

Mastering Swift 5
Fifth Edition

Deep dive into the latest edition of the Swift programming
language

Jon Hoffman

BIRMINGHAM - MUMBAI

Mastering Swift 5
Fifth Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Larissa Pinto
Content Development Editor: Arun Nadar
Technical Editor: Jinesh Topiwala
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Alishon Mendonsa
Production Coordinator: Nilesh Mohite

First published: June 2015
Second edition: November 2015
Third Edition: October 2016
Forth Edition: September 2017
Fifth Edition: April 2019

Production reference: 2241019

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78913-986-0

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Jon Hoffman has over 20 years' experience in the field of information technology. Over
those 20 years, Jon has worked in the system administration, network administration,
network security, application development, and architecture arenas. Currently, Jon works
as an Enterprise Software Manager at Syntech Systems. Jon has developed extensively for
the iOS platform since 2008. This includes several apps that he has published in the App
Store, apps that he has written for third parties, and numerous enterprise applications.
Some of Jon's other interests are watching Baseball (Go Sox) and Basketball (Go Celtics). Jon
also really enjoys Tae Kwon Do, where he and his oldest daughter earned their black belts
together early in 2014.

With this being the fifth edition of the Mastering Swift book, I would like to thank
everyone who has given me encouragement, positive feedback, and constructive criticism
through the years. That includes my family, friends, co-workers, and everyone at Packt.

About the reviewers
Gene De Lisa has been a software developer since the early 1980s in a wide variety of
languages and platforms, He has been programming in iOS since 2009, and Swift since its
release day in June 2014. He earned his doctorate in 1993. He has been an independent
consultant in Enterprise Java since the 1990s and iOS since 2012.

Vinod Madigeri is a senior software engineer with expertise in full-stack app development.
He received his Master’s in Computer Science from the University of Utah in 2015. He has
worked in several industries (telecommunication, game technologies, and consumer
electronics) as a developer, team leader, and mentor writing software — in C, C++, Python,
Objective-C, and Swift — for macOS and iOS platforms.

Currently, he spends much of his time exploring Machine Learning as a skill to
complement his software development efforts.

Vinod has also been a technical reviewer for Object–Oriented Programming with Swift,
Hands-On Full-Stack Development with Swift, and Multiplayer Game Development with
HTML5.

I'd like to thank my wife, Shruti, for her constant support, encouragement, and
vanguard thoughts.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Taking the First Steps with Swift 6
What is Swift? 6
Swift features 9
Playgrounds 10

Getting started with playgrounds 10
iOS, tvOS, and macOS playgrounds 14
Showing images in a playground 14
Creating and displaying graphs in playgrounds 18
What playgrounds are not 19

Swift language syntax 20
Comments 20
Semicolons 23
Parentheses 24
Curly brackets 25
An assignment operator does not return a value 26
Spaces are optional in conditional and assignment statements 27

Hello World 28
Summary 29

Chapter 2: Learning about Variables, Constants, Strings, and Operators 30
Constants and variables 31

Defining constants and variables 32
Type safety 33
Type inference 34
Explicit types 35

Numeric types 36
Integer types 36
Floating-point and Double values 39

The Boolean type 41
The String type 42
Tuples 47
Enumerations 48
Operators 52

Assignment operator 52
Comparison operators 53
Arithmetic operators 53
Remainder operator 54
Compound assignment operators 54

Table of Contents

[ii]

Closed range operator 55
Half open range operator 55
Ternary conditional operator 56
Logical NOT operator 56
Logical AND operator 56
Logical OR operator 57

Summary 57

Chapter 3: Optional Types 58
Introducing optionals 58
The need for optional types in Swift 60
Defining an optional 61
Using optionals 61

Forced unwrapping of an optional 61
Optional binding 62
Optional types with tuples 64
Optional chaining 64
The nil coalescing operator 64

Summary 65

Chapter 4: Using Swift Collections 66
Swift collection types 66

Mutability 67
Arrays 67

Creating and initializing arrays 68
Accessing the array element 69
Counting the elements of an array 70
Is the array empty? 71
Shuffling an array 72
Appending to an array 72
Inserting a value into an array 73
Replacing elements in an array 73
Removing elements from an array 73
Merging two arrays 74
Retrieving a subarray from an array 74
Making bulk changes to an array 75
Algorithms for arrays 76

Sort 76
Sorted 77
Filter 77
Map 78
Count 79
forEach 79

Iterating over an array 80
Dictionaries 81

Creating and initializing dictionaries 81

Table of Contents

[iii]

Accessing dictionary values 82
Counting the key or values in a dictionary 82
Is the dictionary empty? 83
Updating the value of a key 83
Adding a key-value pair 84
Removing a key-value pair 84

Set 85
Initializing a set 85
Inserting items into a set 86
Determining the number of items in a set 86
Checking whether a set contains an item 87
Iterating over a set 87
Removing items in a set 87
Set operations 88

Summary 90

Chapter 5: Control Flow 91
What have we learned so far? 91
Curly brackets 92
Parentheses 92
Control flow 93
Conditional statements 93

The if statement 93
Conditional code execution with the if...else statement 94

The guard statement 95
The for-in loop 97

Using the for-in loop 97
The while loop 98

Using the while loop 99
Using the repeat-while loop 99

The switch statement 100
Switch on tuples 105
Match on wildcard 106

Using case and where statements with conditional statements 107
Filtering with the where statement 107
Filtering with the for-case statement 108
Using the if-case statement 110

Control transfer statements 111
The continue statement 111
The break statement 112
The fallthrough statement 113

Summary 113

Chapter 6: Functions 114
Using a single parameter function 115
Using a multi-parameter function 116

Table of Contents

[iv]

Defining a parameter's default values 117
Returning multiple values from a function 118
Adding external parameter names 120
Using variadic parameters 122
Inout parameters 122
Omitting argument labels 123
Putting it all together 124
Summary 125

Chapter 7: Classes, Structures, and Protocols 126
What are classes and structures? 127

Similarities between classes and structures 127
Differences between classes and structures 127

Value versus reference types 128
Creating a class or structure 128
Properties 129

Stored properties 129
Computed properties 131
Property observers 134

Methods 135
Custom initializers 137
Internal and external parameter names 139
Failable initializers 140

Access controls 142
Inheritance 143

Overriding methods and properties 146
Overriding methods 147
Overriding properties 149
Preventing overrides 149

Protocols 150
Protocol syntax 150
Property requirements 151
Method requirements 152

Extensions 154
Optional chaining 155
Summary 157

Chapter 8: Using Protocols and Protocol Extensions 158
Protocols as types 159
Polymorphism with protocols 161
Type casting with protocols 161
Protocol extensions 163
Do I need to use protocols? 172
Swift's standard library 172

Table of Contents

[v]

Summary 174

Chapter 9: Protocol Oriented Design 175
Requirements 176
Object-oriented design 176
Protocol-oriented design 182

Protocol inheritance 183
Protocol composition 184
Protocol-oriented design 185
Using the where statement with protocols 188

Structures versus classes 189
The array structure 190
Summary 190

Chapter 10: Generics 192
Introducing generics 192

Generic functions 193
Generic types 197

Conditionally adding extensions with generics 201
Conditional conformance 202

Generic subscripts 203
Associated types 203

Summary 206

Chapter 11: Availability and Error Handling 207
Native error handling 207

Representing errors 208
Throwing errors 209
Catching errors 211

The availability attribute 215
Summary 217

Chapter 12: Custom Subscripting 218
Introducing subscripts 218
Subscripts with Swift arrays 219

Creating and using custom subscripts 220
Read-only custom subscripts 221
Calculated subscripts 221
Subscript values 222
External names for subscripts 222
Multidimensional subscripts 223

Dynamic member lookup 226
When not to use a custom subscript 228

Summary 229

Chapter 13: Working with Closures 230

Table of Contents

[vi]

An introduction to closures 230
Simple closures 231
Shorthand syntax for closures 234
Using closures with Swift's array algorithms 237
Changing functionality 241
Selecting a closure based on results 243

Summary 245

Chapter 14: Concurrency and Parallelism in Swift 247
Concurrency and parallelism 248
Grand Central Dispatch 249

Calculation type 251
Creating queues 251
Creating and using a concurrent queue 252
Creating and using a serial queue 254
Async versus sync 256
Executing code on the main queue function 256
Using asyncAfter 257

Using the Operation and OperationQueue types 258
Using BlockOperation 258
Using the addOperation() method of the operation queue 260
Subclassing the Operation class 262

Summary 264

Chapter 15: Custom Types 265
Value types and reference types 265

Recursive data types for reference types 270
Inheritance for reference types 272
Dynamic dispatch 275

Copy-on-write 276
Implementing the equatable protocol 282
Summary 284

Chapter 16: Memory Management 285
How ARC works 286
Strong reference cycles 288
Summary 292

Chapter 17: Swift Formatting and Style Guider 293
What is a programming style guide? 293
Your style guide 294

Do not use semicolons at the end of statements 295
Do not use parentheses for conditional statements 295
Naming 296

Custom types 296
Functions and methods 296

Table of Contents

[vii]

Constants and variables 296
Indenting 297
Comments 298
Using the self keyword 298
Constants and variables 299
Optional types 299

Using optional binding 299
Using optional chaining instead of optional binding for multiple unwrapping 301

Using type inference 301
Using shorthand declaration for collections 302
Using switch rather than multiple if statements 302
Don't leave commented-out code in your application 303

Summary 303

Chapter 18: Adopting Design Patterns in Swift 304
What are design patterns? 305

Creational patterns 306
The singleton design pattern 307

Understanding the problem 308
Understanding the solution 308
Implementing the singleton pattern 308

The builder design pattern 310
Understanding the problem 310
Understanding the solution 310
Implementing the builder pattern 311

Structural design patterns 316
The bridge pattern 317

Understanding the problem 317
Understanding the solution 317
Implementing the bridge pattern 317

The facade pattern 321
Understanding the problem 322
Understanding the solution 322
Implementing the facade pattern 322

The proxy design pattern 325
Understanding the problem 325
Understanding the solution 325
Implementing the proxy pattern 325

Behavioral design patterns 328
The command design pattern 328

Understanding the problem 328
Understanding the solution 329
Implementing the command pattern 329

The strategy pattern 331
Understanding the problem 331
Understanding the solution 331
Implementing the strategy pattern 331

Summary 333

Other Books You May Enjoy 335

Table of Contents

[viii]

Index 338

Preface
Swift is a general-purpose programming language that takes a modern approach to
development. It was first introduced by Apple at the Worldwide Developers Conference
(WWDC) in 2014. Five years later, they released version 5 of Swift.

Swift 5 offers many enhancements and improvements to the Swift language with the
biggest being ABI stability. Some of the other improvements are the ability to create raw
strings, handling of future enum cases, and added isMultiple(of:) to integers just to
name a few.

Who this book is for
This book is for the developer who wants to dive into the newest version of Swift. If you
are a developer that learns best by looking at, and working with code, then this book is for
you. A basic understanding of Apple’s tools is beneficial but not mandatory.

What this book covers
Chapter 1, Taking the First Steps with Swift, will introduce you to the Swift programming
language and discuss what inspired Apple to create Swift. We'll also go over the basic
syntax of Swift and how to use Playgrounds to experiment and test Swift code.

Chapter 2, Learning about Variables, Constants, Strings and Operators will introduce you to
variables and constants in Swift and when to use them. There will be brief overviews of the
most common variable types with examples on how to use them. This chapter concludes by
showing examples of how to use the most common operators in the Swift language.

Chapter 3, Optional Types, will explain what optional types really are, what are the various
ways to unwrap them, and optional chaining. For a developer who is just learning Swift,
optional types can be one of the more confusing items to learn. This chapter will give you a
good understanding of what Optionals are and how to use them.

Chapter 4, Using Swift Collections will explain Swift's array, set, and dictionary collection
types and show examples on how to use them. By the end of this chapter you will have a
full understanding of the collection types in Swift.

Chapter 5, Control Flow, will show you how to use Swift's control flow statements. These
include looping, conditional, and control transfer statements.

Preface

[2]

Chapter 6, Functions, will show you how to define and use functions in your applications.

Chapter 7, Classes, Structures, and Protocols is dedicated to Swift's classes and structures.
We'll look at what makes them similar and what makes them different. We'll also look at
access controls and object-oriented design.

Chapter 8, Using Protocols and Protocol Extensions will cover both protocols and protocol
extensions in detail since protocols are very important to the Swift language, and having a
solid understanding of them will help us write flexible and reusable code

Chapter 9, Protocol Oriented Design will cover the best practices of protocol oriented design
with Swift. It will be a brief overview of what is covered in my protocol-oriented
programming book.

Chapter 10, Generics will explain how Swift implements generics. Generics allow us to
write very flexible and reusable code that avoids duplication

Chapter 11, Availability and Error Handling will cover error handling in depth as well as the
availability feature. Error handling is the process of responding to and recovering from
error conditions

Chapter 12, Custom Subscripting will discuss how we can use custom subscripts in our
classes, structures, and enumerations. Subscripts in Swift can be used to access elements in
a collection.

Chapter 13, Working with Closures will teach us how to define and use closures in our code.
We will conclude this chapter with a section on how to avoid strong reference cycles with
closures.

Chapter 14, Concurrency and Parallelism in Swift will show how to use both grand central
dispatch and operation queues to add concurrency and parallelism to our applications.
Understanding and knowing how to add concurrency and parallelism to our apps can
significantly enhance the user experience.

Chapter 15, Custom Types will cover some advance techniques that the reader can use in
their applications like copy-on-write and implementing the equatible protocol. The
information covered in this chapter is also covered in the Swift protocol-oriented
programming book published by Packt.

Chapter 16, Memory Management will cover how Automatic Reference Counting (ARC)
works, why value types are faster than reference types, strong retain cycles, weak vs strong
references.

Preface

[3]

Chapter 17, Swift Formatting and Style Guider will define a style guide for the Swift
language that can be used as a template for enterprise developers who need to create a style
guide.

Chapter 18, Adopting Design Patterns in Swift will show you how to implement some of the
more common design patterns in Swift. A design pattern identifies a common software
development problem and provides a strategy for dealing with it. The information covered
in this chapter is also covered in the Swift protocol-oriented programming book published
by Packt.

To get the most out of this book
This book assumes no knowledge of the Swift programming language or any other
language. All code examples have been tested using Xcode 10.2 on a Mac however they
should work using Swift on Linux as well.

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com

Preface

[4]

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Mastering- ​Swift- ​5- ​Fifth- ​Edition. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The if statement will check a conditional statement and, if it is true, it will
execute the block of code. This statement takes the following format."

A block of code is set as follows:

var message: String = "My String"
message = nil)

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The first thing we need to do is start Xcode. Once Xcode has started, we can select the Get
started with a playground option, as shown in the following screenshot".

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/Mastering-Swift-5-Fifth-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Taking the First Steps with

Swift
Ever since I was 12 years old and wrote my first program in the BASIC programming
language, I have been passionate about programming. Even as I became a professional
programmer, programming remained more of a passion than a job, but in the years
preceding the first release of Swift, that passion had waned. I was unsure why I was losing
that passion. I attempted to recapture it with some of my side projects, but nothing really
brought back the excitement that I used to have. Then, something amazing happened:
Apple announced Swift in 2014. Swift is such an exciting and progressive language that it
has brought a lot of that passion back and made programming fun again. With official
versions of Swift available for the Linux platform, and unofficial versions for Windows and
the ARM platform, learning and using Swift is becoming available to people outside the
Apple ecosystem. This is really an exciting time to be learning the Swift language.

In this chapter, you will learn about the following topics:

What is Swift?
What are some of the features of Swift? What are playgrounds?
How to use playgrounds
What are the basic syntaxes of the Swift language?

What is Swift?
Swift is a programming language that was introduced by Apple at the World Wide
Developers Conference (WWDC) in 2014. Swift was arguably the most significant
announcement at WWDC 2014 and very few people, including Apple insiders, were aware
of the project's existence prior to it being announced.

Taking the First Steps with Swift Chapter 1

[7]

It was amazing, even by Apple's standards, that they could keep Swift a secret for as long
as they did and that no one suspected they were going to announce a new development
language. At WWDC 2015, Apple made another big splash when they announced Swift 2.
Swift 2 was a major enhancement to the Swift language. During that conference, Chris
Lattner said that a lot of the enhancements were based on direct feedback that Apple
received from the development community. It was also announced that Swift would
become an open-source project. In my opinion, this was the most exciting announcement of
WWDC 2015.

In December 2015, Apple officially released Swift as open-source with the https:/ ​/​swift.
org/​ site, which is dedicated to the open-source Swift community. The Swift repository is
located on Apple's GitHub page (http:/ ​/ ​github. ​com/ ​apple). The Swift evolution
repository (https:/ ​/ ​github. ​com/ ​apple/ ​swift- ​evolution) tracks the evolution of Swift by
documenting the proposed changes. A list of which proposals were accepted and which
were rejected can be found in the evolution repository. In addition to these resources,
Apple has moved away from using mailing lists as the primary form of communication
with the Swift community, and has set up Swift forums (https:/ ​/​forums. ​swift. ​org).

