driver
Following the similar steps as in SQLite and PostgreSQL configuration and add the
following code in initializeJournalRoutes(app:):

Add appropriate dependencies for Kuery MySQL in Package.swift:1.

import PackageDescription

let package = Package(
    name: "myJournal",
    dependencies: [
      ...
      .package(url:
"https://github.com/IBM-Swift/Swift-Kuery-ORM.git", from: "0.3.1"),
      .package(url:
"https://github.com/IBM-Swift/Swift-Kuery-MySQL.git", from:
"1.2.0")



Employing Storage Framework Chapter 8

[ 179 ]

    ],
    targets: [
      .target(name: "myJournal", dependencies: [...,
"SwiftKueryORM", "SwiftKueryMySQL"]),
      ...
    ]
)

In your Kitura application, import the SwiftKueryORM and SwiftKueryMySQL2.
packages into any files using Kuery methods:

import SwiftKueryORM
import SwiftKueryMySQL

Create a connection to the MySQL database:3.

let connection = MySQLConnection(host: "localhost",
                                 user: "admin",
                                 password: "admin",
                                 database: "myjournal",
                                 port: "1234")

All the parameters for MySQLConnection are optional. The port number is used when you
want to use non-standard ports for a TCP/IP connection.

Conforming to the Swift-Kuery-ORM Model
Similar to Fluent, Swift-Kuery-ORM provides very convenient high-level features for data
persistence using the Model protocol. Once you've designed and built your data structure
on Model, you can perform CRUD operations on your data without writing any SQL
queries.

Creating a new model
You can design your data structure using either class or struct. In Swift, class is a
reference type while struct is a value type. Here, struct is a better choice because
using let on a struct turns your data object into a constant.  The immutability of struct
makes memory-handling easier in multithreaded environment.

To create a new model, declare a struct that implements Swift's Codable1.
protocol:

struct Entry: Codable {



Employing Storage Framework Chapter 8

[ 180 ]

  var title: String
  var content: String
}

Codable simplifies the handling of JSON objects in our RESTful routes.

Extend your struct to support the Model protocol:2.

extension Grade: Model { }

The extension adds additional ORM functionalities to your data model. You do not need to
include an id field to identify each data entry uniquely. Kuery ORM will create the id field
and increment the value of id automatically when you add a new entry to the database.

Implementing the CRUD operations
Once your data struct is conforming to Model, you can automatically use the data model
in the database's CRUD operations.

Displaying all records
The objects in your database can be conveniently retrieved.

If you want to get all the instances of your object, call the finalAll() function:1.

JournalItem.findAll()

You can ask Swift-Kuery-ORM to format the retrieved result in a dictionary:2.

JournalItem.findAll { (result: [Int: JournalItem]?, error:
RequestError?) in
  ...
}

Alternatively, you can specify the output format as an array of tuples:3.

JournalItem.findAll { (result: [(Int, JournalItem)]?, error:
RequestError?) in
 ...
}

The last two output formats are useful if you need to retrieve the ID for each
entry.



Employing Storage Framework Chapter 8

[ 181 ]

In the implementation of initializeJournalRoutes(app:), add the4.
implementation of a router to retrieve all data right after the do-try-catch block:

app.router.get("/journal/all") { _, response, _ in
  JournalItem.findAll { (result: [(Int, JournalItem)]?, error:
RequestError?) in
    guard let items = result else { return }
    var entries: [[String: Any]] = []
    for (index, entry) in items {
      let id = String(index)
      let title : String = entry.title
      let content : String = entry.content
      let map = ["id": id, "title": title, "content": content]
      entries.append(map)
    }
    do {
        try response.render("main", context: ["title": title,
                                              "author": author,
                                              "count":
"\(items.count)",
                                              "entries": entries])
    } catch let error {
        response.send(error.localizedDescription)
    }
  }
}

This implementation calls Model's findAll() method to retrieve both ID and
JournalItem in a tuple output format. The IDs are needed because you want to
embed the Edit and Removal links for each record you are displaying.

Unfortunately, you can't pass the tuple directly as a context to your Stencil
template. You'll need to flatten the tuples into a 2D array structure by creating the
new array structure, [[String: Any]], mapping the tuple values to a new array
object, and appending the mapped array object to the 2D array context.

Create the new Stencil template, main.stencil, to render the main screen,5.
which takes in the context:

{% include "header.stencil" %}
[ <a class="fas fa-plus-square" href="/journal/create"> Add New
Entry</a> ]
<P>
{% for entry in entries %}
<!--Section {{ forloop.counter0 }}-->
<section class="sec{{ forloop.counter0 }}" id="sec{{
forloop.counter0 }}">



Employing Storage Framework Chapter 8

[ 182 ]

<div class="Container entry">
<h2>{{ entry.title }}</h2>
{{ entry.content }}
<BR> [ ID: {{ entry.id }}
: <a class="fas fa-edit" href="/journal/get/{{ entry.id }}">
Edit</a>
| <a class="fas fa-trash-alt" href="/journal/remove/{{ entry.id
}}"> Remove</a> ]
</div>
</section>
{% endfor %}
Total: {{ count }};
{% include "footer.stencil" %}

Here, you can see how the id attribute is used in the URLs for the Edit and
Remove operations for each displayed record.

Displaying a single record
If you want to retrieve only a specified object, use the find() function:

JournalItem.find(id: 1) { result, error in
  ...
}

The find() function expects the explicit id parameter.  Since you do not know each
record's ID (IDs are created automatically), you rely on the existing links for each record
that are ready populated with the IDs to help retrieve the specific record you are looking
for. You can find a similar technique used in the implementation of the Edit and Remove
route handlers.

Creating a new record
With Swift-Kuery-ORM, it is very easy to save a new object to your database, just perform
the following steps:

Create the object and use the save() function:1.

let item = JournalItem(title: "What a beautiful day!", content:
"Best time for an outing.")
item.save { item, error in
  ...
}



Employing Storage Framework Chapter 8

[ 183 ]

Swift-Kuery-ORM will automatically add an ID when it saves your object.2.
Add the new stencil file, new.stencil, to display a form for the user to fill in a3.
new record:

{% include "header.stencil" %}
<!--form-->
<section class="form" id="myForm">
<div class="container">
<div class="row">
<div class="col-lg-12">
<div class="heading">
<h1>Create a Journal Entry</h1>
</div>
</div>
</div>
</div>
<div class="container max-width">
<div class="row">
<div class="done">
<div class="alert alert-success">
<button type="button" class="close" data-dismiss="alert">X</button>
Your message has been submitted.
</div>
</div>
<div class="col-md-12">
<form action="/journal/new" method="post" enctype="application/x-
www-form-urlencoded" target="/journal/all">
<fieldset class="form-group">
<input type="text" class="form-control" name="title"
placeholder="Enter title here">
</fieldset>

<fieldset class="form-group">
<textarea class="form-control" rows="5" name="content"
placeholder="Enter your journal content here..."></textarea>
</fieldset>

<button type="submit" class="entryform submit">Submit</button>
</form>
</div>
</div>
</div>
</section>
{% include "footer.stencil" %}



Employing Storage Framework Chapter 8

[ 184 ]

This form can be retrieved by this route added to4.
initializeJournalRoutes(app:):

app.router.get("/journal/create") { request, response, next in
    response.headers["Content-Type"] = "text/html; charset=utf-8"
    try response.render("new", context: ["title": title, "author":
author])
}

Add the following HTTP POST route handler to5.
initializeJournalRoutes(app:) to process the submitted form data:

app.router.post("/journal/new") { request, response, next in
    guard let entry = try? request.read(as: JournalItem.self)
        else { return try
response.status(.unprocessableEntity).end() }
    let item = JournalItem(title: entry.title, content:
entry.content)
    item.save { item, error in
    do {
         try response.redirect(mainPage)
        } catch let error {
            response.send(error.localizedDescription)
        }
    }
}

If the saving of a new entry is successful, the user will be redirected to the main
page.

Updating an existing record
To modify an existing object in your database, perform the following steps:

Use the update(id:) function with the object's ID as the parameter:1.

let item = JournalItem(title: "What a beautiful day!", content:
"Best time for an outing.")
item.title = "Nice Weather!"
item.update(id: 1) { item, error in
  ...
}

Each record in the main screen has already populated with the Edit link to
display a form for editing.



Employing Storage Framework Chapter 8

[ 185 ]

Add the following Stencil template, entry.stencil, to the /Views directory:2.

{% include "header.stencil" %}
<!--form-->
<section class="form" id="myForm">
<div class="container">
<div class="row">
<div class="col-lg-12">
<div class="heading">
<h1>Edit a Journal Entry</h1>
</div>
</div>
</div>
</div>
<div class="container max-width">
<div class="row">
<div class="done">
<div class="alert alert-success">
<button type="button" class="close" data-dismiss="alert">X</button>
Your message has been submitted.
</div>
</div>
<div class="col-md-12">
<form action="/journal/edit/{{ entry.id }}" method="post"
enctype="application/x-www-form-urlencoded" target="/journal/all">
<fieldset class="form-group">
<input name="id" type="hidden" value="{{ entry.id }}" />
<input name="title" type="text" class="form-control" value="{{
entry.title }}" />
</fieldset>

<fieldset class="form-group">
<textarea class="form-control" rows="5" name="content">
{{ entry.content }}
</textarea>
</fieldset>

<button type="submit" class="entryform submit">Submit</button>
</form>
</div>
</div>
</div>
</section>
{% include "footer.stencil" %}



Employing Storage Framework Chapter 8

[ 186 ]

The Edit form is retrieved through the following handler in3.
initializeJournalRoutes(app:):

    app.router.get("/journal/get/:index?") { request, response, next in
      guard let index = request.parameters["index"] else {
        return try response.status(.badRequest).send("Missing entry
index").end()
      }
      guard let idx = Int(index) else {
        return try response.status(.badRequest).send("Invalid entry
index").end()
      }

      JournalItem.find(id: idx) { result, error in
        guard let item = result else { return }
        let id = String(idx)
        let title : String = item.title
        let content : String = item.content
        let entry = ["id": id, "title": title, "content": content]
        do {
          try response.render("entry",
                              context: ["title": title,
                                        "author": author,
                                        "entry": entry])
        } catch let error {
            response.send(error.localizedDescription)
        }
      }
    }

The submitted data is processed by an HTTP POST route handler:4.

app.router.post("/journal/edit/:index?") { request, response, next
in
    guard let index = request.parameters["index"] else {
        return try response.status(.badRequest).send("Missing entry
index").end()
    }
    guard let idx = Int(index) else {
        return try response.status(.badRequest).send("Invalid entry
index").end()
    }
    guard let entry = try? request.read(as: JournalItem.self) else
{
        return try response.status(.unprocessableEntity).end()
    }
    let item = JournalItem(title: entry.title, content:
entry.content)



Employing Storage Framework Chapter 8

[ 187 ]

    item.update(id: index) { item, error in
        do {
            try response.redirect(mainPage)
        } catch let error {
            response.send(error.localizedDescription)
        }
    }
}

Updating an existing record is less straightforward because the existing entry's ID must be
populated in the Edit form so the same entry in the database can be sequentially updated. 

Deleting a record
If you want to delete a specific object, perform the following steps:

Use delete(id:) if you know the object's ID:1.

JournalItem.delete(id: 1) { error in
  ...
}

Sometimes, you may want to delete all the entries in the current table of your2.
database. You can use deleteAll() to do so:

JournalItem.deleteAll { error in
  ...
}

The following, shows the route handler for deleting a record in the3.
implementation of initializeJournalRoutes(app: App):

app.router.get("/journal/remove/:index?") { request, response, next
in
 guard let index = request.parameters["index"] else {
 return try response.status(.badRequest).send("Missing entry
index").end()
 }
 guard let idx = Int(index) else {
 return try response.status(.badRequest).send("Invalid entry
index").end()
 }

 JournalItem.delete(id: idx) { error in
 do {
 try response.redirect(mainPage)



Employing Storage Framework Chapter 8

[ 188 ]

 } catch let error {
 response.send(error.localizedDescription)
 }
 }
 }
}

Generally, it is not recommended for you to use the deleteAll() function to wipe out the
entire table. A safe way is not to expose a route that implements such a global operation in
your application.

Summary
In this chapter, you learned how to set up a database and replaced the temporary storage in
myJournal applications with more permanent database storage. You learned how to install
three SQL databases on your system: SQLite, PostgreSQL, and MySQL. Then, you
integrated the PostgreSQL software driver into your Vapor project and came up with a new
data model that conforms to the Fluent Model. With Vapor Fluent, you implemented the
CRUD operations for PostgreSQL. Next, you integrated database drivers into your Kitura
application. Swift-Kuery-ORM is a Fluent-like abstraction for database management and
manipulation in Kitura. You took advantage of Swift-Kuery-ORM to implement the CRUD
operations for PostgreSQL in the myJournal for Kitura application. In the next chapter, you
will add authentication and Admin account management to the codebase you worked on
here.



9
Adding Authentication

It is important for your web app to regulate who can access your content and use your
services and who can't. In a typical web application, resources are usually placed in either
protected or public areas. There are many resources or features you do not want users to
get access to, such as administrative features for your app, or subscription-based content,
and you want to restrict the access to protected content. For example, in
the myJournal application, only the application owner, or a small group of users, is
allowed to create, edit, or delete a journal entry.

This chapter introduces you to the key features in user-access management: user
authentication, cookies, and sessions management. You'll learn how to set up a user model
and password-protected content. With the authentication API, you're going to grant and
remove access for different users. You'll then learn how to manipulate cookies and manage
user login sessions, and implement logic to validate user input.

In this chapter, we will cover the following topics:

Getting introduced to the Authentication API for Vapor
Knowing how to set up secured access for protected content
Getting familiar with HTTP Basic Authentication for Kitura

Introducing the authentication API for Vapor
In Swift web frameworks, there are two authentication approaches: web-based and API-
based. For the web-based authentication, a framework takes advantage of web browser's 
session ability to persist the authenticated access. For API-based authentication, the client to
a Swift web framework may not be a web browser. In that case, a token is generated
to persist authenticated access for a user. In this chapter, you'll focus on securing your web
resources with web-based authentication.



Adding Authentication Chapter 9

[ 190 ]

Using web authentication
A Swift web framework uses a web browser's sessions to persist state across multiple HTTP
requests. A session is temporary because your session cookie may be deleted sometimes,
depending on the policy settings for cookie persistence. The session stores individual data
in a browser pertaining to the usage by a unique user who comes to visit your web
application. When a session is started, the web application sends a cookie to the web
browser. The web browser will store each application's cookie to maintain state throughout
a session. The interaction between your web browser and web application is illustrated in
this sequence diagram:



Adding Authentication Chapter 9

[ 191 ]

Your Vapor application uses a unique ID to identify a user's session. With the session ID,
user-specific information associated with a session can be stored in your web application's
cookies and retrieved later. When the next HTTP request comes in, your web application
will query for the session data to check whether the user is currently authenticated. If the
user is authenticated already, your application won't ask the user to supply the login
credentials again.

Setting up AuthenticationProvider
In order to use HTTP authentication, add package dependencies to the Swift Package
Manager's manifest file, Package.swift:

...

.package(url: "https://github.com/vapor/auth.git", from: "2.0.0"),

...
dependencies: ["FluentPostgreSQL",
 "Vapor",
 "Leaf",
 "Authentication"]

Like enabling other services in Vapor, you then register AuthenticationProvider in
configure.swift:

try services.register(AuthenticationProvider())

You then import the authentication package into configure.swift and any Swift files
that use Authentication functions:

import Authentication

Configuring for SessionMiddleware
While AuthenticationProvider allows you to authenticate a user, you'll also need to set
up SessionMiddleware in Vapor in order to maintain the user's sessions.

Add the following code before services.register(middlewares) in
configure.swift:

middlewares.use(SessionsMiddleware.self)



Adding Authentication Chapter 9

[ 192 ]

The session middleware by default uses in-memory storage for session information. In
future Vapor releases, Vapor may add support for Fluent databases, such as SQLite,
PostgreSQL, and MySQL, or cache service, such as Redis, to store the session information.

If you want to use key-value storage for sessions, configure your middleware's preference
to be the KeyedCache service that is supported in Vapor:

config.prefer(MemoryKeyedCache.self, for: KeyedCache.self)

Constructing a Model
Now it's time to construct a Model that you can use to hold up the administrator's
credentials. Since you may want to manage the administrator accounts in your application,
it's better to construct a new model so a new table will be created in the database to store
the account information.

First, create a new Swift file, Models/Admin.swift, and import the following packages:

import FluentPostgreSQL
import Vapor
import Authentication

Next, subclass a new Admin class from one of the Fluent models, PostgresSQLModel:

final class Admin: PostgreSQLModel {
   var id: Int?
    var name: String
    var login: String
    var password: String // password is hashed
    init(id: Int? = nil, name: String, login: String, password: String) {
        self.id = id
        self.name = name
        self.login = login
        self.password = password
    }
}

The Admin class has a modifier, final, so you don't need to worry
anyone who can subclass from your Admin class.

Like any other database model in Fluent, PostgreSQLModel automatically increases the id
property and you typically don't need to assign a value to the model's id.



Adding Authentication Chapter 9

[ 193 ]

Then, you need to extend your class from the PasswordAuthenticatable protocol and
specify which properties you want to use for authentication purpose. Here's how it's done:

extension Admin: PasswordAuthenticatable {
    static var usernameKey: WritableKeyPath<Admin, String> {
        return \.login
    }
    static var passwordKey: WritableKeyPath<Admin, String> {
        return \.password
    }
}

Here, you use the .login property as the protocol's usernameKey and the .password
property as the protocol's passwordKey.

Finally, add other required protocols to your Admin class:

extension Admin: SessionAuthenticatable { }
extension Admin: Migration { }
extension Admin: Content { }
extension Admin: Parameter { }

The SessionAuthenticatable protocol allows you to keep the authenticated state
throughout each session once a user has successfully logged in as an administrator. For a
review of the Migration, Content, and Parameter protocols, please refer to Chapter 8,
Employing Storage Framework.

Accessing protected content
Since your model can now be authenticated by both password and session, you're ready to
separate routes into public and protected content. A clear separation between public and
protected content is needed so you don't accidentally expose protected content to
unauthenticated users in public routes. The route grouping technique in Vapor is useful in
organizing public and protected routes into distinct route groups. You can apply an
authentication requirement to the route group with routes of protected content. 

Any user who wishes to get access to the protected content must first provide login
credentials to your Vapor application, and then the application will authenticate the
submitted user login and password information using the credential information stored in
the database . 



Adding Authentication Chapter 9

[ 194 ]

Adding public routes
Open the existing JournalRoutes.swift and add a new line of code to import
the Authentication package into the JournalRoutes struct:

import Authentication

Add loginPage related constants to the JournalRoutes struct:

let loginPage = "/journal/login"
let loginPageWithError = "/journal/login?error"
let loginPageNeedLogin = "/journal/login?login"

Define a new context, LoginContext, to hold the information used in rendering the new
template, login.leaf:

struct LoginContext : Encodable {
  let login: Bool
  let error: Bool
  let title: String
  let author: String
}

Group and direct all routes in your web application to the authentication session
middleware:

func boot(router: Router) throws {
  let authSession = Admin.authSessionsMiddleware()
  let authRouter = router.grouped(authSession)
  ...
}

All routes will be processed by the authentication session middleware before reaching you.

You can now separate the routes into public and protected.

Group public routes and add routes to handle login/logout:

func boot(router: Router) throws {
  let authSession = Admin.authSessionsMiddleware()
  let authRouter = router.grouped(authSession)
  let publicRouter = authRouter.grouped("journal")
  // public routes
  publicRouter.get("", use: getAll)
  publicRouter.get("all", use: getAll)
  publicRouter.get("login", use: showLogin)
  publicRouter.post("auth", use: checkLogin)
  publicRouter.get("logout", use: logout)



Adding Authentication Chapter 9

[ 195 ]

  ...
}

In addition to the existing routes that are routed to the getAll() handler, you are adding
three new routes:

login: Renders the login.leaf template so a user can use its form to submit
login credentials
auth: Handles the HTTP POST request as a result of the submission of the login
form
logout: Destroys the current authentication session and reroutes the user to
"public" content

The preceding code shows how all public routes are grouped into publicRouter. The
public routes allow any users to access to the content these routes expose to them. You are 
exposing two kinds of content to the public users: you allow them to view all journal
entries in the database.

Adding the login page
One of the routes you added previously to the public route is to render a Login page for the
user to enter credential information.

Add the showLogin handler for the "login" route:

func showLogin(_ req: Request) throws -> Future<View> {
    let leaf = try req.make(LeafRenderer.self)
    var loginError : Bool = false
    var loginRequired : Bool = false
    if req.query[Bool.self, at: "error"] != nil { loginError = true }
    if req.query[Bool.self, at: "login"] != nil { loginRequired = true }

    let context = LoginContext(login: loginRequired,
                               error: loginError,
                               title: self.title,
                               author: self.author)
        return leaf.render("login", context)
}

The showLogin handler passes a LoginContext instance to render the login.leaf
template. It checks for the "error" and "login" URL-encoded parameters in the HTTP GET
request and puts the information in LoginContext. The two Boolean properties in
LoginContext, loginError, and loginRequired are used to determine whether there
was a previous failed login attempt.



Adding Authentication Chapter 9

[ 196 ]

Create the login.leaf template for the login page:

#embed("header")
<!--form-->
<section class="form" id="myLoginForm">
<div class="container">
    <div class="row">
        <div class="col-lg-12">
            <div class="heading">
                <h1>Login as an Admin</h1>
            </div>
        </div>
    </div>
</div>
<div class="container max-width">
    #if(error) {
        <div class="row">
            <div class="col-md-12">
                <div class="alert alert-danger" role="alert">
                    Incorrect email or password
                </div>
            </div>
        </div>
    }
    #if(login) {
        <div class="row">
            <div class="col-md-12">
                <div class="alert alert-info" role="alert">
                    You need to login as an admin
                </div>
            </div>
        </div>
    }
    <div class="row">
        <div class="col-md-12">
            <form action="/journal/auth" method="post">
                <fieldset class="form-group">
                    <input type="hidden" name="name" value="dontcare"/>
                    <input type="text" class="form-control" name="login"
placeholder="Enter your login (email or username) here.">
                    <input type="password" class="form-control"
name="password" placeholder="Enter your password here.">
                </fieldset>
                <button type="submit" class="entryform
submit">Submit</button>
            </form>
        </div>
    </div>



Adding Authentication Chapter 9

[ 197 ]

</div>
</section>
#embed("footer")

This form will send an HTTP POST request to Vapor for user authentication. Since you are
not going to use the name in authentication, the name field is hidden and provided with a
dummy string.

Checking login credentials
The login credentials are submitted through the HTTP POST request to
the /journal/auth route. You can now implement the code to process the submitted login
credentials.

Add the checkLogin handler to process the login credentials:

func checkLogin(_ req: Request) throws -> Future<Response> {
    return try req.content.decode(Admin.self).flatMap { candidate in
        return Admin.authenticate(username: candidate.login,
                                  password: candidate.password,
                                  using: BCryptDigest(),
                                  on: req).map { admin in
                                    guard let admin = admin else {
                                        return req.redirect(to:
self.loginPageWithError)
                                    }
                                    try req.authenticateSession(admin)
                                    return req.redirect(to: self.mainPage)
        }
    }
}

Since Admin implements the passwordAuthenticatable protocol, you can use
Admin.athenticated(username: password: using: on:) to verify the submitted
credentials. For the parameter, specify it to be BCryptDigest(). If the login credentials
have been authenticated successfully, call .authenticateSession() to set up the
authentication session and redirect the view to the main page. If the submitted login
credentials failed to authenticate successfully, redirect the view to the login page, with the
error flag turned on.

Logging out of the current session
For completeness, you can finish the handler for the logout route.



Adding Authentication Chapter 9

[ 198 ]

Add the following logout handler function:

func logout(_ req: Request) throws -> Response { // no async call
    try req.unauthenticateSession(Admin.self)
    return req.redirect(to: self.mainPage)
}

The logout handler simply calls the .unauthenticateSession() provided in the
sessionAuthenticatable protocol to exit the current session.

Specifying protected routes
Now, you're ready to specify the routes that require secured access. To do that, use
RedirectMiddleware to reroute any unauthenticated access requests to the login
template.

Add secureRouter in JournalRoutes.swift, right after the group of public routes:

let securedRouter = authRouter.grouped(RedirectMiddleware<Admin>(path:
"/journal/login"))

You can build onto secureRouter to specify all protected routes.

Add the following HTTP GET and POST requests to securedRouter:

// protected routes: entries
let adminRouter = securedRouter.grouped("journal/admin")
adminRouter.get("create", use: createEntry)
adminRouter.post("new", use: newEntry)
adminRouter.get(Int.parameter, "get", use: getEntry)
adminRouter.post(Int.parameter, "edit", use: editEntry)
adminRouter.get(Int.parameter, "remove", use: removeEntry)

Using the authenticated state
To display different messages in a template according to the authentication state, you can
pass a Boolean value via the Encodable context to your Leaf template.

Add the isAdmin Boolean to JournalContext:

struct JournalContext : Encodable {
    let isAdmin: Bool
    let title: String
    let author: String
    let count: String



Adding Authentication Chapter 9

[ 199 ]

    let entries: [JournalEntry]
}

In the header.leaf template, you use isAdmin to display different options for the user.
When the user is not authenticated, you want to display a link that allows the user to login;
otherwise, display the logout link for an authenticated user to exit the session:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>#(title)</title>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">

<!-- Bootstrap CSS -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.
css" integrity="sha384-
Smlep5jCw/wG7hdkwQ/Z5nLIefveQRIY9nfy6xoR1uRYBtpZgI6339F5dgvm/e9B"
crossorigin="anonymous">

<link rel="stylesheet"
href="https://use.fontawesome.com/releases/v5.2.0/css/all.css"
integrity="sha384-
hWVjflwFxL6sNzntih27bfxkr27PmbbK/iSvJ+a4+0owXq79v+lsFkW54bOGbiDQ"
crossorigin="anonymous">
<!-- Custom CSS -->
<link rel="stylesheet" href="/css/custom.css">

</head>

<body>
<!--wrapper start-->
<div class="wrapper" id="wrapper">

<!--Banner-->
<header>

<!--Navbar-->
<nav class="navbar navbar-expand-lg navbar-dark fixed-top scrolling-
navbar">
    <div class="container">
        <a class="navbar-brand" href="#"><strong>myJournal</strong></a>
        <button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#myNavbar" aria-controls="myNavbar" aria-expanded="false"
aria-label="Toggle navigation">



Adding Authentication Chapter 9

[ 200 ]

            <span class="navbar-toggler-icon"></span>
        </button>
    <div class="collapse navbar-collapse" id="myNavbar">
        <ul class="navbar-nav mr-auto">
            <li class="nav-item active">
                <a class="nav-link" href="/journal/all">Home <span
class="sr-only">(current)</span></a>
            </li>
            <li class="nav-item">
                #if(isAdmin == true) {
                    <a class="nav-link" href="/journal/logout">Logout</a>
                } else {
                    <a class="nav-link"
href="/journal/login?login">Admin</a>
                }
            </li>
            <li class="nav-item">
                <a class="nav-link" href="#">About</a>
            </li>
        </ul>
    </div>
</div>
</nav>

<!--Jumbotron-->
<div class="jumbotron banner-align-top" id="myBanner">
    <div class="banner-background text-center" style="background-image:
url(/img/pier.png);">
        <div class="container text-center" id="banner-size">
            <h2 class="banner-title">My Journal</h2>
            <h3 class="banner-subtitle">The Path of Heart!</h3>
        </div>
    </div>
</div>

</header>

Modify the getAll() handler to add the isAdmin field to JournalContext:

func getAll(_ req: Request) throws -> Future<View> {
 return JournalEntry.query(on: req).all().flatMap(to: View.self) { entries
in
 let isAdmin = try req.isAuthenticated(Admin.self)
 let context = JournalContext(isAdmin: isAdmin,
 title: self.title,
 author: self.author,
 count: String(entries.count),
 entries: entries)



Adding Authentication Chapter 9

[ 201 ]

 let leaf = try req.make(LeafRenderer.self)
 return leaf.render("main", context)
 }
}

Create a CreateContext struct that implements Encodable:

struct CreateContext : Encodable {
    let isAdmin: Bool
    let title: String
    let author: String
}

CreateContext contains the isAdmin Boolean field to indicate whether the user has
administrative rights.

Modify the createEntry() handler as well:

func createEntry(_ req: Request) throws -> Future<View> {
    let leaf = try req.make(LeafRenderer.self)
    let isAdmin = try req.isAuthenticated(Admin.self)
    let context = CreateContext(isAdmin: isAdmin,
                                title: self.title,
                                author: self.author)
    return leaf.render("new", context)
}

Managing accounts
You need to add several new routes to manage your admin account. For that, use
securedRouter to add another group of routes that handle admin accounts.

Add the following routes right under the protected routes for adminRouter:

// protected routes: accounts
let accountRouter = securedRouter.grouped("journal/account")
accountRouter.get("all", use: getAccounts)
accountRouter.get("add", use: addAccount)
accountRouter.post("new", use: newAccount)
accountRouter.get(Int.parameter, "remove", use: removeAccount)

There are four protected routes in the securedRouter route group. They are used to
manage the administrative accounts in your myJournal application.



Adding Authentication Chapter 9

[ 202 ]

Listing all accounts
Define a new path that lists all the accounts:

let accountsPage = "/journal/account/all"

Create the new AccountsContext Encodable context for the getAccounts() handler:

struct AccountsContext : Encodable {
    let isAdmin: Bool
    let title: String
    let author: String
    let count: String
    let admins: [Admin]
}

The context contains all the information required by the accounts.leaf template.

Continue to implement the getAccounts() handler:

func getAccounts(_ req: Request) throws -> Future<View> {
    return Admin.query(on: req).all().flatMap(to: View.self) { admins in
        let isAdmin = try req.isAuthenticated(Admin.self)
        let context = AccountsContext(isAdmin: isAdmin,
                                     title: self.title,
                                     author: self.author,
                                     count: String(admins.count),
                                     admins: admins)
        let leaf = try req.make(LeafRenderer.self)
        return leaf.render("accounts", context)
    }
}

The implementation is similar to the getAll() handler, which lists all journal entries.

