

Ionic Cookbook
Third Edition

Recipes to create cutting-edge, real-time hybrid mobile apps
with Ionic

Indermohan Singh
Hoc Phan

BIRMINGHAM - MUMBAI

Ionic Cookbook
Third Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author nor Packt Publishing or its dealers and distributors will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amarabha Banerjee
Acquisition Editor: Isha Raval
Content Development Editor: Mohammed Yusuf Imaratwale
Technical Editor: Diksha Wakode
Copy Editor: Safis Editing
Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Jason Monteiro
Production Coordinator: Nilesh Mohite

First published: November 2016
Second edition: October 2015
Third edition: April 2018

Production reference: 1260418

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-323-0

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the authors
Indermohan Singh is a Mobile App Developer working in Vienna, Austria, originally from
Ludhiana, Punjab. For the past 3 years, he has worked on Angular, Ionic, and TypeScript
most of the time. He authored Ionic 2 Blueprint for Packt Publishing, and this is his second
book on the subject. Before starting the full-time job, he was freelancer with many startups.
During his time as a freelancer, he also mentored learners at codementor.io, where he was
mostly teaching JavaScript. He is also hobbyist musician and loves to create Indian
Compositions and play them on harmonium.

I am thankful to the almighty for giving me the strength to write this book. It was
challenging, since I moved to a different country. It's tough! I am also thankful to my
family; even though they live miles away from me, their encouragement helped a lot. Last
but not least, I am really thankful to all the team members from Packt, especially
Mohammad Yusuf and Isha Raval, who made this process a breeze for me.

Hoc Phan is a technologist with experience in frontend development, cloud computing, and
big data. He started programming at the age of 12. Hoc has worked on many JavaScript
projects by learning from various online sources and was one of the first few developers
who tested Ionic for its feasibility as a JavaScript replacement of the native language of a
device. He authored the Ionic Cookbook.
He frequently speaks at local meetups and cloud computing/big data industry events and
conferences. He holds an MBA degree from the University of Washington's Michael G.
Foster School of Business.

About the reviewer
Nitish Sinha, a techie from Jharkhand, is a hardcore believer of Steve Jobs’s words, "The
only way to do great work is to love what you do.". Working as a software developer in a
reputed firm, he is quite passionate about learning and unlearning things. He has a vast
amount of experience in technologies like Angular.js, Node.js, Ionic Framework, and such.

He strongly believes in adapting oneself to an ever-evolving IT sphere, and learning
upcoming technologies is his core strength. Not only that, he believes in sharing the learned
wisdom with others.

I would like to sincerely thank all my mentors who have been a leading light in all my
endeavors. Their golden words continue to be an inspiration for me.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Creating Our First App with Ionic 7
Introduction 7
Setting up a development environment 9

Getting ready 9
How to do it... 10
There's more... 12

Creating a HelloWorld app via the CLI 13
How to do it... 13
How it works... 14

Creating a HelloWorld app via Ionic Creator 17
Getting ready 17
How to do it... 17
There's more... 19

Viewing the app using your web browser 19
Getting ready 20
How to do it... 20
How it works... 23

Viewing the app using the Ionic CLI 24
Getting Ready 24
How to do it... 24

Viewing the app using Xcode for iOS 25
How to do it... 25
There's more... 26

Viewing the app using Genymotion for Android 28
How to do it... 28

Viewing the app using Ionic View 33
How to do it... 33
There's more... 36

Chapter 2: Adding Ionic Components 37
Introduction 37
Adding multiple pages using tabs 37

Getting ready 38
How to do it... 39
How it works... 43
See also 49

Adding left and right menu navigation 49

Table of Contents

[ii]

Getting ready 50
How to do it... 50
How it works... 56
See also 58

Navigating multiple pages with state parameters 58
Getting ready 60
How to do it... 60
How it works... 64
See also 67

Using menu, tabs, and segment together in an app 68
Getting ready 69
How to do it... 69
How it works... 71
See also 73

Using the Ionic grid to create a complex UI 73
Getting ready 74
How to do it... 75
How it works... 77
See also 80

Chapter 3: Extending Ionic with Angular Building Blocks 81
Introduction 81
Creating a custom pizza ordering component 82

Getting ready 83
How to do it... 83
How it works... 87
See also 89

Creating a custom username input directive 89
Getting ready 91
How to do it... 91
How it works... 94
See also 96

Creating a custom pipe 97
Getting ready 98
How to do it... 98
How it works... 101
See also 102

Creating a shared service to provide data to multiple pages 103
Getting ready 104
How to do it... 104
How it works... 110
See also 112

Reusing an existing page as an HTML element 113
Getting ready 114
How to do it... 115

Table of Contents

[iii]

How it works... 119
See also 123

Chapter 4: Validating Forms and Making HTTP Requests 124
Introduction 124
Creating a complex form with input validation 125

Getting ready 127
How to do it... 127
How it works... 134
See also 137

Creating reactive forms in Ionic 138
Getting ready 139
How to do it... 139
How it works... 143
See also 147

Retrieving data via a mocked API using a static JSON file 148
Getting ready 149
How to do it... 149
How it works... 154
See also 157

Integrating with Stripe for online payment 158
Getting ready 159
How to do it... 159
How it works... 164
See also 167

Chapter 5: Adding Animation 168
Introduction 168
Embedding full screen inline video as background 169

Getting ready 170
How to do it... 170
How it works... 174

Creating physics-based animation using Dynamics.js 176
Getting ready 176
How to do it... 176
How it works... 179
See also 181

Animating the slide component by binding a gesture to the
animation state 181

Getting ready 182
How to do it... 182
How it works... 186
See also 190

Adding a background CSS animation to the login page 191
Getting ready 192

Table of Contents

[iv]

How to do it... 192
How it works... 196
See also 197

Chapter 6: User Authentication and Push Notifications 198
Introduction 198
Registering and authenticating users using Auth0 199

Getting ready 200
How to do it... 200

Creating our app in the Auth0 dashboard 200
Let's code 203

How it works 208
There's more... 212

Building an iOS app to receive push notifications 213
Getting ready 213
How to do it 214

Let's create an Apple signing certificate 214
Adding a device and creating the provisioning profile 223
Creating a push certificate 228
Now let's configure OneSignal 234
Let's code 237

How it works 243
There's more... 245

Building an Android app to receive push notifications 246
Getting ready 246
How to do it 249

Configuring Firebase for push notifications 250
Configuring OneSignal 254
Let's code now 256

How it works 259
There's more... 261

Chapter 7: Supporting Device Functionalities Using Ionic Native 262
Introduction 262
Taking a photo using the camera plugin 263

Getting ready 264
How to do it... 264
How it works... 269
There's more... 270

Sharing content using the social sharing plugin 271
Getting ready 273
How to do it... 274
How it works... 276
There's more... 277

Displaying a local notification using the local notification plugin 278
Getting ready 279

Table of Contents

[v]

How to do it... 279
How it works... 282
There's more... 283

Fingerprint authentication using the fingerprint AIO plugin 283
Getting ready 286
How to do it... 287
How it works... 290
There's more... 291

Creating a media player with the Media Player notification control 291
Getting ready 292
How to do it... 292
How it works... 296
There's more... 298

Creating a taxi app using the Google Maps plugin and geocode
support 298

Getting ready 301
How to do it... 305
How it works... 308
There's more... 308

Chapter 8: Theming the App 311
Introduction 311
Viewing and debugging themes for a specific platform 312

Getting ready 312
How to do it... 312
How it works... 315
There's more... 315

Customizing themes based on the platform 316
Getting ready 316
How to do it... 317
How it works... 319
There's more... 324

Chapter 9: Advanced Topics 325
Introduction 325
Lazy loading in Ionic 325

Getting ready 326
How to do it... 326
How it works... 328
There's more... 329
See also 330

Internationalization (i18n) using ngx-translate 330
Getting ready 331
How to do it... 331
How it works... 334

Table of Contents

[vi]

See also 335
Creating documentation for Ionic app 335

Getting ready 336
How to do it... 336
How it works... 338
See also 339

Chapter 10: Publishing the App for Different Platforms 340
Introduction 340
Adding versioning to future-proof the app 341

Getting ready 341
How to do it... 341
How it works... 345

Building and publishing an app for iOS 346
Getting ready 347
How to do it... 347
How it works... 358
There's more... 358

Building and publishing an app for Android 358
Getting ready 358
How to do it... 359
How it works... 364

Other Books You May Enjoy 365

Index 368

Preface
Mobile application development has been a hot topic for quite a while now. There are
multiple platforms and devices with different screen sizes and form factors out there to
accommodate. It makes mobile app development very difficult. Luckily, Ionic is one such
tool that helps us mitigate this very problem by allowing us to write code once for all
platforms and devices.

In this book, readers will learn how to create mobile applications using Ionic. We will start
with very basic things, such as setting up the development environment, using Navigation
in apps, working with backend via REST API, Animations, Authenticating Users, Receiving
push notifications, localizing an app, generating documentation, and publishing the app, to
name a few. Readers will also learn things about Angular and Ionic CLI. I hope that this
book will help novice developers as well as advanced developers, because the content is a
mixture of easy and advance ionic stuff.

Who this book is for
Ionic Cookbook is for front-end developers who want to create cross-platform mobile apps.
This book will help you become a Mobile App developer who is comfortable enough to take
on difficult apps by teaching readers about Angular, Cordova, and Sass in depth. The
intention of this book is to teach Ionic by solving real-world problems like authentication,
push notifications, using the camera to name a few. Nevertheless, if you are new to front-
end development, you will still be able to follow the book.

What this book covers
Chapter 1, Creating Our First App with Ionic, introduces the Ionic framework with
instructions on how to set up the development environment and quickly create and run
your first app.

Chapter 2, Adding Ionic Components, walks you through some examples of how to manage
pages, states, and the overall navigation within the app.

Chapter 3, Extending Ionic with Angular Building Blocks, takes a deep dive into the Angular
components, directives, and the customization of pipes. You will learn how to leverage the
Ionic module architecture to create shared services.

Preface

[2]

 Chapter 4, Validating Forms and Making HTTP Requests, explains how to create a complex
form with input validation, retrieve data via REST API calls, and integrate with Stripe for
online payment.

Chapter 5, Adding Animation, provides instructions on how to embed a video as
background, create a physics-based CSS animation, and bind gestures to the animation
state.

Chapter 6, User Authentication and Push Notifications, takes a deep dive into registering and
authenticating users using Auth0 and sending and receiving push notifications using
OneSignal.

Chapter 7, Supporting Device Functionalities Using Ionic Native, explains how to use Ionic
Native to access native device functionalities, such as camera, social sharing,
InAppBrowser, and map.

Chapter 8, Theming the App, focuses on how to customize the app for different platforms
using Sass variables.

Chapter 9, Advanced Topics, teaches how to use advanced ionic features such as lazy
loading, deep linking, and localizing ionic apps.

Chapter 10, Publishing the App for Different Platforms, looks into the process of performing
the final steps of getting the app published.

To get the most out of this book
In the book, I assume that you have some knowledge of Angular. Most of the1.
time the problem that you will face will be regarding Angular instead of Ionic.
https:// angular. io is your best friend in that case.
If you want to brush up your information about Angular, I would suggest this2.
book by Victor Savkin and Jeff Cross (former Angular team members) https:/ /
www.packtpub. com/ application- development/ essential- angular.
Even though you can run most of examples without installing platform SDKs for3.
Android or iOS. I suggest you to do this in the very beginning, in order to test the
applications on actual devices. Take a look at these guides:

Android: https:/ / cordova. apache. org/ docs/ en/ latest/ guide/
platforms/ android/ index. html#requirements- and-support
iOS: https:/ /cordova. apache. org/ docs/ en/ latest/ guide/
platforms/ ios/ index. html

https://angular.io
https://angular.io
https://angular.io
https://angular.io
https://angular.io
https://angular.io
https://angular.io
https://www.packtpub.com/application-development/essential-angular
https://www.packtpub.com/application-development/essential-angular
https://www.packtpub.com/application-development/essential-angular
https://www.packtpub.com/application-development/essential-angular
https://www.packtpub.com/application-development/essential-angular
https://www.packtpub.com/application-development/essential-angular
https://www.packtpub.com/application-development/essential-angular
https://www.packtpub.com/application-development/essential-angular
https://www.packtpub.com/application-development/essential-angular
https://www.packtpub.com/application-development/essential-angular
https://www.packtpub.com/application-development/essential-angular
https://www.packtpub.com/application-development/essential-angular
https://www.packtpub.com/application-development/essential-angular
https://www.packtpub.com/application-development/essential-angular
https://www.packtpub.com/application-development/essential-angular
https://www.packtpub.com/application-development/essential-angular
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html#requirements-and-support
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html

Preface

[3]

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Ionic- Cookbook- Third- Edition. In case there's an update to the code, it
will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Ionic-Cookbook-Third-Edition
https://github.com/PacktPublishing/Ionic-Cookbook-Third-Edition
https://github.com/PacktPublishing/Ionic-Cookbook-Third-Edition
https://github.com/PacktPublishing/Ionic-Cookbook-Third-Edition
https://github.com/PacktPublishing/Ionic-Cookbook-Third-Edition
https://github.com/PacktPublishing/Ionic-Cookbook-Third-Edition
https://github.com/PacktPublishing/Ionic-Cookbook-Third-Edition
https://github.com/PacktPublishing/Ionic-Cookbook-Third-Edition
https://github.com/PacktPublishing/Ionic-Cookbook-Third-Edition
https://github.com/PacktPublishing/Ionic-Cookbook-Third-Edition
https://github.com/PacktPublishing/Ionic-Cookbook-Third-Edition
https://github.com/PacktPublishing/Ionic-Cookbook-Third-Edition
https://github.com/PacktPublishing/Ionic-Cookbook-Third-Edition
https://github.com/PacktPublishing/Ionic-Cookbook-Third-Edition
https://github.com/PacktPublishing/Ionic-Cookbook-Third-Edition
https://github.com/PacktPublishing/Ionic-Cookbook-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

A block of code is set as follows:

<ion-tabs>
 <ion-tab [root]="tab1Root" tabTitle="One"
 tabIcon="water"></ion-tab> <ion-tab [root]="tab2Root"
 tabTitle="Two"
 tabIcon="leaf"></ion-tab> <ion-tab [root]="tab3Root"
 tabTitle="Three"
 tabIcon="flame"></ion-tab>
</ion-tabs>

Any command-line input or output is written as follows:

$ ionic start LeftRightMenu sidemenu
$ cd LeftRightMenu

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

Preface

[5]

How to do it...
This section contains the steps required to follow the recipe.

How it works...
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

[6]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

1
Creating Our First App with

Ionic
In this chapter, we will cover the following topics:

Setting up a development environment
Creating a HelloWorld app via the CLI
Creating a HelloWorld app via Ionic Creator
Viewing the app using your web browser
Viewing the app using the Ionic CLI
Viewing the app using Xcode for iOS
Viewing the app using Genymotion for Android
Viewing the app using Ionic View

Introduction
There are many options for developing mobile applications today. Native applications
require a unique implementation for each platform, such as iOS, Android, and Windows
phone. It's required in some cases, such as high-performance CPU and GPU processing
with lots of memory consumption. Any application that does not need over-the-top
graphics and intensive CPU processing could benefit greatly from a cost-effective, write
once and run anywhere HTML5 mobile implementation.

Creating Our First App with Ionic Chapter 1

[8]

For those who choose the HTML5 route, there are many great choices on the market. Some
options may be very easy to start, but they could be very hard to scale or could face
performance problems. Commercial options are generally expensive for small developers to
find product/market fit. The best practice is to think of the users first. There are instances
where a simple, responsive website design is the best choice; for example, when a business
mainly has fixed content with minimal updating required or the content is better off on the
web for SEO purposes.

The Ionic Framework has several advantages over its competitors, as shown:

Ionic is based on Angular, which is a robust framework for application
development. You have all the components to structure and create an application
built into it.
UI performance is strong because of its usage of the requestAnimationFrame()
technique.
It offers a beautiful and comprehensive set of default styles, similar to a mobile-
focused twitter Bootstrap.
Sass is available for quick, easy, and effective theme customization.

There have been many significant changes between the launch of AngularJS 1.x and
Angular. All of these changes are applicable to Ionic as well. Consider the following
examples:

Angular utilizes TypeScript, which is a superset of the ECMAScript 6 (ES6)
standard, to build your code into JavaScript. This allows developers to leverage
TypeScript features such as type checking during the compilation step.
There are no more controllers and directives in AngularJS. Previously, a
controller was assigned to a DOM node, while a directive converted a template
into a component-like architecture. However, it is very hard to scale and debug
large AngularJS 1.x applications due to the misuse of controllers and/or issues
with conflicting directives. In Angular, there is only a single concept—that of a
component, which eventually has a selector corresponding to an HTML template
and a class containing functions.
The $scope object no longer exists in Angular because all properties are now
defined inside a component. This is actually good news because debugging errors
in $scope (especially with nested scenarios) is very difficult in AngularJS 1.x.
Finally, Angular offers better performance and supports both ES5 and ES6
standards. You could write Angular in TypeScript, Dart, or just pure JavaScript.

Creating Our First App with Ionic Chapter 1

[9]

In this chapter, you will work through several HelloWorld examples to Bootstrap your Ionic
app. This process will give you a basic skeleton with which you can start building more
comprehensive apps. The majority of apps have similar user experiences flow, such as tabs
and side menus.

Setting up a development environment
Before you create your first app, your environment must have the required components
ready. These components ensure a smooth development, build, and test process. The
default Ionic project folder is based on Cordova's. Therefore, you need the Ionic CLI to
automatically add the correct platform (that is, iOS, Android, or Windows phone) and build
the project. This will ensure all Cordova plugins are included properly. The tool has many
options to run your app in the browser or simulator with live reload.

Getting ready
You need to install Ionic and its dependencies to get started. Ionic itself is just a collection of
CSS styles, Angular components, and standard Cordova plugins. It's also a command-line
tool to help manage all technologies, such as Cordova. The installation process will give you
a command line to generate the initial code and build the app.

Ionic uses npm as the installer, which is included when installing Node.js. Please install the
latest version of Node.js from https:/ / nodejs. org/ en/ download/ .

You will need to install cordova, ios-sim (an iOS Simulator) and ionic:

$ npm install -g cordova ionic ios-sim

You can install all three components with this single command line instead of issuing three
command lines separately. The -g parameter is to install the package globally (not just in
the current directory).

For Linux and Mac, you may need to use the sudo command to allow system access, as
shown:

$ sudo npm install -g cordova ionic ios-sim

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/

Creating Our First App with Ionic Chapter 1

[10]

The following are a few common options for an integrated development environment
(IDE):

Xcode for iOS
Android Studio for Android
Microsoft Visual Studio Code (VS Code)
JetBrains' WebStorm
Sublime Text (http:/ /www. sublimetext. com/) for web development

All of these have a free license. You could code directly in Xcode or Android Studio, but
those are somewhat heavy-duty for web apps, especially when you have a lot of windows
open and just need something simple to code. Sublime Text is free for non-commercial
developers, but you have to purchase a license if you are a commercial developer. Most
frontend developers would prefer to use Sublime Text for coding HTML and JavaScript,
because it's very lightweight and comes with a well-supported developer community.
Sublime Text has been around for a long time and is very user-friendly. However, there are
many features in Ionic that make Visual Studio Code very compelling. For example, it has
the look and feel of a full IDE without being bulky. You could debug JavaScript directly
inside VS Code, as well as getting autocomplete (for example, IntelliSense). The following
instructions cover both Sublime Text and VS Code, although the rest of this book will use
VS Code.

How to do it...
VS Code works on Mac, Windows, and Linux. Here are the instructions:

Visit https:/ / code. visualstudio. com. 1.
Download and install for your specific OS2.
Unzip the downloaded file3.
Drag the .app file into the Applications folder and drag it to Mac's Dock4.
Open Microsoft Visual Studio Code5.
Press Ctrl + Shift + p to open the command palette6.
Type the shell command in the command palette7.
Click on the shell command: Install code command in PATH command to install8.
the script to add Visual Studio Code in your terminal $PATH
Restart Visual Studio Code for this to take effect9.

http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com

Creating Our First App with Ionic Chapter 1

[11]

Later on, you can just write code (including the dot) directly from the Ionic project folder
and VS Code will automatically open that folder as a project.

Note that the following screenshots were taken from a Mac:

If you decide to use Sublime Text, you will need Package Control (https:/ /1.
packagecontrol. io/ installation), which is similar to a Plugin Manager. Since
Ionic uses Sass, it's optional to install the Sass Syntax Highlighting package.
Navigate to Sublime Text | Preferences | Package Control.2.

https://packagecontrol.io/installation
https://packagecontrol.io/installation
https://packagecontrol.io/installation
https://packagecontrol.io/installation
https://packagecontrol.io/installation
https://packagecontrol.io/installation
https://packagecontrol.io/installation
https://packagecontrol.io/installation

Creating Our First App with Ionic Chapter 1

[12]

Go to Package Control: Install Package. You could also just type the partial3.
command (that is, inst) and it will automatically select the right option:

Type Sass and the search results will show one option for TextMate & Sublime4.
Text. Select that item to install:

There's more...
There are tons of Sublime Text packages that you may want to use, such as HTML, JSHint,
JSLint, Tag, and ColorPicker. You can visit https://sublime.wbond.net/browse/popular
for additional needs.

https://sublime.wbond.net/browse/popular

Creating Our First App with Ionic Chapter 1

[13]

Creating a HelloWorld app via the CLI
The quickest way to start your app is using the existing templates. Ionic gives you some
standard out-of-the-box templates via the command line:

Blank: This is a simple page with minimal JavaScript code
Tabs: These are multiple pages with routes. A route URL goes to a tab
Side menu: This is a template with a left/right menu with the center content area
Super: This is a template with prebuilt pages and providers, which emphasize
the best practices for Ionic app development

How to do it...
To set up the app with a blank template from ionic, use this command:1.

$ ionic start HelloWorld_Blank blank

If you replace blank with tabs, it will create a tabs template, as shown:2.

$ ionic start HelloWorld_Tabs tabs

Similarly, the following command will create an app with a sidemenu:3.

$ ionic start HelloWorld_Sidemenu sidemenu

4. Likewise, the following command will create an app with the super template:

$ ionic start HelloWorld_Super super

Additional guidance for the Ionic CLI is available on the GitHub page:
https://github.com/ionic-team/ionic-cli.

https://github.com/ionic-team/ionic-cli

Creating Our First App with Ionic Chapter 1

[14]

How it works...
This chapter will show you how to quickly start your code base and visualize the result.
More details about Angular and its template syntax will be discussed in various chapters of
this book, however, the core concepts are as follows:

Component: Angular is very modular because you could write your code in a file
and use an export class to turn it into a component. If you are familiar with
AngularJS 1.x, this is similar to a controller and how it binds with a DOM node. A
component will have its own private and public properties and methods (that is,
functions). To tell whether a class is an Angular component or not, you have to
use the @Component decorator. This is another new concept in TypeScript since
you could enforce characteristics (metadata) on any class so that they behave in a
certain way.
Template: A template is an HTML string or a separate .html file that tells
AngularJS how to render a component. This concept is very similar to any other
frontend and backend framework. However, Angular has its own syntax to allow
simple logic on the DOM, such as repeat rendering (*ngFor), event binding
(click), or custom tags (<my-tag>).
Directive: This allows you to manipulate the DOM, since the directive is bound
to a DOM object. So, *ngFor and *ngIf would be examples of directives because
they alter the behavior of that DOM.
Service: This refers to the abstraction to manage models or collections of complex
logic besides get/set required. There is no service decorator, as with a
component. So, any class could be a service.
Pipe: This is mainly used to process an expression in the template and return
some data (that is, rounding numbers and adding currency) using the {{
expression | filter }} format. For example, {{amount | currency}}
will return $100 if the amount variable is 100.

Creating Our First App with Ionic Chapter 1

[15]

Ionic automatically creates a project folder structure that looks as follows:

You will spend most of your time in the /src folder because that's where your application
components will be placed. This is very different from Ionic 1.x because the /www folder
here is actually compiled by TypeScript. If you build the app for iOS, the Ionic build
command line will also create another copy at /platforms/ios/www, which is specifically
for Cordova to point to. Another interesting change in Angular is that your app has a root
component, which is located at /src/app folder, and all other pages or screens are in
/src/pages. Since Angular is component based, each component will come with HTML,
CSS, and JS. If you add in more JavaScript modules, you can put them in the /src/assets
folder, or a better practice is to use npm install so that it's automatically added in the
/node_modules folder. Ionic has completely gotten rid of Grunt and Bower. Everything is
simplified into just package.json, where your third-party dependencies will be listed.

There is no need to modify the /platforms or /plugins folder manually unless
troubleshooting needs to be done. Otherwise, the Ionic or Cordova CLI will automate the
content of these folders.

Creating Our First App with Ionic Chapter 1

[16]

By default, from the Ionic template, the Angular app name is called MyApp. You will see
something like this in app/app.component.ts, which is the root component file for the
entire app:

This root component of your app and all content will be injected inside <ion-app></ion-
app> of index.html.

Note that if you double-click on the index.html file to open it in the browser, it will show
a blank page. This doesn't mean that the app isn't working. The reason for this is that the
Angular component of Ionic dynamically loads all the .js files and this behavior requires
server access via the http:// protocol. If you open a file locally, the browser automatically
treats it as a file protocol (file://), and therefore Angular will not have the ability to load
additional .js modules to run the app properly. There are several methods of running the
app, which will be discussed later.

Creating Our First App with Ionic Chapter 1

[17]

Creating a HelloWorld app via Ionic Creator
Another way to start your app code base is to use Ionic Creator. This is a great interface
builder to accelerate your app development with the drag and drop style. You can quickly
take the existing components and position them to visualize how it should look in the app
via a web-based interface. Most common components, such as buttons, images, and
checkboxes are available.

Ionic Creator allows the user to export everything as a project with all .html, .css, and
.js files. You should be able to edit content in the /app folder to build on top of the
interface.

Getting ready
Ionic Creator requires registration for a free account at https://creator.ionic.io/ to get
started.

How to do it...
Create a new project called myApp:1.

https://creator.ionic.io/

Creating Our First App with Ionic Chapter 1

[18]

Validate, to ensure that you see the following screen:2.

The center area is your app interface. The left side gives you a list of pages. Each3.
page is a single route. You also have access to a number of UI components that
you would normally have to code by hand in an HTML file. The panel on the
right shows the properties of any selected component.
You're free to do whatever you need to do here by dropping components to the4.
center screen. If you need to create a new page, you have to click on the Add
Page in the Pages panel. Each page is represented as a link, which is basically a
route in Angular UI-Router's definition. To navigate to another page (for
example, after clicking a button), you can just change the link property and point
to that page.
There is an edit button on top, where you can toggle back and forth between the5.
edit mode and preview mode. It's very useful to see how your app will look and
behave.
Once completed, click the export button at the top of the navigation bar. You6.
have the following four options:

Use the Ionic CLI tool to get the code
Download the project as a ZIP file
Export it to native code (similar to PhoneGap Build), as shown:

Creating Our First App with Ionic Chapter 1

[19]

Export it to the preview mode using the Creator app

The best way to learn Ionic Creator is to play with it.

There's more...
To switch to the preview mode, where you can see the UI in a device simulator, click on the
switch button in the top right to enable Test, as illustrated:

In this mode, you should be able to interact with the components in the web browser as if
they're actually deployed on the device.

If you break something, it's very simple to start a new project. It's a great tool to use for
prototyping and to get the initial template or project scaffolding. You should continue
coding in your regular IDE for the rest of the app. Ionic Creator doesn't do everything for
you yet. For example, if you want to access specific Cordova plugin features, you have to
write that code separately.

Also, if you want to tweak the interface outside of what is allowed within Ionic Creator, it
will also require specific modifications to the .html and .css files.

Viewing the app using your web browser
In order to run the web app, you need to turn your /www folder into a web server. Again,
there are many methods to do this and people tend to stick with one or two ways to keep
things simple. A few other options are unreliable, such as Sublime Text's live watch package
or a static page generator (for example, the Jekyll and Middleman apps). They are slow to
detect changes and may freeze your IDE, so won't be mentioned here.

Creating Our First App with Ionic Chapter 1

[20]

Getting ready
The recommended method is to use the Ionic serve command line. It basically launches an
HTTP server so that you can open your app in a desktop browser.

How to do it...
First, you need to be in the project folder. Let's assume that it is the side menu1.
HelloWorld:

$ cd HelloWorld_Sidemenu

From there, just issue the simple command line, as shown:2.

$ ionic serve

That's it! There's no need to go into the /www folder or figure out which port to use. The
command line will provide the following options while the web server is running:

Creating Our First App with Ionic Chapter 1

[21]

The most common option to use here is Ctrl + C to quit when you are done.

There are additional steps to view the app with the correct device resolution:

Install Google Chrome if it's not already on your computer.1.
Open the link (for example, http://localhost:8100/) from Ionic serve in2.
Google Chrome.
Turn on Developer Tools. For example, in Mac's Google Chrome, navigate to3.
View | Developer | DeveloperTools:

Click on the small mobile icon in the Chrome Developer Tools area, as illustrated:4.

Creating Our First App with Ionic Chapter 1

[22]

There will be a long list of devices to pick from, as shown:5.

After selecting a device, you need to refresh the page to ensure that the UI is6.
updated. Chrome should give you the exact view resolution of the device.

Creating Our First App with Ionic Chapter 1

[23]

Most developers would prefer to use this method to code, as you can debug the app using
Chrome Developer Tools. It works exactly like any other web application. You can create
breakpoints or output variables to the console.

How it works...
Note that Ionic serve is actually watching everything under the /src folder and transpiring
the TypeScript code into JavaScript under /www on the fly. This makes sense because there
is no need for the system to scan through every single file when the probability of it
changing is very small.

Creating Our First App with Ionic Chapter 1

[24]

While the web server is running, you can go back to the IDE and continue coding. For
example, let's open page1.html or any other template file and change the first line to this:

<ion-view view-title="Updated Playlists">

Go back to the web browser where Ionic opened the new page; the app interface will
change the title bar right away without requiring you to refresh the browser. This is a very
nice feature when there is a lot of back and forth between code changes and instantly
checking how it works or looks in the app.

Viewing the app using the Ionic CLI
So far, you have been testing the web app portion of Ionic. Most of the time, you will need
to actually run the app on a physical device or at least an emulator to see how the app
behaves and whether all native features work.

Getting Ready
You will need to have the emulator installed. iOS emulator comes when you do npm install,
-g ios-sim, and the Android emulator comes with Android Studio. To test the app on a
physical device, you must connect the device to your computer via a USB connection.

How to do it...
Add the specific platform (such as iOS) and build the app using the following1.
command line:

$ ionic cordova platform add ios
$ ionic cordova build ios

Note that you need to add the platforms to build the app. However, if you use2.
the standard template from the Ionic CLI, it should already have the iOS platform
included. To build and run for Android, you can replace iOS with Android.
To emulate the app using the ios emulator, use the following command line:3.

$ ionic cordova emulate ios

Creating Our First App with Ionic Chapter 1

[25]

To run the app on the actual physical iPhone device, use the command line as4.
shown:

$ ionic cordova run ios --device

Viewing the app using Xcode for iOS
You could run the app using Xcode (in Mac) as well.

How to do it...
Go to the /platforms/ios folder.1.
Look for the folder with .xcodeproj and open it in Xcode.2.
Click on the iOS device icon and select your choice of iOS simulator:3.

Click on the run button and you should be able to see the app running in4.
the simulator.

Creating Our First App with Ionic Chapter 1

[26]

There's more...
You can connect a physical device via a USB port and it will show up in the iOS Device list
for you to pick it. Then, you can deploy the app directly on your device. Note that iOS
Developer membership is required for this. This method is more complex than just viewing
the app via a web browser.

However, it's a must when you want to test out your code regarding device features, such
as cameras or maps. If you change the code in the /src folder and want to run it again in
Xcode, you have to do Ionic Cordova build ios first, because the running code is in the
Staging folder of your Xcode project, as illustrated:

For debugging, the Xcode console can output JavaScript logs as well. However, you could
use the more advanced features of Safari's Web Inspector (which is similar to Google
Chrome's Developer Tools) to debug your app. Note that only Safari can debug a web app
running on a connected physical iOS device because Chrome does not support this on a
Mac. It's easy to enable this capability, and it can be done with the following steps:

Allow remote debugging for an iOS device by navigating to Settings | Safari |1.
Advanced and enabling Web Inspector:

Creating Our First App with Ionic Chapter 1

[27]

Connect the physical iOS device to your Mac via USB and run the app2.
Open the Safari browser3.
Select Develop | your device's name or iOS Simulator | index.html, as shown:4.

If you don't see the Develop menu in Safari, you need to navigate to Preferences
|Advanced and check on Show Develop menu in menu bar.

Safari will open a new console just for that specific device, just as it's running within the
computer's Safari.

Creating Our First App with Ionic Chapter 1

[28]

Viewing the app using Genymotion for
Android
While it's possible to install the Google Android simulator, many developers have an
inconsistent experience on a Mac. There are many commercial and free alternatives that
offer more convenience and a wide range of device support. Genymotion provides some
unique advantages, such as allowing users to switch the Android model and version,
supporting networking from within the app, and allowing SD card simulation.

In this section, you will learn how to set up an Android developer environment (on a Mac
in this case) first. Then, you will install and configure Genymotion for mobile app
development.

How to do it...
The first step is to set up the Android environment properly for development.1.
Download and install Android Studio from
https://developer.android.com/studio/index.html.
You might be asked to install other libraries if your machine doesn't have the2.
correct dependencies. If that is the case, you should run sudo apt-get
install lib32z1 lib32ncurses5 lib32bz2-1.0 lib32stdc++6 from the
command line to install them.
Run Android Studio.3.

You need to install all of the required packages, such as Android SDK. Just click4.
Next twice on the setup wizard screen and click on the Finish button to start the
packages' installation.

https://developer.android.com/studio/index.html

Creating Our First App with Ionic Chapter 1

[29]

After the installation is complete, you need to install additional packages and5.
other SDK versions. On the Quick Start screen, select Configure:

After this, select SDKManager, as shown:6.

Creating Our First App with Ionic Chapter 1

[30]

It's good practice to install the previous version, such as Android5.0.1 and 5.1.1.7.
You may also want to install all Tools and Extras for later use:

Click on the Install packages... button.8.
Check the box on Accept License and select Install.9.

Creating Our First App with Ionic Chapter 1

[31]

The SDK Manager will give you an SDK path on the top. Make a copy of this10.
path because you need to modify the environment path.
Go to the terminal and type the following command:11.

$ touch ~/.bash_profile; open ~/.bash_profile

This will open a text editor to edit your bash profile file. Insert the following12.
the line, where /YOUR_PATH_TO/android-sdk should be the SDK Path that you
copied earlier:

export ANDROID_HOME=/YOUR_PATH_TO/android-sdk
export PATH=$ANDROID_HOME/platform-tools:$PATH
export PATH=$ANDROID_HOME/tools:$PATH

Save and close that text editor.13.
Go back to the terminal and type:14.

$ source ~/.bash_profile
$ echo $ANDROID_HOME

You should see the output as your SDK path. This verifies that you have correctly15.
configured the Android developer environment.
The next step is to install and configure Genymotion. Download and install16.
Genymotion and Genymotion Shell from sudo apt-get install lib32z1
lib32ncurses5 lib32bz2-1.0 lib32stdc++6.
Run Genymotion.17.
Click on the Add button to start adding a new Android device, as illustrated:18.

Creating Our First App with Ionic Chapter 1

[32]

Select the device that you want to simulate. In this case, let's select Samsung19.
Galaxy S5, as follows:

You will see the device being added to your virtual devices. Click on that device.20.
Then click on Start.21.

The simulator will take a few seconds to start and will show another window.22.
This is just a blank simulator without your app running inside it yet.
Run Genymotion Shell.23.

Creating Our First App with Ionic Chapter 1

[33]

From Genymotion Shell, you need to get a device list and keep the IP address of24.
the device attached, which is the Samsung Galaxy S5. Type devices list.
Type adb connect 192.168.56.101 (or whatever the IP address was that you25.
saw earlier from the devices list command line).
Type adb devices to confirm that it is connected.26.
Type Ionic Cordova platform adds Android to add Android as a platform27.
for your app.
Finally, type Ionic Cordova run android.28.
You should be able to see the Genymotion window showing your app.29.

Although there are many steps to take to get this working, it's a lot less likely that you have
to go through the same process over. Once your environment is set up, all you need to do is
to leave Genymotion running, while writing code. If there is a need to test the app on
different Android devices, it's easy to add another virtual device in Genymotion and
connect to it.

Viewing the app using Ionic View
Ionic View is an app viewer that you can download from the App Store or Google Play.
When you are in the development process and the app is not complete, you don't want to
submit it to either Apple or Google right away but limit access to your testers. Ionic View
can help load your own app inside Ionic View and make it behave like a real app with some
access to native device features. Additionally, Ionic View lets you use your app on an iOS
device without any certification requirements.

Since Ionic View uses the Cordova InAppBrowser plugin to launch your app, all the device
features have to be hacked to make it work. Currently, Ionic View only supports SQLite,
battery, camera, device motion, device orientation, dialog/notification, geolocation,
globalization, network information, vibration, keyboard, status bar, barcode scanner, and
zip. It's a good idea to check the updated support list prior to using Ionic View to ensure
that your app works properly.

How to do it...
There are two ways to use Ionic View. You can either upload your own app or load
someone else's app ID. If you test your own app, follow these steps:

Download Ionic View from either the App Store or Google Play.1.

Creating Our First App with Ionic Chapter 1

[34]

Make sure to register an account on ionic.io.2.
Go to your app's project folder.3.
Search for the Ionic upload.4.
Enter your credentials.5.
The CLI will upload the entire app and give you the app ID, which is 152909f7 in6.
this case. You may want to keep this app ID to share with other testers later.

Open the Ionic View app on the mobile device and log in if you haven't done so7.
already.
Now, you should be able to see the app name on your MY APPS page. Go ahead8.
and select the app name (myApp in this case), as illustrated:

http://ionic.io

Creating Our First App with Ionic Chapter 1

[35]

Select VIEW APP to run the app, as shown:9.

Creating Our First App with Ionic Chapter 1

[36]

You will see that the app interface appears with initial instructions on how to exit10.
the app. Since your app will cover the full screen of Ionic View, you need to
swipe down using three fingers, as illustrated, to exit back to Ionic View:

If there is no code update, the process is the same, except that you need to select SYNC TO
LATEST from the menu.

There's more...
To summarize, there are several benefits of using Ionic View, some of which are as follows:

It's convenient because there is only one command line to push the app
Anyone can access your app by entering the app ID
There is no need to have iOS Developer membership to start developing with
Ionic. Apple has its own TestFlight app, which is very similar
You can maintain an agile development process by having testers test the app as
you develop it
Ionic View supports a wide range of device features, and that support continues
to grow

2
Adding Ionic Components

In this chapter, we will cover the following tasks related to using Ionic components:

Adding multiple pages using tabs
Adding left and right menu navigation
Navigating multiple pages with state parameters
Using menu, tags, and segment together in an app
Using the Ionic grid to create a complex UI

Introduction
It's possible to write a simple app with a handful of pages. Ionic provides a lot of out-of-the-
box components that allow simple plug and play operations. When an app grows,
managing different views and their custom data at a specific time or triggered event can be
very complex. Ionic comes with some changes to the handling of state and navigation. In
Ionic 1, you could use UI-Router for advanced routing management mechanisms. In Ionic,
NavController enables the push/pop implementation of the navigation.

Since Ionic introduces many new components, you have to understand how these
components impact on your app's state hierarchy and when each state is triggered.

Adding multiple pages using tabs
This section will explain how to work with the Ionic tab interface and expand it to other use
cases. The example used is very basic, with three tabs and some sample Ionic components
in each tab. This is a very common structure that you will find in many apps. You will learn
how Ionic structures the tab interface and how it translates to individual folders and files.

Adding Ionic Components Chapter 2

[38]

In this example, you will build three tabs, as follows:

A tab showing a simple text-only page to explain where to place the components
A tab showing a signup form
A tab showing a horizontal slider box

Although the app is very straightforward, it will teach you a lot of key concepts in Angular
and Ionic. Some of them are the component decorators, themes, and the TypeScript
compiler process.

Here is a screenshot of the example app with the middle tab selected:

Adding Ionic Components Chapter 2

[39]

Getting ready
Since this is the first app you are building from scratch, you need to ensure that you have
followed through Chapter 1, Creating Our First App with Ionic, to set up the environment
and Ionic CLI. If you already had Ionic 1, it must be updated. For this, you can use the same
command line as was used to install it, which is as follows:

$ sudo npm install -g cordova ionic ios-sim

How to do it...
The following are the instructions to create example app:

Create a new PagesAndTabs app using the tabs template and go into the1.
PagesAndTabs folder to start Visual Studio Code, as shown:

$ ionic start PagesAndTabs tabs
$ cd PagesAndTabs
$ code .

The blank template only gives you a basic page. Open the Finder app in Mac or2.
Windows Explorer in Windows to see the following folder structure:

Adding Ionic Components Chapter 2

[40]

You will only modify what is in the /src folder and not /www, as in Ionic
1. Everything in the /src folder will be built and the /www folder will be
created automatically. We will also reserve the folder names and filenames
as much as possible, since the main goal here is to understand how the tab
template works and the areas you can modify.

Open and edit the /src/pages/tabs/tabs.html template file with the3.
following code:

<ion-tabs>
 <ion-tab [root]="tab1Root" tabTitle="One"
 tabIcon="water"></ion-tab> <ion-tab [root]="tab2Root"
 tabTitle="Two"
 tabIcon="leaf"></ion-tab> <ion-tab [root]="tab3Root"
 tabTitle="Three"
 tabIcon="flame"></ion-tab>
</ion-tabs>

The new template only updates the title and icons. This is because this
example wants to reserve the naming of the tab root variables. You could
add more tabs using <ion-tab>, as needed.

To add a page, you need to ensure that tab1Root points to an existing folder and4.
template. Since you will reuse the existing tab structure, you can just modify the
/src/pages/home/home.html template, as shown, as this is your first page:

<ion-header>
 <ion-navbar>
 <ion-title>One</ion-title>
 </ion-navbar>
</ion-header>

<ion-content padding>
 <h2>Welcome to Ionic!</h2>
 <p>
 This starter project comes with simple tabs-based layout for
 apps
 that are going to primarily use a Tabbed UI.
 </p>
 <p>
 Take a look at the <code>src/pages/</code> directory to add or
 change tabs, update any existing page or create new pages.
 </p>
</ion-content>

Adding Ionic Components Chapter 2

[41]

Also, in the same /home folder, edit home.ts, which corresponds to the same5.
template, and enter the code here:

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {

 constructor(public navCtrl: NavController) {

 }

}

For the second page, tab2Root, you will follow a similar process by editing the6.
/src/pages/about/about.html template as shown:

<ion-header>
 <ion-navbar>
 <ion-title>
 Two
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content>
 <ion-list>
 <ion-item>
 <ion-input type="text" placeholder="First Name"></ion-input>
 </ion-item>

 <ion-item>
 <ion-input type="text" placeholder="Last Name"></ion-input>
 </ion-item>

 <div padding>
 <button ion-button primary block>Create Account</button>
 </div>
 </ion-list>
</ion-content>

Adding Ionic Components Chapter 2

[42]

Edit about.ts in the same folder as in the preceding step:7.