Swift 3, which was released in 2016, was a major enhancement to the Swift language that
was not source-compatible with previous releases of the Swift language. It contained
fundamental changes to the language itself and to the Swift standard library. One of the
main goals of Swift 3 was to be source-compatible across all platforms, so the code that was
written for one platform would be compatible with all other platforms. This means that the
code we develop for macOS should work on Linux.

In September 2017, Swift 4 was released. One of the primary goals of the Swift 4 compiler is
to be source-compatible with Swift 3. This will allow us to compile both Swift 3 and Swift 4
projects with the Swift 4 compiler. Apple has established a community-owned source-
compatibility test suite that will be used to regression test changes to the compiler.

Projects that are added to the test suite will be periodically built against the latest
development version of Swift to help understand the impact of the changes being made to
Swift. You can find the Swift source compatibility page here: https:/ ​/​swift. ​org/ ​source-
compatibility/​.

One of the original goals of Swift 4 was to stabilize the Swift Application Binary Interface
(ABI). The main benefit of a stable ABI is to allow us to distribute frameworks in a binary
format across multiple versions of Swift. If a stable ABI is in place, we would be able to
build a framework with the Swift 4 compiler and have it work with applications that were
written in future versions of Swift. This feature ended up being deferred to Swift 5.

https://swift.org/
https://swift.org/
https://swift.org/
https://swift.org/
https://swift.org/
https://swift.org/
https://swift.org/
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
http://github.com/apple
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution
https://forums.swift.org
https://forums.swift.org
https://forums.swift.org
https://forums.swift.org
https://forums.swift.org
https://forums.swift.org
https://forums.swift.org
https://forums.swift.org
https://forums.swift.org
https://swift.org/source-compatibility/
https://swift.org/source-compatibility/
https://swift.org/source-compatibility/
https://swift.org/source-compatibility/
https://swift.org/source-compatibility/
https://swift.org/source-compatibility/
https://swift.org/source-compatibility/
https://swift.org/source-compatibility/
https://swift.org/source-compatibility/
https://swift.org/source-compatibility/
https://swift.org/source-compatibility/

Taking the First Steps with Swift Chapter 1

[8]

Now that Apple has released Swift 5, the ABI has been declared stable for all Apple
platforms. You can read Swift's ABI Stability Manifesto here: https:/ ​/​github. ​com/ ​apple/
swift/​blob/​master/ ​docs/ ​ABIStabilityManifesto. ​md. As development for Swift on other
platforms, such as Linux, matures, the Swift Core team has said that they will evaluate
stabilizing the ABI for those platforms as well. A stable ABI means that a library that is
compiled for one version of Swift, let's say Swift 5, will theoretically work with future
versions of Swift without having to be recompiled.

The last version of the Mastering Swift series was released when Swift 4.0 was released.
Since that time, there have been numerous enhancements to the Swift language with two
major versions, Swift 4.2 and Swift 5, being released. Throughout this book, we will see
how to use a number of these enhancements.

The development of Swift was started in 2010 by Chris Lattner. He implemented much of
the basic language structure when only a few people were aware of its existence. It wasn't
until late 2011 that other developers began to contribute to Swift. In July 2013, it became a
major focus of the Apple Developer Tools group.

Chris started working at Apple in the summer of 2005. He held several positions within the
Developer Tools group and was the director and architect of that group when he left Apple
in 2017. On his home page (http:/ ​/​www. ​nondot. ​org/ ​sabre/ ​), he notes that Xcode's
playground (we'll talk more about playgrounds a little later in this chapter) became a
personal passion of his because it makes programming more interactive and approachable.
If you are using Swift on the Apple platform, you will be using playgrounds a lot as a test
and experimentation platform. You can also use Swift Playgrounds on the iPad.

There are a lot of similarities between Swift and Objective-C. Swift adopts the readability of
Objective-C's named parameters and dynamic object model. When we refer to Swift as
having a dynamic object model, we are referring to the ability for types to change at
runtime. This includes adding new (custom) types and changing/extending the existing
types.

While there are a lot of similarities between Swift and Objective-C, there are significant
differences between them as well. Swift's syntax and formatting are a lot closer to Python
than Objective-C, but Apple did keep the curly brackets. I know Python people would
disagree with me, and that is all right because we all have different opinions, but I like the
curly brackets. Swift actually requires the curly brackets for control statements, such as if
and while, which eliminates bugs, such as the goto fail in Apple's SSL library.

https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/master/docs/ABIStabilityManifesto.md
http://www.nondot.org/sabre/
http://www.nondot.org/sabre/
http://www.nondot.org/sabre/
http://www.nondot.org/sabre/
http://www.nondot.org/sabre/
http://www.nondot.org/sabre/
http://www.nondot.org/sabre/
http://www.nondot.org/sabre/
http://www.nondot.org/sabre/
http://www.nondot.org/sabre/
http://www.nondot.org/sabre/
http://www.nondot.org/sabre/

Taking the First Steps with Swift Chapter 1

[9]

Swift features
When Apple first introduced Swift, it said that Swift is Objective-C without the C. This really
only tells us half of the story. Objective-C is a superset of C and provides object-oriented
capabilities and a dynamic runtime to the C language. This meant that with Objective-C,
Apple needed to maintain compatibility with C, which limited the enhancements it could
make to the Objective-C language. As an example, Apple could not change how the switch
statement functioned and has still maintained compatibility with the C language.

Since Swift does not need to maintain the same C compatibility as Objective-C, Apple was
free to add any feature/enhancement to the language. This allowed Apple to include the
best features from many of today's most popular and modern languages, such as Objective-
C, Python, Java, Ruby, C#, and Haskell.

The following chart shows a list of some of the most exciting enhancements that Swift offers
compared to the Objective-C language:

Swift feature Description

Type inference Swift can automatically deduce the type of a variable or
constant, based on the initial value.

Generics Generics allow us to write code only once to perform identical
tasks for different types of object.

Collection mutability
Swift does not have separate objects for mutable or non-
mutable containers. Instead, you define mutability by defining
the container as a constant or variable.

Closure syntax Closures are self-contained blocks of functionality that can be
passed around and used in our code.

Optionals Optionals define a variable that might not have a value.

Switch statement The Switch statement has been drastically improved. This is
one of my favorite improvements.

Tuples Functions can have multiple return types using tuples.

Operator overloading Classes can provide their own implementation of existing
operators.

Enumerations with
associated values

In Swift, we can do a lot more than just define a group of
related values with enumerations.

Protocols and protocol-
oriented Design

Apple introduced the protocol-oriented programming
paradigm with Swift version 2. This is a new way of not only
writing applications but also changing how we think about
programming.

Taking the First Steps with Swift Chapter 1

[10]

Before we begin our journey into the wonderful world of Swift development, let's take a
detour and visit a place that I have loved ever since I was a kid: the playground.

Playgrounds
When I was a kid, the best part of the school day was going to the playground. It really did
not matter what we were playing as long as we were on the playground. When Apple
introduced playgrounds as part of Xcode 6, I was excited just by the name, but I wondered
whether Apple would be able to make its playgrounds as fun as the playgrounds of my
youth. While Apple's playgrounds might not be as fun as playing kickball when I was nine
years old, it definitely brings a lot of fun back to experimenting and playing with code.

Playgrounds are also available for the iPad. While we are not going to cover the iPad
version specifically in this section, the iPad version is a great way to experiment with the
Swift language and is a great way to get children interested in programming.

Getting started with playgrounds
Playgrounds are interactive work environments that let us write code and see the results
immediately as changes are made to the code. This means that playgrounds are a great way
to learn and experiment with Swift. Now that we can use Swift Playgrounds on the iPad,
we do not even need to have a computer in front of us to experiment with Swift.

If you are using Swift on the Linux platform, you will not have
playgrounds available, but you can use the Read-Evaluate-Print-Loop
(REPL) shell to experiment with Swift without compiling your code. If
you are using Swift on something other than a macOS computer or the
iPad, you can safely skip this section.

Playgrounds also make it incredibly easy to try out new APIs, prototype new algorithms,
and demonstrate how code works. We will be using playgrounds throughout this book to
show how our sample code works. Therefore, before we really get into Swift development,
let's spend some time learning about, and getting comfortable with, playgrounds.

Do not worry if the Swift code does not make a lot of sense right now; as we proceed
through this book, the code that we use in the following examples will begin to make sense.
We are simply trying to get a feel for playgrounds right now.

Taking the First Steps with Swift Chapter 1

[11]

A playground can have several sections, but the three that we will be using extensively in
this book are the following:

Coding Area: This is where you enter your Swift code.
Results Sidebar: This is where the results of your code are shown. Each time you
type in a new line of code, the results are re-evaluated, and the Results Sidebar
is updated with the new results.
Debug Area: This area displays the output of the code, and it can be very useful
for debugging.

The following screenshot shows how these sections are arranged in a playground:

Taking the First Steps with Swift Chapter 1

[12]

Let's start a new playground. The first thing we need to do is start Xcode. Once Xcode has
started, we can select the Get started with a playground option, as shown in the following
screenshot:

Alternatively, we can navigate to the Playground... by going to File | New from the top
menu bar, as shown in the following screenshot:

Taking the First Steps with Swift Chapter 1

[13]

Next, we should see a screen similar to the following screenshot. This screen lets us name
our playground and select whether the playground is an iOS, tvOS, or macOS playground.
For most of the examples in this chapter, it is safe to assume that you can select any of the
OS options unless it is otherwise noted. You can also select a template to use. For the
examples in this book, we will be using the Blank template for all of our code:

Finally, we are asked for the location in which to save our playground. After we select the
location, the playground will open and look similar to the following screenshot:

Taking the First Steps with Swift Chapter 1

[14]

In the preceding screenshot, we can see that the coding area of the playground looks similar
to the coding area for an Xcode project. What is different here is the sidebar on the right-
hand side. This sidebar is where the results of our code are shown. The code in the previous
screenshot imports the Cocoa framework since it is a macOS playground. If it were an iOS
playground, it would import the UIKit framework instead.

If your new playground does not open the debug area, you can open it manually by
pressing the shift + command + Y keys together. You can also close the debug area by
pressing shift + command + Y again. Later in this chapter, we will see why the debug area is
so useful. Another way to open or close the debug area is to click on the button that looks
like an upside-down triangle in a box that is on the border between the debug area and the
coding area.

iOS, tvOS, and macOS playgrounds
When you start a new iOS or tvOS playground, the playground imports the UIKit
framework. This gives us access to the UIKit framework, which provides the core
infrastructure for iOS and tvOS applications. When we start a new macOS playground, the
playground imports the Cocoa framework.

What the last paragraph means is that, if we want to experiment with specific features of
either UIKit or Cocoa, we will need to open the correct playground. As an example, if we
have an iOS playground open and we want to create an object that represents a color, we
would use a UIColor object. If we had a macOS playground open, we would use an
NSColor object to represent a color.

Showing images in a playground
It is very easy to receive the results of our code as text within the results sidebar of a
playground; however; they can also do a lot more than just work with text. We can display
other items, such as images and graphs. Let's look at how we would show an image in a
playground. The first thing we need to do is to load the image into the resource directory of
our playground.

Taking the First Steps with Swift Chapter 1

[15]

The following steps show how to load an image into the resource directory:

Show the project navigator sidebar. To do this, in the top menu bar, navigate to1.
View | Navigators | Show Project Navigator or use the command + 1 keyboard
shortcut. The project navigator looks similar to this:

In the Project Navigator, drag the image into the Resources folder so that we2.
can access it from our code. Once we drag the image file over it and drop it, it
will appear in the Resources folder, as shown here:

Taking the First Steps with Swift Chapter 1

[16]

Let's access the image that is in our Resources folder within our code. The3.
following screenshot shows how we would do this. At this time, the code that
was used to access the image is not as important as knowing how to access
resources within a playground:

To view the image, we need to hover our cursor in the Results Sidebar over the4.
section that shows the width and height of the image. In our example, the width
and height section shows w 256 h 256. Once we hover the mouse pointer over the
width and height, we should see two symbols next to the width and height. One
looks like an eye and the other is a box. The following screenshot shows these:

Taking the First Steps with Swift Chapter 1

[17]

We can press either of the symbols to show the image. The one that looks like a5.
box within a box will display the image within the playground's code section,
while the one that looks like an eye will pop the image up outside the
playground. The following screenshot shows what it looks like if we display the
image within the playground:

Having the ability to create and display graphs can be very useful when we want to see the
progression of our code. Let's look at how we can create and display graphs in a
playground.

Taking the First Steps with Swift Chapter 1

[18]

Creating and displaying graphs in playgrounds
Creating and displaying graphs is really useful when we are prototyping new algorithms
because it allows us to see the value of a variable throughout the course of our calculations.
To see how graphing works, look at the following playground:

In this playground, we set the j variable to 1. Next, we create a for loop that assigns
numbers 1 through 5 to the i variable. At each step in the for loop, we set the value of the j
variable to the current value of j multiplied by i. The graph shows the values of the j
variable at each step of the for loop. We will be covering for loops in detail later in this
book.

Taking the First Steps with Swift Chapter 1

[19]

To bring up the graph, click on the symbol that is shaped like a circle with a dot in it. We
can then move the timeline slider to see the values of the j variable at each step of the for
loop. The following playground shows what the graph should look like:

What playgrounds are not
There is a lot more that we can do with playgrounds, and we have only scratched the
surface in our quick introduction here. Before we leave this brief introduction, let's take a
look at what playgrounds are not so that we can better understand when not to use
playgrounds:

Playgrounds should not be used for performance testing: The performance you
see from any code that is run in a Playground is not representative of how fast
the code will run when it is in your project
Playgrounds do not support on-device execution: You cannot run the code that
is present in a playground as an external application or on an external device

Taking the First Steps with Swift Chapter 1

[20]

Swift language syntax
If you are an Objective-C developer, and you are not familiar with modern languages such
as Python or Ruby, the code in the previous screenshots may have looked pretty strange.
The Swift language syntax is a huge departure from Objective-C, which was based largely
on Smalltalk and C.

The Swift language uses modern concepts and syntax to create very concise and readable
code. There is also a heavy emphasis on eliminating common programming mistakes.
Before we get into the Swift language itself, let's look at some of the basic syntax of the
Swift language.

Comments
Writing comments in Swift code is a little different from writing comments in Objective-C
code. We can still use the double slash // for single-line comments and the /** and */ for
multiline comments; however, if we want to use the comments to also document our code,
we need to use the triple slash (///) or multiline comment block.

Xcode will also auto-generate a comment template based on your
signature of the method/function by highlighting it and pushing command
+ option+ / together.

To document our code, we generally use fields that Xcode recognizes. These fields are as
follows:

Parameter: When we start a line with parameter {param name}:, Xcode
recognizes this as the description of a parameter
Return: When we start a line with return:, Xcode recognizes this as the
description of the return value
Throws: When we start a line with throws:, Xcode recognizes this as the
description of any errors that this method may throw

Taking the First Steps with Swift Chapter 1

[21]

The following playground shows examples of both single-line and multiline comments and
how to use the comment fields:

Taking the First Steps with Swift Chapter 1

[22]

To write good comments, I would recommend using single-line comments within a
function to give quick one-line explanations of your code. We then use multiline comments
outside functions and classes to explain what the function and class do. The preceding
playground shows a good way to use comments. By using proper documentation, as we
did in the preceding screenshot, we can use the documentation feature within Xcode. If we
hold down the option key and then click on the function name anywhere in our code,
Xcode will display a popup with the description of the function.

The following screenshot shows what that popup would look like:

We can see that the documentation contains five fields. These fields are as follows:

Declaration: This is the function's declaration.
Description: This is the description of the function as it appears in the comments
Parameters. The parameter descriptions are prefixed with the Parameters: tag in
the comment section.

Taking the First Steps with Swift Chapter 1

[23]

Throws: The throws description is prefixed with the Throws tag and describes
what errors are thrown by the methods.
Returns: The return description is prefixed with the Returns: tag in the
comment section.
Declared In: This is the file that the function is declared in so that we can easily
find it.

There are significantly more fields that we can add to our comments. You can find the
complete list on Apple's site:
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode

_markup_formatting_ref/MarkupFunctionality.html.

If you are developing for the Linux platform, I would still recommend
using Apple's documentation guidelines because, as other Swift IDEs are
developed, I believe they will support the same guidelines.

Semicolons
You may have noticed, from the code samples so far, that we are not using semicolons at
the end of lines. The semicolons are optional in Swift; therefore, both lines in the following
playground are valid in Swift:

https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html

Taking the First Steps with Swift Chapter 1

[24]

For style purposes, it is strongly recommended that you do not use semicolons in your
Swift code. If you are really set on using semicolons, be consistent and use them on every
line of code; however, there is no warning if you forget them.

I will stress this again: it is recommended that you do not use semicolons
in Swift.