The new accounts.leaf template is implemented as follows:

#embed("header")
#if(isAdmin == true) {
[ <a class="fas fa-plus-square" href="/journal/all"> Go Home</a>
| <a class="fas fa-user-alt" href="/journal/account/add"> Add New
Account</a>
]
}
<P>
<div class="container">
    <div class="row">
        <div class="col-1"><b>ID</b></div>



Adding Authentication Chapter 9

[ 203 ]

        <div class="col-1"><b>Name</b></div>
        <div class="col-2"><b>Login</b></div>
        <div class="col-7"><b>Hashed Password</b></div>
        <div class="col-1"><b>Action</b></div>
    </div> <!-- row -->
    #for(admin in admins) {
        <div class="row">
            <div class="col-1">#(admin.id)</div>
            <div class="col-1">#(admin.name)</div>
            <div class="col-2">#(admin.login)</div>
            <div class="col-7">#(admin.password)</div>
              <div class="col-1"><a class="fas fa-trash-alt"
href="/journal/account/#(admin.id)/remove">Remove</a></div>
        </div> <!-- row -->
    }

</div>
#if(isAdmin == true) {
    Total: #(count);
}
#embed("footer")

The template lists all the admin entries in AccountsContext and adds new links to add a
new account or remove an existing account.

Adding a New Account
The Add New Account feature is based on the addAccount() handler. However, in the
addAccount() function, you don't need to handle the authentication and session directly
because Vapor handles all of that for you once your model implements
the passwordAuthenticatable() and sessionAuthenticatable() protocols.

Add the addAccount() handler:

func addAccount(_ req: Request) throws -> Future<View> {
    let leaf = try req.make(LeafRenderer.self)
    let isAdmin = try req.isAuthenticated(Admin.self)
    let context = CreateContext(isAdmin: isAdmin,
                                title: self.title,
                                author: self.author)
    return leaf.render("add_account", context)
}

The handler renders the add_account.leaf template, which simply provides a form for
the authenticated user to create another admin account.



Adding Authentication Chapter 9

[ 204 ]

The submission of the HTTP POST of the add_account.leaf template will be then
processed by the newAccount() handler:

func newAccount(_ req: Request) throws -> Future<Response> {
    return try req.content.decode(Admin.self).flatMap(to: Admin.self) {
admin in
        admin.password = try BCrypt.hash(admin.password)
        return admin.save(on: req)
    }.transform(to: req.redirect(to: self.accountsPage))
}

It uses BCrypt package's hash() function to convert the submitted password into its hash
value. Then the new admin object will be stored using Fluent's save(on:) function to 
serialize it to the database.

Add the following add_account.leaf template:

#embed("header")
<!--form-->
<section class="form" id="myForm">
<div class="container">
    <div class="row">
        <div class="col-lg-12">
            <div class="heading">
                <h1>Add an Admin Account</h1>
            </div>
        </div>
    </div>
</div>
<div class="container max-width">
    <div class="row">
        <div class="done">
            <div class="alert alert-success">
                <button type="button" class="close" data-
dismiss="alert">X</button>
                Your message has been submitted.
            </div>
        </div>
        <div class="col-md-12">
            <form action="/journal/account/new/" method="post">
                <fieldset class="form-group">
                    <!input name="id" type="hidden"/>
                    <input type="text" class="form-control" name="name"
placeholder="Enter your name
here">
                    <input type="text" class="form-control" name="login"
placeholder="Enter your email



Adding Authentication Chapter 9

[ 205 ]

address or login here">
                    <input type="password" class="form-control"
name="password" placeholder="Enter your
password here">
                </fieldset>
                <button type="submit" class="entryform
submit">Submit</button>
            </form>
        </div>
    </div>
</div>
</section>
#embed("footer")

Removing an account
With Fluent ORM, the removal of an account is straightforward. Simply call
the delete(on:) function to remove the specific object from the database:

func removeAccount(_ req: Request) throws -> Future<Response> {
    let id = try req.parameters.next(Int.self)
    return Admin.find(id, on: req).flatMap { admin in
        guard let admin = admin else { throw Abort(.notFound) }
        return admin.delete(on: req).transform(to: req.redirect(to:
self.accountsPage))
    }
}

Seeding databases
You're almost ready to use the new routes to create or remove an admin page. The last
thing you need to do is to seed the database so you have at least one known Admin account
at the beginning. This is very easy with the PostgreSQL frontend utility: pgadmin4.

One problem you have right away is that a password must be converted into a hash value
before serializing to the database. For a quick workaround, you can use a known password
hash for the seed account.

You can check out Vapor's implementation of the BCrypt library. BCrypt is a popular
hashing algorithm that has configurable complexity and handles salting automatically.
Locate the unit tests for the BCrypt library on GitHub: https:/ /github. com/ vapor-
community/bcrypt/ blob/ master/ Tests/ BCryptTests/ BCryptTests. swift.

https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift
https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift


Adding Authentication Chapter 9

[ 206 ]

You may notice that there is a list of passwords and hash pairs already in the file:

let tests = [
    "$2a$04$TI13sbmh3IHnmRepeEFoJOkVZWsn5S1O8QOwm8ZU5gNIpJog9pXZm":
"vapor",
    "$2a$06$DCq7YPn5Rq63x1Lad4cll.TV4S6ytwfsfvkgY8jIucDrjc8deX1s.": "",
    "$2a$06$m0CrhHm10qJ3lXRY.5zDGO3rS2KdeeWLuGmsfGlMfOxih58VYVfxe": "a",
    "$2a$06$If6bvum7DFjUnE9p2uDeDu0YHzrHM6tf.iqN8.yx.jNN1ILEf7h0i": "abc",
    "$2a$06$.rCVZVOThsIa97pEDOxvGuRRgzG64bvtJ0938xuqzv18d3ZpQhstC":
"abcdefghijklmnopqrstuvwxyz",
    "$2a$06$fPIsBO8qRqkjj273rfaOI.HtSV9jLDpTbZn782DC6/t7qT67P6FfO":
"~!@#$%^&*() ~!@#$%^&*()PNBFRD"
]

You can store the "vapor" password's hash value,
"$2a$04$TI13sbmh3IHnmRepeEFoJOkVZWsn5S1O8QOwm8ZU5gNIpJog9pXZm", in the
database.

Using pgAdmin 4, right-click on the Admin model and choose Insert Script to execute:



Adding Authentication Chapter 9

[ 207 ]

Use the hash code for vapor to construct a new Admin entry. This is the seed Admin object:

If your seed Admin object is created correctly, you should be able to verify it using
the BCrypt library's verify() function:

let hash = try BCrypt.hash("vapor", cost: 4)
try BCrypt.verify("vapor", created: hash) // true

Of course, there are other ways to seed the database. For example, one generic method is to
always create a new Admin account as part of the first time out-of-box experience for a user.
In your Vapor application, you can check whether there is at least one Admin user in the
database and proceed to prompt the user to create a new Admin account if none is found.
Using this new Admin account, one can then add and manage other Admin accounts.

Introducing authentication for Kitura
Credentials is a pluggable framework for validating a user's credentials. One of the
credentials plugins Kitura supports is HTTP basic authentication. HTTP authentication uses
the credentials in the HTTP authorization request header, which contains user ID and
password pairs, to authenticate with a server.

For your server-side Swift application, Kitura provides you with the raw HTTP basic
authentication module to process the HTTP credentials.

If you want to authenticate an HTTP request on a Codable route, you have an option to
choose the TypeSafe HTTP basic authentication method to take advantage of
TypeSafeCredentials, one of the type-safe middleware introduced in Kitura 2.4.

Setting up HTTP basic authentication
Now, you can add some secured routes based on the code base of the myJournal
application in Chapter 8, Employing Storage Framework.



Adding Authentication Chapter 9

[ 208 ]

To set up HTTP basic authentication, add the following package dependencies to the Swift
Package Manager's manifest file, Package.swift:

// swift-tools-version:4.0
import PackageDescription

let package = Package(
    name: "myJournal",
    dependencies: [
      .package(url: "https://github.com/IBM-Swift/Kitura.git",
.upToNextMinor(from: "2.5.0")),
      .package(url: "https://github.com/IBM-Swift/HeliumLogger.git",
.upToNextMinor(from: "1.7.1")),
      .package(url: "https://github.com/IBM-Swift/CloudEnvironment.git",
from: "8.0.0"),
      .package(url: "https://github.com/RuntimeTools/SwiftMetrics.git",
from: "2.0.0"),
      .package(url: "https://github.com/IBM-Swift/Health.git", from:
"1.0.0"),
      .package(url:
"https://github.com/IBM-Swift/Kitura-StencilTemplateEngine.git", from:
"1.8.0"),
      .package(url: "https://github.com/IBM-Swift/Swift-Kuery-ORM.git",
.upToNextMinor(from: "0.3.1")),
      .package(url:
"https://github.com/IBM-Swift/Swift-Kuery-PostgreSQL.git", from: "1.2.0"),
      .package(url:
"https://github.com/IBM-Swift/Kitura-CredentialsHTTP.git", from: "2.1.0"),
    ],
    targets: [
      .target(name: "myJournal", dependencies: [ .target(name:
"Application"), "Kitura" , "HeliumLogger", "KituraStencil"]),
      .target(name: "Application", dependencies: [ "CredentialsHTTP",
"Kitura", "CloudEnvironment","SwiftMetrics","Health", "SwiftKueryORM",
"SwiftKueryPostgreSQL"]),

      .testTarget(name: "ApplicationTests" , dependencies: [.target(name:
"Application"), "Kitura","HeliumLogger" ])
    ]
)

Import the authentication packages into JournalRoutes.swift that use authentication
functions:

import Credentials
import CredentialsHTTP



Adding Authentication Chapter 9

[ 209 ]

You also need to regenerate the Xcode project so the new CredentialsHTTP package is
included in a build:

swift package generate-xcodeproj

Constructing a Model
Now you need a Model that can be also authenticated by HTTP basic authentication.

Create a new Swift file, Admin.swift, in the /Sources/Application/Model directory.

Subclass the Admin model from Model:

import SwiftKueryORM // [1]

struct Admin: Model // [2]
{
  static var idColumnName = "id" // [4]

  public static func checkPassword(username: String,
                                    password: String) -> Bool { // [5]
      var ret = false
      Admin.find(id: username) { user, error in // [6]
          if let user = user { // [7]
              if password == user.password { // [8]
                  ret = true
              }
          }
      }
      return ret
  }

  public var id: String // [3]
  private let password: String
}

The new Admin model is constructed in the following steps:

Import the SwiftKueryORM package so you can use the Model protocol1.
Declare the data structure as Admin, which conforms to Model2.
Add the String variable, id, as well as the String constant, password3.
Choose the id field as idColumnName for database indexing4.



Adding Authentication Chapter 9

[ 210 ]

Add the static function, checkPassword(), which you will use later with5.
credential checking
Use the given username as the ID for querying the database6.
Unwrap the optional database-querying result into the user object7.
Set the return flag to true if the given password matches that of the user object8.

To link your model to a table in your database, you need to create a new table right after
the do-try-catch block where you set up a database connection for JournalItem in
JournalRoutes.swift:

do {
    try Admin.createTableSync()
} catch let error {
    Log.error("Failed to create table in database: \(error)")
}

Right now, there is no record in the Admins table. Run the INSERT SQL script in pgAdmin4
to add a new entry for Admin. This sample script adds the 'kitura'/'kitura' pair to the
database:

Now you can register a credentials object as a middleware plugin for all the /journal
paths.



Adding Authentication Chapter 9

[ 211 ]

Add the following code right after your Admin.createTableSync() code:

let cred = Credentials()
cred.register(plugin: app.rawAuth)
app.router.all("/journal", middleware: cred)

Any routes that are under the /journal root are now protected and require your
credential information. Once you're successfully authenticated, the web browser's cookies
will persist your authentication status throughout a session.

You can also follow the same steps as in your Vapor application to add new routes for the
Admin account management. In this way, you don't have to use the pgAdmin tool to add
new Admin users manually.

The last thing you need to complete the authentication feature is to implement the
app.rawAuth plugin itself.

Add the rawAuth extension to the app after
the initializeJournalRoutes(app:) function:

extension App {
    var rawAuth: CredentialsHTTPBasic {
        let cred = CredentialsHTTPBasic(verifyPassword: { login, password,
callback in
            if Admin.checkPassword(username: login, password: password) {
                callback(UserProfile(id: login, displayName: login,
provider: "HTTPBasic"))
            } else {
                callback(nil)
            }
        })
        cred.realm = "HTTP Basic authentication: Username = username,
Password = password"
        return cred
    }
}

As you can see, you use the Admin.checkPassword() function you previously created to
instantiate a new CredentialsHTTPBasic object. The caller function will receive a valid
CredentialsHTTPBasic object if the user is authenticated successfully, otherwise it will
receive nil.



Adding Authentication Chapter 9

[ 212 ]

Using TypeSafe HTTP authentication
For the TypeSafe HTTP Basic Authentication method, you can add the
TypeSafeHTTPBasic protocol to the Admin model:

public struct Admin: TypeSafeHTTPBasic, Model {
  static var idColumnName = "id" // [1]
  public var id: String
  var name: String
  var login: String
  var password: String // [2]
  public static func verifyPassword(login: String, // [3]
                                    password: String,
                                    callback: @escaping (Admin?) -> Void) {
      Admin.find(id: login) { admin, error in // [4]
        if let admin = admin {
          if password == admin.password { // [5]
            callback(admin) // [6]
            return
          }
        }
        callback(nil) // [7]
      }
    }
}

Here are some important points to note:

The ID field is set as the ID column, idColumnName, in the database.
password is a String but it can be a hashed value.
The verifyPassword function, required by the TypeSafeHTTPBasic protocol,
is used to set up HTTP basic authentication. It takes in login and password
credentials.
The login will be used as an id for querying the database.
If the provided password matches the stored password in the database, an Admin
instance will be returned.
The database querying is asynchronous, so the callback closure with an instance
of Admin is used.
If no matched Admin instance is retrieved from the database, a callback closure
with nil is used.



Adding Authentication Chapter 9

[ 213 ]

For any routes that require authentication, you can implement them just like any codable
routes using Swift-Kuery-ORM:

router.get("/admin") { (user: Admin, respondWith: (Admin?, RequestError?)
-> Void) in
    print("\(user.id) has been authenticated!")
    respondWith(user, nil)
}

The preceding code demonstrates how to turn a model into an authenticatable model in
Kitura.

Summary
In this chapter, you learned how to use web authentication to secure routes with protected
content in your Vapor web application. To do that, you created a new data model for
administrative accounts and added routes and templates to manage the accounts. With this
account-management feature, you were able to grant administrative rights to some users or
provoke the rights later. Now only a specific group of users will be able to create, edit, or
delete a journal entry with their credentials. Then, you worked on the same web
authentication framework to secure all the routes under the /journal path. This chapter
concludes your myJournal web application. In the next chapter, we will look at how to
build more advanced web services.



10
Understanding Technologies for

Web Services
In this chapter, we'll see the underlying technologies that empower Web Services. You'll
learn about the server/client model based on HTTP/HTTPS in more detail, and get
introduced to the Model-View-Controller design pattern you've found in most of the Swift
web frameworks. For the architecture design of Web Services, it would be better to divide
the design into a three-tier architecture consisting of a frontend API gateway, middle
business logic, and backend database services. You'll learn how a typical frontend API
gateway is designed, how to encapsulate a middle component with business logic into a
standalone microservice, and how to design and work with a backend storage framework.

In this chapter, we will cover the following topics:

Understanding the three-tier architecture for Web Services
Getting a review of HTTP protocols
Learning two design patterns for cloud frontend: Backends of Frontends and API
Gateway
Getting introduced to the microservice-oriented architecture
Getting practical advice on continuous delivery and deploying your software to
cloud



Understanding Technologies for Web Services Chapter 10

[ 215 ]

Serving clients with web services
In the previous chapters, you have been working on the technologies in building website
applications. Website applications refer to the delivery of interactive web content (HTML,
CSS, Javascript) to web browsers such as Chrome, Safari, and Firefox. Starting in this
chapter, you will work on Web Services intended for a variety of client applications that are
customized with their own user interface and user experience. The backend components in
Web Services focus on the delivery of data to the client applications and do not use
templating engines to render any content.

Designing three-tier architecture for web service
A typical backend architecture for web applications and web services has a three-tier layer
of components. The three-tier architecture allows you to conveniently separate features into
more manageable modules, offering you an opportunity to extend and reconfigure your
web services easily. This is what the architecture looks like: 



Understanding Technologies for Web Services Chapter 10

[ 216 ]

The delivery of resources is typically over HTTP/1.1 protocols, but more and more websites
and web infrastructure have been updated to HTTP/2.0 protocols. The three tiers of web 
backend architecture typically include the Front-End, Application, and Data Storage
Layers, which we'll look at in the next sections. 

The frontend layer
The frontend layer consists of web content (in the form of HTML/CSS/JS) for website
applications or an API for web services. In the case of website applications, the web content
could be generated by templating engines, such as Vapor Leaf, Stencil, Mustache, and
Markdown, or enhanced by JavaScript frameworks, such as jQuery, Angular, and React.
Frontend applications may pull in other resources via the APIs provided by other Web
Services. The clients for a website application will be a variety of web browsers on different
platforms.

In the case of web services, the clients make HTTP requests to the application server and
exchange data in JSON. An application server is not expected to render web content
(HTML/JS/CSS), have a concern for user experience (UX), or handle any presentation of
data. Each client decides how to consume and present the data received from a Web
Service. Instead, an application server for Web Services organizes all functionalities in
terms of the RESTful API, aggregates different services in a single interface (API Gateway),
and hides away the details of backend components (the facade for the backend).

The application layer
The application layer of your web service consists of a number of application servers that
handle the business logic for the service. For scalability, extensibility, and load-balancing
requirements in backend architecture design, each kind of business logic could be
implemented in an independent runtime as microservice in modern backend design. The
business logic could also be implemented in different programming languages, such as
Swift, Java, Javascript/Node.js, C++, C#, or Python. Each microservice is deployed in a
Docker container to a hosting cloud location.

The data storage layer
The data storage layer is a database-management system that provides access to your Web
Service with stored application data. A database server could be a relational database, such
as MySQL, SQLite, or PostgreSQL, or a non-relational database, such as MongoDB or
CouchDB. There could be multiple databases serving an application, and it will be up to the
application layer to decide which database to use.



Understanding Technologies for Web Services Chapter 10

[ 217 ]

Reviewing HTTP protocols
HTTP stands for Hypertext Transfer Protocol. It is the foundation of data communication
for the internet. The protocol is developed jointly by the Internet Engineering Task Force
(IETF) and the World Wide Web Consortium (W3C). There are a series of Requests for
Comments (RFC) published since 1991. Here is a list of several variants of the HTTP
protocol that you may encounter:

Protocol Year Spec Key features

HTTP/0.9 1991 Simple server-server, request-response model; HTTP GET request only; no HTTP
headers, no status codes, no URLs, no versioning.

HTTP/1.0 1996 RFC
1945

Web-browser-friendly with HTTP header fields; support of status code, HTTP
version number and content type; HTTP GET, HEAD, and POST methods
supported.

HTTP/1.1 1997 RFC
2068

Most popular HTTP version in use; support of persistent connection, data
compression, chunked transfers, and cache; GET, HEAD, POST, PUT, DELETE,
TRACE, OPTIONS methods supported.

HTTPS 2000 RFC
2818

Originally used in Netscape browser in 1994; uses different port (port 443 instead
of 80); added encryption layer (SSL/TLS) on the HTTP scheme; same syntax as
HTTP.

HTTP/2.0 2015 RFC
7540

Compatible with HTTP/1.1; supports data compression of HTTP headers; server
push; pipelining of requests; support for framed and binary data; capable of
multiplying multiple requests over a single TCP connection.

HTTP/1.1 evolves from HTTP/0.9 and HTTP/1.0, and becomes the main HTTP protocol
used on the internet. There are two other variants you may encounter:

HTTPS: If the server/client communication requires security, for example, for
transmitting sensitive personal information or passwords, HTTPS instead of the
HTTP protocol will be used. HTTPS refers to HTTP Secure and it ensures all data
is encrypted properly. A business or user of HTTPS has to apply for a certificate
from one of the Certificate Authority providers in order to use HTTPS properly.
As a matter of fact, HTTPS became so popular that more than half of HTTP/1.1
traffic takes place on HTTPS.



Understanding Technologies for Web Services Chapter 10

[ 218 ]

HTTP/2.0: This is the major revision of the HTTP protocol in 2015. It is derived
from Google's SPDY protocol. HTTP/2.0 supports most of the HTTP/1.1 syntax
but also adds support of framed data and binaries. The server implementing
HTTP/2.0 no longer operates on passive-only mode. The HTTP/2.0 server can
predict whether some data is required by the client and pushes resources to the
client ahead of time. Most importantly, HTTP/2.0 improves performance in data
delivery by multiplying requests and responses, compressing HTTP headers, and
allowing the prioritization of requests. HTTP/2.0 also has a very efficient
mechanism for data-streaming. That's the reason for the gRPC framework, a
popular open source RPC framework by Google: to choose HTTP/2.0 as the
default server/client networking protocol for data-streaming over its data
pipeline, called Completion Queue.

Currently, HTTP/1.1 (including HTTPS) is the most popular protocols for websites, taking
up more than 70% coverage as compared to HTTP/2.0.

Designing the cloud frontend with pattern
When it comes to the design of the backend architecture for a web service, there are many
well-known design patterns that provide a good solution to some of the most common
problems you are going to encounter. By taking a preemptive approach to reviewing some
of the available design patterns, you will have a more coherent and well-thought-out Web
Service design.



Understanding Technologies for Web Services Chapter 10

[ 219 ]

The backends for frontends pattern
One of these backend design patterns is the Backends for Frontends (BFF) pattern. It is 
useful to avoid having a single backend for multiple interfaces:

There are many different kinds of client types, such as desktop clients, mobile clients, small
device clients, and tablet clients. Each of the client types may have a different optimized
user-interface design and preferred user-interaction technologies. To have a single, general-
purpose backend service is not only difficult to implement, but also forced to make
tradeoffs. A general-purpose frontend layer even becomes a bottleneck in a team-based
development process.



Understanding Technologies for Web Services Chapter 10

[ 220 ]

BFF provides a way to get around these issues by creating one backend per user interface or
client type. This design allows you to customize the behavior and performance of each
backend for a specific client type, and creates schedule flexibility in a team-development
process so engineers can work on BFFs in parallel.

A potential drawback of BFF is that the handling of shared data, if any, between backends
may turn out to be more complicated. However, this issue could be solved with a good
concurrent design of a system that handles such shared data.

API gateway
Another useful design pattern is API gateway or API aggregation. In a typical cloud-based
enterprise application, there are various sub-services, such as accounting, authentication,
user profile, and messaging. In fact, the trend of backend design is that the runtime of each
service is getting more lightweight. People use the term microservice to refer to such a
lightweight runtime. Each microservice performs a small task and many different
microservice runtimes work together to deliver a complete solution.

For a client, it means that each may have to make multiple calls to various backend services
to complete a fairly complex job. It is obviously not very desirable due to the chattiness
between the client and server.

API gateway comes to the rescue for this problem. API gateway not only aggregates
multiple services into a centralized endpoint for the client, but also consolidates the steps
for a client to get a task done.



Understanding Technologies for Web Services Chapter 10

[ 221 ]

Here are the differences between the frontend with and without an API gateway:

As you can see, an API Gateway acts as a facade for the numerous services running in the
Application layer. API Gateway decouples the client-facing API from the implementation
of service runtimes, essentially adding extensibility and scalability to the frontend design.



Understanding Technologies for Web Services Chapter 10

[ 222 ]

For example, if one of the services needs to be upgraded, you can simply swap in the new
server runtime and take the old one away. The API definitions could possibly be kept
unchanged if the design is backward-compatible.

API Gateway not only decouples client and backend development, but also serves as a
unified interface that streamlines the workflow on the client side.

Encapsulating business logic into
microservices
The backend design for web services is usually referred to as distributed architecture 
because you expect to have service components running on different processes and
physical servers. Each service component is accessed remotely through a sort of remote-
access protocol. These service components can communicate with each other across
different processes, servers, and networks. Similar to Object-Oriented Design (OOD) in 
software architecture, distributed architecture accommodates more loosely-coupled,
encapsulated, and modular design for Web Service applications. Such characteristics of
distributed architecture are generally advantageous to cloud backend services as they bring
better scalability, modularity, and control to the development and deployment of service
modules.



Understanding Technologies for Web Services Chapter 10

[ 223 ]

Implementing a microservice-oriented
architecture
One of the differences between microservices and service-oriented architecture is the
granularity of a service. The principle for microservices is to take the modularity of service-
oriented architecture further, into smaller and more manageable functional units. The
concept of microservice-oriented architecture compared to a componentized application is
illustrated as follows:



Understanding Technologies for Web Services Chapter 10

[ 224 ]

Service components in service-oriented architecture are not designed for reusability;
duplicated features may be inadvertently added to the service. A mature service may
become bloated and monolithic, making it hard to maintain, debug, and develop.
Microservices, however, are designed for tasks at a more granular level and won't become
bloated easily.

Designing microservice with key principles
The key principles for the microservice-oriented architecture are as follows:

Separation of concerns: Each microservice is modular and is held for a single
responsibility
Loosely coupled: Each microservice is isolated from other microservices and
components as much as possible
Independently deployable: Each microservice is an entity that can be
individually deployed as needed
Cross-platform and cross-language: Each microservice can be developed
independently in a different programming language and communicate with each
other across platform boundaries
Scalability: The same type of a microservice can be added to deployment as
many as needed
Automation: The deployment of the microservice is automated
Build for failure: A microservice will gracefully exit during catastrophic failure
and get a chance to be relaunched if required

Even though these principles are not mandatory, you may want to observe them to reap the
maximum benefit from the microservice-oriented architecture.

Cloud deployment
After you've designed your application for Web Services, you will start pondering over the
deployment of your application to a hosted cloud location. While you have many choices of
hosting solutions, there are an array of technologies that make your deployment.



Understanding Technologies for Web Services Chapter 10

[ 225 ]

Containing microservices with Docker
Most of the microservice components are deployed using containers. Container technology,
such as Docker, provides a granular virtualized infrastructure to microservices, making it
extremely easy to partition finer-grained execution environments:

Containers allow multiple execution environments to run on a single operating system
instance. Unlike a hypervisor configuration, where each application sits on an
individualized operation system, container configuration enables the sharing of operating-
system-level resources across different applications. A containerized application works in
the same way as that in the hypervisor configuration, except that the container for each
application accounts for any modification or provision specific to the application itself.

Using container technology to perform execution isolation at the operating-system level
offers the following advantages for microservice deployment:

Better component cohabitation: Each microservice has a private environment
and won't affect other microservices.
More efficient utilization of resource: All containerized microservices on a
single operating system instance share the same resource; only changes to the
underlying operating system are captured in each container.
Faster initialization and execution: The container is generally lightweight and
doesn't require the typical operating system spin-up time required in a virtual
machine, making it faster to initialize and run.
Better scalability for workload: Better isolation nature of containerized
microservice helps addition and removal of a microservice when workload
changes.



Understanding Technologies for Web Services Chapter 10

[ 226 ]

More reusability opportunities: A low deployment cost, simplicity, and the
lightweight nature of a containerized microservice mean that the microservice is
more likely to be reused in another application.

Container technology offers such great benefits that Docker is becoming the default method
for deploying microservices to the cloud.

Continuously deploying to the cloud
The runtime of a new version of web services packaged in Docker container is deployed to
a cloud hosting server continuously. There are two types of deployment methods:
continuous delivery and continuous deployment.

In both deployment methods, new code changes get pushed from your local source code
repository to the remote source repository. This often triggers a post-hook notification to a
continuous-integration server, triggering all of your unit tests to run with the new code
changes you have made. If all tests are passed, you'll receive a notification. At a later time, a
new version of the software will be deployed to your cloud hosting account. Continuous
delivery means that the deployment to cloud hosting is done manually, while continuous
deployment means that the deployment is done automatically.

Working with a sample workflow
The workflow for continuous delivery/continuous deployment to the cloud is illustrated in
the following diagram:

When you have committed new changes in your local git repository, you use git push to
push all committed changes to the remote repository on GitHub. GitHub provides the
webhook API function so that a git push will notify external server, your Jerkins (or
alternatives such as Bitrise, CircleCI, or BuddyBuild) continuous-integration (CI) server.
This notification triggers all unit tests to run. If all test cases pass, you'll receive a
notification in the case of Continuous Delivery, or a script will trigger the upload of a
containerized new package automatically in the case of Continuous Deployment.



Understanding Technologies for Web Services Chapter 10

[ 227 ]

Summary
While you didn't do any coding in this chapter, you learned quite a lot of technical terms
that will help you navigate the technologies you are going to work on in the next few
chapters. First, you learned how to divide the backend into a three-tier architecture for Web
Services. Next, you learned the nuts and bolts of HTTP protocols. Then, you were
introduced to two design patterns for cloud frontend: BFFand API Gateway. After that, you
learned some key design principles for microservice-oriented architectures. Finally, you
were given practical advice on continuously integrating your server-side Swift projects for
delivery and deployment to the cloud. In the next chapter, you'll roll up your sleeves again
to design and implement an API Gateway.



11
Designing for API Gateway

 Representational State Transfer (REST) is the most popular architecture for creating
HTTP/HTTPS-based APIs to represent web services that a site has to offer to end users. The
REST architecture builds upon the GET/POST/PUT/DELETE requests offered in the
HTTP/HTTPS standards. In this chapter, you'll learn how to build a RESTful API, get
introduced to the basic rules for API design, create endpoints for requests that a client
sends to a server, and define response status codes. You'll then learn how the design of the
REST API can be extended to the idea of building an API Gateway, which is the single entry
point for all clients and routes client's requests to different MVC components or
microservices.