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';

@Component({
 selector: 'page-about',
 templateUrl: 'about.html'
})
export class AboutPage {

 constructor(public navCtrl: NavController) {

 }

}

Finally, for the tab3Root page, you can change the template so that it will show8.
a slider in /src/pages/contact/contact.html, as follows:

<ion-header>
 <ion-navbar>
 <ion-title>
 Three
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content>
 <ion-slides #mySlider index=0
(ionSlideDidChange)="onSlideChanged($event)">
 <ion-slide style="background-color: green">
 <h2>Slide 1</h2>
 </ion-slide>

 <ion-slide style="background-color: blue">
 <h2>Slide 2</h2>
 </ion-slide>

 <ion-slide style="background-color: red">
 <h2>Slide 3</h2>
 </ion-slide>

 </ion-slides>
</ion-content>

Adding Ionic Components Chapter 2

[43]

In the /contact folder, you need to edit contact.ts with the following code:9.

import { Component, ViewChild } from '@angular/core';
import { NavController, Slides } from 'ionic-angular';

@Component({
 selector: 'page-contact',
 templateUrl: 'contact.html'
})
export class ContactPage {
 @ViewChild('mySlider') slider: Slides;
 constructor(public navCtrl: NavController) {

 }
 onSlideChanged(e) {
 let currentIndex = this.slider.getActiveIndex();
 console.log("You are on Slide ", (currentIndex + 1));
 }

}

Go to your Terminal and type the following command line to run the app:10.

$ ionic serve

How it works...
There is actually a lot of new information and a lot of concepts in this simple app. At a
higher level, this is how the app is structured:

When you run the app, Cordova loads the /www/index.html file to open first.
All of your code and templates are combined into one file,
/www/build/main.js.
The /app folder is where most of your logic belongs. It starts with
app.component.ts as the Bootstrap file.
Each subfolder under the /pages folder will represent a page, which is a new
concept in Ionic. A page consists of an HTML template, TypeScript code, and an
.scss file to customize that specific template only.
The /theme folder will contain variables and customizations at a global level to
override the default theme from Ionic.

Now, let's start with everything inside the /app folder.

Adding Ionic Components Chapter 2

[44]

The app.component.ts file only imports all the required pages and components to start
the app. This example needs the following four imports by default:

import { Component } from '@angular/core';
import { Platform } from 'ionic-angular';
import { StatusBar } from '@ionic-native/status-bar';
import { SplashScreen } from '@ionic-native/splash-screen';
import { TabsPage } from '../pages/tabs/tabs';

You must always import Component, Platform, and StatusBar from Ionic, because that
will give you the @Component decorator to Bootstrap your app. A decorator is placed in
front of its class to provide metadata for the class. The following example shows that the
MyApp class has the characteristics of a component with a template property:

@Component({
 templateUrl: 'app.html'
})
export class MyApp {
 rootPage:any = TabsPage;

 constructor(platform: Platform, statusBar: StatusBar, splashScreen:
 SplashScreen) {
 platform.ready().then(() => {
 // Okay, so the platform is ready and our plugins are available.
 // Here you can do any higher level native things you might need.
 statusBar.styleDefault();
 splashScreen.hide();
 });
 }
}

Since this is a simple example, you don't need to declare much except the template
information. Similar to Ionic 1, you can use either template or templateUrl to point to a
local file. In our case, it is app.html and it has the following content:

<ion-nav [root]="rootPage"></ion-nav>

Classes are another new concept in ES6. However, developers have been declaring classes
in various programming languages, such as Java and C#. In ES6, you can use classes to be
able to efficiently reuse code with better abstraction. A class could exist within that file
context only. Consider the following example:

class Example {}

Adding Ionic Components Chapter 2

[45]

However, if you want to use that class somewhere else, you have to export:

export class Example {}

In a class, you can have the following:

A variable, such as this.a or this.b
A method, such as doSomething()
A constructor that automatically executes (or initializes) when an object is created
using the class

More information about classes can be found at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Referenc

e/Classes.

Another nice thing about ES6 is the arrow function, as shown:

platform.ready().then(() => {

});

The preceding is the same as:

platform.ready().then(function() {

});

An example (by passing a parameter) is as follows:

var a1 = a.map(s => s.length);

The same code can be rewritten as shown:

var a1 = a.map(function(s){ return s.length });

More information about the arrow function can be found at:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Referenc

e/Functions/Arrow_functions.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

Adding Ionic Components Chapter 2

[46]

One important thing in app.component.ts is that you must declare a root page. You can
see that from the template via [root]="rootPage", and then again in the constructor via
this.rootPage = TabsPage. The square brackets, [], around root mean that it's a
property of that DOM node. This is a new concept from Angular as it's trying to get rid of
using a DOM property, such as ngmodel (which tends to result in lower performance). The
assignment here is to tell Ionic 2 that you will use TabsPage, which was imported earlier,
and assign that as a root page. Then, the ion-nav directive will look at its own root
property to start rendering the page. There seem to be a lot of abstractions and boilerplate
compared to Ionic 1. However, this practice is recommended to ensure better separation
and scaling.

Once you understand how app.component.ts works, it's easier to grasp the concepts
from the other pages. Let's take a look at the /pages/tabs/tabs.ts file, because that's
where you define the TabsPage class. From this file, you need to import three other pages,
which are the following:

import { Component } from '@angular/core';
import { HomePage } from '../home/home';
import { AboutPage } from '../about/about';
import { ContactPage } from '../contact/contact';

The template for this page is in tabs.html. However, you could also put the template in a
string inside the .ts file, as follows:

@Component({
 template:
 ` <ion-tabs>
 <ion-tab [root]="tab1Root" tabTitle="One"
 tabIcon="water"></ion-tab><ion-tab [root]="tab2Root" tabTitle="Two"
 tabIcon="leaf"></ion-tab><ion-tab [root]="tab3Root"
 tabTitle="Three"
 tabIcon="flame"></ion-tab>
 </ion-tabs>`
})

ES6 also introduces a new feature, called a multiline template string. You probably realize
that the preceding template string does not have any join() or string combine (+)
operators. The reason is that you can use back-tick (` `) to allow a multiline template.

Adding Ionic Components Chapter 2

[47]

So, instead of doing this:

console.log("string text line 1\n"+
"string text line 2");

You can now do this:

console.log(`string text line 1
string text line 2`);

Below the page decorator, you need to export TabsPage (so that you can use it in
app.component.ts) and tell the constructor to use tab1Root, tab2Root, and tab3Root
as the roots for other pages in the tab navigation, as shown:

export class TabsPage {
 tab1Root: any = HomePage;
 tab2Root: any = AboutPage;
 tab3Root: any = ContactPage;
 constructor() {
 }
}

Ionic tab declaration is very similar to Ionic 1, shown as follows:

<ion-tabs>
 <ion-tab><ion-tab>
</ion-tabs>

You just have to make sure that the root property is pointing to another page.

tab1Root is actually very simple to understand, because it's a text page where you add
your own content and design within the <ion-content> element, as shown:

<ion-content padding>
 <h2>Welcome to Ionic 2 Tabs!</h2>
 <p>
 This starter project comes with simple tabs-based layout for
 apps that are going to primarily use a Tabbed UI.
 </p>
</ion-content>

If you want to change the title, you can simply change the following line:

<ion-title>One</ion-title>

Adding Ionic Components Chapter 2

[48]

tab2Root and tab3Root are very similar in terms of how they are structured. Ionic gives
you the convenience of binding to an event right in the AboutPage class, as shown:

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';

@Component({
 selector: 'page-about',
 templateUrl: 'about.html'
})
export class AboutPage {

 constructor(public navCtrl: NavController) {

 }

 ionViewWillEnter() {
 console.log('Enter Page 2');
 }
}

In the preceding example from about.ts, if the user enters tab2Root, it will call the
ionViewWillEnter() function automatically. This is a significant improvement because,
in Ionic 1, you had to use $ionicView.enter on the $scope variable. Again, the concept
of $scope no longer exists in Angular.

For a scalable app, it's better to separate templates into different files and avoid co-mingling
templates inside the JavaScript code. templateUrl must always point to the relative
location of the .html file.

In ./src/pages/contact/contact.html, you can use the slider box and bind to slide
the change event, as shown:

<ion-header>
 <ion-navbar>
 <ion-title>
 Three
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content>
 <ion-slides #mySlider index=0
(ionSlideDidChange)="onSlideChanged($event)">
 <ion-slide style="background-color: green">
 <h2>Slide 1</h2>

Adding Ionic Components Chapter 2

[49]

 </ion-slide>

 <ion-slide style="background-color: blue">
 <h2>Slide 2</h2>
 </ion-slide>

 <ion-slide style="background-color: red">
 <h2>Slide 3</h2>
 </ion-slide>

 </ion-slides>
</ion-content>

To get an event in Angular (or Ionic), you have to use parentheses, (), because the concept
of ng-click or similar is no longer available. In this case, if the slide is changed based on
ionSlideDidChange, the ion-slides directive will trigger the onSlideChanged()
function in the ContactPage class.

You cannot really run the TypeScript directly without having TypeScript to transpile the
code into JavaScript. This process happens automatically behind the scenes when you run
ionic serve. Also, when you change some code in the project, Ionic will detect those
changes and rebuild the files before updating the browser. There is no need to hit refresh
every time.

See also
The Mozilla Developer Network has very extensive documentation on
ECMAScript 6, which you can find at the following link:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScr

ipt/ECMAScript_6_support_in_Mozilla.
For Angular 2-specific information, you can read directly from the Angular 2
documentation at https://angular.io/docs/ts/latest/index.html.

Adding left and right menu navigation
Menu navigation is a very common component in many mobile apps. You can use the
menu to allow users to change to different pages in the app, including login and logout. The
menu could be placed on the left or right of the app. Ionic also lets you detect events and
further customize the menu's look and feel.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in_Mozilla
https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in_Mozilla
https://angular.io/docs/ts/latest/index.html

Adding Ionic Components Chapter 2

[50]

This is a screenshot of the app you will develop:

The app will have two pages and two menus. You can toggle either the left or right menu
(but not both at the same time). In reality, it is much less likely that you will have both
menus, but for the purposes of demonstration, this app will include both menus as the app
will show the different properties of the menus that you can set. The left menu will change
the page and the right menu will allow you to capture the exact item that is clicked on.

Getting ready
This app can run on your web browser, so there is no need to have a physical device
available. Again, you only need to have Ionic available on your computer.

How to do it...
Here are the instructions to create example app:

Create a new LeftRightMenu app using the sidemenu template, as shown, and1.
go to the LeftRightMenu folder:

$ ionic start LeftRightMenu sidemenu
$ cd LeftRightMenu

Adding Ionic Components Chapter 2

[51]

Check that your app folder structure is similar to the following:2.

Edit ./src/app/app.component.ts and replace it with the following code:3.

import { Component, ViewChild } from '@angular/core';
import { Nav, Platform } from 'ionic-angular';
import { StatusBar } from '@ionic-native/status-bar';
import { SplashScreen } from '@ionic-native/splash-screen';

import { HomePage } from '../pages/home/home';
import { ListPage } from '../pages/list/list';

@Component({
 templateUrl: 'app.html'
})
export class MyApp {
 @ViewChild(Nav) nav: Nav;
 text: string = '';
 rootPage: any = HomePage;

 pages: Array<{title: string, component: any}>;

 constructor(public platform: Platform, public statusBar:
StatusBar, public splashScreen: SplashScreen) {
 this.initializeApp();

Adding Ionic Components Chapter 2

[52]

 // used for an example of ngFor and navigation
 this.pages = [
 { title: 'Home', component: HomePage },
 { title: 'List', component: ListPage }
];

 }

 initializeApp() {
 this.platform.ready().then(() => {
 // Okay, so the platform is ready and our plugins are
available.
 // Here you can do any higher level native things you might
need.
 this.statusBar.styleDefault();
 this.splashScreen.hide();
 });
 }

 openPage(page) {
 // Reset the content nav to have just this page
 // we wouldn't want the back button to show in this scenario
 this.nav.setRoot(page.component);
 }

 rightMenuClick(text) {
 this.text = text;
 }
}

Open and edit the./src/app/app.html file with the following code:4.

<ion-menu id="leftMenu" [content]="content" side="left"
type="overlay">
 <ion-header>
 <ion-toolbar>
 <ion-title>Menu</ion-title>
 </ion-toolbar>
 </ion-header>

 <ion-content>
 <ion-list>
 <button menuClose ion-item *ngFor="let p of pages"
 (click)="openPage(p)">
 {{p.title}}
 </button>
 </ion-list>
 </ion-content>

Adding Ionic Components Chapter 2

[53]

</ion-menu>

<ion-menu id="rightMenu" [content]="content" side="right"
type="reveal">
 <ion-header>
 <ion-toolbar>
 <ion-title>Items</ion-title>
 </ion-toolbar>
 </ion-header>

 <ion-content>
 <ion-list>
 <button ion-item (click)="rightMenuClick('Item One')">
 Item One
 </button>
 <button ion-item (click)="rightMenuClick('Item Two')">
 Item Two
 </button>
 </ion-list>

 <ion-card *ngIf="text">
 <ion-card-content>
 You just clicked {{ text }}
 </ion-card-content>
 </ion-card>
 </ion-content>

</ion-menu>

<!-- Disable swipe-to-go-back because it's poor UX to combine STGB
with side menus -->
<ion-nav [root]="rootPage" #content swipeBackEnabled="false"></ion-
nav>

There are two menus as siblings in this template. They are also at the same
level as ion-nav and not a parent or child. This structure is important for
menu navigation to work.

Now let's create two pages, for which you only have to modify the standard5.
pages from the sidemenu template. Open and edit the
./src/app/pages/home/home.html template:

<ion-header>
 <ion-navbar>
 <ion-title>Getting Started</ion-title>
 <ion-buttons left>

Adding Ionic Components Chapter 2

[54]

 <button ion-button menuToggle="leftMenu">
 <ion-icon name="menu"></ion-icon>
 </button>
 </ion-buttons>

 <ion-buttons right>
 <button ion-button menuToggle="rightMenu">
 <ion-icon name="menu"></ion-icon>
 </button>
 </ion-buttons>
 </ion-navbar>
</ion-header>

<ion-content padding class="getting-started">
 <h3>Welcome to the Menu Experiment</h3>
 <p>
 You can open both left and right menu using below buttons or
top
 navigation bar!
 </p>
 <ion-row>
 <ion-col width-50>
 <button ion-button primary block menuToggle="leftMenu">Toggle
Left</button>
 </ion-col>
 <ion-col width-50>
 <button ion-button primary block
menuToggle="rightMenu">Toggle Right</button>
 </ion-col>
 </ion-row>
</ion-content>

In the same folder, open and edit the .css classes via home.scss, as shown:6.

page-home {
 .getting-started {
 p {
 margin: 20px 0;
 line-height: 22px;
 font-size: 16px;
 }
 }
 .bar-button-menutoggle {
 display: inline-flex;
 }
}

Adding Ionic Components Chapter 2

[55]

Note that since you're using the sidemenu template, it already comes with
a second page (for example, list). There is no need to modify that page in
this specific example.

Open and edit the template for the second page at7.
./src/pages/list/list.html, as shown:

<ion-header>
 <ion-navbar>
 <button ion-button menuToggle>
 <ion-icon name="menu"></ion-icon>
 </button>
 <ion-title>List</ion-title>
 </ion-navbar>
</ion-header>

<ion-content>
 <ion-list>
 <button ion-item *ngFor="let item of items"
(click)="itemTapped($event, item)">
 <ion-icon [name]="item.icon" item-left></ion-icon>
 {{item.title}}
 <div class="item-note" item-right>
 {{item.note}}
 </div>
 </button>
 </ion-list>
 <div *ngIf="selectedItem" padding>
 You navigated here from {{selectedItem.title}}
 </div>
</ion-content>

Go to your Terminal and run the app:8.

$ ionic serve

Adding Ionic Components Chapter 2

[56]

How it works...
Since this app is just an introduction to menu navigation, it will not manage page routing
and state parameters. At a higher level, this is how the app flows:

app.ts loads both of the menu templates in app.html.
The left menu will trigger the openPage() function to open PageTwo.
The right menu will trigger the rightMenuClick() function to change the
this.text property and be displayed on the screen.

In the app.html template, the left menu has the following properties:

side="left" type="overlay"

However, the right menu has the following assigned instead:

side="right" type="reveal"

The side property will determine where on the screen the menu should show. There are
two types of menus. The overlay option will leave the center page as it is, without moving.
The reveal option will push the entire screen to show the menu. Which type you pick
depends on the design of your app.

Each ion-menu directive must have [content]="content" declared because it will use
the content area to bind swipe left or right. In this case, it is basically a local variable in ion-
nav, as follows:

<ion-nav id="nav" [root]="rootPage" #content
swipeBackEnabled="false"></ion-nav>

The use of ion-toolbar inside ion-menu is optional if you want to have the title for your
menu. The key to having a menu item displayed is to use ion-list and ion-item. You
can loop through an array to display the menu items dynamically, as illustrated:

 <ion-list>
 <button menuClose ion-item *ngFor="let p of pages"
 (click)="openPage(p)">
 {{p.title}}
 </button>
 </ion-list>

Adding Ionic Components Chapter 2

[57]

*ngFor is a replacement for ng-repeat in Ionic 1. You need to use let p because it's the
same as declaring a local variable named p. This is best practice for variable isolation.
Otherwise, the concept is very similar to Ionic 1, as you can grab p.title for each item in
the pages array.

On the right menu, instead of going to a different page via nav.setRoot(), you just set
some text and dynamically display the text inside the menu, as shown:

 <ion-card *ngIf="text">
 <ion-card-content>
 You just clicked {{ text }}
 </ion-card-content>
 </ion-card>

So, if the text variable doesn't exist (which means that the user has not clicked on anything
yet), the ion-card will not show anything via *ngIf.

For each page, you have to declare the same ion-navbar. Otherwise, you will lose the top
navigation and buttons to the menus:

<ion-header>
 <ion-navbar>
 <ion-title>Getting Started</ion-title>

 <ion-buttons start>
 <button ion-button menuToggle="leftMenu">
 <ion-icon name="menu"></ion-icon>
 </button>
 </ion-buttons>
 <ion-buttons end>
 <button ion-button menuToggle="rightMenu">
 <ion-icon name="menu"></ion-icon>
 </button>
 </ion-buttons>
 </ion-navbar>
</ion-header>

Note that leftMenu and rightMenu must be the same id you used earlier, in the
app.html template.

Adding Ionic Components Chapter 2

[58]

On the first page, there are two buttons to trigger the menus from within the content page
as well, as shown:

 <ion-row>
 <ion-col width-50>
 <button primary block menuToggle="leftMenu">Toggle
 Left</button>
 </ion-col>
 <ion-col width-50>
 <button primary block menuToggle="rightMenu">Toggle
 Right</button>
 </ion-col>
 </ion-row>

These two buttons also call menuToggle to trigger the menu. The buttons are placed within
the Ionic grid system. Since Ionic uses Flexbox, it is very simple to use—you just need to
create ion-col and ion-row. The width property, with a number, will determine the
width percentage.

See also
For further usage of the Ionic menu, you can check out the following link:
http://ionicframework.com/docs/v2/components/#menus.
The API documentation for the Ionic menu is also available at:
http://ionicframework.com/docs/v2/api/components/menu/Menu/.

Navigating multiple pages with state
parameters
App navigation is an important topic because it's at the core of a user's experience. You
want to manage the user's expectation of what will happen after they submit a form or after
they go to a new tab. In addition, you may want to ensure that the user data is available on
the correct page or in the correct state. This could also get more complicated when the
requirement of a back navigation is involved.

This section will teach you how to work with NavController and NavParams, which are
the two important base classes to manage all navigation for the app. This is a screenshot of
the app you will develop:

http://ionicframework.com/docs/v2/components/#menus
http://ionicframework.com/docs/v2/api/components/menu/Menu/

Adding Ionic Components Chapter 2

[59]

This app has three different examples of how to navigate to a different page and how to
pass parameters. When you click on any button, it will show the second page, which is
as follows:

Adding Ionic Components Chapter 2

[60]

The second page, basically, captures parameters and displays them on the screen. It also
gives you three different options to navigate back to the previous page.

In this example, you will learn the following:

How to use NavController and NavParams
How to use [navPush] and [navParams] directly in the template
How to add two-way data binding in an input box
How to use the pipe to convert a JSON object to a string and render it on the
screen

Getting ready
You only need to have the Ionic CLI available to run this app.

How to do it...
Here are the instructions:

Create a new Navigation app using the blank template, as shown, and go into1.
the Navigation folder:

$ ionic start Navigation blank
$ cd Navigation

Edit ./src/app/app.module.ts with the following code:2.

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';
import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';

import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';
import { OtherPage } from '../pages/otherPage/otherPage';

@NgModule({
 declarations: [
 MyApp,
 HomePage,

Adding Ionic Components Chapter 2

[61]

 OtherPage
],
 imports: [
 BrowserModule,
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 HomePage,
 OtherPage
],
 providers: [
 StatusBar,
 SplashScreen,
 {provide: ErrorHandler, useClass: IonicErrorHandler}
]
})
export class AppModule {}

The main reason you have to modify this file is to declare OtherPage as a
dynamically loaded module via NgModule. You will have to declare
OtherPage again in the home.ts file.

Edit ./src/app/pages/home/home.html:3.

<ion-header>
 <ion-navbar>
 <ion-title>
 Home
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content padding>
 <ion-card>
 <ion-card-header>
 NavPush 1
 </ion-card-header>
 <ion-card-content>
 <p>Use both <code>navPush</code> and
 <code>navParams</code></p>
 <button ion-button block [navPush]="otherPage"
 [navParams]="myString">
 OtherPage 1
 </button>

Adding Ionic Components Chapter 2

[62]

 </ion-card-content>
 </ion-card>

 <ion-card>
 <ion-card-header>
 NavPush 2
 </ion-card-header>
 <ion-card-content>
 <p>Use only <code>navPush</code> and pass an array instead</p>
 <ion-list>
 <ion-item>
 <ion-label floating>Name</ion-label>
 Adding Ionic 2 Components 58
 <ion-input type="text" [(ngModel)]="myJSON.text"></ion-
 input>
 </ion-item>
 </ion-list>
 <div>
 <button ion-button block color="secondary"
 [navPush]="otherPage"
 [navParams]="myJSON">OtherPage 2</button>
 </div>
 </ion-card-content>
 </ion-card>

 <ion-card>
 <ion-card-header>
 NavPush 3
 </ion-card-header>
 <ion-card-content>
 <p>Use click event to trigger <code>nav.push</code> in
 Javascript </p>
 <button ion-button block color="dark"
 (click)="gotoOtherPage()">OtherPage 3</button>
 </ion-card-content>
 </ion-card>
</ion-content>

Edit ./src/app/pages/home/home.ts with the following code:4.

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';
import { OtherPage } from '../otherPage/otherPage';

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})

Adding Ionic Components Chapter 2

[63]

export class HomePage {
 public myString: string = 'Example 1 - This is just a string';
 public myJSON: any = {text: ''};
 otherPage: any = OtherPage;
 constructor(public navCtrl: NavController) {

 }

 gotoOtherPage() {
 this.navCtrl.push(OtherPage, {text: 'Example 3 - This is an
object'});
 }

}

Create the ./src/app/pages/otherPage folder5.
Create the otherPage.html file in the previously created otherPage folder:6.

<ion-header>
 <ion-navbar>
 <ion-title>Other</ion-title>
 </ion-navbar>
</ion-header>

<ion-content>
 <ion-card *ngIf="navParams.data">
 <ion-card-header>
 navParams.data
 </ion-card-header>
 <ion-card-content>
 {{ navParams.data | json }}
 </ion-card-content>
 </ion-card>

 <button ion-button block (click)="goBack()">
 goBack()
 </button>

 <button ion-button block navPop>
 nav-pop
 </button>
</ion-content>

In the same folder, add otherPage.ts as well, with the following code:7.

import { Component } from '@angular/core';
import { NavController, NavParams } from 'ionic-angular';

Adding Ionic Components Chapter 2

[64]

@Component({
 selector: 'page-other',
 templateUrl: 'otherPage.html',
})
export class OtherPage {

 constructor(public navCtrl: NavController, public navParams:
NavParams) {
 }

 ionViewDidLoad() {
 console.log('ionViewDidLoad OtherPage');
 }
 goBack() {
 this.navCtrl.pop();
 }
}

Go to your Terminal and run the app:8.

$ ionic serve

You can also generate new pages using Ionic CLI's generate commands.
For example, to generate a new page you can use the following ionic
command: ionic generate page pageName. Here, pageName is the
name of the new page.

You can not only generate pages but components, pipes, and many other
things. Take a look at https:/ /ionicframework. com/ docs/ cli/ generate/
.

How it works...
At a high level, this is how the app is structured:

The app will Bootstrap via app.ts and load home.html as the root page
Everything in the /home folder is your first page
Everything in the /otherPage folder is your second page
These two pages communicate using NavParams (or navParams from
the template)

https://ionicframework.com/docs/cli/generate/
https://ionicframework.com/docs/cli/generate/
https://ionicframework.com/docs/cli/generate/
https://ionicframework.com/docs/cli/generate/
https://ionicframework.com/docs/cli/generate/
https://ionicframework.com/docs/cli/generate/
https://ionicframework.com/docs/cli/generate/
https://ionicframework.com/docs/cli/generate/
https://ionicframework.com/docs/cli/generate/
https://ionicframework.com/docs/cli/generate/
https://ionicframework.com/docs/cli/generate/
https://ionicframework.com/docs/cli/generate/
https://ionicframework.com/docs/cli/generate/
https://ionicframework.com/docs/cli/generate/
https://ionicframework.com/docs/cli/generate/

Adding Ionic Components Chapter 2

[65]

Let's take a look at home.ts. You must import both NavController and NavParams:

import { NavController, NavParams } from 'ionic-angular';

For your constructor, you need to do a few things, which are as follows:

 public myString: string = 'Example 1 - This is just a string';
 public myJSON: any = {text: ''};
 otherPage: any = OtherPage;

 constructor(public navCtrl: NavController) {
 }

The this.navCtrl variable will reference the imported NavController. You are
supposed to bring it in like this in order to use the navigation feature internally. myString
and myJSON are just variables that you will pass in the parameter to the second page. You
also have to bring in the class for OtherPage and make it accessible to navPush, later in
your template.

The gotoOtherPage() method, as shown, does one simple thing: it pushes the page to the
current navigation:

 gotoOtherPage() {
 this.navCtrl.push(OtherPage, {text: 'Example 3 - This is an
 object'});
 }

By doing so, your app will switch to OtherPage right away, and this will also include the
parameters.

The home.html template for the first page demonstrates the following three scenarios:

You can use [navPush] and [navParams] directly inside the template. You just
need to pass the internal object of the class handling this page. So, in this case,
you have to pass otherPage and not OtherPage (notice the uppercase O):

<button block [navPush]="otherPage"
 [navParams]="myString">OtherPage 1</button>

You can also pass a JSON object as a param into [navPush]:

<button ion-button block color="secondary"
 [navPush]="otherPage" [navParams]="myJSON">OtherPage
 2</button>

Adding Ionic Components Chapter 2

[66]

The third scenario is to navigate to a new page manually, as shown, using a
method implemented inside the page class:

<button block dark (click)="gotoOtherPage()">OtherPage 3</button>

Unlike Angular 1 or Ionic 1, you cannot use ng-model to do two-way
binding anymore. The new syntax will be [(ngModel)] for any input
element instead.

In your second page, you just need to make NavController and NavParams available in
the class from the constructor.

Let's take a look at your otherPage.js file:

constructor(public navCtrl: NavController, public params: NavParams) {
}

The template for the second page (that is, otherPage.html) is very simple. First, the
navigation bar on the top is to enable the default back button:

<ion-header>
 <ion-navbar>
 <ion-title>Other</ion-title>
 </ion-navbar>
</ion-header>

The back button is an automatic mechanism in Ionic, so you don't have to worry about
when it will be shown.

The following code will display the variable content if the state parameter exists:

 <ion-card *ngIf="params.data">
 <ion-card-header>
 params.data
 </ion-card-header>
 <ion-card-content>
 {{ params.data | json }}
 </ion-card-content>
 </ion-card>

Adding Ionic Components Chapter 2

[67]

The ion-card leverages *ngIf to decide whether this DOM should be rendered or not.
Since params.data could be a JSON object, you need to convert it to a string to display it
on the screen. Angular 1 has filters, but Angular renamed this feature as pipes. However,
the basic concept is the same. The {{ params.data | json }} code basically tells
Angular to apply the json function to params.data and render the output.

You could go back to the previous page using the nav.pop() function, as shown:

 <button block (click)="goBack()">
 goBack()
 </button>

Alternatively, you could go back using a directive navPop and put that inside your button,
as shown:

 <button block navPop>
 nav-pop
 </button>

So, those are the possibilities within the Ionic navigation features.

See also
For more information, refer to the official Ionic documentation for NavController and
NavParams at the following links:

https:/ / ionicframework. com/ docs/ api/navigation/ NavController/

https:/ / ionicframework. com/ docs/ api/navigation/ NavParams/

To read more about how Angular pipes work, you can review the following page for the
previous example on JSON pipes at: https:/ /angular. io/ api/common/ JsonPipe

https://ionicframework.com/docs/api/navigation/NavController/
https://ionicframework.com/docs/api/navigation/NavController/
https://ionicframework.com/docs/api/navigation/NavController/
https://ionicframework.com/docs/api/navigation/NavController/
https://ionicframework.com/docs/api/navigation/NavController/
https://ionicframework.com/docs/api/navigation/NavController/
https://ionicframework.com/docs/api/navigation/NavController/
https://ionicframework.com/docs/api/navigation/NavController/
https://ionicframework.com/docs/api/navigation/NavController/
https://ionicframework.com/docs/api/navigation/NavController/
https://ionicframework.com/docs/api/navigation/NavController/
https://ionicframework.com/docs/api/navigation/NavController/
https://ionicframework.com/docs/api/navigation/NavController/
https://ionicframework.com/docs/api/navigation/NavController/
https://ionicframework.com/docs/api/navigation/NavController/
https://ionicframework.com/docs/api/navigation/NavController/
https://ionicframework.com/docs/api/navigation/NavParams/
https://ionicframework.com/docs/api/navigation/NavParams/
https://ionicframework.com/docs/api/navigation/NavParams/
https://ionicframework.com/docs/api/navigation/NavParams/
https://ionicframework.com/docs/api/navigation/NavParams/
https://ionicframework.com/docs/api/navigation/NavParams/
https://ionicframework.com/docs/api/navigation/NavParams/
https://ionicframework.com/docs/api/navigation/NavParams/
https://ionicframework.com/docs/api/navigation/NavParams/
https://ionicframework.com/docs/api/navigation/NavParams/
https://ionicframework.com/docs/api/navigation/NavParams/
https://ionicframework.com/docs/api/navigation/NavParams/
https://ionicframework.com/docs/api/navigation/NavParams/
https://ionicframework.com/docs/api/navigation/NavParams/
https://ionicframework.com/docs/api/navigation/NavParams/
https://ionicframework.com/docs/api/navigation/NavParams/
https://angular.io/api/common/JsonPipe
https://angular.io/api/common/JsonPipe
https://angular.io/api/common/JsonPipe
https://angular.io/api/common/JsonPipe
https://angular.io/api/common/JsonPipe
https://angular.io/api/common/JsonPipe
https://angular.io/api/common/JsonPipe
https://angular.io/api/common/JsonPipe
https://angular.io/api/common/JsonPipe
https://angular.io/api/common/JsonPipe
https://angular.io/api/common/JsonPipe
https://angular.io/api/common/JsonPipe
https://angular.io/api/common/JsonPipe

Adding Ionic Components Chapter 2

[68]

Using menu, tabs, and segment together in
an app
In the previous examples, we used tabs and menu for the navigation. We used them in two
different applications. But, sometimes, we might want to use both tabs and menu in a single
application. In this example, we will use tabs, menu, and segment. The second page of the
app will look something like the following screenshot:

Adding Ionic Components Chapter 2

[69]

If you take a closer look at the preceding screenshot, you will see that there is hamburger
menu button, three tabs at the bottom, and two tabs like buttons just after the page title.
These two buttons are actually called segment buttons. They are similar to tabs in UX, but
they are very different in their workings. You will see later on in the code how they are
different.

Getting ready
You need the Ionic CLI and a web browser to run this app.

How to do it...
Here are the instructions to create example app:

Create a new MenuTabsSegment app using the tabs template, as shown, and go1.
into the MenuTabsSegment folder:

$ ionic start MenuTabsSegment tabs
$ cd MenuTabsSegment

Edit ./src/app/app.html with the following code:2.

<ion-menu [content]="content">
 <ion-header>
 <ion-toolbar>
 <ion-title>Menu</ion-title>
 </ion-toolbar>
 </ion-header>
 <ion-content>
 <ion-list>
 <button ion-item menuToggle>
 Close Menu
 </button>
 </ion-list>
 </ion-content>
</ion-menu>

<ion-nav #content [root]="rootPage"></ion-nav>

Adding Ionic Components Chapter 2

[70]

Edit ./src/app/pages/about/about.ts with the following code:3.

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';

@Component({
 selector: 'page-about',
 templateUrl: 'about.html'
})
export class AboutPage {
 seg:string = "flame";
 constructor(public navCtrl: NavController) {

 }

}

Edit ./src/app/pages/about/about.html with the following code:4.

<ion-header>
 <ion-navbar>
 <button ion-button menuToggle icon-only>
 <ion-icon name='menu'></ion-icon>
 </button>
 <ion-title>
 About
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content padding>
 <ion-segment [(ngModel)]="seg" color="danger">
 <ion-segment-button value="flame">
 <ion-icon name="flame"></ion-icon>
 </ion-segment-button>
 <ion-segment-button value="leaf">
 <ion-icon name="leaf"></ion-icon>
 </ion-segment-button>
 </ion-segment>

 <div *ngIf="seg === 'flame'">
 <ion-card>
 <ion-card-header>
 Flame
 </ion-card-header>
 <ion-card-content>
 A flame (from Latin flamma) is the visible, gaseous part of

Adding Ionic Components Chapter 2

[71]

 a fire. It is caused by a highly exothermic reaction taking
place in
 a thin zone.
 </ion-card-content>
 </ion-card>
 </div>

 <div *ngIf="seg === 'leaf'">
 <ion-card>
 <ion-card-header>
 Leaf
 </ion-card-header>
 <ion-card-content>
 A leaf is an organ of a vascular plant and is the principal
 lateral appendage of the stem.
 </ion-card-content>
 </ion-card>
 </div>
</ion-content>

How it works...
So far, we have used both menu and tabs, but in different applications. In this example, we
are using both of them in a single application. Let's take a look at our app.html again:

<ion-menu [content]="content">
 <ion-header>
 <ion-toolbar>
 <ion-title>Menu</ion-title>
 </ion-toolbar>
 </ion-header>
 <ion-content>
 <ion-list>
 <button ion-item menuToggle>
 Close Menu
 </button>
 </ion-list>
 </ion-content>
</ion-menu>

<ion-nav #content [root]="rootPage"></ion-nav>

Adding Ionic Components Chapter 2

[72]

You will notice that we are using ion-menu to show a menu. We are also initializing Ionic
navigation with rootPage. If you check app.component.ts, you will see that we are
initializing rootPage to be equal to TabsPage, as shown here:

rootPage:any = TabsPage;

This is the key to using both a side menu and tabs on a single page:

Furthermore, we have added a segment on the second page of our application in
about.html. The reason why I used segment alongside menu and tabs is that segment is
very similar to tabs in terms of user experience. The user clicks on it and they see a different
view/content, based on segment. But it is very much different from the tabs in Ionic. See the
code following fragment from about.html:

<ion-segment [(ngModel)]="seg" color="danger">
 <ion-segment-button value="flame">
 <ion-icon name="flame"></ion-icon>
 </ion-segment-button>
 <ion-segment-button value="leaf">
 <ion-icon name="leaf"></ion-icon>
 </ion-segment-button>
 </ion-segment>

The preceding HTML code is for rendering the segment container and segment buttons.
We link the segment with a seg property in our AboutPage class via ngModel. When the
user clicks on any segment button, the property seg is initialized to the value of the
segment button. In this example, the seg property can have a value of flame or leaf.
Based on that value, we show content to the user in the other fragment of about.html, as
shown in the following code block:

<div *ngIf="seg === 'flame'">
 <ion-card>
 <ion-card-header>
 Flame
 </ion-card-header>
 <ion-card-content>
 A flame (from Latin flamma) is the visible, gaseous part of a
 fire.
 It is caused by a highly exothermic reaction taking place in a
 thin zone.
 </ion-card-content>
 </ion-card>
 </div>

 <div *ngIf="seg === 'leaf'">

Adding Ionic Components Chapter 2

[73]

 <ion-card>
 <ion-card-header>
 Leaf
 </ion-card-header>
 <ion-card-content>
 A leaf is an organ of a vascular plant and is the principal
 lateral appendage of the stem.
 </ion-card-content>
 </ion-card>
 </div>

You should also keep in mind that when you load the AboutPage, the value of the seg
property will be undefined. So, in order to make a default selection, we have to initialize the
value of the seg property in About.ts, as shown here:

seg:string = "flame";

See also
Take a look at Ionic's MenuController documentation at https:/ /ionicframework. com/
docs/api/components/ app/ MenuController/ . It has really good examples of how you can
use multiple menus in the same app.

Using the Ionic grid to create a complex UI
Since this chapter is about Ionic components, I will mention that one of my favorite
components is the Ionic grid—a really useful component to lay out your application. Based
on Flexbox, it is very similar to Bootstrap's grid. The documentation on the Ionic grid says:

"The grid is composed of three units—a grid, row(s) and column(s). Columns will expand
to fill their row and will resize to fit additional columns. It is based on a 12 column layout
with different breakpoints based on the screen size. The number of columns and
breakpoints can be fully customized using Sass."

https://ionicframework.com/docs/api/components/app/MenuController/
https://ionicframework.com/docs/api/components/app/MenuController/
https://ionicframework.com/docs/api/components/app/MenuController/
https://ionicframework.com/docs/api/components/app/MenuController/
https://ionicframework.com/docs/api/components/app/MenuController/
https://ionicframework.com/docs/api/components/app/MenuController/
https://ionicframework.com/docs/api/components/app/MenuController/
https://ionicframework.com/docs/api/components/app/MenuController/
https://ionicframework.com/docs/api/components/app/MenuController/
https://ionicframework.com/docs/api/components/app/MenuController/
https://ionicframework.com/docs/api/components/app/MenuController/
https://ionicframework.com/docs/api/components/app/MenuController/
https://ionicframework.com/docs/api/components/app/MenuController/
https://ionicframework.com/docs/api/components/app/MenuController/
https://ionicframework.com/docs/api/components/app/MenuController/
https://ionicframework.com/docs/api/components/app/MenuController/
https://ionicframework.com/docs/api/components/app/MenuController/

Adding Ionic Components Chapter 2

[74]

We will create a complex UI structure with very minimal code. The app will look like the
following image:

Getting ready
Just like the previous examples, you just need the Ionic CLI to work on and run this
example app.

Adding Ionic Components Chapter 2

[75]

How to do it...
Here are the instructions to create the example app:

Create a new IonicGrid app using the blank template, as shown, and go into1.
the IonicGrid folder:

$ ionic start IonicGrid blank
$ cd IonicGrid

Edit ./src/app/pages/home.ts with the following code:2.

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {
 socialFeed:Array<any>;
 constructor(public navCtrl: NavController) {
 this.socialFeed = [
 { post: 'Building Complex Mobile App Layout using Ionic Grid.
You can
 nest ion-row inside ion-col and so. It is really awesome.'},
 { post: 'Web components are really great web technology to
create
 reusable web components which are standard compliant.'},
 { post: 'Nothing is in my mind. I am just writing to make
sure there
 are at least 3 rows in feed'}
]
 }

}

Edit ./src/app/pages/home/home.html with the following code:3.

<ion-header>
 <ion-navbar color="danger">
 <ion-title>
 Jon Doe
 </ion-title>
 </ion-navbar>
</ion-header>

Adding Ionic Components Chapter 2

[76]

<ion-content>
 <ion-grid>
 <ion-row text-center id="info-row">
 <ion-col>
 <ion-avatar>

 </ion-avatar>
 <h3>Based in</h3>
 <h4>Vienna, Austria</h4>
 </ion-col>
 </ion-row>

 <ion-row text-center id="contact-icons">
 <ion-col><ion-icon name="call" color="danger"></ion-icon>
</ion-col><ion-col><ion-icon name="text" color="danger"></ion-icon>
</ion-col><ion-col><ion-icon name="globe" color="danger"></ion-
icon>
</ion-col><ion-col><ion-icon name="more" color="danger"></ion-icon>
</ion-col></ion-row>

 <h2 text-center><ion-icon name="paper" color="danger"></ion-
icon>
 Social Feed</h2>
 <ion-row class="social-row" *ngFor="let feed of socialFeed">
 <ion-col col-2>
 <ion-avatar>

 </ion-avatar>
 </ion-col>
 <ion-col col-10>
 <ion-row>
 <ion-col><h3>Jon Doe @jondoe</h3></ion-col>
 </ion-row>
 <ion-row>
 <p>{{feed.post}}</p>
 </ion-row>

 <ion-row text-center class="social-interaction-row">
 <ion-col><ion-icon name="undo" color="danger"></ion-icon>
 </ion-col>
 <ion-col><ion-icon name="repeat" color="danger"></ion-icon>
 </ion-col>
 <ion-col><ion-icon name="heart" color="danger"></ion-icon>
 </ion-col>
 </ion-row>

 </ion-col>
 </ion-row>

Adding Ionic Components Chapter 2

[77]

 </ion-grid>
</ion-content>

Edit ./src/app/pages/home/home.scss with the following code:4.

page-home {
 #info-row {
 ion-col {
 ion-avatar img{
 margin: 0 auto;
 border-radius:50%;
 }
 }
 }
 #contact-icons {
 ion-icon {
 font-size:40px;
 }
 }

 .social-row {
 ion-avatar {
 margin-top: 0.8rem;
 }
 p {
 font-size:1.6rem;
 }
 .social-interaction-row {
 font-size: 20px;
 }
 }
}

How it works...
In the Ionic grid, there are three types of components. The first is ion-grid, the second is
ion-row, and the third is ion-col. ion-grid acts as a container for ion-row and ion-
col. It takes the full width of the parent. ion-row is for creating rows in the grid. It takes
the full width of ion-grid. ion-col is used to create a column inside ion-row. As I said
in the chapter earlier, it is a 12-column grid. So, you can have a maximum of twelve
columns in a row, without having a line break.

Now, let's understand how we structured our example.

Adding Ionic Components Chapter 2

[78]

Our home.html page is a kind of profile page for a dummy social network site. We have an
avatar of the user, their location, name, various contact icons, and then the social feed.

This is how the avatar and location of the user look inside the app:

The following is the code for this:

 <ion-row text-center id="info-row">
 <ion-col>
 <ion-avatar>

 </ion-avatar>
 <h3>Based in</h3>
 <h4>Vienna, Austria</h4>
 </ion-col>
 </ion-row>

It is very straightforward. We have a row with one column. That column has an avatar and
the location of the user. Note that we have saved the avatar image in the assets/img
folder.