Parentheses
In Swift, parentheses around conditional statements are optional; for example, both if
statements in the following playground are valid:

For style purposes, it is recommended that you do not include parentheses in your code
unless you have multiple conditional statements on the same line. For readability purposes,
it is good practice to put parentheses around the individual conditional statements that are
on the same line.

Taking the First Steps with Swift Chapter 1

[25]

Curly brackets
In Swift, unlike most other languages, the curly bracket is required after conditional or loop
statements. This is one of the safety features that is built into Swift. Arguably, there have
been numerous security bugs that may have been prevented if the developer had used
curly brackets. These bugs could have also been prevented by other means, such as unit
testing and code reviews, but requiring developers to use curly brackets, in my opinion, is a
good security standard.

The following playground shows you the error you get if you forget to include curly
brackets:

Taking the First Steps with Swift Chapter 1

[26]

An assignment operator does not return a value
In most other languages, the following line of code is valid, but it probably isn't what the
developer meant to do:

if (x = 1) {}

In Swift, this statement is not valid. Using an assignment operator (=) in a conditional
statement (if, while, and guard) will throw an error. This is another safety feature built into
Swift. It prevents the developer from forgetting the second equals sign (=) in a comparison
statement. This error is shown in the following playground:

Taking the First Steps with Swift Chapter 1

[27]

Spaces are optional in conditional and
assignment statements
For both conditional (if and while) and assignment (=) statements, the white spaces are
optional. Therefore, in the following playground, both the i and the j blocks of code are
valid:

For style purposes, I recommend adding the white spaces as the j block shows (for
readability) but, as long as you pick one style and are consistent, either style is acceptable.

Taking the First Steps with Swift Chapter 1

[28]

Hello World
All good computer books that are written to teach a computer language have a section that
shows the user how to write a Hello World application. This book is no exception. In this
section, we will show you how to write two different Hello World applications.

Our first Hello World application will be a traditional Hello World application that simply
prints Hello World to the console. Let's begin by creating a new playground and naming it
Chapter_1_Hello_World.

In Swift, to print a message to the console, we use the print() function. In its most basic
form, we would use the print function to print out a single message, as shown in the
following code:

print("Hello World")

Usually, when we use the print() function, we want to print more than just static text. We
can include the value of variables and/or constants by using string interpolation or by
separating the values within the print() function with commas. String interpolation uses
a special sequence of characters, \(), to include the value of variables and/or constants in
the string. The following code shows how to do this:

var name = "Jon"
var language = "Swift"

var message1 = " Welcome to the wonderful world of "
var message2 = "\(name), Welcome to the wonderful world of \(language)!"

print(message2)
print(name, message1, language, "!")

We can also define two parameters in the print function that change how the message is
displayed in the console. These parameters are the separator and terminator parameters.
The separator parameter defines a string that is used to separate the values of the
variables/constants in the print() function. By default, the print() function separates
each variable/constant with a space. The terminator parameter defines what character is put
at the end of the line. By default, the newline character is added at the end of the line.

Taking the First Steps with Swift Chapter 1

[29]

The following code shows how we would create a comma-separated list that does not have
a newline character at the end:

var name1 = "Jon"
var name2 = "Kim"
var name3 = "Kailey"
var name4 = "Kara"

print(name1, name2, name3, name4, separator:", ", terminator:"")

There is one other parameter that we can add to our print() function: the to: parameter.
This parameter will let us redirect the output of the print() function. In the following
example, we redirect the output to a variable named line:

var name1 = "Jon"
var name2 = "Kim"
var name3 = "Kailey"
var name4 = "Kara"

var line = ""

print(name1, name2, name3, name4, separator:", ", terminator:"", to:&line)
print(line)

Previously, the print() function was simply a useful tool for basic debugging, but now,
with the new, enhanced print() function, we can use it for a lot more.

Summary
We began this chapter with a discussion on the Swift language and gave a brief history
about it. We also mentioned some of the changes that will be present in Swift 5. We then
showed you how to start and use playgrounds to experiment with Swift programming. We
also covered the basic Swift language syntax and discussed proper language styles. This
chapter concluded with two Hello World examples.

In the next chapter, we will see how to use variables and constants in Swift. We will also
look at the various data types and how to use operators in Swift.

2
Learning about Variables,

Constants, Strings, and
Operators

The first program I ever wrote was written in the BASIC programming language and was
the typical Hello World application. This application was exciting at first, but the
excitement of printing static text wore off pretty quickly. For my second application, I used
BASIC's input command to ask the user for a name and then printed out a custom hello
message with the name they entered. At the age of 12, it was pretty cool to display Hello
Han Solo. This application led me to create numerous Mad Lib-style applications that
prompted the user for various words and then put those words into a story that was
displayed after the user had entered all the required words. These applications introduced
me to, and taught me, the importance of variables. Every useful application I've created
since then has used variables.

In this chapter, we will cover the following topics:

What are variables and constants?
What is the difference between explicit and inferred typing?
What are numeric, string, and Boolean types?
Explaining how enumerations work in Swift
Explaining how Swift's operators work

Learning about Variables, Constants, Strings, and Operators Chapter 2

[31]

Constants and variables
Constants and variables associate an identifier (such as myName or currentTemperature)
with a value of a particular type (such as the String or Integer type), where the identifier
can be used to retrieve the value. The difference between a constant and a variable is that a
variable can be updated or changed, while a constant cannot be changed once a value is
assigned to it.

Constants are good for defining values that you know will never change, like the
temperature that water freezes at or the speed of light. Constants are also good for defining
a value that we use many times throughout our application, such as a standard font size or
the maximum number of characters in a buffer. There will be numerous examples of
constants throughout this book, and it is recommended that we use constants rather than
variables whenever possible.

Variables tend to be more common in software development than constants. This is mainly
because developers tend to prefer variables over constants. In Swift, the compiler will warn
us if we declare a variable whose value never changes. We can make useful applications
without using constants (although it is good practice to use them); however, it is almost
impossible to create a useful application without variables.

The use of constants is encouraged in Swift. If we do not expect or want a
value to change, we should declare it as a constant. This adds a very
important safety constraint to our code that ensures that the value never
changes.

You can use almost any character in the naming/identifier of a variable or constant (even
Unicode characters); however, there are a few rules that you must follow:

An identifier must not contain any whitespace
It must not contain any mathematical symbols or arrows
An identifier must not contain private-use or invalid Unicode characters
It must not contain line- or box-drawing characters
It must not start with a number, but it can contain numbers
If you use a Swift keyword as an identifier, surround it with back ticks; using a
Swift keyword as an identifier is strongly discouraged

Learning about Variables, Constants, Strings, and Operators Chapter 2

[32]

Keywords are words that are used by the Swift programming language. Some examples of
keywords that you will see in this chapter are var and let. You should avoid using Swift
keywords as identifiers to avoid confusion when reading your code.

Defining constants and variables
Constants and variables must be defined prior to using them. To define a constant, you use
the let keyword, and to define a variable, you use the var keyword. The following code
shows how to define both constants and variables:

// Constants
let freezingTemperatureOfWaterCelsius = 0
let speedOfLightKmSec = 300000

// Variables
var currentTemperature = 22
var currentSpeed = 55

We can declare multiple constants or variables in a single line by separating them with a
comma. For example, we could shrink the preceding four lines of code down to two lines,
as shown here:

// Constants
let freezingTempertureOfWaterCelsius = 0, speedOfLightKmSec = 300000

// Variables
var currentTemperture = 22, currentSpeed = 55

Learning about Variables, Constants, Strings, and Operators Chapter 2

[33]

We can change the value of a variable to another value of a compatible type; however, as
we noted earlier, we cannot change the value of a constant. Let's look at the following
playground. Can you tell what is wrong with the code from the error message that is
shown?

Did you figure out what was wrong with the code? Any physicist can tell you that we
cannot change the speed of light, and in our code, speedOfLightKmSec is a constant, so
we cannot change it here either. When we attempted to change the speedOfLightKmSec
constant, an error was thrown. We are able to change the value of highTemperature
without an error because it is a variable. We have mentioned the difference between
variables and constants a couple of times because it is a very important concept to grasp,
especially when we move on to define mutable and immutable collection types in Chapter
4, Using Swift Collections.

A mutable type/collection is a type or collection that can be changed like a
variable. An immutable type/collection is a type or collection that cannot
be changed.

Learning about Variables, Constants, Strings, and Operators Chapter 2

[34]

Type safety
Swift is a type-safe language, which means we are required to define the types of the values
we are going to store in a variable. We will get an error if we attempt to assign a value to a
variable that is of the wrong type. The following playground shows what happens if we
attempt to put a string value into a variable that expects integer values:

We will go over the most popular types later in this chapter.

Swift performs a type check when it compiles code, and so it will flag any mis-matched
types with an error. The error message in this playground explains quite clearly that we are
trying to insert a string value into an integer variable.

How does Swift know that the constant integerVar is of the Integer type? Swift uses
type inference to figure out the appropriate type. Let's look at what type inference is.

Type inference
Type inference allows us to omit the variable type when the variable is defined with an
initial value. The compiler will infer the type based on that initial value. For example, in
Objective-C, we would define an integer like this:

int myInt = 1

Learning about Variables, Constants, Strings, and Operators Chapter 2

[35]

This tells the compiler that the myInt variable is of the int type, and the initial value is the
number 1. In Swift, we would define the same integer as this:

var myInt = 1

Swift infers that the variable type is an integer because the initial value is an integer. Let's
look at a couple more examples:

var x = 3.14 // Double type
var y = "Hello" // String type
var z = true // Boolean type

In the preceding example, the compiler will correctly infer that variable x is a Double,
variable y is a String, and variable z is a Boolean, based on their initial values.

Explicit types
Type inference is a very nice feature in Swift, and is one that you will probably get used to
very quickly. However, there are times when we would like to explicitly define a variable's
type. For example, in the preceding example, the variable x is inferred to be Double, but
what if we wanted the variable type to be Float? We can explicitly define a variable type
like this:

var x:Float = 3.14

Notice the Float declaration (the colon and the word Float) after the variable identifier.
This tells the compiler to define this variable to be of the Float type and gives it an initial
value of 3.14. When we define a variable in this manner, we need to make sure that the
initial value is of the same type that we are defining the variable to be. If we try to give a
variable an initial value that is of a different type than we are defining it as, we will receive
an error. As an example, the following line will throw an error because we are explicitly
defining the variable to be that of the Float type, even though we are trying to put a
String value in it:

var x: Float = "My str"

We will need to explicitly define the variable type if we are not setting an initial value. For
example, the following line of code is invalid because the compiler does not know what
type to set the variable x to:

var x

Learning about Variables, Constants, Strings, and Operators Chapter 2

[36]

If we use this code in our application, we will receive a Type annotation missing in pattern
error. If we are not setting an initial value for a variable, we are required to define the type
like this:

var x: Int

Now that we have seen how to explicitly define a variable type, let's look at some of the
most commonly used types.

Numeric types
Swift contains many of the standard numeric types that are suitable for storing various
integer and floating-point values. Let's start off by looking at the integer type.

Integer types
An integer is a whole number and can be either signed (positive, negative, or zero) or
unsigned (positive or zero). Swift provides several integer types of different sizes. The
following chart shows the value ranges for the different integer types on a 64-bit system:

Type Minimum Maximum
Int8 -128 127
Int16 -32,768 32,767
Int32 -2,147,483,648 2,147,483,647
Int64 - 9,223,372,036,854,775,808 9,223,372,036,854,775,807
Int - 9,223,372,036,854,775,808 9,223,372,036,854,775,807
UInt8 0 255
UInt16 0 65,535
UInt32 0 4,294,967,295
UInt64 0 18,446,744,073,709,551,615
UInt 0 18,446,744,073,709,551,615

Unless there is a specific reason to define the size of an integer, I would recommend using
the standard Int or UInt types. This will save you from needing to convert between
different types of integers later.

Learning about Variables, Constants, Strings, and Operators Chapter 2

[37]

In Swift, the integer type and other numerical types are actually named types, and are
implemented in the Swift standard library using structures. This gives us a consistent
mechanism for memory management of all the data types, as well as properties that we can
access. For the preceding chart, I retrieved the minimum and maximum values of each
integer type using the min and max properties of the integer types. Look at the following
playground to see how I retrieved the values:

Learning about Variables, Constants, Strings, and Operators Chapter 2

[38]

Integers can also be represented as binary, octal, and hexadecimal numbers. We just need to
add a prefix to the number to tell the compiler which base the number should be in. The
prefix takes the form of a zero, followed by the base specifier. The following chart shows
the prefix for each numerical base:

Base Prefix
Decimal None
Binary 0b
Octal 0o
Hexadecimal 0x

The following playground shows how the number 95 is represented in each of the
numerical bases:

Swift also allows us to insert arbitrary underscores in our numeric literals. This can
improve the readability of our code without changing the underlying value. As an example,
if we were defining the speed of light, which is constant, we could define it like this:

let speedOfLightKmSec = 300_000

The Swift compiler will ignore these underscores and interpret this value as if the
underscores were not there.

Learning about Variables, Constants, Strings, and Operators Chapter 2

[39]

One of the new features of Swift 5 is the isMultiple(of:) method, which was added to
the integer type. This method allows us to check if one number is the multiple of another
number. Prior to Swift 5, we would have used the following code:

let number = 4

if number % 2 == 0 {
 print("Even")
} else {
 print("Odd")
}

Now, with Swift 5, we can use the isMultiple(of:) method like this:

let number = 4

if number.isMultiple(of: 2) {
 print("Even")
} else {
 print("Odd")
}

This makes our code much easier to read and understand. Now let's look at floating-point
and Double types.

Floating-point and Double values
A floating-point number is a number with a decimal component. There are two standard
floating-point types in Swift: Float and Double. The Float type represents a 32-bit
floating-point number, while the Double type represents a 64-bit floating-point number.
Swift also supports an extended floating-point type: Float80. The Float80 type is an 80-
bit floating-point number.

It is recommended that we use the Double type over the Float type unless there is a
specific reason to use the latter. The Double type has a precision of at least 15 decimal
digits, while the Float type's precision can be as small as six decimal digits. Let's look at an
example of how this can affect our application without us knowing it. The following
screenshot shows the results if we add two decimal numbers together using both a Float
type and a Double type:

Learning about Variables, Constants, Strings, and Operators Chapter 2

[40]

As we can see from the preceding screenshot, the first two decimal numbers that we are
adding contain nine digits past the decimal point; however, the results in the Float type
only contain seven digits, while the results in the Double type contain the full nine digits.
The loss of precision can cause issues if we are working with currency or other numbers
that need accurate calculations as we can see when we compare the results in the second set
of numbers.

What if we have two variables, where one is an integer and the other is a double? Do you
think we can add them as the following code shows?

var a: Int = 3
var b: Double = 0.14
var c = a + b

If we put the preceding code into a playground, we would receive the following error:

operator '+' cannot be applied to operands of type Int and Double

This error lets us know that we are trying to add two different types of numbers, which is
not allowed. To add an integer and a double type together, we need to convert the integer
value into a double value. The following code shows how to do this:

var a: Int = 3
var b: Double = 0.14
var c = Double(a) + b

Learning about Variables, Constants, Strings, and Operators Chapter 2

[41]

Notice how we use the Double() function to initialize a Double value with the integer
value. All numeric types in Swift have an initializer to do these types of conversion. These
initializers are called convenience initializers, similar to the Double() function shown in
the preceding code sample. For example, the following code shows how you can initialize a
Float or uint16 value with an integer value:

var intVar = 32
var floatVar = Float(intVar)
var uint16Var = UInt16(intVar)

Generally, when we are adding two different types together, we will want to convert the
number with the least floating point precision, like an integer or float, to the type with the
highest precision, like a double.

The Boolean type
Boolean values are often referred to as logical values because they can be either true or
false. Swift has a built-in Boolean type that accepts one of the two built-in Boolean
constants: true and false.

Boolean constants and variables can be defined like this:

let swiftIsCool = true
var itIsRaining = false

Boolean values are especially useful when working with conditional statements, such as the
if, while, and guard statements. For example, what do you think this code would do?

let isSwiftCool = true
let isItRaining = false
if isSwiftCool {
print("YEA, I cannot wait to learn it")
}
if isItRaining {
print("Get a rain coat")
}

If you answered that this code would print out YEA, I cannot wait to learn it, then
you would be correct. This line is printed out because the isSwiftCool Boolean type is set
to true. As the isItRaining variable is set to false, the Get a rain coat message is
not printed.

Learning about Variables, Constants, Strings, and Operators Chapter 2

[42]

In previous versions of Swift, if we wanted to toggle the value of a Boolean type, we would
have used the following code:

isItRaining = !isItRaining

Starting with Swift 4.2, we can use the toggle() method like this:

isItRaining.toggle()

This made our code much easier to read and understand.

