

Learn Swift by Building
Applications

Explore Swift programming through iOS app development

Emil Atanasov

BIRMINGHAM - MUMBAI

Learn Swift by Building Applications
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Ashwin Nair
Acquisition Editor: Reshma Raman
Content Development Editor: Nikhil Borkar
Technical Editor: Madhunikita Sunil Chindarkar
Copy Editor: Safis Editing
Project Coordinator: Ulhas Kambali
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Tania Dutta
Production Coordinator: Arvindkumar Gupta, Nilesh Mohite

First published: May 2018

Production reference: 1230518

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-392-0

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Emil Atanasov is an IT consultant who has extensive experience with mobile technologies.
He started working in the field of mobile development in 2006. He runs his own contracting
and consulting company, serving clients from around the world—Appose Studio Inc. He is
an MSc graduate from RWTH Aachen University, Germany, and Sofia University "St.
Kliment Ohridski", Bulgaria. He has been a contractor for several large companies in the US
and UK, serving variously as team leader, project manager, iOS developer, and Android
developer.

I want to thank my wife Elena, my family, and my friends for being very supportive, really
patient, and super cool. Thank you for keeping me motivated through the endless work
days. I know that in your eyes I'm a bizarre geeky person, who is spending most of the
time in the digital world. I appreciate your understanding.

About the reviewer
Giordano Scalzo is a developer with 20 years of programming experience, since the days of
ZXSpectrum. He has worked in C++, Java, .Net, Ruby, Python, and in a ton of other
languages that he has forgotten the names of. After years of backend development, over the
past 5 years, Giordano has developed extensively for iOS, releasing more than 20
apps—apps that he wrote for clients, enterprise application, or on his own. Currently, he is
a contractor in London where, he delivers code for iOS through his company, Effective
Code Ltd, aiming at quality and reliability.

I’d like to thank my better half, Valentina, who lovingly supports me in everything I do:
without you, none of this would have been possible.
Thanks to my bright future, Mattia and Luca, for giving me lots of smiles and hugs when I
needed them.
Finally, my gratitude goes to my mum and dad, who gave me curiosity and the support to
follow my passions, which began one day when they bought me a ZXSpectrum.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Swift Basics – Variables and Functions 6
Variables 7

Optional types 12
Enumeration types 13
Basic flow statements 14

The if statements – how to control the code flow 14
Loops 15

The while loops 16
The switch statement 17

Functions 19
What is a tuple? 21
What is the guard statement? 23
How to tackle huge problems – bottom-up versus top-down 23

Summary 25

Chapter 2: Getting Familiar with Xcode and Playgrounds 26
Installing Xcode 26
Exploring Xcode 29

What do we see on the screen? 31
Toolbar 31
Menu 35
The Navigator panel (located to the left) 37
The Debug panel (located at the bottom) 38
The Utilities panel (located to the right) 39
Xcode preferences window 41

Playground 44
What is a playground? 44
Let's add some code 45
How to add auxiliary code to a playground 52

How to add resource to a playground 52
Converting a playground to a workspace 53
Markup in playgrounds 54

Different items in the markup language 54
Basic markup items 56

Summary 59

Chapter 3: Creating a Minimal Mobile App 60
Your first iOS application 61

Project structure 74

Table of Contents

[ii]

AppDelegate 74
Application states 76
ViewController 77

Git 79
Summary 83

Chapter 4: Structures, Classes, and Inheritance 84
Structures and classes 84

Extensions 91
The deinit method 94
Type properties and functions 94
Adding custom data types to a playground 96

Inheritance 100
Base class 100

Class properties 103
Model-View-Controller (MVC) 104

Summary 108

Chapter 5: Adding Interactivity to Your First App 109
Storyboards 109

Visual components 111
Adding items to the storyboard 118
Linking the UI with the code 122
General discussion 138

Summary 139

Chapter 6: How to Use Data Structures, OOP, and Protocols 140
Primary collection types 140

Generics 141
Array 142
Set 144
Dictionary 148
How to choose the best collection type 150

List of items in a playground 151
UICollectionView 151

UICollectionViewCell 154
Reusing cells 157
Layouts 159

Table view in iOS app 163
Model list of cities 165

Displaying all cities 167
Adding search 172

Protocols 175
Protocols and inheritance 177

Summary 180

Chapter 7: Developing a Simple Weather App 181

Table of Contents

[iii]

Defining the app screens 182
The home screen 188
Favorite locations 192

Constraints 194
Picking a location 196

Model 198
Locations 207
Controllers and segues 212

The first segue 212
How to pass data 215
Passing information in the reverse direction 217
Defining a custom segue 218

Further improvements 219
Summary 220

Chapter 8: Introducing CocoaPods and Project Dependencies 221
Software – the modern way 222

Ruby and CocoaPods 223
How to use it 224

CocoaPods useful commands 228
Carthage 229
Swift Package Manager 230

Useful commands 231
Popular third-party libraries 237

Alamofire 238
Texture 239
RxSwift 240

Summary 241

Chapter 9: Improving a Version of a Weather App 242
Weather forecast API 243

What's an API? 243
List of requests 245
Creating new models 247

Pure network requests 250
Alamofire implementation 256
Improvements using third-party libraries 259
Better error handling 261
About the screen 263

Summary 267

Chapter 10: Building an Instagram-Like App 268
Tabbed app project 268
Firebase 269

Login 271
The different screens 278

Table of Contents

[iv]

Custom buttons on the tab bar 279
Creating a post 282
Models 288
Firebase 290
Filters 295

Summary 297

Chapter 11: Instagram-Like App Continued 298
Home screen 298
Profile screen 304
Search screen 312
Favorites screen 316
Polishing the home screen 318
Summary 330

Chapter 12: Contributing to an Open Source Project 331
Your account at GitHub 331
Forking a repository 332
Let's contribute 333
Pull request 335
Summary 338

Other Books You May Enjoy 340

Index 343

Preface
Learning Swift 4 by Building Applications is a book that teaches the basics of Swift in the
context of iOS. If you finish the book, you should be able to develop small-to-medium
mobile apps. You will know how to create the app UI in storyboard using Xcode, how to
load and display images fetched from the cloud, how to save and load information between
different sessions of the app, and how to share data between all users of the app using the
cloud.

Who this book is for
The book is designed for beginners who have little or no experience with Swift or any other
programming language. The first couple of chapters introduce the Swift and the core
programming principals, which are used throughout the process of software development.
The rest of the book discusses the Swift development of iOS mobile applications. We will
explain how to use open source libraries to achieve rapid software development and
develop apps that are consuming information and images from the cloud.

What this book covers
Chapter 1, Swift Basics – Variables and Functions, discusses the basics of the Swift language,
starting from the A, B, and C.

Chapter 2, Getting Familiar with Xcode and Playgrounds, presents the Xcode—a free IDE that
we will use when developing Swift. We shouldn't forget that Xcode is developed by Apple
and that the playgrounds are the perfect place for learning Swift step by step.

Chapter 3, Creating a Minimal Mobile App, makes you examine the minimal mobile app and
its structure. This is the basis of every iOS mobile app written in Swift.

Chapter 4, Structures, Classes, and Inheritance, covers the benefit of different data structures
and how easily we can model a real-world problems.

Chapter 5, Adding Interactivity to Your First App, looks at the different ways to add
interactivity to an app or how to interact with the user in the app.

Preface

[2]

 Chapter 6, How to Use Data Structures, OOP, and Protocols, explores the data structures and
different techniques to incorporate them in our solutions.

Chapter 7, Developing a Simple Weather App, focuses on how to build a real mobile app
starting from the UI and displaying static data.

Chapter 8, Introducing CocoaPods and Project Dependencies, introduces the modern way of
rapid development using various dependency managers of Swift libraries.

Chapter 9, Improving a Version of a Weather App, discusses about consuming information
from the public API and displaying it in our Weather app.

Chapter 10, Building an Instagram-Like App, builds an app from the idea step by step
starting with the design, defines the basic UI, and connects it with a real cloud service
provider—Firebase.

Chapter 11, Instagram-Like App Continued, makes the app complete and functional so that it
can look like a working product, ready to be shared with users.

Chapter 12, Contributing to an Open Source Project, takes you through the basics of
contributing to an open source project.

To get the most out of this book
You have to know what is a computer and have basic knowledge of how to use a Mac. You
have to be curious about how things work. We will start from the basics of the Swift
programming language and Xcode. Most of the book is related to iOS, and it would be nice
to have an iOS device to see your mobile applications working on a real device.

You need enough time and patience to go through the book and to experiment with the
code, which can be found on GitHub.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[3]

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Learn-Swift-by-Building-Applications. In
case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it from http:/ / www.packtpub. com/ sites/ default/ files/
downloads/LearnSwiftbyBuildingApplications_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "This code creates a place in the memory, called text, where we store the
text, Hello world!."

http://www.packtpub.com/support
https://github.com/PacktPublishing/Learn-Swift-by-Building-Applications
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearnSwiftbyBuildingApplications_ColorImages.pdf

Preface

[4]

A block of code is set as follows:

func generateGreeting(greet:String, thing:String = "world") -> String {
 return greet + thing + "!"
}
print(generateGreeting(greet: "Hello "))
print(generateGreeting(greet: "Hello ", thing: " Swift 4"))

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

let number = 5
let divisor = 3
let remainder = number % divisor //remainder is again integer
let quotient = number / divisor // quotient is again integer

Any command-line input or output is written as follows:

swift package init --type library

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Also, add an action to the Sign In With Email button."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Preface

[5]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Swift Basics – Variables and

Functions
In this chapter, we will present the basics of the Swift language, starting from square one:
introducing the basic concepts. The code, which is part of the chapter, illustrates the topics
under discussion. In the next chapter, we will learn how to execute code samples in Xcode.

Let's begin with a brief history of Swift. This is a brand new programming language,
developed by Apple and announced in 2014. In 2016, Swift 3 was released as open source,
and this is the first major version, which enables people interested in Swift to develop the
language. This means only one thing: Swift will start spreading even faster, beyond Apple's
ecosystem. In this book, we will give examples of Swift, and we will discuss most of our
solutions related to iOS, but you should know that the knowledge here is applicable across
all places where Swift code is used.

Before diving into real code, let's define some basic concepts that we can use later in the
book.

What is a computer program or application (app)? Simply, we can think of an app as a set
of computer instructions that can be executed. Each app has a source code, written in a
language describing all actions that the program does. In our case, we will write mobile
(iOS) apps in Swift.

There are many low-level computer instructions, but Swift helps us to write without hassle,
without knowing much about the low-level organization. Now we will start with the basic
concept of variables.

Swift Basics – Variables and Functions Chapter 1

[7]

We will discuss the following topics:

Constants and variables
Initializing using expressions
Basic types in Swift
Optional types
Enumeration types
Code flow statements – if, switch, loops
Functions
Tuples
The guard statement
Top-down and bottom-up

We begin with the basic building blocks of all programs.

Variables
What is a variable? This is a place in the memory where we can store some data and use it
later in our program. A good example is if you want to take an action based on a user's
input, then the input should be stored somewhere on the device (computer). Usually, this
place is in the device's memory. To let our program know that we need such a place, we
have to express that. A var statement is used.

In Swift, declaring a variable looks like this:

var text = "Hello world!"

This code creates a place in the memory, called text, where we store the text, Hello
world!. Later, we can use it to carry out some meaningful actions.

An advantage of a variable is that it can be changed later to contain a different value. Here,
we should be careful—Swift is pretty strict about types (this will be discussed later), and,
thus, we can't mix different value types. There are strict rules that should be followed, and
we will get familiar with these soon. So, in our case, we can do the following to change the
text that is stored in our variable, named text:

text = "Hey, It's Swift!"

Swift Basics – Variables and Functions Chapter 1

[8]

Now we know what a variable is and how to work with variables. Let's try to do some
calculations using variables, with stored integer values:

var five = 5
var four = 4
var sum = four + five

In the preceding code, we have created three variables. The first two were initialized with
literal expressions, or simply with exact values. In the code, we can use complex
calculations, and the Swift compiler will handle this case easily as follows:

var five = 2 + 3

This is the same as the previous code snippet.

The last variable sum is initialized with the value of the expression four + five. To
calculate this expression, the compiler uses the values stored in the previously declared
variables (on the previous lines). The evaluation happens once the code is executed. What
does this mean: The evaluation happens once the code is executed? In short, if four or five
contain different values, then the sum variable will reflect this. The code is working with the
names of the places in memory, but the actual result depends on the values stored there.

We could read the preceding code like this:

Create a place in the memory, which we will call five, and store the value 5 in it

Create a place in the memory, which we will call four, and store the value 4 in it

Create another place in the memory, called sum, and store the value of the
expression of what's stored in four plus what's stored in five

Usually, we use variables to allocate places in memory, which we will modify in the
following code. But we don't always want to change the value of a variable once it is set.
Thus, to simplify it, there is a special word in Swift, let, which denotes a place in the
memory that won't be changed in the future. Its value is set initially and it can't be changed.
(This is slightly different when we are working with objects, but this will become clear later
in the book.)

Swift Basics – Variables and Functions Chapter 1

[9]

The following code defines a place in memory that won't be updated. If we try to update it,
then the Swift compiler will inform us that it is not possible. The value on the left is a
constant and we are trying to change it:

let helloWorld = "Hello World!"
helloWorld = "Hello, Swift World!" //the compiler is complaining

The exact error is: Cannot assign to value: 'helloWorld' is a 'let' constant,
which means that we are trying to set a new value to a constant.

Let's see how we can update our previous code snippets, once we know that there are var
and let keywords.

The first code with the text variable should be the same, because we change the value of
the variable text. The second code, with the sum of two integers, could be rewritten as
follows:

let five = 5
let four = 4
let sum = four + five

A good practice is to keep using let whenever possible. The compiler gives us hints all the
time. Of course, it's possible to keep something stored in a variable instead of a constant
while developing, but if we want to squeeze out every single bit of performance, then we
should stick to the best practice—replace all unmodified variables with constants.

Why do we gain performance when using let? The short answer is, the compiler knows
that this place in the memory will be used only for reading from operations, and it cuts all
the extra logic, which is needed to support modifications. The developers can reason locally
and don't need to foresee any future changes of this value, because it is immutable.

Now we are familiar with variables, it's the perfect time to introduce the concept of a type.
First, each variable has a type. The type defines the set of values which can be stored in a
variable. Each type uses a different amount of the device's memory. Based on the type, the
compiler knows how much space should be allocated when we declare a new variable.

In Swift, we define the type of a variable after the declaration of the variable itself. Our first
code would look like this:

var text:String = "Hello World"

Swift Basics – Variables and Functions Chapter 1

[10]

Is it mandatory to add a type declaration after each variable definition?
No.

The Swift compiler is quite smart, and it infers the types based on the expressions on the
right side. There are many examples which could illustrate how smart it is. But we should
remember one: if the variable or constant is initialized, then we can simply omit the type.
Of course, explicitly pointing to the type will make the code easier for other developers to
understand. It's good to keep the same code style through all your code across every
project. For some projects, it could be better if the type is omitted; for some, it may be
worse.

Let's present all the basic types that Swift uses. The numbers are presented by several
different types, based on the precision which is needed. The largest type takes extra
memory, but it can store bigger values. The integer numbers can be stored in variables or
constants from the following types: Int, Int8, Int16, Int32, Int64, UInt, UInt32, and
UInt64. Floating-point numbers can be of the following types: Float, Float32, Float64,
and Double. We are already familiar with the String type. It's used to store text in
computer memory. Later, the text can be manipulated and presented to the user in different
forms. The other quite popular data type is Bool, which takes exactly two values—true or
false. We will discuss the need of boolean expressions later in this chapter, once we get
familiar with conditional statements in Swift. We will define enumerable types and tuples.
These are specific types that we can define, compared to the other ones, which are already
defined for us.

Until now, we could declare variables or constants in one particular way. There are
advanced ways to do this—one is to declare multiple variables on a single line, like this:

var a, b, sum: Double

All variables are from the same type, namely, Double.

We can specify a different type for each one, which gives us the freedom to declare
variables/constants in a single shot on the same line.

The following code is an example of this:

var greeting: String, age:Int, money:Double

We can expand this even further by setting a default value, like in the following code:

var x:Double = 3.0, b:Bool = true

Swift Basics – Variables and Functions Chapter 1

[11]

Of course, Swift is smart enough, so the following code has the very same meaning:

var x = 3.0, b = true

This automatic process is called type inference and greatly reduces the unnecessary
boilerplate code which we would have to write.

Before diving into the details related to the different data types, we should know how to
add comments to our code. Comments are blocks of text which are part of the source code,
but they are removed when the source code is compiled.

The compilation is a complex process of transforming the code to machine
code (in the case of Swift, it's something like this: Swift is converted to
BitCode and this is converted to assembler, which is converted to machine
language—low-level machine instructions which are understood by the
hardware and are executed pretty quickly).

The comment's role is to clarify the code. There are two types of comments that we can use
when we are developing a program in Swift. The first type is a single-row comment, which
starts with // (double slash) and continues until the end of the row. Usually, developers
prefer to start this comment on a new row or to add it to the end of a line, presenting a
detail about the code, so it's easier for the reader to understand the encoded programming
logic. The other type is a block comment, which starts with /* (slash and asterisk) and ends
with */ (asterisk and slash). The comment can start anywhere, and continues until the
matching ending sequence.

An interesting improvement from C++ or some other languages is that we
can have several comment blocks which are nested in other comment
blocks.

This is something new, which simplifies the process when we are adding comments.

When writing good code, try to add comments to make it easily
understandable. In most cases, naming the variables with explicit names
helps, but, usually, a brief comment is enough to clear the fog around a
pretty complex sequence of your code.

Swift Basics – Variables and Functions Chapter 1

[12]

Optional types
We are familiar with basic types and their forms, but now it's time to introduce the optional
type(s). This is a new concept, compared to what we have in Objective-C, which helps
developers to avoid common mistakes when they are working with data. To explain the
optional type(s), we should present the problem they are solving.

When we are developing a program, we can declare a variable, and we should set it an
initial value. Later in the code, we can use it. But this is not applicable in general. There
may be some cases when the default value is to have NO-VALUE, or simply nil. This means
that when we want to work with a variable which has NO-VALUE, we should check that. But
if we forget the check, then while our app is executed, we can reach this strange state with
NO-VALUE, and the app usually crashes. Also, the code which checks whether a variable
contains a value is reduced, and the programming style is concise.

To summarize: optionals enforce better programming style and improve the code checking
when the compiler does its job.

Now let's meet the optional types in the following code snippet:

var fiveOrNothing: Int? = 5
//we will discuss the if-statement later in this chapter
if let five = fiveOrNothing {
 print(five);
} else {
 print("There is no value!");
}

fiveOrNothing = nil

//we will discuss the if-statement later in this chapter

if let five = fiveOrNothing {
 print(five);
} else {
 print("There is no value!");
}

Every type we know so far has an optional version, if we can call it that. Later in the book,
you will understand the whole magic behind the optional types; namely, how they are
created. Here are some of those: String?, Bool?, Double?, Float?, and so on.

Swift Basics – Variables and Functions Chapter 1

[13]

Until now, we have learned how to store data, but we don't know what kind of actions we
can do with it. This is why we should get familiar with basic operations with the data. The
operations are denoted with operators such as +, -, *, and /. These operations work with
particular data types, and we have to do the conversion ourselves.

Let's check this code:

let number = 5
let divisor = 3
let remainder = number % divisor //remainder is again integer
let quotient = number / divisor // quotient is again integer

let hey = "Hi"
let greetingSwift = hey + " Swift 4!" //operator + concatenates strings

Enumeration types
In Swift, we can define simple types which have limited possible different values. These
types are enumerations. We define them with the keyword enum. The following code is an
example of this:

enum AnEnumeration {
 // the value definitions goes here
}

Here's another code that does this:

enum GameInputDevice
 case keyboard, joystick, mouse
}

The code has three different enumeration cases. All cases may appear on a single line, such
as in the preceding code, or even one by one on a line.

We can meet the following notation, because Swift infers the missing part:

var input = GameInputDevice.mouse
//...
//later in the code
input = .joystick

Swift Basics – Variables and Functions Chapter 1

[14]

The code bundle for the book is hosted on GitHub
at https://github.com/PacktPublishing/Learn-Swift-by-Building-App
lications. In case there's an update to the code, it will be updated on the
existing GitHub repository.

Basic flow statements
What are basic flow statements? These are several statements which help you to structure
the program code in a way that allows you to do different action(s) based on the data stored
in particular variables. We will learn how to execute just part of the code if a certain
condition is met (the condition could be a pretty complex Boolean expression). Then, we
will find a way to execute different actions several times in a loop. The next thing will be to
learn how to repeat things until a condition is met and to stop executing statements once
the condition is not satisfied. Using flow-control statements, we can construct pretty
complex code chunks, similar to what we can express with regular text writing. To develop
a program, we should first create an algorithm (a sequence of steps) which leads to the
desired result, taking into account all external and internal conditions. Based on this
sequence, we can then develop a program, using all flow operators. But let's get familiar
with some forms of them.

The if statements – how to control the code flow
This is how we can branch our code logic based on some data stored in a variable:

let num = 5
if num % 2 == 0 {
 print("The number \(num) is even.")
} else {
 print("The number \(num) is odd.")
}

The general pattern of an if statement is organized as follows:

var logicalCheck = 7 > 5
if (logicalCheck) {
 //code which will be executed if the logical check is evaluated to
true
} else {
 //code which will be executed if the logical check is evaluated to
false
}

https://github.com/PacktPublishing/Learn-Swift-by-Building-Applications
https://github.com/PacktPublishing/Learn-Swift-by-Building-Applications

Swift Basics – Variables and Functions Chapter 1

[15]

We know that the if clause gives us huge freedom to shape the code that will be executed
(evaluated). An application may handle many different cases, but only the code that fulfills
the conditions encoded in our solution will be triggered.

Loops
Let's learn how to implement repetitive tasks. There are several ways to do that, using
different loops: while, for...in, and repeat...while. The most popular one is the
for...in loop. Here is what the basic form looks like:

let collection = [1, 2, 3]
for variable in collection {
 //do some action
}

The code will be interpreted like this: the variable will be set to all possible values, which
are stored in the collection. If the collection is empty, then no code will be executed. If there
are some elements, then the body of the loop (the code in curly braces) will be executed for
each element of the collection. The variable loops through every single element and can be
used in code.

We need an example to illustrate this. Let's use the following code to print all numbers
from 1 to 10, inclusive:

var sum = 0
for index in 1...10 {
 sum += index
 print("(index)")
}
print("Sum: \(sum)")
//sum is equal to 55

The sum of all numbers from 1 to 10 is stored in a separate variable and the code prints
every single number on a new line. The sequence defined with 1...10 is converted to a
collection (we can think of it as an array), which is fueling the for...in loop.

We can use variables or constants to define custom ranges of numbers.

Swift Basics – Variables and Functions Chapter 1

[16]

Take a look at the following code:

let threeTimes = 3
for _ in 1...threeTimes {
 print("Print this message.")
}

Using _ (underscore) we declare that the argument should ignore the values set in the
variable, and it doesn't matter to the rest of the code. The code will print three times: Print
this message.

The while loops
The while loops execute the body of the loop (list of the statements in the body part) until
the condition is evaluated to false.

There are two types of while loops. There is the classical while loop, which checks the
condition, and, if it holds, then the code in the body is executed. Then the check is
performed again and everything is repeated until the condition is evaluated to false. The
other variant is the repeat...while loop, which first executes the body, and then does the
check. The second type is executed at least once, compared to the first one, which could be
completely skipped:

var i = 1
let max = 10
var sum = 0
while i <= max {
 sum += i
 i += 1
}
print("Sum: \(sum)")

The code sums all numbers from 1 to 10. The condition will be broken once i reaches 11.

We can use repeat...while to do the same:

var i = 1
let max = 10
var sum = 0
repeat {
 sum += i
 i += 1
} while i <= max
print("Sum: \(sum)")

Swift Basics – Variables and Functions Chapter 1

[17]

We can use while to implement the repeat...while loops and the reverse, but with
slight modifications. The best rule for picking the right type of loop is to know whether the
sequence should be executed at least once. Executing once means that it's much easier to
implement it using repeat...while; otherwise, the classical while loop is the best choice.

There are some special conditions which we should handle, but to do so, let's see what they
are.

We can use the special words—continue and break—to trigger special behavior while we
are in a loop. The continue statement is used when you want to stop the current iteration
of the loop and start over. When using this, be careful that you change the value in the
condition; otherwise, the loop could be an infinite one, which means that your program
won't end.

The break statement is used once we want to stop the entire loop. Be careful when you
have nested loops. The break statement stops the current iteration immediately, and then
jumps to the very first line after the end of the innermost loop, which contains the
break statement. If you want to break two or more nested loops, then you have to find an
appropriate way to do so. To be explicit when breaking nested loops, you may use labeled
statements. It is a convenient way to give a name of a loop and then to change the flow
when using break. It's good to know that break may be used as part of a switch
statement. This will be discussed in the next part.

There are a few other special words, such as return , throw, and fallthrough which
change the default order of execution of the code. We will get familiar with these later.

The switch statement
A switch statement is a concise way to describe a situation where we have several possible
options to pick from and we don't want to write a lot of boilerplate code using the already
familiar if statement.

Here is the general pattern of a switch statement (please note that this is not a valid Swift
code):

switch a-variable-to-be-matched {
 case value-1:
 //code which will be executed, if variable has value-1
 //we need at least one valid executable statement here
 (comments are not an executable statement)
 case value-2,
 value-3:

Swift Basics – Variables and Functions Chapter 1

[18]

 //code which will be executed, if variable has value-2 or value-3
 default:
 //code which will be executed, if variable has value different
 from all listed cases
 }

What we see is that switch has many possible cases, each one starting with the special
word case, and then a specific value. Swift supports specific value matching, but it
supports more complex rules for pattern matching. Each case could be considered as a
separate if statement. If one case is activated, then all others are skipped. The default
case is a specific one and is triggered if there is no match with any other case. The default
case appears at the end, and it's defined with the special word default.

We can use break to interrupt execution of the code in a case statement. If we want to
have an empty case statement, it's good to add break.

We have some specifics with the implementation of switch in Swift, which are new when
compared to the other programming languages, but they improve the readability of the
code. First, there is now a way to have an empty body of a specific case. To be correct, we
have to add at least one valid statement after the case. There is no implicit fallthrough after
each case. This means that once the last executable statement in a case branch is triggered,
we are continuing after the switch statement. Nothing else that is part of the
switch statement will be executed. We could consider that every case statement has a
hidden break at its very end. Next, we need the special word fallthrough to simulate the
regular behavior of the switch. Another interesting thing is that we can have interval
matching, tuples matching, and value bindings. Finally, we can use the where clause if we
want to express some dependency between the data which should be matched. It's also
possible to list several cases if they have to share the code which should be executed. They
have to be separated with ,.

Here is code that shows how easy and smart switch is:

let point = (1, 1)
switch point {
case let (x, y) where x == y:
 print("X is \(x). Y is \(y). They have the same value.");
case (1, let y):
 print("X is 1. Y is \(y). They could be different.");
case (let x, 1):
 print("X is \(x). Y is 1. They could be different.");
case let (x, y) where x > y:
 print("X is \(x). Y is \(y). X is greater than Y.");
default:
 print("Are you sure?")

Swift Basics – Variables and Functions Chapter 1

[19]

}

Functions
In this section, we will learn how to define functions and how to use them in our code.
They help us to reuse sequences of statements with ease. We can define a general solution
of a problem and then apply it, customized, to different parts of our app. This approach
saves time, reduces the potential of bugs in the code, and simplifies huge problems to small
ones.

The first function, which we already saw in use, is print(). It's used to display text on the
screen. We will experiment with this in the next chapter, once we get our hands dirty with
Xcode and Swift.

Now let's define our first function, which executes a sequence of statements in its body:

func printSum() {
 let a = 3
 let b = 4
 print("Sum \(a) + \(b) = \(a + b)")
}

When defining a function, we start with the special word func. Then the name of the
function follows and the list of the arguments in brackets () and its returned type. After
that comes the body of the function in curly braces { }.

The name can start with any letter or underscore and can be followed by a
letter, digit, underscore, or dollar sign. A function name shouldn't match
any keyword from the Swift language.

This definition doesn't do anything if we don't call (execute) the function. How is this done?

We have to call the function using its own name as follows:

printSum()

Once a function is called, we may think that the same sequence of code is executed where
the function call is made. It's not exactly the same, but we can think of having the body of
the function executed line by line.

Swift Basics – Variables and Functions Chapter 1

[20]

Now let's see the general form of a function:

func functionName(argumentLabel variableName:String) -> String {
 let returnedValue = variableName + " was passed"
 return returnedValue
}
//here is the function invocation and how the result is returned
let resultOfFunctionCall = functionName(argumentLabel: "Nothing")

Each function may have no arguments, one argument, or many arguments. Until now, we
have seen some without arguments and with a single argument. Every argument has an
argument label and a parameter name. The argument label is used when the function is
called. This is really useful when we have many parameters. It gives us a clue what data
should be passed to that specific parameter when using the function. The parameter name
(variable name) is the name which will be used in the function body to refer to the passed
value. All parameters should have unique parameter names; otherwise there is ambiguity,
and we won't be able to say which one is which.

A function may return a value from a specific type, or it may be void (nothing will be
returned). When we want to return something, we have to define that, and this is done with
-> and the type of the result. In the preceding code, we see -> String, and this means that
the function returns a value of the String type. This obliges/binds us to using the keyword
return in the function body at least once. The return keyword immediately stops the
execution of the function and returns the value passed. If a function doesn't return
anything, we can still use return in its body, and it will work similarly to break in a loop.

We can use _ if we want to skip the label of an argument. Here is a simple piece of code
that illustrates that:

func concatenateStrings(_ s1:String, _ s2:String) -> String {
 return s1 + s2
}
let helloSwift = concatenateStrings("Hello ", "Swift!")
// or
concatenateStrings("Hello ", "Swift!")

When we don't use the _ (underscore), then the argument name is the same as the
parameter name (variable name).

Similar to what we have seen with the labels, we can ignore the returned value once the
function is called.

Swift Basics – Variables and Functions Chapter 1

[21]

What happens if we want to return multiple values? We can use tuples to return multiple
values when executing a function. The following code is an example of this:

//define a function which finds the max element and its index in an
 array of integers
func maxItemIndex(numbers:[Int]) -> (item:Int, index:Int) {
 var index = -1
 var max = Int.min
 //use this fancy notation to attach an index to each item
 for (i, val) in numbers.enumerated() {
 if max < val {
 max = val
 index = i
 }
 }
 return (max, index)
}

let maxItemTuple = maxItemIndex(numbers: [12, 2, 6, 3, 4, 5, 2, 10])
if maxItemTuple.index >= 0 {
 print("Max item is \(maxItemTuple.item).")
}
//prints "Max item is 12."

What is a tuple?
A tuple is a bundle of different types (they may be the same) which have short names. In
the preceding code, we have a tuple of two Int statements. The first one is named item,
and the second one is named index. After the execution of the function, we will store the
maximum item and its index in the tuple. If there are no items in the array, then the index
will be -1.

It's possible to return an optional tuple type if there is a chance to return nil in some cases.
The previous function may return nil if there are no items, and a valid result otherwise.

Each parameter may have a default value set. To set a default value, you have to declare it
and add it right after the parameter's type. The following code is an example of this:

func generateGreeting(greet:String, thing:String = "world") -> String {
 return greet + thing + "!"
}

print(generateGreeting(greet: "Hello "))
print(generateGreeting(greet: "Hello ", thing: " Swift 4"))

Swift Basics – Variables and Functions Chapter 1

[22]

We can easily define a function which accepts zero or more variables of a specified type.
This is called a variadic parameter. Each function definition could have, at most, one
variadic parameter. It's denoted with ... after its type. In the body of the function, the type
of this parameter is converted to an array. This array contains all passed values:

func maxValue(_ numbers:Int...) -> Int {
 var max = Int.min
 for v in numbers {
 if max < v {
 max = v
 }
 }
 return max
}

print(maxValue(1, 2, 3, 4, 5))
//prints 5

One specific thing that we should know about function parameters is that they are
constants. We can't mutate these by mistake. We should express this explicitly. To do so, we
have to use the special word inout to mark the parameter. The inout parameters is added
before the type of the parameter. We can pass variables to the inout parameters, but we
can't pass constants. To pass a variable, we should mark this with & when calling the
function. The inout parameters can't have default values. Also, variadic parameters can't
be marked as such. In general, we can use the inout parameters to return values from a
function, but this is not the same as returning values using return. This is an alternative
way to let a function affect the outer world in the matrix. Check out the following code:

func updateVar(_ x: inout Int, newValue: Int = 5) {
 x = newValue
}

var ten = 10
print(ten)
updateVar(&ten, newValue: 15)
print(ten)

Swift Basics – Variables and Functions Chapter 1

[23]

What is the guard statement?
The guard statement has similar behavior to an if statement. This statement checks the
condition, and if it's not met, then the else clause is triggered. In the else clause, the
developer should finish the current function or program, because the prerequisites won't be
met. Take a look at the following code:

func generateGreeting(_ greeting: String?) -> String {
 guard let greeting = greeting else {
 //there is no greeting, we return something and finish
 return "No greeting :("
 }
 //there is a greeting and we generate a greeting message
 return greeting + " Swift 4!"
}

print(generateGreeting(nil))
print(generateGreeting("Hey"))

This is a tiny example, showing us code that illustrates the regular usage of the guard
statement. We can combine it with the where clause, or we can make the check really
complex. Usually, it's used when the code depends on several if...let checks. The
guard statement keeps the code concise.

How to tackle huge problems – bottom-up versus
top-down
Step-by-step through this book, we will start solving problems until we can write a fully-
working mobile app. It's not an easy task, but we can take two different approaches when
trying to solve a huge problem (such as writing a mobile app). The first one is top-down.
This technique starts from the top with the main problem, and breaks it down into smaller
problems and functions. Once we reach something unclear, something which is not well
defined that we should implement, then we define a new function, but we won't continue
developing the exact implementation of this part of the app immediately. Let's assume that
we are trying to develop a mobile app with three screens. The first one displays a list of
news. The second one renders specific news, and the last one shows information about our
application.

Swift Basics – Variables and Functions Chapter 1

[24]

If we apply the top-down approach, then we will have the following abstract process. We
start from the biggest problem: how to develop an app with three screens. Then, we break
this huge task down into three sub-tasks with their respective functions. Those functions
are empty functions. The first one will be responsible for creating the first screen, the
second one should create the detailed news presentation, and the third should define the
last screen. By doing this, we have decomposed the main problem into three smaller ones.
These new functions are empty, but at a later phase we will implement each one of them.
We can start with the first one: we define another help function which creates the list of
news, and another function which fetches the news from an internet address. Now it
doesn't look really hard to define those functions. We will learn how to do this throughout
the book, but the general idea is to break down each problem into smaller ones until you
reach a state where you can solve them without any hassle. In the end, the main problem
will be solved, because all parts that have been decomposed are already working, and the
final result will be a fully-working mobile application.

The other approach is bottom-up, which does things in reverse. It's more like working with
Lego, but you first go and build many small building blocks, which you combine together
until you manage to build a solution to the whole problem; in our case, until you build a
working mobile app. Abstractly, we develop simple enough functions that we can
implement to solve small problems. Then we combine those into bigger chunks. Those
bigger chunks are put together in even bigger and more complex functions or app parts,
until we define the final working app.

Neither of these two approaches is the best. Every developer prefers to use a nice mixture
of both techniques, which leads to the final result—a working app.

If top-down, or bottom-up, is used on its own, it is not a silver bullet. Try
to use top-down and bottom-up together and you will find the solution
easier.

Just tweak your approach based on what you know at the moment, and what you have.

Swift Basics – Variables and Functions Chapter 1

[25]

Summary
In this chapter, we became familiar with Swift 4 basics. We now know what variables and
constants are. We can use basic types, the if and switch statements, and loops, and we
can define functions. These are the smallest key building blocks that we will need to start
our adventure in Swift 4 and the iOS/macOS/watchOS world.

In the next chapter, you will become familiar with Xcode—the development environment
software that is really handy when we are writing code in Swift. You will develop your first
playground, which is a nice tool to check and demo the code. You can use everything
learned in this chapter, and, in the end, you will be familiar with how to add descriptions
using a markup language to make your playgrounds and functions well documented. Don't
spend a minute more—find a macOS and move to the next chapter to get your hands dirty
with some real code.

2
Getting Familiar with Xcode and

Playgrounds
In this chapter, we will get familiar with Xcode, the Integrated Development Environment
(IDE) that is used to develop iOS, macOS, tvOS, and watchOS apps. We will introduce a
pretty neat way of playing with and exploring the Swift language called playground. We
will see all the panels and the many different options that are available in Xcode. We will
find an easy way to use templates and we will experiment with real Swift code in a
playground.

In this chapter, we will cover the following topics:

Installing Xcode
Exploring playground
Different options available in Xcode
Markup items

Installing Xcode
First, Xcode runs on macOS only. This means you have to find a macOS-compatible
computer that is running macOS 10.13 or later.

It is possible to have macOS running on a virtual machine, but having a
hardware one is better.

Getting Familiar with Xcode and Playgrounds Chapter 2

[27]

We will install Xcode version 9.3. This is the latest version available in the App Store at the
moment, but it may change in the near future, so no worries if you install a slightly newer
version. The IDE looks the same way.

Start your computer and open the App Store application. This application is used to
download extra software on to your macOS. You can find its icon on the dock, as shown
here:

Once you've clicked the icon, you should see the App Store application displayed. At the
top-right corner, there is a search field. Select it and start typing Xcode. You will see many
suggestions as shown in the following screenshot:

Getting Familiar with Xcode and Playgrounds Chapter 2

[28]

Select the first item, which is what we are looking for. The next screen that will be
displayed is the search result screen, something similar to this:

The only difference will be that the button will say INSTALL instead of UPDATE. Xcode is
free software, provided by Apple, so you will be able to install it at no cost. Just press the
INSTALL button and the download process will be triggered. The initial installation may
take hours, based on your internet connection and computer speed. Don't worry—leave the
computer doing its own job and you can keep reading this chapter. Once the process has
finished successfully, you will see that the App Store displays another button, Open as
shown in the following screenshot:

Getting Familiar with Xcode and Playgrounds Chapter 2

[29]

You have to click Open to start the Xcode. Another option is to find it in Applications
Installed and to click on the blue icon (you have seen the icon already, while installing).
The next section explores the Xcode application.

Exploring Xcode
The Xcode application is installed and it is running. You will see the following start screen:

On the right, you will see No Recent Projects, but this just shows a list of the last few
projects you have worked on. On the left, you will see the version of Xcode 9.3 and a few
shortcuts. We will start with the first one to get familiar with the playground. Go and click
Get started with a playground. A new window is displayed, as shown in the following
screenshot. Don't panic; this is the window in which you have to select the template for
your playground project. For now, we will stick to iOS:

Getting Familiar with Xcode and Playgrounds Chapter 2

[30]

When you click Next, you have to enter the name of the playground. Let's start with Swift
4 by examples. We can change the platform if we want to explore the different features of
other platforms. Xcode has a really powerful simulator which can simulate different OS
(tvOS, iOS). The development for these platforms is a breeze once we know Swift.

You have to pick a folder to store the playground project. A good place is the Documents
folder, (click on it; it should be located on the left) and then you can create a
subfolder, Swift 4, using the button at the bottom left, New Folder. Another option is to
pick a place on your own. Once you are ready, click on the Create button, which is located
at the bottom-right of this window. Xcode initiates a process and generates a simple
playground for us:

The Xcode windows looks a bit empty, but don't panic. It's because you should focus on the
development process, but this chapter is to get familiar with Xcode; that's why we will start
exploring the IDE. After the exploration part, we will get back to the playgrounds and why
they are cool.

Getting Familiar with Xcode and Playgrounds Chapter 2

[31]

What do we see on the screen?
In this section, we will present all the important parts of the Xcode application, such as
panels, toolbars, buttons, and their use. Once you are ready, you will know where you can
find specific information about your project or how to find and edit a specific part of a
mobile project.

Toolbar
This is the topmost part of the screen. We have the status line, which says Ready | Today at
7:28 PM, as shown in the following screenshot. This is the place where Xcode
communicates with us. The app prints all errors here and we can dive into the details by
clicking on the errors. There are no errors at the moment, but they may appear at times.

Successful messages such as the one on the previous screen and the following screen can't
be explored:

We have the basic controls located on the right. There are two groups of buttons. The first
group consists of the following options:

Show the standard editor : This option presents a single window to edit
the project (usually, a view of our source code).

Show the assistant editor : This option splits the screen in two. There is a
small down arrow at the bottom of this option. Once you activate this mode, the
second click will present a menu with different options. You can explore all
possible options. We won't use this mode of the Xcode now. It will be explained
in detail later, when we are about to use it (this will happen when we start
developing the UI using storyboards).

Show the version editor : This one is used when the project supports
versions and Git. (We will get briefly to this option once we discuss Git and
version control integration.)

Getting Familiar with Xcode and Playgrounds Chapter 2

[32]

The second group also has the following three buttons which activate advanced panels of
the Xcode. These are toggle buttons, which activate (show) or deactivate (hide) different
parts:

Hide or show the Navigator button : This button activates the Navigator
panel, which is located to the left. Once activated, the editor (main part) is
squeezed. If it's deactivated, then the editor is expanded to take the whole
window estate as shown in the following screenshot:

For more information, check the sub-section which explains the Navigator panel.

Hide or show the Debug Area button : This activates the Debug panel,
which is located at the bottom:

Getting Familiar with Xcode and Playgrounds Chapter 2

[33]

For more information, check the sub-section which explains the Debug panel.

 Hide or show the Utilities button : This activates the Utilities panel, which
is located on the right as shown in the following screenshot:

For more information, check the subsection which explains the Utilities panel.

Each one of these three panels gives the user extra control of the project and an easy way to
change its configuration. We can add and explore all files and assets from the Navigation
panel. We see the output from the app in the Debug panel. There are too many buttons to
be clicked, which could lead to confusion. Don't try to remember everything now, just start
exploring the IDE and you will get used to it. Then you will learn the shortcut keys, and
step-by-step you will become an Xcode master.

The panels are contextual, which means they look different based on the
active (selected) file.

We can see the active file at the very top of the editor. In our case, Swift 4 by examples,
as shown in the following screenshot:

Getting Familiar with Xcode and Playgrounds Chapter 2

[34]

The playground can contain many files and assets, but the main file is
displayed, once the playground is opened.

The Related Items button provides a menu to explore all files, which have been
opened as shown in the following screenshot:

Contents.swift is the main file of every playground; it contains the
code which is executed when the playground is run.

The back arrow button helps us to go to the previous file that was explored in the editor. In
our case, when we have a playground with a single file, it's not very usable; but when we
start to build real mobile apps, then it will become handy.

The forward arrow button does the opposite of the back arrow button. You can use it to go
to the next file.

The filename, Swift 4 by examples, is a visual tree that shows the playground project
structure. It's pretty close to what you will see in the Navigator panel. You can use it to
switch between different source files in the editor area as shown in the following
screenshot:

Getting Familiar with Xcode and Playgrounds Chapter 2

[35]

The rest of the editor area is used to render the selected file at the top. In our case, we see
the code of the playground project. To be more precise, the Contents.swift file. At the

very bottom, we see the Debug panel action bar. It looks like this: There are two
buttons: the first one is to open the console, which triggers the Debug panel button in the
top-right part of the Xcode window (the middle button). The second is the Play button
which evaluates the whole playground. We can use it to run the code that we have written.
If we press it, the status bar (part of the toolbar) will start and will say Ready | Today at
12:00 PM (where the time will be your current time of execution).

