

 [image: Hands-On Server-Side Web Development with Swift]

Hands-On Server-Side Web Development with Swift

Build dynamic web apps by leveraging two popular Swift web frameworks: Vapor 3.0 and Kitura 2.5

Angus Yeung

BIRMINGHAM - MUMBAI

 Hands-On Server-Side Web Development with Swift

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Kunal Chaudhari

Acquisition Editor: Karan Gupta

Content Development Editor: Francis Carneiro

Technical Editor: Akhil Nair

Copy Editor: Safis Editing

Project Coordinator: Pragati Shukla

Proofreader: Safis Editing

Indexer: Mariammal Chettiyar

Graphics: Alishon Mendonsa

Production Coordinator: Nilesh Mohite

First published: November 2018

Production reference: 1301118

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78934-117-1

www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

	
Spend less time learning and more time coding with practical ebooks and videos from over 4,000 industry professionals

	
Improve your learning with Skill Plans built especially for you

	
Get a free ebook or video every month

	
Mapt is fully searchable

	
Copy and paste, print, and bookmark content

 Packt.com

Did you know that Packt offers ebook versions of every book published, with PDF and ePub files available? You can upgrade to the ebook version at www.packt.com and as a print book customer, you are entitled to a discount on the ebook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and ebooks.

 Contributors

 About the author

Angus Yeung works for Intel, and is responsible for the architectural design of backend cloud services for virtual reality sports broadcasting. He is also a computer science lecturer at San Jose State University. Prior to Intel, he held CTO and engineering director positions at several companies, including a start-up he founded in 2002.

Angus' technical interests include mobile computing, distributed computing, computer vision, and artificial intelligence. He holds an BS, MS, and PHD in Electrical Engineering from Univ. of Rochester, and an MBA from UC Berkeley. Angus owns 18 pending and granted patents. Angus lives with his lovely wife and three handsome boys in Palo Alto, California.

Many thanks to my publishers, Isha and Francis. Without their encouragement and persistence I wouldn't have even started my journey of writing this book. My thanks also go to Francis and his team for tediously reviewing this book and dutifully running the code in each chapter. Finally, thanks to my wife, Leslie, and my sons, Neil, Ryan, and Kyle, for their endless patience and support.

 About the reviewer

Tibor Bödecs is an enthusiastic software developer with more than a decade of experience in the IT industry. In his past, Tibor was the technology leader at one of the biggest mobile development-focused companies in Hungary. He is a self-taught programmer with a true passion for Swift from the very beginning. He has a good ability to work with different languages, technologies, and extensive experience in product management. Nowadays he is a freelancer developer focusing mostly on web, mobile, and server-side Swift projects. Tibor has a personal blog where he regularly writes about the Swift programming language.

 Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

 Table of Contents

 	
 Title Page

	
 Copyright and Credits

 	
 Hands-On Server-Side Web Development with Swift

	
 About Packt

 	
 Why subscribe?

	
 Packt.com

	
 Contributors

 	
 About the author

	
 About the reviewer

	
 Packt is searching for authors like you

	
 Preface

 	
 Who this book is for

	
 What this book covers

	
 To get the most out of this book

 	
 Download the example code files

	
 Conventions used

	
 Get in touch

 	
 Reviews

	
 Introducing Server-Side Swift

 	
 Introducing Swift

 	
 Open sourcing Swift and components

 	
 Swift compiler

	
 Swift standard library

	
 Swift foundation framework

	
 Dispatch framework

	
 XCTest testing framework

	
 Swift Package Manager

	
 LLDB debugger

	
 CommonMark documentation

	
 Bringing Swift to the server-side

 	
 SwiftNIO

	
 Surveying Swift server-side frameworks

 	
 Vapor

	
 Kitura

	
 Perfect

	
 Choosing the right framework

 	
 Performance

	
 Feature sets

	
 Ecosystem

	
 Community support

 	
 Vapor

	
 Kitura

	
 Perfect

	
 Summary

	
 Getting Started with Vapor and Kitura

 	
 Installing Vapor and Kitura on Mac

 	
 Preparing your Mac for server-side Swift development

 	
 Installing the Xcode IDE on your Mac

	
 Installing Xcode Command Line Tools

	
 Installing Homebrew

	
 Installing Vapor Toolbox on Mac

 	
 Checking your system's compatibility with Vapor

	
 Installing Vapor Toolbox using Homebrew

	
 Verifying Vapor installation

	
 Installing the Kitura CLI on Mac

	
 Installing Vapor and Kitura on Ubuntu

 	
 Working with the Ubuntu APT

	
 Installing the Swift Toolchain on Linux

	
 Installing Vapor on Ubuntu

 	
 Option 1 – using script to clone Vapor packages

	
 Option 2 – cloning Vapor packages manually

	
 Installing Vapor on Ubuntu

	
 Installing Kitura on Ubuntu

 	
 Installing required Linux system packages

	
 Exploring Vapor Toolbox and the Kitura CLI

 	
 Using Vapor Toolbox Commands

 	
 Getting help on a specific Vapor command

	
 Exploring the Kitura CLI

 	
 Using KAG

 	
 Selecting a scaffolded application

	
 Choosing additional services

	
 Summary

	
 Building Your First Web App

 	
 Creating an app using Vapor CLI

 	
 Creating a hello world app from a template

	
 Building the hello world app

	
 Running the hello world app

	
 Converting to the Xcode project on a Mac

	
 Reviewing source code in Vapor boilerplate

	
 Adding more routes in Vapor

	
 Creating an app using Kitura CLI

 	
 Creating a hello world app from a default template

	
 Running your Kitura app from a Terminal

	
 Running your Kitura app from Xcode

	
 Testing the app with a web browser client

	
 Reviewing source code in Kitura boilerplate

	
 Adding more routes in Kitura

	
 Summary

	
 Debugging and Testing

 	
 Writing tests for server-side Swift projects

 	
 Preparing a test executable target

	
 Writing tests using XCTest

	
 Checking out test cases in a Vapor boilerplate project

	
 Learning useful assertion macros

	
 Adding a unit test to your project

	
 Running unit tests in Xcode

	
 Checking code coverage

 	
 Turning on code coverage

	
 Generating a coverage report

	
 Reviewing Kitura boilerplate tests

	
 Handling asynchronous tests

	
 Using extensions for functions common to all tests

	
 Debugging in a server-side Swift project

 	
 Using the Logging API in a Vapor project

	
 Using the Logger API in a Kitura Project

	
 Debugging using the HTTP traffic monitoring tool

 	
 Debugging using Postman

	
 Debugging using the curl command in the Terminal

	
 Summary

	
 Setting Up Routes and Controllers

 	
 Adding custom routes in a Vapor project

 	
 Modeling your data with content type

	
 Using controller for logical operations

	
 Using Vapor's route collection

	
 Grouping related routes

	
 Implementing route handlers

 	
 Retrieving all entries

	
 Creating a new entry with a unique ID

	
 Retrieving an entry

	
 Updating an entry

	
 Deleting an entry

	
 Testing the routes

	
 Adding custom routes in a Kitura project

 	
 Modeling Codable data

	
 Using controllers for logical operations

	
 Implementing Codable routing

	
 Handling Kitura routes

	
 Summary

	
 Working with Template Engines

 	
 Using the Leaf templating engine in Vapor

 	
 Configuring the Leaf templating engine

	
 Using the basic functions of the Leaf templating engine

	
 Using variables and tags in Leaf templating

 	
 Setting a variable

	
 Working with context

	
 Looping through a collection

	
 Checking conditions

	
 Embedding other templates

	
 Adding more Leaf templates

	
 Displaying all journal entries

	
 Completing the features

	
 Templating with Stencil in a Kitura project

 	
 Learning the basic functions of the Stencil templating engine

 	
 Using variables and tags in Stencil templating

	
 Summarizing useful filters and tags in Stencil

	
 Configuring the Stencil templating engine

	
 Developing code working with Stencil templates

 	
 Adding Stencil templates to your Kitura project

	
 Displaying all journal entries

	
 Completing the features

 	
 Creating a new journal entry

	
 Editing a journal entry

	
 Removing a journal entry

	
 Summary

	
 Bootstrapping Your Design

 	
 Getting started with the Bootstrap framework

 	
 Setting up for Bootstrap

 	
 Inserting the stylesheet

	
 Adding dependency for JavaScript files

	
 Using a starter template in Bootstrap

	
 Using basic Bootstrap components

 	
 Organizing content into grids

	
 Displaying a jumbotron with parallax animation

	
 Adding a navigation bar

	
 Using form controls

	
 Reusing glyphicons

	
 Using Bootstrap for a Vapor application

 	
 Enhancing Leaf templates with Bootstrap

 	
 header.leaf

	
 footer.leaf

	
 main.leaf

	
 new.leaf

	
 entry.leaf

	
 Using Bootstrap for Kitura

 	
 Enhancing Stencil templates with Bootstrap

 	
 header.stencil

	
 footer.stencil

	
 main.stencil

	
 new.stencil

	
 entry.stencil

	
 Summary

	
 Employing Storage Framework

 	
 Installing databases

 	
 Installing PostgreSQL

	
 Installing SQLite

	
 Installing MySQL

	
 Working with the Fluent Framework in Vapor

 	
 Choosing a database driver

 	
 Using the PostgreSQL database driver

	
 Using the SQLite database driver

	
 Using the MySQL database driver

	
 Conforming to the Fluent Model

 	
 Creating a new Model

	
 Creating Fluent Migrations

	
 Using Fluent Model Helpers

	
 Implementing CRUD operations for Vapor

 	
 Implementing the create operation

	
 Implementing the read operation

	
 Implementing the update operation

	
 Implementing the delete operation

	
 Working with the Database Abstraction Layer in Kitura

 	
 Choosing a database driver

 	
 Using the PostgreSQL database driver

	
 Setting up the SQLite database driver

	
 Using the MySQL database driver

	
 Conforming to the Swift-Kuery-ORM Model

 	
 Creating a new model

	
 Implementing the CRUD operations

 	
 Displaying all records

	
 Displaying a single record

	
 Creating a new record

	
 Updating an existing record

	
 Deleting a record

	
 Summary

	
 Adding Authentication

 	
 Introducing the authentication API for Vapor

 	
 Using web authentication

 	
 Setting up AuthenticationProvider

	
 Configuring for SessionMiddleware

	
 Constructing a Model

	
 Accessing protected content

 	
 Adding public routes

	
 Adding the login page

	
 Checking login credentials

	
 Logging out of the current session

	
 Specifying protected routes

	
 Using the authenticated state

	
 Managing accounts

 	
 Listing all accounts

	
 Adding a New Account

	
 Removing an account

	
 Seeding databases

	
 Introducing authentication for Kitura

 	
 Setting up HTTP basic authentication

	
 Constructing a Model

	
 Using TypeSafe HTTP authentication

	
 Summary

	
 Understanding Technologies for Web Services

 	
 Serving clients with web services

 	
 Designing three-tier architecture for web service

 	
 The frontend layer

	
 The application layer

	
 The data storage layer

	
 Reviewing HTTP protocols

	
 Designing the cloud frontend with pattern

 	
 The backends for frontends pattern

	
 API gateway

	
 Encapsulating business logic into microservices

 	
 Implementing a microservice-oriented architecture

 	
 Designing microservice with key principles

	
 Cloud deployment

 	
 Containing microservices with Docker

	
 Continuously deploying to the cloud

 	
 Working with a sample workflow

	
 Summary

	
 Designing for API Gateway

 	
 Serving clients with the RESTful API

 	
 Understanding the server/client model based on HTTP

	
 Designing the RESTful API

 	
 Identifying object models

	
 Defining resource endpoints

 	
 Defining endpoints for top-level resources

	
 Defining Endpoints for Sub-resources

	
 Assigning HTTP methods

 	
 Browsing all journal entries

	
 Creating a new journal entry

	
 Getting a specific journal entry

	
 Editing a specific journal entry

	
 Deleting a specific journal entry

	
 Implementing the endpoints and responses

 	
 Implementing Handlers for Public Routes

	
 Implementing handlers for admin routes

 	
 Creating a new item

	
 Retrieving an item by ID

	
 Updating an item

	
 Deleting an Item

	
 Implementing API endpoints for Kitura

 	
 Creating a new project for the Kitura web service application

	
 Working with the Kitural model

	
 Setting up a database

	
 Adding route handlers

 	
 Retrieving all items

	
 Creating a new item

	
 Retrieving an item by ID

	
 Updating an item

	
 Deleting an item

	
 Deleting All items

	
 Summary

	
 Deploying to the Cloud

 	
 Deploying Vapor web service to Vapor Cloud

 	
 Checking out Vapor Cloud features

 	
 Database and Cache Support

	
 Application Monitoring

	
 Recurrent Job Scheduling

	
 Accessible to File Storage and CDN Services

	
 Zero-Downtime Deployment

	
 Signing up Vapor Cloud

	
 Deploying to Vapor Cloud

 	
 Using the Vapor Cloud commands

	
 Creating Your First Deployment

	
 Creating an Application from Git Remote

	
 Working with Slug and Environment

	
 Choosing a Replica Size and Database

	
 Choosing a Build Type

	
 Managing Your Cloud application

 	
 Getting live log output

	
 Working with environment variables

	
 Adding a custom domain

	
 Scheduling a New cronjob

	
 Deploying the Kitura web service to IBM Cloud

 	
 Working with an IBM Cloud Account

 	
 Registering for an Account on IBM Cloud

	
 Working with the IBM Cloud Dashboard

	
 Readying the Local System for IBM Cloud Deployment

 	
 Installing IBM Cloud Developer Tools

	
 Using IBM Cloud Developer Tools

	
 Creating a Kitura app that is deployable to IBM Cloud

 	
 Generating a Starter Kitura Web Application

	
 Logging into IBM Cloud

	
 Building Your App with the IBM Cloud Tool

 	
 Running the Kitura App in the Local Container

	
 Deploying Your app

	
 Summary

	
 Developing an iPhone Client

 	
 Developing an iOS App for a server-side Swift application

 	
 Creating a new project

	
 Creating a new TableViewController

	
 Adding content to TableViewController

 	
 Preparing your data model

	
 Configuring table properties

	
 Adding a label to the prototype cell

	
 Constructing route handlers for web services

	
 Adding domain exceptions for App Transport Security

 	
 Testing the Vapor Server app

	
 Running the iOS app

	
 Adding a new entry to journal

 	
 Designing the user interface for a new entry

	
 Using the Delegate Pattern

	
 Hooking up new functionalities for UI items

 	
 Steps to Make Requests to the server

 	
 Preparing for Encoded JSON Data

	
 Configuring an Upload Request

	
 Starting an Upload Task

	
 Putting Everything Together for the upload task

	
 Finishing the CRUD operations

 	
 Editing an existing entry

 	
 Creating the EditEntry segue

	
 Adding a new function to the delegate protocol

	
 Making an HTTP PUT request

	
 Configuring the user interface to edit an entry

	
 Deleting an existing entry

	
 Summary

	
 Developing Microservices

 	
 Leveraging Microservices in Backend Applications

 	
 The microservice-oriented architecture

	
 Design Principles of the Microservice Framework

	
 Deploying a Containerized Application to a Cluster

 	
 Working with Containers and Orchestrations

	
 Understanding the Container Deployment workflow

	
 Publishing a Docker image to IBM Cloud Registry

 	
 Logging into IBM Cloud

	
 Working with the Docker CLI

	
 Tagging Your Docker Image

	
 Deploying a Docker Image to IBM Cloud Registry

	
 Creating a Cluster on IBM Cloud

 	
 Setting up the Kubernetes CLI

	
 Downloading the Cluster Configuration

	
 Creating a Deployment Using Container Registry

	
 Exposing the deployment and launching the app

	
 Summary

	
 Vapor Boilerplate Project

 	
 Reviewing Vapor-generated files

 	
 Installing tree to view the file structure

	
 Reviewing a Vapor project's file structure

	
 Understanding the file structure in a Vapor project

	
 Configuring Swift Package Manager

 	
 Package dependencies

	
 Build targets

	
 Starting with an entry point

	
 Instantiating an application object

	
 Configuring before instantiating application

	
 Adding initialization code after application instantiation

	
 Registering the application's routes

	
 Implementing endpoint logic in controllers

	
 Using a data model

	
 Kitura Boilerplate Project

 	
 Reviewing Kitura-generated files

 	
 Reviewing a Kitura project's file structure

	
 Understanding the file structure in a Kitura project

	
 Understanding generated sourcecode in Kitura

 	
 Configuring using Swift Package Manager (SPM)

	
 Starting with the entry point

	
 Declaring application classes

	
 Handling errors

	
 Setting up monitoring metrics

	
 Setting up health check endpoints

	
 Other Books You May Enjoy

 	
 Leave a review - let other readers know what you think

 Preface

Swift is a strongly and statically typed programming language that has been used extensively for client-side development in iOS, macOS, tvOS, and watchOS. The open source developer community has brought Swift to the Linux platforms, making Swift a cross-platform programming language. This book will get you started with Vapor and Kitura by teaching you about development workflows, unit tests, and the build and release process. You'll then dive into the details of designing web applications with template engines, the Bootstrap framework, databases, and user authentication. Finally, you'll move on to building APIs for web services, full-stack development with iOS applications, and deploying web services as containerized application.

 Who this book is for

This book is for anyone interested in building professional web applications and web services using Swift and two popular Swift web frameworks: Vapor 3.0 and Kitura 2.5.

 What this book covers

Chapter 1, Introducing Server-Side Swift, explains why you should extend Swift for server-side development on Linux and take advantage of using Swift for both server- and client-side development. You will survey an array of popular web frameworks in Swift and learn about the merits of each of them. If you are interested in starting the journey of developing web apps and services using Swift, you will find the chapter's recommendations for references, online resources, forums for discussion and technical questions, and the list of developer community support very helpful.

Chapter 2, Getting Started with Vapor and Kitura, aims at getting you started with both Vapor, a server-side framework with very strong developer community support, and Kitura, a server-side framework with backing from IBM. You'll be introduced to Vapor Toolbox, a command line interface (CLI) that allows you to rapidly develop Vapor apps from boilerplate Vapor projects. You'll follow step-by-step guidance to install Vapor Toolbox on macOS or Linux, and then check your system's readiness by using Vapor CLI tools to verify system compatibility with required development environment. Similarly, you'll be introduced to Kitura development workflows and follow step-by-step instructions to install Kitura tools and libraries on your system.

 Chapter 3, Building Your First Web App, takes you directly to server-side Swift coding with detailed instructions on creating a new web app project from a template provided in a web framework. You'll be guided on how to create, build, run, and test a "Hello World!" web app using Vapor 3.0. After that, you'll learn how to expand the features of the web app by adding more new routes to handle additional requests from clients. You will continue your journey to create a similar "Hello World!" web app with the Kitura web framework. After going through the exercises of building a simple web app with both Vapor and Kitura, you'll be able to note the similarities between the two web frameworks and appreciate the different approaches taken by them.

Chapter 4, Debugging and Testing, introduces the basics of the agile development process and recommends some of best practices in developing, debugging, and testing server-side Swift code. When it comes to web development frameworks, both Vapor and Kitura offer very good logging and debugging support. You are going to learn how to use the logging and unit test features to help in debugging and error-proofing your code.

Chapter 5, Setting Up Routes and Controllers, dives into the details of handling custom requests with routes and controllers. A route is an object used to represent a custom request embedded in a URL and a controller is the component that contains the business logic to handle the request routed to it. You'll learn how to add custom routes for requests, create controllers to handle the routes, and construct responses for the requests. You'll manipulate custom parameter types and process a group of routes in a collection. Finally, you'll learn how to take advantage of the Codable class in Swift to encode and decode complex JavaScript Object Notation (JSON) objects in easy ways.

Chapter 6, Working with Template Engines, introduces you to two template engines: Leaf for Vapor and Stencil for Kitura. Templating languages allow you to work with content automatically generated by a script. For dynamic content, you'll learn how template engines help in accelerating the development of dynamic web pages. Dynamic content creation is useful when presenting results of data that is generated at runtime and not known beforehand. For static content, you'll learn how template engines help ensure a consistent structure with features such as headers, footers, color schemes, and backgrounds. You'll also be introduced to the nuts and bolts of Leaf and Stencil templating languages and learn how to use variables in template scripts to communicate information between Swift classes and script functions.

Chapter 7, Bootstrapping Your Design, introduces you to the Bootstrap framework, which is a collection of CSS and JavaScript libraries, and explains how the Bootstrap framework allows you to build responsive website easily. You'll follow step-by-step instructions to insert Bootstrap components into your templates and learn how to beautify different UI elements in your template with Bootstrap. Toward the end of the chapter, you'll learn how to include Bootstrap in your project when you are ready to deploy your web apps.

Chapter 8, Employing Storage Frameworks, has you take advantage of the Object Relational Mapping (ORM) abstraction between the web application and the database to streamline your workflow when working with a database. One of the major advantages of using an ORM tool is that you don't have to deal with a database directly, avoiding the painful process of writing different querying commands for each type of database. Swift web frameworks support a number of database engines, and sometimes you can use multiple databases in the same session. In this chapter, you'll learn how to work with the Fluent abstraction framework in Vapor and the Kuery database abstraction layer in Kitura. You'll interact with your model with Create, Retrieve, Update, and Delete (CRUD) operations using these abstraction layers.

Chapter 9, Adding Authentication, introduces you to the key features in user-access management: user authentication, cookies, and sessions management. You'll learn how to set up a user model and password-protected content. With the authentication API, you're going to grant and remove access for different users. You'll then learn how to manipulate cookies and manage user login sessions, and implement logic to authenticate user to get access to protected content.

Chapter 10, Understanding Technologies for Web Services, reviews the underlying technologies that empower web apps and web services. You'll learn the server/client model based on HTTP/HTTPS in more details. For the architecture and design of web services, it'd better to divide the design into a three-tiered architecture consisting of a frontend API gateway, some business logic in the middle, and then backend database services. You'll learn how a typical frontend API gateway is designed, how to encapsulate a middle component with business logic into a standalone microservice, and how to design and work with a backend storage framework.

Chapter 11, Designing for API Gateway, teaches you how to build a RESTful API, introduce you to the basic rules for API design, teach you how to create endpoints for requests that a client sends to a server, and explain how to define response status codes. You'll then learn how the design of a RESTful API can be extended, specifically through the building of API Gateway, which is the single entry point for all clients and routes client requests to different MVC components or microservices.

Chapter 12, Deploying to the Cloud, tells you how to deploy your web services to the cloud. You'll be introduced to popular hosted cloud solutions: Vapor Cloud (AWS) and IBM Cloud (Bluemix). Vapor Cloud is the official hosting service for Vapor and there is built-in support in Vapor CLI to let you deploy and manage your Vapor instance easily without installing additional libraries and tools. Similarly, IBM Cloud is a natural choice of hosted solution for Kitura web services, since both IBM Cloud (Bluemix) and Kitura are IBM cloud solutions.

 Chapter 13, Developing an iPhone Client, puts everything you'll have learned so far about server-side Swift together and uses an iOS app to show how a client "journal" app can leverage your PostgreSQL database, and other cloud services that you can build with a Swift web framework. You'll first get started with building a journal iOS app, adding logic and UI components to the app design. You'll create a model for journal data and add the support of CRUD operations for a PostgreSQL database. At the end of this chapter, you'll have a functional journal app that works seamlessly with your web services.

Chapter 14, Developing Microservices, teaches you how to build independent microservices and add them to a Swift web framework. Container technology, such as Docker, is used to deploy and run a Swift package artifact as a microservice. You'll learn how to deploy a Docker container and use container orchestration tool such as Kubernetes to manage and scale the deployment of containerized applications in a cluster.

Appendix A, Vapor Boilerplate Project, gives you a clear understanding of the boilerplate code in Vapor: you'll review Vapor-generated files, examine the file structure in a typical Vapor project, check out the project's configuration in manifest file, and go through the sequence of initialization steps before and after application instantiation. It also explains to you the sample routes, controllers and data model included in the boilerplate project.

Appendix B, Kitura Boilerplate Project, provides you with a better idea with the boilerplate project generated using kitura init. You'll review Kitura-generated files, file structure in a Kitura project, and configuration in the project's manifest file. The work flow in the boilerplate project will be carefully examined. At the end, you'll also check out the metrics-monitoring and diagnostic services already included in the boilerplate code.

 To get the most out of this book

Some working knowledge of the Swift programming language would be required. You could be a beginner in terms of Swift programming, a seasoned iOS or macOS developer, or a software developer who wants to work on practical Swift applications while learning the language itself. By the end of the book, you will be able to successfully create your own web applications and web services by leveraging the powerful ecosystem of Swift.

 Download the example code files

You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

	Log in or register at www.packt.com.

	Select the SUPPORT tab.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR/7-Zip for Windows

	Zipeg/iZip/UnRarX for Mac

	7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Hands-On-Server-Side-Web-Development-with-Swift. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "The decode() function returns a future for HTTPStatus".

A block of code is set as follows:

router.post("new") { req -> Future<HTTPStatus> in
 return req.content.decode(Entry.self).map { entry in
 print("Appended a new entry: \(entry)")
 return HTTPStatus.ok
 }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

import Foundation

struct Entry: Codable {

 var id: String
 var title: String?
 var content: String?

 init(id: String, title: String? = nil, content: String? = nil) {
 self.id = id
 self.title = title
 self.content = content
 }
}

Any command-line input or output is written as follows:

 $ vapor build
 $ vapor run

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Navigate down the list and click on the Swift Web App with Kitura icon".

Warnings or important notes appear like this.

Tips and tricks appear like this.

 Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 Introducing Server-Side Swift

Swift is a strongly and statically typed programming language that has been used extensively for client-side development in iOS, macOS, tvOS, and watchOS. The open source developer community has brought Swift to the Linux platforms, making Swift a cross-platform programming language. In this chapter, we will explain why the open source developer community has extended Swift for server-side development, and how they have streamlined the workflow for both server and client-side development using the same programming language.

There are several server-side Swift frameworks, and most of them are developed and maintained by the Swift developer community. We will take a closer look at the three top server-side Swift frameworks: Vapor, Kitura, and Perfect. Each of these frameworks has a different set of features and benefits. We hope that you feel comfortable with choosing the right Swift server-side framework for your next server-side project.

In this chapter, we will cover the following topics:

	Introducing Swift

	Surveying Swift server-side frameworks

	Choosing the right framework

 Introducing Swift

Swift is a high-performance modern programming language that was first announced at the Apple World Wide Developers Conference (WWDC) in September 2014. Thanks to Apple's strong support and endorsement from the developer community, Swift has become one of the fastest growing new languages in computer science history. Swift 2.0 was released in September 2015, followed by Swift 3.0 a year later, and Swift 4.0 in September 2017. There have been two additional releases: Swift 4.1 in March 2018 and Swift 4.2 in September 2018.

As a modern language, Swift offers a clean syntax and many modern programming language constructs. Even though Swift is inspired by many other popular programming languages, Swift is an independent language completed with all the core features of a modern language. We will find the familiar low-level constructs in Swift, such as data structure, classes, functions, enums, as well as many useful modern features, such as protocols, optionals, closures, and generics.

Type safety is enforced from the ground up in Swift. The emphasis of type safety shifts the detection of many nasty errors from runtime to compile time. As a result of dramatically reduced runtime errors, Swift developers enjoy relatively increased productivity and an ease of programming.

Swift keeps many of the constructs found in modern programming languages, but also eliminates some features that are frequently seen in other languages. One example is that Swift uses modules instead of headers, eliminating code duplication often seen in using headers. Moreover, Swift does not support exceptions and an automatic garbage collector. In Swift, memory safety is ensured by default. Instead of a garbage collector, Swift uses a thread-safe Automatic Reference Counting (ARC) for an object's life cycle management.

As a compiled language, Swift is very fast at execution. The source code of Swift is first checked for type safety, then compiled into a machine-independent intermediate code in a Low Level Virtual Machine (LLVM) for optimization, and eventually used to generate machine code that is native to the system. Swift's execution performance often matches that of modern native programming languages and exceeds that of interpreted programming languages.

 Open sourcing Swift and components

The official version of open source Swift was first launched in December 2015. Since being opened up to wider community support and development, open source Swift continues to grow in both popularity and maturity in terms of the contribution of open source community and the addition of new features. The contributors to open source Swift include Apple, IBM, PayPal, and other industry and academic institutions.

The effort of the open source developer community is coordinated through the Swift programming language evolution (https://github.com/apple/swift-evolution) process. The process governs the evolution of Swift by defining the process for accepting new proposals, stating the goals for upcoming Swift releases, reviewing and tracking the status of proposals, and specifying the decision-making procedure for accepting or rejecting a proposal. The evolution process ensures that Swift can evolve into a robust language while imposing constraints to maintain application binary interface (ABI) stability. With ABI stability, the binary compatibility between applications and libraries is ensured with different Swift versions.

Open source Swift includes more than the specification of the Swift programming language. On the official website of open source Swift, https://swift.org/, there is information on the fundamental components for the language, including the Swift compiler, standard library, package manager, core libraries, test framework, and REPL/debugger.

The source code repositories for the fundamental Swift components are hosted on GitHub at https://github.com/apple/swift. The following diagram shows the main components in open source Swift:

The license for the open source Swift projects is Apache 2.0 with a runtime library exception (https://github.com/apple/swift/blob/master/LICENSE.txt) .The runtime library exception clause in such a license allows you to compile the code into the binary product and distribute it.

 Swift compiler

The Swift compiler translates Swift source code into efficient machine code in an executable way. When parsing the source code, the Swift compiler will perform full type-checking and generate an intermediate language called the Swift Intermediate Language (SIL) for further code analysis and optimization. The intermediate code will then be reduced to Low Level Virtual Machine Intermediate Representation (LLVM IR) (http://llvm.org/) for the LLVM to turn that into machine code:

 Swift standard library

The standard library provides basic language and type system support. The core of the standard library includes the definitions of fundamental data types, collections, protocols, algorithm, and low-level primitives. There is also the language support runtime, which is layered between the compiler and the core of the standard library. This runtime handles the dynamic features of Swift, such as typecasting, generics, reflection, and memory management.

 Swift foundation framework

The foundation framework comprises features outside of the language and runtime that are common to all applications. The base layer of functionality provided in the foundation framework includes data storage and persistence, string handling, data formatting, date and time support, sorting and filtering, and networking. The design principle for the foundation framework is to keep the features in small sets of utility class, consistent across in convention, and with internationalization and localization support. As such, the foundation framework is highly portable for cross-platform support. There are two foundation frameworks: Objective-C and the open source Swift foundation.

 Dispatch framework

The libdispatch is the wrapper for Grand Central Dispatch (GCD), the concurrency library used across all Swift platforms to provide support for concurrent code execution in multicore processors. GCD uses a dispatch queue to achieve the goal of executing tasks in parallel. Each queue is a block of code (task) that can be executed synchronously or asynchronously on the main thread or worker thread. Tasks submitted to dispatch queues are executed efficiently on a pool of threads managed by the system. Submitted tasks are executed serially by default, but several tasks can be configured to run concurrently when submitted to the dispatch queue.

 XCTest testing framework

The XCTest library is a common framework for writing unit tests in Swift. Usually, we just have to write the unit tests once and they can be executed across different platforms without rewriting. Each test is organized into an XCTestCase subclass with many different test methods. Each method shall be started with a prefix "test". We can run the tests from a Terminal on Linux or macOS. For Linux, an extra Linux main file with an array containing all available tests is needed. For macOS, XCode CLI tools to execute the tests are required. The XCTest framework is also well integrated into the workflow in XCode. We can use the scheme editor to specify which targets, classes, and methods to include a test, and use the XCode test navigator to run tests and view the results.

 Swift Package Manager

We use the Swift Package Manager (SPM) to manage the distribution of Swift projects. The Swift package manager integrates the package dependencies into the Swift build system, automating the downloading, compiling, and linking the other packages that are required in a Swift project. In a typical Swift project, the source code is organized into packages. We use the Swift package manager to set up target executable modules in a project and specify each executable's dependent modules. An executable is a Swift program that can be run by the host's platform. For example, we build one executable module for product release and another executable module for testing.

 LLDB debugger

In open source Swift, the LLDB debugger is both a full-featured debugger for Swift and a read-eval-print-loop (REPL) tool for the language. The LLDB debugger is tightly coupled to the Swift compiler itself, in order for it to inspect Swift types accurately and evaluate expressions correctly. REPL takes advantage of the robust debugging features such as breakpoint settings, interactive context during failures, evaluating expressions, reporting, and formatting results at breakpoints.

 CommonMark documentation

CommonMark is the built-in Markdown syntax for documenting source code in open source Swift. Markdown is a plain text format for writing structured documents using very straightforward formatting conventions. Open source Swift adopts CommonMark as the implementation of a strongly defined, unambiguous, and highly compatible specification of Markdown.

 Bringing Swift to the server-side

Swift has been used extensively for client-side development in iOS, macOS, tvOS, and watchOS. Since the open source developer community brought Swift to the Linux platforms and made Swift a cross-platform programming language, it makes sense for developers to use Swift for server-side development as well.

Client developers that are already skillful with the Swift language and are accustomed to the tools and libraries used in Swift projects, will find the transition to server-side development straightforward. They can enjoy the same benefits offered by Swift in server-side projects: type-safety, ease of programming, and compiled performance. By using Swift in both client- and server-side development, developers are expected to be more productive and more skillful.

Of course, the client developers are required to learn some new server-side skills. The workflow on the client side is very different from that of server-side development. On the client side, developers often work to enhance user interfaces, build data models and develop application logic that works with remote cloud services. For server-side development, they need to be able to implement and test network requests, add logic to handle the requests, and route the requests to other backend modules to handle them.

As developers gain expertise in writing both server and client code, they will share code between the server and a client's modules, and optimize the code for both client and server-side development.

 SwiftNIO

It is worth mentioning SwiftNIO here, together with other Swift technologies. Apple's SwiftNIO is an open source server-side kernel that provides low-level networking support to the high-level event-driven network application framework. Even though SwiftNIO is not part of open source Swift, this server-side kernel is the fundamental building block for Swift server-side frameworks such as Vapor 3.0. Support for SwiftNIO was also added to Kitura 2.5 in August 2018.

SwiftNIO targets high-performance protocol servers and clients with Netty-like event loops and asynchronous non-blocking calls. The rationale for SwiftNIO is that using the thread-per-connection model of concurrency for low-utilization connections in any server is highly inefficient. SwiftNIO uses the non-blocking I/O model, so we do not need to wait for data to be sent from the network or received from it. The kernel will notify us when an I/O operation is complete.

Under the hood of SwiftNIO, the event processing for managing the execution of work items is conceptualized into EventLoop, which is similar to a dispatch queue in Swift. There are usually a few event loops per CPU core. Event loops run for the entire lifetime of the application, dispatching events to all the objects they own in a SwiftNIO application. Event loops are grouped into an EventLoopGroup. When an EventLoopGroup receives tasks, it will distribute work around the event loops while ensuring thread safety in doing so.

We usually ask EventLoop to schedule work but the work itself will be done by ChannelHandlers in a Channel. Each file descriptor (socket, file, or pipe) in SwiftNIO is associated with a Channel, which performs operations on top of it. The Channel uses ChannelHandler to process each work item. ChannelHandler can handle either inbound or outbound data traffic or both. A sequence of ChannelHandler objects forms a ChannelPipeline so the data in a channel can be transformed as it passes through each ChannelHandler object in the pipeline.

There are several implementations of Channels in SwiftNIO, which are listed as follows:

	ServerSocketChannel: A channel for sockets that accepts connections like a server

	SocketChannel: A channel for TCP connections

	DatagramChannel: A channel for UDP sockets

	EmbeddedChannel: A channel for testing purposes

In a summary, SwiftNIO implements basic I/O primitives and protocols at low levels of abstraction. It is narrowly focused on providing a powerful building block for high-level networked applications.

 Surveying Swift server-side frameworks

There are many Swift web frameworks that aim to bring the benefits of Swift to server-side development. We will take a quick survey of several top Swift server-side frameworks now.

 Vapor

Vapor is one of the most popular frameworks, and it enjoys the support of a very active developer community. The support from a developer community means that there are a lot of releases, bug fixes, and help that can be expected. In fact, the development of Vapor has been closely following the Swift evolution development. With the launch of SwiftNIO from Apple, as well as Swift 4.1, the Vapor developer community quickly launched Vapor 3.0 (https://github.com/vapor/vapor/releases/tag/3.0.0), which adopts asynchronous and non-blocking event-driven networking stacks, alongside futures and promises throughout the framework, fully aligning with the latest technology in the Swift ecosystem.

Overall, Vapor caters for both beginner and veteran server-side Swift developers with simple and concise syntax, strong community support, and the appeal of pure Swift implementation.

 Kitura

Kitura, a Swift server-side framework from IBM that is Apache 2.0 licensed, is the result of the enterprise partnership between IBM and Apple, announced in 2014. It goes without saying that the framework has a strong backing from IBM. Kitura is well integrated into IBM's cloud product offerings, including Watson and IBM Cloud. It offers native connectors for some Watson API services, and it is easy to deploy a Kitura project to Bluemix hosting platforms using Kitura CLI. On IBM's website, there are also plenty of educational resources and support for Kitura.

The Kitura framework was migrated to support Swift 4.0 in the Kitura 2.0 that was released in October 2017. In Kitura 2.5, released in August 2018, the framework also added the support of SwiftNIO (enabled using env KITURA_NIO=1 swift build). The development of Kitura follows closely with the evolution of Swift itself.

For many Swift server-side developers, Kitura is an ideal framework choice for tapping into IBM's extensive cloud technology ecosystem and developing with enterprise applications in mind.

 Perfect

Perfect (https://github.com/PerfectlySoft/Perfect) stands out as a mature and powerful Swift server-side framework. The first version of Perfect was released to the public even before Apple made Swift open source in 2015. It offers a complete array of features that a software developer may need for developing a lightweight and maintainable web application. Perfect uses a high-performance asynchronous networking engine called Perfect-Net (https://github.com/PerfectlySoft/Perfect-Net), supports secure sockets layer encryption, and adds the option for WebSockets and iOS push notifications that are commonly required by internet servers. Perfect even provides a macOS desktop application, Perfect Assistant, to help server-side developers with the deployment of their Perfect projects to AWS and Google Cloud.

We see Perfect as a good choice for Swift server-side developers who are looking for a mature and well-balanced framework for developing a scalable and solid web application.

 Choosing the right framework

When it comes to choosing the right Swift server-side framework to work with, we shall compare the different frameworks in terms of the several factors that follow:

	How fast is the framework's execution performance?

	How complete are the features that the framework offers?

	What kind of ecosystem does the framework adopt?

	What kind of community support is there for the framework?

 Performance

Since Swift is a compiled language, server-side frameworks written in pure Swift are not necessarily slower than frameworks written in other native programming languages. However, different Swift server-side frameworks may adopt different low-level software stacks or handle events differently.

A collection of benchmarks for popular web frameworks, including both Swift and non-Swift implementations, are documented here: https://medium.com/@codevapor/vapor-3-0-0-released-8356fa619a5d. As we can see, Swift frameworks perform better than most of the web frameworks that are written in interpreted languages such as JavaScript and Python. The benchmarks were based on processing plain text and demonstrated how fast Swift can process HTTP headers. All three Swift server-side frameworks, Vapor, Perfect, and Kitura, are comparable in their performance of plain text processing.

If you are interested in evaluating different aspects of a web framework, for example, the performance for handling routing and parsing path parameters, you can use the Benchmark tool (https://github.com/vapor/benchmarks) to generate specific benchmarks for comparison.

 Feature sets

Performance is not the only factor we should consider. A production release of web application includes a complete set of robust features. Swift server-side frameworks often offer many useful functions that are common to most applications. Some common feature sets for Swift frameworks are listed as follows:

	CLI tool: Offers tools for generating boilerplates, building, and deploying an application

	Templating engine: Supports templating language for web content

	Networking I/O: Facilitates the handling of requests over the network

	Database ORM: Simplifies the querying for the back-end database

	Logging framework: Helps catch useful information during runtime

	Test framework: Creates unit tests for testing the web application

	Authentication: Provides authentication features, such as user login or social login

	Security framework: Adds encryption to communication and messaging pipelines, and sockets

	Monitoring and diagnostics: Offers real-time monitoring and diagnostics

	User session management: Manages a user's session after login

	Cloud deployment: Helps deploy a server application in an automated way

	Swift support: Updates to the latest Swift version quickly

When choosing the right server-side framework, we will need to check whether any of the features mentioned have already been integrated in the framework, or if integration of third-party libraries that implement such features are easy and straightforward.

 Ecosystem

Ecosystem here can be interpreted as the choices of libraries or tools that a Swift server-side adopts and integrates into the framework. We may have preferences for some technologies, and at the same time, we may have reasons for avoiding other technologies as trade-offs in the design of our application. Sometimes, the effort will be daunting if we want to integrate a third-party library into the chosen framework that does not have the library included already. The best time-saving tip is to choose the framework that has the most preferred libraries so we can minimize the effort to do integration ourselves.

The main components and choices of third-party libraries in Vapor and Kitura are listed in the following table:

	Feature
	Vapor
	Kitura

	OS support
	macOS, Linux
	macOS, Linux

	CLI
	Vapor Toolbox CLI, Vapor Console API
	Kitura CLI, Project Generator

	Templating engine
	Leaf
	Stencil, Mustache, Markdown

	Networking I/O
	SwiftNIO
	Kitura-NIO (use SwiftNIO and NIOOpenSSL), BlueSocket, Kitura-net

	ORM
	Fluent: SQLite, MySQL, PostgreSQL, Redis
	Swift-Kuery-ORM, Swift-Kuery:, PostgreSQL, SQLite, Redis

	Logging
	Logging API, PrintLogger, SwiftyBeaver Logging
	LoggerAPI, HeliumLogger

	Route-type validation
	Vapor Validation
	n/a

	Authentication
	Turnstile
	Kitura-Credentials: HTTP, Facebook, Google, GitHub

	Security
	Vapor-Crypto / SwiftNIO SSL
	BlueSSLService

	User session
	SessionMiddleware
	Kitura-Session

	Monitoring & diagnostics
	n/a
	SwiftMetrics, Health

	Container
	Docker
	Docker

	Orchestration
	n/a
	Kubernetes / Helm

	Cloud deployment
	Vapor Cloud
	IBM Cloud

In the rest of this book, we will visit most of the previously mentioned technologies again when we learn how to build web applications and services with Vapor and Kitura.

 Community support

Developer community support is sometimes a deciding factor in the choice of a Swift server-side framework. Strong developer community support means that a framework's feature set is more complete, and there will be enough support when we encounter hurdles in working with the framework.

 Vapor

Vapor enjoys healthy developer community support. Vapor users are well-known for their support and eagerness to help newcomers to Vapor community. There is a lot of activity in social channels. The Vapor community has recently moved their forums from Slack to Discord (http://discord.gg/BnXmVGA). There are also plenty of online learning resources, sample codes, tutorials, books, and community-contributed library plugins available to Vapor users. A word of caution, though: many of the tutorial and learning material for Vapor 2.0 or earlier, are outdated. Due to the substantial changes in Vapor 3.0, especially the migration to asynchronous non-blocking stacks based on SwiftNIO, many of the tutorials need to be revised and updated for Vapor 3.0.

 Kitura

Kitura may have smaller community involvement currently, but IBM's engineers have been active and helpful on GitHub and online forums for new learners of server-side Swift. Kitura has a more complete cloud computing stack. It is easy for users to find the documentation and learning materials for not only the Swift server-side framework but also for other cloud technologies that are often used together with the Swift framework.

 Perfect

Perfect stands out as having extensive tutorials, documentation, and training materials available on its website (https://perfect.org/tutorials.html) for Swift server-side developers. The Perfect framework is more mature, and its learning materials are well-organized. Currently, the Perfect user community has 69 repositories in the Perfect examples (https://github.com/PerfectExamples) repository on GitHub. New Perfect users can use the Slack (http://www.perfect.ly/) channels to interact with other developers and to get help from others.

 Summary

In this chapter, we have covered open source Swift and its components and learned about the advantages of using Swift in server-side development. We have also reviewed three top server-side Swift frameworks: Vapor, Kitura, and Perfect, and explained how to choose a suitable Swift web framework for your own project. The background material in this chapter helps prepare you for hands-on server-side development. In the next chapter, you will roll your sleeves up and install both Vapor and Kitura frameworks on your system.

 Getting Started with Vapor and Kitura

This chapter aims at getting you started with both Vapor and Kitura. You'll be introduced to Vapor Toolbox, a command-line interface (CLI), which allows you to rapidly develop Vapor apps from several boilerplate Vapor projects. You'll follow a step-by-step guideline to install Vapor Toolbox on macOS or Linux, and then check your system's readiness by using Vapor CLI tools to verify system compatibility with the required development environment. Similarly, you'll get introduced to the Kitura development environment and follow step-by-step instructions to install Kitura tools and libraries on your system.

In this chapter, we'll cover the following topics:

	Installing Vapor and Kitura on macOS

	Installing Vapor and Kitura on Ubuntu

	Exploring Vapor Toolbox and the Kitura CLI

 Installing Vapor and Kitura on Mac

Even though you can start server-side Swift development on either macOS or Linux, you'll find it more convenient to develop server-side Swift projects on macOS with Apple's free Integrated Development Environment (IDE) tool, Xcode. Xcode has integrated many powerful editing and debugging features to streamline the workflow for code development with Swift; for example, syntax highlight, auto completion, refactoring, and code coverage for unit tests.

Follow the steps in the following sections to prepare your Mac for server-side Swift development with both Vapor 3.0 and Kitura 2.5. Skip the installation steps for macOS and go directly to the next section if you want to use the Linux environment instead.

 Preparing your Mac for server-side Swift development

If you choose macOS as the platform for server-side Swift development, you're recommended to use Xcode 10.0 or greater for this book. The Xcode IDE is available only on macOS and not available on Linux.

 Installing the Xcode IDE on your Mac

Download Xcode 10.1 or greater from Apple's Mac App Store:

After downloading, you must launch Xcode to continue the installation process. This may take a while.

Once Xcode is installed successfully on your macOS, you can verify the version of installed Swift by running the following command on the Terminal:

Step 1a: Check Swift installation after have Xcode installed
$ swift --version

You should expect to see output similar to the following:

Apple Swift version 4.2.1 (swiftlang-1000.11.42 clang-1000.11.45.1)
Target: x86_64-apple-darwin17.7.0

The code samples in this book require Swift 4.2.1 or greater installed on your macOS.

 Installing Xcode Command Line Tools

It is also useful for you to install Xcode Command Line Tools on your Mac. The Command Line Tools Package is a self-contained package from the Xcode installation. It allows you to do command-line development in macOS. You must download it separately from your Apple Developer Account.

Point your web browser to https://developer.apple.com/download/more/. Enter Command Line Tools in the search box. A list of Command Line Tools downloads will be shown:

Choose the latest Command Line Tools download for your macOS version. For example, you should download Command Line Tools (macOS 10.13) for Xcode 10.1 if you're using macOS High Sierra (version 10.13).

 Installing Homebrew

Homebrew is a free open source software package manager for macOS. Run the following in the Terminal if you don't already have Homebrew installed:

Step 1b: Install Homebrew package manager
$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

You'll need Homebrew to install the Vapor CLI tools or many useful libraries on your Mac. If you encounter any problem installing Homebrew, you may want to visit Homebrew's official website, https://brew.sh/. With the Homebrew software package manager, you're ready to finish the rest of the installation process on your Mac.

 Installing Vapor Toolbox on Mac

Vapor Toolbox is a CLI tool for you to develop Vapor apps and make your life easier in deploying them to Vapor Cloud, an optional hosting service created by Vapor.

 Checking your system's compatibility with Vapor

To prepare for the installation, you can run the following command in the Terminal to check for Vapor compatibility:

Step 2a: Check system compatibility with Vapor
$ eval "$(curl -sL check.vapor.sh)"

The output is as follows:

Xcode 10.1 is compatible with Vapor 2.
Xcode 10.1 is compatible with Vapor 3.
Swift 4.2.1 is compatible with Vapor 2.
Swift 4.2.1 is compatible with Vapor 3.

 Installing Vapor Toolbox using Homebrew

If the previous step shows that your Xcode and Swift versions are compatible with Vapor 3.0, you're ready to continue the installation. Use Homebrew to install Vapor Toolbox:

Step 2b: Install Vapor Toolbox
$ brew install vapor/tap/vapor

Homebrew tap is a tool to tap into another repository. The previous one-liner install command gives Homebrew installation access to all of Vapor's macOS packages.

 Verifying Vapor installation

You're now done with Vapor 3.0 installation on Mac. Double check the installation by running the following Vapor Toolbox command in the Terminal:

Step 2c: Check Vapor installation
$ vapor --help

If your installation of Vapor Toolbox is completed properly, the help command should list the available commands and flags.

 Installing the Kitura CLI on Mac

Similar to Vapor Toolbox, you can install the Kitura CLI to simplify the process of creating Kitura applications.

With Homebrew on your Mac, go ahead and install the Kitura CLI:

Step 3a: Install Kitura on macOS
$ brew install ibm-swift/kitura/kitura

The output is as follows:

==> Installing dependencies for ibm-swift/kitura/kitura: node
 ==> Installing ibm-swift/kitura/kitura dependency: node
 ==> Downloading https://homebrew.bintray.com/bottles/node-11.2.0.high_sierra.bottle.tar.gz
 ## 100.0%
 ==> Pouring node-11.2.0.high_sierra.bottle.tar.gz
 ==> Caveats
 Bash completion has been installed to:
 /usr/local/etc/bash_completion.d
 ==> Summary
 /usr/local/Cellar/node/11.2.0: 3,936 files, 47MB
 ==> Installing ibm-swift/kitura/kitura
 ==> Downloading https://registry.npmjs.org/kitura-cli/-/kitura-cli-0.0.12.tgz
 ## 100.0%
 ==> npm install -ddd --global --build-from-source --cache=/Users/fyeung1/Library/Caches/Homebrew/npm_cache --prefix=/usr/local/Cellar/kitura/0.0.12/libexec /pri
 /usr/local/Cellar/kitura/0.0.12: 676 files, 4.1MB, built in 9 seconds
 ==> Caveats
 ==> node
 Bash completion has been installed to:
 /usr/local/etc/bash_completion.d

 Installing Vapor and Kitura on Ubuntu

This section is for installing Vapor and Kitura on Ubuntu. Skip this section if you intend to develop on your Mac only.

 Working with the Ubuntu APT

You're going to work with the Advanced Packaging Tool (APT) library to perform installation of Vapor and Kitura. APT is a package manager for Debian-based Linux operating systems such as Ubuntu. The package manager keeps a list of packages that it can install in repository or cache and sorts out the dependencies required for the software packages. Run the following at Command Prompt:

$ sudo apt-get install <package>

The apt-get install command checks for the repository for the package specified as <package>. If the package is available in the list, it will proceed to download and install the software and all of the required dependencies. The sudo command in the previous code temporarily grants you elevated privileges as root or superuser in the installation step.

 Installing the Swift Toolchain on Linux

The Swift 4 Toolchain is hosted on www.Swift.org and it contains the Swift compiler CLI, libraries, debugger, and package manager for Ubuntu platforms. Go to swift.org and download the latest stable Swift release for your Ubuntu version: https://swift.org/download/.

Go ahead and extract the .tar.gz file of Swift 4 toolchain. You'll need to update your PATH environment variable in order to include the Toolchain:

Step 1a: Update PATH environment after installing Swift 4 toolchain
$ export PATH=<path to the extracted tool chain>/usr/bin:$PATH

Check that the expected version of Swift by entering the following Swift command:

Step 1b: Check the installed version of Swift
$ swift --version

Next, go on installing Vapor and Kitura on your Ubuntu.

 Installing Vapor on Ubuntu

Installing Vapor on Ubuntu is straightforward. Vapor supports the same versions of Ubuntu that Swift does: Ubuntu 14.04, 16.04, and 16.10.

 Option 1 – using script to clone Vapor packages

On Ubuntu, you can use Vapor's APT repository to get access to all of Vapor's packages.

If you don't have curl on your system, use this command to install curl first:

Step 2a: Prepare the curl tool on Ubuntu
$ sudo apt-get install curl

Now, you can use this script to add Vapor's APT repository to the source list:

Step 2b: Use script to add Vapor APT repo
$ eval "$(curl -sL https://apt.vapor.sh)"

If you have any problem with the script approach here, you can jump to option 2 in the next section to clone Vapor packages manually on Ubuntu. Otherwise, you're all set to continue the installation of Vapor on your Ubuntu.

 Option 2 – cloning Vapor packages manually

Optionally, you can add Vapor's APT repository manually if you have a problem using the script approach in the previous section:

Step 2a: Add Vapor APT repo manually (optional)
$ wget -q https://repo.vapor.codes/apt/keyring.gpg -O- | sudo apt-key add -
echo "deb https://repo.vapor.codes/apt $(lsb_release -sc) main" | sudo tee /etc/apt/sources.list.d/vapor.list
$ sudo apt-get update

 Installing Vapor on Ubuntu

You can install the Vapor packages after you have added the APT repository:

Step 3a: Install Vapor on Ubuntu
$ sudo apt-get install vapor

That's it. You now have Vapor properly installed on your Ubuntu. Try the following commands to double-check that the Vapor CLI works as expected:

Step 3b: Check Swift and Vapor installation
$ vapor --help

 Installing Kitura on Ubuntu

Kitura is fully tested on Ubuntu 14.04 LTS and Ubuntu 16.04 LTS. After you've downloaded and installed the Swift 4 Toolchain, install the following packages using the apt-get install command on Ubuntu.

 Installing required Linux system packages

Step 3a: Install required packages for Kitura
$ sudo apt-get update
$ sudo apt-get install clang libicu-dev libcurl4-openssl-dev libssl1.0-dev

These are the prerequisites for your Kitura installation. Kitura requires OpenSSL v1.0.x so it won't work with a newer version such as OpenSSL v1.1.x in some of the latest Linux system.

In order to install the Kitura CLI itself, you need to install Node.js and its package manager, npm, first. Node Package Manager (npm) is a CLI for managing modules in a Node.js project.

Install Node.js and npm using the apt package manager on Ubuntu:

Step 3b: Install the NPM package
$ sudo apt install nodejs npm

With the npm package manager properly installed on your machine, proceed to install the Kitura CLI via npm:

Step 3c: Install the Kitura package
$ npm install -g kitura-cli

The previous command will do a global installation of the Kitura CLI.

Run the following command to test the Kitura CLI tool you've just installed:

Step 3d: Test the installed Kitura
$ kitura --help

 Exploring Vapor Toolbox and the Kitura CLI

Vapor Toolbox and the Kitura CLI are provided to make your life easy with extensive command-line tools and to accelerate your server-side Swift project development effort with many useful boilerplate projects. Since Vapor and Kitura projects are built with Swift Toolchains, you also have access to an array of tools in Swift Package Manager (SPM), the standard software package manager for managing the distribution of Swift projects.

SPM includes the following handy commands:

	Useful CLI Commands
	Usage

	swift build
	Compiles the package in the current directory

	swift run
	Runs the executable in this package (for only one executable in the package)

	swift run
	Runs the executable in this package

	swift package resolve
	Resolves the dependencies and download missing packages

	swift package xcode-generateproj
	Creates an Xcode project and reset build scheme (Mac only)

	swift package init --type=executable
	Starts a new standard Swift application

	swift package init --type=library
	Starts a new standard Swift library

	swift package describe
	Parses Package.swift and lists all modules

	swift package show-dependencies
	Shows the dependency tree

For example, the swift package describe command is used to parse the content of Package.swift and it may be useful to verify whether the file can be parsed correctly.

 Using Vapor Toolbox Commands

The Vapor CLI command, vapor --help, comes in handy if you want to check out all available Vapor commands.

The output of this Vapor command looks like this:

Usage: vapor command
Join our Slack if you have questions, need help,
or want to contribute: http://vapor.team
Commands:
new Creates a new Vapor application from a template.
 Use --template=repo/template for github templates
 Use --template=full-url-here.git for non github templates
 Use --web to create a new web app
 Use --auth to create a new authenticated API app
 Use --api (default) to create a new API
 build Compiles the application.
 run Runs the compiled application.
 fetch Fetches the application's dependencies.
 update Updates your dependencies.
 clean Cleans temporary files--usually fixes
 a plethora of bizarre build errors.
 test Runs the application's tests.
 xcode Generates an Xcode project for development.
 Additionally links commonly used libraries.
 version Displays Vapor CLI version
 cloud Commands for interacting with Vapor Cloud.
 heroku Commands to help deploy to Heroku.
 provider Commands to help manage providers.
Use `vapor command --help` for more information on a command.

The following table lists all of the useful Terminal commands for managing your Vapor projects:

	Useful CLI Commands
	Usage

	vapor --help
	Lists all available commands and flags supported in the Vapor CLI

	vapor [command] --help
	Prints the usage for the given command

	vapor version
	Checks the current Vapor CLI version

	vapor new [name]
	Creates a new Vapor project with the supplied name

	vapor new [name] --template=api
	Creates a new project from the API template (default)

	vapor new [name] --template=web
	Creates a new project from the web template

	vapor new [name] --template=auth
	Creates a new project for the authenticated app

	vapor new [name] --template=[repo/template]
	Creates a new project from a GitHub template

	vapor build
	Builds the project in the current path

	vapor run
	Runs the compiled app in the current path

	vapor test
	Runs the unit tests contained in this project

	vapor xcode
	Creates Xcode project files for the project in the current path

	vapor clean
	Cleans up all temporary files

	vapor fetch
	Fetches the project's dependencies (but do not update)

	vapor update
	Updates all dependencies of the current project

	vapor cloud [command]
	Executes a Vapor Cloud command

	vapor heroku [command]
	Executes a Heroku command

	vapor [provider] [command]
	Executes a provider's command

	brew upgrade vapor
	Upgrades Vapor on macOS

	sudo apt-get update; sudo apt-get install vapor
	Upgrades Vapor on Ubuntu

 Getting help on a specific Vapor command

You can also get detailed information on a specific Vapor CLI command by inserting the command before the --help flag. For example, you use the following command to learn more about the vapor new feature:

$ vapor new --help

Vapor then prints out the detailed usage information about the new toolbox command:

Usage: vapor new <name> [--template] [--branch] [--tag] [--web] [--auth] [--api]
Creates a new Vapor application from a template.
 Use --template=repo/template for github templates
 Use --template=full-url-here.git for non github templates
 Use --web to create a new web app
 Use --auth to create a new authenticated API app
 Use --api (default) to create a new API
Arguments:
 name The application's executable name.
Options:
 --template The template repository to clone.
 Default: https://github.com/vapor/api-template.
 --branch An optional branch to specify when cloning
 --tag An optional tag to specify when cloning
 --web Sets the template to the web template: https://github.com/vapor/web-template
 --auth Sets the template to the auth template: https://github.com/vapor/auth-template
 --api (Default) Sets the template to the api template: https://github.com/vapor/api-template

 Exploring the Kitura CLI

Most of the CLI features in Kitura are encompassed in Kitura Application Generator (KAG), which allows you to configure a new Kitura project in a question and answer way. If you just need a basic starter project, you can simply use the kitura init command:

	Useful CLI Commands
	Usage

	kitura init
	Creates a basic starter project

	kitura create
	Creates an application using KAG

The rest of this section will cover the usage of KAG.