The String type
A string is an ordered collection of characters, such as Hello or Swift, and is represented
by the String type. We have seen several examples of strings in this book, and therefore
the following code should look familiar. This code shows how to define two strings:

var stringOne = "Hello"
var stringTwo = " World"

We can also create a string using a multiline string literal. The following code shows how
we can do that:

var multiLine = """
This is a multiline string literal.
This shows how we can create a string over multiple lines.
"""

Notice that we put three double quotes around the multiline string. We can use quotes in
our multiline string to quote specific text. The following code shows how to do this:

var multiLine = """
This is a multiline string literal.
This shows how we can create a string over multiple lines.
Jon says, "multiline string literals are cool"
"""

Since a string is an ordered collection of characters, we can iterate through each character of
a string. The following code shows how to do this:

var stringOne = "Hello"
for char in stringOne {
print(char)
}

Learning about Variables, Constants, Strings, and Operators Chapter 2

[43]

The preceding code will display the results that are shown in the following screenshot:

We can also use the map() function, as shown in the previous screenshot, of the String type
to retrieve each character, as shown in the following code:

stringOne.map {
 print($0)
}

We will look at the map() method and how it works later on in this book.

There are two ways in which we can add one string to another. We can concatenate them or
include them in-line. To concatenate two strings, we can use the + or += operators. The
following code shows both ways in which we can concatenate two strings. The first
example appends stringB to the end of stringA, and the results are put into the new
stringC variable. The second example appends string directly to the end of stringA
without creating a new string:

var stringC = stringA + stringB
stringA += string

Learning about Variables, Constants, Strings, and Operators Chapter 2

[44]

To include a string in-line with another string, we use a special sequence of characters: \().
The following code shows how to include a string interpolation with another string:

var stringA = "Jon"
var stringB = "Hello \(stringA)"

In the previous example, stringB will contain the message Hello Jon, because Swift will
replace the \(stringA) sequence of characters with the value of the stringA variable.

Starting with Swift 5, we have the ability to create raw strings. In previous versions of
Swift, if we wanted to include quotes or backslashes in a string, we had to escape it out
using a backslash, as shown in the following code:

let str = "The main character said \"hello\""

With a raw string, the double quotes and backslashes are treated as part of the string literal,
and so we do not need to escape them. The following example shows how to do this:

let str1 = #"The main character said "hello""#

Notice the hashtag and double quotes at the start and end of the string. That tells Swift that
this is a raw string. This makes it much easier to read what the string actually contains. If
we want to append another string in-line, as we did previously, we would use the \#()
character sequence. The following code illustrates this:

let ans = 42
var str2 = #"The answer is \#(ans)"#

The result of this code would be a str2 variable containing the following string: The
answer is 42.

In Swift, we define the mutability of variables and collections by using the var and let
keywords. If we define a string as a variable using var, the string is mutable, meaning that
we can change and edit the value. If we define a string as a constant using let, the string is
immutable, meaning that we cannot change or edit the value once it is set. The following
code shows the difference between a mutable and an immutable string:

var x = "Hello"
let y = "HI"
var z = " World"

//This is valid because x is mutable
x += z

//This is invalid because y is not mutable.
y += z

Learning about Variables, Constants, Strings, and Operators Chapter 2

[45]

Strings in Swift have two methods that can convert the case of the string. These methods
are lowercased() and uppercased(). The following example demonstrates these
methods:

var stringOne = "hElLo"
print("Lowercase String: \(stringOne.lowercased())")
print("Uppercase String: \(stringOne.uppercased())")

If we run this code, the results will be as follows:

Lowercase String: hello
Uppercase String: HELLO

Swift provides four ways to compare a string; these are string equality, prefix equality,
suffix equality, and isEmpty. The following example demonstrates these ways:

The isEmpty() method checks to see if the string contains any characters or not. The string
equality (==) checks to see if the characters (which are case-sensitive) in the two strings are
the same. The prefix and suffix equality checks to see if the string starts with or ends with a
specific string. The prefix and suffix equality is case-sensitive as well.

We can replace all the occurrences of a target string with another string. This is done with
the replacingOccurrances(of:) method. The following code demonstrates this:

var stringOne = "one,to,three,four"
var stringTwo = stringOne.replacingOccurrences(of: "to", with: "two")
print(stringTwo)

Learning about Variables, Constants, Strings, and Operators Chapter 2

[46]

The preceding example will print one, two, three, four to the screen because we are
replacing all the occurrences of to with two in the stringOne variable.

We can also retrieve substrings and individual characters from our strings; however, when
we retrieve a substring from a string, the substring is an instance of the Substring type
and not the String type. The Substring type contains most of the same methods as the
String type, so you can use them in a similar way. Unlike String types, however, they
are meant to be used only for short periods of time, only while we are working with the
value. If you need to use a Substring type for a long period of time, you should convert it
into a String type. The following example shows how we can work with substrings:

var path = "/one/two/three/four"

//Create start and end indexes
let startIndex = path.index(path.startIndex, offsetBy: 4)
let endIndex = path.index(path.startIndex, offsetBy: 14)

let sPath = path[startIndex ..< endIndex] //returns the "/two/three"
//convert the substring to a string
let newStr = String(sPath)

path[..<startIndex] //returns the "/one"
path[endIndex...] //returns the "/four"

path.last
path.first

 In the preceding example, we use the subscript path to retrieve the substring between a
start and end index. The indices are created with the index(_: offsetBy:) function. The first
property in the index(_: offsetBy:) function gives the index of where we wish to start, and
the offsetBy property tells us how much to increase the index by.

The path[..<startIndex] line creates a substring from the beginning of the string to the index
and the path[endIndex...] line creates a substring from the index to the end of the string. We
then use the last property to get the last character of the string and the first property to get
the first character.

The ..< operator that we saw in the previous example is known as a half-
open range operator. We will look at the different range operators at the
end of this chapter.

Learning about Variables, Constants, Strings, and Operators Chapter 2

[47]

We can retrieve the number of characters in a string by using the count property. The
following example shows how you can use this function:

var path = "/one/two/three/four"
var length = path.count

This completes our whirlwind tour of strings. We went through these properties and
functions very quickly, but we will be using strings extensively throughout this book, so
there will be a lot of code to help you get familiar with them.

Tuples
Tuples group multiple values into a single compound type. These values are not required
to be of the same type.

The following example shows how to define a tuple:

var team = ("Boston", "Red Sox", 97, 65, 59.9)

In the preceding example, an unnamed tuple was created that contains two strings, two
integers, and one double. The values of the tuple can be decomposed into a set of variables,
as shown in the following example:

var team = ("Boston", "Red Sox", 97, 65, 59.9)
var (city, name, wins, losses, percent) = team

In the preceding code, the city variable will contain Boston, the name variable will
contain Red Sox, the wins variable will contain 97, the losses variable will contain 65,
and finally the percent variable will contain 59.9.

The values of the tuple can also be retrieved by specifying the location of the value. The
following example shows how we can retrieve values by their location:

var team = ("Boston", "Red Sox", 97, 65, 59.9)
var city = team.0
var name = team.1
var wins = team.2
var losses = team.3
var percent = team.4

Learning about Variables, Constants, Strings, and Operators Chapter 2

[48]

Naming tuples, known as named tuples, allows us to avoid the decomposition step. A
named tuple associates a name (key) with each element of the tuple. The following example
shows how to create a named tuple:

var team = (city:"Boston", name:"Red Sox", wins:97, losses:65,
percent:59.9)

Values from a named tuple can be accessed using the dot syntax. In the preceding code, we
will access the city element of the tuple like this: team.city. In the preceding code, the
team.city element will contain Boston.

Tuples are incredibly useful and can be used for all sorts of purposes. I have found that
they are very useful for replacing classes and structures that are designed to simply store
data and do not contain any methods. They are also very useful for returning multiple
values, of different types, from a function. Now, let's look at enumerations.

Enumerations
Enumerations (also known as enums) are a special data type that enables us to group
related types together and use them in a type-safe manner. Enumerations in Swift are not
tied to integer values as they are in other languages, such as C or Java. In Swift, we are able
to define an enumeration with a type (string, character, integer, or floating-point) and then
define its actual value (known as the raw value). Enumerations also support features that
are traditionally only supported by classes, such as computed properties and instance
methods. We will discuss these advanced features in depth in Chapter 7, Classes, Structures,
and Protocols. In this section, we will look at the traditional features of enumerations.

We will define an enumeration that contains a list of Planets, like this:

enum Planets {
 case mercury
 case venus
 case earth
 case mars
 case jupiter
 case saturn
 case uranus
 case neptune
}

Learning about Variables, Constants, Strings, and Operators Chapter 2

[49]

Note: When defining the enumeration type, the name of the enumeration
should be upper case like other types; however, the member values can be
upper or lower case.

The values defined in an enumeration are considered to be the member values (or simply
the members) of the enumeration. In most cases, you will see the member values defined
like it is in the preceding example because it is easy to read; however, there is a shorter
version. This shorter version lets us define multiple members in a single line, separated by
commas, as the following example shows:

enum Planets {
 case mercury, venus, earth, mars, jupiter
 case saturn, uranus, neptune
}

We can then use the Planets enumeration like this:

var planetWeLiveOn = Planets.earth
var furthestPlanet = Planets.neptune

The type for the planetWeLiveOn and furthestPlanet variables is inferred when we
initialize the variable with one of the member values of the Planets enumeration. Once the
variable type is inferred, we can then assign a new value without the Planets prefix, as
shown here:

planetWeLiveOn = .mars

We can compare an enumeration value using the traditional equals (==) operator or use a
switch statement.

Note: We will learn about the Swift switch statement in Chapter 5, Control
Flow, later in this book. For now, we wanted to illustrate its use with the
enumeration type.

The following example shows how to use the equals operator and the switch statement
with an enum:

// Using the traditional == operator
if planetWeLiveOn == .earth {
 print("Earth it is")
}

// Using the switch statement
switch planetWeLiveOn {

Learning about Variables, Constants, Strings, and Operators Chapter 2

[50]

 case .mercury:
 print("We live on Mercury, it is very hot!")
 case .venus:
 print("We live on Venus, it is very hot!")
 case .earth:
 print("We live on Earth, just right")
 case .mars:
 print("We live on Mars, a little cold")
 default:
 print("Where do we live?")
}

Enumerations can come prepopulated with raw values, which are required to be of the
same type. The following example shows how to define an enumeration with string values:

enum Devices: String {
 case MusicPlayer = "iPod"
 case Phone = "iPhone"
 case Tablet = "iPad"
}

print("We are using an \(Devices.Tablet.rawValue)")

The preceding example creates an enumeration with three types of device. We then use the
rawValue property to retrieve the stored value for the Tablet member of the Devices
enumeration. This example will print a message saying, We are using an iPad.

Let's create another Planets enumeration, but this time, assign numbers to the members,
as follows:

enum Planets: Int {
 case mercury = 1
 case venus
 case earth
 case mars
 case jupiter
 case saturn
 case uranus
 case neptune
}
print("Earth is planet number \(Planets.earth.rawValue)")

The big difference between these last two enumerations examples is that in the second
example, we only assign a value to the first member (mercury). If integers are used for the
raw values of an enumeration, then we do not have to assign a value to each member. If no
value is present, the raw values will be auto-incremented.

Learning about Variables, Constants, Strings, and Operators Chapter 2

[51]

In Swift, enumerations can also have associated values. Associated values allow us to store
additional information, along with member values. This additional information can vary
each time we use the member. It can also be of any type, and the types can be different for
each member. Let's look at how we might use associate types by defining a Product
enumeration, which contains two types of products:

enum Product {
case Book(Double, Int, Int)
case Puzzle(Double, Int)
}

var masterSwift = Product.Book(49.99, 2017, 310)
var worldPuzzle = Product.Puzzle(9.99, 200)

switch masterSwift {
 case .Book(let price, let year, let pages):
 print("Mastering Swift was published in \(year) for the
 price of \(price) and has \(pages) pages")
 case .Puzzle(let price, let pieces):
 print("Mastering Swift is a puzzle with \(pieces) and
 sells for \(price)")
}
switch worldPuzzle {
 case .Book(let price, let year, let pages):
 print("World Puzzle was published in \(year) for the price of
 \(price) and has \(pages) pages")
 case .Puzzle(let price, let pieces):
 print("World Puzzle is a puzzle with \(pieces) and sells
 for \(price)")
}

In the preceding example, we begin by defining a Product enumeration with two
members: Book and Puzzle. The Book member has associated values of the Double, Int,
and Int types, while the Puzzle member has associated values of the Double and Int
types. Notice that we are using named associated types where we assign a name for each
associated type. We then create two products, masterSwift and worldPuzzle. We assign
the masterSwift variable a value of Product.Book with the associated values of 49.99,
2017, and 310. We then assign the worldPuzzle variable a value of Product.Puzzle with
the associated values of 9.99 and 200.

Learning about Variables, Constants, Strings, and Operators Chapter 2

[52]

We can then check the Products enumeration using a switch statement, as we did in an
earlier example. We then extract the associated values within the switch statement. In this
example, we extracted the associated values as constants with the let keyword, but you
can also extract the associated values as variables with the var keyword.

If you put the previous code into a playground, the following results will be displayed:

"Master Swift was published in 2017 for the price of 49.99 and
 has 310 pages"
"World Puzzle is a puzzle with 200 and sells for 9.99"

In future chapters in this book, we will look at additional features of enumerations and see
why they can be so powerful. We have used operators in a number of examples. Let's take a
closer look at them.

Operators
An operator is a symbol or combination of symbols that we can use to check, change, or
combine values. We have used operators in most of the examples so far in this book, but we
did not specifically call them operators. In this section, we will show you how to use most
of the basic operators that Swift supports.

Swift supports most standard C operators and also improves on some of them to eliminate
several common coding errors. For example, the assignment operator does not return a
value, which prevents it from being used where we are meant to use the equality operator,
which is two equal signs (==).

Let's look at the operators in Swift.

Assignment operator
The assignment operator initializes or updates a variable. Here is a prototype:

var A = var B

Here is an example:

let x = 1
var y = "Hello"
a = b

Learning about Variables, Constants, Strings, and Operators Chapter 2

[53]

Comparison operators
The comparison operator returns a Boolean value of true if the statement is true or a
Boolean value of false if the statement is not true.

Here are some prototypes:

Equality:
 varA == varB
Not equal:
 varA != varB
Greater than:
 varA > varB
Less than:
 varA < varB
Greater than or equal to:
 varA >= varB
Less than or equal to:
 varA <= varB

Here are some examples:

2 == 1 //false, 2 does not equal 1
2 != 1 //true, 2 does not equal 1
2 > 1 //true, 2 is greater than 1
2 < 1 //false, 2 is not less than 1
2 >= 1 //true, 2 is greater or equal to 1
2 <= 1 //false, 2 is not less or equal to 1

Arithmetic operators
The arithmetic operators perform the four basic mathematical operations. Here are some
prototypes:

Addition:
 varA + varB
Subtraction:
 varA - varB
Multiplication:
 varA * varB
Division:
 varA / varB

Learning about Variables, Constants, Strings, and Operators Chapter 2

[54]

Here are some examples:

var x = 4 + 2 //x will equal 6
var x = 4 - 2 //x will equal 2
var x = 4 * 2 //x will equal 8
var x = 4 / 2 //x will equal 2
var x = "Hello " + "world" //x will equal "Hello World"

Remainder operator
The remainder operator calculates the remainder if the first operand is divided by the
second operand. In other languages, this is sometimes referred to as the modulo or
modulus operator.

Here is a prototype:

varA % varB

Here is an example:

var x = 10 % 3 //x will equal 1
var x = 10 % 2.6 //x will equal 2.2

Compound assignment operators
The compound assignment operators combine an arithmetic operator with an assignment
operator.

Here are some prototypes:

varA += varB
varA -= varB
varA *= varB
varA /= varB

Here are some examples:

var x = 6
x += 2 //x now is 8
x -= 2 //x now is 4
x *= 2 //x now is 12
x /= 2 //x now is 3

Learning about Variables, Constants, Strings, and Operators Chapter 2

[55]

Closed range operator
The closed range operator defines a range that runs from the first number to the second
number. The numbers are separated by three dots.

Here is a prototype:

(a...b)

Here is an example. Note that we will cover the for loop in Chapter 5, Control Flow:

for i in 1...3 {
 print("Number: \(i)")
}

This example would print out the following:

Number: 1
Number: 2
Number: 3

Half open range operator
The half open range operator defines a range that runs form the first number to one, minus
the second number. The numbers are separated by two dots and the less than sign.

Here is a prototype:

(a..<b)

Here is a example:

for i in 1..<3 {
 print("Number: \(i)")
}

This example would print out the following:

Number: 1
Number: 2

Notice that in the closed range operator, the line Number: 3 was printed
out, but with the half open range operator, it wasn't.

Learning about Variables, Constants, Strings, and Operators Chapter 2

[56]

There are also one-side range operators that we use with arrays. We will look at those in
Chapter 4, Using Swift Collections.

Ternary conditional operator
The ternary conditional operator assigns a value to a variable based on the evaluation of a
comparison operator or Boolean value.

Here is a prototype:

(boolValue ? valueA : valueB)

Here is an example:

var x = 2
var y = 3
var z = (y >x ? "Y is greater" : "X is greater") //z equals "Y is greater"

Logical NOT operator
The logical NOT operator inverts a Boolean value. Here is a prototype:

varA = !varB

Here is an example:

var x = true
var y = !x //y equals false

Logical AND operator
The logical AND operator returns true if both operands are true; otherwise, it returns
false.