After finishing this chapter, you'll have the following knowledge:

Understanding the basic server/client model based on HTTP
Gaining an insight into designing RESTful API
Knowing how to assign HTTP methods for the API endpoints
Acquiring the skill set to implement the endpoints and HTTP responses

Serving clients with the RESTful API
The RESTful API refers to an interface that is based on the REST architectural style and
separates the implementation of web services on a server from the user interface
implemented by a client. This separation provides good portability for a web service so it
can serve different clients across multiple platforms, and offers great user experience for the
client so it can keep the native design of the client platform and provides a uniform look
and feel to the users.



Designing for API Gateway Chapter 11

[ 229 ]

In general, the REST architecture assumes a stateless server, hence the session state is kept
entirely on the client side. Each HTTP request the client makes must contain all information
the server needs to understand the request and provide an expected response. In Chapter
9, Adding Authentication, you've already learned how to maintain the session of a successful
login via session cookies. The session cookies can be used by the web browser and other
clients.

For speed optimization, the client can cache some responses and reuse the response data
from the server for other requests. In fact, a server may not know about such requests even
though it may appear that new requests are made to the server. The response data must be
labeled implicitly or explicitly to be cacheable. Only if a response is cacheable would a
client be given the right to store and reuse the response for later requests.

Understanding the server/client model based on
HTTP
Once a TCP connect has been established between a client and a server, the client can start
communicating with the server using the higher-level HTTP protocol built on top of TCP.
Common HTTP requests include GET, POST, PUT and DELETE. In HTTP/1.1, the
connection needs to be established only once, and additional requests and the retrieval of
resources (HTML pages, JSON data, images) will be executed using the same connection.

A typical HTTP GET request works as follows:



Designing for API Gateway Chapter 11

[ 230 ]

First, the client knows the IP address of the server. It establishes an HTTP connection to the
IP address and makes an HTTP GET request by sending the type of HTTP request, GET,
followed by the version of HTTP protocol, HTTP/1.1, and the path on the
server, www.anysite.com.

Next, the server responds with the same version of the HTTP protocol, HTTP/1.1, and the
HTTP status code, 200 OK, to confirm that everything seems to be OK and it is going to
send the resource per the client's request. The type of resource is on the second line:
Content-Type: text/html.

Designing the RESTful API
You can perform the following three easy-to-follow steps to design a RESTful API using
HTTP protocols:

Identify an object model to represent one kind of resource.1.
Define resource endpoints for different levels of resources.2.
Assign HTTP methods to operations for the resources.3.

Identifying object models
The resources that are offered to the client are represented as objects on a server. You've
already modeled for the content, that is, JournalEntry, and the administrators who have
the permission to create, edit, and delete journal entries, that is, Admin. You can identify
other objects to represent the resources in your application, such as preferences, user
profiles, blogs, and pictures.

The JournalEntry you've created in previous chapters is shown again here:

final class JournalEntry: PostgreSQLModel {
    var id: Int?
    var title: String
    var content: String
    init(id: Int? = nil, title: String, content: String) {
        self.id = id
        self.title = title
        self.content = content
    }
}

http://www.anysite.com


Designing for API Gateway Chapter 11

[ 231 ]

extension JournalEntry: Migration { }
extension JournalEntry: Content { }
extension JournalEntry: Parameter { }

For any objects/resources in your model, you'll need to have a unique identifier. In the
JournalEntry model, this is the id integer property.

In server-side Swift frameworks, the model can implement Codable (Content in Vapor)
for object encoding and decoding for external representations, such as JSON, as well as
other useful protocols for handling object models, such as Authenticatable, Migration,
database model, and Parameters.

Defining resource endpoints
With the object models defined, you can decide the resource URIs. In this step, you will
focus on the relationship between resources and their sub-resources, and create resource
URIs as endpoints for RESTful services.

Defining endpoints for top-level resources
In this chapter's myJournal application, all resources are under /api, which indicates that
the resources are available through an API.  Each endpoint in the API represents one kind
of resource. If you intend to provide both web applications that render web pages (similar
to what you have done in previous chapters) and web services with the RESTful API, the
top-level /api path in the URIs is used to distinguish your RESTful APIs from the rest of
the web applications.

After that, the top-level resource is the journal itself, as in /api/journal.

It is recommended to start the top-level resource with the application
because you may want to have other sub-applications at the top-level URI.

For example, you may have /api/journal for the journal's blogging sub-
application, /api/news for the news-aggregation sub-application,
or /api/guestbook for the visitor-guest-book-signing sub-application.

Your top-level resources for top-level URIs may look like this:

/api/journal
/api/news
/api/guestbook



Designing for API Gateway Chapter 11

[ 232 ]

The design of top-level URIs not only allows you to extend the features of your web
services without affecting any existing features, but also adds extensibility to the
implementation so each top-level resource could be served by services on different
systems.  It is also a convention that URIs use only nouns and do not use any verb or
operation. This convention makes perfect sense because each endpoint of a URI literally
represents one type of resource.

For resources that are shared across different sub-applications, you can also leave them to
the top level:

/api/account
/api/configuration
/api/profile

In the preceding examples, you have the account resource, which manages the
administrative rights of a registered user, the configuration resource, which sets the
global configuration that affect all sub-applications, as well as the profile resource, which
maintains the profile for a registered user.

Defining Endpoints for Sub-resources
Within each sub-application, the URIs for all the main sub-resources can be mapped out. 
For any operations applicable to all resources at an endpoint, you can simply use the top-
level endpoint itself. For example, to retrieve all journal entries, your endpoint could be
simply /api/journal.  If an operation is applicable to a specific resource, an ID is often
used to indicate the specific sub-resource, as in /api/journal/{id}.

The URIs for top-level resources and sub-resources in the myJournal application are listed
as the following:

/api/journal
/api/journal/{id}

The /api/journal/{id} sub-resource is applicable to a specific journal entry.

Assigning HTTP methods
With properly-defined URIs and representations of resources, you can define all the 
operations in the application on resource URIs. Let's look at how each operation is mapped,
come on, let's go.



Designing for API Gateway Chapter 11

[ 233 ]

Browsing all journal entries
To get the collection of all journal entries, use the HTTP GET operation on the top-level
/api/journal URI:

HTTP GET /api/journal

The preceding request will fetch all records from the collection. If the collection size is too
large, you can add paging and filtering capabilities to the request. This can be accomplished
using URI-encoded parameters by specifying the desired starting index and number of
records:

HTTP GET /api/journal?start=40&size=20

Of course, the handler of this request needs to implement necessary logic to enable
pagination and filtering features.

Creating a new journal entry
To post a new journal entry, use the HTTP POST request on the top-level URI:

HTTP POST /api/journal

You do not need to assign an id for the new entry because the id for an entry will be
automatically assigned by the JournalEntry model when it is created.

Getting a specific journal entry
To get an existing journal entry, use the HTTP GET request and provide the id for the
existing entry:

HTTP GET /api/journal/{id}

The user is not aware of the id and you won't expect the user to provide the id. Instead,
your application needs to find a way to populate an entry's id in the URI.

Editing a specific journal entry
To edit the content of an existing journal entry, you use HTTP PUT request and provide the
id of the existing data:

HTTP PUT /api/journal/{id}



Designing for API Gateway Chapter 11

[ 234 ]

Similar to the HTTP GET operation, your application populates the existing entry's id in its
URI.

Deleting a specific journal entry
To delete an existing record of journal entries, you make a HTTP DELETE request and
provide the id of the record in the URI:

HTTP DELETE /journal/api/{id}

Implementing the endpoints and responses
In the Vapor framework, you can create a struct for API Routes that implements the
RouteCollection protocol:

struct ApiRoutes : RouteCollection {
    func boot(router: Router) throws {
        let apiRouter = router.grouped("/api")
    //...
    }
//...
}

In the boot(route:) function, set up a router that starts with the top-level /api URI and
append each route corresponding to each of your HTTP methods to the boot(route:)
function:

// public routes
let publicRouter = apiRouter.grouped("/journal")
publicRouter.get("", use: getAll)

// admin routes
let adminRouter = apiRouter.grouped("/admin")
adminRouter.post(use: newEntry)
adminRouter.get(Int.parameter, use: getEntry)
adminRouter.put(Int.parameter, use: editEntry)
adminRouter.delete(Int.parameter, use: removeEntry)

Take note that you haven't specified any authentication methods to the protected routes,
such as admin  routes.  The design is structured in such a way that it is easier to add
authentication methods directly to these two route groups. In this chapter, you can focus on
the nuts and bolts of API design.



Designing for API Gateway Chapter 11

[ 235 ]

After all handlers have been specified in the boot(router:) function, you can proceed to
implement handler for each route.

Implementing Handlers for Public Routes
Thanks to the powerful database data-modeling offered in Vapor, the handler
implementation for the HTTP GET  /journal/api/ turns out to be straightforward:

func getAll(_ req: Request) throws -> Future<[JournalEntry]> {
  return JournalEntry.query(on: req).all()
}

The operation for retrieving all existing journal entries is simply a call to the model's
query(on:).all() methods.

Since the querying for entries in the database takes a finite amount of time, the transaction
is asynchronous and the function returns the Future type.

For the myJournal web service, you do not use Leaf to generate any templates. Instead of
testing your API with the web browser, it may be more convenient if you use
the command-line curl tool or the Postman utility application to verify the result.

Run the following curl command to retrieve all records in your database:

$ curl http://localhost:8080/api/journal

The JSON object retrieved from the PostgreSQL database will appear on the screen.

Implementing handlers for admin routes
Next, let's move on to implementing all handlers for the Admin routes.

Creating a new item
The handler for creating a new journal entry decodes the JSON content received from the
HTTP POST request on /journal/api/admin and saves it directly to the database:

func newEntry(_ req: Request) throws -> Future<JournalEntry> {
  return try req.content.decode(JournalEntry.self)
      .flatMap(to: JournalEntry.self) { entry in
          return entry.save(on: req)
      }



Designing for API Gateway Chapter 11

[ 236 ]

}

It's a matter of making two calls, req.content.decode() and entry.save(on:), for
the JournalEntry data model to decode and then save the new content into the database.

Check the handler for creating a new journal entry with the following curl command:

$ curl --header "Content-Type: application/json" \
--request POST \
--data '{"title":"New Entry","content":"This is a brand new entry."}' \
http://localhost:8080/api/admin

Then retrieve all records in the database to verify that a new entry is created:

$ curl http://localhost:8080/api/journal

You'll see the new entry appears as one of the items in the JSON object printed out on the
screen.

Retrieving an item by ID
The handler for getting a record of an existing journal entry makes use of parameters to
get the id for the entry and retrieve the JournalEntry object automatically using the
next(JournalEntry.self) method call:

func getEntry(_ req: Request) throws -> Future<JournalEntry> {
    return try req.parameters.next(JournalEntry.self)
}

You can try to retrieve a journal entry with curl and provide an ID for the item:

$ curl http://localhost:8080/api/admin/1

With the /api/admin/<id> endpoint, curl will ask your handler to retrieve the specified
item and print out the journal entry wrapped in a JSON object if the item is found.

Updating an item
The handler for editing a record follows the similar workflow as in the handler for entry
retrieval, but takes an additional step to update the record with the intended changes:

func editEntry(_ req: Request) throws -> Future<JournalEntry> {
    let id = try req.parameters.next(Int.self)
    return try req.content.decode(JournalEntry.self).flatMap { updated in
        return JournalEntry.find(id, on: req)



Designing for API Gateway Chapter 11

[ 237 ]

            .flatMap(to: JournalEntry.self) { original in
                guard let original = original else { throw Abort(.notFound)
}
                original.title = updated.title
                original.content = updated.content
                return original.save(on: req)
        }
        }
}

In the preceding code, the id is retrieved first using parameters.next(Int.self), and
then a query using find(on:) is issued to retrieve the record. The record is updated with
the changes and then put back into the database using save(on:).

You can use the curl command to check this handler:

curl --header "Content-Type: application/json" \
--request PUT \
--data '{"title":"New Update","content":"This is an update."}' \
http://localhost:8080/api/admin/1

Then use curl to check the effect:

$ curl http://localhost:8080/api/admin/1

If the update handler works properly, you should expect the JSON object printed on the
screen to reflect the changes you've just made.

Deleting an Item
The handler for deleting a record is not so different from the HTTP PUT operation. After
retrieving the record, you simply call the delete(on:) method:

func removeEntry(_ req: Request) throws -> Future<HTTPStatus> {
    let id = try req.parameters.next(Int.self)
    return JournalEntry.find(id, on: req).flatMap { entry in
        guard let entry = entry else { throw Abort(.notFound) }
        return entry.delete(on: req).transform(to: HTTPStatus.noContent)
    }
}

The return type for the preceding function is Future. After the record has been deleted,
you issue HTTPStatus.noContent to the client.



Designing for API Gateway Chapter 11

[ 238 ]

Now, use curl again to test the delete handler:

$ curl --request DELETE http://localhost:8080/api/admin/1

The preceding command should have erased the record of the specified journal entry
from the database.

Run curl to verify that this record doesn't exist anymore:

$ curl http://localhost:8080/api/admin/1

As expected, nothing should be printed on the screen if you try to retrieve the record
you've just deleted.

Next, you will move on to implementing similar API endpoints for Kitura.

Implementing API endpoints for Kitura
Kitura takes full advantage of the Codable protocol introduced in Swift 4.0. For Codable
routes, you can create router an endpoint method that accepts a Codable object for the 
request and uses a completion closure to pass a Codable object as the response.

As you'll see in the following source code, Kitura's Codable routers can simplify the
creation of a CRUD API and the handling of JSON objects.

Creating a new project for the Kitura web service
application
Create a new Kitura project using the CLI command in a new directory:

$ kitura init

Add the dependencies for the Kuery ORM framework and PostgreSQL driver:

// swift-tools-version:4.0
import PackageDescription

let package = Package(
    name: "myJournal",
    dependencies: [
      .package(url: "https://github.com/IBM-Swift/Kitura.git",
.upToNextMinor(from: "2.5.0")),



Designing for API Gateway Chapter 11

[ 239 ]

      .package(url: "https://github.com/IBM-Swift/HeliumLogger.git",
.upToNextMinor(from: "1.7.1")),
      .package(url: "https://github.com/IBM-Swift/CloudEnvironment.git",
from: "8.0.0"),
      .package(url: "https://github.com/RuntimeTools/SwiftMetrics.git",
from: "2.0.0"),
      .package(url: "https://github.com/IBM-Swift/Health.git", from:
"1.0.0"),
      .package(url: "https://github.com/IBM-Swift/Swift-Kuery-ORM.git",
.upToNextMinor(from: "0.3.1")),
      .package(url:
"https://github.com/IBM-Swift/Swift-Kuery-PostgreSQL.git", from: "1.2.0"),
    ],
    targets: [
      .target(name: "myJournal", dependencies: [ .target(name:
"Application"), "Kitura" , "HeliumLogger"]),
      .target(name: "Application", dependencies: [ "Kitura",
"CloudEnvironment","SwiftMetrics","Health", "SwiftKueryORM",
"SwiftKueryPostgreSQL"]),

      .testTarget(name: "ApplicationTests" , dependencies: [.target(name:
"Application"), "Kitura","HeliumLogger" ])
    ]
)

Build and run your project to make sure the template project works as expected:

$ swift run

Working with the Kitural model
Create a new file, JournalItem.swift, for
the /Application/Routes/ApiRoutes.swift directory.

In JournalItem.swift, create a struct that implements Model:

import SwiftKueryORM

struct JournalItem: Model {
    var title: String
    var content: String
}

Since Model itself implements Codable, the JournalItem struct you've defined here will
work in the same way as other Codable objects, in addition to its conformance to Kitura-
Kuery-ORM.



Designing for API Gateway Chapter 11

[ 240 ]

Setting up a database
In Application.swift, create an instance of PostgreSQL data in the postInit()
method:

func postInit() throws {
    //...
    let poolOptions = ConnectionPoolOptions(initialCapacity: 1,
                                            maxCapacity: 5,
                                            timeout: 10000)
    // Set up database connection
    let psqlPool = PostgreSQLConnection.createPool(host: "localhost",
                                               port: 5432,
                                               options:
[.databaseName("journalbook")],
                                               poolOptions: poolOptions)
    Database.default = Database(psqlPool)

    do {
        try JournalItem.createTableSync()
    } catch let error {
        Log.error("Failed to create table in database: \(error)")
    }
}

You've used the same database code before, in Chapter 8, Employing Storage Framework. The
preceding code will attempt to create a table for JournalItem. If there is an existing table
already, it will log an error. You can simply ignore the log message if this is the case.

Adding route handlers
For CRUD operations, add the following router endpoints. The URLs are kept the same as
those you used in your Vapor project. This allows the iOS client application you're going to 
build in Chapter 13, Developing an iPhone Client, to work with both Vapor and Kitura web
applications:

func postInit() throws {
    //...
    router.get("/api/journal/", handler: getAllHandler)
    router.get("/api/admin", handler: getItemHandler)
    router.post("/api/admin", handler: createItemHandler)
    router.put("/api/admin", handler: updateItemHandler)
    router.delete("/api/admin", handler: deleteItemHandler)
    router.delete("/api/admin", handler: deleteItemHandler)
}



Designing for API Gateway Chapter 11

[ 241 ]

Each router endpoint method also specifies a handler that accepts a request and gives out a
response.

Create a new /Sources/Application/Routes/ApiRoutes.swift file to implement all 
router endpoint handlers in an extension of App:

import Foundation
import Kitura
import SwiftKueryORM
import SwiftKueryPostgreSQL
import LoggerAPI

extension App
{

 // Add all handlers here
}

Retrieving all items
Add the getAllHandler(completion:) method to handle the request for retrieving all
items in the database:

// retrieve all items
func getAllHandler(completion: @escaping([JournalItem]?, RequestError?) ->
Void) {
  JournalItem.findAll() { items, error in
    guard let items = items else {
      return completion(nil, error)
    }
    completion(items, nil)
  }
}

In the closure for the findAll() method, the retrieved array optional items is unwrapped.
If the items array is a valid object, a completion closure with unwrapped items will be
invoked; otherwise, a completion closure with an error will be called.

Since you do not need to render Stencil web pages for API-based web functions, it is
convenient to use the curl command-line tool or a web analysis tool, such as Postman, to
verify the result:

$ curl http://localhost:8080/api/journal

The JSON object retrieved from the PostgreSQL database will be dumped out on the screen.



Designing for API Gateway Chapter 11

[ 242 ]

You may notice the preceding command is the same curl command you used in testing the
"retrieve all" endpoint in the API of your Vapor web service.  That's right!  Since you use
the same API design in both Vapor and Kitura web services, you should expect them to
work similarly. In the rest of your Kitura code here, you're going to use the same set of
curl commands you've used before.

Creating a new item
To create a new item, call the save() method to save the JournalItem object to the
database:

func createItemHandler(item: JournalItem,
                      completion: @escaping(JournalItem?, RequestError?) ->
Void) {
  item.save(completion)
}

Similar to the updateItemHandler(item,
completion) method, createItemHandler(item, completion) expects a
new JournalItem object submitted by user.

Check the createItemHandler(item:completion:) function with the following curl
command:

$ curl --header "Content-Type: application/json" \
--request POST \
--data '{"title":"New Entry","content":"This is a brand new entry."}' \
http://localhost:8080/api/admin

After posting the request to create a new journal entry, check all of your records in the
database again:

$ curl http://localhost:8080/api/journal

You'll see the new journal entry now appears as one of the items in the retrieved JSON
object.



Designing for API Gateway Chapter 11

[ 243 ]

 Retrieving an item by ID
Unlike the website application, which does not have any need to retrieve an individual
journal entry, your web service is required to add such method to the API.  This is because
in some clients, such as the iOS mobile app, it is difficult to fit the title and content of all
journal entries on a small screen. The user is expected to select one item at a time from a list
of entries and then view the content of the selected item on a separate screen.

To retrieve a specific item, use the find() method to search for the item by its ID:

// retrieve an item by ID and return it
func getItemHandler(id: Int,
                    completion: @escaping(JournalItem?, RequestError?) ->
Void) {
  JournalItem.find(id: id) { item, error in
    guard let item = item else {
      return completion(nil, error)
    }
    completion(item, nil)
  }
}

Kitura will parse the ID encoded as the URL parameter in a request. If the item is found
with the find(id:) method, a completion closure will respond the request with the
retrieved item.

You can check the handler with curl:

$ curl http://localhost:8080/api/admin/1

The /api/admin/<id> endpoint is used here. The preceding command prints out a JSON
object with the requested journal entry, if found. 

Updating an item
To update an existing item, you simply call the update() method:

// find an item by ID and replace it
func updateItemHandler(id: Int,
                       item: JournalItem,
                       completion: @escaping(JournalItem?, RequestError?)
-> Void) {
  item.update(id: id, completion)
}



Designing for API Gateway Chapter 11

[ 244 ]

The updateItemHandler(item, completion) method expects both the ID of an existing
item (decoded from the URL parameter) and a new JournalItem object (decoded from the
request's JSON object).

You can also check the handler with the curl command:

curl --header "Content-Type: application/json" \
--request PUT \
--data '{"title":"New Update","content":"This is an update."}' \
http://localhost:8080/api/admin/1

The item with ID 1 should have been updated by the
updateItemHandler(id:item:completion:) handler. Use curl to check the result
again:

$ curl http://localhost:8080/api/admin/1

The JSON object printed on the screen should reflect the changes to the specified journal
entry.

Deleting an item
To delete a specific item, you just need to provide the item's ID and call the  delete()
method of the model:

// delete an item by ID
func deleteItemHandler(id: Int,
                       completion: @escaping(RequestError?) -> Void) {
  JournalItem.delete(id: id, completion)
}

Use curl to delete one of the existing items:

$ curl --request DELETE http://localhost:8080/api/admin/1

Then run the curl command again to retrieve the specific item:

$ curl http://localhost:8080/api/admin/1

Nothing is printed on the screen.  The deleteItemHandler(id:completion:) handler
works as expected!



Designing for API Gateway Chapter 11

[ 245 ]

Deleting All items
You can delete all records with the deleteAll() method:

// delete all items
func deleteAllHandler(completion: @escaping(RequestError?) -> Void) {
  JournalItem.deleteAll(completion)
}

The preceding handler will erase all JournalItem entries in the database.  It is
recommended not to implement this handler as one of your actual API methods.

Summary
You learned how to build web services in this chapter. First, you were introduced to the
REST architecture for the server/client model based on HTTP. Then you learned the basic
rules for the RESTful API's design; you modified the myJournal website application from
previous chapters and implemented a RESTful API that contains the endpoints for all the
routes in myJournal. You essentially turned your website application into a web service.
Instead of rendering web pages for the clients, your myJournal application now offers web
services to clients via the RESTful API. In the next chapters, you're going to learn how to
deploy your Vapor and Kitura applications to the cloud and write an iOS client application
that works with API Gateway. 



12
Deploying to the Cloud

In this chapter, you'll learn how to deploy your web services to the cloud. You'll get
introduced to four hosted cloud solutions: Vapor Cloud and IBM Cloud (Bluemix). Vapor
Cloud is the official hosting service for Vapor and there is built-in support in Vapor CLI to
let you deploy and manage your Vapor instance easily without installing additional
libraries and tools. Similarly, IBM Cloud is a natural choice for a hosted solution for Kitura
web service since both of them are part of IBM cloud solutions.

You'll have the following knowledge after finishing this chapter:

Getting familiar with the features offered in Vapor Cloud
Having hands-on experience with deploying a sample project to Vapor Cloud
Knowing how to monitor and manage your deployed applications on Vapor
Cloud
Getting familiar with IBM Cloud and its offered features for Kitura applications
Using developer tools to deploy a Kitura sample project to IBM Cloud

Deploying Vapor web service to Vapor
Cloud
Vapor Cloud is a cloud service integrated into Vapor Toolbox CLI, making the deployment
of your Vapor application to the cloud straightforward. If you are looking for a seamless
experience in launching your Vapor application, consider hosting your application in
Vapor Cloud.

Vapor Cloud itself is built on top of Amazon Web Services (AWS). You can easily scale
your application to meet higher demand after you have fully launched your cloud
application. You need to pay extra for those hours that have high demand.



Deploying to the Cloud Chapter 12

[ 247 ]

Checking out Vapor Cloud features
Here are some of the major cloud-hosting features for Vapor Cloud:

Database and Cache Support
Application Monitoring
Recurrent Job Scheduling
Accessible to File Storage and CDN Services
Zero-Downtime Deployment

Database and Cache Support
Vapor Cloud supports several databases, such as MySQL, PostgreSQL, MongoDB, and
AWS Aurora. The database credentials are automatically made available to your 
application upon deployment. The database support makes data persistence in your Vapor
application very easy. In addition, Vapor Cloud offers the Redis cache to speed up your
cloud applications.

Application Monitoring
With the Vapor Cloud Dashboard application, you can easily track network traffic to your
application. Useful statistics, such as average response time and memory usage of your
application, will be available for you to monitor the status of application in real time and
make sure that everything is running smoothly.

Recurrent Job Scheduling
Sometimes you may want to offload and schedule recurring tasks, hoping that they do not
slow down your hosted web application deployed to Vapor Cloud. Recurrent jobs are often
called Cronjobs. You specify a job to be executed at a specified time, whether it is every 10
minutes, every 12 hours, or every Saturday morning at 9:00 AM. Vapor Cloud will spin up
a new replica when a cronjob is started and run the cronjob inside the replica.



Deploying to the Cloud Chapter 12

[ 248 ]

Accessible to File Storage and CDN Services
Since Vapor Cloud is built on top of Amazon AWS, all Vapor Cloud applications have 
access to file-storage services, such as S3 bucket, for uploading and storing files, and the
CDN API for doing things such as cropping an image on the fly, at the edge locations all
around the world.

Zero-Downtime Deployment
When you deploy your Vapor application to Vapor Cloud, the new deployment is rolled
out with zero downtime. This ensures that your application is always available at any given
time, even when you are rolling out a new version of the application.

Signing up Vapor Cloud
To sign up for a free Vapor Cloud account, visit https:/ / dashboard. vapor. cloud/ signup.

After the signup, you'll be taken to the Vapor Cloud Dashboard. The dashboard looks like
the following:

The Dashboard is where you can see your profile, account information, organization,
pricing information, statistics, logs, and much more.

By default, your payment plan includes up to 20,000 requests a month, free of charge. This
is enough for you to test your application during development. After the successful launch
of your application, you can consider upgrading to one of the paid plans.

https://dashboard.vapor.cloud/signup
https://dashboard.vapor.cloud/signup
https://dashboard.vapor.cloud/signup
https://dashboard.vapor.cloud/signup
https://dashboard.vapor.cloud/signup
https://dashboard.vapor.cloud/signup
https://dashboard.vapor.cloud/signup
https://dashboard.vapor.cloud/signup
https://dashboard.vapor.cloud/signup
https://dashboard.vapor.cloud/signup
https://dashboard.vapor.cloud/signup


Deploying to the Cloud Chapter 12

[ 249 ]

Deploying to Vapor Cloud
After you have signed up for a Vapor Cloud account, you can log in and deploy your
existing Vapor application using the Vapor Toolbox CLI.

Using the Vapor Cloud commands
All the Vapor Cloud commands are integrated into the Vapor Toolbox CLI under the cloud
command group.

For example, you can list all Vapor Cloud commands using the following command:

$ vapor cloud --help

The output looks like the following:

Usage: vapor cloud command

Commands for interacting with Vapor Cloud.

Commands:
login Logs you into Vapor Cloud.
logout Logs you out of Vapor Cloud.
signup Creates a new Vapor Cloud user.
refresh Refreshes vapor token.
me Shows info about the currently logged in user.
token Cached token metadata for debugging.
dump Dump info for current user.
logs Displays logs from remote Vapor application.
list List various owned items of user
deploy Deploy a project to Vapor Cloud
create Create new instances of Vapor Cloud objects like
applications, environments, databases, etc.
run Runs commands on your application
git-hash Get the Git has deployed live
config View, create, modify, and delete environment configs
db Manage database servers, and databases, warning: this feature is still
in beta, use with caution.
database Opens a database editor for the selected environment in your web
browser

Use `vapor cloud command --help` for more information on a command.



Deploying to the Cloud Chapter 12

[ 250 ]

Creating Your First Deployment
To get start with your first deployment to Vapor Cloud, use the following command to log
in:

$ vapor cloud login

It will prompt you for your email and password credentials. If you haven't signed up for an
account using the URL provided to you previously, you can also sign up using the Vapor
Clouds command:

$ vapor cloud signup

If you don't have an existing project to deploy, you can create a new one using Vapor's
template:

$ vapor new myNewApp
$ cd myNewApp

Make sure that you are in the root directory of your application.

If you have an existing application, change to the root directory where you can find the
Package.swift file.

Once you are in the root directory, the deployment of your application to the cloud takes
only one Vapor Cloud command:

$ vapor cloud deploy

You can follow the prompts from this command to complete the rest of deployment steps.
The output of the vapor cloud deploy comment looks something like the following:

$ vapor cloud deploy
app: FirstVapor
git: https://github.com/AngusY/myNewApp.git
env: beta
db: none
replicas: 1
replica size: free
branch: master
build: clean
Creating deployment [Done]
Connecting to build logs ...
Waiting in Queue [Done]
Starting deployment: 'firstvapor-angus' [Done]
Getting project from Git 'https://github.com/AngusY/myNewApp.git' [Done]
Checkout branch 'master' [Done]



Deploying to the Cloud Chapter 12

[ 251 ]

Verifying base folder [Done]
Selected swift version: 4.2.0 [Done]
Building vapor (release) [Done]
Trying to find executable [Done]
Found executable: Run [Done]
Creating container registry [Done]
Building container [Done]
Updating replicas [Done]
Deployment succeeded: https://firstvapor-angus-beta.vapor.cloud [Done]
Successfully deployed.

When the deployment succeeds, you may try the https:/ /firstvapor- angus- beta. vapor.
cloud/hello URL to verify that your web application is operational. You will see the Hello,
world! output in your web browser:

Next, you'll learn various options that are available in each of the preceding deployment
steps.

Creating an Application from Git Remote
Vapor Cloud allows you to pull your source code from a remote Git repository. Creating a
public remote Git repository will make deploying your code very easy.