 Using KAG

The kitura create command will launch Kitura's powerful application generator. If you don't want to customize the boilerplate for your Kitura project, you can simply skip this tool and use kitura init to create a basic starter project.

Once you've launched the application generator using the kitura create command, it's going to take a few minutes for KAG to extract dependent packages. Then, you'll be prompted for the name and directory of your project:

Initialization prompts? What's the name of your application? newWorld?
Enter the name of the directory to contain the project: newWorld

In the previous output, you use newWorld as your application name and choose newWorld as the directory name for your project.

Next, choose either one of the project types:

Select type of project: (Use arrow keys)
 Scaffold a starter
Generate a CRUD application

The scaffolded application option allows you to create a boilerplate with frontend and backend-for-frontend features you can choose.

The CRUD application option assumes your web service to have a data model and the application generator will provide endpoints to perform CRUD (Create, Retrieve, Update, and Delete) operations for your data.

Let's choose to build a scaffolded application here. You'll use a CRUD application boilerplate only if you want to create a Kitura application that serves as a backend database server.

 Selecting a scaffolded application

For a scaffolded application, the application generator allows you to choose from one of the three preset options:

	Basic Preset:

	Embedded metrics dashboard

	Docker files

	Web Preset:

	Static web file serving

	Embedded metrics dashboard

	Docker files

	Backend for Frontend (BFF) Preset:

	Static web file serving

	Swagger UI

	Embedded metrics dashboard

	Docker files

The Basic Preset adds embedded metrics dashboard capability to gather application and system metrics and adds several Docker files for easy deployment of your project using container technology.

The Web Preset is a superset to Basic Preset and has additional file structure for serving static web content.

The Backend for Frontend (BFF) Preset adds Swagger UI to the Web Preset. Swagger UI is also known as an Open API (https://www.openapis.org), which is an industry initiative to create vendor-neutral and open specification for providing technical metadata for RESTful APIs. RESTful API stands for a programmatic interface using representational state transfer (REST) technology. We will cover the topic more in Chapter 12, Deploying to Cloud when we discuss API Gateway.

For the newWorld application, choose the Basic Preset.

 Choosing additional services

Once you have selected one of the presets, the application generator will prompt you to select which additional services you want to include:

Generate Boilerplate for Services:

	[] Cloudant / CouchDB

	[] Redis

	[] MongoD

	[] PostgreSQL

	[] ElephantSQL

	[] Object Storage

	[] AppID

	[] Auto-scaling

	[] Watson Conversation

	[] Alert Notifications

	[] Push Notification

Skip all of these additional services for the newWorld application. Also, select default options for the rest of the prompts.

Now, KAG is ready to create the project for you. The output looks like the following:

 create .swiftservergenerator-project
... [deleted]
create Jenkinsfile
Apple Swift version 4.1.2 (swiftlang-902.0.54 clang-902.0.39.2)
Target: x86_64-apple-darwin17.4.0
Fetching https://github.com/IBM-Swift/Kitura.git
... [deleted]
Compile Swift Module 'newWorld' (1 sources)
Linking ./.build/x86_64-apple-macosx10.10/debug/newWorld
swift build command completed
generated: ./newWorld.xcodeproj
generate .xcodeproj command completed
Next steps:Change directory to your app
$ cd /Users/fyeung1/Downloads/Packt/ch3/kitura/newWorld
Run your app
$.build/debug/newWorld

As you can see, KAG will create a basic boilerplate project similar to that generated by kitura init. However, KAG allows you to add more features to the starting project. You'll find it very useful to start a new project quickly.

 Summary

In this chapter, you've been provided with step-by-step instructions on how to install both Vapor Toolbox and the Kitura CLI on Mac or Linux. Whether Mac or Linux, your system is now ready for some serious server-side Swift project development. You've also learned the usage of some of the most useful command-line tools offered by the Swift Package Manager, Vapor Toolbox, and the Kitura CLI. In the next chapter, you're going to explore these tools to develop your first web applications using the Vapor and Kitura frameworks.

 Building Your First Web App

This chapter takes you directly to server-side Swift coding with detailed instructions on creating a new web app project from a template provided in the web framework. You'll be guided to create, build, run, and test a Hello World! web app using Vapor 3.0. The files and directories in a typical Vapor web app will be reviewed, and their usages will be further explained. After that, you'll learn how to expand the features of the web app by adding more new routes to handle additional requests from client. You will continue your journey to create a similar Hello World! web app with the Kitura web framework. After going through an exercise showing you how to build a simple web app with both Vapor and Kitura, you'll take note of the similarities between the two web frameworks and appreciate the different approaches taken by them.

Before we move ahead, let's take a look at the topics that will be covered in this chapter:

	Creating an app using Vapor CLI

	Reviewing source code in Vapor boilerplate

	Adding more routes in Vapor

	Creating an app using Kitura CLI

	Reviewing source code in Kitura boilerplate

	Adding more routes in Kitura

 Creating an app using Vapor CLI

By now, you should have the Vapor Toolbox installed on your system. Let's start creating a Hello World application using a boilerplate project provided by Vapor Toolbox.

 Creating a hello world app from a template

Use the vapor new command to create a new project from the default template:

Step 1: Create helloWorld app from the default template
vapor new helloWorld

You'll see the following output on the Terminal:

Vapor created the project helloWorld and put it in a new directory with the same name.

 Building the hello world app

Your helloWorld Vapor app is already functional.

Enter the project directory and type in the vapor build command to build the helloWorld app:

Step 2: Build the current project
cd helloWorld
vapor build

The first command, cd is to change the current directory to the helloWorld directory. The second command tells Vapor to start fetching and installing all the dependencies and then building the project itself.

The building process may take a few minutes:

No .build folder, fetch may take a while...
Fetching Dependencies [Done]
 Building Project [Done]

Since you are building the application for the first time, the Swift compiler will create the .build folder in your current directory to store all installed dependencies, temporary files, and executables.

 Running the hello world app

Now you are ready to use the vapor run command to execute the app in the current directory:

Step 3: Run the app in the current directory
vapor run

Your helloWorld app will be running:

Running helloWorld ...
 [INFO] Migrating 'sqlite' database (FluentProvider.swift:28)
 [INFO] Preparing migration 'Todo' (MigrationContainer.swift:50)
 [INFO] Migrations complete (FluentProvider.swift:32)
 Running default command: .build/debug/Run serve
 Server starting on http://localhost:8080

To see your app in action, launch your web browser and go to the URL http://localhost:8080/hello:

The hello path in the URL is the name of a route that is handled in the application to print out the string Hello, world!.

If you want to stop the execution of the application, use the Ctrl + C command in the Terminal.

 Converting to the Xcode project on a Mac

As explained before, you can optionally take advantage of the powerful editing and debugging features of Xcode if you use macOS. The Vapor Toolbox CLI provides a convenient way for you to generate an Xcode project file from a generic Vapor project.

	In the current directory of your Vapor project, run the following Vapor Toolbox CLI command:

Step 4: Generate Xcode project files
vapor xcode

	After a few minutes, Xcode project files will be generated. When you are prompted with the question Open Xcode project?, Press Y to open your project in Xcode:

	From the toolbar at the top left corner of Xcode, select the Run scheme and My Mac device. Then, click on the Play button (command + R) at the top left of Xcode to build and run your Xcode project. You should see the message Running Run : Run at the top.

Open the URL http://localhost:8080/hello again in your web browser; you should see the Hello, world! message. It confirms that Xcode is running your helloWorld Vapor app.

 Reviewing source code in Vapor boilerplate

The following diagram gives you an overview of the boilerplate generated from Vapor's default template:

The Package.swift is used by Swift Package Manager during build time to configure your project's package. The package description comprises essential information such as application name, dependencies on other packages, and different build targets supported in your project.

There are three modules in the project: helloWorld, App, and AppTests. (The diagram only shows the helloWorld and App modules, but the AppTests module will be soon reviewed in the next chapter.) The functions and classes in the files in helloWorld and App modules are invoked in the following order:

	The helloWorld executable contains a single entry point in main.swift that calls app() to create an application instance and invokes the instance's run() method to boot your app server.

	The App module contains all of your server application logic. The app() function in app.swift first calls configure() to register all services properly, then it will create an application instance, followed by a call to boot().

	configure() in configure.swift registers all services required for your application:routes, middleware, Fluent providers, SQLite database, and migrations.

	The routes() in routes.swift is called to register routes and configure controllers that handle all the requests routed to them.

	Vapor includes a sample controller, TodoController class in /Controllers/TodoController.swift, in the default project to show how to interact with the data model and perform operations such as query, create, and delete.

	The data model, Todo class in /Models/Todo.swift, is a sample model subclassing from SQLiteModel. It is also extended to support migration, content, and parameter to take advantage of the rich built-in features offered by Vapor.

	The boot() in boot.swift has no any code implementation. It is a placeholder for you to put any initialization code after the application instance is created.

See Appendix A: Vapor Boilerplate Project, for a more detailed review of the files generated in a Vapor boilerplate project.

 Adding more routes in Vapor

This section will show you how to add more routes in Vapor:

	Open the routes.swift file from Project Navigator on Xcode's left panel and add the following code to the line right before the closing brace at the bottom:

. . .
router.get("greet", String.parameter) { req -> String in // [1]
 let guest = try req.parameters.next(String.self) // [2]
 return "Hi \(guest), greetings! Thanks for visiting us." // [3]
}
. . .

	The preceding code does three things:

	Add a new route using greet as the first parameter from the path components and specifying the second parameter to be a string.

	Extract the guest string from the request's next item in its parameters list.

	Interpolate the guest string in the string returning to the client.

If you build and run your project again, you can see the following output by directing your web browser to http://localhost:8080/greet/Neil. Take note that the path is case-sensitive. For example, the N in Neil is capitalized:

	Now, you can add another route to show how your application will respond to different requests. Add the following code to the line right after the greet route but before the final ending brace:

. . .
router.get("student", String.parameter) { req -> String in
 let studentName = try req.parameters.next(String.self) // [1]
 let studentRecords = [// [2]
 "Peter" : 3.42,
 "Thomas" : 2.98,
 "Jane" : 3.91,
 "Ryan" : 4.00,
 "Kyle" : 4.00
]
 if let gpa = studentRecords[studentName] { // [3]
 return "The student \(studentName)'s GPA is \(gpa)" // [4]
 } else {
 return "The student's record can't be found!" // [5]
 }
}
. . .

	The new route, student, will be added. Depending on the student's name, the logic handling the route will respond differently:

	Assign the next item on the request's parameters list to be the student name studentName

	Create a new array studentRecords that contains key-value pairs for the student's names and their GPA

	Unwrap the studentRecords using a student's name

	Format queryResponse with a student's name and their GPA

	Format queryResponse if the student's record can't be found

If you point your web browser to localhost:8080/student/Jane, you'll get an output text that looks like this:

Alternatively, you can run the curl command in a Terminal:

$ curl "http://localhost:8080/student/Jane"
The student Jane's GPA is 3.91

The student's name in client's request is used to check against the keys in an array with key-value pairs. You'll see in future chapters how we create controllers to implement logic in processing such query. The array of key-value pairs can be also replaced with a database for data recording and retrieval.

 Creating an app using Kitura CLI

After your first Hello World application in Vapor, let's do the same using Kitura CLI to create a similar Hello World application in Kitura.

 Creating a hello world app from a default template

	First, create a new directory called helloWorld and change the directory to helloWorld:

Step 1a: Create a new directory for your project
$ mkdir helloWorld
$ cd helloWorld

Kitura CLI will use the current directory's name to create your project and put all the files in the same directory.

	Next, use the kitura init command to create a new project from the default Kitura template:

Step 1b: Create helloWorld app using the default Kitura template
$ kitura init

This step not only creates the project by fetching dependencies and setting up the project environment for you but also builds the project right away. It takes Kitura several minutes to fetch dependencies and build the helloWorld project for you:

create .swiftservergenerator-project
 create .gitignore
 create .swift-version
 create LICENSE
 create Sources/Application/InitializationError.swift
 create Sources/Application/Application.swift
 create spec.json
 create Tests/ApplicationTests/RouteTests.swift
 create Tests/LinuxMain.swift
 create Sources/Application/Metrics.swift
 create Sources/Application/Routes/HealthRoutes.swift
 create README.md
 create Sources/Application/Routes/.keep
 create iterative-dev.sh
 create Sources/kitura/main.swift
 create Package.swift
 create cli-config.yml
 create Dockerfile
 create Dockerfile-tools
 create .dockerignore
 create manifest.yml
 create .cfignore
 create .bluemix/toolchain.yml
 create .bluemix/deploy.json
 create .bluemix/scripts/container_build.sh
 create .bluemix/scripts/kube_deploy.sh
 create .bluemix/pipeline.yml
 create chart/kitura/Chart.yaml
 create chart/kitura/templates/deployment.yaml
 create chart/kitura/templates/service.yaml
 create chart/kitura/templates/hpa.yaml
 create chart/kitura/templates/istio.yaml
 create chart/kitura/templates/basedeployment.yaml
 create chart/kitura/values.yaml
 create chart/kitura/bindings.yaml
 create Jenkinsfile
 Apple Swift version 4.1.2 (swiftlang-902.0.54 clang-902.0.39.2)
 Target: x86_64-apple-darwin17.4.0
 Fetching https://github.com/IBM-Swift/HeliumLogger.git
 Fetching https://github.com/IBM-Swift/CloudEnvironment.git
 Fetching https://github.com/RuntimeTools/SwiftMetrics.git
 Fetching https://github.com/IBM-Swift/Health.git
 swift build command completed
 Updating https://github.com/IBM-Swift/HeliumLogger.git
 Updating https://github.com/IBM-Swift/Health.git
 Updating https://github.com/RuntimeTools/SwiftMetrics.git
 Updating https://github.com/IBM-Swift/CloudEnvironment.git
 generate .xcodeproj command completed
 Next steps:
Change directory to your app
$ cd /Users/fyeung1/Code/kitura
Run your app
$.build/debug/kitura

After the build of the Kitura application is successful, the command outputs the recommended next steps for running the application.

 Running your Kitura app from a Terminal

When the building process finishes, you are ready to launch the app server and test it with a web browser or the curl command in the Terminal.

Launch the debug version of your helloWorld app:

Step 2a: Run the app from Terminal
$.build/debug/helloWorld

Alternatively, you can run the swift run command to launch the application:

Step 2b: Run the app from Terminal
$ swift run

 Running your Kitura app from Xcode

Unlike Vapor Toolbox, which takes an additional step to create Xcode project files, the Kitura init command automatically creates Xcode project file for you. If you don't want to launch the app from the Terminal, you can open the Xcode project file and run it from Xcode:

Step 2b: Open helloWorld.xcodeproject to launch Xcode
$ open ./helloWorld.xcodeproj

The Xcode screen looks as follows:

From the toolbar at the top-left corner of Xcode, select the helloWorld scheme and then My Mac device. After clicking on the Play button (command + R), you should see the message Running helloWorld : helloWorld at the top.

 Testing the app with a web browser client

Once your helloWorld app server is running, you can use a web browser and go to the URL http://localhost:8080.

If you see a screen that looks as follows, it confirms that your Kitura build environment has been set up correctly and that the helloWorld Kitura application is running as expected:

 Reviewing source code in Kitura boilerplate

The following diagram illustrates the source code files generated from the last section:

The Package.swift is used in the same way as that in a Vapor project. Your application's name, required package dependencies, and different build targets are configured in this manifest file.

A typical Kitura project is partitioned in a similar fashion as in a Vapor project; an application executable module, a test-executable module, and a core application module with all of your application logics:

	There is only one Swift file in the helloWorld executable module. It serves as an entry point for your project and does several things: It configures Kitura's Helium logger to be used in this project, creates an App() instance, and calls the instance's run() function. The entry point is implemented in a do-try-catch block to catch any runtime errors in your project. In run(), it first calls the postInit() function, then it will configure a HTTP server and start running a Kitura application instance.

	The App() class used in the main.swift file's do-try-catch block is defined in Application.swift. Before an instance of App() is being constructed, the initializer function init() will be called. The init() function will in turn call initializeMetrics().

	The initializeMetrics() function is implemented in Metrics.swift. It creates three metrics monitoring instances: a SwiftMetrics to gather performance metrics, a SwiftMetricsDash to enable a dashboard web page that displays the performance metrics, and a SwiftMetricsPrometheus to allow the performance metrics to be used in application clusters monitoring tool.

	In the basic template, the postInit() function in main.swift sets up only one endpoint: Health Route, by calling the initializeHealthRoutes(app:) function that is defined in HealthRoutes.swift. initializeHealthRoutes(app:) handles the response to the /health endpoint. Any routes such as this Health Route are initialized after an app instance is created, but before a Kitura server is started.

	Initialization.swift contains only one struct InitializationError() that is inherited from Error() struct. It gives you a chance to modify error messages when there is an error during initialization.

See Appendix B: Kitura Boilerplate Project, for a more detailed review of the files generated in a Kitura boilerplate project.

 Adding more routes in Kitura

You can add more routes to your project as follows:

	Open Application.swift in Xcode and add the following code to the line right after initializeHealthRoutes(app: self) in the PostInit() function:

. . .
// add after initializeHealthRoutes(app: self)
router.get("/greet") { request, response, next in // [1]
 if let guest = request.queryParameters["guest"] { // [2]
 response.send("Hi \(guest), greetings! Thanks for visiting us.") // [3]
 } else {
 response.send("Hi stranger, It's nice meeting with you.")
 }
}

router.get("/student/:name") { request, response, next in // [4]
let studentName = request.parameters["name"]!

let studentRecords = [// [5]
 "Peter" : 3.42,
 "Thomas" : 2.98,
 "Jane" : 3.91,
 "Ryan" : 4.00,
 "Kyle" : 4.00
]

var queryResponse : String

if let gpa = studentRecords[studentName] {
 queryResponse = "The student \(studentName)'s GPA is \(gpa)" // [6]
} else {
 queryResponse = "The student's record can't be found!"
}
response.send(queryResponse) // [7]
. . .

	Similar to what you have done in the helloWorld Vapor project, the preceding code adds two routes, greet and student, to your Kitura project and processes them in the following ways:

	[1] Add the path greet with the query parameter guest

	[2] Retrieve the guest parameter from the request using queryParameters()

	[3] Send a response using response.send()

	[4] Add the path student followed by the path parameter's name

	[5] Create a dictionary with a name and GPA key-value pairs

	[6] Use the name as a key to retrieve the GPA and customize the response

	[7] Send the response with a customized message using response.send()

The first endpoint handles a request with query parameter and returns a response like this:

$ curl "http://localhost:8080/greet?guest=Neil"
Hi Neil, greetings! Thanks for visiting us. Unfortunately, there is nothing too much to see here.

The second endpoint handles a request with path parameter and returns the following response:

$ curl "http://localhost:8080/student/Jane"
The student Jane's GPA is 3.91

There are three parameters that are passed to a router's closure: request, response, and next in.

	The request parameter contains all the information about the incoming HTTP request. The /greet endpoint demonstrates a path with query parameters, that is, localhost:8080/greet?guest=Neil, you can use the request's queryParameter() to retrieve it. Kitura also allows you to use a path with a parameter, as shown in the /student endpoint. A path parameter is the parameter name prefixed with a colon. In the preceding code, you use the request object's parameters array to retrieve the path parameter. If you want, you can add as many path parameters as you want, as long as each path parameter is unique.

	The response parameter provides you with a flexible way to return data going out to the requestor. In this example, your response is simply a string message. However, you can also include status code, formatted headers, [String: Any] dictionary, or even a JSON object in your response.

	The next parameter is the next handler that should be invoked for the route. Kitura allows more than one handler for each endpoint. To let the next handler have an opportunity to run its code, you need to call next() right before you have finished using your router code:

. . .
router.get("/greet") { request, response, next in
 if let guest = request.queryParameters["guest"] {
 response.send("Hi \(guest), greetings! Thanks for visiting us.")
 } else {
 response.send("Hi stranger, It's nice meeting with you.")
 }
 next() // [1]
}
router.get("/greet") { request, response, next in
 response.send(" Unfortunately, there is nothing too much to see here.")
}
. . .

In the preceding code, there are two handlers for the /greet endpoint. The next() call at [1] is added to the first handler of the /greet endpoint so the second handler of the /greet endpoint has a chance to handle the request. The output will look like this:

Try removing the next() statement and you will see that the second handler no longer works.

 Summary

You've started doing a lot of hands-on coding in this chapter. First, you learned how to use the vapor new command to create a Hello World application from a boilerplate project. You moved on to add more routes to the application, and then used the commands vapor build and vapor run to build and run the application. Next, you did the same exercise with Kitura CLI; you used kitura init to construct a starter boilerplate, added the same routes as you did in Vapor, then used swift build and swift run commands to build and run your Kitura application. Overall, this is a good introductory chapter to some hands-on coding with Vapor and Kitura. In the next chapter, let's learn some good techniques for debugging and testing your server-side Swift projects.

 Debugging and Testing

A seasonal developer spends far more time on debugging and testing code than writing code, in a typical software project. This chapter introduces the basics of writing tests for a server-side Swift project and recommends the best practice in debugging server-side Swift code. When it comes to a web development framework, both the Vapor and Kitura frameworks offer very good testing and debugging support. You are going to learn how to use the test framework in Swift and logging features in Vapor and Kitura to help debugging and error-proofing your code.

This chapter covers writing tests for server-side Swift projects as well as debugging in server-side Swift.

The following is a list of topics on debugging for server-side Swift:

	Using the Logging API in a Vapor project

	Using the Logger API in a Kitura project

	Debugging using the HTTP traffic monitoring tool

 Writing tests for server-side Swift projects

Writing tests is an important part in server-side Swift development. A server-side test is different from that of a client side test because server-side code involves a lot of querying different APIs by clients, or writing calls to other backend cloud services or microservices. You need to write tests that intercept calls dynamically. To do that, you instantiate and run a server instance, then you simulate the runtime environment using known data and match the output with the expected result.

If the data required for a test is not available, you can make up something using fake data or simulated data. A test is passed only if the results are validated and matched with your expectation. You don't just test if a feature works correctly when presented with valid data. You should also check if a feature fails gracefully and consistently with invalid data. Graceful failure is part of the overall user experience for your server product.

When writing each test, keep in mind that each test is independent from each other. One test cannot rely on the result from another test. This approach is called unit testing. Sometimes it is helpful to construct helper methods to handle repetitive steps common to all unit tests. It is okay to repeat some operations in every unit test so that each test is totally decoupled from each other. You'll see shortly that there are good coding techniques that promote code re-using in writing tests in Swift.

Besides unit tests, there is another kind of test called an integration test. Integration testing is useful when you want to validate how different methods work correctly together. Since more business logic is involved in integration testing, you can expect to have more complicated test cases. Therefore, it is beneficial for you to have good coverage in unit tests. Unit testing helps you identify problems earlier and reduce the need for complicated debugging efforts for the defects discovered later in integration testing.

 Preparing a test executable target

In general, you want to create two executable targets for your project: one for the main application and another for the test application. Since Swift builds and runs one application at a time, you have to make your code testable by splitting the code into an application and library. The library will contain most of your business logic. The test executable file is separated from the main executable file. Both executable targets will be dependent on the core library you've just created.

In Package.swift of your Vapor 3 boilerplate project, you can see a test executable target defined:

 .testTarget(name: "AppTests", dependencies: ["App"])

This test target is named AppTests and it is dependent on a library called App.

You can add more test targets to a project by inserting a new test target into Package.swift. You simply choose one of the targets to run the tests contained in the target.

 Writing tests using XCTest

The following diagram illustrates how you can build a test using the XCTest framework in Swift:

When running tests, XCTest finds all the test classes in our application. Each test class is a subclass of XCTestCase [1]. XCTest runs the setUp() method [2] and then all of the class's test methods.

Each test method [3] that implements a test always has the prefix test, takes no parameters, and returns no values. A test method may have an optional block called addTeardownBlock(_:) for us to add additional cleanup code. This is useful if we need to destroy a resource created locally in the test method.

If XCTest runs out of all the test methods, it will run the class teardown method [4] and move on to the next class. This process is repeated until all test classes are executed.

The static array allTests [5] is an object XCTest used to know which tests to execute. It is there to keep the tests compatible for a Linux environment. If you would like to run a Swift test in Linux, you'll need to create the LinuxMain.swift file that calls allTests. The LinuxMain.swift file shown here is automatically generated by Kitura CLI:

// LinuxMain.swift file for Linux
import XCTest

@testable import ApplicationTests

XCTMain([
 testCase(RouteTests.allTests), // [1]
])

LinuxMain.swift acts as the test runner for Linux platforms. It calls XCMain(_:) which lists all your test cases [1].

 Checking out test cases in a Vapor boilerplate project

Now that you've learned the basic workflow of how XCTest runs tests, it makes sense for you to check out the default test cases in a Vapor boilerplate project. The default test case template in a Vapor project gives you a bare-bones implementation of tests without any testing logic. It serves as a simple starting point for you to add more real tests to your project.

File: /Tests/AppTests/AppTests.swift

import App
import XCTest // [1]

final class AppTests: XCTestCase { // [2]
 func testNothing() throws { // [3]
 // add your tests here
 XCTAssert(true) // [4]
 }

 static let allTests = [// [5]
 ("testNothing", testNothing)
]
}

The following is a list of what the preceding bare-bones source code does:

	Imports the XCTest module

	Declares a new class by subclassing from XCTestCase

	Defines the first test function with a test prefix

	Adds a dummy assertion that always turns out to be true

	Defines a static array that contains all test functions

The macro XCTAssert() in [4] asserts a given Boolean expression to be true. Swift actually provides many different macros for test assertions. Next, you'll check out some of the assertion macros useful for your tests.

 Learning useful assertion macros

Swift test assertions are useful in checking expected results in test methods. There is a family of macros similar to XCTAssert() to help evaluate any given conditions. Each macro optionally allows a literal NSString to describe what happens when there is a failure. For XCTAssert(), a failure is when the Boolean expression == false:

	Macro
	Usage

	XCTAssertTrue()
	Assert an expression to be true

	XCTAssertFalse()
	Assert an expression to be false

	XCTAssertNil()
	Assert an expression to be nil

	XCTAssertNotNil()
	Assert an expression to be not nil

	XCTAssertEqual()
	Assert two expressions to have the same value

	XCTAssertNotEqual()
	Assert two expressions to have the different value

	XCTAssertEqualObjects()
	Assert two objects to be equal

	XCTAssertNotEqualObjects()
	Assert two expressions to be different

	XCTAssertGreaterThan()
	Assert the value of one expression to be greater than another

	XCTAssertGreaterThanOrEqual()
	Assert the value of one expression to be greater than or equal to another

	XCTAssertLessThan()
	Assert the value of one expression to be less than another

	XCTAssertLessThanOrEqual()
	Assert the value of one expression to be less than or equal to another

	XCTAssertThrows()
	Assert an expression to throw an NSException

	XCTAssertNoThrows()
	Assert an expression not to throw an NSException

	XCTAssertThrowsSpecific()
	Assert an expression to throw an NSException with a specific name

	XCTAssertNoThrowsSpecific()
	Assert an expression not to throw an NSException with a specific name

 Adding a unit test to your project

Now you're ready to add your own unit tests to the Vapor 3 project you created in the last chapter. Previously, you added a new route called "student" and your web application allows a user to query for a student's record that was stored in the array studentRecords. You can add a unit test to AppTests.swift and check if this feature works as expected:

@testable import App // [1]
import XCTest
import Vapor // [2]

final class AppTests: XCTestCase {

 func testNothing() throws {
 // add your tests here
 XCTAssert(true)
 }
 func testStudent() throws { // [3]

 let myApp = try app(Environment.testing) // [4]

 let studentRecords = [// [5]
 "Peter" : 3.42,
 "Thomas" : 2.98,
 "Jane" : 3.91,
 "Ryan" : 4.00,
 "Kyle" : 4.00
]

 for (studentName, gpa) in studentRecords { // [6]

 let query = "/student/" + studentName;
 let request = Request(http: HTTPRequest(method: .GET,
 url: URL(string: query)!),
 using: myApp) // [7]

 // [8]
 let response = try myApp.make(Responder.self).respond(to: request).wait()

 guard let data = response.http.body.data else { // [9]
 XCTFail("No data in response")
 return
 }

 let expectedResponse = "The student \(studentName)'s GPA is \(gpa)"

 // [10]
 if let responseString = String(data: data, encoding: .utf8) {
 XCTAssertEqual(responseString, expectedResponse)
 }
 }
 }

 static let allTests = [
 ("testNothing", testNothing),
 ("testStudent", testStudent)
]
}

The following steps are used to unit test the /student route:

	Add the @testable attribute to the import statement for a high level of access

	Import the Vapor framework

	Add the testStudent() test function

	Create an app instance by calling the app() function

	Copy studentRecords[] from the routes() function in routes.swift

	Use a for loop to make queries for all students in studentRecords[]

	Construct an HTTP request

	Make the HTTP request and retrieve an HTTP response

	Unwrap the data optional of the HTTP response

	Assert the string of the HTTP response data to be the expected string

The @testable attribute in [1] is to elevate the access to the App module. Swift prevents an external entity from accessing anything declared as internal in a compiled module. If you elevate the access level to "public" for testability, it's going to reduce the benefits of type safety. Swift provides an alternative way to work around the access control problem of a module, if you enable the testability (use the -enable-testing compilation flag or set Build Settings | Enable Testability in Xcode) during its compilation. You'll be able to elevate the access when you add the @testable attribute to an import statement for the testing enabled module.

The implementation of a new test in [3] is straightforward. It illustrates the essential steps in making an HTTP request and handling its HTTP response. First, a new instance of app is created in [4] by calling the app()function in app.swift. Next, you copy the studentRecords[] array from routes.swift you used in the previous chapter and iterate each entry of the array for an HTTP request to the Vapor application. Since the request takes a definite time, you use the wait()function in [8] to make sure that you have received a valid HTTP response. In [10], the data of the HTTP response is then compared with the expected response.

 Running unit tests in Xcode

Xcode automatically scans all of your XCtestCase tests with a prefix of test, for example, testNothing(), and links them to a specific test target. You can use a new scheme configured by Xcode to use that target and run it within Xcode.

In Xcode, use + U or select from the menu Product | Test to run the tests in this test target:

The highlighted numbered sections in the image have a specific role.These roles are listed here:

	The AppTests class is inherited from XCTestCase

	The testNothing() function with the prefix test will be executed

	Icons will show whether or not AppTests and testNothing() have been executed successfully

	You can also run an individual test using the test's play button in Test Navigator

Use Test Navigator to give you an overview of all the available tests in a test target. It has a play button next to each individual test; you can choose to run a specific test individually.

Check the results of your test runs. In Xcode's console window, it prints out how many tests were run and how many of them failed.

 Checking code coverage

Xcode includes a convenient feature for you to check the coverage of your tests. The test coverage metric measures how much of your code is covered by the unit tests already implemented in your project. This metric gives you confidence that any code changes you made will be adequately tested. Even though you may not find it too useful to have a perfect test coverage, you generally want to maintain a high percentage of code coverage throughout your development. In this way, it is less likely for you to break any code as you make progress in adding incremental enhancements to your project.

 Turning on code coverage

The code coverage report option is not turned on by default because code coverage data collection incurs a performance penalty. You can turn on code coverage in the build target's scheme.

Click on the helloWorldPackageTests build target:

Then select the Edit Scheme option from the pull-down menu:

Choose the Test option from the left panel and enable the checkbox for the Gather coverage for all targets option at the bottom of the right panel:

 Generating a coverage report

When you run all the unit tests again, a code coverage report will be generated:

	Go to the Reports Navigator in Xcode and click on the { } Coverage item of the latest test:

2. A list of modules and functions is displayed:

If you expand the item list of App.framework, you'll see the percentage of coverage of your unit tests.

3. Double-click on the routes.swift file and Xcode will take you to the source editor:

You'll notice that some code is highlighted in red to bring your attention to them. They are the lines of code that haven't been executed by your tests.

The lines of code that have been executed before are highlighted in green, with the number of executions listed on the right. For example, in our testStudent()unit test, the "student" route is executed five times. It corresponds to the number of element pairs in studentRecords[].

Your goal is to increase the code coverage by adding additional testing logic that invokes the highlighted code missed in your previous tests.

In ensuring the proper coverage of unit tests in your project, you want to have every public method covered by at least one corresponding test. Each time, after writing a test for each public method, you can run the tests again and check the coverage.

If you follow this approach to cover as much code as possible, you're going to bring the total percentage of test coverage up. It is a very good habit for you to add new unit tests right after each new feature you have added to the project. Typically, a developer spends twice the amount of time on writing tests or debugging than writing the code. By adding unit tests incrementally and in a disciplined fashion, you will be eventually saving more time by reducing the number of defects occurring during runtime.

 Reviewing Kitura boilerplate tests

Writing tests for server-side Swift projects starting with the Kitura framework will be the same as what you've just learned with the Vapor framework, since both Kitura and Vapor use the same XCTest framework.

If you check out the boilerplate project created with kitura init, you will find more tests there. The first test, testGetStatic, shows you how to test a Kitura server running static content. The second test, testHealthRoute, demonstrates how to test the probing results of health on a Kitura server instance:

Now open the RouteTests.swift file, and you will see a typical XCTestCase implementation:

// ...
class RouteTests: XCTestCase { // [1]
 static var port: Int!
 static var allTests : [(String, (RouteTests) -> () throws -> Void)] { // [2]
 return [
 ("testGetStatic", testGetStatic)

 override func setUp() { // [3]
 super.setUp()

 HeliumLogger.use()
 do {
 // ... [not shown]
 let app = try App()
 RouteTests.port = app.cloudEnv.port
 try app.postInit()
 Kitura.addHTTPServer(onPort: RouteTests.port, with: app.router)
 Kitura.start()
 } catch {
 XCTFail("Couldn't start Application test server: \(error)")
 }
 }

 override func tearDown() { // [4]
 Kitura.stop()
 super.tearDown()
 }

 func testGetStatic() { // [5]
 // ... [not shown]
 }

 func testHealthRoute() { // [6]
 // ... [not shown]
 }
}

private extension URLRequest { // [7]
 // ... [not shown]
}

If you put aside the implementation details in the preceding code, you'll see the high-level constructs of XCTestCase class clearly:

	Declare RouteTests by subclassing from XCTestCase

	Include all tests that contains all target tests (for LINUX compatibility)

	Set up and run a new Kitura server instance

	Stop and tear down the current server instance

	Implement the logic for testing static content

	Implement the probe for the current server instance's health

	Use extensions to include implementation common to both tests

The RouteTests class takes advantage of setUp() and tearDown() methods in implementing a Kitura server instance used by each test. As explained before, each unit test will be independent from each other. You need to set up a new instance of the Kitura server each time a test is executed. The setUp() and tearDown() methods help you avoid writing repetitive code by reusing the server setup and teardown code.

Next, try to run the tests to see what results the two tests output. In Xcode, select the test target:

When you use the command + U command to run the test target in Xcode, the console window prints the following output:

 Handling asynchronous tests

Given the non-blocking asynchronous communication model in most of the server-side frameworks, each test often involves an asynchronous call to an API method. The callback of an asynchronous call contains the results of a test run. This means that the validation of the returned results of a test happen at an undetermined time later. You need to take precautionary measures to ensure that the thread for validating the result doesn't terminate prematurely.

The Kitura test boilerplate code shows you how to handle a non-blocking asynchronous situation elegantly:

func testGetStatic() {
 let printExpectation = expectation(description: "The /route will serve static HTML content.") // [1]

 URLRequest(forTestWithMethod: "GET")?
 .sendForTestingWithKitura { data, statusCode in // [2]
 if let getResult = String(data: data, encoding: String.Encoding.utf8){ // [3]
 XCTAssertEqual(statusCode, 200)
 XCTAssertTrue(getResult.contains("<html"))
 XCTAssertTrue(getResult.contains("</html>"))
 } else {
 XCTFail("Return value from / was nil!")
 }
 printExpectation.fulfill() // [4]
 }

 waitForExpectations(timeout: 10.0, handler: nil) // [5]
}

In this code, XCTestCase uses the class XCTestExpectation to help facilitate the communication to you when asynchronous test tasks are complete:

	Creates a new expectation

	Uses an URLRequest extension function to process the HTTP request/response

	Receives the HTTP response result asynchronously

	Marks an expectation instance as fulfilled

	Waits for the expectation to finish

You use the method expectation(description:) in [1] to create a new expectation with an associated description. The method returns an instance of XCTestExpectation that you can use. The description in the string will be displayed in the test log for this expectation to help diagnose failures.

When the asynchronous tasks in your test are done, call the expectation instance's fulfill() method in [4] to signal that the expectation is fulfilled.

To instruct XCTestCase not to end your test prematurely, you call waitForExpectation(timeout:handler:) in [5] and specify how much time you want to wait.

 Using extensions for functions common to all tests

Besides the setUp() and tearDown() methods in the Kitura test boilerplate code, you'll also find the same code reusing strategy in the extension URLRequest. Extensions in Swift add new functionality to an existing class for which you do not have access to the source code. In the URLRequest extension, the Kitura test boilerplate code extends the class URLRequest in the Swift Foundation library to include URL parsing and handling code specific to the Kitura server environment:

private extension URLRequest { // [1]
 // [2]
 init?(forTestWithMethod method: String, route: String = "", body: Data? = nil) {
 if let url = URL(string: "http://127.0.0.1:\(RouteTests.port)/" + route){ // [3]
 self.init(url: url)
 addValue("application/json", forHTTPHeaderField: "Content-Type")
 httpMethod = method
 cachePolicy = .reloadIgnoringCacheData
 if let body = body {
 httpBody = body
 }
 } else {
 XCTFail("URL is nil...")
 return nil
 }
 }

 func sendForTestingWithKitura(fn: @escaping (Data, Int) -> Void) { // [4]

 guard let method = httpMethod, var path = url?.path, let headers = allHTTPHeaderFields else {
 XCTFail("Invalid request params")
 return
 }

 if let query = url?.query {
 path += "?" + query
 }

 let requestOptions: [ClientRequest.Options] = [.method(method), .hostname("localhost"), \
 .port(8080), .path(path), .headers(headers)]

 let req = HTTP.request(requestOptions) { resp in

 if let resp = resp, resp.statusCode == HTTPStatusCode.OK || resp.statusCode ==
 HTTPStatusCode.accepted {
 do {
 var body = Data()
 try resp.readAllData(into: &body)
 fn(body, resp.statusCode.rawValue)
 } catch {
 print("Bad JSON document received from Kitura-Starter.")
 }
 } else {
 if let resp = resp {
 print("Status code: \(resp.statusCode)")
 var rawUserData = Data()
 do {
 let _ = try resp.read(into: &rawUserData)
 let str = String(data: rawUserData, encoding: String.Encoding(rawValue:
 String.Encoding.utf8.rawValue))
 print("Error response from Kitura-Starter: \(String(describing: str))")
 } catch {
 print("Failed to read response data.")
 }
 }
 }
 }
 if let dataBody = httpBody {
 req.end(dataBody)
 } else {
 req.end()
 }
 }
}

The following explains what this extension does:

	Declares an extension to URLRequest

	Includes a failable initializer

	Wraps the URL optional and retrieves its associated networking parameters

	Implements a function that constructs an HTTP request and processes its corresponding HTTP response

The init?() method in [2] is called a failable initializer. It means that the initialization can fail. For example, failure may occur when the networking parameters are incorrect or when a required external resource is not present. The pass/fail condition is checked when the supplied URL optional is unwrapped and validated.

The function in [4] is used by each test when sending an HTTP request and waiting for its HTTP response. It is a manifestation of the Separation of Concerns concept so each test can focus on validating the test results while the URLRequest extension function can focus on handling the HTTP request/response.

 Debugging in a server-side Swift project

There are in general two types of errors: one occurs in runtime and the other takes place during code compilation. Runtime errors are expensive because they are difficult to track and tackle. Swift enforces strong type checking to reduce the chance of your mistake slipping through compilation error checking and become a runtime error. Unit tests with good code coverage also help you discover problems during development time. However, when a runtime error does occur, you'll need a better strategy to cope with it.

This is especially true for a server-side project because it is hard to reproduce the same condition that caused a runtime error to happen when there could be so many different kinds of networking conditions and situations. Normally, you'll set breakpoints in your code for some conditions which you suspect to have caused an error, and then inspect the state of your code when an error did get triggered. In a server-side project, not all conditions are reproducible if a condition is caused by some external factors, such as the available capacity in the network infrastructure or the network bandwidth availability in the data center, which are out of your control.

Given the nature of problems common to server projects, there are some debugging techniques that could be more useful than others. Logging is one of those debugging techniques that is useful for a server-side Swift project. A logging framework provides useful utility functions that allow you to record, manage, and store useful logging information in your project. When a runtime error occurs, it allows you to trace back the steps that lead to a failure.

 Using the Logging API in a Vapor project

Vapor has its own pluggable logger framework. Since the Logging module is part of Vapor's Console package, it is included in all Vapor projects by default. You'll have access to all Logging APIs after you include import Vapor in a Swift file.

Vapor's Logging module includes the Logger protocol that declares common interfaces for all logger implementations. One example is SwiftyBeaver Logger for Vapor 3.0, https://swiftybeaver.com/. In Vapor 3.0, it includes a simple implementation, PrintLogger for the Logger protocol that prints out logging information on the Terminal screen.

The Logging module is intended to provide logging information while your Vapor app is running. It offers different log levels for you to classify different types of log messages:

	Log Level
	Usage

	verbose
	For logging messages including unimportant information

	debug
	For logging a diagnostic message for debugging

	info
	For logging an informational message

	warning
	For logging a warning message that needs your attention

	error
	For logging an error message

	fatal
	For logging a fatal error message

Typical Vapor Logger usage looks like this:

let logger = try container.make(Logger.self)
logger.info("Logger created!")

You can get an instance of Logger from any container in Vapor. A container in Vapor refers to a collection of registered services on an event loop and which are prescribed with specific configurations and environments.

Some common containers are application, request, and response. For example, you can get a Logger instance from Application:

let logger = try app.make(Logger.self)

Where app is an instance of your application.

 Using the Logger API in a Kitura Project

Similarly, Kitura provides a unified interface for different kinds of logger implementations. Kitura uses the LoggerAPI as the Logging API throughout its implementation. In a typical Kitura project, HeliumLogger is often used. HeliumLogger is a lightweight implementation of LoggerAPI and it is available as an open source project.

If you use kitura init to create a boilerplate for your project, you do not need to import LoggerAPI and HeliumLogger specifically, as the packages have already been included as dependencies in your Kitura project.

You'll find the import LoggerAPI and import HeliumLogger statements at the beginning of main.swift:

...
// main.swift
import LoggerAPI
import HeliumLogger

do {
 HeliumLogger.use(LoggerMessageType.info) // [1]
...
} catch let error {
 Log.error(error.localizedDescription) // [2]
}

This code snippet shows how LoggerAPI and HeliumLogger are used in your project:

	HeliumLogger is configured to use LoggerMessageType.info

	Calls Log.error() to log an error message

The LoggerMessageType is an enum consisting of the following message types:

	Message type
	Usage

	entry
	For logging entering into a function

	exit
	For logging exiting a function

	debug
	For logging a diagnostic message for debugging

	verbose
	For logging messages including unimportant information

	info
	For logging informational messages

	warning
	For logging a warning message that needs your attention

	error
	For logging an error message

The message types are listed in ascending order of severity levels. If you choose to use a message type with a higher severity level, messages with lower severity will not be shown. Consider the verbose severity level:

HeliumLogger.use(LoggerMessageType.verbose)

When the verbose severity level is chosen, the debug messages will not be shown because the debug message type has a lower severity level.

If you change the HeliumLogger message type setting from LoggerMessageType.info to LoggerMessageType.verbose in [1] and rebuild your project using command + R, you're going to see additional information logged and printed on screen with the [VERBOSE] message type:

. . .
 [Mon Jun 25 11:31:32 2018] com.ibm.diagnostics.healthcenter.loader INFO: Swift Application Metrics
 [2018-06-25T11:31:32.154+08:00] [VERBOSE] [Router.swift:108 init(mergeParameters:)] Router initialized
 [2018-06-25T11:31:32.200+08:00] [VERBOSE] [Router.swift:108 init(mergeParameters:)] Router initialized
 [2018-06-25T11:31:32.200+08:00] [INFO] [Metrics.swift:20 initializeMetrics(router:)] Initialized metrics.
 [2018-06-25T11:31:32.201+08:00] [VERBOSE] [Kitura.swift:104 run()] Starting Kitura framework...
 [2018-06-25T11:31:32.201+08:00] [VERBOSE] [Kitura.swift:118 start()] Starting an HTTP Server on port 8080...
 [2018-06-25T11:31:32.202+08:00] [INFO] [HTTPServer.swift:124 listen(on:)] Listening on port 8080
 [2018-06-25T11:31:32.202+08:00] [VERBOSE] [HTTPServer.swift:125 listen(on:)] Options for port 8080: maxPendingConnections: 100, allowPortReuse: false

Throughout your project, you can log different types of logging messages. Some examples are:

Log.warning("The input parameter is out of range!")
Log.debug("Variable x increments by 100.")
Log.error("Bummer! Something is not working well.")

Logging is a useful server-side development technique. Since your server application will be deployed and running on a hosted server remotely in a data center, logging is perhaps one of the best ways to detect problems and find out their root causes.

 Debugging using the HTTP traffic monitoring tool

If the logging information leads you to believe that an error was caused by a specific network condition, you shall take a further step to investigate the networking cause. Since all server-side Swift frameworks accept HTTP requests and return HTTP responses, you'll find the HTTP traffic monitoring tool useful.

 Debugging using Postman

One of such tools is Postman which you'll find very handy for all of your server-side Swift projects. You can download the tool at https://www.getpostman.com/.

The following screenshot shows you how to use Postman to analyze the HTTP response of a request using HTTP GET and the parameter localhost:8080/student/Ryan:

Run your helloWorld application for either Vapor or Kitura in the background. A response is available at the bottom after clicking on the Send button to send out the HTTP request you've created. You can check the headers as well as the body of the HTTP response from the server application.

 Debugging using the curl command in the Terminal

Another tool is the curl command that you can use to make HTTP requests in the Terminal.

Run your helloWorld application for Vapor with curl:

$ curl "http://localhost:8080/student/Jane"

Here is the output you expected:

The student Jane's GPA is 3.91

When verbose mode is enabled with the -v flag, curl will give out more information on the HTTP request and response:

$ curl -v "http://localhost:8080/student/Jane"
* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 8080 (#0)
> GET /student/Jane HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.55.1
> Accept: */*
>
< HTTP/1.1 200 OK
< content-type: text/plain; charset=utf-8
< content-length: 30
< date: Wed, 21 Nov 2018 06:46:44 GMT
<
* Connection #0 to host localhost left intact
The student Jane's GPA is 3.91

The curl command is extremely powerful. As you'll see in the next chapter, you can specify a curl command with HTTP POST and JSON data:

$ curl --header "Content-Type: application/json" --request POST --data '{"id":"2","title":"New Test","content":"New Content"}' http://localhost:8080/journal/

 Summary

In this chapter, you learned how to write tests for server-side Swift applications using the XCTest framework. Sample tests are provided in Vapor and Kitura boilerplate projects, giving you a head start in adding unit tests to your project. In addition, you learned how to run unit tests in Xcode and use the code coverage feature in Xcode to improve your code's overall coverage. Next, you learned about the logging frameworks in Vapor and Kitura, and then HTTP traffic monitoring tools, such as Postman and curl. These unit tests and debugging techniques for server-side Swift projects are useful as you develop complex server-side Swift projects in the next chapters.

 Setting Up Routes and Controllers

This chapter dives into the details of handling custom requests with routes and controllers. A route in a web framework is an object used to represent a custom request embedded in a URL, and a controller is the component that contains the business logic to handle the request routed to it. You'll learn how to add custom routes for requests, create controllers to handle the routes, and construct responses for the requests. You'll manipulate custom parameter types and process a group of routes in a collection. Finally, you'll learn how to take advantage of the Codable an class in Swift to encode and decode complex JavaScript Object Notation (JSON) objects in easy way.

Let's take a look at the topics covered in this chapter:

	Adding custom routes in a Vapor project

	Adding custom routes in a Kitura project

 Adding custom routes in a Vapor project

In a typical model–view–controller architecture, you'll consciously separate data from the controller code that handles the data and from the view that represents a snapshot of the data. The data structure of your custom data is defined by its model. Routes are the endpoints for a client to query for the data:

	Component
	Usage
	Recommended path in Vapor

	Model
	Description of data
	Sources/App/Models/

	View
	Representation of data
	Resources/Views/

	Controller
	Business logic of data
	Sources/App/Controllers

	Routes
	Endpoints for data querying
	Sources/App/Routes

In this chapter, you'll learn how to define the model of custom data used in a new application called myJournal, which is a server-side Swift power web application for personal journals.

 Modeling your data with content type

As a starter, use the following commands in the Terminal to create a new application myJournal from Vapor's boilerplate project:

$ vapor new myJournal
$ cd myJournal
$ vapor xcode

Create a new directory, /Sources/App/Models, in Xcode, and add a new Swift file, Entry.swift, to the newly created directory:

// Entry.swift
import Vapor

struct Entry {

 var id: String // [1]
 var title: String?
 var content: String?

 init(id: String, title: String? = nil, content: String? = nil) {
 self.id = id
 self.title = title
 self.content = content
 }
}

Entry is a simple structure representing a journal entry. It has three fields and an initializer. The id string field is a Universal Unique Identifier (UUID) that will uniquely identify an Entry item.

Vapor 3 offers the Content type for you to parse and serialize specific data types conveniently. Content is built upon Codable to take advantage of the new data-handling infrastructure introduced in Swift 4.0. Codable makes encoding and parsing JSON extremely easy.

To add the implicit JSON format conversion to your data structure, you simply make sure your data structure conforms to the Content type:

struct Entry: Content {
 ...
}

In addition to JSON, the Content type can be used to represent various other format types, such as protobuf, URLEncodedForm, and multipart. You can parse and serialize content of all supported types using the same API in Vapor.

Vapor would parse the following HTTP request sent to your application:

POST /new HTTP/1.1
Content-Type: application/json
{
 "id": "999",
 "title": "My First Day at College",
 "content": "Met with a lot of people."
}

The key names and data types of input data exactly matches with that of the struct you've created.

Every HTTP request has a content container. When you conform Entry to Content type, Vapor will be able to decode the HTTP request message and create a new Entry object that represents the decoded content.

The following code shows how to process a request via an HTTP POST:

router.post("new") { req -> Future<HTTPStatus> in
 return req.content.decode(Entry.self).map { entry in
 print("Appended a new entry: \(entry)")
 return HTTPStatus.ok
 }
}

The decode() function returns a future for HTTPStatus. Future is the value you'll receive at a later time when an asynchronous process is complete. Decoding content from a request is considered to be asynchronous because it takes time to process the multiple parts decomposed from the content.

The following shows how a HTTP GET request is handled:

router.get("get") { req -> Entry in
 return Entry(id: "999", title: "First Day", content: "Lots of fun")
}

It will return JSON-encoded data of Entry and adds a default HTTP response with a 200 OK status code.

 Using controller for logical operations

For simplicity, your myJournal application persists data in memory. You'll use database operations for permanent data storage later on.

Even though you are not using a database operation, you'll implement the typical Create, Read, Update, and Delete (CRUD) operations for your data. Create the JournalController.swift file in the /Sources/App/Controllers directory:

// Journal controller
import Vapor

final class JournalController {

 var entries : Array<Entry> = Array() // [1]

 //: Get total number of entries
 func total() -> Int { // [2]
 return entries.count
 }
 //: Create a new journal entry
 func create(_ entry: Entry) -> Entry? { // [3]
 entries.append(entry)
 return entries.last
 }
 //: Read a journal entry
 func read(index: Int) -> Entry? { // [5]
 if let entry = entries.get(index: index) {
 return entry
 }
 return nil
 }
 //: Update the journal entry
 func update(index: Int, entry: Entry) -> Entry? { // [6]
 if let entry = entries.get(index: index) {
 entries[index] = entry
 return entry
 }
 return nil
 }
 //: Delete a journal entry
 func delete(index: Int) -> Entry? { // [7]
 if let _ = entries.get(index: index) {
 return entries.remove(at: index)
 }
 return nil
 }
}

extension Array {
 func get(index: Int) -> Element? { // [4]
 if index >= 0 && index < count {
 return self[index]
 }
 return nil
 }
}

The journalController class performs the following operations:

	Declares an array to hold all the instances of Entry in memory

	Returns the number of entries in the array

	Appends a new Entry item to the array

	Adds a safe get(index:) function to the Array extension that checks for bounds

	Retrieves an Entry item identified by a zero-based index from the array

	Replaces a current item in the array with the supplied Entry item

	Deletes an item from the array

An array in [1] will be used as in memory persistence and holds the references for all Entry instances. The total() method in [2] gives out the total number of entries in the array. In [4], a safe get(index:) function is implemented as an extension to Array. It checks for the given index against the bounds of entries array. The functions in [3], [5],[6] and [7] implement the CRUD operations on the array.

 Using Vapor's route collection

Vapor allows you to use route collection in managing the collection of related routes. With route collection, you can divide your routes and let one sub-router that implements RouteCollection protocol handle a segment of routes. Each sub-router doesn't need to handle all routes, as it is responsible for the routes that it can handle only.

In /Sources/App/routes.swift, instantiate a RouteCollection and register it with the router:

import Vapor

/// Register your application's routes here
public func routes(_ router: Router) throws {

 let journalRoutes = JournalRoutes()
 try router.register(collection: journalRoutes)
}

Create the Routes directory under /Sources/App and add JournalRoutes.swift to this new directory:

// JournalRoutes.swift
import Vapor

struct JournalRoutes : RouteCollection { // [1]

 let journal = JournalController() // [2]

 func boot(router: Router) throws { // [3]
 // to be implemented later
 }
 // Add route handlers here // [4]
}

All the routes and their handlers will go to this new file. The JournalRoutes struct does several things:

	Implements the RouteCollection protocol

	Creates an instance of JournalController that works with in-memory persistence

	Adds the boot(router:) function to for one-time set up. Routes will be implemented here

	Adds the rest of the route handlers right after the boot(router:) function

Even though the implementation of RouteCollection is straightforward, it is extremely useful for organizing your routes into different functional areas. For example, you may want to use RouteCollection to conveniently designate user access level to different content areas.

 Grouping related routes

You'll find it convenient to group all routes for JournalController together. Vapor actually offers route grouping exactly for that.

Add the following route handlers to the JournalRoutes struct in the /Sources/App/Routes/JournalRoutes.swift file you've just created:

import Vapor

struct JournalRoutes : RouteCollection {

 let journal = JournalController()

 func boot(router: Router) throws {

 let topRouter = router.grouped("journal") // [1]
 topRouter.get(use: getTotal)
 topRouter.post(use: newEntry)

 let entryRouter = router.grouped("journal", Int.parameter) // [2]
 entryRouter.get(use: getEntry)
 entryRouter.put(use: editEntry)
 entryRouter.delete(use: removeEntry)
 }

 // Add route handlers here // [3]

The JournalRoutes struct lays out two groups of routes, as follows:

	It creates the route group /journal for routes that retrieve all entries with HTTP GET and posts a new entry with HTTP POST

	It creates the second route group, /journal/Int.parameter, for routes that retrieve an entry with HTTP GET, updates an entry with HTTP UPDATE, and removes an entry with HTTP DELETE

	It adds all the required route-handler functions right after the boot(router:) function

The first route group in [1] tells Vapor to direct all URL requests to /journal, while the second group in [2] directs all requests to /journal/Int.parameter itself. The path, Int.parameter, is a dynamic parameter. The closures in a route group can access this dynamic parameter using req.parameters.next().

 Implementing route handlers

Next, you will implement the handlers used in both route groups.

 Retrieving all entries

Append the getTotal() function to the line right after boot(router:):

func getTotal(_ req: Request) -> String {
 let total = journal.total()
 print("Total Records: \(total)")
 return "\(total)"
}

The function simply calls the JournalController total() function and return the total count of entries.

 Creating a new entry with a unique ID

Following getTotal(), add the following handler for creating a new entry:

func newEntry(_ req: Request) throws -> Future<HTTPStatus> { // [1]
 let newID = UUID().uuidString // [2]
 return try req.content.decode(Entry.self).map(to: HTTPStatus.self) { entry in // [3]
 let newEntry = Entry(id: newID,
 title: entry.title,
 content: entry.content) // [4]
 guard let result = self.journal.create(newEntry) else { // [5]
 throw Abort(.badRequest) // [6]
 }
 print("Created: \(result)")
 return .ok // [7]
 }
}

The newEntry(_ req:) function handles the creation of a new entry in several steps:

	Constructs a throwable function that returns a Future of HTTPStatus

	Uses Swift's UUID() to create a unique ID for the new entry

	Decodes the JSON object embedded in an HTTP request and serializes to an entry instance

	Instantiates a new entry object using the new ID

	Invokes the create() function of RouteController to add the new entry object to in-memory storage

	Throws an Abort if the last step returns nil

	Returns HTTPStatus.ok when reaching the end of the function

In [4], whatever ID that has been submitted is simply ignored, since the id field is always over-written with a new UUID. This guarantees that the id is unique, and this is very useful for you to debug the CRUD operations you've implemented.

The Abort in [6] is a default implementation of the AboutError protocol. Vapor always displays any error code specified in Abort to the end user, even in production mode where most error messages are suppressed.

 Retrieving an entry

The handlers in the route group /journal/Int.parameter deal with a specific entry. The first handler belonging to this route group is getEntry():

func getEntry(_ req: Request) throws -> Entry {
 let index = try req.parameters.next(Int.self) // [1]
 let res = req.makeResponse() // [2]
 guard let entry = journal.read(index: index) else {
 throw Abort(.badRequest)
 }
 print("Read: \(entry)")
 try res.content.encode(entry, as: .formData) // [3]
 return entry
}

There are several interesting steps in the preceding implementation:

	Retrieve the index of an Entry object, using the req.parameters.next() command

	Create a response instance by calling the makeResponse() method

	Serialize the Entry object that conforms to Content into a JSON object and return

All handlers in this route group use the same req.parameters.next() command in [1] to work with a specific Entry object. The line at [3] demonstrates how easy it is to serialize a data model into a JSON object once the model conforms to the Content protocol.

 Updating an entry

The handler for updating an entry is the second handler belonging to the /journal/Int.parameter route group:

func editEntry(_ req: Request) throws -> Future<HTTPStatus> {
 let index = try req.parameters.next(Int.self)
 let newID = UUID().uuidString
 return try req.content.decode(Entry.self).map(to: HTTPStatus.self) { entry in // [1]
 let newEntry = Entry(id: newID,
 title: entry.title,
 content: entry.content)
 guard let result = self.journal.update(index: index, entry: newEntry) else {
 throw Abort(.badRequest)
 }
 print("Updated: \(result)")
 return .ok
 }
}

The line at [1] shows that the JSON object is decoded and serialized into an Entry object, and then an array containing HTTPStatus is returned from the mapping of a result using map(to:).