Here is a prototype:

varA && varB

Here is an example:

var x = true
var y = false
var z = x && y //z equals false

Learning about Variables, Constants, Strings, and Operators Chapter 2

[57]

Logical OR operator
The logical OR operator returns true if either of the operands are true. Here is a prototype:

varA || varB

Here is an example:

var x = true
var y = false
var z = x|| y //z is true

For those who are familiar with the C language, or similar languages, these operators
should look pretty familiar. For those of you who aren't that familiar with the C operators,
rest assured that, once you begin using them frequently, they will become second nature.

Summary
In this chapter, we covered topics ranging from variables and constants to data types and
operators. The items in this chapter will act as the foundation for every application that you
write; therefore, it is important to understand the concepts we discussed here.

In this chapter, we have seen that we should prefer constants to variables when the value is
not going to change. Swift will give you a compile time warning if you set but never change
a variable's value. We also saw that we should prefer type inference over declaring a type.

Numeric and string types, which are implemented as primitives in other languages, are
named types that are implemented with structures in Swift. In future chapters, you will see
why this is important. One of the most important things to remember from this chapter is
that, if a variable contains a nil value, you must declare it as an optional.

In the next chapter, we will look at the Swift optional types. The optional type in Swift can
be one of the hardest concepts to grasp if you are used to languages that don't use them.

3
Optional Types

When I first started using Swift, the concept that I had the most trouble understanding was
optional types. Coming from an Objective-C, C, Java, and Python background, I was able to
relate most of Swift's features to how things worked in one of the other languages that I
knew, but optionals were different. When Swift was first announced, there really was
nothing like optionals in the other languages that I used, so it took a lot of reading to fully
understand them.

In this chapter, we will cover the following topics:

What are optional types?
Why do we need optional types in Swift?
How to unwrap an optional?
What is optional binding?
What is optional chaining?

Introducing optionals
When we declare variables in Swift, they are by default non-optional, which means that
they must contain a valid, non-nil value. If we try to set a non-optional variable to nil, it
will result in an error.

For example, the following code will throw an error when we attempt to set the message
variable to nil because it is a non-optional type:

var message: String = "My String"
message = nil

It is very important to understand that nil in Swift is very different from nil in Objective-
C or other C-based languages. In these languages, nil is a pointer to a non-existent object;
however, in Swift a nil value is the absence of a value. This concept is very important to
fully understand optionals in Swift.

Optional Types Chapter 3

[59]

A variable defined as an optional can contain a valid value or it can indicate the absence of
a value. We indicate the absence of a value by assigning it a special nil value. Optionals of
any type can be set to nil, whereas in Objective-C, only objects can be set to nil.

To really understand the concept behind optionals, let's look at a line of code that defines
an optional:

var myString: String?

The question mark at the end indicates that the myString variable is an optional. We read
this line of code as saying that the myString variable is an optional type, which may
contain a value of the string type or may contain no value. How this line is written is very
important in understanding how optionals work.

Optionals are a special type in Swift. When we defined the myString variable, we actually
defined it as an optional type. To understand this, let's look at some more code:

var myString1: String?
var myString2: Optional<String>

These two declarations are equivalent. Both lines declare an optional type that may contain
a string type or may lack a value. In Swift, we can think of the absence of a value as being
set to nil, but always remember that this is different than setting something to nil in
Objective-C. In this book, when we refer to nil, we are referring to how Swift uses nil and
not how Objective-C uses nil.

The optional type is an enumeration with two possible values, None and Some(T), where T
is the generic associated value of the appropriate type. We will discuss Generics in Chapter
10, Generics. If we set the optional to nil, it will have a value of None, and if we set a value,
the optional will have a value of Some with an associated value of the appropriate type. In
Chapter 2, Learning about Variables, Constants, Strings and Operators, we explained that an
enumeration in Swift may have associated values. Associated values allow us to store
additional information along with the enumeration's member values.

Internally, an optional is defined as follows:

enum Optional<T> {
 case None
 case Some(T)
}

Here, T is the type to associate with the optional. The T symbol is used to define a generic
and can be used to represent any type.

Optional Types Chapter 3

[60]

The need for optional types in Swift
Now, the burning question: why does Swift need optionals? To understand this question,
we should examine what problems optionals are designed to solve.

In most languages, it is possible to create a variable without giving it an initialized value.
For example, in Objective-C, both of these lines of code are valid:

int i;
MyObject *m;

Now, let's say that the MyObject class, written in Objective-C, has the following method:

-(int)myMethodWithValue:(int)i {
 return i*2;
}

This method takes the value passed in from the i parameter, multiplies it by two, and
returns the results. Let's try to call this method using the following code:

MyObject *m;
NSLog(@"Value: %d",[m myMethodWithValue:5]);

Our first thought might be that this code would display Value: 10, since we are passing
the value of 5 to a method that doubles the value passed in; however, this would be
incorrect. In reality, this code would display Value: 0 because we did not initialize the m
object prior to using it.

When we forget to initialize an object or set a value for a variable, we can get unexpected
results at runtime, as we just demonstrated. The unexpected results can be, at times, very
difficult to track down.

With optionals, Swift is able to detect problems such as this at compile-time and alert us
before it becomes a runtime issue. If we expect a variable or object to always contain a value
prior to using it, we will declare the variable as a non-optional (this is the default
declaration). Then we will receive an error if we try to use it prior to initializing it. Let's
look at an example of this. The following code would display an error because we are
attempting to use a non-optional variable prior to initializing it:

var myString: String
print(myString)

Optional Types Chapter 3

[61]

If a variable is declared as an optional, it is good programming practice to verify that it
contains a valid value before attempting to use it. We should only declare a variable as an
optional if there is a valid reason for the variable to contain no value. This is the reason
Swift declares variables as non-optional by default.

Now that we have a better understanding of what optionals are and what types of
problems they are designed to solve, let's look at how to use them.

Defining an optional
One thing to keep in mind is that the type we define in the variable's declaration is actually
the associated value in the optional enumeration. The following code shows us how we
would typically declare an optional:

var myOptional: String?

This code declares an optional variable that might contain a string or might contain no
value. When a variable such as this is declared, by default it is set to nil.

Using optionals
The key to using optionals is to always verify that they contain a valid value prior to
accessing them. We use the term unwrapping to refer to the process of retrieving a value
from an optional.

Forced unwrapping of an optional
To unwrap or retrieve the value of an optional, we place an exclamation mark (!) after the
variable name. This is called forced unwrapping. Forced unwrapping, in this manner, is
very dangerous and should be used only if we are certain that the variable contains a non-
nil value. Otherwise, if it does contain a nil value, we will get a runtime error and the
application will crash.

When we use the exclamation point to unwrap an optional, we are telling the compiler that
we know the optional contains a value, so go ahead and give it to us. Let's look at how to
do this:

var myString1: String?
myString1 = "test"
var test: String = myString1!

Optional Types Chapter 3

[62]

This code will work as we expect it to, where the test variable will contain the "test"
string; however, if the line that set the myString1 optional to test were removed, we
would receive a runtime error when the application is run. Note that the compiler will not
alert us to an issue because we are using the exclamation point to unwrap the optional,
therefore, the compiler assumes that we know what we are doing and will happily compile
the code for us. We should verify that the myString1 optional contains a valid value prior
to unwrapping it. The following example is one way to do this:

var myString1: String?
myString1 = "test"
if myString1 != nil {
 var test = myString1!
}

Now, if the line that sets the myString1 optional to test were removed, we would not
receive a runtime error because we only unwrap the myString1 optional if it contains a
valid (non-nil) value.

Unwrapping optionals, as we just described, is not optimal, and it is not recommended that
optionals be unwrapped in this manner. We can combine verification and unwrapping in
one step, called optional binding.

Optional binding
Optional binding is the recommended way to unwrap an optional. With optional binding,
we perform a check to see whether the optional contains a valid value and, if so, unwrap it
into a temporary variable or constant. This is all performed in one step.

Optional binding is performed with the if or while conditional statements. It takes the
following format if we want to put the value of the optional in a constant:

if let constantName = optional {
 statements
}

If we need to put the value in a variable, instead of a constant, we can use the var keyword,
as shown in the following example:

if var variableName = optional {
 statements
}

Optional Types Chapter 3

[63]

The following example shows how to perform optional binding:

var myString3: String?
myString3 = "Space, the final frontier"
if let tempVar = myString3 {
 print(tempVar)
} else {
 print("No value")
}

In the example, we define the myString3 variable as an optional type. If the myString3
optional contains a valid value, the new variable, named tempvar, is set to that value and
is printed to the console. If the myString3 optional does not contain a value, No value is
printed to the console.

We are able to use optional binding to unwrap multiple optionals within the same optional
binding line. For example, if we had three optionals named optional1, optional2, and
optional3, we could use the following code to attempt to unwrap all three at once:

if let tmp1 = optional1, let tmp2 = optional2, let tmp3 = optional3 {
}

If any of the three optionals are nil, the whole optional binding statement fails. It is also
perfectly acceptable with optional binding to assign the value to a variable of the same
name. The following code illustrates this:

if let myOptional = myOptional {
 print(myOptional)
} else {
 print("myOptional was nil")
}

One thing to note is that the temporary variable is scoped only for the conditional block and
cannot be used outside it. To illustrate the scope of the temporary variable, let's take a look
at the following code:

var myOptional: String?
myOptional = "test"
if var tmp = myOptional {
 print("Inside:\(tmp)")
}
// This next line will cause a compile time error
print("Outside: \(tmp)")

This code would not compile because the tmp variable is only valid within the conditional
block and we are attempting to use it outside the block.

Optional Types Chapter 3

[64]

Using optional binding is a lot cleaner and easier than manually verifying that the optional
has a value and using forced unwrapping to retrieve the value of the optional.

Optional types with tuples
We can define a whole tuple as an optional or any of the elements within a tuple as an
optional. It is especially useful to use optionals with tuples when we return a tuple from a
function or method. This allows us to return part (or all) of the tuple as nil. The following
example shows how to define a tuple as an optional, and also how to define individual
elements of a tuple as optional types:

var tuple1: (one: String, two: Int)?
var tuple2: (one: String, two: Int?)

The first line defines the whole tuple as an optional type. The second line defines the
second value within the tuple as an optional, while the first value is a non-optional.

Optional chaining
Optional chaining allows us to call properties, methods, and subscripts on an optional that
might be nil. If any of the chained values return nil, the return value will be nil. The
following code gives an example of optional chaining using a fictitious car object. In this
example, if either the car or tires optional variables are nil, the tireSize variable will be
nil, otherwise the tireSize variable will be equal to the tireSize property:

var tireSize = car?.tires?.tireSize

We will look at optional chaining again in Chapter 7, Classes, Structures, and Protocols.

The nil coalescing operator
The nil coalescing operator is similar to the ternary operator that we discussed in Chapter
2, Learning about Variables, Constants, Strings, and Operators. The ternary operator assigns a
value to a variable, based on the evaluation of a comparison operator or a Boolean value.
The nil coalescing operator attempts to unwrap an optional, and if it contains a value, it will
return that value, or a default value, as shown in the following code, if the optional is nil.

Let's look at a prototype for the nil coalescing operator:

optionalA ?? defaultValue

Optional Types Chapter 3

[65]

In this example, we demonstrate the nil coalescing operator when the optional contains a
nil and also when it contains a value:

var defaultName = "Jon"

var optionalA: String?
var optionalB: String?

optionalB = "Buddy"

var nameA = optionalA ?? defaultName
var nameB = optionalB ?? defaultName

In this example, we begin by initializing our defaultName variable to Jon. We then define
two optionals, named optionalA and optionalB. The optionalA variable will be set to
nil, while the optionalB variable is set to Buddy.

The nil coalescing operator is used in the final two lines. Since the optionalA variable
contains a nil, the nameA variable will be set to the value of the defaultName variable,
which is Jon. The nameB variable will be set to the value of the optionalB variable since it
contains a value.

The nil coalescing operator is shorthand for using the ternary operator as follows:

var nameC = optionalA != nil ? optionalA! :defaultName

As we can see, the nil coalescing operator is much cleaner and easier to read than the
equivalent ternary operator.

Summary
While the concept of optional types, as used in the Swift language, might seem a little
confusing at first, the more you use them the more they will make sense. One of the biggest
advantages with optional types is we get additional compile-time checks that alert us if we
forget to initialize non-optionals prior to using them.

In this chapter, we described what optionals actually are and how they are defined
internally in the Swift language. It is important to understand this concept because
optionals are used a lot in Swift and knowing how they work internally will help you to use
them properly . We will see additional examples of optionals later in this book.

In the next chapter, we will look at how to use collections.

4
Using Swift Collections

Once I got past the basic Hello, World! beginner applications, I quickly began to realize the
shortcomings of variables, especially with the Mad Libs-style applications that I was
starting to write. These applications requested that the user enter numerous strings, which
resulted in the creation of separate variables for each input field that the user entered.
Having all these separate variables quickly became cumbersome. I remember talking to a
friend about this, and he asked me why I was not using arrays. At that time, I was not
familiar with arrays, so I asked him to show me what they were. Even though he had a
TI-99/4A and I had a Commodore Vic-20, the concept of arrays was the same. Even today,
the arrays found in modern development languages have the same basic concepts as the
arrays I used on my Commodore Vic-20. While it is definitely possible to create a useful
application without using collections, such as arrays, when used properly, collections make
application development significantly easier.

In this chapter, we will cover the following topics:

What an array is in Swift and how to use it?
What a dictionary is in Swift and how to use it?
What a set is in
Swift and how to use it?

Swift collection types
A collection groups multiple items into a single unit. Swift provides three native collection
types. These collection types are arrays, sets, and dictionaries. Arrays store data in an
ordered collection, sets are unordered collections of unique values, and dictionaries are
unordered collections of key-value pairs. In an array, we access the data by the location or
index in the array, whereas in a set we usually iterate through the collection, and
dictionaries are accessed using a unique key.

Using Swift Collections Chapter 4

[67]

The data stored in a Swift collection must be of the same type. This means, as an example,
that we are unable to store a string value in an array of integers. Since Swift does not allow
us to mismatch data types in a collection, we can be certain of the data type when we
retrieve elements from a collection. This is another feature that, on the surface, might seem
like a shortcoming, but actually helps eliminate common programming mistakes.

Having a collection that contains arbitrary data types usually leads to
problems. If this kind of collection is required, you should reconsider your
design. Later in this chapter, we will see how to use the Any and
AnyObject aliases, but we should avoid this wherever possible.

Mutability
For those who are familiar with Objective-C, you will know that there are different classes
for mutable and immutable collections. For example, to define a mutable array, we use the
NSMutableArray class, and to define an immutable array, we use the NSArray class. Swift
is a little different, because it does not contain separate classes for mutable and immutable
collections. Instead, we define whether a collection is constant (immutable) or variable
(mutable) by using the let and var keywords. This should seem familiar by now since we
define constants with the let keyword and variables with the var keyword.

It is a good practice to create immutable collections unless there is a
specific need to change the objects within the collection. This allows the
compiler to optimize performance.

Let's begin our tour of collections by looking at the most common collection type: the array
type.

Arrays
Arrays are a very common component of modern programming languages and can be
found in virtually all modern programming languages. In Swift, an array is an ordered list
of objects of the same type.

When an array is created, we must declare the type of data that can be stored in it by
explicit type declaration or through type inference. Typically, we only explicitly declare the
data type of an array when we are creating an empty array. If we initialize an array with
data, the compiler uses type inference to infer the data type for the array.

Using Swift Collections Chapter 4

[68]

Each object in an array is called an element. Each of these elements is stored in a set order
and can be accessed by searching for its location (index) in the array.

Creating and initializing arrays
We can initialize an array with an array literal. An array literal is a set of values that
prepopulates the array. The following example shows how to define an immutable array of
integers using the let keyword:

let arrayOne = [1,2,3]

If we need to create a mutable array, we will use the var keyword to define the array, as we
did with standard variables. The following example shows how to define a mutable array:

var arrayTwo = [4,5,6]

In the preceding two examples, the compiler inferred the type of values stored in the array
by looking at the type of values stored in the array literal. If we want to create an empty
array, we need to explicitly declare the type of values to store in the array. There are two
ways to declare null arrays in Swift. The following examples show how to declare an empty
mutable array that can be used to store integers:

var arrayThree = [Int]()
var arrayThree: [Int] = []

In the preceding examples, we created arrays with integer values, and the majority of the
array examples in this chapter will also use integer values; however, we can create arrays in
Swift with any type. The only rule is that, once an array is defined as containing a particular
type, all the elements in the array must be of that type. The following example shows how
we can create arrays of various data types:

var arrayOne = [String]()
var arrayTwo = [Double]()
var arrayThree = [MyObject]()

Swift provides special type aliases for working with nonspecific types. These aliases are
AnyObject and Any. We can use these aliases to define arrays whose elements are of
different types, like this:

var myArray: [Any] = [1,"Two"]

Using Swift Collections Chapter 4

[69]

The AnyObject aliases can represent an instance of any class type, while the Any aliases
can represent an instance of the instance of any type, including function types. We should
use the Any and AnyObject aliases only when there is an explicit need for this behavior. It
is always better to be specific about the types of data our collections contain.