Menu
Xcode has a menu bar, which is common to all the macOS software as shown in the
following screenshot:

We won't discuss all options from the preceding screenshot, but will try to briefly point out
the most important ones:

Xcode: You can open the preference window from this menu option Xcode |
Preferences... or by using (cmd + ,). The preference window can be used to
configure the Xcode so it suits you. It's really important to customize the IDE so
it’s a friendlier place to spend the time with. For more information, check the
Xcode preferences window section. You can open different developer tools that
are part of the Xcode, such as Instruments or File Merge.
File: The following actions can be started:

New: This opens a new tab (Xcode supports many tabs), a new
project (Xcode can have several projects opened at one time), a
new window (one project can be edited in two different windows),
and so on
Open: This opens projects and triggers the Quickly Open
Windows tool, which helps you to jump without hassle through
the source code of the project when it is huge
Save: This saves files and projects
Close: This closes the files

Getting Familiar with Xcode and Playgrounds Chapter 2

[36]

Edit: A typical edit menu, containing Undo (cmd + Z) and Redo (cmd + Shift + Z),
is here, as well as copying and pasting items, and different types of filtering and
sorting.
View: Access to the different panels and their subtabs. Open the Xcode in full-
screen mode (cmd + Ctrl + F).
Find: Different options to find and/or replace text in a project.
Navigate: Use this to open different parts of the Xcode or to move around.
Editor: Various options to indent the text. Also, to insert different symbols.
Product: Triggers builds or tests. Everything related to building (compiling) a
project can be found here.
Debug: Different options to initiate a debug session. Please note that this is not
applicable to playground.
Source Control: Manage source files using Git. We will get familiar with this,
once we start working on mobile apps.
Window: Easy way to organize the Xcode windows, once there are several of
them.
Help: To find help about the Xcode or to access the language documentation.

The best place to get familiar with Xcode is to read what Apple has
prepared. Navigate to Help | Xcode to get detailed explanations about
each part of the Xcode.

Now let's get familiar with the basic options in the three main panels, starting with the
Navigator panel.

Getting Familiar with Xcode and Playgrounds Chapter 2

[37]

The Navigator panel (located to the left)
The Navigator panel displays the project structure on the left. It has root item(s). Usually,
this is the project and the project looks like a tree. We can use the arrows to expand each
level of this visual tree. Using right-click, we bring up a menu, where some handy shortcuts
are displayed as shown in the following screenshot:

Getting Familiar with Xcode and Playgrounds Chapter 2

[38]

The Navigator panel contains a bottom menu which has the following options:

+ button: To add new files to the project.
Filter text field: A textbox which can be used to filter the content of the
preceding list. For example, if we want to see all images which are the .png files,
then we can simply enter PNG in the filter. In our case, with the currently opened
playground, this will display the text No Filter Results.
Show only recent files: The clock icon, if it’s activated, will show the recent files
only.
Show only files with source control status: The square icon, if active will
display the files under Source Control (included in the Git repository).

The Navigator panel has four tabs when we are exploring the playground project. It has a
few more when the project is a mobile one.

The first tab is the project navigator, as we already know. The next is the symbol navigator,
the place where we can explore the source code structure. (Don't panic—we will learn how
to create all these structures and will be able to use this panel.) The third is the find
navigator, the place that is used when we want to locate something in a project, not only in
the source files. This tab contains different options to tweak the search. Don't be afraid;
explore them to narrow down what you are looking for.

The last tab is the issue navigator. In this tab, we have a list of all build-time and runtime
issues caused by our project.

At the bottom, there is a filter on each tab, which is similar to the one we had discussed
earlier. You can use it to filter the results presented in the tab.

The Debug panel (located at the bottom)
The Debug panel is located at the bottom of the Xcode. While developing a playground
project, we won't be able to actually see its power. We will be presented with the console
where the app prints information. We will use it to print debug information to validate our
code.

When working on a mobile application we will discuss how to debug the app. This will be
tightly related to the debug options located in the Debug panel. We will get to this part
once we have created a regular app, and we want to improve it.

Getting Familiar with Xcode and Playgrounds Chapter 2

[39]

The Utilities panel (located to the right)
The Utilities panel gives us extra options to configure each active element. At the bottom
part, we have sections with various templates which we can use in our development
process.

At the top, there are two tabs. The first one is called File inspector. It's denoted with an icon
like a new blank page. This tab shows information about the selected file. You can find
information where the file is located on the hard drive and a few other options, as shown
here:

We see the file location of the playground project. Also, it's using iOS as a platform and we
can change that by picking another platform from the list. We can enable text markup in the
playground or disable it. The markup will be discussed later in this chapter.

Getting Familiar with Xcode and Playgrounds Chapter 2

[40]

The second tab is called Quick Help Inspector. It provides extra contextual information
based on the last, focused item in the editor. It's really handy when using a public interface
(API) from Apple or any other third-party well-written (documented) library. We will learn
more about external libraries and how to use them later in this book.

The number of tabs is more than two, when the project is a regular mobile app. Don't feel
that we are skipping them; we will discuss them when they appear.

At the bottom of the Utilities panel, there is another section, which contains several tabs.
This part contains different templates:

The first is the File Template Library, which can be used to add different files to
a project
The next is the Code Snippet Library, which contains different code snippets
After that is the Object Library, a collection of objects which can be added to a
storyboard
Finally, there is the Media Library, a list of all media items, which are part of
your project or workspace

These panels are there to save you time when looking for something in your project. There
is a neat filter function at the very bottom. Here is a screenshot that shows you how to get
access to a list of all Swift code templates:

Getting Familiar with Xcode and Playgrounds Chapter 2

[41]

There is a small icon to the left of the filter text field. It switches between a list and grid
view of the template tabs:

Next, we discuss the preferences of the IDE, so we can match our personal preferences.

Xcode preferences window
In this section, we present the preferences window briefly. If we open it, we can see several
tabs, each containing different options about the Xcode:

Getting Familiar with Xcode and Playgrounds Chapter 2

[42]

Let's describe each tab, its role, and what you can find in it.

General: Contains settings about the general build behavior of the Xcode.
Accounts: The tab where the user can link different Apple accounts and source
code repositories. The settings can store the username and password, so the
Xcode can do some actions on the user's behalf.
Behavior: Here, each step/action done by Xcode can display a notification or
even play a specific sound. It's possible to trigger a script or speak the phase
name.

Getting Familiar with Xcode and Playgrounds Chapter 2

[43]

Navigation: Configures where the new code should be opened, once the user
clicks on a source file using the modifier keys such as cmd, Option, Shift.
Fonts & Colors: The Xcode can look different; it's up to you:

Text Editing: A place where you can customize the behavior of the editor.
Key Bindings: If you are a fan of keyboard shortcuts, then this is the place to
customize Xcode. You could become a master if you add some extra shortcuts or
make some predefined ones to fit your needs.
Source Control: Configure the general behavior of the source control integration.
Components: This is the place where you can download an old version of the
simulator.

Getting Familiar with Xcode and Playgrounds Chapter 2

[44]

In general, you will be able to download simulators which are supporting
specific versions. For example, the oldest one for Xcode 9.3 is iOS 8.1.

Locations: Configure which folders should be used by Xcode for temporary files.
You can change the version of the Command Line Tools, which can be used
from the Terminal window.
Server & Bots: This is a special tab where you can configure the Xcode to
continually build and test your apps.

We aren't new to Xcode anymore, so now is the time to dive into details, such as what's a
playground and how we can use playgrounds to do experiments with Swift.

Playground
Before diving into a mobile project, we will start with a special type of project that will help
us master the Swift language. These projects are a cool place to experiment, without the
extra hassle of setting up a real mobile project. We can experiment with real mobile
functions, without even working on a full mobile project. Playground projects are a really
nice place to prototype algorithms or UI, and simply to have small building blocks, ready
and fully tested, before plugging them into a mobile app.

What is a playground?
Straight from the file generated by Xcode:

"Playground – noun: a place where people can play."

Playground is a simple project, which can be used to practice, experiment, prototype and
play with code and the underlying OS. It's easy to write some code to sketch an idea or to
clarify a concept. The best thing is that you can mix text (markup) with code. Also, it's
possible to use the native functions that are specific for the platform (for example iOS). This
makes playground projects very expressive and realistic.

Getting Familiar with Xcode and Playgrounds Chapter 2

[45]

Let's create a playground and dive deeper into it:

Open Xcode1.
Select File | New | Playground or simply press "Option + cmd + Shift + N"2.
Pick a nice name—for example Swift 4 by examples3.
Set the platform to iOS4.
Click Next5.
Select a place to save the file6.
Press Create7.

As a result of these steps, you will have a new playground, which will only have a few
rows.

The playground can contain more than one page.

In our example, we are using just a single-page playground, but if you want to express
something complex, you can add another page using the + button in the Navigator panel (at
the very bottom).

Let's add some code
Let's get our hands dirty with some code. We can try using the template panel to
implement a switch statement and a for loop. How do we do this?

Let's open the Utilities panel. To do so, use the topmost right icon on the toolbar1.
or simply press Option + cmd + 1.
Then select the second tab in the bottom part {} to open the code snippets library.2.
Next, type the following in the filter field—Swift switch.3.
You should see just a single item.4.
Drag that item to the editor:5.

Getting Familiar with Xcode and Playgrounds Chapter 2

[46]

Once you drop it, you will see the switch structure with a few placeholders to fill6.
in.
Try to fill the gaps, so the switch looks something like this:7.

switch str {
 case "swift":
 print("Hello, Swift 4!")
 default:
 print("Who are you?")
}

Then, we can open the console at the bottom to see the output of our program.8.

Use the button to open the Debug console where all print messages are
displayed or press cmd + Shift + Y.
You should see: Who are you?9.

Getting Familiar with Xcode and Playgrounds Chapter 2

[47]

Now, let's try to create a for...in loop, which prints all numbers from one up to five
inclusive. Let's use the same procedure as before, but at step 3 we should use Swift
for for filtering. Then, at step 7 we should try to reach the following:

for i in 1...5 {
 print("\(i)")
}

It's normal while you are writing code to see some warnings or even errors. Playgrounds
are built automatically on every change in the code, thus, the compiler is showing errors
when the code is not valid. When you are ready, all errors should be gone and in the output
of the program, you will see all numbers from one to five.

To switch to manual mode, press the Play button at the bottom menu and
hold for a bit. A menu with two options should pop up—Automatically
Run and Manually Run. The first one is selected, but you can switch to
manual mode.

If you are in Manually Run, once you change the code of the playground,
you will have to Run the playground to reflect the changes. A simple save
action is not enough, compared to the Automatically Run mode.

When you start a manual build (or an automatic one was executed), the toolbar at the top
changes briefly. The progress indicator appears while the execution takes place.

Getting Familiar with Xcode and Playgrounds Chapter 2

[48]

If there is an output of the playground, it is printed on the console. But this is not the only
way to see the evaluation of the code. There is a right panel in the editor, which is really
handy when exploring the playgrounds. Unfortunately, it's not expanded by default, but it
shows the evaluation of each statement. You can resize it with your mouse to make it
visible. Just grab the leftmost edge of the gray panel to the right of the editor—it's easily
distinguishable:

Getting Familiar with Xcode and Playgrounds Chapter 2

[49]

Here is the expanded version of the panel, which shows the value of each line. It looks nice,
when you have just a single statement on each row:

This is not the case when there are two or more statements separated with ; .

Keep the code clean and simple by adding just a single statement on each
line. This will help you to write understandable and easily maintainable
code.

Getting Familiar with Xcode and Playgrounds Chapter 2

[50]

Now let's explain the default screen. There are two icons which you see on the line which is
hovered. The first one is Quick Look, which shows the evaluation in a pop-up window.
The other button is Show results. When it's activated, the results are displayed inline. (To
activate this, you can use Editor | Show Result for Current Line):

Different values are presented in a different fashion such as a chart, a list
of values, or simply the last value stored in that variable.

Getting Familiar with Xcode and Playgrounds Chapter 2

[51]

Here is an example, which shows how the value stored in the sum variable is growing over
time. With the mouse, you can explore the exact value at every single moment:

You can explore the result with the mouse. It's pretty easy to resize the answer area too; just
move the mouse close to the edges, until the pointer changes to a double-headed arrow.
If you want to change the way a result is presented, then use the following option, but it
should be selected first: Editor | Result Display Mode; then three options will be
presented:

Latest Value: Displays the last value of the statement
Value History: Displays a list of all values
Graph: Plots the values

We can see the whole sequence of the invocation in the console (cmd +
Shift + Y).

Playgrounds can contain a lot of code. But there is a neat way to add it to a project by using
auxiliary files.

Getting Familiar with Xcode and Playgrounds Chapter 2

[52]

How to add auxiliary code to a playground
Each playground may need a bunch of classes which are helping to illustrate the problem
or a solution. There is a handy way to add a chunk of code, which is compiled once it is
added or changed. This means that those parts won't be compiled each time the
playground is executed. The files containing code are called auxiliary files. To add such a
file, we should do the following:

Open the Navigator panel (cmd + 1).1.
Select the Sources folder.2.
Press the + button at the bottom of the Navigator panel.3.
Select New File.4.
Give the new file a nice name related to its role.5.
Add the code which you want to reuse in the playground. Don't forget to add6.
the public scope modifier to make it visible in your playground
Try to use it in the main playground:7.

Playgrounds can contain different resources such as images, statistic data, sound, and so
on. These are placed in the Resources folder. Here is a step-by-step guide on how to add a
resource (image/asset) to a playground.

How to add resource to a playground
Follow these steps to add an image to your playground. Try to use a .png or .jpg—images
look great once you load them in a playground:

Open the Navigator panel (cmd + 1)1.
Select the Resources folder2.
Press the + button at the bottom of the Navigator panel3.

Getting Familiar with Xcode and Playgrounds Chapter 2

[53]

 Select Add Files to 'Resources'...4.
The file is automatically copied to the Resources folder5.
Try to use it in the main playground6.

For example, to use an image in the iOS playground you can use the following code:

let img = UIImage(named: "open_xcode.png")

Where the name of the file is open_xcode.png. Don't worry about the code and what
UIImage means. We will understand this a bit later on in the book. Take a look at the
following screenshot:

Adding an image to your playground

Converting a playground to a workspace
If you want to add a custom framework (external library of code) to your playground, you
have to convert the playground to a workspace. This can be done using File | Save As
Workspace....

Getting Familiar with Xcode and Playgrounds Chapter 2

[54]

Just pick a new name and save the file. Xcode will switch to advanced mode and you will
see a lot of options available. We will discuss how to add third-party libraries to a
workspace later in the book. But it's good to know that you can use playgrounds to test
your framework without any problem.

So far, we know the basics of the playground. Now let's introduce the markup language
and an easy way to make your playgrounds outstanding.

Markup in playgrounds
The playground supports an easy way to write documentation for your code. It's like
comments, which we are familiar with, but the Xcode renders them nicely. Let's do it step-
by-step:

Open a playground project1.
Open the Utilities project2.
Select the File Inspector3.
Mark the option Render Documentation4.
 You should see that //: Playground - noun: a place where people5.
can play is converted to a good-looking text

Different items in the markup language
First, let's clear up what a markup language is; it is an easy way to write styled text, which
will be rendered using a set of rules. The final result is nicely formatted text.
Here is a code that creates markup (in a playground):

/*:
 # Header Big
 ## Header Normal
 ### Header Small
 List
 * option 1
 * option 2
 * option 3
 - option 3.1
 This is _italic_ text.
 This is __bold__ text.
 This is ___bold & italic___ text.
 This is **bold** text.
 A code ```let x = 5``` has different style.

Getting Familiar with Xcode and Playgrounds Chapter 2

[55]

 An example follows:
 var a = 13
 var b = a + 7
 - Note:
 "You can learn Swift 4."
 \
 \
 Playgrounds are really nice place to learn Swift 4.
 */

To create nice documentation, we should learn how to use markup. The benefit is that we
can use most of the formatting while writing documentation for each function, which will
be used in the Utilities panel (the Help tab) in Xcode.

Here is what the previous markup looks like once we enable the Render Document mode
(from the Utilities panel):

Getting Familiar with Xcode and Playgrounds Chapter 2

[56]

To start new markup section in a playground, you should write the following instead of a
typical comment block:

//: your new rich documentation

 You can also write a comment block like this:

/*: your code goes here */

This will be converted to a markup, if you are using one of the special structures (see the
following). To enable the Render Document, we can do it using Editor | Show Rendered
Markup. An alternative option is to mark the checkbox Render Document in the Utilities
panel on the right.

If Render Documentation is on, then you won't be able to edit the
markup-comments, because they are converted immediately. You have to
switch off the rendering mode. This can be done using Editor | Show
Raw Markup.

Basic markup items
First of all, when writing markup, we need to add titles for different sections. To do that,
we have to add the # symbol in front of the text and it automatically becomes a header text
with a bigger bold font. For example:

//: # Header Big

If we keep adding more # in front then we demote the text:

Getting Familiar with Xcode and Playgrounds Chapter 2

[57]

If we want to use lists in the text, then we should structure it as follows:

//: List
//: * option 1
//: * option 2
//: * option 3
//: - option 3.1

With adding an extra offset, we can push the bullets to the right, simulating subsections.
To create enumerated lists, you should start each option with 1. like this:

//: Enumerated list
//: 1. option 1
//: 1. option 2
//: 1. option 3

Here is the result of both lists when they are rendered:

When describing some functions or classes, we want to stress some properties. To do that,
we can change the font style easily. Here is how we can write in bold, italics, or mixed:

//: This is _italic_ text.
//: This is __bold__ text.
//: This is ___bold & italic___ text.
//: This is **bold** text.

Getting Familiar with Xcode and Playgrounds Chapter 2

[58]

Here is how this text is rendered:

Sometimes, we want to quote a variable or a short code snippet. It's really nice if we can
distinguish it easily from the rest of the text. This can be achieved by surrounding the text
in `—the ascent symbol.
Here is an example:

//: The code `let x = 5` has different style.

If you want to add an example block, then simply add an empty line, to separate the block
and add in an extra offset:

//empty line
//: var a = 13
//: var b = a + 7

The preceding code creates this:

Sometimes, images are really important; here is the easiest way to show an image:

//: ![Image from resources](open_xcode.png)

Getting Familiar with Xcode and Playgrounds Chapter 2

[59]

If you need to add some links here, this is how you can do it:

//: [Text](URL)
//: [Swift](https://swift.org)

Finally, if you want to add a note to explain something important in a playground, you can
use the following code:

//: - Note:
//: "You can learn Swift 4."
//: \
//: \
//: Playgrounds are a really nice place to learn Swift 4.

The rendered note looks slick and can be used to outline something really important:

We have presented some popular markup formatted text, which will add a final touch to
your documentation. Some of the styling could be used to improve your documentation,
which is rendered in the Utilities panel.

Summary
In this chapter, we learned how to install the Xcode app and how to use it in general. We
are familiar with the basic components of the IDE and we have created our first
playground. It was pretty basic, but we know how to write Swift code, which is
automatically evaluated. We can read the errors and we can try to resolve them.

The next chapter will teach us how to create our first mobile app. It will explain the
structure of a mobile project and how to start adding simple features to it. Let's dive deep
into iOS and produce something which can be executed on mobile devices.

3
Creating a Minimal Mobile App

In this chapter, we are going to develop our first mobile app using Xcode and our basic
Swift knowledge. We will get familiar with the basic organization of an iOS project. We will
run it in a simulator, which will be our first friend through the development process. A Git
version control system will be introduced, because it's part of Xcode. With it, through the
development process, we can track our changes to the source code. Then, at some point, we
can easily switch back to a specific version. We will learn how to keep our code under
control and to jump to a specific version, developed earlier by us.

In this chapter, we will cover the following topics:

Developing our first mobile app using Xcode
Git

Creating a Minimal Mobile App Chapter 3

[61]

Your first iOS application
Let's start with creating your first iOS mobile project using Xcode. Here are the steps that
will guide you through the process.

Go ahead and start Xcode. If you start Xcode for the first time or there is no active1.
project opened, then you will see the following screen (please check Chapter
2, Getting Familiar with Xcode and Playgrounds, if you don't have Xcode already
installed on your Mac):

Click on Create a new Xcode project. If you have an opened project, then simply2.
use the menu at the top to create a new project by navigating to File | New |
Project (shift + cmd + N):

Creating a Minimal Mobile App Chapter 3

[62]

Select the iOS tab at the top.3.

This book is focused on iOS development, but, in general, there is no huge
difference between all other platforms—macOS, watchOS, or tvOS. They
have different capabilities, but they can run apps developed in Swift.

Then select Single View Application.4.

This is a special type of application, which consists of a single-view
controller which presents a single view.

Xcode will generate an empty starting project, based on the selected template,
which has just a single view. The project is not empty, it contains the very basic
building blocks. Don't worry; we will learn how to add extra views and improve
the project's structure.

Creating a Minimal Mobile App Chapter 3

[63]

Here are all the other types of projects that are available in the current Xcode
version:

Application projects: These are mobile applications which present data to the
user.

Game: You should pick this project template if you want to
develop a game for iOS.
Augmented reality app: A project template that boots the
augmented reality scene setup. We will be working on a limited
number of iOS devices—the ones which support AR.
Document based app: A special template that easily enables
document manipulation on the device and in the cloud.
Master-detail application: A special project template, which is a
good start if you want to display data in a table/list. The project
could be universal (for iPad and iPhone), or for iPhone only, or for
iPad only.
Page-based application: A special template, which displays a set
of views (pages). There is a nice way to navigate between them.
Tabbed application: An application template, which has a tab bar
control (a menu of several items at the bottom) that can be used to
switch between different sections in the app. This is quite a
popular template because many apps which present data in
sections use this neat approach.
Sticker pack application: This template project is an extension of
the iMessage app, which is part of the iOS, which will define new
Stickers that can be used in the app. It's something new starting
from iOS 10.
iMessage application: A template project which helps you develop
an iMessage app integration. This special type of project is used
when you want to provide a seamless integration of your app and
iMessage app.

Framework and library project:
Cocoa Touch framework: A template which helps you to create a
custom framework (a set of classes and resources, larger than a
library) that can be shared across several iOS projects. There is a
chapter later in which we will learn how to integrate open source
frameworks within our iOS project(s).

Creating a Minimal Mobile App Chapter 3

[64]

Cocoa Touch static library: A project template which should be
used when you want to define a separate set of classes, resources
and assets, which can be distributed separately and reused in
different iOS projects. Compared to the previous framework
project, the static library is much more specific. In general, several
libraries can form a framework, but sometimes it's just a single one.
The distribution of static libraries is harder, compared to the
distribution of frameworks.
Metal library: A template that should be used in case you want to
deliver a Metal-based framework (for games or Metal-enabled
apps).

Click on Next and the following screen will appear.5.

Creating a Minimal Mobile App Chapter 3

[65]

On this screen, we should fill in some details, which we can alter later from the6.
project's settings:

Product Name: This is the name of the app. We can use My First
iOS app.
Team: Leave that as None for now. Here, you can pick on behalf of
which team you are going to develop this app. You may be part of
several teams or accounts in the App Store.
Organization Name: This is the name of the company that is the
owner of the app. You can enter arbitrary text here.
Organization Identifier: The bundle identifier prefix of your
organization. Usually, people use the domain of the organization in
reverse order. For example, apposestudio.com is converted to
com.apposestudio.
Bundle Identifier: This is a read-only field, but it's composed by
appending the organization identifier and the product name (after a
small transformation). For example, if you use com.mycompany and My
First iOS app, the value there will be com.mycompany.My-First-
iOS-app.
Language: Keep it as it is; Swift is what we are learning. You may
change it with Objective-C.
Devices: Leave it as Universal. This means that the app will run on
both device families, iPhone and iPad. You can decide to develop it
just for phones or for tablets only, then pick the corresponding value.
Use core data: You can check this if you are planning to use core data
for storing data locally on the device. This won't be discussed in the
book, but you can find about it at https:/ /developer. apple. com/
library/ content/ documentation/ DataManagement/ Devpedia-
CoreData/ coreDataOverview. html.
Include Unit Test: Xcode will generate a simple test, which could be
used to test some parts of your app. This is great in case you want to
test your code.
Include UI Tests: Leave it selected. Xcode will generate separate
projects with UI tests, which should be developed in case you want to
test the UI of your app.

Click on Next.7.
Select a folder where the new project will be saved on the disk. For example, in8.
the Documents folder, create a new folder called Swift projects. Keep
the Source Control option marked to create a local Git repository, as shown here:

https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html
https://developer.apple.com/library/content/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html

Creating a Minimal Mobile App Chapter 3

[66]

 You will learn about it later in the chapter.

Click on Finish.8.

Xcode will start generating a bunch of files and will open the project for you:

Project

Creating a Minimal Mobile App Chapter 3

[67]

You will see the project settings screen. There are two targets: My First iOS app and My
First iOS appUITests. This is in case you have used the proposed name, but these could be
named differently based on the name that you picked for your product earlier.

On this screen, you can change the bundle identifier, in the Identity section at the top. In
the Display Name field, you can specify the name of the app, which will be visible below
the icon of the app on the device. The Version field is used to set a specific version of your
application. Usually, the versioning starts from 1.0.0, but you can use a different
approach. The build number is there to distinguish different builds from the same version.
It should be increased if you upload a different version in the App Store.

In the sign-in section, you have to pick a team. You can pick Add an Account... and if you
have an Apple ID, you can use it. If you haven't, then simply use the Create Apple
ID button and follow the instructions (everything is done in Xcode):

With your personal account, you can run the app on an iOS device.

To run the app on an iOS device, you have to connect it with a USB cable to your computer.
The device will ask you whether you trust this computer (pick Trust) and the device will
appear in the list, next to the target, at the top of Xcode:

Creating a Minimal Mobile App Chapter 3

[68]

To pick the device you have to click on iPhone 7 Plus and you will see the following menu,
where you can see your device listed:

The next section is Deployment Info. It is used to specify the device family (keep it as it is).

Creating a Minimal Mobile App Chapter 3

[69]

The main interface points to the Main.storyboard, which we will discuss a bit later in the
chapter. The role of this field is to show the main storyboard. A storyboard is a special
type of file that is used to describe the UI of an application or framework. One application
can have multiple storyboards. It's possible to have applications without storyboards, but
by using them, it's much easier to describe and depict complex UI dependencies.

A device orientation list of checked options defines the supported orientations by the app.
If you want to support only Portrait mode, then you have to deselect the other options. In
the current case, we should deselect Landscape Left and Landscape Right.

The status bar style can be configured next. The default can be replaced with light, which
means that the text color will become white. There are two sub-options: to hide the status
bar completely once the app is started, and to request full-screen mode wherein the app
will be using the whole screen estate.

Most of these settings can be configured programmatically using code, but
it's much easier if we do it through the General panel.

The other sections are for configuring icons and embedding external code in the app. These
will be explained later in the book, so don't bother with them right now.

The rest of the tabs on this screen are:

Capabilities: From here, we can add extra capabilities to our app. For example,
support of maps, background execution, data protection, key-chain sharing,
integration with wireless accessories, and interaction with HealthKit or HomeKit.
If you are using a paid account, then you have access to some more, such as Siri
integration, push notification, iCloud, GameCenter, Wallet, Apple Pay, In-App
Purchase, Personal VPN, and Network Extensions.

Creating a Minimal Mobile App Chapter 3

[70]

Not all capabilities are available, if you are using a free personal account.
You have to register for a paid account in the App Store, which costs $99
per year, but this will be needed once you want to use something that is
not part of the free tier. For example, if you want to publish your app in
the App Store, then you have to switch to a paid account.

Resource Tags: This is place where you can categorize different resources, so
they are fetch on the go. It means that not all resources will be downloaded with
your app at the very first moment. Some categories will be fetched later, so the
user can download the app easily. This technique is advanced and it's applicable
for huge apps, which benefit when the user is downloading just part of the
resources. If you need further details you can read them here – https:/ /
developer. apple. com/ library/ content/ documentation/ FileManagement/
Conceptual/ On_ Demand_ Resources_ Guide/ index. html.

Info: This tab presents application information. The same information can be
found if you open the Info.plist file (cmd + shift + O and then type
Info.plist).
Build Settings: This tab contains advanced options of the compiler and your
application. To see all the settings, you have to select All (it's next to Basic and
Customized):

Use the search box on the right to find what you need. There are too many
options to be tweaked, so don't waste time; simply filter.

Build Phases: On this screen, all phases performed while building the project are
listed. You can add extra ones or remove one of these–please, don't remove any!

https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/On_Demand_Resources_Guide/index.html

Creating a Minimal Mobile App Chapter 3

[71]

A really important part is Compile Sources. You can explore the list of files,
which should be compiled:

The other key phase is Copy Bundle Resources. Xcode is copying the resources
which describe the UI of our app.

Build Rules: This last tab contains all default rules which are executed by Xcode.

You can add custom rules which can transform your source code. For the
default tasks, Xcode already has a set of default rules.

We learned a bit more about the project settings and how to change those. This is the time
to start our app in the simulator. Please pick the type of simulator which should be used;
it's located next to the target (at the very top of the Xcode). It should say iPhone 7 Plus, for
example. Then, click on the big Play button to run the project. You should see a Build
Succeeded message fading in and out at the bottom of your screen.

Creating a Minimal Mobile App Chapter 3

[72]

The simulator will be started automatically. You should see something similar to this:

Yeah, that's right: the app running on the screen is blank. Next, we will understand more
about the project organization and, in the next chapter, we will start adding new things to
it.

The simulator is a separate application, which simulates an iOS device. It could simulate on
an iPad. You have a separate menu to control it. You can do a lot of actions, which the real
device can do.

For example you can do the following:

Take screenshots
Rotate the simulator to the left (cmd + left arrow)
Rotate the simulator to the right (cmd + right arrow)
Shake gestures (ctrl + cmd + Z)
Go to the home screen (cmd + shift + H)
Activate Siri (alt + shift + cmd + H)
Reboot the device
Simulate TouchID
Simulate memory warning

Creating a Minimal Mobile App Chapter 3

[73]

Simulate call
Toggle hardware keyboard
Simulate force touch
Simulate external display
Send fake locations
Open System log
Trigger iCould sync

These are the most popular ones and they can be found in the menu. Feel free to explore
them and don't forget that this is similar to a regular phone. So, you have settings and you
can configure your device.

You can copy images from the filesystem by simply dragging and
dropping those on top of the simulator. The images will appear in the
photos app.
Not all apps, which are part of real iOS devices, such as App Store,
Camera, Notes, and others, are part of the simulator.

Now is the time to explore the project structure. Let's take a look at the Navigator panel on
the left. (You can open it using View | Navigators | Show Project Navigator or cmd +
1 (see more in Chapter 2, Getting Familiar with Xcode and Playgrounds):

Creating a Minimal Mobile App Chapter 3

[74]

Project structure
At the top, we see the project's icon My First iOS app and its internal structure.

The first is the My First iOS app group (folder in this case).

It's up to you to create a corresponding folder on the filesystem. The
project structure may match the file structure, but it could be different.

The yellow folders are called groups and we see three groups in the Navigator.

Dragging files to different groups doesn't affect the real file on the
filesystem.

Let's describe each file in the main group, named after our project:

AppDelegate.swift

ViewController.swift

Main.storyboard

Assets.xcassets

LaunchScreen.storyboard

Info.plist

We will start with AppDelegate.swift, which manages the interactions between the app
and the underlying OS.

AppDelegate
The delegate pattern is used to delegate some responsibilities to another class. It's broadly
used in Cocoa and Cocoa Touch. In our case, UIApplication (our application main class)
delegates the control of the interaction between the app and the iOS. We will discuss
structure, classes and inheritance in the next chapters—which will help you understand
more about delegate software design pattern.

Creating a Minimal Mobile App Chapter 3

[75]

The AppDelegate class contains some key methods, which are cool extension points.

Xcode has added some comments to each function, to help you
understand what it does and when it is called.

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 // Override point for customization after application launch.
 return true
}

There is a function which is called once the app goes into background mode (the user
switches to another app) and when it goes to foreground mode (the app was activated).

The delegate is in a good place to respond to incoming notifications (such as push
notifications, memory warnings, and download notifications). In short, these are external
events, sent from the iOS, which the app could handle. Here is the place to respond to all
events that target the app, not any visual part of it.

The state of the app can be preserved and restored in here. It's important to take care of the
user data and the app's internal state, so that next time the user comes back, they can
continue their interaction with the app.

Here is a list of some other important actions which should take place here:

Register for remote notifications.1.
Check the launch parameters to understand why your application was started2.
(from a deep link, from a push notification, and so on).
Open a specific URL sent to your app.3.
Handle notifications remote and local.4.
To initiate background download (when the iOS gives you a green light).5.
Remote protected data when the device is locked.6.
Re-establish access to the protected data, when the device is unlocked.7.

We will use some of these in the book, but not all of them. You can find further details
about each one of them in the official iOS documentation.

Creating a Minimal Mobile App Chapter 3

[76]

Application states
There are five different states in which an iOS application can exist. Here is a diagram of the
states and the relation between them:

Not running: The app is not running.
Inactive: The app is in the foreground, but doesn't receive any events; probably,
the app is changing states.
Active: The app is running and this is the normal mode, when the user is
interacting with it.
Background: The app is running, but it's not presented on the screen. In this
state, you should do short tasks and return the control back to the OS.
Suspended: The app is in the device's memory, but not doing anything. The OS
may remove these apps, to free up some resources for new apps.

These are the methods which are called when the application transitions from one state to
another:

//when the app is launched
application(_:willFinishLaunchingWithOptions:)
application(_:didFinishLaunchingWithOptions:)

Creating a Minimal Mobile App Chapter 3

[77]

When it transitions to:

//the foreground
applicationDidBecomeActive(_:)
//the background
applicationDidEnterBackground(_:)
//inactive state, after it leaves the foreground
applicationWillResignActive(_:)
//when it's leaving the background state
applicationWillEnterForeground(_:)

This one is called only, when the app is running:

applicationWillTerminate(_:)

We have learned a lot about AppDelegate. Now we should explore the other key
file–ViewController.swift.

ViewController
The ViewController is responsible for managing the visual part of the app. The logic of
the app is spread across many different classes derived from UIViewController. It's
responsible for saving the data in the model and for reacting to users' interactions, by
managing the views.

The class that is generated is pretty basic, but it could be expanded to handle different
events. Some of the notable ones are as follows:

Updating the views, when the underlying model has been changed
Responding to user actions with the app's UI
Resizing, animating, and modifying the UI

Each app has at least one ViewController. Every one is tightly coupled with the current
view hierarchy. The template project which we are using now is blank, thus the current
ViewController contains almost no code. Later in the book, we will get familiar with
other types of ViewController that provide a lot of functionality out of the box. Some of
them are part of the other project templates, which we can pick from when creating a new
project.

Creating a Minimal Mobile App Chapter 3

[78]

Next in the list is Main.storyboard. This is the file that defines the visual part of the app.
It's like a huge blank page, where we can place all different app screens and we can define
the connections between them. It's great that we can visualize different user flows and
check whether they are implemented:

As you can see, the editor panel has become a visual editor, not a text editor, as before. We
see that we have a single empty view controller. It has a single view, first responder, and
it's marked as an entry point–the arrow denotes this.

We won't spend much time editing the current storyboard, but this is the place where you
should start from when you want to add a button or any other UI component.

Next is the blue group – Assets.xcassets. This is a special type of resource catalog of all
images which are part of the application. At the moment, we have a single one, namely an
empty icon.

Pick the icon of your app carefully. It should be well designed as a single
square image which is 1,024 x 1,024 pixels. Then you will have to scale it
down to many different resolutions, to support all the different iPhone
models.
There are pretty handy apps or scripts which can be used to generate all
the needed assets from the initial one.

Creating a Minimal Mobile App Chapter 3

[79]

Finally, we should check the LaunchScreen.storyboard. This is a special storyboard,
which is used to define a dynamic version of the loading images. The loading image is
shown briefly once the app is started from a cold start (the app has not been started yet)
while it's loading the Main.storyboard. Here, you can decide what should be displayed
in front of the user. Think carefully; this is the first impression which your app makes.

The best practice is to clone the UI which will appear first (the one part of
the Main.storyboard.)

For example, if the main view loads some data from the internet, then the launch screen can
be similar but without any data.

We won't discuss the Info.plist because we got familiar with this file earlier in this
chapter.

Next, we will discuss how to use the Git source control system locally, to create snapshots
of your app source code. Even though the project is almost blank at the moment, it's good
to know how to keep the code safe and how to revert to certain versions.

Git
Let's try to explain what Git is briefly. This is a distributed version control system. All
version control systems are storage of the code, which help you to keep track of all changes
of your code. You may think of it as a nice way to do copies of the code and move them
around in such a way, so you can go back and forth between different versions. In fact,
there are many version control systems, but Git is really popular. Different services such as
GitHub, Bitbucket, and GitLab have contributed to make it popular.

Xcode comes with Git integrated. It automatically creates a local repository for your project.
Do you remember that there was a Source Control option when creating the project? We
already have a local Git repository ready for us.

Distributed version control systems (such as Git) work as a client and a
server. This means that they may function without a special centralized
place (server) to be fully functional. Another benefit is that every instance
may become a server at some point.

Creating a Minimal Mobile App Chapter 3

[80]

It's easy to use the local Git repository. We will learn how to commit our code. But, first, let's
verify that everything is working fine. You may have noticed that there are some strange
symbols next to your files, such as the letter M. This denotes that this file has been
modified.

The source control is a safety measure, while you are developing your
project. You have to learn that it's good to commit (save) your code at some
period when coding, because at some point in the future you may decide
to go back to a certain commit (certain version).

To do your first commit, you have to open the Commit window. Use the menu Source
Control | Commit... (alt + cmd + C):

Commit window

Creating a Minimal Mobile App Chapter 3

[81]

This view shows the differences in the files. Once a file is selected in the Navigator panel, it
is displayed on the right, in the editor. It's not a typical editor. Here you see the old version
on the left and the new version on the right. Xcode shows each difference, and you can
decide whether you like this change or you want to revert it to the original state. Just click
on the button which has a number:

You have two options. The first one is Don't Commit, which will leave that change out of
the commit. So, you will have it locally, but it won't become part of the Git (and the tracked
history). The other option is Discard Change, which will discard the code and leave it as it
was in the previous commit.

If you discarded a change, then it will be lost and you have to do it
manually. In Xcode, you can reverse it using the Undo action (cmd + Z).

Once you have verified all changes, then you write a nice summary of all your changes in
the commit message at the bottom. For example, one of the changes which we had made is
to deselect the Landscape Left orientation and Landscape Right orientation. We can
summarize this as Support only Portrait orientation in the commit message.

Don't list the files in the commit message which has been affected. These
are easily visible, once someone explores the commit.

Click on the Commit 3 Files button. This means that you agree with the changes and they
will be stored in the Git repository. All letters in the Navigator panel will be gone. It means
that everything is saved and you can switch to this exact version of your project.

Creating a Minimal Mobile App Chapter 3

[82]

To prove it, we will perform an experiment. First, we are going to remove a file and then
we will recover it using Git. It sounds like magic, but it's something which Git is used for.

This example shows how to recover if you remove any file which is under
Git control.

Here is what you should do to remove a file. Please be careful when you remove files. If
they are not part of the Git repository, then there won't be an easy way to recover them:

Open the Navigator.1.
Select AppDelegate.swift.2.
Right-click on top of the file.3.
Pick Delete:4.

Click on Move to Trash.5.

At this point, the missing file is in the trash. To make this completely transparent,
go and empty your macOS Trash.

You should see that the file is not part of the project. If you try to run the project6.
from the Play button it will fail.
To recover it, you can use the following command: Source Control | Discard All7.
Changes....
Click on Discard All Changes.8.
The missing file is here!9.

All changes are discarded. Be careful not to lose any important change.

Creating a Minimal Mobile App Chapter 3

[83]

If you need better control, then open the Commit screen (we have done that earlier in the
chapter) and you will be able to recover just a single file–use right-click .

 The deleted files have D next to them.

Git is pretty powerful and there are many features which we won't be able to cover in the
book. If you are curios, then you can read much about Git at https:/ /git- scm. com/ book.

But one important feature is the ability to branch the Git repository. A branch is a point in
time where the project code is cloned. All the changes in this branch will co-exist with the
other branches. The repository has one main branch called master. It's nice to follow a
specific policy when developing a software product. One very popular practice is to use the
following Git flow/branches. The main development happens in the develop branch. Each
release is merged back to the master branch and those are tagged.

Every new feature is developed in a separate branch which starts from develop. This way the
developers don't block each other. Once the development is finished, the branch is then
merged back to the develop branch. If the develop branch has progressed since the creation of
the feature branch, then all conflicts should be resolved (merged).

We won't discuss all possible scenarios, but you can use Git to merge only the features
which you want to include in the next release. Every other feature should catch up the
develop version of the app.

Git will help you to manage the source code of your app, but it's good to spend enough
time exploring it. We've scratched the surface of the version control universe, which can
teach you how to manage the project source code.

Summary
In this chapter, we learned to create a simple mobile app using Xcode. We can set up a Git
repository in which we can commit our code. We can switch to a previous version and even
to create a new branch, where we can develop different functionalities of our app.

https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book

4
Structures, Classes, and

Inheritance
In this chapter, we will get familiar with structures and classes. At the end, you should feel
comfortable defining your own class or inheriting from any class that is part of iOS and
could be inherited.

Now let's dive into structures and classes in Swift. Then, we will continue with two
different techniques used to add extra functionality to a class—inheritance and extensions.
The chapter discusses the MVC design pattern and why it is good to use it.

In this chapter, we will cover the following topics:

Structures
Classes
Inheritance
Model-View-Controller (MVC)

Structures and classes
In Swift, structures and classes are used to define custom data types. They have similar
features but are distinct. (We already know that Bool, Double, Float, Int, and String are
basic data types.) Structure and classes define a set of different fields (stored properties)
and functions (methods) that are applicable to the object and all related types. The good
side of these custom types is that we can combine them when we are implementing our
software ideas.

Structures, Classes, and Inheritance Chapter 4

[85]

Basic data types are implemented as structures.

Here is how we define a structure:

struct Car {
 var name:String = "missing name"
 var speed = 0
 var maxSpeed = 200
}

Here is how we define a class:

class Ship {
 var speed = 0
 var isFlying = false

 var description:String {
 get {
 return "The ship speed is \(self.speed) and it
 can\(self.isFlying ? "" : "not") fly."
 }
 }
}

The first difference is that we are using different keywords, struct and class . But the
final result is that we have two custom types. One is called Car and it's a value type. The
other one is called Ship and it's a reference type.

All instances of both types are called objects. These objects can have functions that belong
to them. Let's define some:

struct Car {
 var name:String = "missing name"
 var speed = 0
 var maxSpeed = 200

 //method
 func getDescription() -> String {
 return "\(self.name) has maximal speed of \(self.maxSpeed)"
 }
 //property - getter (again method), but it's
 //invoked slightly different
 var description:String {
 get {

Structures, Classes, and Inheritance Chapter 4

[86]

 return self.getDescription()
 }
 }
}

The preceding code shows how to define evaluated property, which is different than the
three stored properties. The code adds a method which can be called when there is an
instance of the Car type.

We can create instances from each of these two types like this:

var ferrari = Car(name:"Ferrari F40", speed: 280, maxSpeed:320)
print(ferrari.getDescription())
print(ferrari.description)
//the lines above print:
//Ferrari F40 has maximal speed of 320
//Ferrari F40 has maximal speed of 320

let ship = Ship()
ship.speed = 10
ship.isFlying = false
//The ship speed is 10 and it cannot fly.

As you've already seen in the preceding snippet, both instances were created using their
respective names followed by (). This is an implicit call to the appropriate init method
that handles the object creation and initialization of all fields (stored properties), which are
part of this object.

When we have a structure with all fields initialized with default values, then we get two
init listeners for free—one without any arguments (the default one) and one which has all
fields as arguments. If we call Car() (the default one), then all fields will be initialized with
the default values. The other constructor—Car(name:"Ferrari F40", speed: 280,

maxSpeed:320)—sets the passed value to the corresponding properties. If we have a class,
then we either have explicit default values to all fields, or we need a constructor which will
initialize all fields.

Structures, Classes, and Inheritance Chapter 4

[87]

Swift forces you to initialize all fields (properties) before instantiating a
new object. This is really important since every field should have a value.
Otherwise, the new instance could contain undefined information and
thus it can't be used safely in a program.

self is a keyword, which is used to refer to the very same instance/object.
It's used when you want to access specific properties or methods of the
same class. It could be used to resolve ambiguity between an instance
property and a function parameter with the same name (check the
following example).