Next is the contact icons. They look like the following in our app:

 <ion-row text-center id="contact-icons">
 <ion-col><ion-icon name="call" color="danger"></ion-icon></ion-
 col><ion-col><ion-icon name="text" color="danger"></ion-icon></ion-
 col><ion-col><ion-icon name="globe" color="danger"></ion-icon></ion-
 col><ion-col><ion-icon name="more" color="danger"></ion-icon></ion-
 col></ion-row>

Adding Ionic Components Chapter 2

[79]

This is also straightforward. But the thing that we learn from this example is that if you
have multiple ion-col inside ion-row, the Ionic grid automatically divides the width
equally between each ion-col. This is because ion-row is a flex parent and ion-col are
flex children.

Finally, we have the social feed, which looks like the following:

The code for the social feed is as follows:

<ion-row class="social-row" *ngFor="let feed of socialFeed">
 <ion-col col-2>
 <ion-avatar>

 </ion-avatar>
 </ion-col>
 <ion-col col-10>
 <ion-row>
 <ion-col><h3>Jon Doe @jondoe</h3></ion-col>
 </ion-row>
 <ion-row>
 <p>{{feed.post}}</p>
 </ion-row>

 <ion-row text-center class="social-interaction-row">
 <ion-col><ion-icon name="undo" color="danger"></ion-icon></ion-
 col>
 <ion-col><ion-icon name="repeat" color="danger"></ion-icon>
 </ion-col>
 <ion-col><ion-icon name="heart" color="danger"></ion-icon>
 </ion-col>
 </ion-row>

Adding Ionic Components Chapter 2

[80]

 </ion-col>
 </ion-row>

There are three things to learn from this example:

You can force the width of col using the col-width* attribute. We replace the
width* with a value from 1-12 and that column will take only width*/12 of the
space in the ion-row.
We can nest ion-row inside ion-col, and so on. You will notice that we have an
ion-col that takes 10/12 of the width of ion-row. Inside that ion-column, we
have a child ion-row element, which shows the user's post, and one more ion-
row to show three icons for social sharing and interaction.
Each child ion-row will take the full width of its ion-col parent.

The following image shows this structure with an explanation:

See also
For more information about the Ionic grid, take a look at the Ionic documentation
at: https://ionicframework.com/docs/api/components/grid/Grid/.
If you want to see how Flexbox works in general, take a look at this very good
introduction to it at: https:/ /css- tricks. com/ snippets/ css/a- guide- to-
flexbox/ .

https://ionicframework.com/docs/api/components/grid/Grid/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/

3
Extending Ionic with Angular

Building Blocks
In this chapter, we will cover the following tasks related to creating custom components,
directives, and filters with Angular:

Creating a custom pizza ordering component
Creating a custom username input directive
Creating a custom pipe
Creating a shared service to provide data to multiple pages
Reusing an existing page as an HTML element

Introduction
Most of Ionic's out-of-the-box features are actually prebuilt components. In this section, you
will learn how to create your own custom component using the HTML template, which
contains Ionic components as well.

Components actually define Angular. A component is no more than just a class with self-
describing features. For example, is a component that you are already familiar with.
Previously, you used various Ionic components, such as <ion-list> and <ion-item>. A
component is a decorator (that is, @Component) to add metadata to a class to describe the
following:

selector: This is the name that is to be used in the DOM (for example,
<my-component>)
template or templateUrl: This refers to the way the component is rendered

Extending Ionic with Angular Building Blocks Chapter 3

[82]

directives: This refers to a list of directive dependencies you plan to use inside
the component
providers: This is a list of providers (that is, services) you plan to use inside
the component

Of course, there are many other options, but the preceding four options are the most
common ones.

Creating a custom pizza ordering
component
In this section, you will build an app to demonstrate a custom component with its private
variables and template. Observe the following screenshot of a pizza ordering component:

Extending Ionic with Angular Building Blocks Chapter 3

[83]

The user will not notice which area is part of the page, as opposed to being a self-contained
component. Your custom component here is the only area where the list is listening to the
Vegetarian check box:

Getting ready
This app example could work either in a browser or on a physical device.

How to do it...
Perform the following instructions:

Create a new MyComponent app using the blank template, as shown, and go into1.
the MyComponent folder:

$ ionic start MyComponent blank
$ cd MyComponent

Open the ./src/pages/home/home.html file and replace the content with the2.
following code:

<ion-header>
 <ion-navbar>
 <ion-title>
 Pizza App
 </ion-title>
 </ion-navbar>
</ion-header>

Extending Ionic with Angular Building Blocks Chapter 3

[84]

<ion-content padding>
 <ion-card>
 <ion-card-header>
 App Homepage
 </ion-card-header>
 <ion-card-content>
 Please start to order your pizza now!
 </ion-card-content>
 </ion-card>
 <my-component></my-component>
</ion-content>

This is your root page containing <my-component>, which will be defined later.

Open ./app/pages/home/home.ts for editing globally with the following code:3.

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {

 constructor(public navCtrl: NavController) {

 }

}

You simply have to declare MyComponent as a dependency. A component is
basically just a directive with a template, (assuming you are familiar with the
directive concept of Angular 1).

Now, let's create the component by first creating a directive, as illustrated in the4.
following code:

 $ mkdir ./src/components

Extending Ionic with Angular Building Blocks Chapter 3

[85]

Create a foo.ts file in the components directory that you just created, as shown5.
in the following code:

import { Component } from '@angular/core';

@Component({
 selector: 'my-component',
 templateUrl: 'foo.html'
})
export class MyComponent {
 public data: any = {myToggle: true};

 constructor() {}
 isClicked(val) {
 console.log('Vegetarian: ' + val);
 }

}

Create foo.html in the ./src/components folder, as follows:6.

<ion-list>
 <ion-item>
 <ion-label>Vegetarian</ion-label>
 <ion-toggle (click)="isClicked(data.myToggle)"
[(ngModel)]="data.myToggle"></ion-toggle>
 </ion-item>
 <ion-card *ngIf="data.myToggle">
 <ion-card-header>
 I only eat vegetarian foods
 </ion-card-header>
 <ion-list>
 <button ion-item>
 Mushroom
 </button>
 <button ion-item>
 Spinach
 </button>
 <button ion-item>
 Red Peppers
 </button>
 </ion-list>

 </ion-card>

 <ion-card *ngIf="!data.myToggle">
 <ion-card-header>

Extending Ionic with Angular Building Blocks Chapter 3

[86]

 I love meat
 </ion-card-header>
 <ion-list>
 <button ion-item>
 Beef
 </button>
 <button ion-item>
 Chicken
 </button>
 <button ion-item>
 Sausage
 </button>

 </ion-list>
 </ion-card>

</ion-list>

Modify ./src/app/app.module.ts, as illustrated, so that you can declare7.
MyComponent. Observe the following code:

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';
import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';

import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';
import { MyComponent } from '../components/foo/foo';

@NgModule({
 declarations: [
 MyApp,
 HomePage,
 MyComponent
],
 imports: [
 BrowserModule,
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 HomePage,
 MyComponent

Extending Ionic with Angular Building Blocks Chapter 3

[87]

],
 providers: [
 StatusBar,
 SplashScreen,
 {provide: ErrorHandler, useClass: IonicErrorHandler}
]
})
export class AppModule {}

Go to your Terminal and run the app using the following command:8.

 $ ionic serve

How it works...
You may wonder why it's necessary to create a component just to toggle a list of pizza
topping options. The answer is that this is just a demonstration of how you can
compartmentalize your app using a component. The key things that you have done are as
follows:

You created a custom component, called <my-component>, which can be used
anywhere, including outside your app.
The data within your component is completely private. This means that nobody
else can access it without calling a method within your component's class.
You can add or change behaviors within your component without impacting on
other areas outside the component.

To create a component, you need to ensure that you import the @Component decorator, as
shown, from Angular itself (and not from Ionic):

import { Component } from '@angular/core';

@Component({
 selector: 'my-component',
 templateUrl: 'foo.html'
})

Extending Ionic with Angular Building Blocks Chapter 3

[88]

In your component template, everything is local to what is inside the component class. So,
you can bind the click event using click, as shown in the following code:

 <ion-item>
 <ion-label>Vegetarian</ion-label>
 <ion-toggle (click)="isClicked(data.myToggle)"
 [(ngModel)]="data.myToggle"></ion-toggle>
 </ion-item>

Just as in Angular 1, you need to use [(ngModel)] to declare that you want
data.myToggle to be your model. The [(..)] part is to tell Angular 2 that this is a two-
way binding.

There are two lists of pizza toppings. The first one is as follows:

 <ion-card *ngIf="data.myToggle">
 <ion-card-header>
 I only eat vegetarian foods
 </ion-card-header>

 <ion-list>
 <button ion-item>
 Mushroom
 </button>
 <button ion-item>
 Spinach
 </button>
 <button ion-item>
 Red Peppers
 </button>
 </ion-list>
 </ion-card>

The second list of pizza toppings is as shown:

 <ion-card *ngIf="!data.myToggle">
 <ion-card-header>
 I love meat
 </ion-card-header>

 <ion-list>
 <button ion-item>
 Beef
 </button>
 <button ion-item>
 Chicken
 </button>

Extending Ionic with Angular Building Blocks Chapter 3

[89]

 <button ion-item>
 Sausage
 </button>
 </ion-list>
 </ion-card>

To toggle the visibility of each list based on the data.myToggle model, you can use *ngIf,
which is very similar to ng-if from Angular 1.

See also
To see more information about components in the Angular documentation, you can visit
https://angular.io/docs/ts/latest/guide/architecture.html#!#component.

Creating a custom username input directive
Since you have gone through the process of creating a component in the preceding section,
you may wonder what the difference is between a component and a directive. If you have
some experience with Angular 1, you may notice that it had no definition of a component.
Starting in Angular 2, there are the following three kinds of directive:

Kind Description

Components They have a template and a class associated with the component
(that is, ion-input)

Structural directives They change the DOM structure within the scope of where it is (that
is, *ngIf or *ngFor)

Attribute directives They change the appearance of the current DOM by intercepting its
display or events

https://angular.io/docs/ts/latest/guide/architecture.html#!#component

Extending Ionic with Angular Building Blocks Chapter 3

[90]

You may have a mix of both structural and attribute characteristics in the same directive. In
this section, you will learn how to create an attribute directive that can prevent certain
characters from being input in the Username, as well as showing another DOM node
(where it says You are typing username) by toggling its visibility. Observe the following
screenshot of the app:

The GO button is there just for cosmetic purposes, and you will not need to write any code
for it.

Extending Ionic with Angular Building Blocks Chapter 3

[91]

Getting ready
This app example could work either in a browser or on a physical device.

How to do it...
Observe the following instructions:

Create a new MyIonicInputDirective app using the blank template, as1.
shown, and go into the MyIonicInputDirective folder:

$ ionic start MyIonicInputDirective blank
$ cd MyIonicInputDirective

Open the ./src/app/pages/home/home.html file and replace the content with2.
the following code:

<ion-header>
 <ion-navbar color="danger">
 <ion-title>
 Login
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content padding>
 <ion-list>
 <ion-item>
 <ion-input type="text" placeholder="Username"
[(ngModel)]="username" [myIonicInput]="myStyles"></ion-input>
 </ion-item>
 <ion-item>
 <ion-input type="password" placeholder="Password"></ion-
input>
 </ion-item>
 </ion-list>
 <p *ngIf="myStyles.showUsername" class="hint">
 You are typing username
 </p>
 <ion-fab bottom center>
 <button ion-fab>GO</button>
 </ion-fab>
</ion-content>

Extending Ionic with Angular Building Blocks Chapter 3

[92]

As mentioned earlier, the GO button is just an example of the new floating button
feature from Ionic. All you need to do is include bottom and center in order to
position it. These are actually good examples of attribute directives.

Open home.ts, in the same folder as in the preceding step, to edit and insert the3.
following code:

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {
 private myStyles = { showUsername: false };
 constructor(public navCtrl: NavController) {

 }
}

Create the ./src/directives folder, as shown in the following command:4.

$ mkdir ./src/directives

Create the my-ionic-input.ts file in the directives folder and copy in the5.
following code:

import { Directive, Input, ElementRef, OnInit } from
'@angular/core';
@Directive({
 selector: '[myIonicInput]', // Attribute selector
 host: {
 '(mouseenter)': 'onMouseEnter()',
 '(mouseleave)': 'onMouseLeave()'
 // '(keypress)': 'onKeyPress'
 }
})
export class MyIonicInputDirective {
 @Input('myIonicInput') myStyles: any;
 constructor(private el: ElementRef) {
 el.nativeElement.onkeypress = function(e) {
 console.log(e);
 if ('~!@#$%^&*()-='.includes(String.fromCharCode(e.keyCode)))
{
 e.preventDefault();
 return;

Extending Ionic with Angular Building Blocks Chapter 3

[93]

 }
 }
 }

 ngOnInit() {
 console.log(this.myStyles);
 }

 onMouseEnter() {
 this.myStyles.showUsername = true;
 }
 onMouseLeave(e) {
 this.myStyles.showUsername = false;
 }

 // onKeyPress will not work with ion-input directly
 // because the actual input element is a child of ion-input
 // onKeyPress() {
 // console.log("onKeyPress");
 // }
}

Open and edit ./src/app/app.module.ts to declare your new directive, as6.
follows:

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';
import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';

import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';
import { MyIonicInputDirective } from '../directives/my-ionic-
input';

@NgModule({
 declarations: [
 MyApp,
 HomePage,
 MyIonicInputDirective
],
 imports: [
 BrowserModule,
 IonicModule.forRoot(MyApp)
],

Extending Ionic with Angular Building Blocks Chapter 3

[94]

 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 HomePage
],
 providers: [
 StatusBar,
 SplashScreen,
 {provide: ErrorHandler, useClass: IonicErrorHandler}
]
})
export class AppModule {}

Go to your Terminal and run the app, as shown:7.

$ ionic serve

How it works...
The homepage template (home.html) is very typical with ion-list and ion-item, which
contain your input elements. However, there are two important things to take note of.
Firstly, there is an attribute, called myIonicInput, in the ion-input component. Observe
the following code:

<ion-item >
 <ion-input type="text" placeholder="Username"
 [(ngModel)]="username" [myIonicInput]="myStyles"></ion-input>
</ion-item>

Secondly, the myStyles object is now used to toggle the visibility of the <p> element,
as shown:

<p *ngIf="myStyles.showUsername" class="hint">
 You are typing username
</p>

This myStyles object is actually a private variable in your HomePage class in the home.ts
file, as follows:

export class HomePage {
 private myStyles: Object = {showUsername: false};
}

Extending Ionic with Angular Building Blocks Chapter 3

[95]

With TypeScript, you could assign a type (that is, an object) to a variable with a default
value. You may also note that MyIonicInputDirective should be declared for a
dependency to be injected into the template directives.

To create a basic directive, you must import at least Directive and ElementRef in order
to manipulate the DOM. However, since this Directive has input (that is, myStyles), you
should also import Input in your my-ionic-input.ts, as illustrated in the following
code:

import {Directive, ElementRef, Input} from '@angular/core';

You have selector and host metadata in your directive, as shown:

@Directive({
 selector: '[myIonicInput]',
 host: {
 '(mouseenter)': 'onMouseEnter()',
 '(mouseleave)': 'onMouseLeave()'
 // '(keypress)': 'onKeyPress'
 }
})

The myIonicInput selector will be queried from the DOM and will trigger actions on that
DOM node. For event detection on the DOM, you have to map the event name to the class
method. For example, the mouseenter event will trigger a call to the onMouseEnter()
method in the directive's class, which is MyIonicInputDirective.

Now, let's look more closely at the directive's class:

export class MyIonicInputDirective {
 @Input('myIonicInput') myStyles: any;
 constructor(private el: ElementRef) {
 el.nativeElement.onkeypress = function(e) {
 console.log(e);
 if ('~!@#$%^&*()-
 ='.includes(String.fromCharCode(e.keyCode))) {
 e.preventDefault();
 return;
 }
 }
 }
 onMouseEnter() {
 this.myStyles.showUsername = true;
 }
 onMouseLeave(e) {
 this.myStyles.showUsername = false;

Extending Ionic with Angular Building Blocks Chapter 3

[96]

 }

 // onKeyPress will not work with ion-input directly because the
 actual input element is a child of ion-input
 // onKeyPress() {
 // console.log("onKeyPress");
 // }
}

The @Input decorator is used to declare that you will bring in a variable from the template.
This is the reason why you must have the square brackets [myIonicInput]="myStyles".
Otherwise, myStyles would just be a string instead of an expression referring to the
myStyles object from the HomePage class.

Another interesting thing to note here is the code inside constructor. ElementRef is
pointing to the same DOM at which you placed your attribute directive. You want to
modify the behavior of the keyboard using el.nativeElement.onkeypress so that
special characters won't be allowed. If the user enters a special character, it will trigger
e.preventDefault() and nothing will happen. The keyboard event is basically discarded.
You may wonder why we cannot just use the keypress event and map it to onKeyPress,
which was intentionally commented out. The reason is that you are placing the
myIonicInput directive on top of ion-input. But the actual <input> DOM is just a child
of ion-input. Therefore, if you listen to the keypress event on the parent ion-input,
you won't be able to bind it.

The onMouseEnter and onMouseLeave methods are self-explanatory because they just
toggle the myStyles.showUsername variable. Again, this myStyles object is just a
reference back to the myStyles of HomePage. So, if you change the variable here, it will
change at the home page's level as well.

See also
For more information about Angular 2 directives, you can refer to the official
documentation at
https://angular.io/docs/ts/latest/guide/attribute-directives.html

Since this is the first section in which TypeScript appears, it might be helpful to
go through the handbook for more details:
http://www.typescriptlang.org/docs/tutorial.html

https://angular.io/docs/ts/latest/guide/attribute-directives.html
http://www.typescriptlang.org/docs/tutorial.html

Extending Ionic with Angular Building Blocks Chapter 3

[97]

Creating a custom pipe
Pipes are also a feature of Angular and are not specific to Ionic. If you are familiar with
Angular 1, a pipe is exactly the same thing as a filter. The main reason you might want to use
pipes is to display data in a different format in the view. You don't want to change the
actual value in the component. This makes things very convenient because you don't have
to decide on the specific format within the code while leaving flexibility in the view layer.
Here is a list of some useful built-in pipes (from
https://angular.io/docs/ts/latest/api/#!?apiFilter=pipe):

AsyncPipe

DatePipe

NumberPipe

SlicePipe

DecimalPipe

JsonPipe

PercentPipe

UpperCasePipe

LowerCasePipe

CurrencyPipe

ReplacePipe

In this section, you will learn how to create a custom pipe using the @Pipe decorator. The
following is a screenshot of the app:

https://angular.io/docs/ts/latest/api/#!?apiFilter=pipe

Extending Ionic with Angular Building Blocks Chapter 3

[98]

While the app interface is very simple, the purpose of this example is to show you how to
create a pipe to extract object data.

Getting ready
There is no need to test on a physical device because the Angular pipe will work just fine in
the web browser.

How to do it...
Observe the following instructions:

Create a new CustomPipe app using the blank template, as shown, and go to1.
the CustomPipe folder:

$ ionic start CustomPipe blank
$ cd CustomPipe

Open the ./src/pages/home/home.html file and modify the content with the2.
following code:

<ion-header>
 <ion-navbar>
 <ion-title>
 User
 </ion-title>
 </ion-navbar>
</ion-header>
<ion-content padding>
 <h4>Unformatted Value</h4>
 <ion-card>
 <ion-card-header>
 <code>user</code>
 </ion-card-header>
 <ion-card-content>
 {{ user | json }}
 </ion-card-content>
 </ion-card>
 <h4>Formatted Value</h4>
 <ion-list>
 <ion-item>
 <ion-label fixed>First Name</ion-label>
 <ion-note item-right>{{ user | userExtract : "firstname"

Extending Ionic with Angular Building Blocks Chapter 3

[99]

}}</ion-note>
 </ion-item>
 <ion-item>
 <ion-label fixed>Last Name</ion-label>
 <ion-note item-right>{{ user | userExtract : "lastname"
}}</ion-note>
 </ion-item>
 <ion-item>
 <ion-label fixed>Age</ion-label>
 <ion-note item-right>{{ user | userExtract : "age" }}
 </ion-note>
 </ion-item>
 </ion-list>
</ion-content>

You can quickly see that the template uses the userExtract pipe to render the
correct information.

Then, replace the content of ./src/pages/home/home.ts with the following3.
code:

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {

 private user: any;
 constructor(public navCtrl: NavController) {
 this.user = {
 name: 'John Connor',
 birthyear: 1985
 };

 console.log(this.user);
 }

}

You don't have the custom-pipe.ts file yet, so you need to create it next.

Extending Ionic with Angular Building Blocks Chapter 3

[100]

Create the ./src/utils folder by using the following command:4.

$ mkdir ./utils/utils

You can call this folder anything. However, since pipes are sometimes considered
utility functions, let's call it utils.

Create the custom-pipe.ts file in the utils folder and copy the following5.
code:

import { Pipe, PipeTransform } from '@angular/core';

@Pipe({ name: 'userExtract' })
export class UserExtractPipe implements PipeTransform {
 transform(value: any, arg): any {
 let newVal: any;
 if (arg == "firstname") {
 newVal = value.name ? value.name.split(' ')[0] : '';
 } else if (arg == "lastname") {
 newVal = value.name ? value.name.split(' ').splice(-
 1) : '';
 } else if (arg == "age") {
 var currentTime = new Date();
 newVal = value.birthyear ? currentTime.getFullYear()
 - value.birthyear : 0;
 }
 return newVal;
 }
}

Add UserExtractPipe to ./src/app/app.module.ts by replacing it with the6.
following code:

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';
import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';

import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';
import { UserExtractPipe } from '../utils/custom-pipe';

@NgModule({
 declarations: [
 MyApp,

Extending Ionic with Angular Building Blocks Chapter 3

[101]

 HomePage,
 UserExtractPipe
],
 imports: [
 BrowserModule,
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 HomePage
],
 providers: [
 StatusBar,
 SplashScreen,
 {provide: ErrorHandler, useClass: IonicErrorHandler}
]
})
export class AppModule {}

Go to your Terminal and run the app, as follows:7.

$ ionic serve

How it works...
You can use an Angular pipe in the view to simply convert or transform any value to a
desired value. There are no limitations to how you structure the pipe. Angular
automatically detects the | sign in the template and turns the value in front of it to an input.
To create a pipe, you must import the decorator and provide a name (see custom-
pipe.ts), as shown:

import { Pipe, PipeTransform } from '@angular/core';

@Pipe({name: 'userExtract'})

The input from the template is the following value parameter:

transform(value: any, arg) : any {

The value returned by the transform method will be the output to the view, as shown in
the following code:

return newVal;

Extending Ionic with Angular Building Blocks Chapter 3

[102]

In this example, you are taking a parameter for the pipe to process, as illustrated in the
following code:

 if (arg == "firstname") {
 newVal = value.name ? value.name.split(' ')[0] : '';

 } else if (arg == "lastname") {
 newVal = value.name ? value.name.split(' ').splice(-1) : '';
 } else if (arg == "age") {
 var currentTime = new Date();
 newVal = value.birthyear ? currentTime.getFullYear() -
 value.birthyear : 0;
 }

For example, this is what you had in the home.html template:

 <ion-item>
 <ion-label fixed>First Name</ion-label>
 <ion-note item-right>{{ user | userExtract : "firstname"
 }}</ion-note>
 </ion-item>

Each parameter is placed after a colon (:). Then, within your @Pipe class, you can refer to it
using arg. The rest of the code is very simple, as already shown in the preceding section.
Observe the following:

If it's firstname, take the first word
If it's lastname, take the last word
If it's age, subtract the current year from the birth year

Of course, you could have more complicated scenarios with pipes. However, the overall
recommendation is to keep things simple in the view to ensure rendering performance. If
you need to do heavy processing, it's best to handle it as a separate variable.

See also
To understand more about Angular pipes, you can check out the official documentation at
https://angular.io/docs/ts/latest/guide/pipes.html

https://angular.io/docs/ts/latest/guide/pipes.html

Extending Ionic with Angular Building Blocks Chapter 3

[103]

Creating a shared service to provide data to
multiple pages
When you develop an app that involves a lot of pages and communication to the backend,
you will need to have a way to communicate across pages and components. For example,
you may have a service to request user data from the backend and store it in a common
local service. Then, you will need to provide a way for the user to update their user data
and see the update in real time. When the user navigates to different pages, the same
information will be pulled and rendered too, without making multiple trips to the backend.
This is a very common scenario that requires the use of the @Injectable decorator in
Angular.

Observe the following screenshot of the app you will build:

Extending Ionic with Angular Building Blocks Chapter 3

[104]

The user can fill out the form and see updates on it in real time. Then, they can move to the
next page (Go to Page 2) and see the following screenshot:

This page uses the same service as the preceding page and references the same date with
the name and age. You will learn the following topics in this section:

Creating a service using @Injectable
Sharing a service across multiple pages
Detecting changes using getters and setters inside the service

Getting ready
This app example could work either in a browser or on a physical device.

How to do it...
Observe the following instructions:

Create a new SharedService app using the blank template as shown and go to1.
the SharedService folder:

$ ionic start SharedService blank
$ cd SharedService

Extending Ionic with Angular Building Blocks Chapter 3

[105]

You will need to make several changes in the directory because you have two2.
pages and a common service for both. Let's start by modifying the
./src/app/app.component.ts file so that the rootPage is pointing to Page1:

import { Component } from '@angular/core';
import { Platform } from 'ionic-angular';
import { StatusBar } from '@ionic-native/status-bar';
import { SplashScreen } from '@ionic-native/splash-screen';

import { Page1 } from '../pages/page1/page1';

@Component({
 templateUrl: 'app.html'
})
export class MyApp {
 rootPage:any = Page1;

 constructor(platform: Platform, statusBar: StatusBar,
splashScreen: SplashScreen) {
 platform.ready().then(() => {
 // Okay, so the platform is ready and our plugins are
available.
 // Here you can do any higher level native things you might
need.
 statusBar.styleDefault();
 splashScreen.hide();
 });
 }
}

Create ./src/pages/page1, as shown in the following code:3.

$ mkdir ./src/pages/page1

Create your first template, page1.html, in the page1 folder with the following4.
code:

<ion-header>
 <ion-navbar>
 <ion-title>
 Profile
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content>
 <ion-card>

Extending Ionic with Angular Building Blocks Chapter 3

[106]

 <ion-card-header>
 What you are entering
 </ion-card-header>
 <ion-card-content>
 <ion-badge item-right>Name</ion-badge> {{ user.name }}

 <ion-badge item-right>Age</ion-badge> {{ user.age }}
 </ion-card-content>
 </ion-card>
 <ion-list>
 <ion-item>
 <ion-label fixed>Name</ion-label>
 <ion-input type="text" [(ngModel)]="user.name">
 </ion-input>
 </ion-item>
 <ion-item>
 <ion-label fixed>Password</ion-label>
 <ion-input type="number" [(ngModel)]="user.age">
 </ion-input>
 </ion-item>
 </ion-list>
 <button ion-button full block (click)="goToPage2()">Go to Page
2</button>
</ion-content>

Create page1.ts in the page1 folder, as follows:5.

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';
import { UserService } from '../../services/user';
import { Page2 } from '../page2/page2';
@Component({
 selector: 'page-one',
 templateUrl: 'page1.html'
})
export class Page1 {
 private user: any;
 private nav: any;
 constructor(public navCtrl: NavController, user:
 UserService, nav: NavController) {
 console.log(user.name);
 this.user = user;
 this.nav = nav;
 }
 goToPage2() {
 this.nav.push(Page2);
 }
}

Extending Ionic with Angular Building Blocks Chapter 3

[107]

The file extension is .ts, and not .js, because you are going to use some
TypeScript-specific features, such as getters and setters.

Similarly, create the page2 folder using the following command:6.

$ mkdir ./src/pages/page1

Add the page2.html template in the page2 folder as well, as follows:7.

<ion-header>
 <ion-navbar>
 <ion-title>
 Confirmation
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content class="home">
 <ion-card>
 <ion-card-header>
 Please confirm your profile
 </ion-card-header>
 <ion-card-content>
 {{ user.name }} is {{ user.age }} years old
 </ion-card-content>
 </ion-card>
 <button ion-button full block (click)="goToPage1()">Back to Page
1</button>
</ion-content>

This is your second page with the same name and age information.

Create page2.ts in the page2 folder with the following code:8.

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';
import { UserService } from '../../services/user';
import { Page1 } from '../page1/page1';
@Component({
 selector: 'page-two',
 templateUrl: 'page2.html'
})
export class Page2 {
 private user: any;
 private nav: any;

Extending Ionic with Angular Building Blocks Chapter 3

[108]

 constructor(public navCtrl: NavController, user:
 UserService, nav: NavController) {
 console.log(user.name);
 this.user = user;
 this.nav = nav;
 }
 goToPage1() {
 this.nav.push(Page1);
 }
}

Create the services folder with the following command:9.

$ mkdir ./src/services

Put UserService in the user.ts file, in the services folder, as shown:10.

import { Injectable } from '@angular/core';
@Injectable()
export class UserService {
 private _name: string;
 private _age: number;
 constructor() {
 this._name = 'John Connor';
 this._age = 31;
 }
 get name() {
 return this._name;
 }
 set name(newVal) {
 console.log('Set name = ' + newVal);
 this._name = newVal;
 }
 get age() {
 return this._age;
 }
 set age(newVal) {
 console.log('Set age = ' + newVal);
 this._age = newVal;
 }
}

Extending Ionic with Angular Building Blocks Chapter 3

[109]

Open and edit ./src/app/app.module.ts so that you can inject UserService11.
as a global provider and declare Page1 and Page2 :

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';
import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';

import { MyApp } from './app.component';
;
import { Page1 } from '../pages/page1/page1';
import { Page2 } from '../pages/page2/page2';
import { UserService } from '../services/user';

@NgModule({
 declarations: [
 MyApp,
 Page1,
 Page2
],
 imports: [
 BrowserModule,
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 Page1,
 Page2
],
 providers: [
 StatusBar,
 SplashScreen,
 UserService,
 {provide: ErrorHandler, useClass: IonicErrorHandler}
]
})
export class AppModule {}

Extending Ionic with Angular Building Blocks Chapter 3

[110]

Verify that your folder structure looks like the following screenshot:12.

Go to your Terminal and run the app with the following command:13.

$ ionic serve

You can move from page 1 to page 2 and then back, and the data will persist across the
pages.

How it works...
In general, if you want to use a common service across multiple pages, you must inject it at
the highest level. In this example, you put UserService as a dependency at the start of
app.module.ts, as follows:

providers: [UserService]

After that, other pages within the app can start using this common service without having
to reinject it. The main reason is that, whenever you inject a service or class, it will
instantiate a new object, which ends up erasing all of the existing data in the memory. If you
want the data to persist across the pages, it should be in the parent app to avoid reinjection.

Extending Ionic with Angular Building Blocks Chapter 3

[111]

To use the UserService on each page, you just need to import it, as illustrated in the
following code:

import { UserService } from '../../services/user';

The way to bring in the service is to put the referencing in the constructor (page1.ts),
as shown:

 constructor(user: UserService, nav: NavController) {
 console.log(user.name);
 this.user = user;
 this.nav = nav;
 }

This will pass down UserService reference to a local private variable of the page (in this
case, this.user).

From a template standpoint, there is no difference between using {{ user.name }} and
{{ user.age }} to inject data.

Now, let's take a look at UserService:

import {Injectable} from '@angular/core';

@Injectable()
export class UserService {
 private _name: string;
 private _age: number;
 constructor() {
 this._name = 'John Connor';
 this._age = 31;
 }
 get name() {
 return this._name;
 }
 set name(newVal) {
 console.log('Set name = ' + newVal);
 this._name = newVal;
 }
 get age() {
 return this._age;
 }
 set age(newVal) {
 console.log('Set age = ' + newVal);
 this._age = newVal;
 }
}

Extending Ionic with Angular Building Blocks Chapter 3

[112]

Actually, there are several things going on here. Firstly, you need to import Injectable
from
@angular/core.

Don't forget the parentheses in @Injectable().

Secondly, if you want to use getters and setters, you need to make separate variables, called
_name and _age, to store the data. Then, you can use the get/set method to do additional
processing when other pages access or set the variables in this common class. If you change
the name or age from Page 1, you can see the following logs in the console:

This feature is very beneficial since you can use this as a replacement for watch or
observable. If you recall from Angular 1, you have to use $scope.$watch for a similar
approach.

See also
For more information about Angular 2 services, visit the official documentation at
https://angular.io/docs/ts/latest/tutorial/toh-pt4.html

You can get great instructions on many techniques for component
communication at
https://angular.io/docs/ts/latest/cookbook/component-communication.htm
l

https://angular.io/docs/ts/latest/tutorial/toh-pt4.html
https://angular.io/docs/ts/latest/cookbook/component-communication.html
https://angular.io/docs/ts/latest/cookbook/component-communication.html

Extending Ionic with Angular Building Blocks Chapter 3

[113]

Reusing an existing page as an HTML
element
So far, we have used Ionic pages using Ionic's navigation system. In this recipe, we're going
to extend the existing page so that we can use it as an HTML element/component in the
application. The following is the first page of the application:

Extending Ionic with Angular Building Blocks Chapter 3

[114]

When you click on SHOW CONTACT PAGE, it shows the contact page with the
information from the previous page as shown in the following screenshot:

We will reutilize this contact page as an HTML element in the application.

Getting ready
In this recipe, we are using web functionalities, so we only need a web browser to run the
application.

Extending Ionic with Angular Building Blocks Chapter 3

[115]

How to do it...
Follow these instructions:

Create a new app named PageComponent using the blank template, as shown in1.
the following code block and go to the PageComponent folder:

$ ionic start PageComponent blank
$ cd PageComponent

Open the ./src/app/pages/home/home.html file and replace the content with2.
the following code:

<ion-header>
 <ion-navbar>
 <ion-title>
 Ionic Blank
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content padding>
 <ion-list>
 <ion-item>
 <ion-label fixed>Name</ion-label>
 <ion-input type="text" value="" [(ngModel)]="user.name">
 </ion-input>
 </ion-item>
 <ion-item>
 <ion-label fixed>Email</ion-label>
 <ion-input type="text" [(ngModel)]="user.email">
 </ion-input>
 </ion-item>

 <ion-item>
 <ion-label fixed>Phone</ion-label>
 <ion-input type="text" [(ngModel)]="user.phone">
 </ion-input>
 </ion-item>

 <ion-item>
 <ion-label fixed>Website</ion-label>
 <ion-input type="text" [(ngModel)]="user.website">
 </ion-input>
 </ion-item>
 </ion-list>

Extending Ionic with Angular Building Blocks Chapter 3

[116]

 <button full ion-button (click)="toggleContact()">
 TOGGLE CONTACT COMPONENT</button>
 <button full ion-button (click)="openContact()">SHOW CONTACT
PAGE</button>
 <page-contact [userInput]="user" *ngIf="showContact">
 </page-contact>

</ion-content>

Open the ./src/pages/home/home.ts file and replace the content with the3.
following:

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';
import { ContactPage } from "../contact/contact";
@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {
 user:any = {};
 showContact:Boolean = false;
 constructor(public navCtrl: NavController) {}

 openContact() {
 this.navCtrl.push(ContactPage, { user: this.user });
 }
 toggleContact() {
 this.showContact = !this.showContact;
 }
}

Now create a folder, ./src/pages/contact, and in the folder, create4.
contact.html and add the following content:

<ion-header *ngIf="!userInput">
 <ion-navbar>
 <ion-title>
 Contact Page
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content>
 <ion-card>
 <ion-card-header>
 User Contact

Extending Ionic with Angular Building Blocks Chapter 3

[117]

 </ion-card-header>
 <ion-card-content>
 <ion-grid>
 <ion-row>
 <ion-col>Name</ion-col>
 <ion-col>{{user.name}}</ion-col>
 </ion-row>

 <ion-row>
 <ion-col>Email</ion-col>
 <ion-col>{{user.email}}</ion-col>
 </ion-row>

 <ion-row>
 <ion-col>Phone</ion-col>
 <ion-col>{{user.phone}}</ion-col>
 </ion-row>

 <ion-row>
 <ion-col>Website</ion-col>
 <ion-col>{{user.website}}</ion-col>
 </ion-row>
 </ion-grid>
 </ion-card-content>
 </ion-card>

</ion-content>

In the same folder, create a file named contact.ts and add the following5.
content to it:

import { Component, Input, OnChanges } from '@angular/core';
import { NavController, NavParams } from 'ionic-angular';

@Component({
 selector: 'page-contact',
 templateUrl: 'contact.html'
})
export class ContactPage {
 user:any = {};
 @Input() userInput;
 constructor(public navCtrl: NavController, private
params:NavParams) {
 this.user = params.get('user');
 }

 ngOnChanges() {

Extending Ionic with Angular Building Blocks Chapter 3

[118]

 if(this.userInput) {
 this.user = this.userInput;
 }
 }
}

Now open./src/app/app.modules.ts and add ContactPage in NgModule's6.
declarations and the entryComponents list, as shown in the following code:

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';
import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';

import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';
import { ContactPage } from '../pages/contact/contact';

@NgModule({
 declarations: [
 MyApp,
 HomePage,
 ContactPage
],
 imports: [
 BrowserModule,
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 HomePage,
 ContactPage
],
 providers: [
 StatusBar,
 SplashScreen,
 {provide: ErrorHandler, useClass: IonicErrorHandler}
]
})
export class AppModule {}

Now go to the Terminal and run the app using the following command:7.

$ ionic serve

Extending Ionic with Angular Building Blocks Chapter 3

[119]

How it works...
We already used multiple Ionic pages in the navigation, so we know that push/pop
navigation works. Let's take a closer look at how we define an Ionic Page as follows:

@Component({
 selector: 'page-contact',
 templateUrl: 'contact.html'
})
export class ContactPage {}

You can see that an Ionic page is actually an Angular component, and we already know that
we can use components as an HTML element using their selector. In the preceding
example, selector of the page is page-contact. So technically we can use the selector in
HTML. But it becomes a problem if our page is getting data from the previous page using
NavParams. Let's take a look at the constructor of ContactPage, shown in the following
code block:

 constructor(public navCtrl: NavController, private params:NavParams) {
 this.user = params.get('user');
 }

In the code, we are getting the user's information from the previous page using Ionic's
navigation. So, if we want to use this component as an HTML element, we need to pass this
data to the component somehow.

This is where @Input decorator is particularly useful. The @Input decorator allows us to
pass data to the component as an input. So, we have @Input() userInput as an input to
the component. This userInput has the same value as the user from NavParams shown in
the preceding code. The only difference is userInput will have a value when we use the
page component as an HTML element and params.get('user') will have a value when
we use this component via Navigation Controlller.

Extending Ionic with Angular Building Blocks Chapter 3

[120]

The following is the first page of the app:

When the user enters information in the input fields and then clicks on SHOW CONTACT
PAGE, it opens the ContactPage, as shown in the following screenshot:

Extending Ionic with Angular Building Blocks Chapter 3

[121]

It is important to note that we might not want to show the header bar of the Ionic page
when we are using it as an HTML component in other pages. If you take a look at
contact.html, you will see that we hide the page's header when we use it as an HTML
component, as follows:

<ion-header *ngIf="!userInput">
 <ion-navbar>
 <ion-title>
 Contact Page
 </ion-title>
 </ion-navbar>;
</ion-header>

Extending Ionic with Angular Building Blocks Chapter 3

[122]

So, what we are saying is, only show the header when userInput is empty. This
userInput is given as input via @Input, as described in the chapter. So, if you take a look
at the home.html file, you will add the following code to show ContactPage inside
HomePage:

<page-contact [userInput]="user" *ngIf="showContact">
</page-contact>

When we click on the TOGGLE CONTACT COMPONENT, it shows the same Contact
Page inside HomePage, as shown in the following screenshot:

Extending Ionic with Angular Building Blocks Chapter 3

[123]

See also
Read more about Angular components at https:/ / angular. io/ api/ core/
Component.
Angular components have a life cycle and events related to it. We can hook up to
any life cycle events such as destroy or initialize. Read more about life cycle
hooks at https:/ /angular. io/ guide/ lifecycle- hooks.

https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks

4
Validating Forms and Making

HTTP Requests
In this chapter, we will cover the following tasks related to creating form input validation,
mocked API calls, and payment pages using Stripe:

Creating a complex form with input validation
Creating reactive forms in Ionic
Retrieving data via a mocked API using a static JSON file
Integrating with Stripe for online payment

Introduction
All mobile apps require taking user input and sending it to a backend server. A simple
example is filling out a form, such as a user registration or contact form. The information is
validated against a set of rules before being sent to the backend. Also, there are many other
scenarios where the information is captured based on user behavior from the app, such as
where they touch or how much time they spend on a certain page. Regardless, you will run
into many sending- and retrieving-data scenarios.

This chapter will cover the following three basic examples:

How to validate user inputs, such as text, number, and required versus not
required, and communicate data to another page
How to render data without having an actual backend
How to process payments using Stripe

All of these are actually available natively in Angular 2. However, since Angular 2 has a lot
of changes compared to Angular 1 in terms of processing data and working with the
backend server, it's worth covering these topics in detail.

Validating Forms and Making HTTP Requests Chapter 4

[125]

Creating a complex form with input
validation
In this section, you will build an app to demonstrate form validation using ngForm and
ngControl. Here is a screenshot of the form:

If the user tries to submit without providing valid information, the form will show the
following error:

Validating Forms and Making HTTP Requests Chapter 4

[126]

Basically, the Name field is required. The Phone field is the number type, but is optional.
The Comment field is required and the user must enter at least four characters. Of course,
this is just for demonstration of the input length. The user, finally, must agree to the terms
and conditions via the toggle input.

Validating Forms and Making HTTP Requests Chapter 4

[127]

After a successful validation, the user will be taken to the second screen with a summary of
the previous screen, as illustrated in the following screenshot:

Getting ready
This app example could work either in a browser or on a physical device. However, you can
optionally connect your physical device to verify the Phone field for number keypad.

How to do it...
Create a new MyFormValidation app using the blank template, as shown, and1.
go to the MyFormValidation folder:

$ ionic start MyFormValidation blank
$ cd MyFormValidation

Open the ./src/app/app.module.ts file and replace the content with the2.
following code:

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';
import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';

import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';
import { ThankyouPage } from '../pages/thankyou/thankyou';
import { MyFormService } from '../services/myform';

Validating Forms and Making HTTP Requests Chapter 4

[128]

@NgModule({
 declarations: [
 MyApp,
 HomePage,
 ThankyouPage
],
 imports: [
 BrowserModule,
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 HomePage,
 ThankyouPage
],
 providers: [
 StatusBar,
 SplashScreen,
 MyFormService,
 {provide: ErrorHandler, useClass: IonicErrorHandler}
]
})
export class AppModule {}

You may realize that there is a common service to be used in the app, called
MyFormService here. This example also has a second page, called
ThankyouPage.

Now, let's create the service by first creating a directory, as shown:3.

$ mkdir ./src/services

Create the myform.ts file in the component's directory that you just created,4.
as follows:

import { Injectable } from '@angular/core';

@Injectable()
export class MyFormService {
 public name: string = '';
 public phone: number;
 public comment: string = '';
}

Validating Forms and Making HTTP Requests Chapter 4

[129]

This example will keep the service component simple for demonstration
purposes.

Open and edit the ./src/pages/home/home.html template, as shown:5.