If there is a need to mix types in a single collection, consider using a tuple.

An array can also be initialized to a certain size with all the elements set to a predefined
value. This can be very useful if we want to create an array and prepopulate it with default
values. The following example defines an array with 7 elements, with each element
containing the number 3:

var arrayFour = [Int](repeating: 3, count: 7)

While the most common arrays are one-dimensional arrays, multidimensional arrays can
also be created. A multidimensional array is really nothing more than an array of arrays.
For example, a two-dimensional array is an array of arrays, while a three-dimensional array
is an array of arrays of arrays. The following examples show the two ways to create a two-
dimensional array in Swift:

var multiArrayOne = [[1,2],[3,4],[5,6]]
var multiArrayTwo = [[Int]]()

Accessing the array element
The subscript syntax is used to retrieve values from an array. Subscript syntax, for an array,
is where a number appears between two square brackets, and that number specifies the
location (index) within the array of the element we wish to retrieve. The following example
shows how to retrieve elements from an array using the subscript syntax:

let arrayOne = [1,2,3,4,5,6]
print(arrayOne[0]) //Displays '1'
print(arrayOne[3]) //Displays '4'

In the preceding code, we begin by creating an array of integers that contains six numbers.
We then print out the value at indexes 0 and 3.

Using Swift Collections Chapter 4

[70]

One important fact to note is that indices in Swift arrays start with the
number zero. This means that the first item in an array has an index of 0.
The second item in an array has an index of 1.

If we want to retrieve an individual value within a multidimensional array, we need to
provide a subscript for each dimension of the array. If we do not provide a subscript for
each dimension, we will retrieve an array rather than an individual value within the array.
The following example shows how we can define a two-dimensional array and retrieve an
individual value within the two dimensions:

let multiArray = [[1,2],[3,4],[5,6]]
let arr = multiArray[0] //arr contains the array [1,2]
let value = multiArray[0][1] //value contains 2

In the preceding code, we begin by defining a two-dimensional array. When we retrieve the
value at index 0 of the first dimension (multiArray[0]), we retrieve the array [1,2]. When
we retrieve the value at index 0 of the first dimension and index 1 of the second dimension
(multiArray[0][1]), we retrieve the integer 2.

We can retrieve the first and last elements of an array using the first and last properties.
The first and last properties return an optional value, since the values may be nil if the
array is empty. The following example shows how to use these properties to retrieve the
first and last elements of both a one-dimensional and a multidimensional array:

let arrayOne = [1,2,3,4,5,6]
let first = arrayOne.first //first contains
 let last = arrayOne.last //last contains 6

let multiArray = [[1,2],[3,4],[5,6]]
let arrFirst1 = multiArray[0].first //arrFirst1 contains 1
let arrFirst2 = multiArray.first //arrFirst2 contains[1,2]
let arrLast1 = multiArray[0].last //arrLast1 contains 2
let arrLast2 = multiArray.last //arrLast2 contains [5,6]

Counting the elements of an array
At times, it is essential to know the number of elements in an array. The array type in Swift
contains a read-only count property. The following example shows how to use this
property to retrieve the number of elements in both single-dimensional and
multidimensional arrays:

let arrayOne = [1,2,3]
let multiArrayOne = [[3,4],[5,6],[7,8]]

Using Swift Collections Chapter 4

[71]

print(arrayOne.count) //Displays 3
print(multiArrayOne.count) //Displays 3 for the three arrays
print(multiArrayOne[0].count) //Displays 2 for the two elements

The value that is returned by the count property is the number of elements in the array,
and not the largest valid index of the array. For nonempty arrays, the largest valid index is
the number of elements in the array minus 1. This is because the first element of the array
has an index number of 0. As an example, if an array has two elements, the valid indexes
are 0 and 1, while the count property would return 2. This is illustrated with the following
code:

let arrayOne = [0,1]
print(arrayOne[0]) //Displays 0
print(arrayOne[1]) //Displays 1
print(arrayOne.count) //Displays 2

If we attempt to retrieve an element from an array that is outside the range of the array, the
application will throw an array index out of range error. Therefore, if we are unsure of the
size of an array, it is a good practice to verify that the index is not outside the range of the
array. The following examples illustrate this concept:

//This example will throw an array index out of range error
let arrayOne = [1,2,3,4]
print(arrayOne[6])

//This example will not throw an array index out of range error
let arrayTwo = [1,2,3,4]
if (arrayTwo.count > 6) {
 print(arrayTwo[6])
}

In the preceding code, the first block would throw an array index out of range error
because we are attempting to access the value from the arrayOne array at index 6;
however, there are only 4 elements in the array. The second example would not throw the
error because we are checking whether the arrayTwo array contains more than six
elements before trying to access the element at the sixth index.

Is the array empty?
To check whether an array is empty (does not contain any elements), we use the isEmpty
property. This property will return true if the array is empty and false if it is not. The
following example shows how to check whether an array is empty:

var arrayOne = [1,2]

Using Swift Collections Chapter 4

[72]

var arrayTwo = [Int]()
arrayOne.isEmpty //Returns false because the array is not empty
arrayTwo.isEmpty //Returns true because the array is empty

Shuffling an array
An array can be very easily shuffled using the shuffle() and shuffled() methods. This
can be very useful if we are creating a game, such as a card game, where the array contains
the 52 cards in the deck. To shuffle the array in place, the shuffle() method can be used;
to put the shuffled results in a new array, leaving the original array untouched, the
shuffled() method would be used. The following examples show this:

var arrayOne = [1,2,3,4,5,6]
arrayOne.shuffle()
let shuffledArray = arrayOne.shuffled()

Appending to an array
A static array is somewhat useful but having the ability to add elements dynamically is
what makes arrays really useful. To add an item to the end of an array, we can use the
append method. The following example shows how to append an item to the end of an
array:

var arrayOne = [1,2]
arrayOne.append(3) //arrayOne will now contain 1, 2 and 3

Swift also allows us to use the addition assignment operator (+=) to append an array to
another array. The following example shows how to use the addition assignment operator
to append an array to the end of another array:

var arrayOne = [1,2]
arrayOne += [3,4] //arrayOne will now contain 1, 2, 3 and 4

The way you append an element to the end of an array is really up to you. Personally, I
prefer the assignment operator because, to me, it is a bit easier to read, but we will be using
both in this book.

Using Swift Collections Chapter 4

[73]

Inserting a value into an array
We can insert a value into an array by using the insert method. The insert method will
move all the items up one spot, starting at the specified index, to make room for the new
element, and then insert the value into the specified index. The following example shows
how to use this method to insert a new value into an array:

var arrayOne = [1,2,3,4,5]
arrayOne.insert(10, at: 3) //arrayOne now contains 1, 2,3, 10, 4 and 5

You cannot insert a value that is outside the current range of the array.
Attempting to do so will throw an Index out of range exception. For
example, in the preceding code, if we attempt to insert a new integer at
index 10, we will receive an Index out of range exception error because
arrayOne contains only five elements. The exception to this is that we can
insert an item directly after the last element, however, it is recommended
that we use the append function to append an item to avoid errors.

Replacing elements in an array
We use the subscript syntax to replace elements in an array. Using the subscript, we pick
the element of the array we wish to update and then use the assignment operator to assign
a new value. The following example shows how we will replace a value in an array:

var arrayOne = [1,2,3]
arrayOne[1] = 10 //arrayOne now contains 1,10,3

You cannot update a value that is outside the current range of the array.
Attempting to do so will throw the same Index out of range exception
that was thrown when we tried to insert a value outside the range of the
array.

Removing elements from an array
There are three methods that we can use to remove one or all of the elements in an array.
These methods are removeLast(), remove(at:), and removeAll(). The following
example shows how to use the three methods to remove elements from the array:

var arrayOne = [1,2,3,4,5]
arrayOne.removeLast() //arrayOne now contains 1, 2, 3 and 4
arrayOne.remove(at:2) //arrayOne now contains 1, 2 and 4
arrayOne.removeAll() //arrayOne is now empty

Using Swift Collections Chapter 4

[74]

The removeLast() and remove(at:) methods will also return the value of the element
being removed. Therefore, if we want to know the value of the item that was removed, we
can rewrite the remove(at:) and removeLast() lines to capture the value, as shown in
the following example:

var arrayOne = [1,2,3,4,5]
var removed1 = arrayOne.removeLast() //removed1 contains the value 5
var removed = arrayOne.remove(at: 2) //removed contains the value 3

Merging two arrays
To create a new array by adding two arrays together, we use the addition (+) operator. The
following example shows how to use the addition (+) operator to create a new array that
contains all the elements of two other arrays:

let arrayOne = [1,2]
let arrayTwo = [3,4]
var combined = arrayOne + arrayTwo //combine contains 1, 2, 3 and 4

In the preceding code, arrayOne and arrayTwo are left unchanged, while the combined
array contains the elements from arrayOne, followed by the elements from arrayTwo.

Retrieving a subarray from an array
We can retrieve a subarray from an existing array by using the subscript syntax with a
range operator. The following example shows how to retrieve a range of elements from an
existing array:

let arrayOne = [1,2,3,4,5]
var subArray = arrayOne[2...4] //subArray contains 3, 4 and 5

The operator (three periods) is known as a two-sided range operator. The range operator, in
the preceding code, says that I want all the elements from 2 to 4 inclusively (elements 2 and
4 as well as what is between them). There is another two-sided range operator, ..<, known
as the half-open range operator. The half-open range operator functions the same as the
previous range operator, however, it excludes the last element. The following example
shows how to use the ..< operator:

let arrayOne = [1,2,3,4,5]
var subArray = arrayOne[2..<4] //subArray contains 3 and 4

Using Swift Collections Chapter 4

[75]

In the preceding example, the subarray will contain two elements: 3 and 4. A two-sided
range operator has numbers on either side of the operator. In Swift, we are not limited to
two-sided range operators; we can also use one-sided range operators. The following
examples show how we can use one-sided range operators:

let arrayOne = [1,2,3,4,5]
var a = arrayOne[..<3] //subArray contains 1, 2 and 3
var b = arrayOne[...3] //subArray contains 1, 2, 3 and 4
var c = arrayOne[2...] //subArray contains 3, 4 and 5

The one-sided range operators were added in version 4 of the Swift language.

Making bulk changes to an array
We can use the subscript syntax with a range operator to change the values of multiple
elements. The following example shows how to do this:

arrayOne[1...2] = [12,13] //arrayOne contains 1,12,13,4 and 5

In the preceding code, the elements at indices 1 and 2 will be changed to the numbers 12
and 13; therefore, arrayOne will contain 1, 12, 13, 4, and 5.

The number of elements that you are changing in the range operator does not need to
match the number of values that you are passing in. Swift makes bulk changes by first
removing the elements defined by the range operator and then inserting the new values.
The following example demonstrates this concept:

var arrayOne = [1,2,3,4,5]
arrayOne[1...3] = [12,13] //arrayOne now contains 1, 12, 13 and 5

In the preceding code, the arrayOne array starts with five elements. We then replace the
range of elements 1 to 3 inclusively. This causes elements 1 through 3 (which is three
elements) to be removed from the array first. After those three elements are removed, then
the two new elements (12 and 13) are added to the array, starting at index 1. After this is
complete, arrayOne will contain four elements: 1, 12, 13, and 5. Using the same logic, we
can also add more elements than we remove. The following example illustrates this:

var arrayOne = [1,2,3,4,5]
arrayOne[1...3] = [12,13,14,15]
//arrayOne now contains 1, 12, 13, 14, 15 and 5 (six elements)

Using Swift Collections Chapter 4

[76]

In the preceding code, arrayOne starts with five elements. We then say that we want to
replace the range of elements 1 through 3 inclusively. As in the previous example, this
causes elements 1 to 3 (three elements) to be removed from the array. We then add four
elements (12, 13, 14, and 15) to the array, starting at index 1. After this is complete,
arrayOne will contain six elements: 1, 12, 13, 14, 15, and 5.

Algorithms for arrays
Swift arrays have several methods that take a closure as the argument. These methods
transform the array in a way defined by the code in the closure. Closures are self-contained
blocks of code that can be passed around, and are similar to blocks in Objective-C and
lambdas in other languages. We will discuss closures in depth in Chapter 13, Working with
Closures. For now, the goal is to become familiar with how the algorithms work in Swift.

Sort
The sort algorithm sorts an array in place. This means that, when the sort() method is
used, the original array is replaced with the sorted one. The closure takes two arguments
(represented by $0 and $1), and it should return a Boolean value that indicates whether the
first element should be placed before the second element. The following code shows how to
use the sort algorithm:

var arrayOne = [9,3,6,2,8,5]
arrayOne.sort(){ $0 < $1 }
//arrayOne contains 2,3,5,6,8 and 9

The preceding code will sort the array in ascending order. We know this because the rule
will return true if the first number ($0) is less than the second number ($1). Therefore,
when the sort algorithm begins, it compares the first two numbers (9 and 3) and returns
true if the first number (9) is less than the second number (3). In our case, the rule returns
false, so the numbers are reversed. The algorithm continues sorting in this manner until
all of the numbers are sorted in the correct order.

The preceding example sorted the array in a numerically-increasing order; if we wanted to
reverse the order, we would reverse the arguments in the closure. The following code
shows how to reverse the sort order:

var arrayOne = [9,3,6,2,8,5]
arrayOne.sort(){ $1 < $0 }
//arrayOne contains 9,8,6,5,3 and 2

Using Swift Collections Chapter 4

[77]

When we run this code, arrayOne will contain the 9, 8, 6, 5, 3, and 2 elements.

The preceding code can be simplified by using the sort(by:) method and passing in a
greater than or less than operator, as shown in the following code:

var arrayTwo = [9,3,6,2,8,5]
arrayTwo.sort(by: <)

In the preceding code, by using the less than operator, the array is sorted in ascending
order. If we'd used the greater than operator, the array would have been sorted in
descending order.

Sorted
While the sort algorithm sorts the array in place (replaces the original array), the sorted
algorithm does not change the original array; it instead creates a new array with the sorted
elements from the original array. The following example shows how to use the sorted
algorithm:

var arrayOne = [9,3,6,2,8,5]
let sorted = arrayOne.sorted(){ $0 < $1 }
//sorted contains 2,3,5,6,8 and 9
//arrayOne contains 9,3,6,2,8 and 5

After we run this code, arrayOne will contain the original unsorted array (9, 3, 6, 2, 8, and
5) and the sorted array will contain the new sorted array (2, 3, 5, 6, 8, and 9).

Filter
The filter algorithm will return a new array by filtering the original array. This is one of the
most powerful array algorithms and may end up being the one you use the most. If you
need to retrieve a subset of an array based on a set of rules, I recommend using this
algorithm rather than trying to write your own method to filter the array.

The closure takes one argument, and it should return a Boolean true if the element should
be included in the new array, as shown in the following code:

var arrayOne = [1,2,3,4,5,6,7,8,9]
let filtered = arrayOne.filter{$0 > 3 && $0 < 7}
//filtered contains 4,5 and 6

Using Swift Collections Chapter 4

[78]

In the preceding code, the rule that we are passing to the algorithm returns true if the
number is greater than 3 and less than 7; therefore, any number that is greater than 3 and
less than 7 is included in the new filtered array.

This next example shows how we can retrieve a subset of cities that contain the letter o in
their name:

var city = ["Boston", "London", "Chicago", "Atlanta"]
let filtered = city.filter{$0.range(of:"o") != nil}
//filtered contains "Boston", "London" and "Chicago"

In the preceding code, we use the range(of:) method to return true if the string contains
the letter o. If the method returns true, the string is included in the filtered array.

Map
While the filter algorithm is used to select only certain elements of an array, map is used to
apply logic to all elements in the array. The following example shows how to use the map
algorithm to divide each number by 10:

var arrayOne = [10, 20, 30, 40]
let applied = arrayOne.map{ $0 / 10}
//applied contains 1,2,3 and 4

In the preceding code, the new array contains the numbers 1, 2, 3, and 4, which is the result
of dividing each element of the original array by 10.

The new array created by the map algorithm is not required to contain the same element
types as the original array; however, all the elements in the new array must be of the same
type. In the following example, the original array contains integer values, but the new array
created by the map algorithm contains string elements:

var arrayOne = [1, 2, 3, 4]
let applied = arrayOne.map{ "num:\($0)"}
//applied contains "num:1", "num:2", "num:3" and "num:4"

In the preceding code, we created an array of strings that appends the numbers from the
original array to the num: string.