Here is how we can create a custom init method in a class or a structure:

class Ship {
 //... the same fields

 //designated initializer
 init(speed:Int, isFlying:Bool) {
 self.speed = speed
 self.isFlying = isFlying
 }

 //convenience
 convenience init(speed:Int) {
 self.init(speed: speed, isFlying: false);
 }

}

The code sample in which we create a Ship instance should be updated, so that we are
using the new initializer with speed:

let ship = Ship(speed: 10)
print(ship.description)
//The ship speed is 10 and it cannot fly.

We have to remember that all fields should be initialized; otherwise, the compiler will
complain. When we are using classes, we should distinguish between two types of
initializers. The first type, designated init methods, which handle the full object
initialization, and the other type, convenience initializers, which they should call either
another convenience or designated initializer. Such a sequence always ends with
designated initializer call.

Structures, Classes, and Inheritance Chapter 4

[88]

Every class should have at least one designated constructor. The default
constructor is a designated one if all fields have default values.

Designated initializers don't delegate the initialization of the object (except
in cases of inheritance, when they delegate that to the super initializer).

When we are defining a structure we can follow the same rules, but we shouldn't add a
convenience word in front of a constructor. The rules are the same—all fields should be
initialized.

So far, we have learned how to define structures and classes. These data types can have
methods and properties which store values. Not all properties should be fields; they could
be evaluated properties. Such types of properties are accessed (called) like regular
properties, but instead of that, a function is triggered. The preceding code defines the
description property, which returns a String object, describing the instance of the type.
Let's define the generic property, which consists of a getter and a setter:

class Ship {
 ...
 private var _id:String = "no-id"
 var serialNumber: String {
 get {
 return self._id
 }
 set {
 _id = newValue
 }
 }
 //...
}

The preceding code helps us to do the following actions using every ship instance:

 //ship is an instance of Ship from above
 ship.serialNumber = "my-first-ship"
 print(ship.serialNumber)
 //my-first-ship

We can see the different usages of the property notation:

The setter is called when the instance is the left part of an assignment such as the
following:

ship.serialNumber = "my-first-ship"

Structures, Classes, and Inheritance Chapter 4

[89]

The getter is called when the instance property is used in any other code
statement different from association with a new value. In all cases when the =
operator is missing, the getter is invoked.

Properties, classes, structures, enums, and tuples have a scope of visibility or access level.
The following scopes are available:

private

fileprivate

internal

public

open

A module is a logical unit of code. For example, an app is a module. A framework, which
can be used in one or more apps, is another module. Every scope has different visibility in
the module(s) in which it takes part. The less restrictive is the open access mode and most
restricted is private. In the preceding code, we are hiding the internal organization of the
Ship class, thus we need to use private. It means that we can't access the _id property,
because it's marked as private from outside of the class. It still can be used in our internal
function like the setter, getters, and any other internal methods.

It's possible to restrict the setter access level when we explicitly define it.
The new access level should be restricted compared to the getter.

private (set) public var myProperty: String?

The fileprivate scope limits the usage to the same source file, which is a slightly broader
than the pure private access mode. The internal scope is the default mode. It means that
the visibility is restricted to everything inside the current active module (framework or
application).

The public means that other modules will be able to see the file, but they won't be able to
inherit it. To enable inheritance from other modules, then you need the less restricted access
level open. This is intended to be used when designing frameworks since once the public
interface is fixed, every next change in the public interface defined by the framework
should be backward compatible.

Structures, Classes, and Inheritance Chapter 4

[90]

If a property has only a getter (no setter included), then we are talking about a read-only
property. Here is how we can implement a version property:

class Ship {
 //...
 var version: String {
 return "1.0.0"
 }
 //...
}

It can be used as a regular property:

print("Ship version: \(ship.version)")

But it should never be a left part of an assignment. The following code won't compile:

ship.version = "4.0.0"

The Swift compiler complains with the following error:

cannot assign to property: 'version' is a get-only property.

There is one special type of property—these are the lazy properties. They are different than
regular ones because they are not initialized before their use. Let's define a custom
class, Permit, to illustrate the lazy properties properly:

class Permit {
 var validUntil = 2017

 init(validUntil: Int) {
 self.validUntil = validUntil
 print("Permit object is constructed")
 }

 deinit {
 print("This instance is destroyed.")
 }
}

Then we have to add a lazy property to our Ship class:

class Ship {
 //...
 lazy var permit:Permit = Permit(validUntil: 2100) ...
}

Structures, Classes, and Inheritance Chapter 4

[91]

As you can see, the lazy property already has a value, which will be evaluated
immediately before its use.

Here is how we can use the permit property:

print("Ship's permit is valid until \(ship.permit.validUntil)")
//Permit object is constructed
//Ship's permit is valid until 2100

As you can see in the console, there is one extra row printed, which is part of the permit
init method. If we never use this particular property, then it will never be constructed,
thus the console will stay empty.

We have learned the basics of structure and classes, and how to define properties and
methods (known as object functions). We will discuss the static (also called class methods a
bit later); but, first, let's get familiar with a pretty handy way to add additional functionality
to already defined classes or structures.

Extensions
The extensions are used to add new functionality to different data types, such as structures,
classes, enumerations or protocols. We will focus on classes and structures, but in future
will see some handy applications of the extensions.

Let's see what we can do in an extension and how it's defined.

You can't add stored properties to a class and a structure in an extension.

Let's see an example that adds constructors to our data types. This includes structures and
classes:

//class extension
extension Ship {
 convenience init(type:String) {
 if(type == "super-sonic") {
 self.init(speed:2000, isFlying: true);
 } else {
 self.init(speed: 10, isFlying: false);
 }
 }
}

Structures, Classes, and Inheritance Chapter 4

[92]

//struct extension
extension Car {
 //no need to add convenience in front
 init(name:String) {
 self.name = name
 }

 init(name:String, maxSpeed: Int) {
 self.name = name
 self.maxSpeed = maxSpeed
 }
}

var cars = [Car(), Car(name:"Ferrari"), Car(name: "Tesla", maxSpeed: 320),
Car(name:"Porshe", speed:50, maxSpeed: 260)]

var ships = [Ship(speed:20), Ship(type:"super-sonic")]

We can use the extensions to add one of the following items:

Any type of computed properties (class and instance ones)
Any type of functions (class and instance)
Define subscripts
Provide new initializers
Define nested types
Use nested types
Mutating functions (for structures)
Conform to a protocol

You will see some of these used in the book. Be aware that without the extension, the type
doesn't include those new functionalities. Once the extension is evaluated, then all the new
functions can be accessed.

When defining additional (convenience) constructors, it's good to add
those to an extension.

For example, if you have default values to all properties of a structure, then you get two
init methods for free. If you define new init method in the structure body, then you will
lose the ones which are provided for free by Swift. If you want to keep those, define the
extra constructors in an extension.

Structures, Classes, and Inheritance Chapter 4

[93]

Extensions can't add property observers to existing properties.

Here is a short example that improves the Car structure:

//add color
extension Car {
 enum Color {
 case red, blue, silver, green, pink, undefined
 }

 func getTypicalColor() -> Color {
 if self.name == "Ferrari" {
 return .red
 }

 if self.name == "Tesla" {
 return .silver
 }

 if self.name == "Tesla Blue" {
 return .blue
 }

 return .undefined
 }
}

print(Car(name: "Tesla Blue").getTypicalColor() == Car.Color.blue ? "The
car is blue." : "What color is this?")

When we are discussing classes, we should be aware that each instance of a class type takes
some memory and it's stored in the heap memory when it's allocated initially. The process
of allocation happens automatically once you call the init function. The class instances can
be shared, which means that several variables can use the same place in the memory. We
will dive into the memory management in the next chapters. But, before that, we should
know that to free up the memory which was taken by our instance, we have the handy
function which is called immediately before the instance is de-allocated from memory—the
deinit method.

Structures, Classes, and Inheritance Chapter 4

[94]

The deinit method
Usually, you won't implement this method, but if your class is using some OS resources
such as files, sockets, connections, extra memory—it's good to clean up once the instance
responsible for this is going to be de-allocated. Each class may have a deinit function,
which is written slightly differently:

deinit {
 //clean up the resources which the class is using, so they can be
 re-used later
}

It's similar to the init methods, but it doesn't have () after it. This method is called
automatically.

You can't explicitly call the deinit method. It's called automatically
immediately before the de-allocation of the instance.

If the class inherits another class then the de-initializer is called
automatically after the de-initializer of the subclass. The supper class de-
initializers are always invoked, even in cases when the subclass doesn't
define the deinit itself.

Each instance has its own properties. When a new instance is allocated then a new set of
properties is created for it. If we want to have something common between all instances of
a particular type (such as data or action), then we should use type properties or type
functions.

Type properties and functions
Type properties are used when we need to have access to data from any instance of that
type (we could think from many different places). Compared to instance properties, their
properties are accessible through that particular instance. It means that a single copy will
exist and it will be attached to a specific type. The phrase type properties suggest that those
properties will be special properties, which could be accessed through the type itself, as
shown in the following code:

class Ship {
 ...
 static let madeIn = "UK"
 ...
}

Structures, Classes, and Inheritance Chapter 4

[95]

//we use the type property in the print function
print("Made in \(Ship.madeIn)") //Made in UK

To mark a property as a type property, simply add static in front of it. From now on,
when the text refers to a static property it means a type property.

There is an alternative way to add a static (type) property to a type, using extension. Here
is how the preceding code looks when using what we already know:

extension Ship {
 static let madeIn = "UK"
}

print("Made in \(Ship.madeIn)") //Made in UK

The typical usage of a static (type) property is to share values across all instances. There is
no limit to what type of properties will be used as static. They could be constants, variables
(stored properties), and computed ones.

Every type is a special object, which is responsible for creating instances of
that particular type.

All stored type properties should have a default value because the type is
a special type of object, which doesn't have its own initializer. (Every
instance uses an init method like we had discussed earlier.
Unfortunately, the type itself doesn't use any init method.)

Here is some code, which illustrates this:

extension Car {
 //computed read-only property
 static var bestCarBrand:String {
 get { return "Tesla" }
 }
 //type stored property
 static var totalNumberOfCars = 0
}

The type could be used to store shared data using static stored properties,
but be careful who else has access to this field and how it's managed.

If you want to check the type on an instance, the following function comes
in handy: type(of: yourVariable).

Structures, Classes, and Inheritance Chapter 4

[96]

Here is an example that shows how to use it:

let ship = Ship(speed: 10)
//get access to a type metadata
var typeOfShipConstant = type(of: ship)
var typeShip = Ship.self
print("My type is \(typeOfShipConstant)")
print("My type is \(typeShip)")
print("The type of Ship.self is \(type(of: typeShip))")

//My type is Ship
//My type is Ship
//The type of Ship.self is Ship.Type

Static (type) functions are similar to static properties. They can be called using their full
name—Type.functionName(parameters). There is no need for an instance and these
methods could be called from any code, where the type is accessible, (for example,
everywhere in the current module, if the type is not private). For more information, check
the previous access modifiers in this chapter.

In the next section, we will discuss how to add some custom classes and structures to a
playground.

Adding custom data types to a playground
We know how to create our own data types to model the real world. Let's try to add some
classes to a playground so we can present the weather for a particular location to the user.

To add a new file to the playground, you have to open the Navigation pane on the left.
Then you can expand the Source folder, then, right-click on it and pick New File. Then
simply give it a name and you are ready to edit the new .swift file.

First of all, we will need to model the weather. So, let's start with a structure called
Weather. It will contain a list of simple objects, which describe the temperature for a
particular hour. These objects can be stored in a list and each index can match specific
hours of the day. We need a type which will contain this information—we will call
it ForcastData.

Good practice is to keep each data type in a separate file.

Structures, Classes, and Inheritance Chapter 4

[97]

There are many benefits to this approach; here are a few:

Encapsulation—each class should access only its own properties
Faster builds—incremental builds are part of the Swift compiler; only changed
files will be recompiled
Better organization—correct definition of responsibilities, who does what
Easy support of a huge code database
Easy collaboration when working on huge projects

Here is the code. Each file should contain only a single structure and its extensions.

We are starting with Weather.swift:

// use import to link other modules/frameworks to the code
import Foundation

/***
 * Structure which describes the Weather.
 * It contains an array of ForcastData for each hour.
 * The location property contains the location where the forcast is
applicable.
 * The date filed contains the day of the forcast.
 **/
public struct Weather {
 public var hours: [ForecastData]
 //public getter, internal setter
 internal (set) public var location: String
 //public getter, internal setter
 internal (set) public var date: Date

 // public initializator, because it should be visible
 public init(hours:[ForecastData], location:String, date:Date) {
 self.hours = hours
 self.location = location
 self.date = date
 }
}

public extension Weather {
 init() {
 self.hours = []
 self.location = "Nowhere"
 self.date = Date()
 }
}

Structures, Classes, and Inheritance Chapter 4

[98]

Then we move to ForecastData.swift:

import Foundation

 /**
 * Structure which describes the weather in specific point in time
 * It contians the most important details.
 **/
public struct ForecastData {
 public var hour: Int
 public var temp: Double
 public var minTemp: Double
 public var maxTemp: Double
 public var pressure: Double
 public var humidity: Double

 public var clouds: Double
 public var wind: WindData

 public var description: String
 public var icon: String?
}

public extension ForecastData {
 init() {
 self.hour = 0
 self.temp = 0
 self.minTemp = 0.0
 self.maxTemp = 0.0
 self.pressure = 0.0
 self.humidity = 0.0
 self.clouds = 0.0

 self.wind = WindData(speed: 0, degrees: 0, direction: "none")
 self.description = "Empty object"
 self.icon = nil
 }
}

If you add new init methods in an extension (not in the main definition),
you will keep the autogenerated ones. If you define at least one init in
the main definition, then you won't have any autogenerated initializer.

Structures, Classes, and Inheritance Chapter 4

[99]

Finally, we finish with the shortest file—WindData.swift:

import Foundation
/**
 * Structure which contains extra data, describing the wind.
 **/
public struct WindData {
 public var speed: Double
 public var degrees: Double
 public var direction: String
}

Here is what your playground should look like:

Then you can experiment with the following code to verify that the new data types are
working as expected:

// Weather structures in action
var emptyForecast = ForecastData()
var weather = Weather()
weather = Weather(hours:[emptyForecast], location:"London", date:Date())
print(weather.location)

Structures, Classes, and Inheritance Chapter 4

[100]

One thing which we should note is that the structures should be marked as public to be
accessible (visible) in the main playground and its properties too. Because we want to allow
only read access, the setter is marked with the internal access level. This is needed
because all supporting playground classes are in a separate module. We have discussed this
in Chapter 2, Getting familiar with Xcode and Playgrounds.

In the next section, we will discuss a handy mechanism, which helps when developing
complex class models.

Inheritance
Inheritance is a mechanism that helps developers through the process of implementing
complex hierarchical data structures. All inherited features become part of the new class. To
put it simply, a class can inherit properties and methods from another class. The class
which is inherited is called a parent class or super class. The new class which inherits
another class is called a child class.

The inheritance is applicable to classes only.

Each class which inherits from another class can provide a specific implementation of the
inherited features. All other functions, properties, subscripts, and so on, can be accessed
from the child class.

Base class
Every class which doesn't have a super class is called a base class. In contrast with other
programming languages, there is no universal class which all classes inherit from. So, every
base class can be used as a super class (except if we explicitly forbid a class to be inherited).

Let's try to create a subclass of our class Ship:

// SpaceShip inherits Ship
class SpaceShip: Ship {
 var numberOfLazerGuns:Int
 init() {
 //initialize local properties
 self.numberOfLazerGuns = 4
 //initialize the inherited ones

Structures, Classes, and Inheritance Chapter 4

[101]

 //calling a designated initalizer
 super.init(speed: 50000, isFlying: true)
 }
}

extension SpaceShip {
 convenience init(lazerGuns:Int) {
 //call designated constructor
 self.init()
 self.numberOfLazerGuns = lazerGuns
 }

 convenience init(speed:Int, lazerGuns:Int) {
 //call designated constructor
 self.init()
 self.speed = speed
 self.numberOfLazerGuns = lazerGuns
 }
}

When inheriting from a class, we simply list the name of the super class after the name of
our class. This action is called subclassing, as in the following code:

class SpaceShip : Ship

SpaceShip is a subclass of the base class Ship. Ship is a base class because it is not a
subclass of any class.

Subclasses can be subclassed.

We can access all the methods and properties of the parent class, which are inherited. Here
is how to do it:

var spaceShip = SpaceShip(lazerGuns: 5)
print("SpaceShip speed is \(spaceShip.speed)")

When subclassing, our class inherits all methods and properties from the parent class, but
with overriding we can modify and further refine each function. If you want to provide a
new behavior for the same function, then you have to explicitly declare that by adding the
keyword override before the function.

Structures, Classes, and Inheritance Chapter 4

[102]

Let's see an example. Look at the following code:

print(spaceShip.description)

It results in the following output:

The ship speed is 50000 and it can fly.

We can override the description property as follows:

class SpaceShip: Ship {
 //...
 override var description:String {
 get {

 return "The space ship () speed is \(self.speed) km/s."
 }
 }
}

After this tiny change, the code produces the following output:

The space ship () speed is 50000 km/s.

You can't use extensions to override existing functionality.

If you do want to keep or reuse the provided functionality from the super class, you can use
the super keyword to refer to the parent class. You can call any functions and use their
result. For example, if we want to keep the result from the description property, we can
do the following:

class SpaceShip: Ship {
 //...
 override var description:String {
 get {
 return super.description
 }
 }
}

Structures, Classes, and Inheritance Chapter 4

[103]

When overriding a property and if the property contains only a getter, then we can provide
a setter and a getter in the subclass. If it has a setter and a getter, then we should provide an
implementation for both when overriding it. If we do want to keep the super
implementation we can delegate it, as in the last example, and just pass the parent value.

Overriding a method is similar to overriding a property. Simply add the override before
the method definition (name, parameters and result type).

If we assume that the Ship class contains the following function:

class Ship {
 //...
 func calculateDistance(time:Int) -> Int {
 return self.speed * time
 }
}

We can override this function like this:

class SpaceShip: Ship {
//...
 override func calculateDistance(time: Int) -> Int {
 return super.calculateDistance(time: time) * 2
 }
}

Sometimes, when designing complex relations between many classes or when designing
software frameworks (a set of handy classes—such as iOS frameworks), you may like to
prevent some methods from being overridden. This is possible and, to do so, you have to
add the final keyword in front.

If we want to prevent a whole class from being subclassed, we can mark it with final—so
it will become the following:

final class <Name of the class> ...

Now is the time to discuss special type properties. They are part of the class definition
similar to the static/type properties, but they are slightly different.

Class properties
These are special types of properties which are similar to type properties. They can be
overridden in the classes which inherit the class property from another class, in contrast to
static (type) properties which can't and they are not inherited.

Structures, Classes, and Inheritance Chapter 4

[104]

We already know about inheritance and how to define custom types. Now we should get
familiar with the most popular way of organizing your code in an iOS app.

Model-View-Controller (MVC)
MVC is a design pattern, which helps you to organize your code. It separates the classes by
roles, which maximize the reuse and independence of the code (loose coupling):

The Model stores the data of the app. There you can keep the state of the app, the data
entered by the user, and so on. Only the controller interacts with the model. When the
Model is updated, this change is reported to the controller. On the other hand, the
Controller sends updates to the Model.

The View is responsible for presenting data to the user. The user interacts directly with the
View. Every user event is reported to the Controller. The Controller decides whether it
should be propagated to the model or it should just modify the view.

The Controller is the mediator, which is responsible for coordinating the views and the
models. By having this extra layer, we can design our iOS apps in such a way that the views
can be reused easily and the models can be reused as well.

Structures, Classes, and Inheritance Chapter 4

[105]

Here is an abstract scenario in which we can have data which can be displayed in different
types of charts. The Controller can decide what part of the data (the Model) should be
passed to every single presentation (the View). When the user decides, a different
presentation of the data could be rendered.

Before diving into the source code, you should know something about protocols. This is the
blueprint of a class/structure. It's the contract that a type can decide to fulfill; we will
discuss protocols in detail in the next chapter.

Here is a simple code which sketches the MVC concept with our own Weather class.

//MVC example
var dc = DateComponents()
dc.year = 2017
dc.month = 7
dc.day = 7
//create a date
let coolDate = Calendar.current.date(from: dc)!

var newYourWeather = Weather(hours: [emptyForecast], location: "New York",
date: coolDate)
var sanFranciscoWeather = Weather(hours: [emptyForecast], location: "San
Francisco", date: coolDate)

var model = WeatherModel(weather: newYourWeather)
var controller = WeatherController()
//the controller needs a model
controller.model = model
model.modelObserver = controller

var view = WeatherView(location: controller.location, date:
controller.date, listener: controller)

//the controller needs a view
controller.view = view

//initial view rendering
view.draw()

//simulate model update and the view is updated if needed
model.setNewWeater(weather: sanFranciscoWeather)

//simulate user action and the model will be updated if needed
view.simulateUserAction()

Structures, Classes, and Inheritance Chapter 4

[106]

We have the following three files in our playground.

The first is WeatherModel.swift which stores our Model:

public protocol WeatherModelObserver {
 func modelHasChanged(model:WeatherModel)
}

public class WeatherModel {
 private var weather:Weather
 public var modelObserver:WeatherModelObserver?

 public init(weather:Weather) {
 self.weather = weather
 }

 public func setNewWeater(weather:Weather) {
 print("[Model] The model has been changed.")
 self.weather = weather
 if modelObserver != nil {
 modelObserver?.modelHasChanged(model: self)
 }
 }

 public func getWeather() -> Weather {
 return self.weather
 }

 func update() {
 print("[Model] Update the model")
 }
}

Then we have WeatherView.swift:

public protocol WeatherViewListner {
 func showWeather(forDate:Date)
}

public class WeatherView {
 private var toNotify:WeatherViewListner?
 private var location:String
 private var date:Date
 private var dateFormatter:DateFormatter

 public init(location:String, date:Date, listener:WeatherViewListner?) {
 self.location = location
 self.date = date

Structures, Classes, and Inheritance Chapter 4

[107]

 self.toNotify = listener

 self.dateFormatter = DateFormatter()
 dateFormatter.dateStyle = .medium
 dateFormatter.timeStyle = .none
 // DateFormatter.dateFormat(fromTemplate: "yyyy-MM-dd",
 options: 0, locale: Locale(identifier: "en_US"))
}

 public func simulateUserAction() {
 print("[View] Detect user interactions and react.")
 // update the visual part
 // and notify the controller
 if toNotify != nil {
 toNotify?.showWeather(forDate: Date())
 }
 }

 public func draw() {
 let d = self.dateFormatter.string(from: self.date)
 print("[View] \(d) - \(self.location) =>")
 }

 public func refresh(location:String) {
 print("[View] The view is updated and will be redrawn")
 draw()
 }
}

And finally, we have WeatherController.swift, which defines the connection between
our Model and View:

public class WeatherController {
 public var view:WeatherView?
 public var model:WeatherModel?

 public init() { }

 public var location:String {
 get {
 return model?.getWeather().location ?? "Unknown"
 }
 }

 public var date:Date {
 get {
 return model?.getWeather().date ?? Date()

Structures, Classes, and Inheritance Chapter 4

[108]

 }
 }
}

extension WeatherController: WeatherViewListner {
 public func showWeather(forDate:Date) {
 print("[Controller] Handle all user interactions.")
 print("[Controller] If necessary the model is updated.")
 model?.update()
 }
}

extension WeatherController: WeatherModelObserver {
 public func modelHasChanged(model:WeatherModel) {
 print("[Controller] The model has been updated.")
 print("[Controller] Check if the view should be updated.")
 view?.refresh(location: "New York")
 }
}

We see that the Model can exist on its own. The same thing is applicable to the View. The
Controller is the glue which sticks both and controls them.

Summary
In this chapter, we discussed how to define custom data types—structures and classes.
Then, we defined some custom types in our playground to see this in practice. You should
be able to define your own data types. We've learned what is subclassing and inheritance.
You now know how to override methods and properties. We explored the very popular
design pattern, MVC. If you organize the app following the MVC pattern, then some parts
of our apps can be reused in other apps without further improvements. They will be
designed for future reuse.

In the next chapter, we will add interactivity to our first application. We will try to apply
the MVC in practice in our mobile app. Let's get started with storyboards and views, then
we will add some buttons and hook up some actions to those buttons.

5
Adding Interactivity to Your First

App
This chapter is about storyboards, adding views, and making our app interactive. It
explains how to hook up the UI components from the storyboard to the code. You will learn
how to detect different user actions.

In this chapter, we will cover these topics:

Storyboards
Basic visual components in iOS
How to add views
How to link them to the code
When to use storyboards or pure code

Storyboards
A storyboard is a central place where all screens can be designed. It's not mandatory to use
a storyboard to create a working iOS app, but with storyboards you can save a lot of time
when defining a native UI. This is the official way of developing a UI in Apple's ecosystem
of iOS, macOS, watchOS, and tvOS.

Adding Interactivity to Your First App Chapter 5

[110]

The storyboard editor is a special view of Xcode. It presents a visual editor for your
application. Let's get back to our first empty app which has a single view. Do you
remember that we had seen in the navigator that there is a special file named
.storyboard? This is where we will start from and this is what your app renders initially:

Initial screen of your app

This screen is the initial screen of your app. The UI components which you can add can be
found at the bottom-right of the Properties panel. Simply, drag and drop items on the
canvas and they will appear.

Adding Interactivity to Your First App Chapter 5

[111]

The storyboard is a nice way to define complex visuals without code. It can be used to
visualize the connections between different app screens (called scenes in the storyboard).
This makes the app easily understandable by developers and the storyboard provides a
nice overview of the whole app. Working with different UI components, such as table view
and custom cell, renders completely easily. The Auto Layout, which we will discuss later in
the Chapter 7, Developing a Simple Weather App, allows you to define mathematical relations
between a component position and a component size, thus the view fits nicely on different
phone screens. In storyboards, you can describe the transitions between different screens
and the transition between scenes.

There is an easy way to hook interactions to many view components. We will discuss this
later in this chapter. Let's first start by adding a few visual components.

Visual components
There are many different types of visual components which can be added. Let's see the
default building blocks, which we can use when developing an iOS app:

Label: Control to present a static text
Button: Regular button, which handles touch interactions
Segmented Control: Several buttons next to each other, but only one can be
active at a time
Text Field: Displays editable text and handles all interaction with the control
Slider: Selects easily a single value from a range
Switch: On or off switch, easily toggled
Spinner/Activity Indicator View: Indefinite progress view
Progress View: Presents the progress of a task over time
Page Control: Displays dots for each page for easy navigation through pages

Adding Interactivity to Your First App Chapter 5

[112]

The next screenshot shows how the components look in Xcode. You can find them in the
Utilities pane on the right. You have to activate the Object Library at the bottom:

Adding Interactivity to Your First App Chapter 5

[113]

Let's continue with the other controls:

Stepper: View, which can increment or decrement a value
Horizontal Stack View: View container, which arranges views horizontally
Vertical Stack View: View container, which arranges views vertically
Table View: Powerful control to display data in a list format; could have groups
or sections for easy visual separation of the data
Table View Cell: Single building block in a table view
Image View: View in which an image or images could be rendered
Collection View: Presents data in a collection of cells; works nicely with different
screen sizes
Collection View Cell: Single view item, part of a collection view
Collection Reusable View: Special view, which is part of a collection view, but
displays a section, header, or footer

Adding Interactivity to Your First App Chapter 5

[114]

Here are the next items which you should see (probably some of them) in the Object
Library:

Adding Interactivity to Your First App Chapter 5

[115]

Here is the last part of default visual items, which we can use:

Text View: Displays multilines of text; the text is scrollable and sends various
events to a delegate
Scroll View: View, which can display content bigger than its size; pretty handy
when something huge should be displayed
Date Picker: Control, which allows the user to select a date using spinning
wheels
Picker View: Spinning wheel full with values; only one can be selected
Visual Effect View with Blur: Blur effect
Visual Effect View with Blur and Vibrancy: Advanced blur effect with vibrancy
Map Kit View: Displays map and gives a nice interface to navigate the map
MetalKit View: Default Metal view, which uses Metal technology
GLKit View: OpenGL ES view, which could be used to render OpenGL scenes
SceneKit View: A view which can render a 3D scene
Web View: Renders an embed web content and provides nice navigation
View: Basic rectangular building item, which reports interaction; every subclass
of UIView could be housed in this component
Container View: Region of a view controller, which could include a child
view controller

Adding Interactivity to Your First App Chapter 5

[116]

Here are the controls which you see in the object browser. They are easily distinguishable
because of the icons. You can see a short explanation next to each item:

Adding Interactivity to Your First App Chapter 5

[117]

The list is long and you can see the rest here. In Xcode, scroll and the other views will
appear in the list:

This is just the standard set of visual components which you can use in your apps. Each
component can be customized and extended based on the app needs.

In the real world, if you need a special visual component, then you better
check whether such a component exists before diving into development.

Adding Interactivity to Your First App Chapter 5

[118]

There are many places where developers share components for free or you can buy a
license to use them in your apps.

Let's see some of the items in action, being part of our app.

Adding items to the storyboard
Almost every app needs to present textual information. To do so, we need a label or a
TextView to render the content in the app. Follow these steps to add a simple label on the
screen:

Open the Utilities pane (alt + cmd + 0).1.
Activate the Object Library tab. Simply click on the Object Library button2.
shown here:

Click on the filter field at the bottom:3.

Type lab. The list of components will filter.4.
You should see just a single component. In this case, the Label view:5.

Adding Interactivity to Your First App Chapter 5

[119]

Start dragging the label to the storyboard in the center.6.
Drop it in the center:7.

Label

The designer will help you to center the label easily with guidelines.

Now, double-click on the label to enter your message, which should be displayed8.
to the user. For example: Click on the button below, please.

Adding Interactivity to Your First App Chapter 5

[120]

Let's add some formatting to put this text in the center of the screen:9.
Open the Attribute inspector.1.
Set the Lines to 2. (The label should be selected.)2.
Edit the text in the Text field at the top, move after the word button3.
and press alt + enter. This will insert a new line and the label will be
broken into two lines:

Center the label with the mouse.10.
Let's drag a button.11.
First, select the filter field and write button:12.

Adding Interactivity to Your First App Chapter 5

[121]

Then drag the button below the label.12.
Then change the text of the button to Action. Use double-click.13.

Adding Interactivity to Your First App Chapter 5

[122]

This is how easy it is to add visual items from the library to a scene. We have a pretty rich
set of different basic UI components. We can use them in our apps. All users of the iOS
ecosystems are already familiar with these controls, so they know how they are working.

You can customize each view in different ways. We will discuss possible ways of doing
that.

Pick the visual component which fits you for the particular case or app.

In this section, we discuss how to trigger the code of the app when the user interacts with
the UI. Let's begin with our first button.

Linking the UI with the code
Storyboards provide a nice way to link the user actions with functions (code) in the app.
Here is what you should do:

Open Main.storyboard. To do it, you can use cmd + shift + O and start typing1.
Main. Then select the file and hit return/enter.
Select the button on the screen.2.
Activate the Assistant Editor using the Assistant Editor button:3.

Adding Interactivity to Your First App Chapter 5

[123]

You should see the storyboard on the left, and the
code of ViewControler.swift on the right:

Adding Interactivity to Your First App Chapter 5

[124]

Right-click on the button in the storyboard. An action list should appear:4.

Action list

Adding Interactivity to Your First App Chapter 5

[125]

Position the mouse on the right part of the Action panel (on Touch Up Inside – a5.
small plus sign will appear, as shown).
Start dragging it on top of the right panel:6.

Dragging the action panel

A blue guideline will show you possible positions where to drop it. The only7.
difference between these positions is where the code generated from Xcode will
appear. If you keep the source code clean and tidy, then you will have a choice;
otherwise, there is no difference between those places.

Adding Interactivity to Your First App Chapter 5

[126]

When you drop it on the right panel, the following popup is displayed:8.

Enter the name of the function. You can use clickHandler.9.

Use names which identify the action; generic names are not helpful.

You can change the type to UIButton, because the button will trigger the code,10.
but it's not a problem to keep it as Any.
Click on Connect. The following code has been generated:11.

Adding Interactivity to Your First App Chapter 5

[127]

The gray outlet on the left shows that this function will be triggered by some12.
action. If you position the mouse on top of it, you can easily see which visual
item is linked:

Now you have to enter the following code in the body of the hooked function,13.
namely @IBAction func clickHandler(_ sender: UIButton):

let red:CGFloat = CGFloat(drand48())
let green:CGFloat = CGFloat(drand48())
let blue:CGFloat = CGFloat(drand48())
//change the background color
self.view.backgroundColor = UIColor.init(red: red, green: green,
blue: blue, alpha: 1)

The code generates three random values from 0 to 1.0 inclusive. These values are
then used to generate a color at random. This color is set as a background color.

The expected result of the execution of this handler is to change the background
color of the view.

Run the app in the simulator, using cmd + R or the Play button:14.

Check the simulator and press the button. The background should change once15.
you press the button.

Adding Interactivity to Your First App Chapter 5

[128]

It's possible to have the same colors from time to time, so don't panic that
the button doesn't work.

The following screenshot shows the app working:

Adding Interactivity to Your First App Chapter 5

[129]

We've learned how to hook actions to a visual component using the Assistant view. Simply
using the mouse and the Xcode, we were able to invoke a function (handler) when a certain
user action is detected. It's not a secret what we have done with a mouse what we could do
in pure Swift code. Let's try to do the same thing with another button:

Add another button below this one.1.
Label it Fire!.2.

To do steps 1 and 2, you should switch back to Standard Editor, then open the
Utilities pane and open the Object Library.

Now open ViewController.swift.3.
Add the following code to the top:4.

@IBOutlet var fireButton:UIButton!

With this line of code, we declare that the ViewController class will have a
property of the UIButton! type, whose name will be fireButton.
Unfortunately, this property is empty. We have to link it to our visual component,
we can do it by following the further steps.

Open the Main.storyboard.5.
Select the New button.6.

Adding Interactivity to Your First App Chapter 5

[130]

Then open the Utilities pane and the Connections inspector:7.

The Connections inspector is the same as the Action menu, which appears if we
right-click on the button (see the previous section).

Start dragging the outlet (the small circle) at the very right of the New8.
Referencing Outlet row.

Adding Interactivity to Your First App Chapter 5

[131]

Drop it on top of the top yellow circle (which denotes the current view9.
controller).

Here are two possible places where you can drop the link:

Adding Interactivity to Your First App Chapter 5

[132]

Here is how a proper linking should be done:

Once you drop it, the following menu will appear:10.

You have to select fireButton. This is exactly the same property, which we had11.
defined earlier. With these actions, we managed to hook up this property with
this exact visual component. You could do it with any item which you had added
to the scene.
The result will appear in the Connections inspector:12.

Adding Interactivity to Your First App Chapter 5

[133]

Open ViewController.swift.13.

If you check the outlet in front of the fireButton, it shows that it's connected. If
you click it, Xcode displays which button is linked to this property:

Add the following code. This should be included in the ViewController class14.
(after the end of the last function):

func fireClickHandler(_ sender: UIButton) {
 print("Fire button was pressed!")
 self.view.backgroundColor = UIColor.red
}

This should be inserted at the end of the viewDidLoad function:

fireButton.addTarget(self, action:
#selector(ViewController.fireClickHandler(_:)), for:
UIControlEvents.touchUpInside)

Run the application.15.
Click on the Fire! button.16.

The result you should see is that the background becomes red. If you check the Xcode, then
you should see the Debug Area opened at the bottom:

Adding Interactivity to Your First App Chapter 5

[134]

In the console, you should see the text Fire button was pressed! several times. It depends
how many times you have activated the button.

To sum it up, we learned how to link visual components to a property in the code. We can
hook a function, which will be triggered when the user interacts with the app. This could be
achieved in two different ways: with pure code or through the Action menu in the
storyboard.

Note that the event that we have used is called UIControlEvents.touchUpInside. This
event gets triggered once the user lifts his finger inside a visual element. There are many
other events, which could be used to react to different actions. For example,
UIControlEvents.touchDown will be triggered when the finger initially touches a
control.

iOS provides a neat mechanism for handling complex user interactions with the visual
components. The classes responsible for detection of different user actions are called
gesture recognizers. We will get familiar with them later on in the book.

If you need better touch handling, you have to explore the touch event life
cycle in depth. See
(https://developer.apple.com/library/content/documentatio
n/General/Conceptual/Devpedia-

CocoaApp/EventHandlingiPhone.html).

Let's practice what we have learned and add a cool feature to our app—a button which
shows an image when it's on and hides it if it's off.

First of all, we need a switch, which has an on and off state. Of course, iOS has a1.
perfect control for that. Now we can drag it to the scene. Then we need a label.
You already know the storyboard view quite well, so go and add those to the
scene.

Adding Interactivity to Your First App Chapter 5

[135]

Here is what it should look like:

Adding Interactivity to Your First App Chapter 5

[136]

Now we need a place where the image will be displayed. This control is called2.
Image View. Drag one to the scene and position it properly. Here is what it
should look like:

Now is the time to add some code. Open the ViewController.swift class and3.
add the following:

@IBOutlet var imageView:UIImageView!

Then you have to link the imageView with this new property. Open the4.
storyboard and right-click on the imageView. This opens the Action window.
Start dragging the New Referencing Outlet plus and drop it on top of the view
controller (the yellow circle). Then pick imageView. Now is the time to use the
Assistant Editor. Select the switch. You can close the Navigation pane (cmd + 0).
Open the Connections tab in the Utilities pane. Locate the Value Changed row5.
and drag the plus sign, to create a handler, to the code on the right. Once the blue
guide appears, simply drop it and fill in the details. Here is what we have used:

Adding Interactivity to Your First App Chapter 5

[137]

Open the Navigation panel. Find an image, which you want to be part of your6.
app and simply add it to your project (alt + cmd + A or File | Add files to My First
iOS App). You can download any image using your favorite browser. Open the
storyboard. Select the image view control and open the Attributes inspector in
the Utilities pane. Pick an image from the Image box, use the list in which you
should see the file (the image) you added earlier. Change the content mode to
Aspect Fit to fit the image in the control.

There are different content modes, which change the way an image is
rendered in an imageView.

We need the last bit: a code which will hide and show the image. We already7.
have a handler, so let's open the source code (ViewController.swift). Locate
the function, which was generated by Xcode and paste the following code:

imageView.isHidden = !sender.isOn

Then you can run the app. If you turn off the switch, it will hide the image. If you8.
turn it on, the image will appear.
It looks nice, but what if we don't want to show the image initially? This9.
shouldn't be hard. We have to hide the image initially. We can do this using
code. We should add the following line as a last action in viewDidLoad:

imageView.isHidden = true

Adding Interactivity to Your First App Chapter 5

[138]

All the code that is in viewDidLoad will be executed, once the view is created. This
guarantees that the outlets will be initialized and the object will be accessible to be
configured properly.

We are almost there. We should set the initial switch state to off. Let's select the switch.
Then we have to open the Attributes inspector. Then simply change the value to off.
Voilá! You can run the app. The switch should be off initially and the image should be
hidden.

General discussion
We know how to use Xcode and storyboards to define UI. iOS has a pretty powerful tool set
to define a slick and easy-to-use (native) user interface. You just need to drag and drop the
appropriate visual components and order them as you want on the screen. (We will discuss
how to use auto layout, so that your UI looks good on any screen—iPhone, iPad, AppleTV.)
The next key part is to link them with a specific property. This way, each component can be
accessed in the code. Hooking up handlers is not hard at all. A storyboard helps you by
generating some part of the code for you; you just have to provide the name and the type of
the parameter. Everything that you can do using storyboard can be developed in pure code.
Usually, you pick the pure code solution when you need a much deeper control of your
visual components.

You should use storyboards when possible. The pure code approach
should be taken if you go above the limits of the storyboards.

If you decide to develop the app UI using code, you will need much more time. Even the
simplest tasks, such as changing the size of the label font, would take extra time. Don't use
this approach if you don't have really strong motivation to do so. Storyboards save a lot of
time when developing. Under the hood, they are used to generate the view and to define
the relations between different scenes. This saves a lot of time and, so far we know, only
part of the functionality which they provide. Later in the book, we will discuss how we can
use them to define auto layouts and transitions between scenes.

Adding Interactivity to Your First App Chapter 5

[139]

Summary
In this chapter, we learned some details about storyboards. We will explore these later in
the book. Adding a visual item to a storyboard turned out to be easy. We discussed two
different ways to hook up a code to user interaction, and then we showed a nice way to
manage other views. After this chapter, you should be able to add basic interactivity to
different visual components. Also, everything which is done through a storyboard can be
achieved with pure code, but it takes a lot more code.

In the next chapter, we will discuss different data structures that should be used while
working with data. We will focus on experimenting with different protocols and the
presentation of the data in iOS apps.

6
How to Use Data Structures,

OOP, and Protocols
In this chapter, we will begin with a short introduction of the primary collection
types—array, set, and dictionary. Then, we learn how to visually present a collection.
Finally, we will finish with a real application that displays information using a list. In the
implementation, we will use OOP and protocols to handle the visualization of the data in
an elegant fashion.

In this chapter, we will cover the following topics:

Primary collection types
List of items in a playground
Table view in iOS app
Protocols

Primary collection types
In Swift, there are three collection types (for simplicity, we will discuss only mutable
collections):

Array: An ordered (indexed) list of values which are from the same data type
Set: An unordered collection of unique values from the same data type
Dictionary: An unordered collection map (key -> value), which links a key with a
value, and the keys should be unique and from the same data type

Each collection has a fixed data type and there is no way to store values from different data
types in the collection. This will become clear later in the chapter.

How to Use Data Structures, OOP, and Protocols Chapter 6

[141]

Array, dictionary, and set are implemented using generics and are called
generic collections.

Generics
Generics is a pattern approach to defining custom types or functions. They can work with
any type that meets the desired requirements. This is a really powerful feature of Swift. The
Swift standard library contains many classes, structures, enumerations, and functions
which are defined as generic types.

This is why you can create different collections which contain either string or int, and Swift
handles this without a problem. There is one robust generic implementation of the array
structure which handles all different cases.

To illustrate the generics, we will define a generic structure which contains a raw data field
and description, which is a string:

struct Item<T> {
 var raw: T
 var description: String

 init(raw: T, description:String = "no description") {
 self.raw = raw
 self.description = description
 }
}
var itemInt:Item<Int> = Item(raw: 55, description: "fifty five")
print("This is an int \(itemInt.raw) with description -
\(itemInt.description)")

var itemDouble:Item<Double> = Item(raw: 3.14, description: "Pi")
print("This is an int \(itemDouble.raw) with description -
\(itemDouble.description)")

This shows that we can create different concrete classes, where the template classes listed in
brackets (like < T >) are linked with real data types.

Similar to structures, classes and enums can be defined in the same generic manner. Every
generic type can be used only if the template types are linked with an exact data type that
fulfills the requirements.

How to Use Data Structures, OOP, and Protocols Chapter 6

[142]

Let's get familiar with the details of some data collections that saw earlier in the book. The
first collection type is array.

Array
If you want to store values of the same type in an ordered list, then you have to use an
array collection. The collection is part of Swift and it is implemented as a structure. There is
an easy way to access each value—using its index (it should be valid). The same values can
appear many times at different indices.

The array type is generic, which is why we can create arrays which hold different types of
data such as strings, ints, doubles, and custom data types. Here is how you can define an
array of string values:

var words = Array<String>(arrayLiteral: "one", "two", "three")
// short syntax using literals
//var words = ["one", "two", "three"]

for word in words {
 print(word)
}

Swift is pretty clever and can easily figure out the type of an array, which is declared using
an array literal (list which is enclosed with []). (The previous example contains an
example in the comments.)

To create an empty array (of ints), you can use one of the following approaches:

//empty array of int-s
var emptyArrayOfInts = [Int]()
//empty array of int-s
var emptyArrayOfInts2 = Array<Int>()
//the variable type is Array<Int> and the value is empty Array
var emptyArray:[Int] = []

Also, you can use the handy constructor to create a list of repeating values from a certain
type:

var tenZeros = Array(repeating: 0, count: 10)
print("The number of items is \(tenZeros.count).")