<ion-header>
 <ion-navbar color="primary">
 <ion-title>
 Contact Form
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content>
 <p class="center">
 <ion-icon class="large lighter" primary name="contact"></ion-
icon>
 </p>

 <form #f="ngForm" novalidate (ngSubmit)="onSubmit(f)">
 <ion-list>
 <ion-item>
 <ion-label floating>Name</ion-label>
 <ion-input type="text" name="name" required
 [(ngModel)]="data.name"></ion-input>
 </ion-item>
 <div [hidden]="f.controls.name && (f.controls.name.valid ||
 (f.controls.name.pristine && !isSubmitted))" class="note
danger">
 Name is required
 </div>

 <ion-item>
 <ion-label floating>Phone</ion-label>
 <ion-input type="tel" name="phone"
[(ngModel)]="data.phone">
 </ion-input>
 </ion-item>

 <ion-item>
 <ion-label floating>Comment</ion-label>
 <ion-input type="text" required minlength=4 name="comment"
 [(ngModel)]="data.comment">
 </ion-input>
 </ion-item>
 <div *ngIf="(isSubmitted && f.controls.comment &&
 f.controls.comment.pristine) || ((f.controls.comment) &&

Validating Forms and Making HTTP Requests Chapter 4

[130]

 (f.controls.comment.dirty && f.controls.comment.errors))"
class="note
 danger">
 Please enter {{ 4 - (f.controls.comment.errors.minlength ?
 f.controls.comment.errors.minlength.actualLength : 0) }}
more
 characters
 </div>
 <ion-item class="tos">
 <ion-toggle item-left [(ngModel)]="data.tos" name="tos"
 type="button" (click)="noSubmit($event)"></ion-toggle>
 <ion-label item-right>Agree to terms and conditions
 </ion-label>
 </ion-item>
 <div [hidden]="(!isSubmitted) || (f.controls.tos &&
data.tos)"
 class="note danger">
 Please check Agree!
 </div>
 </ion-list>
 <div class="center">
 <button ion-button type="submit" round
outline>Submit</button>
 </div>
 </form>
</ion-content>

This is probably the most complicated part of the form validation process because
there are many places where you have to embed validation logic for the input.

Open and replace the content of the ./src/pages/home/home.scss file with6.
the following code:

page-home {
 .center {
 text-align: center;
 }
 ion-icon.large {
 font-size: 7em;
 }
 ion-icon.lighter {
 opacity: 0.5;
 }
 ion-list > .item:first-child {
 border-top: 0;
 }
 ion-list > .item:last-child, ion-list > ion-itemsliding:last-

Validating Forms and Making HTTP Requests Chapter 4

[131]

child .item
 {
 border-bottom: 0;
 }
 .tos {
 padding-top: 10px;
 ion-toggle {
 padding-left: 0px;
 }
 .item-inner {
 border-bottom: 0;
 }
 }
 .item ion-toggle {
 padding-left: 0;
 }
 .note.danger {
 padding-left: 16px;
 color: #d14;
 }
}

Open ./src/pages/home/home.ts for editing with the following code:7.

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';
import { ThankyouPage } from '../thankyou/thankyou';
import { MyFormService } from '../../services/myform';

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {
 private data: any;
 private isSubmitted: Boolean = false;
 constructor(public nav: NavController, private formData:
 MyFormService) {
 this.nav = nav;
 this.formData = formData;
 this.data = {
 name: '',
 phone: '',
 comment: '',
 tos: false
 }
 }
 onSubmit(myForm) {

Validating Forms and Making HTTP Requests Chapter 4

[132]

 this.isSubmitted = true;
 console.log('onSubmit');
 console.log(myForm);
 if ((myForm.valid) && (myForm.value.tos)) {
 this.formData.name = this.data.name;
 this.formData.phone = this.data.phone;
 this.formData.comment = this.data.comment;
 this.nav.push(ThankyouPage);
 }
 }
 noSubmit(e) {
 e.preventDefault();
 }
}

You may note that there isn't much validation code in the JavaScript part. This
means that the template takes care of a lot of the validations. There is also an
import command for a thankyou page, which you will have to create next.

Now, let's create the thankyou folder, as follows:8.

$ mkdir ./src/pages/thankyou

Create a thankyou.ts file in the Component's directory that you just created, as9.
shown:

import { Component } from '@angular/core';
import { MyFormService } from '../../services/myform';
@Component({
 selector: 'page-thankyou',
 templateUrl: 'thankyou.html'
})
export class ThankyouPage {
 constructor(private formData: MyFormService) {
 this.formData = formData;
 }
}

This page just renders the data from the MyFormService service, so you can keep
it very simple.

Create thankyou.html in the ./src/pages/thankyou folder, as illustrated:10.

<ion-header>
 <ion-navbar color="secondary">
 <ion-title>
 Thank You

Validating Forms and Making HTTP Requests Chapter 4

[133]

 </ion-title>
 </ion-navbar>
</ion-header>
<ion-content>
 <h6 class="padding">
 You submitted the following information
 </h6>
 <div class="my-table">
 <ion-row>
 <ion-col width-25 class="my-label">Name</ion-col>
 <ion-col width-75>{{ formData.name }}</ion-col>
 </ion-row>
 <ion-row>
 <ion-col width-25 class="my-label">Phone</ion-col>
 <ion-col width-75>{{ formData.phone }}</ion-col>
 </ion-row>
 <ion-row>
 <ion-col width-25 class="my-label">Comment</ion-col>
 <ion-col width-75>{{ formData.comment }}</ion-col>
 </ion-row>
 </div>
</ion-content>

Create thankyou.scss in the ./src/pages/thankyou folder, as shown:11.

page-thankyou {
 h6.padding {
 color: #4C555A;
 padding: 10px;
 }
 .my-label {
 text-align: right;
 font-weight: bold;
 }
 .my-table {
 ion-row {
 color: #4C555A;
 padding: 0;
 height: 30px;
 }
 ion-row + ion-row {
 margin-top: 0;
 }
 ion-row:nth-child(odd) ion-col {
 background: #F9FAFB;
 }
 }
}

Validating Forms and Making HTTP Requests Chapter 4

[134]

Go to your Terminal and run the app with the following command:12.

$ ionic serve

How it works...
Let's start with the home.html file, where most of the validation code is located. If you look
at the structure of this page, it's very typical. You have <ion-navbar> with <ion-title>.
The <form> element must be inside the <ion-content> area.

It's a requirement to use the <form> element for Angular validation to
work. Otherwise, there will be no submit event and you cannot catch
errors for each input.

form has the following attributes:

<form #f="ngForm" novalidate (ngSubmit)="onSubmit(f)">

To assign a local variable on the fly, you use the # sign. This means that you want the f
variable to refer to ngForm, which is automatically created by Angular. This is a special
object that contains everything related to the current form. You are advised to use
novalidate to bypass the default HTML5 validation because you are using Angular for
validation instead. Otherwise, the form will acquire conflicts. The (ngSubmit) is pretty
much an event to trigger the onSubmit(f) function whenever the button with
type=submit is touched or clicked. When you submit the form, it will pass the f variable
along so that you can process the object inside the onSubmit method.

The form template consists of just <ion-list> and <ion-item>. You just need to know
how to validate each input and display the error. Let's use the Name field as the first
example. This is the <ion-input> for Name:

<ion-input type="text" name="name" required [(ngModel)]="data.name"></ion-
input>

The following is the error displayed:

<div [hidden]="f.controls.name && (f.controls.name.valid ||
(f.controls.name.pristine && !isSubmitted))" class="note danger">
 Name is required
</div>

Validating Forms and Making HTTP Requests Chapter 4

[135]

To validate, you must assign name a local variable name. This is to refer to that input using
f.controls.name in other areas. Recall that the f variable has been declared previously as
the ngForm object. Here is a view of how the ngForm is structured:

You can view this using the Chrome Developer console because the code actually gives this
output when you submit the form.

The error message Name is required will be hidden when either of the following
conditions takes place:

The form has not been submitted yet. Otherwise, people will see the error
message right away before they even type in something. This is not a good user
experience. To check for this, you have to use a temporary Boolean, called
isSubmitted. The f.controls.name.pristine variable means that the input
has not been modified. The opposite of this would be f.controls.name.dirty.
The f.controls.name.valid variable is true. However, you cannot check this
right away because, if the input is empty, the name object does not exist yet.
That's why you need to check for the existence of f.controls.name before
checking for the valid Boolean.

Validating Forms and Making HTTP Requests Chapter 4

[136]

There is no need to check the phone requirement; so, you just need to assign name and a
model, as shown:

<ion-input type="tel" name="phone" [(ngModel)]="data.phone"></ion-input>

For the comment field, you need to validate using both required and minlength=4, as
follows:

<ion-input type="text" required minlength=4 name="comment"
[(ngModel)]="data.comment"></ion-input>

You may think required is unnecessary because, if the length is zero, Angular will trigger
an error flag. However, that is not true. When the user doesn't enter anything in the input,
the input will have no length because the variable doesn't exist. That's why you need to
check for both scenarios.

The error message for the comment field is quite interesting because it shows the number of
characters the user needs to enter, as shown in the following code:

<div *ngIf="(isSubmitted && f.controls.comment &&
 f.controls.comment.pristine) || ((f.controls.comment) &&
 (f.controls.comment.dirty && f.controls.comment.errors))"
 class="note danger"> Please enter {{ 4 -
(f.controls.comment.errors.minlength
 ?
 f.controls.comment.errors.minlength.actualLength : 0) }} more
 characters
</div>

The main idea here is that you only want to show this div when the form is submitted and
it's pristine via f.controls.comment.pristine. This means that the user has not entered
anything in the form. You also want to show the message when the form is dirty and has
errors via f.controls.comment.errors. If you inspect the console, you can see a list of
many detailed errors under the f.controls.comment.errors object. In order to tell the
user how many characters they have left to enter, you have to first check
f.controls.comment.errors.minlength because, if that variable doesn't exist, there is
no error or the comment input is empty. If you do not check for this, you will get a parse
error later on.

In your home.ts file, the onSubmit method must toggle the isSubmitted Boolean to
true, as shown in the following code snippet:

onSubmit(myForm) {
 this.isSubmitted = true;
 console.log('onSubmit');

Validating Forms and Making HTTP Requests Chapter 4

[137]

 console.log(myForm);
 if ((myForm.valid) && (myForm.value.tos)) {
 this.formData.name = this.data.name;
 this.formData.phone = this.data.phone;
 this.formData.comment = this.data.comment;
 this.nav.push(ThankyouPage);
 }
}

Then, you have to do a general check for myForm.valid and myForm.value.tos. You
may wonder why we are checking for tos here instead of validating it inside the template.
The reason is that there is no way to validate a toggle button in Angular since it doesn't
make sense to do so as it cannot be required. Therefore, you have to do a custom
validation here to make sure it's true in the form. This means that the user has checked the
Agree to terms and conditions toggle.

Refer to the W3 website, at https:/ /www. w3. org/ TR/2011/ WD- html5-
20110525/ the- button- element. html , for information about the default
behavior of the button element.

The thankyou page is very self-explanatory because you just parse the formData object in
the template by getting the data from the MyFormService service.

See also
Check out the following links for more information:

For more information about form from the Angular 2 documentation, you can
visit https://angular.io/docs/ts/latest/guide/forms.html and
https://angular.io/docs/ts/latest/api/forms/index/NgForm-directive.htm
l

The Ionic documentation has its own page specifically for Ionic input
components, which is at
https://ionicframework.com/docs/v2/resources/forms/

It also has a good list of HTML5 input types that you can use for validation or
keyboard enforcement, which you can find at
http://ionicframework.com/html5-input-types/

https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html
https://angular.io/docs/ts/latest/guide/forms.html
https://angular.io/docs/ts/latest/api/forms/index/NgForm-directive.html
https://angular.io/docs/ts/latest/api/forms/index/NgForm-directive.html
https://ionicframework.com/docs/v2/resources/forms/
http://ionicframework.com/html5-input-types/

Validating Forms and Making HTTP Requests Chapter 4

[138]

Creating reactive forms in Ionic
In the previous example, we have created a complex form with validations. If you notice
carefully, we used angular validations inside our template file, particularly in home.html.
These type of forms are called as template driven form, where most of the work is done on
template side. This is something very similar to what we had in AngularJS.

There is another type of form in Angular, called the reactive form. The difference is, in
reactive forms, we used validations and other configuration inside the class of the
component, instead of in the template. The following is the definition from Angular Docs:

"With reactive forms, you create a tree of Angular form control objects in the component
class and bind them to native form control elements in the component template."

We will create a registration form, which looks like the following:

Validating Forms and Making HTTP Requests Chapter 4

[139]

Getting ready
Since we are using forms, we only require a web browser to run this recipe.

How to do it...
Open Terminal (or Command Prompt) and create a new app named1.
ReactiveForm based on blank template and go into the folder as follows:

$ ionic start ReactiveForm blank
$ cd ReactiveForm

Open home.html and replace the file with following content:2.

<ion-header>
<ion-navbar color="primary">
<ion-title>
Reactive Form
</ion-title>
</ion-navbar>
</ion-header>

<ion-content padding>
<p class="center">
<ion-icon class="large lighter" primary name="contact"></ion-icon>
</p>
<form [formGroup]="registerForm" (ngSubmit)="onSubmit()"
novalidate>
<ion-list>
<ion-item>
<ion-label floating>Username</ion-label>
<ion-input type="text" formControlName="username"></ion-input>
</ion-item>
<ion-item>
<ion-label floating>Email</ion-label>
<ion-input type="email" formControlName="email"></ion-input>
</ion-item>

<ion-item>
<ion-label floating>Password</ion-label>
<ion-input type="password" formControlName="pass"></ion-input>
</ion-item>

<ion-item>
<ion-label floating>Confirm Password</ion-label>

Validating Forms and Making HTTP Requests Chapter 4

[140]

<ion-input type="password" formControlName="repass"></ion-input>
</ion-item>

<ion-item text-wrap class="error">
<div *ngIf="registerForm.controls['username'].dirty &&
registerForm.controls['username'].invalid">
Username should at least have 10 Characters.
</div>
<div *ngIf="registerForm.controls['email'].dirty &&
registerForm.controls['email'].invalid">
Email is incorrect.
</div>
<div *ngIf="registerForm.controls['pass'].dirty &&
registerForm.controls['pass'].invalid">
Password should be 8 Character long.
</div>
<div *ngIf="registerForm.controls['repass'].dirty &&
registerForm.controls['repass'].invalid">
Choose same password in confirm password field.
</div>
</ion-item>
</ion-list>
<button ion-button full type="submit"
[disabled]="registerForm.invalid">Register</button>
</form>
</ion-content>

Open the home.scss file and replace the content with the following:3.

page-home {
 .center {
 text-align: center;
 }
 ion-icon.large {
 font-size: 7em;
 }
 ion-icon.lighter {
 opacity: 0.5;
 }
 .error {
 color: red;
 }
}

Validating Forms and Making HTTP Requests Chapter 4

[141]

Open the home.ts file and replace the content with the following:4.

import { Component } from '@angular/core';
import { FormBuilder, FormGroup, Validators } from
'@angular/forms';
import { NavController, AlertController } from 'ionic-angular';
import { confirmPassword } from "../../app/confirmPassword";

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {
 registerForm:FormGroup;

 constructor(public navCtrl: NavController, private
fb:FormBuilder,
 private alertCtrl: AlertController) {
 this.registerForm = this.fb.group({
 username: ['', [Validators.required,
Validators.minLength(10)]],
 email: ['', [Validators.required, Validators.email]],
 pass: ['', [Validators.required, Validators.minLength(8)]],
 repass: ['', [Validators.required, Validators.minLength(8)]],
 }, {
 validator: confirmPassword('pass', 'repass')
 });
 }

 onSubmit() {
 this.alertCtrl.create({
 title: 'Your inputs are:',
 message: JSON.stringify(this.registerForm.value),
 buttons: ['Dismiss']
 })
 .present();
 console.log(this.registerForm);
 }

}

Since, in our example, we have the registration form with the password and
confirm password fields, we will be creating a custom validator for making sure
that both fields have some values.

Validating Forms and Making HTTP Requests Chapter 4

[142]

Create a file named confirmPassword.ts in /app folder. Then add the5.
following content inside it:

import { FormGroup } from '@angular/forms';

export function confirmPassword(passwordKey: string,
passwordConfirmationKey: string) {
 return (group: FormGroup) => {
 let passwordInput = group.controls[passwordKey],
 passwordConfirmationInput =
 group.controls[passwordConfirmationKey];
 if (passwordInput.value !== passwordConfirmationInput.value)
{
 return passwordConfirmationInput.setErrors({notEquivalent:
true})
 }
 else {
 return passwordConfirmationInput.setErrors(null);
 }
 }
 }

Make sure your app.module.ts has the following content:6.

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';
import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';

import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';

@NgModule({
 declarations: [
 MyApp,
 HomePage
],
 imports: [
 BrowserModule,
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 HomePage

Validating Forms and Making HTTP Requests Chapter 4

[143]

],
 providers: [
 StatusBar,
 SplashScreen,
 {provide: ErrorHandler, useClass: IonicErrorHandler}
]
})
export class AppModule {}

Open the Terminal and run the following command :7.

$ ionic serve

How it works...
Since this recipe uses reactive forms, let's first take a look at home.ts, which initializes and
sets up our form.

In the HomePage class, we have registerForm:FormGroup property, which is the
collection of FormControl. Each FormControl is bound to the native FormControl in our
template. In order to create FormGroup, we can do something like the following:

this.myForm = new FormGroup({
 first: new FormControl('Nancy', Validators.minLength(2)),
 last: new FormControl('Drew'),
});

In the preceding example, we are creating a FormGroup named myForm. The FormGroup
constructor takes an object as input, which is the collection of FormControl. Each key in
this object refers to some native FormControl in the template. The value in the key pair is a
FormControl object. The FormControl constructor takes the initial value and a validator
or array of validators as input. The template will look something like this:

<form formGroup="myForm" novalidate>
 <input type="text" formControlName="first"/>
 <input type="text" formControlName="last" />
</form>

Here, formControlName is set to the key of FormControl; for example, first. formGroup
is set to the name of the group; in this example, it is myForm.

Validating Forms and Making HTTP Requests Chapter 4

[144]

However, this method becomes complicated if we have nested FormGroup. To ease this
process, Angular provides a better API via FormBuilder. FormBuilder is class, which
allow us to create FormGroup via a really nice API. Take a look:

this.registerForm = this.fb.group({
 username: ['', [Validators.required, Validators.minLength(10)]],
 email: ['', [Validators.required, Validators.email]],
 pass: ['', [Validators.required, Validators.minLength(8)]],
 repass: ['', [Validators.required, Validators.minLength(8)]],
 }, {
 validator: confirmPassword('pass', 'repass')
});

this.fb is an instance of FormBuilder and has a group method to create FormGroup. It
takes an object with a key-value pair. The key is used with formControlName to bind to the
native element in the template and the value is an array with the initial value of the native
element and a list of validators. For example, username has required and
minLength(10) validators; similarly, other fields have validations too. You may notice that
there is no FormControl constructor here. This is the abstraction provided by
FormBuilder.

You can also pass group-level validator as a second input to the group method of
FormBuilder. In the preceding example, we are using a custom confirmPassword
validator with inputs pass and repass. These are keys inside the first object and refer to
input fields; the validator makes sure that they are equal.

Our custom validator is created in the confirmPassword.ts file, as follows:

export function confirmPassword(passwordKey: string,
passwordConfirmationKey: string) {
 return (group: FormGroup) => {
 let passwordInput = group.controls[passwordKey],
 passwordConfirmationInput = group.controls[passwordConfirmationKey];
 if (passwordInput.value !== passwordConfirmationInput.value) {
 return passwordConfirmationInput.setErrors({notEquivalent: true})
 }
 else {
 return passwordConfirmationInput.setErrors(null);
 }
 }
}

Validating Forms and Making HTTP Requests Chapter 4

[145]

It is just a function that takes two string type arguments. These are the names of the two
fields that we want to compare. It compares the values in both fields and sets the validation
on the repass (a.k.a confirm password) field accordingly.

In home.html, we have form element which looks like following:

<form [formGroup]="registerForm" (ngSubmit)="onSubmit()" novalidate>

[formGroup] is set to registerForm, and when the user clicks on the submit button, it
fires the onSubmit method.

Each input is configured as follows:

 <ion-item>
 <ion-label floating>Username</ion-label>
 <ion-input type="text" formControlName="username"></ion-input>
 </ion-item>

We also show error messages, since we use validators in our form. Here is how we show
validation error messages. We check whether the field is dirty or invalid and then show
the appropriate error. formName.controls['controlName'] is the syntax to get control.
Here, formName is the name of formGroup and controlName is the name of the control:

<ion-item text-wrap class="error">
 <div *ngIf="registerForm.controls['username'].dirty &&
registerForm.controls['username'].invalid">
 Username should at least have 10 Characters.
 </div>
 <div *ngIf="registerForm.controls['email'].dirty &&
registerForm.controls['email'].invalid">
 Email is incorrect.
 </div>
 <div *ngIf="registerForm.controls['pass'].dirty &&
registerForm.controls['pass'].invalid">
 Password should be 8 Character long.
 </div>
 <div *ngIf="registerForm.controls['repass'].dirty &&
registerForm.controls['repass'].invalid">
 Choose same password in confirm password field.
 </div>
 </ion-item>

Validating Forms and Making HTTP Requests Chapter 4

[146]

Errors look something like this:

At last, we have Register button, which has following code:

<button ion-button full type="submit"
[disabled]="registerForm.invalid">Register</button>

We disable the button when the form is invalid. When the user clicks on it, it calls the
onSubmit method and we show an alert box with the user's input, as shown in the
following code:

onSubmit() {
 this.alertCtrl.create({
 title: 'Your inputs are:',
 message: JSON.stringify(this.registerForm.value),
 buttons: ['Dismiss']

Validating Forms and Making HTTP Requests Chapter 4

[147]

 })
 .present();
 console.log(this.registerForm);
 }

The alert message looks like the following:

See also
For further reading about reactive forms, go to Angular's Guide on reactive forms
at https:/ /angular. io/ guide/ reactive- forms

There is an excellent article written by Todd Moto on reactive forms at https:/ /
toddmotto. com/ angular- 2- forms- reactive

https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://angular.io/guide/reactive-forms
https://toddmotto.com/angular-2-forms-reactive
https://toddmotto.com/angular-2-forms-reactive
https://toddmotto.com/angular-2-forms-reactive
https://toddmotto.com/angular-2-forms-reactive
https://toddmotto.com/angular-2-forms-reactive
https://toddmotto.com/angular-2-forms-reactive
https://toddmotto.com/angular-2-forms-reactive
https://toddmotto.com/angular-2-forms-reactive
https://toddmotto.com/angular-2-forms-reactive
https://toddmotto.com/angular-2-forms-reactive
https://toddmotto.com/angular-2-forms-reactive
https://toddmotto.com/angular-2-forms-reactive
https://toddmotto.com/angular-2-forms-reactive
https://toddmotto.com/angular-2-forms-reactive

Validating Forms and Making HTTP Requests Chapter 4

[148]

Retrieving data via a mocked API using a
static JSON file
As a frontend and app developer, you are often working with a team where someone else is
responsible for the backend APIs. However, it's not always possible to have the backend
available when you are developing the frontend. You have to simulate the backend in
scenarios where the final backend APIs are not ready.

In this recipe, you will learn how to call a REST API using the HttpClient service. The API
endpoint will be just a static JSON located on your local machine. You will also learn how to
leverage placeholder images to meet design requirements. The app will show a list of image
feeds and a description, as shown in the following screenshot:

Validating Forms and Making HTTP Requests Chapter 4

[149]

Getting ready
This app example would work either in a browser or on a physical device. However, the
fake backend server must be running on your local computer.

How to do it...
First, let's quickly create the fake backend server. You must install http-server1.
for this:

$ sudo npm install -g http-server

Create a folder to store your .json file. Let's call it MockRest, as shown:2.

$ mkdir MockRest
$ cd MockRest

Create the test.json file and fill in the following content for the REST response:3.

[
 {
 "title": "What a beautiful song",
 "category": "objects",
 "description": "Music is a moral law. It gives soul to the
universe, wings to the mind, flight to the imagination, and charm
and gaiety to life and to everything."
 },
 {
 "title": "The world we live in",
 "category": "nature",
 "description": "Look deep into nature, and then you will
understand everything better."
 },
 {
 "title": "Life experiences",
 "category": "people",
 "description": "People who know little are usually great
talkers, while
 men who know much say little."
 }
]

Validating Forms and Making HTTP Requests Chapter 4

[150]

Basically, whenever you send a REST request, you should receive the preceding
content as the response. As your backend developer updates the REST response,
you can always change the content of the test.json file accordingly.

Start your backend server by calling http-server from the Terminal in the4.
MockRest folder, as shown:

$ http-server --cors=Access-Control-Allow-Origin

Go to your browser and visit http://localhost:8080/test.json to verify
that you can see the JSON content. If not, you probably have a port conflict with
another web server. You need to ensure that there is no other application using
port 8080. After completing your backend, open another Terminal window,
create a new MyRestBackend app using the blank template, and go to the
MyRestBackend folder, as shown:

$ ionic start MyRestbackend blank
$ cd MyRestbackend

You must not stop the backend server or create an Ionic project inside the
MockRest folder. They are two independent project folders

Open the home.html file and replace the content with the following code:5.

<ion-header>
 <ion-navbar>
 <ion-title>
 Home
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content padding>
 <ion-card #myCard *ngFor="let item of quotes.data">
 <img [src]='"https://source.unsplash.com/category/" +
item.category + "/600x390"' [height]="myCard.clientWidth * 390 /
600" />
 <ion-card-content>
 <ion-card-title>
 {{ item.title }}
 </ion-card-title>
 <p>
 {{ item.description }}

Validating Forms and Making HTTP Requests Chapter 4

[151]

 </p>
 </ion-card-content>
 </ion-card>
</ion-content>

This example uses free photos from https:/ / source. unsplash. com/ because you
can easily query to get random photos that meet your need.

Open home.ts and edit it with the following code:6.

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';
import { QuoteService } from '../../services/quote';

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {
 constructor(public navCtrl: NavController, public
quotes:QuoteService) {
 this.quotes = quotes;
 this.quotes.getQuotes();
 }
}

You have not created the QuoteService service yet. However, you probably
know that this service will call the fake backend server to get the JSON content
using the getQuotes() method.

Do a small modification of the stylesheet home.scss, as follows:7.

page-home {
 ion-card {
 img {
 background-color: #f4f4f4;
 }
 }
}

Create the ./src/services folder with the following command:8.

$ mkdir ./src/services

https://source.unsplash.com/
https://source.unsplash.com/
https://source.unsplash.com/
https://source.unsplash.com/
https://source.unsplash.com/
https://source.unsplash.com/
https://source.unsplash.com/
https://source.unsplash.com/
https://source.unsplash.com/
https://source.unsplash.com/

Validating Forms and Making HTTP Requests Chapter 4

[152]

Create the quote.ts file in the services folder and copy the following code:9.

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
@Injectable()
export class QuoteService {
 private http: any;
 public data: any;
 constructor(http: HttpClient) {
 this.http = http;
 }
 getQuotes() {
 this.http.get("http://localhost:8080/test.json")
 .subscribe(res => {
 this.data = res;
 console.log(this.data, this.http);
 }, error => {
 console.log(error);
 });
 }
}

Open and edit ./src/app/app.module.ts to declare QuoteService, as10.
shown:

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';
import { HttpClientModule } from '@angular/common/http';
import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';

import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';
import { QuoteService } from '../services/quote'
@NgModule({
 declarations: [
 MyApp,
 HomePage
],
 imports: [
 BrowserModule,
 HttpClientModule,
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],

Validating Forms and Making HTTP Requests Chapter 4

[153]

 entryComponents: [
 MyApp,
 HomePage
],
 providers: [
 StatusBar,
 SplashScreen,
 QuoteService,
 {provide: ErrorHandler, useClass: IonicErrorHandler}
]
})
export class AppModule {}

Go to your Terminal and run the app, as illustrated:11.

$ ionic serve

You will note that the page is empty and the Console shows the following error:12.

Validating Forms and Making HTTP Requests Chapter 4

[154]

This means that your browser (in this case, Chrome) does not allow calling REST
API from http://localhost:8100 to http://localhost:8080. You need to
install the Allow-Control-Allow-Origin (CORS) plugin, such as
https://chrome.google.com/webstore/detail/allow-control-allow-

origi/nlfbmbojpeacfghkpbjhddihlkkiljbi?hl=en, for Chrome. After that, turn
on CORS, as shown in the following screenshot:

Refresh your browser to see the updated app.

How it works...
Your fake backend simply returns any file in the current MockRest folder. As you get more
sample responses from the backend developer, you can copy them into this folder to
provide additional backend endpoints.

https://chrome.google.com/webstore/detail/allow-control-allow-origi/nlfbmbojpeacfghkpbjhddihlkkiljbi?hl=en
https://chrome.google.com/webstore/detail/allow-control-allow-origi/nlfbmbojpeacfghkpbjhddihlkkiljbi?hl=en
https://chrome.google.com/webstore/detail/allow-control-allow-origi/nlfbmbojpeacfghkpbjhddihlkkiljbi?hl=en

Validating Forms and Making HTTP Requests Chapter 4

[155]

This section does not provide examples of how to handle POST and
complex scenarios where the responses depend on request parameters.
You may want to keep the code to handle temporary cases as simple as
possible since they are not production code. The recommendation is to
return the same content for each POST request as well.

Let's take a look at quote.ts, because it's the main place where the Http request is made.
First, you need to import Injectable and Http, which you can do as follows:

import {Injectable} from '@angular/core';
import {Http} from '@angular/http';

The @Injectable decorator is used to allow other pages and components to use
QuoteService as a dependency. The Http service (or class) is provided by Angular (not
Ionic) and this is similar to the $http provider in Angular 1. However, instead of returning
a promise, Http will return an observable object so that you can subscribe to it. The
getQuotes() method, shown as follows, is the most important part of this file:

 getQuotes() {
 this.http.get("http://localhost:8080/test.json")
 .subscribe(res => {
 this.data = res.json();
 console.log(this.data);
 }, error => {
 console.log(error);
 });
 }

The this.http object must be injected from the constructor. Then, it will trigger GET via
this.http.get(), just like the $http provider. However, there is no .then() function
but in Angular 2; you have to subscribe to the object. A new feature of ES6 is the arrow
function, as you see via res => {}. This is similar to the lambda function in other
languages (for example, Python). There is no need to declare the name of the function and
you don't have to type function each time. In addition, it automatically passes the
parameter (res in this case) and the this context inside the function.

Validating Forms and Making HTTP Requests Chapter 4

[156]

You can read more about the arrow function from TypeScript
documentation at
https://www.typescriptlang.org/docs/handbook/functions.html.

The REST response from your fake backend will be assigned to this.data of the
QuoteService service, as shown:

this.data = JSON.parse(res._body);

If you see the browser console, it will look similar to the following screenshot:

Another nice trick in the home.html template is to display a gray placeholder for the
photos instead of pushing down the content when the photos are downloaded and
rendered, as shown in the following code snippet:

<ion-card #myCard *ngFor="let item of quotes.data">
 <img [src]='"https://source.unsplash.com/category/" + item.category +
"/600x390"' [height]="myCard.clientWidth * 390 / 600"/>

https://www.typescriptlang.org/docs/handbook/functions.html

Validating Forms and Making HTTP Requests Chapter 4

[157]

The following screenshot shows a quick example before the photos are loaded:

In order to tell the tag to have an exact size, you have to do a height calculation using
[height]="myCard.clientWidth * 390 / 600". This is because the photo is 600 x 390.
The myCard object is a local object created from ion-card. This myCard object will have
access to all properties of the ion-card DOM, including the width via clientWidth. You
have probably noted that this is just pure JavaScript and has nothing to do with Ionic or
Angular itself.

See also
For more information about the Angular Http provider, you can visit the official
documentation at
https://angular.io/docs/ts/latest/api/http/index/HttpModule-class.html.

https://angular.io/docs/ts/latest/api/http/index/HttpModule-class.html

Validating Forms and Making HTTP Requests Chapter 4

[158]

Integrating with Stripe for online payment
In this section, you will learn how to integrate with a real backend service for the payment
process. Earning revenue is an important aspect of creating an app. While there are many
other methods of collecting payment, Stripe is a common payment system and can integrate
very well with Ionic. In addition, there is no need to provide a high level of security and
compliance (that is, PCI) since you will not be storing the credit card information.

Your app will not process via a real payment method because you can use a public test key
from Stripe. The app will ask for a few fields to create a token. Observe the following
screenshot of the app:

Validating Forms and Making HTTP Requests Chapter 4

[159]

If you touch the Pay button, it will take you to the next screen where you will get the
payment token, as shown in the following screenshot:

Actually, there are additional steps for your backend to call Stripe to
authorize and process the transaction. However, it's not within the scope
of this section. The Stripe document has a good tutorial page on Node.js at
https://stripe.com/docs/api/node#authentication.

Getting ready
There is no need to test in a physical device because Ionic and Stripe will work just fine in
the web browser.

How to do it...
If you don't have a Stripe account, you need to register on https://stripe.com.1.
Log in and go to https:/ /dashboard. stripe. com/ account/ apikeys.2.

Copy your Publishable Key, shown as follows, somewhere because you need to3.
use it for your JavaScript code later:

https://stripe.com/docs/api/node#authentication
https://stripe.com
https://stripe.com
https://dashboard.stripe.com/account/apikeys
https://dashboard.stripe.com/account/apikeys
https://dashboard.stripe.com/account/apikeys
https://dashboard.stripe.com/account/apikeys
https://dashboard.stripe.com/account/apikeys
https://dashboard.stripe.com/account/apikeys
https://dashboard.stripe.com/account/apikeys
https://dashboard.stripe.com/account/apikeys
https://dashboard.stripe.com/account/apikeys
https://dashboard.stripe.com/account/apikeys
https://dashboard.stripe.com/account/apikeys
https://dashboard.stripe.com/account/apikeys
https://dashboard.stripe.com/account/apikeys

Validating Forms and Making HTTP Requests Chapter 4

[160]

Now, go back to the Terminal and create a new StripePayment app using the4.
blank template, as follows, and go into the StripePayment folder:

$ ionic start StripePayment blank
$ cd StripePayment

Open the ./src/index.html file and insert the line shown somewhere in the5.
<body> tab as follows:

<script type="text/javascript"
src="https://js.stripe.com/v3/"></script>

This is to load the Stripe object globally in your app. This is not the
recommended method with Angular because anything that is used within
a component must be imported via the import instruction. However, at
the time of writing this book, angular-stripe is unavailable for Angular. So,
there is no way to do this properly. The preceding method will work just
fine.

Open the ./src/pages/home/home.html file and modify the content with the6.
following code:

<ion-content class="gray-bg">
 <p class="center">
 <ion-icon class="icon-large" name="card"></ion-icon>
 </p>
 <ion-card>
 <ion-card-content>
 <ion-card-header>
 Credit or debit card
 </ion-card-header>
 <ion-item>
 <div #cardElement>
 <!-- a Stripe Element will be inserted here. -->
 </div>
 </ion-item>
 <button ion-button full (click)="onSubmit()">Pay</button>
 </ion-card-content>
 </ion-card>
</ion-content>

Stripe only needs the credit card number, CVC, and expiration to create a token
for charging. The customer name and address are optional; so, you don't need to
include them here.

Validating Forms and Making HTTP Requests Chapter 4

[161]

Then, replace the content of ./src/pages/home/home.ts with the following7.
code:

import { Component, ViewChild } from '@angular/core';
import { NavController } from 'ionic-angular';
import { ThankyouPage } from '../thankyou/thankyou'
declare var Stripe: any;
@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {
 private token: string = '';
 private card:any;
 private elements:any;
 private stripe:any;
 @ViewChild('cardElement') cardElement;
 constructor(public nav: NavController) {
 this.nav = nav;
 this.stripe = Stripe('YOUR STRIPE PUBLIC KEY HERE');
 this.elements = this.stripe.elements();
 }

 ngOnInit() {
 const style = {
 base: {
 fontSize: '16px',
 lineHeight: '24px',
 marginBottom: '10px'
 },
 };
 this.card = this.elements.create('card', {style});
 this.card.mount(this.cardElement.nativeElement);
 }
 onSubmit() {
 this.stripe.createToken(this.card)
 .then((data) => {
 this.stripeResponseHandler(data);
 });
 }

 stripeResponseHandler(response) {
 if (response.error) {
 // Show the errors on the form
 console.log('error');
 console.log(response.error.message);
 } else {

Validating Forms and Making HTTP Requests Chapter 4

[162]

 // response contains id and card, which contains additional
card
 //details
 this.token = response.token.id;
 // Insert the token into the form so it gets submitted to the
server
 console.log('success');
 console.log('Sending token param:');
 console.log(this.token);
 this.nav.push(ThankyouPage, { token: this.token });
 }
 }
}

You need to change your Test Publishable Key here by replacing YOUR
STRIPE PUBLIC KEY HERE in Stripe Constructor with your own key that you
copied earlier.

Edit ./src/pages/home/home.scss with the following code:8.

.page-home {
 .center {
 text-align: center;
 }
 .gray-bg {
 background-color: #f4f4f7;
 }
 .icon-large {
 font-size: 150px;
 color: #387ef5;
 opacity: 0.5;
 }
}

Create the thankyou page that shows the token ID by making a new folder,9.
called ./src/pages/thankyou, as shown:

$ mkdir ./src/pages/thankyou

Create the thankyou.html file in the thankyou folder and copy the following10.
code:

<ion-content class="green-bg">
 <h4 class="center">
 Your token is
 </h4>
 <p class="center">

Validating Forms and Making HTTP Requests Chapter 4

[163]

 <code>
 {{ token }}
 </code>
 </p>
</ion-content>

In reality, there is no need to show the token ID to the user. This is just an example
to get the token ID to charge.

Create the thankyou.ts file in the thankyou folder and copy the following11.
code:

import { Component } from '@angular/core';
import { NavController, NavParams } from 'ionic-angular';

@Component({
 selector: 'thank-you',
 templateUrl: 'thankyou.html'
})
export class ThankyouPage {
 private token: string = '';
 constructor(public nav: NavController, public params:
 NavParams) {
 this.token = this.params.get('token');
 console.log('Getting token param:');
 console.log(this.token);
 }

}

Create the thankyou.scss file to modify the theme using the following code:12.

thank-you {
 .green-bg {
 color: black;
 background-color: #32db64;
 }
 h4.center {
 padding-top: 150px;
 }
 .center {
 text-align: center;
 }
}

Validating Forms and Making HTTP Requests Chapter 4

[164]

Open and edit ./src/app/app.module.ts to declare ThankyouPage as13.
follows:

import { NgModule } from '@angular/core';
import { IonicApp, IonicModule } from 'ionic-angular';
import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';
import { ThankyouPage } from '../pages/thankyou/thankyou'

@NgModule({
 declarations: [
 MyApp,
 HomePage,
 ThankyouPage
],
 imports: [
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 HomePage,
 ThankyouPage
],
 providers: []
})
export class AppModule {}

Go to your Terminal and run the app:14.

$ ionic serve

For the purpose of testing, you can use 4242424242424242 as the credit card15.
number, 123 as cvc, and 12/2017 as the expiration.

How it works...
This is the Stripe charging process:

The user fills in the payment form and clicks on the Submit button.1.
The frontend (your Ionic app) will call API to Stripe using the Stripe object and2.
send along all the payment information.
Stripe will return a token ID, which is basically a way to confirm that everything3.
is correct and you can charge the card now.

Validating Forms and Making HTTP Requests Chapter 4

[165]

The frontend will use the token ID to send to its backend (without the credit card4.
information) to authorize the charge.
The backend will call another Stripe API to say I'm going to charge now. Stripe will5.
return the success event to the backend at this point.
The backend will then return the success event to the frontend.6.
The frontend should render a new page, such as the thankyou page.7.

As discussed previously, this chapter will not cover the backend portion of this app because
it doesn't focus on Ionic. You can build the backend using any language, such as Node.js,
PHP, or Python.

Let's take a look at home.ts because the majority of Stripe API processing is located there.
First, you need to do a declare, as illustrated, because Stripe is a global object that was
included in the index.html:

declare var Stripe: any;

If you don't do a declare, the app will still run but you will get an error from TypeScript.

We are using Stripe Elements, which is pre-built set of UI Elements for payment. When our
home.ts page is loaded, we initialize our Payment form using ngOnInit LikeCycle hook.
Take a look at following code, inside ngOnInt:

 this.card = this.elements.create('card', {style});
 this.card.mount(this.cardElement.nativeElement);

We are creating a Stripe element card with a given style and then mounting that card to
HTML element inside template using this.card.mount.

If you take a look at home.html, you will see something like this:

<div #cardElement>
 <!-- a Stripe Element will be inserted here. -->
</div>

We created a div in home.html with #cardElement local variable, and in home.ts we
used @ViewChild decorator to get hold of it, and then mounted the Stripe Element UI
on it. Mounting means creating an input field for card number, date of expiry, and CVV.
Stripe Element also comes with its own validations and error messages.

Validating Forms and Making HTTP Requests Chapter 4

[166]

When the user submits the form, it will trigger the following method:

 onSubmit() {
 this.stripe.createToken(this.card)
 .then((data) => {
 this.stripeResponseHandler(data);
 });
 }

When you call Stripe.card.createToken, the Stripe object will trigger an API call in the
background to https://stripe.com/ with the information filled by the user via form. This
functionality is accomplished by the following code in your home.html:

<button type="button" ion-button bottom block
 (click)="onSubmit()">Pay</button>

Once Stripe returns your token ID, it will call the
this.stripeResponseHandler(response) function:

 stripeResponseHandler(response) {
 if (response.error) {
 // Show the errors on the form
 console.log('error');
 console.log(response.error.message);
 } else {
 // response contains id and card, which contains additional card
details
 this.token = response.token.id;
 // Insert the token into the form so it gets submitted to the server
 console.log('success');
 console.log('Sending token param:');
 console.log(this.token);
 this.nav.push(ThankyouPage, { token: this.token });
 }
 }

The response.token.id will have your token ID from Stripe. Otherwise, you can handle
the error using response.error.message. In this example, since it only passes the token
ID to the next page, you can simply send it as a parameter {token: this.token}:

this.nav.push(ThankyouPage, {token: this.token});

In your thankyou.ts, you can access the parameter token using the following code:

this.params.get('token');

https://stripe.com/

Validating Forms and Making HTTP Requests Chapter 4

[167]

See also
To understand more about Stripe API, you can check out the official
documentation at https://stripe.com/docs/stripe.js
To know more about Strip elements, you can take a look at https:/ /stripe. com/
elements

There are more examples from other languages that you can experiment with at
https://stripe.com/docs/examples

https://stripe.com/docs/stripe.js
https://stripe.com/elements
https://stripe.com/elements
https://stripe.com/elements
https://stripe.com/elements
https://stripe.com/elements
https://stripe.com/elements
https://stripe.com/elements
https://stripe.com/elements
https://stripe.com/docs/examples

5
Adding Animation

In this chapter, we will cover the following tasks related to adding animation and
interaction to the app:

Embedding fullscreen inline video as background
Creating physics-based animation using Dynamics.js
Animating the slide component by binding gesture to animation state
Adding background CSS animation to the login page

Introduction
User experience is crucial for the initial traction of users. When your early adopters use the
app for the first time, they will have a better impression, which creates trust and increases
retention. App animation will also provide interactive feedback for the users so that they
know what to do or can take action based on very gentle visual hints.