Using Swift Collections Chapter 4

[79]

Count
We can use the count algorithm to count the number of items in the array that matches a
rule. For example, if we had an array that contains the grades from a test, we could use the
count algorithm to count how many of the grades were greater than or equal to 90, like this:

let arrayOne = [95, 90, 75, 80,60]
let count = arrayOne.count{ $0 >= 90 }

As we did with the filter algorithm, we can use methods from the array type, such as the
range(of:) method from the string type. For example, rather than return a subset of cities
that contain the letter o in their name, as we did in the filter algorithm, we can count the
cities like this:

var city = ["Boston", "London", "Chicago", "Atlanta"]
let count1 = city.count{$0.range(of:"o") != nil}

In the preceding count, the count1 constant will contains 3.

forEach
We can use the forEach algorithm to iterate over a sequence. The following example
shows how we would do this:

var arrayOne = [10, 20, 30, 40]
arrayOne.forEach{ print($0) }

This example will print the following results to the console:

10
20
30
40

While using the forEach algorithm is very easy, it does have some limitations. The
recommended way to iterate over an array is to use the for-in loop, which we will see in
the next section.

Using Swift Collections Chapter 4

[80]

Iterating over an array
We can iterate over all elements of an array, in order, with a for-in loop. The for-in loop
will execute one or more statements for each element of the array. We will discuss the for-
in loop in greater detail in Chapter 5, Control Flow. The following example shows how we
would iterate over the elements of an array:

var arrayOne = ["one", "two", "three"]
for item in arrayOne {
 print(item)
}

In the preceding example, the for-in loop iterates over the array and executes the
print(item) line for each element in the array. If we run this code, it will display the
following results in the console:

one
two
three

There are times when we would like to iterate over an array, as we did in the preceding
example, but we would also like to know the index, as well as the value of the element. To
do this, we can use the enumerated method of an array, which returns a tuple for each
item in the array that contains both the index and value of the element. The following
example shows how to use this function:

var arrayOne = ["one", "two", "three"]
for (index,value) in arrayOne.enumerated() {
 print("\(index) \(value)")
}

The preceding code will display the following results in the console:

0 one
1 two
2 three

Now that we have introduced arrays in Swift, let's move on to dictionaries.

Using Swift Collections Chapter 4

[81]

Dictionaries
While dictionaries are not as commonly used as arrays, they have additional functionality
that makes them incredibly powerful. A dictionary is a container that stores multiple key-
value pairs, where all the keys are of the same type and all the values are of the same type.
The key is used as a unique identifier for the value. A dictionary does not guarantee the
order in which the key-value pairs are stored since we look up the values by the key rather
than by the index of the value.

Dictionaries are good for storing items that map to unique identifiers, where the unique
identifier should be used to retrieve the item. Countries with their abbreviations are a good
example of items that can be stored in a dictionary. In the following chart, we show
countries with their abbreviations as key-value pairs:

Key Value
US United States
IN India
UK United Kingdom

Creating and initializing dictionaries
We can initialize a dictionary using a dictionary literal, similarly to how we initialized an
array with the array literal. The following example shows how to create a dictionary using
the key-value pairs in the preceding chart:

let countries = ["US":"UnitedStates","IN":"India","UK":"UnitedKingdom"]

The preceding code creates an immutable dictionary that contains each of the key-value
pairs in the chart we saw before. Just like the array, to create a mutable dictionary we will
need to use the var keyword in place of let. The following example shows how to create a
mutable dictionary that contains the countries:

var countries = ["US":"UnitedStates","IN":"India","UK":"UnitedKingdom"]

Using Swift Collections Chapter 4

[82]

In the preceding two examples, we created a dictionary where the key and value were both
strings. The compiler inferred that the key and value were strings because that was the type
of the keys and values used to initiate the dictionary. If we wanted to create an empty
dictionary, we would need to tell the compiler what the key and value types are. The
following examples create various dictionaries with different key-value types:

var dic1 = [String:String]()
var dic2 = [Int:String]()
var dic3 = [String:MyObject]()
var dic4: [String:String] = [:]
var dic5: [Int:String] = [:]

If we want to use a custom object as the key in a dictionary, we will need
to make the custom object conform to the Hashable protocol from Swift's
standard library. We will discuss protocols extensively later in this book,
but for now just understand that it is possible to use custom objects as a
key in a dictionary.

Accessing dictionary values
We use the subscript syntax to retrieve the value for a particular key. If the dictionary does
not contain the key we are looking for, the dictionary will return nil; therefore, the variable
returned from this lookup is an optional variable. The following example shows how to
retrieve a value from a dictionary using its key in the subscript syntax:

let countries = ["US":"United States", "IN":"India","UK":"UnitedKingdom"]
var name = countries["US"]

In the preceding code, the name variable will contain the United States string.

Counting the key or values in a dictionary
We use the count property of the dictionary to get the number of key-value pairs in the
dictionary. The following example shows how to use this property:

let countries = ["US":"United States", "IN":"India","UK":"United Kingdom"]
var cnt = countries.count //cnt contains 3

In the preceding code, the cnt variable will contain the number 3 since there are 3 key-
value pairs in the dictionary.

Using Swift Collections Chapter 4

[83]

Is the dictionary empty?
To test whether the dictionary contains any key-value pairs, we can use the isEmpty
property. This property will return false if the dictionary contains one or more key-value
pairs and true if it is empty. The following example shows us how to use this property to
determine whether our dictionary contains any key-value pairs:

let countries = ["US":"United States", "IN":"India","UK":"United Kingdom"]
var empty = countries.isEmpty

In the preceding code, the isEmpty property returned false as there are three key-value
pairs in the dictionary.

Updating the value of a key
To update the value of a key in a dictionary, we can use either the subscript syntax or the
updateValue(_: ,forKey:) method. The updateValue(_:, forKey:) method has an
additional feature that the subscript syntax doesn't: it returns the original value associated
with the key prior to changing the value. The following example shows how to use both the
subscript syntax and the updateValue(_:, forKey:) method to update the value of a
key:

var countries = ["US":"United States", "IN":"India","UK":"United Kingdom"]

countries["UK"] = "Great Britain"
//The value of UK is now set to "Great Britain"

var orig = countries.updateValue("Britain", forKey: "UK")
//The value of UK is now set to "Britain"
//The orig variable equals "Great Britain"

In the preceding code, we use the subscript syntax to change the value associated with the
UK key from United Kingdom to Great Britain. The original value of United Kingdom was
not saved prior to replacing it. We then used the updateValue(_:, forKey:) method to
change the value associated with the UK key from Great Britain to Britain. With the
updateValue(_:, forKey:) method, the original value of Great Britain is assigned
to the orig variable, prior to changing the value in the dictionary.

Using Swift Collections Chapter 4

[84]

Adding a key-value pair
To add a new key-value pair to a dictionary, we can use the subscript syntax or the same
updateValue(_:, forKey:) method that we used to update the value of a key. If we use
the updateValue(_:, forKey:) method and the key is not currently present in the
dictionary, this method will add a new key-value pair and return nil. The following
example shows how to use both the subscript syntax and the updateValue(_:,
forKey:) method to add a new key-value pair to a dictionary:

var countries = ["US":"United States", "IN":"India","UK":"United Kingdom"]
countries["FR"] = "France" //The value of "FR" is set to"France"

var orig = countries.updateValue("Germany", forKey: "DE")
//The value of "DE" is set to "Germany" and orig is nil

In the preceding code, the countries dictionary starts with three key-value pairs and we
then add a fourth key-value pair (FR/France) to the dictionary using the subscript syntax.
We use the updateValue(_:,forKey:) method to add a fifth key-value pair
(DE/Germany) to the dictionary. The orig variable is set to nil because the countries
dictionary did not contain a value associated with the DE key.

Removing a key-value pair
There may be times when we need to remove values from a dictionary. There are three
ways to achieve this: the subscript syntax, the removeValue(forKey:) method, or the
removeAll() method. The removeValue(forKey:) method returns the value of the key
prior to removing it. The removeAll() method removes all the elements from the
dictionary. The following example shows how to use all three methods to remove key-
value pairs from a dictionary:

var countries = ["US":"UnitedStates","IN":"India","UK":"United Kingdom"]
countries["IN"] = nil //The "IN" key/value pair is removed

var orig = countries.removeValue(forKey:"UK")
//The "UK" key value pair is removed and orig contains "United Kingdom"

countries.removeAll()
//Removes all key/value pairs from the countries dictionary

Using Swift Collections Chapter 4

[85]

In the preceding code, the countries dictionary starts off with three key-value pairs. We
then set the value associated with the IN key to nil, which removes the key-value pair
from the dictionary. We use the removeValue(forKey:) method to remove the key
associated with the UK key. Prior to removing the value associated with the UK key, the
removeValue(forKey:) method saves the value in the orig variable. Finally, we use the
removeAll() method to remove all the remaining key-value pairs in the countries
dictionary.

Now let's look at the set type.

Set
The set type is a generic collection that is similar to the array type. While the array type is
an ordered collection that may contain duplicate items, the set type is an unordered
collection where each item must be unique.

Like the key in a dictionary, the type stored in an array must conform to the Hashable
protocol. This means that the type must provide a way to compute a hash value for itself.
All of Swift's basic types, such as String, Double, Int, and Bool, conform to this protocol and
can be used in a set by default.

Let's look at how we would use the set type.

Initializing a set
There are a couple of ways to initialize a set. Just like the array and dictionary types, Swift
needs to know what type of data is going to be stored in it. This means that we must either
tell Swift the type of data to store in the set or initialize it with some data so that it can infer
the data type.

Just like the array and dictionary types, we use the var and let keywords to declare whether
the set is mutable:

//Initializes an empty set of the String type
var mySet = Set<String>()

//Initializes a mutable set of the String type with initial values
var mySet = Set(["one", "two", "three"])

//Creates a immutable set of the String type.
let mySet = Set(["one", "two", "three"])

Using Swift Collections Chapter 4

[86]

Inserting items into a set
We use the insert method to insert an item into a set. If we attempt to insert an item that
is already in the set, the item will be ignored. Here are some examples of inserting items
into a set:

var mySet = Set<String>() mySet.insert("One")
mySet.insert("Two")
mySet.insert("Three")

The insert() method returns a tuple that we can use to verify that the value was
successfully added to the set. The following example shows how to check the returned
value to see whether it was added successfully:

var mySet = Set<String>() mySet.insert("One")
mySet.insert("Two")
var results = mySet.insert("One")
if results.inserted {
 print("Success")
} else {
 print("Failed")
}

In this example, Failed would be printed to the console since we are attempting to add the
One value to the set when it is already in the set.

Determining the number of items in a set
We can use the count property to determine the number of items in a set. Here is an
example of how to use this method:

var mySet = Set<String>() mySet.insert("One")
mySet.insert("Two")
mySet.insert("Three")
print("\(mySet.count) items")

When executed, this code will print the message 3 items to the console because the set
contains three items.

Using Swift Collections Chapter 4

[87]

Checking whether a set contains an item
We can verify whether a set contains an item by using the contains() method, as shown
here:

var mySet = Set<String>() mySet.insert("One")
mySet.insert("Two")
mySet.insert("Three")
var contain = mySet.contains("Two")

In the preceding example, the contain variable is set to true because the set contains the
Two string.

Iterating over a set
We can use the for-in statement to iterate over the items in a set as we did with arrays.
The following example shows how we would iterate through the items in a set:

for item in mySet {
 print(item)
}

The preceding example will print out each item in the set to the console.

Removing items in a set
We can remove a single item or all the items in a set. To remove a single item, we would
use the remove() method and, to remove all the items, we would use the removeAll()
method. The following example shows how to remove items from a set:

//The remove method will return and remove an item from a set
var item = mySet.remove("Two")

//The removeAll method will remove all items from a set
mySet.removeAll()

Using Swift Collections Chapter 4

[88]

Set operations
Apple has provided four methods that we can use to construct a set from two other sets.
These operations can be performed in place, on one of the sets, or used to create a new set.
These operations are as follows:

Union and formUnion: These create a set with all the unique values from both
sets.
Subtracting and subtract: These create a set with values from the first set that are
not in the second set.
Intersection and formIntersection: These create a set with values that are
common to both sets.
SymmetricDifference and formSymmetricDifference: These create a new set
with values that are in either set, but not in both sets.

Let's look at some examples and see the results that can be obtained from each of these
operations. For all the examples of set operations, we will be using the following two sets:

var mySet1 = Set(["One", "Two", "Three", "abc"])
var mySet2 = Set(["abc","def","ghi", "One"])

The first example will use the union method. This method will take the unique values from
both sets to make another set:

var newSetUnion = mySet1.union(mySet2)

The newSetUnion variable will contain the following values: One, Two, Three, abc, def,
and ghi. We can use the formUnion method to perform the union function in place
without creating a new set:

mySet1.formUnion(mySet2)

In this example, the mySet1set set will contain all the unique values from the mySet1 and
mySet2 sets.

Now let's look at the subtract and subtracting methods. These methods will create a
set with the values from the first set that are not in the second set:

var newSetSubtract = mySet1.subtracting(mySet2)

Using Swift Collections Chapter 4

[89]

In this example, the newSetSubtract variable will contain the Two and Three values
because those are the only two values that are not also in the second set.

We use the subtract method to perform the subtraction function in place without creating
a new set:

mySet1.subtract(mySet2)

In this example, the mySet1 set will contain the Two and Three values because those are
the only two values that are not in the mySet2 set.

Now let's look at the intersection method, which creates a new set from the values that
are common between the two sets:

var newSetIntersect = mySet1.intersection(mySet2)

In this example, the newSetIntersect variable will contain the One and abc values since
they are the values that are common between the two sets.

We can use the formIntersection() method to perform the intersection function in place
without creating a new set:

mySet1.formIntersection(mySet2)

In this example, the mySet1 set will contain the One and abc values since they are the
values that are common between the two sets.

Finally, let's look at the symmetricDifference() methods. These methods will create a
new set with values that are in either set, but not in both:

var newSetExclusiveOr = mySet1.symmetricDifference(mySet2)

In this example, the newSetExclusiveOr variable will contain the Two, Three, def, and
ghi values.

To perform this method in place, we use the fromSymmetricDifference() method:

mySet1.formSymmetricDifference(mySet2)

These four operations (union, subtraction, intersection, and symmetric difference) add
functionality that is not present with arrays. Combined with faster lookup speeds, as
compared to an array, the set type can be a very useful alternative when the order of the
collection is not important and the instances in the collection must be unique.

Using Swift Collections Chapter 4

[90]

Summary
In this chapter, we covered Swift collections. Having a good understanding of the native
collection types of Swift is essential to architecting and developing applications in Swift
since all but the most basic applications use them.

The three Swift collection types are arrays, sets, and dictionaries. Arrays store data as an
ordered collection. Sets store data as an unordered collection of unique values. Dictionaries
store data in an unordered collection of key-value pairs.

In the next chapter, we will look how to use Swift's control flow statements.

5
Control Flow

Every month, while I was learning BASIC programming on my Vic-20, I would read several
of the early computer magazines, such as Byte Magazine. I remember one particular review
that I read for a game called Zork. While Zork was not a game that was available for my
Vic-20, the concept of the game fascinated me because I was really into sci-fi and fantasy. I
remember thinking how cool it would be to write a game like that, so I decided to figure
out how to do it. One of the biggest concepts that I had to grasp at that time was how to
control the flow of the application depending on the user's actions.

In this chapter, we will cover the following topics:

What conditional statements are and how to use them
What loops are and how to use them
What control transfer statements are and how to use them

What have we learned so far?
Up to this point, we have been laying the foundation for writing applications with Swift.
While it is possible to write a very basic application with what we have learned so far, it
will be difficult to write a useful application using only what we've covered in the first four
chapters.

Control Flow Chapter 5

[92]

Starting with this chapter, we will begin to move away from the foundations of the Swift
language and begin to learn the building blocks of application development with Swift. In
this chapter, we will go over control flow statements. To become a master of the Swift
programming language, it is important that you fully understand and comprehend the
concepts that are discussed in this chapter.

Before we cover control flow and functions, let's take a look at how curly brackets and
parentheses are used in Swift.

Curly brackets
In Swift, unlike other C-like languages, curly brackets are required for conditional
statements and loops. In other C-like languages, if there is only one statement to execute for
a conditional statement or a loop, curly brackets around that line are optional. This has led
to numerous errors and bugs, such as Apple's goto fail bug. When Apple was designing
Swift, they decided to introduce the use of curly brackets, even when there was only one
line of code to execute. Let's take a look at some code that illustrates this requirement. This
first example is not valid in Swift because it is missing the curly brackets; however, it will
be valid in most other languages:

if (x > y)
 x=0

In Swift, you are required to have the curly brackets, as illustrated in the following
example:

if (x > y) {
 x=0
}

Parentheses
Unlike other C-like languages, the parentheses around conditional expressions in Swift are
optional. In the preceding example, we put parentheses around the conditional expression,
but they are not required. The following example will be valid in Swift, but not valid in
most C-like languages:

if x > y {
 x=0
}

Control Flow Chapter 5

[93]

Control flow
Control flow, also known as the flow of control, refers to the order in which statements,
instructions, or functions are executed within an application. Swift supports most of the
familiar control flow statements that are used in C-like languages. These include loops
(including while), conditional statements (including if, switch, and guard), and the
transfer of control statements (including break and continue). It is worth noting that
Swift does not include the traditional C for loop and, rather than the traditional do-while
loop, Swift has the repeat-while loop.