You should consider taking advantage of this built-in Git Remote feature. For example, if
your source code is hosted on GitHub, copy the SSH (not HTTP) URL into the prompt
when the vapor cloud tool asks you to do so.

Working with Slug and Environment
When you are asked to create an application, you'll be prompted for a name and a slug. The
slug for an application is the identifier used to access your Vapor application. For example,
if your slug is firstvapor-angus, the URL for your application becomes https:/ /
firstvapor-angus. vapor. cloud.

https://firstvapor-angus-beta.vapor.cloud/hello
https://firstvapor-angus-beta.vapor.cloud/hello
https://firstvapor-angus-beta.vapor.cloud/hello
https://firstvapor-angus-beta.vapor.cloud/hello
https://firstvapor-angus-beta.vapor.cloud/hello
https://firstvapor-angus-beta.vapor.cloud/hello
https://firstvapor-angus-beta.vapor.cloud/hello
https://firstvapor-angus-beta.vapor.cloud/hello
https://firstvapor-angus-beta.vapor.cloud/hello
https://firstvapor-angus-beta.vapor.cloud/hello
https://firstvapor-angus-beta.vapor.cloud/hello
https://firstvapor-angus-beta.vapor.cloud/hello
https://firstvapor-angus-beta.vapor.cloud/hello
https://firstvapor-angus-beta.vapor.cloud/hello
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud


Deploying to the Cloud Chapter 12

[ 252 ]

Vapor Cloud's hosting service also allows you to configure different environments. You can
create different environments for different stages of development, such as alpha, beta,
testing, staging, and development. The URL for your application will add a suffix to the
slug. For example, the beta development environment for your application will have the
following URL for your application: https:/ /firstvapor- angus- beta. vapor. cloud. The
beta suffix, preceded by "-", is appended to the firstvapor-angus slug.

The production environment is treated in a special way. When you specify production as
the environment, Vapor Cloud won't append the suffix to your slug. So your URL for the
production environment looks like https:/ /firstvapor- angus. vapor. cloud, instead of
https://firstvapor- angus- production. vapor. cloud.

Since you have your code hosted on a remote Git repository, you are able to specify a
specific branch to the environment you have just created. For the
production environment, you usually associate it with the master branch of your Git
remote repository.

Choosing a Replica Size and Database
Normally, you choose the Free size replicas to host your project for free when you are
actively developing your application. Each free size replica has a monthly request limit.
You can choose other paid replicas when the traffic to your application grows substantially.

Vapor cloud allows you to deploy your application to multiple replicas. However, you're
allowed to deploy your application only to one replica if you choose to use the free size
replicas.

If your application uses a database, you can also choose to add a hosting database. In the
Vapor Cloud deployment, hosting database services always cost a small monthly fee. If you
are not ready, you can ignore the prompt to add a database right way.

If you do need to add a database later on, you can use the following Vapor Cloud
command:

$ vapor cloud create db

Choosing a Build Type
The last option you're prompted to configure is the Build Type. There are three different
ways you can do so: incremental, update, and clean.

https://firstvapor-angus-beta.vapor.cloud
https://firstvapor-angus-beta.vapor.cloud
https://firstvapor-angus-beta.vapor.cloud
https://firstvapor-angus-beta.vapor.cloud
https://firstvapor-angus-beta.vapor.cloud
https://firstvapor-angus-beta.vapor.cloud
https://firstvapor-angus-beta.vapor.cloud
https://firstvapor-angus-beta.vapor.cloud
https://firstvapor-angus-beta.vapor.cloud
https://firstvapor-angus-beta.vapor.cloud
https://firstvapor-angus-beta.vapor.cloud
https://firstvapor-angus-beta.vapor.cloud
https://firstvapor-angus-beta.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus-production.vapor.cloud
https://firstvapor-angus-production.vapor.cloud
https://firstvapor-angus-production.vapor.cloud
https://firstvapor-angus-production.vapor.cloud
https://firstvapor-angus-production.vapor.cloud
https://firstvapor-angus-production.vapor.cloud
https://firstvapor-angus-production.vapor.cloud
https://firstvapor-angus-production.vapor.cloud
https://firstvapor-angus-production.vapor.cloud
https://firstvapor-angus-production.vapor.cloud
https://firstvapor-angus-production.vapor.cloud
https://firstvapor-angus-production.vapor.cloud
https://firstvapor-angus-production.vapor.cloud


Deploying to the Cloud Chapter 12

[ 253 ]

For the incremental build type, Vapor Cloud simply runs the Swift build command on
your application. This is the fastest way to build since it doesn't update any dependencies.

For the update build type, Vapor Cloud runs the Swift package update before running the
Swift build. This allows Swift Package Manager to check the modifications of your
Package.swift file and update dependencies only when needed.

For the clean build type, Vapor Cloud deletes the .build folder before running Swift
build. It is the slowest build option, but makes sure that everything, including the
dependencies, is updated.

Managing Your Cloud application
There are a bunch of Vapor Cloud toolbox features you can leverage to manage your Cloud
application. Several of them are discussed here.

Getting live log output
You can get the live log output using the vapor cloud logs toolbox command. This
command, similar to the tail command in Linux, lists the latest events in a log file. It has the
following syntax:

$ vapor cloud logs --app=[name] --env=[environment] --since=[time]

The [name] is the application name in your slug, such as firstvapor-angus
The [environment] is the hosting environment for your development stage, such
as production or beta
The [time] is the time you want to track back from the last logging event time,
such as 2h for 2 hours, 5m for 5 minutes, or 30s for 30 seconds

Consider the following as an example:

$ vapor cloud logs --app=firstvapor-angus --env=beta --since=2d

The command in the preceding code instructs vapor cloud to print out the log file for all the
entries in two days for the beta environment of the firstvapor-angus application.



Deploying to the Cloud Chapter 12

[ 254 ]

The output looks as follows:

app: FirstVapor
env: beta
tail 1 logs...
firstvapor-angus-beta-deployment-6874c7f469-4kjqq

The Vapor cloud logs command keeps watching for the arrival of new logging events. Use
Ctrl + C to get out of this wait loop.

Working with environment variables
In many cases, you'd like to set some environment variables for your Vapor application.
The vapor cloud toolbox provides vapor cloud config just for that.

To create or modify configuration variables, use the modify in the following syntax:

$ vapor cloud config modify --app=my-app --env=staging VAR1=KEY1 VAR2=KEY2

For example, you create a USERNAME environment variable and set its initial value to ANGUS
in the following way:

$ vapor cloud config modify --app=firstvapor-angus --env=beta
USERNAME=ANGUS

The output of this command confirms that the USERNAME environment variable has been
created and it is assigned with the ANGUS value:

app: FirstVapor
env: beta
USERNAME: ANGUS
Updating configs [Done]

Use the vapor cloud config dump command to list all the existing environment
variables:

$ vapor cloud config dump --app=firstvapor-angus --env=beta

This lists USERNAME as one of the environment variables for your application:

app: FirstVapor
env: beta
USERNAME: ANGUS



Deploying to the Cloud Chapter 12

[ 255 ]

Adding a custom domain
Instead of using the vapor.cloud domain, you may want to have your own custom
domain. So, you want to replace https:/ / firstvapor- angus. vapor. cloud with a custom
domain, such as https:/ / firstvapor- angus. com. The Vapor Cloud toolbox provides a
feature for you to create your custom domain.

First, you'll need to tell Vapor Cloud to direct the network traffic to your custom domain
using the Vapor Cloud command:

$ vapor cloud create domain

Second, you need to configure a CNAME record configuration to have your DNS provider
point firstvapor-angus.com to firstvapor-angus.vapor.cloud. Since Vapor Cloud
assigns a fixed IP address to you, you can set up your redirect by creating an ALIAS record
for that. Many DNS providers support the ALIAS record. One of these DNS providers is
dnsimple.com.

Scheduling a New cronjob
If you want to run a cronjob, you specify it in the cloud.yml optional file in the root
directory of your application. Add the following to cloud.yml:

cronjobs:
    production:
        ping:
            time: "* * * */24 *"
            command: "ping http://www.vapor.com"

The preceding script specifies the environment to be "production" and the name to be
"ping".

The time is specified to be * * * */24 *, per the following format:

* * * * * command to be executed
- - - - -
| | | | |
| | | | ----- Day of week (0 - 7) (Sunday=0 or 7)
| | | ------- Month (1 - 12)
| | --------- Day of month (1 - 31)
| ----------- Hour (0 - 23)
------------- Minute (0 - 59)

This means that the command will be executed once every 24 hours.

https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.vapor.cloud
https://firstvapor-angus.com
https://firstvapor-angus.com
https://firstvapor-angus.com
https://firstvapor-angus.com
https://firstvapor-angus.com
https://firstvapor-angus.com
https://firstvapor-angus.com
https://firstvapor-angus.com
https://firstvapor-angus.com
http://firstvapor-angus.com
http://firstvapor-angus.vapor.cloud
http://dnsimple.com


Deploying to the Cloud Chapter 12

[ 256 ]

The command specifies the full command to be executed. In this case, it simply pings a
website.

To run crobjobs, issue the following Vapor Toolbox CLI command:

$ vapor run ping

It typically takes 5 to 30 seconds to spin up a new replica. Then your cronjob will be
executed after this initial delay.

Deploying the Kitura web service to IBM
Cloud
It takes several simple steps for you to install the tools you need to build your app, run the
app locally, and then deploy it to IBM Cloud. IBM provides you with a development
environment that gives you a seamless workflow to do all of this together.

Working with an IBM Cloud Account
First of all, you must have an account with IBM Cloud before your can deploy your
application to the cloud. By default, you're offered to start with the Lite (Free) account type.
It is free of charge for you and comes with 256 MB of free memory each month. There are
several types of account upgrades when you are ready to use more resources.

Registering for an Account on IBM Cloud
To start, use your web browser to visit IBM Cloud's official site at https:/ /console.
bluemix.net. You will see IBM Cloud's login page after successful email verification:

https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net


Deploying to the Cloud Chapter 12

[ 257 ]

After that, you'll be given a chance to review the privacy disclosure associated with your
newly-created account.

Working with the IBM Cloud Dashboard
The Dashboard is a starting page for all resources available in your cloud account. As you
grow the features of your application, you can leverage resources such as Watson artificial
intelligence platform, mobile services, and security services.

You will come back to this Dashboard page again to create a starter web app after you've
made your local system ready for IBM Cloud deployment.

Readying the Local System for IBM Cloud
Deployment
You need to install IBM Cloud Developer Tools on your local system, which we'll cover
here.



Deploying to the Cloud Chapter 12

[ 258 ]

Installing IBM Cloud Developer Tools
In order to install IBM Cloud Developer Tools, run the following command in a Terminal
application on your system:

$ curl -sL http://ibm.biz/idt-installer | bash

The output looks like the following after executing the preceding command:

[main] --==[ IBM Cloud Developer Tools for Linux/MacOS - Installer, v1.2.3 ]==--
 [install] Starting Update...
 [install] Note: You may be prompted for your 'sudo' password during install.
 [install_deps] Checking for external dependency: brew
 [install_deps] Installing/updating external dependency: git
 [install_deps] Installing/updating external dependency: docker
 [install_deps] Installing/updating external dependency: kubectl
 ######################################################################## 100.0%
 Password:
 [install_deps] Please review any setup requirements for 'kubectl' from:
https://kubernetes.io/docs/tasks/tools/install-kubectl/
 [install_deps] Installing/updating external dependency: helm
 Updating Homebrew...
 ...
 [Deleted]
 ...
 [install] Install finished.
 [main] --==[ Total time: 74 seconds ]==--

Container technology, such as Docker, is installed as part of the IBM developer tool chain.
In fact, you have to create a Docker account and install Docker runtime on your local
machine in order to use the build tools to deploy your app to IBM Cloud.

If you haven't installed Docker on your system before, go to www.docker.com to download
and install Docker Desktop for your system.

http://www.docker.com


Deploying to the Cloud Chapter 12

[ 259 ]

After proper installation, Docker Desktop will be running in the background:

Create a new Docker ID or sign in with an existing Docker ID. You'll need to use the Docker
credential locally when deploying your Kitura application to IBM Cloud.

Alternatively, you can install Docker on your Mac with brew:

$ brew install docker

You can run docker info to learn more about your docker installation:

$ docker info

For installing Docker on Ubuntu or getting more help with the Docker installation, you can
find more useful information on Docker's website: https:/ /docs. docker. com/ install/ .

Using IBM Cloud Developer Tools
To verify that IBM Cloud Developer Tools have been properly installed, execute the
following main command:

$ idt

https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/


Deploying to the Cloud Chapter 12

[ 260 ]

The execution of the idt command prints the following message on the screen:

NAME:
 bx dev - A CLI plugin to create, manage, and run applications on IBM Cloud
USAGE:
 bx dev command [arguments...] [command options]
VERSION:
 2.1.4
COMMANDS:
 build Build the application in a local container
 code Download the code from an application
 console Opens the IBM Cloud console for an application
 create Creates a new application and gives you the option to add services
 diag This command displays version information about installed
dependencies
 debug Debug your application in a local container
 delete Deletes an application from your space
 deploy Deploy an application to IBM Cloud
 edit Add or remove services for your application
 enable Add IBM Cloud files to an existing application.
 get-credentials Gets credentials required by the application to enable use
of connected services.
 list List all IBM Cloud applications in a space
 run Run your application in a local container
 shell Open a shell into a local container
 status Check the status of the containers used by the CLI
 stop Stop a container
 test Test your application in a local container
 view View the URL of your application
 help Show help
Enter 'bx dev help [command]' for more information about a command.
GLOBAL OPTIONS:
 --version, -v Print the version
 --help, -h Show help

The idt command is actually a shortcut for the bx dev command, which is used to create,
manage, and run applications on IBM Cloud.

Besides the idt shortcut, there is also idt update and idt uninstall to help you
update the IBM Cloud developer tools to the latest version and uninstall the tools from
your local system, respectively:

$ idt update
$ idt uninstall



Deploying to the Cloud Chapter 12

[ 261 ]

Creating a Kitura app that is deployable to IBM
Cloud
You can create a Kitura application easily using the starter Kitura Kitura web application
template.

From the dashboard for your IBM Cloud account, click on the icon for App Service Starter
Kits. Different starter kits are listed for you to choose from. Navigate down the list and
click on the Swift Web App with Kitura icon to start generating a Starter Kitura web
application:

Generating a Starter Kitura Web Application
Once you are on the main page for the Starter Kitura Web Application, review how the
starter kit will help you. Click on the Create App button on the top-right corner:



Deploying to the Cloud Chapter 12

[ 262 ]

For your Kitura app deployable to IBM Cloud, enter the name "My New Kitura App" at the
prompt. IBM Cloud will populate the app's name to the starter kit source code.



Deploying to the Cloud Chapter 12

[ 263 ]

Take note that your application name has to be unique because all applications share the
same domain as in my-new-kitura-app.mybluemix.net. You can add a suffix of your
organization name, such as abc-org in my-app-abc-org.mybluemix.net, to ensure that the
URL is unique and acceptable to IBM Cloud.

Next, you'll be taken to the App Details page where you can manage the deployment of the
web app IBM Cloud has just created for you. Click on the Download Code button to 
download the starter source code to your system so you can build locally first:

http://my-new-kitura-app.mybluemix.net
http://my-app-abc-org.mybluemix.net


Deploying to the Cloud Chapter 12

[ 264 ]

After unzipping the zipped package you've just downloaded, check out the files this starter
kit created for you:

In addition to what you can see in File Manager, the starter kit has the .bluemix hidden
directory to store scripts for the configuration of the toolchain, deployment, container, and 
orchestration services. This directory is hidden from you because you are not expected to
modify the scripts in this directory directly.

The source code for your Kitura application is in the /my-new-kitura-app/Sources
directory. You can work with the starter code to try out the deployment to IBM Cloud
before you add your Kitura app to this project.

Logging into IBM Cloud
Assuming you have created an account on IBM Cloud already, you can now log in using
the following command:

$ ibmcloud login -a https://api.ng.bluemix.net

In the preceding code, it specifies the US South API endpoint location with the -
a command flag, followed by the https:/ /api. ng. bluemix. net URL for the location. If you
have specified a location already, you can ignore the -a flag.

https://api.ng.bluemix.net
https://api.ng.bluemix.net
https://api.ng.bluemix.net
https://api.ng.bluemix.net
https://api.ng.bluemix.net
https://api.ng.bluemix.net
https://api.ng.bluemix.net
https://api.ng.bluemix.net
https://api.ng.bluemix.net
https://api.ng.bluemix.net
https://api.ng.bluemix.net


Deploying to the Cloud Chapter 12

[ 265 ]

The login command will prompt you for your credentials and print out your account
information:

API endpoint: https://api.ng.bluemix.net
Email> [deleted]
Password> [deleted]
 Authenticating...
 OK
Targeted account Angus's Account
Targeted resource group Default
 API endpoint: https://api.ng.bluemix.net
 Region: us-south
 User: [deleted]
 Account: Angus's Account
 Resource group: Default
 CF API endpoint:
 Org:
 Space:
Tip: If you are managing Cloud Foundry applications and services
 - Use 'ibmcloud target --cf' to target Cloud Foundry org/space
interactively, or use 'ibmcloud target --cf-api ENDPOINT -o ORG -s SPACE'
to target the org/space.
 - Use 'ibmcloud cf' if you want to run the Cloud Foundry CLI with current
IBM Cloud CLI context.

Building Your App with the IBM Cloud Tool
Now you can build your source code and deploy it in a Docker container.

Since you need to build a Docker image in order to build your application, use the
following Docker command to log in to your Docker account first:

$ docker login --username=angus

You are now ready to build your application locally using the dev build command:

$ ibmcloud dev build

The command will proceed to get your service credential and do the Docker image build:

Getting service credentials for the application.
 OK
 Validating Docker image name
 OK
 Checking if Docker container mynewkituraapp-swift-tools is running
 OK
 Checking Docker image history to see if image already exists



Deploying to the Cloud Chapter 12

[ 266 ]

 OK
 Creating image mynewkituraapp-swift-tools based on Dockerfile-tools ...
 Image will have user fyeung1 with id 502 added
Executing docker image build --file Dockerfile-tools --tag mynewkituraapp-
swift-tools --rm --pull --build-arg bx_dev_userid=502 --build-arg
bx_dev_user=fyeung1 .
OK
 Creating a container named 'mynewkituraapp-swift-tools' from that image...
 OK
 Starting the 'mynewkituraapp-swift-tools' container...
 OK
 OK
 Stopping the 'mynewkituraapp-swift-tools' container...
 OK

Running the Kitura App in the Local Container
Before you start the deployment of your Kitura application to IBM Cloud, you want to run
it in the local environment first. Execute the following command to run your application:

$ ibmcloud dev run

The output of this command looks like the following:

The run-cmd option was not specified
 Stopping the 'mynewkituraapp-swift-run' container...
 The 'mynewkituraapp-swift-run' container was not found
 Validating Docker image name
 Binding IP and ports for Docker image.
 OK
 Checking if Docker container mynewkituraapp-swift-run is running
 OK
 Checking Docker image history to see if image already exists
 OK
 Creating image mynewkituraapp-swift-run based on Dockerfile ...

 Executing docker image build --file Dockerfile --tag mynewkituraapp-swift-run --rm --pull .

 OK
 Creating a container named 'mynewkituraapp-swift-run' from that image...
 OK
 Starting the 'mynewkituraapp-swift-run' container...
 OK
 Logs for the mynewkituraapp-swift-run container:
 [2018-10-10T18:48:51.208Z] [WARNING] [ConfigurationManager.swift:261
load(url:deserializerName:)] Unable to load data from URL /swift-project/config/mappings.json
 [Wed Oct 10 18:48:51 2018] com.ibm.diagnostics.healthcenter.loader INFO: Swift Application
Metrics



Deploying to the Cloud Chapter 12

[ 267 ]

 [2018-10-10T18:48:51.583Z] [INFO] [Metrics.swift:20 initializeMetrics(router:)] Initialized metrics.
 [2018-10-10T18:48:51.588Z] [INFO] [HTTPServer.swift:195 listen(on:)] Listening on port 8080

The application is running on your local system.

Open your browser to http://localhost:8080 and you will see the following startup
screen:

Deploying Your app
The IBM Cloud CLI provides you with a shortcut to deploy your application to IBM Cloud.
After you have tested and executed your local container successfully, you can run the
following command to deploy it to the cloud:

$ ibmcloud dev deploy



Deploying to the Cloud Chapter 12

[ 268 ]

If it complains about an authorization failure to access the IBM Cloud, log out and then log
in again to access IBM Cloud:

$ ibmcloud logout
$ ibmcloud login
$ ibmcloud target --cf
$ ibmcloud dev get-credentials

The deployment takes some time when the dependencies of your application are being
fetched and compiled on the remote server.

If you visit https:/ /console. bluemix. net, you can click on Runtime on the left navigation
panel and check the current status of the running instance of your application:

https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net


Deploying to the Cloud Chapter 12

[ 269 ]

Since you have a Free account type, only one instance is allowed. Make sure that your
runtime is awake and running.

Now take your web browser to http:/ / my- new-kitura- app. mybluemix. net/, you will see
the same default web page as the one you see when running your Kitura app on a local
system. The difference, of course, is that your application is now active and running on IBM
Cloud.

Summary
Deploying your applications to the cloud is part of the development process for Vapor and
Kitura projects. In this chapter, you were introduced to the features offered in both Vapor
Cloud and IBM Cloud, learned how to register for new accounts, and then followed the
instructions to deploy starter Vapor and Kitura applications to your cloud accounts. In the
next chapter, you'll be working on another side of the end-to-end Swift development
workflow: developing iOS client applications.

http://my-new-kitura-app.mybluemix.net/
http://my-new-kitura-app.mybluemix.net/
http://my-new-kitura-app.mybluemix.net/
http://my-new-kitura-app.mybluemix.net/
http://my-new-kitura-app.mybluemix.net/
http://my-new-kitura-app.mybluemix.net/
http://my-new-kitura-app.mybluemix.net/
http://my-new-kitura-app.mybluemix.net/
http://my-new-kitura-app.mybluemix.net/
http://my-new-kitura-app.mybluemix.net/
http://my-new-kitura-app.mybluemix.net/
http://my-new-kitura-app.mybluemix.net/
http://my-new-kitura-app.mybluemix.net/
http://my-new-kitura-app.mybluemix.net/
http://my-new-kitura-app.mybluemix.net/
http://my-new-kitura-app.mybluemix.net/


13
Developing an iPhone Client

This chapter puts everything you've learned so far about server-side Swift together and
uses an iOS app to show how a client "travel journal" app can leverage the login, database,
and other cloud services you built with a Swift web framework. You'll first get started with
building a travel journal iOS app, adding logic and UI components to the app design. You'll
create a model for journal data and add the support of CRUD operations for the
PostgreSQL database on the server. At the end of this chapter, you'll have a functional
travel journal app that works seamlessly with your web services.

You're going to have learned about the following topics after finishing this chapter:

Creating a table view controller in an iOS application
Constructing a data model using the Codable protocol
Adding content to the table view controller using the prototype cell
Getting familiar with Storyboard and using it to add controls to the user interface
Building additional screens to view and edit a journal entry
Making HTTP requests to Vapor or Kitura web services
Leveraging the Codable protocol to perform the encoding and decoding of JSON
objects

Developing an iOS App for a server-side
Swift application
In this section, you're going to start building an iOS application with the table view
controller. You'll use this skeleton application to populate the table view with all the journal
entries retrieved with the RESTful API you built in Chapter 11, Designing for API Gateway.
The iOS application you're going to build here will work for both Vapor and Kitura web
services, since they share the same API.



Developing an iPhone Client Chapter 13

[ 271 ]

Creating a new project
Now you can go ahead and  your Xcode IDE. If you have an existing installation of Xcode,
remember to check its version and upgrade it to the latest version if it's an older version. I
recommend you use Xcode 10.0 or better for the project in this chapter.

After launching Xcode, you're going to create a new project from one of the provided
templates and then configure the project setting appropriately.

To create a new project for your iOS application, choose the Single View App template:



Developing an iPhone Client Chapter 13

[ 272 ]

Fill in the options. Use myJournal as the Product Name and specify the Organization
Name:

Next, go to Project Navigator on the left panel and select the first myJournal item.  This
brings you to the project settings page. The last section of this page is Deployment Info.



Developing an iPhone Client Chapter 13

[ 273 ]

Uncheck both the Landscape Left and Landscape Right device orientation option and
support Portrait mode only:

That's all the configuration you'll need for your project. Next, you can add a new
TableViewController to your project.

Creating a new TableViewController
In this section, instead of the default ViewController, you're going to use a new
TableViewController for the main screen:

Remove the ViewController.swift file XCode created for you.1.
Add a new MainScreenViewController.swift file to your project:2.

// File: MainScreenViewController.swift
import UIKit

class MainScreenViewController: UITableViewController {

    override func viewDidLoad() {
        super.viewDidLoad()
    }
}



Developing an iPhone Client Chapter 13

[ 274 ]

In storyboard, delete the View Controller item from View Controller Scene:3.

Go View | Libraries | Show Library or Ctrl + command + L to reveal the Library4.
tray:

Alternatively, you can click on the Libraries button, the leftmost button on the5.
top-right tray:



Developing an iPhone Client Chapter 13

[ 275 ]

Drag the Table View Controller from the Library tray and drop it into the6.
Storyboard:



Developing an iPhone Client Chapter 13

[ 276 ]

Click on Attribute Inspector and check the Is Initial ViewController option in7.
the View Controller panel on the right:

On the left panel of Storyboard, select the Main Screen View Controller item8.
and click on Identity Inspector—that's the third icon from the left in the
Inspectors panel.



Developing an iPhone Client Chapter 13

[ 277 ]

From the pulldown menu of the Class option, choose to link to10.
the MainScreenViewController class:



Developing an iPhone Client Chapter 13

[ 278 ]

Run the app.  After choosing the myJournal scheme and selecting one of the iOS10.
device emulators from the top-left menu, you can run the app by either pressing
on the "Run" button or using the command + R shortcut. The start screen shows a
table view but it has no content:



Developing an iPhone Client Chapter 13

[ 279 ]

Now you have a skeleton table view application to work with. Next, you'll learn how to
add some content to TableViewController.

Adding content to TableViewController
Before you can display all journal entries, you need to make an HTTP request to your
server-side Swift application to retrieve data in the JSON object. The Codable protocol
allows you to quickly create a data model that supports decoding and de-serializing JSON
objects automatically. With the JSON objects, you can display each entry by appending a
new item to the table list.

Preparing your data model
The first step is to create a new final class, called JournalEntry, that implements the
Codable protocol. There are three fields, id, title, and content, in this model. As shown
in the following code, all fields are optional because there is a chance that a field may miss
from an JournalEntry object when you retrieve the object from the cloud application:

final class JournalEntry: Codable {
    let id: Int?
    var title: String?
    var content: String?

    public init(title: String?, content: String?) {
    self.id = nil
    self.title = title
    self.content = content
    }
}

The initializer only accepts title and content parameters. Since the value of the id field
is automatically generated by the database-handling process, you can set an instance's id to
nil for the time being.



Developing an iPhone Client Chapter 13

[ 280 ]

Configuring table properties
Now you can bring your attention to the table component itself in
MainScreenViewController.swift. You need to construct an Array object to hold local
copies of all JournalEntry objects, then tell iOS about the number of sections in
UITableView as well as the number of rows in the section.

Create an instance of the JournalEntry array object in MainScreenViewController:

var journalEntries = [JournalEntry]()

iOS allows you to group cells in UITableView into sections. However, for this iOS
application, you simply specify the number of sections to be 1:

override func numberOfSections(in tableView: UITableView) -> Int {
     return 1
}

The number of rows in the section corresponds to the total number of elements in your
JournalEntry array object:

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
    return journalEntries.count
}

You're ready to configure the user interface component to display each JournalEntry
object. For UITableView, the reusable cell prototype allows you to do exactly that.



Developing an iPhone Client Chapter 13

[ 281 ]

Adding a label to the prototype cell
Before adding a label to the table view cell, you need to assign a reuse identifier for the
table view cell. In the storyboard, select the Table View Cell item in the Storyboard's left 
navigation panel and choose Identify Inspector on the right panel—you will see the
Identifier field.  Enter TitleCell in the field:

To add a label to Prototype Cells, drag a Label object from the Library tray and drop it
into the area right below Prototype Cells. The same design of a prototype cell will be used
to apply to all concrete instances of the table cell:



Developing an iPhone Client Chapter 13

[ 282 ]

Adjust the size of Label so it covers most of the prototype cell and leaves small margins for
all the four sides.



Developing an iPhone Client Chapter 13

[ 283 ]

While selecting the Label item of Prototype Cells, click on the Constraint menu and set 10
pixels as the constraint to each border. The constraints will help ensure the proper layout of
the Label with different iOS screen's devices:

Next, select the Label object and use the Attributes Inspector to inspect the configuration
of the object's attributes. Change the View | Tag field to 1000. The tag will be used to
reference to this Label object in your Swift code:



Developing an iPhone Client Chapter 13

[ 284 ]

In the MainScreenViewController class, override this UITableView function to tell iOS 
what to display for each cell:

override func tableView(_ tableView: UITableView,
cellForRowAt indexPath: IndexPath) -> UITableViewCell {
    let cell = tableView.dequeueReusableCell(withIdentifier: "TitleCell",
for: indexPath)
    if let title = journalEntries[indexPath.row].title {
        let label = cell.viewWithTag(1000) as! UILabel
        label.text = title
    }
    return cell
}



Developing an iPhone Client Chapter 13

[ 285 ]

The implementation calls the dequeueReusableCell(withIdentifier: for:) function
of  UITableView to get a reference to the Prototype Cell you worked on. You can use the
row of the current cell to retrieve the corresponding JournalEntry object from the local
array. Now all you need to do is to apply the unwrapped value of the JournalEntry
object's title (which is optional) to the Prototype Cell's Label. You use the viewWithTag()
function to retrieve the view object with the "1000" tag and then cast it back the UILabel
object type.