Native apps used to have an advantage over web-based hybrid apps because of animation
performance. However, frameworks such as Ionic and Angular have closed the gap in
performance a lot in the recent years. Web animation is also easier to learn and code since
many frontend developers are familiar with JavaScript and CSS.

In this chapter, you will learn how to do basic animation using video and CSS. Then, you
will start utilizing physics-based animation to create interesting interactivity. Moreover,
you could even bind the gesture frame by frame so that your animation happens instantly
during a swipe event.

Adding Animation Chapter 5

[169]

Embedding full screen inline video as
background
Today, there are many apps that leverage video as an animated background for the
introduction screen. This makes the app more interesting and creative. The users feel that
they are welcomed to the app. This tactic is great to impress new users and encourage them
to return.

This section will teach you how to add a video with autoplay in the background:

You will also learn how to use animate.css to add custom animation to the app header
text.

Adding Animation Chapter 5

[170]

Getting ready
This app example could work either in the browser or on a physical device. However, it's
optional that you connect your physical device to verify that the animation plays correctly
in the background.

How to do it...
The following are the instructions to add a video with autoplay in the background:

Create a new VideoIntro app using the blank template, as follows, and1.
navigate to the VideoIntro folder:

$ ionic start VideoIntro blank
$ cd VideoIntro

You will need to have your video ready at this point. However, for this example,2.
let's download a free video from a public website that does not require a license.
Navigate to http://www.coverr.co.
You can download any video. The example in this app uses the Blurry-3.
People.mp4 clip. Download it to your computer:

http://www.coverr.co

Adding Animation Chapter 5

[171]

Save the videos in ./src/assets/:4.

Open the ./src/index.html file and replace the content with the following5.
code:

<!DOCTYPE html>
<html lang="en" dir="ltr">
<head>
 <meta charset="UTF-8">
 <title>Ionic App</title>
 <meta name="viewport" content="width=device-width,
 initial-scale=1.0, minimum-scale=1.0, maximum-scale=1.0,
 user-scalable=no">
 <meta name="format-detection" content="telephone=no">
 <meta name="msapplication-tap-highlight" content="no">

 <link rel="icon" type="image/x-icon"
 href="assets/icon/favicon.ico">
 <link rel="manifest" href="manifest.json">
 <meta name="theme-color" content="#4e8ef7">

 <!-- Google Fonts -->
 <link href='https://fonts.googleapis.com/css?family=Lobster'
 rel='stylesheet' type='text/css'>
 <!-- cordova.js required for cordova apps -->
 <script src="cordova.js"></script>

 <!-- un-comment this code to enable service worker
 <script>
 if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('service-worker.js')
 .then(() => console.log('service worker installed'))
 .catch(err => console.log('Error', err));
 }
 </script>-->

 <link href="build/main.css" rel="stylesheet">
 <link rel="stylesheet"

Adding Animation Chapter 5

[172]

 href="https://cdnjs.cloudflare.com/ajax/libs/
 animate.css/3.5.2/animate.min.css">

</head>
<body>

 <!-- Ionic's root component and where the app will
 load -->
 <ion-app></ion-app>

 <!-- The polyfills js is generated during the build
 process -->
 <script src="build/polyfills.js"></script>

 <!-- The bundle js is generated during the build
 process -->
 <script src="build/main.js"></script>

</body>
</html>

Basically, the main difference with the original index.html file is that you want
to include the Google Lobster font for the heading text and animate.css
for animation.

For the main template, you can modify the ./src/pages/home.html file and6.
replace it with the following code:

<ion-content class="home">
 <div class="fullscreen-bg">
 <video class="fullscreen-bg__video" autoplay loop
 muted webkit-playsinline><source src="assets/Blurry-
People.mp4"
 type='video/mp4; codecs="h.264"'><source src="assets/Blurry-
 People.webm"
 type="video/webm">
 </video>
 </div>
 <div class="center animated zoomIn">
 <h1>Beautiful App</h1>
 <h2>Fast. Easy. Cheap.</h2>
 </div>
</ion-content>

There are only two important items on this page: the video and the header with
the subheader.

Adding Animation Chapter 5

[173]

Open and edit the ./src/pages/home/home.scss file in the same folder using7.
the following code:

page-home {
 .home {
 font-family: 'Lobster', cursive;
 color: white;
 text-shadow: 1px 0 0 gray, -1px 0 0 gray, 0 1px 0 gray, 0
-1px 0 gray, 1px 1px gray, -1px -1px 0 gray, 1px -1px 0 gray, -1px
1px 0 gray;
 h1 {
 font-size: 5rem;
 }
 }
 .fullscreen-bg {
 position: fixed;
 top: 0;
 right: 0;
 bottom: 0;
 left: 0;
 overflow: hidden;
 z-index: -100;
 }
 .fullscreen-bg__video {
 position: absolute;
 top: 0;
 left: 0;
 height: 100%;
 }
 .center {
 top: 50%;
 transform: translateY(-50%);
 position: absolute !important;
 text-align: center;
 width: 100%;
 }
}

All animation is done using CSS; thus, you don't need to write any code for the
JavaScript file.

Adding Animation Chapter 5

[174]

Open the config.xml file, and add the following line within the <widget> tag:8.

<preference name="AllowInlineMediaPlayback" value="true"/>

Go to your terminal and run the app with the following command:9.

$ ionic serve

How it works...
Let's start with the home.html file because that is the only page where you added the
animation:

<video class="fullscreen-bg__video" autoplay loop muted
 webkit-playsinline> <source src="assets/Blurry-People.mp4"
 type='video/mp4; codecs="h.264"' >
 <source src="assets/Blurry-People.webm" type="video/webm">
</video>

The preceding tag is just a typical <video> tag in HTML5. However, there is a new
attribute, called webkit-playsinline. This means that you want the video to play where
it is on the HTML page and not open it up fullscreen with the play control. The reason is
that you want this video to play in the background, while you can animate text on top of it.
This is the reason you need to enable this feature by setting AllowInlineMediaPlayback
in config.xml.

The second item in this template is your header and subheader, as follows:

<div class="center animated zoomIn">
 <h1>Beautiful App</h1>
 <h2>Fast. Easy. Cheap.</h2>
</div>

Note that there are animated and zoomIn classes included. These are the required classes
for animate.css to kick in. If you run the app now, you will see the text starting to appear
from a smaller size to a bigger size (that is, a zoom-in effect).

The home.scss file is important because it has a lot of animation logic. Let's take a look at
the header text first:

.home {
 font-family: 'Lobster', cursive;
 color: white;
 text-shadow: 1px 0 0 gray, -1px 0 0 gray, 0 1px 0 gray,

Adding Animation Chapter 5

[175]

 0 -1px 0 gray, 1px 1px gray, -1px -1px 0 gray, 1px -1px
 0 gray, -1px 1px 0 gray;
 h1 {
 font-size: 5rem;
 }
}

One interesting thing here is the use of the text-shadow attribute. This is because you
want to create a thin border line around the text so that your white text can be easily seen
on top of a light background.

To set the video to fullscreen, you will need it to have a negative index so that it's below the
other layers. Also, the height must be 100%, as follows:

.fullscreen-bg {
 position: fixed;
 top: 0;
 right: 0;
 bottom: 0;
 left: 0;
 overflow: hidden;
 z-index: -100;
}

.fullscreen-bg__video {
 position: absolute;
 top: 0;
 left: 0;
 height: 100%;
}

Finally, in order to position the text vertically in the center, you have to create the following
class:

.center {
 top: 50%;
 transform: translateY(-50%);
 position: absolute !important;
 text-align: center;
 width:100%;
}

The center class forces the element to have top of 50% but then pushes the Y position -50%
to reset the vertical pivot of the <div> tag in the middle area. You will rarely need to
customize such classes; thus, it's good to keep the center class handy for future use.

Adding Animation Chapter 5

[176]

Creating physics-based animation using
Dynamics.js
Using physics-based animations can make your app more interactive and lively, which
helps attract and retain more users. There are many methods to add physics to your
component animation. For example, you could even use the CSS animation-timing
function to add property values, such as ease-in, ease-out, or cubic-bezier. However,
it's easier and better to use an existing JavaScript-based physic animation. Dynamics.js is
one of those JavaScript libraries that comes with utilities and performance. Using native
CSS physic features is actually not a good practice, as it comes with a frame-per-second
penalty on mobile devices.

The app will show a bouncing button, which can show and hide a top quote box, as follows;
it also uses physics animation:

Getting ready
This app example could work either in a browser or on a physical device. However, it's
recommended that you run the app via your physical device to test for performance.

How to do it...
The following are the instructions:

Open a terminal window, create a new SpinningButton app using the blank1.
template, and navigate to the SpinningButton folder:

$ ionic start SpinningButton blank
$ cd SpinningButton

Install dynamics.js using npm, as follows:2.

npm install dynamics.js --save

Open and edit the ./src/pages/home/home.html file to replace the content3.
with the following:

<ion-content class="home">
 <div class="my-card" #myCard>
 <h1>QUOTE</h1>

Adding Animation Chapter 5

[177]

 <p class="body">Always remember that you are absolutely unique.
 Just like everyone else.</p>
 <p class="name">Margaret Mead</p>
 </div>
</ion-content>
<ion-fab center bottom>
 <button ion-fab #thisEl (click)="animateMe(thisEl)">
 <ion-icon name="mic"></ion-icon>
 </button>
</ion-fab>

There is no need to have header navigation in this app because it will just be a
single page.

Open the home.ts file to edit in the same folder as step 2 using the following4.
code:

import { Component, ViewChild } from '@angular/core';
import { NavController } from 'ionic-angular';
import * as dynamics from 'dynamics.js';

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {
 private isAnimating: Boolean = false;
 private isQuoteShown: Boolean = false;
 @ViewChild('myCard') myCard;
 constructor(public navCtrl: NavController) {
 }
 animateMe(el) {
 if (!this.isAnimating) {
 this.isAnimating = true;
 dynamics.animate(el._elementRef.nativeElement, {
 translateY: -50
 }, {
 type: dynamics.bounce,
 duration: 1300,
 complete: () => {
 console.log('Done animating button.');
 this.isAnimating = false;
 }
 });
 if (!this.isQuoteShown) {
 dynamics.animate(this.myCard.nativeElement, {
 translateY: 0

Adding Animation Chapter 5

[178]

 }, {
 type: dynamics.spring,
 duration: 1300,
 complete: () => {
 console.log('Done animating drop down.');
 this.isAnimating = false;
 }
 });
 this.isQuoteShown = true;
 } else {
 dynamics.animate(this.myCard.nativeElement, {
 translateY: -150
 }, {
 type: dynamics.easeOut,
 duration: 900,
 friction: 50,
 complete: () => {
 console.log('Done animating drop down.');
 this.isAnimating = false;
 }
 });
 this.isQuoteShown = false;
 }
 }
 }

}

Note that you must import the dynamics using ES6 import syntax.

Modify the home.scss stylesheet, as follows:5.

page-home {
 ion-content.home {
 background-color: #ecf0f1;
 }
 .my-card {
 color: white;
 transform: translate(0,-150px);
 background: #9b59b6;
 height: 150px;
 padding: 10px;
 h1 {
 font-size: 4rem;
 font-weight: 100;
 margin: 0;
 }
 p {

Adding Animation Chapter 5

[179]

 color: white;
 }
 p.body {
 font-size: 16px;
 line-height: 1.5em;
 margin-bottom: 0;
 margin-top: 5px;
 }
 p.name {
 font-size: 14px;
 font-weight: bold;
 text-align: right;
 margin-top: 5px;
 }
 }
}

Navigate to your terminal, and run the app with the following command:6.

$ ionic serve

How it works...
The main concept behind the physics animation in this app is the dynamics.animate
method from the Dynamics.js library. Let's start with the button in the template, as
follows:

<ion-fab center bottom>
 <button ion-fab #thisEl (click)="animateMe(thisEl)">
 <ion-icon name="mic"></ion-icon>
 </button>
</ion-fab>

The button mentioned in the preceding code is the floating button that you can click to
create a nice bouncing effect by calling the animateMe() method.

To learn more about Ionic's floating button, you can refer to the Ionic
documentation at
http://ionicframework.com/docs/components/#floating-action-butto

ns.

http://ionicframework.com/docs/components/#floating-action-buttons
http://ionicframework.com/docs/components/#floating-action-buttons

Adding Animation Chapter 5

[180]

The simple logic here is as follows:

If the button is animated, isAnimating must be True. Once it's True, any
additional click will not trigger the animation since we don't want the physics to
kick in multiple times.
If the top quote bar is displayed, isQuoteShown must be True. Otherwise, it will
call a different animation to hide it.

You can pass many options to the dynamics.animate method. For example, the button
will use dynamics.bounce as the type; thus, it will bounce up and down on each click. You
can also specify the duration to be applied to the animation process itself. After the
animation is done, it will trigger the callback in the complete function, as illustrated:

dynamics.animate(el._elementRef.nativeElement, {
 translateY: -50
}, {
 type: dynamics.bounce,
 duration: 1300,
 complete: () => {
 console.log('Done animating button.');
 this.isAnimating = false;
 }
});

An important thing to keep in mind is that Dynamics.js must refer to the DOM JavaScript
object itself and not the DOM node or Ionic object. That's why you have to use
el._elementRef.nativeElement to point to the native element object instead.

For the quote box, it creates a local variable, called myCard, in the template, as follows:

<div class="my-card" #myCard>
 <h1>QUOTE</h1>
 <p class="body">Always remember that you are absolutely unique.
 Just like everyone else.</p>
 <p class="name">Margaret Mead</p>
</div>

You must refer to this variable using the ViewChild decorator, as shown, so that @Page
knows to include it as a dependency:

@ViewChild('myCard') myCard;

Adding Animation Chapter 5

[181]

See also
If you are interested in learning more about native CSS physics-based animation, visit
https://developer.mozilla.org/en-US/docs/Web/CSS/animation-timing-function.

Animating the slide component by binding a
gesture to the animation state
Another way to get a wow experience from users is to have great-looking introduction
slides. A typical app would have three to five slides to describe what the app does and how
it will benefit the users. Today, many apps even add videos or interactive screens so that the
users can get a feel for how the app may work. Such an interactive animation will require
some internal development to bind touch gestures to the animation state. Animating based
on a specific state is very difficult because you really have to get granular gesture data. On
the other hand, it's a lot easier to just animate at the beginning or end of a state. For
example, you could animate an object inside a slide when the slide completely shows up on
the screen after a left swipe. However, this animation effect is not as interesting or attractive
as binding the animation during the touch movement.

The app you will build in this section will have three slides that will animate when you
swipe left or right:

https://developer.mozilla.org/en-US/docs/Web/CSS/animation-timing-function

Adding Animation Chapter 5

[182]

You will see fade in and fade out animation effects between slides; the following Angular
logo also moves up when you swipe left from the second slide:

Getting ready
There is no need to test the app on a physical device because the animation is done via
HTML and JavaScript. However, it's recommended that you test the app on your device to
evaluate the animation performance.

How to do it...
The following are the instructions:

Create a new SliderAnimation app using the blank template, as follows, and1.
go to the SliderAnimation folder:

$ ionic start SliderAnimation blank
$ cd SliderAnimation

Adding Animation Chapter 5

[183]

Open the ./src/pages/home/home.html file and modify its content using the2.
following code:

<ion-content class="home">
 <div class="slides-float">
 <div class="slide-float" #slidefloat1>
 <ion-icon name="ios-ionic"></ion-icon>
 <h1>Ionic</h1>
 </div>
 <div class="slide-float" #slidefloat2>
 <ion-icon name="logo-angular"></ion-icon>
 <h1>Angular</h1>
 </div>
 <div class="slide-float" #slidefloat3>
 <ion-icon name="logo-javascript"></ion-icon>
 <h1>Both</h1>
 </div>
 </div>
 <ion-slides #myslides pager (ionSlideDrag)="onMove()">
 <ion-slide>
 <h2>is Beautiful</h2>
 </ion-slide>
 <ion-slide>
 <h2>is Fast</h2>
 </ion-slide>
 <ion-slide>
 <h2>are Awesome</h2>
 </ion-slide>
 </ion-slides>
</ion-content>

The preceding template mainly uses the <ion-slides> tag. However, there are
some layers to float on top of the <ion-slide> tag in order to animate them
separately.

After this, replace the content of ./src/pages/home/home.ts with the3.
following code:

import { Component, ViewChild } from '@angular/core';
import { NavController } from 'ionic-angular';

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {

Adding Animation Chapter 5

[184]

 @ViewChild('myslides') myslides;
 @ViewChild('slidefloat1') slidefloat1;
 @ViewChild('slidefloat2') slidefloat2;
 @ViewChild('slidefloat3') slidefloat3;
 private rAf: any;
 private bindOnProgress: boolean = false;
 constructor(public navCtrl: NavController) {
 this.rAf = (function () {
 return (window as any).requestAnimationFrame || (window as
 any).webkitRequestAnimationFrame || (window as
 any).mozRequestAnimationFrame ||
 function (callback) {
 window.setTimeout(callback, 1000 / 60);
 };
 })();
 }

 onMove() {
 if (!this.bindOnProgress) {
 this.bindOnProgress = true;

 this.myslides.ionSlideProgress
 .subscribe(progress => {
 // (0, 1) - (0.25, 0) ==> (0-1)/(0.25-0) => -1/0.25 * x + 1
 let firstQuarter = () => {
 let slidefloat1Opacity = -1 / 0.25 * progress + 1;
 console.log('slidefloat1Opacity: ' + slidefloat1Opacity);
 this.slidefloat1.nativeElement.style.opacity =
slidefloat1Opacity;
 this.slidefloat2.nativeElement.style.opacity = 0;
 }
 // (0.25, 0) - (0.5, 1) ==> (1-0)/(0.5-0.25) => 1 / 0.25 *
x - 1 = 4
 * x - 1
 let secondQuarter = () => {
 let slidefloat2Opacity = 4 * progress - 1;
 console.log('slidefloat2Opacity: ' + slidefloat2Opacity);
 this.slidefloat2.nativeElement.style.opacity =
slidefloat2Opacity;
 this.slidefloat2.nativeElement.style.transform =
'translateY(0px)';
 this.slidefloat1.nativeElement.style.opacity = 0;
 }
 // (0.5, 0) - (0.75, -250) ==> (-250-0)/(0.75-0.5) = -250 /
0.25 =>
 -1000 * x + 500
 let thirdQuarter = () => {
 let slidefloat2transform = -1000 * progress +500;

Adding Animation Chapter 5

[185]

 console.log('slidefloat2transform: ' +
slidefloat2transform);
 this.slidefloat2.nativeElement.style.transform =
'translateY(' +
 slidefloat2transform + 'px)';
 this.slidefloat3.nativeElement.style.opacity = 0;
 }
 // (0.75, 0) - (1, 1) ==> (1-0)/(1-0.75) => 1/0.25 * x -
0.75 * 4 = 4
 * x - 3
 let fourthQuarter = () => {
 let slidefloat3Opacity = 4 * progress - 3;
 console.log('slidefloat3Opacity: ' + slidefloat3Opacity);
 this.slidefloat3.nativeElement.style.opacity =
slidefloat3Opacity;
 this.slidefloat2.nativeElement.style.transform =
 'translateY(-250px)';
 }

 // Animate per quarter of the total 3 slides
 if (progress <= 0.25) {
 this.rAf(firstQuarter);
 } else if ((progress > 0.25) && (progress <= 0.5)) {
 this.rAf(secondQuarter);
 } else if ((progress > 0.5) && (progress <= 0.75)) {
 this.rAf(thirdQuarter);
 } else if ((progress > 0.75) && (progress <= 1)) {
 this.rAf(fourthQuarter);
 }
 });
 }
 }

}

Note that the comments are used to calculate an animation formula for each
object.

Edit ./app/pages/home/home.scss with the following code:4.

page-home {
 .slides-float {
 .slide-float {
 top: 0;
 position: fixed;
 width: 100%;
 margin-top: 20px;

Adding Animation Chapter 5

[186]

 opacity: 0;
 }
 }
 .home {
 background-color: DarkSlateBlue;
 h2 {
 font-size: 3rem;
 }
 ion-slide {
 color: white;
 background-color: transparent;
 }
 .slides-float {
 color: white;
 text-align: center;
 :first-child {
 opacity: 1;
 }
 }
 .slide-float {
 ion-icon {
 font-size: 150px;
 }
 h1 {
 font-weight: lighter;
 font-size: 60px;
 margin-top: 0;
 }
 }
 }
}

Go to your Terminal, and run the app with the following command:5.

$ ionic serve

How it works...
The following is the general process of animation:

Since there are three slides, the user has to swipe twice to reach the end. This
means that the first swipe will be at 50% progress.
When a user swipes left to 25%, the Ionic logo will fade out.

Adding Animation Chapter 5

[187]

When a user swipes to 50%, the Angular logo will fade in for the second slide.
When a user swipes to 75%, the Angular logo will move up to disappear instead
of fading out.
Finally, in the last 75% to 100%, the JavaScript logo will fade in.

You probably noted that the amount of fade or movement will depend on the progress
percentage. Thus, if you swipe left and right a little bit, you can see the animation
responding to the gesture right away. There are two layers in the template. The floating static
layer, as illustrated, must be on top and it must stay at the same position regardless of the
slide that is currently shown:

 <div class="slides-float">
 <div class="slide-float" #slidefloat1>
 <ion-icon name="ios-ionic"></ion-icon>
 <h1>Ionic</h1>
 </div>

 <div class="slide-float" #slidefloat2>
 <ion-icon name="logo-angular"></ion-icon>
 <h1>Angular</h1>
 </div>

 <div class="slide-float" #slidefloat3>
 <ion-icon name="logo-javascript"></ion-icon>
 <h1>Both</h1>
 </div>

 </div>

The bottom layer is your typical <ion-slides>:

 <ion-slides #myslides pager (ionSlideDrag)="onMove()">
 <ion-slide>
 <h2>is Beautiful</h2>
 </ion-slide>
 <ion-slide>
 <h2>is Fast</h2>
 </ion-slide>
 <ion-slide>
 <h2>are Awesome</h2>
 </ion-slide>
 </ion-slides>

Adding Animation Chapter 5

[188]

When you swipe, it's actually moving <ion-slide>. However, it also triggers the
onMove() method because you bind it with the move event. The onMove() method will
access #slidefloat1, #slidefloat2, and #slidefloat3 from the floating <div> layer.
The home.ts file is where you have to animate these individual floating slides.

There are several variables that you need to declare in the home.ts file. You will need to be
able to access the <ion-slides> object in order to call the native Swiper methods:

 @ViewChild('myslides') myslides;

According to the Ionic documentation, the <ion-slides> object is written based on the
Swiper library; you can find more information at
http://ionicframework.com/docs/v2/api/components/slides/Slides/.

You need to bind it with the swiping event natively in order to get the correct progress data.

The following three variables are necessary to access each floating slide:

@ViewChild('slidefloat1') slidefloat1;
@ViewChild('slidefloat2') slidefloat2;
@ViewChild('slidefloat3') slidefloat3;

You need to leverage requestAnimationFrame, as follows, for the best animation
performance:

private rAf: any;

Otherwise, users will sense a jerky movement during a swipe because your animation is not
at 60 FPS.

Finally, you will need to bind the swipe event only once; thus, it's necessary to have a
Boolean toggle to detect the binding event:

private bindOnProgress: boolean = false;

The following code shows how to create a requestAnimationFrame object to call
whichever function is to be rendered later:

this.rAf = (function(){
 return (window as any).requestAnimationFrame || (window as
 any).webkitRequestAnimationFrame || (window as
 any).mozRequestAnimationFrame ||
 function(callback){
 window.setTimeout(callback, 1000 / 60);
 };
})();

http://ionicframework.com/docs/v2/api/components/slides/Slides/

Adding Animation Chapter 5

[189]

The onMove() method is where you put all the animation logic, which must subscribe to
ionSlideProgress Observable, as follows:

 this.myslides.ionSlideProgress
 .subscribe(progress => {
 ...
 });

First, let's take a look at the code at the bottom of onMove(), as follows:

if (progress <= 0.25) {
 this.rAf(firstQuarter);
} else if ((progress > 0.25) && (progress <= 0.5)) {
 this.rAf(secondQuarter);
} else if ((progress > 0.5) && (progress <= 0.75)) {
 this.rAf(thirdQuarter);
} else if ((progress > 0.75) && (progress <= 1)) {
 this.rAf(fourthQuarter);
}

Basically, you will want to have four quarters (or segments) of animation. When you swipe
from slide 1 to slide 2, it will trigger the firstQuarter and secondQuarter methods.
That is, you will want to fade out the first floating slide and fade in the second floating slide
at the end of the process. The concept is similar to the thirdQuarter and fourthQuarter
methods. Note that you don't want to call the method directly but just pass the function
reference inside this.rAf to have the rendering engine manage the frame rate. Otherwise,
the rendered function may end up blocking other processes in the UI, which causes jerky
movement.

For each of the quarters, you only have to change the style property, given a known
progress value, as follows:

let firstQuarter = () => {
 let slidefloat1Opacity = -1/0.25 * progress + 1;
 console.log('slidefloat1Opacity: ' + slidefloat1Opacity);
 this.slidefloat1.nativeElement.style.opacity =
 slidefloat1Opacity;
 this.slidefloat2.nativeElement.style.opacity = 0;
}

It's important to use the arrow function here so that you can access the this context. You
have to call this.slidefloat2.nativeElement to get to the <div> DOM object. It's
really up to you to write your own math function to calculate the position or opacity during
the slide movement with the progress value. In this example, the slidefloat1Opacity
variable is just a linear function based on the progress input value.

Adding Animation Chapter 5

[190]

The secondQuarter follows the same approach. However, thirdQuarter uses the
transform property instead of opacity, as illustrated:

let thirdQuarter = () => {
 let slidefloat2transform = -1000 * progress + 500;
 console.log('slidefloat2transform: ' + slidefloat2transform);
 this.slidefloat2.nativeElement.style.transform = 'translateY(' +
 slidefloat2transform + 'px)';
 this.slidefloat3.nativeElement.style.opacity = 0;
}

There are many ways to make a DOM object change its position. However, it's best to
leverage the transform property instead of using the left and top properties. You want
to achieve the highest Frame Per Second. In the thirdQuarter method, your
slidefloat2transform will be calculated, and it will update a new Y position using
translateY().

Note that you must use this.bindOnProgress to disable another event
binding to onProgress because, for each swipe, it will continue to add
more events.

See also
To understand more about requestAnimationFrame, you can check out the
official documentation at
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimati
onFrame

The Swiper API is located at http://idangero.us/swiper/api/
Ionic has an official usage example at
http://ionicframework.com/docs/components/#slides

Ionic also provides a limited number of API for slides at
http://ionicframework.com/docs/api/components/slides/Slides/

https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
http://idangero.us/swiper/api/
http://ionicframework.com/docs/v2/components/#slides
http://ionicframework.com/docs/api/components/slides/Slides/

Adding Animation Chapter 5

[191]

Adding a background CSS animation to the
login page
Animation can also be completely done in CSS. In many cases, you will probably run into
some interesting demos online and would like to incorporate the CSS-only code for
animation. If the animation is not as critical to the user experience, you could just use to add
additional effects to the app. CSS animation is great because you don't have to write
JavaScript code to manage the animation and just leave the browser to process it.

In this section, you will build an app to show some floating squares in the background of
your login page, as follows:

Adding Animation Chapter 5

[192]

Getting ready
There is no need to test it in a physical device because CSS animation will work just fine in
the Ionic app.

How to do it...
The following are the instructions:

Create a new BubbleLogin app using the blank template, as follows, and1.
navigate to the BubbleLogin folder:

$ ionic start BubbleLogin blank
$ cd BubbleLogin

Open the ./src/pages/home/home.html file and modify the content with the2.
following code:

<ion-content #myContent class="home">
 <ul class="bg-bubbles">

 <ion-list>
 <ion-item>
 <ion-label>Username</ion-label>
 <ion-input type="text"></ion-input>
 </ion-item>
 <ion-item class="input-password">
 <ion-label>Password</ion-label>
 <ion-input type="password"></ion-input>
 </ion-item>
 </ion-list>
 <div padding>
 <button ion-button block round color="secondary">LOGIN</
button>
 </div>

Adding Animation Chapter 5

[193]

 <p class="logo">
 <ion-icon name="ios-chatbubbles"></ion-icon>
 </p>
</ion-content>

The bg-bubbles class will convert a list of into floating squares pieces.

Edit ./src/pages/home/home.scss with the following code:3.

page-home {
 .home {
 background-color: SeaGreen;
 .logo {
 margin: 0;
 color: white;
 font-size: 100px;
 text-align: center;
 }
 scroll-content {
 overflow-y: hidden;
 }
 .item {
 background-color: transparent;
 }
 .item-input ion-label, .item-select ion-label, input.text-
 input {
 color: white;
 }
 ion-list > .item:first-child {
 border-top: 0;
 border-bottom: 1px solid white;
 }
 ion-list > .item:first-child .item-inner {
 margin-right: 8px;
 }
 ion-list .item-inner {
 border-bottom: 0;
 }
 .input-password {
 border-bottom: 1px solid white!important;
 item-inner {
 border-bottom: 1px solid white;
 margin-right: 8px;
 }
 }
 }
 .bg-bubbles {
 position: absolute;

Adding Animation Chapter 5

[194]

 top: 0;
 left: 0;
 width: 100%;
 height: 100%;
 z-index: 0;
 li {
 position: absolute;
 list-style: none;
 display: block;
 width: 40px;
 height: 40px;
 background-color: black;
 opacity: 0.2;
 bottom: -160px;
 -webkit-animation: square 25s infinite;
 animation: square 25s infinite;
 -webkit-transition-timing-function: linear;
 transition-timing-function: linear;
 &:nth-child(1) {
 left: 10%;
 }
 &:nth-child(2) {
 left: 20%;
 width: 80px;
 height: 80px;
 animation-delay: 2s;
 animation-duration: 17s;
 }
 &:nth-child(3) {
 left: 25%;
 animation-delay: 4s;
 }
 &:nth-child(4) {
 left: 40%;
 width: 60px;
 height: 60px;
 animation-duration: 22s;
 background-color: black;
 }
 &:nth-child(5) {
 left: 70%;
 }
 &:nth-child(6) {
 left: 80%;
 width: 120px;
 height: 120px;
 animation-delay: 3s;
 background-color: black;

Adding Animation Chapter 5

[195]

 }
 &:nth-child(7) {
 left: 32%;
 width: 160px;
 height: 160px;
 animation-delay: 7s;
 }
 &:nth-child(8) {
 left: 55%;
 width: 20px;
 height: 20px;
 animation-delay: 15s;
 animation-duration: 40s;
 }
 &:nth-child(9) {
 left: 25%;
 width: 10px;
 height: 10px;
 animation-delay: 2s;
 animation-duration: 40s;
 background-color: black;
 }
 &:nth-child(10) {
 left: 90%;
 width: 160px;
 height: 160px;
 animation-delay: 11s;
 }
 }
 }
 @-webkit-keyframes square {
 0% {
 transform: translateY(0);
 }
 100% {
 transform: translateY(-700px) rotate(600deg);
 }
 }
 @keyframes square {
 0% {
 transform: translateY(0);
 }
 100% {
 transform: translateY(-700px) rotate(600deg);
 }
 }
}

Adding Animation Chapter 5

[196]

Go to your terminal, and run the app with the following command:4.

$ ionic serve

How it works...
Since this app does not use JavaScript for animation, you will not need to modify anything
in home.ts.

The CSS will drive the animation infinitely with the following code:

animation: square 25s infinite;
transition-timing-function: linear;

You will also be using two points in the square keyframe:

@keyframes square {
 0% { transform: translateY(0); }
 100% { transform: translateY(-700px) rotate(600deg); }
}

So, for a 0% to 100% loop, it will move 700 px vertically and rotate 600 degrees in the
duration.

The reason that each square has a different size and speed is that you can customize the CSS
as per the tag further. Consider the following example:

 &:nth-child(2) {
 left: 20%;
 width: 80px;
 height: 80px;
 animation-delay: 2s;
 animation-duration: 17s;
 }

Since this animation does not generate a random number of square objects and there are a
limited number of objects, you could write a customization for each tag in the CSS.

Note that you have to put the animation with z-index: 0 because it will stay above other
layers, such as form and button.

Adding Animation Chapter 5

[197]

See also
To understand more about CSS keyframes, you can check out the Mozilla documentation at
https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes.

https://developer.mozilla.org/en-US/docs/Web/CSS/@keyframes

6
User Authentication and Push

Notifications
In this chapter, we will cover the following tasks related to authenticating users, and
register and receiving push notification messages:

Registering and authenticating users using Auth0
Building an iOS app to receive push notifications
Building an Android app to receive push notifications

Introduction
Tracking and engaging users are key features necessary for your app to grow. That means
you should be able to register and authenticate users. Once the users start using the app,
you also need to segment the users so that you can customize their interactions. Then, you
can send push notifications to encourage users to revisit the app.

User Authentication and Push Notifications Chapter 6

[199]

There are two components that you need to use for your project, as follows:

Auth0: Auth0 is a cloud-based authentication service. The whole idea is that you
delegate authentication of your application to Auth0. Auth0 supports many
frameworks, including Ionic2+, and also supports many social providers for
authentication such as Google and Facebook. On the top of that, they have
excellent documentation.
OneSignal: OneSignal is a service that allows us to send the push notification to
both iOS and Android. As a matter of fact, it supports other platforms such as
Windows, Web Push Notifications, Amazon Fire, and so on. The best part is, in
general, we need different code for adding push notifications. But because of
Cordova and OneSignal's abstract API, we only need to write push notification
code once for both platforms.

Registering and authenticating users using
Auth0
Auth0 can provide all of the user management and authentication capabilities out of the
box. There are lots of providers supported by Auth0. Following are some famous providers
that are supported by Auth0:

Email/password
Facebook
Google
Twitter
Instagram
LinkedIn
GitHub

User Authentication and Push Notifications Chapter 6

[200]

Depending on the app, you may not need to use all of these authentication methods. For
example, it would make more sense to use a LinkedIn authentication for an app focusing on
a working professional to narrow down the audiences who fit the user profile of the app.

In this chapter, we will try to simplify the authentication concept as much as possible. You
will learn how to do the following things:

Registering a new user
Logging in and logging out a user
Showing a user's profile information

Getting ready
You need the device to test the app because we are using Cordova plugins for
authentication, which requires either device or simulator to run the app.

How to do it...
We will do it in two ways:

Creating an app in the Auth0 dashboard
Coding our Ionic app

Creating our app in the Auth0 dashboard
In this section, we are going to learn how we can create an app in the Auth0 dashboard. Do
the following steps:

Go to https:/ /auth0. com and create an account there.1.

https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com
https://auth0.com

User Authentication and Push Notifications Chapter 6

[201]

After creating an account, it will open Auth0 dashboard. There is a New2.
Application button. Click on it, and it will open the following dialog:

Choose a Name for your client and select the client type as Native.

User Authentication and Push Notifications Chapter 6

[202]

Now, in the side menu Dashboard, click on Applications and select the3.
Application that you created. You will see the following page:

We need Domain and Client ID later in the app, so save them somewhere.
On the same page, in the Allowed Callback URLs input, add4.
YOUR_PACKAGE_ID://YOUR_DOMAIN/cordova/YOUR_PACKAGE_ID/callback.
Replace YOUR_PACKAGE_ID with the package ID of your app, and
YOUR_DOMAIN is the domain that you saved in the previous step.
Also, in the Allowed Origins(CORS) input, add file://.5.

With the latest Ionic, they are using WKWebView plugin by default,
which servers the app from a local web server at https:/ /
localhost:8080. So you have to add it too in the Allowed Origin(CORS)
section. If you are not going to use WKWebView, you don't have to add it.

Hit Save Changes.6.

User Authentication and Push Notifications Chapter 6

[203]

Let's code
Now that we have already created our app in the Auth0 dashboard, it's time to write the
code for it. Take the following steps:

Now, create a new MySimpleAuth app using the blank template, as shown in1.
the following code, and go to the MySimpleAuth folder:

$ ionic start MySimpleAuth blank
$ cd MySimpleAuth

Install auth0.js and auth0/cordova npm packages, which are required for2.
Auth0 authentication:

$ npm install auth0-js @auth0/cordova --save

We also need to install the following Cordova plugin:3.

$ ionic cordova plugin add cordova-plugin-safariviewcontroller

$ ionic cordova plugin add cordova-plugin-customurlscheme --variable
URL_SCHEME={YOUR_PACKAGE_ID} --variable
ANDROID_SCHEME={YOUR_PACKAGE_ID} --variable ANDROID_HOST={YOUR_DOMAIN}
--variable ANDROID_PATHPREFIX=/cordova/{YOUR_PACKAGE_ID}/callback

You should change {YOUR_PACKAGE_ID} to your app's package ID, and
{YOUR_DOMAIN} to your domain from Auth0 that you saved earlier in the
third step.

You also have to add the following line to config.xml:4.

<preference name="AndroidLaunchMode" value="singleTask" />

Create a file at ./src/providers/auth/auth.ts with the following code:5.

import { Injectable, NgZone } from '@angular/core';
import { Observable, Subscription } from 'rxjs';

import Auth0Cordova from '@auth0/cordova';
import Auth0 from 'auth0-js';

const auth0Config = {
 // needed for auth0
 clientID: 'sIQavE9jev8VXOTQkeb2Cn62m9s9faLN',

User Authentication and Push Notifications Chapter 6

[204]

 // needed for auth0cordova
 clientId: 'sIQavE9jev8VXOTQkeb2Cn62m9s9faLN',
 domain: 'imtest.auth0.com',
 callbackURL: location.href,
 packageIdentifier: 'io.ionic.imtest'
};

@Injectable()
export class AuthProvider {
 auth0 = new Auth0.WebAuth(auth0Config);
 accessToken: string;
 idToken: string;
 user: any;

 constructor(public zone: NgZone) {
 this.user = this.getStorageVariable('profile');
 this.idToken = this.getStorageVariable('id_token');
 }

 private getStorageVariable(name) {
 return JSON.parse(window.localStorage.getItem(name));
 }

 private setStorageVariable(name, data) {
 window.localStorage.setItem(name, JSON.stringify(data));
 }

 private setIdToken(token) {
 this.idToken = token;
 this.setStorageVariable('id_token', token);
 }

 private setAccessToken(token) {
 this.accessToken = token;
 this.setStorageVariable('access_token', token);
 }

 public isAuthenticated() {
 const expiresAt =
JSON.parse(localStorage.getItem('expires_at'));
 return Date.now() < expiresAt;
 }

 public login() {
 const client = new Auth0Cordova(auth0Config);

 const options = {
 scope: 'openid profile offline_access'

User Authentication and Push Notifications Chapter 6

[205]

 };

 client.authorize(options, (err, authResult) => {
 if(err) {
 throw err;
 }

 this.setIdToken(authResult.idToken);
 this.setAccessToken(authResult.accessToken);

 const expiresAt = JSON.stringify((authResult.expiresIn *
1000)
 +
 new Date().getTime());
 this.setStorageVariable('expires_at', expiresAt);

 this.auth0.client.userInfo(this.accessToken, (err, profile)=>
 {
 if(err) {
 throw err;
 }

 profile.user_metadata = profile.user_metadata || {};
 this.setStorageVariable('profile', profile);
 this.zone.run(() => {
 this.user = profile;
 });
 });
 });
 }

 public logout() {
 window.localStorage.removeItem('profile');
 window.localStorage.removeItem('access_token');
 window.localStorage.removeItem('id_token');
 window.localStorage.removeItem('expires_at');

 this.idToken = null;
 this.accessToken = null;
 this.user = null;
 }

}

User Authentication and Push Notifications Chapter 6

[206]

Make sure to use your own value for clientID, domain, and
packageIdentifier for auth0Config in auth.ts.

Open and edit ./src/app/app.module.ts with the following code:6.

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';
import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';

import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';
import { AuthProvider } from '../providers/auth/auth';

@NgModule({
 declarations: [
 MyApp,
 HomePage
],
 imports: [
 BrowserModule,
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 HomePage
],
 providers: [
 StatusBar,
 SplashScreen,
 {provide: ErrorHandler, useClass: IonicErrorHandler},
 AuthProvider
]
})
export class AppModule {}

Edit and replace ./src/pages/home/home.html with the following code:7.

<ion-header>
 <ion-navbar>
 <ion-title>
 Home Page

User Authentication and Push Notifications Chapter 6

[207]

 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content padding>
 <div *ngIf="!auth.isAuthenticated()">
 <button ion-button block color="primary"
(click)="auth.login()">Log In</button>
 </div>

 <div *ngIf="auth.isAuthenticated()">
 <ion-card>

 <ion-card-content>
 <ion-card-title>{{ auth.user.name }}</ion-card-title>
 </ion-card-content>
 </ion-card>
 <button ion-button block color="primary"
 (click)="auth.logout()">Logout</button>
 </div>
</ion-content>

These are just your basic login and logout templates. It's all in a single
page to keep things simple.

Open and edit ./src/pages/home/home.ts with the following code:8.

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';
import { AuthProvider } from '../../providers/auth/auth';

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {

 constructor(public navCtrl: NavController, public auth:
AuthProvider) {

 }

}

User Authentication and Push Notifications Chapter 6

[208]

Then run this in the device using the following command in CLI:9.

$ ionic cordova run android

How it works
There are certain things that we need to know before digging more into code.

Auth0 uses JWT (JSON Web Token), which is a compact way of sharing information
between two parties via JSON. In simple terms, when the user is authenticated, Auth0
sends us JWTs, which have information about the user and also allow the user to access
authenticated routes/URLs. Auth0 sends back an access_token, which is required for
accessing authenticated routes, and it also sends us an id_token, which contains the user's
profile information such as their username, profile picture, and so on. Both of these tokens
have a short lifespan and then they expire. But along with that, Auth0 also sends us a
refresh_token, which has a long expiry date and can be used to get a new id_token and
access_token.

We configured the Callback URL in our app. This is the URL where Auth0 redirects the
user after authentication. A callback URL includes the app's package ID, and that's why we
need to mention it while installing the plugin. We also need to add file:// in CORS
(Cross-Origin Resource Sharing), because the Ionic app makes an HTTP request from
file:// origin.

If you are using Ionic's WKWebView. It runs a local webserver inside the
app. So you have to whitelist http://localhost:8080 for CORS in Auth0
Dashboard

Most of the work is in AuthService. AuthService allows us to log in/log out. It uses the
auth0.js and auth0/cordova library for authentication. First, we are creating an
auth0Config object. This object looks like the following:

const auth0Config = {
 clientID: ''
 clientId: '',
 domain: '',
 callbackURL: location.href,
 packageIdentifier: ''
};

User Authentication and Push Notifications Chapter 6

[209]

In the preceding code, you can see that clientID and clientId have the same
value. It is the value that we saved earlier. The first is used by auth0.js, and the
latter is used by auth0/cordova.
The domain is also our Auth0 Domain used for authentication. We saved it
earlier when we created our app on the Auth0 dashboard.
callbackURL will always be location.href.
packageIdentifier is the package ID of your app, same as in your
config.xml.

We are then passing this config to both Auth0.WebAuth constructor function, and
Auth0Cordova constructor function.