How to Use Data Structures, OOP, and Protocols Chapter 6

[143]

Be careful when using the aforementioned initializers. When you create an
array of repeating objects, the passed object will be shared and will be
used in the array.

If you have two arrays, the default operator + works like a concatenation of the two arrays
in a new one. For example:

var even = [2, 4, 6]
var odd = [1, 3 ,5]
var concatenated = even + odd
print(concatenated)

When working with arrays, you will need some pretty handy functions, which are part of
the array interface. Let's check some of them out:

.count: A property, which is read-only and returns the number of items in the
concrete array instance
.isEmpty: A property, which is read-only and returns true if, and only if, the
array instance has no items
.append(_:): A function which appends an item to the array instance (add the
new item to the end of the list); an alternative option is to use the += operator
.insert(_:at:): A function which inserts an item at a specific position in the
array instance
.remove(at:): A function which removes an item at the specific positions, but
the position (index) should be correct; the removed item is returned

Subscripts are a pretty neat way to access particular item(s) using the correct position in the
array. The positioning starts from 0. Subscripts with ranges can be used to get a slice of the
items without any trouble.

The minimal index in an array is 0. The maximal valid index for any non-empty array is
array.count - 1:

//the concatenated array contains [2, 4, 6, 1, 3, 5]
var part = concatenated[2...4]
print(part)
//prints [6, 1, 3]

Range types are used to define sets of indices. They could be half-opened ranges or closed
ranges—2..<4 includes 2 and 3; in contrast 2...4 contains 2, 3, and 4.

How to Use Data Structures, OOP, and Protocols Chapter 6

[144]

There are many ways to iterate over items in an array. We can use the for...in loop like
so:

for value in concatenated {
 print("Item: \(value)")
}

for (index, value) in concatenated.enumerated() {
 print("Item #\(index + 1): \(value)")
}

The first for loop goes through all values in the array. The second one does the same, but
we have assigned indices to all items and we can use those to enumerate each item.

Now, let's get familiar with a set collection, which stores only unique values and there is no
order.

Set
Set is a collection which stores values of the same type, but just a single copy of it. There is
no order in this collection. The set can be used instead of an array, if the item order is not
taken into account. The benefit when using set is that each value will appear only once.

The types which can be stored in a set must be hashable (must implement the Hashable
protocol—for more information, read about protocols later in this chapter). A hash value
(we can think of a corresponding int) can be calculated for each hashable object. For equal
objects, the same hash value is assigned.

A hash value shouldn't be stored, because it might differ between
different executions of a program.

For example:

let a = 5
let b = 5

if a.hashValue == b.hashValue {
 print("a == b")
} else {
 print("a != b")
}

How to Use Data Structures, OOP, and Protocols Chapter 6

[145]

A custom type can be used in a set if you implement the Hashable
protocol.

Here is how we can create a set of strings:

var phrases = Set<String>()
phrases.insert("hello")
phrases.insert("world")
phrases.insert("hel" + "lo") //"hello"

for item in phrases {
 print(item)
}

There is no short way to create a set, like [] for array. But we can use an array to initialize a
set:

var cars:Set = ["Tesla", "Ferrari", "Audi"]
for item in cars {
 print(item)
}

The order of strings in the array is not the same when they are printed in the console. This
is because there is no order in the set.

The type of the set could be specified like Set<String> but as you can see, Swift is smart
enough to infer the type, because the right part is [String] and then it can be converted to
Set<String>.

The set provides a pretty similar interface to the array. It has the following methods and
properties, which are similar or completely identical:

.count: A property which is read-only and returns the number of items in the
concrete set instance
.isEmpty: A property which is read-only and returns true if, and only if, the set
instance has no items
.insert(_:): A function which inserts an item in the set instance
.remove(_:): A function which removes an item and returns it; if the item is not
part of the set, then nil is returned

How to Use Data Structures, OOP, and Protocols Chapter 6

[146]

When we are working with two or more sets, we can effectively execute the fundamental
operations:

Intersection (of two sets, a and b): This returns the items which are part of both
sets
Union (of two sets, a and b): This returns a set of all items whose items are part
of the first or the second set
Substracting (of two sets, a - b): This returns all items which are part of the first
set, but are not part of the second set
Symmetric difference (of two sets, a and b): This returns all items which are not
part of the intersection but are part of either the first or the second set

The following diagram sketches the two sets, a and b, and the results of all operations:

Here is the code which shows the same operations in Swift:

var cars:Set = ["Tesla", "Ferrari", "Audi"]

var electricCars:Set = ["Tesla", "Volkswagen"]

var intersection = electricCars.intersection(cars)
print("Intersection: \(intersection)")
//Intersection: ["Tesla"]

var union = electricCars.union(cars)
print("Union: \(union)")
//Union: ["Ferrari", "Volkswagen", "Audi", "Tesla"]

How to Use Data Structures, OOP, and Protocols Chapter 6

[147]

var substract = electricCars.subtracting(cars)
print("Substract: \(substract)")
//Substract: ["Volkswagen"]

var symetricDifference = electricCars.symmetricDifference(cars)
print("Symetric difference: \(symetricDifference)")
//Symetric difference: ["Ferrari", "Volkswagen", "Audi"]

We can also check some other basic relations, such as:

isSubset(of:): This is true if all items of the first set are part of the second one
isSuperset(of:): This is true if all items of the second set are part of the first
one
isDisjoint(with:): This is true if two sets don't have intersections

The previous example could be continued like this to demo the new functions we discussed
earlier:

if electricCars.isSubset(of: union) {
 print("Each set is a subset of the union of all sets.")
}

if union.isSuperset(of: cars) {
 print("The union is super set of all sets.")
}

if electricCars.isDisjoint(with: cars) {
 print("The two sets doesn't have common items.")
} else {
 print("The two sets have at least one common item.")
}

The functions are pretty handy when working with sets of data. They have strict versions
such as .isStrictSubset(of:) and .isStrictSuperset(of:).

With the collections which we know so far (array and set), we can keep track of values,
but there is no easy way to associate a certain value with a specific key/ID. The array has
indices, but they are not very expressive. The problem which is hard to solve is that if we
need a value that fulfills certain requirements, then we have to go through all values and
find the one which fits. Of course, in Swift there is a special type of collection called
dictionary, which can help us solve similar problems. In the next section, we will dive into
the detail, of what a dictionary is and when we should use it.

How to Use Data Structures, OOP, and Protocols Chapter 6

[148]

Dictionary
A dictionary stores a set of keys of a specific type, which are associated with values from a
specific type (keys and values may have the same type, but this is not the case in general).
The key feature of the dictionary collection is the association. The data is not ordered like in
the set, but we have a powerful way to find data based on its key. Usually, a dictionary is a
map which keeps all relations between the keys and the data items.

The key type should conform to the Hashable protocol. (See the Sets
section from this chapter.)

Here is how we can define a dictionary in Swift:

var animalsDictionary = Dictionary<String, String>(dictionaryLiteral:

("dog", " "), ("cat", " "))

var animalsDictionaryLiteral = ["dog": " ","cat": " "]
//adding a new association

animalsDictionary["bird"] = " "
for association in animalsDictionary {
 print("\(association.key) -> \(association.value)")
}

We can construct a dictionary using the default construction, defining the type of the key
and the type of the values in < >, as in the preceding example as Dictionary<String,
String>() or the short type [String:String]. There is a short literal syntax for creating
a dictionary. It's close to defining an array but every value is preceded by a key. For
example: ["dog": " ","cat": " "]. If you want to create an empty dictionary, you
have to define its type and you can use the empty dictionary literal [:] or
[<key_type>:<value_type]():

var emptyDict:Dictionary<Int, String> = [:]
var emptyMap = [Int: String]()

The dictionary object has a similar public interface to the array:

.count: A property, which is read-only and returns the number of items in the
concrete dictionary instance
.isEmpty: A property, which is read-only and returns true if and only if the
dictionary instance has no items

How to Use Data Structures, OOP, and Protocols Chapter 6

[149]

.updateValue(_:forKey:): This function can be used to assign a specific
value to a specific key

Only a single value can be stored per unique key.

.removeValue(forKey:): A function which removes a key-value pair and
returns the value, if such a key exists; if the key is not part of the dictionary, then
nil is returned

Using subscripts, we can easily add, update, and check if a value is associated with a
specific key. Thus, the type returned when accessing a specific key is the optional version of
the type of the values.

We can use for...in to iterate over the dictionary data. Here are some examples:

//all pairs
for (animalName, animalEmoji) in animalsDictionary {
 print("\(animalName) -> \(animalEmoji)")
}

//all keys
for animalName in animalsDictionary.keys {
 print("\(animalName)")
}
//all values
for animalEmoji in animalsDictionary.values {
 print("\(animalEmoji)")
}

We have easy access to all keys and all values. We can easily convert those to set or array
collections:

var allEmojis = [String](animalsDictionary.values)
var allAnimals = [String](animalsDictionary.keys)

The following section discusses the data structure in general and their good and bad sides.
There are some nice examples showing where each one should be used.

How to Use Data Structures, OOP, and Protocols Chapter 6

[150]

How to choose the best collection type
When solving real-life problems, you can start using the default data collections. These
collections have strong sides, but they have weak sides as well. We will scratch the surface
of the different data structures here, but there are many other books which discuss pretty
complex data structures in detail. When you are developing an algorithm in which every
second matters, then you have to pick the best data structures which could do the job in no
time.

Each data structure has a specific interface and many actions (operations with the data),
such as:

Insert an item
Look up (search) for an item
Remove an item
Sort all items
Check whether some values exist, and so on

Each operation is taking a different amount of time based on the collection's internal
implementation.

Based on the mostly used operations (search, insert, remove, and sort), we can prefer
certain collections for some specific common tasks. Here are a few helpful tips which you
can follow. For example:

If you have to search for an item by some key, then the correct collection is
dictionary. Everything else won't be that fast. If you are looking for a particular
value in an array, then you have to go through all the items (if they are not
sorted) until you find what you are looking for.
If you need sorted values in the end, then all the structures will work with
similar speed. Simply store the sorted values in an array.
If you need a sorted structure, which is always sorted after insert or remove
actions, then the best option here is beyond the basic collection types. For
example, you can achieve this with a heap data structure or a B-tree. But be
careful when you are using a specific data structure. Each one has strengths and
weaknesses and you have to pick the best one that fits your needs.

In the next section, we will render a list of items using UICollectionView in a
playground. We will discuss some tips on how to do this easily.

How to Use Data Structures, OOP, and Protocols Chapter 6

[151]

List of items in a playground
In this chapter, we will get familiar with different collections of data. They are pretty useful
for storing data in memory and to work with, but in many cases we should present a
collection of the data to the user. In the previous chapter, we discussed some nice UI iOS
components which can be used in our app. Now, we will learn how to present an array of
values in a simple collection view. To show this, we will use a playground and do some
experiments with the view.

UICollectionView
UICollectionView is a visual component which presents ordered collections of data items
using custom layouts. By default, iOS comes with one pretty robust
layout—UICollectionViewFlowLayout which orders all items in a grid. But the
underlying hierarchy gives an abstract class—UICollectionViewLayout which could be
used as a basis for new layouts. We will discuss that later in this section. Now, let's create a
basic UICollectionView:

Create an empty playground.1.
Add the following imports:2.

import UIKit
import PlaygroundSupport

Create a basic view controller class, which will be displayed:3.

class CollectionViewController : UICollectionViewController {
 var data:[String]

 init(data:[String], collectionViewLayout layout:
 UICollectionViewLayout) {
 self.data = data
 super.init(collectionViewLayout: layout)
 }
 //this is required and we simply delegate
 required init?(coder aDecoder: NSCoder) {
 self.data = []
 super.init(coder: aDecoder)
 }

 override func viewDidLoad() {
 super.viewDidLoad()
 self.collectionView?.backgroundColor = .white

How to Use Data Structures, OOP, and Protocols Chapter 6

[152]

 self.collectionView?.register(UICollectionViewCell.self,
 forCellWithReuseIdentifier: "Cell")
 }

 //how many items we have in each section
 override func collectionView(_ collectionView:
 UICollectionView, numberOfItemsInSection section:
 Int) -> Int {
 return self.data.count
 }

 override func collectionView(_ collectionView:
 UICollectionView, cellForItemAt indexPath:
 IndexPath) -> UICollectionViewCell {
 let cell = collectionView.dequeueReusableCell(
 withReuseIdentifier: "Cell", for: indexPath)
 cell.backgroundColor = .green

 return cell
 }
}

var animals = ["Cat", "Dog", "Bird", "Mouse", "Elephant"]

var flowLayout = UICollectionViewFlowLayout()

var controller = CollectionViewController(data:animals,
collectionViewLayout: flowLayout)

PlaygroundPage.current.liveView = controller
PlaygroundPage.current.needsIndefiniteExecution = true

How to Use Data Structures, OOP, and Protocols Chapter 6

[153]

Then, switch to the Assistance Editor using the Assistant button () or use4.
the menu, View | Assistant Editor | Show Assistant Editor. Then, you will see
the code of the playground on the left and the interactive visual component on
the right (if you don't see anything on the right, try to close and reopen the Xcode
app):

The collection view displays five green rectangles. Now, we have to customize the look and
feel of each cell, so we can see the emoji representing each animal. If we append another
animal such as a bear to the collection before passing it to the view controller, then we will
see another green rectangle or six in total.

The data which we passed to the view collection is not visible yet. We have to create a
custom ViewCell which will be used to render the data on the screen.

How to Use Data Structures, OOP, and Protocols Chapter 6

[154]

UICollectionViewCell
To render something more than solid color rectangles, we need a custom cell view that will
be used to display the data. With that in mind, we have to create a custom cell class which
inherits from UICollectionViewCell. Because we will construct those cells with code
(not using a storyboard layout), then we have to implement a specific constructor. If we
have to use a storyboard, then we should implement the init(coder:NSCoder) method.
It's called once the storyboard is rendered on the screen.

Here is how we can start:

/**
 * Custom UICollectionViewCell which has a label on top.
 */
class AnimalCollectionViewCell :UICollectionViewCell {
 private var _label: UILabel

 override init(frame: CGRect) {
 let fr = CGRect(x: 0, y: 0, width: frame.size.width,
 height: frame.size.height)
 _label = UILabel(frame:fr)
 super.init(frame: frame)

 _label.text = "?"
 _label.textAlignment = NSTextAlignment.center
 addSubview(_label)
 }
 // used when the UI is initializes from storyboard
 required init?(coder aDecoder: NSCoder) {
 _label = UILabel()
 super.init(coder:aDecoder)
 _label.text = "?"

 addSubview(_label)
 }

 public var emoji:String? {
 set {
 _label.text = newValue
 }

 get {
 return _label.text
 }
 }
}

How to Use Data Structures, OOP, and Protocols Chapter 6

[155]

With the preceding code, we have defined a custom cell, which has a label with the same
size as the cell. The text is centered.

Now, we should let our CollectionView know about this new cell which we want to use.
We should register the new cell class:

self.collectionView?.register(AnimalCollectionViewCell.self,
forCellWithReuseIdentifier: "Cell")

We are simply replacing our current default cell class with this new, much powerful one. In
general, we can register more than one cell type and mix those, but for simplicity, we will
stick to only one.

Then, we have to replace the function which is invoked when a new cell should be
displayed:

override func collectionView(_ collectionView: UICollectionView,
cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {
 let cell:AnimalCollectionViewCell =
collectionView.dequeueReusableCell(withReuseIdentifier: "Cell", for:
indexPath) as! AnimalCollectionViewCell
 cell.backgroundColor = .green

 let animal = self.data[indexPath.row]
 cell.emoji = animal
 return cell
}

The key changes here are:

The type of the cell is changed to AnimalCollectionViewCell.1.
We fetch the current data from the collection:2.

let animal = self.data[indexPath.row]

We update the cell's content using its interface:3.

cell.emoji = animal

When we run the example, we will see that each cell displays the animal's name:4.

How to Use Data Structures, OOP, and Protocols Chapter 6

[156]

This is cool, but let's try to make our example a bit fancy. Why not try to display the emoji
instead of regular text? Yes, we can achieve this pretty easily.

Let's create a dictionary, next to our controller instance:1.

var animalsToEmoji = ["Cat": " ", "Dog": " ", "Bird": " " ,

"Mouse" : " ", "Elephant" :" ","Bear":" "]

Then store that map (dictionary) in the UICollectionView. First, add a2.
property to the CollectionViewController:

var dataMap:[String:String]?

Then, assign the dictionary to our controller instance:3.

controller.dataMap = animalsToEmoji

Use the data from the map. Add the following rows before the return statement4.
in the collectionView(_ collectionView: UICollectionView,
cellForItemAt indexPath: IndexPath) method:

if self.dataMap != nil {
 cell.emoji = self.dataMap?[animal]
} else {
 cell.emoji = animal
}

Here is the final result:5.

How to Use Data Structures, OOP, and Protocols Chapter 6

[157]

It's good to know when an item has been selected. To do so, we have to set a delegate to the
UICollectionView and when an item is selected (touched), then a specific method from
that delegate will be invoked.

The delegation is a design pattern which is used when specific duties should be delegated
to an unknown type. The only restriction is that this type should implement a specific
protocol (fulfill certain requirements). Usually, the class which delegates some actions
defines a protocol, which will be used when those actions are activated. The delegate will
be invoked when an action is triggered.

In our particular example, we need a UICollectionViewDelegate. We can create a new
instance which conforms to the UICollectionViewDelegate protocol (we will see
protocols later in this chapter) or we can use CollectionViewController, which already
conforms to this protocol. The only thing is to override the function as follows:

override public func collectionView(_ collectionView: UICollectionView,
didSelectItemAt indexPath: IndexPath) {
 let animal = self.data[indexPath.row]
 print(animal)
}

Once you see a working example, if you click on certain cells, the name of the animal will
be printed in the console.

Reusing cells
The current implementation reuses the cells which are leaving the screen. This means that
only a minimal number of cells are stored in memory and they are reused. This speeds up
the scrolling experience because there is no need to create new visual objects when the user
scrolls. The benefit is visible only in cases when the data that should be visualized can't fit
on one screen.

All visual collections such as UITableView and UICollectionView use the same way of
optimization and cell reuse. Here are the steps which you should do to use this
optimization.

First, the cell class should be registered in the collection view. In our case, this happens in
the viewDidLoad method:

self.collectionView?.register(AnimalCollectionViewCell.self,
forCellWithReuseIdentifier: "Cell")

How to Use Data Structures, OOP, and Protocols Chapter 6

[158]

There is an alternative method which can be used to register a visual component defined in
a storyboard or a .nib file using the following function:

func register(_ nib: UINib?, forCellWithReuseIdentifier identifier:
String)

With this method, later you will be able to reuse all cells from the same type. The collection
view will know which class to use when a new cell is created or reused.

The key magic happens in the following method:

override func collectionView(_ collectionView: UICollectionView,
cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {
 //reuse a cell or create a new ine
 let cell:AnimalCollectionViewCell = collectionView
 .dequeueReusableCell(withReuseIdentifier: "Cell",
 for: indexPath) as! AnimalCollectionViewCell
 cell.backgroundColor = .green

 let animal = self.data[indexPath.row]
 cell.emoji = animal

 if self.dataMap != nil {
 cell.emoji = self.dataMap?[animal]
 } else {
 cell.emoji = animal
 }

 return cell
}

The code returns a view cell that is marked as reused. (A cell is marked for reuse when it
leaves the screen and is not visible anymore.) This call may return nil if the identifier is not
correct or there is no view cell registered yet:

collectionView.dequeueReusableCell(withReuseIdentifier: "Cell", for:
indexPath)

In the function func collectionView(_ collectionView: UICollectionView,
cellForItemAt indexPath: IndexPath) -> UICollectionViewCell, you should
get a cell view and update its presentation based on the data which corresponds to the
indexPath parameter. This method should be optimized because it's called many times
while the user is scrolling through the data. It does the magic and simulates a long
collection, but in fact, only a couple of views are scrolled on the screen (a few more than the
visible ones).

How to Use Data Structures, OOP, and Protocols Chapter 6

[159]

When you have to present really long collections of data, be careful using this technique.
Your application will be butter smooth and your users will find it slick and cool.

In the next section, we discuss different layouts which define the internal arrangement of
all items.

Layouts
The layout object is responsible for positioning the items in the collection view. It can be
used to customize the appearance of each cell inside the UIViewCollection. There are
different cell types (decorators) which can be specified. Now, we will discuss the default
layout implementation,
UICollectionViewFlowLayout.

This layout arranges all items in a grid. It's a perfect solution for the multi device apps
because it uses the whole screen estate and it's different for different iOS devices. The
algorithm positions all items on the screen using the whole available space, starting from
top to bottom. Based on the scroll direction, the next cells are populated with views. The
class provides a neat delegate object of type ICollectionViewDelegateFlowLayout
through which you can control the item size and the spacing between them. You can define
the header and the footer sizes for a particular section. Details about the naming of each
specific method can be found in the official iOS documentation: https:/ /developer.
apple.com/documentation/ uikit/ uicollectionviewdelegateflowlayout

The layout class stores default values which are used if no delegate is assigned. Let's try to
experiment slightly with some values for itemSize to show how powerful the layout is:

flowLayout.itemSize = CGSize(width: 200, height: 200)

We can change the padding between items:

flowLayout.minimumLineSpacing = 50.0

We can also change the direction of scrolling:

flowLayout.scrollDirection = UICollectionViewScrollDirection.horizontal

If you want to define a custom layout you have to inherit UICollectionViewLayout.
Your class should provide the default attributes of each view. The attributes are stored in
instances of UICollectionViewLayoutAttributes or a custom class which inherits from
this one.

https://developer.apple.com/documentation/uikit/uicollectionviewdelegateflowlayout
https://developer.apple.com/documentation/uikit/uicollectionviewdelegateflowlayout
https://developer.apple.com/documentation/uikit/uicollectionviewdelegateflowlayout
https://developer.apple.com/documentation/uikit/uicollectionviewdelegateflowlayout
https://developer.apple.com/documentation/uikit/uicollectionviewdelegateflowlayout
https://developer.apple.com/documentation/uikit/uicollectionviewdelegateflowlayout
https://developer.apple.com/documentation/uikit/uicollectionviewdelegateflowlayout
https://developer.apple.com/documentation/uikit/uicollectionviewdelegateflowlayout
https://developer.apple.com/documentation/uikit/uicollectionviewdelegateflowlayout
https://developer.apple.com/documentation/uikit/uicollectionviewdelegateflowlayout
https://developer.apple.com/documentation/uikit/uicollectionviewdelegateflowlayout
https://developer.apple.com/documentation/uikit/uicollectionviewdelegateflowlayout
https://developer.apple.com/documentation/uikit/uicollectionviewdelegateflowlayout
https://developer.apple.com/documentation/uikit/uicollectionviewdelegateflowlayout

How to Use Data Structures, OOP, and Protocols Chapter 6

[160]

First, we have to create a new subclass of UICollectionViewLayout with the name
PuzzleViewLayout. The following methods should be implemented:

prepare() : This method is called before the initial layout operation. In this
function, your class should calculate the content's view size (approximately if
exactly is not possible) and all items should be positioned.
collectionViewContentSize : CGSize : The property should return the
width and height of the whole content of the collection, not only on the visible
part.
layoutAttributesForElements(in rect: CGRect) ->

[UICollectionViewLayoutAttributes]? : This method will be called several
times and you should return the attributes for all items in the collection which
are part of the given rectangle.

Here is what a custom layout may look like:

How to Use Data Structures, OOP, and Protocols Chapter 6

[161]

Here is the code that achieves something basic:

class PuzzleViewLayout : UICollectionViewLayout {
 // number of columns in the layout
 var columns: Int = 2
 var padding: CGFloat = 6.0
 //collection of all attributes
 var layoutAttributes = [UICollectionViewLayoutAttributes]()
 //size of the content
 var contentHeight: CGFloat = 0.0
 var contentWidth: CGFloat = 0.0

 //prepare function is in the next code block

 //return size of the whole view collection
 override var collectionViewContentSize : CGSize {
 return CGSize(width: contentWidth, height: contentHeight)
 }
 override func layoutAttributesForElements(in rect: CGRect)
 -> [UICollectionViewLayoutAttributes]? {
 var attrs = [UICollectionViewLayoutAttributes]()
 //send all items which are visible in the current rectangle
 for itemAttributes in self.layoutAttributes {
 if itemAttributes.frame.intersects(rect) {
 attrs.append(itemAttributes)
 }
 }
 return attrs
 }
}

In the preceding code, we extend the UICollectionViewLayout. The prepare function of
the class is given here:

 //should be part of the class above
 override func prepare() {
 layoutAttributes.removeAll()
 let insets = collectionView!.contentInset
 self.contentWidth = collectionView!.bounds.width -
 (insets.left + insets.right)
 let columnWidth = self.contentWidth / CGFloat(columns)
 var column = 0
 //vertical offset
 var topOffset = [CGFloat](repeating: 0, count: columns)
 //horizontal offset
 var offset = [CGFloat]()
 for column in 0 ..< columns {

How to Use Data Structures, OOP, and Protocols Chapter 6

[162]

 offset += [CGFloat(column) * columnWidth]
 }
 //consider only the first section
 let section = 0
 for item in 0 ..< collectionView!.numberOfItems(inSection: section)
{
 let indexPath = IndexPath(row: item, section: section)
 //pick the height of each cell at random
 let height:CGFloat = 70 + CGFloat(arc4random_uniform(25) * 10)
 //use the precalculated values from the previous items
 let frame = CGRect(x: offset[column], y: topOffset[column],
 width: columnWidth, height: height)
 let insetFrame = frame.insetBy(dx: padding, dy: padding)
 let attributes = UICollectionViewLayoutAttributes(
 forCellWith: indexPath)
 attributes.frame = insetFrame
 self.layoutAttributes.append(attributes)
 //stretch the content view bounds
 self.contentHeight = max(frame.maxY, contentHeight)
 //move to the next y position
 topOffset[column] = topOffset[column] + height
 //move to the next column and always stay in valid index
 [0 .. columns - 1]
 column = (column + 1) % columns
 }
 }

The prepare method calculates the positions of each cell and caches the result in
the layoutAttributes collection.

If you want to use it in real products, then you can tweak it a bit, so that it works for more
than one section. The layoutAttributesForElements method might be optimized if you
pick the correct data structures.

In the next section, we will discuss another view controller which presents many records
vertically. The user is able to scroll through the data, filter it, select records, and do other
actions. Without further discussion, let's try to implement a single view app, which
displays UITableViewController, which lists cities in Europe.

How to Use Data Structures, OOP, and Protocols Chapter 6

[163]

Table view in iOS app
First, let's create a new single view Xcode project with the default language Swift and target
OS—iOS. We already know how to do this from previous chapters:

Open the storyboard and add a new table view controller. (Use the Utilities panel and the
object library. If you filter the controls, you will find the Table View Controller in no time.)
You should see two view controllers on the screen:

How to Use Data Structures, OOP, and Protocols Chapter 6

[164]

Two view controllers on the screen

Use a different scale level so that you can see more scenes at once.

Drag the gray/blue arrow (the one on the left) from the default view controller to the new
view controller. This arrow defines which scene (screen) is the app's initial view controller.
You can remove the other view controller, which we won't use.

How to Use Data Structures, OOP, and Protocols Chapter 6

[165]

Before defining the table cells, which should be used to render each item in the table, we
need to sort out where the data will come from. For simplicity, the app will use a
hardcoded list of countries. Each of them will have one or more cities and exactly one of
those cities, will be the capital of that country.

Model list of cities
Let's create a file that stores the hardcoded data. Then, we will define the model classes
which will be used in our app.

We need a class that represents a country, another that defines a city, and a special class
that represents a capital. It will inherit from the City class.

Here is the Swift code that defines this hierarchy:

class Country {
 var name = "No name"
 var cities:[City] = []
 init(name:String) {
 self.name = name
 }
 init(name:String, cities:[City]) {
 self.name = name
 self.cities = cities
 }
}

class City {
 var name: String
 var population: Int
 init(name:String, population:Int) {
 self.name = name
 self.population = population
 }
}

class Capital: City {
 var isActive = true
}

How to Use Data Structures, OOP, and Protocols Chapter 6

[166]

All the building blocks are already implemented. In a separate extension, we will define a
static function that returns a list of countries. The data here can be extended:

extension Country {
 static public func getHardcodedData() -> [Country] {
 var countries:[Country] = []
 //add some european countries
 let germany = Country(name:"Germany")
 germany.cities += [Capital(name: "Berlin", population: 3_426_354)]
 germany.cities += [City(name: "Hamburg", population: 1_739_117)]
 germany.cities += [City(name: "Munich", population: 1_260_391)]
 germany.cities += [City(name: "Cologne", population: 963_395)]
 countries.append(germany)
 let italy = Country(name: "Italy")
 italy.cities += [Capital(name:"Rome", population:2_648_843)]
 italy.cities += [City(name:"Milan", population:1_305_591)]
 italy.cities += [City(name:"Naples", population:1_046_987)]
 italy.cities += [City(name:"Venice", population:297_743)]
 countries.append(italy)
 let france = Country(name:"France")
 france.cities += [Capital(name:"Paris", population: 2_152_000)]
 france.cities += [City(name:"Marseille", population: 808_000)]
 france.cities += [City(name:"Lyon", population: 422_000)]
 countries.append(france)
 let uk = Country(name:"United Kingdom")
 uk.cities += [Capital(name:"London", population: 7_074_265)]
 uk.cities += [City(name:"Birmingham", population: 1_020_589)]
 uk.cities += [City(name:"Leeds", population: 726_939)]
 uk.cities += [City(name:"Glasgow", population: 616_430)]
 countries.append(uk)
 let spain = Country(name:"Spain")
 spain.cities += [Capital(name:"Madrid", population: 2_824_000)]
 spain.cities += [City(name:"Barcelona", population: 1_454_000)]
 spain.cities += [City(name:"Valencia", population: 736_000)]
 countries.append(spain)
 return countries
 }
}

How to Use Data Structures, OOP, and Protocols Chapter 6

[167]

Open ViewController.swift and replace the current implementation with the following
code:

class ViewController: UITableViewController {
 var countries:[Country] = []
 override func viewDidLoad() {
 super.viewDidLoad()
 countries = Country.getHardcodedData()
 }
}

We have our hierarchy and a static function that returns the test data that we want to
display in our app.

Now, we should update the code, so we can see the name of the cities on the screen.

Displaying all cities
First, we have to update the storyboard. Then, we should write some code to feed the data
into the UITableViewController:

Open the Main.storyboard.1.
Then, select the Table View Controller.2.
Open the Identity Inspector (cmd + Alt + 3).3.
Select the class value to be ViewController. This visual component will use our4.
previous table's implementation.

In the Interface Builder, we can associate a custom class with any visual
component. The only limitation is that the class should be derived from
the default component class.

Expand the Table View and select the Table View Cell. Open the Utilities panel5.
(cmd + Alt + 4) and select the Attributes Inspector.

How to Use Data Structures, OOP, and Protocols Chapter 6

[168]

You have to set the cell identifier so that we can create as many copies as we need in the
future. Set it to Cell. Then, change the cell style to Subtitle. We will display the city name at
the top and its population:

Cell

It's good to add a title to the TableViewController. To do that, we will add a navigation
view controller. This can be easily achieved like this:

 Select the view controller.1.
Then, click on Editor | Embed In | Navigation Controller.2.

How to Use Data Structures, OOP, and Protocols Chapter 6

[169]

After this step, our storyboard should look like this:

Then, we have to set a title for the TableViewController. We have to select the
Navigation toolbar and change the title text to Cities.

To start serving the real data, we need a couple of extra functions. First, we should define
the number of all sections—this is equal to the number of all countries. Here is the function
which you should add to the ViewController:

override func numberOfSections(in tableView: UITableView) -> Int {
 return countries.count
}

How to Use Data Structures, OOP, and Protocols Chapter 6

[170]

Then, every section should know how many items are in it. Thus, we should return the
number of cities in each country object:

override func tableView(_ tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {
 return countries[section].cities.count
}

Each section should have a name. This name will be the name of the country. The string
returned by the following function will be used to label the separators of each section:

override func tableView(_ tableView: UITableView, titleForHeaderInSection
section: Int) -> String? {
 return countries[section].name
}

We have to update the content of each cell. To make the scrolling like butter, it's good to
keep the execution of func tableView(_ tableView: UITableView, cellForRowAt
indexPath: IndexPath) -> UITableViewCell pretty short and not CPU/GPU
intensive. Thus, we will reuse our cells, similar to what we learned for the
UICollectionView:

override func tableView(_ tableView: UITableView, cellForRowAt indexPath:
IndexPath) -> UITableViewCell {
 let cell:UITableViewCell =
self.tableView.dequeueReusableCell(withIdentifier: "Cell", for: indexPath)

 let country = self.countries[indexPath.section]
 let city = country.cities[indexPath.row]

 cell.textLabel?.text = city.name
 cell.detailTextLabel?.text = "Population: \(city.population)"

 return cell
}

If you have used another identifier (not Cell) in the Main.storyboard, then you have to
use it when asking for a reusable cell with dequeueReusableCell(withIdentifier:,
for:). Besides that, the method is pretty simple—it just fetched the city and updated the
cell's title and subtitle labels. The current cell template has those two labels because we had
changed its style earlier.

How to Use Data Structures, OOP, and Protocols Chapter 6

[171]

If we execute the code, we will see a list of all cities, separated by country. Here is what it
should look like:

How to Use Data Structures, OOP, and Protocols Chapter 6

[172]

We will print the selected city into the console. To do so, we should override a method
which is implemented by the table controller, because it confirms the
UITableViewDelegate:

override func tableView(_ tableView: UITableView, didSelectRowAt indexPath:
IndexPath) {
 let country = self.countries[indexPath.section]
 let city = country.cities[indexPath.row]
 print("City \(city.name) was selected.")
}

The current data is not that huge. In general cases, the number of records will be far more,
which makes it pretty hard for the user to find a particular record. It's good to implement a
solution which can help the user. Searching through lengthy collections is something
mandatory for a great app.

Adding search
In this section, we will try to upgrade the latest on-screen app to support a search.

Let's define a UISearchController property in our ViewController:1.

let searchController = UISearchController(searchResultsController:
nil)

Then, we should update the viewDidLoad function to display the search UI in2.
the table. It should contain the following code:

override func viewDidLoad() {
 super.viewDidLoad()
 countries = Country.getHardcodedData()
 //search
 searchController.searchResultsUpdater = self
 searchController.dimsBackgroundDuringPresentation = false
 definesPresentationContext = true
 tableView.tableHeaderView = searchController.searchBar
}

How to Use Data Structures, OOP, and Protocols Chapter 6

[173]

The final step is to implement func updateSearchResults(for3.
searchController: UISearchController), but we should declare that the
view controller conforms to the UISearchResultsUpdating protocol. (You can
read more about the protocols later in this chapter.) To keep our implementation
clean, we will add this functionality in a separate extension:

extension ViewController: UISearchResultsUpdating {
 func updateSearchResults(for searchController:
UISearchController) {
 let searchText =
searchController.searchBar.text!.localizedLowercase
 if searchText.count > 0 {
 var filteredCountries:[Country] = []
 for country in countries {
 if let filteredCountry = filteredCities(in:
country, searchText: searchText) {
 filteredCountries.append(filteredCountry)
 }
 }
 countries = filteredCountries
 } else {
 countries = Country.getHardcodedData()
 }
 tableView.reloadData()
 }
 //helper function for proper filtering
 func filteredCities(in country:Country, searchText:String) ->
Country? {
 let c = Country(name: country.name)
 c.cities = country.cities.filter {
 $0.name.localizedLowercase.contains(searchText)
 }
 return c.cities.count > 0 ? c : nil
 }
}

The function is triggered when the text in the search box is updated. Based on the text, we
should provide a different country list. This is why we need a helper function, which
creates a new country object that contains only the cities which match the search text:

How to Use Data Structures, OOP, and Protocols Chapter 6

[174]

You can verify that our click handler here is working properly with the new filtered
collection. In fact, the new collection and the old collection are the only sources that are
used from the table view.

How to Use Data Structures, OOP, and Protocols Chapter 6

[175]

Keep the table view as simple as possible. Just render a single data
collection (model). If you need to filter it, then update the model and the
view will reflect it.

The following section discusses the protocols and where they can be used. We have seen
them in action in so many places, but it's good to get familiar with their basics.

Protocols
A protocol defines a set of methods, properties, and requirements which should be fulfilled
by a class, structure, or enumeration type. The interface defined by the protocol should be
implemented by the types, which conform to the protocol. The interface is a public one
because all methods and properties in the protocol are public, even though there is no
explicit visibility modifier. (For more information, read more about the visibility levels.)

We can think of protocols as types of contracts to be followed. Once you sign a contract
(conform to a protocol), then you meet certain requirements and then you can be picked for
certain actions.

The definition of a protocol is pretty close to what we know when defining a class,
structure, or enumeration type:

protocol CustomContractProtocol {
 // list of all requirements (methods or properties)
}

When picking a name for a protocol, start with capital letters like the
names of classes, structs, or enums.

When a type conforms to a protocol, the protocol should be listed after the type. Here is
how it should look for classes and structures:

struct MyStruct : CustomContractProtocol {
 //all properties

 //all protocol requirements
 }

 class BaseClass {
 //empty base class

How to Use Data Structures, OOP, and Protocols Chapter 6

[176]

 }

 class MyClass : BaseClass, CustomContractProtocol {
 //all properties

 //all protocol requirements
 }

Here is how we can use the protocol to add some properties and/or method requirements:

protocol GeoLocationProtocol {
 var long: Double { get set }
 var lat: Double { get set }
 var name: String { get }
 //function which calculates distance to specific geo point
 func calculateDistance(to: GeoLocationProtocol) -> Double
}

When conforming to this protocol, the type should provide an implementation of all
requirements. The getter properties required by the protocol could be implemented as
regular properties (with or without setters).

Static methods and properties can be added to the protocol without any problem. If you use
a mutating modifier when defining a protocol, then when implementing this protocol in a
class, you must omit it.

All the initializers which are defined in a protocol, when implemented, should be preceded
by required. Here is an example:

protocol InitProtocol {
 init(from: Int)
}

class MyInt : InitProtocol {
 var value:Int

 required init(from: Int) {
 //code goes here
 self.value = from
 }
 //failable init
 init?(from: Double) {
 self.value = Int(floor(from))

 if(Double(self.value) != from) {
 return nil
 }

How to Use Data Structures, OOP, and Protocols Chapter 6

[177]

 }
}

It's worth mentioning that typical initializers are responsible for constructing a valid object,
but we can define failable initializers, which result in a nil if they fail. They are used when
an optional version of a type is required:

var myInt = MyInt(from: 3)
var myDouble = MyInt(from: 3.2)

if myDouble != nil {
 print("The value is \(myDouble?.value)")
} else {
 print("The object is nil.")
}
//prints The object is nil.

We saw how we can define protocols and how they can be connected with other types. The
protocols are types on their own and they can be used to work with objects which conform
to them.

Protocols and inheritance
Once a protocol is defined, then it is immediately converted to a type. Even though the
protocols do not implement any functionality, they can be used in many places:

For a type of a constant, variable, or property
For a type of values in different collections
For a type of parameters or return types in functions, methods, or initializers

An arbitrary type can conform to a protocol using an extension. This is really handy when
you want to extend a type and make it work with your current hierarchy. To conform to a
protocol, you have to explicitly declare that either when defining the class or when using an
extension. If your type contains all methods and properties required by a protocol, this
doesn't mean that the type conforms to the protocol.

Protocols can be inherited much like classes. A protocol can inherit more than one protocol
and the final result is the union of all requirements:

protocol A {
 var a:Int {get}
}

protocol B {

How to Use Data Structures, OOP, and Protocols Chapter 6

[178]

 var b: Int {get}
}

//protocol inheritance
protocol C: A, B {
 var c: Int {get}
}

class MyTuple : C {
 var a: Int = 0
 var b: Int = 0
 var c: Int {
 get {
 return 7
 }
 }
}

Sometimes, when you want a parameter to conform to two or more protocols, you can use
protocol composition. Protocol composition is to list several protocols with &. For example,
if we want to comply with protocol A and B, then we can define the following function:

func isSpecial(object: A & B) -> Bool {
 return object.a % object.b == 7
}

Protocol composition doesn't define a new protocol. It simply uses a local protocol, which
combines all requirements.

When working with protocols, we need a mechanism to check if a certain protocol has been
implemented. There are two operators to do so:

is: Returns true if an instance implements a protocol.
as: With its two forms, as? and as! can be used to downcast to a specific type. If
as? is used and the casting is not successful, the result could be nil, otherwise,
its result is an optional type of the protocol's type. If as! is used, then the result
is the protocol's type or runtime error, if the cast is not successful.

You can use a combination of is and as! to secure your code from
runtime errors.

How to Use Data Structures, OOP, and Protocols Chapter 6

[179]

We have optional requirements for protocols if we mix the Swift code with Objective-C. We
won't dive too much into detail, but it's good to know that such options exist only because
Swift should be compatible with Objective-C.

Protocols can be extended as well, and in the extension, you can provide a default
implementation of some methods. These implementations will be used if a class conforms
to a protocol and doesn't provide an implementation for this particular method.

A protocol's extensions can use constraints (with where clause) to limit the classes which
should have access to the default implementations.

For example:

extension Collection where Element : A {
 func toPrettyString() -> String {
 var s = ""
 for a in self {
 s += "\(a.a) :)"
 }

 return s
 }
}

var arrayTuples = [MyTuple()]
print(arrayTuples.toPrettyString())

//prints 0 :)

Any other collection which doesn't contain items which conform to protocol A won't have
access to this method.

We have discussed a lot of details about protocols, some of which are pretty handy and will
be used in our applications.

How to Use Data Structures, OOP, and Protocols Chapter 6

[180]

Summary
In this chapter, we refreshed our knowledge of the default data structures array,
dictionary, and set. We understood how to model real data and present it in using
UICollectionView. We saw a working example in a playground and we created a single
view which shows a list of cities and countries in an iOS app. In the end, we decided to add
search functionality to this single screen.

After reading this chapter, you will have a deeper understanding of OOP and data
structures. Each structure should be used when certain constraints are met. There are many
other structures that may fit better when solving a particular problem. The best solution is
to explore the problem and then pick the best match.

In the next two chapters, we will apply what we have learned so far. Namely, we will
implement a small weather app, which consumes data from a public API, visualizes it in a
nice way, and keeps track of favorite locations. We will spend some extra time in the
storyboard and some time writing models, defining controllers and relations between them.

7
Developing a Simple Weather

App
In this chapter, we will develop a Weather app. First, we will define all the screens in the
storyboard, and learn how to open different view controllers and how to create custom
animations between them. Finally, we will understand how to define constraints, and
discuss how to pass information between two view controllers. This chapter covers the
following topics:

Designing an application screen in the storyboard
Defining the model
Showing different screens when a button is pressed
Passing data between view controllers
Constraints and auto layout
Refreshing what we know about UITableView and UICollectionView

Let's begin the development of the Weather app with a definition and what the app should
look like.

Developing a Simple Weather App Chapter 7

[182]

Defining the app screens
Usually, a Weather app displays the weather forecast for a week for a particular location.
We will develop a version that works for a single city and later, we will expand it to fetch
data from the internet. For that reason, here are the screens that we will develop in this
chapter:

The loading screen: Every app has a starting screen, which is displayed while
the app is loading. By default, every project comes with a separate storyboard,
where this can be defined. We will use something pretty plain here and will
allow further customization once we want to make our app a bit slicker.
Main forecast screen: This scene will be our entry point. It will display the
forecast for a particular place. Once we support many locations, this screen
should provide easy navigation to the other locations. For example, the default
weather app that comes with iOS allows us to swipe left or right on the first
screen to reach the next location. We will implement a similar interaction once
we deliver the core functionality of the app.
Favorite locations screen: This screen presents a list of all of the user's favorite
cities. They will be easily reachable from the home screen, and a weather forecast
will be presented for them.
Adding a location screen: The user should be able to pick a city a list. The
selected one will become part of the favorite locations screen.