Constructing route handlers for web services
The data for your Prototype Cell to display is fetched from the web service API endpoints.
You use a URLSession instance to send your request to an endpoint. Add the getAll()
function by adding an extension to MainScreenViewController in a new
 RouteHandlers.swift file:

extension MainScreenViewController {
    // Read all entries
    func getAll() {
        guard let journalUrl = URL(string: apiURL + "/all") else { return }
        URLSession.shared.dataTask(with: journalUrl) { (data, response,
error) in
        // Handle your retrieved data here
        }.resume()
    }
}

journalUrl holds the endpoint you are requesting the data from. The apiURL constant is
defined in the original MainScreenViewController class:

let apiURL : String = "http://localhost:8080/api"

For testing purposes, we are running the myJournal web API application on the same local
machine. You can deploy and run cloud-hosted applications after the development phase is
complete.

Using URLSession, you can invoke the shared instance of a data task (dataTask)
with journalUrl to start a data-downloading task. The task is created in a suspended
state, so you call the resume() function to start the task.



Developing an iPhone Client Chapter 13

[ 286 ]

The data-fetching request takes a finite amount of time to complete because it involves the
client app making HTTP requests across the internet and the server making calls to a
database to retrieve stored data in the backend. You're required to implement a completion
handler, which is a closure that handles the return data after an asynchronous data-fetching
task is successfully complete.

Several return objects are available to you: data, response, and error. The data object
contains the data you've requested if you have a success. The response object contains any
data result returned from the web API application, and the error object holds the error
messages if an error occurs in this transaction.

After unwrapping the return data, you can take advantage of the Codable protocol to
decode the JSON object into memory:

URLSession.shared.dataTask(with: journalUrl) { (data, response, error) in
    guard let jsonData = data else { return }
    do {
        let entries = try JSONDecoder().decode([JournalEntry].self, from:
jsonData)
        // Add more here later
    } catch {
        print("Error", error)
    }
}

The entries array object contains all the journal entries you have retrieved. Append the
entire entries sequence to your journalEntries local store:

self.journalEntries.append(contentsOf: entries)

Since the content of journalEntries has been updated, you need to tell tableView to
reload its data. Unfortunately, this is not straightforward because you'll be trying to post
the result to the UI thread (which is also the main thread) from another worker thread
owned by URLSession. You'll get an exception if you call the tableView object directly:

 self.tableView.reloadData()

You need to resort to Swift's inter-thread communication in order to solve this issue.

Wrap the preceding call into DispatchQueue in the following way:

DispatchQueue.main.async { self.tableView.reloadData() }

Then the asynchronous call can successfully be made across threads.



Developing an iPhone Client Chapter 13

[ 287 ]

The following is the general workflow for data-fetching and posting the result back to the
table view object:

extension MainScreenViewController {
    func getAll() {
        guard let journalUrl = URL(string: apiURL + "/journal") else {
return }
        URLSession.shared.dataTask(with: journalUrl) { (data, response,
error) in
            guard let jsonData = data else { return }
            do {
                let entries = try JSONDecoder().decode([JournalEntry].self,
from: jsonData)
                self.journalEntries.append(contentsOf: entries)
                DispatchQueue.main.async { self.tableView.reloadData() }
            } catch {
                print("Error", error)
            }
        }.resume()
    }
}

Now, you can call the getAll() function in the viewDidLoad() function in
MainScreenViewController.swift:

override func viewDidLoad() {
    super.viewDidLoad()
    getAll()
}

You're almost done here. You still need to handle the security setting issues with your
project before you can take your iOS app for a spin.

Adding domain exceptions for App
Transport Security
Even after you have all code implementation in place, you'll still be unable to fetch the data
from a local web application successfully. This is because Apple requires App Transport
Security (ATS) by default and blocks your calls. Proper configuration of ATS is required
because of the HTTPS and security enforcement on iOS.



Developing an iPhone Client Chapter 13

[ 288 ]

Even though you can explicitly opt out of ATS by adding the following option
to Info.plist, it is not recommended to opt out of ATS entirely:

<key>NSAppTransportSecurity</key>
    <dict>
        <key>NSAllowsArbitraryLoads</key>
        <true/>
    </dict>

The recommended way is to get the domains you are working with exempt from the rules.
You can specify which domains are exempt from the rules you define for ATS.

Open the Info.plist file in XCode and add a new entry for App Transport Security
Settings under Information Property List:



Developing an iPhone Client Chapter 13

[ 289 ]

Add the Allow Arbitrary Loads subitem to App Transport Security Settings, and set its
type to Boolean and value to Yes:

Also add the Exception Domains subitem to App Transport Security Settings:

Under the Exception Domains item, add localhost as the Dictionary type; then add two
Boolean values for NSIncludesSubdomains and
NSExceptionAllowsInsecureHTTPLoads, and set both to Yes:



Developing an iPhone Client Chapter 13

[ 290 ]

You should follow the preceding steps to add any host domain for your Vapor or Kitura
web services to the Exception Domains list.

Testing the Vapor Server app
It's also a good idea to test whether the web app is working properly by using a third-party
HTTP client tool. Use curl to create a HTTP GET request at the same endpoint:

$ curl http://localhost:8080/api/journal

If the web app is working, you should be able to retrieve the JSON objects as a result.

Running the iOS app
The following screen shows you how your table view should look like if your getAll()
function successfully fetches the requested data from your web application:

Next, you can complete the rest of the features for the myJournal iOS application.

Adding a new entry to journal
To add a new entry to the myJournal iOS application, you're going to add another screen
for a user to enter a new entry. After the user fills in the title and content of the new entry,
this screen gives such data back to the main table view screen.



Developing an iPhone Client Chapter 13

[ 291 ]

Designing the user interface for a new entry
You need to add a toolbar button item on the main screen to navigate to the new screen you
are about to add. Drag a Bar Button Item from the Library tray and drop it into the right
side of the main screen toolbar:



Developing an iPhone Client Chapter 13

[ 292 ]

From Attributes Inspector, specify the Bar Button Item as the Add System Item:

For the new screen, choose Navigation Controller and View Controller from the Library
tray and add them to Storyboard.



Developing an iPhone Client Chapter 13

[ 293 ]

While holding down the Ctrl key, drag from the Add toolbar button in the main screen to
the new Navigation Controller you've just created. The Action Segue pop-up menu
appears. Select the Present Modally segue type:

In the Attributes Inspector, set the segue's Identifier to NewEntry. With this new Action
Segue, the new screen will appear modally when the Add toolbar button is clicked on.

Now, you can proceed to add a couple of UI items to the new screen.



Developing an iPhone Client Chapter 13

[ 294 ]

Add a Text Field item from Library and place it near the top of screen. From the Attributes
Inspector, change the attributes to according to the following diagram:



Developing an iPhone Client Chapter 13

[ 295 ]

Add two Bar Button Items to the toolbar. Specify the left bar button as the Cancel system
item in the Attributes Inspector and the right bar button as the Done system item. The
Title text field should look something like this:

Add the constraints for the four borders of the Title text field in the same way as you've
just done for the Label text field in Prototype Cells:



Developing an iPhone Client Chapter 13

[ 296 ]

Continue to add a new Text View item under the Title text field. This Text View item holds
the multiline text of an entry's content:

For the Content  Text View item, remember to add constraints to its border as well.



Developing an iPhone Client Chapter 13

[ 297 ]

The attributes of the Content text view are configured as follows:



Developing an iPhone Client Chapter 13

[ 298 ]

Next, add a new EntryDetailsViewController.swift file and add the following code:

import UIKit

class EntryDetailsViewController : UIViewController {

    override func viewDidLoad() {
        super.viewDidLoad()
    }
}

In Storyboard, use the Identify Inspector to link your new view controller to
the EntryDetailsViewController class:

Before you keep going, you still need to do something with the NewEntry segue you've
created; you need to add code to tell EntryDetailsViewController about the NewEntry
segue. 



Developing an iPhone Client Chapter 13

[ 299 ]

In the MainScreenViewController class, add the following function:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
     if segue.identifier == "NewEntry" {
         let navigationController = segue.destination as!
UINavigationController
         let controller = navigationController.topViewController as!
EntryDetailsViewController
         controller.delegate = self
     }
 }

The preceding code basically assigns MainScreenViewController to be the delegate
for EntryDetailsViewController .

Now you are ready to add functionalities for the user interface you've just created.

Using the Delegate Pattern
In iOS programming, it is common to use the delegate pattern for one component to pass
information to another. The delegator component defines a delegate protocol with
functions that it can use to pass out information. The delegatee component implements the
provided delegate protocol by overriding the protocol's functions and handles the received
information.

In your case, the new screen for adding a new entry is the delegator, while the main screen
with table view is the delegatee to whom the information is passed.

Create the following delegate protocol in the same Swift file as the
EntryDetailsViewController class (delegator) so it can inform
MainScreenViewController (delegatee) when user is done creating the new entry:

protocol EntryDetailsViewControllerDelegate: class {
    // Delegate Cancel Event
    func entryDetailsViewControllerDidCancel(_ controller:
EntryDetailsViewController)

    // Delegate Done Adding Event
    func entryDetailsViewController(_ controller:
EntryDetailsViewController,
    didFinishAdding entry: JournalEntry)
}



Developing an iPhone Client Chapter 13

[ 300 ]

Two functions are defined in the delegate protocol. The
entryDetailsViewControllerDidCancel(_ controller:) function delegates the
DidCancel event when the user clicks on the Cancel button. The
entryDetailsViewController(_ controller:, didFinishAdding entry:)

function delegates didFinishAdding when the user finishes adding a new entry and clicks
on the Done button.

In the MainScreenViewController class (delegatee),
add EntryDetailsViewControllerDelegate as one of the protocols the class
implements:

class MainScreenViewController: UITableViewController,
    EntryDetailsViewControllerDelegate {
    // ....
}

Now you need to override the two functions defined in the delegate protocol and provide
the implementation.

Add the implementation for the entryDetailsViewControllerDidCancel(_
controller:) function:

func entryDetailsViewControllerDidCancel(_ controller:
EntryDetailsViewController) {
    dismiss(animated: true, completion: nil)
}

The function simply dismisses the EntryDetailsViewController screen in modally
present mode so the focus of the user interface goes back to the original main screen.

Add the implementation for the entryDetailsViewController(_ controller:,
didFinishAdding entry:) function in a similar way:

func entryDetailsViewController(_ controller: EntryDetailsViewController,
didFinishAdding entry: JournalEntry) {
    createEntry(entry: entry)
    dismiss(animated: true, completion: nil)
}

The function calls the createEntry(entry:) helper function and then dismisses the
EntryDetailsViewController screen.



Developing an iPhone Client Chapter 13

[ 301 ]

The createEntry() helper function appends a new entry to the journalEntries array
and calls newEntry(entry:) in the extension to make an HTTP request to the web
application. Then a new row is inserted into the table view:

func createEntry(entry: JournalEntry) {
    let newRowIndex = journalEntries.count
    journalEntries.append(entry)
    newEntry(entry: entry)

    let indexPath = IndexPath(row: newRowIndex, section: 0)
    let indexPaths = [indexPath]
    tableView.insertRows(at: indexPaths, with: .automatic)
}

Before implementing the newEntry(entry:) function, you can step aside and finish up
the user interface for EntryDetailsViewController.

Hooking up new functionalities for UI items
Select the Assistant Editor from the top-right menu tray to lay out the storyboard and the
EntryDetailsViewController.swift file side by side.

While holding down the Ctrl key, click on the Done button and drag it to the line under the
declaration of the EntryDetailsViewController class. A Connection context menu
appears. Create an IBOutlet and specify the name to be entryTitle:



Developing an iPhone Client Chapter 13

[ 302 ]

Follow the same steps to create an IBOutlet for entryContent.

The two IBOutlet fields should be created and connected to the corresponding bar button
items:

class EntryDetailsViewController : UIViewController {
    @IBOutlet weak var entryTitle: UITextField!
    @IBOutlet weak var entryContent: UITextView!
}

In the same EntryDetailsViewController class, add a reference
to EntryDetailsViewControllerDelegate:

weak var delegate : EntryDetailsViewControllerDelegate?

Create the done() function for IBAction:

@IBAction func done() {
    let entry = JournalEntry(title: entryTitle.text!, content:



Developing an iPhone Client Chapter 13

[ 303 ]

entryContent.text!)
    delegate?.entryDetailsViewController(self, didFinishAdding: entry)
}

This basically creates a new instance of JournalEntry from the text of entryTitle and
entryContent, and then passes the object to the main screen via one of the delegate
protocol functions.

Also create the cancel() function for IBAction, which simply calls the
entryDetailsViewControllerDidCancel() function of the delegate protocol:

@IBAction func cancel() {
    delegate?.entryDetailsViewControllerDidCancel(self)
}

Both the IBAction functions need to be connected to the corresponding UI items. Ctrl + drag
the Done button to the done() function for IBAction in Assistant Editor to make a
connection between them. Do the same for the Cancel button and the cancel() function
for IBAction.

There are two more minor features to add to the EntryDetailsViewController user
interface. First, make the title text field the first responder so the title will be in focus
when the screen first appears:

override func viewWillAppear(_ animated: Bool) {
    super.viewWillAppear(animated)
    entryTitle.becomeFirstResponder()
}

Next, add a default title to the screen in the viewDidLoad() function:

override func viewDidLoad() {
    super.viewDidLoad()
    title = "Create an Entry"
}

That's all you need to do to get things going for the user interface. Next, you can finish
implementing the newEntry(entry:) function.



Developing an iPhone Client Chapter 13

[ 304 ]

Steps to Make Requests to the server
You can follow these simple steps to make requests to a server with the resource you want:

Prepare for encoded JSON data for your data model conforming to Codable1.
Configure an upload request with HTTP methods and your JSON object2.
Start a new URLSession task with the request you've configured3.
Call the URLSession's resume() method to start uploading4.

Preparing for Encoded JSON Data
Since your data model has already been conforming to Codable, you can use the
JSONEncoder class to encode the data into a JSON object easily for upload:

guard let jsonData = try? JSONEncoder().encode(entry) else { return }

Configuring an Upload Request
You can use a URLRequest instance to start an upload task:

var request = URLRequest(url: journalUrl)
request.httpMethod = "POST"
request.setValue("application/json", forHTTPHeaderField: "Content-Type")

URLRequest allows you to set the HTTP method (POST, PUT, GET, DELETE) using the
httpMethod property of the request, as well as to set the values of any HTTP headers using
the setValue(_:forHTTPHeaderField:) method.

Starting an Upload Task
To start uploading, use a shared URLSession instance to create an uploading
URLSessionTask instance with the passing in URLRquest and the JSON data you have:

// Start an URLSession Task
URLSession.shared.uploadTask(with: request, from: jsonData) { (data,
response, error) in
    if let error = error {
        print("Error", error)
    return
    }
}.resume()



Developing an iPhone Client Chapter 13

[ 305 ]

Since all tasks start in a suspended state, .resume() will be called to start the task after the
.uploadTask(with: from:) method is called. Upon the completion of task upload, the
results are received in a completion handler that checks for any transport or server errors
and returns the requested data.

Putting Everything Together for the upload task
After learning the basics for creating an uploading task, you can assemble the
newEntry(entry:) function:

// Create a new entry
func newEntry(entry: JournalEntry) {

// prepare JSON data to upload
guard let jsonData = try? JSONEncoder().encode(entry) else { return }

// configure URL request
let journalUrl = URL(string: apiURL + "/admin")!
var request = URLRequest(url: journalUrl)
request.httpMethod = "POST"
request.setValue("application/json", forHTTPHeaderField: "Content-Type")

// Start an URLSession Task
URLSession.shared.uploadTask(with: request, from: jsonData) { (data,
response, error) in
    if let error = error {
        print("Error", error)
        return
        }
    }.resume()
}

Try to edit a journal entry now. The corresponding entry in the database should reflect all
the changes you've made in your iOS application. If you encounter any problems, refer to
this chapter's source code to figure out the issue with your code.

Finishing the CRUD operations
You still need to finish the rest of the CRUD operations for your iOS application: editing an
existing entry and deleting an existing entry.



Developing an iPhone Client Chapter 13

[ 306 ]

Editing an existing entry
Most of the code used in creating a new entry can be reused here to edit an existing journal
entry.

Creating the EditEntry segue
First of all, create a new segue by Ctrl + dragging from the table view component to the
Navigation Controller. Name the segue EditEntry and specify the kind of attribute to be
Show:

In the MainScreenViewController class, add the following code to the prepare(for
segue: sender:) function to tell EntryDetailsViewController about the EditEntry
segue:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
    if segue.identifier == "NewEntry" {
         let navigationController = segue.destination as!
UINavigationController
         let controller = navigationController.topViewController as!
EntryDetailsViewController
         controller.delegate = self



Developing an iPhone Client Chapter 13

[ 307 ]

     } else if segue.identifier == "EditEntry" {
         let navigationController = segue.destination as!
UINavigationController
         let controller = navigationController.topViewController as!
EntryDetailsViewController
         controller.delegate = self
         if let indexPath = tableView.indexPath(for: sender as!
UITableViewCell) {
             controller.existEntry = journalEntries[indexPath.row]
         }
     }
 }

The handling of EditEntry is implemented in the else-if block. The code states that
MainScreenViewController is the delegate for EntryDetailsViewController and
assigns the current item of the journalEntries array as the existEntry object
in EntryDetailsViewController.

Adding a new function to the delegate protocol
Next, add a new function to the delegate protocol to support editing an existing entry.

Add an additional function to delegate the Done Editing event to
MainScreenViewController:

// Define the delegate protocol to inform Main Screen View Controller
protocol EntryDetailsViewControllerDelegate: class {
    //... previously defined functions

    // Delegate Done Editing Event
    func entryDetailsViewController(_ controller:
EntryDetailsViewController, didFinishEditing entry: JournalEntry)
}

Implement the corresponding function in the MainScreenViewController class:

func entryDetailsViewController(_ controller: EntryDetailsViewController,
didFinishEditing entry: JournalEntry) {
    updateEntry(entry: entry)
    dismiss(animated: true, completion: nil)
}



Developing an iPhone Client Chapter 13

[ 308 ]

This function calls the updateEntry(entry:) function and then dismisses the
EntryDetailsViewController screen:

func updateEntry(entry: JournalEntry) {
    if let index = journalEntries.index(of: entry) {
        journalEntries[index] = entry
        editEntry(entry: entry)
        let indexPath = IndexPath(row: index, section: 0)
        if let cell = tableView.cellForRow(at: indexPath) {
            let label = cell.viewWithTag(1000) as! UILabel
            label.text = entry.title
        }
    }
}

In order to use the JournalEntry.index(of:) function to retrieve the matched object,
you need to subclass the JournalEntry class model from NSObject:

final class JournalEntry: NSObject, Codable {
    let id: Int?
    var title: String?
    var content: String?

    public init(title: String?, content: String?) {
        self.id = nil
        self.title = title
        self.content = content
    }
}

The subclassing of the NSObject class gives a JournalEntry instance the ability to
compare against all other instances and check for equality. So it is very convenient for you
to extend JournalEntry from the NSObject class here.



Developing an iPhone Client Chapter 13

[ 309 ]

Making an HTTP PUT request
The editEntry(entry:) function creates a new URLSession task to upload the JSON
object of the newly-updated JournalEntry object to the web application:

// Edit an existing entry
func editEntry(entry: JournalEntry) {
    print("INFO: Receiving modified entry: \(entry)")
    guard let jsonData = try? JSONEncoder().encode(entry) else { return }
    guard let id = entry.id else {
        print("Error: Invalid ID")
        return
    }
    let idString : String = "/admin/\(id)"
    let journalUrl = URL(string: apiURL + idString)!
    var request = URLRequest(url: journalUrl)
    request.httpMethod = "PUT"
    request.setValue("application/json", forHTTPHeaderField: "Content-
Type")

    URLSession.shared.uploadTask(with: request, from: jsonData) { (data,
response, error) in
        if let error = error {
            print("Error", error)
            return
        }
    }.resume()
}

URLRequest is configured as an HTTP PUT request. After the URLSession task is
configured, the resume() call will start the uploading process.

Configuring the user interface to edit an entry
Now, go back to the EntryDetailsViewController class. Add the following reference to
the JournalEntry object passed from the MainScreenViewController delegate:

var existEntry: JournalEntry?



Developing an iPhone Client Chapter 13

[ 310 ]

Modify the done() function to check whether there is a valid existEntry object. If there
is, it means this is the Edit Entry mode for EntryDetailsViewController. The title
and content values of the existing Journal Entry object will be replaced by the text of
entryTitle and entryContent:

@IBAction func done() {
    // edit mode
    if let exist = existEntry {
        exist.title = entryTitle.text!
        exist.content = entryContent.text!
    delegate?.entryDetailsViewController(self, didFinishEditing: exist)
    }
    // create mode
    else {
        let entry = JournalEntry(title: entryTitle.text!,
        content: entryContent.text!)
        delegate?.entryDetailsViewController(self, didFinishAdding: entry)
    }
}

For the Edit Entry mode, the screen's title is also updated accordingly:

override func viewDidLoad() {
     super.viewDidLoad()

     if let entry = existEntry {
         entryTitle.text = entry.title
         entryContent.text = entry.content
     } else {
         title = "Create an Entry"
     }
}

The final result of editing the entry operation should look like the following:



Developing an iPhone Client Chapter 13

[ 311 ]

Deleting an existing entry
The last thing to do is to add the DELETE operation. If the user swipes a table item to the
left, a DELETE button will appear. An entry will be deleted if the user continues to press on
the button:

Override the tableView(_ tableView: commit editingStyle: forRowAt
indexPath: ) function:

override func tableView(_ tableView: UITableView, commit editingStyle:
UITableViewCell.EditingStyle, forRowAt indexPath: IndexPath) {
    // remove from database first before deleting it locally
    removeEntry(entry: journalEntries[indexPath.row]) // [1]
    journalEntries.remove(at: indexPath.row) // [2]
    let indexPaths = [indexPath]
    tableView.deleteRows(at: indexPaths, with: .automatic) // [3]
}

The function does several things:

It calls the removeEntry(entry:) function to tell the web application to remove1.
the remote record of this entry
It remove the corresponding entry from the journalEntries local store2.
It deletes the corresponding row from the table view3.



Developing an iPhone Client Chapter 13

[ 312 ]

The removeEntry(entry:) function performs a similar URLSession task to issue an
HTTP DELETE request to the web application:

// Remove an existing entry
func removeEntry(entry: JournalEntry) {
 print("INFO: Receiving the entry to be deleted: \(entry)")

 // prepare JSON data to upload
 guard let jsonData = try? JSONEncoder().encode(entry) else { return }
 print("INFO: Packing int JSON object: \(jsonData)")

 // configure URL request
 guard let id = entry.id else {
     print("Error: Invalid ID")
     return
 }
 let idString : String = "/admin/\(id)"
 let journalUrl = URL(string: apiURL + idString)!
 var request = URLRequest(url: journalUrl)
 request.httpMethod = "DELETE"
 print("INFO: Requesting Server to delete: \(request)")

 // Start an URLSession Task
 URLSession.shared.uploadTask(with: request, from: jsonData) { (data,
response, error) in
     if let error = error {
         print("Error", error)
         return
     }
 }.resume()
}

Congratulations! Now you have a fully-functional iOS client application that works with
your Vapor or Kitura web applications on the cloud.



Developing an iPhone Client Chapter 13

[ 313 ]

Summary
You are now equipped with the knowledge to be a full-stack developer who knows how to
write Swift code to perform both server and client development. In this chapter, you
learned basic iOS development skills to develop a table-view-controller-based application
that interacts with the myJournal web service you developed previously. Building on the
skeleton table view controller, you learned how to establish a URLSession that makes a
HTTP GET request to the RESTful API you developed in Chapter 11, Designing for API
Gateway, and retrieve all journal entries to populate the table view. Then, you moved on to
implement other CRUD operations on the client side: creating, editing, and deleting a
journal entry. The topics you covered in this chapter give you good basis for building more
professional and feature-rich iOS client applications that work with your Vapor and Kitura
web services.



14
Developing Microservices

In contrast to a monolithic server-side application that contains all business logic, a Swift
web framework may employ microservices in the business logic layer. Microservices are
standalone logical components that handle different functional areas of a backend
application.

You'll learn about container technology, such as Docker, that is used to deploy and run a
Swift package artifact as a microservice. You'll learn how to deploy a Docker container and
use a container-orchestration tool to manage and scale the deployment of containerized
applications in a cluster. Orchestration software, such as Kubernetes, contains deployment
and management tools that automate the processes and workflows of your containerized
applications. Finally, you’ll deploy microservices of containerized applications to deliver a
coherent and scalable web service by collaborating among themselves.

Let's take a look at the topics covered in this chapter:

Leveraging Microservices in Backend Applications
Deploying a Containerized Application to a Cluster

Leveraging Microservices in Backend
Applications
When we are designing backend services for a server-side Swift application, we are
generally talking about designing for a distributed architecture. This means that service 
components are accessed remotely through some sort of remote-access protocol, so these
components can communicate across different processes, servers, and networks. Similar to
Object-Oriented Design (OOD) in software architecture, distributed architectures lend
themselves to more loosely-coupled, encapsulated, and modular applications. This, in turn,
promotes better scalability, modularity, and control over the development, testing, and 
deployment of backend service modules.



Developing Microservices Chapter 14

[ 315 ]

The microservice-oriented architecture
In the service-oriented architecture (SOA), the reusability of functions hasn't been fully
exploited. For example, the logging feature in one service may be duplicated as we find a
similar logging feature in another service. Since a service is not designed for reusability,
duplicated features are inadvertently added to a service. The concept of component-sharing
is not explicitly integrated and promoted in SOA. A mature service may become bloated
and monolithic, making it hard to maintain, debug, and develop.

Microservices, however, are designed for tasks at a more granular level and won't become
bloated easily. For example, there could be a logger microservice that handles string
formatting, filtering, converting and reporting. Multiple microservices can use the same
instance of logger microservice for logging information.

Design Principles of the Microservice Framework
The key design principles for the Microservice Framework are as follows:

Separation of Concerns: Each microservice is modular and is held for single
responsibility

Loose Coupling: Each microservice shall be isolated from other microservices
and components as much as possible

Independently Deployable: Each microservice is an entity that can be
individually deployed as needed

Scalable Architecture: We shall be able to add as many of the same type of
microservices as needed

Automation: The deployment of microservices is automated

Built for Failure: A microservice shall gracefully exit during catastrophic failure
and then get relaunched



Developing Microservices Chapter 14

[ 316 ]

Deploying a Containerized Application to a
Cluster
Even though microservices can be deployed and managed via different means, we
recommend you deploy each microservice in a Docker container. In a virtualized
environment provided by a container, the logic and I/O for each microservice instance are
completely separated even if they reside on the same physical server. This container-based
approach lets us scale our deployment with maximum flexibility. For example, we can
deploy 10 containerized microservices on a physical service. When the workload is
increased, we can add more containers to the same server or a different server, depending
on the resource utilization of a physical server. The deployment and load-balancing of
microservices are managed by orchestration tools such as Kubernetes. Moreover, if one of
the deployed microservices encounters a catastrophic failure, the orchestration tool will
attempt to let the instance of the microservice gracefully exit and then relaunch a new
instance.

Working with Containers and Orchestrations
Once you have a containerized application, you are going to plan deploying your container
to a cluster. A cluster refers to a set of resources, networks, working nodes, and storage
services in the backend that your containerized application needs to work with. Connected
computing units, resources, and services in a cluster work as a single unit.

When working with a cluster, you usually choose a container-orchestration tool to
automate deployment, scale your containerized applications, and manage your containers
in the cluster. Kubernetes is a production-ready open source container-orchestration
platform that was originally developed by Google and is now maintained by the Cloud
Native Computing Foundation.

Kubernetes does the following tasks very well:

Manages containerized applications to run where and when you want.
Finds the resources required for containers to work properly.
Abstracts out the deployment of containerized applications so each is not tied to
an individual machine.
Automates the distribution and scheduling of application containers across a
cluster.



Developing Microservices Chapter 14

[ 317 ]

Monitors the status of deployed applications periodically.
Instantiates a new instance of a containerized application in case of the failure of
an instance.

There are two types of resources in a Kubernetes cluster:

Master: Each cluster has a Master that coordinates the cluster. Master schedules
the deployment of a containerized application, maintains the application's states,
and rolls out new updates to the application. When there is a change in usage,
Master can also scale the application appropriately to meet new demand.
Worker nodes: There are a number of working nodes in a typical cluster. Nodes
are the workers that host the running containerized applications. Each node
could be a virtual machine or a physical computer. The kubelet agent in each
node communicates with Master via the Kubernetes API and manages the node
itself.

In the following sections, you'll learn how to create your own container for your server-side
Swift application and deploy it to a cluster. The workflow for creating a containerized
application using Docker and deploying to a Kubernetes cluster is similar for the Vapor and
Kitura frameworks. As such, you'll learn how to deploy a Kitura application to your IBM
Cloud account. It is easier for you to follow along with the implementation of containers
and orchestrations for Kitura applications on IBM Cloud because these technologies are
well integrated into the infrastructure in IBM Cloud and you can find all relevant
documentation and resources within your developer account.

Understanding the Container Deployment
workflow
The following diagram illustrates the workflow for deploying a containerized application
to a cluster on the cloud:



Developing Microservices Chapter 14

[ 318 ]



Developing Microservices Chapter 14

[ 319 ]

The workflow consists of the following steps:

Create an Application. Start a server-side Swift application from a boilerplate1.
project that comes with the sample Dockerfile configuration.
Create a Docker Image. Modify the Dockerfile and build a new Docker container2.
image.
Tag the Image. Tag the new container image with the repository name and3.
version info.
Push to the Container Registry. Create a namespace to use in Container Registry4.
and push your image to the registry.
Create a Cluster. Create a new cluster with a master and at least one worker5.
node.
Create a Deployment. Pull your image from the Container Registry to create a6.
new deployment in a worker node.
Expose the Deployment. Create a NodePort service to expose the deployment at7.
the node's public IP and static port.

With this overview of the container-deployment workflow, you can dive into the details of
each step.