 Deleting an entry

The last handler in the /journal/Int.parameter route group implements the deletion of an entry using the element's index:

func removeEntry(_ req: Request) throws -> HTTPStatus {
 let index = try req.parameters.next(Int.self)
 guard let result = self.journal.delete(index: index) else {
 throw Abort(.badRequest)
 }
 print("Deleted: \(result)")
 return .ok
}

 Testing the routes

Build and run your Vapor application:

 $ vapor build
 $ vapor run

You can check all the route handlers using Postman. For example, create a HTTP POST request to localhost:8080/journal/ while your Vapor application is running locally:

Alternatively, you can use the curl tool to make a request in the Terminal:

$ curl --header "Content-Type: application/json" --request POST --data '{"id":"2","title":"New Test","content":"New Content"}' http://localhost:8080/journal/

The output of the two tests looks like the following:

Server starting on http://localhost:8080
Created: Entry(id: "4BCDD028-ECF0-4D43-81FD-2C8318781480", title: Optional("11111"), content: Optional("111111"))
Created: Entry(id: "85EC887F-D0D5-4E10-A3B7-A76E0AF3D654", title: Optional("New Test"), content: Optional("New Content"))

 Adding custom routes in a Kitura project

Kitura offers powerful route-handling features similar to what you've learned about in the previous Vapor project. All Kitura versions since Kitura 2.0 take advantage of Codable in Swift 4.1 for JSON encoding and parsing, in a way similar to Content type in Vapor. In previous versions prior to Kitura 2.0, you would need to use a third-party library such as SwiftyJSON and write more tedious code for JSON encoding and decoding.

Just as Codable routing dramatically simplifies the handling of JSON-encoded data from a client's HTTP requests in the server, Kitura also provides a connector called KituraKit that mirrors Codable routing in the implementation of a client. With KituraKit, it simplifies the programming for JSON encoding and decoding via a concept called a client/server Contract.

Next, you'll conform your data model to Codable, implement Controller for logical operations, adding Codable routes, and handling Kitura routes.

 Modeling Codable data

You can run the following commands on the Terminal to create your myJournal application from the Kitura boilerplate project:

$ mkdir myJournal
$ cd myJournal
$ kitura init
$ swift run
$ open ./myJournal.xcodeproj

Create a new directory, /Sources/Application/Models, and add a new Swift file, Entry.swift, to the directory:

import Foundation

struct Entry: Codable {

 var id: String
 var title: String?
 var content: String?

 init(id: String, title: String? = nil, content: String? = nil) {
 self.id = id
 self.title = title
 self.content = content
 }
}

The implementation of the Entry data structure is similar to that in the myJournal Vapor project. While Kitura's Entry implements Codable protocol directly, Vapor's Entry implements Content, which builds on top of Codable.

 Using controllers for logical operations

Create the /Source/Application/Controllers directory and add the same JournalController.swift you have used in your myJournal Vapor project to this new directory:

File: /Sources/Application/Controllers/JournalController.swift:

import Foundation

final class JournalController {

 var entries : Array<Entry> = Array()

 //: Get total number of entries
 func total() -> Int {
 return entries.count
 }
 //: Create a new journal entry
 func create(_ entry: Entry) -> Entry? {
 entries.append(entry)
 return entries.last
 }
 //: Read a journal entry
 func read(index: Int) -> Entry? {
 if let entry = entries.get(index: index) {
 return entry
 }
 return nil
 }
 //: Update the journal entry
 func update(index: Int, entry: Entry) -> Entry? {
 if let entry = entries.get(index: index) {
 entries[index] = entry
 return entry
 }
 return nil
 }
 //: Delete a journal entry
 func delete(index: Int) -> Entry? {
 if let _ = entries.get(index: index) {
 return entries.remove(at: index)
 }
 return nil
 }
}

extension Array {
 func get(index: Int) -> Element? {
 if index >= 0 && index < count {
 return self[index]
 }
 return nil
 }
}

As you can see, the implementation of JournalController is agnostic to either the Vapor or Kitura framework. The JournalController.swift file here is identical to the same file in your previous Vapor project. Refer to the previous sections if you are looking for more details of the JournalController class.

 Implementing Codable routing

Now, you can proceed to implement route handlers that work with the controller's CRUD operations. Create another new directory, /Sources/Application/Routes, and add the following JournalRoute.swift file to it:

import Foundation
import Kitura

struct JournalRoutes {

 let journal = JournalController()

 func newEntry(entry: Entry, completion: (Entry?, RequestError?) -> Void) {
 let newID = UUID().uuidString
 if let result = journal.create(Entry(id: newID,
 title: entry.title,
 content: entry.content)) {
 print("Created: \(result)")
 completion(result, nil)
 } else {
 completion(Entry(id: "-1"), nil)
 }
 }

 func editEntry(id: Int, new: Entry, completion: (Entry?, RequestError?) -> Void) -> Void {
 let newID = UUID().uuidString
 if let result = journal.update(index: id,
 entry: Entry(id: newID,
 title: new.title,
 content: new.content)) {
 print("Updated: \(result)")
 completion(result, nil)
 } else {
 completion(nil, .notFound)
 }
 }

 func getEntry(index: Int, completion: (Entry?, RequestError?) -> Void) {
 if let entry = journal.read(index: index) {
 completion(entry, nil)
 return
 }
 completion(nil, .notFound)
 return
 }

 func removeEntry(id: Int, completion: (RequestError?) -> Void) -> Void {
 if let result = self.journal.delete(index: id) {
 print("Deleted: \(result)")
 completion(nil)
 return
 }
 completion(.notFound)
 }
}

The previous code is the implementation of four Codable CRUD routes. The Codable routing function that handles a HTTP POST request for a new entry takes in two arguments: an Entry object, and a completion closure:

func newEntry(entry: Entry, completion: (Entry?, RequestError?) -> Void) {
 let newID = UUID().uuidString
 if let result = journal.create(Entry(id: newID,
 title: entry.title,
 content: entry.content)) {
 print("Created: \(result)")
 completion(result, nil)
 } else {
 completion(Entry(id: "-1"), nil)
 }
 }

When the provided Entry object is successfully added to the in-memory array, the newEntry(entry:completion:) function calls completion(), which then automatically sends the HTTP response back to the client.

If an entry exists, an additional argument for the ID of existing entry is required. For the editEntry(id:new:completion:) function, it takes three arguments, the id of an existing Entry object, a new Entry object that is going to replace the existing one, and a completion closure:

func editEntry(id: Int, new: Entry, completion: (Entry?, RequestError?) -> Void) -> Void {
 let newID = UUID().uuidString
 if let result = journal.update(index: id,
 entry: Entry(id: newID,
 title: new.title,
 content: new.content)) {
 print("Updated: \(result)")
 completion(result, nil)
 } else {
 completion(nil, .notFound)
 }
}

The editEntry(id:new:completion:) function simply calls JournalController.update(index:entry:) to update the object in the in-memory array with the specified index. The function calls a completion() closure with an optional of Entry when the Entry object is successfully updated; otherwise, it calls a completion() closure with nil and .notFound error code.

The next two functions, getEntry(id:completion:) and removeEntry(id:completion), are also applicable to an existing Entry object so they both take in id and completion as arguments. The getEntry(id:completion:) function calls JournalController.read(index) to retrieve the existing Entry object:

func getEntry(index: Int, completion: (Entry?, RequestError?) -> Void) {
 if let entry = journal.read(index: index) {
 completion(entry, nil)
 return
 }
 completion(nil, .notFound)
 return
 }

Similarly, the removeEntry(id:completion:) function calls JournalController.delete(index) to delete the existing Entry object from the in-memory array:

func removeEntry(id: Int, completion: (RequestError?) -> Void) -> Void {
 if let result = self.journal.delete(index: id) {
 print("Deleted: \(result)")
 completion(nil)
 return
 }
 completion(.notFound)
 }

That's all the route handlers you're going to use. Next, you'll move on to define the endpoints.

 Handling Kitura routes

Finally, you can put everything together by specifying all the endpoints that connect routes to handlers.

In the postInit() method of the App class, you're going to tell the router to direct appropriate HTTP requests to the CRUD Codable routes defined in JournalRoutes.swift:

func postInit() throws {

 let journalRoutes = JournalRoutes() // [1]

 // Endpoints
 initializeHealthRoutes(app: self)

 router.get("/journal") { _, response, _ in // [2]
 let total = journalRoutes.getTotal()
 response.send("\(total)")
 }

 router.post("/journal", handler: journalRoutes.newEntry) // [3]
 router.get("/journal", handler: journalRoutes.getEntry) // [4]
 router.put("/journal", handler: journalRoutes.editEntry) // [5]
 router.delete("/journal", handler: journalRoutes.removeEntry) // [6]
}

The following operations are added to the previous code:

	Instantiate the JournalRoutes object

	Define a normal route handling closure

	Direct the handling of HTTP POST /journal to newEntry() of JournalRoute

	Direct the handling of HTTP GET /journal to getEntry() of JournalRoute

	Direct the handling of HTTP PUT /journal to editEntry() of JournalRoute

	Direct the handling of HTTP DELETE /journal to removeEntry() of JournalRoute

Both normal and Codable routing handlers are implemented. Since the normal route handling in [2] doesn't require its response data to be Codable, we can use a string in response.send(). The handlers in [3-6] direct route handling to the functions that use Codable data directly.

You can check Kitura's route handlers using Postman. For route handling in Kitura, it expects the HTTP request data to be URL encoded. Make sure that you choose the second option, as shown in the following screenshot:

 Summary

In this chapter, you learned how to add custom routes and controllers to your Vapor and Kitura applications. For simplicity, in-memory storage was used in both applications, but the controller classes can be later adopted to work with databases, which we will see in Chapter 8, Employing the Storage Framework. Both Vapor and Kitura make their data models conform to the Codable for Encodable and Decodable protocols, making the handling of JSON conversion to data models extremely easy. In the next chapter, you'll continue to build upon the routes and controllers code you have and apply template engines to create and render web pages automatically.

 Working with Template Engines

This chapter introduces you to two templating engines: Leaf for Vapor and Stencil for Kitura. Templating languages allow you to work with content automatically generated by a script. For dynamic content, you'll learn how template engines help to accelerate development for dynamic web pages. Dynamic content creation is useful when presenting results of data generated at run-time and that are not known beforehand. For static content, you'll learn how templating engines help to ensure a consistent structure, such as headers and footers, and appearance characteristics, such as color scheme and background. You'll further get introduced to the nuts and bolts of the Leaf and Stencil templating languages and learn how to use variables and tags in template scripts to communicate information between Swift classes and script functions.

Let's take a look at the topics covered in this chapter:

	Using the Leaf templating engine in Vapor

	Templating with Stencil in a Kitura project

 Using the Leaf templating engine in Vapor

Leaf is Vapor's official templating engine and it was created specifically for Vapor. With the template engine, you'll find it easy to pass information from the Swift source code to the Leaf template. The compiled templating source code will then be used to render the final HTML content automatically for you.

There are many different reasons for using a template language. First, you can use templates to help reuse code that's shared across multiple web pages. Next, you can use various tagging syntax to help generate code dynamically and programmatically. Finally, you can embed one template into another and doing so helps you accelerate the development of content.

You will continue the myJournal project from the previous chapter and use the Leaf template engine to enhance the project's features.

 Configuring the Leaf templating engine

In order to use Leaf template engine in your Vapor project, you're required to configure for it using the Swift Package Manager.

In Package.swift, add the Leaf template engine as one of the package dependencies and include Leaf in the App build target:

// swift-tools-version:4.0
import PackageDescription

let package = Package(
 name: "myJournal",
 dependencies: [
 // A server-side Swift web framework.
 .package(url: "https://github.com/vapor/vapor.git", from: "3.0.0"),

 // Swift ORM (queries, models, relations, etc) built on SQLite 3.
 .package(url: "https://github.com/vapor/fluent-sqlite.git", from: "3.0.0"),

 // Leaf template engine
 .package(url: "https://github.com/vapor/leaf.git", from: "3.0.0")
],
 targets: [
 .target(name: "App", dependencies: ["FluentSQLite", "Vapor", "Leaf"]),
 .target(name: "Run", dependencies: ["App"]),
 .testTarget(name: "AppTests", dependencies: ["App"])
]
)

You'll typically put your Leaf template files in the /Resources/Views directory. You won't find this directory if you start your project from Vapor's boilerplate code. Create this directory now.

In configure.swift, add the code to register and configure the Leaf templating engine:

// File: configure.swift
import Leaf . // [1]
...
public func configure(_ config: inout Config, _ env: inout Environment, _ services: inout Services) throws {
 ...
 /// Register Leaf templating engine
 try services.register(LeafProvider()) // [2]
 ...
 config.prefer(LeafRenderer.self, for: ViewRenderer.self) // [3]
}

Don't forget to import the Leaf package [1] at the beginning of configure.swift. In configure(), use services.register() function to register the Leaf templating engine [2] and add the config.prefer() line towards the end of the configure() function [3].

The Leaf templating engine is ready for you to use.

 Using the basic functions of the Leaf templating engine

After registering and configuring for the Leaf templating engine, you're about to explore some basic functions offered by Leaf.

Follow these steps to render the main page using Leaf:

	First, you need to import the Leaf module into your file. Add this line to routes.swift:

import Leaf

	The following shows you the basic syntax of rendering a Leaf template from a route:

router.get { req -> Future<View> in // [1]
 let leaf = try req.make(LeafRenderer.self) // [2]
 let context = [String: String]() // [3]
 return leaf.render("main", context) // [4]
}

There are four steps involved in rendering a page:

	

	Return a future view object in a route's closure

	Get a handler to the Leaf templating engine from a container

	Create a Context dictionary used to pass parameters into the template

	Render the specific Leaf template file with the Context dictionary

Since the rendering of a template takes some time, Leaf always renders a template asynchronously and returns the Future of View [1]. The HTTP request is a Container in Vapor, so you are able to retrieve a leaf handler from req [2]. The dictionary in [3] is a flexible and direct way for you to pass parameters into the templating engine during the rendering of the template [4].

Following the same four-step processing, you can now modify the getTotal() route handler in /Sources/App/Routes/JournalRoutes.swift from Chapter 5, Setting up Routes and Controllers. Instead of returning String as the HTTP response, you now add count to the context of template rendering:

...
import Leaf

struct JournalRoutes : RouteCollection {
...
 func getAll(_ req: Request) throws -> Future<View> {
 let total = journal.total()
 let leaf = try req.make(LeafRenderer.self)
 let context = ["count": total]
 return leaf.render("main", context)
 }
...
}

	Create the corresponding main.leaf file in the /Resources/Views directory:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Hello World</title>
</head>
<body>
<h1>Hello World</h1>
Count: #(count)
</body>
</html>

It looks like a normal HTML page, except that you see tag #(count), which instructs the Leaf templating engine to replace it with the count value passing in via Context.

	Use your web browser and direct it to localhost:8080/journal/total:

Viola! Your myJournal application now returns a real web page for your client's request.

 Using variables and tags in Leaf templating

The Leaf templating engine uses the # token to represent a tag, as seen in #(count) from the previous HTML code. The Leaf tag has general syntax: #Name(Args){ Body }, where Name is the tag's name, Arg is a list of expected arguments, and Body is an optional element that often includes additional content.

Vapor provides many useful tagging usages and they are summarized in the following:

	Tag
	Usage
	

	#capitalize(Var)
	Converts Var into capitals
	#capitalize(title)

	#uppercase(Var)
	Converts Var into all uppercase
	#uppercase(title)

	#lowercase(Var)
	Converts Var into all lowercase
	#lowercase(title)

	#if(Condition)
	Executes only if Condition is met
	#if(title) {

The title is #(title) }

	#contains(Array, Val)
	Returns true if Val is contained in Array
	#if(contains(users, "John")) { Welcome! }

	#for(Var in Array) {}
	Loops Var over Array
	#for(user in users){ #(user) }

	#count(Array)
	Returns the number of items in Array
	We have #count(users) participants

	#set(Tag){}
	Sets up a tag to be used by Leaf
	#set("title"){ Welcome to My Home }

	#get(Tag)
	Gets the content associated with Tag
	#get("title")

	#embed(Page)
	Inserts another Page into the current one
	#embed("footer")

 Setting a variable

Use #set(){} to declare a new tag (variable). For example, you can set the title of a page, as follows:

\#set("title") { Welcome to my home page }

 Working with context

The context dictionary allows you to pass custom data to the renderer for main.leaf:

let context = ["title": "Welcome to my homepage", "user": "John Doe"]
return try leaf.make("main", context)

The previous code will expose title and user to your Leaf template.

In main.leaf, you can use the title and user tags passed in using Context:

<h1>#(title)</h1>
<p>Greetings, #(user). Welcome to my homepage.</p>

 Looping through a collection

To loop through a collection, you can use the #for tag. For example, you can pass three users in Context:

let context = ["users": ["John", "Angus", "Mary"]]

In the HTML code, you can loop through an array of items using Leaf's #for tag:

<h2>Event Participants</h2>
#for(user in users){ #(user) }

Within the #for loop, you could use the following loop variables to handle more complex situation:

	isFirst: true if the current iteration is the first one

	isLast: true if the current iteration is the last one

	index: count of the current iteration

The following HTML sample code shows how to use the isLast variable to format the last user in a list:

This year's participants are
#for(user in users){
 #if(isLast) { and #(user). }
 else { #(user), }

 Checking conditions

Vapor template uses #if(){} else {} to check a condition, as in the following example:

#set("guest") { John }
#if(user == guest) {
 You're welcome.
} else {
 Sorry, this site is not open to public.
}

When the tag is part of your condition, you can omit # for the inner tag, like this:

#if(lowercase(user) == lowercase(guest)) {
 ...
}

 Embedding other templates

Leaf also allows you to insert another Leaf template into your template file using the #embed tag:

#embed("another")

When doing this, you should omit the template's file extension.

A common practice for template embedding is to include header and footer templates in each of your pages:

#embed("header")
#embed("footer")

This makes it easy for updating and propagating changes to all of your web pages.

You can also automate the creation of a child page using a master template:

#set("user") { John Doe }
#embed("master")

master.leaf may look like this:

<html>
<head><title>Welcome to My Homepage</title></head>
<body>Hi #get(user), have a great day!</body>
</html>

You can use #set() to set up and assign a variable, then use #get() to retrieve it later on.

 Adding more Leaf templates

Now you can add more Leaf templates to the myJournal application:

	Create header and footer templates that will be shared by every other web pages. The following is a sample header template:

//File: header.leaf
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>#(title)</title>
</head>
<body>

Similarly, following is a sample footer template:

// footer.leaf
<hr>
<center>
#(title) Application by #(author)
</center>
</body>
</html>

	Modify the main.leaf template to embed both the header and footer templates:

// main.leaf
#embed("header")
<h1>#(title)</h1>
Count: #(count)
#embed("footer")

	In the getTotal() route handler, add title, author, and count to the context dictionary for the templating engine:

// journalroutes.swift
let title = "My Journal"
let author = "Angus"

func boot(router: Router) throws {
...
 func getTotal(_ req: Request) throws -> Future<View> {
 let total = journal.total()
 let count = "\(total)"
 let leaf = try req.make(LeafRenderer.self)
 let context = ["title": title, "author": author, "count": count]
 return leaf.render("main", context)
 }
...

	Execute localhost:8080/journal/total again to check everything is running as expected:

 Displaying all journal entries

You can further enhance the getTotal() feature by turning it into a main page that displays all journal entries in a single web page:

	Create the JournalContext struct that is Encodable:

struct JournalRoutes : RouteCollection {
...
 struct JournalContext : Encodable {
 let title: String
 let author: String
 let count: String
 let entries: [Entry]
 }
...
}

You use the Encodable struct to represent all parameters you pass into the Leaf templating engine. The last parameter is the entire dictionary of Entry.

	Add a new function, readAll(), in your JournalController() class:

//: Read all journal entries
func readAll() -> [Entry] {
 return entries
}

	In getTotal(), it simply passes everything including the entries dictionary to the Leaf engine:

func getTotal(_ req: Request) throws -> Future<View> {
 let total = journal.total()
 let entries : [Entry] = journal.readAll()
 let count = "\(total)"
 let leaf = try req.make(LeafRenderer.self)
 let context = JournalContext(title: title, author: author, count: count, entries: entries)
 return leaf.render("main", context)
}
```


	You use the #for() tag to loop through each item of entries, displaying each item's title and content:



// main.leaf
#embed("header")
<h1>#(title)</h1>

#for(entry in entries) {
    <hr>
    <h2>#(entry.title)</h2>
    #(entry.content)
}
#embed("footer")


	The result looks like the following screenshot:







            

            
        
    
        

                            
                    Completing the features

                
            
            
                
Following the similar steps in the previous example, you can complete the template rendering for all other CRUD routes:


	The updated JournalRoutes is shown in the following:



import Vapor
import Leaf

struct JournalRoutes : RouteCollection {
    
    let journal = JournalController()
    let mainPage = "/journal/all"
    
    let title = "My Journal"
    let author = "Angus"
    
    struct JournalContext : Encodable {
        let title: String
        let author: String
        let count: String
        let entries: [Entry]
    }
    
    struct EntryContext : Encodable {
        let title: String
        let author: String
        let index: Int
        let entry: Entry
    }
    
    func boot(router: Router) throws {
        
        let topRouter = router.grouped("journal")
        topRouter.get("", use: getAll)
        topRouter.get("all", use: getAll)
        topRouter.get("create", use: createEntry)
        topRouter.post("new", use: newEntry)
        
        let entryRouter = router.grouped("journal", Int.parameter)
        entryRouter.get("get", use: getEntry)
        entryRouter.post("edit", use: editEntry)
        entryRouter.get("remove", use: removeEntry)
    }
    
    func getAll(_ req: Request) throws -> Future<View> {
        let total = journal.total()
        let entries : [Entry] = journal.readAll()
        let count = "\(total)"
        let leaf = try req.make(LeafRenderer.self)
        let context = JournalContext(title: title, author: author, count: count, entries: entries)
        return leaf.render("main", context)
    }
    
    func createEntry(_ req: Request) throws -> Future<View> {
        let leaf = try req.make(LeafRenderer.self)
        let context = ["title": title, "author": author]
        return leaf.render("new", context)
    }
    
    func newEntry(_ req: Request) throws -> Future<Response> {
        let newID = UUID().uuidString
        return try req.content.decode(Entry.self).map(to: Response.self) { entry in
            if let result = self.journal.create(Entry(id: newID,
                                                      title: entry.title,
                                                      content: entry.content)) {
                print("Created: \(result)")
            }
            return req.redirect(to: self.mainPage) // [1]
        }
    }
    
    func getEntry(_ req: Request) throws -> Future<View> {
        let index = try req.parameters.next(Int.self)
        let leaf = try req.make(LeafRenderer.self)
        var entry = Entry(id: "-1")
        if let result = journal.read(index: index) {
            entry = result
        }
        let context = EntryContext(title: title, author: author, index: index, entry: entry)
        return leaf.render("entry", context)
    }
    
    func editEntry(_ req: Request) throws -> Future<Response> {
        let index = try req.parameters.next(Int.self)
        return try req.content.decode(Entry.self).map(to: Response.self) { entry in
            if let result = self.journal.update(index: index,
                                                entry: Entry(id: entry.id,
                                                             title: entry.title,
                                                             content: entry.content)) {
                print("Updated: \(result)")
            }
            return req.redirect(to: self.mainPage)
        }
    }

    func removeEntry(_ req: Request) throws -> Response {
        let index = try req.parameters.next(Int.self)
        if let result = self.journal.delete(index: index) {
            print("Deleted: \(result)")
        }
        return req.redirect(to: mainPage)
    }
}


	Once a new entry has been added to your local storage, as shown in the newEntry() function [1], you can redirect the response to the main page like this: 



return req.redirect(to: self.mainPage)


	Now add all of the templates for the main page, as shown in the following. First is the header template:




// header.leaf
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>#(title)</title>
</head>
<body>

This is followed by the footer template:


// footer.leaf
<hr>
<center>
#(title) Application by #(author).
</center>
</body>
</html>

And then there's the main template:


// main.leaf
#embed("header")
<h1>#(title)</h1>

[  <a href="/journal/create">Add New Entry</a> ]
<P>
#for(entry in entries) {
    <hr>
    <h2>#(entry.title)</h2>
    #(entry.content)
    <BR> [  <a href="./#(index)/get">Edit</a> |  <a href="./#(index)/remove">Remove</a> ]
    <BR> <em>Index:#(index) out of #(count); ID: #(entry.id);</em>
}
#embed("footer")

The rendering output of the main page looks like the following screenshot:



There are links for adding a new entry or editing/removing each existing entry.


	The Add New Entry link takes a user to a form for submitting new entries for title and content:



// new.leaf
#embed("header")
<h1>Create a Journal Entry</h1>
<form action="/journal/new/" method="post">
<input name="id" type="hidden" value="-1" />
<input name="title" type="text" placeholder="Enter title here" />
<P>
<textarea name="content" placeholder="Enter your journal content here..." rows="5">

</textarea>
<P>
<button type="submit" class="btn btn-lg btn-primary">Submit</button>
</form>
#embed("footer")

The previous code is a simple HTML form that contains different types of elements, including a hidden text field for id, a text field for title, a textarea for content, and a Submit button.

When rendered, the new.leaf template displays a form for a user to enter the title and content:



After form submission, the user will be redirected to the main page.


	If the user clicks on the Edit link underneath an entry, another form will be used:



// entry.leaf
#embed("header")
<h1>Edit a Journal Entry</h1>
<form action="/journal/#(index)/edit/" method="post">
<input name="id" type="hidden" value=#(entry.id)" />
<input name="title" type="text" value="#(entry.title)" />
<P>
<textarea name="content" rows="5">
#(entry.content)
</textarea>
<P>
<button type="submit" class="btn btn-lg btn-primary">Submit</button>
<BR>
<em>Index:#(index); ID: #(entry.id)</em>

#embed("footer")

The HTML form for editing an entry is similar to that of creating an entry, except that all of the input and textarea elements will be populated with the original values.

The output of entry.leaf template is rendered as follows:



The hidden id input field is populated with the actual id value of entry that the user selected so the updated entry will continue to use the same ID even after updating. The form will also be populated with the current title and content. 

That's all. Now you have a quite functional web application that allows users to submit a new journal entry and edit or remove an existing entry.



            

            
        
    
        

                            
                    Templating with Stencil in a Kitura project

                
            
            
                
Unlike Vapor, which adopts Leaf as its own templating engine, Kitura allows support for multiple templating engines through its TemplateEngine protocol. Kitura's templating engine API provides a unified interface for multiple templating engines. Currently three templating engines are included in Kitura:


	Stencil

	Mustache

	Markdown



You'll learn about Stencil extensively in this chapter because Stencil has the best coverage and support among the three templating engines in the Kitura's developer community. Stencil works similarly to Vapor's Leaf in generating dynamic frontend web pages. The templating engine scans for variables and tags in a template file and replaces them with actual values or places control flows that render filtered content. Given Stencil's maturity, it offers a richer set of features such as loops, conditions, blocks, filters, and tags. Like Vapor's Leaf, Stencil is also easy to extend its features by adding your own custom filters and tags.

While the template is useful for your Kitura project, it is also limited in programmability. So, don't add too much data handling logic to your template code. Limit your template code to handle mainly displaying logic.



            

            
        
    
        

                            
                    Learning the basic functions of the Stencil templating engine

                
            
            
                
The Stencil templating engine replaces variables and tags in a template file with actual values in runtime or places control flows that render filtered content.

All Stencil template files have the *.stencil file extension. Typically, you'll start a Stencil template file from a HTML file and instrument the HTML syntax with Stencil variables, tags, and filters. For communicating to the template from your Swift code, you'll pass a context to a template when calling the function to render the template file. The context contains values for variables and data structures that will be used in the template.



            

            
        
    
        

                            
                    Using variables and tags in Stencil templating

                
            
            
                
Stencil uses double curly braces like : {{ Var }} for a variable that prints to the template output. For example, Stencil looks up the variable title in the context and evaluates it:

<title>{{ title }}</title>

Stencil also uses {% ... %} for tags and {# ... #} for comments.

The following tag allows you to have a loop through every element in the entries array:

{% for entry in entries %}
  {{ entry.title }}
{% endfor %}

The following comment will be ignored and not included in the rendering of the template:

{# This comment will be hidden. #} 



            

            
        
    
        

                            
                    Summarizing useful filters and tags in Stencil

                
            
            
                
The following table is a list of useful built-in filters in Stencil:




	Filter
	Description
	Usage





	{{Var|capitalize}}
	Converts Var into capitals
	{{"hobbies"|capitalize}}



	{{Var|uppercase}}
	Converts Var into uppercase
	{{"hobbies"|uppercase}}



	{{Var|lowercase}}
	Converts Var into lowercase
	{{"hobbies"|lowercase}}



	{{Var|default:Str}}
	Uses Str if Var not found
	{{name|default:"nobody"}}



	{{Array|join:", "}}
	Joins an Array of items
	{{entries|join:", " }}, entries is an array



	{{String|split:", "}}
	Splits a String into substrings by separator
	{{"Apple, Orange, Pear"|split:", " }}





 

The following table is a list of useful built-in tags:




	Tag
	Description
	Usage





	{% for Var in Array %} Block{% endfor %}
	Loop Var over Array
	{% for entry in entries %} ID is entry.id {% endfor %}



	{% if Var %} Block{% endif %}
	if condition
	{% if entry %} ID is entry.id {% endif %}



	{% include Str %}
	Include another template
	{% include "header.html" %}



	{% extends Str %}
	Extends the template from a parent template
	{% extends "base.html" %}



	{% filter Var %} Block {% endfilter %}
	Filters the contents of a block
	{% filter lowercase|captialize %} Text goes to here: {% endfilter %}





 

The functionality of some of these tags can be further expanded. For example, the if built-in tag can be combined with the and, or, and not operators:

{% if A and B %}
    Both A and B are present.
{% endif %}

{% if not A or B %}
    None of A or B is there.
{% endif %}



            

            
        
    
        

                            
                    Configuring the Stencil templating engine

                
            
            
                
With the introduction of Stencil template language in the previous section, you're now ready to add code to your myJournal Kitura application.

First of all, you're required to add Stencil as a dependency for your project. You can start with the same myJournal project from the last chapter. To add Stencil to your project, open the Package.swift file in Xcode and add the Stencil package to the dependencies and target arguments as shown in the following code:

// swift-tools-version:4.0
import PackageDescription

let package = Package(
    // ...
      .package(url: "https://github.com/IBM-Swift/Kitura-StencilTemplateEngine.git", from: "1.10.0"),
    ],
    targets: [
      .target(name: "myJournal", dependencies: [ .target(name: "Application"), "Kitura" , "HeliumLogger", "KituraStencil"]),
      // ...
    ]
)

Next, you'll develop code that works with Stencil templates and implement those templates.



            

            
        
    
        

                            
                    Developing code working with Stencil templates

                
            
            
                
After configuring your project for Stencil template engine, there are a couple of steps to take before you can use Stencil.

First, you need to import the KituraStencil module into your Application.swift file. Add this line after the import Dispatch statement:

import KituraStencil

Next, you need to tell Kitura to use the default Stencil templating engine since Kitura has three built-in templating engines you can choose from.

Add this line before you call initializeHealthRoutes(app: self):

router.setDefault(templateEngine: StencilTemplateEngine())





            

            
        
    
        

                            
                    Adding Stencil templates to your Kitura project

                
            
            
                
Since your project has been configured for the Stencil templating engine, you can now add several Stencil templates that you'll need later. All of the templates should be placed under the Views folder in a Kitura project.

First of all, add the header and footer templates that are shared by other Stencil templates.

Add the /Views/header.stencil template:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>{{ title }}</title>
</head>
<body>

Also, add the /Views/footer.stencil template:

<hr>
<center>
{{ title }} Application by {{ author }}.
</center>
</body>
</html>

Now, add the /Views/main.stencil template:

% include "header.stencil" %}

<h1>{{ title }}</h1>

[  <a href="/journal/create">Add New Entry</a> ]
<P>
{% for entry in entries %}
<hr>
<h2>{{ entry.title }}</h2>
{{ entry.content }}
<BR> [  <a href="/journal/get/{{ forloop.counter0 }}">Edit</a> |  <a href="/journal/remove/{{ forloop.counter0 }}">Remove</a> ]
<BR> <em>Index:{{ forloop.counter0 }} out of {{ count }}; ID: {{ entry.id }};</em>
{% endfor %}

{% include "footer.stencil" %}

The main.stencil template is used to render the main web page, which lists all of your journal entries using the for loop syntax, {% for entry in entries %}.

Next, you need a template that renders a form for the user to create a new journal entry.

Add the /Views/new.stencil template:

{% include "header.stencil" %}
<h1>Create a Journal Entry</h1>
<form action="/journal/new" method="post" enctype="application/x-www-form-urlencoded" target="/journal/all">
<input name="id" type="hidden" value="-1" />
<input name="title" type="text" placeholder="Enter title here" />
<P>
<textarea name="content" placeholder="Enter your journal content here..." rows="5">

</textarea>
<P>
<button type="submit" class="btn btn-lg btn-primary">Submit</button>
</form>
{% include "footer.stencil" %}

When creating a new entry, the id field will be automatically generated. In the Create a Journal Entry form, the value of the hidden id input element will be simply ignored. After a new entry is submitted and created, Kitura will take you back to the main screen.

The last template you're going to need is a form for the user to edit a journal entry.

Add the /Views/entry.stencil template:

{% include "header.stencil" %}
<h1>Edit a Journal Entry</h1>
<form action="/journal/edit/{{ index }}" method="post" enctype="application/x-www-form-urlencoded">
<input name="id" type="hidden" value="{{ entry.id }}" />
<input name="title" type="text" value="{{ entry.title }}" />
<P>
<textarea name="content" rows="5">
{{ entry.content }}
</textarea>
<P>
<button type="submit" class="btn btn-lg btn-primary">Submit</button>
</form>
<BR> <em>Index:{{ index }}; ID: {{ entry.id }};</em>
{% include "footer.stencil" %}





Those are all of the templates you will need. Next, you'll learn how to interact with the Stencil templates from your Swift source code.



            

            
        
    
        

                            
                    Displaying all journal entries

                
            
            
                
With all of the templates in place, you can now proceed to add all of the required routes and their handler functions:


	Create a new file, JournalRoutes.swift, in the /Application/Routes directory.

	Add the following code to the newly create file:



// file: /Application/Routes/JournalRoutes.swift
import Foundation
import KituraStencil
import Kitura

func initializeJournalRoutes(app: App, journal: JournalController) { // [1]
    
    let mainPage = "/journal/all" // [2]
    
    let title = "My Journal" // [3]
    let author = "Angus" // [4]
    
    struct JournalContext : Encodable { // [5]
        let title: String
        let author: String
        let count: String
        let entries: [Entry]
    }

    app.router.get("/journal/all") { ... } // [6]
    app.router.get("/journal/create") { ... }
    app.router.post("/journal/new") { ... }
    app.router.get("/journal/get/:index?") { ... }
    app.router.post("/journal/edit/:index?") { ... }
    app.router.get("/journal/remove/:index?") { ... }
}


	The new file has the following design steps:

	Implement the initializeJournalRoute(app, journal) function that takes in the application's context and a reference to the persistence encapsulated in JournalController

	Declare the master return path

	Declare the title setting

	Declare the author setting

	Declare the JournalContext Encodable structure

	Process different routes







The JournalContext Encodable structure in [5] previously is used to store and pass context into the template. You'll see how JournalContext is filled and gets passed to response.render() during the rendering of a template:

app.router.get("/journal/all") { _, response, _ in
        let total = journal.total() // [1]
        let entries : [Entry] = journal.readAll() // [2]
        let count = "\(total)"
        let context = JournalContext(title: title, 
                                      author: author, 
                                      count: count, 
                                      entries: entries) // [3]
        do {
            try response.render("main", with: context) // [4]
        } catch let error {
            response.send(error.localizedDescription)
        }
    }


	The previous Display All code does the following:

	Queries JournalController for the total number of entries

	Gets all entries into an array

	Instantiates a new JournalContext object initialized with appropriate data

	Gets response to render the main.stencil template with the Encodable structure context







The raw route handling allows you to work with lower level operations compared to the codable route handling using the objects request, response, and next. In the previous code, you have used response to render a template page but didn't have a chance to use request and next. As you can see, these two objects are marked with _ in the function's arguments.


	When rendering the Display All route, you'll see a web page similar to the following:









            

            
        
    
        

                            
                    Completing the features

                
            
            
                
You'll continue to finish the other five routes in initializeJournalRoutes(). The /journal/create route will display a form for the user to create a new entry and its companion route, /journal/new, will process the form. For an existing entry, the /journal/get/:index? route will display a form for the user to make changes to an existing form and the /journal/edit/:index? route will process the changes. Lastly, the /journal/remove/:index? route will delete an existing entry and bring you back to the main page.



            

            
        
    
        

                            
                    Creating a new journal entry

                
            
            
                
This route renders a new form so a user can submit a new entry:

app.router.get("/journal/create") { request, response, next in
        response.headers["Content-Type"] = "text/html; charset=utf-8"
        try response.render("new", context: ["title": title, "author": author])
    }

It doesn't do too much except tell the response to render the new.stencil template. The follow web page will be generated if you point your web browser to localhost8080:/journal/create:



Once the form's data is filled and submitted to /journal/new via HTTP POST, the data will be processed accordingly to create a new entry in JournalController:

app.router.post("/journal/new") { request, response, next in
        guard let entry = try? request.read(as: Entry.self) // [1]
            else {
                return try response.status(.unprocessableEntity).end()
        }

        let newID = UUID().uuidString // [2]
        if let result = journal.create(Entry(id: newID,
                                             title: entry.title,
                                             content: entry.content)) { // [3]
            print("Created: \(result)")
            try response.redirect(mainPage) // [4]
        }
    }

The previous piece of code creates a new entry in the following steps:


	An Optional of the Entry Codable data structure is read from the request object and unwrapped

	A new ID is created using Swift's UUID utility function

	A new Entry object is created and fed into the create() function of JournalController

	This redirect the response to the default path stored in mainPage



This route handler simply processes the HTTP request it has, creates a new UUID, and then delegates the creation of a new entry to JournalController.  



            

            
        
    
        

                            
                    Editing a journal entry

                
            
            
                
Similarly, an existing entry can be edited and updated. The following route handling code renders a form filled with your requested entry:

app.router.get("/journal/get/:index?") { request, response, next in
    guard let index = request.parameters["index"] else {
        return try response.status(.badRequest).send("Missing entry index").end()
    }
    guard let idx = Int(index) else {
        return try response.status(.badRequest).send("Invalid entry index").end()
    }
    guard let entry = journal.read(index: idx) else {
        return try response.status(.unprocessableEntity).end()
    }
    try response.render("entry", context: ["title": title, "author": author, "index": idx, "entry": entry])
}

Kitura allows you to pass the URL parameter to your route handling code. Use the ":index?" format to encode a URL parameter. To retrieve the parameter, you use request.parameters["index"] in your Swift code.

The entry.stencil template is used to render the form:



Once the user submits the form, the filled data in the form will be used to replace the entry data by index:

app.router.post("/journal/edit/:index?") { request, response, next in
    guard let index = request.parameters["index"] else {
        return try response.status(.badRequest).send("Missing entry index").end()
    }
    guard let idx = Int(index) else {
        return try response.status(.badRequest).send("Invalid entry index").end()
    }
    if let entry = try? request.read(as: Entry.self) {
        if let result = journal.update(index: idx, entry: entry) {
            print("Updated: Entry[\(index)]: \(result)")
            try response.redirect(mainPage)
        }
    }
    try response.status(.unprocessableEntity).end()
}
    

The implementation is similar to the route handling code used to create a new entry. It uses the update() function of JournalController to replace the entry by index.







            

            
        
    
        

                            
                    Removing a journal entry

                
            
            
                
Finally, the following code demonstrates how the entry is removed:

app.router.get("/journal/remove/:index?") { request, response, next in
    guard let index = request.parameters["index"] else {
        return try response.status(.badRequest).send("Missing entry index").end()
    }
    guard let idx = Int(index) else {
        return try response.status(.badRequest).send("Invalid entry index").end()
    }
    if let entry = journal.delete(index: idx) {
        print("Deleted: Entry[\(index)]: \(entry)")
        try response.redirect(mainPage)
    }
    try response.status(.unprocessableEntity).end()
}

The route handling process follows the similar step to decipher the URL parameter from request. Then it calls JournalController.delete() to update the deletion of that entry by index.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, you learned all of the basic coding techniques you need to work with templating engines. For your Vapor project, you learned how to set up the Leaf templating engine and create Leaf templates. You also modified your code from the previous chapter to work with the Leaf templates. In the second part of this chapter, you continued your coding exercise with Kitura's Stencil templating engine. You were introduced to the usage of Stencil and then proceeded to create Stencil templates and add code that works with them.

In the next chapter, you are going to learn how to make the rendered web pages more professional-looking with Bootstrap. 



            

            
        
    
        

                            
                    Bootstrapping Your Design

                
            
            
                
Bootstrap is an open source frontend framework, developed by Twitter, to add pre-designed components to your web pages, making it easy to beautify your web content, even if you are not a digital artist. You can buy components in various styles developed by professional artists from Bootstrap marketplaces and add purchased stylish components to your web app for rapid design and development. This chapter will introduce you to the Bootstrap framework, consisting of a collection of CSS and JavaScript libraries, and explain how the Bootstrap framework allows you to build responsive websites easily. You'll follow step-by-step instructions for inserting Bootstrap components into your templates and learn how to beautify different UI elements in your template with Bootstrap. At the end, you'll learn how to include Bootstrap in your project when you are ready to deploy your web apps.

The following topics will be covered in this chapter:


	Getting started with the Bootstrap framework

	Using Bootstrap for a Vapor application

	Using Bootstrap for Kitura





            

            
        
    
        

                            
                    Getting started with the Bootstrap framework

                
            
            
                
You've learned about Leaf and Stencil templating engines in Chapter 6, Working with Template Engines. The templating engines provide you with a very convenient way to interact and render raw HTML pages. But that is not sufficient if you want to deliver a professional-looking design for your web content. For professional-looking design, you'll have to leverage a frontend component library for web styling. One of the most popular web styling component libraries is Bootstrap, an open source library from Twitter. It provides enhanced styling and interactivity features for frontend user interface development. In addition, Bootstrap is highly optimized for mobile devices.



A Bootstrap application builds on top of existing web technologies, such as HTML for web content, CSS for styling, JavaScript and jQuery for scripting, and Sass for stylesheet language. Bootstrap adds a complete portfolio of UI components:


	Layout: Grid, Breakpoints, Z-Index, Code, Images, Tables, and Figures

	UI elements: Button, Badge, Dropdown, Form, Input, Progress, NavBar, and Tooltips

	Utilities: Border, Carousel, Colors, Display, Position, Sizing, Spacing, Vertical Align, and Visibility



While this is not a complete list of components in Bootstrap, it does show an extended coverage of UI components by the Bootstrap library. You're encouraged to visit Bootstrap's official website for examples, detailed documentation, and other useful information: https://getbootstrap.com.



            

            
        
    
        

                            
                    Setting up for Bootstrap

                
            
            
                
There are different ways to set up your project in preparation for use of the Bootstrap component library. You may download the official version of CSS and JavaScript libraries and include them as part of your third-party library dependency. A recommended approach, however, is to skip the download, and use the Bootstrap CDN service to deliver a cached version of compiled and minimized CSS and JavaScript files. Most web browsers have been optimized, so popular libraries such as Bootstrap are available almost immediately.

For simplicity, we'll use the CDN approach in this chapter.



            

            
        
    
        

                            
                    Inserting the stylesheet

                
            
            
                
It's actually very easy to set up your web project for Bootstrap. First, add this stylesheet link to your header section, marked with <head>, before all other stylesheets. It instructs the web browser to load the Bootstrap stylesheet first:

<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.css" integrity="sha384-Smlep5jCw/wG7hdkwQ/Z5nLIefveQRIY9nfy6xoR1uRYBtpZgI6339F5dgvm/e9B" crossorigin="anonymous">

As you can see, the stylesheet is downloaded directly from stackpath.bootstrapcdn.com.



            

            
        
    
        

                            
                    Adding dependency for JavaScript files

                
            
            
                
Next up, we'll add the following three scripts to the end of the body section, right before  <body>:

<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js" integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49" crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/js/bootstrap.min.js" integrity="sha384-o+RDsa0aLu++PJvFqy8fFScvbHFLtbvScb8AjopnFD+iEQ7wo/CG0xlczd+2O/em" crossorigin="anonymous"></script>

The first two scripts are used by Bootstrap:


	jQuery is a small and fast library that helps HTML document traversal and processing extremely easy

	Popper is a positioning engine that makes it possible to position an element near a reference element



The last one is the Bootstrap script, which is also available from stackpath.bootstrapcdn.com.

That's all required that's for you to start using Bootstrap in your web project!



            

            
        
    
        

                            
                    Using a starter template in Bootstrap

                
            
            
                
Listed here is a starter template that you can use as a basis for your own work:

<!doctype html>
<html lang="en">
  <head>
    <!-- Required meta tags -->
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">

    <!-- Bootstrap CSS -->
    <link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.css" integrity="sha384-Smlep5jCw/wG7hdkwQ/Z5nLIefveQRIY9nfy6xoR1uRYBtpZgI6339F5dgvm/e9B" crossorigin="anonymous">

    <title>Hello, world!</title>
  </head>
  <body>
    <h1>Hello, world!</h1>

    <!-- Optional JavaScript -->
    <!-- jQuery first, then Popper.js, then Bootstrap JavaScript  -->
    <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script>
    <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js" integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49" crossorigin="anonymous"></script>
    <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/js/bootstrap.min.js" integrity="sha384-o+RDsa0aLu++PJvFqy8fFScvbHFLtbvScb8AjopnFD+iEQ7wo/CG0xlczd+2O/em" crossorigin="anonymous"></script>
  </body>
</html>

The starter HTML template begins with the <!DOCTYPE> tag to specify the HTML5 language and version. The HTML template is divided into the header section, <head></head>, and the body section, <body></body>. You'll put all of your meta tags, CSS, and links for fonts and images in the header section. For enhanced performance, the JavaScript files are usually placed at the bottom of the document, just before the closing tag, </body>.

In the header, there is a responsive viewport meta tag added for optimized mobile-display rendering:

<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">

This line allows mobile web browsers to render Bootstrap elements appropriately. Bootstrap follows the principle of "mobile first", so the design of all user interface elements have been optimized and tested for an array of major mobile devices.

Next, you're going to use a couple of major features that Bootstrap has to offer.



            

            
        
    
        

                            
                    Using basic Bootstrap components

                
            
            
                
Bootstrap offers a big collection of responsive frontend components for your web user interface. The library is organized into four categories:


	Layout

	Content

	Component

	Utilities



You'll learn how to use Bootstrap's grid system to organize the layout, then apply jumbotron, the navigation bar, form controls, and glyphicons to the web content.



            

            
        
    
        

                            
                    Organizing content into grids

                
            
            
                
Bootstrap wraps web content into its basic layout element, called containers. The container layout is required for its powerful grid system, so you'll see the container syntax extensively in any Bootstrap empowered web content. Here are the basics of container usage:


	A basic container has the following syntax:



<div class="container">
  <!-- Content here -->
</div>


	You can specify a container to occupy the entire width of the viewport using container-fluid:



<div class="container-fluid">
  <!-- Content here -->
</div>


	With the container layout, you can organize a web page into several sections:



<body>
<section class="sec1" id="sec1">
<div class="container">
   <!-- Section 1 goes to here -->
   Container 1
</div>
</section>
<section class="sec2" id="sec2">
<div class="container">
   <!-- Section 2 goes to here -->
   Container 2
</div>
</section>
...
<section class="secN" id="secN">
<div class="container">
   <!-- Section N goes to here -->
   Container N
</div>
</section>
</body>


	To illustrate the effect of the preceding container code for you, a CSS file has been used to create the following diagram, with a colored bounding box for each container:






	With Bootstrap's grid system, you can layout and align content with containers, rows, and columns. For example, the following layout code arranges the content in a container into one row and three columns:



<div class="container">
  <div class="row">
    <div class="col-4">
      One of three columns
    </div>
    <div class="col-4">
      One of three columns
    </div>
    <div class="col-4">
      One of three columns
    </div>
  </div>
</div>

The result looks like this:




	Bootstrap divides a row into roughly 12 columns. For three equally-spaced columns, you'll assign four original columns to each new column using "col-4". There are also other grid options, such as .col-sm, .col-md, .col-lg, and .col-xl, for small, medium, large, and extra-large columns.

	To create an equal-width multi-row grid, you can insert a .w-100 to the column break, as shown here:



<div class="container">
  <div class="row">
    <div class="col-6">
      first column of first row
    </div>
    <div class="col-6">
      second column of first row
    </div>
    <div class="w-100"></div>
    <div class="col-6">
      first column of second row
    </div>
    <div class="col-6">
      second column of second row
    </div>
  </div>
</div>

And here is the result:





            

            
        
    
        

                            
                    Displaying a jumbotron with parallax animation

                
            
            
                
A jumbotron is a big banner that draws the viewer's attention to special information in your web content. You'll typically add a jumbotron at the beginning of a page for heading information, as shown here:

<!--Jumbotron-->
<div class="jumbotron banner-align-top" id="myBanner"> 
  <div class="banner-background text-center" style="background-image: url(img/pier.png);">
      <div class="container text-center" id="banner-size">
        <h2 class="banner-title">My Journal</h2>
        <h3 class="banner-subtitle">The Path of Heart!</h3>
      </div>

  </div>
</div> 

The jumbotron banner is marked with a pair of <div class="jumbotron"></div> tags. A background image, pier.png, is used. When rendering, the banner look like this when scrolling down the web page:



The following is the CSS stylesheet used for the banner:

/*----------- BANNER ---------*/

header {
    padding-bottom:40px;
}

.banner-align-top {
    padding:0;
}

.banner-background {
    text-align:center;
    background-position:center center;
    background-repeat:no-repeat;
    background-size:cover;
    background-attachment:fixed;
    overflow:hidden;
}

#banner-size {
    height:600px;
    padding-top:160px;
}

.banner-title {
    font-family:sans-serif;
    font-size:72px;
    line-height:1;
    font-weight:300;
    color:#fff
}

.banner-subtitle {
    font-family:sans-serif;
    font-size:30px;
    line-height:1.4;
    font-weight:300;
    color:#fff;
}

The .banner-background has a fixed background-attachment attribute. This creates a parallax visual effect, as if the background image is fixed while the foreground content is moving up, when scrolling down the web page.



            

            
        
    
        

                            
                    Adding a navigation bar

                
            
            
                
A navigation bar consists of navigation menu items in a tray, typically at the top of a web page. To use a navigation bar, we wrap a section with .navbar and use parameters such as .navbar-expand{-sm|-md|-lg|xl}, fixed-top, and scrolling-navbar. The navigation bar is attached to the top and is fluid (taking up the maximum allowable width) by default:

<nav class="navbar navbar-expand-lg navbar-dark fixed-top scrolling-navbar">
    <div class="container">
        <a class="navbar-brand" href="#"><strong>myJournal</strong></a>
        <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#myNavbar" aria-controls="myNavbar" aria-expanded="false" aria-label="Toggle navigation">
            <span class="navbar-toggler-icon"></span>
        </button>
        <div class="collapse navbar-collapse" id="myNavbar">
            <ul class="navbar-nav mr-auto">
                <li class="nav-item active">
                    <a class="nav-link" href="#">Home <span class="sr-only">(current)</span></a>
                </li>
                <li class="nav-item">
                    <a class="nav-link" href="#">Admin</a>
                </li>
                <li class="nav-item">
                    <a class="nav-link" href="#">About</a>
                </li>
            </ul>
        </div>
    </div>
</nav>

The navigation bar is collapsible, so the menu items will be hidden when the width of web page is reduced:



A toggle button, marked with the <button></button> tag, is used to expand the list of menu items. The menu items will be listed vertically when the view is toggled on:





            

            
        
    
        

                            
                    Using form controls

                
            
            
                
Bootstrap customizes the feel and look of a form with form controls. Form controls enforce more or less consistent rendering of form displays across different user devices.

Here is an example of Bootstrap's form style:

<!--form-->
<section class="form" id="myForm">
<div class="container">
  <div class="row">
    <div class="col-lg-12">
      <div class="heading">
        <h2>Submit a New Entry</h2>
      </div>
    </div>
  </div>
</div>
<div class="container max-width">
  <div class="row">
  <div class="done">
    <div class="alert alert-success"> <!-- [1] -->
      <button type="button" class="close" data-dismiss="alert">X</button>
      Your message has been submitted.
    </div>
  </div>
   <div class="col-md-12">
        <form>
            <fieldset class="form-group">
                <input type="text" class="form-control" id="title" placeholder="Title">
            </fieldset>

            <fieldset class="form-group">
                <textarea class="form-control" rows="3" id="content" placeholder="Content"></textarea>
            </fieldset>
            
            <button type="submit" class="contact submit">Submit</button>
        </form>
    </div>
  </div>
</div>
</section>

The form has a text input field for title and a textarea element for content. Both of them are styled with the .form-control class. The example also shows how the form uses a Bootstrap Alert component to display a success message with alert alert-success [1] if the form has been submitted successfully.

The following are the style elements for the form:

/*----------- FORM ---------*/
input.form-control {
    background:#ccddcc;
    border:solid 1px #557755;
    color:#000000;
    padding:15px 30px;
    margin-right:3%;
    margin-bottom:30px;
    outline:none;
    border-radius: 3;
}

textarea.form-control {
    background:#ccddcc;
    color:#000000;
    border:solid 1px #557755;
    padding:15px 30px;
    margin-bottom:40px;
    outline:none;
    height:200px;
    border-radius: 3;
}

button.entryform.submit {
    background:#557755;
    font-family: sans-serif;
    color:#fff;
    font-size:1em;
    font-weight:400;
    text-align:center;
    margin:0;
    border:none;
    border-radius:3px;
    padding:15px 45px;
}

button.entryform.submit:hover {
    background:#339933;
}

.form-control:focus{
    border-color: #339933;
    outline: 0;
}

.done {
    display:none;
}

The rendering of this Bootstrap form control looks like the following:





            

            
        
    
        

                            
                    Reusing glyphicons

                
            
            
                
Bootstrap 4.0 does not include any glyphicon library by default. However, it recommends several libraries. One of the recommended glyphicon libraries is Font Awesome. Visit Font Awesome's official website at https://fontawesome.com and search for the icon you would like to use in your project. The site even offers a cheat sheet for its massive icon library, making finding the right icon for your project extremely easy and effortless.

To include Font Awesome in your project, you need to do the following:


	You can include this CDN library in the header section of your HTML file for a cached version of the Font Awesome library:



<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.2.0/css/all.css" integrity="sha384-hWVjflwFxL6sNzntih27bfxkr27PmbbK/iSvJ+a4+0owXq79v+lsFkW54bOGbiDQ" crossorigin="anonymous">


	Then you can use Font Awesome icons directly in your project. The following HTML code shows the usage of five glyphicons:



<!--footer-->
<section class="footer" id="footer">
  <div class="container">
    <div class="row">
      <div class="col-sm">
      <ul> 
        <li><i class="fas fa-envelope"></i></li>
        <li><i class="fab fa-facebook"></i></li>
        <li><i class="fab fa-google-plus-g"></i></li>
        <li><i class="fab fa-linkedin"></i></li>
        <li><i class="fab fa-twitter"></i></li>
      </ul>
      <p>
      &copy; 2018 - Simply You<br>
      </p>
          </div>
    </div>
  </div>
</section>

When you reference an icon, you should specify its style prefix, followed by the icon's name prefixed with "fa-". There are two styles that are free of charge to you: style prefix "fas" for solid rendering style, and style prefix "fab" for brands style. In the preceding code, there is a "fas" icon type, followed by four "fab" icons.


	The following CSS style attributes are used to format the footer user interface:



/*----------- FOOTER ---------*/
.footer {
    background:#557755;
    margin-top:100px;
    position:relative
}

.footer .container {
    padding:60px 0 20px;
}

.footer ul {
    margin:0 auto;
    margin-bottom:30px;
    margin-top:10px;
    text-align:center;
    list-style-type:none;
    padding-left:0;
}

/* icon list */
.footer ul li {
  text-align:center;
    display:inline-block;
    background:rgba(0,0,0,0.2);
    color:#fff;
    line-height:45px;
    margin:0 4px;
    width:45px;
    height:45px;
    -webkit-border-radius:3px;
    border-radius:3px;
}

.footer ul li:hover {
    background:#339933;
}

/* Copyright */
.footer p {
    color:#fff;
    font-size:.9em;
    line-height:24px;
    font-weight:300;
    text-align:center;
    text-transform:uppercase;
}

The rendered footer looks like this:





            

            
        
    
        

                            
                    Using Bootstrap for a Vapor application

                
            
            
                
After learning the basics of Bootstrap and choosing icons from the Font Awesome library, you can start putting everything together to upgrade the feel and look of web pages rendered by the Leaf templating engine.

To use Bootstrap in your Vapor project, you're required to use the file server middleware. Simply uncomment the following line in configure.swift:

middlewares.use(FileMiddleware.self) // Serves files from `Public/` directory


	The file server will make all the resource in /Public available for HTTP requests.

	Create two subdirectories, /css and /img, under /Public.

	Copy custom.css and pier.png from the resources for this chapter to /Public/css and /Public/img, respectively.

	The CSS stylesheet will be included in header.leaf:



<link rel="stylesheet" href="/css/custom.css">

Remember the path for Vapor has to start with /. A common mistake is omitting it as css/custom.css.


	The background image pier.png is used in the banner in header.leaf:



<div class="banner-background text-center" style="background-image: url(/img/pier.png);">

That's it. You can now update all the five Leaf templates with the Bootstrap-enhanced web design that you finished in previous chapters.





            

            
        
    
        

                            
                    Enhancing Leaf templates with Bootstrap

                
            
            
                
Now, apply the Bootstrap framework to the Leaf templates you created in Chapter 6, Working with Templating Engines. The application logics in the myJournal application from the last chapter largely remain unchanged. All changes in this chapter apply to the templates that will be rendered into web pages for client web browsers.

 

The rest of the Bootstrap enhanced Leaf templates are described in the following sub-sections.



            

            
        
    
        

                            
                    header.leaf

                
            
            
                
First, upgrade the header template Bootstrap elements. Since the header template will be included by other templates, it reduces a lot of code that is common to every template:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>#(title)</title>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">

<!-- Bootstrap CSS -->
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.css" integrity="sha384-Smlep5jCw/wG7hdkwQ/Z5nLIefveQRIY9nfy6xoR1uRYBtpZgI6339F5dgvm/e9B" crossorigin="anonymous">

<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.2.0/css/all.css" integrity="sha384-hWVjflwFxL6sNzntih27bfxkr27PmbbK/iSvJ+a4+0owXq79v+lsFkW54bOGbiDQ" crossorigin="anonymous">
<!-- Custom CSS -->
<link rel="stylesheet" href="/css/custom.css">

</head>

<body>
<!--wrapper start-->
<div class="wrapper" id="wrapper">

<!--Banner-->
<header>

<!--Navbar-->
<nav class="navbar navbar-expand-lg navbar-dark fixed-top scrolling-navbar">
<div class="container">
<a class="navbar-brand" href="#"><strong>myJournal</strong></a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#myNavbar" aria-controls="myNavbar" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="myNavbar">
<ul class="navbar-nav mr-auto">
<li class="nav-item active">
<a class="nav-link" href="#">Home <span class="sr-only">(current)</span></a>
</li>
<li class="nav-item">
<a class="nav-link" href="#">Admin</a>
</li>
<li class="nav-item">
<a class="nav-link" href="#">About</a>
</li>
</ul>
</div>
</div>
</nav>


<!--Jumbotron-->
<div class="jumbotron banner-align-top" id="myBanner">
<div class="banner-background text-center" style="background-image: url(/img/pier.png);">
<div class="container text-center" id="banner-size">
<h2 class="banner-title">My Journal</h2>
<h3 class="banner-subtitle">The Path of Heart!</h3>
</div>

</div>
</div>

</header>

Several new elements are added to the header template. First, links to Bootstrap and Font Awesome stylesheets are added. Next, Bootstrap's navigation bar element, which is used in every web page, is defined. Lastly, a jumbotron is added to display the banner on our web pages.



            

            
        
    
        

                            
                    footer.leaf

                
            
            
                
Like the header template in header.leaf, the footer template in footer.leaf is used in every web page in this project. Change the footer template to the following:

<!--footer-->
<section class="footer" id="footer">
<div class="container">
<div class="row">
<div class="col-sm"> <!-- [1] -->
<ul>
<li><i class="fas fa-envelope"></i></li>
<li><i class="fab fa-facebook"></i></li>
<li><i class="fab fa-google-plus-g"></i></li>
<li><i class="fab fa-linkedin"></i></li>
<li><i class="fab fa-twitter"></i></li>
</ul>
<p>
&copy; 2018 - #(title) Application by #(author)<br>
</p>
</div>
</div>
</div>
</section>

</div><!--wrapper end-->


<!-- Optional JavaScript --> <-- [2] -->
<!-- jQuery first, then Popper.js, then Bootstrap JavaScript  -->
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js" integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49" crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/js/bootstrap.min.js" integrity="sha384-o+RDsa0aLu++PJvFqy8fFScvbHFLtbvScb8AjopnFD+iEQ7wo/CG0xlczd+2O/em" crossorigin="anonymous"></script>

</body>
</html>

The new footer template added a new row of icons [1]: Email, Facebook, Google, LinkedIn, and Twitter. You can add personalized links to these icons, so the user to your website can reach you. At the end of template and right before the </body> tag, a couple of links to the required JavaScript libraries in this project, including Bootstrap and Font Awesome, are added [2].  



            

            
        
    
        

                            
                    main.leaf

                
            
            
                
The main.leaf includes the header, footer, and main templates. It renders all journal entries in a single page, as follows:

#embed("header")
[  <a href="/journal/create">Add New Entry</a> ]
<P>
#for(entry in entries) {
<!--Section #(index)-->
<section class="sec#(index)" id="sec#(index)">
<div class="Container entry">
<h2>#(entry.title)</h2>
#(entry.content)
<BR> [  <a href="./#(index)/get">Edit</a> |  <a href="./#(index)/remove">Remove</a> ]
    <BR> <em>Index:#(index) out of #(count); ID: #(entry.id);</em>
</div>
</section>
}
#embed("footer")

The Bootstrap-enhanced rendering looks like the following:





            

            
        
    
        

                            
                    new.leaf

                
            
            
                
The new.leaf consists of a header, a footer, and a form:

#embed("header")
<!--form-->
<section class="form" id="myForm">
<div class="container">
<div class="row">
<div class="col-lg-12">
<div class="heading">
<h1>Create a Journal Entry</h1>
</div>
</div>
</div>
</div>
<div class="container max-width">
<div class="row">
<div class="done">
<div class="alert alert-success">
<button type="button" class="close" data-dismiss="alert">X</button>
Your message has been submitted.
</div>
</div>
<div class="col-md-12">
<form action="/journal/new/" method="post">
<fieldset class="form-group">
<input name="id" type="hidden" value="-1" />
<input type="text" class="form-control" name="title" placeholder="Enter title here">
</fieldset>

<fieldset class="form-group">
<textarea class="form-control" rows="5" name="content" placeholder="Enter your journal content here..."></textarea>
</fieldset>

<button type="submit" class="entryform submit">Submit</button>
</form>
</div>
</div>
</div>
</section>
#embed("footer")

The Bootstrap-enhanced rendering looks like the following:





            

            
        
    
        

                            
                    entry.leaf

                
            
            
                
The entry.leaf is similar to new.leaf. However, the existing entry's ID, title, and content are already filled in the form for you:

#embed("header")
<!--form-->
<section class="form" id="myForm">
<div class="container">
<div class="row">
<div class="col-lg-12">
<div class="heading">
<h1>Edit a Journal Entry</h1>
</div>
</div>
</div>
</div>
<div class="container max-width">
<div class="row">
<div class="done">
<div class="alert alert-success">
<button type="button" class="close" data-dismiss="alert">X</button>
Your message has been submitted.
</div>
</div>
<div class="col-md-12">
<form action="/journal/#(index)/edit/" method="post">
<fieldset class="form-group">
<input name="id" type="hidden" value=#(entry.id)" />
<input name="title" type="text" class="form-control" value="#(entry.title)" />
</fieldset>

<fieldset class="form-group">
<textarea class="form-control" rows="5" name="content">
#(entry.content)
</textarea>
</fieldset>

<button type="submit" class="entryform submit">Submit</button>
</form>
</div>
</div>
</div>
</section>
#embed("footer")

This'll be what it looks like when you edit an entry:





            

            
        
    
        

                            
                    Using Bootstrap for Kitura

                
            
            
                
Enabling Bootstrap for Kitura is straightforward. Kitura serves all static web pages using the middleware StaticFileServer. In the postInit() function of the app, add the following line after router.setDefault(templateEngine:) in /Sources/Application/Application.swift:

router.get("/", middleware: StaticFileServer())

The static file server will look for all the resources under the folder called /public. Take note that while this folder, in a Vapor project, is capitalized as /Public, the folder name is a Kitura project and is not capitalized.

Create it at the top directory of myJournal and create /css and /img subdirectories under /pubic.

You can proceed to copy custom.css and pier.png to /public/css and /public/img, respectively.



            

            
        
    
        

                            
                    Enhancing Stencil templates with Bootstrap

                
            
            
                
After updating all the five Stencil templates with Bootstrap, similar to what you've done for Vapor's Leaf templates, you will see the same rendered images and web content generated by Vapor 3.0.



            

            
        
    
        

                            
                    header.stencil

                
            
            
                
The header.stencil contains the header elements shared by all web pages in the myJournal application:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>{{ title }}</title>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">

<!-- Bootstrap CSS -->
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.css" integrity="sha384-Smlep5jCw/wG7hdkwQ/Z5nLIefveQRIY9nfy6xoR1uRYBtpZgI6339F5dgvm/e9B" crossorigin="anonymous">

<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.2.0/css/all.css" integrity="sha384-hWVjflwFxL6sNzntih27bfxkr27PmbbK/iSvJ+a4+0owXq79v+lsFkW54bOGbiDQ" crossorigin="anonymous">
<!-- Custom CSS -->
<link rel="stylesheet" href="/css/custom.css">

</head>

<body>
<!--wrapper start-->
<div class="wrapper" id="wrapper">

<!--Banner-->
<header>

<!--Navbar-->
<nav class="navbar navbar-expand-lg navbar-dark fixed-top scrolling-navbar">
<div class="container">
<a class="navbar-brand" href="#"><strong>myJournal</strong></a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#myNavbar" aria-controls="myNavbar" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="myNavbar">
<ul class="navbar-nav mr-auto">
<li class="nav-item active">
<a class="nav-link" href="#">Home <span class="sr-only">(current)</span></a>
</li>
<li class="nav-item">
<a class="nav-link" href="#">Admin</a>
</li>
<li class="nav-item">
<a class="nav-link" href="#">About</a>
</li>
</ul>
</div>
</div>
</nav>


<!--Jumbotron-->
<div class="jumbotron banner-align-top" id="myBanner">
<div class="banner-background text-center" style="background-image: url(/img/pier.png);">
<div class="container text-center" id="banner-size">
<h2 class="banner-title">My Journal</h2>
<h3 class="banner-subtitle">The Path of Heart!</h3>
</div>

</div>
</div>

</header> 

Similar to what you've done in the Vapor project, you are going to add the stylesheets for Bootstrap and Font Awesome, followed by a Bootstrap navigation bar and a jumbotron.



            

            
        
    
        

                            
                    footer.stencil

                
            
            
                
Just like header.stencil, the footer.stencil file also contains the elements shared by all the web pages in this project:


<!--footer-->
<section class="footer" id="footer">
<div class="container">
<div class="row">
<div class="col-sm">
<ul>
<li><i class="fas fa-envelope"></i></li>
<li><i class="fab fa-facebook"></i></li>
<li><i class="fab fa-google-plus-g"></i></li>
<li><i class="fab fa-linkedin"></i></li>
<li><i class="fab fa-twitter"></i></li>
</ul>
<p>
&copy; 2018 - {{ title }} Application by {{ author }}<br>
</p>
</div>
</div>
</div>
</section>

</div><!--wrapper end-->


<!-- Optional JavaScript -->
<!-- jQuery first, then Popper.js, then Bootstrap JavaScript  -->
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js" integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49" crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/js/bootstrap.min.js" integrity="sha384-o+RDsa0aLu++PJvFqy8fFScvbHFLtbvScb8AjopnFD+iEQ7wo/CG0xlczd+2O/em" crossorigin="anonymous"></script>

</body>
</html>

This shared template adds a row of Font Awesome icons, followed by the CDN links to JavaScript libraries, such as Bootstrap, Popper, and jQuery.



            

            
        
    
        

                            
                    main.stencil

                
            
            
                
The main.stencil file contains the template for displaying all journal entries in a single page:

{% include "header.stencil" %}
[ <a class="fas fa-plus-square" href="/journal/create"> Add New Entry</a> ]
<P>
{% for entry in entries %}
<!--Section {{ forloop.counter0 }}-->
<section class="sec{{ forloop.counter0 }}" id="sec{{ forloop.counter0 }}">
<div class="Container entry">
<h2>{{ entry.title }}</h2>
{{ entry.content }}
<BR> [ ID: {{ entry.id }}
: <a class="fas fa-edit" href="/journal/get/{{ forloop.counter0 }}"> Edit</a>
| <a class="fas fa-trash-alt" href="/journal/remove/{{ forloop.counter0 }}"> Remove</a> ]
</div>
</section>
{% endfor %}
Total: {{ count }};
{% include "footer.stencil" %}

The new main template replaces the Edit and Remove icons with those from Font Awesome. Apart from this change, the template remains the same as the main template you used in Chapter 6, Working with Templating Engines.



            

            
        
    
        

                            
                    new.stencil

                
            
            
                
The new.stencil file contains the template that renders a web page with a submission form for creating a new journal entry:

{% include "header.stencil" %}
<!--form-->
<section class="form" id="myForm">
<div class="container">
<div class="row">
<div class="col-lg-12">
<div class="heading">
<h1>Create a Journal Entry</h1>
</div>
</div>
</div>
</div>
<div class="container max-width">
<div class="row">
<div class="done">
<div class="alert alert-success">
<button type="button" class="close" data-dismiss="alert">X</button>
Your message has been submitted.
</div>
</div>
<div class="col-md-12">
<form action="/journal/new" method="post" enctype="application/x-www-form-urlencoded" target="/journal/all">
<fieldset class="form-group">
<input name="id" type="hidden" value="-1" />
<input type="text" class="form-control" name="title" placeholder="Enter title here">
</fieldset>

<fieldset class="form-group">
<textarea class="form-control" rows="5" name="content" placeholder="Enter your journal content here..."></textarea>
</fieldset>

<button type="submit" class="entryform submit">Submit</button>
</form>
</div>
</div>
</div>
</section>
{% include "footer.stencil" %}

The new template basically is the same as the one you used in the last chapter. It is still listed here for completeness.



            

            
        
    
        

                            
                    entry.stencil

                
            
            
                
The template in the entry.stencil file is used to render an HTML form, populated with the elements of an existing journal entry:

{% include "header.stencil" %}
<!--form-->
<section class="form" id="myForm">
<div class="container">
<div class="row">
<div class="col-lg-12">
<div class="heading">
<h1>Edit a Journal Entry</h1>
</div>
</div>
</div>
</div>
<div class="container max-width">
<div class="row">
<div class="done">
<div class="alert alert-success">
<button type="button" class="close" data-dismiss="alert">X</button>
Your message has been submitted.
</div>
</div>
<div class="col-md-12">
<form action="/journal/edit/{{ index }}" method="post" enctype="application/x-www-form-urlencoded" target="/journal/all">
<fieldset class="form-group">
<input name="id" type="hidden" value="{{ entry.id }}" />
<input name="title" type="text" class="form-control" value="{{ entry.title }}" />
</fieldset>

<fieldset class="form-group">
<textarea class="form-control" rows="5" name="content">
{{ entry.content }}
</textarea>
</fieldset>

<button type="submit" class="entryform submit">Submit</button>
</form>
</div>
</div>
</div>
</section>
{% include "footer.stencil" %}

Again, there is no change required in the Edit template, since it is sufficient to leave Bootstrap code to the header and footer templates. This is another reason why you want to separate out all of the HTML and templating code that is common to all web pages in shared templates like header and footer.

The main screen of the myJournal for Kitura application is shown here: 







As you can see from the preceding screenshot, the Bootstrap-enhanced rendering output by myJournal for Kitura is almost indistinguishable from that of myJournal for Vapor.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, you learned how to use the Bootstrap library to enhance the look and feel of rendered web pages by the myJournal applications you developed in Chapter 6, Working with the Templating Engines. Except for some minor details, the integration of Bootstrap into Leaf and Stencil templates is exactly the same. In the next chapter, you're going to replace the temporary local storage in the myJournal applications with a database.



            

            
        
    
        

                            
                    Employing Storage Framework

                
            
            
                
This chapter encourages you to take advantage of the Object Relational Mapping (ORM) abstraction between the web application and the database to streamline your workflow when working with a database. One of the major benefits of using the ORM tool is that you don't have to deal with a database directly, avoiding the painful way of writing different querying commands specific to each type of database. Swift web frameworks support a number of database engines and sometimes you can use multiple databases in the same session.

In this chapter, you'll learn how to work with the Fluent abstraction framework in Vapor, and the Kuery framework in Kitura. You'll interact with your model in Create, Retrieve, Update, and Delete (CRUD) operations using these frameworks.

In this chapter, we will cover the following topics:


	Installing databases

	Working with the Fluent Framework in Vapor

	Working with the Database Abstraction Layer in Kitura





            

            
        
    
        

                            
                    Installing databases

                
            
            
                
At the time of writing, both Vapor Fluent and Kitura Kuery support three popular implementations of relational databases: PostgreSQL, SQLite, and MySQL. A relational database uses a fixed-data format specified in the database's schema, compared to a non-relational (NoSQL) database, which doesn't require a fixed-data format. A relational database is much faster and more proven.



            

            
        
    
        

                            
                    Installing PostgreSQL

                
            
            
                
PostgreSQL is the recommended native database driver for both Vapor and Kitura. The database is an open source project designed for enterprise use. PostgreSQL is designed for reliability, extensibility, and standards-compliance. Most cloud hosting services include PostgreSQL as one of the database provider options.

To use PostgreSQL on your system, you must install the PostgreSQL client locally. On macOS, use brew to install the PostgreSQL client and start the postgresql service:

$ brew install postgresql
$ brew services start postgresql

On Linux, use apt-get to install the PostgreSQL client and then start the service:

$ sudo apt-get install libpq-dev
$ sudo service postgresql start


If you have the pgAdmin 4 GUI client application installed on your system, you can also use it to launch and connect to a PostgreSQL database.



            

            
        
    
        

                            
                    Installing SQLite

                
            
            
                
SQLite is an open source SQL database. It covers a reduced but essential feature set of the full SQL database. Since it is lightweighted and embedded, it has been chosen as the default database for mobile operating systems such as Android and iOS.

In Vapor, you can choose SQLite as either memory or file-based. That makes SQLite an ideal candidate for prototyping and testing your Fluent code. Once you are ready for production deployment, you can switch your database provider to one hosted on the cloud. Vapor uses its embedded SQLite so you do not need to install SQLite on your system.

Kitura's Kuery also position SQLite as a lightweight SQL implementation that is ideal for prototyping and testing your database's operation. Kuery requires you to install SQLite on your system:


	On macOS, use brew to install sqlite3:



$ brew install sqlite

macOS provides an older version of sqlite3.


	To instruct your project to use your installed sqlite3, add its path to your .bash_profile:



echo 'export PATH="/usr/local/opt/sqlite/bin:$PATH"' >> ~/.bash_profile

Remember to use source ~/.bash_profile to refresh your system with the change.


	On Linux, use apt-get to install sqlite3 and its static development library:



$ sudo apt-get install sqlite3 libsqlite3-dev


	If SQLite is installed properly on your system, you can test it by running the following command on the Terminal:



$ sqlite3


	You should get an output similar to the following:



SQLite version 3.20.1 2017-08-24 16:21:36
 Enter ".help" for usage hints.
 Connected to a transient in-memory database.
 Use ".open FILENAME" to reopen on a persistent database.
 sqlite>

By default, the SQLite instance will connect to a transient in-memory database unless you use the ".open FILENAME" command to explicitly open a persistent database.



            

            
        
    
        

                            
                    Installing MySQL

                
            
            
                
MySQL is another database driver officially supported by both Vapor and Kitura; like SQLite and PostgresQL, it is also an open source database. MySQL is very popular because it is one of the main components in web services that is based on LAMP software stacks. LAMP stands for Linux, Apache Web Server, MySQL, and PHP Scripting Language. The MySQL database is available on most cloud hosting providers.

To have a MySQL database running on your system, install mysql with brew and start the mysql server:

$ brew install mysql
$ brew services start mysql

If you are using Linux, get the latest mysql package from one of the repositories, use apt-get to install it, and start mysql service:

$ wget https://repo.mysql.com//mysql-apt-config_0.8.4-1_all.deb
$ sudo dpkg -i mysql-apt-config_0.8.4-1_all.deb
$ sudo apt-get update
$ sudo apt-get install mysql-server libmysqlclient-dev
$ sudo service mysql start

To improve the security of your MySQL installation, run the following program:

$ mysql_secure_installation

Now you should have mysql installed and running on your system.  Next, we'll see how to connect to a database from your code using an appropriate database driver.



            

            
        
    
        

                            
                    Working with the Fluent Framework in Vapor

                
            
            
                
Fluent is Vapor's object-relational mapping (ORM) framework that abstracts the interaction with various database engines. By working with a single interface that abstracts many different database engines, your code will be more reusable and portable. With Fluent, you do not need to write low-level instructions, such as structured query language (SQL), to work with a database engine. Unlike the traditional way of querying a database using untyped arrays or dictionaries, Fluent build upon Swift's model-driven data-handling infrastructure and extends it to the querying of the database. This is a more natural way for you to interact with database using models.



            

            
        
    
        

                            
                    Choosing a database driver

                
            
            
                
Fluent supports PostgreSQL, SQLite, and MySQL. You need to configure each database driver in order to use it properly in your Vapor project.



            

            
        
    
        

                            
                    Using the PostgreSQL database driver

                
            
            
                
Let's start by using PostgreSQL database driver:


	Add the PostgreSQL core as a dependency in your project's SPM package manifest file:



import PackageDescription

let package = Package(
    name: "MyJournal",
    dependencies: [
        ...
        .package(url: "https://github.com/vapor/fluent-postgresql.git", from: "1.0.0"),
    ],
    targets: [
        .target(name: "App", dependencies: ["FluentPostgreSQL", ...]),
        .target(name: "Run", dependencies: ["App"]),
        .testTarget(name: "AppTests", dependencies: ["App"]),
    ]
)


	After modifying Package.swift, remember to regenerate your Xcode project files to reflect the changes:



$ vapor xcode


	Register PostgreSQLProvider in configure.swift in order for the PostgreSQL driver to work properly:



import PostgreSQL

try services.register(PostgresSQLProvider())


	When you register for PostgreSQL service, it automatically instantiates a database config struct using standard credentials.

	You can configure for your PostgreSQL database manually and use it to create an instance of PostgreSQLDatabase:



let config = PostgreSQLDatabaseConfig(hotname: "localhost",
                                      username: "admin",
                                      database: "myjournal",
                                      password: "password")
let postgresql = try PostgreSQLDatabase(config: config)

The preceding configuration code shows you how to set the database's credential.


	Add the PostgreSQLDatabase instance to the list of databases you're going to support in your project:



var databases = DatabasesConfig()
databases.add(database: postgresql, as: .psql)
services.register(databases)

These steps should get you set up for using PostgreSQL in your myJournal application.



            

            
        
    
        

                            
                    Using the SQLite database driver

                
            
            
                
If you develop your project from Vapor's boilerplate project using the vapor new command, the SQLite database has already been configured and implemented. You can follow the steps here if you want to add SQLiteDatabase to your project from scratch:


	To add the support of SQLite database, you need to add it as a dependency in your SPM package manifest file:



import PackageDescription

let package = Package(
 name: "MyJournal",
 dependencies: [
 ...
 .package(url: "https://github.com/vapor/fluent-sqlite.git", from: "3.0.0"),
 ],
 targets: [
 .target(name: "App", dependencies: ["FluentSQLite", ...]),
 .target(name: "Run", dependencies: ["App"]),
 .testTarget(name: "AppTests", dependencies: ["App"]),
 ]
)


	Update your Xcode project files with the changes you just made in Package.swift:



$ vapor xcode


	Register FluentSQLiteProvider in configure.swift:



import FluentSQLite

try services.register(FluentSQLiteProvider())

Since SQLite is an embedded database and built on top of Vapor's DatabaseKit, you don't need to supply additional login credentials. You can choose either memory or file-based storage when setting up SQLiteDatabase.


	Configure a memory-based SQLite database in configure.swift:



let sqlite = try SQLiteDatabase(storage: .memory))


	Alternatively, configure the database by specifying a local file to use:



let sqlite = try SQLiteDatabase(storage: .file(path: "myjournal.sqlite"))


	Add your SQLiteDatabase to one of the databases supported in your project: 



var databases = DatabasesConfig()
databases.add(database: sqlite, as: .sqlite)
services.register(databases)

The SQLite default database identifier is .sqlite. Since Vapor allows you to use more than one database in a single project, you can add other databases to the services following the preceding code. While you can have a mixed database environment and configure each database separately, you cannot add or change database dynamically.



            

            
        
    
        

                            
                    Using the MySQL database driver

                
            
            
                
The steps to configure MySQL are similar to the steps for configuring SQLite and PostgreSQL. Let's get started:


	Add it as a dependency in Package.swift:



import PackageDescription

let package = Package(
    name: "MyJournal",
    dependencies: [
        ...
        .package(url: "https://github.com/vapor/fluent-mysql.git", from: "3.0.0"),
    ],
    targets: [
        .target(name: "App", dependencies: ["FluentMySQL", ...]),
        .target(name: "Run", dependencies: ["App"]),
        .testTarget(name: "AppTests", dependencies: ["App"]),
    ]
)


	Regenerate your Xcode project files after modifying Package.swift:



$ vapor xcode


	Register MySQLProvider in configure.swift:



import MySQL

try services.register(MySQLProvider())

This will enable all of the services required for MySQL to work properly. It also assumes standard credentials. 


	If you want to override the default configuration, you can register a MySQLDatabaseConfig struct to your services:



let config = MySQLDatabaseConfig(hostname: "localhost",
                                 username: "admin",
                                 database: "myjournal",
                                 password: "password")
let mysql = try MySQLDatabase(config: config)

var databases = DatabasesConfig()
databases.add(database: mysql, as: .mysql)
services.register(databases)

That's all for adding and registering MySQL database in myJournal for Vapor.



            

            
        
    
        

                            
                    Conforming to the Fluent Model

                
            
            
                
Fluent's model is the protocol that represents data used by Fluent when interacting with the database. Fluent takes advantage of data-model-centric features in the Swift library, such as Codable, which facilitates the handling of JSON objects, and extends the data model to support querying the database.



            

            
        
    
        

                            
                    Creating a new Model

                
            
            
                
You can use either struct or class to conform to Model. Since struct is value-typed, a new copy of the struct model will be returned each time you query the database. Class is reference-typed so there won't be a new copy created when the class model is returned as the result for querying the database:


	A new model looks like the following:



import FluentPostgreSQL
import Vapor

final class JournalEntry: PostgreSQLModel {
    var id: Int?
    var title: String
    var content: String
    
    init(id: Int? = nil, title: String, content: String) {
        self.id = id
        self.title = title
        self.content = content
    }
}

The final modifier prevents anyone from subclassing your model.


	Specify the id field:



var id: Int?

Fluent uses id for the internal indexing of each data entry.


	Add other data fields in your model:



var title: String
var content: String


	Add an initializer for your model:



init(id: Int? = nil, title: String, content: String) {
    self.id = id
    self.title = title
    self.content = content
}

That's all you need for your data model.  Next, you're going to explore some Fluent model helpers.



            

            
        
    
        

                            
                    Creating Fluent Migrations

                
            
            
                
Fluent Migration provides you with convenient ways of creating a table for your model and making changes to your database's structure. The table description for your model is called a database schema. Migrations help you prepare a database schema for your model. You can also use them to make normal queries to your database.

There is a shortcut for declaring database migrations for your model. To conform Model to Migration, add an extension to conform to Migration:

extension JournalEntry: Migration {}

Fluent can infer the schema of your model automatically.

Add the following to tell Migration to create a table:

var migrations = MigrationConfig()
migrations.add(model: JournalEntry.self, database: .psql)
services.register(migrations)

In the preceding code, PostgreSQLDatabase is added to your model's migrations.

Migration just needs to run this once when a table is created. Fluent supports a mixed environment, so you can use more than one database in your project. If you have more than one database, you need to set up each database migration properly.



            

            
        
    
        

                            
                    Using Fluent Model Helpers

                
            
            
                
Fluent provides many other convenient Model Helper protocols for database providers in Vapor. 

For example, you may want to conform your model to Codable by extending your model to the Content type:

extension JournalEntry: Content {}