Developing a Simple Weather App Chapter 7

[183]

The number of scenes is pretty limited at the beginning. Later, we can add extra ones and
try to improve the user experience. The app will start simple and we will add new user
interactions one by one, getting familiar with iOS specifics.
Let's share initial prototypes, which will be used later when defining the scenes and their
relations in the storyboard:

Developing a Simple Weather App Chapter 7

[184]

The preceding screenshot shows the splash screen, which presents minimal information
about the app. To make it nicer, we can add images of the sun, rain, and snow:

Developing a Simple Weather App Chapter 7

[185]

On this screen, the user should see the current date and temperature, and the name of the
location/city. A list of temperatures per hour for the date should follow (or for the next 12
hours). The forecast for the next 5 or 7 days should be placed below. A nice idea is to use
different images and icons, reflecting the weather conditions. We need a button to go to the
favorite locations screen, too, as shown in the following screenshot:

Developing a Simple Weather App Chapter 7

[186]

The list of favorite locations stores all of the user's favorite places. The list can be expanded
by using the Add a location.... button. The button should open the Add a Location screen,
which we will define next. Each item from the list can be removed if the user doesn't need
that location. If there is no location in the list, then a default location is used. In the app, we
will stick to New York as the default location. The following screenshot shows how the
user can pick a location/place:

The preceding screenshot presents a list of all the available locations in the app with a
search functionality at the top for easy navigation through the data. When a specific
location is selected, it will be added to the Favorites screen (the previous one).

Developing a Simple Weather App Chapter 7

[187]

First, you have to create a new project with a single view. Our app will have more than one
screen, but we will learn how to display other scenes later in this chapter. We will define
custom transitions between different ViewControllers that should be displayed on the
screen.

By now, you should be able to create a new Weather App project with the default language
Swift. Xcode is pretty helpful and will generate all of the starting files for us. Please open
the Main.storyboard file and then we can dive into developing each scene. The next step
is to stitch them together, creating a fully functional app.

We learned how to create an iOS project in Chapter 5, Adding Interactivity
to Your First App. Please follow the steps there and you will have a new
project with a local Git repository ready to be shared through GitHub.
Don't forget to commit your changes from time to time to save your
progress.

Before diving into the app's details, we can warm up with the splash screen. This is the very
first screen that is presented once the application is launched. We have full control over it in
LaunchScreen.storyboard. Open this file and add two labels. One should be placed in
the middle of the scene and the other at the bottom in the middle. The final result should
look similar to the following screenshot:

Developing a Simple Weather App Chapter 7

[188]

The next section describes the basic version of the starting scene. We have called this home,
because the user will see this starting screen every time the app is started.

The home screen
There is a single view controller that is visible on the screen if you run the empty project
app. We have to add the key features from the prototype in order to depict the home
screen. Let's start with the name of the place and the weather underneath. The following is
the result that we are looking for:

Developing a Simple Weather App Chapter 7

[189]

To achieve this, you have to add two labels and change their font size. Position them
correctly.

Later in this chapter, we will discuss how to make the layout flexible so
that it looks nice on different iPhone screens. For now, we will focus only
on standard iPhone 6/7/8 devices.

Let's tale a look at the following steps:

We have to add a label that shows the temperature. It should be centered. We1.
also need a degree sign. To insert it, you can navigate to Edit | Emoji &
Symbols. Then, simply start typing degree in the search box at the top and it
will appear. The following screenshot shows what it should look like:

Developing a Simple Weather App Chapter 7

[190]

Next, we should add UICollectionView, which will display the weather2.
forecast on each hour, starting from now. When we drag UICollectionView,
we set the place where the data will be rendered, but we should provide a cell for
each piece of data. We need a cell to display the information. The cell should
have a label to display the time and an image to display the current weather. This
will save us space and allow us to enter another label to display the temperature
at this very moment:

Don't worry if the UI of your app is not perfect. We will have another
iteration to polish it. Right now, we are putting together all of the main
pieces. Later, we will focus on the look and feel.

Don't forget to set the scroll direction of the UICollectionView item to3.
Horizontal. You can do that from Attributes Inspector, which is the fourth tab
(left to right).

Developing a Simple Weather App Chapter 7

[191]

Next, we want to display the forecast for the next 5 days, but not in such detail.4.
We can use UITableView to display the next 5 days with the necessary
information. The storyboard should look like this:

Developing a Simple Weather App Chapter 7

[192]

One last bit; add a button called Favorites. We will use it to pick different5.
locations. Later, we can support a list of favorite locations and then we can have
easy access to any of those. But for now, let's keep the app simple.

You can see all of the items in the Document Outline (the left panel) panel.

You can use the button at the bottom to open or close the Document
Outline panel.

We have the home screen structure created in the storyboard file. The process that we
followed was to convert our initial idea to visual components, which are shallow. Now, we
will move on to the other screens. Later, we will link all of the screens together and we will
add some stub data to see our components in action.

Let's focus on the list of favorite locations. This is the only screen that we can open from the
home screen.

Favorite locations
On this new screen, all of the user's favorite locations will be listed. We need to define a
collection that will allow us to display all of the favorite locations. This list of locations has
to be preserved between application starts. We should be able to add and remove items
from this list. The topmost item will be the target of our weather forecast on the home
screen. The final UI that we have to implement should be close to the following screenshot:

Developing a Simple Weather App Chapter 7

[193]

Here is a short list of steps to explain how to achieve this. First, we have to add a new view
controller to the storyboard. We can drag in a new one from the object library. You should
be pretty comfortable with the Xcode interface already, because we have discussed it in
Chapter 2, Getting Familiar with Xcode and Playgrounds. If you don't feel comfortable, then
you should spend some time with the IDE to understand the most important parts of it. We
need a table view (UITableView), which should fill the whole screen estate. Then, we need
two different types of UICellView. The first one will be used to list all the favorite items
and the other one will be used as a button to open the screen from where we can add other
locations to the favorite ones.

Developing a Simple Weather App Chapter 7

[194]

Let's create first UICellView inside UITableView. We need three labels—one to show the
current time where the location is, another one to show the location name, and one to show
the current temperature. Here is what it looks like:

The other one is pretty simple. Don't forget to add another UICellView view to the table.
You will just need a single label that should be centered in the cell. This can be achieved
with constraints. The constraints are rules, which can be defined to ease the layout of visual
components (UIView) on different device screens.

Constraints
There are a few different ways to create constraints in the interface builder (IB) in Xcode.
One way is to use the mouse and Ctrl key and to drag from one view to the next. This way
gives you control and you can add constraints one by one. Here is what it looks like:

The preceding screenshot shows how a leading constraint is added. You have to select its
type in the following window:

Developing a Simple Weather App Chapter 7

[195]

In the preceding screenshot, you can see that all of the constraints are ready, but you have
to add them manually. Don't panic if you see some red lines in the view. They show the
missing constraints. Once you add all of them, they will be removed:

Another option for adding constraints is to use the handy menu at the bottom of the IB.

First, select the view, and then click on the button . Then, you should see the
following window:

Developing a Simple Weather App Chapter 7

[196]

The red lines show which constraints to the parent view will be added. The number in the
box denotes the distance from each edge. Once you click the button at the bottom of the
window, it will add all of the constraints. The next screen, where you can pick a location,
which should be added to the favorites list, is pretty similar.

Picking a location
The Weather app should allow the user to pick a location and check what the weather
forecast is for that particular place. To keep our example attractive enough, we will start
with a predefined list of several locations. Later in the book, we will discuss a way to
extend this feature and load many locations. Right now, let's focus on this simple version of
the app.
We need a collection of locations to be displayed. It would be nice if we could add a search
functionality as well. This should remind us of the previous chapter in which we created a
table view with a search functionality. Now, we have to recreate that in the Weather app.
The following the UI that we could use. You can define something more complex if you
wish:

We have UITableView, which takes the whole screen estate. We have implemented that
with constraints. Sometimes, if you create your constraints, you may see a warning sign in
the Document Outline panel (on the right-hand side). The layout tree of the Favorites View
Controller panel is presented in the following screenshot:

Developing a Simple Weather App Chapter 7

[197]

Don't panic! You can use the Xcode suggestion to solve the problem and update all the
constraints as shown in the following screenshot:

The IB option can be used to check what the UI will look like on different screens. This is a
good validation of the constraints if they are used. Also, you can see if something doesn't
look correct on a certain screen size without executing the application on different
devices/simulators:

Developing a Simple Weather App Chapter 7

[198]

Simply pick different screen sizes using the bottom menu in the IB.

Always double check the app's look and feel on a simulator and on the
actual device. This way, you might catch something that has slipped
through during development.

The app version is pretty important when building a release version that should be passed
to quality assurance. Usually, when having a build, it's good to see which version is the
app—when running (tested) on a device. Thus, adding a label to display the app version is
neat and will ease the process of testing.

 Let's try to define a model that fits in with our app's needs. Later, we will improve it and
make it work with external data fetched from a server that provides a weather forecast.

Model
The app needs a model that stores all of the information about the home screen. This model
should contain a location, the current weather, and a detailed forecast for every hour until
the end of the current day. It should also contain a forecast for the next 4 or 5 days. It's as
simple as that. The model classes that follow fit these requirements. We could use a
structure, not a class; it might have different fields, but this is our solution. This is the
beauty of software development: many different classes, structures, and abstractions could
lead to the same result:

public struct Location {
 var name: String
}
public class Forecast {
 var date:Date
 var weather:String = "undefined"
 var temperature = 100
 public init(date:Date, weather: String, temperature: Int) {
 self.date = date
 self.weather = weather
 self.temperature = temperature
 }
}
public class DailyForecast : Forecast {
 var isWholeDay = false
 var minTemp = -100
 var maxTemp = 100
}

Developing a Simple Weather App Chapter 7

[199]

public class LocationForecast {
 var location:Location?
 var weather:String?
 var forecastForToday:[Forecast]?
 var forecastForNextDays:[DailyForecast]?
 // create dummy data, to render it in the UI
 static func getTestData() -> LocationForecast {
 let aMinute = 60
 let location = Location(name: "NewYork")
 let forecast = LocationForecast()
 forecast.location = location
 forecast.weather = "Sunny"
 //today
 let today = Date().midnight
 var detailedForecast:[Forecast] = []
 for i in 0...23 {
 detailedForecast.append(Forecast(
 date: today.addingTimeInterval(TimeInterval(
 60 * aMinute * i)), weather: "Sunny",temperature: 25))
 }
 forecast.forecastForToday = detailedForecast
 let tomorrow = DailyForecast(date: today.tomorrow,
 weather: "Sunny",temperature: 25)
 tomorrow.isWholeDay = true
 tomorrow.minTemp = 23
 tomorrow.maxTemp = 27
 let afterTomorrow = DailyForecast(date:
 tomorrow.date.tomorrow, weather: "Sunny",temperature: 25)
 afterTomorrow.isWholeDay = true
 afterTomorrow.minTemp = 24
 afterTomorrow.maxTemp = 28
 forecast.forecastForNextDays = [tomorrow, afterTomorrow]
 return forecast
 }
}

Create a swift file—LocationForecast.swift—and declare your models.

If you go with different fields or different names for the structure and
classes, be aware that you should update the code, which you will see
later in the chapter.

Developing a Simple Weather App Chapter 7

[200]

We have created the getTestData function to return a testing data. This testing data will
be used to fill the home screen with data and to verify that everything is working as
expected. We can start the app to verify that we see an empty screen, only with the default
data. To add some data to UICollectionView or UITableView, you have to set the
datasource property to a special class that implements a certain interface.

We will keep the model data in the view controller class, so this means that the view
controller should implement the UICollectionViewDataSource and
UITableViewDataSource interfaces. First, let's create outlets in ViewController.swift,
which will help us to control the following two collections:

//details outlet
@IBOutlet weak var details: UICollectionView!
@IBOutlet weak var nextDays: UITableView!

 Now, we should link the UI with the corresponding outlets. Here is how you can do it (we
have already practiced this in previous chapters):

We should create cell classes and link all the cell items (for both collections, respectively.)
Here are the classes:

class DailyForecastViewCell: UITableViewCell {
 @IBOutlet weak var day: UILabel!
 @IBOutlet weak var icon: UIImageView!
 @IBOutlet weak var temperature: UILabel!
}
class WeatherViewCell: UICollectionViewCell {
 @IBOutlet weak var time: UILabel!

Developing a Simple Weather App Chapter 7

[201]

 @IBOutlet weak var icon: UIImageView!
 @IBOutlet weak var temperature: UILabel!
}

Each cell prototype should be linked with its corresponding class. This can be done using
the Identity Inspector pane:

Here is how you can link the cell prototypes with their outlets:

Linking cell prototypes with their outlets

Developing a Simple Weather App Chapter 7

[202]

This is how we improve the starting view controller class, which is responsible for the
home screen:

class ViewController: UIViewController {
 var model:LocationForecast?
 //details outlet
 @IBOutlet weak var details: UICollectionView!
 @IBOutlet weak var nextDays: UITableView!
 var forecast:[Forecast] = []
 var degreeSymbol = "°"

 let collectionViewFormatter = DateFormatter()
 let tableViewFormatter = DateFormatter()
 override func viewDidLoad() {
 super.viewDidLoad()
 //fill the model with mock data
 model = LocationForecast.getTestData()
 collectionViewFormatter.dateFormat = "H:mm"
 tableViewFormatter.dateFormat = "EEEE"
 //out class implements the correct protocols in extensions
 details.dataSource = self
 nextDays.dataSource = self
 }

 // MARK: private
 fileprivate func getIcon(weather:String) -> UIImage? {
 return nil
 }
}

The preceding code outlines the overall behavior of the view controller. Here is the
implementation that will load the data into the UICollectionView and UITableView
instances:

extension ViewController: UICollectionViewDataSource {
 public func collectionView(_ collectionView: UICollectionView,
 numberOfItemsInSection section: Int) -> Int {
 return model?.forecastForToday?.count ?? 0
 }
 public func collectionView(_ collectionView: UICollectionView,
 cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {
 let cell:WeatherViewCell = collectionView
 .dequeueReusableCell(withReuseIdentifier:
 "WeatherCell", for: indexPath) as! WeatherViewCell
 let forecast:Forecast = (model?.forecastForToday?[indexPath.row])!
 cell.time.text = collectionViewFormatter.string(
 from: forecast.date)

Developing a Simple Weather App Chapter 7

[203]

 cell.icon.image = getIcon(weather: forecast.weather)
 cell.temperature.text = "\(forecast.temperature)
 \(self.degreeSymbol)"
 return cell
 }
}

The preceding snippet shows the implementation of the UICollectionViewDataSource
protocol. The following code snippet is the extension, which defines our view controller as
UITableViewDataSource:

extension ViewController: UITableViewDataSource {
 public func tableView(_ tableView: UITableView, numberOfRowsInSection
 section: Int) -> Int {
 return model?.forecastForNextDays?.count ?? 0
 }
 public func tableView(_ tableView: UITableView, cellForRowAt
 indexPath: IndexPath) -> UITableViewCell {
 let cell:DailyForecastViewCell = tableView
 .dequeueReusableCell(withIdentifier: "FullDayWeatherCell",
 for: indexPath) as! DailyForecastViewCell
 let forecast:DailyForecast = (model?.forecastForNextDays?
 [indexPath.row])!
 cell.day.text = tableViewFormatter.string(from: forecast.date)
 cell.icon.image = getIcon(weather: forecast.weather)
 cell.temperature.text = "\(forecast.maxTemp)
 \(self.degreeSymbol)/\(forecast.minTemp)\(self.degreeSymbol)"
 return cell
 }
}

With that extension, we can use the view controller instance to provide data for the items in
the table. This will render the forecast for the next few days.

Developing a Simple Weather App Chapter 7

[204]

If everything is set as expected, then you should be able to see the following on your
simulator (in this case, we are using the iPhone X simulator):

Developing a Simple Weather App Chapter 7

[205]

Not all fields are linked. To be able to set the city name and all other
details, we need some extra outlets. You can create some in the code and
then link them.

You can add images to the project (check the Assets.xcassets file in the sample project
files) and update the source code a bit to start displaying those icons.

The app needs a helper function that maps text to UIImage. The following function should
be added to the LocationForecast class:

static func getImageFor(weather:String) -> UIImage {
 switch weather.lowercased() {
 case "sunny":
 return #imageLiteral(resourceName: "sunny")
 case "rain":
 fallthrough
 case "rainy":
 return #imageLiteral(resourceName: "rain")
 case "snow":
 return #imageLiteral(resourceName: "snow")
 case "cloudy":
 return #imageLiteral(resourceName: "cloudy")
 case "partly_cloudy":
 return #imageLiteral(resourceName: "partly_cloudy")
 default:
 return #imageLiteral(resourceName: "sunny")
 }
}

And the updated version of the getIcon(weather:String) function in the
ViewController class should be updated slightly:

fileprivate func getIcon(weather:String) -> UIImage? {
 return LocationForecast.getImageFor(weather:weather)
}

Developing a Simple Weather App Chapter 7

[206]

With this minor change, the Home screen looks rich and communicates the information to
the user easily:

To see this screen complete, the Favorites button at the top should open another screen. We
will find out what to add to the button handler to transition to a new screen soon. Before
that, we have to develop the Favorites screen. Let's focus on its development and then we
will stitch those together.

If you move the arrow that you can see on the storyboard (check the following screenshot)
to point to another view controller, then it becomes the main view controller that will be
displayed when the app is started. We have to make the second view controller application
the starting point:

Developing a Simple Weather App Chapter 7

[207]

The app has to handle locations, because they are the core of our app model.

Locations
To keep our app implementation understandable and clear, each location used should be
related to a city. It's good to have a name and country to easily identify the city. Because
our data is initially filtered, we will assume that there won't be any repetitions in the data.
Simply, it means that each city will be unique for each country. This is enough for the
current version of the Weather app.

In the previous chapter, we developed a similar model. We displayed countries and cities.
We are about to use that model as a basis and will expand it slightly to fit our needs.

The location structure should be related to a specific city. Each city should contain its time
zone (daylight time won't be taken into account):

//city & country model
class Country {
 var name = "No name"
 var cities:[City] = []
 init(name:String) {
 self.name = name

Developing a Simple Weather App Chapter 7

[208]

 }
 init(name:String, cities:[City]) {
 self.name = name
 self.cities = cities
 }
}
public class City {
 var name: String
 init(name:String) {
 self.name = name
 }
 static var NewYork: City = {
 return City(name: "New York")
 } ()
}

public struct Location {
 var city:City
 init(city: City) {
 self.city = city
 }
 var name: String {
 get {
 return self.city.name
 }
 }
}

We have updated the home screen because it uses the old version of the
location structure.

In LocationForecast.swift you will see the following line of code:

let location = Location(name: "New York")

It should be replaced with the following content:

let location = Location(city: City.NewYork)

We have a nice model, which we will use to list all the favorite locations. Now, we should
hook up the UI with the model. We have done that a few times so far.

Developing a Simple Weather App Chapter 7

[209]

First, we need a variable, which will keep a reference to our table view. We have to link it
with the actual UI on the storyboard:

@IBOutlet weak var favoritesTableView: UITableView!

 We need a collection that will hold all the items rendered on the screen:

var favorites:[Location] = []

Here is the minimal number of methods that should be implemented, so that we see
something on the screen in UITableView:

public override func viewDidLoad() {
 super.viewDidLoad();
 formatter.dateFormat = "H:mm"
 loadFavorites()
 if favorites.count == 0 {
 //New York is a default location
 var loc = Location.init(city: City.NewYork)
 // or -4 * 3600 if in DST
 loc.timeZone = -5 * 3600
 favorites.append(loc)
 }
 favoritesTableView.dataSource = self
 favoritesTableView.delegate = self
}

The next step is to implement the following interfaces—UITableViewDataSource and
UITableViewDelegate. These will be implemented in the same file in separate extensions:

extension FavoritesViewController: UITableViewDataSource {
 public func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 //1 for the last special cell
 return favorites.count + 1
 }
 public func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let index = indexPath.row
 if index < favorites.count {
 let location = favorites[index]
 let cell:FavoriteViewCell = tableView
 .dequeueReusableCell(withIdentifier: "LocationCell",
 for: indexPath) as! FavoriteViewCell
 cell.city.text = location.name
 cell.temperature.text = location.temperature +
LocationForecast.degreeSymbol

Developing a Simple Weather App Chapter 7

[210]

 let date = Date()
 formatter.timeZone = TimeZone(secondsFromGMT:
location.timeZone)
 cell.time.text = formatter.string(from: date)
 return cell
 }

 //last cell is a static one
 let cell:StaticViewCell = tableView
 .dequeueReusableCell(withIdentifier:
 "AddLocationCell", for: indexPath) as! StaticViewCell
 return cell
 }
}

We will provide a stub implementation of the click delegate, which we can redefine in the
future:

extension FavoritesViewController: UITableViewDelegate {
 public func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 if indexPath.row == favorites.count {
 //TODO: open a new view controller
 } else {
 selectedItem = favorites[indexPath.row]
 //TODO: pick this location and save all locations
 saveFavorites(favorites: favorites)
 }
 }
}

There are two functions that handle saving and loading of the favorites collection. When
the view controller is presenting the data, we load the favorites. If the collection is empty,
we add a single item to it (New York). Saving is done once an item is selected, because we
will close this view and update our home screen. Later, we can improve the saving if we
change the application workflow. The functions are as follows:

// MARK: save favorites
func saveFavorites(favorites:[Location]) {
 let encoded = try? JSONEncoder().encode(favorites)
 let documentsDirectoryPathString = NSSearchPathForDirectoriesInDomains(
 .documentDirectory, .userDomainMask, true).first!
 let filePath = documentsDirectoryPathString + "/favorites.json"
 if !FileManager.default.fileExists(atPath: filePath) {
 FileManager.default.createFile(atPath: filePath, contents: encoded,
 attributes: nil)
 } else {

Developing a Simple Weather App Chapter 7

[211]

 if let file = FileHandle(forWritingAtPath:filePath) {
 file.write(encoded!)
 }
 }
}

The save function converts the model to a JavaScript Object Notation (JSON) and then
creates a file in which the whole JSON is saved.

When working with files on an iOS device, you have to use the
FileManager class and its default instance, FileManager.default. If
you have to read, write, or update a file, then you have to use
FileHandler.

Here is the loadFavorites function:

func loadFavorites() {
 let documentsDirectoryPathString = NSSearchPathForDirectoriesInDomains(
 .documentDirectory, .userDomainMask, true).first!
 let filePath = documentsDirectoryPathString + "/favorites.json"
 if FileManager.default.fileExists(atPath: filePath) {
 if let file = FileHandle(forReadingAtPath:filePath) {
 let data = file.readDataToEndOfFile()
 let favs = try? JSONDecoder().decode([Location].self,
 from: data)
 favorites = favs!
 }
 }
}

The load function tries to load the content of the model file. If the file exists, then it is
opened. We use JSONDecoder to convert the string representation to an array of locations.
The next screen that should be opened, once the Add a location.... items are selected,
should allow the user to pick a new location, which then should be added to the Favorites
screen. We implemented something similar in the previous chapter with a neat search
functionality. We will leave this part as a little exercise for the user, to convert the code
from the previous chapter and to make it work in this project.

A full working solution could be found in the source code, which you can
download from our Git repository.

Developing a Simple Weather App Chapter 7

[212]

We have defined different pieces of our app. Now is the time to learn how to stitch them
together in a working application.

Controllers and segues
Every controller takes care of a visual component on the screen. Some controllers are
responsible for the whole screen estate; some take care of only a part of it. We will focus on
the ones that are taking up the whole screen, because we are working on small devices, but
in general what is applicable to them can be easily transferred to more complex hierarchies
of view controllers.

The key concept in presenting new screens is a segue. This is a transition without
interruption from one view controller to another. Using the segues, we can link together
different scenes in our app and we can even transfer information between view controllers.
Each segue can define different animations when transiting from once scene to another.

Segues are tightly coupled with the storyboard.

Now, let's create our first segue between the home screen and the Favorites view.

The first segue
We will learn how to create segues using the storyboard and how to trigger them using the
code. Each segue is a relation (transition) between different screens in your app, and those
transitions can be fired upon a user's action or by using any other trigger (time trigger, or
an action from a server):

The easiest way to create a segue is to hold Ctrl and then drag it from the view1.
controller or button to the view controller, which should be presented on the
screen. In our case, we can start with the home screen. Let's start a Ctrl drag from
the Favorites button and then drop it on the next view controller (the
favorites). The following screenshot shows what this should look like:

Developing a Simple Weather App Chapter 7

[213]

Once you lift the mouse, a small popup is displayed, asking you to pick the2.
action to be used. This action will define how the new view controller will be
presented on the screen. We will use the Push (deprecated) option, but in other
cases, some other options are better:

Once we pick an action, a connection between our two view controllers will be3.
added on the storyboard:

Developing a Simple Weather App Chapter 7

[214]

This link represents a relation between those two screens. If we add another
segue, which will lead to another view controller, then we will have another link
between these view controllers.

You can select the segue and add an identifier in the properties panel on the right. This
identifier can be used to trigger a segue with code. For example, the selected segue has the
following ID—showFavorites:

The segue that we created is tightly coupled with the button and it will be activated when
the button is touched:

Another way to activate a segue is to use code and then add an action that will be fired
upon using the Touch Up Inside event. Then in the function, you can activate the segue
with the following code:

 @IBAction func onFavoritesClicked(_ sender: Any) {
 performSegue(withIdentifier: "showFavoritesAlternative",
 sender: sender)
 }

You should create a segue with the showFavoritesAlternative identifier on the
storyboard. A generic segue, which will be started from the code, can be defined with a Ctrl
drag from a view controller to the next view controller:

Developing a Simple Weather App Chapter 7

[215]

This is an example in which we link the next two view controllers, but you can define as
many segues as you need. They will be displayed on the storyboard and this will help you
visualize the complex flows in your applications.

Now, we know how to transition from one scene to another, but we should pass data and
make the user believe that those scenes are related. We define each screen as a template,
which could present specific information. We have to pass that information, and the view
controller will handle it from there.

How to pass data
First, when designing each screen, we make it dependent on some model (data). This model
should be passed when the transition happens and once the view controller is presented,
the data should appear. This way, the user thinks that the two screens are linked together.
An example is a collection view and the details view, which displays extra info. These two
screens can work independently, but when we pass data from one to the other, they are
perceived as the same thing.

Well-developed scenes (view controllers) can appear in many places in the
app.

In our simple application, each scene has a particular role and we won't be able to reuse a
view controller in different places, but well-designed apps should reuse them.

Now, let's open the code and jump straight to the view controller that we want to send
data, when a specific segue is fired. In that controller, we have to override the following
method:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if let id = segue.identifier {
 switch id {

Developing a Simple Weather App Chapter 7

[216]

 case "showFavorites":
 print("transfer the data");
 default:
 break;
 }
 }
}

In the preceding code, we detect which segue will be performed. We know which screen
will be next. The new view controller that will be presented on the screen should accept the
data. Usually, the view controller has a public property (properties) which should be set.
You have two arguments. The first one is the segue object, which contains both view
controllers. The sender object identifies the item that has triggered the segue. Both
arguments are needed to distinguish between different logical scenarios and we can
develop the app to act differently in different cases. Here is what the code should look like
if we want to pass some data to the favorites view controller:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if let id = segue.identifier {
 switch id {
 case "showFavorites":
 guard let favVC: FavoritesViewController =
 segue.destination as? FavoritesViewController else {
 return
 }
 favVC.receivedData = 42
 default:
 break;
 }
 }
}

The receivedData property can be used freely in the viewDidLoad() method. We can
pass a lot of information, which can be used in the next view controller. There is no
limitation as to what type it should be. When the next view controller is activated, it will
have access to the passed bits.

A slightly different problem is to pass data in the reverse direction. Let's try to understand
why we need it first. When we do some actions in a child view controller, its nice to pass
the data to the parent view controller. This approach will improve the module's design.
Every view controller does it's own job and passes the model after some updates.

Developing a Simple Weather App Chapter 7

[217]

Passing information in the reverse direction
Passing information from a view controller to a parent view controller is a bit tricky. There
is no easy way to know which view controller has opened the current view controller, thus
when we want to define a segue back to a specific view controller, we should create a
special function in that particular view controller.

In our case, we want to pass the selected item to the home screen. To do so, we have to add
a new function that will handle the reverse transition:

@IBAction func unwindToHomeScreen(sender: UIStoryboardSegue) {
 if let favoritesVC = sender.source as? FavoritesViewController {
 model = LocationForecast()
 model?.location = favoritesVC.selectedItem
 }
}

This function will be triggered when the unwind segue is fired. We have to pass the data
from the source view controller to the current view controller. To create this unwind segue,
you have to start creating a segue with a Ctrl drag from the view controller and drop it to
the exit point:

Developing a Simple Weather App Chapter 7

[218]

Then, we have to pick the exact function that should be triggered. The functions in the list
are part of the other view controllers:

functions

We know how to define a segue, which will replace our visible view controller and go back
to a specific one. Now, we will discuss how we can provide custom segues, which will
animate the transition back and forth.

Defining a custom segue
We can create custom segues to perform the animation. Each one is used for either
activation or deactivation. Here is how we can define a custom transition.
First, you have to create a new class which extends from UIStoryboardSegue:

class ZoomInSegue : UIStoryboardSegue {
 override func perform() {
 zoomIn()
 }

 func zoomIn() {
 let superView = self.source.view.superview
 let center = self.source.view.center
 self.destination.view.transform = CGAffineTransform.init(scaleX:
0.05, y: 0.05).rotated(by: 90 * .pi / 180)
 self.destination.view.center = center
 superView?.addSubview(self.destination.view)
 UIView.animate(withDuration: 0.5, delay: 0, options: .curveEaseIn,
animations: {
 self.destination.view.transform = CGAffineTransform.identity
 }, completion: { success in

Developing a Simple Weather App Chapter 7

[219]

 self.source.present(self.destination, animated: false,
completion: nil)
 })
 }
}

In this class, you have to override the perform method, which is activated once the segue is
triggered. In the preceding example, we are using a separate help function, but all the code
could be in the perform method. The key is to create an animation using UIView.animate
and to present the view of the new controller without animation (we defined the animation
manually). The animation interpolates the initial state (the view is tiny and rotated) and the
final state (the view is positioned in the center and fills the whole screen). The best way to
create slick animations is to experiment with different values and transformations.

In the next section, we will briefly discuss a few ideas on how to improve the app.

Further improvements
What about an easier way to switch to other locations? At the moment, our application
displays only one favorite location. It would be better if the user could easily reach other
locations and see the forecast for them. Side scrolling between forecasts for different
locations sounds intuitive. Just with an easy swipe gesture, the user would be able to check
the next favorite location. If the favorite locations are rearranged in the list, that should be
reflected and the home screen should reorder too.
To do so, we have to check if our current design of the app (code + UI) allows us to
introduce such improvements. Here is what we need:

The home screen should be expanded to use a list of views and all the
interactions should be passed to a delegate. The controller that we have is really
abstract, but it uses a single home screen. We have to create a home view that can
be used easily with other locations.
We need a special control which should allow a horizontal swipe. The iOS
provides a perfect match for this (hint: check UIScrollView).
The app should use models only, so it could rerender everything once the models
are updated. The current model needs slight changes, but those can be figured
out on the go.

Developing a Simple Weather App Chapter 7

[220]

The discussed improvement of the app will reflect on the current app model and structure,
but it can be easily achieved with the current level of understanding of the iOS framework.
You should have been using Git until now; if not, now is the perfect moment to do so.
Create a local repository and commit the current version. Then, create a separate branch in
which you will do your experiments. Call it side-scrolling. You can experiment with
the app without being concerned about the old version. It's in a safe place—Git—and you
can always switch to the master branch and start over.

A picture is worth a thousand words. To make the app better looking, we should add some
nice assets/pictures that will hint at the current weather conditions at the selected location.
This way, it's much easier to associate the forecast with the weather outside. If we want to
develop this idea one level further, try to implement some of the proposed ideas.

Summary
The reader knows how to create an app that solves real-world problems. He/she can
develop the initial idea on paper and then try to create the UI in the storyboard. This
version is called the early prototype. The reader can experiment with different screen sizes
and make the UI work on different screens. We've practiced a nice way to add interactivity
and link together different screens. Transition and passing information between screens is a
technique that is used in all apps and we have discussed this in detail. We have used the
standard iOS toolkit and sample data. The data used here simulates how our app will
behave once real data is loaded.

The next chapter discusses modern software development using open source projects. It
will show how easy it is to link together several projects using CocoaPods, one of the most
popular dependency managers for Swift and Objective-C. We will learn how to use other
frameworks in our projects. We should stop trying to reinvent the wheel; a better approach
is to look for open source projects that might fit our needs, this will save us a lot of time in
development and debugging.

8
Introducing CocoaPods and

Project Dependencies
This chapter presents external popular tools for code integration and project distribution.
We will learn how to use terminal tools and external projects to extend our own Swift
projects. At the end of the chapter, we will know what's needed if we have to develop a
library or component that can be shared with the iOS community.

The following topics will be discussed:

Building software the modern way
CocoaPods
Carthage
Swift Package Manager
Popular third-party libraries
GitHub and how to distribute our own libraries/frameworks

Without further ado, let's dive into the problem of modern software development and its
solution using different dependency management tools, such as CocoaPods, Carthage, and
Swift Package Manager.

Introducing CocoaPods and Project Dependencies Chapter 8

[222]

Software – the modern way
Every piece of software begins as a small application and grows with time. New features
and functions are added. Some old functions are deprecated or removed. It's a live product,
which evolves with time. The process is pretty similar to how a building is built. It's small
at first with only the base. Afterwards, windows, doors, and bricks are added. Then, the
roof is constructed. Later, the internal parts are finished. The whole process takes a lot of
time if everything is designed from scratch. There is no need to reinvent the wheel every
time and to build windows or doors from scratch. We can go and buy standardized
working components, which can be easily installed in the right place in a building. This
saves resources and significantly reduces the time for execution of the whole project. Later
on, it's even easier to replace those third-party building blocks with newer
versions—lighter, durable, modern—because they follow some specific standard.

In the same way, there are software components which solve different, well-known
problems. We will call these components software libraries or frameworks.

A software library is slightly different from a framework. For example, a
framework could contain one or more libraries. (It's possible to have a few
frameworks in a library, but it's not common.)

When we are building complex software apps, we will have to overcome recurring issues,
such as playing sound/music, applying filters to images, detecting device connections, and
so on.

The underlying frameworks in iOS provide a solid foundation for such routine problems,
but this is not always the case. Thus, the community builds different software solutions
(some of them really robust) which are published as open source projects. These solutions
are based on the iOS base layer, but solve a common problem well. The solution is then
shared with the whole community. Each library or framework is distributed under a
specific license agreement. It can be integrated in a software product if it meets the software
and business requirements.

A few years back, the only way to integrate an external framework/library was to copy the
code and link it manually to your project. This is a tedious task and takes a lot of time. Once
a new version of that software is released (similar to the buildings, when a new version of
different components appear) the whole process of integration should be repeated. This is a
lot of repetitive work for each version and each library that could be automated.

Introducing CocoaPods and Project Dependencies Chapter 8

[223]

In short, when the software becomes more complex, the need to manage different
subcomponents grows. Such a need leads us to the invention of different package
management software.

In the next section, we will discuss when CocoaPods appeared and why it's so popular.

Ruby and CocoaPods
Ruby is the programming language behind the CocoaPods implementation. It comes
bundled with your macOS and it's a no-brainer to install CocoaPods on your machine. This
is the main reason why CocoaPods is so popular and widespread.

The Ruby language is part of macOS by default and can be used without
any hassle.

Here are the simple steps which you should follow to install CocoaPods on your machine:

Open the Terminal (use Spotlight and type Terminal).1.
You should see a window, similar to this one, but the colors may be slightly2.
different (they can be easily configured from the app's preference screen—cmd +
,):

Type the following command:3.

sudo gem install cocoapods

Now, let's understand what this command does:4.

It uses sudo and will ask you for your admin password so that it is able to
install this package
It calls gem (RubyGems command tool) with the install option
The final argument points to which Ruby package should be installed

Introducing CocoaPods and Project Dependencies Chapter 8

[224]

You should enter the admin password in the same window. CocoaPods should5.
now be installed on your machine. If you don't have admin rights on your
machine, then you can use the following alternative to install CocoaPods for your
current user:

gem install cocoapods --user-install

The preceding setup shows us that cocoapods is a package, which can run on
systems where Ruby is presented. Unfortunately, it is tightly coupled with Xcode
and thus it's working only on macOS at the moment.

There are rumors that CocoaPods might start supporting Linux in the near
future.

CocoaPods is a dependency manager for iOS projects written in Swift and/or Objective-C. It
has more than 36,000 libraries (and growing) and is being used in more than 2.5 million
apps (not all of them are published on the App Store).

We will be using it to add some extra functionality to our projects, but before that, we
should understand how to add it to a regular project.

How to use it
CocoaPods should be integrated in your project. You can do this by simply adding a single
file in the project root folder. In this special file, you should describe all dependencies that
you need. Under dependency, we will understand an external framework (set of classes).
Then, the rest will be handled by the dependency tool. It will fetch the referenced classes
and assets and will link those versions to your project. The configuration file is called
Podfile.

Open your project and add a new empty file, whose name is Podfile.

The file doesn't have any extension.

Introducing CocoaPods and Project Dependencies Chapter 8

[225]

You can use Xcode to create this file. Just click on File | New | Empty and name this new
file Podfile, as shown in the following screenshot:

We are using Swift in our projects, so we will only discuss this particular
case. Don't forget that CocoaPods is working pretty fine with Objective-C.

Instead of creating the file manually, we can use CocoaPods to create it for us by
performing the following steps:

Open the Terminal.1.
Navigate to the project folder using the following command:2.

cd /path/to/your/project

Generate the Podfile file using the following command:3.

pod init

That's it. You can verify that Podfile was generated in the root project folder4.
with the ls -all command in the Terminal.

Don't panic if you can't see the Podfile file in your Xcode project. This is
normal, because the file is not part of your app. To be able to see it, you
have to add it manually.

Here is what a very basic (empty) Podfile file should look like:

platform :ios, '9.0'

target 'WeatherApp' do

Introducing CocoaPods and Project Dependencies Chapter 8

[226]

 # Comment the next line if you're not using Swift and don't want
to use dynamic frameworks
 use_frameworks!

 # Pods for WeatherApp

end

All lines which start with # are comments are skipped by CocoaPods. Usually,
developers use comments to clarify what framework it is and why it is part of the
Podfile file.

All dependencies should be listed in a target. We can create different targets, and
different sets of dependencies could be part of them.

When you have a Podfile file and all dependency projects listed, then it's time5.
to install them. It's a piece of cake to do this. You have to open a Terminal
window in the project root file—the same place where the Podfile file is located
and execute the following command:

pod install

The installation was successful, because there are no dependencies, as shown in
the following screenshot:

CocoaPods complains about the lack of dependencies and that the project has no
default platform version.

Introducing CocoaPods and Project Dependencies Chapter 8

[227]

You should remove the # symbol from the following line, platform :ios,6.
'9.0'. Now, let's add our first dependency, Alamofire. We will discuss it in
detail later in this chapter. To add your first dependency, which helps us to
implement a remote communication with a public web service, we have to add
the following line to our Podfile file:

pod 'Alamofire', '~> 4.4'

Then, we should reinvoke the pod install command. This time, the output is7.
different and we can understand that the new dependency was installed:

Our project was transformed slightly from CocoaPods. A workspace file was created. It
includes our project and all dependencies, which are part of a pods project.

From now on, the workspace should be opened. The file which shows that there is a
workspace from several projects is the .xcworkspace file. Instead of the well-known
.xcodeproj file, we have to get used to open the workspace file that includes our project
and additional project file, which includes all dependencies.

Don't forget to commit Podfile.lock to the repository. This is the correct way if you want
everyone who will be working on the same project to have the same dependencies version.

Each dependency declared in the Podfile file has a version rule next to it. Based on the
version rules of all dependencies, CocoaPods decides what should be fetched and added to
our projects. The following is a short explanation of the rules:

You can specify a particular version, for example, "2.0"
You can use logical operators (>,>=,<,<=), for example, > 0.2 which means a
version higher than 0.2

Introducing CocoaPods and Project Dependencies Chapter 8

[228]

You can use the optimistic operator ~> 0.2—this means that any version higher
than 0.2 and lower than 1.0 can be used

If CocoaPods can't find a resolution, then it will let you know that there is a problem when
fetching the dependencies.

Now is the time to check a few commands which we should memorize when using
CocoaPods.

CocoaPods useful commands
The first command creates a common workspace (if one is not set beforehand), then it
fetches all the dependencies and creates a ./Pods/ project with them. Your current project
and this new one are added to one workspace:

pod install

This command should be invoked when we check out a new project locally, which has a
Podfile file or when we have added some new dependencies.

When you have a workspace, then you will need an extra line in your
Podfile: file: workspace 'MyWorkspace'

The install command is using Podfile.lock to fetch the same versions of all
dependencies.

The following command is used to update all dependencies (based on the versioning rules)
or to update a specific one if we pass its name:

pod update

If you are looking for all outdated pods, then you should invoke the following command to
see the list of dependencies which could be updated:

pod outdated

If you feel that you don't need CocoaPods in your project, you can use pod
deintegrate to remove any traces of CocoaPods and any dependencies from your project.
Then, you can easily switch to an alternative dependency manager which matches your
taste.

Introducing CocoaPods and Project Dependencies Chapter 8

[229]

Let's discuss an alternative to CocoaPods and Carthage and then we will get you familiar
with the new kid on the block—which comes along with the Swift language—Swift
Package Manager.

Carthage
Similarly to CocoaPods, Carthage is a tool which is used to manage external dependencies.
But its idea is not to modify the project file and add all dependencies, neither is it here to
support a central place where all dependencies are listed. Don't panic. Carthage does the
heavy lifting for you. Namely, it downloads the source code and compiles a framework,
which should be manually added to the project.

Again, you have a file where all dependencies are described. Carthage uses that file to fetch
all dependencies one by one and builds those. Then, it's up to you if you want to include
the libraries in your project. When you update the dependency descriptor file, a new
version will be fetched and built, but you have to manually update the linked framework.
The update could be automated though; you just have to link the output file and once a
new version is built, it will replace the old one.

The name of the descriptor file is Cartfile. The structure is really simple compared to the
Podfile file. There is a list of dependencies in the following format:

type web-address version

The type could be one of the three values such as github, git, or binary.

The address should be a corresponding web address or the name of the GitHub repository,
where the resource could be found. For example, take a look at the following command:

github "Alamofire/Alamofire" ~> 4.5
git "https://path.to/the/git/repo.git" => 1.0

The final part of the definition could define a version rule or exact commit hash. You have
to know the following common rules:

At least version x can be written as >= x.0
Compatible with version x can be written as ~> x.0
Exactly version x.1 can be written as == x.1

If no version is specified, then any version is allowed and the best one which matches all
other rules will be picked.

Introducing CocoaPods and Project Dependencies Chapter 8

[230]

You may be wondering which dependency manager is better for your project. It depends
on what you want to use. If all the dependencies are supported by CocoaPods, you can use
it. For the rest, you can use Carthage. If you feel that you need to do a little manual work,
then Carthage is a better match; the best solution is to try one. If you need something that's
not supported from one dependency manager, you can always use both in the same project.

The third dependency manager which comes with Swift is Swift Package Manager.

Swift Package Manager
Every new language comes with a package manager for easy dependency support. Swift
Package Manager (SPM) is a tool that is integrated with the Swift system for distributing
your Swift projects and using shared ones. It works on Linux and macOS, which makes it
the best choice for developers writing backend applications using Swift.

We already know that the code in Swift is organized in modules. Sharing modules which
solve common tasks is a breeze with SPM. We need to define which modules we want to
use in our project and then they will be cooked for us.

In Package.swift, we describe all dependencies (where the source code is located,
external dependencies) and what kind of project we are building. Here is an example of a
manifest file:

// swift-tools-version:4.0
import PackageDescription

let package = Package(
 name: "Weather Service",
 products: [
 .library(name: "WeatherServiceLib", targets: ["WeatherServiceLib"]),
],
 dependencies: [
 .package(url: "https://github.com/Alamofire/Alamofire.git",
 from: "4.0.0")
],
 targets: [
 .target(
 name: "WeatherServiceLib",
 dependencies: ["Alamofile"]),
]
)

Introducing CocoaPods and Project Dependencies Chapter 8

[231]

It describes a library project with a single target. That target has one external
dependency—Alamofile. The difference between SPM and other dependency managers is
that the SPM file uses Swift syntax to describe the project structure and all dependencies.