Publishing a Docker image to IBM Cloud Registry
If you want to let the container-orchestration tool manage the instances of your Swift
applications, you'll find it easy to work with Container Registry. By registering your
container images in IBM Container Registry, you allow the orchestration tool to deploy new
instances when required.

In case you haven't installed the Container Registry plugin, use the following command to
add the plugin to the IBM Cloud CLI:

$ ibmcloud plugin install container-registry -r Bluemix

If you haven't installed IBM Cloud CLI on your system, refer back to Chapter 12, Deploying
to Cloud, for the details.

Logging into IBM Cloud
Now you are going to register your container image to Container Registry.



Developing Microservices Chapter 14

[ 320 ]

On your local computer, perform the following steps:

Log into your IBM Cloud account using the IBM Cloud CLI:1.

$ ibmcloud login -a https://api.ng.bluemix.net

In case you haven't set the region, you may want to set the region-set2.
environment to where you are located, for example, us-south. Refer to the IBM
Cloud documentation to identify the right region for your location:

$ ibmcloud cs region-set us-south

If you don't already have an existing namespace to work with, you're required to3.
create one for the rest of the setup. The namespace used in the following example
is angus but you should choose whatever name best represents your project:

$ ibmcloud cr namespace-add angus

The output shows the angus namespace has been successfully added to the4.
environment:

Adding namespace 'angus'...
Successfully added namespace 'angus'
OK

You'll also find the new namespace on the Dashboard application if you use the web
browser to log into your IBM Cloud account. Sometimes you may need to log into Registry
Services on IBM Cloud before you can create a container image and push the image to
Container Registry.

Log into registry.ng.bluemix.net using the following CLI command:

ibmcloud cr login

Now, you're ready to create a new Docker container image and deploy it to Container
Registry.

Working with the Docker CLI
 You set up the Docker environment in Chapter 12, Deploying to Cloud. In case you haven't
installed Docker CLI on your local system, refer back to Chapter 12, Deploying to Cloud, for 
instructions on how to install the Docker CLI and create a Docker-enabled Kitura
application from a boilerplate project.

http://registry.ng.bluemix.net
https://cdp.packtpub.com/hands_on_server_side_web_development_with_swift/wp-admin/post.php?post=36&action=edit#post_38


Developing Microservices Chapter 14

[ 321 ]

If you are using Docker Desktop for Mac, the Docker daemon should be running in the
background already. For Ubuntu, you may need to start the Docker daemon manually
using the systemctl command:

$ sudo systemctl start docker

Assuming that you have docker running properly, perform the following steps to build a
container image for your Kitura application:

Change the directory to the root path of your Docker-enabled Kitura application1.
and use the following Docker CLI command to build an image:

$ docker image build .

Docker will process Dockerfile to build an image.

Use the Docker Image command to list the image you've just created:2.

$ docker image ls

The output shows that a new image with the dc056e17b52a ID was just created3.
about a minute ago:

REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> dc056e17b52a About a minute ago 674MB
mynewkituraapp-swift-run latest 3a2a59c534e4 28 hours ago 674MB
mynewkituraapp-swift-tools latest 2fb4a17c3c57 29 hours ago 1.67GB
ibmcom/swift-ubuntu-runtime 4.1.1 23bd1a58b015 4 months ago 318MB
ibmcom/swift-ubuntu 4.1.1 9d6e9b75db3d 4 months ago 1.41GB

Once your container image has been successfully registered, you can start to get the
container image ready for deployment.

Tagging Your Docker Image
Your new image doesn't yet have a repository and tag assigned to it. Both are needed to
deploy to Container Registry on IBM Cloud. Perform the following steps to set this up:

Use the following Docker command to tag your image:1.

$ docker tag dc056e17b52a mynewkituraapp

The source image is dc056e17b52a and the target image is mynewkituraapp.



Developing Microservices Chapter 14

[ 322 ]

List the images again using the following:2.

$ docker image ls

You'll see the image now has assigned values for Repository and Tag:

REPOSITORY TAG IMAGE ID CREATED SIZE
mynewkituraapp latest dc056e17b52a 11 minutes ago 674MB
mynewkituraapp-swift-run latest 3a2a59c534e4 29 hours ago 674MB
mynewkituraapp-swift-tools latest 2fb4a17c3c57 29 hours ago 1.67GB
ibmcom/swift-ubuntu-runtime 4.1.1 23bd1a58b015 4 months ago 318MB
ibmcom/swift-ubuntu 4.1.1 9d6e9b75db3d 4 months ago 1.41GB

By default, Docker assigns latest to your image if you don't specify a version to tag.
Tagging is useful for the version management of your container images, so it is always a
good idea to tag a version for each container image. 

To tag a specific version, for example, 1.0.0, add the tag right behind the target image:

$ docker tag dc056e17b52a mynewkituraapp:1.0.0

In practice, you may want to put a tag that matches your application version on the Git
repository.

Deploying a Docker Image to IBM Cloud Registry
With a namespace and newly-tagged Docker image, you can now push the image to
Container Registry:

Add another tag to your image:1.

$ docker tag mynewkituraapp
registry.ng.bluemix.net/angus/mynewkituraapp

This time, the target image has a prefix of the destination path on Container
Registry, which is registry.ng.bluemix.net followed by your
namespace, /angus.

List all of your Docker images again:2.

$ docker image ls

http://registry.ng.bluemix.net


Developing Microservices Chapter 14

[ 323 ]

You'll see a new repository is created under
the registry.ng.bluemix.net/angus/ path:

REPOSITORY TAG IMAGE ID CREATED SIZE
mynewkituraapp latest dc056e17b52a 15 minutes ago 674MB
registry.ng.bluemix.net/angus/mynewkituraapp latest dc056e17b52a 15
minutes ago 674MB
mynewkituraapp-swift-run latest 3a2a59c534e4 29 hours ago 674MB
mynewkituraapp-swift-tools latest 2fb4a17c3c57 29 hours ago 1.67GB
ibmcom/swift-ubuntu-runtime 4.1.1 23bd1a58b015 4 months ago 318MB
ibmcom/swift-ubuntu 4.1.1 9d6e9b75db3d 4 months ago 1.41GB

Push this new image to IBM Cloud:3.

$ docker push registry.ng.bluemix.net/angus/mynewkituraapp:latest

The entire image is partitioned into several segments when uploading to
Container Registry:

The push refers to repository
[registry.ng.bluemix.net/angus/mynewkituraapp]
6fb9392393bf: Pushed
cd9c92ad770c: Pushed
5e51fc2d02fb: Pushed
a48c7e6e2611: Pushed
44d26f7a9e5a: Pushed
2a915ee685f5: Pushed
4622c8e1bdc0: Pushed
b33859b66bfd: Pushed
14fa4a9494bf: Pushed
0c3819952093: Pushed
05b0f7f2a817: Pushed
latest: digest:
sha256:a4c3c83b4b29588faeaea18f1313a3c5728fdda093763cbb9510b8b5339c
ab7d size: 2615

If you use the IBM Cloud CLI command to list all the available images on4.
Container Registry, you'll see that the image has been just pushed to the cloud:

$ ibmcloud cr image-list

http://registry.ng.bluemix.net/angus/:


Developing Microservices Chapter 14

[ 324 ]

The images are listed here:

Listing images...
REPOSITORY TAG DIGEST NAMESPACE CREATED SIZE SECURITY STATUS
registry.ng.bluemix.net/angus/mynewkituraapp latest a4c3c83b4b29 angus 32
minutes ago 277 MB 19 Issues
OK

There may be some security issues that require your attention. Follow the documentation
on IBM Cloud to see how to configure your application's security settings.

If you take your web browser to Dashboard, you can find the same image under
the /Containers/Registry/Private Repositories:

Creating a Cluster on IBM Cloud
You can create a new cluster directly from your IBM Cloud account's Dashboard
application. A standard cluster is limited to Pay-As-You-Go or Subscription account types
only. If you have a Trial account, you are limited to one free cluster, which expires in 30
days. You cannot create a cluster if your account type is Lite. Upgrade to either a Pay-As-
You-Go or Subscription account to proceed.



Developing Microservices Chapter 14

[ 325 ]

Assuming you have a Trial account, you can choose the Free cluster type after selecting
IBM Cloud Kubernetes Service from Dashboard:

Enter the cluster name as mycluster and hit the Create Cluster button to proceed.



Developing Microservices Chapter 14

[ 326 ]

The deployment of a new cluster may take some time. Wait until the cluster has been fully
deployed. You'd expect to see an overview screen similar to the following if the cluster
becomes online:

The Access tab lists the steps required for you to get access to the cluster.

Setting up the Kubernetes CLI
You need to install a couple of CLIs and plugins in order to manage clusters from your
system:

IBM Cloud CLI
IBM Cloud Kubernetes Service Plug-in
Kubernetes CLI
IBM Cloud Container Registry Plug-in

Note that you have installed the IBM Cloud CLI on your system already. The best way to
install the rest of the CLIs and plugins is to use the IBM Cloud Developer Tools for
Linux/MacOS Installer (idt-installer):

curl -sL https://ibm.biz/idt-installer | bash



Developing Microservices Chapter 14

[ 327 ]

The installer then proceeds to update your current toolset and install tools/plugins not
found on your system:

[main] --==[ IBM Cloud Developer Tools for Linux/MacOS - Installer, v1.2.3
]==--
[install] Starting Installation...
[install] Note: You may be prompted for your 'sudo' password during
install.
[install_deps] Checking for external dependency: brew
[install_deps] Installing/updating external dependency: git
[install_deps] Installing/updating external dependency: docker
[install_deps] Installing/updating external dependency: kubectl
[install_deps] Installing/updating external dependency: helm
[install_bx] Updating existing IBM Cloud 'bx' CLI...
Checking for updates...
...
[Deleted]
...
Listing installed plug-ins...

Plugin Name Version
container-service/kubernetes-service 0.1.593
dev 2.1.4
sdk-gen 0.1.12
cloud-functions/wsk/functions/fn 1.0.22
container-registry 0.1.339

[install_plugins] Finished installing/updating plugins
[install] Install finished.
[main] --==[ Total time: 11 seconds ]==--

Before trying out the Kubernetes tools you've just installed, you may need to log in again:

$ ibmcloud login -a https://api.ng.bluemix.net

When your login is successful, you can try out the following command of the Kubernetes
CLI:

$ kubectl version

The preceding command will print out the version information for your installed
Kubernetes.



Developing Microservices Chapter 14

[ 328 ]

Downloading the Cluster Configuration
In order to work with the mycluster active cluster you have just created, perform the
following steps:

Download the cluster configuration files to your local system:1.

$ ibmcloud cs cluster-config mycluster

The output of the preceding command reminds you that you'll need to set up
environment variables properly to start using Kubernetes:

OK
The configuration for mycluster was downloaded successfully. Export
environment variables to start using Kubernetes.
export KUBECONFIG=/Users/fyeung1/.bluemix/plugins/container-
service/clusters/mycluster/kube-config-hou02-mycluster.yml

Export the KUBECONFIG environment variable by copying the last line from the2.
preceding code and paste it into a Terminal:

$ export KUBECONFIG=/Users/fyeung1/.bluemix/plugins/container-
service/clusters/mycluster/kube-config-hou02-mycluster.yml

The KUBECONFIG environment variable specifies which current cluster you are
working with. If you have more than one cluster and want to switch to another
cluster, you need to follow the preceding steps to download the cluster
configuration and export the KUBECONFIG environment variable that is pointed to
in the other cluster.

Don't copy the KUBECONFIG environment variable from the book text
here. It uses my personalized settings. You should copy from your own
output screen from the last IBM Cloud CLI command and export the
KUBECONFIG environment variable.

If everything works out as expected, you are able to use the following kubectrl3.
command to list all the worker nodes in your cluster.

$ kubectl get nodes

A list of active worker nodes in your cluster is listed in the output:

NAME STATUS ROLES AGE VERSION
10.77.174.186 Ready <none> 2h v1.10.8+IKS



Developing Microservices Chapter 14

[ 329 ]

You should expect one active worker node in the cluster. Since you are using the
free kubernetes feature, it limits you to only one worker node.

If you point your web browser to your IBM Cloud account, you can check out the4.
status of the active worker node in your cluster page as well:

Creating a Deployment Using Container Registry
Once you have an active Kubernetes cluster, you can deploy your containerized application
to it. To do so, you can use kubectl to create a deployment. The deployment tells
Kubernetes how to create and update instances of your application. The Kubernetes
Deployment Controller will monitor these instances and provide a self-healing mechanism.
If an instance in your worker node goes down, the Kubernetes Deployment controller will
attempt to replace it. Even if the hosting machine of your worker node goes down, the
Deployment controller can still detect the machine failure and address the recovery.

Use the following kubectl command to create a new deployment from your1.
image in the container registry:

$ kubectl create deployment my-new-kitura-app-deployment --
image=registry.ng.bluemix.net/angus/mynewkituraapp

If you forget your namelist, use this command to list the existing namespaces:2.

$ ibmcloud cr namespace-list



Developing Microservices Chapter 14

[ 330 ]

The command outputs something like the following:

Listing namespaces...
Namespace
angus
OK

Assuming that you have created a container registry, you can use Kubernetes3.
Dashboard to access your cluster information.
Click on the button to open Kubernetes Dashboard:4.

The dashboard gives you more detailed information, such as Deployments, Pods, and
Replica Sets. Check out https:/ /kubernetes. io to learn the basics of this terminology.

https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io


Developing Microservices Chapter 14

[ 331 ]

Exposing the deployment and launching the app
End users won't be able to get access to your application instances in the cluster unless you
explicitly create a service object that exposes an external IP address for your application
deployment. To do so, perform the following steps:

Use the kubectl expose command to change the access of your newly-created1.
deployment to public:

$ kubectl expose deployment/my-new-kitura-app-deployment --
type=NodePort --port=8080 --name=my-new-kitura-app-service --
target-port=8080

Here, you instruct Kubernetes to expose your deployment service through the
NodePort service, my-new-kitura-app-service, which serves on port 8080
and connects to the containers that are also on the 8080 target port.

Run the following command to check out the deployment resource that has been2.
exposed:

$ kubectl describe service my-new-kitura-app-service

The NodePort object now exposes the services on each Node's IP at the 32663
static port (NodePort):

Name: my-new-kitura-app-service
Namespace: default
Labels: run=my-new-kitura-app-deployment
Annotations: <none>
Selector: run=my-new-kitura-app-deployment
Type: NodePort
IP: 172.21.76.242
Port: <unset> 8080/TCP
TargetPort: 8080/TCP
NodePort: <unset> 32663/TCP
Endpoints: 172.30.77.71:8080
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>



Developing Microservices Chapter 14

[ 332 ]

Since your service runs on an internal IP, the service is reachable from within the
cluster only. In order to expose your service to the outside, Kubernetes
automatically creates a default service called ClusterIP. Your service can be
exposed in different ways as specified by the type, such as the NodePort type.
NodePort uses NAT to expose the service on the same port of each selected node
in the cluster. For example, the 32663 static port will be mapped to port 8080
internally so your deployment service at 8080 will be exposed to 32663.

Run the following command to find out the public IP address for your worker3.
node:

$ ibmcloud ks workers mycluster

The public IP address assigned to your node is 173.193.99.102:

OK
ID Public IP Private IP Machine Type State Status Zone Version
kube-hou02-pa1542b64383f4463a84fc4bf6fa57ea6d-w1 173.193.99.102
10.77.174.186 free normal Ready hou02 1.10.8_1525

Your deployment running on this worker node is available to outside
as [Public Node IP] : [ Node Port]. That is [173.193.99.102] :
[32663].



Developing Microservices Chapter 14

[ 333 ]

Point your web browser to 173.193.99.102:32663, and you can see your4.
Kitura application deployment online:

That's all it takes to deploy a containerized application to a working node in a cluster.

In the future, you can follow the steps here to deploy more applications that work together
as microservices. Each microservice is hosted independently on a working node and all
microservices in clusters collaborate with each other to offer unified service to clients.



Developing Microservices Chapter 14

[ 334 ]

Summary
This chapter introduced to you the concept of breaking your Vapor or Kitura applications
into smaller, self-contained components called microservices. You learned the advantages
of using the microservice-oriented architecture. Then you gained a working knowledge of
containers and orchestrations. Specifically, you learned how to put your application into a
container using Docker as well as how to register and deploy a containized application to a
Kubernetes cluster on IBM Cloud. This chapter concludes the book. But for you, this marks
the beginning of an exciting new journey with server-side Swift!



Vapor Boilerplate Project
This topic in the appendix will give you a clear understanding the boilerplate code in
Vapor. Carrying forward from where we left off in Chapter 3, Building Your First Web
App, here is a summary of the steps that you've used in creating a helloWorld boilerplate
project using Vapor's default template:

$ vapor new helloWorld
$ cd helloWorld
$ vapor build
$ vapor xcode
$ open hellowWorld.xcodeproj

After executing the preceding commands in the Terminal, you changed Xcode project's
scheme to Run and device to My Mac. The helloWorld server will be running at
http://localhost:8080 when you use command + R to run your project.

The following sections will provide you with a better idea regarding the same:

Reviewing Vapor-generated files
Understanding the source code files
Configuring Swift Package Manager 
Starting with entry point
Instantiating an application object
Configuring before instantiating application
Adding initialization code after application instantiation
Registering the application's routes
Implementing endpoint logic in controllers
Using a data model



Vapor Boilerplate Project

[ 336 ]

Reviewing Vapor-generated files
After using the preceding steps to create a boilerplate helloWorld project, use the ls -
a command in the helloWorld project directory to list all files and child directories:

# List all files and directories, including the hidden ones
ls -a

The -a flag is used here so you can view all files, including hidden files and directories:

.                 .build          .gitignore                  Package.swift         README.md            Tests
cloud.yml
 ..                .git               Package.resolved     Public Sources       circle.yml

Vapor generates some hidden directories, such as .build and .git.

The .build directory contains all the dependencies and temporary files when you build
your project. If you execute the vapor clean Vapor CLI command, the .build directory will
be removed. Then you have to use vapor build to fetch the dependencies and build the
project again. This usually takes a long time. If you simply want to update few
dependencies, you can use vapor update to fetch those dependencies that you don't have
already.

The .git directory is used by the git source code version control. It is classified as a
distributed version-control system. The .git is the directory it used to keep a local copy of
the source code repository. The .gitignore hidden file is the place where you can specify
the kinds of files you want to exclude from source control.

Installing tree to view the file structure
Perhaps a better tool than ls is the tree Terminal command. Install tree on your system if
you don't have it installed already:

To install it on macOS, perform the following:

# Install the tool tree if needed
brew install tree

To install it on Ubuntu, use the following code:

# Install the tool tree if needed
sudo apt install tree



Vapor Boilerplate Project

[ 337 ]

Reviewing a Vapor project's file structure
With tree properly installed on your system, you can use the following command to display
the entire file structure in the helloWorld app:

# Display the file structure in the helloWorld app
tree

Your output should be something similar to the following:

.
 ├── Package.resolved
 ├── Package.swift
 ├── Public
 ├── README.md
 ├── Sources
 │   ├── App
 │   │   ├── Controllers
 │   │   │   └── TodoController.swift
 │   │   ├── Models
 │   │   │   └── Todo.swift
 │   │   ├── app.swift
 │   │   ├── boot.swift
 │   │   ├── configure.swift
 │   │   └── routes.swift
 │   └── Run
 │   └── main.swift
 ├── Tests
 │   ├── AppTests
 │   │   └── AppTests.swift
 │   └── LinuxMain.swift
 ├── circle.yml
 └── cloud.yml

If you use the -a flag in your tree command, you will see a lot of dependency files in the
.build directory and git working files in the .git directory. You may want to check out
the dependency files fetched to the .build directory after you build the project.



Vapor Boilerplate Project

[ 338 ]

Understanding the file structure in a Vapor
project
The usages for high-level files and directories in your project are described in the following
table:

File/directory Usage
Package.resolved Registry for resolved dependencies and packages
Package.swift Configuration for Swift Package Manager (SPM)

/Public Directory for publicly-accessible files such as images, JavaScript scripts, and CSS
style sheets

README.md README file in Markdown format
/Sources Directory for source files
/Tests Directory for all tests

circle.yml Configuration for continuous integration and continuous deployment using
CircleCI

cloud.ml Custom configurations for deploying your project to Vapor Cloud

You'll become more familiar with the file structure of a Vapor project as you work on the
project. For now, you just need to pay attention to the /Sources directory, which contains
all the source files in your project.

The /Sources directory has two sub directories, /App and /Run, as shown in the
following table:

File/directory Usage

/App Directory for the App module containing all of
the application logic

/App/Controllers/TodoController.swift Adds controllers to perform application logic to
requests

/App/Models/Todo.swift Adds model to help retrieve/store your content
/App/app.swift Creates an instance of your Vapor app

/App/boot.swift Performs initialization before your Vapor app has
started running

/App/configure.swift Makes changes to your config and environment,
or registers services to your app

/App/routes.swift Adds routes to your router
/Run Directory for the Run module
/Run/main.swift Adds an entry point for Vapor runtime

https://circleci.com/


Vapor Boilerplate Project

[ 339 ]

There is only one function in /Run/main.swift and it serves as the entry point for Vapor
framework. Usually you won't need to modify the /Run/main.swift file at all. You will
mostly work on the files in the /App directory.

Like any other popular framework, Vapor uses the Inversion of Control (IoC) technique to
allow you to receive the flow of control from the framework. If you want to change the
behavior of the framework, you simply add the specific function that will be called upon by
the framework.

The functions in the /App/configure.swift and /App/boot.swift files are good
examples of IoC. In /App/configure.swift, you'll configure the required components for
your project before your application initializes. In /App/boot.swift, you'll perform
initialization before your app has started running the rest of the code.

Since the Vapor framework implements the Model-View-Controller (MVC) model, you'll
take note of the Controllers and Models sub directories in /App.

The Controllers directory contains each controller that implements application logic to
handle a client request routed to an endpoint. The routing function is added in the
/App/routes.swift file. In order to handle a new client request, you'll add a new route to
forward the request to a controller. How to set up routes and controllers will be covered in
Chapter 5, Setting Up Routes and Controllers.

The Models directory contains the implementation of object models for your data. By
leveraging Swift's Codable class in data models and abstracting out the database-specific
command using Swift's fluent storage framework, Vapor makes it very easy for you to
handle data objects and perform basic Create, Retrieve, Update, and Delete (CRUD) 
database operations.

We'll now dive into a detailed discussion of each file in the boilderplate source code.

Configuring Swift Package Manager
Package.swift is the project's manifest file that describes all the packages your project
relies on. It is always located in the root directory of a Vapor project:

// File: Package.swift
// swift-tools-version:4.0
import PackageDescription

let package = Package(
    name: "helloWorld",    // [1]



Vapor Boilerplate Project

[ 340 ]

    dependencies: [    // [2]
        //  A server-side Swift web framework.
        .package(url: "https://github.com/vapor/vapor.git", from: "3.0.0"),
// [3]

        //  Swift ORM (queries, models, relations, etc) built on SQLite 3.
        .package(url: "https://github.com/vapor/fluent-sqlite.git", from:
"3.0.0-rc.2") // [4]
    ],
    targets: [    // [5]
        .target(name: "App", dependencies: ["FluentSQLite", "Vapor"]),
        .target(name: "Run", dependencies: ["App"]),
        .testTarget(name: "AppTests", dependencies: ["App"])
    ]
)

The preceding package is configured as follows:

The "helloWorld" string is used as the application name1.
The project's dependencies array contains all other packages this project2.
depends on
This project requires Vapor 3.0 or later3.
The project also requires Fluent SQLite 3 or later4.
The targets array allows you to add build targets5.

Package dependencies
Vapor Toolbox adds two package dependencies, Vapor and Fluent SQLite, automatically
into the project created with the default template.

You can add as many package dependencies as you need by appending the new package to
the dependencies array. However, you have to use the Vapor update command to fetch
the package and effect the changes if you have modified a package or added a new package
to the dependency list.



Vapor Boilerplate Project

[ 341 ]

If you run the swift package show-dependencies command on your Terminal, you can see
that Vapor and Fluent SQLite have a long list of dependencies:

Here is # List of package dependencies in a Vapor boilerplate project:
.
├── Vapor<https://github.com/vapor/vapor.git@3.0.1>
│ ├── Console<https://github.com/vapor/console.git@3.0.2>
│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>
│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ │ └── Service<https://github.com/vapor/service.git@1.0.0>
│ │ └── Core<https://github.com/vapor/core.git@3.1.6>
│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ ├── Core<https://github.com/vapor/core.git@3.1.6>
│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ ├── Crypto<https://github.com/vapor/crypto.git@3.1.1>
│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>
│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ │ └── swift-nio-ssl<https://github.com/apple/swift-nio-ssl.git@1.1.0>
│ │ ├── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ │ └── swift-nio-ssl-support<https://github.com/apple/swift-nio-ssl-support.git@1.0.0>
│ ├── DatabaseKit<https://github.com/vapor/database-kit.git@1.0.1>
│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>
│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ │ └── Service<https://github.com/vapor/service.git@1.0.0>
│ │ └── Core<https://github.com/vapor/core.git@3.1.6>
│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ ├── HTTP<https://github.com/vapor/http.git@3.0.4>
│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>
│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ │ ├── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ │ └── swift-nio-ssl<https://github.com/apple/swift-nio-ssl.git@1.1.0>
│ │ ├── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>



Vapor Boilerplate Project

[ 342 ]

│ │ └── swift-nio-ssl-support<https://github.com/apple/swift-nio-ssl-support.git@1.0.0>
│ ├── Multipart<https://github.com/vapor/multipart.git@3.0.1>
│ │ └── Core<https://github.com/vapor/core.git@3.1.6>
│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ ├── Routing<https://github.com/vapor/routing.git@3.0.1>
│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>
│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ │ └── Service<https://github.com/vapor/service.git@1.0.0>
│ │ └── Core<https://github.com/vapor/core.git@3.1.6>
│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ ├── Service<https://github.com/vapor/service.git@1.0.0>
│ │ └── Core<https://github.com/vapor/core.git@3.1.6>
│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ ├── TemplateKit<https://github.com/vapor/template-kit.git@1.0.1>
│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>
│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ │ └── Service<https://github.com/vapor/service.git@1.0.0>
│ │ └── Core<https://github.com/vapor/core.git@3.1.6>
│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ ├── URLEncodedForm<https://github.com/vapor/url-encoded-form.git@1.0.2>
│ │ └── Core<https://github.com/vapor/core.git@3.1.6>
│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ ├── Validation<https://github.com/vapor/validation.git@2.0.0>
│ │ └── Core<https://github.com/vapor/core.git@3.1.6>
│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ └── WebSocket<https://github.com/vapor/websocket.git@1.0.0>
│ ├── Core<https://github.com/vapor/core.git@3.1.6>
│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ ├── HTTP<https://github.com/vapor/http.git@3.0.4>
│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>
│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ │ ├── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>



Vapor Boilerplate Project

[ 343 ]

│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ │ └── swift-nio-ssl<https://github.com/apple/swift-nio-ssl.git@1.1.0>
│ │ ├── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ │ └── swift-nio-ssl-support<https://github.com/apple/swift-nio-ssl-support.git@1.0.0>
│ ├── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ └── swift-nio-ssl<https://github.com/apple/swift-nio-ssl.git@1.1.0>
│ ├── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ └── swift-nio-ssl-support<https://github.com/apple/swift-nio-ssl-support.git@1.0.0>
└── FluentSQLite<https://github.com/vapor/fluent-sqlite.git@3.0.0-rc.2.2>
├── Core<https://github.com/vapor/core.git@3.1.6>
│ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
├── Fluent<https://github.com/vapor/fluent.git@3.0.0-rc.2.4.1>
│ ├── Core<https://github.com/vapor/core.git@3.1.6>
│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ ├── Console<https://github.com/vapor/console.git@3.0.2>
│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>
│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ │ └── Service<https://github.com/vapor/service.git@1.0.0>
│ │ └── Core<https://github.com/vapor/core.git@3.1.6>
│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ ├── DatabaseKit<https://github.com/vapor/database-kit.git@1.0.1>
│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>
│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ │ └── Service<https://github.com/vapor/service.git@1.0.0>
│ │ └── Core<https://github.com/vapor/core.git@3.1.6>
│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ ├── Service<https://github.com/vapor/service.git@1.0.0>
│ │ └── Core<https://github.com/vapor/core.git@3.1.6>
│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ └── SQL<https://github.com/vapor/sql.git@1.0.0>
├── Service<https://github.com/vapor/service.git@1.0.0>
│ └── Core<https://github.com/vapor/core.git@3.1.6>



Vapor Boilerplate Project

[ 344 ]

│ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
└── SQLite<https://github.com/vapor/sqlite.git@3.0.0-rc.2.3>
├── Core<https://github.com/vapor/core.git@3.1.6>
│ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
├── DatabaseKit<https://github.com/vapor/database-kit.git@1.0.1>
│ ├── Core<https://github.com/vapor/core.git@3.1.6>
│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
│ └── Service<https://github.com/vapor/service.git@1.0.0>
│ └── Core<https://github.com/vapor/core.git@3.1.6>
│ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>
│ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>
└── SQL<https://github.com/vapor/sql.git@1.0.0>
You can see that Vapor heavily depends on Swift NIO framework by Apple for
asynchronous and non-blocking I/O processing.

Build targets
In the default template, Vapor creates three build targets for you. Each target declares
which modules it depends on. For example, the App target depends on Fluent SQLite and
Vapor. One target can also depend on another target. For example, the Run target depends
on the App target.

Vapor separates the App module from the helloWorld executable module. By doing so,
the App module can be included in the AppTest module for testing.