In the login function, we initiate authentication by calling Auth0Cordova's authorize
function. It is important to notice that we are passing an option object with scope key into
an authorize function as the parameter. This scope key tells Auth0 to return certain data
like an email and profile after authentication is completed. We are also passing a callback
function as the second parameter, which fires when authentication is completed. When
authentication is initiated, Auth0Cordova opens the OS browser and redirects us to our
Auth0 Domain. Here, the user can log in and register. By default, email/password
authentication is configured for the app. But you can enable Google, Facebook, and GitHub
authentication, and they will also appear along with email/password authentication. When
the user is authenticated, the browser redirects us to our app via the Custom URL Scheme.
Then, we store idToken and accessToken in localstorage and also get profile information
using the auth0.client.userInfo function. Then later in the login method, we also save
this information to localstorage.

In the logout function, we are just removing idToken, accessToken, token Expiration
information, and Profile data from localstorage and also resetting the AuthService class.

In home.html, we show a Log In button when the user is not authenticated; when the user
is authenticated, we show a profile picture and the username of the user, along with the
LOGOUT button. These login and logout methods in home.ts call AuthService's login
and logout function respectively.

User Authentication and Push Notifications Chapter 6

[210]

Here is how our app looks when the user is not authenticated:

User Authentication and Push Notifications Chapter 6

[211]

When the user clicks on, it opens a web page for authenticating the user. It looks like the
following:

User Authentication and Push Notifications Chapter 6

[212]

Here is how our app looks when the user is authenticated:

There's more...
You can secure your custom backend using Auth0, and access the backend inside Ionic app
using the angular2-jwt library. Take a look at https:/ / github. com/ auth0/ angular2- jwt.

https://github.com/auth0/angular2-jwt
https://github.com/auth0/angular2-jwt
https://github.com/auth0/angular2-jwt
https://github.com/auth0/angular2-jwt
https://github.com/auth0/angular2-jwt
https://github.com/auth0/angular2-jwt
https://github.com/auth0/angular2-jwt
https://github.com/auth0/angular2-jwt
https://github.com/auth0/angular2-jwt
https://github.com/auth0/angular2-jwt
https://github.com/auth0/angular2-jwt
https://github.com/auth0/angular2-jwt
https://github.com/auth0/angular2-jwt

User Authentication and Push Notifications Chapter 6

[213]

Building an iOS app to receive push
notifications
A push notification is an important feature to engage users frequently, especially when the
users are not using the app. Many people download an app, but only open it a few times. If
you send them a push notification message, it will encourage them to open the app to get
involved in a new activity. Implementing push notifications is very complex if you have to
build everything from scratch; however, OneSignal makes it very simple. A push
notification provider is a server that can communicate with the Apple Push Notification
service (APNs), or Google's Firebase Cloud Messaging (FCM). You can set up your own
provider server using existing open sources, but you have to maintain this server separately
and keep up with potential changes from the APN APIs.

In this section, you will learn how to do the following things:

Set up OneSignal for iOS push notification
Configure an iOS app, certificates (app and push), and provisioning profile
Write code to receive push notifications

Getting ready
It's required to have a physical iOS device available in order to test for notification
messages.

You must also register for the Apple Developer Program (ADP) in order to access
https://developer.apple.com and https://itunesconnect.apple.com, because these
websites will require an approved account.

In addition to that, you must have an Apple Mac and Xcode installed.

https://developer.apple.com
https://developer.apple.com
https://itunesconnect.apple.com

User Authentication and Push Notifications Chapter 6

[214]

How to do it
You need the device to see the push notification. We will be doing this in multiple steps:

Creating an Apple Signing Certificate
Adding devices and creating a provisioning profile
Creating push certificates for use in the OneSignal dashboard
Configuring app in OneSignal dashboard
Coding the application

Let's create an Apple signing certificate
Follow the instructions to create apple signging certficiates:

Visit the Apple Developer website at https://developer.apple.com and log in1.
with your credentials.

Click on Certificates, Identifiers & Profiles, as illustrated in the following2.
screenshot:

Select the correct device platform you are targeting. In this case, it will be iOS,3.
tvOS, watchOS as shown in the following screenshot:

https://developer.apple.com

User Authentication and Push Notifications Chapter 6

[215]

Navigate to Identifiers | App IDs to create an app ID, as illustrated in the4.
following screenshot:

Click on the plus (+) button in the top-right corner of the screen, as shown in the5.
following screenshot:

Fill in the form to register your app ID. The Name field could be anything. You6.
can provide the name of your project (that is, MyiOSPush) to keep things simple,
as shown:

User Authentication and Push Notifications Chapter 6

[216]

The important part that you need to do correctly here is the Bundle ID, because it7.
must match your bundle identifier in the ./config.xml file or Xcode, as
illustrated:

User Authentication and Push Notifications Chapter 6

[217]

To enable push notifications, you need to check the Push Notifications service on8.
the following page:

User Authentication and Push Notifications Chapter 6

[218]

Select Register, as shown:9.

Select Done to complete the step to create an app ID, as follows:10.

To start with certificate creation, you will need to generate a certificate signing11.
request file locally on your Mac OSX using Keychain Access. Navigate to the
Keychain Access in the top-left menu, and navigate to Certificate Assistant |
Request a Certificate From a Certificate Authority..., as illustrated:

User Authentication and Push Notifications Chapter 6

[219]

Enter your User Email Address and Common Name. Leave the CA Email12.
Address field blank and check Saved to disk, as shown:

Save your CertificateSigningRequest.certSigningRequest file, as13.
follows:

Navigate to the Apple Developer website, and navigate to Certificates | All, as14.
shown:

User Authentication and Push Notifications Chapter 6

[220]

Click on the plus (+) button in the top-right corner to start creating a certificate,15.
as follows:

Now, you just have to go through the steps on the website to fill out the16.
necessary information. In this example, you will select the Development version
instead of Production, as illustrated:

User Authentication and Push Notifications Chapter 6

[221]

Click on the Continue button, as follows, to proceed:17.

Click on the Choose File... button, as shown in the following screenshot, to18.
upload your signing request file that you saved earlier:

User Authentication and Push Notifications Chapter 6

[222]

Click on the Continue button, as illustrated, to proceed:19.

Click on the Download button to download your iOS Development certificate20.
file:

Click on the .cer file you downloaded, as shown so that it can be imported to21.
Keychain Access:

It is very important to remember that you have to install the signing
certificate on the Mac because when you will build the app, it will be used
to sign the app. Just double-click the downloaded .cer file to install it.

User Authentication and Push Notifications Chapter 6

[223]

Adding a device and creating the provisioning profile
If you need to push the app to a specific device, you must register the device. Go1.
to Devices | All:

Click on the plus (+) button:2.

Provide the device a UDID and save to register the device. Observe the following3.
screenshot:

User Authentication and Push Notifications Chapter 6

[224]

You'll need a provisioning profile. Navigate to Provisioning Profiles | All:4.

Click on the plus (+) button:5.

Select iOS App Development as your provisioning profile, since this example is6.
for the development version only:

User Authentication and Push Notifications Chapter 6

[225]

Click on the Continue button:7.

Select the correct App ID in the drop-down menu, and save to finalize your8.
provisioning profile creation:

Click on the Continue button:9.

Select the iOS Development certificate you created earlier, as shown in the10.
following screenshot:

User Authentication and Push Notifications Chapter 6

[226]

As illustrated, select at least one device that you want to be able to install the app11.
for testing:

User Authentication and Push Notifications Chapter 6

[227]

Provide a Profile Name to your provisioning profile, as shown:12.

Click on the Download button to download the provisioning profile file (that is,13.
MyiOSPush_Provisioning_Profile.mobileprovision):

User Authentication and Push Notifications Chapter 6

[228]

Click on MyiOSPush_Provisioning_Profile.mobileprovision, which you14.
just downloaded, in order to import it into Xcode:

This step is very important, because if you don't import it into Xcode, your
app cannot be built successfully. If your app failed to build because of an
invalid provisioning profile, it's best to check the provisioning profile
status in the Developer Console.

Creating a push certificate
Follow the steps to create push certificates for iOS application:

To enable the Push Notification feature, you must request a Push Certificate,1.
which is different from the app certificate. Select the App ID that you created
earlier (that is, MyiOSPush):

Click on the Edit button at the bottom of the page:2.

User Authentication and Push Notifications Chapter 6

[229]

The Push Notifications must show the Configurable state. Otherwise,
your app is not available for push notifications.

Click on the Create Certificates... button under the Push Notifications |3.
Development SSL Certificate section:

User Authentication and Push Notifications Chapter 6

[230]

You will be taken to a new page to create your CSR file. Click on the Continue4.
button:

User Authentication and Push Notifications Chapter 6

[231]

Click on the Choose File... button:5.

Locate the CertificateSigningRequest.certSigningRequest file that you6.
created earlier:

You must upload the same .certSigningRequest file as you did for the
app certificate. Otherwise, your app will not receive push notifications,
and it's very hard to debug.

User Authentication and Push Notifications Chapter 6

[232]

Click on the Continue button:7.

Click on the Download button to download the certificate file. You can name it8.
aps_certificate.cer to avoid overwriting to the earlier .cer file:

Once your .cer file is downloaded, you need to click on it to import it to9.
Keychain Access:

User Authentication and Push Notifications Chapter 6

[233]

Locate the new push services certificate in Keychain Access and select it, as10.
illustrated in the following screenshot:

Right-click on the certificate and select Export:11.

Give it a new name to avoid overwriting it to the app certificate. This process is,12.
basically, to convert from a .cer to .p12 file for OneSignal:

User Authentication and Push Notifications Chapter 6

[234]

Provide a password for this .p12 file to protect it:13.

A password for the .p12 file is not mandatory for OneSignal, but it is in
the best interest to secure it.

Now let's configure OneSignal
Follow the below steps to configure OneSignal for sending push notifications:

Go to https:/ /onesignal. com and create an account.1.

https://onesignal.com
https://onesignal.com
https://onesignal.com
https://onesignal.com
https://onesignal.com
https://onesignal.com
https://onesignal.com

User Authentication and Push Notifications Chapter 6

[235]

In the dashboard, click on Add a new app. You will see the following dialog:2.

Fill it with the name that you want and click on Create. It will open the following3.
dialog:

User Authentication and Push Notifications Chapter 6

[236]

Select Apple iOS and Hit Next. You will see the following:4.

Select Upload optional sandbox certificate and upload the .p12 file for the push5.
certificate that you created earlier. Also, fill in the password for the .p12 file.
Then hit Save.
Now in the top main menu, click on Keys & ID. You will see OneSignal6.
App ID, as shown below:

Note down the OneSignal App ID somewhere; we need this to configure our
app.

User Authentication and Push Notifications Chapter 6

[237]

Let's code
Follow the below steps to create the example app:

Now, create a new MyiOSPush app using the blank template, as shown, and go1.
to the MyiOSPush folder:

$ ionic start MyiOSPush blank
$ cd MyiOSPush

Install the Cordova plugin and Ionic Native wrapper for OneSignal:2.

$ ionic cordova plugin add onesignal-cordova-plugin
$ npm install --save @ionic-native/onesignal

We need to add this ionic-native plugin to app.module.ts.

We also need to install cocoapods. Go to Terminal, and install it as follows:3.

sudo gem install cocoapods
pod repo update

Open and edit ./src/app/app.module.ts with the following content:4.

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';
import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';
import { OneSignal } from '@ionic-native/onesignal';

import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';

@NgModule({
 declarations: [
 MyApp,
 HomePage
],
 imports: [
 BrowserModule,
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,

User Authentication and Push Notifications Chapter 6

[238]

 HomePage
],
 providers: [
 StatusBar,
 SplashScreen,
 OneSignal,
 {provide: ErrorHandler, useClass: IonicErrorHandler}
]
})
export class AppModule {}

You need to modify your home page code in order to receive notification5.
messages. Open and edit ./src/pages/home/home.html and paste the given
code:

<ion-header>
 <ion-navbar>
 <ion-title>
 Push Notification
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content padding>
 <h2 class="big-square" *ngIf="!this.messages.length">
 You have no message
 </h2>
 <h3 class="sub-title" *ngIf="!!this.messages.length">
 Your messages
 </h3>
 <ion-card *ngFor="let msg of messages">
 <ion-card-header>
 {{ msg.title }}
 </ion-card-header>
 <ion-card-content>
 {{ msg.text }}
 </ion-card-content>
 </ion-card>
</ion-content>

Replace the content of the home.ts file, in the same folder, with the following6.
code:

import { Component, ChangeDetectorRef } from '@angular/core';
import { NavController, Platform } from 'ionic-angular';
import { OneSignal } from '@ionic-native/onesignal';

User Authentication and Push Notifications Chapter 6

[239]

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {
 public messages = [];
 public clicked: Boolean = false;
 constructor(public navCtrl: NavController, public oneSignal:
OneSignal, platform: Platform, private changeDetector:
ChangeDetectorRef) {
 platform.ready().then(() => {
 this.oneSignalConfig();
 });
 }

 oneSignalConfig() {
this.oneSignal.startInit("94218e7a-2307-41fa-9bc3-20783b4cde9a");
this.oneSignal.handleNotificationReceived().subscribe((value:any)
=> {
 let msg = value.payload;
 this.messages.push({
 title: msg.title,
 text: msg.body
 });
 this.changeDetector.detectChanges();
 });
 this.oneSignal.endInit();
 }
}

In the startInit function, you have to pass your own OneSignal App ID, which
you created earlier.

Replace home.scss, also in the /home folder, with the given code:7.

page-home {
 .center {
 text-align: center;
 }
 h2.big-square {
 text-align: center;
 padding: 50px;
 color: #D91E18;
 background: #F9BF3B;
 }
 h3.sub-title {
 text-align: center;

User Authentication and Push Notifications Chapter 6

[240]

 padding: 10px;
 color: #446CB3;
 background: #E4F1FE;
 }
 ion-card ion-card-header {
 padding: 10px 16px;
 background: #F9690E;
 color: white;
 }
 ion-card ion-card-header + ion-card-content,
 ion-card .item + ion-card-content {
 padding-top: 16px;
 }
}

Connect your physical iPhone to the Mac via a USB connection.8.
Ensure that you are in the app folder, and build the app for the iOS platform, as9.
follows:

$ ionic cordova run ios

The OS will prompt to allow codesign to sign using the iOS Developer certificate.10.
You must accept this to allow access in order to build the app and upload it to
your device:

Verify that the app has been running successfully on the device. At this point,11.
you have completed the push notification setup and coding. The next step is to
send the push notification via the OneSignal dashboard. Here are the
instructions:

User Authentication and Push Notifications Chapter 6

[241]

After selecting your app in OneSignal, you will see following side menu:12.

User Authentication and Push Notifications Chapter 6

[242]

Click on New Message. You will see a screen like the following:13.

Select Send to Everyone, since at this point only you will be using the app.14.
Then click Next. The following page will appear:

Type your Title and Message.15.

User Authentication and Push Notifications Chapter 6

[243]

In the top menu, you will see the following links. At this moment, we are at16.
Message:

If you want to do some configuration and scheduling, you can do it in the17.
following sections. Otherwise, you can jump to Confirm link and you will see
following buttons on the top right of the page:

Just hit SEND MESSAGE, and OneSignal will deliver your push notification.18.

How it works
To understand how the entire process works, let's summarize what you have done, as
shown in the following section:

Set up your Apple Developer account by doing the following things:

Creating an app ID
Creating an app certificate (after creating a signing request locally via Keychain
Access)
Creating a provisioning profile
Creating a push certificate

Set up your OneSignal App

Now, let's focus on the coding portion itself to understand how this works.

Inside NgModul, we added an Ionic Native wrapper for OneSignal in the providers array.

User Authentication and Push Notifications Chapter 6

[244]

Then, in home.ts, In the constructor we initialized OneSignal by calling the
oneSignalConfig() function. In the oneSignalConfig() function, we called the
startInit function, which initiated the push notification registration process. We have to
pass a OneSignal App ID to this function. Then, we subscribe to the
handleNotificationReceived observable. It is fired each time the user gets a
notification. In it, we are pushing each received push notification into this.messages
array, and then we stop the initialization process with the endInit function, as shown in
the following code:

 oneSignalConfig() {
 this.oneSignal.startInit("94218e7a-2307-41fa-9bc3-20783b4cde9a");
 this.oneSignal.handleNotificationReceived().subscribe((value:any) => {
 let msg = value.payload;
 this.messages.push({
 title: msg.title,
 text: msg.body
 });
 this.changeDetector.detectChanges();
 });
 this.oneSignal.endInit();
 }

It is important to call change Detector's detectChanges function, otherwise, the UI will not
be updated since this process is outside the scope of Angular's Change Detection.

In the home.html template, the messages will be displayed via the messages object, as
shown in the following code:

<ion-card *ngFor="let msg of messages">
 <ion-card-header>
 {{ msg.title }}
 </ion-card-header>
 <ion-card-content>
 {{ msg.text }}
 </ion-card-content>
</ion-card>

Here, each message item has the title and text fields.

If the user doesn't open the app, you will see that the notification appears in the notification
area.

User Authentication and Push Notifications Chapter 6

[245]

This is how the app looks on an iPhone:

There's more...
For more information about the APNs, you can visit the official documentation at https:/ /
developer.apple. com/ library/ content/ documentation/ NetworkingInternet/
Conceptual/RemoteNotificationsPG/ APNSOverview. html

For more information about OneSignal setup, take a look at https:/ /onesignal. com/ ionic.

https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://onesignal.com/ionic
https://onesignal.com/ionic
https://onesignal.com/ionic
https://onesignal.com/ionic
https://onesignal.com/ionic
https://onesignal.com/ionic
https://onesignal.com/ionic
https://onesignal.com/ionic
https://onesignal.com/ionic

User Authentication and Push Notifications Chapter 6

[246]

Building an Android app to receive push
notifications
A push notification works in the same way as iOS for Google; however, instead of using the
Apple Notification Service, you will be working through the FCM server, which is a new
replacement for Google Cloud Messaging (GCM). However, OneSignal abstracts this
process so that you don't have to code using a different API. You will be using the same
push object as for the iOS app.

For more information about the differences between FCM and GCM, visit
the FAQs at https://firebase.google.com/support/faq.

In this section, you will learn how to do the following things:

Set up OneSignal for Android push notification
Configure the Firebase project for the push API
Write code to receive push notifications on Android

You will be using the same code base as your iOS push notification example. The main
difference is the process to set up in your Firebase and OneSignal account.

Getting ready
You can test the Android push notification using the Android emulator. So, there is no need
to have a physical Android device available.

In order to gain access, you must also register for Firebase at
https://console.firebase.google.com.

https://firebase.google.com/support/faq
https://console.firebase.google.com

User Authentication and Push Notifications Chapter 6

[247]

In addition to your current setup, you need to install Android Studio.

Observe the following screenshot:1.

https://software.intel.com/en-us/android/articles/installation-instructions-for-intel-hardware-accelerated-execution-manager-windows

User Authentication and Push Notifications Chapter 6

[248]

Android SDK Tools, Build Tools, Platform Tools and Intel Hardware Accelerated2.
Execution Manager (HAXM)
(https://software.intel.com/en-us/android/articles/installation-instru
ctions-for-intel-hardware-accelerated-execution-manager-

windows).Observe the following screenshot:

https://software.intel.com/en-us/android/articles/installation-instructions-for-intel-hardware-accelerated-execution-manager-windows
https://software.intel.com/en-us/android/articles/installation-instructions-for-intel-hardware-accelerated-execution-manager-windows
https://software.intel.com/en-us/android/articles/installation-instructions-for-intel-hardware-accelerated-execution-manager-windows

User Authentication and Push Notifications Chapter 6

[249]

At least one Android Virtual Device (AVD) has been created (use the $3.
android avd command line to open AVD Manager). Observe the following
screenshot:

How to do it
First, we are going to configure push notifications in Firebase console and then we are going
to code the example app.

User Authentication and Push Notifications Chapter 6

[250]

Configuring Firebase for push notifications
Here are the instructions for configuring firebase console:

You will need a Firebase project number and a Firebase server ID in order to1.
receive push notifications. First, let's log into the Firebase console at
https://console.firebase.google.com.

Click on the CREATE NEW PROJECT button, and fill in a project name (that is,2.
MyAndroidPush):

Navigate to Grow | Notifications in the left navigation menu:3.

Select the Android icon:4.

https://console.firebase.google.com

User Authentication and Push Notifications Chapter 6

[251]

The FCM service also supports the iOS app. So, it's possible that you can
use FCM for both the iOS and Android projects.

Provide the Package name in the form. You can copy and paste the Package5.
name from your app project at ./config.xml:

Select CONTINUE, and save the JSON file somewhere. You will not need this6.
JSON file for the Ionic project:

User Authentication and Push Notifications Chapter 6

[252]

Click on the FINISH button to complete setting up of the notification service:7.

User Authentication and Push Notifications Chapter 6

[253]

Now, you will need the Server key and Sender ID. Navigate to the gear icon in8.
the top-left corner and select the Project settings menu item:

Select the CLOUD MESSAGING tab:9.

.

Copy both the Server key and Sender ID (the same as Project ID if using GCM):10.

User Authentication and Push Notifications Chapter 6

[254]

Configuring OneSignal
Here are the instructions to configure OneSignal:

In your OneSignal dashboard, open your previously created app for iOS and1.
click on App Settings. You will see the following page:

User Authentication and Push Notifications Chapter 6

[255]

Click on the CONFIGURE button parallel to Google Android Platform. You will2.
see the following dialog:

Enter the Server API Key and Project Number (also called a Sender ID) to their3.
appropriate fields, and hit Save.

User Authentication and Push Notifications Chapter 6

[256]

Let's code now
Here are the instructions for creating example app:

Create a new MyAndroidPush app using the blank template, as follows, and go1.
to the MyAndroidPush folder:

$ ionic start MyAndroidPush blank
$ cd MyAndroidPush

Install the Cordova plugin and Ionic native wrapper for OneSignal:2.

$ ionic cordova plugin add onesignal-cordova-plugin
$ npm install --save @ionic-native/onesignal

Open and edit ./src/app/app.module.ts with the following content:3.

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';
import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';
import { OneSignal } from '@ionic-native/onesignal';

import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';

@NgModule({
 declarations: [
 MyApp,
 HomePage
],
 imports: [
 BrowserModule,
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 HomePage
],
 providers: [
 StatusBar,
 SplashScreen,
 OneSignal,
 {provide: ErrorHandler, useClass: IonicErrorHandler}

User Authentication and Push Notifications Chapter 6

[257]

]
})
export class AppModule {}

The code for your home page is very similar to the iOS push example. Open and4.
edit ./src/pages/home/home.html, and paste the following code:

<ion-header>
 <ion-navbar>
 <ion-title>
 Push Notification
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content padding>
 <h2 class="big-square" *ngIf="!this.messages.length">
 You have no message
 </h2>
 <h3 class="sub-title" *ngIf="!!this.messages.length">
 Your messages
 </h3>
 <ion-card *ngFor="let msg of messages">
 <ion-card-header>
 {{ msg.title }}
 </ion-card-header>
 <ion-card-content>
 {{ msg.text }}
 </ion-card-content>
 </ion-card>
</ion-content>

Replace the content of the home.ts file, in the same folder, with the following5.
code:

import { Component, ChangeDetectorRef } from '@angular/core';
import { NavController, Platform } from 'ionic-angular';
import { OneSignal } from '@ionic-native/onesignal';

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {
 public messages = [];
 public clicked: Boolean = false;
 constructor(public navCtrl: NavController, public oneSignal:

User Authentication and Push Notifications Chapter 6

[258]

OneSignal, platform: Platform, private changeDetector:
ChangeDetectorRef) {
 platform.ready().then(() => {
 this.oneSignalConfig();
 });
 }

 oneSignalConfig() {
this.oneSignal.startInit("94218e7a-2307-41fa-9bc3-20783b4cde9a",
"539293856976");
this.oneSignal.handleNotificationReceived().subscribe((value:any)
=> {
 // do something when notification is received
 let msg = value.payload;
 this.messages.push({
 title: msg.title,
 text: msg.body
 });
 this.changeDetector.detectChanges();
 });
 this.oneSignal.endInit();
 }
}

If you take notice, for Android, a call to startInit has two parameters instead of
one parameter. The first parameter is OneSignal App ID, and the second
parameter is Google Project Number/Sender ID.

Replace home.scss, also in the /home folder, with the following code:6.

page-home {
 .center {
 text-align: center;
 }
 h2.big-square {
 text-align: center;
 padding: 50px;
 color: #D91E18;
 background: #F9BF3B;
 }
 h3.sub-title {
 text-align: center;
 padding: 10px;
 color: #446CB3;
 background: #E4F1FE;
 }
 ion-card ion-card-header {

User Authentication and Push Notifications Chapter 6

[259]

 padding: 10px 16px;
 background: #F9690E;
 color: white;
 }
 ion-card ion-card-header + ion-card-content,
 ion-card .item + ion-card-content {
 padding-top: 16px;
 }
}

Ensure that you are in the app folder and build for the Android platform, as7.
follows:

$ ionic cordova run android

The process of sending push notifications is exactly the same as iOS.

How it works
The process is almost the same as iOS. The reason is, OneSignal abstracts lots of things for
us. The difference is that, instead of sending push notification requests to APNS, it is now
sending push notification requests to Google's FCM servers. Then, it forwards the push
notification to the actual device.

You will see the notification in the Android phone as follows:

User Authentication and Push Notifications Chapter 6

[260]

By Default, it will use app icon as a notification icon, but you can
customize that for Android. Take a look at https:/ /documentation.
onesignal. com/ docs/ customize- notification- icons. On iOS, you can't
customize the icon.

https://documentation.onesignal.com/docs/customize-notification-icons
https://documentation.onesignal.com/docs/customize-notification-icons
https://documentation.onesignal.com/docs/customize-notification-icons
https://documentation.onesignal.com/docs/customize-notification-icons
https://documentation.onesignal.com/docs/customize-notification-icons
https://documentation.onesignal.com/docs/customize-notification-icons
https://documentation.onesignal.com/docs/customize-notification-icons
https://documentation.onesignal.com/docs/customize-notification-icons
https://documentation.onesignal.com/docs/customize-notification-icons
https://documentation.onesignal.com/docs/customize-notification-icons
https://documentation.onesignal.com/docs/customize-notification-icons
https://documentation.onesignal.com/docs/customize-notification-icons
https://documentation.onesignal.com/docs/customize-notification-icons
https://documentation.onesignal.com/docs/customize-notification-icons
https://documentation.onesignal.com/docs/customize-notification-icons
https://documentation.onesignal.com/docs/customize-notification-icons

User Authentication and Push Notifications Chapter 6

[261]

When you open the app, you will see notifications in the app as follows:

There's more...
For more information about the Firebase Notification service, you can visit the official
documentation at https://firebase.google.com/docs/cloud-messaging/.

https://firebase.google.com/docs/cloud-messaging/.

7
Supporting Device

Functionalities Using Ionic
Native

In this chapter, we will cover the following tasks related to native device feature support:

Taking a photo using the camera plugin
Sharing content using the social-sharing plugin
Displaying a local notification using the local notification plugin
Fingerprint authentication using the fingerprint AIO plugin.
Creating a media player and adding a media player notification control
Creating a taxi app using the Google Maps plugin and geocode support

Introduction
In this chapter, you will learn how to access some common features of a device, such as a
camera, contact list, email, and maps. Some of these features can be written in a JavaScript-
only environment, but the performance is not on a par with native support.

Cordova has a very well-supported community with many plugins. You may want to check
out http://plugins.cordova.io/ to understand what is out there. Luckily, you don't need
to deal with these plugins directly. You will use the Ionic Native
(http://ionicframework.com/docs/v2/native/) service on top of Cordova and Angular.
Keep in mind that you have to use Ionic Native instead of ngCordova for Ionic 2+ because
of compatibility issues. You can only use ngCordova for Ionic 1.x.

http://plugins.cordova.io/
http://ionicframework.com/docs/v2/native/

Supporting Device Functionalities Using Ionic Native Chapter 7

[263]

Taking a photo using the camera plugin
In this section, you will make an app to take a picture using the device camera or load an
existing picture from the device album. The picture could be either in the Base64 format or
saved in a local filesystem relating to your app. The following is a screenshot of the app:

Supporting Device Functionalities Using Ionic Native Chapter 7

[264]

Here is the high-level process:

Access the Cordova camera plugin to trigger camera capture and get the image1.
back in the Base64 or URI format
Parse the Base64 data or URI on an DOM object2.
Display the URI if it's in the URI format3.
Capture an event of a toggle component4.
Display long data (for example, URI) using a horizontal scroll5.

Getting ready
You should have a physical device ready in order to test the camera capability. It's possible
to just run the code via an emulator, but the filesystem support might look different across
the various platforms.

How to do it...
The following are the instructions to add camera support:

Start a blank project (for example, MyCamera) and go to that folder:1.

$ ionic start MyCamera blank
$ cd MyCamera

Add the Cordova camera plugin and Ionic Native wrapper for the plugin using2.
the following code:

$ ionic plugin add cordova-plugin-camera
$ npm install --save @ionic-native/camera

You should not use the cordova add command line directly; instead use
ionic cordova plugin add

You should be able to see a new folder, cordova-plugin-camera, being added
to the /plugins folder.

Supporting Device Functionalities Using Ionic Native Chapter 7

[265]

Replace ./src/pages/home/home.html with the following code:3.

<ion-header>
 <ion-navbar>
 <ion-title>
 Camera
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content padding>
 <ion-row class="center">
 <ion-col width-50>
 <button ion-button (click)="getPicture(1)">Show Camera</
button>
 </ion-col>
 <ion-col width-50>
 <button ion-button (click)="getPicture(0)">Show Album</
button>
 </ion-col>
 </ion-row>
 <ion-item class="no-border">
 <ion-label>Return image file URI</ion-label>
 <ion-toggle energized [(ngModel)]="useURI">
 </ion-toggle>
 </ion-item>
 <ion-card>

 <ion-card-content>
 <ion-card-title>
 <div *ngIf="useURI">
 Using URI
 </div>
 <div *ngIf="!useURI">
 Using Base64
 </div>
 </ion-card-title>
 <p *ngIf="useURI">
 Your URI is {{ imageData }}
 </p>
 <p *ngIf="!useURI">
 Your Base64 image has {{ (imageData + '').length }} bytes
 </p>
 </ion-card-content>
 </ion-card>
</ion-content>

Supporting Device Functionalities Using Ionic Native Chapter 7

[266]

Since you only have one page, this template will show two buttons and an area to display
the image.

Replace ./src/pages/home/home.ts with the following code:4.

import { Component, Input } from '@angular/core';
import { NavController } from 'ionic-angular';
import { Camera } from '@ionic-native/camera';

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {
 public imageData: string;
 @Input('useURI') useURI: Boolean = true;
 constructor(public navCtrl: NavController, public camera:Camera)
{

 }

 getPicture(sourceType) {
 this.camera.getPicture({
 quality: 50,
 allowEdit: true,
 encodingType: this.camera.EncodingType.JPEG,
 saveToPhotoAlbum: false,
 destinationType: this.useURI ? this.camera.DestinationType.
 FILE_URI : this.camera.DestinationType.DATA_URL,
 targetWidth: 800,
 targetHeight: 800,
 sourceType: sourceType
 }).then((imageData) => {
 if (this.useURI) {
 this.imageData = imageData;
 } else {
 this.imageData = "data:image/jpeg;base64," + imageData;
 }
 }, (err) => {
 console.log(err);
 });
 }

}

There is only one method: getPicture(). This method will return the photo data
so that the template can render.

Supporting Device Functionalities Using Ionic Native Chapter 7

[267]

Replace .src/pages/home/home.scss with the following code:5.

page-home {
 center {
 text-align: center;
 }
 .no-border .item-inner {
 border-bottom: 0;
 }
}

There are only a few minor changes in the styling so that you can keep them
simple.

Replace ./src/app/app.module.ts with the following code:6.

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';
import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';
import { Camera } from '@ionic-native/camera';

import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';

@NgModule({
 declarations: [
 MyApp,
 HomePage
],
 imports: [
 BrowserModule,
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 HomePage
],
 providers: [
 StatusBar,
 SplashScreen,
 Camera,
 {provide: ErrorHandler, useClass: IonicErrorHandler}
]

Supporting Device Functionalities Using Ionic Native Chapter 7

[268]

})
export class AppModule {}

Connect your device to your computer.7.
Go to the Terminal and execute the following command line for iOS:8.

$ ionic cordova run ios

If you are not able to push the app to your physical device using the
preceding command line, you can use ionic cordova run ios --
device to specify the CLI to use the physical device instead of a
simulator.

If you want to run the app on your Android device, use the following code:

$ ionic cordova run android

When you run the app and take a picture, you should see the app, as shown in the
following screenshot:

Supporting Device Functionalities Using Ionic Native Chapter 7

[269]

How it works...
Camera.getPicture() is just an abstraction of navigator.camera.getPicture() from
the Cordova camera plugin. If you are already familiar with Cordova or ngCordova from
Ionic 1, this should be very familiar. Let's start with the template. You have the following
two buttons, which trigger the same, getPicture(), method:

<button ion-buton (click)="getPicture(1)">Show Camera</button>
<button ion-buton (click)="getPicture(1)">Show Camera</button>

These are just different ways to access photos: either from the camera itself or from the
existing photos in the phone's album. For the photo to render, you need to pass the photo
data into the src attribute, as follows:

Note that you only want to show this tag when imageData exists with some data.
The imageData variable could be Base64 or an internal URL of the photo. To specify this
option, there is a toggle button, as shown here:

<ion-toggle energized [(ngModel)]="useURI"></ion-toggle>

You will use the useURI variable inside the class, as illustrated, to determine which format
to return the photo data in:

@Input('useURI') useURI: Boolean = true;

Both useURI and sourceType will be used in the getPicture() function, as follows:

Camera.getPicture({
 quality: 50,
 allowEdit: true,
 encodingType: Camera.EncodingType.JPEG,
 saveToPhotoAlbum: false,
 destinationType: this.useURI ? Camera.DestinationType.FILE_URI
 : Camera.DestinationType.DATA_URL,
 targetWidth: 800,
 targetHeight: 800,
 sourceType: sourceType
}).then((imageData) => {
 if (this.useURI) {
 this.imageData = imageData;
 } else {
 this.imageData = "data:image/jpeg;base64," + imageData;
 }
}, (err) => {

Supporting Device Functionalities Using Ionic Native Chapter 7

[270]

 console.log(err);
});

It's important to adjust the quality, targetWidth, and targetHeight to low so that the
photo is not too big, which could crash the device, especially when it doesn't have enough
memory. When you return the Base64 data, it must be prefixed with the string
data:image/jpeg;base64.

It is also important to note that inside app.module.ts, we are adding the Camera plugin to
the NgModule's provider's array. This is very important because it allows us to use the
plugin via Angular's Dependency Injection system. We have to do this for each plugin
throughout this chapter.

One item that isn't discussed here is the ability to post image data to the server. The
common scenario is to upload the file from the filesystem. It's not a good idea to send data
as Base64 because of the data size, which is double the original binary size.

There's more...
It is possible to create Instagram-like filter effects using just JavaScript. You can leverage an
existing library, such as Filterous (https://github.com/girliemac/Filterous), to
modify the image canvas directly.

There is an Instagram plugin (https://github.com/vstirbu/InstagramPlugin) for
Cordova on GitHub. You could write some extra code to pass the image to Instagram. The
user must have Instagram installed on the phone first, though. This idea is nice when you
plan to do some cool image processing (for example, adding funny text) before letting
Instagram perform the photo filter operation.

You could even add the Cordova's social network plugin and post the resulting images to
Twitter or Facebook.

https://github.com/girliemac/Filterous
https://github.com/vstirbu/InstagramPlugin

Supporting Device Functionalities Using Ionic Native Chapter 7

[271]

Sharing content using the social sharing
plugin
If you develop an app with shareable content, you might want to utilize the native device
feature to share via the device's authorized social media accounts. There are several benefits
to using this approach. First, users don't need to open a separate browser to log in to their
social media account each time they want to share. Second, all the information can be filled
out programmatically, such as title, body, link, or image. Finally, since this is a native
feature of the device, the menu selection allows users to see multiple accounts, which they
are already familiar with, to choose from. The social sharing plugin can greatly enhance the
user experience.

This is the app that you will build:

Supporting Device Functionalities Using Ionic Native Chapter 7

[272]

When the user clicks on the SHARE button, the app will show the following native button
menu for social media account selection:

Supporting Device Functionalities Using Ionic Native Chapter 7

[273]

If the user selects Twitter, a popup will show up with all the information prefilled, as
illustrated in the following screenshot:

After posting on Twitter, the user goes right back to the app without ever leaving it.

Getting ready
You should have a physical device or simulator ready in order to test the social sharing
capability.

Supporting Device Functionalities Using Ionic Native Chapter 7

[274]

How to do it...
The following are the instructions:

Start a blank project (for example, LinkSocialShare), as follows, and go to that1.
folder:

$ ionic start LinkSocialShare blank
$ cd LinkSocialShare

Add the social sharing plugin and Ionic Native wrapper for the plugin with the2.
following command line:

$ ionic plugin add cordova-plugin-x-socialsharing
$ npm install --save @ionic-native/social-sharing

Open ./src/pages/home/home.html and replace its contents with the3.
following code:

<ion-header>
 <ion-navbar>
 <ion-title>
 Home
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content>
 <ion-card>
 <ion-item>
 <h2 #messageSubject>Ionic Developer</h2>
 <p>May 5, 2016</p>
 </ion-item>

 <ion-card-content>
 <p #messageBody>Wow Ionic is so awesome. I gotta share this
to other people.</p>
 </ion-card-content>
 <ion-row>
 <ion-col>
 <button ion-button color="primary" clear small icon-left>
 <ion-icon name="thumbs-up"></ion-icon>
 <div>12 Likes</div>
 </button>
 </ion-col>
 <ion-col>

Supporting Device Functionalities Using Ionic Native Chapter 7

[275]

 <button ion-button color="primary" clear small icon-left
 (click)="sendShare(messageBody.innerText,
messageSubject.innerText,'http://ionicframework.com/docs/v2/')">
 <ion-icon name="ios-share"></ion-icon>
 <div>Share</div>
 </button>
 </ion-col>
 <ion-col center text-center>
 <ion-note>
 11h ago
 </ion-note>
 </ion-col>
 </ion-row>
 </ion-card>
</ion-content>

This is a very simple page with the card element. The Like button is there just for
cosmetic reasons without code implementation. However, all the JavaScript logic
will focus on the
SHARE button.

Open ./src/pages/home/home.ts, as shown here:4.

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';
import { SocialSharing } from '@ionic-native/social-sharing';
@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {

 constructor(public navCtrl: NavController, public socialSharing:
SocialSharing) {

 }

 sendShare(message, subject, url) {
 this.socialSharing.share(message, subject, null, url);
 }

}

Replace ./src/app/app.module.ts with the following code:5.

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';

Supporting Device Functionalities Using Ionic Native Chapter 7

[276]

import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';
import { SocialSharing } from '@ionic-native/social-sharing';
import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';

@NgModule({
 declarations: [
 MyApp,
 HomePage
],
 imports: [
 BrowserModule,
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 HomePage
],
 providers: [
 StatusBar,
 SplashScreen,
 SocialSharing,
 {provide: ErrorHandler, useClass: IonicErrorHandler}
]
})
export class AppModule {}

Go to the Terminal and execute either of the following command lines:6.

$ ionic run ios
$ ionic run android

How it works...
You can start looking at the template because that is where the social media content is
extracted from. The subject value is from the #messageSubject local variable, as
illustrated:

<ion-item>
 <h2 #messageSubject>Ionic Developer</h2>
 <p>May 5, 2016</p>
</ion-item>

Supporting Device Functionalities Using Ionic Native Chapter 7

[277]

In the preceding case, the subject is Ionic Developer because you will access
messageSubject.innerText later on. messageSubject is just referencing your H2 DOM
node.

Similarly, the body is from #messageBody, as shown here:

<ion-card-content>
 <p #messageBody>Wow Ionic 2 is so awesome. I gotta share this to other
people.</p>
</ion-card-content>

When the user clicks on the SHARE button, it will trigger the sendShare() method, as
follows:

<button ion-button color="primary" clear small icon-left
 (click)="sendShare(messageBody.innerText,
 messageSubject.innerText,
 'http://ionicframework.com/docs/v2/')">

Let's take a look at your home.ts to understand how sendShare() works.

First, you need to import the SocialSharing module from Ionic Native, as illustrated:

import { SocialSharing } from '@ionic-native/social-sharing';

To share your content and trigger the social media menu, the logic, as shown, is very
simple:

sendShare(message, subject, url) {
 SocialSharing.share(message, subject, null, url);
}

If you want to share a file, you can replace the third parameter (where it is null) with the
URL to the user's local filesystem. This is useful when you want people to send a PDF or
JPG via email or post it on Facebook.

There's more...
To see the latest update of the social sharing plugin, you can visit the documentation page
at http://ionicframework.com/docs/v2/native/social-sharing/.

http://ionicframework.com/docs/v2/native/social-sharing/

Supporting Device Functionalities Using Ionic Native Chapter 7

[278]

Displaying a local notification using the local
notification plugin
When you are developing mobile applications, your app might want to notify the user
about something. If the information is coming from the backend, we use push notifications.
But, if the information is generated by the app, locally on the device, we can use a local
notification for that.

This recipe is intended to help you understand how local notifications work.

When you open the app, you will see the following page.

Supporting Device Functionalities Using Ionic Native Chapter 7

[279]

You can input anything in the input box and then click on SHOW NOTIFICATION. You
can also schedule a notification to show later. This is what a notification looks like in the
notification area:

Getting ready
You should have a physical device ready in order to test local notifications.

How to do it...
Here are the instructions:

Create a blank Ionic app (for example, Notifications) and cd to that folder, as1.
shown here:

$ ionic start Notifications blank
$ cd Notifications

Install the local notification plugin and Ionic native wrapper for the plugin using2.
the following command:

$ ionic cordova plugin add cordova-plugin-local-notification
$ npm install --save @ionic-native/local-notifications

Open ./src/pages/home/home.html and replace with the following code:3.

<ion-header>
 <ion-navbar>
 <ion-title>
 Local Notifications
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content padding>
 <ion-item padding>
 <ion-label color="primary" stacked>Notification Message</ion-

Supporting Device Functionalities Using Ionic Native Chapter 7

[280]

label>
 <ion-input placeholder="Enter Notification Text here"
[(ngModel)]="message"></ion-input>
 </ion-item>
 <button full ion-button color="primary"
(click)="showNotification('now')">Show Notification</button>
 <ion-item padding>
 <ion-label>Time in seconds</ion-label>
 <ion-datetime displayFormat="ss Second" placeholder=""
[(ngModel)]="time"></ion-datetime>
 </ion-item>
 <button full ion-button color="primary"
(click)="showNotification('future')">Schedule a
Notification</button>
 <button full ion-button color="primary"
(click)="clearNotifications()">Clear all Notifications</button>
</ion-content>

Open ./src/pages/home/home.ts and replace with the following code:4.

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';
import { LocalNotifications } from '@ionic-native/local-
notifications';

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {
 notifications:Array<any> = [];
 id: number = 1;
 message:string;
 time:number;
 constructor(public navCtrl: NavController,
 private localNotifications: LocalNotifications) {
 }

 showNotification(type) {
 if(type === 'now') {
 this.localNotifications.schedule({
 id: this.id,
 text: this.message,
 });
 } else {
 this.localNotifications.schedule({
 id: this.id,
 text: this.message,

Supporting Device Functionalities Using Ionic Native Chapter 7

[281]

 at: new Date(new Date().getTime() + this.time * 100),
 });
 }
 this.id++;
 }

 clearNotifications() {
 this.localNotifications.clearAll();
 }

}

Replace ./src/app/app.module.ts with the following code:5.