Each dependency has a URL and a version. These are used to fetch the correct version. The
SPM is trying to find the best version which matches all the version rules declared in your
project and all sub dependencies. This step is really important when working with many
dependencies, but it's automatically done for you. The only problem which you can face is
that if there are rules which can't be satisfied and the exact submodules will be pointed to
this. Then, unfortunately, you will have to find a workaround—either by updating some
modules or just switching to a newer version.

Let's get familiar with the basic command that we will need to work easily with SPM.

Useful commands
The list of commands for this is not that broad like other dependency managers. An
important command is as follows:

swift build

It automatically downloads all dependencies defined in the manifest file. Then, they are
compiled and linked to the current module, but to use it, you need a working manifest
file—Package.swift.

If you want to develop an executable Terminal project from scratch, then you have to use
the following command:

swift package init --type executable

We can use --type library if we want to develop a Swift library and get the following
output:

Introducing CocoaPods and Project Dependencies Chapter 8

[232]

The following command will generate an empty executable project which can be executed
with:

swift run

If everything is working, then you should see Hello World! printed in the Terminal,
similar to the following screenshot:

The name of the project is the same as the folder name.

With the following command, you can generate an Xcode project which can be used to
develop the app:

swift package generate-xcodeproj

The generated project includes all the files which are described in the manifest file. The
actual project structure is simple as shown in the following screenshot:

You have to add other source files in the correct Sources subfolders. By convention, the
Sources folder should contain all the source files.

Now, let's try to create a library module in Swift. We can create a new folder—swift-

lib—on the disc and open the folder in the Terminal. Then, by executing the following
command which we already know:

swift package init --type library

Introducing CocoaPods and Project Dependencies Chapter 8

[233]

We end up with the following project structure:

The SPM supports testing of the code. This modern approach ensures the higher quality of
the code if tests are developed with the library. To start the tests, you have to run the
following command:

swift test

Here is an example of the output after a successful execution:

Introducing CocoaPods and Project Dependencies Chapter 8

[234]

Let's add a structure to the library and a few tests. We can generate an Xcode project:

swift package generate-xcodeproj

Then, we will open the swift_lib.swift file and we add the following structure:

//public to be accessible from other modules
public struct Toy {
 public var name = "Unknown"
 public var age = 1
 public var price = 1.0
 public init(name: String, age:Int, price:Double) {
 self.name = name
 self.age = age
 self.price = price
 }
}

Then, we open the test file, swift_libTests.swift. In that file we add two new tests,
which are checking the default construction of a toy instance:

 func testToyDefaultValues() {
 let toy = Toy()
 XCTAssertEqual(toy.name, "Unknown")
 XCTAssertEqual(toy.age, 1)
 XCTAssertEqual(toy.price, 1.0)
 }

 func testToy() {
 let toy = Toy(name: "Rex", age: 2, price:99)
 XCTAssertEqual(toy.name, "Rex")
 XCTAssertEqual(toy.age, 2)
 XCTAssertEqual(toy.price, 99.0)
 }
 //update this for Linux
 static var allTests = [
 ("testExample", testExample),
 ("testToyDefaultValues", testToyDefaultValues),
 ("testToy", testToy),
]

Introducing CocoaPods and Project Dependencies Chapter 8

[235]

Everything looks clean and neat in the Xcode:

Don't forget to add every test case to the static property—allTests—these tests will be
executed on Linux.

We have two different modules which are living next to each other on the filesystem. In
your case, it depends where you have created both folders. Now, we will show you how to
integrate the library module in the executable application. To achieve this, we have to open
the library project and create a Git repository. We should execute the following commands
in the Terminal:

git add .
git commit -m "Initial Commit"
git tag 1.0.0

Introducing CocoaPods and Project Dependencies Chapter 8

[236]

If you have other commits or you have been using Git, you need at least one version tag,
like 1.0.0. The local Git repository will be used to fetch the dependency, but first, we have to
update the manifest file of the executable project:

let package = Package(
 name: "swift-executable",
 dependencies: [
 // update the url if your folders are located on different place
 .package(url:"../swift-lib/", from: "1.0.0"),
],
 targets: [
 // Targets are the basic building blocks of a package. A target can
define a module or a test suite.
 // Targets can depend on other targets in this package, and on
products in packages which this package depends on.
 .target(
 name: "swift-executable",
 dependencies: ["swift-lib"]),
]
)

Now, we can update the executable file and try to use our structure defined in the module.
Here is the new version of main.swift:

import swift_lib

let toy = Toy(name: "Rex", age: 2, price: 99)
print("Hello, \(toy.name)!")

Then, to run the new example, you have to execute the following command:

swift run

Here is the result which you should see in the Terminal:

Introducing CocoaPods and Project Dependencies Chapter 8

[237]

We have learned how to use the Swift Package Manager from the Terminal. It's not limited
to macOS, so we can use it when we are working on the Linux platform. We can create
empty library projects and executable projects, and we can use Git and link together many
projects.

Keep the executable project minimal. Implement the solution in a separate
library module(s) and reuse it in different projects.

We have said that there are many open source projects, which we can use in our apps. Let's
discuss some popular ones and the easiest way to find others.

Popular third-party libraries
There are many pretty useful frameworks which can boost your development. Some of
them are visual ones, while some help you build the solid foundations of your application.
But do you know where to find them?

The first place where we could start from is the CocoaPods official site—https:/ /
cocoapods.org/. Yes, CocoaPods is a centralized dependency manager and there is a
central place where all of pods are listed. And yes, you can search through all of these
solutions and find the best one that suits your needs:

You can filter by platform or language—Swift or Objective-C.

All of these projects are hosted on the CocoaPods servers, but many of them are living on
GitHub. GitHub is a web service provider that has free and paid Git hosting services. If you
use the free tier, then your project should be open to the community. This means that
anyone with internet access can see its code, but can't use it (it's protected under copyright
license). You can always pay and use the private plan, that allows you to keep the code of
your project a secret.

https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/
https://cocoapods.org/

Introducing CocoaPods and Project Dependencies Chapter 8

[238]

The developers from different communities such as Swift, iOS, and so on are using this
awesome free tier to share their projects. This is how open source became really
popular—GitHub is a perfect channel that helps you build and support open source
projects. It's not the first such service, but today it's the most popular one worldwide.

Back to the question—where do you find a possible solution to a problem? Yes, GitHub.
You can try to search for something which is close to your problem.

Swift is an open source language. Its source code is hosted on GitHub. The
actual address is https:/ / github. com/ apple/ swift.

There are plenty of open source projects. Some are pretty popular and the community
around them has spent an enormous amount of time to build really robust solutions. We
will present a few really cool projects which you might find interesting and that you can try
to use in your very next iOS project.

Again, don't forget to check the license information of each project before blindly
integrating it into your app. This might lead to a problem in the near future, so be cautious.

Here are some really useful frameworks, which are part of many projects. We will start
with the one used for simple communication with servers—Alamofire.

Alamofire
At some point, you will need a nice and easy way to consume web resources, for example,
to download images, read data from a remote location, or to upload data to a Swift
backend. These are all valid problems which need a good solution. We can develop
everything from scratch using the tools part of iOS—NSURLDownload, CFHTTPStream,
NSURLSession, or NSURLConnection. Each of these should be used in different situations,
but you will need to write the very same boilerplate code to prepare everything and to
handle all resources. Is this necessary every time? No. You can simply use Alamofire. This
is an HTTP networking library which is really popular. It is written in Swift and is pretty
easy to use. There is a huge community around this particular project and a group which is
responsible for its further development—https:/ /github. com/ Alamofire/ Foundation.
There are many articles which explain how to use this framework. If you decide to
implement networking, don't waste your time reinventing the wheel. Use this powerful
project in the following cases:

For making requests, response handling, and response caching

https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/apple/swift
https://github.com/Alamofire/Foundation
https://github.com/Alamofire/Foundation
https://github.com/Alamofire/Foundation
https://github.com/Alamofire/Foundation
https://github.com/Alamofire/Foundation
https://github.com/Alamofire/Foundation
https://github.com/Alamofire/Foundation
https://github.com/Alamofire/Foundation
https://github.com/Alamofire/Foundation
https://github.com/Alamofire/Foundation
https://github.com/Alamofire/Foundation

Introducing CocoaPods and Project Dependencies Chapter 8

[239]

For supporting different HTTP methods (PUT, GET, POST, PATCH, DELETE)
Parameters encoding, HTTP headers, and authentication
Routing requests, adapting, and retrying
Session management
Uploading and downloading big files
Security and reachability

Before jumping into the deep waters of the networking layer in iOS, you must check if
Alamofire can help. If the answer is no, then check again. There are too many people who
are using the layer and the probability of finding working solutions with Alamofire is
higher.

The next stop is AsyncDisplayKit or, as referred to under its new name—texture.

Texture
If you want your application to be smooth and slick, then you should be careful and keep
the frame rate close to 60 fps. This is not that easy, because each render cycle should take
less than 16.67 milliseconds. What does this mean? It means that our code to be executed
shouldn't last too long. This way, the frame rate will be high and the rendered content will
look smooth. The default UIKit implementation provides the foundations, but there are
pretty common problems when developing mobile applications that should be solved. For
example, how do you load many items in UITableView and how do you keep the higher
frame rate? Well, AsyncDisplayKit or texture is an abstraction over UIView and CALayer
(the inner parts of UIKit) that will help us to achieve butter-smooth animations.

If you bet on texture, you will get the following results:

Good, smooth scrolling
Pre-fetching of items and pre-buffering
A clear architecture
Shorter classes
A higher frame rate
Performance

Get familiar with this framework before you start working with it. The learning curve is not
flat and mastering it will take time. Evaluate all the benefits and what is really important in
your app for your users.

Introducing CocoaPods and Project Dependencies Chapter 8

[240]

Then, the next stop is a completely alternative universe or reactive development. This is a
completely different approach to what we know so far, and a fresh functional approach to
telling the app what it should do.

RxSwift
Functional programming is a programming style. It avoids state change and considers
computing to be similar to function evaluation. It's a declarative paradigm in which
statements such as assignment are not tolerated. In short, if you have a function, its result
depends on the input arguments and there are no side effects.

Next, the observer pattern is a design pattern in which we have a collection of observers
and if there is a change, every observer receives a notification that something has
happened. We can use the ideas from functional programming, observer patterns, and
iterator patterns to define the ReactiveX programming. It's a modern read of the
asynchronous programming using observable streams.

The good sides are as follows:

It handles complex cases with ease
The code is declarative and clear
It can be used with streaming information to handle huge volumes of data
It's something new and working

Don't switch everything to RxSwift. It's not a silver bullet, but it's a different approach
which is pretty powerful. You can use this concept in many different programming
languages. RxSwift is the Swift implementation of the Rx API. The code is really readable
and simple, without bugs.

Such interesting frameworks and ideas exist on GitHub. Take your time to explore what's
there. If you feel that you can build something worth sharing, then you already know how
to work with Git. GitHub is not that much different. Go, register there, and share your
invention with the whole world.

We have discussed a lot of new technologies in this chapter, starting from dependency
managers to some very popular frameworks.

Introducing CocoaPods and Project Dependencies Chapter 8

[241]

Summary
Modern software development uses different solutions to build complex applications. Such
libraries are hard to manage, and thus dependency managers (third-party programs)
appeared. They help developers manage different, complex building blocks in their
projects.

We discussed the most popular ones used when developing an iOS and pure Swift
project: CocoaPods, which is based on Ruby and works only on iOS, Carthage, the manual
solution, which simplifies the management of external dependencies, and the new fresh
solution which comes bundles with Swift—Swift Package Manager. We explored how to
use every single tool and we should know the basic commands to use any of them.

Finally, we discussed what an open source project is and where they can be found. In the
end, we got familiar with three projects which are quite popular and can be used in our
next project.

Before diving into development, check the open source places for a solution which might
do what you need to implement. If its license matches your business goal, then you can use
it in your solution.

Now that we know how to integrate open source projects in our project, let's see what we
can do next to make our applications better.

In the next chapter, we will improve our Weather app. First, we will start with the
integration of Alamofire (you should know what it does), and then we will try to fetch
real data from a live web service. Next, we will add some slick animations to the app and
some cool effects to make our app stand out. This should give us the final touch to make
this project close to a real-world app that it could be used on a daily basis.

9
Improving a Version of a

Weather App
By showing you how to consume an external API, we will make our application a working
one. It could be used on a daily basis and will add value to the users. We should know that
many applications rely on complex backend APIs to do the heavy lifting, and
communication through the internet is a key part of modern mobile development.

In this chapter, we will discuss the following topics:

How to fetch data from a real weather forecast API
How to add Alamofire to our project
How to make a request
How to parse a response
How to present the data from the server
Other different improvements using third-party libraries

In the following section, we describe an open weather forecast API, which we can use in
our application.

Improving a Version of a Weather App Chapter 9

[243]

Weather forecast API
There are many web services which provide weather forecasts. Some of them are paid,
while some of them are free. To learn how to consume one, we can use a free access one and
later, when we are sure what exactly we need, we can decide to use the best provider on the
internet.

What's an API?
API stands for Application Public Interface. In terms of the web, this is a set of functions
which are hosted and can be accessed by different users through the global network. These
functions provide certain data or they can transform data.

For example, there could be a mathematical API which implements different mathematical
functions. To consume it, we should know the server address and the name of the
functions. Then, we have to make correct requests to the server and it will respond to our
queries. This communication is done through different internet protocols—HTTP and
HTTPs. Usually, every API (free or paid) needs a specific user ID to be sent with every
request. This way, it knows who is doing the request and minimizes the chance of an
internet attack.

If many people are making requests and the API can't respond in a certain time, then we
can say that the API is down or it's not working. Attacks on API servers are possible, but if
the API requires registration, then there won't be many.

When it's time to pick an API for your next mobile app, you have to be sure that it can
scale—or that it can simply serve enough users. The reason why it should scale is that are
developing a mobile application which will be distributed to many people (millions, if your
application is awesome) and those people will make requests to the API when they are
using your application. In short, that means millions of requests to the API from different
places around the world.

We have picked a free weather forecast API—http:/ /openweathermap. org/ appid.

http://openweathermap.org/appid
http://openweathermap.org/appid
http://openweathermap.org/appid
http://openweathermap.org/appid
http://openweathermap.org/appid
http://openweathermap.org/appid
http://openweathermap.org/appid
http://openweathermap.org/appid
http://openweathermap.org/appid
http://openweathermap.org/appid

Improving a Version of a Weather App Chapter 9

[244]

You should visit https:/ /home. openweathermap. org/ users/ sign_ up and register an
account. This procedure doesn't take more than 10 minutes. First, start by registering for an
account:

https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up

Improving a Version of a Weather App Chapter 9

[245]

Upon successful registration, you should open the API section to see your API key:

Why do we you need an API key? This key will be sent with every request to the API. This
way, the server will identify who is making the requests; in general, which group of users
are using the API.

In the next section, we will see which requests will fit us and a nice way to check the
returned result.

List of requests
Every API describes all endpoints which could be hit and what information will be
returned. The one which we should request is:

http://api.openweathermap.org/data/2.5/weather?id=CITY-ID&appid=API-
KEY&units=metric

Improving a Version of a Weather App Chapter 9

[246]

In this request, we should replace the API-KEY with our key—the one generated by the
system. The CITY-ID should be replaced with a specific ID, which can be found in the file
provided by openweathermap.com at: http:/ /bulk. openweathermap. org/ sample/ city.
list.json.gz.

The other request which we want to make is to fetch the forecast for the next five days:

http://api.openweathermap.org/data/2.5/forecast?id=CITY-ID&appid=API-KEY&un
its=metric

Let's try to make a request using the browser. We will use the first API call for Berlin,
whose ID is 2950159:

http://api.openweathermap.org/data/2.5/weather?id=2950159&appid=ce7a971952c
7df04c4224435da5d818f&units=metric

The response is something like this:

{
 "coord": {
 "lon": 13.41,
 "lat": 52.52
 },
 "weather": [{
 "id": 803,
 "main": "Clouds",
 "description": "broken clouds",
 "icon": "04n"
 }],
 "base": "stations",
 "main": {
 "temp": 2,
 "pressure": 1000,
 "humidity": 96,
 "temp_min": 2,
 "temp_max": 2
 },
 "visibility": 10000,
 "wind": {
 "speed": 6.2,
 "deg": 260
 },
 "clouds": {
 "all": 75
 },
 "dt": 1516222200,
 "sys": {

http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz
http://bulk.openweathermap.org/sample/city.list.json.gz

Improving a Version of a Weather App Chapter 9

[247]

 "type": 1,
 "id": 4892,
 "message": 0.0105,
 "country": "DE",
 "sunrise": 1516172827,
 "sunset": 1516202806
 },
 "id": 2950159,
 "name": "Berlin",
 "cod": 200
}

In the next section, we will define a model that could store the data sent from
openweathermap.com. We should copy the project from Chapter 7, Developing a Simple
Weather App. This will be our starting point, and from there, we will continue to build up.

Creating new models
We have to create a model which should store this data once we fetch it from the server.
The latest version of the app uses a model which we can improve to make it work. What
should we do?

In Swift 4, a new feature has been implemented—Codable protocol (Encodable and
Decodable). This is an easy way to make a class, enum, or structure easily convertible to
and from different formats, and in particular, JSON.

We have to create the following structures which will store the data sent from the server:

public class City: Codable {
 var name: String
 var id:Int?
 init(name:String) {
 self.name = name
 }
 static var NewYork: City = {
 let newYork = City(name: "New York")
 newYork.id = 5128638
 return newYork
 }()
}

Improving a Version of a Weather App Chapter 9

[248]

The preceding class defines a city. It has an ID and a name to identify the city. The ID is the
same as the IDs which we get from the openweathermap service:

public class Location: Codable {
 var city:City
 init(city: City) {
 self.city = city
 }
 var name: String {
 get {
 return self.city.name
 }
 }
 var timeZone:Int = 0
 var temperature:String = "-"
}

The next class is the location, which contains a city, its time zone, and temperature:

struct WeatherResponse: Codable {
 var weather:[WeatherInfoVO]
 var visibility:Int
 var wind:WindVO
 var time:Int
 var name:String
 var id:Int
 var responseCode:Int
 var forecast:WeatherVO
 enum CodingKeys: String, CodingKey
 {
 case weather
 case visibility
 case wind
 case time = "dt"
 case name
 case id
 case responseCode = "cod"
 case forecast = "main"
 }
}

This structure represents the response from the API call which we make. It's tightly coupled
with the format of the data returned by the server:

struct WeatherVO: Codable {
 var temperature:Double
 var pressure:Int
 var humidity:Int

Improving a Version of a Weather App Chapter 9

[249]

 var minTemperature:Double
 var maxTemperature:Double
 enum CodingKeys: String, CodingKey
 {
 case temperature = "temp"
 case pressure
 case humidity
 case minTemperature = "temp_min"
 case maxTemperature = "temp_max"
 }
}

The preceding structure defines the weather data. We are using the new Codable interface
and the way to map fields from the JSON to our model:

struct WeatherInfoVO: Codable {
 var id:Int
 var main:String
 var description:String
 var icon:String
}

This is a weather details structure, which will be used to store details about the weather
forecast for a particular time:

struct WindVO: Codable {
 var speed:Double
 var degree: Double
 enum CodingKeys: String, CodingKey
 {
 case speed
 case degree = "deg"
 }
}

In this structure, we define the information that describes the wind.

The preceding code should be added to LocationForecast.swift.

The code is using a handy technique to rename the fields from the JSON to something that
fits our app better. This is achieved with the enum CodingKeys, that extends String and
CodingKey. We should remember the following two important rules:

The name of the fields should be matched exactly by all of the names of the cases.
The properties which are missing should have a default value in order for our
type to be conforming to Codable.

Improving a Version of a Weather App Chapter 9

[250]

The model defined here will be used in the app to display information on the screen. At the
moment, it's not hooked to the rest of the mock application, but we will link it soon.

Now, let's try to make a request, which fetches the information from the server. We will
discuss the default way of making a web request to a server using the default classes which
are part of iOS.

Pure network requests
Now, we should try to make some requests to fetch information from the weather service.
But where is the best place to make network requests?

The application has to display the data from the API on different screens. If we do all of the
requests from a single controller, then we have to pass the stored data to the next controller.
Wouldn't it be better if we have a shared place in the memory (forecast store) which could
be accessed by every controller? Once a controller needs some data, it should ask for it and
pass a closure (code block) that will be executed when the data is available. This way, the
communication with the backend will be encapsulated and only the final result will be
provided.

This is a pretty neat trick, but be careful—don't use it everywhere because everything will
become dependent on it, which is bad, if you want to write reusable code.

Reusable code is the code (classes, protocols, structures, enums, and so
on) which can be used in different projects without any modification or
with a really tiny one. A framework is well-designed if it can be used in
several projects without being changed.

We have to create a new class, which should implement one of the really popular design
patterns—singleton. This design pattern allows just a single instance of a class to be
created. It can be accessed easily from anywhere. Here is how you can implement this
design pattern in Swift:

class ForecastStore {
 public static let instance:ForecastStore = ForecastStore()
 private init() {
 print("initialization goes here")
 }
}

Improving a Version of a Weather App Chapter 9

[251]

Create a new swift file called ForecastStore.swift. Then, you can add the preceding
class. You can define its interface based on your needs. The key difference is that you can
create any objects from this class on your own. The initializer is private. You can access the
only instance which is stored in a static property.

Let's do our first request in a function called loadForecast(for city: City,
callback: @escaping (_ response:WeatherResponse?, _

error:LoadingError?)->()). This function takes an argument, city, and a callback
function, which will be fired once the server sends a response. If something goes wrong, the
callback will have access to the error type and the app can communicate the problem to the
user if this is appropriate.

Don't bother the user with meaningless messages such as:
Error #1234 server response has missing key "code". Use the user language
and communicate the general picture, which will make sense to the
user. For example: "Server is down, please excuse us and try again later."

Don't forget that the internet is an unreliable medium and that the information could be
corrupted or the connection couldn't be established. You have to handle all the edge cases
so that the user knows if something goes wrong. The user needs feedback from the app.

Here is how we can handle the communication using the default set of classes provided by
iOS:

public func loadForecast(for city: City, callback: @escaping (_
response:WeatherResponse?, _ error:LoadingError?)->()) {
 guard let cityId = city.id else {
 callback(nil, LoadingError.invalidCity)
 return
 }
 let configuration = URLSessionConfiguration.default
 let session = URLSession(configuration: configuration)
 let urlString = ForecastStore.WEATHER_API
 + ForecastStore.WEATHER_API_QUERY + "&id="
 + String(describing: cityId)
 if let url = URL(string: urlString) {
 //create a task and start it, please check the next
 code snippet
 }
 }

Improving a Version of a Weather App Chapter 9

[252]

Here is the actual task creation and execution. The code should be placed in the preceding
function, but for better understanding, we have separated it into logical pieces:

 let task = session.dataTask(with: url) { (data, response, error) in
 if let _ = error {
 callback(nil, LoadingError.wrongResponse)
 } else {
 guard let data = data else {
 callback(nil, LoadingError.wrongResponse)
 return
 }
 do {
 //debug
 let rawData = String(data: data, encoding:
 String.Encoding.utf8)
 let decoder = JSONDecoder()
 let responseModel = try decoder.decode(WeatherResponse.self,
 from: data)
 callback(responseModel, nil)
 } catch let err {
 callback(nil, LoadingError.wrongResponse)
 }
 }
}
task.resume()

In the preceding code, we create a task object with a closure, which will be executed once
the task fetches any data from the server. To start the task, we should call the resume
function, where we have the following type defined:

enum LoadingError {
 case invalidCity
 case noConnection
 case invalidURL
 case wrongResponse
 }
static let WEATHER_API = "https://api.openweathermap.org/data/2.5/weather"
static let WEATHER_API_QUERY = "?appid=YOUR-API-KEY&units=metric"

Now let's dive into the detail. To handle the communication with a server, we have to make
requests. Each request is a separate action. We should use URLSession to manage all HTTP
requests.

Improving a Version of a Weather App Chapter 9

[253]

HTTP protocol is the foundation of the WWW (or the internet, which we
are using every day). It's used to serve web pages, send messages, and
many other actions, which we do on a daily basis using our mobile
phones, computer, or tablets.

To create a valid URLSession, we have to pass a valid
configuration—URLSessionConfiguration. Based on the type of communication we
want to implement, we can use one of the main three different configuration options:

.default: This one is the default one. It's using the global disk cache, user, and
credential storage.
.ephemeral: This is the one which stores everything in the memory. After the
app is closed, there is no trace left. It should be used when we want to keep the
user's information private.
.background: This is the option we should use when downloading huge files
and in case we want to keep the application doing some action (uploading or
downloading) after it's sent to the background.

The configuration object can be used for tweaking the HTTP parameters or for sending
extra headers. These options may come in handy when you are implementing more
complex APIs which force you to send special information with every request. More details
can be found in the official URLSession documentation.

To update the URLSession configuration, you have to update the configuration object and
create an entirely new URLSession object. There is no other way if you want to change the
policies.

The policies which are set in the URLSession can override the policies set
in the URLRequest if they are restrictive. For example, if you set that the
session shouldn't allow connections on cellular network, then it won't
matter what the actual URLRequest policy is.

We should create specific instances of URLSessionTask using the URLSession methods.
Each task belongs to a session. Based on the method which we call, the final task could be
one of the following:

URLSessionDataTask: A standard request call which is not supported in the
background session.
URLSessionUploadTask: The upload of data is easier if you are using this task.
It's supported in the background session.

Improving a Version of a Weather App Chapter 9

[254]

URLSessionDownloadTask: Download and save the resource straight to a file
on disk. This is supported in any session.
URLSessionStreamTask: Used to establish a TCP/IP connection from a host and
port.

Once you have created a task, then you have to call resume() to start it. Each task is
executed asynchronously. This is perfect, because it won't hurt our performance. The UI of
the app is always rendered on the main (UI) thread. There is one caveat: the handler is
executed on the background thread as well.

Always update the UI components from the main thread. Some UI
components could be updated from other threads, but some will cause the
app to crash.

There is a way to configure the session: by using the main thread to execute the task
handler, or the more generic option is to use Grand Central Dispatch (GCD) to execute a
block of code on the main thread. We will stick to the latter option, because it can be used to
update the UI from other async calls.

If you want to use the main thread for execution of the task handlers, then
you have to use the other URLSession constructor, which takes three
parameters:
URLSession(configuration: .default, delegate: nil,
delegateQueue: OperationQueue.main).

After constructing the URLSession object, we create the URL of the resource which should
be loaded. To do that, we use the API and our knowledge of how to create a valid URL:

session.dataTask(with: url) {(data, response, error) in
//...
}

The completion handler is a block of code which will be executed once the request has been
made and no matter what the actual result is. Based on the response from the server, we
can receive different values in the data parameter or in the error parameter.

In our implementation, we check for an error. If there is an error, we report that the
response from the server is wrong. Here, we can do detailed analysis of the error and break
it down. It's good practice to distinguish, when the device has no active connection to the
internet.

Improving a Version of a Weather App Chapter 9

[255]

If there is no error, then we check the data parameter. It holds the actual response from the
web service. It should follow a specific structure. The following code simply prints the
actual response in the console:

let rawData = String(data: data, encoding: String.Encoding.utf8)
print(rawData)

Such lines should be removed from the final version of the app once we
are ready to release it. They are really handy when debugging, but in
general, they are slowing down the app and might expose sensitive
information.

The response which we receive is in JSON format. We should parse it. Parsing of a response
means that we've received a text response from the server (in JSON or any other format)
and then it will be converted to the appropriate model of objects. Those objects can be used
in our app to render the received information and the user will be able to see the new data.

We declared our models to implement the decodable protocol. This will make parsing a
breeze:

let decoder = JSONDecoder()
let responseModel = try decoder.decode(WeatherResponse.self, from: data)
callback(responseModel, nil)

The actual parsing is done by a JSONDecoder object. In the following data, the decoder
should find a WeatherResponse object. Once the object is created, then it is passed to our
callback function.

The parsing could fail, and thus we are using the try clause and a catch block. In the catch
block, we are checking for errors. If something goes wrong, then we can trigger the callback
with the appropriate error. In this case, the error is still the
same—LoadingError.wrongResponse.

Once we have parsed the data, then we should use it to render it on-screen. Here is how we
can do that in the main view controller:

let currentCity = City.NewYork
ForecastStore.instance.loadForecast(for: currentCity) { (response, error)
in
 if error != nil {
 print("there is an error")
 } else if let responseModel = response {
 DispatchQueue.main.async { [weak self] in
 self?.updateUI(city: currentCity, forecast:responseModel)
 }

Improving a Version of a Weather App Chapter 9

[256]

 }
}
//and the following helper function
func updateUI(city aCity:City, forecast:WeatherResponse) {
 city.text = aCity.name
 if forecast.weather.count > 0 {
 cityWeather.text = forecast.weather[0].description ?? "???"
 }
 temperature.text = String(format: "%.0f",
 forecast.forecast.temperature)
}

We have implemented dummy error handling—simply print the error in the console. We
can do that at this early stage of the app. Yes, it is still in development. Later in this chapter,
we will discuss better error handling and how to present the information to the user.

The other case is when we have a valid response, which contains the forecast for the
weather in the city, which is passed to the API. We have to update the UI. Unfortunately,
the handler will be called on a background thread, which means that we shouldn't update
the UI. To stay on the safe side, we should execute the block on the main thread:

DispatchQueue.main.async { [weak self] in
 //code that will be executed on main thread
}

We use [weak self] to avoid retain cycles in the code block. The helper function is just a
simple interpretation of the data and it handles the exact update.

In the next section, we will discuss how to use one really popular network managing
framework. It provides generic solutions to common problems and simplifies network
handling.

Alamofire implementation
We know that there are many open source libraries which could ease our app development.
Knowing much about CocoaPods, we can try to integrate Alamofire—a library which
many apps are using to solve their network problems.

Improving a Version of a Weather App Chapter 9

[257]

Please refer to the Chapter 8, Introducing CocoaPods and Project Dependencies, to see how to
set up a Podfile for the project. Once you have a Podfile, simply add the following line to
include the Alamofire library:

pod 'Alamofire', '~> 4.5'

You have to execute the following to fetch the latest version of the added framework:

pod install

Don't forget to use the workspace project instead of the regular project.

Now, we will redo the API call using the Alamofire framework:

func loadForecastAlamofire(for city:City, callback: @escaping
(WeatherResponse?, LoadingError?) -> ()) {
 guard let cityId = city.id else {
 callback(nil, LoadingError.invalidCity)
 return
 }
 let urlString = ForecastStore.WEATHER_API
 + ForecastStore.WEATHER_API_QUERY + "&id=" + String(
 describing: cityId)
 //use of Alamofire, please check the next code snippet
}

Here is the code which should be added in the preceding function that uses
the Alamofire framework :

Alamofire.request(urlString).responseJSON { response
 guard let data = response.data else {
 callback(nil, LoadingError.wrongResponse)
 return
 }
 do {
 let rawData = String(data: data, encoding: String.Encoding.utf8)
 let decoder = JSONDecoder()
 let responseModel = try decoder.decode(WeatherResponse.self,
 from: data)
 callback(responseModel, nil)
 } catch let err {
 callback(nil, LoadingError.wrongResponse)
 }
}

Improving a Version of a Weather App Chapter 9

[258]

The code makes a request and the handling is done in a closure, similar to the preceding
example (without Alamofire). There is not much difference in the closure which handles
the data received from the server.

The Alamofire implementation looks slightly simpler. There is no configuration which
should be set; just a simple call and then a handler that will be executed once the server's
response is received:

Alamofire.request(urlString).responseJSON {
//
}

Alamofire is pretty powerful and it has different types of requests. Here, we are using the
responseJSON. This is the one which we should use when the format of the response is
JSON.

We can always use a classical response. It is pretty close to what we have done with
URLSession in the previous section. The data is copied straight from the URLSession
handler, using no other actions.

There are a few more:

responseString: Converts the data sent to a String
responseData: Converts the data to a data type
responsePropertyList: Converts the data to a plist (object type)

All the different responses might be chained, which means they may be executed one after
another. Those handlers will be executed on the main thread. This is the default behavior,
but there is an easy way to change that.

The library provides an easy validation of the response. Here is an example:

Alamofire.request(url, method: .post)
 .validate(statusCode: 200..<300)
 .validate(contentType: ["application/json"])
 .responseData { response in
 switch response.result {
 case .success:
 print("Validation is successful")
 case .failure(let error):
 print(error)
 }
 }

Improving a Version of a Weather App Chapter 9

[259]

It's pretty easy to make different requests. The method type is passed to the request
function. Also, the parameters and encoding could be specified. The library provides a
powerful way of customization. The final code is clean and concise.

We can discuss a lot of details, but the best place to dive into the detail is the official
Alamofire page, which can be found here—https:/ / github. com/ Alamofire/ Alamofire.

In the next section, we will analyze the best way to handle errors, which appear through the
apps lifetime.

Improvements using third-party libraries
We will discuss different styles to handle these errors in iOS. There are many ways that
might fit your application. It's good to know the popular ones and to pick the best based on
the case.

The first style is silent error handling. The errors are not presented to the user. This means
that they are handled appropriately, but there is no feedback from the app. This is good,
because the user doesn't see any problems with the app and keeps a positive attitude.
Unfortunately, if the user expects something to happen and it doesn't happen, then they
feel a bit confused. This ruins the good impression.

In critical parts, where the user's action needs to be confirmed and there is an error, it's best
to give any feedback. This leads us to the second style of handling—communicating the
critical problems. To communicate an error, we can pick a different approach. The easiest
one is to use the Alert box (UIAlertController), which steals the focus from the user and
waits for the user's input:

https://github.com/Alamofire/Alamofire
https://github.com/Alamofire/Alamofire
https://github.com/Alamofire/Alamofire
https://github.com/Alamofire/Alamofire
https://github.com/Alamofire/Alamofire
https://github.com/Alamofire/Alamofire
https://github.com/Alamofire/Alamofire
https://github.com/Alamofire/Alamofire
https://github.com/Alamofire/Alamofire
https://github.com/Alamofire/Alamofire
https://github.com/Alamofire/Alamofire
https://github.com/Alamofire/Alamofire

Improving a Version of a Weather App Chapter 9

[260]

This is working fine if the problem is really major, but it's annoying. A better approach is to
use an unobtrusive way to communicate the problems. Good solutions are the toast
notifications which pop up for a short time at the bottom (or at the top), and then they
disappear. The user has enough time to read them and to understand the problem. They
don't need any action from the user and can be skipped freely.

The last style is to notify the user for everything. Such app behavior is not good. It's
perfectly fine when developing the app, but later you have to filter which errors are good to
be communicated and which are minor. It is really important to keep the user happy while
using the app.

Let's show you how to present different notifications (not only for errors).

Improving a Version of a Weather App Chapter 9

[261]

Better error handling
The simplest way to handle an error is to display a message, which appears on top of
everything. It blocks the rest of the UI and steals the user's attention. This is not the most
elegant way, because it's very intrusive, but it's perfect in cases where we have to bring
something really critical to the user. For example, when the weather app is trying to fetch
the forecast from the server and there is a problem with the network or with the server's
response, the app won't be able to receive any data and the user should know what the
cause is.

When presenting such important information, use the user's language.
Don't use technical information such as the number of the error or
something which is pretty specific. Try to address everyone who will be
using your application.

Here is how we can create a simple alert that shows our message to the user:

let alert = UIAlertController(title: "Network problem", message: "We faced
a problem while tying to load the forecast data. Please, try later.",
preferredStyle: UIAlertControllerStyle.Alert)
alert.addAction(UIAlertAction(title: "OK", style:
UIAlertActionStyle.Default, handler: nil))
self.presentViewController(alert, animated: true, completion: nil)

This code brings a typical alert, which the user should dismiss by pressing the OK button.
It's something pretty common.

If you want to present UIAlertController, you have to be sure that it's
executed in viewDidAppear or after that method was invoked.

Here is how we should change the code in ViewController.swift. We will move the
loading of the information in the viewDidAppear function, so that the alert can be added
on the screen:

 override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)
 //we set the current city to New York
 let currentCity = City.NewYork
 ForecastStore.instance.loadForecastAlamofire(for: currentCity) {
 [weak self](response, error) in
 if let error = error { //there is an error
 //actual error handling, please check the code snippet below
 } else if let responseModel = response {

Improving a Version of a Weather App Chapter 9

[262]

 DispatchQueue.main.async { [weak self] in
 self?.updateUI(city: currentCity, forecast:responseModel)
 }
 }
 }
}

The error handling should be done correctly, thus we have put it in a separate place:

witch error {
 case .invalidCity:
 let alert = UIAlertController(title: "Network problem",
 message: "We faced a problem while tying to load the
 forecast data. Please, try later.", preferredStyle:
 UIAlertControllerStyle.alert)
 alert.addAction(UIAlertAction(title: "OK",
 style: UIAlertActionStyle.default, handler: nil))
 self?.present(alert, animated: true, completion: nil)
 case .noConnection://handle this case
 break
 case .invalidURL: //handle this case
 break
 case .wrongResponse: //handle this case
 break
}

There are several different types of errors which should be handled. For brevity, we have
implemented the first case, .invalidCity, but it's good to handle all the cases in your
code using the same approach.

The change of the code is a must, because there is no way to present UIAlertController
from the viewDidLoad function. This way, the loading of the data from the server is shifted
slightly in time. For more complex applications, this might be critical, so it's possible to start
the loading and then delay the presentation of the UI.

There is a better approach to show the error to the user. Simply use a toast notification that
appears for a short period of time on the screen in a visible place and then vanishes. There
is no need for user interaction, but you can't be sure that the user has read it.

Unfortunately, there is no default mechanism for displaying a toast notification. Thus, we
should use a third-party library. The one which we are going to integrate is called Toast-
Swift. It can be found at: https:/ /github. com/ scalessec/ Toast- Swift.

To add it, you can use your CocoaPods. Just add the following line:

pod 'Toast-Swift', '~> 3.0.1'

https://github.com/scalessec/Toast-Swift
https://github.com/scalessec/Toast-Swift
https://github.com/scalessec/Toast-Swift
https://github.com/scalessec/Toast-Swift
https://github.com/scalessec/Toast-Swift
https://github.com/scalessec/Toast-Swift
https://github.com/scalessec/Toast-Swift
https://github.com/scalessec/Toast-Swift
https://github.com/scalessec/Toast-Swift
https://github.com/scalessec/Toast-Swift
https://github.com/scalessec/Toast-Swift
https://github.com/scalessec/Toast-Swift
https://github.com/scalessec/Toast-Swift

Improving a Version of a Weather App Chapter 9

[263]

Don't forget to call pod install to install the new dependency. Here is how you can show
a toast notification at the top:

self?.view.makeToast("We've faced a problem while trying to load the
forecast data. Please, try later.", duration: 1.5, position: .top)

This is the pretty neat, right? Just a single line, but don't forget to add the import at the top:

import Toast_Swift

Here is what the UI looks like:

The toast notification is rendered at the top and it disappears after 1.5 seconds. You can
always extend the time it should be on-screen, but it shouldn't be too long.

In the next section, we will design a pop-up screen which will display information about all
external dependencies.

About the screen
This screen will show extra information about the application, including who has
developed the application, how to use it, and a list of all open source libraries. Each open
source library comes with license information that should be accessible by the user within
the app.

Improving a Version of a Weather App Chapter 9

[264]

Don't forget to include the license information for all external libraries,
otherwise you may have legal troubles.

Here is what we want to create:

Improving a Version of a Weather App Chapter 9

[265]

This screen will be opened from the main screen. Now, let's update the storyboard. We
have to add a new view controller. This view controller should have a couple of static labels
and a UITextView. The text view will be used to display all the license information for all
external libraries used in the app. This About screen is a generic one and it can be used in
many other applications which are using external applications:

About screen

Then, we need a .swift file to define the AboutViewController class, which extends
UIViewController. We will need an outlet to the text view. Here is the code of the new
controller:

class AboutViewController: UIViewController {

 @IBOutlet weak var licenses: UITextView!
 let licenseToastSwift =
"""
...paste the whole license...
"""
 let licenseAlamofile =

Improving a Version of a Weather App Chapter 9

[266]

"""
...paste the whole license...
"""
 override func viewDidLoad() {
 super.viewDidLoad()

 licenses.text = licenseToastSwift + "\n\n\n" + licenseAlamofile
 }
 @IBAction func onCloseClicked(_ sender: Any) {
 self.dismiss(animated: true, completion: nil)
 }
}

The onCloseClicked function dismisses the view controller. This function should be
triggered once the user activates the Close button. The UITextView instance is used in the
viewDidLoad function to load the whole license.

You can use an arbitrary long text (including empty lines) which is
surrounded with """ (triple quotes).

Don't forget to add a segue from the Home screen and activate it once the About button is
clicked.

About screens are a tiny part of each app, but they are mandatory screens for all apps,
because this is the place where you can add all the necessary information telling your users
that your app is using third-party software under specific license.

Double-check which licenses are fine with your application and your
business model. Don't try to use libraries without giving credit.

We have been through so many things in this chapter, so let's recap.

Improving a Version of a Weather App Chapter 9

[267]

Summary
In this chapter, we have learned what an API is, the easiest way to consume one, and what
we should do to start integrating a working backend in a mobile app. We improved the
previous version of the Weather application and filled the UI with real data, which is
fetched from openweathermap.org. The user can extend it by adding the five-day forecast
for each city. The list of the cities should be loaded from a structure and all IDs should be in
sync with the data provided from openweathermap.org. This is out of this scope of the
book, but with the knowledge which we already have, it can be implemented easily.

We have used a standard way of communication and the more robust library—Alamofire.
If you are creating a small app, you can stick to the pure iOS approach. But when you need
a much more powerful solution straight out of the box, then Alamofire is what you are
looking for.

We spent some time discussing different styles of handling errors. The best solution is to
handle all major errors and communicate those to the user. We know how to do this using
toast notifications and alert boxes. Both can be used, but it depends on the current situation.

Finally, we discussed that each app should contain an About screen and information about
all open source libraries that are used in the app.

We gained a lot of experience by using the basic UIComponents. We practiced how to
integrate external APIs in our application. Now is the time to learn how to integrate local
frameworks, such as CoreImage or CoreGraphics. In the next chapter we will try to build
a copycat application that is similar to Instagram. We are going to build it from scratch with
all the key features without integrating a real backend. Then, we will extend the mock up
with Firebase services—a free backend solution—which will simulate the backend of the
real app.

10
Building an Instagram-Like App

It's time to build a working app that uses a backend service to handle various user activities
such as login, uploading and downloading images, adding comments, and sharing images
using other applications. For such an app, you will need a robust backend service. We
won't dive into many details on how to build such a service application; instead, we will
develop a free solution that is powered by Google's web service: Firebase.

Tabbed app project
Open Xcode and start a new tabbed app project. Give it a nice name. You can always use
InstagramLikeApp. Update the organization identifier com.packtpublishing.swift4.
Set the language to be Swift if it's something else. Then, pick a folder where the project
should be saved. You can add a local Git repository to keep all changes under control.
The next step is to add a Podfile. You just have to open the Terminal window and write:

pod init

Then, you have to edit the new Podfile. We will start by adding the bare minimum to
integrate Firebase:

pod 'Firebase/Core'

Then, we should call:

pod install

Don't forget to open the workspace file, where we will have the Pods project linked to the
initial project.

In the future, we will list only the pod module that should be added to the
Podfile. This means that you will update the Podfile, close Xcode, call pod
install, and then open the workspace again in Xcode.

Building an Instagram-Like App Chapter 10

[269]

Now, we have a project that has the core classes of Firebase or Firebase SDK (software
development kit, or set a of handy classes to consume Firebase services). We will
expand the app a lot by adding different features from the SDK. Now, let's learn more
about Firebase.