The Swift package describe command lists the three modules in the boilerplate:

# List of modules in a Vapor boilerplate project
Name: helloWorld
Path: /Users/fyeung1/Downloads/Packt/ch3/vapor/helloWorld
Modules:
    Name: App
    C99name: App
    Type: library
    Module type: SwiftTarget
    Path: /Users/Packt/ch3/vapor/helloWorld/Sources/App
    Sources: Controllers/TodoController.swift, Models/Todo.swift,
app.swift, boot.swift, configure.swift, routes.swift
    Name: AppTests
    C99name: AppTests



Vapor Boilerplate Project

[ 345 ]

    Type: test
    Module type: SwiftTarget
    Path: /Users/Packt/ch3/vapor/helloWorld/Tests/AppTests
    Sources: AppTests.swift
    Name: Run
    C99name: Run
    Type: executable
    Module type: SwiftTarget
    Path: /Users/Packt/ch3/vapor/helloWorld/Sources/Run
    Sources: main.swift

Starting with an entry point
main.swift is always contained in an executable target and cannot be imported by other
modules:

// File: /Sources/Run/main.swift
import App // [1]

try app(.detect()).run() // [2]

The preceding code does two things:

The main.swift file imports the App module1.
It gets an app instance from the app() constructor and calls the run() function2.
of app to launch the server

Vapor uses an Application instance, app, in every project to run a server and create other
services. The instance is obtained from the app() function implemented in app.swift.
Vapor avoids statically accessing the Application instance using this approach. It has no
need to implement any locking mechanism for thread-safety that is required for static
access to variables.

Instantiating an application object
As mentioned earlier, the app object used in main.swift is actually created in the
constructor function declared in app.swift:

// File: /Sources/App/app.swift
import Vapor

/// Creates an instance of Application. This is called from main.swift in



Vapor Boilerplate Project

[ 346 ]

the run target.
public func app(_ env: Environment) throws -> Application { // [1]
var config = Config.default() // [2]
var env = env
var services = Services.default() // [3]
try configure(&config, &env, &services) // [4]
let app = try Application(config: config, environment: env, services:
services) // [5]
try boot(app) // [6]
return app
}

The preceding code sets up the sequence of calling several functions:

The app() constructor takes in the environment as a passing-in parameter1.
The config variable is assigned to the default configuration2.
The services variable is assigned to the default services3.
The configure() function is called before an Application instance is created4.
A new Application instance is created and assigned to app5.
The boot() function is called after an Application instance is created6.

The app()->Application function instantiates an Application object with passing in
parameters of default configuration, run environment, and default services. The
configure() function will be called before the instantiation of Application, and the
boot() function will be called after that.

Configuring before instantiating application
The configure() function is declared in configure.swift. Services are set up in
configure() before your application initializes:

// File: /Sources/App/configure.swift
import FluentSQLite
import Vapor

/// Called before your application initializes.
public func configure(_ config: inout Config, _ env: inout Environment, _
services: inout Services) throws {
/// Register providers first
try services.register(FluentSQLiteProvider()) // [1]

/// Register routes to the router
let router = EngineRouter.default()



Vapor Boilerplate Project

[ 347 ]

try routes(router)
services.register(router, as: Router.self) // [2]

/// Register middleware
var middlewares = MiddlewareConfig() // Create _empty_ middleware config
/// middlewares.use(FileMiddleware.self) // Serves files from `Public/`
directory
middlewares.use(ErrorMiddleware.self) // Catches errors and converts to
HTTP response
services.register(middlewares) // [3]

// Configure a SQLite database
let sqlite = try SQLiteDatabase(storage: .memory)

/// Register the configured SQLite database to the database config.
var databases = DatabasesConfig()
databases.add(database: sqlite, as: .sqlite)
services.register(databases) // [4]

/// Configure migrations
var migrations = MigrationConfig()
migrations.add(model: Todo.self, database: .sqlite)
services.register(migrations) // [5]

}

A number of services are registered, in the following order:

The Fluent SQLite provider is registered1.
Routes are registered to the router engine2.
Error middleware is registered3.
The SQLite database is registered4.
Migration is configured and registered5.

Fluent is a Swift Object Relational Mapping (ORM) abstraction layer for building database
integration. Vapor's Fluent framework works like a facade that hides away the complexities
of database and presents a uniform and consistent front for working with different
databases. A Fluent SQLite provider is registered in the application by default.

Each route matches a client request to an endpoint in the server. A web service endpoint is
an entity to which web services requests can be addressed. In Vapor, an endpoint is often
implemented as a Controller based on the MVC architecture. The routes supported by your
application are declared in the routes.swift file. In the preceding code, a new service is
registered with Vapor's router engine and the routes.



Vapor Boilerplate Project

[ 348 ]

Middleware is application logic that modifies requests and responses as they pass between
the client and your server. The implementation in configure() creates an error
middleware that catches errors and converts them to HTTP response.

After the Fluent SQLite provider is registered, the SQLite database itself is created and
configured. The database is then registered as one of the database services that your
application supports. Note that Vapor allows you to support more than one type of
database in a server.

Migration makes it easy for you to make changes to your database's structure. You use
Vapor's migration to prepare a database schema for your models and make queries to the
database. You can see how migration works with both your model,  Todo, and your
database provider, SQLite, in the preceding code.

Adding initialization code after application
instantiation
The boot() function in boot.swift is called after the application is created and
initialized. You can conveniently add your own initialization code to this function.

For any services that need to be set up before the application is created, you need to put
their initialization code in the configure() function instead:

// File: /Sources/App/boot.swift
import Vapor

/// Called after your application has initialized.
public func boot(_ app: Application) throws {
// your code here
}

At this moment, the boot() function doesn't do too much—it simply provides a
placeholder for you to add initialization code later.



Vapor Boilerplate Project

[ 349 ]

Registering the application's routes
The routes used in configure() to register routing service are declared in
the routes() function in routes.swift. You're expected to put all of your routes in this
centralized place:

// File: /Sources/App/routes.swift
import Vapor

/// Register your application's routes here.
public func routes(_ router:
// Basic "Hello, world!" example
router.get("hello") { req in // [1]
return "Hello, world!"
}

// Example of configuring a controller
let todoController = TodoController() // [2]
router.get("todos", use: todoController.index) // [3]
router.post("todos", use: todoController.create) // [4]
router.delete("todos", Todo.parameter, use: todoController.delete) // [5]
}

The preceding sample code shows different ways of handling routes:

A basic endpoint is provided1.
TodoController is instantiated2.
The controller's index() function is used as an endpoint3.
The controller's create() function is used as an endpoint4.
The controller's delete() function is used as an endpoint5.

The basic endpoint is simply a closure that prints out "Hello, world!" You can add more
endpoints to the routes.swift file or you can route some requests to the controller.

A controller is recommended if you want to group several related endpoints together or
have other functions to handle more complicated endpoints. The TodoController class is
one such example. After an instance of TodoController is created, the HTTP GET, POST,
and DELETE requests are routed to the TodoController instance's corresponding
functions.



Vapor Boilerplate Project

[ 350 ]

Implementing endpoint logic in controllers
The TodoController class introduced previously is declared in TodoController.swift:

// File: /Sources/App/Controllers/TodoController.swift
import Vapor

/// Controlers basic CRUD operations on `Todo`s.
final class TodoController { // [1]
/// Returns a list of all `Todo`s.
func index(_ req: Request) throws -> Future<[Todo]> { // [2]
return Todo.query(on: req).all()
}

/// Saves a decoded `Todo` to the database.
func create(_ req: Request) throws -> Future<Todo> {
return try req.content.decode(Todo.self).flatMap { todo in // [3]
return todo.save(on: req)
}
}

/// Deletes a parameterized `Todo`.
func delete(_ req: Request) throws -> Future<HTTPStatus> {
return try req.parameters.next(Todo.self).flatMap { todo in // [4]
return todo.delete(on: req)
}.transform(to: .ok) // [5]
}
}

Some interesting techniques are noted in the preceding implementation:

The final TodoController class is defined1.
The index(_:) function returns a Future2.
The content of the request is decoded and applied with flatMap(_:)3.
The parameter of the request is applied with flatMap(_:)4.
If the delete operation is successful, use transform(to:) to return the OK5.
status

The final modifier before the class keyword prohibits any subclasses of TodoController.
Any attempt to subclass TodoController will cause a compile-time error.



Vapor Boilerplate Project

[ 351 ]

The index(_:) function returns the Future type. Futures and Promises are the computing
concepts that decouple a value (a Future) from how it was computed (a Promise), so that
the computation can be done in parallel. Vapor uses Future to present a read-only
placeholder view of a variable. You'll revisit this concept when you are introduced to
asynchronous processing.

flatMap(_:) is a useful method in the Swift library. When working with arrays of
optional types, flatMap(_:) flattens the arrays and converts any optional types to non-
optionals. All the nil values resulted from unwrapping optionals will be removed by
flatMap(_:). It is very convenient to use flatMap(_:) to parse the content of requests in
endpoints. You're going to see the usage of flatMap(_:) a lot when working with Vapor
applications.

Instead of returning the results of a Future, sometimes you simply want to return a success
status code. In the preceding implementation, the transform(to:) function is chained to
flatMap(_:) to return the .ok status.

Using a data model
The data model used in the SQLite database is implemented in /Models/Todo.swift:

// File: /Sources/App/Models/Todo.swift
import FluentSQLite
import Vapor

/// A single entry of a Todo list.
final class Todo: SQLiteModel { // [1]
/// The unique identifier for this `Todo`.
var id: Int? // [2]

/// A title describing what this `Todo` entails.
var title: String // [3]

/// Creates a new `Todo`.
init(id: Int? = nil, title: String) { // [4]
self.id = id
self.title = title
}
}

/// Allows `Todo` to be used as a dynamic migration.
extension Todo: Migration { } // [5]



Vapor Boilerplate Project

[ 352 ]

/// Allows `Todo` to be encoded to and decoded from HTTP messages.
extension Todo: Content { } // [6]

/// Allows `Todo` to be used as a dynamic parameter in route definitions.
extension Todo: Parameter { } // [7]

The data model is implemented as follows:

The final ToDo class is subclassing from the SQLiteModel class1.
The id variable is declared as the unique identifier for this model2.
The title variable is used to describe what Todo entails3.
An initializer is defined4.
The Todo class is extended as a dynamic migration5.
The Todo class is extended as Content6.
The Todo class is extended as a dynamic parameter7.

Models represent tables in the SQLite database. You'll use model as the primary object of
interacting with your data. By conforming to SQLiteModel, it requires Todo to supply an
optional variable, id, which is of the Int type. If you do not supply an id for the title,
you'll get an id assigned after saving the data to the database.

The Todo model also conforms to Migration, Content, and Parameter.

Conforming to Migration allows Fluent to use Codable when creating the database table
scheme, and configure() to set up and register the Migration service before the
application is created.

The conformance of Content allows the Todo model to be encoded to and decoded from
JSON in HTTP messages using Codable. This happens automatically so you never have to
parse or save your model in JSON.

Conforming to Parameter allows you to handle segments of the URL path easily when
working with routes. You can take advantage of Vapor's type safe and intuitive method for
accessing route parameters using Swift's closures.



Kitura Boilerplate Project
Let's now get a clear understanding the boilerplate code in Kitura. Here is a recap of how
you can create the helloWorld boilerplate project using Kitura's basic template:

$ mkdir helloWorld
$ cd helloWorld
$ kitura init
$ open ./helloWorld.xcodeproj

Then you can use command + R to run your project in Xcode and direct your web browser to
http://localhost:8080.

The following sections will provide you with a better idea regarding the same:

Reviewing Kitura-generated files
Understanding generated sourcecode in Kitura

Reviewing Kitura-generated files
After using kitura init to create a Kitura boilerplate helloWorld project, use the ls -
a command in the helloWorld project directory to list all files and subdirectories:

# List all files and directories, including the hidden ones
ls -a

The output lists the files and directories in this project, as follows:

.                 .dockerignore     Dockerfile             README.md          iterative-dev.sh
 ..                .gitignore            Dockerfile-tools    Sources                     manifest.yml
 .bluemix   .swift-version     Jenkinsfile             Tests                           spec.json
 .build        .swiftservergenerator-project          LICENSE                 chart
 .cfignore   .yo-rc.json          Package.swift         cli-config.yml



Kitura Boilerplate Project

[ 354 ]

There are a number of hidden files and directories in the project. They are hidden because
Kitura doesn't expect you to modify them very often:

File/directory Usage
.gitignore List of files to be excluded from git versioning control
.swift-version The Swift version for your project
.swiftservergenerator-project File used by Swift Server Generator
.yo-rc.json JSON file for Yeoman generator configuration
.bluemix/ Directory for IBM Cloud pipelines and toolchains
.cfignore List of files to be excluded from cloud deployment

Reviewing a Kitura project's file structure
You can use the Tree command to display the file structure of your project. If you haven't
installed Tree on your system, you can refer to the previous section for the installation
instruction.

See the following for the list of files displayed by the Tree command. The list is expected to
grow longer after kitura init fetches dependencies and builds out everything:

.
 ├── Dockerfile
 ├── Dockerfile-tools
 ├── Jenkinsfile
 ├── LICENSE
 ├── Package.swift
 ├── README.md
 ├── Sources
 │   ├── Application
 │   │   ├── Application.swift
 │   │   ├── InitializationError.swift
 │   │   ├── Metrics.swift
 │   │   └── Routes
 │   │   └── HealthRoutes.swift
 │   └── kitura
 │   └── main.swift
 ├── Tests
 │   ├── ApplicationTests
 │   │   └── RouteTests.swift
 │   └── LinuxMain.swift
 ├── chart
 │   └── kitura
 │   ├── Chart.yaml
 │   ├── bindings.yaml



Kitura Boilerplate Project

[ 355 ]

 │   ├── templates
 │   │   ├── basedeployment.yaml
 │   │   ├── deployment.yaml
 │   │   ├── hpa.yaml
 │   │   ├── istio.yaml
 │   │   └── service.yaml
 │   └── values.yaml
 ├── cli-config.yml
 ├── iterative-dev.sh
 ├── manifest.yml
 └── spec.json
9 directories, 25 files

Don't worry, you don't have to know all of these files before you can start working on a
Kitura project. You don't need to modify most of them in a typical project. At this moment,
you just need to get familiar with the main function of some of the files.

The following table gives you an overview of the high-level file structure:

File/directory Usage
Dockerfile Docker container image spec for running the app
Dockerfile-tools Docker container image spec for building the app
Jenkinsfile Definition of Jenkins Pipeline for continuous integration
LICENSE MIT license for the generated project
Package.swift Configuration for SPM (Swift Package Manager)
README.md Readme file in Markdown format
Sources Directory for source files
Tests Directory for all tests
chart Directory used by the Helm package manager for Kubernetes
cli-config.yml Configuration for IBM Cloud Dev Tool CLI
iterative-dev.sh Script for relaunching server after updates in Swift files
manifest.yml Configuration for CloudFoundry deployment
spec.json Generator spec file for the project

Most of these are configuration files related to the technologies involved in the typical
workflow of a Kitura project, such as Swift Package Manager (Package.swift) for
dependency management, Jenkins (Jenkinsfile) for continuous integration, Docker
(Dockerfile, Dockerfile-tools) for building environments in the container,
and CloudFoundry (manifest.yml) for deploying your project to the cloud.



Kitura Boilerplate Project

[ 356 ]

Understanding the file structure in a Kitura
project
At the start of a development project, your attention is most likely on the skeleton source
code that you will leverage to build up to a full application. As shown in the following
table, those files with the skeleton source code are in the two subdirectories under Sources:
/Application and /helloWorld:

File/directory Usage
/Application Module for application logic
/Application/Application.swift Class for application logic
/Application/InitializationError.swift Structure for initialization error handling

/Application/Metrics.swift Structure for gathering application and system
metrics

/Application/Routes/HealthRoutes.swift Route function for monitoring server health
/helloWorld Module for your application's executable
/helloWorld/main.swift Code for the entry point of your application

The App class in Application.swift contains application logic to allow you to receive the
flow of control from the framework so you can make modifications on several occasions:
during initialization, after the application being initialized, and when the application is
running.

The struct in InitializationError.swift allows you to add additional error handlers
using Swift's extension mechanism. You'll be adding error handlers as you write new
functions.

Kitura uses the SwiftMetrics library to gather monitoring data. The initialization function
in Metrics.swift routes the monitoring modules to the endpoints in your project. The
environment, CPU, memory, latency, and HTTP metrics information data is collected
programmatically in Kitura.

Right now, there is one route function implemented in HealthRoutes.swift in
/Application/Routes. As you add more functions to handle requests from client, you
can expect to add more routes corresponding to each handler in the same directory.

You can also see how an app instance is set up in a do-catch statement in
/helloWorld/main.swift. The file serves as an entry point for your application. In the
same code, the logger framework that is used to post error messages is also initialized and
integrated in the do-catch statement.

https://github.com/RuntimeTools/SwiftMetrics


Kitura Boilerplate Project

[ 357 ]

Understanding generated sourcecode in
Kitura
A detailed review of each generated source code file in a Kitura boilerplate project is given
in the next section.

Configuring using Swift Package Manager (SPM)
The Package.swift manifest file lists the application name, dependencies of other
packages, and build target for the project generated using the kitura init command:

// File: Package.swift
// swift-tools-version:4.0
import PackageDescription

let package = Package(
name: "helloWorld", // [1]
dependencies: [ // [2]
.package(url: "https://github.com/IBM-Swift/Kitura.git",
.upToNextMinor(from: "2.3.0")),
.package(url: "https://github.com/IBM-Swift/HeliumLogger.git",
.upToNextMinor(from: "1.7.1")),
.package(url: "https://github.com/IBM-Swift/CloudEnvironment.git", from:
"7.1.0"),
.package(url: "https://github.com/RuntimeTools/SwiftMetrics.git", from:
"2.0.0"),
.package(url: "https://github.com/IBM-Swift/Health.git", from: "1.0.0"),
],
targets: [ // [3]
.target(name: "helloWorld", dependencies: [ .target(name: "Application"),
"Kitura" , "HeliumLogger"]),
.target(name: "Application", dependencies: [ "Kitura",
"CloudEnvironment","SwiftMetrics","Health", ]),

.testTarget(name: "ApplicationTests" , dependencies: [.target(name:
"Application"), "Kitura","HeliumLogger" ])
]
)



Kitura Boilerplate Project

[ 358 ]

The project's package is configured as follows:

helloWorld is used as the application name1.
The dependencies array includes Kitura, Helium Logger, Cloud Environment,2.
Swift Metrics, and Health packages
The build targets are helloWorld, Application, and ApplicationTests3.

The basic Kitura boilerplate project already includes many useful packages, such as
logging, cloud environment tools, server metrics monitoring, and infrastructure health-
checking services.

Use the swift package show-dependencies command to list the following required packages
in the Kitura project:

# List of package dependencies in a Kitura boilerplate project:
.
├── Kitura<https://github.com/IBM-Swift/Kitura.git@2.3.2>
│ ├── Kitura-net<https://github.com/IBM-Swift/Kitura-net.git@2.1.0>
│ │ ├── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
│ │ ├── Socket<https://github.com/IBM-Swift/BlueSocket.git@1.0.6>
│ │ ├── CCurl<https://github.com/IBM-Swift/CCurl.git@1.0.0>
│ │ └── SSLService<https://github.com/IBM-
Swift/BlueSSLService.git@1.0.6>
│ │ └── Socket<https://github.com/IBM-Swift/BlueSocket.git@1.0.6>
│ ├── Kitura-TemplateEngine<https://github.com/IBM-Swift/Kitura-
TemplateEngine.git@1.7.4>
│ └── KituraContracts<https://github.com/IBM-
Swift/KituraContracts.git@0.0.24>
│ └── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
├── HeliumLogger<https://github.com/IBM-Swift/HeliumLogger.git@1.7.1>
│ └── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
├── CloudEnvironment<https://github.com/IBM-
Swift/CloudEnvironment.git@7.1.0>
│ └── CloudFoundryEnv<https://github.com/IBM-Swift/Swift-cfenv.git@6.0.2>
│ └── Configuration<https://github.com/IBM-Swift/Configuration.git@3.0.1>
│ └── FileKit<https://github.com/IBM-Swift/FileKit.git@0.0.1>
│ └── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
├── SwiftMetrics<https://github.com/RuntimeTools/SwiftMetrics.git@2.3.0>
│ ├── Kitura<https://github.com/IBM-Swift/Kitura.git@2.3.2>
│ │ ├── Kitura-net<https://github.com/IBM-Swift/Kitura-net.git@2.1.0>
│ │ │ ├── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
│ │ │ ├── Socket<https://github.com/IBM-Swift/BlueSocket.git@1.0.6>
│ │ │ ├── CCurl<https://github.com/IBM-Swift/CCurl.git@1.0.0>
│ │ │ └── SSLService<https://github.com/IBM-
Swift/BlueSSLService.git@1.0.6>
│ │ │ └── Socket<https://github.com/IBM-Swift/BlueSocket.git@1.0.6>



Kitura Boilerplate Project

[ 359 ]

│ │ ├── Kitura-TemplateEngine<https://github.com/IBM-Swift/Kitura-
TemplateEngine.git@1.7.4>
│ │ └── KituraContracts<https://github.com/IBM-
Swift/KituraContracts.git@0.0.24>
│ │ └── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
│ ├── Kitura-WebSocket<https://github.com/IBM-Swift/Kitura-
WebSocket.git@2.0.0>
│ │ ├── Kitura-net<https://github.com/IBM-Swift/Kitura-net.git@2.1.0>
│ │ │ ├── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
│ │ │ ├── Socket<https://github.com/IBM-Swift/BlueSocket.git@1.0.6>
│ │ │ ├── CCurl<https://github.com/IBM-Swift/CCurl.git@1.0.0>
│ │ │ └── SSLService<https://github.com/IBM-
Swift/BlueSSLService.git@1.0.6>
│ │ │ └── Socket<https://github.com/IBM-Swift/BlueSocket.git@1.0.6>
│ │ └── Cryptor<https://github.com/IBM-Swift/BlueCryptor.git@1.0.2>
│ │ └── CommonCrypto<https://github.com/IBM-
Swift/CommonCrypto.git@1.0.0>
│ ├── SwiftyRequest<https://github.com/IBM-Swift/SwiftyRequest.git@1.1.2>
│ │ ├── CircuitBreaker<https://github.com/IBM-
Swift/CircuitBreaker.git@5.0.1>
│ │ │ └── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
│ │ └── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
│ ├── CloudFoundryEnv<https://github.com/IBM-Swift/Swift-cfenv.git@6.0.2>
│ │ └── Configuration<https://github.com/IBM-
Swift/Configuration.git@3.0.1>
│ │ └── FileKit<https://github.com/IBM-Swift/FileKit.git@0.0.1>
│ │ └── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
│ ├── SwiftyJSON<https://github.com/IBM-Swift/SwiftyJSON.git@17.0.1>
│ └── omr-agentcore<https://github.com/RuntimeTools/omr-agentcore@3.2.4-
swift4>
└── Health<https://github.com/IBM-Swift/Health.git@1.0.1>
└── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>

Similar to Vapor's Package.swift for a basic web template, the basic Kitura template also
uses three build targets: helloWorld, ApplicationTests, and Application. Use the
Swift package describe command to list these three modules in the helloWorld boilerplate
application:

# List of modules in a Kitura boilerplate project
Name: helloWorld
Path: /Users/fyeung1/Downloads/Packt/ch3/kitura/helloWorld
Modules:

Name: helloWorld
    C99name: helloWorld
    Type: executable
    Module type: SwiftTarget
    Path:



Kitura Boilerplate Project

[ 360 ]

/Users/fyeung1/Downloads/Packt/ch3/kitura/helloWorld/Sources/helloWorld
    Sources: main.swift

Name: ApplicationTests
    C99name: ApplicationTests
    Type: test
    Module type: SwiftTarget
    Path:
/Users/fyeung1/Downloads/Packt/ch3/kitura/helloWorld/Tests/ApplicationTests
    Sources: RouteTests.swift

Name: Application
     C99name: Application
     Type: library
     Module type: SwiftTarget
     Path:
/Users/fyeung1/Downloads/Packt/ch3/kitura/helloWorld/Sources/Application
     Sources: Application.swift, InitializationError.swift, Metrics.swift,
Routes/HealthRoutes.swift

The Application target is shared by the helloWorld executable target and the
ApplicationTests executable target.

Starting with the entry point
The main.swift file contains the entry point for helloWorld executable target:

// File: /helloWorld/main.swift
import Foundation
import Kitura
import LoggerAPI
import HeliumLogger
import Application

do {

    HeliumLogger.use(LoggerMessageType.info) // [1]

    let app = try App() // [2]
    try app.run() // [3]

} catch let error {
    Log.error(error.localizedDescription) // [4]
}



Kitura Boilerplate Project

[ 361 ]

The do-catch loop in main.swift performs several operations:

Initializes Helium logger1.
Creates an application instance2.
Invokes the application instance's run() function3.
Catches any runtime errors4.

Kitura's runtime executes the App instance and its run() function to boot the server. Any
errors encountered by the server will be caught in the do-catch loop and localized error
descriptions will be logged.

Declaring application classes
App is the top class for the App module, and it handles the main life cycle functions for the
application:

// File: /Application/Application.swift
import Foundation
import Kitura
import LoggerAPI
import Configuration
import CloudEnvironment
import KituraContracts
import Health

public let projectPath = ConfigurationManager.BasePath.project.path
public let health = Health()

public class App {
    let router = Router()
    let cloudEnv = CloudEnv()

    public init() throws { // [1]
        // Run the metrics initializer
        initializeMetrics(router: router)
    }

    func postInit() throws {
        // Endpoints
        initializeHealthRoutes(app: self)
    }

    public func run() throws {
        try postInit() // [2]



Kitura Boilerplate Project

[ 362 ]

        Kitura.addHTTPServer(onPort: cloudEnv.port, with: router) // [3]
        Kitura.run() // [4]
    }
}

The App class runs a couple of initialization and configuration steps before booting up the
Kitura server:

The class's initializer sets up the metrics monitoring service for this project1.
After an App instance is created, post-initialization will be called2.
An HTTP server with a specified cloud environment and router will be created3.
The HTTP server will be booted up4.

The init() initializer function is a good place for you to add any initialization code
before App is created. In this project, the metrics initialization call,
initializeMetrics(router:), is added to init(). This makes sure that the metrics
monitoring service is properly initialized before App is created.

Any initialization code that should take place after the instantiation of App should go to the
postInit() function. postInit() is called when the App instance's run() is invoked but
before the Kitura server is started. In the preceding code, the initialization of the health
route, initializeHealthRoutes(app:), is added to postInit().

After post-instantiation initialization, an HTTP server with a specified port and router will
be added to Kitura's context and then the server will be running. The IP port for a web
server is usually 8080. However, if this port is occupied by another network service on your
development machine, you need to assign another port number to it.



Kitura Boilerplate Project

[ 363 ]

Handling errors
Kitura provides you with a struct to handle initialization errors in
InitializationError.swift:

// File: /Application/InitializationError.swift
import Foundation

public struct InitializationError: Error { // [1]
    let message: String
    init(_ msg: String) {
        message = msg
    }
}

extension InitializationError: LocalizedError { // [2]
    public var errorDescription: String? {
        return message
    }
}

The following features are implemented:

The InitializationError() struct is inherited from the Error() struct1.
The InitializationError() struct is extended from LocalizedError2.

The InitializationError() struct does no more than offer you a chance to modify the
error message. You can, for example, replace an error message with a localized version of
the error message.

Setting up monitoring metrics
Kitura offers very good metrics-monitoring and diagnostic services. These services are
created and initialized in the initializeMetrics(router:) function in
Metrics.swift:

// File: /Application/Metrics.swift
import Kitura
import SwiftMetrics
import SwiftMetricsDash
import SwiftMetricsPrometheus
import LoggerAPI

var swiftMetrics: SwiftMetrics?



Kitura Boilerplate Project

[ 364 ]

var swiftMetricsDash: SwiftMetricsDash?
var swiftMetricsPrometheus: SwiftMetricsPrometheus?

func initializeMetrics(router: Router) {
    do {
        let metrics = try SwiftMetrics() // [1]
        let dashboard = try SwiftMetricsDash(swiftMetricsInstance: metrics,
endpoint: router) // [2]
        let prometheus = try SwiftMetricsPrometheus(swiftMetricsInstance:
metrics, endpoint: router) // [3]

        swiftMetrics = metrics
        swiftMetricsDash = dashboard
        swiftMetricsPrometheus = prometheus
       Log.info("Initialized metrics.")
    } catch {
        Log.warning("Failed to initialize metrics: \(error)")
    }
}

initializeMetrics(router:) creates the following three metrics frameworks:

The variable metrics is assigned to an instance of the SwiftMetrics()1.
framework
The SwiftMetricsDash() object is created with metrics and a router as2.
parameters
The SwiftMetricsPrometheus() object is also created with metrics and a3.
router as parameters

SwiftMetrics is an open source runtime tool maintained by the open source
community. It instruments Swift runtime to provide your application with the runtime's
performance. An extensive amount of data is collected in a Kitura project using
SwiftMetrics: system and runtime environment information, CPU and memory usages,
dispatch queue latency, and HTTP metric information. The data collected is
programmatically fetched by other services, such as SwiftMetricsDash and Prometheus.

SwiftMetricsDash is a tool used to present the collected data in SwiftMetrics.
SwiftMetricsDash will start its own Kitura server and serve in a dashboard web page.
You can try it yourself by directing your web browser
to http://localhost:8080/swiftmetrics-dash/ when your helloWorld app server
is running:

https://github.com/RuntimeTools/SwiftMetrics


Kitura Boilerplate Project

[ 365 ]

Prometheus is a popular open source monitoring and alerting solution(https:/ /
prometheus.io/docs/ introduction/ overview/ ) that is integrated into Kitura to monitor
application clusters. In
SwiftMetricsPrometheus(swiftMetricsInstance:,endpoint:), SwiftMetrics is
configured to export your application's performance data into Prometheus, and a
Prometheus metrics endpoint is added the router. The configuration for exporting data
from SwiftMetrics to Prometheus is specified in prometheus.yml, which was
automatically generated using the kitura init command.