Vapor 3.0 supports many Content types (JSON, Multipart, protobuf) and treats them the same for encoding and decoding the content.

As another example, you may want to support a dynamic component in your route path with the Parameter extension:

extension JournalEntry: Parameter {}

Your model, with all the Fluent model helpers, now looks like the following:

import FluentPostgreSQL
import Vapor

final class JournalEntry: PostgreSQLModel {
    var id: Int?
    var title: String
    var content: String
    
    init(id: Int? = nil, title: String, content: String) {
        self.id = id
        self.title = title
        self.content = content
    }
}

extension JournalEntry: Migration { }
extension JournalEntry: Content { }
extension JournalEntry: Parameter { }

Next, you're going to use the JournalEntry model defined here to handle CRUD operations.



            

            
        
    
        

                            
                    Implementing CRUD operations for Vapor

                
            
            
                
Fluent Model supports basic CRUD methods. Based on the same myJournal code you used in last chapter, you'll replace the in-memory persistence with the Fluent model using SQLiteDatabase and modify the route handlers to call CRUD methods directly.



            

            
        
    
        

                            
                    Implementing the create operation

                
            
            
                
To create a new item for an instance of your model in the database, call the .save(on:) method:

func newEntry(_ req: Request) throws -> Future<Response> {
    return try req.content.decode(JournalEntry.self).flatMap { entry in
        return entry.save(on: req)
    }.transform(to: req.redirect(to: self.mainPage))
}

When the save() method completes, Fluent will automatically have filled in its id with a new, unique value, and it's safe to return.

In order for Fluent to work properly, you're required to remove the default ID in new.leaf:

<input name="id" type="hidden" value="-1" />

Now, let's proceed to implementing the Read operation.



            

            
        
    
        

                            
                    Implementing the read operation

                
            
            
                
To read all of your records in a database, use query(on:) to query the database and all() to list all of them:

func getAll(_ req: Request) throws -> Future<View> {
    return JournalEntry.query(on: req).all().flatMap(to: View.self) { entries in
        let context = JournalContext(title: self.title,
                                     author: self.author,
                                     count: String(entries.count),
                                     entries: entries)
        let leaf = try req.make(LeafRenderer.self)
        return leaf.render("main", context)
    }
}

If you know the ID of an item, you can use find(_:on:) instead of query(on:). The following code shows you how to retrieve an item by its id:

func getEntry(_ req: Request) throws -> Future<View> {
    let id = try req.parameters.next(Int.self)
    return JournalEntry.find(id, on: req).flatMap(to: View.self) { entry in
        guard let entry = entry else { throw Abort(.notFound) }
        let leaf = try req.make(LeafRenderer.self)
        let context : EntryContext
        context = EntryContext(title: self.title,
                               author: self.author,
                               entry: entry)
        return leaf.render("entry", context)
    }
}

In the preceding code, the .notFound status code will be set in HTTP Response if an entry can't be found after calling JournalEntry.find(_:on:).



            

            
        
    
        

                            
                    Implementing the update operation

                
            
            
                
Continue to implement the update operation that works with an existing entry:

func editEntry(_ req: Request) throws -> Future<Response> {
    let id = try req.parameters.next(Int.self)
    return try req.content.decode(JournalEntry.self).flatMap { updated in
        return JournalEntry.find(id, on: req)
                           .flatMap(to: JournalEntry.self) { original in
                            guard let original = original else { throw Abort(.notFound) }
                            original.title = updated.title
                            original.content = updated.content
                            return original.save(on: req)
        }
    }.transform(to: req.redirect(to: self.mainPage))
}

The update method matches the existing item associated with an instance of your model, makes any necessary changes, and then saves it back to the database.



            

            
        
    
        

                            
                    Implementing the delete operation

                
            
            
                
The delete method is similar to the update method by matching with an existing entry. Once found, you'll call delete(on:) to remove it the item from the database:

func removeEntry(_ req: Request) throws -> Future<Response> {
    let id = try req.parameters.next(Int.self)
    return JournalEntry.find(id, on: req).flatMap { entry in
        guard let entry = entry else { throw Abort(.notFound) }
        return entry.delete(on: req).transform(to: req.redirect(to: self.mainPage))
    }
}

After an entry is successfully deleted, the user will be redirected to the application's main screen.  



            

            
        
    
        

                            
                    Working with the Database Abstraction Layer in Kitura

                
            
            
                
Swift-Kuery-ORM is an ORM Framework that simplifies your interaction with the database using model objects. Similar to Vapor's Fluent, Swift-Kuery-ORM provides you with a single interface for many different database engines and relieves you from the burden of writing tedious low-level queries to the database. The framework itself is built on top of Swift-query, which is a lower-level abstraction layer that allows you to customize SQL queries for the database. Normally it is sufficient for you to use Swift-Kuery-ORM only for the persistence of model objects with your server, but you can always switch to Swift-Kuery when you have to customize SQL queries.



            

            
        
    
        

                            
                    Choosing a database driver

                
            
            
                
Kitura Kuery supports SQLite, PostgreSQL, and MySQL. For each database driver, you need to add the dependencies to Swift Package Manager and import the ORM and database plugin packages into your Kitura project.



            

            
        
    
        

                            
                    Using the PostgreSQL database driver

                
            
            
                
Follow these steps to use PostgreSQL in your project:


	Add SwiftKueryORM and SwiftKuerySQLite to the dependencies and targets in your application's Package.swift:






import PackageDescription

let package = Package(
    name: "myJournal",
    dependencies: [
      .package(url: "https://github.com/IBM-Swift/Kitura.git", .upToNextMinor(from: "2.5.0")),
      .package(url: "https://github.com/IBM-Swift/HeliumLogger.git", .upToNextMinor(from: "1.7.1")),
      .package(url: "https://github.com/IBM-Swift/CloudEnvironment.git", from: "8.0.0"),
      .package(url: "https://github.com/RuntimeTools/SwiftMetrics.git", from: "2.0.0"),
      .package(url: "https://github.com/IBM-Swift/Health.git", from: "1.0.0"),
      .package(url: "https://github.com/IBM-Swift/Kitura-StencilTemplateEngine.git", from: "1.8.0"),
      .package(url: "https://github.com/IBM-Swift/Swift-Kuery-ORM.git", .upToNextMinor(from: "0.3.1")),
      .package(url: "https://github.com/IBM-Swift/Swift-Kuery-PostgreSQL.git", from: "1.2.0"),
    ],
    targets: [
      .target(name: "myJournal", dependencies: [ .target(name: "Application"), "Kitura" , "HeliumLogger", "KituraStencil"]),
      .target(name: "Application", dependencies: [ "Kitura", "CloudEnvironment","SwiftMetrics","Health", "SwiftKueryORM", "SwiftKueryPostgreSQL"]),

      .testTarget(name: "ApplicationTests" , dependencies: [.target(name: "Application"), "Kitura","HeliumLogger" ])
    ]
)







	Create a database for your application after you've started a postgresql service:



brew install postgresql
brew services start postgresql
createdb journalbook

This makes sure that postgresql is running and a table named journalbook exists on your system. By default, postgresql uses port 5432.


	Create the JournalRoutes.swift file in  /Sources/Application/Routes/, in the same directory as HealthRoutes.swift:



import Foundation
import Kitura
import KituraStencil
import SwiftKueryORM
import SwiftKueryPostgreSQL
import LoggerAPI

func initializeJournalRoutes(app: App) {
  
    let mainPage = "/journal/all"
    
    let title = "My Journal"
    let author = "Angus"

    let poolOptions = ConnectionPoolOptions(initialCapacity: 1,
                                                maxCapacity: 5,
                                                timeout: 10000)
        
    // Set up database connection
    let psqlPool = PostgreSQLConnection.createPool(host: "localhost",
                                               port: 5432,
                                               options: [.databaseName("journalbook")],
                                               poolOptions: poolOptions)
    Database.default = Database(psqlPool)

    do {
        try JournalItem.createTableSync()
    } catch let error {
        Log.error("Failed to create table in database: \(error)")
    }
}

Both the SwiftKueryORM and SwiftKueryPostgreSQL headers are included before you can call .createPool() to set up a database connection.


	Import both SwiftKueryORM and SwiftKuerySQLite:



import SwiftKueryORM
import SwiftKueryPostgreSQL



	Configure an poolOptions object for the PostgreSQL Connection instance:





let poolOptions = ConnectionPoolOptions(initialCapacity: 1,
                                        maxCapacity: 5,
                                        timeout: 10000)


	Create the instance of the PostgreSQL Connection itself:



// Set up database connection
let psqlPool = PostgreSQLConnection.createPool(host: "localhost",
                                               port: 5432,
                                               options: [.databaseName("journalbook")],
                                               poolOptions: poolOptions)


You've specified a PostgreSQL database that is called journalbook and runs on localhost at port 5432.


	Assign the database connection you've just created as the default database connection to use:





Database.default = Database(psqlPool)


	Create a table in the database:





do {
  try JournalItem.createTableSync()
} catch let error {
  Log.error("Failed to create table in database: \(error)")
}




You can create a table synchronously using the createTableSync() method, or asynchronously using createTable(). The preceding implementation throws an error if a table has been created already. You can either ignore the error or handle it gracefully by printing out a warning message and continue the rest of the operation.



            

            
        
    
        

                            
                    Setting up the SQLite database driver

                
            
            
                
You may follow the same steps for setting up a PostgreSQL database connection to create a SQLite database. All the setup for the SQLite database goes to the initializeJournalRoutes(app:) function in JournalRoutes.swift.


	Create an instance of Swift-Kuery-SQLite by calling the .createPool method of SQLiteConnection:



let pool = SQLiteConnection.createPool(filename: "sqlite.db", 
                                       poolOptions: ConnectionPoolOptions(initialCapacity: 10,
                                                                         maxCapacity: 30, 
                                                                         timeout: 10000))

 Database.default = Database(pool)

ConnectionPool allows you to support multiple connections to your SQLite database. If you omit a filename, your database will be in-memory.


	If you want a single connection, you can create SQLiteConnection as follows:



let connection = SQLiteConnection(filename: "myjournal.sqlite")

That's all for setting up a SQLite database driver in the Kitura project. Read on if you need a MySQL database driver in your project.



            

            
        
    
        

                            
                    Using the MySQL database driver

                
            
            
                
Following the similar steps as in SQLite and PostgreSQL configuration and add the following code in initializeJournalRoutes(app:):


	Add appropriate dependencies for Kuery MySQL in Package.swift:



import PackageDescription

let package = Package(
    name: "myJournal",
    dependencies: [
      ...
      .package(url: "https://github.com/IBM-Swift/Swift-Kuery-ORM.git", from: "0.3.1"),
      .package(url: "https://github.com/IBM-Swift/Swift-Kuery-MySQL.git", from: "1.2.0")
    ],
    targets: [
      .target(name: "myJournal", dependencies: [..., "SwiftKueryORM", "SwiftKueryMySQL"]),
      ...
    ]
)


	In your Kitura application, import the SwiftKueryORM and SwiftKueryMySQL packages into any files using Kuery methods:



import SwiftKueryORM
import SwiftKueryMySQL


	Create a connection to the MySQL database:



let connection = MySQLConnection(host: "localhost", 
                                 user: "admin", 
                                 password: "admin", 
                                 database: "myjournal", 
                                 port: "1234")

All the parameters for MySQLConnection are optional. The port number is used when you want to use non-standard ports for a TCP/IP connection.



            

            
        
    
        

                            
                    Conforming to the Swift-Kuery-ORM Model

                
            
            
                
Similar to Fluent, Swift-Kuery-ORM provides very convenient high-level features for data persistence using the Model protocol. Once you've designed and built your data structure on Model, you can perform CRUD operations on your data without writing any SQL queries.



            

            
        
    
        

                            
                    Creating a new model

                
            
            
                
You can design your data structure using either class or struct. In Swift, class is a reference type while struct is a value type. Here, struct is a better choice because using let on a struct turns your data object into a constant.  The immutability of struct makes memory-handling easier in multithreaded environment.


	To create a new model, declare a struct that implements Swift's Codable protocol:





struct Entry: Codable {
  var title: String
  var content: String
}




Codable simplifies the handling of JSON objects in our RESTful routes.


	Extend your struct to support the Model protocol:





extension Grade: Model { }




The extension adds additional ORM functionalities to your data model. You do not need to include an id field to identify each data entry uniquely. Kuery ORM will create the id field and increment the value of id automatically when you add a new entry to the database.



            

            
        
    
        

                            
                    Implementing the CRUD operations

                
            
            
                
Once your data struct is conforming to Model, you can automatically use the data model in the database's CRUD operations.



            

            
        
    
        

                            
                    Displaying all records

                
            
            
                
The objects in your database can be conveniently retrieved.


	If you want to get all the instances of your object, call the finalAll() function:



JournalItem.findAll()


	You can ask Swift-Kuery-ORM to format the retrieved result in a dictionary:



JournalItem.findAll { (result: [Int: JournalItem]?, error: RequestError?) in
  ...
}


	Alternatively, you can specify the output format as an array of tuples:



JournalItem.findAll { (result: [(Int, JournalItem)]?, error: RequestError?) in
 ...
}

The last two output formats are useful if you need to retrieve the ID for each entry.


	In the implementation of initializeJournalRoutes(app:), add the implementation of a router to retrieve all data right after the do-try-catch block:



app.router.get("/journal/all") { _, response, _ in
  JournalItem.findAll { (result: [(Int, JournalItem)]?, error: RequestError?) in
    guard let items = result else { return }
    var entries: [[String: Any]] = []
    for (index, entry) in items {
      let id = String(index)
      let title : String = entry.title
      let content : String = entry.content
      let map = ["id": id, "title": title, "content": content]
      entries.append(map)
    }
    do { 
        try response.render("main", context: ["title": title,
                                              "author": author,
                                              "count": "\(items.count)",
                                              "entries": entries])
    } catch let error {
        response.send(error.localizedDescription)
    }
  }
}

This implementation calls Model's findAll() method to retrieve both ID and JournalItem in a tuple output format. The IDs are needed because you want to embed the Edit and Removal links for each record you are displaying.

Unfortunately, you can't pass the tuple directly as a context to your Stencil template. You'll need to flatten the tuples into a 2D array structure by creating the new array structure, [[String: Any]], mapping the tuple values to a new array object, and appending the mapped array object to the 2D array context.


	Create the new Stencil template, main.stencil, to render the main screen, which takes in the context:



{% include "header.stencil" %}
[ <a class="fas fa-plus-square" href="/journal/create"> Add New Entry</a> ]
<P>
{% for entry in entries %}
<!--Section {{ forloop.counter0 }}-->
<section class="sec{{ forloop.counter0 }}" id="sec{{ forloop.counter0 }}">
<div class="Container entry">
<h2>{{ entry.title }}</h2>
{{ entry.content }}
<BR> [ ID: {{ entry.id }}
: <a class="fas fa-edit" href="/journal/get/{{ entry.id }}"> Edit</a>
| <a class="fas fa-trash-alt" href="/journal/remove/{{ entry.id }}"> Remove</a> ]
</div>
</section>
{% endfor %}
Total: {{ count }};
{% include "footer.stencil" %}

Here, you can see how the id attribute is used in the URLs for the Edit and Remove operations for each displayed record.



            

            
        
    
        

                            
                    Displaying a single record

                
            
            
                
If you want to retrieve only a specified object, use the find() function:

JournalItem.find(id: 1) { result, error in
  ...
}

The find() function expects the explicit id parameter.  Since you do not know each record's ID (IDs are created automatically), you rely on the existing links for each record that are ready populated with the IDs to help retrieve the specific record you are looking for. You can find a similar technique used in the implementation of the Edit and Remove route handlers.



            

            
        
    
        

                            
                    Creating a new record

                
            
            
                
With Swift-Kuery-ORM, it is very easy to save a new object to your database, just perform the following steps:


	Create the object and use the save() function:



let item = JournalItem(title: "What a beautiful day!", content: "Best time for an outing.")
item.save { item, error in
  ...
}


	Swift-Kuery-ORM will automatically add an ID when it saves your object.

	Add the new stencil file, new.stencil, to display a form for the user to fill in a new record:



{% include "header.stencil" %}
<!--form-->
<section class="form" id="myForm">
<div class="container">
<div class="row">
<div class="col-lg-12">
<div class="heading">
<h1>Create a Journal Entry</h1>
</div>
</div>
</div>
</div>
<div class="container max-width">
<div class="row">
<div class="done">
<div class="alert alert-success">
<button type="button" class="close" data-dismiss="alert">X</button>
Your message has been submitted.
</div>
</div>
<div class="col-md-12">
<form action="/journal/new" method="post" enctype="application/x-www-form-urlencoded" target="/journal/all">
<fieldset class="form-group">
<input type="text" class="form-control" name="title" placeholder="Enter title here">
</fieldset>

<fieldset class="form-group">
<textarea class="form-control" rows="5" name="content" placeholder="Enter your journal content here..."></textarea>
</fieldset>

<button type="submit" class="entryform submit">Submit</button>
</form>
</div>
</div>
</div>
</section>
{% include "footer.stencil" %}


	This form can be retrieved by this route added to initializeJournalRoutes(app:):



app.router.get("/journal/create") { request, response, next in
    response.headers["Content-Type"] = "text/html; charset=utf-8"
    try response.render("new", context: ["title": title, "author": author])
}


	Add the following HTTP POST route handler to initializeJournalRoutes(app:) to process the submitted form data:



app.router.post("/journal/new") { request, response, next in
    guard let entry = try? request.read(as: JournalItem.self)
        else { return try response.status(.unprocessableEntity).end() }
    let item = JournalItem(title: entry.title, content: entry.content)
    item.save { item, error in 
    do {
         try response.redirect(mainPage)
        } catch let error {
            response.send(error.localizedDescription)
        } 
    } 
}

If the saving of a new entry is successful, the user will be redirected to the main page.



            

            
        
    
        

                            
                    Updating an existing record

                
            
            
                
To modify an existing object in your database, perform the following steps:


	Use the update(id:) function with the object's ID as the parameter:



let item = JournalItem(title: "What a beautiful day!", content: "Best time for an outing.")
item.title = "Nice Weather!"
item.update(id: 1) { item, error in
  ...
}

Each record in the main screen has already populated with the Edit link to display a form for editing.


	Add the following Stencil template, entry.stencil, to the /Views directory:



{% include "header.stencil" %}
<!--form-->
<section class="form" id="myForm">
<div class="container">
<div class="row">
<div class="col-lg-12">
<div class="heading">
<h1>Edit a Journal Entry</h1>
</div>
</div>
</div>
</div>
<div class="container max-width">
<div class="row">
<div class="done">
<div class="alert alert-success">
<button type="button" class="close" data-dismiss="alert">X</button>
Your message has been submitted.
</div>
</div>
<div class="col-md-12">
<form action="/journal/edit/{{ entry.id }}" method="post" enctype="application/x-www-form-urlencoded" target="/journal/all">
<fieldset class="form-group">
<input name="id" type="hidden" value="{{ entry.id }}" />
<input name="title" type="text" class="form-control" value="{{ entry.title }}" />
</fieldset>

<fieldset class="form-group">
<textarea class="form-control" rows="5" name="content">
{{ entry.content }}
</textarea>
</fieldset>

<button type="submit" class="entryform submit">Submit</button>
</form>
</div>
</div>
</div>
</section>
{% include "footer.stencil" %}


	The Edit form is retrieved through the following handler in initializeJournalRoutes(app:):



    app.router.get("/journal/get/:index?") { request, response, next in
      guard let index = request.parameters["index"] else {
        return try response.status(.badRequest).send("Missing entry index").end()
      }
      guard let idx = Int(index) else {
        return try response.status(.badRequest).send("Invalid entry index").end()
      }

      JournalItem.find(id: idx) { result, error in
        guard let item = result else { return }
        let id = String(idx)
        let title : String = item.title
        let content : String = item.content
        let entry = ["id": id, "title": title, "content": content]
        do {
          try response.render("entry", 
                              context: ["title": title, 
                                        "author": author, 
                                        "entry": entry])
        } catch let error {
            response.send(error.localizedDescription)
        }
      }
    }


	The submitted data is processed by an HTTP POST route handler:



app.router.post("/journal/edit/:index?") { request, response, next in
    guard let index = request.parameters["index"] else {
        return try response.status(.badRequest).send("Missing entry index").end()
    }
    guard let idx = Int(index) else {
        return try response.status(.badRequest).send("Invalid entry index").end()
    }
    guard let entry = try? request.read(as: JournalItem.self) else { 
        return try response.status(.unprocessableEntity).end() 
    }
    let item = JournalItem(title: entry.title, content: entry.content)
    item.update(id: index) { item, error in 
        do {
            try response.redirect(mainPage)
        } catch let error {
            response.send(error.localizedDescription)
        } 
    } 
}

Updating an existing record is less straightforward because the existing entry's ID must be populated in the Edit form so the same entry in the database can be sequentially updated. 



            

            
        
    
        

                            
                    Deleting a record

                
            
            
                
If you want to delete a specific object, perform the following steps:


	Use delete(id:) if you know the object's ID:



JournalItem.delete(id: 1) { error in
  ...
}


	Sometimes, you may want to delete all the entries in the current table of your database. You can use deleteAll() to do so:



JournalItem.deleteAll { error in
  ...
}


	The following, shows the route handler for deleting a record in the implementation of initializeJournalRoutes(app: App):





app.router.get("/journal/remove/:index?") { request, response, next in
 guard let index = request.parameters["index"] else {
 return try response.status(.badRequest).send("Missing entry index").end()
 }
 guard let idx = Int(index) else {
 return try response.status(.badRequest).send("Invalid entry index").end()
 }

 JournalItem.delete(id: idx) { error in
 do {
 try response.redirect(mainPage)
 } catch let error {
 response.send(error.localizedDescription)
 } 
 }
 }
}




Generally, it is not recommended for you to use the deleteAll() function to wipe out the entire table. A safe way is not to expose a route that implements such a global operation in your application.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, you learned how to set up a database and replaced the temporary storage in myJournal applications with more permanent database storage. You learned how to install three SQL databases on your system: SQLite, PostgreSQL, and MySQL. Then, you integrated the PostgreSQL software driver into your Vapor project and came up with a new data model that conforms to the Fluent Model. With Vapor Fluent, you implemented the CRUD operations for PostgreSQL. Next, you integrated database drivers into your Kitura application. Swift-Kuery-ORM is a Fluent-like abstraction for database management and manipulation in Kitura. You took advantage of Swift-Kuery-ORM to implement the CRUD operations for PostgreSQL in the myJournal for Kitura application. In the next chapter, you will add authentication and Admin account management to the codebase you worked on here.



            

            
        
    
        

                            
                    Adding Authentication

                
            
            
                
It is important for your web app to regulate who can access your content and use your services and who can't. In a typical web application, resources are usually placed in either protected or public areas. There are many resources or features you do not want users to get access to, such as administrative features for your app, or subscription-based content, and you want to restrict the access to protected content. For example, in the myJournal application, only the application owner, or a small group of users, is allowed to create, edit, or delete a journal entry.

This chapter introduces you to the key features in user-access management: user authentication, cookies, and sessions management. You'll learn how to set up a user model and password-protected content. With the authentication API, you're going to grant and remove access for different users. You'll then learn how to manipulate cookies and manage user login sessions, and implement logic to validate user input.

In this chapter, we will cover the following topics:


	Getting introduced to the Authentication API for Vapor

	Knowing how to set up secured access for protected content

	Getting familiar with HTTP Basic Authentication for Kitura





            

            
        
    
        

                            
                    Introducing the authentication API for Vapor

                
            
            
                
In Swift web frameworks, there are two authentication approaches: web-based and API-based. For the web-based authentication, a framework takes advantage of web browser's session ability to persist the authenticated access. For API-based authentication, the client to a Swift web framework may not be a web browser. In that case, a token is generated to persist authenticated access for a user. In this chapter, you'll focus on securing your web resources with web-based authentication.



            

            
        
    
        

                            
                    Using web authentication

                
            
            
                
A Swift web framework uses a web browser's sessions to persist state across multiple HTTP requests. A session is temporary because your session cookie may be deleted sometimes, depending on the policy settings for cookie persistence. The session stores individual data in a browser pertaining to the usage by a unique user who comes to visit your web application. When a session is started, the web application sends a cookie to the web browser. The web browser will store each application's cookie to maintain state throughout a session. The interaction between your web browser and web application is illustrated in this sequence diagram:







Your Vapor application uses a unique ID to identify a user's session. With the session ID, user-specific information associated with a session can be stored in your web application's cookies and retrieved later. When the next HTTP request comes in, your web application will query for the session data to check whether the user is currently authenticated. If the user is authenticated already, your application won't ask the user to supply the login credentials again.



            

            
        
    
        

                            
                    Setting up AuthenticationProvider

                
            
            
                
In order to use HTTP authentication, add package dependencies to the Swift Package Manager's manifest file, Package.swift:

...
.package(url: "https://github.com/vapor/auth.git", from: "2.0.0"),
...
dependencies: ["FluentPostgreSQL",
 "Vapor",
 "Leaf",
 "Authentication"]

Like enabling other services in Vapor, you then register AuthenticationProvider in configure.swift:

try services.register(AuthenticationProvider())

You then import the authentication package into configure.swift and any Swift files that use Authentication functions:

import Authentication



            

            
        
    
        

                            
                    Configuring for SessionMiddleware

                
            
            
                
While AuthenticationProvider allows you to authenticate a user, you'll also need to set up SessionMiddleware in Vapor in order to maintain the user's sessions.

Add the following code before services.register(middlewares) in configure.swift:

middlewares.use(SessionsMiddleware.self)

The session middleware by default uses in-memory storage for session information. In future Vapor releases, Vapor may add support for Fluent databases, such as SQLite, PostgreSQL, and MySQL, or cache service, such as Redis, to store the session information.

If you want to use key-value storage for sessions, configure your middleware's preference to be the KeyedCache service that is supported in Vapor:

config.prefer(MemoryKeyedCache.self, for: KeyedCache.self)



            

            
        
    
        

                            
                    Constructing a Model

                
            
            
                
Now it's time to construct a Model that you can use to hold up the administrator's credentials. Since you may want to manage the administrator accounts in your application, it's better to construct a new model so a new table will be created in the database to store the account information.

First, create a new Swift file, Models/Admin.swift, and import the following packages:

import FluentPostgreSQL
import Vapor
import Authentication

Next, subclass a new Admin class from one of the Fluent models, PostgresSQLModel:

final class Admin: PostgreSQLModel {
   var id: Int?
    var name: String
    var login: String
    var password: String // password is hashed
    
    init(id: Int? = nil, name: String, login: String, password: String) {
        self.id = id
        self.name = name
        self.login = login
        self.password = password
    }
}

The Admin class has a modifier, final, so you don't need to worry anyone who can subclass from your Admin class.

Like any other database model in Fluent, PostgreSQLModel automatically increases the id property and you typically don't need to assign a value to the model's id.

Then, you need to extend your class from the PasswordAuthenticatable protocol and specify which properties you want to use for authentication purpose. Here's how it's done:

extension Admin: PasswordAuthenticatable {
    static var usernameKey: WritableKeyPath<Admin, String> {
        return \.login
    }
    
    static var passwordKey: WritableKeyPath<Admin, String> {
        return \.password
    }
}

Here, you use the .login property as the protocol's usernameKey and the .password property as the protocol's passwordKey.

Finally, add other required protocols to your Admin class:

extension Admin: SessionAuthenticatable { }
extension Admin: Migration { }
extension Admin: Content { }
extension Admin: Parameter { }

The SessionAuthenticatable protocol allows you to keep the authenticated state throughout each session once a user has successfully logged in as an administrator. For a review of the Migration, Content, and Parameter protocols, please refer to Chapter 8, Employing Storage Framework.



            

            
        
    
        

                            
                    Accessing protected content

                
            
            
                
Since your model can now be authenticated by both password and session, you're ready to separate routes into public and protected content. A clear separation between public and protected content is needed so you don't accidentally expose protected content to unauthenticated users in public routes. The route grouping technique in Vapor is useful in organizing public and protected routes into distinct route groups. You can apply an authentication requirement to the route group with routes of protected content. 

Any user who wishes to get access to the protected content must first provide login credentials to your Vapor application, and then the application will authenticate the submitted user login and password information using the credential information stored in the database . 





            

            
        
    
        

                            
                    Adding public routes

                
            
            
                
Open the existing JournalRoutes.swift and add a new line of code to import the Authentication package into the JournalRoutes struct:

import Authentication

Add loginPage related constants to the JournalRoutes struct:

let loginPage = "/journal/login"
let loginPageWithError = "/journal/login?error"
let loginPageNeedLogin = "/journal/login?login"

Define a new context, LoginContext, to hold the information used in rendering the new template, login.leaf:

struct LoginContext : Encodable {
  let login: Bool
  let error: Bool
  let title: String
  let author: String
}

Group and direct all routes in your web application to the authentication session middleware:

func boot(router: Router) throws {
        
  let authSession = Admin.authSessionsMiddleware()
  let authRouter = router.grouped(authSession)
  ...
}

All routes will be processed by the authentication session middleware before reaching you.

You can now separate the routes into public and protected.

Group public routes and add routes to handle login/logout:

func boot(router: Router) throws {
        
  let authSession = Admin.authSessionsMiddleware()
  let authRouter = router.grouped(authSession)
  let publicRouter = authRouter.grouped("journal")
  
  // public routes
  publicRouter.get("", use: getAll)
  publicRouter.get("all", use: getAll)
  publicRouter.get("login", use: showLogin)
  publicRouter.post("auth", use: checkLogin)
  publicRouter.get("logout", use: logout)
  ...
}

In addition to the existing routes that are routed to the getAll() handler, you are adding three new routes:


	login: Renders the login.leaf template so a user can use its form to submit login credentials

	auth: Handles the HTTP POST request as a result of the submission of the login form

	logout: Destroys the current authentication session and reroutes the user to "public" content



The preceding code shows how all public routes are grouped into publicRouter. The public routes allow any users to access to the content these routes expose to them. You are exposing two kinds of content to the public users: you allow them to view all journal entries in the database.



            

            
        
    
        

                            
                    Adding the login page

                
            
            
                
One of the routes you added previously to the public route is to render a Login page for the user to enter credential information.

Add the showLogin handler for the "login" route:

func showLogin(_ req: Request) throws -> Future<View> {
    let leaf = try req.make(LeafRenderer.self)
    var loginError : Bool = false
    var loginRequired : Bool = false
    if req.query[Bool.self, at: "error"] != nil { loginError = true } 
    if req.query[Bool.self, at: "login"] != nil { loginRequired = true } 

    let context = LoginContext(login: loginRequired,
                               error: loginError,
                               title: self.title,
                               author: self.author)
        return leaf.render("login", context)
}

The showLogin handler passes a LoginContext instance to render the login.leaf template. It checks for the "error" and "login" URL-encoded parameters in the HTTP GET request and puts the information in LoginContext. The two Boolean properties in LoginContext, loginError, and loginRequired are used to determine whether there was a previous failed login attempt.





Create the login.leaf template for the login page:

#embed("header")
<!--form-->
<section class="form" id="myLoginForm">
<div class="container">
    <div class="row">
        <div class="col-lg-12">
            <div class="heading">
                <h1>Login as an Admin</h1>
            </div>
        </div>
    </div>
</div>
<div class="container max-width">
    #if(error) {
        <div class="row">
            <div class="col-md-12">
                <div class="alert alert-danger" role="alert">
                    Incorrect email or password
                </div>
            </div>
        </div>
    }
    #if(login) {
        <div class="row">
            <div class="col-md-12">
                <div class="alert alert-info" role="alert">
                    You need to login as an admin
                </div>
            </div>
        </div>
    }
    <div class="row">
        <div class="col-md-12">
            <form action="/journal/auth" method="post">
                <fieldset class="form-group">
                    <input type="hidden" name="name" value="dontcare"/>
                    <input type="text" class="form-control" name="login" placeholder="Enter your login (email or username) here.">
                    <input type="password" class="form-control" name="password" placeholder="Enter your password here.">
                </fieldset>
                <button type="submit" class="entryform submit">Submit</button>
            </form>
        </div>
    </div>
</div>
</section>
#embed("footer")

This form will send an HTTP POST request to Vapor for user authentication. Since you are not going to use the name in authentication, the name field is hidden and provided with a dummy string.



            

            
        
    
        

                            
                    Checking login credentials

                
            
            
                
The login credentials are submitted through the HTTP POST request to the /journal/auth route. You can now implement the code to process the submitted login credentials.

Add the checkLogin handler to process the login credentials:

func checkLogin(_ req: Request) throws -> Future<Response> {
    return try req.content.decode(Admin.self).flatMap { candidate in
        return Admin.authenticate(username: candidate.login,
                                  password: candidate.password,
                                  using: BCryptDigest(),
                                  on: req).map { admin in
                                    guard let admin = admin else {
                                        return req.redirect(to: self.loginPageWithError)
                                    }
                                    try req.authenticateSession(admin)
                                    return req.redirect(to: self.mainPage)
        }
    }
}

Since Admin implements the passwordAuthenticatable protocol, you can use Admin.athenticated(username: password: using: on:) to verify the submitted credentials. For the parameter, specify it to be BCryptDigest(). If the login credentials have been authenticated successfully, call .authenticateSession() to set up the authentication session and redirect the view to the main page. If the submitted login credentials failed to authenticate successfully, redirect the view to the login page, with the error flag turned on.



            

            
        
    
        

                            
                    Logging out of the current session

                
            
            
                
For completeness, you can finish the handler for the logout route.

Add the following logout handler function:

func logout(_ req: Request) throws -> Response { // no async call
    try req.unauthenticateSession(Admin.self)
    return req.redirect(to: self.mainPage)
}

The logout handler simply calls the .unauthenticateSession() provided in the sessionAuthenticatable protocol to exit the current session.



            

            
        
    
        

                            
                    Specifying protected routes

                
            
            
                
Now, you're ready to specify the routes that require secured access. To do that, use RedirectMiddleware to reroute any unauthenticated access requests to the login template.

Add secureRouter in JournalRoutes.swift, right after the group of public routes:

let securedRouter = authRouter.grouped(RedirectMiddleware<Admin>(path: "/journal/login"))

You can build onto secureRouter to specify all protected routes.

Add the following HTTP GET and POST requests to securedRouter:

// protected routes: entries
let adminRouter = securedRouter.grouped("journal/admin")
adminRouter.get("create", use: createEntry)
adminRouter.post("new", use: newEntry)
adminRouter.get(Int.parameter, "get", use: getEntry)
adminRouter.post(Int.parameter, "edit", use: editEntry)
adminRouter.get(Int.parameter, "remove", use: removeEntry)



            

            
        
    
        

                            
                    Using the authenticated state

                
            
            
                
To display different messages in a template according to the authentication state, you can pass a Boolean value via the Encodable context to your Leaf template.

Add the isAdmin Boolean to JournalContext:

struct JournalContext : Encodable {
    let isAdmin: Bool
    let title: String
    let author: String
    let count: String
    let entries: [JournalEntry]
}

In the header.leaf template, you use isAdmin to display different options for the user. When the user is not authenticated, you want to display a link that allows the user to login; otherwise, display the logout link for an authenticated user to exit the session:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>#(title)</title>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">

<!-- Bootstrap CSS -->
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.2/css/bootstrap.min.css" integrity="sha384-Smlep5jCw/wG7hdkwQ/Z5nLIefveQRIY9nfy6xoR1uRYBtpZgI6339F5dgvm/e9B" crossorigin="anonymous">

<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.2.0/css/all.css" integrity="sha384-hWVjflwFxL6sNzntih27bfxkr27PmbbK/iSvJ+a4+0owXq79v+lsFkW54bOGbiDQ" crossorigin="anonymous">
<!-- Custom CSS -->
<link rel="stylesheet" href="/css/custom.css">

</head>

<body>
<!--wrapper start-->
<div class="wrapper" id="wrapper">

<!--Banner-->
<header>

<!--Navbar-->
<nav class="navbar navbar-expand-lg navbar-dark fixed-top scrolling-navbar">
    <div class="container">
        <a class="navbar-brand" href="#"><strong>myJournal</strong></a>
        <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#myNavbar" aria-controls="myNavbar" aria-expanded="false" aria-label="Toggle navigation">
            <span class="navbar-toggler-icon"></span>
        </button>
    <div class="collapse navbar-collapse" id="myNavbar">
        <ul class="navbar-nav mr-auto">
            <li class="nav-item active">
                <a class="nav-link" href="/journal/all">Home <span class="sr-only">(current)</span></a>
            </li>
            <li class="nav-item">
                #if(isAdmin == true) {
                    <a class="nav-link" href="/journal/logout">Logout</a>
                } else {
                    <a class="nav-link" href="/journal/login?login">Admin</a>
                }
            </li>
            <li class="nav-item">
                <a class="nav-link" href="#">About</a>
            </li>
        </ul>
    </div>
</div>
</nav>

<!--Jumbotron-->
<div class="jumbotron banner-align-top" id="myBanner">
    <div class="banner-background text-center" style="background-image: url(/img/pier.png);">
        <div class="container text-center" id="banner-size">
            <h2 class="banner-title">My Journal</h2>
            <h3 class="banner-subtitle">The Path of Heart!</h3>
        </div>
    </div>
</div>

</header>

Modify the getAll() handler to add the isAdmin field to JournalContext:

func getAll(_ req: Request) throws -> Future<View> {
 return JournalEntry.query(on: req).all().flatMap(to: View.self) { entries in
 let isAdmin = try req.isAuthenticated(Admin.self)
 let context = JournalContext(isAdmin: isAdmin,
 title: self.title,
 author: self.author,
 count: String(entries.count),
 entries: entries)
 let leaf = try req.make(LeafRenderer.self)
 return leaf.render("main", context)
 }
}

Create a CreateContext struct that implements Encodable:

struct CreateContext : Encodable {
    let isAdmin: Bool
    let title: String
    let author: String
}

CreateContext contains the isAdmin Boolean field to indicate whether the user has administrative rights.

Modify the createEntry() handler as well:

func createEntry(_ req: Request) throws -> Future<View> {
    let leaf = try req.make(LeafRenderer.self)
    let isAdmin = try req.isAuthenticated(Admin.self)
    let context = CreateContext(isAdmin: isAdmin,
                                title: self.title,
                                author: self.author)
    return leaf.render("new", context)
}



            

            
        
    
        

                            
                    Managing accounts

                
            
            
                
You need to add several new routes to manage your admin account. For that, use securedRouter to add another group of routes that handle admin accounts.

Add the following routes right under the protected routes for adminRouter:

// protected routes: accounts
let accountRouter = securedRouter.grouped("journal/account")
accountRouter.get("all", use: getAccounts)
accountRouter.get("add", use: addAccount)
accountRouter.post("new", use: newAccount)
accountRouter.get(Int.parameter, "remove", use: removeAccount)

There are four protected routes in the securedRouter route group. They are used to manage the administrative accounts in your myJournal application.



            

            
        
    
        

                            
                    Listing all accounts

                
            
            
                
Define a new path that lists all the accounts:

let accountsPage = "/journal/account/all"

Create the new AccountsContext Encodable context for the getAccounts() handler:

struct AccountsContext : Encodable {
    let isAdmin: Bool
    let title: String
    let author: String
    let count: String
    let admins: [Admin]
}

The context contains all the information required by the accounts.leaf template.

Continue to implement the getAccounts() handler:

func getAccounts(_ req: Request) throws -> Future<View> {
    return Admin.query(on: req).all().flatMap(to: View.self) { admins in
        let isAdmin = try req.isAuthenticated(Admin.self)
        let context = AccountsContext(isAdmin: isAdmin,
                                     title: self.title,
                                     author: self.author,
                                     count: String(admins.count),
                                     admins: admins)
        let leaf = try req.make(LeafRenderer.self)
        return leaf.render("accounts", context)
    }
}

The implementation is similar to the getAll() handler, which lists all journal entries.

The new accounts.leaf template is implemented as follows:

#embed("header")
#if(isAdmin == true) {
[ <a class="fas fa-plus-square" href="/journal/all"> Go Home</a>
| <a class="fas fa-user-alt" href="/journal/account/add"> Add New Account</a>
]
}
<P>
<div class="container">
    <div class="row">
        <div class="col-1"><b>ID</b></div>
        <div class="col-1"><b>Name</b></div>
        <div class="col-2"><b>Login</b></div>
        <div class="col-7"><b>Hashed Password</b></div>
        <div class="col-1"><b>Action</b></div>
    </div> <!-- row -->
    #for(admin in admins) {
        <div class="row">
            <div class="col-1">#(admin.id)</div>
            <div class="col-1">#(admin.name)</div>
            <div class="col-2">#(admin.login)</div>
            <div class="col-7">#(admin.password)</div>
              <div class="col-1"><a class="fas fa-trash-alt" href="/journal/account/#(admin.id)/remove">Remove</a></div>
        </div> <!-- row -->
    }

</div>
#if(isAdmin == true) {
    Total: #(count);
}
#embed("footer")

The template lists all the admin entries in AccountsContext and adds new links to add a new account or remove an existing account.



            

            
        
    
        

                            
                    Adding a New Account

                
            
            
                
The Add New Account feature is based on the addAccount() handler. However, in the addAccount() function, you don't need to handle the authentication and session directly because Vapor handles all of that for you once your model implements the passwordAuthenticatable() and sessionAuthenticatable() protocols.

Add the addAccount() handler:

func addAccount(_ req: Request) throws -> Future<View> {
    let leaf = try req.make(LeafRenderer.self)
    let isAdmin = try req.isAuthenticated(Admin.self)
    let context = CreateContext(isAdmin: isAdmin,
                                title: self.title,
                                author: self.author)
    return leaf.render("add_account", context)
}

The handler renders the add_account.leaf template, which simply provides a form for the authenticated user to create another admin account.

The submission of the HTTP POST of the add_account.leaf template will be then processed by the newAccount() handler:

func newAccount(_ req: Request) throws -> Future<Response> {
    return try req.content.decode(Admin.self).flatMap(to: Admin.self) { admin in
        admin.password = try BCrypt.hash(admin.password)
        return admin.save(on: req)
    }.transform(to: req.redirect(to: self.accountsPage))
}

It uses BCrypt package's hash() function to convert the submitted password into its hash value. Then the new admin object will be stored using Fluent's save(on:) function to serialize it to the database.

Add the following add_account.leaf template:

#embed("header")
<!--form-->
<section class="form" id="myForm">
<div class="container">
    <div class="row">
        <div class="col-lg-12">
            <div class="heading">
                <h1>Add an Admin Account</h1>
            </div>
        </div>
    </div>
</div>
<div class="container max-width">
    <div class="row">
        <div class="done">
            <div class="alert alert-success">
                <button type="button" class="close" data-dismiss="alert">X</button>
                Your message has been submitted.
            </div>
        </div>
        <div class="col-md-12">
            <form action="/journal/account/new/" method="post">
                <fieldset class="form-group">
                    <!input name="id" type="hidden"/>
                    <input type="text" class="form-control" name="name" placeholder="Enter your name 
                                                                                           here">
                    <input type="text" class="form-control" name="login" placeholder="Enter your email 
                                                                                address or login here">
                    <input type="password" class="form-control" name="password" placeholder="Enter your 
                                                                                      password here">
                </fieldset>
                <button type="submit" class="entryform submit">Submit</button>
            </form>
        </div>
    </div>
</div>
</section>
#embed("footer")



            

            
        
    
        

                            
                    Removing an account

                
            
            
                
With Fluent ORM, the removal of an account is straightforward. Simply call the delete(on:) function to remove the specific object from the database:

func removeAccount(_ req: Request) throws -> Future<Response> {
    let id = try req.parameters.next(Int.self)
    return Admin.find(id, on: req).flatMap { admin in
        guard let admin = admin else { throw Abort(.notFound) }
        return admin.delete(on: req).transform(to: req.redirect(to: self.accountsPage))
    }
}



            

            
        
    
        

                            
                    Seeding databases

                
            
            
                
You're almost ready to use the new routes to create or remove an admin page. The last thing you need to do is to seed the database so you have at least one known Admin account at the beginning. This is very easy with the PostgreSQL frontend utility: pgadmin4.

One problem you have right away is that a password must be converted into a hash value before serializing to the database. For a quick workaround, you can use a known password hash for the seed account.

You can check out Vapor's implementation of the BCrypt library. BCrypt is a popular hashing algorithm that has configurable complexity and handles salting automatically. Locate the unit tests for the BCrypt library on GitHub: https://github.com/vapor-community/bcrypt/blob/master/Tests/BCryptTests/BCryptTests.swift.

You may notice that there is a list of passwords and hash pairs already in the file:

let tests = [
    "$2a$04$TI13sbmh3IHnmRepeEFoJOkVZWsn5S1O8QOwm8ZU5gNIpJog9pXZm": "vapor",
    "$2a$06$DCq7YPn5Rq63x1Lad4cll.TV4S6ytwfsfvkgY8jIucDrjc8deX1s.": "",
    "$2a$06$m0CrhHm10qJ3lXRY.5zDGO3rS2KdeeWLuGmsfGlMfOxih58VYVfxe": "a",
    "$2a$06$If6bvum7DFjUnE9p2uDeDu0YHzrHM6tf.iqN8.yx.jNN1ILEf7h0i": "abc",
    "$2a$06$.rCVZVOThsIa97pEDOxvGuRRgzG64bvtJ0938xuqzv18d3ZpQhstC": "abcdefghijklmnopqrstuvwxyz",
    "$2a$06$fPIsBO8qRqkjj273rfaOI.HtSV9jLDpTbZn782DC6/t7qT67P6FfO": "~!@#$%^&*() ~!@#$%^&*()PNBFRD"
]

You can store the "vapor" password's hash value, "$2a$04$TI13sbmh3IHnmRepeEFoJOkVZWsn5S1O8QOwm8ZU5gNIpJog9pXZm", in the database.

Using pgAdmin 4, right-click on the Admin model and choose Insert Script to execute:



Use the hash code for vapor to construct a new Admin entry. This is the seed Admin object:



If your seed Admin object is created correctly, you should be able to verify it using the BCrypt library's verify() function:

let hash = try BCrypt.hash("vapor", cost: 4)
try BCrypt.verify("vapor", created: hash) // true

Of course, there are other ways to seed the database. For example, one generic method is to always create a new Admin account as part of the first time out-of-box experience for a user. In your Vapor application, you can check whether there is at least one Admin user in the database and proceed to prompt the user to create a new Admin account if none is found. Using this new Admin account, one can then add and manage other Admin accounts.



            

            
        
    
        

                            
                    Introducing authentication for Kitura

                
            
            
                
Credentials is a pluggable framework for validating a user's credentials. One of the credentials plugins Kitura supports is HTTP basic authentication. HTTP authentication uses the credentials in the HTTP authorization request header, which contains user ID and password pairs, to authenticate with a server.

For your server-side Swift application, Kitura provides you with the raw HTTP basic authentication module to process the HTTP credentials.

If you want to authenticate an HTTP request on a Codable route, you have an option to choose the TypeSafe HTTP basic authentication method to take advantage of TypeSafeCredentials, one of the type-safe middleware introduced in Kitura 2.4.



            

            
        
    
        

                            
                    Setting up HTTP basic authentication

                
            
            
                
Now, you can add some secured routes based on the code base of the myJournal application in Chapter 8, Employing Storage Framework.

To set up HTTP basic authentication, add the following package dependencies to the Swift Package Manager's manifest file, Package.swift:

// swift-tools-version:4.0
import PackageDescription

let package = Package(
    name: "myJournal",
    dependencies: [
      .package(url: "https://github.com/IBM-Swift/Kitura.git", .upToNextMinor(from: "2.5.0")),
      .package(url: "https://github.com/IBM-Swift/HeliumLogger.git", .upToNextMinor(from: "1.7.1")),
      .package(url: "https://github.com/IBM-Swift/CloudEnvironment.git", from: "8.0.0"),
      .package(url: "https://github.com/RuntimeTools/SwiftMetrics.git", from: "2.0.0"),
      .package(url: "https://github.com/IBM-Swift/Health.git", from: "1.0.0"),
      .package(url: "https://github.com/IBM-Swift/Kitura-StencilTemplateEngine.git", from: "1.8.0"),
      .package(url: "https://github.com/IBM-Swift/Swift-Kuery-ORM.git", .upToNextMinor(from: "0.3.1")),
      .package(url: "https://github.com/IBM-Swift/Swift-Kuery-PostgreSQL.git", from: "1.2.0"),
      .package(url: "https://github.com/IBM-Swift/Kitura-CredentialsHTTP.git", from: "2.1.0"),
    ],
    targets: [
      .target(name: "myJournal", dependencies: [ .target(name: "Application"), "Kitura" , "HeliumLogger", "KituraStencil"]),
      .target(name: "Application", dependencies: [ "CredentialsHTTP", "Kitura", "CloudEnvironment","SwiftMetrics","Health", "SwiftKueryORM", "SwiftKueryPostgreSQL"]),

      .testTarget(name: "ApplicationTests" , dependencies: [.target(name: "Application"), "Kitura","HeliumLogger" ])
    ]
)

Import the authentication packages into JournalRoutes.swift that use authentication functions:

import Credentials
import CredentialsHTTP



You also need to regenerate the Xcode project so the new CredentialsHTTP package is included in a build:

swift package generate-xcodeproj



            

            
        
    
        

                            
                    Constructing a Model

                
            
            
                
Now you need a Model that can be also authenticated by HTTP basic authentication.

Create a new Swift file, Admin.swift, in the /Sources/Application/Model directory.

Subclass the Admin model from Model:

import SwiftKueryORM // [1]

struct Admin: Model // [2]
{
  static var idColumnName = "id" // [4]

  public static func checkPassword(username: String, 
                                    password: String) -> Bool { // [5]
      var ret = false
      Admin.find(id: username) { user, error in // [6]
          if let user = user { // [7]
              if password == user.password { // [8]
                  ret = true
              }
          }
      }
      return ret
  }

  public var id: String // [3]
  private let password: String
}

The new Admin model is constructed in the following steps:


	Import the SwiftKueryORM package so you can use the Model protocol

	Declare the data structure as Admin, which conforms to Model

	Add the String variable, id, as well as the String constant, password

	Choose the id field as idColumnName for database indexing




	Add the static function, checkPassword(), which you will use later with credential checking

	Use the given username as the ID for querying the database

	Unwrap the optional database-querying result into the user object

	Set the return flag to true if the given password matches that of the user object



To link your model to a table in your database, you need to create a new table right after the do-try-catch block where you set up a database connection for JournalItem in JournalRoutes.swift:

do {
    try Admin.createTableSync()
} catch let error {
    Log.error("Failed to create table in database: \(error)")
}

Right now, there is no record in the Admins table. Run the INSERT SQL script in pgAdmin4 to add a new entry for Admin. This sample script adds the 'kitura'/'kitura' pair to the database:



Now you can register a credentials object as a middleware plugin for all the /journal paths.

Add the following code right after your Admin.createTableSync() code:

let cred = Credentials()
cred.register(plugin: app.rawAuth)
app.router.all("/journal", middleware: cred)

Any routes that are under the /journal root are now protected and require your credential information. Once you're successfully authenticated, the web browser's cookies will persist your authentication status throughout a session.

You can also follow the same steps as in your Vapor application to add new routes for the Admin account management. In this way, you don't have to use the pgAdmin tool to add new Admin users manually.

The last thing you need to complete the authentication feature is to implement the app.rawAuth plugin itself.

Add the rawAuth extension to the app after the initializeJournalRoutes(app:) function:

extension App {
    var rawAuth: CredentialsHTTPBasic {
        let cred = CredentialsHTTPBasic(verifyPassword: { login, password, callback in
            if Admin.checkPassword(username: login, password: password) {
                callback(UserProfile(id: login, displayName: login, provider: "HTTPBasic"))
            } else {
                callback(nil)
            }
        })
        cred.realm = "HTTP Basic authentication: Username = username, Password = password"
        return cred
    }
}

As you can see, you use the Admin.checkPassword() function you previously created to instantiate a new CredentialsHTTPBasic object. The caller function will receive a valid CredentialsHTTPBasic object if the user is authenticated successfully, otherwise it will receive nil.



            

            
        
    
        

                            
                    Using TypeSafe HTTP authentication

                
            
            
                
For the TypeSafe HTTP Basic Authentication method, you can add the TypeSafeHTTPBasic protocol to the Admin model:

public struct Admin: TypeSafeHTTPBasic, Model {
  static var idColumnName = "id" // [1]
  public var id: String
  var name: String
  var login: String
  var password: String // [2]
  
  public static func verifyPassword(login: String, // [3]
                                    password: String, 
                                    callback: @escaping (Admin?) -> Void) {
      Admin.find(id: login) { admin, error in // [4]
        if let admin = admin {
          if password == admin.password { // [5]
            callback(admin) // [6]
            return
          }
        }
        callback(nil) // [7]
      }
    }
}

Here are some important points to note:


	The ID field is set as the ID column, idColumnName, in the database.

	password is a String but it can be a hashed value.

	The verifyPassword function, required by the TypeSafeHTTPBasic protocol, is used to set up HTTP basic authentication. It takes in login and password credentials.

	The login will be used as an id for querying the database.

	If the provided password matches the stored password in the database, an Admin instance will be returned.

	The database querying is asynchronous, so the callback closure with an instance of Admin is used.

	If no matched Admin instance is retrieved from the database, a callback closure with nil is used.







For any routes that require authentication, you can implement them just like any codable routes using Swift-Kuery-ORM:

router.get("/admin") { (user: Admin, respondWith: (Admin?, RequestError?) -> Void) in
    print("\(user.id) has been authenticated!")
    respondWith(user, nil)
}

The preceding code demonstrates how to turn a model into an authenticatable model in Kitura.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, you learned how to use web authentication to secure routes with protected content in your Vapor web application. To do that, you created a new data model for administrative accounts and added routes and templates to manage the accounts. With this account-management feature, you were able to grant administrative rights to some users or provoke the rights later. Now only a specific group of users will be able to create, edit, or delete a journal entry with their credentials. Then, you worked on the same web authentication framework to secure all the routes under the /journal path. This chapter concludes your myJournal web application. In the next chapter, we will look at how to build more advanced web services.



            

            
        
    
        

                            
                    Understanding Technologies for Web Services

                
            
            
                
In this chapter, we'll see the underlying technologies that empower Web Services. You'll learn about the server/client model based on HTTP/HTTPS in more detail, and get introduced to the Model-View-Controller design pattern you've found in most of the Swift web frameworks. For the architecture design of Web Services, it would be better to divide the design into a three-tier architecture consisting of a frontend API gateway, middle business logic, and backend database services. You'll learn how a typical frontend API gateway is designed, how to encapsulate a middle component with business logic into a standalone microservice, and how to design and work with a backend storage framework.

In this chapter, we will cover the following topics:


	Understanding the three-tier architecture for Web Services

	Getting a review of HTTP protocols

	Learning two design patterns for cloud frontend: Backends of Frontends and API Gateway

	Getting introduced to the microservice-oriented architecture

	Getting practical advice on continuous delivery and deploying your software to cloud





            

            
        
    
        

                            
                    Serving clients with web services

                
            
            
                
In the previous chapters, you have been working on the technologies in building website applications. Website applications refer to the delivery of interactive web content (HTML, CSS, Javascript) to web browsers such as Chrome, Safari, and Firefox. Starting in this chapter, you will work on Web Services intended for a variety of client applications that are customized with their own user interface and user experience. The backend components in Web Services focus on the delivery of data to the client applications and do not use templating engines to render any content.



            

            
        
    
        

                            
                    Designing three-tier architecture for web service

                
            
            
                
A typical backend architecture for web applications and web services has a three-tier layer of components. The three-tier architecture allows you to conveniently separate features into more manageable modules, offering you an opportunity to extend and reconfigure your web services easily. This is what the architecture looks like: 







The delivery of resources is typically over HTTP/1.1 protocols, but more and more websites and web infrastructure have been updated to HTTP/2.0 protocols. The three tiers of web backend architecture typically include the Front-End, Application, and Data Storage Layers, which we'll look at in the next sections. 



            

            
        
    
        

                            
                    The frontend layer

                
            
            
                
The frontend layer consists of web content (in the form of HTML/CSS/JS) for website applications or an API for web services. In the case of website applications, the web content could be generated by templating engines, such as Vapor Leaf, Stencil, Mustache, and Markdown, or enhanced by JavaScript frameworks, such as jQuery, Angular, and React. Frontend applications may pull in other resources via the APIs provided by other Web Services. The clients for a website application will be a variety of web browsers on different platforms.

In the case of web services, the clients make HTTP requests to the application server and exchange data in JSON. An application server is not expected to render web content (HTML/JS/CSS), have a concern for user experience (UX), or handle any presentation of data. Each client decides how to consume and present the data received from a Web Service. Instead, an application server for Web Services organizes all functionalities in terms of the RESTful API, aggregates different services in a single interface (API Gateway), and hides away the details of backend components (the facade for the backend).



            

            
        
    
        

                            
                    The application layer

                
            
            
                
The application layer of your web service consists of a number of application servers that handle the business logic for the service. For scalability, extensibility, and load-balancing requirements in backend architecture design, each kind of business logic could be implemented in an independent runtime as microservice in modern backend design. The business logic could also be implemented in different programming languages, such as Swift, Java, Javascript/Node.js, C++, C#, or Python. Each microservice is deployed in a Docker container to a hosting cloud location.



            

            
        
    
        

                            
                    The data storage layer

                
            
            
                
The data storage layer is a database-management system that provides access to your Web Service with stored application data. A database server could be a relational database, such as MySQL, SQLite, or PostgreSQL, or a non-relational database, such as MongoDB or CouchDB. There could be multiple databases serving an application, and it will be up to the application layer to decide which database to use.



            

            
        
    
        

                            
                    Reviewing HTTP protocols

                
            
            
                
HTTP stands for Hypertext Transfer Protocol. It is the foundation of data communication for the internet. The protocol is developed jointly by the Internet Engineering Task Force (IETF) and the World Wide Web Consortium (W3C). There are a series of Requests for Comments (RFC) published since 1991. Here is a list of several variants of the HTTP protocol that you may encounter:




	Protocol
	Year
	Spec
	Key features





	HTTP/0.9
	1991
	
	Simple server-server, request-response model; HTTP GET request only; no HTTP headers, no status codes, no URLs, no versioning.



	HTTP/1.0
	1996
	RFC 1945
	Web-browser-friendly with HTTP header fields; support of status code, HTTP version number and content type; HTTP GET, HEAD, and POST methods supported.



	HTTP/1.1
	1997
	RFC 2068
	Most popular HTTP version in use; support of persistent connection, data compression, chunked transfers, and cache; GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS methods supported.



	HTTPS
	2000
	RFC 2818
	Originally used in Netscape browser in 1994; uses different port (port 443 instead of 80); added encryption layer (SSL/TLS) on the HTTP scheme; same syntax as HTTP.



	HTTP/2.0
	2015
	RFC 7540
	Compatible with HTTP/1.1; supports data compression of HTTP headers; server push; pipelining of requests; support for framed and binary data; capable of multiplying multiple requests over a single TCP connection.





 

HTTP/1.1 evolves from HTTP/0.9 and HTTP/1.0, and becomes the main HTTP protocol used on the internet. There are two other variants you may encounter:


	HTTPS: If the server/client communication requires security, for example, for transmitting sensitive personal information or passwords, HTTPS instead of the HTTP protocol will be used. HTTPS refers to HTTP Secure and it ensures all data is encrypted properly. A business or user of HTTPS has to apply for a certificate from one of the Certificate Authority providers in order to use HTTPS properly. As a matter of fact, HTTPS became so popular that more than half of HTTP/1.1 traffic takes place on HTTPS.




	HTTP/2.0: This is the major revision of the HTTP protocol in 2015. It is derived from Google's SPDY protocol. HTTP/2.0 supports most of the HTTP/1.1 syntax but also adds support of framed data and binaries. The server implementing HTTP/2.0 no longer operates on passive-only mode. The HTTP/2.0 server can predict whether some data is required by the client and pushes resources to the client ahead of time. Most importantly, HTTP/2.0 improves performance in data delivery by multiplying requests and responses, compressing HTTP headers, and allowing the prioritization of requests. HTTP/2.0 also has a very efficient mechanism for data-streaming. That's the reason for the gRPC framework, a popular open source RPC framework by Google: to choose HTTP/2.0 as the default server/client networking protocol for data-streaming over its data pipeline, called Completion Queue.



Currently, HTTP/1.1 (including HTTPS) is the most popular protocols for websites, taking up more than 70% coverage as compared to HTTP/2.0.



            

            
        
    
        

                            
                    Designing the cloud frontend with pattern

                
            
            
                
When it comes to the design of the backend architecture for a web service, there are many well-known design patterns that provide a good solution to some of the most common problems you are going to encounter. By taking a preemptive approach to reviewing some of the available design patterns, you will have a more coherent and well-thought-out Web Service design.



            

            
        
    
        

                            
                    The backends for frontends pattern

                
            
            
                
One of these backend design patterns is the Backends for Frontends (BFF) pattern. It is useful to avoid having a single backend for multiple interfaces:



There are many different kinds of client types, such as desktop clients, mobile clients, small device clients, and tablet clients. Each of the client types may have a different optimized user-interface design and preferred user-interaction technologies. To have a single, general-purpose backend service is not only difficult to implement, but also forced to make tradeoffs. A general-purpose frontend layer even becomes a bottleneck in a team-based development process.





BFF provides a way to get around these issues by creating one backend per user interface or client type. This design allows you to customize the behavior and performance of each backend for a specific client type, and creates schedule flexibility in a team-development process so engineers can work on BFFs in parallel.

A potential drawback of BFF is that the handling of shared data, if any, between backends may turn out to be more complicated. However, this issue could be solved with a good concurrent design of a system that handles such shared data.



            

            
        
    
        

                            
                    API gateway

                
            
            
                
Another useful design pattern is API gateway or API aggregation. In a typical cloud-based enterprise application, there are various sub-services, such as accounting, authentication, user profile, and messaging. In fact, the trend of backend design is that the runtime of each service is getting more lightweight. People use the term microservice to refer to such a lightweight runtime. Each microservice performs a small task and many different microservice runtimes work together to deliver a complete solution.

For a client, it means that each may have to make multiple calls to various backend services to complete a fairly complex job. It is obviously not very desirable due to the chattiness between the client and server.

API gateway comes to the rescue for this problem. API gateway not only aggregates multiple services into a centralized endpoint for the client, but also consolidates the steps for a client to get a task done.

Here are the differences between the frontend with and without an API gateway:



As you can see, an API Gateway acts as a facade for the numerous services running in the Application layer. API Gateway decouples the client-facing API from the implementation of service runtimes, essentially adding extensibility and scalability to the frontend design.

For example, if one of the services needs to be upgraded, you can simply swap in the new server runtime and take the old one away. The API definitions could possibly be kept unchanged if the design is backward-compatible.

API Gateway not only decouples client and backend development, but also serves as a unified interface that streamlines the workflow on the client side.



            

            
        
    
        

                            
                    Encapsulating business logic into microservices

                
            
            
                
The backend design for web services is usually referred to as distributed architecture because you expect to have service components running on different processes and physical servers. Each service component is accessed remotely through a sort of remote-access protocol. These service components can communicate with each other across different processes, servers, and networks. Similar to Object-Oriented Design (OOD) in software architecture, distributed architecture accommodates more loosely-coupled, encapsulated, and modular design for Web Service applications. Such characteristics of distributed architecture are generally advantageous to cloud backend services as they bring better scalability, modularity, and control to the development and deployment of service modules.







            

            
        
    
        

                            