Firebase
Firebase is a platform that includes many products that solve real problems in software
development. It has a free version that has some limitations, but it fits perfectly fine when
starting a mobile app from scratch. Once you have gained enough users, Firebase allows
you to easily scale and support your product.

You can open the Firebase console (https:/ /console. firebase. google. com/), where you
have to create your project:

https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/

Building an Instagram-Like App Chapter 10

[270]

You need a Google account to be able to use Firebase.

Then, you have to create a new project. Simply give it a name: InstagramLikeApp. Pick a
location that will be used to define the currency in which you will be working with Firebase
and this particular project:

Once we have a valid project, then we should add an iOS app. Start the process with the +
button at the top left.

First, you have to enter your application identifier. You can use something like
com.packtpublishing.swift4.InstagramLikeApp. This is the same app bundle
identifier (app ID) that we will use when creating the iOS project. Then, you can change the
project name. Firebase only allows unique names for projects. This will be used later.

Building an Instagram-Like App Chapter 10

[271]

In the next step, you have to download GoogleService-Info.plist. This file should be
added to the tabbed app project we created in the previous section.
The final step to finish Firebase's initial integration is to add the following code in
AppDelegate.swift: import Firebase and FirebaseApp.configure() in the
following function:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?)
 -> Bool

If everything is correct, then once you run your app, it will start up like before. You will see
the following information in the console:

In the next section, we will implement an authentication screen. This is the first step every
user should take when starting InstagramLikeApp.

Login
Every user should identify him/herself when using the mobile app to the server and other
users. To achieve this, Firebase creates a user account. Each user should have at least one
account to be able to use the InstagramLike service. Unauthorized access is not allowed
through the mobile app.

There is no limitation on how many accounts can be created by a single
user in Firebase. The only requirement is to have a valid email or a valid
mobile number. Linking virtual accounts (users) with unique
items/services from the real world is a good technique to reduce the
number of fake accounts in a system.

We will use the default account creation service provided by Firebase.

Building an Instagram-Like App Chapter 10

[272]

Firebase supports integration of the most popular social
networks, Facebook and Twitter. LinkedIn is not supported, but there are
open source projects that support it. Also, there is a way to use a phone
number for login, similar to the real Instagram.

Let's create our sign-in screen. This will be a brand new view controller. At the moment, we
have a single option to log in using email and password.

If you want to use the Instagram logo or resources, you will have to visit
the following site: https:/ /en. instagram- brand. com/ .

Here is our Sign In screen:

Sign In screen

https://en.instagram-brand.com/
https://en.instagram-brand.com/
https://en.instagram-brand.com/
https://en.instagram-brand.com/
https://en.instagram-brand.com/
https://en.instagram-brand.com/
https://en.instagram-brand.com/
https://en.instagram-brand.com/
https://en.instagram-brand.com/
https://en.instagram-brand.com/
https://en.instagram-brand.com/
https://en.instagram-brand.com/

Building an Instagram-Like App Chapter 10

[273]

It has a label and a single button. This button will start the sign in process, which is handled
by Firebase. You have to make the Sign in With Email screen a main entry point of the app.
Simply move the arrow that is pointing to the tabbed view controller so that it is pointing to
the new view controller:

Don't forget to give a storyboard ID to the new view controller. You can use
SignInViewController. Give a name to the main tab view
controller, TabbarViewController:

Building an Instagram-Like App Chapter 10

[274]

Now, we should add the following pod to the Podfile:

pod 'FirebaseUI/Auth', '~> 4.0'

Don't forget the whole procedure of installing the pod and re-opening the workspace. You
have to create SignInViewController.swift. In that file, we will create a
SignInViewController class, which extends UIViewController. Here is the code of
this new class:

import UIKit
import FirebaseAuthUI
class SignInViewController: UIViewController {
 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view.
 }

 @IBAction func signInWithEmail(_ sender: Any) {
 let authUI = FUIAuth.defaultAuthUI()
 if let authViewController = authUI?.authViewController() {
 present(authViewController, animated: true, completion: nil)
 }
 }
}

Don't forget to link the class with the view controller in the main storyboard. Also, add an
action to the Sign In With Email button. This action uses the default Firebase flow, which
handles the user sign in process. If the user already has an account, then it prompts for a
password; otherwise, it creates a new account associated with the user's email.
We have to add some extra logic to our AppDelegate so that it can switch the starting
screens based on user authentication. If the user has been authenticated (logged in
successfully), he/she should see the app's home screen. If not, the SignInViewController
should be presented:

class AppDelegate: UIResponder, UIApplicationDelegate, FUIAuthDelegate {
 //....
 func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 // Override point for customization after application launch.
 FirebaseApp.configure()
 let nc = NotificationCenter.default
 nc.addObserver(forName: Notification.Name(
 rawValue: "userSignedOut"),
 object: nil, queue: nil) { [weak self]
 notification in

Building an Instagram-Like App Chapter 10

[275]

 //TODO: remove the stored user information
 self?.openSingInScreen()
 }
 // handle the successful sign in
 let authUI = FUIAuth.defaultAuthUI()
 authUI?.delegate = self
 let user = Auth.auth().currentUser
 if let user = user {
 save(user: user)
 self.openMainViewController()
 }
 return true
 }
//continue ...

In the following code snippet, we add the helper functions that do the heavy lifting:

 //MARK:- helper functions
 func save(user: User) {
 //TODO: save the user in memory
 }
 func openSingInScreen() {
 if let signInViewController = self.window?
 .rootViewController?.storyboard?.instantiateViewController(
 withIdentifier: "SignInViewController") as?
 SignInViewController {
 signInViewController.view.frame = (
 self.window?.rootViewController?.view.frame)!
 signInViewController.view.layoutIfNeeded()
 UIView.transition(with: window!, duration: 0.3,
 options: .transitionCrossDissolve, animations: {
 self.window?.rootViewController = signInViewController
 }, completion: { completed in
 // nothing to do here
 })
 }
 }
//continue ...

The preceding code can be used to present the SignInViewController class. Don't forget
to add the same ID in the storyboard, because the iOS should find it to initialize it:

 func openMainViewController() {
 if let rootViewController = self.window?
 .rootViewController?.storyboard?.instantiateViewController(
 withIdentifier: "TabbarViewController") {
 rootViewController.view.frame = (self.window?
 .rootViewController?.view.frame)!

Building an Instagram-Like App Chapter 10

[276]

 rootViewController.view.layoutIfNeeded()
 //nice transition between views
 UIView.transition(with: window!, duration: 0.3,
 options: .transitionCrossDissolve, animations: {
 self.window?.rootViewController = rootViewController
 }, completion: { completed in
 // maybe do something here
 })
 }
 }
//continue ...

The preceding function handles the case where we want to start the default application
flow. In our case, this is the initial TabBarViewController. Don't forget to use the same
ID for that view controller, so that we can instantiate it using code:

 //MARK:- FUIAuthDelegate
 func authUI(_ authUI: FUIAuth, didSignInWith user: User?,
 error: Error?) {
 // handle user and error as necessary
 if let user = user {
 save(user: user)
 self.openMainViewController()
 }
 }
//continue from above
}

The code in the preceding snippet will be triggered every time Firebase reports that the
user has been successfully authenticated. This will happen automatically on every
subsequent application start if the user has logged in once.

To recap, you implement FUIAuthDelegate. Then, you add some extra actions in the main
function, which is called func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:

[UIApplicationLaunchOptionsKey: Any]?) -> Bool. We added a notification to
listen when the user logs out and opens the Sign in screen. The actual log out action will be
implemented later. Then, we set the delegate of the authorization provider. Next, we check
whether there is an active user; if there is we open the tab bar, otherwise the app will show
the default screen.

Building an Instagram-Like App Chapter 10

[277]

We have a couple of help functions that are doing the heavy lifting in presenting the correct
screen when the user logs in or logs out.
There is one really important step that we should take in the Firebase console, before
checking the implementation. You have to activate email/password sign in. This can be
done from the Firebase console. Select the project you created. Next, open the
Authentication screen:

You have to click on Sign-in method, then you have to edit the first option. Set it to
Enabled:

Building an Instagram-Like App Chapter 10

[278]

Everything should work. Start the app and verify that you can sign in with your email.
Later on, we can include other providers, but for now email is just fine.

If you develop an app that contains only being able to log in through
social networks such as Facebook or Twitter, Apple will reject your app.
Every app should be user-friendly and allow users to log in through
email/username and password.

In the next section, we will do a rough design of the whole app. All missing view
controllers will be created and hooked together.

The different screens
Before moving onto the details, we should design the overall experience in our app. We
will use a tab bar with five different sections. They are as follows:

Home screen: This screen will contain the main feed of photos. It will show all
the new photos from the users you follow.

Search screen: Here, the user will be able to look for different content.
Create a post: This screen will allow the user to take a photo and apply different
filters. Once the whole process is finished, the photo will be published and
visible on the home screen for all users to see.

Favorites screen: This screen will show favorite posts.

User's profile screen: This is your profile screen, where you can see all of your
posts.

Open the storyboard and create three new empty view controllers. You should have two
already generated from the previous steps. Add a single label in the center of each view
controller and give it a nice descriptive name. Hook those view controllers to the main tab
bar. Don't forget to add icons. This will make our app stand out and look nice.

Building an Instagram-Like App Chapter 10

[279]

Here is what the InstragramLike app looks like. Only UI screens define the whole app's basic
structure. We will make them interactive and complete this step-by-step:

InstragramLike app

In the next section, we will discuss how to customize the tab bar so that it looks more like
Instagram. The original app uses a toolbar that is customized, similar to one you can see in
other applications such as Safari. We will take another approach that simulates this
behavior pretty well.

Custom buttons on the tab bar
The buttons on the default status bar can be customized in several ways. You can set
custom icons, change the text below each icon, and add nice animations. The color can be
changed as well, but we will need something slightly fancier here. We want to draw the
users' attention to one specific button: the camera button that will trigger the create
post flow. This is what we want to achieve:

Building an Instagram-Like App Chapter 10

[280]

To achieve that, we will be using an external open source library, ESTabBarController-
swift. We should add the following row to the pod file:

pod 'ESTabBarController-swift'

Then, we have to change the class associated with the tab bar view controller in our
storyboard. Let's create a custom class that inherits from ESTabbarController and name
it InstagramTabbarController. This class will play a key role in our app, because it will
be responsible for handling the tab bar buttons:

import UIKit
import ESTabBarController_swift

class InstagramTabbarController: ESTabBarController {
 override func viewDidLoad() {
 super.viewDidLoad()
 self.shouldHijackHandler = {
 tabbarController, viewController, index in
 if index == 2 {
 return true
 }
 return false
 }
 self.didHijackHandler = {
 [weak self] tabbarController, viewController, index in
 DispatchQueue.main.async {
 self?.pesentPicker()
 }
 }
 //update the middle icon
 if let viewController = self.viewControllers?[2] {
 viewController.tabBarItem = ESTabBarItem.init(
 AnimatedContentView(), title: nil, image:
 UIImage(named: "create_post"), selectedImage:
 UIImage(named: "create_post"))
 }
 }
 func pesentPicker() {

Building an Instagram-Like App Chapter 10

[281]

 //...
 }
}

First, let's first explain what this class does. It redefines the behavior of the third icon (or the
one with index 2, because those are zero index-based). The default behavior is to present a
view controller that is linked to the tab bar view controller. This is not the desired behavior.
We need to present an image picker and if the user doesn't pick an image to be part of their
post, they should return immediately to where they were. In short, we don't need the view
controller linked with the button; we want to present a new modal view controller. We
should alter the default behavior.

In shouldHijackHandler, we should return true for all the indices we want to
customize. In our case, it's only index 2. Then, the actual code that will be fired once the
exact icon is pressed should be placed in didHijackHandler. (If you do this hijacking for
more than one index, then you have to use the index argument. It is not needed now.)

We should present a picker window, which helps the user pick an image from the device
image gallery. We need a new look and feel for the third icon. To achieve a fancy look, we
are using a custom ContentView class.

AnimatedContentView defines the new middle icon (there are five buttons—the same
number as the linked view controllers). Here are the key details:

class AnimatedContentView: ESTabBarItemContentView {
 override init(frame: CGRect) {
 super.init(frame: frame)
 iconColor = .black
 highlightIconColor = .white
 }
 public required init?(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
 }
}

In this code, we customized the button's color.

We can override the following two functions in our AnimatedContentView to add a nice
effect when the button is pressed. Here is the code:

 public override func highlightAnimation(animated: Bool, completion: (()
-> ())?) {
 UIView.beginAnimations("small", context: nil)
 UIView.setAnimationDuration(0.2)
 let transform = self.imageView.transform.scaledBy(x: 0.8, y: 0.8)

Building an Instagram-Like App Chapter 10

[282]

 self.imageView.transform = transform
 UIView.commitAnimations()
 completion?()
 }

 public override func dehighlightAnimation(animated: Bool,
 completion: (() -> ())?) {
 UIView.beginAnimations("big", context: nil)
 UIView.setAnimationDuration(0.2)
 let transform = CGAffineTransform.identity
 self.imageView.transform = transform
 UIView.commitAnimations()
 completion?()
 }

The highlightAnimation scales down the whole image, which creates the illusion that
the button is pressed down. The other function restores its initial size and position. By
tweaking the numbers in this function, you can change the current behavior.

Next, we will implement the create post user flow. It starts picking the correct photo. That
photo can then be modified by applying a filter, and then the user can add caption text
before sharing it. All shared posts are stored on the Firebase server.

Creating a post
We are going to use an external library to handle the complex process of rendering all the
user's media, picking an image, and applying a filter for us. The name of the library
is YPImagePicker. This is an open source library that implements an Instagram-like photo
and video picker in Swift. Instead of spending too much time in this book developing such
a component, we are going to use one off the shelf and focus on implementing the rest of
the application. Add the library to the Podfile, by inserting the pod 'YPImagePicker' line
to the file. Then install the new pod like we have done before.

If you are interested in how to implement such a picker, you can take a
look at the YPImagePicker source code here:
https:/ /github. com/ Yummypets/ YPImagePicker/ tree/ master/ Source

https://github.com/Yummypets/YPImagePicker/tree/master/Source
https://github.com/Yummypets/YPImagePicker/tree/master/Source
https://github.com/Yummypets/YPImagePicker/tree/master/Source
https://github.com/Yummypets/YPImagePicker/tree/master/Source
https://github.com/Yummypets/YPImagePicker/tree/master/Source
https://github.com/Yummypets/YPImagePicker/tree/master/Source
https://github.com/Yummypets/YPImagePicker/tree/master/Source
https://github.com/Yummypets/YPImagePicker/tree/master/Source
https://github.com/Yummypets/YPImagePicker/tree/master/Source
https://github.com/Yummypets/YPImagePicker/tree/master/Source
https://github.com/Yummypets/YPImagePicker/tree/master/Source
https://github.com/Yummypets/YPImagePicker/tree/master/Source
https://github.com/Yummypets/YPImagePicker/tree/master/Source
https://github.com/Yummypets/YPImagePicker/tree/master/Source
https://github.com/Yummypets/YPImagePicker/tree/master/Source
https://github.com/Yummypets/YPImagePicker/tree/master/Source
https://github.com/Yummypets/YPImagePicker/tree/master/Source

Building an Instagram-Like App Chapter 10

[283]

We are hijacking the middle tabbar button action. The pesentPicker function is called
once we detect that the button is clicked. The following code shows the custom image
picker view controller:

func pesentPicker() {
 var config = YPImagePickerConfiguration()
 config.onlySquareImagesFromLibrary = false
 config.onlySquareImagesFromCamera = true
 config.libraryTargetImageSize = .original
 config.usesFrontCamera = true
 config.showsFilters = true
 config.shouldSaveNewPicturesToAlbum = !true
 config.albumName = "IstagramLikeApp"
 config.startOnScreen = .library

 let picker = YPImagePicker(configuration: config)
 picker.didSelectImage = {
 img in
 //TODO: ...
 }
 present(picker, animated: true, completion: nil)
}

If we try to run the app, it will crash. iOS has to ask the user for appropriate permissions to
access the user's photos. To do so, it needs special keys to be defined in the Info.plist
file and associated with short description texts. The problem is that we should let the user
know why the app needs access to the Photos library, device camera, and microphone.
Thus, we have to add a description of why the app needs those. A system alert will be
displayed and the user should agree before moving forward. If the user declines, then we
should handle this case and let them know that this is a critical part of our app, without
which it can't function properly.
To add these descriptions, you have to open the Info.plist file. Then, start adding the
following keys and values:

<key>NSCameraUsageDescription</key>
<string>InstagramLike app needs access to your camera.</string>
<key>NSPhotoLibraryUsageDescription</key>
<string>InstagramLike app needs access to your photos.</string>
<key>NSMicrophoneUsageDescription</key>
<string>InstagramLike app needs access to your microphone.</string>

You can start typing the key and Xcode will help you. Another option is to enter the keys in
the .plist file if you have opened it like a regular text file. Here is the final result:

Building an Instagram-Like App Chapter 10

[284]

The new permissions are added at the top of the main .plist file.
When the descriptions are added, the application should function, but once we pick a nice
image and apply a filter, we can't leave the picker. The problem lies in the
picker.didSelectImage closure. We have to dismiss the screen manually when an
image is picked. If you start the app and press the camera button, you will see screens that
show your photo gallery images in a grid layout. Here is what it looks like on a simulator of
iPhone 6s:

Building an Instagram-Like App Chapter 10

[285]

The powerful picker component doesn't implement the last step, which is adding a caption
and the actual post sharing when you press Done. We have to create a new screen to do
that. Let's start with the UI first. Open the storyboard and create a new view controller:

Then, add a UIImageView with a width and height equal to 110 points. Next to it, place a
TextView, which will allow the user to add a short description to the images.

Points are mapped to different numbers of pixels on each device, based on
the device screen density (pixels per inch). On some old devices, 1 point
was 1 pixel, but on the retina ones, 1 point could be 4 pixels or more.

Building an Instagram-Like App Chapter 10

[286]

Here are the constraints that should be added so that the UIImageView has a fixed size and
the TextView is filling the rest of the screen. You can use 15 points or more.
You need a new Swift file, CreatePostViewController.swift, and a new
class, CreatePostViewController, which should be associated with the new view
controller. Don't forget to set the storyboard ID of that controller, similar to what we did at
the beginning of this chapter for a couple of other controllers:

class CreatePostViewController: UIViewController {
 override var prefersStatusBarHidden: Bool { return true }
 private let placeholderText = "Write a caption..."
 public var image:UIImage?
 @IBOutlet weak var photo: UIImageView!
 @IBOutlet weak var textView: UITextView! {
 didSet {
 textView.textColor = .gray
 textView.text = placeholderText
 textView.selectedRange = NSRange()
 }
 }
 override func viewDidLoad() {
 super.viewDidLoad()
 textView.delegate = self
 photo.image = image
 navigationItem.rightBarButtonItem = UIBarButtonItem(
 title: "Share", style: .done, target: self,
 action: #selector(createPost))
 }
 @objc func createPost() {
 self.dismiss(animated: true, completion: nil)
 }
}

 The view controller adds a Share button navigation item at the top right. The button
should create the new post and close the picker, bringing the user back to their previous
activity.

The actual code that creates the post and saves it on the Firebase server
will be added later.

To add a placeholder text to the TextView competent, we have to add the following
extension to our view controller. It's a pretty simple and short workaround that makes the
TextView behave more like TextInput.

Building an Instagram-Like App Chapter 10

[287]

This is an extension to the CreatePostViewController and we can add it to the bottom
of CreatePostViewController.swift. The placeholder property is part of the main
class, because it can't be part of the extension. Only read-only properties can be part of
extensions. We define the functions that will present the placeholder on the screen in the
following code snippet:

extension CreatePostViewController: UITextViewDelegate {
 func textViewDidChangeSelection(_ textView: UITextView) {
 // Move cursor to beginning on first tap
 if textView.text == placeholderText {
 textView.selectedRange = NSRange()
 }
 }
 func textView(_ textView: UITextView, shouldChangeTextIn range:
NSRange, replacementText text: String) -> Bool {
 if textView.text == placeholderText && !text.isEmpty {
 textView.text = nil
 textView.textColor = .black
 textView.selectedRange = NSRange()
 }
 return true
 }
 func textViewDidChange(_ textView: UITextView) {
 if textView.text.isEmpty {
 textView.textColor = .gray
 textView.text = placeholderText
 }
 }
}

TextView decides what text to render based on what has been entered by the user. If the
text is empty, the placeholder text is rendered. If the user enters any text, then that text is
displayed. The selection is managed accordingly.
Now, let's try to hook our new CreatePostViewController to the picker. This will be
done in InstagramTabbarController. We have to handle that in the didSelectImage
closure:

picker.didSelectImage = {
 [unowned picker, weak self] img in
 if let viewController = self?.storyboard?
 .instantiateViewController(withIdentifier: "CreatePost")
 as? CreatePostViewController {
 viewController.image = img
 // Use Fade transition instead of default push animation
 let transition = CATransition()
 transition.duration = 0.3

Building an Instagram-Like App Chapter 10

[288]

 transition.timingFunction = CAMediaTimingFunction(
 name: kCAMediaTimingFunctionEaseInEaseOut)
 transition.type = kCATransitionFade
 picker.view.layer.add(transition, forKey: nil)
 picker.pushViewController(viewController, animated: false)
 }
}

In the closer, the picker is unowned because it will be initialized and we don't want to create
a memory leak (reference cycle). The self should be weak, because we use it and we don't
want to create another memory leak.

In many closures, you have to use [weak self] to prevent memory
leaks.

We will create an instance of the controller using its ID, CreatePost. Then, we will use it
to pass the selected image to that instance, which will be responsible for sending the image
to Firebase. Then, a nice transition effect is created and applied.

In the next section, we will discuss why creating a model of the data is important. What are
the benefits of using an abstract model compared to storing the data directly on the server?

Models
We need the model abstraction layer to keep the data structured and organized. We can
omit the model layer and store everything in dictionary objects, but this will come and bite
us in the long run. When we define a hierarchy of classes that structures the data, we can
use it later in different scenarios and we can solve more complex problems with ease. Good
models help us to model real processes easily. Without such a layer, our app becomes too
dependent on the Firebase database structure. If in the future, Firebase stops working
(which is not too likely), it will be hard to migrate our app to other backend services and
servers. Then, the easiest step will be to create a model and try to use that model with a
new backend.

Building an Instagram-Like App Chapter 10

[289]

Usually, it's much easier to think about an application where you have small functional
blocks and they are pretty close to the real world. Also, the model layer is used to abstract
the actual data representation on the server. This means that if the backend is changed, then
we should just fix the communication with the server and keep our model the same. This
way, the rest of the application will function as expected without extra changes. If that layer
is missing, every change on the server will result in a huge update in the app, which will
cost extra time and money.

Here is our model, which is compact, but it does the job for this early stage of the app:

class PostModel {
 var photoURL:String
 var description:String
 var author:String
 var width:Int = 0
 var height:Int = 0
 init(photoURL: String, description: String, author:String,
 width: Int, height: Int) {
 self.photoURL = photoURL
 self.description = description
 self.author = author
 self.width = width
 self.height = height
 }
 var toDict:[String:Any] {
 var dict:[String:Any] = [:]
 dict["description"] = description
 dict["author"] = author
 dict["width"] = width
 dict["height"] = height
 if let photoURL = self.photoURL {
 dict["photo"] = photoURL
 }
 return dict
 }
}

This class is part of DataManager.swift, in which we define our data manager layer:

final class DataManager {
 //private constructor
 private init() {
 databaseRef = Database.database().reference()
 }
 //single instance
 static let shared = DataManager()
 var databaseRef: DatabaseReference!

Building an Instagram-Like App Chapter 10

[290]

 var userUID: String?
 func createPost(post:PostModel, image:UIImage, progress:
 @escaping (Double)->(),callback: @escaping (Bool) -> ()) {
 //...
 }
}

In the next section, we will discuss how to configure the Firebase backend so that we can
use the database and storage to upload posts there.

Firebase
First of all, we have to install two new libraries, which are responsible for two Firebase
services. Update the Podfile by adding these modules:

pod 'Firebase/Database'
pod 'Firebase/Storage'

Then, install the new libraries. Before developing the code, we should enable the database
and storage in our Firebase application. To do that, you have to open the Firebase console
and activate the Database tab:

You have to use the real-time database, not the Firestore, which is a new service.
Let's update the rules applied to database access. Open the RULES tab and replace the old
rules with the following:

{
 "rules": {
 ".read": "false",
 ".write": "false",
 "myposts": {
 ".read": "false",
 ".write": "false",
 "$uid": {
 ".read": "auth != null",
 ".write": "$uid === auth.uid"
 }
 },
 "posts":{

Building an Instagram-Like App Chapter 10

[291]

 ".read": "auth != null",
 ".write": "auth != null"
 }
 }
}

These rules restrict unauthorized access to the database. It's really important to add correct
rules, otherwise someone could gain access to data that should be secured.
We have to add Firebase store rules to limit the upload files. Open the Storage service:

Then, click on the RULES tab and replace the current rules with the following:

service firebase.storage {
 match /b/{bucket}/o {
 match /posts/{userId}/{allPaths=**} {
 allow read
 allow write: if request.auth.uid == userId;
 }
 }
 }

The rules limit the user to writing only in the /posts/<user-id> location. Let's write
some code that uses these two new services:

func createPost(post:PostModel, image:UIImage, progress: @escaping
(Double)->(),callback: @escaping (Bool) -> ()) {
 guard let userID = userUID else {
 callback(false)
 return
 }
 // key for the data
 let key = databaseRef.child("posts").childByAutoId().key
 let storageRef = Storage.storage().reference()
 // location of the image for a particular post
 let photoPath = "posts/\(userID)/\(key)/photo.jpg"
 let imageRef = storageRef.child(photoPath)
 // Create file metadata including the content type
 let metadata = StorageMetadata()
 metadata.contentType = "image/jpeg"
 metadata.customMetadata = ["userId": userID]
 //continue ...

Building an Instagram-Like App Chapter 10

[292]

Next, we have to convert the image to a JPEG representation to be able to save it on the
Firebase server:

 let data = UIImageJPEGRepresentation(image, 0.9)
 // Upload data and metadata
 let uploadTask = imageRef.putData(data!, metadata: metadata)
 //continue ...

The uploadTask object reports different messages that we can interpret, and then we can
update the app's UI accordingly:

 uploadTask.observe(.progress) { snapshot in
 // Upload reported progress
 let complete = 100.0 * Double(snapshot.progress!
 .completedUnitCount) / Double(snapshot.progress!
 .totalUnitCount)
 progress(complete)
 }
//continue ...

In the preceding code, we are observing the progress and we are calling the progress
closure with the exact percentage:

 uploadTask.observe(.success) { [unowned uploadTask, weak self]
 snapshot in
 // Upload completed successfully
 uploadTask.removeAllObservers()
 post.photoURL = photoPath
 post.width = Int(image.size.width)
 post.height = Int(image.size.height)
 //save the post object
 var postData = post.toDict
 let childUpdates = ["/posts/\(key)": postData,
 "/myposts/\(userID)/\(key)/": postData]
 self?.databaseRef.updateChildValues(childUpdates)
 callback(true)
 }
//continue ...

In the preceding code, we handle the case where the uploadTask finishes with success. A
post object is saved in the Firebase database and then the callback function is called. In the
following code snippet, we illustrate the case in which the uploadTask fails:

 uploadTask.observe(.failure) { [unowned uploadTask] snapshot in
 uploadTask.removeAllObservers()
 callback(false)
 if let error = snapshot.error as NSError? {

Building an Instagram-Like App Chapter 10

[293]

 switch (StorageErrorCode(rawValue: error.code)!) {
 case .objectNotFound:
 // File doesn't exist
 print("object not found")
 break
 case .unauthorized:
 // User doesn't have permission to access file
 print("user has no permissions")
 break
 case .cancelled:
 // User canceled the upload
 print("upload was cancelled")
 break
 case .unknown:
 // Unknown error occurred, inspect the server response
 break
 default:
 // A separate error occurred. This is a good place to
retry the upload.
 break
 }
 }
 }
}

In this case, we call the callback function, reporting false, which means that post creation
has failed. It's really important to remove all observers in all cases to be sure that there will
be no memory leak. Thus, we use the following call:

uploadTask.removeAllObservers()

The actual post creation happens on the following lines:

var postData = post.toDict
let childUpdates = ["/posts/\(key)": postData,
"/myposts/\(userID)/\(key)/": postData]
//create new records
self?.databaseRef.updateChildValues(childUpdates)

Our PostModel is converted to a dictionary object, [String:Any]. Then, it is used to
update the values of concrete places in the database.

Building an Instagram-Like App Chapter 10

[294]

The createPost function does a couple of things. Let's discuss them one by one:

Generate a unique ID for the post and the image:1.

let key = databaseRef.child("posts").childByAutoId().key
let storageRef = Storage.storage().reference()
// location of the image for a particular post
let photoPath = "posts/\(userID)/\(key)/photo.jpg"
let imageRef = storageRef.child(photoPath)

Convert the image to JPEG representation.2.
Create uploadTask, which will be responsible for the upload and the reporting.3.
Attach the different observers that will be fired.4.

To prevent memory leaks you have to remove all observers when using
Firebase.

The uploadTask object is created and will be fired automatically:5.

imageRef.putData(data!, metadata: metadata)

If the upload fails, then the callback is triggered with a false value.6.
If the upload is successful, then the corresponding PostModel object is stored on7.
the server and the callback is triggered with a true value.
Progress is reported using a closure with a single value, which contains the8.
upload progress.

We have to use this function in our CreatePostViewController class, in its createPost
method:

@objc func createPost() {
 guard let image = self.image else {
 return
 }
 let description = (textView.text != placeholder ?
 textView.text : "") ?? ""
 var post = PostModel(description: description, author:
DataManager.shared.userUID ?? "no user id")
 DataManager.shared.createPost(post: post, image: image, progress: {
(progress) in
 print("Upload \(progress)")
 }) { (success) in
 if success {

Building an Instagram-Like App Chapter 10

[295]

 print("Successful upload.")
 } else {
 print("unable to create the post.")
 }
 self.dismiss(animated: true, completion: nil)
 }
}

We call the function and pass two closures (blocks of code) that will be triggered. One is to
update a future progress bar, if we add any, and the other one is to close the picker
window. We can display different messages based on the outcome of the function.
In the next section, we will discuss how easy it is to apply a filter to an image. This is
helpful if we want to add extra filters in our app.

Filters
We can use CoreImage or CI to manipulate images. Applying a filter is a breeze. Here is a
function that can be used to generate a filtered version of an image, simply by passing a
valid filter name.

Many filters have extra arguments (data) that can be passed, which will
affect the final result.
For example, a blur filter applies a level of blurriness.

In the following code snippet, we show how a filter can be applied to an image:

func filter(_ image: UIImage, filter name:String) -> UIImage {
 //no filter
 if name == "" {
 return image
 }
 //create a context, to draw on
 if let eaContext = EAGLContext(api: .openGLES2) {
 let context = CIContext(eaglContext: eaContext)
 let ciImage = CIImage(image: image)
 if let filter = CIFilter(name: name) {
 //pass the input image
 filter.setValue(ciImage, forKey: kCIInputImageKey)
 if let outputImage = filter.outputImage,
 let cgImg = context.createCGImage(outputImage,
 from: outputImage.extent) {
 //create new image
 return UIImage(cgImage: cgImg, scale: image.scale,

Building an Instagram-Like App Chapter 10

[296]

 orientation: image.imageOrientation)
 } else {
 return UIImage()
 }
 }
 }
 return UIImage()
}

This code creates a context and a filter. Then, the filter receives the input image. Next, the
code checks the output result from the filter.

All CI filters are executed on the GPU.

You can combine several filters and implement really complex image manipulations.

CoreImage is smart enough to optimize and merge several filters, which
reduces the time to apply them.

The output data is used to create a CGImage and then UIImage, which can be used
anywhere in the app.
Here are the names of some popular filters:

CIPhotoEffectMono

CIPhotoEffectTonal

CIPhotoEffectNoir

CIPhotoEffectFade

CIPhotoEffectChrome

CIPhotoEffectProcess

CIPhotoEffectTransfer

CIPhotoEffectInstant

CISepiaTone

CIGaussianBlur

Building an Instagram-Like App Chapter 10

[297]

A full list of filters separated into sections can be found here: https:/ /developer. apple.
com/library/content/ documentation/ GraphicsImaging/ Reference/
CoreImageFilterReference/ index. html. You can achieve pretty interesting effects when
you combine filters or when you pass different values, but you have to experiment. Our
app is using a default filter and if we want to add new ones, then we have to modify the
code of the YPImagePicker component.

Summary
Let's try to recap what we have learned in this chapter so far. We started with an
introduction to Firebase. Then, we integrated a basic login to our app using Firebase. We
built the general structure of the app with stubbed screens. Next, the tab bar was
customized using an external library, so it functions slightly differently and looks cool.
We implemented a Create Post screen, which is used to upload images to Firebase storage
and save data in the real-time database on Firebase servers. The user flow was a nice mix of
an external library and a view controller developed in the app. Finally, we discussed how
easy it is to apply a CoreImage filter to an image.

In the last chapter of the book, we will continue our work on the Instagram-like app. We
will create a nice-looking home screen and we will implement a Search screen. Then we
will finish the profile screen where the user can set his username and he can upload an
avatar.

https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html
https://developer.apple.com/library/content/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html

11
Instagram-Like App Continued

We are going to continue working on our InstagramLike app to make it complete and
functional. In this chapter, we will implement all the main screens, including the home
screen, favorites screen, profile screen, and search screen. The app will start using content
stored on Firebase. We will save some extra data in the database and will present it on
some screens.

Home screen
The home screen will display a list of all recent posts published by other users. The list is
created by combining all the published posts. We have to design it from scratch using our
knowledge about UIViewCollections. We will need a function that loads the data from
Firebase. Here are the steps that we should perform to implement the new home screen
View Controller.

Instagram-Like App Continued Chapter 11

[299]

First, start with the UI of the home screen. Try to recreate the following layout:

It has UICollectionView, which is stretched so it takes the whole screen estate and
reaches the Safe Area.

The Safe Area is the recommended rectangle in which your app should fit
to look the same way on the regular iPhones and the new iPhone X.

You have to create a file called HomeFeedViewController.swift. It will contain our
implementation of HomeFeedViewController. Then, you should add a
UICollectionView property to HomeFeedViewController. Afterwards, you have to
connect that class with the View Controller in the storyboard. Don't forget to stretch the
collection view from edge to edge using constraints. Add the View Controller as
dataSource to UICollectionView:

Instagram-Like App Continued Chapter 11

[300]

You can see this being done using the Interface Builder, but it can be achieved with the
code. You have to pick the way that suits you best and stick to it. In our application, we use
more than one approach to show the different possible ways to do this.

Here is what HomeFeedViewController might look like:

class HomeFeedViewController: UIViewController {
 private let reuseIdentifier = "FeedCell"
 var model:[PostModel]?
 @IBOutlet weak var collectionView: UICollectionView!
 override func viewDidLoad() {
 super.viewDidLoad()
 loadData()
 }
 func loadData() {
 model = []
 }
}

The preceding code shows the basic structure. We will continue adding details throughout
the chapter.

Next, we have to create a separate class with .xib to present a single cell from the feed.
You can do this from the File | New File... (cmd + N). Then, you have to select Cocoa Touch
Class:

Instagram-Like App Continued Chapter 11

[301]

Click on the Next button. Enter the subclass—UICollectionViewCell. Give the following
class name—FeedViewCell. Tick the checkbox, Also create XIB file. Stick to the Swift
language:

Then, finish the creation of the class. It will appear in the file browser on the left. In the
.xib file, we will define the UI of a single cell. The collection view will be using this exact
template to render all the items, based on the data passed to it from dataSource.

Let's focus on the layout of the cell. An idea of how to lay out the cell is presented in the
following screenshot. You can experiment with different layouts. It won't affect the
application's logic:

Instagram-Like App Continued Chapter 11

[302]

We are using stack views to arrange the items vertically and horizontally. At the top, we've
placed the author's avatar image and a label next to it, which is going to display his/her
name. Then, there is UIImageView, which will render the photo in the post. At the bottom,
we add a list of actions, which we will keep inactive in this first version of our app. They
can be easily extended to act appropriately—the heart icon to favorite a photo, the comment
icon to add a comment to a post, and the arrow icon to send a direct message to the photo's
author.

Now, let's define FeedViewCell.swift:

class FeedViewCell: UICollectionViewCell {
 override func awakeFromNib() {
 super.awakeFromNib()
 contentView.translatesAutoresizingMaskIntoConstraints = false
 avatarImage.layer.cornerRadius = avatarImage.frame.height / 2
 avatarImage.clipsToBounds = true
 }
 @IBOutlet weak var avatarImage: UIImageView!
 @IBOutlet weak var avatarName: UILabel!
 @IBOutlet weak var image: UIImageView!
 @IBOutlet private weak var imageHeightConstraint: NSLayoutConstraint!
 @IBOutlet private weak var imageWidthConstraint: NSLayoutConstraint!
 var imageDimentions: CGSize = .zero {
 didSet {
 let imageWidth = UIScreen.main.bounds.width
 let scaleRatio = imageDimentions.width/imageWidth
 let scaledHeigth = imageDimentions.height/scaleRatio
 imageWidthConstraint.constant = imageWidth
 imageHeightConstraint.constant = scaledHeigth
 }
 }
}

You have to connect all outlets. Don't forget to connect the
constraints—imageHeightConstraint and imageWidthConstraint.

These good-looking cells should be filled with real data. We have to load all published
posts from the Firebase database. The loading can be done in our DataManager class. We
have defined PostModel, which is our core data object. Here is the function that loads all
posts that will be displayed on the home screen:

func fetchHomeFeed(callback: @escaping ([PostModel])->()) {
 let ref = databaseRef.child("posts")
 ref.observeSingleEvent(of: .value, with: { snapshot in
 let items: [PostModel] = snapshot.children.compactMap { child in
 guard let child = child as? DataSnapshot else {

Instagram-Like App Continued Chapter 11

[303]

 return nil
 }
 return PostModel.init(snapshot: child)
 }
 DispatchQueue.main.async {
 callback(items.reversed())
 }
 })
}

In the preceding code, we load all items from the /posts section of our database. Then, we
convert each item to a PostModel. Once we have all the items, we are ready to report the
result using the callback. Because Firebase doesn't guarantee that all fetches are done on the
UI thread, we have to use DispatchQueue to report the result on the UI thread. The final
collection is reversed so the latest posts appear at the top—they are the newest and most
relevant.

We have to call this function in the loadData() function, which is triggered once the view
is loaded:

func loadData() {
 model = []
 DataManager.shared.fetchHomeFeed {[weak self] items in
 if items.count > 0 {
 self?.model? += items
 self?.collectionView.reloadData()
 }
 }
}

The callback function updates the model once it's triggered. Then, it reloads the collection
view and the whole UI is refreshed.

Now, when the app is started and the user logs in, the home screen will display all the
posts that have been published from all the users.

The current app and DB will handle 1,000 or even more records without
any problem, but the app should be optimized when the data grows.

In the next section, we will work on the profile screen. We will add some buttons and a UI
that will display a user's profile data. Not all of it will be fetched from the server.

Instagram-Like App Continued Chapter 11

[304]

Profile screen
We have to open the storyboard and update the profile screen. Here is the desired result.
Don't forget to use constraints:

On the layout, you can see different visual items, which we have to connect with their
respective outlets in the ProfileViewController class. We start with the user
avatar, UIImageView, then UILabel, which will store the username. This is pretty similar
to what we did in FeedCellView earlier. Next, we connect UICollectionView, which
will show all the user's posts. The rest of the UIs will be inactive, storing some mock data,
such as how many posts were created, how many followers the user has, and how many
he/she is following. There is a Log out button that can be used to sign out from the app.

Don't put the Log out button on the front row. When designing an app,
you want to keep the user in the app. Just decide what's the best place for
such a button. It should be there but not that easy to find, because it won't
be used in every session.

Here is the view controller class in ProfileViewController.swift:

class ProfileViewController: UIViewController {
 var userUDID:String? = nil
 var listOfPosts:[PostModel]?
 @IBOutlet weak var avatarImageView: UIImageView!
 @IBOutlet weak var username: UILabel!

Instagram-Like App Continued Chapter 11

[305]

 @IBOutlet weak var posts: UICollectionView!
 @IBOutlet weak var followButton: UIButton!
 @IBOutlet weak var logoutButton: UIButton!
 @IBOutlet var avatarGestureRecogniser: UITapGestureRecognizer!
 @IBOutlet var usernameTapGestureRecogniser: UITapGestureRecognizer!
 private let photoCellReuseIdentifier = "PhotoCell"
 private var pickedImage:UIImage?
 ...
}

The class defines a couple of outlets. Before connecting them, don't forget to associate the
ProfileViewController class with our view controller in the storyboard.

Here is an implementation of the logout action, which should be triggered once the Log out
button is tapped:

@IBAction func logoutHandler(_ sender: Any) {
 let authUI = FUIAuth.defaultAuthUI()
 do {
 try authUI?.signOut()
 let nc = NotificationCenter.default
 nc.post(name: Notification.Name(rawValue: "userSignedOut"),
 object: nil,
 userInfo: nil)
 //remove the active user
 DataManager.shared.user = nil
 DataManager.shared.userUID = nil
 } catch let error {
 print("Error: \(error)")
 }
}

In the preceding code, we sign out the currently logged in user and remove the reference,
which we store in the shared DataManager instance.

When the view controller is loaded, it should adjust the UI, because it's not relevant to all
profiles. We will reuse this view controller later in this chapter; that's why we make it a bit
smarter:

override func viewDidLoad() {
 super.viewDidLoad()
 let cellNib = UINib(nibName: "PhotoViewCell", bundle: nil)
 posts.register(cellNib, forCellWithReuseIdentifier:
 photoCellReuseIdentifier)
 posts.dataSource = self
 //default avatar icon
 avatarImageView.image = #imageLiteral(resourceName: "user")

Instagram-Like App Continued Chapter 11

[306]

 username.text = userUDID ?? DataManager.shared.userUID
 if let layout = posts.collectionViewLayout as?
 UICollectionViewFlowLayout {
 let imageWidth = (UIScreen.main.bounds.width - 10) / 3
 layout.itemSize = CGSize(width: imageWidth, height: imageWidth)
 }
 //you can't follow yourself
 if userUDID == nil {
 followButton.isHidden = true
 } else {
 //disable change of avatar photo
 avatarGestureRecogniser.isEnabled = false
 //disable change of the username
 usernameTapGestureRecogniser.isEnabled = false
 logoutButton.isHidden = true
 //hide follow button
 if userUDID == DataManager.shared.userUID {
 followButton.isHidden = true
 }
 }
 loadData()
}

First, we register a cell of type, PhotoViewCell, to UICollectionView. Then, we set the
view controller as dataSource (we need an extra extension which implements
UICollectionViewDataSource). The avatar is set to a default asset, user, and the
username is set to the the auto-generated identifier. Next, we configure the layout to show
exactly three items per row. Finally, we hide some part of the

UI components if userUDID is set. Later in the chapter, it will become clear why this code is
needed.

We will have to create a new Cocoa component, similar to FeedViewCell. It should be
called PhotoViewCell. The class is a one-liner:

class PhotoViewCell: UICollectionViewCell {
 @IBOutlet weak var image: UIImageView!
}

Instagram-Like App Continued Chapter 11

[307]

We define a single outlet. The view .xib is not complex either. Here is what it should look
like:

We have to add a single UIImageView that stretches and takes the whole cell screen estate.
You can add to the User Defined Runtime Attributes section of CellView the
layer.cornerRadius key, with value 5. This will add nice rounded corners of each cell:

We can specify different properties of a view from the Interface Builder,
using the User Defined Runtime Attributes section of each item.

Don't forget to add UITapGestures to their respective components—avatarImage and
username. The UI components should have User Interaction Enabled activated from the
Xcode or via the following code:

avatarImageView.isUserInteractionEnabled = true
username.isUserInteractionEnabled = true

We will add the following feature—when the user is exploring his/her own profile, he/she
can change his/her avatar photo, which will be saved on Firebase. He/she will be able to
change his/her username to something more meaningful, replacing the default unique
identifier assigned by Firebase.