Setting up health check endpoints
All the implementations of endpoints are stored in the /Routes directory. In Kitura's basic
template, a health check endpoint (/Routes/HealthRoutes.swift) is created as an
example:

// File: /Routes/HealthRoutes.swift
import LoggerAPI
import Health
import KituraContracts

func initializeHealthRoutes(app: App) {

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/


Kitura Boilerplate Project

[ 366 ]

    app.router.get("/health") { (respondWith: (Status?, RequestError?) ->
Void) -> Void in
         if health.status.state == .UP {
             respondWith(health.status, nil) // [1]
         } else {
             respondWith(nil, RequestError(.serviceUnavailable, body:
health.status)) // [2]
         }
    }
}

The Health endpoint exposes the health of the application. It responds to the health check
request with a closure that returns a health.status structure:

If the health status is "UP", it responds with health.status1.
If the health status is NOT "UP", it responds with an error as well as2.
*health.status

Health is an application health library in Swift that checks an application's overall
health status. The Kitura basic template provides you with a health endpoint to perform a
health check on your helloWorld app server when a client sends an HTTP GET /health
request. Health then responds with the Status struct that conforms to the Codable protocol.
The content of the status could be a dictionary. The value for the "status" dictionary key is
either "UP" or "DOWN", indicating whether your server is running. This is useful for cloud
environments, such as Kubernetes, in monitoring and managing your application instance.

https://github.com/IBM-Swift/Health


Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Full-Stack Development with Swift
Ankur Patel

ISBN: 9781788625241

Get accustomed to server-side programming as well as the Vapor framework
Learn how to build a RESTful API
Make network requests from your app and handle error states when a network
request fails
Deploy your app to Heroku using the CLI command
Write a test for the Vapor backend
Create a tvOS version of your shopping list app and explore code-sharing with
an iOS platform
Add registration and authentication so that users can have their own shopping
lists

https://www.packtpub.com/web-development/hands-full-stack-development-swift


Other Books You May Enjoy

[ 368 ]

Learn Swift by Building Applications
Emil Atanasov

ISBN: 9781786463920

Become a pro at iOS development by creating simple-to-complex iOS mobile
applications
Master Playgrounds, a unique and intuitive approach to teaching Xcode
Tackle the basics, including variables, if clauses, functions, loops and structures,
classes, and inheritance
Model real-world objects in Swift and have an in-depth understanding of the
data structures used, along with OOP concepts and protocols
Use CocoaPods, an open source Swift package manager to ease your everyday
developer requirements
Develop a wide range of apps, from a simple weather app to an Instagram-like
social app
Get ahead in the industry by learning how to use third-party libraries efficiently
in your apps

https://www.packtpub.com/application-development/learn-swift-building-applications


Other Books You May Enjoy

[ 369 ]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!



Index

A
accounts, for Vapor
   listing  202, 203
   managing  201
   new account, adding  203, 204
   removing  205
admin routes
   handlers, implementing  235
   item, creating  235, 236
   item, deleting  237
   item, retrieving by ID  236
   item, updating  236
Advanced Packaging Tool (APT) library  26
Amazon Web Services (AWS)  246, 248
API endpoints, for Kitura
   database, setting up  240
   implementing  238
   Kitura model, implementing  239
   project, creating for web service application  238
   route handlers, adding  240, 241
App Transport Security (ATS)
   about  287
   domain exceptions, adding  287, 288, 289, 290
   iOS app, executing  290
   Vapor Server app, testing  290
application binary interface (ABI)  10
assertion macros
   XCTAssertEqual()  58
   XCTAssertEqualObjects()  59
   XCTAssertFalse()  58
   XCTAssertGreaterThan()  59
   XCTAssertGreaterThanOrEqual()  59
   XCTAssertLessThan()  59
   XCTAssertLessThanOrEqual()  59
   XCTAssertNil()  58
   XCTAssertNotEqual()  59

   XCTAssertNotEqualObjects()  59
   XCTAssertNoThrows()  59
   XCTAssertNoThrowsSpecific()  59
   XCTAssertNotNil()  58
   XCTAssertThrows()  59
   XCTAssertThrowsSpecific()  59
   XCTAssertTrue()  58
asynchronous tests
   handling  69, 70
authentication API, for Vapor
   about  189
   accounts, managing  201
   database, seeding  205, 207
   Model, constructing  192, 193
   protected content, accessing  193
   web authentication, using  190, 191
authentication, for Kitura
   handling  207
   HTTP basic authentication, setting up  208
   Model, constructing  209, 210, 211
   TypeSafe HTTP Authentication, using  212, 213
Automatic Reference Counting (ARC)  9

B
Backends for Frontends (BFF) pattern  219
BCrypt library
   about  205
   reference  205
Benchmark tool
   reference  17
Bootstrap CDN service  130
Bootstrap components
   content, organizing into grids  133, 134, 135
   form controls, using  139, 140, 141
   glyphicons, reusing  141
   glyphicons, using  142, 144
   jumbotron, displaying with parallax animation 



[ 371 ]

135, 136, 137
   navigation bar, adding  137, 138
   using  133
Bootstrap framework
   about  129
   dependency, adding for JavaScript files  131
   reference  130
   setting up  130
   starter template, using  131, 132
   stylesheet, inserting  130
Bootstrap, for Kitura
   Stencil templates, enhancing  154
   using  153
Bootstrap, for Vapor application
   Leaf templates, enhancing  145
   using  144
build type, Vapor Cloud
   clean build type  253
   incremental build type  253
   update build type  253
business logic
   encapsulating, into microservice  222

C
CLI commands
   swift build  29
   swift package describe  29
   swift package init --type=executable  29
   swift package init --type=library  29
   swift package resolve  29
   swift package show-dependencies  29
   swift package xcode-generateproj  29
   swift run  29
Cloud application, Vapor Cloud
   cronjob, scheduling  255, 256
   custom domain, adding  255
   environment variables, working with  254
   live log output, obtaining  254
   managing  253
cloud deployment
   about  224
   containing microservice, with Docker  225, 226
   continuous deployment  226
cloud frontend
   API gateway  220, 221, 222

   backend, designing  219, 220
   designing, with pattern  218
code coverage
   checking  62
   report, generating  64, 65, 66
   turning on  62, 63
Command Line Tools Package
   reference  23
CommonMark  13
community support
   about  19
   Kitura  20
   Perfect  20
   Vapor  20
containerized application
   cluster, creating on IBM Cloud  324, 325, 326
   containers, deploying  316, 317
   deploying, to cluster  316
   deployment workflow  317, 319
   deployment, exposing  331
   Docker image, publishing to IBM Cloud Registry 

319

   exposing  332, 333
   launching  331, 332, 333
   orchestrations  316, 317
continuous deployment
   about  226
   sample workflow  226
continuous-integration (CI)  226
Create, Read, Update, and Delete (CRUD)

operations  83
Cronjobs  247
CRUD operations, iOS application
   EditEntry segue, creating  306
   existing entry, deleting  311, 312
   existing entry, editing  306
   finishing  305
   function, adding to delegate protocol  307, 308
   HTTP PUT request, creating  309
   user interface, configuring  309, 310
curl command
   used, for debugging in Terminal  78
custom routes, in Kitura project
   adding  91
   Codable data, modeling  91



[ 372 ]

   Codable routing, implementing  93, 95, 96
   controllers, using for logical operations  92, 93
   handling  96, 98
custom routes, in Vapor project
   adding  80
   controller, using for logical operations  83, 84
   data, modeling with content type  81, 82
   related routes, grouping  86
   route collection, using  84, 85
   route handlers, implementing  86
   testing  90, 91

D
debugging
   in server-side Swift project  73
   Logger API, using in Kitura project  74, 76
   Logging API, using in Vapor project  73, 74
   with curl command, in Terminal  78
   with HTTP traffic monitoring tool  76
   with Postman  77
delegate pattern
   using  299, 300, 301
Discord
   reference  20
Dispatch framework  12
Docker
   reference  259

E
endpoints
   handlers, implementing for admin routes  235
   handlers, implementing for public routes  235
   implementing  234
extensions
   using, for functions  71, 73

F
feature sets, for Swift
   authentication  18
   CLI tool  18
   cloud deployment  18
   database ORM  18
   logging framework  18
   monitoring and diagnostics  18
   networking I/O  18

   security framework  18
   Swift support  18
   templating engine  18
   test framework  18
   user session management  18
Font Awesome
   about  141
   reference  141
form controls
   using  139, 140, 141
foundation framework  12

G
glyphicons
   reusing  141, 142, 144
Grand Central Dispatch (GCD)  12

H
hello world app
   building  38
   creating, from default template  44, 46
   creating, from template  37
   creating, from Xcode  46, 47
   creating, with Kitura CLI  44
   creating, with Vapor CLI  36
   executing  38, 39
   executing, from Terminal  46
   testing, with web browser client  48
   Xcode project, converting on Mac  39
Homebrew
   installing  24
   reference  24
   Vapor Toolbox, installing  24
HTTP methods, RESTful API
   assigning  232
   journal entries, browsing  233
   journal entry, creating  233
   journal entry, deleting  234
   journal entry, editing  233
   journal entry, obtaining  233
HTTP traffic monitoring tool
   used, for debugging  76
Hypertext Transfer Protocol (HTTP)
   HTTP/2.0  218
   HTTPS  217



[ 373 ]

   reviewing  217

I
IBM Cloud Developer Tools
   installing  258, 259
   installing, on local system  257
   using  259, 260
IBM Cloud Registry
   Docker CLI, using  320, 321
   Docker image, deploying  322, 323, 324
   Docker image, publishing  319
   Docker image, tagging  321, 322
   logging into  319, 320
IBM Cloud
   about  246
   account, creating  256
   account, registering  256
   app, building  265
   app, deploying  267, 268, 269
   app, executing  266
   cluster configuration, downloading  328
   cluster, creating  324, 325, 326
   dashboard  257
   deployment, creating with Container Registry 

329, 330
   Kitura app, creating  261
   Kitura web service, deploying  256
   Kubernetes CLI, setting up  326, 327
   logging into  264
   reference  256
   Starter Kitura Web Application, generating  261,

263, 264
integration test  55
Internet Engineering Task Force (IETF)  217
iOS application
   CRUD operations, finishing  305
   developing, for server-side Swift application  270
   project, creating  272, 273
   TableViewController, creating  273, 274, 275,

276, 277, 278, 279

J
jQuery  131
jumbotron
   displaying, with parallax animation  135, 136,

137

K
Kitura Application Generator (KAG)
   about  32
   additional services, selecting  34, 35
   scaffolded application, selecting  33
   using  32
Kitura boilerplate
   source code, reviewing  49, 50
   tests, reviewing  67, 69
Kitura CLI
   exploring  29, 32
   hello world app, creating  44
   installing, on Mac  25
Kitura project
   templating, with Stencil  116
Kitura
   about  16, 20
   installing, on Mac  21
   installing, on Ubuntu  26, 28
   prerequisites  28
   routes, adding  50, 52, 53

L
Leaf templates, with Bootstrap
   enhancing  145
   entry.leaf  151, 153
   footer.leaf  147, 148
   header.leaf  145, 147
   main.leaf  148
   new.leaf  149, 151
Leaf templating engine
   collection, looping through  105
   conditions, checking  106
   configuring  101, 102
   context dictionary, using  105
   features, completing  110, 112, 113, 114, 115,

116

   functions, using  102, 103, 104
   journal entries, displaying  108, 109
   tags, using  104
   templates, adding  107, 108
   templates, embedding  106
   using, in Vapor  100



[ 374 ]

   variable, setting  104
   variables, using  104
Linux
   Swift Toolchain, installing  26
LLDB debugger  13
Logger API
   using, in Kitura project  74, 76
Logging API
   using, in Vapor project  73, 74
Low Level Virtual Machine (LLVM)
   about  9
   reference  11
Low Level Virtual Machine Intermediate

Representation (LLVM IR)  11

M
Mac
   Homebrew, installing  24
   Kitura CLI, installing  25
   Kitura, installing  21
   preparing, for server-side Swift development  22
   Vapor Toolbox, installing  24
   Vapor, installing  21
   Xcode Command Line Tools, installing  23
   Xcode IDE, installing  22, 23
   Xcode project, converting  39
microservice deployment
   advantages  225, 226
Microservice Framework
   design principles  315
microservice-oriented architecture  315
microservice
   about  220
   business logic, encapsulating  222
   designing, with key principles  224
   leveraging, in backend applications  314
   microservice-oriented architecture, implementing 

223, 224
myJournal iOS application
   entry, adding  290
   user interface, designing for new entry  291, 292,

293, 294, 295, 296, 298, 299

N
navigation bar
   adding  137, 138
Node Package Manager (npm)  28
Node.js  28

O
Object-Oriented Design (OOD)  222, 314
Open API
   reference  33
open source Swift
   about  10
   CommonMark  13
   dispatch framework  12
   foundation framework  12
   LLDB debugger  13
   reference  10
   standard library  11
   Swift compiler  11
   Swift Package Manager (SPM)  13
   XCTest testing framework  12

P
Perfect-Net
   reference  16
Perfect
   about  16, 20
   reference  16, 20
pgAdmin4  205, 210
Popper  131
Postman
   reference  77
   used, for debugging  77
protected content, for Vapor
   accessing  193
   authenticated state, using  198, 201
   logging out, of current session  197
   login credentials, checking  197
   login page, adding  195, 197
   protected routes, specifying  198
   public routes, adding  194, 195



[ 375 ]

R
read-eval-print-loop (REPL) tool  13
Representational State Transfer (REST)  228
Requests for Comments (RFC)  217
resource endpoints, RESTful API
   defining  231
   defining, for Sub-resources  232
   defining, for top-level resources  231, 232
responses
   implementing  234
RESTful API
   clients, serving  228, 229
   designing  230
   HTTP methods, assigning  232
   object models, identifying  230
   resource endpoints, defining  231
   server/client model, based on HTTP  229, 230
route collection
   using  84
route grouping  86
route handlers, in Vapor project
   entries, retrieving  87
   entry, creating with unique ID  87
   entry, deleting  89
   entry, retrieving  88
   entry, updating  89
   implementing  86
route handlers, Kitura
   adding  240, 241
   all items, deleting  245
   item, creating  242
   item, deleting  244
   item, retrieving by ID  243
   item, updating  243, 244
   items, retrieving  241
Route-Grouping technique  193
routes
   adding, in Kitura  50, 52, 53
   adding, in Vapor  42, 43, 44
runtime library exception
   about  11
   reference  11

S
scaffolded application
   Backend for Frontend (BFF) Preset  33
   Basic Preset  33
   Web Preset  33
scheme editor  12
Separation of Concerns  73
server-side development, with Swift
   about  13
   SwiftNIO  14
   tests, writing  55
service-oriented architecture (SOA)  315
Slack
   about  20
   reference  20
source code
   reviewing, in Vapor boilerplate  41, 42
standard library  11
Stencil templates, with Bootstrap
   enhancing  154
   entry.stencil  159, 160, 161
   footer.stencil  156, 157
   header.stencil  154, 156
   main.stencil  157
   new.stencil  158, 159
Stencil templating engine
   adding, to Kitura project  120, 121, 122
   built-in filters  118
   built-in tags  118
   code, developing  119
   configuring  119
   features, completing  124
   functions, using  117
   journal entries, displaying  122, 123
   journal entry, creating  124, 126
   journal entry, editing  126, 127
   journal entry, removing  128
   tags, using  117
   variables, using  117
Stencil
   used, for templating in Kitura project  116
Swagger UI  33
Swift compiler  11
Swift Intermediate Language (SIL)  11



[ 376 ]

Swift Package Manager (SPM)  13, 29
Swift server-side frameworks, selection factors
   about  17
   community support  19
   ecosystem  18
   feature sets  18
   performance  17
Swift server-side frameworks
   Kitura  16
   Perfect  16
   surveying  15
   Vapor  15
Swift Toolchain
   installing, on Linux  26
   reference  26
Swift
   about  9
   components  10, 11
   open source Swift  10, 11
   reference  10
SwiftNIO  14
SwiftNIO, channels
   DatagramChannel  15
   EmbeddedChannel  15
   ServerSocketChannel  15
   SocketChannel  15
SwiftyBeaver Logger
   reference  74

T
TableViewController
   content, adding  279
   data model, preparing  279
   label, adding to prototype cell  281, 282, 283,

284, 285
   route handlers, constructing for web services 

285, 286, 287
   table properties, configuring  280
tests
   assertion macros  58
   asynchronous tests, handling  69, 70
   code coverage, checking  62
   executable target, preparing  55
   extensions, using for functions  71, 73
   integration test  55

   Kitura boilerplate tests, reviewing  67, 69
   test cases, checking in Vapor boilerplate project 

57, 58
   unit test, adding to project  59, 61
   unit testing  55
   unit tests, executing in Xcode  61, 62
   writing, for server-side Swift projects  55
   writing, with XCTest  56, 57
three-tier architecture, web service
   application layer  216
   data storage layer  216
   designing  215, 216
   frontend layer  216

U
Ubuntu APT
   working with  26
Ubuntu
   Kitura, installing  28
   Vapor, installing  27
UI items, iOS application
   encoded JSON data. preparing  304
   functionalities, hooking up  301, 302
   implementing  305
   requests, creating to server  304
   upload request, configuring  304
   upload task, starting  304
unit test
   adding, to project  59, 61
   executing, in Xcode  61, 62
unit testing  55
Universal Unique Identifier (UUID)  81
user experience (UX)  216

V
Vapor boilerplate
   source code, reviewing  41, 42
Vapor CLI
   hello world app, creating  36
Vapor Cloud, features
   application, monitoring  247
   cache support  247
   CDN services  248
   database support  247
   file storage, accessing  248



   recurrent job, scheduling  247
   zero-downtime deployment  248
Vapor Cloud
   about  246
   application, creating from Git Remote  251
   build type, selecting  252
   Cloud application, managing  253
   commands, using  249
   database, selecting  252
   deploying to  249
   deployment, creating  250
   environment  251, 252
   features  247
   reference  248
   replica size, selecting  252
   signing up  248
   slug  251, 252
   Vapor web service, deploying  246
Vapor Toolbox
   command information, obtaining  31
   commands, using  29, 30
   exploring  29
   installation, verifying  25
   installing, on Mac  24
   installing, with Homebrew  24
   system's compatibility, checking  24
Vapor
   about  15, 20
   cloning, manually  27
   cloning, with script  27

   installing, on Mac  21
   installing, on Ubuntu  26, 27
   Leaf templating engine, using  100
   reference  15
   routes, adding  42, 43, 44

W
web authentication
   AuthenticationProvider, setting up  191
   Session Middleware, configuring  191
   using  190, 191
web service
   clients, serving  215
   cloud frontend, designing with pattern  218
   HTTP protocols, reviewing  217, 218
   three-tier architecture, designing  215
World Wide Web Consortium (W3C)  217

X
Xcode Command Line Tools
   installing  23
Xcode IDE
   installing, on Mac  22, 23
XCode test navigator  12
Xcode
   unit tests, executing  61, 62
XCTest
   about  12
   tests, writing  56, 57


	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introducing Server-Side Swift
	Introducing Swift
	Open sourcing Swift and components
	Swift compiler
	Swift standard library
	Swift foundation framework
	Dispatch framework
	XCTest testing framework
	Swift Package Manager
	LLDB debugger
	CommonMark documentation

	Bringing Swift to the server-side
	SwiftNIO


	Surveying Swift server-side frameworks
	Vapor
	Kitura
	Perfect

	Choosing the right framework
	Performance
	Feature sets
	Ecosystem
	Community support
	Vapor
	Kitura
	Perfect


	Summary

	Chapter 2: Getting Started with Vapor and Kitura
	Installing Vapor and Kitura on Mac
	Preparing your Mac for server-side Swift development
	Installing the Xcode IDE on your Mac
	Installing Xcode Command Line Tools
	Installing Homebrew

	Installing Vapor Toolbox on Mac
	Checking your system's compatibility with Vapor
	Installing Vapor Toolbox using Homebrew
	Verifying Vapor installation

	Installing the Kitura CLI on Mac

	Installing Vapor and Kitura on Ubuntu
	Working with the Ubuntu APT
	Installing the Swift Toolchain on Linux
	Installing Vapor on Ubuntu
	Option 1 – using script to clone Vapor packages
	Option 2 – cloning Vapor packages manually
	Installing Vapor on Ubuntu

	Installing Kitura on Ubuntu
	Installing required Linux system packages


	Exploring Vapor Toolbox and the Kitura CLI
	Using Vapor Toolbox Commands
	Getting help on a specific Vapor command


	Exploring the Kitura CLI
	Using KAG
	Selecting a scaffolded application
	Choosing additional services


	Summary

	Chapter 3: Building Your First Web App
	Creating an app using Vapor CLI
	Creating a hello world app from a template
	Building the hello world app
	Running the hello world app
	Converting to the Xcode project on a Mac

	Reviewing source code in Vapor boilerplate
	Adding more routes in Vapor
	Creating an app using Kitura CLI
	Creating a hello world app from a default template
	Running your Kitura app from a Terminal
	Running your Kitura app from Xcode
	Testing the app with a web browser client

	Reviewing source code in Kitura boilerplate
	Adding more routes in Kitura
	Summary

	Chapter 4: Debugging and Testing
	Writing tests for server-side Swift projects
	Preparing a test executable target
	Writing tests using XCTest
	Checking out test cases in a Vapor boilerplate project
	Learning useful assertion macros
	Adding a unit test to your project
	Running unit tests in Xcode
	Checking code coverage
	Turning on code coverage
	Generating a coverage report

	Reviewing Kitura boilerplate tests
	Handling asynchronous tests
	Using extensions for functions common to all tests

	Debugging in a server-side Swift project
	Using the Logging API in a Vapor project
	Using the Logger API in a Kitura Project
	Debugging using the HTTP traffic monitoring tool
	Debugging using Postman
	Debugging using the curl command in the Terminal


	Summary

	Chapter 5: Setting Up Routes and Controllers
	Adding custom routes in a Vapor project
	Modeling your data with content type
	Using controller for logical operations
	Using Vapor's route collection
	Grouping related routes
	Implementing route handlers
	Retrieving all entries
	Creating a new entry with a unique ID
	Retrieving an entry
	Updating an entry
	Deleting an entry

	Testing the routes

	Adding custom routes in a Kitura project
	Modeling Codable data
	Using controllers for logical operations
	Implementing Codable routing
	Handling Kitura routes

	Summary

	Chapter 6: Working with Template Engines
	Using the Leaf templating engine in Vapor
	Configuring the Leaf templating engine
	Using the basic functions of the Leaf templating engine
	Using variables and tags in Leaf templating
	Setting a variable
	Working with context
	Looping through a collection
	Checking conditions
	Embedding other templates

	Adding more Leaf templates
	Displaying all journal entries
	Completing the features

	Templating with Stencil in a Kitura project
	Learning the basic functions of the Stencil templating engine
	Using variables and tags in Stencil templating
	Summarizing useful filters and tags in Stencil

	Configuring the Stencil templating engine
	Developing code working with Stencil templates
	Adding Stencil templates to your Kitura project
	Displaying all journal entries

	Completing the features
	Creating a new journal entry
	Editing a journal entry
	Removing a journal entry


	Summary

	Chapter 7: Bootstrapping Your Design
	Getting started with the Bootstrap framework
	Setting up for Bootstrap
	Inserting the stylesheet
	Adding dependency for JavaScript files
	Using a starter template in Bootstrap

	Using basic Bootstrap components
	Organizing content into grids
	Displaying a jumbotron with parallax animation
	Adding a navigation bar
	Using form controls
	Reusing glyphicons


	Using Bootstrap for a Vapor application
	Enhancing Leaf templates with Bootstrap
	header.leaf
	footer.leaf
	main.leaf
	new.leaf
	entry.leaf


	Using Bootstrap for Kitura
	Enhancing Stencil templates with Bootstrap
	header.stencil
	footer.stencil
	main.stencil
	new.stencil
	entry.stencil


	Summary

	Chapter 8: Employing Storage Framework
	Installing databases
	Installing PostgreSQL
	Installing SQLite
	Installing MySQL

	Working with the Fluent Framework in Vapor
	Choosing a database driver
	Using the PostgreSQL database driver
	Using the SQLite database driver
	Using the MySQL database driver

	Conforming to the Fluent Model
	Creating a new Model
	Creating Fluent Migrations
	Using Fluent Model Helpers

	Implementing CRUD operations for Vapor
	Implementing the create operation
	Implementing the read operation
	Implementing the update operation
	Implementing the delete operation


	Working with the Database Abstraction Layer in Kitura
	Choosing a database driver
	Using the PostgreSQL database driver
	Setting up the SQLite database driver
	Using the MySQL database driver

	Conforming to the Swift-Kuery-ORM Model
	Creating a new model

	Implementing the CRUD operations
	Displaying all records
	Displaying a single record
	Creating a new record
	Updating an existing record
	Deleting a record


	Summary

	Chapter 9: Adding Authentication
	Introducing the authentication API for Vapor
	Using web authentication
	Setting up AuthenticationProvider
	Configuring for SessionMiddleware

	Constructing a Model
	Accessing protected content
	Adding public routes
	Adding the login page
	Checking login credentials
	Logging out of the current session
	Specifying protected routes
	Using the authenticated state

	Managing accounts
	Listing all accounts
	Adding a New Account
	Removing an account

	Seeding databases

	Introducing authentication for Kitura
	Setting up HTTP basic authentication
	Constructing a Model
	Using TypeSafe HTTP authentication

	Summary

	Chapter 10: Understanding Technologies for Web Services
	Serving clients with web services
	Designing three-tier architecture for web service
	The frontend layer
	The application layer
	The data storage layer

	Reviewing HTTP protocols
	Designing the cloud frontend with pattern
	The backends for frontends pattern
	API gateway


	Encapsulating business logic into microservices
	Implementing a microservice-oriented architecture
	Designing microservice with key principles


	Cloud deployment
	Containing microservices with Docker
	Continuously deploying to the cloud
	Working with a sample workflow


	Summary

	Chapter 11: Designing for API Gateway
	Serving clients with the RESTful API
	Understanding the server/client model based on HTTP

	Designing the RESTful API
	Identifying object models
	Defining resource endpoints
	Defining endpoints for top-level resources
	Defining Endpoints for Sub-resources

	Assigning HTTP methods
	Browsing all journal entries
	Creating a new journal entry
	Getting a specific journal entry
	Editing a specific journal entry
	Deleting a specific journal entry


	Implementing the endpoints and responses
	Implementing Handlers for Public Routes
	Implementing handlers for admin routes
	Creating a new item
	Retrieving an item by ID
	Updating an item
	Deleting an Item


	Implementing API endpoints for Kitura
	Creating a new project for the Kitura web service application
	Working with the Kitural model
	Setting up a database
	Adding route handlers
	Retrieving all items
	Creating a new item
	 Retrieving an item by ID
	Updating an item
	Deleting an item
	Deleting All items


	Summary

	Chapter 12: Deploying to the Cloud
	Deploying Vapor web service to Vapor Cloud
	Checking out Vapor Cloud features
	Database and Cache Support
	Application Monitoring
	Recurrent Job Scheduling
	Accessible to File Storage and CDN Services
	Zero-Downtime Deployment

	Signing up Vapor Cloud
	Deploying to Vapor Cloud
	Using the Vapor Cloud commands
	Creating Your First Deployment
	Creating an Application from Git Remote
	Working with Slug and Environment
	Choosing a Replica Size and Database
	Choosing a Build Type

	Managing Your Cloud application
	Getting live log output
	Working with environment variables
	Adding a custom domain
	Scheduling a New cronjob


	Deploying the Kitura web service to IBM Cloud
	Working with an IBM Cloud Account
	Registering for an Account on IBM Cloud
	Working with the IBM Cloud Dashboard

	Readying the Local System for IBM Cloud Deployment
	Installing IBM Cloud Developer Tools
	Using IBM Cloud Developer Tools

	Creating a Kitura app that is deployable to IBM Cloud
	Generating a Starter Kitura Web Application
	Logging into IBM Cloud
	Building Your App with the IBM Cloud Tool
	Running the Kitura App in the Local Container

	Deploying Your app


	Summary

	Chapter 13: Developing an iPhone Client
	Developing an iOS App for a server-side Swift application
	Creating a new project
	Creating a new TableViewController

	Adding content to TableViewController
	Preparing your data model
	Configuring table properties
	Adding a label to the prototype cell
	Constructing route handlers for web services

	Adding domain exceptions for App Transport Security
	Testing the Vapor Server app
	Running the iOS app

	Adding a new entry to journal
	Designing the user interface for a new entry

	Using the Delegate Pattern
	Hooking up new functionalities for UI items
	Steps to Make Requests to the server
	Preparing for Encoded JSON Data
	Configuring an Upload Request
	Starting an Upload Task
	Putting Everything Together for the upload task


	Finishing the CRUD operations
	Editing an existing entry
	Creating the EditEntry segue
	Adding a new function to the delegate protocol
	Making an HTTP PUT request
	Configuring the user interface to edit an entry

	Deleting an existing entry

	Summary

	Chapter 14: Developing Microservices
	Leveraging Microservices in Backend Applications
	The microservice-oriented architecture
	Design Principles of the Microservice Framework

	Deploying a Containerized Application to a Cluster
	Working with Containers and Orchestrations
	Understanding the Container Deployment workflow
	Publishing a Docker image to IBM Cloud Registry
	Logging into IBM Cloud
	Working with the Docker CLI
	Tagging Your Docker Image
	Deploying a Docker Image to IBM Cloud Registry

	Creating a Cluster on IBM Cloud
	Setting up the Kubernetes CLI
	Downloading the Cluster Configuration
	Creating a Deployment Using Container Registry

	Exposing the deployment and launching the app

	Summary

	Appendix A: Vapor Boilerplate Project
	Reviewing Vapor-generated files
	Installing tree to view the file structure
	Reviewing a Vapor project's file structure
	Understanding the file structure in a Vapor project

	Configuring Swift Package Manager
	Package dependencies
	Build targets

	Starting with an entry point
	Instantiating an application object
	Configuring before instantiating application
	Adding initialization code after application instantiation
	Registering the application's routes
	Implementing endpoint logic in controllers
	Using a data model

	Appendix B: Kitura Boilerplate Project
	Reviewing Kitura-generated files
	Reviewing a Kitura project's file structure
	Understanding the file structure in a Kitura project

	Understanding generated sourcecode in Kitura
	Configuring using Swift Package Manager (SPM)
	Starting with the entry point
	Declaring application classes
	Handling errors
	Setting up monitoring metrics
	Setting up health check endpoints


	Other Books You May Enjoy
	Index