                    Implementing a microservice-oriented architecture

                
            
            
                
One of the differences between microservices and service-oriented architecture is the granularity of a service. The principle for microservices is to take the modularity of service-oriented architecture further, into smaller and more manageable functional units. The concept of microservice-oriented architecture compared to a componentized application is illustrated as follows:



Service components in service-oriented architecture are not designed for reusability; duplicated features may be inadvertently added to the service. A mature service may become bloated and monolithic, making it hard to maintain, debug, and develop. Microservices, however, are designed for tasks at a more granular level and won't become bloated easily.



            

            
        
    
        

                            
                    Designing microservice with key principles

                
            
            
                
The key principles for the microservice-oriented architecture are as follows:


	Separation of concerns: Each microservice is modular and is held for a single responsibility

	Loosely coupled: Each microservice is isolated from other microservices and components as much as possible

	Independently deployable: Each microservice is an entity that can be individually deployed as needed

	Cross-platform and cross-language: Each microservice can be developed independently in a different programming language and communicate with each other across platform boundaries

	Scalability: The same type of a microservice can be added to deployment as many as needed

	Automation: The deployment of the microservice is automated

	Build for failure: A microservice will gracefully exit during catastrophic failure and get a chance to be relaunched if required



Even though these principles are not mandatory, you may want to observe them to reap the maximum benefit from the microservice-oriented architecture.



            

            
        
    
        

                            
                    Cloud deployment

                
            
            
                
After you've designed your application for Web Services, you will start pondering over the deployment of your application to a hosted cloud location. While you have many choices of hosting solutions, there are an array of technologies that make your deployment.





            

            
        
    
        

                            
                    Containing microservices with Docker

                
            
            
                
Most of the microservice components are deployed using containers. Container technology, such as Docker, provides a granular virtualized infrastructure to microservices, making it extremely easy to partition finer-grained execution environments:



Containers allow multiple execution environments to run on a single operating system instance. Unlike a hypervisor configuration, where each application sits on an individualized operation system, container configuration enables the sharing of operating-system-level resources across different applications. A containerized application works in the same way as that in the hypervisor configuration, except that the container for each application accounts for any modification or provision specific to the application itself.

Using container technology to perform execution isolation at the operating-system level offers the following advantages for microservice deployment:


	Better component cohabitation: Each microservice has a private environment and won't affect other microservices.

	More efficient utilization of resource: All containerized microservices on a single operating system instance share the same resource; only changes to the underlying operating system are captured in each container.

	Faster initialization and execution: The container is generally lightweight and doesn't require the typical operating system spin-up time required in a virtual machine, making it faster to initialize and run.

	Better scalability for workload: Better isolation nature of containerized microservice helps addition and removal of a microservice when workload changes.




	More reusability opportunities: A low deployment cost, simplicity, and the lightweight nature of a containerized microservice mean that the microservice is more likely to be reused in another application.



Container technology offers such great benefits that Docker is becoming the default method for deploying microservices to the cloud.



            

            
        
    
        

                            
                    Continuously deploying to the cloud

                
            
            
                
The runtime of a new version of web services packaged in Docker container is deployed to a cloud hosting server continuously. There are two types of deployment methods: continuous delivery and continuous deployment.

In both deployment methods, new code changes get pushed from your local source code repository to the remote source repository. This often triggers a post-hook notification to a continuous-integration server, triggering all of your unit tests to run with the new code changes you have made. If all tests are passed, you'll receive a notification. At a later time, a new version of the software will be deployed to your cloud hosting account. Continuous delivery means that the deployment to cloud hosting is done manually, while continuous deployment means that the deployment is done automatically.



            

            
        
    
        

                            
                    Working with a sample workflow

                
            
            
                
The workflow for continuous delivery/continuous deployment to the cloud is illustrated in the following diagram:



When you have committed new changes in your local git repository, you use git push to push all committed changes to the remote repository on GitHub. GitHub provides the webhook API function so that a git push will notify external server, your Jerkins (or alternatives such as Bitrise, CircleCI, or BuddyBuild) continuous-integration (CI) server. This notification triggers all unit tests to run. If all test cases pass, you'll receive a notification in the case of Continuous Delivery, or a script will trigger the upload of a containerized new package automatically in the case of Continuous Deployment.







            

            
        
    
        

                            
                    Summary

                
            
            
                
While you didn't do any coding in this chapter, you learned quite a lot of technical terms that will help you navigate the technologies you are going to work on in the next few chapters. First, you learned how to divide the backend into a three-tier architecture for Web Services. Next, you learned the nuts and bolts of HTTP protocols. Then, you were introduced to two design patterns for cloud frontend: BFFand API Gateway. After that, you learned some key design principles for microservice-oriented architectures. Finally, you were given practical advice on continuously integrating your server-side Swift projects for delivery and deployment to the cloud. In the next chapter, you'll roll up your sleeves again to design and implement an API Gateway.



            

            
        
    
        

                            
                    Designing for API Gateway

                
            
            
                
 Representational State Transfer (REST) is the most popular architecture for creating HTTP/HTTPS-based APIs to represent web services that a site has to offer to end users. The REST architecture builds upon the GET/POST/PUT/DELETE requests offered in the HTTP/HTTPS standards. In this chapter, you'll learn how to build a RESTful API, get introduced to the basic rules for API design, create endpoints for requests that a client sends to a server, and define response status codes. You'll then learn how the design of the REST API can be extended to the idea of building an API Gateway, which is the single entry point for all clients and routes client's requests to different MVC components or microservices.

After finishing this chapter, you'll have the following knowledge:


	Understanding the basic server/client model based on HTTP

	Gaining an insight into designing RESTful API

	Knowing how to assign HTTP methods for the API endpoints

	Acquiring the skill set to implement the endpoints and HTTP responses





            

            
        
    
        

                            
                    Serving clients with the RESTful API

                
            
            
                
The RESTful API refers to an interface that is based on the REST architectural style and separates the implementation of web services on a server from the user interface implemented by a client. This separation provides good portability for a web service so it can serve different clients across multiple platforms, and offers great user experience for the client so it can keep the native design of the client platform and provides a uniform look and feel to the users.

In general, the REST architecture assumes a stateless server, hence the session state is kept entirely on the client side. Each HTTP request the client makes must contain all information the server needs to understand the request and provide an expected response. In Chapter 9, Adding Authentication, you've already learned how to maintain the session of a successful login via session cookies. The session cookies can be used by the web browser and other clients.

For speed optimization, the client can cache some responses and reuse the response data from the server for other requests. In fact, a server may not know about such requests even though it may appear that new requests are made to the server. The response data must be labeled implicitly or explicitly to be cacheable. Only if a response is cacheable would a client be given the right to store and reuse the response for later requests.



            

            
        
    
        

                            
                    Understanding the server/client model based on HTTP

                
            
            
                
Once a TCP connect has been established between a client and a server, the client can start communicating with the server using the higher-level HTTP protocol built on top of TCP. Common HTTP requests include GET, POST, PUT and DELETE. In HTTP/1.1, the connection needs to be established only once, and additional requests and the retrieval of resources (HTML pages, JSON data, images) will be executed using the same connection.

A typical HTTP GET request works as follows:





First, the client knows the IP address of the server. It establishes an HTTP connection to the IP address and makes an HTTP GET request by sending the type of HTTP request, GET, followed by the version of HTTP protocol, HTTP/1.1, and the path on the server, www.anysite.com.

Next, the server responds with the same version of the HTTP protocol, HTTP/1.1, and the HTTP status code, 200 OK, to confirm that everything seems to be OK and it is going to send the resource per the client's request. The type of resource is on the second line: Content-Type: text/html.



            

            
        
    
        

                            
                    Designing the RESTful API

                
            
            
                
You can perform the following three easy-to-follow steps to design a RESTful API using HTTP protocols:


	Identify an object model to represent one kind of resource.

	Define resource endpoints for different levels of resources.

	Assign HTTP methods to operations for the resources.





            

            
        
    
        

                            
                    Identifying object models

                
            
            
                
The resources that are offered to the client are represented as objects on a server. You've already modeled for the content, that is, JournalEntry, and the administrators who have the permission to create, edit, and delete journal entries, that is, Admin. You can identify other objects to represent the resources in your application, such as preferences, user profiles, blogs, and pictures.

The JournalEntry you've created in previous chapters is shown again here:

 

final class JournalEntry: PostgreSQLModel {
    var id: Int?
    var title: String
    var content: String
    
    init(id: Int? = nil, title: String, content: String) {
        self.id = id
        self.title = title
        self.content = content
    }
}

extension JournalEntry: Migration { }
extension JournalEntry: Content { }
extension JournalEntry: Parameter { }

For any objects/resources in your model, you'll need to have a unique identifier. In the JournalEntry model, this is the id integer property.

In server-side Swift frameworks, the model can implement Codable (Content in Vapor) for object encoding and decoding for external representations, such as JSON, as well as other useful protocols for handling object models, such as Authenticatable, Migration, database model, and Parameters.



            

            
        
    
        

                            
                    Defining resource endpoints

                
            
            
                
With the object models defined, you can decide the resource URIs. In this step, you will focus on the relationship between resources and their sub-resources, and create resource URIs as endpoints for RESTful services.



            

            
        
    
        

                            
                    Defining endpoints for top-level resources

                
            
            
                
In this chapter's myJournal application, all resources are under /api, which indicates that the resources are available through an API.  Each endpoint in the API represents one kind of resource. If you intend to provide both web applications that render web pages (similar to what you have done in previous chapters) and web services with the RESTful API, the top-level /api path in the URIs is used to distinguish your RESTful APIs from the rest of the web applications.

After that, the top-level resource is the journal itself, as in /api/journal.


It is recommended to start the top-level resource with the application because you may want to have other sub-applications at the top-level URI.

For example, you may have /api/journal for the journal's blogging sub-application, /api/news for the news-aggregation sub-application, or /api/guestbook for the visitor-guest-book-signing sub-application.



Your top-level resources for top-level URIs may look like this:

/api/journal
/api/news
/api/guestbook





The design of top-level URIs not only allows you to extend the features of your web services without affecting any existing features, but also adds extensibility to the implementation so each top-level resource could be served by services on different systems.  It is also a convention that URIs use only nouns and do not use any verb or operation. This convention makes perfect sense because each endpoint of a URI literally represents one type of resource.

For resources that are shared across different sub-applications, you can also leave them to the top level:

/api/account
/api/configuration
/api/profile

In the preceding examples, you have the account resource, which manages the administrative rights of a registered user, the configuration resource, which sets the global configuration that affect all sub-applications, as well as the profile resource, which maintains the profile for a registered user.



            

            
        
    
        

                            
                    Defining Endpoints for Sub-resources

                
            
            
                
Within each sub-application, the URIs for all the main sub-resources can be mapped out.  For any operations applicable to all resources at an endpoint, you can simply use the top-level endpoint itself. For example, to retrieve all journal entries, your endpoint could be simply /api/journal.  If an operation is applicable to a specific resource, an ID is often used to indicate the specific sub-resource, as in /api/journal/{id}.

The URIs for top-level resources and sub-resources in the myJournal application are listed as the following:

/api/journal
/api/journal/{id}

The /api/journal/{id} sub-resource is applicable to a specific journal entry.



            

            
        
    
        

                            
                    Assigning HTTP methods

                
            
            
                
With properly-defined URIs and representations of resources, you can define all the operations in the application on resource URIs. Let's look at how each operation is mapped, come on, let's go.



            

            
        
    
        

                            
                    Browsing all journal entries

                
            
            
                
To get the collection of all journal entries, use the HTTP GET operation on the top-level /api/journal URI:

HTTP GET /api/journal



The preceding request will fetch all records from the collection. If the collection size is too large, you can add paging and filtering capabilities to the request. This can be accomplished using URI-encoded parameters by specifying the desired starting index and number of records:





HTTP GET /api/journal?start=40&size=20



Of course, the handler of this request needs to implement necessary logic to enable pagination and filtering features.







            

            
        
    
        

                            
                    Creating a new journal entry

                
            
            
                
To post a new journal entry, use the HTTP POST request on the top-level URI:

HTTP POST /api/journal



You do not need to assign an id for the new entry because the id for an entry will be automatically assigned by the JournalEntry model when it is created.







            

            
        
    
        

                            
                    Getting a specific journal entry

                
            
            
                
To get an existing journal entry, use the HTTP GET request and provide the id for the existing entry:

HTTP GET /api/journal/{id}



The user is not aware of the id and you won't expect the user to provide the id. Instead, your application needs to find a way to populate an entry's id in the URI.







            

            
        
    
        

                            
                    Editing a specific journal entry

                
            
            
                
To edit the content of an existing journal entry, you use HTTP PUT request and provide the id of the existing data:

HTTP PUT /api/journal/{id}



Similar to the HTTP GET operation, your application populates the existing entry's id in its URI.







            

            
        
    
        

                            
                    Deleting a specific journal entry

                
            
            
                
To delete an existing record of journal entries, you make a HTTP DELETE request and provide the id of the record in the URI:

HTTP DELETE /journal/api/{id}



            

            
        
    
        

                            
                    Implementing the endpoints and responses

                
            
            
                
In the Vapor framework, you can create a struct for API Routes that implements the RouteCollection protocol:

struct ApiRoutes : RouteCollection {
    
    func boot(router: Router) throws {
        let apiRouter = router.grouped("/api")
    //...
    }
//...
}

In the boot(route:) function, set up a router that starts with the top-level /api URI and append each route corresponding to each of your HTTP methods to the boot(route:) function:

// public routes
let publicRouter = apiRouter.grouped("/journal")
publicRouter.get("", use: getAll)

// admin routes
let adminRouter = apiRouter.grouped("/admin")
adminRouter.post(use: newEntry)
adminRouter.get(Int.parameter, use: getEntry)
adminRouter.put(Int.parameter, use: editEntry)
adminRouter.delete(Int.parameter, use: removeEntry)

Take note that you haven't specified any authentication methods to the protected routes, such as admin  routes.  The design is structured in such a way that it is easier to add authentication methods directly to these two route groups. In this chapter, you can focus on the nuts and bolts of API design.

After all handlers have been specified in the boot(router:) function, you can proceed to implement handler for each route.



            

            
        
    
        

                            
                    Implementing Handlers for Public Routes

                
            
            
                
Thanks to the powerful database data-modeling offered in Vapor, the handler implementation for the HTTP GET  /journal/api/ turns out to be straightforward:

func getAll(_ req: Request) throws -> Future<[JournalEntry]> {
  return JournalEntry.query(on: req).all()
}

The operation for retrieving all existing journal entries is simply a call to the model's query(on:).all() methods.

Since the querying for entries in the database takes a finite amount of time, the transaction is asynchronous and the function returns the Future type.

For the myJournal web service, you do not use Leaf to generate any templates. Instead of testing your API with the web browser, it may be more convenient if you use the command-line curl tool or the Postman utility application to verify the result.

Run the following curl command to retrieve all records in your database:

$ curl http://localhost:8080/api/journal

The JSON object retrieved from the PostgreSQL database will appear on the screen.



            

            
        
    
        

                            
                    Implementing handlers for admin routes

                
            
            
                
Next, let's move on to implementing all handlers for the Admin routes.



            

            
        
    
        

                            
                    Creating a new item

                
            
            
                
The handler for creating a new journal entry decodes the JSON content received from the HTTP POST request on /journal/api/admin and saves it directly to the database:

func newEntry(_ req: Request) throws -> Future<JournalEntry> {
  return try req.content.decode(JournalEntry.self)
      .flatMap(to: JournalEntry.self) { entry in
          return entry.save(on: req)
      }
}

It's a matter of making two calls, req.content.decode() and entry.save(on:), for the JournalEntry data model to decode and then save the new content into the database.

Check the handler for creating a new journal entry with the following curl command:

$ curl --header "Content-Type: application/json" \
--request POST \
--data '{"title":"New Entry","content":"This is a brand new entry."}' \
http://localhost:8080/api/admin

Then retrieve all records in the database to verify that a new entry is created:

$ curl http://localhost:8080/api/journal

You'll see the new entry appears as one of the items in the JSON object printed out on the screen.



            

            
        
    
        

                            
                    Retrieving an item by ID

                
            
            
                
The handler for getting a record of an existing journal entry makes use of parameters to get the id for the entry and retrieve the JournalEntry object automatically using the next(JournalEntry.self) method call:

func getEntry(_ req: Request) throws -> Future<JournalEntry> {
    return try req.parameters.next(JournalEntry.self)
}

You can try to retrieve a journal entry with curl and provide an ID for the item:

$ curl http://localhost:8080/api/admin/1

With the /api/admin/<id> endpoint, curl will ask your handler to retrieve the specified item and print out the journal entry wrapped in a JSON object if the item is found.



            

            
        
    
        

                            
                    Updating an item

                
            
            
                
The handler for editing a record follows the similar workflow as in the handler for entry retrieval, but takes an additional step to update the record with the intended changes:

func editEntry(_ req: Request) throws -> Future<JournalEntry> {
    let id = try req.parameters.next(Int.self)
    return try req.content.decode(JournalEntry.self).flatMap { updated in
        return JournalEntry.find(id, on: req)
            .flatMap(to: JournalEntry.self) { original in
                guard let original = original else { throw Abort(.notFound) }
                original.title = updated.title
                original.content = updated.content
                return original.save(on: req)
        }
        }
}

In the preceding code, the id is retrieved first using parameters.next(Int.self), and then a query using find(on:) is issued to retrieve the record. The record is updated with the changes and then put back into the database using save(on:).

You can use the curl command to check this handler:

curl --header "Content-Type: application/json" \
--request PUT \
--data '{"title":"New Update","content":"This is an update."}' \
http://localhost:8080/api/admin/1

Then use curl to check the effect:

$ curl http://localhost:8080/api/admin/1

If the update handler works properly, you should expect the JSON object printed on the screen to reflect the changes you've just made.



            

            
        
    
        

                            
                    Deleting an Item

                
            
            
                
The handler for deleting a record is not so different from the HTTP PUT operation. After retrieving the record, you simply call the delete(on:) method:

func removeEntry(_ req: Request) throws -> Future<HTTPStatus> {
    let id = try req.parameters.next(Int.self)
    return JournalEntry.find(id, on: req).flatMap { entry in
        guard let entry = entry else { throw Abort(.notFound) }
        return entry.delete(on: req).transform(to: HTTPStatus.noContent)
    }
}

The return type for the preceding function is Future. After the record has been deleted, you issue HTTPStatus.noContent to the client.

Now, use curl again to test the delete handler:

$ curl --request DELETE http://localhost:8080/api/admin/1

The preceding command should have erased the record of the specified journal entry from the database.

Run curl to verify that this record doesn't exist anymore:

$ curl http://localhost:8080/api/admin/1

As expected, nothing should be printed on the screen if you try to retrieve the record you've just deleted.

Next, you will move on to implementing similar API endpoints for Kitura.



            

            
        
    
        

                            
                    Implementing API endpoints for Kitura

                
            
            
                
Kitura takes full advantage of the Codable protocol introduced in Swift 4.0. For Codable routes, you can create router an endpoint method that accepts a Codable object for the request and uses a completion closure to pass a Codable object as the response.

As you'll see in the following source code, Kitura's Codable routers can simplify the creation of a CRUD API and the handling of JSON objects.



            

            
        
    
        

                            
                    Creating a new project for the Kitura web service application

                
            
            
                
Create a new Kitura project using the CLI command in a new directory:

$ kitura init

Add the dependencies for the Kuery ORM framework and PostgreSQL driver:

// swift-tools-version:4.0
import PackageDescription

let package = Package(
    name: "myJournal",
    dependencies: [
      .package(url: "https://github.com/IBM-Swift/Kitura.git", .upToNextMinor(from: "2.5.0")),
      .package(url: "https://github.com/IBM-Swift/HeliumLogger.git", .upToNextMinor(from: "1.7.1")),
      .package(url: "https://github.com/IBM-Swift/CloudEnvironment.git", from: "8.0.0"),
      .package(url: "https://github.com/RuntimeTools/SwiftMetrics.git", from: "2.0.0"),
      .package(url: "https://github.com/IBM-Swift/Health.git", from: "1.0.0"),
      .package(url: "https://github.com/IBM-Swift/Swift-Kuery-ORM.git", .upToNextMinor(from: "0.3.1")),
      .package(url: "https://github.com/IBM-Swift/Swift-Kuery-PostgreSQL.git", from: "1.2.0"),
    ],
    targets: [
      .target(name: "myJournal", dependencies: [ .target(name: "Application"), "Kitura" , "HeliumLogger"]),
      .target(name: "Application", dependencies: [ "Kitura", "CloudEnvironment","SwiftMetrics","Health", "SwiftKueryORM", "SwiftKueryPostgreSQL"]),

      .testTarget(name: "ApplicationTests" , dependencies: [.target(name: "Application"), "Kitura","HeliumLogger" ])
    ]
)

Build and run your project to make sure the template project works as expected:

$ swift run



            

            
        
    
        

                            
                    Working with the Kitural model

                
            
            
                
Create a new file, JournalItem.swift, for the /Application/Routes/ApiRoutes.swift directory.

In JournalItem.swift, create a struct that implements Model:

import SwiftKueryORM

struct JournalItem: Model {
    var title: String
    var content: String
}

Since Model itself implements Codable, the JournalItem struct you've defined here will work in the same way as other Codable objects, in addition to its conformance to Kitura-Kuery-ORM.





            

            
        
    
        

                            
                    Setting up a database

                
            
            
                
In Application.swift, create an instance of PostgreSQL data in the postInit() method:

func postInit() throws {
    //...
    let poolOptions = ConnectionPoolOptions(initialCapacity: 1,
                                            maxCapacity: 5,
                                            timeout: 10000)
    
    // Set up database connection
    let psqlPool = PostgreSQLConnection.createPool(host: "localhost",
                                               port: 5432,
                                               options: [.databaseName("journalbook")],
                                               poolOptions: poolOptions)
    Database.default = Database(psqlPool)

    do {
        try JournalItem.createTableSync()
    } catch let error {
        Log.error("Failed to create table in database: \(error)")
    }
}

You've used the same database code before, in Chapter 8, Employing Storage Framework. The preceding code will attempt to create a table for JournalItem. If there is an existing table already, it will log an error. You can simply ignore the log message if this is the case.



            

            
        
    
        

                            
                    Adding route handlers

                
            
            
                
For CRUD operations, add the following router endpoints. The URLs are kept the same as those you used in your Vapor project. This allows the iOS client application you're going to build in Chapter 13, Developing an iPhone Client, to work with both Vapor and Kitura web applications:

func postInit() throws {
    //...
    router.get("/api/journal/", handler: getAllHandler)
    router.get("/api/admin", handler: getItemHandler)
    router.post("/api/admin", handler: createItemHandler)
    router.put("/api/admin", handler: updateItemHandler)
    router.delete("/api/admin", handler: deleteItemHandler)
    router.delete("/api/admin", handler: deleteItemHandler)
}

Each router endpoint method also specifies a handler that accepts a request and gives out a response.

Create a new /Sources/Application/Routes/ApiRoutes.swift file to implement all router endpoint handlers in an extension of App:

import Foundation
import Kitura
import SwiftKueryORM
import SwiftKueryPostgreSQL
import LoggerAPI

extension App 
{

 // Add all handlers here
}



            

            
        
    
        

                            
                    Retrieving all items

                
            
            
                
Add the getAllHandler(completion:) method to handle the request for retrieving all items in the database:

// retrieve all items
func getAllHandler(completion: @escaping([JournalItem]?, RequestError?) -> Void) {
  JournalItem.findAll() { items, error in
    guard let items = items else {
      return completion(nil, error)
    }
    completion(items, nil)
  }
}

In the closure for the findAll() method, the retrieved array optional items is unwrapped. If the items array is a valid object, a completion closure with unwrapped items will be invoked; otherwise, a completion closure with an error will be called.

Since you do not need to render Stencil web pages for API-based web functions, it is convenient to use the curl command-line tool or a web analysis tool, such as Postman, to verify the result:

$ curl http://localhost:8080/api/journal

The JSON object retrieved from the PostgreSQL database will be dumped out on the screen.

You may notice the preceding command is the same curl command you used in testing the "retrieve all" endpoint in the API of your Vapor web service.  That's right!  Since you use the same API design in both Vapor and Kitura web services, you should expect them to work similarly. In the rest of your Kitura code here, you're going to use the same set of curl commands you've used before.



            

            
        
    
        

                            
                    Creating a new item

                
            
            
                
To create a new item, call the save() method to save the JournalItem object to the database:

func createItemHandler(item: JournalItem, 
                      completion: @escaping(JournalItem?, RequestError?) -> Void) {
  item.save(completion)
}

Similar to the updateItemHandler(item, completion) method, createItemHandler(item, completion) expects a new JournalItem object submitted by user.

Check the createItemHandler(item:completion:) function with the following curl command:

$ curl --header "Content-Type: application/json" \
--request POST \
--data '{"title":"New Entry","content":"This is a brand new entry."}' \
http://localhost:8080/api/admin

After posting the request to create a new journal entry, check all of your records in the database again:

$ curl http://localhost:8080/api/journal

You'll see the new journal entry now appears as one of the items in the retrieved JSON object.





            

            
        
    
        

                            
                     Retrieving an item by ID

                
            
            
                
Unlike the website application, which does not have any need to retrieve an individual journal entry, your web service is required to add such method to the API.  This is because in some clients, such as the iOS mobile app, it is difficult to fit the title and content of all journal entries on a small screen. The user is expected to select one item at a time from a list of entries and then view the content of the selected item on a separate screen.

To retrieve a specific item, use the find() method to search for the item by its ID:

// retrieve an item by ID and return it
func getItemHandler(id: Int, 
                    completion: @escaping(JournalItem?, RequestError?) -> Void) {
  JournalItem.find(id: id) { item, error in 
    guard let item = item else {
      return completion(nil, error)
    }
    completion(item, nil)
  }
}

Kitura will parse the ID encoded as the URL parameter in a request. If the item is found with the find(id:) method, a completion closure will respond the request with the retrieved item.

You can check the handler with curl:

$ curl http://localhost:8080/api/admin/1

The /api/admin/<id> endpoint is used here. The preceding command prints out a JSON object with the requested journal entry, if found. 



            

            
        
    
        

                            
                    Updating an item

                
            
            
                
To update an existing item, you simply call the update() method:

// find an item by ID and replace it
func updateItemHandler(id: Int, 
                       item: JournalItem,
                       completion: @escaping(JournalItem?, RequestError?) -> Void) {
  item.update(id: id, completion)
}



The updateItemHandler(item, completion) method expects both the ID of an existing item (decoded from the URL parameter) and a new JournalItem object (decoded from the request's JSON object).

You can also check the handler with the curl command:

curl --header "Content-Type: application/json" \
--request PUT \
--data '{"title":"New Update","content":"This is an update."}' \
http://localhost:8080/api/admin/1

The item with ID 1 should have been updated by the updateItemHandler(id:item:completion:) handler. Use curl to check the result again:

$ curl http://localhost:8080/api/admin/1

The JSON object printed on the screen should reflect the changes to the specified journal entry.



            

            
        
    
        

                            
                    Deleting an item

                
            
            
                
To delete a specific item, you just need to provide the item's ID and call the  delete() method of the model:

// delete an item by ID
func deleteItemHandler(id: Int, 
                       completion: @escaping(RequestError?) -> Void) {
  JournalItem.delete(id: id, completion)
}

Use curl to delete one of the existing items:

$ curl --request DELETE http://localhost:8080/api/admin/1

Then run the curl command again to retrieve the specific item:

$ curl http://localhost:8080/api/admin/1

Nothing is printed on the screen.  The deleteItemHandler(id:completion:) handler works as expected!







            

            
        
    
        

                            
                    Deleting All items

                
            
            
                
You can delete all records with the deleteAll() method:

// delete all items
func deleteAllHandler(completion: @escaping(RequestError?) -> Void) {
  JournalItem.deleteAll(completion)
}

The preceding handler will erase all JournalItem entries in the database.  It is recommended not to implement this handler as one of your actual API methods.



            

            
        
    
        

                            
                    Summary

                
            
            
                
You learned how to build web services in this chapter. First, you were introduced to the REST architecture for the server/client model based on HTTP. Then you learned the basic rules for the RESTful API's design; you modified the myJournal website application from previous chapters and implemented a RESTful API that contains the endpoints for all the routes in myJournal. You essentially turned your website application into a web service. Instead of rendering web pages for the clients, your myJournal application now offers web services to clients via the RESTful API. In the next chapters, you're going to learn how to deploy your Vapor and Kitura applications to the cloud and write an iOS client application that works with API Gateway. 



            

            
        
    
        

                            
                    Deploying to the Cloud

                
            
            
                
In this chapter, you'll learn how to deploy your web services to the cloud. You'll get introduced to four hosted cloud solutions: Vapor Cloud and IBM Cloud (Bluemix). Vapor Cloud is the official hosting service for Vapor and there is built-in support in Vapor CLI to let you deploy and manage your Vapor instance easily without installing additional libraries and tools. Similarly, IBM Cloud is a natural choice for a hosted solution for Kitura web service since both of them are part of IBM cloud solutions.

You'll have the following knowledge after finishing this chapter:


	Getting familiar with the features offered in Vapor Cloud

	Having hands-on experience with deploying a sample project to Vapor Cloud

	Knowing how to monitor and manage your deployed applications on Vapor Cloud

	Getting familiar with IBM Cloud and its offered features for Kitura applications

	Using developer tools to deploy a Kitura sample project to IBM Cloud





            

            
        
    
        

                            
                    Deploying Vapor web service to Vapor Cloud

                
            
            
                
Vapor Cloud is a cloud service integrated into Vapor Toolbox CLI, making the deployment of your Vapor application to the cloud straightforward. If you are looking for a seamless experience in launching your Vapor application, consider hosting your application in Vapor Cloud.

Vapor Cloud itself is built on top of Amazon Web Services (AWS). You can easily scale your application to meet higher demand after you have fully launched your cloud application. You need to pay extra for those hours that have high demand.



            

            
        
    
        

                            
                    Checking out Vapor Cloud features

                
            
            
                
Here are some of the major cloud-hosting features for Vapor Cloud:


	Database and Cache Support

	Application Monitoring

	Recurrent Job Scheduling

	Accessible to File Storage and CDN Services

	Zero-Downtime Deployment





            

            
        
    
        

                            
                    Database and Cache Support

                
            
            
                
Vapor Cloud supports several databases, such as MySQL, PostgreSQL, MongoDB, and AWS Aurora. The database credentials are automatically made available to your application upon deployment. The database support makes data persistence in your Vapor application very easy. In addition, Vapor Cloud offers the Redis cache to speed up your cloud applications.



            

            
        
    
        

                            
                    Application Monitoring

                
            
            
                
With the Vapor Cloud Dashboard application, you can easily track network traffic to your application. Useful statistics, such as average response time and memory usage of your application, will be available for you to monitor the status of application in real time and make sure that everything is running smoothly.



            

            
        
    
        

                            
                    Recurrent Job Scheduling

                
            
            
                
Sometimes you may want to offload and schedule recurring tasks, hoping that they do not slow down your hosted web application deployed to Vapor Cloud. Recurrent jobs are often called Cronjobs. You specify a job to be executed at a specified time, whether it is every 10 minutes, every 12 hours, or every Saturday morning at 9:00 AM. Vapor Cloud will spin up a new replica when a cronjob is started and run the cronjob inside the replica.





            

            
        
    
        

                            
                    Accessible to File Storage and CDN Services

                
            
            
                
Since Vapor Cloud is built on top of Amazon AWS, all Vapor Cloud applications have access to file-storage services, such as S3 bucket, for uploading and storing files, and the CDN API for doing things such as cropping an image on the fly, at the edge locations all around the world.



            

            
        
    
        

                            
                    Zero-Downtime Deployment

                
            
            
                
When you deploy your Vapor application to Vapor Cloud, the new deployment is rolled out with zero downtime. This ensures that your application is always available at any given time, even when you are rolling out a new version of the application.



            

            
        
    
        

                            
                    Signing up Vapor Cloud

                
            
            
                
To sign up for a free Vapor Cloud account, visit https://dashboard.vapor.cloud/signup.

After the signup, you'll be taken to the Vapor Cloud Dashboard. The dashboard looks like the following:



The Dashboard is where you can see your profile, account information, organization, pricing information, statistics, logs, and much more.

By default, your payment plan includes up to 20,000 requests a month, free of charge. This is enough for you to test your application during development. After the successful launch of your application, you can consider upgrading to one of the paid plans.



            

            
        
    
        

                            
                    Deploying to Vapor Cloud

                
            
            
                
After you have signed up for a Vapor Cloud account, you can log in and deploy your existing Vapor application using the Vapor Toolbox CLI.



            

            
        
    
        

                            
                    Using the Vapor Cloud commands

                
            
            
                
All the Vapor Cloud commands are integrated into the Vapor Toolbox CLI under the cloud command group.

For example, you can list all Vapor Cloud commands using the following command:

$ vapor cloud --help



The output looks like the following:







Usage: vapor cloud command

Commands for interacting with Vapor Cloud.

Commands:
login Logs you into Vapor Cloud.
logout Logs you out of Vapor Cloud.
signup Creates a new Vapor Cloud user.
refresh Refreshes vapor token.
me Shows info about the currently logged in user.
token Cached token metadata for debugging.
dump Dump info for current user.
logs Displays logs from remote Vapor application.
list List various owned items of user
deploy Deploy a project to Vapor Cloud
create Create new instances of Vapor Cloud objects like
applications, environments, databases, etc.
run Runs commands on your application
git-hash Get the Git has deployed live
config View, create, modify, and delete environment configs
db Manage database servers, and databases, warning: this feature is still in beta, use with caution.
database Opens a database editor for the selected environment in your web browser

Use `vapor cloud command --help` for more information on a command.






            

            
        
    
        

                            
                    Creating Your First Deployment

                
            
            
                
To get start with your first deployment to Vapor Cloud, use the following command to log in:



$ vapor cloud login




It will prompt you for your email and password credentials. If you haven't signed up for an account using the URL provided to you previously, you can also sign up using the Vapor Clouds command:



$ vapor cloud signup




If you don't have an existing project to deploy, you can create a new one using Vapor's template:



$ vapor new myNewApp
$ cd myNewApp




Make sure that you are in the root directory of your application.

If you have an existing application, change to the root directory where you can find the Package.swift file.

Once you are in the root directory, the deployment of your application to the cloud takes only one Vapor Cloud command:



$ vapor cloud deploy




You can follow the prompts from this command to complete the rest of deployment steps. The output of the vapor cloud deploy comment looks something like the following:



$ vapor cloud deploy
app: FirstVapor
git: https://github.com/AngusY/myNewApp.git
env: beta
db: none
replicas: 1
replica size: free
branch: master
build: clean
Creating deployment [Done]
Connecting to build logs ...
Waiting in Queue [Done]
Starting deployment: 'firstvapor-angus' [Done]
Getting project from Git 'https://github.com/AngusY/myNewApp.git' [Done]
Checkout branch 'master' [Done]
Verifying base folder [Done]
Selected swift version: 4.2.0 [Done]
Building vapor (release) [Done]
Trying to find executable [Done]
Found executable: Run [Done]
Creating container registry [Done]
Building container [Done]
Updating replicas [Done]
Deployment succeeded: https://firstvapor-angus-beta.vapor.cloud [Done]
Successfully deployed.




When the deployment succeeds, you may try the https://firstvapor-angus-beta.vapor.cloud/hello URL to verify that your web application is operational. You will see the Hello, world! output in your web browser:



Next, you'll learn various options that are available in each of the preceding deployment steps.



            

            
        
    
        

                            
                    Creating an Application from Git Remote

                
            
            
                
Vapor Cloud allows you to pull your source code from a remote Git repository. Creating a public remote Git repository will make deploying your code very easy.

You should consider taking advantage of this built-in Git Remote feature. For example, if your source code is hosted on GitHub, copy the SSH (not HTTP) URL into the prompt when the vapor cloud tool asks you to do so.



            

            
        
    
        

                            
                    Working with Slug and Environment

                
            
            
                
When you are asked to create an application, you'll be prompted for a name and a slug. The slug for an application is the identifier used to access your Vapor application. For example, if your slug is firstvapor-angus, the URL for your application becomes https://firstvapor-angus.vapor.cloud.

Vapor Cloud's hosting service also allows you to configure different environments. You can create different environments for different stages of development, such as alpha, beta, testing, staging, and development. The URL for your application will add a suffix to the slug. For example, the beta development environment for your application will have the following URL for your application: https://firstvapor-angus-beta.vapor.cloud. The beta suffix, preceded by "-", is appended to the firstvapor-angus slug.

The production environment is treated in a special way. When you specify production as the environment, Vapor Cloud won't append the suffix to your slug. So your URL for the production environment looks like https://firstvapor-angus.vapor.cloud, instead of https://firstvapor-angus-production.vapor.cloud.

Since you have your code hosted on a remote Git repository, you are able to specify a specific branch to the environment you have just created. For the production environment, you usually associate it with the master branch of your Git remote repository.



            

            
        
    
        

                            
                    Choosing a Replica Size and Database

                
            
            
                
Normally, you choose the Free size replicas to host your project for free when you are actively developing your application. Each free size replica has a monthly request limit. You can choose other paid replicas when the traffic to your application grows substantially.

Vapor cloud allows you to deploy your application to multiple replicas. However, you're allowed to deploy your application only to one replica if you choose to use the free size replicas.

If your application uses a database, you can also choose to add a hosting database. In the Vapor Cloud deployment, hosting database services always cost a small monthly fee. If you are not ready, you can ignore the prompt to add a database right way.

If you do need to add a database later on, you can use the following Vapor Cloud command:



$ vapor cloud create db






            

            
        
    
        

                            
                    Choosing a Build Type

                
            
            
                
The last option you're prompted to configure is the Build Type. There are three different ways you can do so: incremental, update, and clean.

For the incremental build type, Vapor Cloud simply runs the Swift build command on your application. This is the fastest way to build since it doesn't update any dependencies.

For the update build type, Vapor Cloud runs the Swift package update before running the Swift build. This allows Swift Package Manager to check the modifications of your Package.swift file and update dependencies only when needed.

For the clean build type, Vapor Cloud deletes the .build folder before running Swift build. It is the slowest build option, but makes sure that everything, including the dependencies, is updated.



            

            
        
    
        

                            
                    Managing Your Cloud application

                
            
            
                
There are a bunch of Vapor Cloud toolbox features you can leverage to manage your Cloud application. Several of them are discussed here.



            

            
        
    
        

                            
                    Getting live log output

                
            
            
                
You can get the live log output using the vapor cloud logs toolbox command. This command, similar to the tail command in Linux, lists the latest events in a log file. It has the following syntax:



$ vapor cloud logs --app=[name] --env=[environment] --since=[time]





	The [name] is the application name in your slug, such as firstvapor-angus

	The [environment] is the hosting environment for your development stage, such as production or beta

	The [time] is the time you want to track back from the last logging event time, such as 2h for 2 hours, 5m for 5 minutes, or 30s for 30 seconds



Consider the following as an example:



$ vapor cloud logs --app=firstvapor-angus --env=beta --since=2d




The command in the preceding code instructs vapor cloud to print out the log file for all the entries in two days for the beta environment of the firstvapor-angus application.

The output looks as follows:



app: FirstVapor
env: beta
tail 1 logs...
firstvapor-angus-beta-deployment-6874c7f469-4kjqq




The Vapor cloud logs command keeps watching for the arrival of new logging events. Use Ctrl + C to get out of this wait loop.



            

            
        
    
        

                            
                    Working with environment variables

                
            
            
                
In many cases, you'd like to set some environment variables for your Vapor application. The vapor cloud toolbox provides vapor cloud config just for that.

To create or modify configuration variables, use the modify in the following syntax:



$ vapor cloud config modify --app=my-app --env=staging VAR1=KEY1 VAR2=KEY2




For example, you create a USERNAME environment variable and set its initial value to ANGUS in the following way:



$ vapor cloud config modify --app=firstvapor-angus --env=beta USERNAME=ANGUS




The output of this command confirms that the USERNAME environment variable has been created and it is assigned with the ANGUS value:



app: FirstVapor
env: beta
USERNAME: ANGUS
Updating configs [Done]




Use the vapor cloud config dump command to list all the existing environment variables:



$ vapor cloud config dump --app=firstvapor-angus --env=beta




This lists USERNAME as one of the environment variables for your application:



app: FirstVapor
env: beta
USERNAME: ANGUS










            

            
        
    
        

                            
                    Adding a custom domain

                
            
            
                
Instead of using the vapor.cloud domain, you may want to have your own custom domain. So, you want to replace https://firstvapor-angus.vapor.cloud with a custom domain, such as https://firstvapor-angus.com. The Vapor Cloud toolbox provides a feature for you to create your custom domain.

First, you'll need to tell Vapor Cloud to direct the network traffic to your custom domain using the Vapor Cloud command:



$ vapor cloud create domain




Second, you need to configure a CNAME record configuration to have your DNS provider point firstvapor-angus.com to firstvapor-angus.vapor.cloud. Since Vapor Cloud assigns a fixed IP address to you, you can set up your redirect by creating an ALIAS record for that. Many DNS providers support the ALIAS record. One of these DNS providers is dnsimple.com.



            

            
        
    
        

                            
                    Scheduling a New cronjob

                
            
            
                
If you want to run a cronjob, you specify it in the cloud.yml optional file in the root directory of your application. Add the following to cloud.yml:

cronjobs:
    production:
        ping:
            time: "* * * */24 *"
            command: "ping http://www.vapor.com"

The preceding script specifies the environment to be "production" and the name to be "ping".

The time is specified to be * * * */24 *, per the following format:



* * * * * command to be executed
- - - - -
| | | | |
| | | | ----- Day of week (0 - 7) (Sunday=0 or 7)
| | | ------- Month (1 - 12)
| | --------- Day of month (1 - 31)
| ----------- Hour (0 - 23)
------------- Minute (0 - 59)




This means that the command will be executed once every 24 hours.

The command specifies the full command to be executed. In this case, it simply pings a website.

To run crobjobs, issue the following Vapor Toolbox CLI command:



$ vapor run ping




It typically takes 5 to 30 seconds to spin up a new replica. Then your cronjob will be executed after this initial delay.



            

            
        
    
        

                            
                    Deploying the Kitura web service to IBM Cloud

                
            
            
                
It takes several simple steps for you to install the tools you need to build your app, run the app locally, and then deploy it to IBM Cloud. IBM provides you with a development environment that gives you a seamless workflow to do all of this together.



            

            
        
    
        

                            
                    Working with an IBM Cloud Account

                
            
            
                
First of all, you must have an account with IBM Cloud before your can deploy your application to the cloud. By default, you're offered to start with the Lite (Free) account type. It is free of charge for you and comes with 256 MB of free memory each month. There are several types of account upgrades when you are ready to use more resources.



            

            
        
    
        

                            
                    Registering for an Account on IBM Cloud

                
            
            
                
To start, use your web browser to visit IBM Cloud's official site at https://console.bluemix.net. You will see IBM Cloud's login page after successful email verification:







After that, you'll be given a chance to review the privacy disclosure associated with your newly-created account.



            

            
        
    
        

                            
                    Working with the IBM Cloud Dashboard

                
            
            
                
The Dashboard is a starting page for all resources available in your cloud account. As you grow the features of your application, you can leverage resources such as Watson artificial intelligence platform, mobile services, and security services.



You will come back to this Dashboard page again to create a starter web app after you've made your local system ready for IBM Cloud deployment.



            

            
        
    
        

                            
                    Readying the Local System for IBM Cloud Deployment

                
            
            
                
You need to install IBM Cloud Developer Tools on your local system, which we'll cover here.



            

            
        
    
        

                            
                    Installing IBM Cloud Developer Tools

                
            
            
                
In order to install IBM Cloud Developer Tools, run the following command in a Terminal application on your system:



$ curl -sL http://ibm.biz/idt-installer | bash




The output looks like the following after executing the preceding command:



[main] --==[ IBM Cloud Developer Tools for Linux/MacOS - Installer, v1.2.3 ]==--
 [install] Starting Update...
 [install] Note: You may be prompted for your 'sudo' password during install.
 [install_deps] Checking for external dependency: brew
 [install_deps] Installing/updating external dependency: git
 [install_deps] Installing/updating external dependency: docker
 [install_deps] Installing/updating external dependency: kubectl
 ######################################################################## 100.0%
 Password:
 [install_deps] Please review any setup requirements for 'kubectl' from: https://kubernetes.io/docs/tasks/tools/install-kubectl/
 [install_deps] Installing/updating external dependency: helm
 Updating Homebrew...
 ...
 [Deleted]
 ...
 [install] Install finished.
 [main] --==[ Total time: 74 seconds ]==--




Container technology, such as Docker, is installed as part of the IBM developer tool chain. In fact, you have to create a Docker account and install Docker runtime on your local machine in order to use the build tools to deploy your app to IBM Cloud.

If you haven't installed Docker on your system before, go to www.docker.com to download and install Docker Desktop for your system.



After proper installation, Docker Desktop will be running in the background:



Create a new Docker ID or sign in with an existing Docker ID. You'll need to use the Docker credential locally when deploying your Kitura application to IBM Cloud.

Alternatively, you can install Docker on your Mac with brew:

$ brew install docker

You can run docker info to learn more about your docker installation:

$ docker info

For installing Docker on Ubuntu or getting more help with the Docker installation, you can find more useful information on Docker's website: https://docs.docker.com/install/.



            

            
        
    
        

                            
                    Using IBM Cloud Developer Tools

                
            
            
                
To verify that IBM Cloud Developer Tools have been properly installed, execute the following main command:



$ idt




The execution of the idt command prints the following message on the screen:

NAME:
 bx dev - A CLI plugin to create, manage, and run applications on IBM Cloud
USAGE:
 bx dev command [arguments...] [command options]
VERSION:
 2.1.4
COMMANDS:
 build Build the application in a local container
 code Download the code from an application
 console Opens the IBM Cloud console for an application
 create Creates a new application and gives you the option to add services
 diag This command displays version information about installed dependencies
 debug Debug your application in a local container
 delete Deletes an application from your space
 deploy Deploy an application to IBM Cloud
 edit Add or remove services for your application
 enable Add IBM Cloud files to an existing application.
 get-credentials Gets credentials required by the application to enable use of connected services.
 list List all IBM Cloud applications in a space
 run Run your application in a local container
 shell Open a shell into a local container
 status Check the status of the containers used by the CLI
 stop Stop a container
 test Test your application in a local container
 view View the URL of your application
 help Show help
Enter 'bx dev help [command]' for more information about a command.
GLOBAL OPTIONS:
 --version, -v Print the version
 --help, -h Show help

The idt command is actually a shortcut for the bx dev command, which is used to create, manage, and run applications on IBM Cloud.

Besides the idt shortcut, there is also idt update and idt uninstall to help you update the IBM Cloud developer tools to the latest version and uninstall the tools from your local system, respectively:



$ idt update
$ idt uninstall








            

            
        
    
        

                            
                    Creating a Kitura app that is deployable to IBM Cloud

                
            
            
                
You can create a Kitura application easily using the starter Kitura Kitura web application template.

From the dashboard for your IBM Cloud account, click on the icon for App Service Starter Kits. Different starter kits are listed for you to choose from. Navigate down the list and click on the Swift Web App with Kitura icon to start generating a Starter Kitura web application:





            

            
        
    
        

                            
                    Generating a Starter Kitura Web Application

                
            
            
                
Once you are on the main page for the Starter Kitura Web Application, review how the starter kit will help you. Click on the Create App button on the top-right corner:



For your Kitura app deployable to IBM Cloud, enter the name "My New Kitura App" at the prompt. IBM Cloud will populate the app's name to the starter kit source code.

Take note that your application name has to be unique because all applications share the same domain as in my-new-kitura-app.mybluemix.net. You can add a suffix of your organization name, such as abc-org in my-app-abc-org.mybluemix.net, to ensure that the URL is unique and acceptable to IBM Cloud.

Next, you'll be taken to the App Details page where you can manage the deployment of the web app IBM Cloud has just created for you. Click on the Download Code button to download the starter source code to your system so you can build locally first:



After unzipping the zipped package you've just downloaded, check out the files this starter kit created for you:



In addition to what you can see in File Manager, the starter kit has the .bluemix hidden directory to store scripts for the configuration of the toolchain, deployment, container, and orchestration services. This directory is hidden from you because you are not expected to modify the scripts in this directory directly.

The source code for your Kitura application is in the /my-new-kitura-app/Sources directory. You can work with the starter code to try out the deployment to IBM Cloud before you add your Kitura app to this project.



            

            
        
    
        

                            
                    Logging into IBM Cloud

                
            
            
                
Assuming you have created an account on IBM Cloud already, you can now log in using the following command:



$ ibmcloud login -a https://api.ng.bluemix.net




In the preceding code, it specifies the US South API endpoint location with the -a command flag, followed by the https://api.ng.bluemix.net URL for the location. If you have specified a location already, you can ignore the -a flag.



The login command will prompt you for your credentials and print out your account information:

API endpoint: https://api.ng.bluemix.net
Email> [deleted]
Password> [deleted]
 Authenticating...
 OK
Targeted account Angus's Account
Targeted resource group Default
 API endpoint: https://api.ng.bluemix.net
 Region: us-south
 User: [deleted]
 Account: Angus's Account
 Resource group: Default
 CF API endpoint:
 Org:
 Space:
Tip: If you are managing Cloud Foundry applications and services
 - Use 'ibmcloud target --cf' to target Cloud Foundry org/space interactively, or use 'ibmcloud target --cf-api ENDPOINT -o ORG -s SPACE' to target the org/space.
 - Use 'ibmcloud cf' if you want to run the Cloud Foundry CLI with current IBM Cloud CLI context.



            

            
        
    
        

                            
                    Building Your App with the IBM Cloud Tool

                
            
            
                
Now you can build your source code and deploy it in a Docker container.

Since you need to build a Docker image in order to build your application, use the following Docker command to log in to your Docker account first:



$ docker login --username=angus




You are now ready to build your application locally using the dev build command:



$ ibmcloud dev build




The command will proceed to get your service credential and do the Docker image build:

Getting service credentials for the application.
 OK
 Validating Docker image name
 OK
 Checking if Docker container mynewkituraapp-swift-tools is running
 OK
 Checking Docker image history to see if image already exists
 OK
 Creating image mynewkituraapp-swift-tools based on Dockerfile-tools ...
 Image will have user fyeung1 with id 502 added
Executing docker image build --file Dockerfile-tools --tag mynewkituraapp-swift-tools --rm --pull --build-arg bx_dev_userid=502 --build-arg bx_dev_user=fyeung1 .
OK
 Creating a container named 'mynewkituraapp-swift-tools' from that image...
 OK
 Starting the 'mynewkituraapp-swift-tools' container...
 OK
 OK
 Stopping the 'mynewkituraapp-swift-tools' container...
 OK



            

            
        
    
        

                            
                    Running the Kitura App in the Local Container

                
            
            
                
Before you start the deployment of your Kitura application to IBM Cloud, you want to run it in the local environment first. Execute the following command to run your application:



$ ibmcloud dev run




The output of this command looks like the following:



The run-cmd option was not specified
 Stopping the 'mynewkituraapp-swift-run' container...
 The 'mynewkituraapp-swift-run' container was not found
 Validating Docker image name
 Binding IP and ports for Docker image.
 OK
 Checking if Docker container mynewkituraapp-swift-run is running
 OK
 Checking Docker image history to see if image already exists
 OK
 Creating image mynewkituraapp-swift-run based on Dockerfile ...
 
 Executing docker image build --file Dockerfile --tag mynewkituraapp-swift-run --rm --pull .
 
 OK
 Creating a container named 'mynewkituraapp-swift-run' from that image...
 OK
 Starting the 'mynewkituraapp-swift-run' container...
 OK
 Logs for the mynewkituraapp-swift-run container:
 [2018-10-10T18:48:51.208Z] [WARNING] [ConfigurationManager.swift:261 load(url:deserializerName:)] Unable to load data from URL /swift-project/config/mappings.json
 [Wed Oct 10 18:48:51 2018] com.ibm.diagnostics.healthcenter.loader INFO: Swift Application Metrics
 [2018-10-10T18:48:51.583Z] [INFO] [Metrics.swift:20 initializeMetrics(router:)] Initialized metrics.
 [2018-10-10T18:48:51.588Z] [INFO] [HTTPServer.swift:195 listen(on:)] Listening on port 8080




The application is running on your local system.

Open your browser to http://localhost:8080 and you will see the following startup screen:





            

            
        
    
        

                            
                    Deploying Your app

                
            
            
                
The IBM Cloud CLI provides you with a shortcut to deploy your application to IBM Cloud. After you have tested and executed your local container successfully, you can run the following command to deploy it to the cloud:



$ ibmcloud dev deploy




If it complains about an authorization failure to access the IBM Cloud, log out and then log in again to access IBM Cloud:



$ ibmcloud logout
$ ibmcloud login
$ ibmcloud target --cf
$ ibmcloud dev get-credentials




The deployment takes some time when the dependencies of your application are being fetched and compiled on the remote server.

If you visit https://console.bluemix.net, you can click on Runtime on the left navigation panel and check the current status of the running instance of your application:







Since you have a Free account type, only one instance is allowed. Make sure that your runtime is awake and running.

Now take your web browser to http://my-new-kitura-app.mybluemix.net/, you will see the same default web page as the one you see when running your Kitura app on a local system. The difference, of course, is that your application is now active and running on IBM Cloud.



            

            
        
    
        

                            
                    Summary

                
            
            
                
Deploying your applications to the cloud is part of the development process for Vapor and Kitura projects. In this chapter, you were introduced to the features offered in both Vapor Cloud and IBM Cloud, learned how to register for new accounts, and then followed the instructions to deploy starter Vapor and Kitura applications to your cloud accounts. In the next chapter, you'll be working on another side of the end-to-end Swift development workflow: developing iOS client applications.



            

            
        
    
        

                            
                    Developing an iPhone Client

                
            
            
                
This chapter puts everything you've learned so far about server-side Swift together and uses an iOS app to show how a client "travel journal" app can leverage the login, database, and other cloud services you built with a Swift web framework. You'll first get started with building a travel journal iOS app, adding logic and UI components to the app design. You'll create a model for journal data and add the support of CRUD operations for the PostgreSQL database on the server. At the end of this chapter, you'll have a functional travel journal app that works seamlessly with your web services.

You're going to have learned about the following topics after finishing this chapter:


	Creating a table view controller in an iOS application

	Constructing a data model using the Codable protocol

	Adding content to the table view controller using the prototype cell

	Getting familiar with Storyboard and using it to add controls to the user interface

	Building additional screens to view and edit a journal entry

	Making HTTP requests to Vapor or Kitura web services

	Leveraging the Codable protocol to perform the encoding and decoding of JSON objects





            

            
        
    
        

                            
                    Developing an iOS App for a server-side Swift application

                
            
            
                
In this section, you're going to start building an iOS application with the table view controller. You'll use this skeleton application to populate the table view with all the journal entries retrieved with the RESTful API you built in Chapter 11, Designing for API Gateway. The iOS application you're going to build here will work for both Vapor and Kitura web services, since they share the same API.



            

            
        
    
        

                            
                    Creating a new project

                
            
            
                
Now you can go ahead and  your Xcode IDE. If you have an existing installation of Xcode, remember to check its version and upgrade it to the latest version if it's an older version. I recommend you use Xcode 10.0 or better for the project in this chapter.

After launching Xcode, you're going to create a new project from one of the provided templates and then configure the project setting appropriately.

To create a new project for your iOS application, choose the Single View App template:





Fill in the options. Use myJournal as the Product Name and specify the Organization Name:



Next, go to Project Navigator on the left panel and select the first myJournal item.  This brings you to the project settings page. The last section of this page is Deployment Info.

Uncheck both the Landscape Left and Landscape Right device orientation option and support Portrait mode only:



That's all the configuration you'll need for your project. Next, you can add a new TableViewController to your project.



            

            
        
    
        

                            
                    Creating a new TableViewController

                
            
            
                
In this section, instead of the default ViewController, you're going to use a new TableViewController for the main screen:


	Remove the ViewController.swift file XCode created for you.

	Add a new MainScreenViewController.swift file to your project:



// File: MainScreenViewController.swift
import UIKit

class MainScreenViewController: UITableViewController {

    override func viewDidLoad() {
        super.viewDidLoad()
    }
}


	In storyboard, delete the View Controller item from View Controller Scene:






	Go View | Libraries | Show Library or Ctrl + command + L to reveal the Library tray:






	Alternatively, you can click on the Libraries button, the leftmost button on the top-right tray:








	Drag the Table View Controller from the Library tray and drop it into the Storyboard:






	Click on Attribute Inspector and check the Is Initial ViewController option in the View Controller panel on the right:






	On the left panel of Storyboard, select the Main Screen View Controller item and click on Identity Inspector—that's the third icon from the left in the Inspectors panel.




	From the pulldown menu of the Class option, choose to link to the MainScreenViewController class:






	Run the app.  After choosing the myJournal scheme and selecting one of the iOS device emulators from the top-left menu, you can run the app by either pressing on the "Run" button or using the command + R shortcut. The start screen shows a table view but it has no content:





Now you have a skeleton table view application to work with. Next, you'll learn how to add some content to TableViewController.



            

            
        
    
        

                            
                    Adding content to TableViewController

                
            
            
                
Before you can display all journal entries, you need to make an HTTP request to your server-side Swift application to retrieve data in the JSON object. The Codable protocol allows you to quickly create a data model that supports decoding and de-serializing JSON objects automatically. With the JSON objects, you can display each entry by appending a new item to the table list.



            

            
        
    
        

                            
                    Preparing your data model

                
            
            
                
The first step is to create a new final class, called JournalEntry, that implements the Codable protocol. There are three fields, id, title, and content, in this model. As shown in the following code, all fields are optional because there is a chance that a field may miss from an JournalEntry object when you retrieve the object from the cloud application:

final class JournalEntry: Codable {
    let id: Int?
    var title: String?
    var content: String?

    public init(title: String?, content: String?) {
    self.id = nil
    self.title = title
    self.content = content
    }
}

The initializer only accepts title and content parameters. Since the value of the id field is automatically generated by the database-handling process, you can set an instance's id to nil for the time being.



            

            
        
    
        

                            
                    Configuring table properties

                
            
            
                
Now you can bring your attention to the table component itself in MainScreenViewController.swift. You need to construct an Array object to hold local copies of all JournalEntry objects, then tell iOS about the number of sections in UITableView as well as the number of rows in the section.

Create an instance of the JournalEntry array object in MainScreenViewController:

var journalEntries = [JournalEntry]()

iOS allows you to group cells in UITableView into sections. However, for this iOS application, you simply specify the number of sections to be 1:

override func numberOfSections(in tableView: UITableView) -> Int {
     return 1
}

The number of rows in the section corresponds to the total number of elements in your JournalEntry array object:

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
    return journalEntries.count
}

You're ready to configure the user interface component to display each JournalEntry object. For UITableView, the reusable cell prototype allows you to do exactly that.



            

            
        
    
        

                            
                    Adding a label to the prototype cell

                
            
            
                
Before adding a label to the table view cell, you need to assign a reuse identifier for the table view cell. In the storyboard, select the Table View Cell item in the Storyboard's left navigation panel and choose Identify Inspector on the right panel—you will see the Identifier field.  Enter TitleCell in the field:



To add a label to Prototype Cells, drag a Label object from the Library tray and drop it into the area right below Prototype Cells. The same design of a prototype cell will be used to apply to all concrete instances of the table cell:



Adjust the size of Label so it covers most of the prototype cell and leaves small margins for all the four sides.

While selecting the Label item of Prototype Cells, click on the Constraint menu and set 10 pixels as the constraint to each border. The constraints will help ensure the proper layout of the Label with different iOS screen's devices:



Next, select the Label object and use the Attributes Inspector to inspect the configuration of the object's attributes. Change the View | Tag field to 1000. The tag will be used to reference to this Label object in your Swift code:





In the MainScreenViewController class, override this UITableView function to tell iOS what to display for each cell:

override func tableView(_ tableView: UITableView,
cellForRowAt indexPath: IndexPath) -> UITableViewCell {
    let cell = tableView.dequeueReusableCell(withIdentifier: "TitleCell",
for: indexPath)
    if let title = journalEntries[indexPath.row].title {
        let label = cell.viewWithTag(1000) as! UILabel
        label.text = title
    }
    return cell
}



The implementation calls the dequeueReusableCell(withIdentifier: for:) function of  UITableView to get a reference to the Prototype Cell you worked on. You can use the row of the current cell to retrieve the corresponding JournalEntry object from the local array. Now all you need to do is to apply the unwrapped value of the JournalEntry object's title (which is optional) to the Prototype Cell's Label. You use the viewWithTag() function to retrieve the view object with the "1000" tag and then cast it back the UILabel object type.



            

            
        
    
        

                            
                    Constructing route handlers for web services

                
            
            
                
The data for your Prototype Cell to display is fetched from the web service API endpoints. You use a URLSession instance to send your request to an endpoint. Add the getAll() function by adding an extension to MainScreenViewController in a new  RouteHandlers.swift file:

extension MainScreenViewController {
    // Read all entries
    func getAll() {
        guard let journalUrl = URL(string: apiURL + "/all") else { return }
        URLSession.shared.dataTask(with: journalUrl) { (data, response, error) in
        // Handle your retrieved data here
        }.resume()
    }
}

journalUrl holds the endpoint you are requesting the data from. The apiURL constant is defined in the original MainScreenViewController class:

let apiURL : String = "http://localhost:8080/api"

For testing purposes, we are running the myJournal web API application on the same local machine. You can deploy and run cloud-hosted applications after the development phase is complete.

Using URLSession, you can invoke the shared instance of a data task (dataTask) with journalUrl to start a data-downloading task. The task is created in a suspended state, so you call the resume() function to start the task.

The data-fetching request takes a finite amount of time to complete because it involves the client app making HTTP requests across the internet and the server making calls to a database to retrieve stored data in the backend. You're required to implement a completion handler, which is a closure that handles the return data after an asynchronous data-fetching task is successfully complete.

Several return objects are available to you: data, response, and error. The data object contains the data you've requested if you have a success. The response object contains any data result returned from the web API application, and the error object holds the error messages if an error occurs in this transaction.

After unwrapping the return data, you can take advantage of the Codable protocol to decode the JSON object into memory:

URLSession.shared.dataTask(with: journalUrl) { (data, response, error) in
    guard let jsonData = data else { return }
    do {
        let entries = try JSONDecoder().decode([JournalEntry].self, from: jsonData)
        // Add more here later
    } catch {
        print("Error", error)
    }
}

The entries array object contains all the journal entries you have retrieved. Append the entire entries sequence to your journalEntries local store:

self.journalEntries.append(contentsOf: entries)

Since the content of journalEntries has been updated, you need to tell tableView to reload its data. Unfortunately, this is not straightforward because you'll be trying to post the result to the UI thread (which is also the main thread) from another worker thread owned by URLSession. You'll get an exception if you call the tableView object directly:

 self.tableView.reloadData()

You need to resort to Swift's inter-thread communication in order to solve this issue.

Wrap the preceding call into DispatchQueue in the following way:

DispatchQueue.main.async { self.tableView.reloadData() }

Then the asynchronous call can successfully be made across threads.



The following is the general workflow for data-fetching and posting the result back to the table view object:

extension MainScreenViewController {
    func getAll() {
        guard let journalUrl = URL(string: apiURL + "/journal") else { return }
        URLSession.shared.dataTask(with: journalUrl) { (data, response, error) in
            guard let jsonData = data else { return }
            do {
                let entries = try JSONDecoder().decode([JournalEntry].self, from: jsonData)
                self.journalEntries.append(contentsOf: entries)
                DispatchQueue.main.async { self.tableView.reloadData() }
            } catch {
                print("Error", error)
            }
        }.resume()
    }
}


Now, you can call the getAll() function in the viewDidLoad() function in MainScreenViewController.swift:

override func viewDidLoad() {
    super.viewDidLoad()
    getAll()
}

You're almost done here. You still need to handle the security setting issues with your project before you can take your iOS app for a spin.



            

            
        
    
        

                            
                    Adding domain exceptions for App Transport Security

                
            
            
                
Even after you have all code implementation in place, you'll still be unable to fetch the data from a local web application successfully. This is because Apple requires App Transport Security (ATS) by default and blocks your calls. Proper configuration of ATS is required because of the HTTPS and security enforcement on iOS.



Even though you can explicitly opt out of ATS by adding the following option to Info.plist, it is not recommended to opt out of ATS entirely:

<key>NSAppTransportSecurity</key>
    <dict>
        <key>NSAllowsArbitraryLoads</key>
        <true/>
    </dict>

The recommended way is to get the domains you are working with exempt from the rules. You can specify which domains are exempt from the rules you define for ATS.

Open the Info.plist file in XCode and add a new entry for App Transport Security Settings under Information Property List:



Add the Allow Arbitrary Loads subitem to App Transport Security Settings, and set its type to Boolean and value to Yes:



Also add the Exception Domains subitem to App Transport Security Settings:



Under the Exception Domains item, add localhost as the Dictionary type; then add two Boolean values for NSIncludesSubdomains and NSExceptionAllowsInsecureHTTPLoads, and set both to Yes:





You should follow the preceding steps to add any host domain for your Vapor or Kitura web services to the Exception Domains list.



            

            
        
    
        

                            
                    Testing the Vapor Server app

                
            
            
                
It's also a good idea to test whether the web app is working properly by using a third-party HTTP client tool. Use curl to create a HTTP GET request at the same endpoint:

$ curl http://localhost:8080/api/journal

If the web app is working, you should be able to retrieve the JSON objects as a result.



            

            
        
    
        

                            
                    Running the iOS app

                
            
            
                
The following screen shows you how your table view should look like if your getAll() function successfully fetches the requested data from your web application:



Next, you can complete the rest of the features for the myJournal iOS application.



            

            
        
    
        

                            
                    Adding a new entry to journal

                
            
            
                
To add a new entry to the myJournal iOS application, you're going to add another screen for a user to enter a new entry. After the user fills in the title and content of the new entry, this screen gives such data back to the main table view screen.



            

            
        
    
        

                            
                    Designing the user interface for a new entry

                
            
            
                
You need to add a toolbar button item on the main screen to navigate to the new screen you are about to add. Drag a Bar Button Item from the Library tray and drop it into the right side of the main screen toolbar:



From Attributes Inspector, specify the Bar Button Item as the Add System Item:



For the new screen, choose Navigation Controller and View Controller from the Library tray and add them to Storyboard.

While holding down the Ctrl key, drag from the Add toolbar button in the main screen to the new Navigation Controller you've just created. The Action Segue pop-up menu appears. Select the Present Modally segue type:



In the Attributes Inspector, set the segue's Identifier to NewEntry. With this new Action Segue, the new screen will appear modally when the Add toolbar button is clicked on.

Now, you can proceed to add a couple of UI items to the new screen.

Add a Text Field item from Library and place it near the top of screen. From the Attributes Inspector, change the attributes to according to the following diagram:





Add two Bar Button Items to the toolbar. Specify the left bar button as the Cancel system item in the Attributes Inspector and the right bar button as the Done system item. The Title text field should look something like this:



Add the constraints for the four borders of the Title text field in the same way as you've just done for the Label text field in Prototype Cells:







Continue to add a new Text View item under the Title text field. This Text View item holds the multiline text of an entry's content:



For the Content  Text View item, remember to add constraints to its border as well.

The attributes of the Content text view are configured as follows:







Next, add a new EntryDetailsViewController.swift file and add the following code:

import UIKit

class EntryDetailsViewController : UIViewController {

    override func viewDidLoad() {
        super.viewDidLoad()
    }
}

In Storyboard, use the Identify Inspector to link your new view controller to the EntryDetailsViewController class:



Before you keep going, you still need to do something with the NewEntry segue you've created; you need to add code to tell EntryDetailsViewController about the NewEntry segue. 



In the MainScreenViewController class, add the following function:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
     if segue.identifier == "NewEntry" {
         let navigationController = segue.destination as! UINavigationController
         let controller = navigationController.topViewController as! EntryDetailsViewController
         controller.delegate = self
     } 
 }

The preceding code basically assigns MainScreenViewController to be the delegate for EntryDetailsViewController .

Now you are ready to add functionalities for the user interface you've just created.



            

            
        
    
        

                            
                    Using the Delegate Pattern

                
            
            
                
In iOS programming, it is common to use the delegate pattern for one component to pass information to another. The delegator component defines a delegate protocol with functions that it can use to pass out information. The delegatee component implements the provided delegate protocol by overriding the protocol's functions and handles the received information.

In your case, the new screen for adding a new entry is the delegator, while the main screen with table view is the delegatee to whom the information is passed.

Create the following delegate protocol in the same Swift file as the EntryDetailsViewController class (delegator) so it can inform MainScreenViewController (delegatee) when user is done creating the new entry:

protocol EntryDetailsViewControllerDelegate: class {
    // Delegate Cancel Event
    func entryDetailsViewControllerDidCancel(_ controller: EntryDetailsViewController)

    // Delegate Done Adding Event
    func entryDetailsViewController(_ controller: EntryDetailsViewController,
    didFinishAdding entry: JournalEntry)
}

Two functions are defined in the delegate protocol. The entryDetailsViewControllerDidCancel(_ controller:) function delegates the DidCancel event when the user clicks on the Cancel button. The entryDetailsViewController(_ controller:, didFinishAdding entry:) function delegates didFinishAdding when the user finishes adding a new entry and clicks on the Done button.

In the MainScreenViewController class (delegatee), add EntryDetailsViewControllerDelegate as one of the protocols the class implements:

class MainScreenViewController: UITableViewController,
    EntryDetailsViewControllerDelegate {
    // ....
}

Now you need to override the two functions defined in the delegate protocol and provide the implementation.

Add the implementation for the entryDetailsViewControllerDidCancel(_ controller:) function:

func entryDetailsViewControllerDidCancel(_ controller: EntryDetailsViewController) {
    dismiss(animated: true, completion: nil)
}

The function simply dismisses the EntryDetailsViewController screen in modally present mode so the focus of the user interface goes back to the original main screen.

Add the implementation for the entryDetailsViewController(_ controller:, didFinishAdding entry:) function in a similar way:

func entryDetailsViewController(_ controller: EntryDetailsViewController,
didFinishAdding entry: JournalEntry) {
    createEntry(entry: entry)
    dismiss(animated: true, completion: nil)
}

The function calls the createEntry(entry:) helper function and then dismisses the EntryDetailsViewController screen.



The createEntry() helper function appends a new entry to the journalEntries array and calls newEntry(entry:) in the extension to make an HTTP request to the web application. Then a new row is inserted into the table view:

func createEntry(entry: JournalEntry) {
    let newRowIndex = journalEntries.count
    journalEntries.append(entry)
    newEntry(entry: entry)

    let indexPath = IndexPath(row: newRowIndex, section: 0)
    let indexPaths = [indexPath]
    tableView.insertRows(at: indexPaths, with: .automatic)
}

Before implementing the newEntry(entry:) function, you can step aside and finish up the user interface for EntryDetailsViewController.



            

            
        
    
        

                            
                    Hooking up new functionalities for UI items

                
            
            
                
Select the Assistant Editor from the top-right menu tray to lay out the storyboard and the EntryDetailsViewController.swift file side by side.

While holding down the Ctrl key, click on the Done button and drag it to the line under the declaration of the EntryDetailsViewController class. A Connection context menu appears. Create an IBOutlet and specify the name to be entryTitle:







Follow the same steps to create an IBOutlet for entryContent.

The two IBOutlet fields should be created and connected to the corresponding bar button items:

class EntryDetailsViewController : UIViewController {
    @IBOutlet weak var entryTitle: UITextField!
    @IBOutlet weak var entryContent: UITextView!
}


In the same EntryDetailsViewController class, add a reference to EntryDetailsViewControllerDelegate:

weak var delegate : EntryDetailsViewControllerDelegate?

Create the done() function for IBAction:

@IBAction func done() {
    let entry = JournalEntry(title: entryTitle.text!, content: entryContent.text!)
    delegate?.entryDetailsViewController(self, didFinishAdding: entry)
}

This basically creates a new instance of JournalEntry from the text of entryTitle and entryContent, and then passes the object to the main screen via one of the delegate protocol functions.

Also create the cancel() function for IBAction, which simply calls the entryDetailsViewControllerDidCancel() function of the delegate protocol:

@IBAction func cancel() {
    delegate?.entryDetailsViewControllerDidCancel(self)
}

Both the IBAction functions need to be connected to the corresponding UI items. Ctrl + drag the Done button to the done() function for IBAction in Assistant Editor to make a connection between them. Do the same for the Cancel button and the cancel() function for IBAction.

There are two more minor features to add to the EntryDetailsViewController user interface. First, make the title text field the first responder so the title will be in focus when the screen first appears:

override func viewWillAppear(_ animated: Bool) {
    super.viewWillAppear(animated)
    entryTitle.becomeFirstResponder()
}

Next, add a default title to the screen in the viewDidLoad() function:

override func viewDidLoad() {
    super.viewDidLoad()
    title = "Create an Entry"
}

That's all you need to do to get things going for the user interface. Next, you can finish implementing the newEntry(entry:) function.





            

            
        
    
        

                            
                    Steps to Make Requests to the server

                
            
            
                
You can follow these simple steps to make requests to a server with the resource you want:


	Prepare for encoded JSON data for your data model conforming to Codable

	Configure an upload request with HTTP methods and your JSON object

	Start a new URLSession task with the request you've configured

	Call the URLSession's resume() method to start uploading





            

            
        
    
        

                            
                    Preparing for Encoded JSON Data

                
            
            
                
Since your data model has already been conforming to Codable, you can use the JSONEncoder class to encode the data into a JSON object easily for upload:

guard let jsonData = try? JSONEncoder().encode(entry) else { return }



            

            
        
    
        

                            
                    Configuring an Upload Request

                
            
            
                
You can use a URLRequest instance to start an upload task:

var request = URLRequest(url: journalUrl)
request.httpMethod = "POST"
request.setValue("application/json", forHTTPHeaderField: "Content-Type")

URLRequest allows you to set the HTTP method (POST, PUT, GET, DELETE) using the httpMethod property of the request, as well as to set the values of any HTTP headers using the setValue(_:forHTTPHeaderField:) method.



            

            
        
    
        

                            
                    Starting an Upload Task

                
            
            
                
To start uploading, use a shared URLSession instance to create an uploading URLSessionTask instance with the passing in URLRquest and the JSON data you have:

// Start an URLSession Task
URLSession.shared.uploadTask(with: request, from: jsonData) { (data, response, error) in
    if let error = error {
        print("Error", error)
    return
    }
}.resume()

Since all tasks start in a suspended state, .resume() will be called to start the task after the .uploadTask(with: from:) method is called. Upon the completion of task upload, the results are received in a completion handler that checks for any transport or server errors and returns the requested data.



            

            
        
    
        

                            
                    Putting Everything Together for the upload task

                
            
            
                
After learning the basics for creating an uploading task, you can assemble the newEntry(entry:) function:

// Create a new entry
func newEntry(entry: JournalEntry) {

// prepare JSON data to upload
guard let jsonData = try? JSONEncoder().encode(entry) else { return }

// configure URL request
let journalUrl = URL(string: apiURL + "/admin")!
var request = URLRequest(url: journalUrl)
request.httpMethod = "POST"
request.setValue("application/json", forHTTPHeaderField: "Content-Type")

// Start an URLSession Task
URLSession.shared.uploadTask(with: request, from: jsonData) { (data, response, error) in
    if let error = error {
        print("Error", error)
        return
        }
    }.resume()
}

Try to edit a journal entry now. The corresponding entry in the database should reflect all the changes you've made in your iOS application. If you encounter any problems, refer to this chapter's source code to figure out the issue with your code.



            

            
        
    
        

                            
                    Finishing the CRUD operations

                
            
            
                
You still need to finish the rest of the CRUD operations for your iOS application: editing an existing entry and deleting an existing entry.







            

            
        
    
        

                            
                    Editing an existing entry

                
            
            
                
Most of the code used in creating a new entry can be reused here to edit an existing journal entry.



            

            
        
    
        

                            
                    Creating the EditEntry segue

                
            
            
                
First of all, create a new segue by Ctrl + dragging from the table view component to the Navigation Controller. Name the segue EditEntry and specify the kind of attribute to be Show:



In the MainScreenViewController class, add the following code to the prepare(for segue: sender:) function to tell EntryDetailsViewController about the EditEntry segue:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
    if segue.identifier == "NewEntry" {
         let navigationController = segue.destination as! UINavigationController
         let controller = navigationController.topViewController as! EntryDetailsViewController
         controller.delegate = self
     } else if segue.identifier == "EditEntry" {
         let navigationController = segue.destination as! UINavigationController
         let controller = navigationController.topViewController as! EntryDetailsViewController
         controller.delegate = self
         if let indexPath = tableView.indexPath(for: sender as! UITableViewCell) {
             controller.existEntry = journalEntries[indexPath.row]
         }
     } 
 }

The handling of EditEntry is implemented in the else-if block. The code states that MainScreenViewController is the delegate for EntryDetailsViewController and assigns the current item of the journalEntries array as the existEntry object in EntryDetailsViewController.



            

            
        
    
        

                            
                    Adding a new function to the delegate protocol

                
            
            
                
Next, add a new function to the delegate protocol to support editing an existing entry.

Add an additional function to delegate the Done Editing event to MainScreenViewController:

// Define the delegate protocol to inform Main Screen View Controller
protocol EntryDetailsViewControllerDelegate: class {
    //... previously defined functions

    // Delegate Done Editing Event
    func entryDetailsViewController(_ controller: EntryDetailsViewController, didFinishEditing entry: JournalEntry)
}

Implement the corresponding function in the MainScreenViewController class:

func entryDetailsViewController(_ controller: EntryDetailsViewController, didFinishEditing entry: JournalEntry) {
    updateEntry(entry: entry)
    dismiss(animated: true, completion: nil)
}





This function calls the updateEntry(entry:) function and then dismisses the EntryDetailsViewController screen:

func updateEntry(entry: JournalEntry) {
    if let index = journalEntries.index(of: entry) {
        journalEntries[index] = entry
        editEntry(entry: entry)
        let indexPath = IndexPath(row: index, section: 0)
        if let cell = tableView.cellForRow(at: indexPath) {
            let label = cell.viewWithTag(1000) as! UILabel
            label.text = entry.title
        }
    }
}

In order to use the JournalEntry.index(of:) function to retrieve the matched object, you need to subclass the JournalEntry class model from NSObject:

final class JournalEntry: NSObject, Codable {
    let id: Int?
    var title: String?
    var content: String?

    public init(title: String?, content: String?) {
        self.id = nil
        self.title = title
        self.content = content
    }
}

The subclassing of the NSObject class gives a JournalEntry instance the ability to compare against all other instances and check for equality. So it is very convenient for you to extend JournalEntry from the NSObject class here.



            

            
        
    
        

                            
                    Making an HTTP PUT request

                
            
            
                
The editEntry(entry:) function creates a new URLSession task to upload the JSON object of the newly-updated JournalEntry object to the web application:

// Edit an existing entry
func editEntry(entry: JournalEntry) {
    print("INFO: Receiving modified entry: \(entry)")
        
    guard let jsonData = try? JSONEncoder().encode(entry) else { return }
        
    guard let id = entry.id else {
        print("Error: Invalid ID")
        return
    }
    let idString : String = "/admin/\(id)"
    let journalUrl = URL(string: apiURL + idString)!
    var request = URLRequest(url: journalUrl)
    request.httpMethod = "PUT"
    request.setValue("application/json", forHTTPHeaderField: "Content-Type")

    URLSession.shared.uploadTask(with: request, from: jsonData) { (data, response, error) in
        if let error = error {
            print("Error", error)
            return
        }
    }.resume()
}

URLRequest is configured as an HTTP PUT request. After the URLSession task is configured, the resume() call will start the uploading process.



            

            
        
    
        

                            
                    Configuring the user interface to edit an entry

                
            
            
                
Now, go back to the EntryDetailsViewController class. Add the following reference to the JournalEntry object passed from the MainScreenViewController delegate:

var existEntry: JournalEntry?





Modify the done() function to check whether there is a valid existEntry object. If there is, it means this is the Edit Entry mode for EntryDetailsViewController. The title and content values of the existing Journal Entry object will be replaced by the text of entryTitle and entryContent:

@IBAction func done() {
    // edit mode
    if let exist = existEntry {
        exist.title = entryTitle.text!
        exist.content = entryContent.text!
    delegate?.entryDetailsViewController(self, didFinishEditing: exist)
    }
    // create mode
    else {
        let entry = JournalEntry(title: entryTitle.text!,
        content: entryContent.text!)
        delegate?.entryDetailsViewController(self, didFinishAdding: entry)
    }
}

For the Edit Entry mode, the screen's title is also updated accordingly:

override func viewDidLoad() {
     super.viewDidLoad()

     if let entry = existEntry {
         entryTitle.text = entry.title
         entryContent.text = entry.content
     } else {
         title = "Create an Entry"
     }
}

The final result of editing the entry operation should look like the following:









            

            
        
    
        

                            
                    Deleting an existing entry

                
            
            
                
The last thing to do is to add the DELETE operation. If the user swipes a table item to the left, a DELETE button will appear. An entry will be deleted if the user continues to press on the button:



Override the tableView(_ tableView: commit editingStyle: forRowAt indexPath: ) function:

override func tableView(_ tableView: UITableView, commit editingStyle: UITableViewCell.EditingStyle, forRowAt indexPath: IndexPath) {
    // remove from database first before deleting it locally
    removeEntry(entry: journalEntries[indexPath.row]) // [1]
    journalEntries.remove(at: indexPath.row) // [2]
    let indexPaths = [indexPath]
    tableView.deleteRows(at: indexPaths, with: .automatic) // [3]
}

The function does several things:


	It calls the removeEntry(entry:) function to tell the web application to remove the remote record of this entry

	It remove the corresponding entry from the journalEntries local store

	It deletes the corresponding row from the table view



The removeEntry(entry:) function performs a similar URLSession task to issue an HTTP DELETE request to the web application:

// Remove an existing entry
func removeEntry(entry: JournalEntry) {
 print("INFO: Receiving the entry to be deleted: \(entry)")
 
 // prepare JSON data to upload
 guard let jsonData = try? JSONEncoder().encode(entry) else { return }
 print("INFO: Packing int JSON object: \(jsonData)")
 
 // configure URL request
 guard let id = entry.id else {
     print("Error: Invalid ID")
     return
 }
 let idString : String = "/admin/\(id)"
 let journalUrl = URL(string: apiURL + idString)!
 var request = URLRequest(url: journalUrl)
 request.httpMethod = "DELETE"
 print("INFO: Requesting Server to delete: \(request)")
 
 // Start an URLSession Task
 URLSession.shared.uploadTask(with: request, from: jsonData) { (data, response, error) in
     if let error = error {
         print("Error", error)
         return
     }
 }.resume()
}


Congratulations! Now you have a fully-functional iOS client application that works with your Vapor or Kitura web applications on the cloud.







            

            
        
    
        

                            
                    Summary

                
            
            
                
You are now equipped with the knowledge to be a full-stack developer who knows how to write Swift code to perform both server and client development. In this chapter, you learned basic iOS development skills to develop a table-view-controller-based application that interacts with the myJournal web service you developed previously. Building on the skeleton table view controller, you learned how to establish a URLSession that makes a HTTP GET request to the RESTful API you developed in Chapter 11, Designing for API Gateway, and retrieve all journal entries to populate the table view. Then, you moved on to implement other CRUD operations on the client side: creating, editing, and deleting a journal entry. The topics you covered in this chapter give you good basis for building more professional and feature-rich iOS client applications that work with your Vapor and Kitura web services.



            

            
        
    
        

                            
                    Developing Microservices

                
            
            
                
In contrast to a monolithic server-side application that contains all business logic, a Swift web framework may employ microservices in the business logic layer. Microservices are standalone logical components that handle different functional areas of a backend application.

You'll learn about container technology, such as Docker, that is used to deploy and run a Swift package artifact as a microservice. You'll learn how to deploy a Docker container and use a container-orchestration tool to manage and scale the deployment of containerized applications in a cluster. Orchestration software, such as Kubernetes, contains deployment and management tools that automate the processes and workflows of your containerized applications. Finally, you’ll deploy microservices of containerized applications to deliver a coherent and scalable web service by collaborating among themselves.

Let's take a look at the topics covered in this chapter:


	Leveraging Microservices in Backend Applications

	Deploying a Containerized Application to a Cluster





            

            
        
    
        

                            
                    Leveraging Microservices in Backend Applications

                
            
            
                
When we are designing backend services for a server-side Swift application, we are generally talking about designing for a distributed architecture. This means that service components are accessed remotely through some sort of remote-access protocol, so these components can communicate across different processes, servers, and networks. Similar to Object-Oriented Design (OOD) in software architecture, distributed architectures lend themselves to more loosely-coupled, encapsulated, and modular applications. This, in turn, promotes better scalability, modularity, and control over the development, testing, and deployment of backend service modules.



            

            
        
    
        

                            
                    The microservice-oriented architecture

                
            
            
                
In the service-oriented architecture (SOA), the reusability of functions hasn't been fully exploited. For example, the logging feature in one service may be duplicated as we find a similar logging feature in another service. Since a service is not designed for reusability, duplicated features are inadvertently added to a service. The concept of component-sharing is not explicitly integrated and promoted in SOA. A mature service may become bloated and monolithic, making it hard to maintain, debug, and develop.

Microservices, however, are designed for tasks at a more granular level and won't become bloated easily. For example, there could be a logger microservice that handles string formatting, filtering, converting and reporting. Multiple microservices can use the same instance of logger microservice for logging information.



            

            
        
    
        

                            
                    Design Principles of the Microservice Framework

                
            
            
                
The key design principles for the Microservice Framework are as follows:


	
Separation of Concerns: Each microservice is modular and is held for single responsibility



	
Loose Coupling: Each microservice shall be isolated from other microservices and components as much as possible



	
Independently Deployable: Each microservice is an entity that can be individually deployed as needed



	
Scalable Architecture: We shall be able to add as many of the same type of microservices as needed



	
Automation: The deployment of microservices is automated



	
Built for Failure: A microservice shall gracefully exit during catastrophic failure and then get relaunched







            

            
        
    
        

                            
                    Deploying a Containerized Application to a Cluster

                
            
            
                
Even though microservices can be deployed and managed via different means, we recommend you deploy each microservice in a Docker container. In a virtualized environment provided by a container, the logic and I/O for each microservice instance are completely separated even if they reside on the same physical server. This container-based approach lets us scale our deployment with maximum flexibility. For example, we can deploy 10 containerized microservices on a physical service. When the workload is increased, we can add more containers to the same server or a different server, depending on the resource utilization of a physical server. The deployment and load-balancing of microservices are managed by orchestration tools such as Kubernetes. Moreover, if one of the deployed microservices encounters a catastrophic failure, the orchestration tool will attempt to let the instance of the microservice gracefully exit and then relaunch a new instance.



            

            
        
    
        

                            
                    Working with Containers and Orchestrations

                
            
            
                
Once you have a containerized application, you are going to plan deploying your container to a cluster. A cluster refers to a set of resources, networks, working nodes, and storage services in the backend that your containerized application needs to work with. Connected computing units, resources, and services in a cluster work as a single unit.

When working with a cluster, you usually choose a container-orchestration tool to automate deployment, scale your containerized applications, and manage your containers in the cluster. Kubernetes is a production-ready open source container-orchestration platform that was originally developed by Google and is now maintained by the Cloud Native Computing Foundation.

Kubernetes does the following tasks very well:


	Manages containerized applications to run where and when you want.

	Finds the resources required for containers to work properly.

	Abstracts out the deployment of containerized applications so each is not tied to an individual machine.

	Automates the distribution and scheduling of application containers across a cluster.




	Monitors the status of deployed applications periodically.

	Instantiates a new instance of a containerized application in case of the failure of an instance.



There are two types of resources in a Kubernetes cluster:


	Master: Each cluster has a Master that coordinates the cluster. Master schedules the deployment of a containerized application, maintains the application's states, and rolls out new updates to the application. When there is a change in usage, Master can also scale the application appropriately to meet new demand.

	Worker nodes: There are a number of working nodes in a typical cluster. Nodes are the workers that host the running containerized applications. Each node could be a virtual machine or a physical computer. The kubelet agent in each node communicates with Master via the Kubernetes API and manages the node itself.



In the following sections, you'll learn how to create your own container for your server-side Swift application and deploy it to a cluster. The workflow for creating a containerized application using Docker and deploying to a Kubernetes cluster is similar for the Vapor and Kitura frameworks. As such, you'll learn how to deploy a Kitura application to your IBM Cloud account. It is easier for you to follow along with the implementation of containers and orchestrations for Kitura applications on IBM Cloud because these technologies are well integrated into the infrastructure in IBM Cloud and you can find all relevant documentation and resources within your developer account.



            

            
        
    
        

                            
                    Understanding the Container Deployment workflow

                
            
            
                
The following diagram illustrates the workflow for deploying a containerized application to a cluster on the cloud:



The workflow consists of the following steps:


	Create an Application. Start a server-side Swift application from a boilerplate project that comes with the sample Dockerfile configuration.

	Create a Docker Image. Modify the Dockerfile and build a new Docker container image.

	Tag the Image. Tag the new container image with the repository name and version info.

	Push to the Container Registry. Create a namespace to use in Container Registry and push your image to the registry.

	Create a Cluster. Create a new cluster with a master and at least one worker node.

	Create a Deployment. Pull your image from the Container Registry to create a new deployment in a worker node.

	Expose the Deployment. Create a NodePort service to expose the deployment at the node's public IP and static port.



With this overview of the container-deployment workflow, you can dive into the details of each step.



            

            
        
    
        

                            
                    Publishing a Docker image to IBM Cloud Registry

                
            
            
                
If you want to let the container-orchestration tool manage the instances of your Swift applications, you'll find it easy to work with Container Registry. By registering your container images in IBM Container Registry, you allow the orchestration tool to deploy new instances when required.

In case you haven't installed the Container Registry plugin, use the following command to add the plugin to the IBM Cloud CLI:



$ ibmcloud plugin install container-registry -r Bluemix




If you haven't installed IBM Cloud CLI on your system, refer back to Chapter 12, Deploying to Cloud, for the details.



            

            
        
    
        

                            
                    Logging into IBM Cloud

                
            
            
                
Now you are going to register your container image to Container Registry.

On your local computer, perform the following steps:


	Log into your IBM Cloud account using the IBM Cloud CLI:





$ ibmcloud login -a https://api.ng.bluemix.net





	In case you haven't set the region, you may want to set the region-set environment to where you are located, for example, us-south. Refer to the IBM Cloud documentation to identify the right region for your location:





$ ibmcloud cs region-set us-south





	If you don't already have an existing namespace to work with, you're required to create one for the rest of the setup. The namespace used in the following example is angus but you should choose whatever name best represents your project:





$ ibmcloud cr namespace-add angus





	The output shows the angus namespace has been successfully added to the environment:





Adding namespace 'angus'...
Successfully added namespace 'angus'
OK




You'll also find the new namespace on the Dashboard application if you use the web browser to log into your IBM Cloud account. Sometimes you may need to log into Registry Services on IBM Cloud before you can create a container image and push the image to Container Registry.

Log into registry.ng.bluemix.net using the following CLI command:



ibmcloud cr login




Now, you're ready to create a new Docker container image and deploy it to Container Registry.



            

            
        
    
        

                            
                    Working with the Docker CLI

                
            
            
                
 You set up the Docker environment in Chapter 12, Deploying to Cloud. In case you haven't installed Docker CLI on your local system, refer back to Chapter 12, Deploying to Cloud, for instructions on how to install the Docker CLI and create a Docker-enabled Kitura application from a boilerplate project.

If you are using Docker Desktop for Mac, the Docker daemon should be running in the background already. For Ubuntu, you may need to start the Docker daemon manually using the systemctl command:

$ sudo systemctl start docker

Assuming that you have docker running properly, perform the following steps to build a container image for your Kitura application:


	Change the directory to the root path of your Docker-enabled Kitura application and use the following Docker CLI command to build an image:





$ docker image build .




Docker will process Dockerfile to build an image.


	Use the Docker Image command to list the image you've just created:





$ docker image ls





	The output shows that a new image with the dc056e17b52a ID was just created about a minute ago:





REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> dc056e17b52a About a minute ago 674MB
mynewkituraapp-swift-run latest 3a2a59c534e4 28 hours ago 674MB
mynewkituraapp-swift-tools latest 2fb4a17c3c57 29 hours ago 1.67GB
ibmcom/swift-ubuntu-runtime 4.1.1 23bd1a58b015 4 months ago 318MB
ibmcom/swift-ubuntu 4.1.1 9d6e9b75db3d 4 months ago 1.41GB




Once your container image has been successfully registered, you can start to get the container image ready for deployment.



            

            
        
    
        

                            
                    Tagging Your Docker Image

                
            
            
                
Your new image doesn't yet have a repository and tag assigned to it. Both are needed to deploy to Container Registry on IBM Cloud. Perform the following steps to set this up:


	Use the following Docker command to tag your image:





$ docker tag dc056e17b52a mynewkituraapp




The source image is dc056e17b52a and the target image is mynewkituraapp.




	List the images again using the following:





$ docker image ls




You'll see the image now has assigned values for Repository and Tag:



REPOSITORY TAG IMAGE ID CREATED SIZE
mynewkituraapp latest dc056e17b52a 11 minutes ago 674MB
mynewkituraapp-swift-run latest 3a2a59c534e4 29 hours ago 674MB
mynewkituraapp-swift-tools latest 2fb4a17c3c57 29 hours ago 1.67GB
ibmcom/swift-ubuntu-runtime 4.1.1 23bd1a58b015 4 months ago 318MB
ibmcom/swift-ubuntu 4.1.1 9d6e9b75db3d 4 months ago 1.41GB




By default, Docker assigns latest to your image if you don't specify a version to tag. Tagging is useful for the version management of your container images, so it is always a good idea to tag a version for each container image. 

To tag a specific version, for example, 1.0.0, add the tag right behind the target image:



$ docker tag dc056e17b52a mynewkituraapp:1.0.0




In practice, you may want to put a tag that matches your application version on the Git repository.



            

            
        
    
        

                            
                    Deploying a Docker Image to IBM Cloud Registry

                
            
            
                
With a namespace and newly-tagged Docker image, you can now push the image to Container Registry:


	Add another tag to your image:





$ docker tag mynewkituraapp registry.ng.bluemix.net/angus/mynewkituraapp




This time, the target image has a prefix of the destination path on Container Registry, which is registry.ng.bluemix.net followed by your namespace, /angus.


	List all of your Docker images again:





$ docker image ls




You'll see a new repository is created under the registry.ng.bluemix.net/angus/ path:



REPOSITORY TAG IMAGE ID CREATED SIZE
mynewkituraapp latest dc056e17b52a 15 minutes ago 674MB
registry.ng.bluemix.net/angus/mynewkituraapp latest dc056e17b52a 15 minutes ago 674MB
mynewkituraapp-swift-run latest 3a2a59c534e4 29 hours ago 674MB
mynewkituraapp-swift-tools latest 2fb4a17c3c57 29 hours ago 1.67GB
ibmcom/swift-ubuntu-runtime 4.1.1 23bd1a58b015 4 months ago 318MB
ibmcom/swift-ubuntu 4.1.1 9d6e9b75db3d 4 months ago 1.41GB





	Push this new image to IBM Cloud:





$ docker push registry.ng.bluemix.net/angus/mynewkituraapp:latest




The entire image is partitioned into several segments when uploading to Container Registry:



The push refers to repository [registry.ng.bluemix.net/angus/mynewkituraapp]
6fb9392393bf: Pushed
cd9c92ad770c: Pushed
5e51fc2d02fb: Pushed
a48c7e6e2611: Pushed
44d26f7a9e5a: Pushed
2a915ee685f5: Pushed
4622c8e1bdc0: Pushed
b33859b66bfd: Pushed
14fa4a9494bf: Pushed
0c3819952093: Pushed
05b0f7f2a817: Pushed
latest: digest: sha256:a4c3c83b4b29588faeaea18f1313a3c5728fdda093763cbb9510b8b5339cab7d size: 2615





	If you use the IBM Cloud CLI command to list all the available images on Container Registry, you'll see that the image has been just pushed to the cloud:





$ ibmcloud cr image-list




The images are listed here:



Listing images...
REPOSITORY TAG DIGEST NAMESPACE CREATED SIZE SECURITY STATUS
registry.ng.bluemix.net/angus/mynewkituraapp latest a4c3c83b4b29 angus 32 minutes ago 277 MB 19 Issues
OK




There may be some security issues that require your attention. Follow the documentation on IBM Cloud to see how to configure your application's security settings.

If you take your web browser to Dashboard, you can find the same image under the /Containers/Registry/Private Repositories:





            

            
        
    
        

                            
                    Creating a Cluster on IBM Cloud

                
            
            
                
You can create a new cluster directly from your IBM Cloud account's Dashboard application. A standard cluster is limited to Pay-As-You-Go or Subscription account types only. If you have a Trial account, you are limited to one free cluster, which expires in 30 days. You cannot create a cluster if your account type is Lite. Upgrade to either a Pay-As-You-Go or Subscription account to proceed.

Assuming you have a Trial account, you can choose the Free cluster type after selecting IBM Cloud Kubernetes Service from Dashboard:



Enter the cluster name as mycluster and hit the Create Cluster button to proceed.

The deployment of a new cluster may take some time. Wait until the cluster has been fully deployed. You'd expect to see an overview screen similar to the following if the cluster becomes online:





The Access tab lists the steps required for you to get access to the cluster.



            

            
        
    
        

                            
                    Setting up the Kubernetes CLI

                
            
            
                
You need to install a couple of CLIs and plugins in order to manage clusters from your system:


	IBM Cloud CLI

	IBM Cloud Kubernetes Service Plug-in

	Kubernetes CLI

	IBM Cloud Container Registry Plug-in



Note that you have installed the IBM Cloud CLI on your system already. The best way to install the rest of the CLIs and plugins is to use the IBM Cloud Developer Tools for Linux/MacOS Installer (idt-installer):



curl -sL https://ibm.biz/idt-installer | bash




The installer then proceeds to update your current toolset and install tools/plugins not found on your system:



[main] --==[ IBM Cloud Developer Tools for Linux/MacOS - Installer, v1.2.3 ]==--
[install] Starting Installation...
[install] Note: You may be prompted for your 'sudo' password during install.
[install_deps] Checking for external dependency: brew
[install_deps] Installing/updating external dependency: git
[install_deps] Installing/updating external dependency: docker
[install_deps] Installing/updating external dependency: kubectl
[install_deps] Installing/updating external dependency: helm
[install_bx] Updating existing IBM Cloud 'bx' CLI...
Checking for updates...
...
[Deleted]
...
Listing installed plug-ins...


Plugin Name Version
container-service/kubernetes-service 0.1.593
dev 2.1.4
sdk-gen 0.1.12
cloud-functions/wsk/functions/fn 1.0.22
container-registry 0.1.339

[install_plugins] Finished installing/updating plugins
[install] Install finished.
[main] --==[ Total time: 11 seconds ]==--




Before trying out the Kubernetes tools you've just installed, you may need to log in again:



$ ibmcloud login -a https://api.ng.bluemix.net




When your login is successful, you can try out the following command of the Kubernetes CLI:



$ kubectl version




The preceding command will print out the version information for your installed Kubernetes.







            

            
        
    
        

                            
                    Downloading the Cluster Configuration

                
            
            
                
In order to work with the mycluster active cluster you have just created, perform the following steps:


	Download the cluster configuration files to your local system:





$ ibmcloud cs cluster-config mycluster




The output of the preceding command reminds you that you'll need to set up environment variables properly to start using Kubernetes:



OK
The configuration for mycluster was downloaded successfully. Export environment variables to start using Kubernetes.
export KUBECONFIG=/Users/fyeung1/.bluemix/plugins/container-service/clusters/mycluster/kube-config-hou02-mycluster.yml





	Export the KUBECONFIG environment variable by copying the last line from the preceding code and paste it into a Terminal:





$ export KUBECONFIG=/Users/fyeung1/.bluemix/plugins/container-service/clusters/mycluster/kube-config-hou02-mycluster.yml




The KUBECONFIG environment variable specifies which current cluster you are working with. If you have more than one cluster and want to switch to another cluster, you need to follow the preceding steps to download the cluster configuration and export the KUBECONFIG environment variable that is pointed to in the other cluster.

Don't copy the KUBECONFIG environment variable from the book text here. It uses my personalized settings. You should copy from your own output screen from the last IBM Cloud CLI command and export the KUBECONFIG environment variable.


	If everything works out as expected, you are able to use the following kubectrl command to list all the worker nodes in your cluster.





$ kubectl get nodes




A list of active worker nodes in your cluster is listed in the output:



NAME STATUS ROLES AGE VERSION
10.77.174.186 Ready <none> 2h v1.10.8+IKS




You should expect one active worker node in the cluster. Since you are using the free kubernetes feature, it limits you to only one worker node.


	If you point your web browser to your IBM Cloud account, you can check out the status of the active worker node in your cluster page as well:







            

            
        
    
        

                            
                    Creating a Deployment Using Container Registry

                
            
            
                
Once you have an active Kubernetes cluster, you can deploy your containerized application to it. To do so, you can use kubectl to create a deployment. The deployment tells Kubernetes how to create and update instances of your application. The Kubernetes Deployment Controller will monitor these instances and provide a self-healing mechanism. If an instance in your worker node goes down, the Kubernetes Deployment controller will attempt to replace it. Even if the hosting machine of your worker node goes down, the Deployment controller can still detect the machine failure and address the recovery.


	Use the following kubectl command to create a new deployment from your image in the container registry:





$ kubectl create deployment my-new-kitura-app-deployment --image=registry.ng.bluemix.net/angus/mynewkituraapp





	If you forget your namelist, use this command to list the existing namespaces:





$ ibmcloud cr namespace-list




The command outputs something like the following:



Listing namespaces...
Namespace
angus
OK





	Assuming that you have created a container registry, you can use Kubernetes Dashboard to access your cluster information.

	Click on the button to open Kubernetes Dashboard:





The dashboard gives you more detailed information, such as Deployments, Pods, and Replica Sets. Check out https://kubernetes.io to learn the basics of this terminology.



            

            
        
    
        

                            
                    Exposing the deployment and launching the app

                
            
            
                
End users won't be able to get access to your application instances in the cluster unless you explicitly create a service object that exposes an external IP address for your application deployment. To do so, perform the following steps:


	Use the kubectl expose command to change the access of your newly-created deployment to public:





$ kubectl expose deployment/my-new-kitura-app-deployment --type=NodePort --port=8080 --name=my-new-kitura-app-service --target-port=8080




Here, you instruct Kubernetes to expose your deployment service through the NodePort service, my-new-kitura-app-service, which serves on port 8080 and connects to the containers that are also on the 8080 target port.


	Run the following command to check out the deployment resource that has been exposed:





$ kubectl describe service my-new-kitura-app-service




The NodePort object now exposes the services on each Node's IP at the 32663 static port (NodePort):



Name: my-new-kitura-app-service
Namespace: default
Labels: run=my-new-kitura-app-deployment
Annotations: <none>
Selector: run=my-new-kitura-app-deployment
Type: NodePort
IP: 172.21.76.242
Port: <unset> 8080/TCP
TargetPort: 8080/TCP
NodePort: <unset> 32663/TCP
Endpoints: 172.30.77.71:8080
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>




Since your service runs on an internal IP, the service is reachable from within the cluster only. In order to expose your service to the outside, Kubernetes automatically creates a default service called ClusterIP. Your service can be exposed in different ways as specified by the type, such as the NodePort type. NodePort uses NAT to expose the service on the same port of each selected node in the cluster. For example, the 32663 static port will be mapped to port 8080 internally so your deployment service at 8080 will be exposed to 32663.


	Run the following command to find out the public IP address for your worker node:





$ ibmcloud ks workers mycluster




The public IP address assigned to your node is 173.193.99.102:



OK
ID Public IP Private IP Machine Type State Status Zone Version
kube-hou02-pa1542b64383f4463a84fc4bf6fa57ea6d-w1 173.193.99.102 10.77.174.186 free normal Ready hou02 1.10.8_1525

Your deployment running on this worker node is available to outside as [Public Node IP] : [ Node Port]. That is [173.193.99.102] : [32663].





	Point your web browser to 173.193.99.102:32663, and you can see your Kitura application deployment online:





That's all it takes to deploy a containerized application to a working node in a cluster.

In the future, you can follow the steps here to deploy more applications that work together as microservices. Each microservice is hosted independently on a working node and all microservices in clusters collaborate with each other to offer unified service to clients.







            

            
        
    
        

                            
                    Summary

                
            
            
                
This chapter introduced to you the concept of breaking your Vapor or Kitura applications into smaller, self-contained components called microservices. You learned the advantages of using the microservice-oriented architecture. Then you gained a working knowledge of containers and orchestrations. Specifically, you learned how to put your application into a container using Docker as well as how to register and deploy a containized application to a Kubernetes cluster on IBM Cloud. This chapter concludes the book. But for you, this marks the beginning of an exciting new journey with server-side Swift!



            

            
        
    
        

                            
                    Vapor Boilerplate Project

                
            
            
                
This topic in the appendix will give you a clear understanding the boilerplate code in Vapor. Carrying forward from where we left off in Chapter 3, Building Your First Web App, here is a summary of the steps that you've used in creating a helloWorld boilerplate project using Vapor's default template:



$ vapor new helloWorld
$ cd helloWorld
$ vapor build
$ vapor xcode
$ open hellowWorld.xcodeproj




After executing the preceding commands in the Terminal, you changed Xcode project's scheme to Run and device to My Mac. The helloWorld server will be running at http://localhost:8080 when you use command + R to run your project.

The following sections will provide you with a better idea regarding the same:


	Reviewing Vapor-generated files

	Understanding the source code files

	Configuring Swift Package Manager 

	Starting with entry point

	Instantiating an application object

	Configuring before instantiating application

	Adding initialization code after application instantiation

	Registering the application's routes

	Implementing endpoint logic in controllers

	Using a data model





            

            
        
    
        

                            
                    Reviewing Vapor-generated files

                
            
            
                
After using the preceding steps to create a boilerplate helloWorld project, use the ls -a command in the helloWorld project directory to list all files and child directories:



# List all files and directories, including the hidden ones
ls -a




The -a flag is used here so you can view all files, including hidden files and directories:

.                 .build          .gitignore                  Package.swift         README.md            Tests               cloud.yml
 ..                .git               Package.resolved     Public Sources       circle.yml

Vapor generates some hidden directories, such as .build and .git.

The .build directory contains all the dependencies and temporary files when you build your project. If you execute the vapor clean Vapor CLI command, the .build directory will be removed. Then you have to use vapor build to fetch the dependencies and build the project again. This usually takes a long time. If you simply want to update few dependencies, you can use vapor update to fetch those dependencies that you don't have already.

The .git directory is used by the git source code version control. It is classified as a distributed version-control system. The .git is the directory it used to keep a local copy of the source code repository. The .gitignore hidden file is the place where you can specify the kinds of files you want to exclude from source control.



            

            
        
    
        

                            
                    Installing tree to view the file structure

                
            
            
                


Perhaps a better tool than ls is the tree Terminal command. Install tree on your system if you don't have it installed already:

To install it on macOS, perform the following:



# Install the tool tree if needed
brew install tree




To install it on Ubuntu, use the following code:



# Install the tool tree if needed
sudo apt install tree










            

            
        
    
        

                            
                    Reviewing a Vapor project's file structure

                
            
            
                
With tree properly installed on your system, you can use the following command to display the entire file structure in the helloWorld app:



# Display the file structure in the helloWorld app
tree




Your output should be something similar to the following:

.
 ├── Package.resolved
 ├── Package.swift
 ├── Public
 ├── README.md
 ├── Sources
 │   ├── App
 │   │   ├── Controllers
 │   │   │   └── TodoController.swift
 │   │   ├── Models
 │   │   │   └── Todo.swift
 │   │   ├── app.swift
 │   │   ├── boot.swift
 │   │   ├── configure.swift
 │   │   └── routes.swift
 │   └── Run
 │   └── main.swift
 ├── Tests
 │   ├── AppTests
 │   │   └── AppTests.swift
 │   └── LinuxMain.swift
 ├── circle.yml
 └── cloud.yml

If you use the -a flag in your tree command, you will see a lot of dependency files in the .build directory and git working files in the .git directory. You may want to check out the dependency files fetched to the .build directory after you build the project.



            

            
        
    
        

                            
                    Understanding the file structure in a Vapor project

                
            
            
                
The usages for high-level files and directories in your project are described in the following table:




	File/directory
	Usage





	Package.resolved
	Registry for resolved dependencies and packages



	Package.swift
	Configuration for Swift Package Manager (SPM)



	/Public
	Directory for publicly-accessible files such as images, JavaScript scripts, and CSS style sheets



	README.md
	README file in Markdown format



	/Sources
	Directory for source files



	/Tests
	Directory for all tests



	circle.yml
	Configuration for continuous integration and continuous deployment using CircleCI



	cloud.ml
	Custom configurations for deploying your project to Vapor Cloud





 

You'll become more familiar with the file structure of a Vapor project as you work on the project. For now, you just need to pay attention to the /Sources directory, which contains all the source files in your project.

The /Sources directory has two sub directories, /App and /Run, as shown in the following table:




	File/directory
	Usage





	/App
	Directory for the App module containing all of the application logic



	/App/Controllers/TodoController.swift
	Adds controllers to perform application logic to requests



	/App/Models/Todo.swift
	Adds model to help retrieve/store your content



	/App/app.swift
	Creates an instance of your Vapor app



	/App/boot.swift
	Performs initialization before your Vapor app has started running



	/App/configure.swift
	Makes changes to your config and environment, or registers services to your app



	/App/routes.swift
	Adds routes to your router



	/Run
	Directory for the Run module



	/Run/main.swift
	Adds an entry point for Vapor runtime







There is only one function in /Run/main.swift and it serves as the entry point for Vapor framework. Usually you won't need to modify the /Run/main.swift file at all. You will mostly work on the files in the /App directory.

Like any other popular framework, Vapor uses the Inversion of Control (IoC) technique to allow you to receive the flow of control from the framework. If you want to change the behavior of the framework, you simply add the specific function that will be called upon by the framework.

The functions in the /App/configure.swift and /App/boot.swift files are good examples of IoC. In /App/configure.swift, you'll configure the required components for your project before your application initializes. In /App/boot.swift, you'll perform initialization before your app has started running the rest of the code.

Since the Vapor framework implements the Model-View-Controller (MVC) model, you'll take note of the Controllers and Models sub directories in /App.

The Controllers directory contains each controller that implements application logic to handle a client request routed to an endpoint. The routing function is added in the /App/routes.swift file. In order to handle a new client request, you'll add a new route to forward the request to a controller. How to set up routes and controllers will be covered in Chapter 5, Setting Up Routes and Controllers.

The Models directory contains the implementation of object models for your data. By leveraging Swift's Codable class in data models and abstracting out the database-specific command using Swift's fluent storage framework, Vapor makes it very easy for you to handle data objects and perform basic Create, Retrieve, Update, and Delete (CRUD)  database operations.

We'll now dive into a detailed discussion of each file in the boilderplate source code.



            

            
        
    
        

                            
                    Configuring Swift Package Manager

                
            
            
                
Package.swift is the project's manifest file that describes all the packages your project relies on. It is always located in the root directory of a Vapor project:



// File: Package.swift
// swift-tools-version:4.0
import PackageDescription

let package = Package(
    name: "helloWorld",    // [1]
    dependencies: [    // [2]
        //  A server-side Swift web framework.
        .package(url: "https://github.com/vapor/vapor.git", from: "3.0.0"), // [3]

        //  Swift ORM (queries, models, relations, etc) built on SQLite 3.
        .package(url: "https://github.com/vapor/fluent-sqlite.git", from: "3.0.0-rc.2") // [4]
    ],
    targets: [    // [5]
        .target(name: "App", dependencies: ["FluentSQLite", "Vapor"]), 
        .target(name: "Run", dependencies: ["App"]),
        .testTarget(name: "AppTests", dependencies: ["App"])
    ]
)




The preceding package is configured as follows:


	The "helloWorld" string is used as the application name

	The project's dependencies array contains all other packages this project depends on

	This project requires Vapor 3.0 or later

	The project also requires Fluent SQLite 3 or later

	The targets array allows you to add build targets





            

            
        
    
        

                            
                    Package dependencies

                
            
            
                
Vapor Toolbox adds two package dependencies, Vapor and Fluent SQLite, automatically into the project created with the default template.

You can add as many package dependencies as you need by appending the new package to the dependencies array. However, you have to use the Vapor update command to fetch the package and effect the changes if you have modified a package or added a new package to the dependency list.

If you run the swift package show-dependencies command on your Terminal, you can see that Vapor and Fluent SQLite have a long list of dependencies:



Here is # List of package dependencies in a Vapor boilerplate project:



.

├── Vapor<https://github.com/vapor/vapor.git@3.0.1>

│ ├── Console<https://github.com/vapor/console.git@3.0.2>

│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>

│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ │ └── Service<https://github.com/vapor/service.git@1.0.0>

│ │ └── Core<https://github.com/vapor/core.git@3.1.6>

│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ ├── Core<https://github.com/vapor/core.git@3.1.6>

│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ ├── Crypto<https://github.com/vapor/crypto.git@3.1.1>

│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>

│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ │ └── swift-nio-ssl<https://github.com/apple/swift-nio-ssl.git@1.1.0>

│ │ ├── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ │ └── swift-nio-ssl-support<https://github.com/apple/swift-nio-ssl-support.git@1.0.0>

│ ├── DatabaseKit<https://github.com/vapor/database-kit.git@1.0.1>

│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>

│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ │ └── Service<https://github.com/vapor/service.git@1.0.0>

│ │ └── Core<https://github.com/vapor/core.git@3.1.6>

│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ ├── HTTP<https://github.com/vapor/http.git@3.0.4>

│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>

│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ │ ├── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ │ └── swift-nio-ssl<https://github.com/apple/swift-nio-ssl.git@1.1.0>

│ │ ├── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ │ └── swift-nio-ssl-support<https://github.com/apple/swift-nio-ssl-support.git@1.0.0>

│ ├── Multipart<https://github.com/vapor/multipart.git@3.0.1>

│ │ └── Core<https://github.com/vapor/core.git@3.1.6>

│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ ├── Routing<https://github.com/vapor/routing.git@3.0.1>

│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>

│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ │ └── Service<https://github.com/vapor/service.git@1.0.0>

│ │ └── Core<https://github.com/vapor/core.git@3.1.6>

│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ ├── Service<https://github.com/vapor/service.git@1.0.0>

│ │ └── Core<https://github.com/vapor/core.git@3.1.6>

│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ ├── TemplateKit<https://github.com/vapor/template-kit.git@1.0.1>

│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>

│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ │ └── Service<https://github.com/vapor/service.git@1.0.0>

│ │ └── Core<https://github.com/vapor/core.git@3.1.6>

│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ ├── URLEncodedForm<https://github.com/vapor/url-encoded-form.git@1.0.2>

│ │ └── Core<https://github.com/vapor/core.git@3.1.6>

│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ ├── Validation<https://github.com/vapor/validation.git@2.0.0>

│ │ └── Core<https://github.com/vapor/core.git@3.1.6>

│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ └── WebSocket<https://github.com/vapor/websocket.git@1.0.0>

│ ├── Core<https://github.com/vapor/core.git@3.1.6>

│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ ├── HTTP<https://github.com/vapor/http.git@3.0.4>

│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>

│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ │ ├── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ │ └── swift-nio-ssl<https://github.com/apple/swift-nio-ssl.git@1.1.0>

│ │ ├── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ │ └── swift-nio-ssl-support<https://github.com/apple/swift-nio-ssl-support.git@1.0.0>

│ ├── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ └── swift-nio-ssl<https://github.com/apple/swift-nio-ssl.git@1.1.0>

│ ├── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ └── swift-nio-ssl-support<https://github.com/apple/swift-nio-ssl-support.git@1.0.0>

└── FluentSQLite<https://github.com/vapor/fluent-sqlite.git@3.0.0-rc.2.2>

├── Core<https://github.com/vapor/core.git@3.1.6>

│ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

├── Fluent<https://github.com/vapor/fluent.git@3.0.0-rc.2.4.1>

│ ├── Core<https://github.com/vapor/core.git@3.1.6>

│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ ├── Console<https://github.com/vapor/console.git@3.0.2>

│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>

│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ │ └── Service<https://github.com/vapor/service.git@1.0.0>

│ │ └── Core<https://github.com/vapor/core.git@3.1.6>

│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ ├── DatabaseKit<https://github.com/vapor/database-kit.git@1.0.1>

│ │ ├── Core<https://github.com/vapor/core.git@3.1.6>

│ │ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ │ └── Service<https://github.com/vapor/service.git@1.0.0>

│ │ └── Core<https://github.com/vapor/core.git@3.1.6>

│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ ├── Service<https://github.com/vapor/service.git@1.0.0>

│ │ └── Core<https://github.com/vapor/core.git@3.1.6>

│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ └── SQL<https://github.com/vapor/sql.git@1.0.0>

├── Service<https://github.com/vapor/service.git@1.0.0>

│ └── Core<https://github.com/vapor/core.git@3.1.6>

│ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

└── SQLite<https://github.com/vapor/sqlite.git@3.0.0-rc.2.3>

├── Core<https://github.com/vapor/core.git@3.1.6>

│ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

├── DatabaseKit<https://github.com/vapor/database-kit.git@1.0.1>

│ ├── Core<https://github.com/vapor/core.git@3.1.6>

│ │ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ │ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

│ └── Service<https://github.com/vapor/service.git@1.0.0>

│ └── Core<https://github.com/vapor/core.git@3.1.6>

│ └── swift-nio<https://github.com/apple/swift-nio.git@1.6.1>

│ └── swift-nio-zlib-support<https://github.com/apple/swift-nio-zlib-support.git@1.0.0>

└── SQL<https://github.com/vapor/sql.git@1.0.0>







You can see that Vapor heavily depends on Swift NIO framework by Apple for asynchronous and non-blocking I/O processing.



            

            
        
    
        

                            
                    Build targets

                
            
            
                
In the default template, Vapor creates three build targets for you. Each target declares which modules it depends on. For example, the App target depends on Fluent SQLite and Vapor. One target can also depend on another target. For example, the Run target depends on the App target.

Vapor separates the App module from the helloWorld executable module. By doing so, the App module can be included in the AppTest module for testing.

The Swift package describe command lists the three modules in the boilerplate:



# List of modules in a Vapor boilerplate project
Name: helloWorld
Path: /Users/fyeung1/Downloads/Packt/ch3/vapor/helloWorld
Modules:
    Name: App
    C99name: App
    Type: library
    Module type: SwiftTarget
    Path: /Users/Packt/ch3/vapor/helloWorld/Sources/App
    Sources: Controllers/TodoController.swift, Models/Todo.swift, app.swift, boot.swift, configure.swift, routes.swift
    Name: AppTests
    C99name: AppTests
    Type: test
    Module type: SwiftTarget
    Path: /Users/Packt/ch3/vapor/helloWorld/Tests/AppTests
    Sources: AppTests.swift
    Name: Run
    C99name: Run
    Type: executable
    Module type: SwiftTarget
    Path: /Users/Packt/ch3/vapor/helloWorld/Sources/Run
    Sources: main.swift






            

            
        
    
        

                            
                    Starting with an entry point

                
            
            
                
main.swift is always contained in an executable target and cannot be imported by other modules:



// File: /Sources/Run/main.swift
import App // [1]

try app(.detect()).run() // [2]




The preceding code does two things:


	The main.swift file imports the App module

	It gets an app instance from the app() constructor and calls the run() function of app to launch the server



Vapor uses an Application instance, app, in every project to run a server and create other services. The instance is obtained from the app() function implemented in app.swift. Vapor avoids statically accessing the Application instance using this approach. It has no need to implement any locking mechanism for thread-safety that is required for static access to variables.



            

            
        
    
        

                            
                    Instantiating an application object

                
            
            
                
As mentioned earlier, the app object used in main.swift is actually created in the constructor function declared in app.swift:



// File: /Sources/App/app.swift
import Vapor

/// Creates an instance of Application. This is called from main.swift in the run target.
public func app(_ env: Environment) throws -> Application { // [1]
var config = Config.default() // [2]
var env = env
var services = Services.default() // [3]
try configure(&config, &env, &services) // [4]
let app = try Application(config: config, environment: env, services: services) // [5]
try boot(app) // [6]
return app
}




The preceding code sets up the sequence of calling several functions:


	The app() constructor takes in the environment as a passing-in parameter

	The config variable is assigned to the default configuration

	The services variable is assigned to the default services

	The configure() function is called before an Application instance is created

	A new Application instance is created and assigned to app

	The boot() function is called after an Application instance is created



The app()->Application function instantiates an Application object with passing in parameters of default configuration, run environment, and default services. The configure() function will be called before the instantiation of Application, and the boot() function will be called after that.



            

            
        
    
        

                            
                    Configuring before instantiating application

                
            
            
                
The configure() function is declared in configure.swift. Services are set up in configure() before your application initializes:



// File: /Sources/App/configure.swift