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';
import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';
import { LocalNotifications } from '@ionic-native/local-
notifications';

import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';

@NgModule({
 declarations: [
 MyApp,
 HomePage
],
 imports: [
 BrowserModule,
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 HomePage
],
 providers: [
 StatusBar,
 SplashScreen,
 LocalNotifications,
 {provide: ErrorHandler, useClass: IonicErrorHandler}
]
})
export class AppModule {}

Supporting Device Functionalities Using Ionic Native Chapter 7

[282]

Run the app in the Terminal using the following command line:6.

$ ionic run ios
$ ionic run android

How it works...
First, let's take a look at the template home.html:

<ion-content padding>
 <ion-item padding>
 <ion-label color="primary" stacked>Notification Message</ion-label>
 <ion-input placeholder="Enter Notification Text here"
[(ngModel)]="message"></ion-input>
 </ion-item>
 <button full ion-button color="primary"
(click)="showNotification('now')">Show Notification</button>
 <ion-item padding>
 <ion-label>Time in seconds</ion-label>
 <ion-datetime displayFormat="ss Second" placeholder=""
[(ngModel)]="time"></ion-datetime>
 </ion-item>
 <button full ion-button color="primary"
(click)="showNotification('future')">Schedule a Notification</button>
 <button full ion-button color="primary"
(click)="clearNotifications()">Clear all Notifications</button>
</ion-content>

We have an input field where we add text for notifications. Then we have a button to show
notifications immediately. Then we have an ion-datetime input, which is used to specify
the time in seconds. It will be used to schedule a notification for the future, using the
Schedule a Notification button. Finally, we have a Clear all Notifications button to clear
notifications in the device's notification area.

In your home.ts, you must import the LocalNotifications module first, as shown here:

import { LocalNotifications } from '@ionic-native/local-notifications';

When someone clicks on the Show Notification or Schedule a Notification buttons, it fires
the Show Notification button. Here is the showNotification method:

showNotification(type) {
 if(type === 'now') {
 this.localNotifications.schedule({
 id: this.id,

Supporting Device Functionalities Using Ionic Native Chapter 7

[283]

 text: this.message,
 });
 } else {
 this.localNotifications.schedule({
 id: this.id,
 text: this.message,
 at: new Date(new Date().getTime() + this.time * 100),
 });
 }
 this.id++;
 }

The showNotifications method takes an argument type. type is used to determine if
we want to show a notification immediately or at some time in the future. if type is equal to
now, we show it immediately; otherwise, we schedule the notification to show up later on.
For showing notifications, we use the plugin's schedule method. We have to specify the id
, text, and at values. The at value is used to schedule a notification for showing in the
future.

The clearNotifications method clears all the notifications.

There's more...
Take a look at the GitHub page of the local notification plugin for more information, at
https://github.com/ katzer/ cordova- plugin- local- notifications.

Fingerprint authentication using the
fingerprint AIO plugin
Gone are the days when you wanted to just use a password authentication system.
Authentication is becoming stronger and more intuitive. Most iOS devices these days have
a fingerprint sensor and this trend is now starting to prevail in Android devices too. Users
can secure their devices using a fingerprint password. Luckily, for developers like us, we
can use the same technology to secure content inside our application, which the user can
access after authentication.

https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications
https://github.com/katzer/cordova-plugin-local-notifications

Supporting Device Functionalities Using Ionic Native Chapter 7

[284]

In this recipe, we are creating an unlock secret app. It is basically a joke app. The home page
looks like the following.

Supporting Device Functionalities Using Ionic Native Chapter 7

[285]

When the user clicks on the Reveal Secret button, it shows the Fingerprint Authentication
dialog:

Supporting Device Functionalities Using Ionic Native Chapter 7

[286]

And when the user authenticates, we show a joke on the screen. It is as simple as that:

Getting ready
You should have a physical device with a fingerprint sensor in order to test this application.

Supporting Device Functionalities Using Ionic Native Chapter 7

[287]

How to do it...
Here are the instructions:

Create a blank Ionic app (for example, FingerAuth) and cd to that folder, as1.
shown here:

$ ionic start FingerAuth blank
$ cd FingerAuth

Install the fingerprint aio plugin and the Ionic Native wrapper, using the2.
following command:

$ ionic cordova plugin add cordova-plugin-fingerprint-aio
$ npm install --save @ionic-native/fingerprint-aio

Open ./src/pages/home/home.html and replace with the following code:3.

<ion-content padding>
 <h1 padding>Secrets</h1>
 <p *ngIf="!isAvailable">This Device doesn't have Fingerprint
Sensor</p>
 <p *ngIf="isAvailable && quote">{{quote.joke}}</p>
 <button id="reveal-button" color="primary" *ngIf="!!isAvailable"
ion-button round (click)="authenticate()">Reveal a Secret</button>
</ion-content>

Open ./src/pages/home/home.ts and replace with the following code:4.

import { Component } from '@angular/core';
import { NavController, Platform } from 'ionic-angular';
import { HttpClient } from '@angular/common/http';
import { FingerprintAIO } from '@ionic-native/fingerprint-aio';

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {
 quote:any = {};
 isAvailable: Boolean;
 constructor(public navCtrl: NavController,
 private faio: FingerprintAIO,
 private http: HttpClient,
 private platform: Platform) {

 }

Supporting Device Functionalities Using Ionic Native Chapter 7

[288]

 ionViewDidLoad() {
 this.checkAvailablity();
 }

 checkAvailablity() {
 this.platform.ready()
 .then(()=> {
 this.faio.isAvailable().then((value)=> {
 console.log(value);
 this.isAvailable = true
 }).catch(() => {
 this.isAvailable = false;
 });
 });
 }

 authenticate() {
 this.faio.show({
 clientId: 'Ionic Fingerprint Auth',
 clientSecret: 'password', //Only necessary for Android
 localizedFallbackTitle: 'Use Pin', //Only for iOS
 localizedReason: 'Please authenticate' //Only for iOS
 })
 .then((result: any) => {
 this.reveal();
 });
 }

 reveal() {
 const url = "http://api.icndb.com/jokes/random/";
 this.http.get(url)
 .subscribe((data:any) => {
 this.quote = data.value;
 });
 }

}

Replace ./src/pages/home/home.scss with the following code:5.

page-home {
 ion-content {
 .scroll-content {
 text-align:center;
 background-color: black;
 color:white;
 #reveal-button {
 height:200px;

Supporting Device Functionalities Using Ionic Native Chapter 7

[289]

 width:200px;
 border-radius:100%;
 }
 }
 }
}

Replace ./src/app/app.module.ts with the following code:6.

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';
import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';
import { HttpClientModule } from '@angular/common/http';
import { FingerprintAIO } from '@ionic-native/fingerprint-aio';

import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';

@NgModule({
 declarations: [
 MyApp,
 HomePage
],
 imports: [
 BrowserModule,
 HttpClientModule,
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 HomePage
],
 providers: [
 StatusBar,
 SplashScreen,
 FingerprintAIO,
 {provide: ErrorHandler, useClass: IonicErrorHandler}
]
})
export class AppModule {}

Supporting Device Functionalities Using Ionic Native Chapter 7

[290]

Run the app in the Terminal, using the following command line:7.

$ ionic cordova run ios
$ ionic cordova run android

How it works...
First, let's take a look at the template home.html:

<ion-content padding>
 <h1 padding>Secrets</h1>
 <p *ngIf="!isAvailable">This Device doesn't have Fingerprint Sensor</p>
 <p *ngIf="isAvailable && quote">{{quote.joke}}</p>
 <button id="reveal-button" color="primary" *ngIf="!!isAvailable" ion-
button round (click)="authenticate()">Reveal a Secret</button>
</ion-content>

If the device doesn't have a fingerprint sensor, we display a notice on the screen saying that
This Device doesn't have Fingerprint Sensor. Otherwise, we show a Reveal a Secret
Button. When the user clicks on it, it opens a Fingerprint Authentication dialog.

In your home.ts, you must import the FingerprintAIO module first, as shown here:

import { FingerprintAIO } from '@ionic-native/fingerprint-aio';

When the page is loaded, we check the availability of the sensor in ionViewDidLoad hook
via the plugin's isAvailable method. It returns a promise. If it is resolved, it means the
sensor is available. The authenticate method is fired when the user clicks on the Reveal a
secret button in the UI.

Here is the authenticate() method:

 authenticate() {
 this.faio.show({
 clientId: 'Ionic Fingerprint Auth',
 clientSecret: 'password', //Only necessary for Android
 localizedFallbackTitle: 'Use Pin', //Only for iOS
 localizedReason: 'Please authenticate' //Only for iOS
 })
 .then((result: any) => {
 this.reveal();
 });
 }

Supporting Device Functionalities Using Ionic Native Chapter 7

[291]

Inside this method, we call the plugin's show method, which returns a promise. If the
promise is resolved, it means the user is authenticated and we reveal the joke. Otherwise,
we do nothing.

There's more...
You can read more about the fingerprint AIO plugin at https:/ /github. com/NiklasMerz/
cordova-plugin-fingerprint- aio.

Creating a media player with the Media
Player notification control
Media Player is an important app in a user's phone. Almost every media app has a control
in the notification area nowadays. In this recipe, we are going to create a very simple media
player with Play and Pause buttons and we will add Media Player controls in the
notification area.

This is what the home page of our app will look like:

https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio
https://github.com/NiklasMerz/cordova-plugin-fingerprint-aio

Supporting Device Functionalities Using Ionic Native Chapter 7

[292]

And this is what the notification area will look like:

When the user clicks on the Play button inside the app, it shows controls in the notification
area. When the user clicks on the Pause button inside the app, it updates the music controls
too. This also works the other way around. You can play and pause the media from Music
Control in the notification area.

Getting ready
You should have a physical device ready in order to test this app, since it uses the Cordova
plugin.

How to do it...
Here are the instructions:

Create a blank Ionic app (for example, MediaPlayer) and cd to that folder, as1.
shown here:

$ ionic start MediaPlayer blank
$ cd MediaPlayer

Install the Music Control plugin and it's Ionic Native wrapper using the2.
following command:

$ ionic cordova plugin add cordova-plugin-music-controls
$ npm install --save @ionic-native/music-controls

Open ./src/pages/home/home.html and replace with the following code:3.

<ion-header>
 <ion-navbar>
 <ion-title>
 Music Player
 </ion-title>
 </ion-navbar>
</ion-header>

Supporting Device Functionalities Using Ionic Native Chapter 7

[293]

<ion-content padding>
 <ion-item>
 <ion-thumbnail item-left>

 </ion-thumbnail>
 <div item-content style="width:100%">
 <p>{{track.title}} ⚬
 {{track.artist}}</p>
 </div>
 </ion-item>

 <ion-row id="music-controls">
 <ion-col (click)="play()"><ion-icon name="play"></ion-
icon></ion-col>
 <ion-col (click)="pause()"><ion-icon name="pause"></ion-
icon></ion-col>
 </ion-row>
</ion-content>

Open ./src/pages/home/home.ts and replace with the following code:4.

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular';
import { MusicControls } from '@ionic-native/music-controls';
import { AudioProvider} from '../../services/audio-service';

@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {
 track = {
 src:
'https://ia801609.us.archive.org/16/items/nusratcollection_20170414
_0953/Man%20Atkiya%20Beparwah%20De%20Naal%20Nusrat%20Fateh%20Ali%20
Khan.mp3',
 artist: 'Nusrat Fateh Ali Khan',
 title: 'Man Atkiya Beparwah De Naal',
 art:
'https://ia801307.us.archive.org/31/items/mbid-42764450-04e5-459e-b
022-00847fc8fb94/mbid-42764450-04e5-459e-
b022-00847fc8fb94-12391862253_thumb250.jpg',
 preload: 'metadata' // tell the plugin to preload metadata such
as duration for this track, set to 'none' to turn off
 };

 constructor(public navCtrl: NavController, public
musicControls:MusicControls,

Supporting Device Functionalities Using Ionic Native Chapter 7

[294]

 public audioProvider: AudioProvider) {}

 play() {
 this.audioProvider.play(this.track.src);
 this.createControls();
 }

 pause() {
 this.audioProvider.pause();
 this.musicControls.updateIsPlaying(false);
 }

 createControls() {
 this.musicControls.create({
 track : this.track.title,
 artist : this.track.artist,
 cover : this.track.art,
 isPlaying : true,
 hasPrev : false,
 hasNext : false,
 dismissable : true,
 });

 this.musicControls.subscribe().subscribe(action => {
 const message = JSON.parse(action).message;
 switch(message) {
 case 'music-controls-play':
 this.play();
 break;

 case 'music-controls-pause':
 this.pause();
 break;
 }
 });

 this.musicControls.listen();
 }
}

Replace ./src/pages/home/home.scss with the following code:5.

page-home {
 #music-controls {
 text-align:center;
 font-size: 2.5rem;
 }
}

Supporting Device Functionalities Using Ionic Native Chapter 7

[295]

Create a file at ./src/services/audio-service.ts and add the following6.
content:

import { Injectable } from '@angular/core';

@Injectable()
export class AudioProvider {
 track:any;
 isPaused: Boolean = false;
 url;
 play(url) {
 if(this.url !== url) {
 this.url = url;
 this.track = new Audio(url);
 this.track.load();
 }
 this.track.play();
 }
 pause() {
 this.track.pause();
 this.isPaused = true;
 }
}

Replace ./src/app/app.module.ts with the following code:7.

import { BrowserModule } from '@angular/platform-browser';
import { ErrorHandler, NgModule } from '@angular/core';
import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-
angular';
import { SplashScreen } from '@ionic-native/splash-screen';
import { StatusBar } from '@ionic-native/status-bar';
import { MusicControls } from '@ionic-native/music-controls';

import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';
import { AudioProvider} from '../services/audio-service';

@NgModule({
 declarations: [
 MyApp,
 HomePage
],
 imports: [
 BrowserModule,
 IonicModule.forRoot(MyApp)
],

Supporting Device Functionalities Using Ionic Native Chapter 7

[296]

 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 HomePage
],
 providers: [
 StatusBar,
 SplashScreen,
 MusicControls,
 AudioProvider,
 {provide: ErrorHandler, useClass: IonicErrorHandler}
]
})
export class AppModule {}

Run the app in the Terminal using the following command line:8.

$ ionic cordova run ios
$ ionic cordova run android

How it works...
First, let's take a look at the template home.html:

<ion-content padding>
 <ion-item>
 <ion-thumbnail item-left>

 </ion-thumbnail>
 <div item-content style="width:100%">
 <p>{{track.title}} ⚬ {{track.artist}}
 </p>
 </div>
 </ion-item>

 <ion-row id="music-controls">
 <ion-col (click)="play()"><ion-icon name="play"></ion-icon></ion-col>
 <ion-col (click)="pause()"><ion-icon name="pause"></ion-icon></ion-
col>
 </ion-row>
</ion-content>

It is very simple. We are showing the track's thumbnail and track title along with the track
artist in ion-item. Then we have the play and pause buttons, shown inside ion-row.

Supporting Device Functionalities Using Ionic Native Chapter 7

[297]

At home.ts, we have a list of audio tracks for our media player. For the sake of simplicity, I
just added a single track, so that we don't add too much extra functionality and we remain
focused on the plugin part. Then we have the play and pause methods. These methods are
linked to the play and pause buttons in the UI and they are fired when the user clicks on
them.

Inside the play button, we fire AudioProvider's play method with the track's source url
and also call the createControls method. This createControls method creates Music
Control in the notification area of the device.

Inside the pause button, we fire AudioProvider's pause method and also update Music
Control by telling it that we have paused the audio and it changes the UI accordingly.

In the createControls() method:

 createControls() {
 this.musicControls.create({
 track : this.track.title,
 artist : this.track.artist,
 cover : this.track.art,
 isPlaying : true,
 hasPrev : false,
 hasNext : false,
 dismissable : true,
 });

 this.musicControls.subscribe().subscribe(action => {
 const message = JSON.parse(action).message;
 switch(message) {
 case 'music-controls-play':
 this.play();
 break;

 case 'music-controls-pause':
 this.pause();
 break;
 }
 });

 this.musicControls.listen();
 }

Also, take a look at our miniature AudioProvider:

export class AudioProvider {
 track:any;

Supporting Device Functionalities Using Ionic Native Chapter 7

[298]

 isPaused: Boolean = false;
 url;
 play(url) {
 if(this.url !== url) {
 this.url = url;
 this.track = new Audio(url);
 this.track.load();
 }
 this.track.play();
 this.isPaused = false;
 }
 pause() {
 this.track.pause();
 this.isPaused = true;
 }

}

In the play method, we get url as an argument. if the new url is different to the previous
one, we make the Audio object using the url and load the media and then we play the
media and set this.isPaused to true.

In the pause method, we pause the track and set the this.isPaused Boolean to true,
which is by default set to false.

There's more...
For the sake of simplicity, we used only the play and pause buttons. But it is easy to
implement forthcoming and previous features in the notification area as well as the app.
Take a look at the GitHub page of the plugin at https:/ /github. com/ homerours/ cordova-
music-controls-plugin.

Creating a taxi app using the Google Maps
plugin and geocode support
Today, many mobile apps utilize different mapping features, such as showing the current
location, creating routes, and providing suggestive business searches. This section will
show you how to use Ionic Native's Google Maps plugin to provide mapping support.

https://github.com/homerours/cordova-music-controls-plugin
https://github.com/homerours/cordova-music-controls-plugin
https://github.com/homerours/cordova-music-controls-plugin
https://github.com/homerours/cordova-music-controls-plugin
https://github.com/homerours/cordova-music-controls-plugin
https://github.com/homerours/cordova-music-controls-plugin
https://github.com/homerours/cordova-music-controls-plugin
https://github.com/homerours/cordova-music-controls-plugin
https://github.com/homerours/cordova-music-controls-plugin
https://github.com/homerours/cordova-music-controls-plugin
https://github.com/homerours/cordova-music-controls-plugin
https://github.com/homerours/cordova-music-controls-plugin
https://github.com/homerours/cordova-music-controls-plugin
https://github.com/homerours/cordova-music-controls-plugin
https://github.com/homerours/cordova-music-controls-plugin
https://github.com/homerours/cordova-music-controls-plugin

Supporting Device Functionalities Using Ionic Native Chapter 7

[299]

You will create a taxi app that can do the following things:

Display Google Maps in fullscreen
Add a button overlay on top of the map
Detect the current device location
Add a marker with any text

This is the screenshot of the taxi app:

Supporting Device Functionalities Using Ionic Native Chapter 7

[300]

When users click on the PICK ME UP button, it will go to the current device location and
show longitude and latitude information:

It is possible to use the HTML5 and JavaScript version of geolocation and maps instead of
the Cordova plugin's. However, you will see a negative impact on performance. It's very
obvious that if you use the SDK, map rendering and optimization tends to be faster. In
addition, HTML5 geolocation sometimes has some strange bugs that require the user to
accept permission twice-once for the app and once for the inside browser object.

Supporting Device Functionalities Using Ionic Native Chapter 7

[301]

Getting ready
The Google Maps plugin requires a Google Maps API key for your project. You need a
Google account and login to get started:

Navigate to the Google APIs Console at https:/ /console. developers. google.1.
com/cloud- resource- manager.
Create a project if you don't have one yet. Just fill in the required fields:2.

https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/cloud-resource-manager

Supporting Device Functionalities Using Ionic Native Chapter 7

[302]

You need to enable the Google Maps SDK for iOS, the Google Maps Android3.
API, or both. It depends on how many platforms you plan to support. Let's select
Google Maps SDK for iOS for this example:

Click on the Enable button:4.

Supporting Device Functionalities Using Ionic Native Chapter 7

[303]

Go to Credentials to create your own key:5.

Click on the Create credential | API key option:6.

Supporting Device Functionalities Using Ionic Native Chapter 7

[304]

Select the RESTRICT KEY option. In the following example, you will select the7.
iOS apps radio button:

Fill in your app's Bundle ID. You might not know exactly what it is yet because8.
Ionic will create a random ID. So just put in com.ionicframework.starter
and change that later:

Click on the Save button.9.
Now you should see the key for the iOS applications section as follows:10.

Copy the API key so that you can use it to add the Cordova Google Maps plugin.11.

Supporting Device Functionalities Using Ionic Native Chapter 7

[305]

How to do it...
Let's start an Ionic project from scratch and add Google Maps features, as follows:

Create a blank Ionic project, as shown, and go to that folder:1.

 $ ionic start TaxiApp blank
 $ cd TaxiApp

Replace the iOS platform with version 3.9.0 with the following command lines:2.

 $ ionic platform remove ios
 $ ionic platform add ios@3.9.0
 $ ionic platform add android

You have to pick ios@3.9.0 specifically because the current version of
the Cordova Google Maps plugin only works with this version. Otherwise,
your build will fail. You should experiment with the newest version if
possible.

Install the Google Maps plugin with your copied key replacing3.
`YOUR_IOS_API_KEY_IS_HERE, as follows:

 $ cordova plugin add cordova-plugin-googlemaps --variable
 API_KEY_FOR_IOS="YOUR_IOS_API_KEY_IS_HERE"`

If you do this for both iOS and Android, use the following command line:

$ cordova plugin add cordova-plugin-googlemaps --variable
 API_KEY_FOR_ANDROID="key" --variable API_KEY_FOR_IOS="key"

You have to use the Cordova CLI here because using the Ionic CLI to add
Google Maps with the API Key will not work

Open ./src/pages/home/home.html to modify your template, as shown here:4.

<ion-content [ngClass]="{'no-scroll': mapRendered}">
 <div id="map">
 <button ion-button color="dark" (click)="getMyLocation()">PICK
ME UP</button>
 </div>
</ion-content>

Supporting Device Functionalities Using Ionic Native Chapter 7

[306]

The main element here is your div with the map ID because that is where you
have to inject the Google Maps object.

Edit your ./src/pages/home/home.ts in the same folder:5.

import { Component } from '@angular/core';
import { NavController, Platform } from 'ionic-angular';
import {
 GoogleMaps,GoogleMap,GoogleMapsEvent,GoogleMapOptions,
 CameraPosition,LatLng,MarkerOptions,Marker
} from '@ionic-native/google-maps';
@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {
 public map: GoogleMap;
 public mapRendered: Boolean = false;

 constructor(public navCtrl: NavController, public platform:
Platform) {
 this.platform.ready().then(() => {
 this.showMap();
 });
 }

 showMap() {
 let mapOptions: GoogleMapOptions = {
 camera: {
 target: {
 lat: 43.0741904,
 lng: -89.3809802
 },
 zoom: 18,
 tilt: 30
 }
 };

 this.map = GoogleMaps.create('map', mapOptions);
 this.map.one(GoogleMapsEvent.MAP_READY)
 .then(() => {
 console.log('Map is ready!');
 this.mapRendered = true;
 });
 }

Supporting Device Functionalities Using Ionic Native Chapter 7

[307]

 getMyLocation() {
 this.map.getMyLocation().then((location) => {
 var msg = ["I am here:\n",
 "latitude:" + location.latLng.lat,
 "longitude:" + location.latLng.lng].join("\n");
 let position = {
 target: location.latLng,
 zoom: 15
 };
 this.map.moveCamera(position);
 let markerOptions: MarkerOptions = {
 'position': location.latLng,
 'title': msg
 };
 this.map.addMarker(markerOptions).then((marker:Marker) => {
 marker.showInfoWindow();
 });
 });
 }
}

Make some minor adjustments to the style sheet so that the map can take over the6.
full screen. Edit ./src/pages/home/home.scss, as illustrated here:

ion-app._gmaps_cdv_ .nav-decor{
 background-color: transparent !important;
}

page-home {
 text-align: center;
 #map {
 height: 100%;
 z-index: 9999;
 }
 .no-scroll {
 .scroll-content {
 overflow-y: hidden;
 }
 }
}

Go to the Terminal and then run the application:7.

$ ionic cordova run ios
$ ionic cordova run android

You can use either one of the preceding command lines, depending on the platform.

Supporting Device Functionalities Using Ionic Native Chapter 7

[308]

How it works...
The core of this app is mainly in the JavaScript code-home.ts. In order to use the plugin
object, you should declare it on top, as shown here:

import {
 GoogleMaps,GoogleMap,GoogleMapsEvent,GoogleMapOptions,
 CameraPosition,LatLng,MarkerOptions,Marker
} from '@ionic-native/google-maps';

While it might seem that there are a lot of moving parts, the basic flow is very simple, as
listed here:

Whenever Ionic and Cordova are ready, trigger platform.ready().then to1.
initialize the map by calling showMap() in the constructor of the HomePage.
When a user clicks on the button, the app will call getMyLocation to get the2.
location data.
The data will be used to create the marker and move the map's camera to center3.
on that location.

It's important to know that GoogleMaps.create does take some time to process, and it
will trigger a ready event once it has successfully created the map. That's why you need to
add an event listener for GoogleMapsEvent.MAP_READY. This example does not do
anything right after the map is ready, but later, you could add more processing functions,
such as jumping to the current location automatically or adding more markers on top of the
map.

When the user clicks on the PICK ME UP button, it will trigger the getMyLocation()
method. The location object returned will contain the latitude (location.latLng.lat)
and longitude (location.latLng.lng). To move the camera anywhere, just call
map.moveCamera by passing the location coordinate (location.latLng). To add a
marker, call map.addMarker with the position and title as HTML.

There's more...
The Cordova Google Maps plugin has many more features, such as the following:

Showing an InfoWindow
Adding a marker with multiple lines
Modifying icons
Text styling

Supporting Device Functionalities Using Ionic Native Chapter 7

[309]

Base64-encoded icons
Clicking on a marker
Clicking on an InfoWindow
Creating a draggable marker
Dragging events
Creating a flat marker

Since you cannot pop up a div on top of native Google Maps, the marker features are very
handy. Some additional scenarios are as follows:

Touch a marker and go to a page: You just need to listen to the
GoogleMapsEvent.MARKER_CLICK event and do whatever is
needed in the callback function.
Show an avatar/profile image as a marker: The addMarker takes the Base64
image string. Thus, you can pass something like this in the argument title-
canvas.toDataURL().

Note that Google has a quota on free API usage. For example, you cannot exceed one
request per second per user, and you can only have a couple of thousand requests per day.
This quota changes all the time, but it's important to know about it. In any case, if you have
problems with your key, you have to go back to the Credentials page and regenerate the
key. In order to change the key manually in your app, you have to edit
`/plugins/ios.json`. Look for the following two places:

"*-Info.plist": {
 "parents": {
 "Google Maps API Key": [
 {
 "xml": "<string>YOUR_IOS_API_KEY_IS_HERE</string>",
 "count": 1
 }
]
 }
}

Along with the following code:

"plugin.google.maps": {
 "API_KEY_FOR_IOS": "YOUR_IOS_API_KEY_IS_HERE",
 "PACKAGE_NAME": "com.ionicframework.starter"
}

Supporting Device Functionalities Using Ionic Native Chapter 7

[310]

You just need to edit the YOUR_IOS_API_KEY_IS_HERE line and replace it with your new
key.

There are a lot of ways to work with Google Maps. You can visit the GitHub page of the
Google Maps plugin to learn more, at
https://github.com/mapsplugin/cordova-plugin-googlemaps.

https://github.com/mapsplugin/cordova-plugin-googlemaps.

8
Theming the App

In this chapter, we will cover the following tasks related to app theme customization:

Viewing and debugging themes for a specific platform
Customizing themes based on the platform

Introduction
Although Ionic has its own out-of-the-box default themes, you might want to customize
your app's look and feel even further. There are several methods, as follows:

Changing the style sheet within the Sass file
Detecting platform-specific types (iOS, Android, Windows) in JavaScript and
applying custom classes or AngularJS conditions

Either of the preceding two methods should work, but it's highly recommended to apply
customization in a Sass file before the app is built, in order to achieve maximum rendering
performance.

Theming the App Chapter 8

[312]

Viewing and debugging themes for a
specific platform
One of the biggest challenges in developing an app is ensuring that it has the desired look
and feel for each platform. Specifically, you want to write the code and theme once and
have it just work. Another challenge is figuring out the workflow on a daily basis, from
writing code and previewing it in the browser to deploying to a device for testing purposes.
You want to minimize a lot of unnecessary steps. It's certainly difficult if you have to
rebuild the app and test it independently for each mobile platform.

Ionic CLI provides seamless integration to improve your workflow to ensure that you can
catch all the issues for each platform ahead of time. You can quickly view the app on various
platforms in the same browser window. This feature is powerful because now you can
make a side-by-side comparison for each screen with specific interaction. If you want to
debug JavaScript code, you employ the same web developer tool that you have been using
in the browser. This capability will save you a lot of time instead of waiting to push the app
to a physical device, which could take minutes if your app is getting larger.

In this example, you will learn how to modify a theme quickly using Sass variables. Then,
you will run the app and inspect different platforms for UI consistency.

Getting ready
There is no need to test the theme on a physical device because Ionic can render iOS,
Android, and Windows phone in the browser.

How to do it...
Here are the instructions:

Create a new app using the tutorial template, as shown, and go to the folder:1.

$ ionic start ThemeApp tutorial
$ cd ThemeApp

In Ionic 1, you need to set up Sass dependencies because Ionic uses a
number of external libraries for this. However, Ionic has no such
requirements because all the dependencies are added when you create the
project.

Theming the App Chapter 8

[313]

Open the .../src/theme/variable.scss file, and replace the $colors2.
variable with the following commands:

 $colors: (
 primary: #2C3E50, // #387ef5,
 clear: white,
 secondary: #446CB3, // #32db64,
 danger: #96281B, // #f53d3d,
 light: #BDC3C7, // #f4f4f4,
 dark: #6C7A89, // #222,
 favorite: #16A085 // #69BB7B
);

The default color codes can be commented out, as shown in the preceding
code.

Open app.html and add the clear attribute to the following code block:3.

 <ion-toolbar clear>
 <ion-title>Pages</ion-title>
 </ion-toolbar>

Open the ./src/pages/hello-ionic/hello-ionic.html file and replace the4.
contents with the given code:

<ion-header>
 <ion-navbar color="primary">
 <button ion-button menuToggle>
 <ion-icon name="menu"></ion-icon>
 </button>
 <ion-title>Hello Ionic</ion-title>
 </ion-navbar>
</ion-header>

<ion-content padding class="getting-started">

 <h3>Welcome to your first Ionic app!</h3>

 <p>
 This starter project is our way of helping you get a functional
app running in record time.
 </p>
 <p>
 Follow along on the tutorial section of the Ionic docs!

Theming the App Chapter 8

[314]

 </p>
 <p>
 <button ion-button color="secondary" menuToggle>Toggle
Menu</button>
 </p>

</ion-content>

Test run the app in the browser, and you should be able to see a screen, as5.
follows:

$ ionic serve -l

The -l (lima) command means to render the app for all three platforms.

Theming the App Chapter 8

[315]

How it works...
Ionic has made it very easy to develop and test themes for different platforms. Your typical
flow is to modify the theme variable in variables.scss first. You should not modify any
.css files directly. Also, the Ionic project now makes it safe so that you can't accidentally
edit the wrong core theme files, because those core files are no longer in the app folder
location.

To update the default color, you just have to modify the color code in variables.scss.
You can even add more color names, such as clear: white, and Ionic will automatically
take care of the rest. That means the clear keyword is available as a value-to-color
attribute on any Ionic element that accepts the color attribute. A few examples are as
follows:

<ion-navbar color="primary">
<button ion-button color="secondary" menuToggle>
<ion-toolbar color="clear">

The Ionic CLI is a very useful tool for debugging your theme in different platforms. To get
help on how to use the Ionic CLI, you can type the following command line in the console:

$ ionic -h

This will list all the options available for you to choose from. Under the serve option, you
should familiarize yourself with some of the important features, which are as follows:

Parameters Description

--consolelogs|-c Prints app console logs to Ionic CLI

--serverlogs|-s Prints dev server logs to Ionic CLI

--browser|-w Specifies the browser to use (Safari, Firefox, and Chrome)

--browseroption|-o Specifies a path to open to (/#/tab/dash)

--lab|-l Tests your apps on multiple screen sizes and platform types

There's more...
You can get more color palettes by visiting Matheus Cruz Rocha's cloned repository at
https://github.com/innovieco/ionic-flat-colors.

https://github.com/innovieco/ionic-flat-colors

Theming the App Chapter 8

[316]

Customizing themes based on the platform
Each mobile platform vendor has its own design guideline. This section will go over an
example of a typical workflow to develop, view, debug, and address the app theme
differently for iOS, Android, and Windows phone. In traditional development (using either
the native language or other hybrid app solutions), you have to keep separate repositories
for each platform in order to customize the theme. This could be very inefficient in the long
run.

Ionic has many built-in features to support theme changes based on the detected platform.
It makes it very convenient by separating Sass variables for each platform. This will
eliminate a lot of unnecessary customizations. As a developer, you'd rather focus on the app
experience than spend time managing the platform.

The example in this section covers two possible customizations using Sass and JavaScript.
The following screenshot shows an iOS, Android, and Windows app with a different title
bar color and text:

Getting ready
There is no need to test themes on a physical device because Ionic can render all three
platforms in the browser.

Theming the App Chapter 8

[317]

How to do it...
Here are the instructions:

Create a new app using the blank template and go into the project folder:1.

$ ionic start PlatformStylesApp blank
$ cd PlatformStylesApp

Open the ./src/app/app.module.ts file and replace the entire body with2.
the following:

import { NgModule } from '@angular/core';
import { IonicApp, IonicModule } from 'ionic-angular';
import { MyApp } from './app.component';
import { HomePage } from '../pages/home/home';

@NgModule({
 declarations: [
 MyApp,
 HomePage
],
 imports: [
 IonicModule.forRoot(MyApp, {
 backButtonText: 'Go Back',
 iconMode: 'md',
 modalEnter: 'modal-slide-in',
 modalLeave: 'modal-slide-out',
 tabbarPlacement: 'bottom',
 pageTransition: 'ios',
 })
],
 bootstrap: [IonicApp],
 entryComponents: [
 MyApp,
 HomePage
],
 providers: []
})
export class AppModule {}

This example expands the use of Ionic Bootstrap, which will be discussed now.

Open ./src/pages/home/home.ts and replace the code with the following:3.

import { Component } from '@angular/core';
import { Platform } from 'ionic-angular';

Theming the App Chapter 8

[318]

import { NavController } from 'ionic-angular';
@Component({
 selector: 'page-home',
 templateUrl: 'home.html'
})
export class HomePage {
 platform: any;
 isIOS: Boolean;
 isAndroid: Boolean;
 isWP: Boolean;
 constructor(private navController: NavController, platform:
 Platform) {
 this.platform = platform;
 this.isIOS = this.platform.is('ios');
 this.isAndroid = this.platform.is('android');
 this.isWP = this.platform.is('windows');
 console.log(this.platform);
 }
}

Open the ./src/pages/home/home.html file and change the template to:4.

<ion-header>
 <ion-navbar primary [ngClass]="{'large-center-title': isWP}">
 <ion-title>
 My Theme
 </ion-title>
 </ion-navbar>
</ion-header>
<ion-content padding>
 Did you see this bulb? It's the same across all platforms.
 <p class="center">
 <ion-icon class="large-icon" name="bulb"></ion-icon>
 </p>
 <p *ngIf="isIOS">
 Hey iPhone user, can you review this app in App Store?
 </p>
 <p *ngIf="isAndroid">
 Hey Android user, can you review this app in Google Play?
 </p>
 <p *ngIf="isWP">
 Hey Windows Phone user, can you review this app in Marketplace?
 </p>
</ion-content>

This is the only template for the app, but its UI will look different depending on
the detected platform.

Theming the App Chapter 8

[319]

Replace ./src/pages/home/home.scss with the following style sheet:5.

page-home {
 .large-icon {
 font-size: 60px;
 }
 .center {
 text-align: center;
 }
 .header .toolbar[primary] .toolbar-background {
 background: #1A2980;
 background: -webkit-linear-gradient(right, #1A2980,
 #26D0CE);
 background: -o-linear-gradient(right, #1A2980, #26D0CE);
 background: linear-gradient(to left, #1A2980, #26D0CE);
 }
 .large-center-title {
 text-align: center;
 .toolbar-title {
 font-size: 25px;
 }
 }
}

There is no need to change the global variables. Thus, you only modify the styles
for one page. The purpose is to demonstrate the ability to customize for each
platform.

Test-run the app in the browser using the following command:6.

$ ionic serve -l

How it works...
Ionic automatically created platform-specific parent classes and put them at the <body> tag.
The iOS app will include the .ios class. The Android app will have the .md class. So, for
style sheet customization, you can leverage those existing classes to change the look and
feel of your app.

Theming the App Chapter 8

[320]

Ionic documentation has a list of all platform modes and configuration properties at
http://ionicframework.com/docs/v2/theming/platform-specific-styles/.

Platform Mode Details

iPhone/iPad/iPad ios The iOS style is used across all Apple products

Android md md means Material Design as this is the default design for
Android devices

Windows Phone wp Viewing on any Windows device inside Cordova or Electron
uses the Windows styles

Core md Material Design is the default for all others

First, let's take a look at the Ionic Bootstrap class from Ionic Angular. You declared this in
the app.module.ts file:

IonicModule.forRoot(MyApp, {
 backButtonText: 'Go Back',
 iconMode: 'md',
 modalEnter: 'modal-slide-in',
 modalLeave: 'modal-slide-out',
 tabbarPlacement: 'bottom',
 pageTransition: 'ios',
})

This statement basically instructs the app to bootstrap with the MyApp object. The second
parameter is where you can inject your customized configuration properties. There is a list
of all config properties at http://ionicframework.com/docs/v2/api/config/Config/.

One main thing to point out here is iconMode. Icons are very different for each platform in
Ionic. The entire Ionicons set is now separated by the platform name. There are three
platforms according to Ionic's documentation page, at
http://ionicframework.com/docs/v2/ionicons/.

http://ionicframework.com/docs/v2/theming/platform-specific-styles/
http://ionicframework.com/docs/v2/api/config/Config/
http://ionicframework.com/docs/v2/ionicons/

Theming the App Chapter 8

[321]

You can even search for the icon name using the Search Ionicons buttons, as follows:

Theming the App Chapter 8

[322]

Note that you don't need to worry about which icon to pick for which platform. Even
though in this example, the code forces you to choose the iOS icon for all three platforms,
you could just use the icon name and let Ionic decide which icon to use:

For example, when you state the icon name as "add", Ionic will use "md-add" if the user is
using Android, as follows:

<ion-icon name="add">
</ion-icon>

There are several ways to theme your app based on the platform. First, you could add
variables to detect the current platform, as in the HomePage class, as illustrated:

export class HomePage {
 platform: any;
 isIOS: Boolean;
 isAndroid: Boolean;
 isWP: Boolean;
 constructor(private navController: NavController, platform: Platform) {
 this.platform = platform;
 this.isIOS = this.platform.is('ios');
 this.isAndroid = this.platform.is('android');
 this.isWP = this.platform.is('windows');
 console.log(this.platform);
 }
}

Theming the App Chapter 8

[323]

this.platform = platform is what Ionic provides. If you open up the browser console
while running the app, you can inspect the platform object:

This platform object has a rich amount of information. This is similar to ionic.platform
in Ionic 1. However, it has been restructured significantly.

Theming the App Chapter 8

[324]

By making the platform variables available to the view, you can use it to hide or show a
specific DOM using ngIf. It's recommended to use ngIf instead of ngShow, because
ngShow may show and hide the element right away, creating a flickering effect. The
following is the code in the template relating to using those platform variables:

 <p *ngIf="isIOS">
 Hey iPhone user, can you review this app in App Store?
 </p>
 <p *ngIf="isAndroid">
 Hey Android user, can you review this app in Google Play?
 </p>
 <p *ngIf="isWP">
 Hey Windows Phone user, can you review this app in Marketplace?
 </p>

Finally, you could change the theme using platform classes directly. Consider the following
example:

.header-md .toolbar[primary] .toolbar-background {
 background: #1A2980;
 background: -webkit-linear-gradient(right, #1A2980, #26D0CE);
 background: -o-linear-gradient(right, #1A2980, #26D0CE);
 background: linear-gradient(to left, #1A2980, #26D0CE);
}

This means that, whenever it's a material design mode (.md class), you will override the
classes with your own styles. The preceding example shows an interesting CSS gradient,
which works very nicely in mobile devices.

There's more...
Further device information is available from the Platform class. You can even detect iPad
devices at http://ionicframework.com/docs/v2/api/platform/Platform/.

http://ionicframework.com/docs/v2/api/platform/Platform/

9
Advanced Topics

In this chapter, we will cover some advanced topics, as follows:

Lazy loading pages in Ionic
Internationalization (i18n) using ngx-translate
Creating documentation for Ionic apps

Introduction
In this chapter, we will work on some advanced topics related to Ionic apps, such as lazy
loading pages for performance, deep linking Ionic pages, and adding a multiple languages
feature and creating documentation for Ionic apps.

Lazy loading in Ionic
Web applications have become bigger and more complex day by day. We have a web
version of Photoshop now, and there are even more complex applications that exist on the
web. The web was not conceived for these kinds of applications. If your application is very
big, and you are loading your whole application at the first load, chances are that your
application has bad performance. What if you can load only that part of JavaScript that is
required for that particular page/view? This is where lazy loading comes in. Lazy loading is
the process of loading only part of an application that a user wants to see. You can lazy load
not only JavaScript but also CSS.

In Angular, you can do lazy loading using router configuration. However, Ionic doesn't
have Angular router or router config. In this recipe, you will learn how to do lazy loading in
Ionic.

Advanced Topics Chapter 9

[326]

Getting ready
You can test your app in the browser because lazy loading is not dependent on the device.

How to do it...
The following are the instructions for lazy loading:

Create a new app LazyLoading using the blank template and navigate to the1.
Lazy Loading folder, as follows:

$ ionic start LazyLoading blank
$ cd LazyLoading

Create a new file named home.module.ts inside the /src/pages/home folder,2.
and add the following content to it:

import { NgModule } from "@angular/core";
import { IonicPageModule } from "ionic-angular";
import { HomePage } from "./home";
@NgModule({
 declarations: [HomePage],
 imports: [IonicPageModule.forChild(HomePage)]
})
export class HomePageModule {}

Add the IonicPage decorator to the HomePage's Component, as follows:3.

import { Component } from "@angular/core";
import { NavController, IonicPage } from "ionic-angular";

@IonicPage()
@Component({
 selector: "page-home",
 templateUrl: "home.html"
})
export class HomePage {
 constructor(public navCtrl: NavController) {}
}

Advanced Topics Chapter 9

[327]

Create a /src/pages/second/second.ts file and add the following content:4.

import { Component } from "@angular/core";
import { IonicPage, NavController, NavParams } from "ionic-
angular";

@IonicPage()
@Component({
 selector: "page-second",
 templateUrl: "second.html"
})
export class SecondPage {
 constructor(public navCtrl: NavController, public navParams:
NavParams) {}
}

Create a /src/pages/second/second.html file with the following content:5.