Before adding the code that handles these neat features, we have to add new rules to the
Firebase database rules. Here are the new rules that should be added to the current ones:

"profile":{
 ".read": "auth != null",
 ".write": "false",

Instagram-Like App Continued Chapter 11

[308]

 "$uid": {
 ".read": "auth != null",
 ".write": "$uid === auth.uid"
 }
}

The extra rules allow every logged in user to read all the profiles. Writing is restricted and
only the profile owner can update his/her own profile (to change the username and avatar
photo).

The upload of an avatar image user flow can be triggered by tapping on the image at the
top. We should add UITapGestureRecogniser, which is associated with UIImageView
(avatarImage). The action that will be triggered will be:

func pickAvatarImage(_ sender: Any)

The name for this function is not fixed and you can pick another name in your code. Just
link the correct one with UIGestureRecognizer.

If your GestureRecognizer is not working, UIView might be the non-
interactive one. You can verify that using the properties inspector in the
Interface Builder.

We are going to use UIImagePickerController to present an image picker interface to
the user. The picker allows you to crop and position the selected image. Once the image is
picked, it will be scaled-down and uploaded on the Firebase store. The code that does this
is logically separated from the rest of the class, so we can define it in a new extension:

extension ProfileViewController: UIImagePickerControllerDelegate,
UINavigationControllerDelegate {
 @IBAction func pickAvatarImage(_ sender: Any) {
 let pickerController = UIImagePickerController()
 pickerController.delegate = self
 pickerController.allowsEditing = true
 present(pickerController, animated: true, completion: nil)
 }
 func imagePickerControllerDidCancel(_ picker:
 UIImagePickerController) {
 picker.dismiss(animated: true, completion: nil)
 }
 func imagePickerController(_ picker:
 UIImagePickerController, didFinishPickingMediaWithInfo
 info: [String : Any]) {
 ...
 }

Instagram-Like App Continued Chapter 11

[309]

 }

In the preceding code, you can see that we are opening UIImagePickerController with
extra editing configuration. We set self to be its delegate; thus ProfileViewController
should implement UIImagePickerControllerDelegate and
UINavigationControllerDelegate to present the UI and dismiss it.

The most interesting method is the handling of the selected image:

func imagePickerController(_ picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String : Any]) {
 if let editedImage = info[UIImagePickerControllerEditedImage]
 as? UIImage{
 pickedImage = self.scale(image: editedImage, toSize:
 CGSize(width:100, height:100))
 } else if let chosenImage = info[UIImagePickerControllerOriginalImage]
 as? UIImage {
 pickedImage = self.scale(image: chosenImage,
 toSize: CGSize(width:100, height:100))
 }
 picker.dismiss(animated: true, completion: nil)
 //does the heavy lifting
 updateAvatar()
}

The code scales down the selected image and stores the result in a property called
pickedImage. Then, the UI is dismissed and the function that uploads the image is
triggered. The function is similar to the upload of a photo from Chapter 10, Building an
Instagram-Like App, but this time the file has a predefined name, avatar.jpg. A link to the
avatar resource is stored in the database, once the upload finishes:

func updateAvatar() {
 if pickedImage != nil {
 self.avatarImageView.image = pickedImage
 }
 DataManager.shared.updateProfile(avatar: pickedImage, progress: {
 progress in
 print("Upload avatar progress: \(progress)")
 }) { result in
 if !result {
 print("something went wrong")
 }
 }
}

Instagram-Like App Continued Chapter 11

[310]

The updateProfile function uploads the image to /posts/\(userID)/avatar.jpg and
then saves this path to the /profile/\(userID)/avatar key in the database. (For more
details, you can check the source code, which is similar to the one discussed in Chapter
10, Building an Instagram-Like App.)

The scale-down function keeps the aspect ratio of the image and resizes the source image.
Its implementation can be found in the following block:

func scale(image: UIImage, toSize size:CGSize) -> UIImage? {
 let imageSize = image.size
 let widthRatio = size.width / image.size.width
 let heightRatio = size.height / image.size.height
 var newSize: CGSize
 if(widthRatio > heightRatio) {
 newSize = CGSize(width:imageSize.width * heightRatio, height:
imageSize.height * heightRatio)
 } else {
 newSize = CGSize(width: imageSize.width * widthRatio, height:
imageSize.height * widthRatio)
 }
 UIGraphicsBeginImageContextWithOptions(newSize, false, 0)
 image.draw(in: CGRect(origin: CGPoint.zero, size: newSize))
 let newImage = UIGraphicsGetImageFromCurrentImageContext()
 UIGraphicsEndImageContext()
 return newImage
}

It depends on the device's density. If you want to use a specific density, then you should
change the last argument of the following call:

UIGraphicsBeginImageContextWithOptions(newSize, false, 0)

With a similar interaction, the user will be able to change his/her username. He/she has to
tap on the label, which displays the current username. This action will open an alert box
with a text input where the new username can be entered. If the user taps on the Update
button, then the new username will be saved in the database. The code that does this is
shown here:

@IBAction func changeUsername(_ sender: Any) {
 let alertController = UIAlertController(title: "Change your username",
 message: "Please, enter a new username.", preferredStyle: .alert)
 alertController.addTextField { (textField) in
 //do some textFiled customization
 }
 alertController.addAction(UIAlertAction(title: "Update",
 style: .default, handler: { [weak alertController, weak self]

Instagram-Like App Continued Chapter 11

[311]

 (action) in
 if let textFields = alertController?.textFields! {
 if textFields.count > 0 {
 let textFiled = textFields[0]
 //update the ui
 self?.username.text = textFiled.text
 //update the server data
 self?.updateUsername(username: textFiled.text)
 }
 }
 }))
 alertController.addAction(UIAlertAction(title: "Cancel", style:
.default, handler: nil))
 self.present(alertController, animated: true, completion: nil)
}

The UI is updated immediately and then the change is sent to the server. In general, this
order is a bit misleading, because the save in the database might fail. It's better to reflect the
change in the UI once it's confirmed by the server. But before that, you have to update the
UI to show the user that the change is about to be applied:

func updateUsername(username:String?) {
 DataManager.shared.updateProfileUsername(username: username) {
 result in
 if !result {
 print("something went wrong")
 }
 }
}

In the preceding code, the callback logs the result from the Firebase. The actual heavy
lifting is done by DataManager. Here is the method that implements the actual update in
the remote database:

func updateProfileUsername(username newUsername:String?, callback:
@escaping (Bool) -> ()) {
 guard let userID = userUID else {
 callback(false)
 return
 }
 guard let username = newUsername else {
 callback(false)
 return
 }
 let dbKey = "profile/\(userID)/username"
 let childUpdates = [dbKey: username]
 databaseRef.updateChildValues(childUpdates)

Instagram-Like App Continued Chapter 11

[312]

 callback(true)
}

In this function, we update the username field with the new value. We don't check if the
username is already taken, because every user has a unique identifier and this username is
more like an alias.

The next section presents the search screen, which renders all the photos that are fitting the
search criteria in a grid.

Search screen
The search screen has a search field at the top. This UISearchBar is a standard component
that is used to allow the user to search through the data displayed on the screen. The UI
component doesn't do the actual searching. It handles the user's interactions, and
UISearchBarDelegate is responsible for taking action:

This is the layout of the screen, with a search bar at the top and a collection view below it.
They are using constraints to fill the whole screen.

Instagram-Like App Continued Chapter 11

[313]

We need a new SearchViewController.swift file. It will store the logic of the view
controller. The following code shows the initial implementation of
the SearchViewController class:

class SearchViewController: UIViewController {
 private let photoCellReuseIdentifier = "PhotoCell"
 var model:[PostModel]?
 @IBOutlet weak var collectionView: UICollectionView!
 @IBOutlet weak var searchBar: UISearchBar!
 override func viewDidLoad() {
 super.viewDidLoad()
 let cellNib = UINib(nibName: "PhotoViewCell", bundle: nil)
 collectionView.register(cellNib, forCellWithReuseIdentifier:
 photoCellReuseIdentifier)
 let gridLayout = GridLayout()
 gridLayout.fixedDivisionCount = 3
 gridLayout.scrollDirection = .vertical
 gridLayout.delegate = self
 collectionView.collectionViewLayout = gridLayout
 collectionView.dataSource = self
 searchBar.delegate = self
 loadData()
 }
}

In viewDidLoad(), we are registering the same CellView that we used on the profile
screen.
The loadData() function loads all photos from the home screen. Its code is pretty familiar
to us being already from HomeFeedViewController. Here is our implementation, which
loads all posts from the home view:

func loadData() {
 model = []
 DataManager.shared.fetchHomeFeed {[weak self] items in
 if items.count > 0 {
 self?.model? += items
 self?.collectionView.reloadData()
 }
 }
}

The GridLayout class is an external class that can be used to render the cells
of UICollectionView in a grid with a predefined number of columns or rows. It defines a
delegate, which can be used to stress on some cells in the collection.

Instagram-Like App Continued Chapter 11

[314]

The GridLayout class, an open source class, can be used in our app and can be found in
Github-gist at https:/ /gist. github. com/ heitara/ 9d3a3c2dccf5805b69d3d90cf6d24ac1.
The implementation of GridLayoutDelegate scales up every ninth item and it takes four
virtual tiles from the layout. Every other item takes only a single virtual tile. The following
code block shows the details:

extension SearchViewController: GridLayoutDelegate {
 func scaleForItem(inCollectionView collectionView: UICollectionView,
 withLayout layout: UICollectionViewLayout, atIndexPath
 indexPath: IndexPath) -> UInt {
 if indexPath.row % 9 == 0 {
 return 2
 }
 return 1
 }
}

We have to implement the UICollectionViewDataSource protocol in a separate
extension. The following snippet reveals the details:

extension SearchViewController: UICollectionViewDataSource {
 func collectionView(_ collectionView: UICollectionView,
 numberOfItemsInSection section: Int) -> Int {
 return model?.count ?? 0
 }
 func collectionView(_ collectionView: UICollectionView,
 cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {
 guard let cell = collectionView.dequeueReusableCell(
 withReuseIdentifier: photoCellReuseIdentifier,
 for: indexPath) as? PhotoViewCell else {
 return UICollectionViewCell()
 }
 guard let post = model?[indexPath.row] else {
 return cell
 }
 if let image = post.photoURL {
 let imgRef = Storage.storage().reference().child(image)
 cell.image.sd_setImage(with: imgRef)
 }
 return cell
 }
}

The preceding implementation is already something that we faced earlier in this chapter
and many times in our book.

https://gist.github.com/heitara/9d3a3c2dccf5805b69d3d90cf6d24ac1
https://gist.github.com/heitara/9d3a3c2dccf5805b69d3d90cf6d24ac1
https://gist.github.com/heitara/9d3a3c2dccf5805b69d3d90cf6d24ac1
https://gist.github.com/heitara/9d3a3c2dccf5805b69d3d90cf6d24ac1
https://gist.github.com/heitara/9d3a3c2dccf5805b69d3d90cf6d24ac1
https://gist.github.com/heitara/9d3a3c2dccf5805b69d3d90cf6d24ac1
https://gist.github.com/heitara/9d3a3c2dccf5805b69d3d90cf6d24ac1
https://gist.github.com/heitara/9d3a3c2dccf5805b69d3d90cf6d24ac1
https://gist.github.com/heitara/9d3a3c2dccf5805b69d3d90cf6d24ac1
https://gist.github.com/heitara/9d3a3c2dccf5805b69d3d90cf6d24ac1
https://gist.github.com/heitara/9d3a3c2dccf5805b69d3d90cf6d24ac1
https://gist.github.com/heitara/9d3a3c2dccf5805b69d3d90cf6d24ac1
https://gist.github.com/heitara/9d3a3c2dccf5805b69d3d90cf6d24ac1

Instagram-Like App Continued Chapter 11

[315]

To communicate with the search component, SearchViewController has to implement
UISearchBarDelegate, as shown in the following code:

extension SearchViewController: UISearchBarDelegate {
 func searchBarSearchButtonClicked(_ searchBar: UISearchBar) {
 if let searchText = searchBar.text {
 if !searchText.isEmpty {
 DataManager.shared.search(for: searchText) {
 [weak self] items in
 self?.model? = items
 self?.collectionView.reloadData()
 }
 searchBar.text = ""
 //hide the keyboard
 searchBar.resignFirstResponder()
 }
 }
 }
}

We check the text that is entered in the search box. If it's not empty text, then we initiate a
search. Then, the text is removed and the keyboard is hidden. Unfortunately, Firebase
doesn't support a full-text search. We can implement a specific search behavior using the
default functions available and a pretty powerful search if we use third-party APIs.

The search function returns all photo posts with a description that starts the same way as the
passed search text.

Here is the actual search function that is part of the DataManage class:

func search(for searchText:String, callback: @escaping ([PostModel]) -> ()
) {
 let key = "description"
 databaseRef
 .child("posts")
 .queryOrdered(byChild: key)
 .queryStarting(atValue: searchText, childKey: key)
 .queryEnding(atValue: searchText + "\u{f8ff}", childKey: key)
 .observeSingleEvent(of: .value, with: { snapshot in
 let items: [PostModel] = snapshot.children.compactMap { child in
 guard let child = child as? DataSnapshot else {
 return nil
 }
 return PostModel.init(snapshot: child)
 }
 DispatchQueue.main.async {
 callback(items)

Instagram-Like App Continued Chapter 11

[316]

 }
 })
}

The search function looks for all posts with a description starting with the specific text.
\u{f8ff} is a special UTF-8 character code that is greater than all other UTF-8 symbols.
This special ending rule is added to filter out all items that have a different beginning.
The next section discusses the favorites screen. This is the last missing piece of our app.

Favorites screen
The favorites screen should present the all favorite posts. The home screen provides a
favorites icon, but we haven't attached any functionality. This means that there are no
favorite posts stored on Firebase. We will develop the favorites screen to render a list of all
of the user's favorite posts. If the list of posts is empty, then the app will show a prompt to
the user (not an empty screen) to suggest there are no favorite posts:

Instagram-Like App Continued Chapter 11

[317]

The UI has a collection view that can render all posts, similar to the one on the search
screen. The more interesting part is the regular view, which contains a UIImageView and a
UILable position in the middle. This view should be visible only when the collection is
empty, to inform the user of the app.

The FavoritesViewController class is shown in the following code:

class FavoritesViewController: UIViewController {
 @IBOutlet weak var collectionView: UICollectionView!
 @IBOutlet weak var noItems: UIView!
 override func viewDidLoad() {
 super.viewDidLoad()
 showEmptyView()
 loadData()
 }
 func loadData() {
 //TODO: load all favorite posts
 }
}

The code is pretty short and simple. We show the information view and initiate the loading.
Once the loading is done, the information view should be hidden and the collection view
will be presented. We know that there are no favorites on Firebase, thus the loadData
function is left empty. To make the whole picture complete, we have to define the
showEmptyView() function. Let's design this piece of code so that we can reuse it on all
other screens where we display a list of items.
First, we can start with a contract or a protocol:

protocol EmptyCollectionView {
 func showCollectionView()
 func showEmptyView()
 var collectionView: UICollectionView! { get }
 var emptyView: UIView? { get }
}

We need a function to show the collection view, one to show the empty view, and two
properties to access the actual views. Let's define the default behavior of the two functions:

extension EmptyCollectionView {
 func showCollectionView() {
 self.emptyView?.isHidden = true
 self.collectionView.isHidden = false
 }
 func showEmptyView() {
 if self.emptyView != nil {

Instagram-Like App Continued Chapter 11

[318]

 self.emptyView?.isHidden = false
 self.collectionView.isHidden = true
 }
 }
}

The preceding functions are simple and short. They toggle between the two views. The
extension of the protocol is used to provide a default implementation of the functions. We
can redefine those once we implement the protocol. If there is no implementation, then the
default one will be used.

And here is the final piece of the puzzle; how we can use showEmptyView() in our view
controller:

extension FavoritesViewController: EmptyCollectionView {
 var emptyView: UIView? {
 return noItems
 }
}

The only missing bit is to extend the EmptyCollectionView protocol and to return the
correct views. In our case, the collection has the same collectionView property and we
only have to do it for the emptyView.

The next section discusses some improvements related to the home screen, such as loading
user profiles, displaying the user's photo, and opening the profile screen when the avatar or
the username is tapped.

Polishing the home screen
We have the UI developed and we won't add any new visual elements. Each cell contains
an avatar image and an avatar name. Our only task is to fetch all user profiles and load the
information in each cell. This is not a trivial task.
We will use a dictionary to store the profiles of all the different users. Then, we can start the
loading and, once we have all the profiles, we can refresh UIViewCollection:

var users = [String: UserModel?]()

This is the only new property which we will add to HomeFeedViewController. Then we
have to add a new model to the DataManager.swift—UserModel:

class UserModel {
 var avatarPhoto:String?

Instagram-Like App Continued Chapter 11

[319]

 var username:String?
 init() {
 //nothing
 }
 init?(snapshot:DataSnapshot) {
 if let dict = snapshot.value as? [String:Any] {
 if dict["avatar"] != nil {
 self.avatarPhoto = dict["avatar"] as? String
 }
 if dict["username"] != nil {
 self.username = dict["username"] as? String
 }
 } else {
 return nil
 }
 }
}

We can define a function which loads UserModel based on an identifier. Here is what it
should look like:

func loadUserInfo(userId:String, callback: @escaping (UserModel?) -> ()) {
 databaseRef
 .child("profile/\(userId)")
 .observeSingleEvent(of: .value, with: { snapshot in
 var userModel:UserModel? = UserModel.init(snapshot:snapshot)
 DispatchQueue.main.async {
 callback(userModel)
 }
 })
}

The function loads the user's profile and uses callback to report the result back.
Let's dive into the details on how to load all profiles in HomeFeedViewController. We
will need a new function for this:

func loadAllUsers() {
 var usersInfoToLoad = 0
 var usersInfoLoaded = 0
 if let model = self.model {
 for item in model {
 let userId = item.author
 if users[userId] == nil {
 usersInfoToLoad += 1
 users[userId] = UserModel()
 }
 }

Instagram-Like App Continued Chapter 11

[320]

 //a function
 let reloadView = { [weak self] in
 if usersInfoLoaded == usersInfoToLoad {
 self?.collectionView.reloadData()
 }
 }

 for author in users.keys {
 let userId = author
 DataManager.shared.loadUserInfo(userId: userId) {
 [weak self] userModel in
 if let userModel = userModel {
 self?.users[userId] = userModel
 usersInfoLoaded += 1
 //update the UI if we loaded everything
 reloadView()
 }
 }
 }
 }
}

This function has to be called from loadData. Here is the new version of that function:

func loadData() {
 model = []
 DataManager.shared.fetchHomeFeed {[weak self] items in
 if items.count > 0 {
 self?.model? += items
 self?.loadAllUsers()
 self?.collectionView.reloadData()
 }
 }
}

We have to update the method which fills each cell with data. We just have to add the
following lines at the bottom before the return clause:

cell.avatarImage.image = #imageLiteral(resourceName: "user")
 //update the user info
 if let user = self.users[post.author] {
 cell.avatarName.text = user?.username ?? post.author
 if let avatarPath = user?.avatarPhoto {
 let imgRef = Storage.storage().reference().child(avatarPath)
 cell.avatarImage.sd_setImage(with: imgRef, placeholderImage:
 #imageLiteral(resourceName: "user"), completion: nil)
 }
 }

Instagram-Like App Continued Chapter 11

[321]

Here, we set a default icon, which will be replaced with a new one, once the profiles are
fetched. The username is updated as well.
The next change handles a tap gesture, which is done on the first horizontal view stack in
each cell. The new functions that we add to the FeedViewCell class are:

protocol ProfileHandler {
 func openProfile(cell: UICollectionViewCell)
}
class FeedViewCell: UICollectionViewCell {
 // old code is here ... except awakeFromNib
 var tapGestureRecogniser: UITapGestureRecognizer!
 var delegate: ProfileHandler?
 override func awakeFromNib() {
 super.awakeFromNib()
 translatesAutoresizingMaskIntoConstraints = false
 self.contentView.translatesAutoresizingMaskIntoConstraints = false
 avatarImage.layer.cornerRadius = avatarImage.frame.height / 2
 avatarImage.clipsToBounds = true
 //new lines
 tapGestureRecogniser = UITapGestureRecognizer(target: self,
 action: #selector(onProfileTap))
 avatarName.superview?.addGestureRecognizer(tapGestureRecogniser)
 }
 @objc func onProfileTap(sender: Any) {
 delegate?.openProfile(cell: self)
 }
}

The structure of the cell is defined by us; thus, we can add the gesture recognizer to the
exact place:

If the structure of FeedViewCell is changed, then the code should be
updated, because it's tightly coupled with the current layout. A better
implementation is to add UITapGestureRecognizer using the Interface
Builder.

Instagram-Like App Continued Chapter 11

[322]

HomeFeedViewController should implement the new protocol. In this implementation, it
should start a segue, which will open a new instance of ProfileViewController:

extension HomeFeedViewController: ProfileHandler {
 func openProfile(cell: UICollectionViewCell) {
 guard let indexPath = self.collectionView.indexPath(for: cell),
 let post = model?[indexPath.row] else {
 return
 }
 performSegue(withIdentifier: "openProfile", sender: post.author
 }
}

We extract the identifier of the user and pass it to the segue. The actual handling is done in
the prepare function:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "openProfile" {
 if let navController = segue.destination as? UINavigationController
{
 if let profileVC = navController.topViewController
 as? ProfileViewController {
 profileVC.userUDID = sender as? String
 }
 }
 }
}

We need one minor update in the rendered cell. We have to set the delegate to each cell to
be the current instance:

cell.delegate = self

Instagram-Like App Continued Chapter 11

[323]

We have to create and give the correct identifier of the segue. We will add a new
UINavigationController, which has our ProfileViewController for a root view
controller. We have to add a segue called openProfile, which will be triggered when the
user clicks on the avatar:

Instagram-Like App Continued Chapter 11

[324]

Here is the new Navigation Controller, which we will add to the storyboard:

The Done button should trigger an action that dismisses the current view controller.
UINavigationBar will appear only in cases when ProfileViewController is presented
from a navigation controller. This will happen when a user taps on the avatar or the
username. Also, the app has to handle all the different edge cases in
ProfileViewController when an avatar is clicked—it could be a new avatar or the
current user. In those two cases, we have to hide or show the Log out button and the
Follow button, too.

Instagram-Like App Continued Chapter 11

[325]

We have developed the rest of the screens—home screen, profile screen, search screen, and
favorites screen. Each screen is rendering real data from Firebase. We have applied
knowledge from previous chapters mixed with the Firebase API. This helped us to create
an application that looks close to our initial idea. Here are some screenshots of the working
app on a simulator. This is the home screen on iPhone X:

Instagram-Like App Continued Chapter 11

[326]

This is the search screen in action:

Instagram-Like App Continued Chapter 11

[327]

This is the filter screen that's part of the Create Post user flow:

Instagram-Like App Continued Chapter 11

[328]

This is the favorites screen, showing that there are no favorite posts yet:

Instagram-Like App Continued Chapter 11

[329]

This is the screen that appears when an avatar is tapped from the home screen. It is slightly
different from the regular profile screen:

Instagram-Like App Continued Chapter 11

[330]

Summary
If you have followed the last chapters in this book, then you will probably have an app with
similar screens. You can use these newly learned things to improve the app even more.
Don't forget to use open source libraries when developing. This is a great boost and a time
saver.

This was the last chapter, but we have a bonus one for you. It's about GitHub and how to
contribute to a swift (open source) project hosted there. When we are using some open
source libraries for free, not everything in them is working as we expect or how we would
like. Thus, it's a nice thing to know how to extend such a library and how to bring the fixes
back to the project. We will discuss the whole process for this in the bonus chapter.

12
Contributing to an Open Source

Project
In this chapter, we will discuss the basics of contributing to an open source project. We will
start with getting familiar with GitHub, then how to fork an existing project in our account.
Next, we will create a contribution (we will add something to the project), and the chapter
will end with a guide on how to create a pull request so that our contribution can be added
to the original project, making it a better one.

Your account at GitHub
We have been using open source projects, some of which are hosted on GitHub. But we
don't need an account on GitHub to do that. Unfortunately, when we want to contribute to
a project (not only open source) hosted on GitHub, we will need an account. You can sign
up using the http:/ /github. com/ page. Once you are registered, you have to log in and
open the following project: https:/ / github. com/ Yummypets/ YPImagePicker.

This is the project that we are going to be using to pick an image from the gallery in our
InstalikeApp. We will try to add the ability to modify the filters that are displayed on the
filter page. At the moment, there is no way to change them easily. One option is to change
the code in the Pods project, but this can't be easily shared with other developers working
with this component.

Now, you have an account at GitHub, which can be used to create a fork of a repository.
This allows you to create your own version of every forked project and share it easily with
the community. In the following sections, we will understand more about forks and why
we need them.

http://github.com/
http://github.com/
http://github.com/
http://github.com/
http://github.com/
http://github.com/
http://github.com/
http://github.com/
https://github.com/Yummypets/YPImagePicker
https://github.com/Yummypets/YPImagePicker
https://github.com/Yummypets/YPImagePicker
https://github.com/Yummypets/YPImagePicker
https://github.com/Yummypets/YPImagePicker
https://github.com/Yummypets/YPImagePicker
https://github.com/Yummypets/YPImagePicker
https://github.com/Yummypets/YPImagePicker
https://github.com/Yummypets/YPImagePicker
https://github.com/Yummypets/YPImagePicker
https://github.com/Yummypets/YPImagePicker

Contributing to an Open Source Project Chapter 12

[332]

Forking a repository
You will have to open a web browser and open https:/ / github. com. Then, open the
project that you want to fork. To create a fork, you have to click on the Fork button at the
top:

This will initiate the process of forking, which means that a special copy of the project will
be created and you will have the rights to change its code in that very copy:

Now, you can see that the project exists at the following
address: https://github.com/{user-name}/YPImagePicker/.

{user-name} will be replaced with your GitHub username.

We have to check if the project has some rules or policies when we want
to make a contribution. This is individual for each project.

https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com

Contributing to an Open Source Project Chapter 12

[333]

You have to checkout the project to make your changes. You can use the Terminal and
execute the following command:

git clone https://github.com/{user-name}/YPImagePicker/

Here is how you can fetch the source code of the forked repository using the Terminal:

An alternative way is to clone the project using Xcode. Open Xcode, select
the SourceControl menu, and then the Clone option. You have to enter the address of the
repository that we mentioned previously:
https://github.com/{user-name}/YPImagePicker/.

In the next section, we will extend the project, so the list of filters can be easily customized.
The improvement is not huge, but it will make the library really usable in custom scenarios,
when we do need a special set of filters to be available on the filter screen.

Let's contribute
Once we have downloaded the source code of the project, we can start exploring it in detail.
You can use the project and open it in Xcode. This step is important, so we can decide what
changes are best to implement the desired new behavior of the library.

We already know how we can use the YPImagePicker and what's missing. There is no
easy way to change the list of filters that are available once an image is selected.

We will extend the configuration that is passed to the YPImagePickerController to
contain the list of filters. This way, the developer who is using the library will be in control
of the collection of filters. First, let's create a simple class that will define a filter.

A filter has a name and actual CIFilter that is used to transform the UIImage. Here is the
class that we should add to the library – YPFilterDescriptor.swift:

public class YPFilterDescriptor {
 let name:String
 let filterName:String

Contributing to an Open Source Project Chapter 12

[334]

 public init(name: String, filterName: String) {
 self.name = name
 self.filterName = filterName
 }
}

Then, we have to add a property in the configuration, which will contain all available
filters. Based on this list of descriptor objects, the library will create the actual list of all
filters, once an image is selected. This way, the configuration contains only light dummy
objects.

Here is what the new property looks like:

public var filters:[YPFilterDescriptor] = [
 YPFilterDescriptor(name: "Normal", filterName: ""),
 YPFilterDescriptor(name: "Mono", filterName: "CIPhotoEffectMono"),
 YPFilterDescriptor(name: "Tonal", filterName: "CIPhotoEffectTonal"),
 YPFilterDescriptor(name: "Noir", filterName: "CIPhotoEffectNoir"),
 YPFilterDescriptor(name: "Fade", filterName: "CIPhotoEffectFade"),
 YPFilterDescriptor(name: "Chrome", filterName: "CIPhotoEffectChrome"),
 YPFilterDescriptor(name: "Process", filterName: "CIPhotoEffectProcess"),
 YPFilterDescriptor(name: "Transfer", filterName: "CIPhotoEffectTransfer"),
 YPFilterDescriptor(name: "Instant", filterName: "CIPhotoEffectInstant"),
 YPFilterDescriptor(name: "Sepia", filterName: "CISepiaTone")
]

The configuration object contains the default list of filters.

We need a slight change in the following class, YPFiltersVC, to start using the new
configuration:

required init(image: UIImage, configuration: YPImagePickerConfiguration) {
 self.configuration = configuration
 super.init(nibName: nil, bundle: nil)
 title = configuration.wordings.filter
 self.originalImage = image
 filterPreviews = []
 //use the configuration to create all filters
 for filterDescriptor in configuration.filters {
 filterPreviews.append(YPFilterPreview(filterDescriptor.name))
 filters.append(YPFilter(filterDescriptor.filterName))
 }
}

Contributing to an Open Source Project Chapter 12

[335]

This is the new version of the init method. The preceding code updates the list of filters,
taking into account what's in the configuration. If there is no change in the configuration,
the library will have the same old behavior.

Our change extends the control, but keeps the current behavior. This is a well-designed
feature, because after an update, without any change to the code, everything will work like
before. Also, the developer will have better control and he/she might decide to use that in
the future.
In the next section, we will discuss how to create a request and ask the maintainer of the
project to bring your improvements back to the original project.

Pull request
You have forked the repository so it knows its origins. This will allow us to use GitHub's
special function to bundle all changes made. Then, we can easily send them in a special
format to the original repository. Then, they can be easily applied to the original project. If
approved, your contribution becomes part of the open source project and GitHub keeps
that visible.

The maintainers of some projects keep a list of all contributors to their
project on a visible place. This way, they acknowledge the contribution to
the project and share that with the community.

The format that GitHub uses to send the changes back to the original project repository is
called a pull request.

A pull request shows all the changes that you have made in your repository (a specific
branch in it) compared to the origin. Once the request is opened, it tracks all the changes
between two repositories. This means that you can do some extra commits and they will
become part of the pull request if it's still opened.

The process of accepting (merging) a pull request might take extra time. Usually, the
change is checked by the project maintainers; they comment and suggest improvements if
there are any, and once everything is resolved and it matches the raised quality and project
style, the request can be accepted.

It's possible to accept or reject a pull request.

Contributing to an Open Source Project Chapter 12

[336]

Once your pull request is accepted, then your contribution will become part of the original
project and who uses it in the future might use your feature.

Now, let's create your first pull request step by step.

First, confirm that you have committed the change and pushed the result to your
repository. You can do that with the following command from the Terminal, if you are in
the root folder of the project:

git add .
git commit -m "Extend the configuration to have a control over the list of
filters"

This will create a local commit, which should be pushed to GitHub. You can do this with
the following command:

git push

Now, you have to open the project in a browser. It should be located at
https://github.com/{user-name}/YPImagePicker. Don't forget to replace {user-
name} with your GitHub username:

You have to click on the New pull request button. This will prepare the pull request and
you will see its details:

pull request

Contributing to an Open Source Project Chapter 12

[337]

You will see a lot of information about the new pull request that will be created. The page
shows all the commits and all the changes:

You can add a title and explain more about the actual pull request. We have entered some
basic details about the implementation and possible improvements.

You can click on the Create pull request button at the bottom. This will create your pull
request and a special thread where a discussion can be started with the maintainers.

You can verify that your pull request is opened. Just open the project's page and click on
the Pull requests tab:

Contributing to an Open Source Project Chapter 12

[338]

You can see the pull request that we created listed here. Once it's closed, you can find it in
the closed section:

The changes that we have done here are already sent and are merged to the original project.
You can decide to add something new to this library or to any other. The process should be
clear and easy now that you have read this chapter.

Let's check what we have learned about GitHub and open source projects.

Summary
In this chapter, we discussed the whole process of contribution to an open source project
hosted on GitHub. The same technique can be applied to private projects as well. We
started with a fork of a repository. Then, we created the changes and pushed those to our
fork. By creating a pull request, we let the project's maintainers know about our
improvements. Once the pull request is approved, our update will become part of the
original project. The whole process might take a day or a month—it depends on the
maintainers of the project—but in the end, the people who are using the project will benefit.

Through the process of writing mobile applications, you will use many open source
projects. When you update one project, you can try to share your changes easily by
applying what you have learned in this chapter. Don't forget that the open source projects
are pushed by the developers, who are using them.

Contributing to an Open Source Project Chapter 12

[339]

If you have reached this chapter, then you have already learned a lot about Swift. We
started our journey with the very basics of Swift-like variables and functions. Then, we got
familiar with Xcode IDE and the playgrounds where we can experiment with real code.
After our first snippets, we created our first mobile app using Swift for iOS. Next, we
discussed the details of structure, classes, and inheritance. At that point, we already knew a
lot about Swift and iOS. We were ready to add some interactivity to our first mobile app.
We continued discussing the basic data structures, which were object-oriented
programming, extensions, and protocols.

With our growing knowledge about iOS, we built the first version of our Weather app,
which had a couple of screens. Then, we learned more about how to integrate external
libraries using CocoaPods and a little bit about some alternatives such as Swift Package
Manager. Later, we discussed different ways to fetch data from web services and display
them. This led to our refined version of the Weather app, which was our preparation for the
final app—an Instagram cloning app which uses a real backend service, such as Firebase.
Developing it from scratch took us a lot of time, but we used everything we learned in the
previous chapters to develop one awesome working app.

In the last chapter of this book, we discussed how easy it is to contribute to an open source
project host on GitHub. We made a minor contribution which is already part of a library
that all other Swift developers can use.

Keep reading and practicing by developing your own ideas. Don't forget to share what you
have developed with the other Swift developers, because they will help you to develop
your libraries and make them stronger than ever.

If you have any questions, ideas, or just want to share something with the author of the
book, you can get in touch using the information available on his GitHub profile.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learn iOS 11 Programming with Swift 4 - Second Edition
Craig Clayton

ISBN: 978-1-78839-075-0

Get to grips with Swift 4 and Xcode 9, the building blocks of Apple development
Get to know the fundamentals of Swift 4 , including strings, variables, constants,
and control flow
Discover the distinctive design principles that define the iOS user experience
Build a responsive UI and add privacy to your custom-rich notifications
Preserve the data and manipulate the image with filters and effects
Bring in SiriKit to create payment requests inside your app
Collect valuable feedback with TestFlight before you release your apps on the
App Store

https://www.packtpub.com/application-development/learn-ios-11-programming-swift-4-second-edition

Other Books You May Enjoy

[341]

Mastering Swift 4 - Fourth Edition
Jon Hoffman

ISBN: 978-1-78847-780-2

Delve into the core components of Swift 4.0, including operators, collections,
control flows, and functions
Create and use classes, structures, and enumerations
Understand protocol-oriented design and see how it can help you write better
code
Develop a practical understanding of subscripts and extensions
Add concurrency to your applications using Grand Central Dispatch and
Operation Queues
Implement generics and closures to write very flexible and reusable code
Make use of Swift’s error handling and availability features to write safer code

https://www.packtpub.com/application-development/mastering-swift-4-fourth-edition

Other Books You May Enjoy

[342]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
application (app) 6
Application Public Interface (API) 243
array collection 142, 143
Auto Layout 111
auxiliary code
 adding, to playground 52

B
base class
 about 100, 101, 103
 class properties 103
Bitbucket 79

C
Carthage 221, 229
child class 100
CIFilter 333
cities model list
 about 165, 166, 167
 displaying 167, 168, 169, 170, 171, 172
 search box, adding 172, 173, 175
classes
 about 84, 86, 89, 91
 data types, adding to playground 96, 99
 deinit method 94
 extensions 91, 92
 functions 94
 type properties 94
CocoaPods
 about 221, 223
 commands 228
 URL 237
 usage 224, 225, 227
Codable protocol 247

computer program 6
controllers
 about 212
 data, passing 215
 information, passing in reverse direction 217,

218

Core Image Filter
 reference link 297
CoreImage (CI) 295

D
data collection
 about 151
 UICollectionView 151, 153
Decodable 247
dictionary collection 148

E
Encodable 247
enumeration types 13

F
favorite locations
 about 192
 constraints 194
Firebase
 about 269, 270, 290, 291, 292, 294
 custom buttons, on tab bar 279, 281
 filters 295, 296
 login 271, 273, 274, 276, 278
 models 288
 post, creating 282, 284, 285, 286, 287
 screens 278
 URL 269
flow statements
 about 14

[344]

 if statements 14
 loops 15
 switch statement 17
framework and library, iOS application
 Cocoa Touch framework 63
 Cocoa Touch static library 64
 Metal library 64
functions
 about 19, 21
 bottom-up approach, versus top-down 23
 guard statement 23
 tuple 21

G
generic collection 140, 141
gesture recognizers 134
Git 79, 81, 82, 83
Github-gist
 reference link 314
GitHub
 about 79, 331
 URL 331
GitLab 79
Grand Central Dispatch (GCD) 254
guard statement 23

I
if statements 14
inheritance
 about 100, 177, 179
 base class 100, 101, 103
 Model-View-Controller (MVC) 104, 105, 106,

107

InstagramLike app
 favorites screen 316, 317, 318
 home screen 298, 299, 300, 302, 303
 home screen, polishing 318, 319, 321, 322,

324, 327, 329
 profile screen 304, 305, 307, 308, 310, 311
 search screen 312, 313, 315
Integrated Development Environment (IDE) 26
iOS application
 about 61, 62, 65, 66, 67, 68, 69, 71, 73
 cities model list 165, 166, 167

 Git 79, 81, 82, 83
 project structure 74
 table view 163, 165

J
JavaScript Object Notation (JSON) 211

L
loop
 about 15
 while loop 16

M
markup language
 basic items 56, 59
 in playgrounds 54
 items 54
Model-View-Controller (MVC) 104, 105, 106, 107
modern software development
 about 222
 CocoaPods 223
 Ruby 223

N
network requests
 about 250, 251, 253, 254, 256
 Alamofire implementation 256, 258
 error handling 261, 262
 improvements, third-party libraries used 259
 screen 263, 265, 266

O
Object Library 193
open source project host
 contributing to 333, 335
optional version 12

P
parent class 100
playground
 about 26, 44
 auxiliary code, adding 52
 code, adding 45, 47, 51

[345]

 converting, to workspace 53
 markup language 54
 resources, adding 52
Podfile 268
project structure, iOS application
 AppDelegate 74
 application states 76
 ViewController 77, 78
protocol 175, 177, 179
pull request 335, 336, 337, 338

R
ReactiveX programming 240
repository
 forking 332, 333
reusable code 250
Ruby
 about 223
 usage 224, 225, 227

S
scenes 111
screen contents, Xcode
 Debug panel 38
 menu 35
 Navigator panel 37
 preferences window 41, 43, 44
 toolbar 31, 33
 Utilities panel 39, 40
segue
 about 212
 creating 212, 214
 defining 218
set collection 144, 145, 146
singleton 250
storyboards
 about 109
 general discussion 138
 items, adding 118, 119, 120
 UI, linking with code 122, 124, 125, 127, 129,

131, 132, 134, 136
 visual components 111, 113, 115, 117
structures
 about 84, 86, 89, 91

 extensions 91, 92
 functions 94
 type properties 94
super class 100
Swift Package Manager
 about 221, 230
 commands 231, 232, 233, 234, 235, 237
Swift, primary collection types
 about 140
 array collection 142, 143, 144
 dictionary collection 148, 149
 generic collection 141
 selecting 150
 set collection 144, 145, 146
switch statement 17

T
tabbed app project 268
table view
 in iOS application 163, 165
third-party libraries
 about 237, 238
 Alamofire 238
 RxSwift 240
 texture 239
tuple 21
type properties 94

U
UICollectionView
 about 151, 153
 cells, reusing 157, 158, 159
 layouts 159, 160, 162
 ViewCell, creating 154, 157
UICollectionViewDelegateFlowLayout protocol
 reference link 159
unique values 140

V
variables 6, 7, 9, 12

W
weather app model
 about 198, 200, 201, 202, 205, 206

 controllers 212
 improvements 219
 locations 207, 209, 210, 211
 segue 212
weather app screens
 defining 182, 184, 186, 187
 favorite locations 192
 favorite locations screen 182
 home screen 188, 192
 loading screen 182
 location screen, adding 182
 location, picking 196, 197, 198
 main forecast screen 182
weather forecasts API
 about 243

 API 243
 list of request 245
 models, creating 247, 248, 249
 reference link 243

X
Xcode
 exploring 29, 30
 installing 26, 29
 screen, viewing 31

Y
YPImagePicker
 reference link 282, 331

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Swift Basics – Variables and Functions
	Variables
	Optional types

	Enumeration types
	Basic flow statements
	The if statements – how to control the code flow
	Loops
	The while loops

	The switch statement

	Functions
	What is a tuple?
	What is the guard statement?
	How to tackle huge problems – bottom-up versus top-down

	Summary

	Chapter 2: Getting Familiar with Xcode and Playgrounds
	Installing Xcode
	Exploring Xcode
	What do we see on the screen?
	Toolbar
	Menu
	The Navigator panel (located to the left)
	The Debug panel (located at the bottom)
	The Utilities panel (located to the right)
	Xcode preferences window

	Playground
	What is a playground?
	Let's add some code
	How to add auxiliary code to a playground
	How to add resource to a playground

	Converting a playground to a workspace
	Markup in playgrounds
	Different items in the markup language
	Basic markup items

	Summary

	Chapter 3: Creating a Minimal Mobile App
	Your first iOS application
	Project structure
	AppDelegate
	Application states
	ViewController

	Git

	Summary

	Chapter 4: Structures, Classes, and Inheritance
	Structures and classes
	Extensions
	The deinit method
	Type properties and functions
	Adding custom data types to a playground

	Inheritance
	Base class
	Class properties

	Model-View-Controller (MVC)

	Summary

	Chapter 5: Adding Interactivity to Your First App
	Storyboards
	Visual components
	Adding items to the storyboard
	Linking the UI with the code
	General discussion

	Summary

	Chapter 6: How to Use Data Structures, OOP, and Protocols
	Primary collection types
	Generics
	Array
	Set
	Dictionary
	How to choose the best collection type

	List of items in a playground
	UICollectionView
	UICollectionViewCell
	Reusing cells
	Layouts

	Table view in iOS app
	Model list of cities
	Displaying all cities
	Adding search

	Protocols
	Protocols and inheritance

	Summary

	Chapter 7: Developing a Simple Weather App
	Defining the app screens
	The home screen
	Favorite locations
	Constraints

	Picking a location

	Model
	Locations
	Controllers and segues
	The first segue
	How to pass data
	Passing information in the reverse direction
	Defining a custom segue

	Further improvements

	Summary

	Chapter 8: Introducing CocoaPods and Project Dependencies
	Software – the modern way
	Ruby and CocoaPods
	How to use it

	CocoaPods useful commands

	Carthage
	Swift Package Manager
	Useful commands

	Popular third-party libraries
	Alamofire
	Texture
	RxSwift

	Summary

	Chapter 9: Improving a Version of a Weather App
	Weather forecast API
	What's an API?
	List of requests
	Creating new models

	Pure network requests
	Alamofire implementation
	Improvements using third-party libraries
	Better error handling
	About the screen

	Summary

	Chapter 10: Building an Instagram-Like App
	Tabbed app project
	Firebase
	Login
	The different screens
	Custom buttons on the tab bar
	Creating a post
	Models
	Firebase
	Filters

	Summary

	Chapter 11: Instagram-Like App Continued
	Home screen
	Profile screen
	Search screen
	Favorites screen
	Polishing the home screen
	Summary

	Chapter 12: Contributing to an Open Source Project
	Your account at GitHub
	Forking a repository
	Let's contribute
	Pull request
	Summary

	Other Books You May Enjoy
	Index