import FluentSQLite
import Vapor

/// Called before your application initializes.
public func configure(_ config: inout Config, _ env: inout Environment, _ services: inout Services) throws {
/// Register providers first
try services.register(FluentSQLiteProvider()) // [1]

/// Register routes to the router
let router = EngineRouter.default()
try routes(router)
services.register(router, as: Router.self) // [2]

/// Register middleware
var middlewares = MiddlewareConfig() // Create _empty_ middleware config
/// middlewares.use(FileMiddleware.self) // Serves files from `Public/` directory
middlewares.use(ErrorMiddleware.self) // Catches errors and converts to HTTP response
services.register(middlewares) // [3]

// Configure a SQLite database
let sqlite = try SQLiteDatabase(storage: .memory)

/// Register the configured SQLite database to the database config.
var databases = DatabasesConfig()
databases.add(database: sqlite, as: .sqlite)
services.register(databases) // [4]

/// Configure migrations
var migrations = MigrationConfig()
migrations.add(model: Todo.self, database: .sqlite)
services.register(migrations) // [5]

}




A number of services are registered, in the following order:


	The Fluent SQLite provider is registered

	Routes are registered to the router engine

	Error middleware is registered

	The SQLite database is registered

	Migration is configured and registered



Fluent is a Swift Object Relational Mapping (ORM) abstraction layer for building database integration. Vapor's Fluent framework works like a facade that hides away the complexities of database and presents a uniform and consistent front for working with different databases. A Fluent SQLite provider is registered in the application by default.

Each route matches a client request to an endpoint in the server. A web service endpoint is an entity to which web services requests can be addressed. In Vapor, an endpoint is often implemented as a Controller based on the MVC architecture. The routes supported by your application are declared in the routes.swift file. In the preceding code, a new service is registered with Vapor's router engine and the routes.





Middleware is application logic that modifies requests and responses as they pass between the client and your server. The implementation in configure() creates an error middleware that catches errors and converts them to HTTP response.

After the Fluent SQLite provider is registered, the SQLite database itself is created and configured. The database is then registered as one of the database services that your application supports. Note that Vapor allows you to support more than one type of database in a server.

Migration makes it easy for you to make changes to your database's structure. You use Vapor's migration to prepare a database schema for your models and make queries to the database. You can see how migration works with both your model,  Todo, and your database provider, SQLite, in the preceding code.



            

            
        
    
        

                            
                    Adding initialization code after application instantiation

                
            
            
                
The boot() function in boot.swift is called after the application is created and initialized. You can conveniently add your own initialization code to this function.

For any services that need to be set up before the application is created, you need to put their initialization code in the configure() function instead:



// File: /Sources/App/boot.swift
import Vapor

/// Called after your application has initialized.
public func boot(_ app: Application) throws {
// your code here
}





At this moment, the boot() function doesn't do too much—it simply provides a placeholder for you to add initialization code later.



            

            
        
    
        

                            
                    Registering the application's routes

                
            
            
                
The routes used in configure() to register routing service are declared in the routes() function in routes.swift. You're expected to put all of your routes in this centralized place:



// File: /Sources/App/routes.swift
import Vapor

/// Register your application's routes here.
public func routes(_ router:
// Basic "Hello, world!" example
router.get("hello") { req in // [1]
return "Hello, world!"
}

// Example of configuring a controller
let todoController = TodoController() // [2]
router.get("todos", use: todoController.index) // [3]
router.post("todos", use: todoController.create) // [4]
router.delete("todos", Todo.parameter, use: todoController.delete) // [5]
}





The preceding sample code shows different ways of handling routes:


	A basic endpoint is provided

	TodoController is instantiated

	The controller's index() function is used as an endpoint

	The controller's create() function is used as an endpoint

	The controller's delete() function is used as an endpoint



The basic endpoint is simply a closure that prints out "Hello, world!" You can add more endpoints to the routes.swift file or you can route some requests to the controller.

A controller is recommended if you want to group several related endpoints together or have other functions to handle more complicated endpoints. The TodoController class is one such example. After an instance of TodoController is created, the HTTP GET, POST, and DELETE requests are routed to the TodoController instance's corresponding functions.



            

            
        
    
        

                            
                    Implementing endpoint logic in controllers

                
            
            
                
The TodoController class introduced previously is declared in TodoController.swift:



// File: /Sources/App/Controllers/TodoController.swift
import Vapor

/// Controlers basic CRUD operations on `Todo`s.
final class TodoController { // [1]
/// Returns a list of all `Todo`s.
func index(_ req: Request) throws -> Future<[Todo]> { // [2]
return Todo.query(on: req).all()
}

/// Saves a decoded `Todo` to the database.
func create(_ req: Request) throws -> Future<Todo> {
return try req.content.decode(Todo.self).flatMap { todo in // [3]
return todo.save(on: req)
}
}

/// Deletes a parameterized `Todo`.
func delete(_ req: Request) throws -> Future<HTTPStatus> {
return try req.parameters.next(Todo.self).flatMap { todo in // [4]
return todo.delete(on: req)
}.transform(to: .ok) // [5]
}
}


Some interesting techniques are noted in the preceding implementation:






	The final TodoController class is defined

	The index(_:) function returns a Future

	The content of the request is decoded and applied with flatMap(_:)

	The parameter of the request is applied with flatMap(_:)

	If the delete operation is successful, use transform(to:) to return the OK status



The final modifier before the class keyword prohibits any subclasses of TodoController. Any attempt to subclass TodoController will cause a compile-time error.





The index(_:) function returns the Future type. Futures and Promises are the computing concepts that decouple a value (a Future) from how it was computed (a Promise), so that the computation can be done in parallel. Vapor uses Future to present a read-only placeholder view of a variable. You'll revisit this concept when you are introduced to asynchronous processing.

flatMap(_:) is a useful method in the Swift library. When working with arrays of optional types, flatMap(_:) flattens the arrays and converts any optional types to non-optionals. All the nil values resulted from unwrapping optionals will be removed by flatMap(_:). It is very convenient to use flatMap(_:) to parse the content of requests in endpoints. You're going to see the usage of flatMap(_:) a lot when working with Vapor applications.

Instead of returning the results of a Future, sometimes you simply want to return a success status code. In the preceding implementation, the transform(to:) function is chained to flatMap(_:) to return the .ok status.



            

            
        
    
        

                            
                    Using a data model

                
            
            
                
The data model used in the SQLite database is implemented in /Models/Todo.swift:



// File: /Sources/App/Models/Todo.swift
import FluentSQLite
import Vapor

/// A single entry of a Todo list.
final class Todo: SQLiteModel { // [1]
/// The unique identifier for this `Todo`.
var id: Int? // [2]

/// A title describing what this `Todo` entails.
var title: String // [3]

/// Creates a new `Todo`.
init(id: Int? = nil, title: String) { // [4]
self.id = id
self.title = title
}
}

/// Allows `Todo` to be used as a dynamic migration.
extension Todo: Migration { } // [5]

/// Allows `Todo` to be encoded to and decoded from HTTP messages.
extension Todo: Content { } // [6]

/// Allows `Todo` to be used as a dynamic parameter in route definitions.
extension Todo: Parameter { } // [7]


The data model is implemented as follows:






	The final ToDo class is subclassing from the SQLiteModel class

	The id variable is declared as the unique identifier for this model

	The title variable is used to describe what Todo entails

	An initializer is defined

	The Todo class is extended as a dynamic migration

	The Todo class is extended as Content

	The Todo class is extended as a dynamic parameter



Models represent tables in the SQLite database. You'll use model as the primary object of interacting with your data. By conforming to SQLiteModel, it requires Todo to supply an optional variable, id, which is of the Int type. If you do not supply an id for the title, you'll get an id assigned after saving the data to the database.

The Todo model also conforms to Migration, Content, and Parameter.

Conforming to Migration allows Fluent to use Codable when creating the database table scheme, and configure() to set up and register the Migration service before the application is created.

The conformance of Content allows the Todo model to be encoded to and decoded from JSON in HTTP messages using Codable. This happens automatically so you never have to parse or save your model in JSON.

Conforming to Parameter allows you to handle segments of the URL path easily when working with routes. You can take advantage of Vapor's type safe and intuitive method for accessing route parameters using Swift's closures.



            

            
        
    
        

                            
                    Kitura Boilerplate Project

                
            
            
                
Let's now get a clear understanding the boilerplate code in Kitura. Here is a recap of how you can create the helloWorld boilerplate project using Kitura's basic template:



$ mkdir helloWorld
$ cd helloWorld
$ kitura init
$ open ./helloWorld.xcodeproj




Then you can use command + R to run your project in Xcode and direct your web browser to http://localhost:8080.

The following sections will provide you with a better idea regarding the same:


	Reviewing Kitura-generated files

	Understanding generated sourcecode in Kitura





            

            
        
    
        

                            
                    Reviewing Kitura-generated files

                
            
            
                
After using kitura init to create a Kitura boilerplate helloWorld project, use the ls -a command in the helloWorld project directory to list all files and subdirectories:



# List all files and directories, including the hidden ones
ls -a




The output lists the files and directories in this project, as follows:

.                 .dockerignore     Dockerfile             README.md          iterative-dev.sh
 ..                .gitignore            Dockerfile-tools    Sources                     manifest.yml
 .bluemix   .swift-version     Jenkinsfile             Tests                           spec.json
 .build        .swiftservergenerator-project          LICENSE                 chart
 .cfignore   .yo-rc.json          Package.swift         cli-config.yml

There are a number of hidden files and directories in the project. They are hidden because Kitura doesn't expect you to modify them very often:




	File/directory
	Usage





	.gitignore
	List of files to be excluded from git versioning control



	.swift-version
	The Swift version for your project



	.swiftservergenerator-project
	File used by Swift Server Generator



	.yo-rc.json
	JSON file for Yeoman generator configuration



	.bluemix/
	Directory for IBM Cloud pipelines and toolchains



	.cfignore
	List of files to be excluded from cloud deployment







            

            
        
    
        

                            
                    Reviewing a Kitura project's file structure

                
            
            
                
You can use the Tree command to display the file structure of your project. If you haven't installed Tree on your system, you can refer to the previous section for the installation instruction.

See the following for the list of files displayed by the Tree command. The list is expected to grow longer after kitura init fetches dependencies and builds out everything:

.
 ├── Dockerfile
 ├── Dockerfile-tools
 ├── Jenkinsfile
 ├── LICENSE
 ├── Package.swift
 ├── README.md
 ├── Sources
 │   ├── Application
 │   │   ├── Application.swift
 │   │   ├── InitializationError.swift
 │   │   ├── Metrics.swift
 │   │   └── Routes
 │   │   └── HealthRoutes.swift
 │   └── kitura
 │   └── main.swift
 ├── Tests
 │   ├── ApplicationTests
 │   │   └── RouteTests.swift
 │   └── LinuxMain.swift
 ├── chart
 │   └── kitura
 │   ├── Chart.yaml
 │   ├── bindings.yaml
 │   ├── templates
 │   │   ├── basedeployment.yaml
 │   │   ├── deployment.yaml
 │   │   ├── hpa.yaml
 │   │   ├── istio.yaml
 │   │   └── service.yaml
 │   └── values.yaml
 ├── cli-config.yml
 ├── iterative-dev.sh
 ├── manifest.yml
 └── spec.json
9 directories, 25 files

Don't worry, you don't have to know all of these files before you can start working on a Kitura project. You don't need to modify most of them in a typical project. At this moment, you just need to get familiar with the main function of some of the files.

The following table gives you an overview of the high-level file structure:




	File/directory
	Usage





	Dockerfile
	Docker container image spec for running the app



	Dockerfile-tools
	Docker container image spec for building the app



	Jenkinsfile
	Definition of Jenkins Pipeline for continuous integration



	LICENSE
	MIT license for the generated project



	Package.swift
	Configuration for SPM (Swift Package Manager)



	README.md
	Readme file in Markdown format



	Sources
	Directory for source files



	Tests
	Directory for all tests



	chart
	Directory used by the Helm package manager for Kubernetes



	cli-config.yml
	Configuration for IBM Cloud Dev Tool CLI



	iterative-dev.sh
	Script for relaunching server after updates in Swift files



	manifest.yml
	Configuration for CloudFoundry deployment



	spec.json
	Generator spec file for the project





 

Most of these are configuration files related to the technologies involved in the typical workflow of a Kitura project, such as Swift Package Manager (Package.swift) for dependency management, Jenkins (Jenkinsfile) for continuous integration, Docker (Dockerfile, Dockerfile-tools) for building environments in the container, and CloudFoundry (manifest.yml) for deploying your project to the cloud.





            

            
        
    
        

                            
                    Understanding the file structure in a Kitura project

                
            
            
                
At the start of a development project, your attention is most likely on the skeleton source code that you will leverage to build up to a full application. As shown in the following table, those files with the skeleton source code are in the two subdirectories under Sources: /Application and /helloWorld:




	File/directory
	Usage





	/Application
	Module for application logic



	/Application/Application.swift
	Class for application logic



	/Application/InitializationError.swift
	Structure for initialization error handling



	/Application/Metrics.swift
	Structure for gathering application and system metrics



	/Application/Routes/HealthRoutes.swift
	Route function for monitoring server health



	/helloWorld
	Module for your application's executable



	/helloWorld/main.swift
	Code for the entry point of your application





 

The App class in Application.swift contains application logic to allow you to receive the flow of control from the framework so you can make modifications on several occasions: during initialization, after the application being initialized, and when the application is running.

The struct in InitializationError.swift allows you to add additional error handlers using Swift's extension mechanism. You'll be adding error handlers as you write new functions.

Kitura uses the SwiftMetrics library to gather monitoring data. The initialization function in Metrics.swift routes the monitoring modules to the endpoints in your project. The environment, CPU, memory, latency, and HTTP metrics information data is collected programmatically in Kitura.

Right now, there is one route function implemented in HealthRoutes.swift in /Application/Routes. As you add more functions to handle requests from client, you can expect to add more routes corresponding to each handler in the same directory.

You can also see how an app instance is set up in a do-catch statement in /helloWorld/main.swift. The file serves as an entry point for your application. In the same code, the logger framework that is used to post error messages is also initialized and integrated in the do-catch statement.



            

            
        
    
        

                            
                    Understanding generated sourcecode in Kitura

                
            
            
                
A detailed review of each generated source code file in a Kitura boilerplate project is given in the next section.



            

            
        
    
        

                            
                    Configuring using Swift Package Manager (SPM)

                
            
            
                
The Package.swift manifest file lists the application name, dependencies of other packages, and build target for the project generated using the kitura init command:



// File: Package.swift
// swift-tools-version:4.0
import PackageDescription

let package = Package(
name: "helloWorld", // [1]
dependencies: [ // [2]
.package(url: "https://github.com/IBM-Swift/Kitura.git", .upToNextMinor(from: "2.3.0")),
.package(url: "https://github.com/IBM-Swift/HeliumLogger.git", .upToNextMinor(from: "1.7.1")),
.package(url: "https://github.com/IBM-Swift/CloudEnvironment.git", from: "7.1.0"),
.package(url: "https://github.com/RuntimeTools/SwiftMetrics.git", from: "2.0.0"),
.package(url: "https://github.com/IBM-Swift/Health.git", from: "1.0.0"),
],
targets: [ // [3]
.target(name: "helloWorld", dependencies: [ .target(name: "Application"), "Kitura" , "HeliumLogger"]),
.target(name: "Application", dependencies: [ "Kitura", "CloudEnvironment","SwiftMetrics","Health", ]),

.testTarget(name: "ApplicationTests" , dependencies: [.target(name: "Application"), "Kitura","HeliumLogger" ])
]
)





The project's package is configured as follows:


	helloWorld is used as the application name

	The dependencies array includes Kitura, Helium Logger, Cloud Environment, Swift Metrics, and Health packages

	The build targets are helloWorld, Application, and ApplicationTests



The basic Kitura boilerplate project already includes many useful packages, such as logging, cloud environment tools, server metrics monitoring, and infrastructure health-checking services.

Use the swift package show-dependencies command to list the following required packages in the Kitura project:





# List of package dependencies in a Kitura boilerplate project:
.
├── Kitura<https://github.com/IBM-Swift/Kitura.git@2.3.2>
│ ├── Kitura-net<https://github.com/IBM-Swift/Kitura-net.git@2.1.0>
│ │ ├── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
│ │ ├── Socket<https://github.com/IBM-Swift/BlueSocket.git@1.0.6>
│ │ ├── CCurl<https://github.com/IBM-Swift/CCurl.git@1.0.0>
│ │ └── SSLService<https://github.com/IBM-Swift/BlueSSLService.git@1.0.6>
│ │ └── Socket<https://github.com/IBM-Swift/BlueSocket.git@1.0.6>
│ ├── Kitura-TemplateEngine<https://github.com/IBM-Swift/Kitura-TemplateEngine.git@1.7.4>
│ └── KituraContracts<https://github.com/IBM-Swift/KituraContracts.git@0.0.24>
│ └── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
├── HeliumLogger<https://github.com/IBM-Swift/HeliumLogger.git@1.7.1>
│ └── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
├── CloudEnvironment<https://github.com/IBM-Swift/CloudEnvironment.git@7.1.0>
│ └── CloudFoundryEnv<https://github.com/IBM-Swift/Swift-cfenv.git@6.0.2>
│ └── Configuration<https://github.com/IBM-Swift/Configuration.git@3.0.1>
│ └── FileKit<https://github.com/IBM-Swift/FileKit.git@0.0.1>
│ └── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
├── SwiftMetrics<https://github.com/RuntimeTools/SwiftMetrics.git@2.3.0>
│ ├── Kitura<https://github.com/IBM-Swift/Kitura.git@2.3.2>
│ │ ├── Kitura-net<https://github.com/IBM-Swift/Kitura-net.git@2.1.0>
│ │ │ ├── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
│ │ │ ├── Socket<https://github.com/IBM-Swift/BlueSocket.git@1.0.6>
│ │ │ ├── CCurl<https://github.com/IBM-Swift/CCurl.git@1.0.0>
│ │ │ └── SSLService<https://github.com/IBM-Swift/BlueSSLService.git@1.0.6>
│ │ │ └── Socket<https://github.com/IBM-Swift/BlueSocket.git@1.0.6>
│ │ ├── Kitura-TemplateEngine<https://github.com/IBM-Swift/Kitura-TemplateEngine.git@1.7.4>
│ │ └── KituraContracts<https://github.com/IBM-Swift/KituraContracts.git@0.0.24>
│ │ └── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
│ ├── Kitura-WebSocket<https://github.com/IBM-Swift/Kitura-WebSocket.git@2.0.0>
│ │ ├── Kitura-net<https://github.com/IBM-Swift/Kitura-net.git@2.1.0>
│ │ │ ├── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
│ │ │ ├── Socket<https://github.com/IBM-Swift/BlueSocket.git@1.0.6>
│ │ │ ├── CCurl<https://github.com/IBM-Swift/CCurl.git@1.0.0>
│ │ │ └── SSLService<https://github.com/IBM-Swift/BlueSSLService.git@1.0.6>
│ │ │ └── Socket<https://github.com/IBM-Swift/BlueSocket.git@1.0.6>
│ │ └── Cryptor<https://github.com/IBM-Swift/BlueCryptor.git@1.0.2>
│ │ └── CommonCrypto<https://github.com/IBM-Swift/CommonCrypto.git@1.0.0>
│ ├── SwiftyRequest<https://github.com/IBM-Swift/SwiftyRequest.git@1.1.2>
│ │ ├── CircuitBreaker<https://github.com/IBM-Swift/CircuitBreaker.git@5.0.1>
│ │ │ └── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
│ │ └── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
│ ├── CloudFoundryEnv<https://github.com/IBM-Swift/Swift-cfenv.git@6.0.2>
│ │ └── Configuration<https://github.com/IBM-Swift/Configuration.git@3.0.1>
│ │ └── FileKit<https://github.com/IBM-Swift/FileKit.git@0.0.1>
│ │ └── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>
│ ├── SwiftyJSON<https://github.com/IBM-Swift/SwiftyJSON.git@17.0.1>
│ └── omr-agentcore<https://github.com/RuntimeTools/omr-agentcore@3.2.4-swift4>
└── Health<https://github.com/IBM-Swift/Health.git@1.0.1>
└── LoggerAPI<https://github.com/IBM-Swift/LoggerAPI.git@1.7.3>

Similar to Vapor's Package.swift for a basic web template, the basic Kitura template also uses three build targets: helloWorld, ApplicationTests, and Application. Use the Swift package describe command to list these three modules in the helloWorld boilerplate application:






# List of modules in a Kitura boilerplate project
Name: helloWorld
Path: /Users/fyeung1/Downloads/Packt/ch3/kitura/helloWorld
Modules:

Name: helloWorld
    C99name: helloWorld
    Type: executable
    Module type: SwiftTarget
    Path: /Users/fyeung1/Downloads/Packt/ch3/kitura/helloWorld/Sources/helloWorld
    Sources: main.swift

Name: ApplicationTests
    C99name: ApplicationTests
    Type: test
    Module type: SwiftTarget
    Path: /Users/fyeung1/Downloads/Packt/ch3/kitura/helloWorld/Tests/ApplicationTests
    Sources: RouteTests.swift

Name: Application
     C99name: Application
     Type: library
     Module type: SwiftTarget
     Path: /Users/fyeung1/Downloads/Packt/ch3/kitura/helloWorld/Sources/Application
     Sources: Application.swift, InitializationError.swift, Metrics.swift, Routes/HealthRoutes.swift

The Application target is shared by the helloWorld executable target and the ApplicationTests executable target.





            

            
        
    
        

                            
                    Starting with the entry point

                
            
            
                
The main.swift file contains the entry point for helloWorld executable target:



// File: /helloWorld/main.swift
import Foundation
import Kitura
import LoggerAPI
import HeliumLogger
import Application

do {

    HeliumLogger.use(LoggerMessageType.info) // [1]

    let app = try App() // [2]
    try app.run() // [3]

} catch let error {
    Log.error(error.localizedDescription) // [4]
}


The do-catch loop in main.swift performs several operations:






	Initializes Helium logger

	Creates an application instance

	Invokes the application instance's run() function

	Catches any runtime errors



Kitura's runtime executes the App instance and its run() function to boot the server. Any errors encountered by the server will be caught in the do-catch loop and localized error descriptions will be logged.



            

            
        
    
        

                            
                    Declaring application classes

                
            
            
                
App is the top class for the App module, and it handles the main life cycle functions for the application:



// File: /Application/Application.swift
import Foundation
import Kitura
import LoggerAPI
import Configuration
import CloudEnvironment
import KituraContracts
import Health

public let projectPath = ConfigurationManager.BasePath.project.path
public let health = Health()

public class App {
    let router = Router()
    let cloudEnv = CloudEnv()

    public init() throws { // [1]
        // Run the metrics initializer
        initializeMetrics(router: router)
    }

    func postInit() throws {
        // Endpoints
        initializeHealthRoutes(app: self)
    }

    public func run() throws {
        try postInit() // [2]
        Kitura.addHTTPServer(onPort: cloudEnv.port, with: router) // [3]
        Kitura.run() // [4]
    }
}


The App class runs a couple of initialization and configuration steps before booting up the Kitura server:






	The class's initializer sets up the metrics monitoring service for this project

	After an App instance is created, post-initialization will be called

	An HTTP server with a specified cloud environment and router will be created

	The HTTP server will be booted up



The init() initializer function is a good place for you to add any initialization code before App is created. In this project, the metrics initialization call, initializeMetrics(router:), is added to init(). This makes sure that the metrics monitoring service is properly initialized before App is created.

Any initialization code that should take place after the instantiation of App should go to the postInit() function. postInit() is called when the App instance's run() is invoked but before the Kitura server is started. In the preceding code, the initialization of the health route, initializeHealthRoutes(app:), is added to postInit().

After post-instantiation initialization, an HTTP server with a specified port and router will be added to Kitura's context and then the server will be running. The IP port for a web server is usually 8080. However, if this port is occupied by another network service on your development machine, you need to assign another port number to it.







            

            
        
    
        

                            
                    Handling errors

                
            
            
                
Kitura provides you with a struct to handle initialization errors in InitializationError.swift:



// File: /Application/InitializationError.swift
import Foundation

public struct InitializationError: Error { // [1]
    let message: String
    init(_ msg: String) {
        message = msg
    }
}

extension InitializationError: LocalizedError { // [2]
    public var errorDescription: String? {
        return message
    }
}


The following features are implemented:






	The InitializationError() struct is inherited from the Error() struct

	The InitializationError() struct is extended from LocalizedError



The InitializationError() struct does no more than offer you a chance to modify the error message. You can, for example, replace an error message with a localized version of the error message.



            

            
        
    
        

                            
                    Setting up monitoring metrics

                
            
            
                
Kitura offers very good metrics-monitoring and diagnostic services. These services are created and initialized in the initializeMetrics(router:) function in Metrics.swift:



// File: /Application/Metrics.swift
import Kitura
import SwiftMetrics
import SwiftMetricsDash
import SwiftMetricsPrometheus
import LoggerAPI

var swiftMetrics: SwiftMetrics?
var swiftMetricsDash: SwiftMetricsDash?
var swiftMetricsPrometheus: SwiftMetricsPrometheus?

func initializeMetrics(router: Router) {
    do {
        let metrics = try SwiftMetrics() // [1]
        let dashboard = try SwiftMetricsDash(swiftMetricsInstance: metrics, endpoint: router) // [2]
        let prometheus = try SwiftMetricsPrometheus(swiftMetricsInstance: metrics, endpoint: router) // [3]

        swiftMetrics = metrics
        swiftMetricsDash = dashboard
        swiftMetricsPrometheus = prometheus
       Log.info("Initialized metrics.")
    } catch {
        Log.warning("Failed to initialize metrics: \(error)")
    }
}


initializeMetrics(router:) creates the following three metrics frameworks:






	The variable metrics is assigned to an instance of the SwiftMetrics() framework

	The SwiftMetricsDash() object is created with metrics and a router as parameters

	The SwiftMetricsPrometheus() object is also created with metrics and a router as parameters



SwiftMetrics is an open source runtime tool maintained by the open source community. It instruments Swift runtime to provide your application with the runtime's performance. An extensive amount of data is collected in a Kitura project using SwiftMetrics: system and runtime environment information, CPU and memory usages, dispatch queue latency, and HTTP metric information. The data collected is programmatically fetched by other services, such as SwiftMetricsDash and Prometheus.

SwiftMetricsDash is a tool used to present the collected data in SwiftMetrics. SwiftMetricsDash will start its own Kitura server and serve in a dashboard web page. You can try it yourself by directing your web browser to http://localhost:8080/swiftmetrics-dash/ when your helloWorld app server is running:





Prometheus is a popular open source monitoring and alerting solution(https://prometheus.io/docs/introduction/overview/) that is integrated into Kitura to monitor application clusters. In SwiftMetricsPrometheus(swiftMetricsInstance:,endpoint:), SwiftMetrics is configured to export your application's performance data into Prometheus, and a Prometheus metrics endpoint is added the router. The configuration for exporting data from SwiftMetrics to Prometheus is specified in prometheus.yml, which was automatically generated using the kitura init command.



            

            
        
    
        

                            
                    Setting up health check endpoints

                
            
            
                
All the implementations of endpoints are stored in the /Routes directory. In Kitura's basic template, a health check endpoint (/Routes/HealthRoutes.swift) is created as an example:



// File: /Routes/HealthRoutes.swift
import LoggerAPI
import Health
import KituraContracts

func initializeHealthRoutes(app: App) {

    app.router.get("/health") { (respondWith: (Status?, RequestError?) -> Void) -> Void in
         if health.status.state == .UP {
             respondWith(health.status, nil) // [1]
         } else {
             respondWith(nil, RequestError(.serviceUnavailable, body: health.status)) // [2]
         }
    }
}


The Health endpoint exposes the health of the application. It responds to the health check request with a closure that returns a health.status structure:






	If the health status is "UP", it responds with health.status

	If the health status is NOT "UP", it responds with an error as well as *health.status



Health is an application health library in Swift that checks an application's overall health status. The Kitura basic template provides you with a health endpoint to perform a health check on your helloWorld app server when a client sends an HTTP GET /health request. Health then responds with the Status struct that conforms to the Codable protocol. The content of the status could be a dictionary. The value for the "status" dictionary key is either "UP" or "DOWN", indicating whether your server is running. This is useful for cloud environments, such as Kubernetes, in monitoring and managing your application instance.



            

            
        
    
        

                            
                    Other Books You May Enjoy

                
            
            
                
If you enjoyed this book, you may be interested in these other books by Packt:



Hands-On Full-Stack Development with Swift

Ankur Patel

ISBN: 9781788625241


	Get accustomed to server-side programming as well as the Vapor framework

	Learn how to build a RESTful API

	Make network requests from your app and handle error states when a network request fails

	Deploy your app to Heroku using the CLI command

	Write a test for the Vapor backend

	Create a tvOS version of your shopping list app and explore code-sharing with an iOS platform

	Add registration and authentication so that users can have their own shopping lists





Learn Swift by Building Applications

Emil Atanasov

ISBN: 9781786463920


	Become a pro at iOS development by creating simple-to-complex iOS mobile applications

	Master Playgrounds, a unique and intuitive approach to teaching Xcode

	Tackle the basics, including variables, if clauses, functions, loops and structures, classes, and inheritance

	Model real-world objects in Swift and have an in-depth understanding of the data structures used, along with OOP concepts and protocols

	Use CocoaPods, an open source Swift package manager to ease your everyday developer requirements

	Develop a wide range of apps, from a simple weather app to an Instagram-like social app

	Get ahead in the industry by learning how to use third-party libraries efficiently in your apps





            

            
        
    
        

                            
                    Leave a review - let other readers know what you think

                
            
            
                
Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!



            

            
        
    assets/2072f4ef-6f23-4d2c-9926-41817c84b015.png
LY [ localhost:8080/helio

— - o=

Hello, world!

SR B





assets/11db3a47-7e29-4b57-aaa3-dd323e82e02f.png
& C O & https://firstvapor-angus-beta.vapor.cloud/hello

Hello, world!





assets/0d3f76e3-2612-48e2-b533-e456b026655b.png
1BM Cloud Catalog Docs  Support  Manage

Dashboard

RESOURCE GROUP  CLOUD FOUNDRY ORG CLOUD FOUNDRY SPACE  LOGATION CATEGORY

AllResources © Al Organizations +  All Spaces + AllLocations v All Categories v Filter by resource name...

Fast-track your app development o A . +
Want to go from prototype to production with the click of a button? Hit the ground + (o] o
running with one of our IBM Cloud starter kits. You can also check out our solution . on
tutorials that provide real-world cloud solution examples. [e] + .

° A e

Q' suild with Watson

Create enterprise-level web apps g Learn to build, deploy, and scale

Starter Kit - Lite Services - 18M

Develop and deploy cloud-native apps within
minutes.

Starter Kit - Lite Services - 18M
Accelerate your AI development to build
smarter solutions.

Tutorils - Lie Services - 1BM
Use IBM Cloud to implement common patterns

based on best practices and proven
technologies.

View Watson starter kits View App Service starter kits

View Solution tutorials






assets/03a3859a-9610-4eaf-9ff9-5b82d158d922.png
& View All

@ Create new cluster

Resource Group Location

Default v US South

Cluster type

Fl’ee Stand al’d (requires upgrade)
New to Kubernetes? Create a cluster with 1 worker node to Ready for production? Create a fully-customizable cluster
explore the capabilities. with your choice of hardware isolation.
Free Starting from $0.11 hourly
Cluster name
mycluster

Create Cluster





assets/72767116-9dd7-436b-925b-fa8c3d2dbe13.png
_— [Ga=al (D localhost:8080/journal/create

Create a Journal Entry

Enter title here

Submit

My Journal Application by Angus.





assets/6a6d9959-a1bf-4612-af69-df6183c95c27.png
&5 helloworia-package]

B My Mac





assets/78fb1e26-a4bd-4922-84d3-31194112d3c7.png
Key

v Information Property List

v App Transport Security Settin... £ ©
Q

Allow Arbitrary Loads i
XY Allow Arbitrary Loads
Lo¢ Allow Arbitrary Loads in Web... |
Ex¢ Exception Domains

Bundle identifier
InfoDictionary version
Bundle name

Bundle OS Type code

Type Value
Dictionary (16 items)
@ Dictionary (1 item)
© Boolean £ NO
{ String
{ String $(DEVELOPMENT_LANGUAGE)
{ String $(EXECUTABLE_NAME)
{ String $(PRODUCT_BUNDLE_IDENTIFIER)
{ String 6.0
{ String $(PRODUCT_NAME)
{ String APPL





assets/f416a69d-7103-47d5-8ad2-30eb7f1e9fa4.png
= (G aM (O localhost:8080/journal/get/0

Edit a Journal Entry

My first day at work

What a busy day today! |
never had a moment's
rest.

Submit

Index:0; ID: 586AF264-43E8-459A-8A9A-01F4F9C8B0CY;

My Journal Application by Angus.





assets/22a0bf16-e1c4-484c-89e9-d6df81f322e5.png
Carrier & 1:25 PM
Cancel Journal Entry
My first day at work!|

What a busy day today! | never had a moment's rest.

(- #

Done





assets/bf5d0cb5-0197-4fea-bd9f-36d3f9f49e62.png
myJournal Home Admin About

Edit a Journal Entry

‘ My first day at work

What a busy day today! | never had a moment's rest.

©2018 - MY JOURNAL APPLICATION BY ANGUS






assets/cc95b185-bb48-4c2d-ac3e-57835f2c1f42.png





assets/5af2d0ca-0281-4f4b-a777-d167cca80dc9.png
BB <

1

12
13
14
15
16
17
18
19
20
2

22
23
24
25
26
27
28
29
30
3

32
33
34
35
36
37
38
39
40

(AN

LY

helloWorld ) [ Sources ) [ App ) 3 routes.swift )

let todoController = TodoController()

router.get("todos", use: todoController.index)
router.post("todos", use: todoController.create)
router.delete("todos", Todo.parameter, use: todoController.delete)

router.get("greet", String.parameter) { req -> String in
let guest = try req.parameters.next(String.self)
return "Hi \(guest), greetings! Thanks for visiting us."

router.get("student", String.parameter) { req -> String in
let studentName = try req.parameters.next(String.self)

let studentRecords = [
"Peter" : 3.42,
"Thomas" : 2.98,
3.91,
4.00,
4.00

var queryResponse : String

if let gpa = studentRecords[studentName] {

queryResponse = "The student \(studentName)'s GPA is \(gpa)"
} else {

queryResponse = "The student's record can't be found!"

}

return queryResponse






assets/a60b5cd6-ee1d-48a0-8513-9dd0f8694bc5.png
Making a HTTP GET request

GET/HTTP/1.1
Host: www.anysite.com

Server

Getting a HTTP GET response

HTTP/1.1200 0K

Glient Gontent-Type: text/htmi





assets/c469deec-2e88-42c6-b85a-aa4c3b533990.png
bDeE ¥+ E O

Bar Button Item

St

System Ite 4

aF Ti

Drag and Dr

Bar Item
Ti
Ima
Landsca
Accessibili

T

Add
Edit
Done
Cancel
Save
Undo
Redo

Compose
Reply
Action
Organize
Trash

Bookmarks
Search
Refresh





assets/0b351fb4-b3d9-49f7-a326-97b2fa17e541.png
Build Time - Configuration
Package swit

Run Time - Initialization

Hop o
FEioWornaeaE] cnﬂllwre.:wmm@ Toutes.swift
osciscontgurty P—
e o ottt e
i |- e e
e mssemars
enry o P g
st oo i - GartgnaSalte e
I — |-t poaton egetrsattops
e
Boatsw @ e (®
Teosuit
oscs o
o cosme a0
e ta o
 oxonsonswaton
eren S
 tereon caramar






assets/dff37b7a-1f59-4cee-966e-2fd9e874a0fd.png
m ® localhost:8080/greet/Neil

Thar

Hi Neil, gree

s for visiting us.





assets/79b1912f-38db-4352-868a-b42fbfb18ebd.png
B chart
- my-new-kitura-app.zip @ cli-configym!
9 debian
M Dockerfile
M Dockerfile-tools
Rere-dovah
M Jenkinsfile
M LICENSE
& manestym
 Package it
s
[ sources
pecan
[ terraform
B Tests






assets/0f2fd7cf-48da-4252-9871-1abc8e375a28.png
With an API Gateway Without an API Gateway

CJ CJ

[

/ Appllia(lnn Layer
API Gateway

Application Layer

Data Storage Layer

Data Storage Layer






assets/c5251b57-ebcc-46eb-bfbb-10922568e924.png
FSBll myiournal on fyeungt @myjournal

1 INSERT INTO public."Admin"(
id, name, login, password)
‘admin', '$2a$04$TI13sbnh3IHnmRepeEFoJOkVZWsnSS108Q0wnSZUSENTpIogIpXZm' ) j

VALUES (1, 'Admin',

2
3





assets/0a07262b-6d3c-47d8-9490-a1c968d77de8.png
Swift Web App with Kitura Swift BFF Example with Kitura Scala Microservices with
Lagom Framework

Astarter that provides a basic web Astarter for building backend-for-
serving application in Swift, using the frontend APIs in Swift, using the Astarter creating microservices
Kitura framework. Kitura framework. backend in Scala, using the Lagom

Framework.

Web App v Backend for Frontend v Web App





assets/ea0df00a-d93e-4948-a28f-86aad70b1bcd.png
Carrier = 1:28 PM

myJournal
My first day at work!
What a nice day out there!
A new era is finally here!

A surprise to kids





assets/f7216d22-beed-4603-b596-9c95be3b68e8.png
View
Content wode | Lt

Semantic _Unspecified

Tag

interacton [ User Interaction Enabled

) Mutiple Touch

aipha
+ Background | _— Defauit
+ Tine | W Dofault

orawing (] Opaque
+ ] Hidden
Clears Graphics Context
[ Ciip to Bounds
Autoresize Subviews.

Stretehing ofc
x ¥

Width Feight

+ Installed






assets/4807e0b6-1120-4363-9a03-3131770044be.png
s (G==aN (D localhost:8080/journal/total w KB

My Journal

Count: 0

My Journal Application by Angus





assets/80acd084-25da-4751-98bf-ff824c68457a.png
Navigation Controller

9:41 AM

Action Segue
Show
Show Detail
Present Modally

Present As Popover
Custom

Non-Adaptive Action Segue
Push (deprecated)
Modal (deprecated)






assets/48f9ea24-00c1-4dee-97a8-5969accba00e.png
B = QAN O

¥ (© helloWorldPackageTests
Analyze Today, 10:34 PM
v O Test Today, 10:33 PM
 Qcowerage
& Log
/7 Build Today, 10:33 PM
v O Test Today, 10:31 PM
{} coverage
& Log
/" Build Today, 10:31 PM
v O Test Today, 8:52 PM
{} coverage

& Log





assets/faa72dfb-1b6b-4c4f-ae8a-3296f212a8fe.png
@ localhost:8080/greet?gue:

jane

Bi Jane, greetings! Thanks for visiting us. Unfortunately, there is nothing too much to see here.





assets/b8074e8d-d365-4b1b-b3fb-2d8440b23482.png
Mapt





assets/2231ad47-7a70-4902-92bf-7a7dd593a835.png
(Game (O localhost:8080

A

Your Kitura server is up and running!

2\ KITURA.IO Lx API DOCS

Kitura Foodtracker Kitura TodoBackend Rainbow BluePic

Create a Kitura backend for the Create a Kitura backend for the Todo- Build an iOS game powered by Take a look at our photo-sharing app
FoodTracker iOS app from Apple. Backend project. CoreML and Watson Visual which uses Kitura with IBM Cloud.
Recognition.

) 0 o )






assets/96f3a526-bac6-4b11-9f99-ea11d3db9f2d.png
(GaNaN (D localhost:8080/journal/0/get

Edit a Journal Entry

My first day at work

What a busy day today! |
never had a moment’s
rest.

Submit
Index:0; ID: AOE69657-B62E-46DC-B4FC-0D7F2E7BFA48

My Journal Application by Angus.





assets/ec462690-6273-4d33-9d54-4597b4e72929.png
VAPOR GLOUD

Dashboard

$0 +

MYSELF ADD ORGANIZATION





assets/4c00e586-5ce2-43f9-b459-a4aeff771d4c.png





assets/f15bac1c-9d46-4490-bce9-377408917c4e.png
Carrier 1:26 PM (=) 4

Create an Entry
|





assets/0bb42d96-4c6c-486c-8cc8-2aa48e2942f8.png
Key
¥ Information Property List
¥ App Transport Security Settings
Exception Domains
Allow Arbitrary Loads
Application Category
Localization native development re...
Executable file
Bundle identifier
InfoDictionary version
Bundle name
Bundle OS Type code

Type

© Dictionary

A~

K>

Dictionary

Boolean
String
String
String
String
String
String
String

Value

(16 items)
(2 items)

NO

$(DEVELOPMENT_LANGUAGE)
$(EXECUTABLE_NAME)
$(PRODUCT_BUNDLE_IDENTIFIER)
6.0

$(PRODUCT_NAME)

APPL





assets/69b46723-4e2b-477a-b69a-11a83e323445.png
(XX ] Postman

New My Workspace L)
ot e rosGe GrRre G oo o] wrrce|[+ [« | D — 121
> New.

Bxamples(0) v

bt - lcaostsosajurna save

@ soye Cookies Code
none @ formdata @ xemnform-urencoded  ® raw  ® binary
v vawe oescurmion o BulkEde
m 599
e This
content Hithere
o ® Suus: 201 Crosed Tme: 4ms Size: 2448 | Save  Download
Prety soN v Q
1
20 nd': TISSBIECC-D633-47F4-8984-EASO3BASCOEE"
5 Ceitle: “This 7,
4 tcontent™: " Hi there
s0H
D] o suild e






assets/f5b03605-381a-4eaf-8f15-f68ffd3bfa5d.png
myJournal Home Admin About





assets/c8948a72-e2d6-4376-8d43-e7d7f42e737e.png
Q] U 0 O
Table View Cell

Style Custom

@tifier

Selection Default

Accessory None

Editing Acc. None

Focus Style Default
Indentation 0c 10 C
Level Width
Indent While Editing
| Shows Re-order Controls

Separator Inset Automatic





assets/a7da805c-31bc-4f36-89e1-dabb0c11755c.png
rextview
Tox Piin

Lorem ipsum dolor sit er et lamet,
consectetaur cilium adipisicing pecu, sed do
elusmod tempor incididunt ut labore et
Golore magna aligua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
labor's nisi ut aliauip ex ea commodo
consequat. Duis aute irure dolor in
reprenenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint
‘occaecat cupidatat non proident, sunt n
culpa qui officia deserunt mollit anim id est
laborum. Nam liber te conscient to factor
tum poen legum odiogue civiuda.

Golr | Detaut

font System 140 m:
Dynamic Type (| Automatically Adjusts Font

igrment [

‘senavior [ Editable Selectable.

Data Detectors (] Phone Number

O Link Address
Calendar Event
‘Shipment Tracking Number
Fiignt Number
Lookup Suggestion
Text Input Traits
‘Content Type | Unspecified
Capitalization | Sentences.
Gorrection | Default
Smart Dashes | Default
Smart nsert | Default
smart Quotes | Default
‘Spell Checking | Default
Keyboara Type | Defauit
Keyboard Look | Defauit
Return Key | Done

DoDDDDDDBOE

7 Auto-enable Return Key
) Secure Text Entry

Scroll View

Indicators | Defaut Style.

o]

‘Show Horizontal Indicator
‘Show Vertical Indicator

Scrolling [ Scrolling Enabled
7] Paging Enabled
] Direction Lock Enabled

Bounce 2 Bounce On Scroll
Bounce On Zoom
Bounce Horizontally
7] Bounce Vertically

2zoom (g (g
Min Max





assets/99370b68-aa1a-4f2c-89ce-5539d27d18bd.png
‘Swift Compller (switc)

SiL LM IR
Optimizer [~ Optimizer "

Code
Machine
Generator }“* Code

|, swin

FrontEnd [ g






assets/54c132fa-d4c5-44f6-9ab7-e519b232d883.png
Cloning Template [Done]
Updating Package Name [Done]
Initializing git repository [Done]

FH T o S

*Ek

b K HK
i s

FAEAK A A

T I

FA A KK KKK

NV NS YZANE
N/ //--N o NN/ 1]
a web framework for Swift

D
\

Project "helloWorld" has been created.
Type “cd helloWorld" to enter the project directory.
Use “vapor cloud deploy” to host your project for free!
Enjoy!





assets/be8a2c5a-4b1e-49ee-8fe8-6c1fbcbdcc29.png
& [ Tables (4)
&/ Admin

Create ’
Refresh...
Delete/Drop

Count Rows.

Drop Cascade

Reset Statistics.
Truncate ,
Import/Export...
Maintenance.

‘CREATE Script
= postgres Backup... 'DELETE Script
oo Resore..
Tablespaces View/Edit Data »| SELECT Script
Query Tool... UPDATE Script
Propertie:

e





assets/38435e10-04c1-47e4-88a6-bc7309685e94.png
e e (D localhost:8080/journal/all

My Journal

[ + Add New Entry ]

My first day at work

‘What a busy day today! I never had a moment’s rest.

[2 Edit | &7 Remove ]
Index:0 out of 2; ID: AOE69657-B62E-46DC-B4FC-0D7F2E7BFA48;

A surprise to kids

After dinner, I planned a special surprise for the kids...I took them to see the new Disney movie!

[2 Edit | &7 Remove ]
Index:1 out of 2; ID: AO9CDEE4-9EDF-4907-AF10-37F038C5381D;

My Journal Application by Angus.





assets/10cd4e97-afc7-4797-acbe-0b405c56b6b4.png
& o QA T @ # o

About Docker

Preferences... 38,
Check for Updates...
Diagnose and Feedback...

Documentation
Kitematic

More of Docker >

Sign in / Create Docker ID

Kubernetes

Restart #R
Quit Docker #Q





assets/74e88635-88b5-4455-ac97-0dde2d72e5fe.png
| Main Scene

v Journal Entry Scene

'V (®) Journal Entry

v View
0| Safe Area
» | F Entry Title
Entry Content
» [ Constraints
Vv < Journal Entry

> ' Left Bar Butto...
¥ " Right Bar Butt...

| Done
[ First Responder

Exit

> Navigation Controller...

> Navigation Controller...

myJournal ) B m) [&/ M) = M)

1 Journal Entry Scene > o Journal Entry

Qs &

Cancel

9:41 AM

Journal Entry

Done

o e

Custom Class

Module
Inherit Module From Target

Identity

Storyboard ID

Restoration ID

| Use Storyboard ID

User Defined Runtime Attributes

Key Path Type Value
+
Document
Label

XS esoueew
Object ID pyD-If-LIP
Lock Inherited - (Nothing)

Localizer Hint

@EntryDetailsViewControlE‘

A
v





assets/63ce9e14-bfc9-4c0a-a046-ae7c71ee589f.png
€ e
Hello World

Count: 3






assets/b3d79fb3-a478-469c-8e53-f3886fb61a1b.png
G4 < > (© helloWorldPackageTests ) & Test ) {} Coverage

| Show Test Bundles &)

Name Coverage
» (5 FluentSQLite.framework ——— 54.39%
» (53 NIOOpenSSL.framework 0%
» i3 libberypt.framework 0%
» 5 Debugging.framework - 8.966%
» [ sQLite.framework — 20.1%
» 24 NIOFoundationCompat.framework - 15.15%
v 53 App.framework ——— 66.67%
» 3 TodoController.swift 0%
> 3 Todo.swift 0%
> 3 app.swift 0%
> 3 boot.swift e ———— 100%
v 3 configure.swift e ———— 100%
App.configure(inout Service.Config, inout Service.Environment, in s — 100%
Vv 3 routes.swift ——————— 84.21%
App.routes(Vapor.Router) throws -> ()  ————————— 84.21%
» 5 URLEncodedForm.framework 0%
» 21 NIOConcurrencyHelpers.framework — 44.02%
> =2 HTTP.framework - 10.11%
P =2 CNIOSHA1.framework 0%
» (5 Logging.framework —— 38.89%





assets/0fb3afcd-92b1-4859-a29c-6c51c273122d.png
Application Documentation
Dashboard
CPU B | HTTP Incoming Requests [ 7]
100% .
75%) Bms,
50%) \J ams
25%
2ms
ol
124000 124100 ome
W System M Process 12:39:16 12:39:16
Memory & | HTTP Throughput 7]

No Data Available

12:41:00

123815






assets/d605f3b4-23b9-42b8-8563-becd865d4d64.png
myJournal | Build myJournal: Succeeded | 11/2/18 at 1:23 PM 4?2 (@) = <> O =2 O

DM )R- OB - DB . YO Y[Jview)[FlentryTite < A > |88 < > [ B> s EntryDetails..ntroller.swift > [ viewwillappear() < & > + X

JburnalEntry)
owe | 21k
: — 22
Sanam — 23 class EntryDetailsViewController :
Cancel Journss Sotry @' UIViewController {

I

nt §: Connection [ Outlet
Object () Journal Entry (0IBOutlet weak var entryT@
NamentryTitIe : ITextField!

|'

B\

Type UlTextField (@IBOutlet weak var entryContent:
o Storage UITextView!
=
28
. } 29 weak var delegate :
EntryDetailsViewControllerDelegate?
30
31 var existEntry: JournalEntry?
32
® @IBAction func done() {
34
35 // edit mode
36 if let exist = existEntry {
37 exist.title = entryTitle.text!
38 exist.content =
entryContent.text!
39

] View as: iPhone 8 (wC nR) M & o ta]

delegate?.entryDetailsViewC





assets/2ff4e255-8de0-4d6f-aca2-1f3058fbde4d.png
@ First Responder
Exit
-> Storyboard Entry Poi.

]

9:41 AM
Prototype Cells

Table View

Prototype Content

@ T B O
Simulated Metrics
Size Inferred
Top Bar _Inferred

Bottom Bar _Inferred

Table View Controller
Selection € Clear on Appearance

Refreshing Disabled

View Controller

Title

& Is Initial View Controllel

Layout € Adjust Scroll View Insets
" Hide Bottom Bar on Push
Resize View From NIB
Use Full Screen (Deprecated)
Extend Edges [ Under Top Bars
Under Bottom Bars
Under Opaque Bars

Transition Style Cover Vertical

Presentation Full Screen

" Defines Context
Provides Context
Content Size | Use Preferred Explicit Size

Width Height

Key Commands

Key





assets/3de32ac9-cb31-47b2-b9a9-367ae752871d.png
+ Add New Entry ]

My first day at work

What a busy day today! | never had a moment's rest.
[ i Edit| & Remove
Index:0 out of 2; ID: 0ABA7206-5BF8-4C5F-99D4-75A5657140D1;

A surprise to kids

After dinner, | planned a special surprise for the kids...| took them to see the new Disney movie!

[ i Edit| & Remove
Index:1 out of 2; ID: A16F8CE5-511B-4B03-ADF5-818750E8D163;

n e M v

©2018 - MY JOURNAL APPLICATION BY ANGUS






assets/21afc2b3-cca0-4f91-ab51-39a4e5898202.png
) 1BM Cloud

Success!
You successfully signed up for an IBM Cloud
account and it is now activated.





assets/0aaf2c67-0aef-44e6-a7c0-11a3f79966e8.png
[Mon May 28 11:62:56 2018] com.ibm.diagnostics.healthcenter.loader INFO: Swift Application Metrics
[2018-05-28T11:52:56.401-07:00] [VERBOSE] [Router.swift:108 init(mergeParameters:)] Router initialized

[2018-85-28T11:52:56.490-07:88] [VERBOSE] [Router.swift:108 init(mergeParancters:)] Router initialized

[2618-85-28T11:52:56.491-07:88] [INFO] [Metrics.swift:20 initializeMetrics(router:)] Initialized metrics.

2018-85-28 11:52:56.492194-8700 holloWorld[5820:23521410] CFPropertyListCreateFromXLData(): Old-style plist parser: missing semicolon or
value in dictionary on line 1. Parsing will be abandoned. Break on _CFPropertyListMissingSemicolonOrValue to debug.
[2018-85-28T11:52:56.493-07:88] [VERBOSE] [Kitura.swift:104 run()] Starting Kitura framework...

88] [VERBOSE] [Kitura.swift:118 start()] Starting an HTTP Server on port 8080...

88] [INFO] [HTTPServer.swift:124 listen(on:)] Listening on port 8080

0] [VERBOSE] [HTTPServer.swift:125 listen(on:)] Options for port 8080: maxPendingConnections: 100,

allowPortReuse: false





assets/3a06c731-0243-44e4-9be3-296697527afe.png
Clusters / mycluster

©) mycustor s o

Access Overview Worker Nodes Worker Pools

I © Expiresin a month: Be sure to back up your data, your cluster will be deleted in a month. To access the full capabilities of the service, try out a standard cluster. X
Summary Worker Nodes 1
Cluster ID 1542b64383f4463a84fc4bf6fab7eabd 1 Normal
Kubernetes version 1.10.8_1524
Zones hou02 0 Warning

0,
Owner fai.yeung@sjsu.edu 1 O 0 /0
Normal iti

Key protect (Beta) Enable 0 Critical

0 Pending






assets/432c9f7a-78d0-43f2-b937-bd0d9ca47972.png
StarterKits /  Starter Kit Details

Swift Web App with Kitura

Web App

Overview

This starter kit comes pre-configured as a Web App with Kitura, a high
performance and simple to use web framework for building modern Swift
applications. Add services, generate and download the code, use the IBM Cloud
Developer Tools CLI to run and debug locally, then deploy to Kubernetes, Cloud
Foundry with a DevOps Toolchain.

‘This starter kit will help you

Create aWeb App according to the IBM Cloud Garage Method's web app
architecture pattern

Generate an application with Kitura

Generate an application files for deploying to Kubernetes, Cloud Foundry
with a DevOps Toolchain

Generate an application with files for monitoring and distributed trace using
Swift Metrics

Connect to provisioned services





assets/53f71e1d-ac18-4cd5-951b-8adb74250801.png
Container 1

Container 2

Container N





assets/f3f1741f-1155-4766-b5da-60a361e44e19.png
[ NON ] > | ] -Run>!MyMac

Running Run : Run

B ‘ Show the Issue navigator ‘ D @ |8 < helloWorld ) [i] Sources ) [ App ) 3 configure.swift ) No Selection
v 5 helloworld 1 import FluentSQLite
.| Package.swift import Vapor
v (&3 Sources /// Called before your application initializes.
v [ App public func configure(_ config: inout Config, _ env: inout Environment, _ services: inout
» [ | Controllers Services) throws {
» [ Models /// Register providers first
. try services.register(FluentSQLiteProvider())
2 app.swift

3 boot.swift

configure.swift

3| routes.swift
» [/ Run
v i) Tests
» [ ] AppTests
¥ [ Public
| .gitkeep
| README.txt
V | Dependencies
» || FluentSQLite 3.0.0-rc.2.2
» [ ] SQLite 3.0.0-rc.2.3
» || Fluent 3.0.0-rc.2.4.1
» 7 sqQL 1.0.0
» [ ] Vapor 3.0.0
» || WebSocket 1.0.0
» || Validation 2.0.0
» | | URLEncodedForm 1.0.2
» || TemplateKit 1.0.1
» || Routing 3.0.1
» [ | Multipart 3.0.1
» [ HTTP 3.0.4
» || DatabaseKit 1.0.1
» [.7] Crypto 3.1.1
» [ swift-nio-ssl 1.1.0

/// Register routes to the router

let router = EngineRouter.default()

try routes(router)
services.register(router, as: Router.self)

/// Register middleware

var middlewares = MiddlewareConfig() // Create _empty_ middleware config

/// middlewares.use(FileMiddleware.self) // Serves files from ‘Public/" directory
middlewares.use(ErrorMiddleware.self) // Catches errors and converts to HTTP response
services.register(middlewares)

// Configure a SQLite database
let sglite = try SQLiteDatabase(storage: .memory)

/// Register the configured SQLite database to the database config.
var databases = DatabasesConfig()

databases.add(database: sqlite, as: .sglite)
services.register(databases)

/// Configure migrations

var migrations = MigrationConfig()
migrations.add(model: Todo.self, database: .sqlite)
services.register(migrations)

» [ Console 3.0.2 = = [ m %0 4 @ Run

» [ Service 1.0.0

» [ Core 3.1.6

» [ swift-nio 1.6.1
» [ Products

+ & ®© Auto ¢ G) All Output ¢ G) w0

Running default command: /Users/fyeungl/Library/

Developer/Xcode/DerivedData/helloWorld-
bsutbxhgagnlwebrnmggjhowcqfo/Build/Products/
Debug/Run serve

Server starting on http://localhost:8080

© < 0a O





assets/8dff0695-39eb-4019-a1a9-71a2f233df1d.png
myJournal Home Admin About

My Journal

The Path of Heart!

Create a Journal Entry

Enter title here

Enter your journal content here...

©2018 - MY JOURNAL APPLICATION BY ANGUS





assets/910fdbae-5f77-4bee-a5f6-11b1b937f306.png
Wra | ocalhost:3080

«~ Kitura

Welcome to Kitura

Your Kitura based server is up and running!

K I T U R A"‘ Continue your journey

Kitura FoodTracker
Create a Kitura backend for the
FoodTracker iOS app from Apple.

A light-weight web framework
written in Swift, that allows
you to build web services

Kitura TodoBackend

easily and quickly. todos  Create a Kitura backend for the
Todo-Backend project.
L.earn lall about Kitura at )
— BluePic
“ Take a look at our awesome photo-
Join us on Slack [F- sharing iOS app which uses Kitura

and the IBM Cloud.

More @ GitHub

o

o

IBM-Swift/Kitura
Web framework and HTTP server for
Swift.

IBM-Swift/KituraKit
Client side library for REST requests
using Swift 4's Codable protocol.

IBM-Swift/Swift-Kuery-ORM
A Codable Object Relational
Mapping (ORM) library for Swift.

© Copyright IBM Corporation 2017. Licensed under the Apache License, Version 2.0.

Swift@IBM





assets/64001c4e-0017-4836-a898-b9abcad9c9c4.png
A

53 WebSocketPackageDescription
53 helloWorldPackageDescription
v helloWorldPackageTests

£33 swift-nio-ssIPackageDescription

Al

£33 swift-nioPackageDescription
"] AppTests2

_Editscheme..
New Scheme...
Manage Schemes...

VVYyVYVYYVYY





assets/125371dd-2617-4cea-a22e-e802e1128bc5.png
_— (G2 a™ (D localhost:8080/journal/all

My Journal

[ + Add New Entry ]

My first day at work

‘What a busy day today! I never had a moment's rest.

[ 2 Editl T Remove 1
Index:0 out of 2; ID: 586AF264-43E8-459A-8A9A-01 F4F9C8BOCY;

A surprise to kids

After dinner, I planned a special surprise for the kids... I took them to see the new Disney movie!

[ 2 Editl T Remove 1
Index:1 out of 2; ID: 423F98D4-A5E0-4798-AD3B-856F77B5199E;

My Journal Application by Angus.





assets/3ec09f6c-8b5f-4f8b-8ccd-0b6de9db936f.png
class YourTest : XCTestCase ()
{

setUp(

testDummy1)

addTeardownBlock( )

testDummyN(

addTeardownBlock( )

‘tearDown()

static let allTests = [
(“testDummy1”, testDummy1),

(“testDummyN”, testDummyN)
}

o






assets/c2873b70-e90b-433b-ae27-ff1a3c3e0c55.png
Non-Virtualized Configuration Hypervisor Configuration Container Configuration

o o o APP APP APP
APP APP APP os os os Docker
Operating System (OS)
M M M
Virtual Machine (VM)
Operating System Hypervisor Hypervisor
Physical Server Physical Server Physical Server
Memory cPy Database Memory cPy Database Memory






assets/22c5fa79-df3c-479c-9fab-7e88da59d012.png
_— ([Gamal (O localhost:8080/journal/create

Create a Journal Entry

Enter title here

Submit

My Journal Application by Angus.





assets/9397948d-542f-4d12-88c7-9f392ef72cc7.png
Cloud Foundry apps  /

@ MyNewKituraApp @ Tisappisawake. visit App UeL [ rowes - |

org: Location: US South Space: dev

Memory and instances Environment variables SSH J

Runtime
BUILDPACK INSTANCES MB MEMORY PER INSTANCE TOTAL MB ALLOCATION
Runtime for Swift Allinstances are running 128 MB still available
Health is 100%
Instances
STATUS INSTANCE CPU MEMORY DISK

Running 0 1% 14 MB /128 MB 623.2MB/1GB





assets/2982c633-bb3d-4f36-a7a1-2583c6e1a6e2.png
B8 < myJournal ) [ myJournal ) = Info.plist ) No Selection

Key Type Value
v Information Property List Dictionary (15 items)

App Transport Security Settings 4 @ @ String 3
App Transport Security Settings IR $(DEVELOPMENT_LANGUAGE)
App Uses Non-Exempt Encrypti... | & String $(EXECUTABLE_NAME)
Application can be killed immed... ' & String $(PRODUCT_BUNDLE_IDENTIFIER)
Application Category ] String 6.0
Application does not run in bac... {  String $(PRODUCT_NAME)
Application fonts resource path {  String APPL
Application has localized displa... {  String 1.0
Application is agent (UIElement) {  String 1
Application is background only ¢ Boolean YES
Application is visible in Classic {  String LaunchScreen
Main storyboard file base name { String Main

» Required device capabilities {  Array (1 item)

» Supported interface orientations {  Array (1 item)

» Supported interface orientations (i... {  Array (4 items)





assets/9506e3ad-a0df-4c58-b4af-46225dab0eac.png
BER QAR
(" ApplicationTests 2 tests
v [ RouteTests
0 testetstaticl)
testsattnRout()






assets/da900376-578b-40ab-9676-55727c3519f3.png
@) = D=

[y |






assets/81648c4f-45d3-4006-b3b9-bc00a5bfb8c0.png
first column of first row second column of first row

first column of second row second column of second row





assets/5d01c685-6228-4c35-a65a-bf91b40214d9.png
mydJournal Home Admin About

My Journal

The Path of Heart!

Add New Entry |

Kitura Test 1

Kitura Test 1 Content
[ ID: FE41D7CE-FE51-4C20-AF76-C99F52839546 : [ Edit | T Remove ]

Kitura Test 2

Test 2 Content
[ ID: 89CBBD3D-4CAF-4053-BE51-38EC2E218187 : [# Edit | Tl Remove ]

(]
o
e
5]
<

© 2018 - MY JOURNAL APPLICATION BY ANGUS





assets/7f2d4865-c4d9-45ea-892c-24ddedb5318f.png
V Deployment Info

Deployment Target

Devices  Universal
Main Interface  Main

Device Orientation Portrait
| Upside Down

Landscape Left
| Landscape Right

Status Bar Style = Default

Uncheck

| Hide status bar

| Requires full screen

(o]





assets/6a838dbb-b4a2-4cca-9c39-b24bbad70cea.png
Header 1

Section 1 goes to here





assets/259da7d7-4967-49ac-a71c-97318d598662.png
Submit a New Entry

Title

Content






assets/22a343d6-b280-458a-a626-d5de35bfa642.png
Web Application

Web Service

Web Browser

Glient Application

RESTHUI API
via HTTP/1.1

Front-End Layer

Web Templating Engine

Front-End Layer

Application Layer

Application Layer

Data Storage Layer

Data Storage Layer






assets/5ac34e49-cfea-4af8-b126-36bcb3b79d72.png
kubernetes Q  Search +creaTE | @Q

Cluster
Namespaces .
Deployments Pods Replica Sets
Nodes
Persistent Volumes
RO Deployments =
Sl OEess Name & Labels Pods Age - Images
Namespace Q my-new-kitura-app-deployr  run: my-new-kitura-app-.. 1/1 13 minutes registry.ng.bluemix.net/an: :
default ~
Overview Pods =
Workloads Name < Node Status & Restarts Age © CPU (cores) Memory (bytes)
Cron Jobs : ) ) B0 .
Q my-new-kitura-app-de  10.77.174.186 Running 0 13 minutes -0.001 Mi = :
Daemon Sets
Deployments ) .
Replica Sets =
Jobs
Pods Name & Labels Pods Age Images
Replica Sets pod-template-hash: 127... .
Q my-new-kitura-app-deployr 1/1 13 minutes registry.ng.bluemix.net/an: = :
Replication Controllers run: my-new-kitura-app-...

Stateful Sets
Discovery and Load Balancing
Discovery and Load Balancing
Ingresses Services =

Services





assets/a08ec2ec-a024-475f-86fd-ff95f2da505b.png
Carrier &






assets/be91c6ac-2104-4cbf-aeb6-137a7b0145ef.png
o9
9:41 AM (—
Cancel Journal Entry Done

u}

[m}

Text Field

Text Plain

Color EEEEE Default

6( System 17.0 E

Dynamic Type | | Automatically Adjusts Font
@anment E D

Placeholder  Title of the New Entry

Background

Disabled
Border Style m ] o o

Clear Button Never appears

| Clear when editing begins

Min Font Size

< | Adjust to Fit

Text Input Traits

Content Type Unspecified
Capitalization Sentences

Correction = Default
Smart Dashes Default
Smart Insert  Default
Smart Quotes = Default
Spell Checking Default
Keyboard Type Default
Keyboard Look Default
< ReturnKey Continue

;
~N
Yoooooooge \/o






assets/3a7cf771-f1e9-489d-9950-daccee471f1c.png
»> 53 helloWorld-Package ) Bl My Mac helloworid | Build helloWorld-Package: Succeeded | Today at 2:18 PM

=] 2 QA O O @ |8 < > [B heloWord ) [ Tests ) [ AppTests ) [3) AppTests.swift ) No Selection
v () AppTests 1 test 1 import App
v [ AppTests 2 import XCTest
3 testNothing)

final class AppTests: [CTestcase] ¢
func [Eesthothing O] throws {
1T 2dd your tests here

XCTassert(true)
9

0 static let allTests = [

n (“testNothing”, testNothing)
2 1





assets/4b26914f-0364-4cc9-b0b8-5e7a04587b8d.png
Choose a template for your new project:

watchOS  tvOS  macOS Cross-platform

Application

Page-Based App Tabbed App

Cocoa Touch
Static Library

Framework & Library

®

Cocoa Touch
Framework

Cancel

Augmented
Reality App

oa
0a

Sticker Pack App

i

Metal Library

(=)

Document
Based App

8

iMessage App

-

Master-Detail App





assets/221def36-301d-420d-aeb9-e242b4f6291c.png
I Browser
& & Servers (1)
& @@ myjournal
& = Databases (5)
=jounalentries
& = journalbook
@ casts
& Catalogs
T Event Triggers
) Extensions
= Foreign Data Wrappers
) Languages
& @ Schemas (1)
&4 public

[3FTs Configurations
[J FTS Dictionaries
AaFTs Parsers

FTS Templates

6 Foreign Tables

% Columns
» 4 Constraints
3 indexes
@ Rules

5 Triggers
EJournalitems

) Trigger Functions

& Login/Group Roles
5 Tablespaces

QL L Statistics

& Dependencies

{ Dependents ¥ Create script

# Insert script *

@ Dashboard ¢ Properties

la-a® 8 @ ¥

| No imit

LY

5Bl journalbook on fyeungi @myjournal

1 INSERT INTO public."Admins"(
2 id, password)
3 VALUES ('kitura', 'kitura');

Notifications

Explain  Messages

Data Output
INSERT 0 1

Query returned successfully in 38 msec.

Query History.






assets/1c9768aa-bfdd-47cd-8577-f82bbd09f412.png
Swift by
Building
Applications






assets/0d8e320d-f55a-434b-a39f-8cd705cd73b3.png
© < 0a O

[ NN ] > | M h.rid ) B MyMac | Running helloWorld : helloworld a1

B = Q A & D @ B < helloworld ) i Sources ) [ helloWorld ) 3 main.swift ) No Selection
v helloWorld 1 import Foundation
3 Package.swift 2 import Kitura
3 import LoggerAPI
v (&3 Sources 4 import HeliumLogger
v [ helloWorld 5 import Application
6
» [ ] Application 7 do {
v i Test ¢
S 9 HeliumLogger.use(LoggerMessageType.info)
» [ ] ApplicationTests 10
v Bl chart 1 let app = try App()
» [ ] helloworld 12 try app.run()
v [ D denci "
e 14} catch let error {
» [ Health 1.0.1 15 Log.error(error.localizedDescription)
» [ SwiftMetrics 2.3.0 16}
17

» [i7] omr-agentcore 3.2.4-swift4
» [ SwiftyJSON 17.0.1

» [ SwiftyRequest 1.1.2

» [i7] CircuitBreaker 5.0.1

» [ Kitura-WebSocket 2.0.0

» [ Cryptor 1.0.2

» [ CloudEnvironment 7.1.0

» [i7] CloudFoundryEnv 6.0.2

» [ Configuration 3.0.1

» [ FileKit 0.0.1

» [i7] HeliumLogger 1.7.1

» [ Kitura 2.3.2

» [ KituraContracts 0.0.24

» [ Kitura-TemplateEngine 1.7.4
» [ Kitura-net 2.1.0

» [i7] SSLService 1.0.6

» [i7] Socket 1.0.6

» [i7] LoggerAPI 1.7.3

+ @ Filter OX = » [ o L 2|01 So </ | # helloworld





assets/238a0aff-94c2-4977-a960-1c9f142d7e05.png
Your Kitura server is up and running!

L

Kitura Foodtracker Kitura TodoBackend Rainbow BluePic

Create a Kitura backend for the Create a Kitura backend for the Todo- Build an i0S game powered by CoreML Take & ook at our photo-sharing app
FoodTracker 108 app from Apple. Backend project. ‘and Watson Visual Recognition. which uses Kitura with 1BM Cloud.

(Y] (Y] (Y] (Y]






assets/a478ef6f-bab2-4705-93ce-de9230854f43.png
B 2 Q A O o> B 2 < > [& myournal ) [ my

myJournal v [=] View Controller Scene

v [ myJournal Delete » () View Controller

3 AppDelegate.swift First Responder
s| ViewController.swift Exit

@ Main.storyboard —> Storyboard Entry Poi...

|13 Assets.xcassets

'+ LaunchScreen.storyboard
= Info.plist
» [ ] Products






assets/174128a1-e3d7-4a6d-8d96-e14cca2f7fcc.png
Clusters / mycluster

©) mycluster s o toms

Access Overview Worker Nodes Worker Pools
Worker Nodes
0 s
|:| Name « Status Worker Pool Zone Private IP Public IP Kubernetes Version
> O wil ® Normal default hou02 10.77.174.186 173.193.99.102 1.10.8_1525

Items per page: 10 v | 1-1of 1 items 1 of 1 pages < 1~ >





assets/a06664f6-5b8a-4604-96dd-53d1ec83266c.png
s (G==aN (D localhost:8080/journal/total w KB

My Journal

This is the first test

This is a journal entry for testing.

This is the second entry

This is a journal entry for testing.

This is the third entry

This is a journal entry for testing.

My Journal Application by Angus. Total entries: 3





assets/8dbf6df2-18bb-4366-9005-47890d509a45.png
Backends for Frontends (BFF)

Desktop API Mobile AP
(Frontend Layer) (Frontend Layer)

Application Layer

Data Storage Layer






assets/7b97d6e6-71fa-4e52-b466-175a7b420234.png
0O 9 B

Cancel

Journal Entry

9:41 AM

Done

3

[m}

Arrange | P

Autoresizing

Layout Margins
+

+
+

77%

+

Add New Constraints

Spacing to nearest neighbor

"] Constrain to margins

Width 361 v
8| Height 30 v
0=0]

| [] Aspect Ratio

( Add 4 Constraints

—

D

(v§
(v§

M %PM |





assets/d980b00d-dfee-4b8a-bd83-599e7f264d63.png
(]  {] G+ m v

© 2018 - SIMPLY YOU





assets/ad4ea362-fc56-4f01-a0ba-126266ddcc83.png
0O 9 B

Cancel

9:41 AM
Journal Entry

o

O

1GMIG YIS WS UGS LIS GLUIMULSS G1HU WSHEVIVI Ul SIS (1UWa) 11 @

table view.

Image View - Displays a single image, or an animation described by an array
of images.

Collection View - Displays data in a collection of cells.

Collection View Cell - Defines the attributes and behavior of cells in a
collection view.

Collection Reusable View - Defines the attributes and behavior of reusable
views in a collection view, such as a section header or footer.

——

~1

Text View - Displays multiple lines of editable text and sends an action message t
a target object when Return is tapped.

Scroll View - Provides a mechanism to display content that is larger than the size
of the application’s window.

Date Picker - Displays multiple rotating wheels to allow users to select dates
and times.

Picker View - Displays a spinning-wheel or slot-machine motif of values.





assets/2b033f5c-7dee-48f1-a209-05196bdc89d7.png
Main
9:41 AM
myJournal

tvpe Cells

Table View

Prototype Content

Storyboard Segue

Identifier EditEntry

Class )

Module v

Inherit Module From Target

Kind Show (e.g. Push)

2 Animates

Peek & Pop [ | Preview & Commit Segues





assets/84c774b8-0b6b-4b59-9be7-e190556c4ae5.png





assets/81052b1f-a6ea-4ad6-934b-71c231e1b6b7.png
Server-Side Web
Development
with Swift

Build dynamic web apps by Iever g gtwop p ular
Swift web frameworks: Vapor

y ’/: V P \’
a / " - Packt W





assets/d7497002-2997-4279-8d6e-bddacd0d6cfd.png
View Find Navigate Editor Product Debug Source (

Standard Editor
Assistant Editor
Version Editor

A: myJournal ) @@ iPhone

VAC) 5 B |8 <

Navigators
Debug Area
Inspectors
Libraries

YVVVYY VYVY

Show Library 3L

. = Show Media Library {+8M
Hide Toolbar BT o

Show Tab Bar Ixcassets
138\ creen.storyboard

Enter Full Screen ~BF

Customize Touch Bar...





assets/e3830e37-cc06-4017-b136-fe8bd211d043.png
Service-oriented Architecture

CJ

Microservice-oriented Architecture

API Gateway

API Gateway

Application Layer

Data Storage Layer

Application Layer

-






assets/eb806cf7-a425-496f-8d6a-4048c196968d.png
Carrier & 1:24 PM

myJournal
My first day at work!
What a nice day out there!
A new era is finally here!
A surprise to kids

new entry






assets/39530543-73b0-4aff-9d30-a7f3316a5901.png
< * B B % O

e Featured  TopCharts Categories Purchased  Updates

Q search

Xcode

viag, IF

hone,and iPad

Xcode includes everything developers need to create great applications for Mac, iPhone, iPad, Apple TV, and Apple Watch. Xcode
provides developers a unified workflow for user interface design, coding, testing, and debugging. The Xcode IDE combined with
the Swift programming language make developing apps easier and more fun than ever before.

More

What's New in Version 9.3.1
Xcode 9.3.1includes Swift 4.1 and SDKs for iOS 11.3, watchOS 4.3, tvOS 11.3, and macOS High Sierra 10.13.4

More

Apple Web Site
Xeade Support
App License Agreement

Privacy Policy

Information

Category: Developer Tools
Updated: May 10, 2018
Version: 9.3.1





assets/c4abe6f8-22eb-4dd3-ba57-c72e9a77ceda.png
B < 1 myJournal ) [ myJournal ) [+ Main...board) ) Main...Base) ) = Table View Controller Scene ) () Main Screen View Controller < A > ] O-I- B 6

Custom Class

Main Screen View Con...
v (I Main Screen View C... & Class MainScreenViewControlle§ b
Module .

> able View
m First Responder Inherit Module From Target
Exit a ®
- Storyboard Entry Poi... Identity
9:41 AM () Storyboard ID
PfOtOtVPe Cells Restoration ID

" Use Storyboard ID

User Defined Runtime Attributes
Key Path Type Value

+

Document

Label
XxXeJeew
Object ID Sxn-tT-2XS
Lock Inherited - (Nothing)

Localizer Hint

Table View





assets/ac018393-9bf9-436b-b75a-fc970edb92b0.png
Type Value
© Dictionary (16 items)

Key

¥ Information Property List

¥ Exception Domains s Dictionary (1 item)
¥ localhost Dictionary (2 items)
NSIncludesSubdomains Boolean YES
NSExceptionAllowsInsecureHTTPLoads Boolean YES
Allow Arbitrary Loads { Boolean YES






assets/fe3ef135-220e-4ed8-aa97-9aa5a0580f00.png





assets/7c0aa45a-076d-4d49-9180-3e318bf5eed8.png
[+ Y .
)

Create a Docker Image

OnO,

O | woers

Local

Cloud

o l FS—

—_—
Create a Cluster

© | oomsemomomen





assets/0a3b32d0-8660-4dfd-839c-f487c226d173.png
Choose options for your new project:

Product Name: 'myJournal

Team: None

Organization Name: Server Side Swift

Organization Identifier: = org.server-side-swift

Bundle Identifier: org.server-side-swift.myJournal
Language: Swift

| Use Core Data
" | Include Unit Tests
" | Include Ul Tests

Cancel Previous Next





assets/61fa2251-a31f-4410-b537-dad4ddc9f02e.png
m @ localhost:8080/student/Jane

The student Jane's GEA is 3.91





assets/82189c24-d241-4682-ab74-0b8c6d6eb6cc.png
Git Glient Git Server Gontinuous Gloud Hosting
Integration Server | manual or Sever

Goge Cranges | Post ook _, | N
ot pusn) O (Webhooks) et '
Vepor G






assets/9d6ae686-26bf-435c-8ba9-fd7a2c29ec89.png
Dashboard / App Details

© My New Kitura App & SR——

App Details
Resources (0) Add Resource @
No resources
Click Add Resource to add a new resource to your app.

Deploy your App

¢ 2
o=
Continuous delivery is not enabled for this app.
Enable continuous delivery to automate builds, tests, and deployments through the Delivery Pipeline, GitLab, and more.

Deploy to Cloud

Knowledge Guide

Getting started quickly

1. Complete the prerequisites
2. Optional: Add services

3. Generate your project code
4. Begin working on your app
5. Build and run the app locally

6. Deploy to the cloud






assets/e71d20b6-dce6-4a6e-aa76-710cde58117c.png
Packb






assets/6886b0e0-b7be-4ca7-a246-66744b0351e9.png
00 Postman

My Workspace

Fawel No Envronment - e
POSTN®  GETTot® POSTG® GETRer® GETloc® POSTIo®  GET *

> New. Examples(0) v

@ sodye Cookies Code
none @ formdata @ xomwlormurlencoded @ raw  ® binary
wer awe oescuerion e BukEdit
] 999
e Thiss the firstest
content Thiss 2 journalentryfor tstin.
Body @ Suus 200K Tme: 13ms Sue:758 | Save

prety Ao~ 2000k

1 Standard response fo successful HTTP requests.

The actual response willdepend on the request
method used. In a GET request the response wil
contain an entiy corresponding to the requested
resource.In a POST requestthe response will
contain an entiy describing or ontaining the
result ofthe acton.

=]

Buld Browse 0 @






assets/0a2e9139-1459-49cb-9ee7-af3444e1d905.png
Open Source Swift

‘Swift Compller and Swift Package
Standard Library Manager (SPM)
Core Libraries LLDB Debugger
Foundation

— Xcode Playground

Dispatch Support
XCTest ‘Common Mark
(documentation )






assets/dcc489c1-8e37-47dc-b1ae-dc0f447a7d8e.png
Navigation Controller

77%

+

View

9:41 AM Show  Fr:

Arrange | Po

Layout Margins ' De

+ CIF

+ [F

4 ¢

@k

Constraints
Add New Constraints
10 v
10 ~Dii€l10 -

10 v

Spacing to nearest neighbor

("] Constrain to margins

Width
Height
@) Equal Widths

O Equal Heights
@) Aspect Ratio

355

23.5

( Add Constraints

o 1E(of

Vertical






assets/9a8c8860-ae05-4ff8-a43b-a2a0c2c6e594.png
Main
9:41 AM
myJournal
Prototype Cells
Label

Edit

Toolbar - Provides a mechanism for displaying a toolbar at the bottom of
the screen.

Bar Button Item -)Represents an item on a UlToolbar or UINavigationltem object.

Tab Bar - Provides a mechanism for displaying a tab bar at the bottom of
the screen.

Tab Bar Item - Represents an item on a UlTabBar object.

Search Bar - Displays an editable search bar, containing the search icon, that
sends an action message to a target object when Return is tapped.

Search Bar and Search Display Controller - Displays an editable search bar
connected to a search display controller for managing searching.

Fixed Space Bar Button Item - Represents a fixed space item on a
UlToolbar object.

Flexible Space Bar Button Item - Represents a flexible space item on a
UlToolbar object.





assets/68bd16e1-9422-49e3-8d60-658354639734.png
mydJourna

Home

About

My Journal






assets/6151ed7b-f4e8-4af0-86d6-84014bbdca75.png
Package swit

Dectare Package:
*Applcaion Name
~Dapengencies
*Bula Targets

Build Time - Configuration

Run Time - Initialization

helloWorld Module

T @

Enty point:
“Gallappy)

| Call Appiaton's run()

Application.si
Dectare App) lass:
“np(

[ —
g ¢

* Cal posti:

i naaates)
A HTTP Sarvr
*Runra

y

®

o)
|

e (3)
o

fi e
fie s s

[ —

“Responseo hest
endooint

TaTEaanETor

[——
Ry

S ——






assets/8c1705be-ed02-49f1-a4cd-8c1a3100251f.png
helloWorldPackageTests

= My Mac





assets/739c537a-a274-4c36-9129-c60165ec0a9f.png
hellowWorldPackageTests ) B My Mac

?‘:“d . Info Arguments Options Diagnostics
arge!
Run
> > Debug Application Language  System Language
;Z:tg Application Region ~ System Region
Profile
> -ﬁ Release Ul Testing Capture screenshots automatically
N a Analyze Delete when each test succeeds
Deb:
eoug Attachments Delete when each test succeeds
> _p Archive
Release

Code Coverage Gather coverage for  all targets

Duplicate Scheme Manage Schemes... Shared





assets/20d4d60e-6159-43f4-a9b1-09e8f447ce2e.png
Client Server

Server-side Swift

Web Browser Web Application

POST /authenticate
username=...&password=.

HTTP 200 0K

GET /joumal/admin/get/123
Cookie: session-Id=56789

HTTP 200 0K
{id: *123", title: *...", content: *..")






assets/88f8126c-3a68-4afb-aec8-2747f699c257.png
© Containers Private Repositories

. LOCATION )
Overview Filter US South v Create repository

Clusters
Registry ~ Repository ~
Quickestart registry.ng.bluemix.net/angus/mynewkituraapp

Private Repositories
Items per page: 10 v | 1-1of 1items 1of 1 pages < 1~ >
IBM Public Repositories

Namespaces

Vulnerability Advisor -

Solutions v





assets/016c0938-384a-44f0-9f66-b9a88742c3ac.png
More Downloads for Apple Developers

. Command Line ook

DevcoperToas
macos

mac0s Senver
Aoptcaons
o5

saan

Command Line Tools (mac0S 10.13)for Xeode 10.1

Command Line Tools (macoS 10,14 for Xeode 10.1

Command Line Tools macoS 10,19 for Xcode 101 Bea 2

Command Line Tools (macos 10,13 for Xcode 101 Beta 2

Command Line Tool (mac0 10.13forXeade 10

Command Line Tool (maco 10.14)for Xeode 10

Command Line Tools (macos 10,13 for Xeode 9.4.1

Command Line Tools (macoS 10,13 for Xcode 9.4

Command Line Tools (mac0S 10.13)for Xeode 9.3

Reseome v






assets/dc52b7b3-f38b-4a79-85c6-3c77b8511c2a.png
Ankur Patel

Hands-On Full-Stack
Development
with Swift






assets/20cea2bc-23d0-4cf0-95ad-59dfe09fb10f.png
One of three columns One of three columns One of three columns





assets/a9015b6b-d588-4df7-9d15-d1410d0cd7f6.png
Name Main.storyboard
(=] Type | Default - Interface Builder... &

Location Relative to Group

9:41 AM C Base.lproj/Main.storyboard

Prototype Cells Full Path /Users/fyeung1/Downloads/
Packt/ch13 i0S App/
myJournal/myJournal/

Danntnenilkdnin atarianed £

Q|

View Controller - A controller that manages a view.

, Storyboard Reference - Provides a placeholder for a view controller in an
external storyboard.

Navigation Controller - A controller that manages navigation through a
hierarchy of views.

Table View Controller - A controller that manages a table view.

Collection View Controller - A controller that manages a collection view.

Tab Bar Controller - A controller that manages a set of view controllers
that represent tab bar items.

@ Split View Controller - A composite view controller that manages left and






assets/b262dd99-d8ea-4c51-a48b-16f650818904.png
[ JOX ) Postman

ss My Workspace v

No Environment v ©
localhost:8080/studer ® = eee #

GET ~ localhost:8080/student/Ryan Params “ Save v

Authorization Cookies Code

TYPE
Inherit auth from parent v

This request is not inheriting any authorization helper at the moment. Save it in a collection to use

The authorization header will be ) L
the parent's authorization helper.

automatically generated when you
send the request. Learn more about

authorization
Body 3) Status: 2000K  Time: 22ms  Size: 146 B
Pretty Text v 5 mQ

1 |The student Ryan's GPA is 4.0

QR B Build Browse Q [ @