<ion-header>
 <ion-navbar>
 <ion-title>Second</ion-title>
 </ion-navbar>
</ion-header>

<ion-content padding>
</ion-content>

Create the /src/pages/second/second.module.ts file with the following6.
content:

import { NgModule } from '@angular/core';
import { IonicPageModule } from 'ionic-angular';
import { SecondPage } from './second';

@NgModule({
 declarations: [
 SecondPage,
],
 imports: [
 IonicPageModule.forChild(SecondPage),
],
})
export class SecondPageModule {}

Advanced Topics Chapter 9

[328]

Open /src/app/app.component.ts and update the value of rootPage, as7.
follows:

rootPage: any = "HomePage";

Open /src/app/app.module.ts and update it as follows:8.

import { BrowserModule } from "@angular/platform-browser";
import { ErrorHandler, NgModule } from "@angular/core";
import { IonicApp, IonicErrorHandler, IonicModule } from "ionic-
angular";
import { SplashScreen } from "@ionic-native/splash-screen";
import { StatusBar } from "@ionic-native/status-bar";

import { MyApp } from "./app.component";

@NgModule({
 declarations: [MyApp],
 imports: [BrowserModule, IonicModule.forRoot(MyApp)],
 bootstrap: [IonicApp],
 entryComponents: [MyApp],
 providers: [
 StatusBar,
 SplashScreen,
 { provide: ErrorHandler, useClass: IonicErrorHandler }
]
})
export class AppModule {}

Now, run the app using the following command:9.

$ ionic serve

How it works...
The idea of lazy loading is the same as any other type of technology. However, the
implementation of Ionic is very different, even if you compare it with Angular's lazy
loading.

First, you need to create a feature module for the Ionic Page that you want to lazy load. In
our case, we created home.module.ts. It looks as follows:

import { NgModule } from "@angular/core";
import { IonicPageModule } from "ionic-angular";
import { HomePage } from "./home";

Advanced Topics Chapter 9

[329]

@NgModule({
 declarations: [HomePage],
 imports: [IonicPageModule.forChild(HomePage)]
})
export class HomePageModule {}

It's a feature module where a declarations array has HomePage, and we use the
IonicPageModule.forChild method in the imports array with HomePage as an input to it
so that we can access Ionic inside HomePage.

Secondly, we need to decorate our HomePage class using the IonicPage decorator in
home.ts, as follows:

...
import { IonicPage } from 'ionic-angular';

@IonicPage()
@Component({..})
export class HomePage {}

Finally, we need to substitute HomePage to 'HomePage' (in quotes) to make lazy loading
possible. For example, whenever we want to push HomePage to navigation stack, we would
call the push function, as follows:

navCtrl.push('HomePage'); instead of:navCtrl.push(HomePage);

Also, we need to remove any import of the page that we are lazily loading. Owing to this,
we had to remove reference to HomePage from app.module.ts.

There's more...
When you configure lazy loading for Ionic application, you are also adding one more
feature, that is, access to pages using URL. Along with deep linking Cordova plugin and
this feature, you can easily implement deep linking for Ionic applications—think of this as
an exercise.

You can find the link to deep linking plugin at https:/ / github. com/ BranchMetrics/
cordova-ionic-phonegap- branch- deep- linking.

https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking
https://github.com/BranchMetrics/cordova-ionic-phonegap-branch-deep-linking

Advanced Topics Chapter 9

[330]

See also
Check out more on lazy loading in this blog post at https:/ / webpack. js. org/ guides/
lazy-loading/.

Internationalization (i18n) using ngx-
translate
Having English as the primary language for your application is good. However, chances are
that there are people who don't know English who may use your application. It's good to
have multiple languages for using application. This is called as internationalization of
application. In this part, we will use the ngx-translate library of Angular to implement
the multiple language features in the Ionic application.

This is what the app looks like:

https://webpack.js.org/guides/lazy-loading/
https://webpack.js.org/guides/lazy-loading/
https://webpack.js.org/guides/lazy-loading/
https://webpack.js.org/guides/lazy-loading/
https://webpack.js.org/guides/lazy-loading/
https://webpack.js.org/guides/lazy-loading/
https://webpack.js.org/guides/lazy-loading/
https://webpack.js.org/guides/lazy-loading/
https://webpack.js.org/guides/lazy-loading/
https://webpack.js.org/guides/lazy-loading/
https://webpack.js.org/guides/lazy-loading/
https://webpack.js.org/guides/lazy-loading/
https://webpack.js.org/guides/lazy-loading/
https://webpack.js.org/guides/lazy-loading/
https://webpack.js.org/guides/lazy-loading/

Advanced Topics Chapter 9

[331]

Getting ready
You can run this application inside the browser.

How to do it...
The following are the instructions to do it:

Create a new TranslateApp using the blank template and navigate inside the1.
folder, as follows:

$ ionic start TranslateApp blank
$ cd TranslateApp

Install ngx-translate/core and ngx-translate/http-loader, as follows:2.

npm install @ngx-translate/core @ngx-translate/http-loader --save

Create the en.json file inside the /src/assets/i18n folder and add the3.
following content:

{
 "Hello": "Hello",
 "Good Morning": "Good Morning"
}

Create the de.json file inside the /src/assets/i18n folder and add the4.
following content:

{
 "Hello": "Hallo",
 "Good Morning": "Guten Morgen"
}

Open /src/pages/home/home.html and update it as follows:5.

<ion-header>
 <ion-navbar>
 <ion-title>
 Ionic Language
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content padding>

Advanced Topics Chapter 9

[332]

 <ion-item>
 {{'Hello' | translate }}, {{ 'Good Morning' | translate }}
 </ion-item>
 <ion-item>
 <ion-label>Language</ion-label>
 <ion-select [(ngModel)]="language" (ionChange)="setLang()">
 <ion-option value="en">English</ion-option>
 <ion-option value="de">Deutsch</ion-option>
 </ion-select>
 </ion-item>
</ion-content>

Open /src/pages/home/home.ts and update it as follows:6.

import { Component } from "@angular/core";
import { NavController } from "ionic-angular";
import { TranslateService } from "@ngx-translate/core";

@Component({
 selector: "page-home",
 templateUrl: "home.html"
})
export class HomePage {
 language: string = "en";
 constructor(
 public navCtrl: NavController,
 private translate: TranslateService
) {
 translate.setDefaultLang("en");
 translate.use("en");
 }

 setLang() {
 console.log(this.language);
 this.translate.use(this.language);
 }
}

Open app.module.ts inside the /src/app folder and update it as follows:7.

import { BrowserModule } from "@angular/platform-browser";
import { ErrorHandler, NgModule } from "@angular/core";
import { IonicApp, IonicErrorHandler, IonicModule } from "ionic-
angular";
import { SplashScreen } from "@ionic-native/splash-screen";
import { StatusBar } from "@ionic-native/status-bar";

import { MyApp } from "./app.component";

Advanced Topics Chapter 9

[333]

import { HomePage } from "../pages/home/home";

import { TranslateModule, TranslateLoader } from "@ngx-
translate/core";
import { TranslateHttpLoader } from "@ngx-translate/http-loader";
import { HttpClientModule, HttpClient } from
"@angular/common/http";

export function HttpLoaderFactory(http: HttpClient) {
 return new TranslateHttpLoader(http);
}

@NgModule({
 declarations: [MyApp, HomePage],
 imports: [
 BrowserModule,
 HttpClientModule,
 TranslateModule.forRoot({
 loader: {
 provide: TranslateLoader,
 useFactory: HttpLoaderFactory,
 deps: [HttpClient]
 }
 }),
 IonicModule.forRoot(MyApp)
],
 bootstrap: [IonicApp],
 entryComponents: [MyApp, HomePage],
 providers: [
 StatusBar,
 SplashScreen,
 { provide: ErrorHandler, useClass: IonicErrorHandler }
]
})
export class AppModule {}

Run the app, as follows:8.

$ ionic serve

Advanced Topics Chapter 9

[334]

How it works...
In this example, we are using ngx-translate for internationalization. It's a fairly simple
process. The basic idea is that we have a JSON file for each of the languages that we want to
support in our app. For example, en.json for English and de.json for German. In the
JSON file, we have keys and values. Values are translated texted that we want to show in
our app, and keys are something that we are going to put inside the app.

It's also important that we need to have the same keys for multiple languages and different
values based on the translation. Take a look at the following two JSON files:

en.json:

{
 "Hello": "Hello",
 "Good Morning": "Good Morning"
}

de.json:

{
 "Hello": "Hallo",
 "Good Morning": "Guten Morgen"
}

Both files have two key-value pairs, keys are same but the values are different.

Now, in our templates, we use those two keys:

 {{'Hello' | translate }}, {{ 'Good Morning' | translate }}

We use Angular interpolation and add the key with quotes here along with the translate
pipe, which comes from the ngx-translate library. Basically, it transforms the key into
the correct value based on the selected language.

To change the language, we use TranslateService from ngx-translate. It has the
setDefault method to set the default language, and the use method to switch language.
So, in our home.html, when a user switches the language using ion-select, we call our
setLang function, which under the hood calls the TranslateService's use method with the
appropriate language code, such as en or de.

Advanced Topics Chapter 9

[335]

Finally, we also need to configure ngx-translate in app.module.ts. We need to import
TranslateModule.forRoot() in the root NgModule of the application. We also have to
configure the loader for TranslateModule. Here, we are using TranslateHttpLoader to
load translations from /assets/i18n/[lang].json were lang code is alphabetic
language code such en for English.

It's also important to note that in order to use AOT (Ahead of Time) compilation, we will
need to use factory function, as follows:

export function HttpLoaderFactory(http: HttpClient) {
 return new TranslateHttpLoader(http);
}

So, the configuration looks as follows:

 TranslateModule.forRoot({
 loader: {
 provide: TranslateLoader,
 useFactory: HttpLoaderFactory,
 deps: [HttpClient]
 }
 })

See also
Check out the documentation for ngx-translate, at https:/ /github. com/ ngx-
translate/core.

Creating documentation for Ionic app
So far, we have added things and features which are targeted at the user of the application.
In this recipe, we will add the ability to generate documentation from source code using
TSDocs, Gulp, and Ionic CLI Hooks. Documentation is a very important aspect of the
developer experience. I personally believe that it should be part of Ionic by default.

https://github.com/ngx-translate/core
https://github.com/ngx-translate/core
https://github.com/ngx-translate/core
https://github.com/ngx-translate/core
https://github.com/ngx-translate/core
https://github.com/ngx-translate/core
https://github.com/ngx-translate/core
https://github.com/ngx-translate/core
https://github.com/ngx-translate/core
https://github.com/ngx-translate/core
https://github.com/ngx-translate/core
https://github.com/ngx-translate/core

Advanced Topics Chapter 9

[336]

This is how the documentation will look like:

Getting ready
You can run this inside the browser.

How to do it...
The following are the instructions to create the example app:

Create a new DocApp using a blank template and navigate inside the folder, as1.
follows:

$ ionic start DocApp blank
$ cd DocApp

Install the following npm dev dependencies for using typedoc:2.

$ npm install --save-dev gulp gulp-connect gulp-typedoc typedoc

Advanced Topics Chapter 9

[337]

Create gulpfile.js in the root directory of the app and add the following3.
content:

var gulp = require("gulp");
var connect = require("gulp-connect");
var typedoc = require("gulp-typedoc");
var config = {
 root: "docs/"
};

gulp.task("typedoc", function() {
 return gulp.src(["src/**/*.ts"]).pipe(
 typedoc({
 module: "commonjs",
 target: "es6",
 experimentalDecorators: true,
 out: config.root,
 name: "DocApp",
 readme: "./README.md"
 })
);
});

gulp.task("serve:docs", ["typedoc"], function() {
 connect.server({
 root: config.root,
 livereload: true
 });
});

Open /src/pages/home/home.ts and update it as follows:4.

import { Component } from "@angular/core";
import { NavController } from "ionic-angular";

@Component({
 selector: "page-home",
 templateUrl: "home.html"
})
export class HomePage {
 constructor(public navCtrl: NavController) {}

 /**
 * Following is the way you write documentation
 *
 * @param username Username of the user
 * @returns It returns a string value

Advanced Topics Chapter 9

[338]

 */
 dummyFunction(username: string) {
 return username;
 }
}

Run the app, as follows:5.

$ gulp serve:docs

How it works...
We are using TypeDoc, which is a documentation generator for a TypeScript application. It
uses TSDoc comments, which are very similar to the popular JSDoc. All of the magic work
is done in gulpfile.js.

First, we have a typedoc task. Basically, it takes all TypeScript src files using
gulp.src(["src/**/*.ts"]) and pipe it to typedoc. Then, typedoc generates the
documentation based on the class's structure and TSDoc comments in the file. You can learn
about the configuration about TypeDoc from their website at http:/ /typedoc. org.
Basically, here we are configuring site title, the location of docs, and the bunch of other
things.

If you take a look inside home.ts, we have dummyFunction, which looks as follows:

 /**
 * Following is the way you write documentation
 *
 * @param username Username of the user
 * @returns It returns a string value
 */
 dummyFunction(username: string) {
 return username;
 }

The comments before the function are the TSDoc comments. They have a specific structure
that we need to learn and with the help of these comments we can generate meaningful
documentation.

Finally, we run a gulp task, gulp serve:docs, in the terminal, which generate and serves
the docs using a web server in the browser.

http://typedoc.org
http://typedoc.org
http://typedoc.org
http://typedoc.org
http://typedoc.org
http://typedoc.org
http://typedoc.org

Advanced Topics Chapter 9

[339]

See also
You can also make it work along with Ionic CLI, as generating docs while serving
the app using Ionic serve. Take a look at Ionic CLI Hooks at https:/ /
ionicframework. com/ docs/ cli/ configuring. html#hooks.
Learn more on TSDoc at https:/ /github. com/Microsoft/ tsdoc.

https://ionicframework.com/docs/cli/configuring.html#hooks
https://ionicframework.com/docs/cli/configuring.html#hooks
https://ionicframework.com/docs/cli/configuring.html#hooks
https://ionicframework.com/docs/cli/configuring.html#hooks
https://ionicframework.com/docs/cli/configuring.html#hooks
https://ionicframework.com/docs/cli/configuring.html#hooks
https://ionicframework.com/docs/cli/configuring.html#hooks
https://ionicframework.com/docs/cli/configuring.html#hooks
https://ionicframework.com/docs/cli/configuring.html#hooks
https://ionicframework.com/docs/cli/configuring.html#hooks
https://ionicframework.com/docs/cli/configuring.html#hooks
https://ionicframework.com/docs/cli/configuring.html#hooks
https://ionicframework.com/docs/cli/configuring.html#hooks
https://ionicframework.com/docs/cli/configuring.html#hooks
https://github.com/Microsoft/tsdoc
https://github.com/Microsoft/tsdoc
https://github.com/Microsoft/tsdoc
https://github.com/Microsoft/tsdoc
https://github.com/Microsoft/tsdoc
https://github.com/Microsoft/tsdoc
https://github.com/Microsoft/tsdoc
https://github.com/Microsoft/tsdoc
https://github.com/Microsoft/tsdoc
https://github.com/Microsoft/tsdoc
https://github.com/Microsoft/tsdoc

10
Publishing the App for Different

Platforms
In this chapter, we will cover the following tasks related to publishing and future-proofing
an app:

Adding versioning to future-proof the app
Building and publishing an app for iOS
Building and publishing an app for Android

Introduction
In the past, it was very cumbersome to build and successfully publish an app. However,
there is much documentation and many unofficial instructions on the internet today that
can pretty much address any problem that you may run into. In addition, Ionic also comes
with its own CLI to assist in this process. This chapter will guide you through the app
building and publishing steps at a high level. You will learn how to do the following things:

Add versioning to future-proof the app
Publish your app to App Store or Google Play

The purpose of this chapter is to provide ideas on what to look for and some gotchas. Apple
and Google constantly update their platforms and processes; so, the steps may not look
exactly the same over time.

Publishing the App for Different Platforms Chapter 10

[341]

Adding versioning to future-proof the app
It's typical that you don't think about keeping track of the app version for a particular user.
However, as the app grows in regard to the number of users and releases, you will soon
face the problem of update issues and incompatibilities. For example, a user may run an old
version of your app but all your backend APIs now expect new parameters from a newer
app version. Therefore, you may want to think about a strategy to detect the app version
locally in order to notify the users of an update requirement. This is also helpful if your
backend processes differently for a specific app version.

The app which you are going to build is very simple. It will detect the current version and
store the information in a service. This is a screenshot of the app:

Getting ready
The following app example must run on a physical device or a simulator.

How to do it...
Take a look at the following instructions:

Create a new MyAppVersion app using the blank template, as follows, and1.
navigate to the MyAppVersion folder:

$ ionic start MyAppVersion blank
$ cd MyAppVersion

Publishing the App for Different Platforms Chapter 10

[342]

Install the app-version plugin:2.

$ ionic cordova plugin add cordova-plugin-app-version
$ npm install --save @ionic-native/app-version

Edit ./config.xml by changing the version number, as follows:3.

<widget id="com.ionicframework.myappversion637242" version="0.0.123"
xmlns="http://www.w3.org/ns/widgets"
xmlns:cdv="http://cordova.apache.org/ns/1.0">

Note that your widget id might be different from the one mentioned here. You
only need to change the version number. In this case, it is the 0.0.123 version.

Create the services folder inside the app folder, as follows:4.

$ mkdir ./src/services

Create myenv.ts in the services folder with the following code:5.

import { Injectable } from "@angular/core";
import { AppVersion } from "@ionic-native/app-version";

@Injectable()
export class MyEnv {
 constructor(private appVersion: AppVersion) {}

 getAppVersion() {
 return this.appVersion.getVersionCode();
 }
}

This is your only service for this app. In a real-world project, you will need
multiple services because some of them will have to communicate directly with
your backend.

Open and edit your /src/app/app.module.ts, as follows:6.

import { BrowserModule } from "@angular/platform-browser";
import { ErrorHandler, NgModule } from "@angular/core";
import { IonicApp, IonicErrorHandler, IonicModule } from "ionic-
angular";
import { SplashScreen } from "@ionic-native/splash-screen";
import { StatusBar } from "@ionic-native/status-bar";
import { AppVersion } from "@ionic-native/app-version";
import { MyEnv } from "../services/myenv";

Publishing the App for Different Platforms Chapter 10

[343]

import { MyApp } from "./app.component";
import { HomePage } from "../pages/home/home";

@NgModule({
 declarations: [MyApp, HomePage],
 imports: [BrowserModule, IonicModule.forRoot(MyApp)],
 bootstrap: [IonicApp],
 entryComponents: [MyApp, HomePage],
 providers: [
 StatusBar,
 SplashScreen,
 AppVersion,
 MyEnv,
 { provide: ErrorHandler, useClass: IonicErrorHandler }
]
})
export class AppModule {}

The main modification in this file is to inject the AppVersion and MyEnv
providers for the entire app.

Open and replace ./src/pages/home/home.html with the following code:7.

<ion-header>
 <ion-navbar>
 <ion-title>
 MyAppVersion
 </ion-title>
 </ion-navbar>
</ion-header>

<ion-content padding class="center home">
 <button ion-button (click)="getVersion()">Get App
Version</button>
 <p class="large" *ngIf="ver">
 MyAppVersion {{ ver }}
 </p>
</ion-content>

Publishing the App for Different Platforms Chapter 10

[344]

Open and replace ./src/pages/home/home.ts with the following code:8.

import { Component } from "@angular/core";
import { NavController } from "ionic-angular";
import { MyEnv } from "../../services/myenv";

@Component({
 selector: "page-home",
 templateUrl: "home.html"
})
export class HomePage {
 public ver: string;

 constructor(private navCtrl: NavController, public myEnv: MyEnv)
{}

 getVersion() {
 console.log(this.myEnv.getAppVersion());
 this.myEnv.getAppVersion().then(data => (this.ver = data));
 }
}

Open and edit home.scss in the same folder:9.

page-home {
 .home {
 p.large {
 font-size: 16px;
 }
 }

 ion-content {
 &.center {
 text-align: center;
 }
 }
}

Publishing the App for Different Platforms Chapter 10

[345]

Go to your Terminal and run the app. If you want to run the app on your10.
physical device, type the following command:

$ ionic cordova run ios

For Android, type the following command:

$ ionic cordova run android

How it works...
In a nutshell, the AppVersion plugin does all the heavy lifting. It's not possible for an Ionic
app to find out the current version of its code using JavaScript. You may think that using
local storage or cookie is an alternative, but the users could also delete that storage
manually. In order to have a permanent solution, the AppVersion plugin should be used
because it can read your config.xml file and get the version for you.

It's the best practice to create a separate service for all environment variables. That's why,
you should have a service, called MyEnv. Also, you should inject MyEnv as a provider at the
app level because you want to instantiate it only once, instead of doing it every time a new
component is created. Take a look at the following code:

providers: [MyEnv]

Since all the AppVersion methods are based on promise, you should return the entire
object as a promise. Let's take a look at the getAppVersion() method in your myenv.ts
file:

 getAppVersion() {
 return this.appVersion.getVersionCode();
 }

Publishing the App for Different Platforms Chapter 10

[346]

Then, in your page files, such as home.ts, you should call the getAppVersion method, as
shown, and use the .then() method to get the following result:

 getVersion() {
 console.log(this.myEnv.getAppVersion());
 this.myEnv.getAppVersion().then((data) => this.ver = data);
 }

If you open the console to inspect the promise object, you will see that it has your app
version value and the .then() method. Take a look at the following screenshot:

For more information about the AppVersion plugin, you may want to refer to the official
AppVersion documentation at
https://github.com/whiteoctober/cordova-plugin-app-version.

Building and publishing an app for iOS
Publishing on App Store could be a frustrating process if you are not well-prepared
upfront. In this section, we will walk through the steps to properly configure everything in
Apple Developer Center, iTunes Connect, and your local Xcode project.

https://github.com/whiteoctober/cordova-plugin-app-version
https://github.com/whiteoctober/cordova-plugin-app-version

Publishing the App for Different Platforms Chapter 10

[347]

Getting ready
You must register for Apple Developer Program in order to access
https://developer.apple.com/macos/touch-bar/ and https://itunesconnect.apple.com
because those websites will require an approved account.

In addition, you should have the following:

macOS
Xcode

How to do it...
The following are the instructions to configure everything properly:

Ensure that you are in the app folder, then build the iOS platform:1.

$ ionic cordova build ios

Go to the /platforms/ios folder and open the .xcodeproj file in Xcode. Take a
look at the following screenshot:

Navigate to the General tab, as illustrated in the following screenshot, to make2.
sure that you have the correct information for everything, especially Bundle
Identifier and Version. Change and save as needed:

https://developer.apple.com/macos/touch-bar/
https://developer.apple.com/macos/touch-bar/
https://itunesconnect.apple.com
https://itunesconnect.apple.com

Publishing the App for Different Platforms Chapter 10

[348]

Visit the Apple developer website and click on Certificates, Identifiers &3.
Profiles, as illustrated:

Publishing the App for Different Platforms Chapter 10

[349]

Select the correct device platform that you are targeting; in this case, it will be4.
iOS, tvOS, watchOS:

For the iOS app, you need the certificate, app ID, test device, and provisioning5.
profile. To start with the certificate, navigate to Certificates | All, as follows:

Click on the plus (+) button, as shown in the following screenshot:6.

Publishing the App for Different Platforms Chapter 10

[350]

You have to go through the steps on the website to fill out the necessary7.
information, as depicted in the following screenshot:

Once you've completed the form, you can save the CSR file and import it into8.
your Mac's Keychain Access.
Navigate to Identifiers | App IDs, as follows, to create an app ID:9.

Publishing the App for Different Platforms Chapter 10

[351]

Click on the plus button at the top-right corner of the screen, as follows:10.

Fill in the form to register your App ID, as shown in the following screenshot:11.

The important part here that you need to do correctly is the Bundle ID, as shown12.
in the following screenshot because it must match your Bundle Identifier in
Xcode:

Publishing the App for Different Platforms Chapter 10

[352]

If your app needs Push Notifications or other App Services, you will need to13.
check those services on the following page:

Publishing the App for Different Platforms Chapter 10

[353]

If you need to push the app to a specific device, you must register the device.14.
Navigate to Devices | All, as illustrated in the following:

Click on the plus button, as shown:15.

Provide the device's UDID, as follows, and save it in order to register the device:16.

Publishing the App for Different Platforms Chapter 10

[354]

Finally, you will need a provisioning profile if one doesn't exist yet. Usually,17.
Xcode will create one automatically. However, you could create your own by
navigating to Provisioning Profiles | All, as shown:

Click on the plus button, as follows:18.

Select App Store as your provisioning profile, as illustrated:19.

Publishing the App for Different Platforms Chapter 10

[355]

Select the correct App ID from the drop-down menu and save it to finalize your20.
provisioning profile creation, as follows:

Visit iTunes Connect at https://itunesconnect.apple.com and click on the My21.
Apps button, as follows:

https://itunesconnect.apple.com

Publishing the App for Different Platforms Chapter 10

[356]

Select the plus (+) icon and select New App, as follows:22.

Fill out the form and ensure that you select the right Bundle ID for your app:23.

Publishing the App for Different Platforms Chapter 10

[357]

There are several additional steps to provide information on the app, such as24.
screenshot, icon, and address. If you just want to test the app, you could provide
some placeholder information initially and come back to edit it later.
That's it to prepare your Developer and iTunes Connect account.
Now, open Xcode and select iOS Device as the archive target, otherwise the
Archive feature will not be turned on. You will need to archive your app before
you can submit it to the App Store:

Navigate to Product | Archive in the top menu, as illustrated:25.

After the archive process is completed, select Submit to App Store to finish the26.
publishing process.

To publish, select Submit for Beta App Review. You may want to go through27.
other tabs, such as Pricing and In-App Purchases, to configure your own
requirements.

Publishing the App for Different Platforms Chapter 10

[358]

How it works...
Obviously, this section does not cover every bit of detail in the publishing process. In
general, you just need to ensure that your app is tested thoroughly, locally, on a physical
device (either via USB or TestFlight) before submitting it to the App Store.

If for some reason, the Archive feature doesn't build, you could manually go to your local
Xcode folder to delete that specific temporary archived app to clear cache, as follows:

~/Library/Developer/Xcode/Archives

There's more...
TestFlight is a separate subject by itself. The benefit of TestFlight is that you don't
need your app to be approved by Apple in order to install the app on a physical
device for testing and development. You can find out more information on
TestFlight at
https://developer.apple.com/library/content/documentation/LanguagesUti
lities/Conceptual/iTunesConnect_Guide/Chapters/BetaTestingTheApp.html.

There is one more way to test Ionic Apps, that's with Ionic's DevApp. It allows
you to test Ionic Application on iOS and Android without even compiling. You
have installed the Ionic Devapp on your phone, and in your workstation run
ionic serve -c in the Terminal. You can find more details at https:/ /
ionicframework. com/ docs/ pro/ devapp/ .

Building and publishing an app for Android
Building and publishing an Android app is a little more straightforward than iOS because
you just interface with the command line to build the .apk file and upload it to Google
Play's Developer Console.

The Ionic Framework documentation also has a great instruction page for this, which is
http://ionicframework.com/docs/guide/publishing.html.

Getting ready
The requirement is to have your Google Developer account ready and then log in to
https://play.google.com/apps/publish.

https://developer.apple.com/library/content/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/BetaTestingTheApp.html
https://developer.apple.com/library/content/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/BetaTestingTheApp.html
https://developer.apple.com/library/content/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/BetaTestingTheApp.html
https://ionicframework.com/docs/pro/devapp/
https://ionicframework.com/docs/pro/devapp/
https://ionicframework.com/docs/pro/devapp/
https://ionicframework.com/docs/pro/devapp/
https://ionicframework.com/docs/pro/devapp/
https://ionicframework.com/docs/pro/devapp/
https://ionicframework.com/docs/pro/devapp/
https://ionicframework.com/docs/pro/devapp/
https://ionicframework.com/docs/pro/devapp/
https://ionicframework.com/docs/pro/devapp/
https://ionicframework.com/docs/pro/devapp/
https://ionicframework.com/docs/pro/devapp/
https://ionicframework.com/docs/pro/devapp/
http://ionicframework.com/docs/guide/publishing.html
https://play.google.com/apps/publish
https://play.google.com/apps/publish

Publishing the App for Different Platforms Chapter 10

[359]

Your local environment should also have the right SDK and keytool, jarsigner, and
zipalign command line for that specific version.

How to do it...
The following are the instructions:

Go to your app folder and build for Android using the following command:1.

 $ ionic cordova build --release android

You will note android-release-unsigned.apk in the2.
/platforms/android/build/outputs/apk folder. Go to that folder in the
Terminal:

Publishing the App for Different Platforms Chapter 10

[360]

If this is the first time you created this app, you must have a keystore file. This3.
file is used to identify your app for publishing. If you lose it, you cannot update
your app later on. To create a keystore file, type the following command line
and ensure that it's the same keytool version of the SDK:

$ keytool -genkey -v -keystore my-release-key.keystore -alias
alias_name -keyalg RSA -keysize 2048 -validity 10000

Once you fill out the information on the command line, make a copy of this file4.
somewhere safe because you will need it later.
The next step is to use that file to sign your app so that it will create a new .apk5.
that Google Play allows users to install:

$ jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore my-
release-key.keystore HelloWorld-release-unsigned.apk alias_name

To prepare for the final .apk before upload, you must package it using6.
zipalign, as follows:

$ zipalign -v 4 HelloWorld-release-unsigned.apk HelloWorld.ap

You need to ensure that zipalign is in PATH or you have to specify the
absolute path. The app name could be anything you like or you can use
the same name as created in this chapter.

Log in to Google Developer Console and click on CREATE APPLICATION7.
button, as follows:

Publishing the App for Different Platforms Chapter 10

[361]

Fill out the Title of the application in the opened popup and then click on8.
CREATE button, as shown in the image below:

Publishing the App for Different Platforms Chapter 10

[362]

Fill out the store listing and other information as required for your app using the9.
left menu:

Publishing the App for Different Platforms Chapter 10

[363]

Now you are ready to upload your .apk file. The first thing you need to do is to10.
do a Beta testing:

Once you are done with Beta testing, you can follow Developer Console11.
instructions to push the app to production.

If you run into any problem while publishing the app, it's helpful to look
at the "Why can't I publish?" link in the dashboard's top-right corner.
Google will guide you on specific steps that must be completed or fixed.

Publishing the App for Different Platforms Chapter 10

[364]

How it works...
This section does not cover other Android marketplaces, such as Amazon App Store,
because each of them has different processes. However, the common idea is that you need
to completely build the unsigned version of the .apk, sign it using an existing or new
keystore file, and, finally, zipalign to prepare it for upload.

Read more about uploading the application for publishing at https:/ /
support. google. com/ googleplay/ android- developer/ answer/ 113469?
hl=en

https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
https://support.google.com/googleplay/android-developer/answer/113469?hl=en

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learning Ionic - Second Edition
Arvind Ravulavaru

ISBN: 978-1-78646-605-1

Understanding the world of the mobile hybrid architecture
Scaffolding and working with Ionic templates
Transforming a single page app to a multi-page app using Navigation Controller
Integrating Ionic components, decorators, and services and rapidly developing
complex applications
Theming Ionic apps as well as customizing components using SCSS
Working with Ionic Native to interface with device features, such as camera,
notifications, and battery
Building a production grade app using Ionic and Uber API to let users book a
ride
Migrating an Ionic 1 app to Ionic 2 or Ionic 3
Performing unit testing, end-to-end testing, and device testing on your apps
Deploying Ionic apps to store and manage their subsequent releases

https://www.packtpub.com/web-development/learning-ionic-second-edition

Other Books You May Enjoy

[366]

Hybrid Mobile Development with Ionic
Gaurav Saini

ISBN: 978-1-78528-605-6

Use every Ionic component and its customization according to the application
along with some important third party components
Recently released Lazy Loading and Grid System supporting desktop application
with Electron
Integration of the various Ionic backend services and features such as Ionic Push,
DB, Auth, Deploy in your application
Exploration of white-listing, CORS, and various other platform security aspects to
secure your application
Synchronization of your data with the cloud server and fetching it in real time
using Ionic Cloud and Firebase services
Integration of the Cordova iBeacon plugin which will fetch contextual data on the
basis of location and Websockets for real time communication for IOT based
applications
Implementation of offline functionality in your PWA application using service-
worker, cache storage and indexedDB

https://www.packtpub.com/application-development/hybrid-mobile-development-ionic

Other Books You May Enjoy

[367]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Ahead of Time (AOT) 335
Android app
 building, to receive push notifications 246, 249,

259, 261
 code, writing 256
 Firebase, configuring for push notifications 250,

251

 OneSignal, configuring 254, 255
Android Studio
 references 28
Android Virtual Device (AVD) 249
Android
 web app, viewing Genymotion used 28, 30, 32
Angular 2 directives
 reference link 96
Angular 2 services
 reference link 112
Angular 2, form
 reference link 137
Angular 2, NgForm
 reference link 137
Angular 2
 reference link 49
Angular component, life cycle
 reference link 123
Angular components
 reference link 89, 123
Angular Http provider
 reference link 157
Angular pipes
 creating 97, 98, 100, 101, 102
 reference link 102
app
 building, for Android 358, 360, 364
 building, for iOS 346, 349, 351, 354, 356, 357

 creating, in Auth0 dashboard 200, 201, 202
 publishing, for Android 358, 360, 364
 publishing, for iOS 346, 349, 351, 354, 356,

357

 version, adding 341, 345
Apple Developer Program (ADP)
 about 213
 reference link 347
Apple Push Notification service (APNs)
 about 213
 reference link 245
arrow function
 reference link 45
Auth0 dashboard
 app, creating 200, 201, 202
 code, writing 203, 206
Auth0 Domain 209
Auth0
 about 199
 used, for authenticating users 199, 200, 208,

209, 212
 used, for registering users 199, 200, 208, 209,

212

B
background CSS animation
 adding, to login page 191, 192, 196
built-in pipes
 reference link 97

C
camera plugin
 used, for taking photo 263, 264, 266, 268, 269
classes
 reference link 45
complex form

[369]

 creating, with input validation 125, 127, 130,
134, 135, 136

complex UI
 creating, Ionic grid used 73, 74, 77, 79
Control-Allow-Origin (CORS) 154, 208
CSS keyframes
 reference link 197
CSS physics-based animation
 reference link 181
custom pizza ordering component
 creating 82, 83, 86
 working 87, 88
Custom URL Scheme 209
custom username input directive
 creating 89, 91, 94, 95

D
data
 retrieving, via mocked API using static JSON file

148, 149, 150, 153, 154, 155, 156, 157
deep linking plugin
 reference link 329
Dynamics.js
 used, for creating physics-based animation 176,

180

E
ECMAScript 6 (ES6) 8
ECMAScript
 reference link 49

F
FCM, versus GCM
 reference link 246
Filterous
 reference link 270
fingerprint AIO plugin
 reference link 291
 used, for authenticating fingerprint 283, 284,

285, 286, 287, 290, 291
Firebase Cloud Messaging (FCM) 213
Firebase Notification service
 about 261
 reference link 261

Flexbox
 reference link 80

G
Genymotion
 used, for viewing web app 28, 30, 32
geocode
 used, for creating taxi app 298, 299, 300, 301,

302, 303, 305, 308
Google Cloud Messaging (GCM) 246
Google Maps plugin
 reference link 310
 used, for creating taxi app 298, 299, 300, 301,

302, 303, 305, 308

H
Hardware Accelerated Execution Manager (HAXM)
 about 248
 reference link 248
HelloWorld app, concepts
 component 14
 directive 14
 pipe 14
 service 14
 template 14
HelloWorld app
 creating, via CLI 13, 14, 15, 16
 creating, via Ionic Creator 17, 18, 19
HTML element
 existing page, reusing 113, 114, 116, 119, 120,

122

I
inline video
 embedding, as background 169, 170, 171, 173,

174

Instagram plugin
 reference link 270
integrated development environment (IDE) 10
internationalization (i18n)
 ngx-translate, used 330, 331, 334
ion-slides
 reference link 188
Ionic and Forms

[370]

 reference link 137
Ionic app
 development environment 10, 12
 development environment, setting up 9
 documentation, creating 335, 337, 338
Ionic CLI Hooks
 reference link 339
Ionic CLI
 used, for viewing app 24
Ionic components
 reference link 137
Ionic Creator 17
Ionic DevApp
 reference link 358
Ionic Framework
 reference link 358
Ionic grid
 reference link 80
 used, for creating complex UI 73, 74, 77, 79
Ionic menu
 references 58
Ionic View
 about 33
 benefits 36
 used, for viewing web app 33, 36
Ionic
 lazy loading 325, 328, 329
 reactive forms, creating 138, 139, 141, 142,

143, 144, 145, 146
iOS app
 Apple signing certificate, creating 214, 215, 218,

221

 building, to receive push notifications 213, 243,
244, 245

 code, writing 237, 243
 device, adding 223, 224, 225, 227
 OneSignal, configuring 234, 235, 236
 provisioning profile, creating 223, 224, 225, 227
 push certificate, creating 228, 230, 231, 232
iOS
 Apple signing certificate, creating, creating 222
 web app, viewing Xcode used 25, 26

J
JWT (JSON Web Token) 208

L
lazy loading
 reference link 330
local notification plugin
 reference link 283
 used, for displaying local notification 278, 279,

282

localstorage 209

M
media player
 creating, with media player notification control

291, 292, 296, 297, 298
menu navigation
 adding 49, 50, 53, 56, 57, 58
menu
 used, in app 68, 69, 71, 72
MenuController
 reference link 73
multiple pages
 adding, tabs used 37, 38, 40, 43, 44, 45, 49
 navigating, with state parameters 58, 60, 64, 65,

66, 67

N
NavController
 reference link 67
NavParams
 reference link 67
ngx-translate
 reference link 335

O
observable object 155
OneSignal
 about 199
 reference link 245

P
physics-based animation
 creating, Dynamics.js used 176, 180
push notification 213

R
reactive forms
 creating, in Ionic 138, 139, 141, 142, 143, 144,

145, 146
 references 147
requestAnimationFrame
 reference link 190

S
segment
 used, in app 68, 69, 71, 72
shared service
 creating, data provided to multiple pages 103,

104, 105, 107, 109, 110, 111, 112
slide component
 animating, by binding gesture to animation state

181, 182, 183, 187, 188, 189, 190
social sharing plugin
 reference link 277
 used, for sharing content 271, 272, 273, 276,

277

static JSON file
 used, for retrieving data via mocked API 148,

149, 150, 153, 154, 155, 156, 157
Strip elements
 reference link 167
Strip, examples
 reference link 167
Stripe API
 reference link 167
Stripe
 integrating, for online payment 158, 159, 160,

162, 164, 165, 166
Swiper API
 reference link 190

T

tabs
 used, for adding multiple pages 37, 38, 40, 43,

44, 45, 49
 used, in app 68, 69, 71, 72
taxi app
 creating, geocode used 298, 299, 300, 301,

302, 303, 305, 308
 creating, Google Maps plugin used 298, 299,

300, 301, 302, 303, 305, 308
TestFlight
 reference link 358
themes
 customizing, on mobile platform 316, 319, 324
 debugging, for platform 312, 315
 viewing, for platform 312, 315
TSDoc
 reference link 339
TypeScript
 about 8
 reference link 96

U
users
 authenticating, with Auth0 199
 registering, with Auth0 199

W
W3C
 URL 137
web app
 viewing, Genymotion used for Android 28, 30,

32

 viewing, Ionic CLI used 24
 viewing, Ionic View used 33, 36
 viewing, web browser used 19, 23
 viewing, Xcode used for iOS 25, 26
Web Inspector 26
WKWebView plugin
 reference link 202

X
Xcode
 used, for viewing web app 25, 26

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Creating Our First App with Ionic
	Introduction
	Setting up a development environment
	Getting ready
	How to do it...
	There's more...

	Creating a HelloWorld app via the CLI
	How to do it...
	How it works...

	Creating a HelloWorld app via Ionic Creator
	Getting ready
	How to do it...
	There's more...

	Viewing the app using your web browser
	Getting ready
	How to do it...
	How it works...

	Viewing the app using the Ionic CLI
	Getting Ready
	How to do it...

	Viewing the app using Xcode for iOS
	How to do it...
	There's more...

	Viewing the app using Genymotion for Android
	How to do it...

	Viewing the app using Ionic View
	How to do it...
	There's more...

	Chapter 2: Adding Ionic Components
	Introduction
	Adding multiple pages using tabs
	Getting ready
	How to do it...
	How it works...
	See also

	Adding left and right menu navigation
	Getting ready
	How to do it...
	How it works...
	See also

	Navigating multiple pages with state parameters
	Getting ready
	How to do it...
	How it works...
	See also

	Using menu, tabs, and segment together in an app
	Getting ready
	How to do it...
	How it works...
	See also

	Using the Ionic grid to create a complex UI
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 3: Extending Ionic with Angular Building Blocks
	Introduction
	Creating a custom pizza ordering component
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a custom username input directive
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a custom pipe
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a shared service to provide data to multiple pages
	Getting ready
	How to do it...
	How it works...
	See also

	Reusing an existing page as an HTML element
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 4: Validating Forms and Making HTTP Requests
	Introduction
	Creating a complex form with input validation
	Getting ready
	How to do it...
	How it works...
	See also

	Creating reactive forms in Ionic
	Getting ready
	How to do it...
	How it works...
	See also

	Retrieving data via a mocked API using a static JSON file
	Getting ready
	How to do it...
	How it works...
	See also

	Integrating with Stripe for online payment
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 5: Adding Animation
	Introduction
	Embedding full screen inline video as background
	Getting ready
	How to do it...
	How it works...

	Creating physics-based animation using Dynamics.js
	Getting ready
	How to do it...
	How it works...
	See also

	Animating the slide component by binding a gesture to the animation state
	Getting ready
	How to do it...
	How it works...
	See also

	Adding a background CSS animation to the login page
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 6: User Authentication and Push Notifications
	Introduction
	Registering and authenticating users using Auth0
	Getting ready
	How to do it...
	Creating our app in the Auth0 dashboard
	Let's code

	How it works
	There's more...

	Building an iOS app to receive push notifications
	Getting ready
	How to do it
	Let's create an Apple signing certificate
	Adding a device and creating the provisioning profile
	Creating a push certificate
	Now let's configure OneSignal
	Let's code

	How it works
	There's more...

	Building an Android app to receive push notifications
	Getting ready
	How to do it
	Configuring Firebase for push notifications
	Configuring OneSignal
	Let's code now

	How it works
	There's more...

	Chapter 7: Supporting Device Functionalities Using Ionic Native
	Introduction
	Taking a photo using the camera plugin
	Getting ready
	How to do it...
	How it works...
	There's more...

	Sharing content using the social sharing plugin
	Getting ready
	How to do it...
	How it works...
	There's more...

	Displaying a local notification using the local notification plugin
	Getting ready
	How to do it...
	How it works...
	There's more...

	Fingerprint authentication using the fingerprint AIO plugin
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a media player with the Media Player notification control
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a taxi app using the Google Maps plugin and geocode support
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 8: Theming the App
	Introduction
	Viewing and debugging themes for a specific platform
	Getting ready
	How to do it...
	How it works...
	There's more...

	Customizing themes based on the platform
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 9: Advanced Topics
	Introduction
	Lazy loading in Ionic
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Internationalization (i18n) using ngx-translate
	Getting ready
	How to do it...
	How it works...
	See also

	Creating documentation for Ionic app
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 10: Publishing the App for Different Platforms
	Introduction
	Adding versioning to future-proof the app
	Getting ready
	How to do it...
	How it works...

	Building and publishing an app for iOS
	Getting ready
	How to do it...
	How it works...
	There's more...

	Building and publishing an app for Android
	Getting ready
	How to do it...
	How it works...

	Other Books You May Enjoy
	Index