In addition to the standard C control flow statements, Swift has also included statements
such as the for-in loop and enhanced some of the existing statements, such as the switch
statement.

Let's begin by looking at conditional statements in Swift.

Conditional statements
A conditional statement will check a condition and execute a block of code only if the
condition is true. Swift provides both the if and if...else conditional statements. Let's
take a look at how to use these conditional statements to execute blocks of code if a
specified condition is true.

The if statement
The if statement will check a conditional statement and, if it is true, it will execute the
block of code. This statement takes the following format:

if condition {
 block of code
}

Now, let's take a look at how to use the if statement:

let teamOneScore = 7
let teamTwoScore = 6
if teamOneScore > teamTwoScore {
 print("Team One Won")
}

Control Flow Chapter 5

[94]

In the preceding example, we begin by setting the teamOneScore and teamTwoScore
constants. We then use the if statement to check whether the value of teamOneScore is
greater than the value of teamTwoScore. If the value is greater, we print Team One Won to
the console. When this code is run, we will indeed see that Team One Won is printed to the
console, but if the value of teamTwoScore is greater than the value of teamOneScore,
nothing will be printed. This is not the best way to write an application, as we want the
user to know which team has actually won. The if...else statement can help us with this
problem.

Conditional code execution with the if...else statement
The if...else statement will check a conditional statement and, if it is true, it will
execute a block of code. If the conditional statement is not true, it will execute a separate
block of code; this statement takes the following format:

if condition {
 block of code if true
} else {
 block of code if not true
}

Let's now modify the preceding example to use the if...else statement to tell the user
which team has won:

let teamOneScore = 7
let teamTwoScore = 6
if teamOneScore > teamTwoScore{
 print("Team One Won")
} else {
 print("Team Two Won")
}

This new version will print out Team One Won if the value of teamOneScore is greater
than the value of teamTwoScore; otherwise, it will print out the message, Team Two Won.

This fixes one problem with our code, but what do you think the code will do if the value of
teamOneScore is equal to the value of teamTwoScore? In the real world, we would see a
tie, but in the preceding code, we would print out Team Two Won, which would not be fair
to team one. In cases like this, we can use multiple else if statements and an else
statement at the end to act as the default path if no conditional statements are met.

Control Flow Chapter 5

[95]

This is illustrated in the following code sample:

let teamOneScore = 7
let teamTwoScore = 6
if teamOneScore > teamTwoScore {
 print("Team One Won")
} else if teamTwoScore > teamOneScore {
 print("Team Two Won")
} else {
 print("We have a tie")
}

In the preceding code, if the value of teamOneScore is greater than the value of
teamTwoScore, we print Team One Won to the console. We then have an else if
statement, which means that the conditional statement is only checked if the first if
statement returns false. Finally, if both of the if statements return false, the code in the
else block is called and We have a tie is printed to the console.

This is a good time to point out that it is not good practice to have numerous else if
statements stacked up, as demonstrated in the previous example. It is better to use the
switch statement, which we will explore later in this chapter.

The guard statement
In Swift, and most modern languages, our conditional statements tend to focus on testing
whether a condition is true. As an example, the following code tests to see whether the x
variable is greater than 10 and, if so, we will perform some kind of function. If the
condition is false, we handle the following error condition:

var x = 9
if x > 10 {
// Functional code here
} else {
// Do error condition
}

This type of code embeds our functional code within our checks and tucks the error
conditions away at the end of our functions, but what if that is not what we really want?
Sometimes, it might be nice to take care of our error conditions at the beginning of the
function. In our simple example, we can easily check whether x is less than or equal to 10
and, if so, it will perform the error condition. Not all conditional statements are that easy to
rewrite, especially items such as optional binding.

Control Flow Chapter 5

[96]

In Swift, we have the guard statement. This statement focuses on performing a function if a
condition is false; this allows us to trap errors and perform the error conditions early in
our functions. We can rewrite our previous example using the guard statement, as follows :

var x = 9
guard x > 10 else {
// Do error condition return
}
//Functional code here

In this new example, we check to see whether the x variable is greater than 10, and if not,
we perform the error condition. If the variable is greater than 10, the code continues. You
will notice that we have a return statement embedded within the guard condition. The
code within the guard statement must contain a transfer of control statement; this is what
prevents the rest of the code from executing. If we forget the transfer of control statement,
Swift will show a compile time error. We will look at transfer of control statements a little
later in this chapter.

Let's take a look at some more examples of the guard statement. The following example
shows how we can use the guard statement to verify that an optional contains a valid
value:

func guardFunction(str: String?) {
 guard let goodStr = str else {
 print("Input was nil")
 return
 }
 print("Input was \(goodStr)")
}

In this example, we create a function named guardFunction() that accepts an optional
that contains a string or nil value. We then use the guard statement with optional binding
to verify that the string optional is not nil. If it does contain nil, then the code within the
guard statement is executed and the return statement is used to exit the function. The
great thing about using the guard statement with optional binding is that the new variable
is within the scope of the rest of the function, rather than just within the scope of the
optional binding statement.

A conditional statement checks the condition once and, if the condition is met, it executes
the block of code. However, what if we wanted to continuously execute the block of code
until a condition is met? For this, we use the for-in loop statement.

Control Flow Chapter 5

[97]

The for-in loop
While Swift does not offer the standard C-based for loop, it does have the for-in loop.
The standard C-based for loop was removed from the Swift language in Swift 3 because it
was rarely used. You can read the full proposal to remove this loop on the Swift evolution
site at https://github.com/apple/swift-evolution/blob/master/proposals/7-remove-
c-style-for-loops.md. The for-in statement is used to execute a block of code for each
item in a range, collection, or sequence.

Using the for-in loop
The for-in loop iterates over a collection of items or a range of numbers, and executes a
block of code for each item in the collection or range. The format for the for-in statement
is as follows:

for variable in collection/range {
 block of code
}

As we can see in the preceding code, the for-in loop has two sections:

Variable: This variable will change each time the loop executes and will hold the
current item from the collection or range
Collection/range: This is the collection or range to iterate through

Let's take a look at how to use the for-in loop to iterate through a range of numbers:

for index in 1...5 {
 print(index)
}

In the preceding example, we iterated over a range of numbers from 1 to 5 and printed each
of the numbers to the console. This loop used the closed range operator (...) to give the loop
a range to iterate through. Swift also provides the half-open range operator (..>) and the
one-sided range operators that we saw in the previous chapter.

Now, let's take a look at how to iterate over an array with the for-in loop:

var countries = ["USA","UK", "IN"]
for item in countries {
 print(item)
}

https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md

Control Flow Chapter 5

[98]

In the preceding example, we iterated through the countries array and printed each
element of the array to the console. As you can see, iterating through an array with the
for- in loop is safer, cleaner, and a lot easier than using the standard C-based for loop.
Using the for-in loop prevents us from making common mistakes, such as using the less
than or equal to (<=) operator rather than the less than (<) operator in our conditional
statement.

Let's take a look at how to iterate over a dictionary with the for-in loop:

var dic = ["USA": "United States", "UK": "United Kingdom","IN":"India"]

for (abbr, name) in dic {
 print("\(abbr) --\(name)")
}

In the preceding example, we used the for-in loop to iterate through each key-value pair
of the dictionary. In this example, each item in the dictionary is returned as a (key,value)
tuple. We can decompose (key,value) tuple members as named constants within the body
of the loop. One thing to note is that since a dictionary does not guarantee the order that
items are stored in, the order that they are iterated through may not be the same as the
order in which they were inserted.

Now, let's take a look at another type of loop, the while loop.

The while loop
The while loop executes a block of code until a condition is met. Swift provides two forms
of the while loop; these are the while and repeat-while loops. In Swift 2.0, Apple
replaced the do-while loop with the repeat-while loop. The repeat-while loop
functions in the same way as the do-while loop did. Swift uses the do statement for error
handling.

We use while loops when the number of iterations to perform is not known and is usually
dependent on some business logic. A while loop is used when you want to run a loop zero
or more times, while a repeat-while loop is used when you want to run the loop one or
more times.

Control Flow Chapter 5

[99]

Using the while loop
The while loop starts by evaluating a conditional statement and then repeatedly executes a
block of code while the conditional statement is true. The format for the while statement
is as follows:

while condition {
 block of code
}

Let's take a look at how to use a while loop. In the following example, the while loop will
continue to execute the block of code while the randomly-generated number is less than 7.
In this example, we are using the arc4random_uniform() function to generate a random
number between 0 and 9:

var ran = 0
while ran < 7 {
 ran = Int.random(in: 1..<20)
}

In the preceding example, we began by initializing the ran variable to 0. The while loop
then checks this variable and, if the value is less than 7, a new random number between 0
and 19 is generated. The while loop will continue to loop while the randomly-generated
number is less than 7. Once the randomly-generated number is equal to or greater than 7,
the loop will exit.

In the preceding example, the while loop checked the conditional statement prior to
generating a new random number. But, what if we don't want to check the conditional
statement prior to generating a random number? We could generate a random number
when we first initialize the variable, but that means we need to duplicate the code that
generates the random numbers, and duplicating code is never an ideal solution. It is
preferable to use the repeat-while loop instead.

Using the repeat-while loop
The difference between the while and repeat-while loops is that the while loops check
the conditional statement prior to executing the block of code for the first time; therefore, all
the variables in the conditional statements need to be initialized prior to executing the
while loop.

Control Flow Chapter 5

[100]

The repeat-while loop will run through the loop block prior to checking the conditional
statement for the first time. This means that we can initialize the variables in the conditional
block of code. The use of the repeat-while loop is preferred when the conditional
statement is dependent on the code in the loop block. The repeat-while loop takes the
following format:

repeat {
 block of code
} while condition

Let's look at this specific example by creating a repeat-while loop where we initialize the
variable that we are checking within the loop block:

var ran: Int
repeat {
 ran = Int.random(in: 1..>20)
} while ran < 4

In the preceding example, we defined the ran variable as an integer; however, we did not
initialize it until we entered the loop block and generated a random number. If this is
attempted with the while loop (leaving the ran variable uninitialized), we will receive a
using variable before being initialized as an exception.

Earlier, we mentioned that the switch statement is preferred over using multiple else if
blocks. Let's see how we can use the switch statement.

The switch statement
The switch statement takes a value, compares it to several possible matches, and executes
the appropriate block of code based on the first successful match. The switch statement is
an alternative to using multiple else if statements when there could be several possible
matches. The switch statement takes the following format:

switch value {
 case match1:
 block of code
 case match2:
 block of code
 //as many cases as needed
 default:
 block of code
}

Control Flow Chapter 5

[101]

Unlike most other languages, in Swift, the switch statement , does not fall through to the
next case statement; therefore, we do not need to use a break statement to prevent this fall
through. This is another safety feature that has been built into Swift, as one of the most
common programming mistakes regarding the switch statement made by beginner
programmers is to forget the break statement at the end of the case statement. Let's take a
look at how to use the switch statement:

var speed = 300000000
switch speed {
 case 300000000:
 print("Speed of light")
 case 340:
 print("Speed of sound")
 default:
 print("Unknown speed")
}

In the preceding example, the switch statement took the value of the speed variable and
compared it to the two case statements. If the value of speed matches either case, it will
print out the speed. If it does not find a match, it will print out the Unknown speed
message.

Every switch statement must have a match for all the possible values. This means that,
unless we are matching against an enumeration that has a defined number of values, each
switch statement must have a default case. Let's take a look at a case where we do not
have a default case:

var num = 5
switch num {
 case 1 :
 print("number is one")
 case 2 :
 print("Number is two")
 case 3 :
 print("Number is three")
}

If we put the preceding code into a Playground and attempt to compile the code, we will
receive a switch must be exhaustive, consider adding a default clause error. This is a
compile time error, and therefore, we will not be notified until we attempt to compile the
code.

Control Flow Chapter 5

[102]

It is possible to include multiple items in a single case. To do this, we need to separate the
items with a comma. Let's take a look at how we use the switch statement to tell us
whether a character is a vowel or a consonant:

var char : Character = "e"
switch char {
 case "a", "e", "i", "o", "u":
 print("letter is a vowel")
 case "b", "c", "d", "f", "g", "h", "j", "k", "l", "m","n", "p",
 "q", "r", "s", "t", "v", "w","x", "y", "z":
 print("letter is a consonant")
 default:
 print("unknown letter")
}

We can see in the preceding example that each case has multiple items. Commas separate
these items and the switch statement attempts to match the char variable to each item
listed in the case statements.

It is also possible to check the value of a switch statement to see whether it is included in a
range. To do this, we use one of the range operators in the case statement, as shown in the
following example:

var grade = 93
switch grade {
 case 90...100:
 print("Grade is an A")
 case 80...89:
 print("Grade is a B")
 case 70...79:
 print("Grade is an C")
 case 60...69:
 print("Grade is a D")
 case 0...59:
 print("Grade is a F")
 default:
 print("Unknown Grade")
}

In the preceding example, the switch statement took the grade variable, compared it with
the ranges in each case statement, and printed out the appropriate grade.

Control Flow Chapter 5

[103]

In Swift, any case statement can contain an optional where clause, which provides an
additional condition that needs validating. Let's say that, in our preceding example, we
have students who are receiving special assistance in class and we wanted to define a grade
of D for them as a range from 55 to 69. The following example shows how we can do this:

var studentId = 4
var grade = 57
switch grade {
 case 90...100:
 print("Grade is an A")
 case 80...89:
 print("Grade is a B")
 case 70...79:
 print("Grade is an C")
 case 55...69 where studentId == 4:
 print("Grade is a D for student 4")
 case 60...69:
 print("Grade is a D")
 case 0...59:
 print("Grade is a F")
 default:
 print("Unknown Grade")
}

One thing to bear in mind with the where expression is that Swift will attempt to match the
value starting with the first case statement and working its way down, checking each case
statement in order. This means that, if we put the case statement with the where
expression after the grade F case statement, then the case statement with the where
expression will never be reached. This is illustrated in the following example:

var studentId = 4
var grade = 57
switch grade {
 case 90...100:
 print("Grade is an A")
 case 80...89:
 print("Grade is a B")
 case 70...79:
 print("Grade is an C")
 case 60...69:
 print("Grade is a D")
 case 0...59:
 print("Grade is a F")
 //The following case statement would never be reached because
 //the grades would always match one of the previous two
 case 55...69 where studentId == 4:
 print("Grade is a D for student 4")

Control Flow Chapter 5

[104]

 default:
 print("Unknown Grade")
}

If you are using the where clause, a good rule of thumb is to always put
the case statements with the where clause before any similar case
statements without the where clause.

Switch statements are also extremely useful for evaluating enumerations. Since an
enumeration has a finite number of values, if we provide a case statement for all the values
in the enumeration, we do not need to provide a default case. The following example
demonstrates how we can use a switch statement to evaluate an enumeration:

enum Product {
 case Book(String, Double, Int)
 case Puzzle(String, Double)
}
var order = Product.Book("Mastering Swift 4", 49.99, 2017)
switch order {
 case .Book(let name, let price, let year):
 print("You ordered the book \(name): \(year) for \(price)")
 case .Puzzle(let name, let price):
 print("You ordered the Puzzle \(name) for \(price)")
}

In this example, we began by defining an enumeration named Product with two values,
each with the associated values. We then created an order variable of the product type and
used the switch statement to evaluate it.

When using a switch statement with enumerations, we must have a case statement for all
possible values or a default statement. Let's take a look at some additional code that
illustrates this:

enum Planets {
 case Mercury, Venus, Earth, Mars, Jupiter
 case Saturn, Uranus, Neptune
}

var planetWeLiveOn = Planets.Earth

// Using the switch statement
switch planetWeLiveOn {
 case .Mercury:
 print("We live on Mercury, it is very hot!")
 case .Venus:

Control Flow Chapter 5

[105]

 print("We live on Venus, it is very hot!")
 case .Earth:
 print("We live on Earth, just right")
 case .Mars:
 print("We live on Mars, a little cold")
 case .Jupiter, .Saturn, .Uranus, .Neptune:
 print("Where do we live?")
}

In this sample code, we have a case statement that will handle each planet in the Planets
enumeration. We can also add a default statement to handle any additional planets if they
are added in later. However, it is recommended that if a switch statement uses a default
case with an enumeration, then we use the @unknown attribute, as follows:

switch planetWeLiveOn {
 case .Mercury:
 print("We live on Mercury, it is very hot!")
 case .Venus:
 print("We live on Venus, it is very hot!")
 case .Earth:
 print("We live on Earth, just right")
 case .Mars:
 print("We live on Mars, a little cold")
 case .Jupiter, .Saturn, .Uranus, .Neptune:
 print("Where do we live?")
 @unknown default:
 print("Unknown planet")
}

This will always throw a warning to remind us that if we add a new planet to the Planet
enumeration, then we need to handle that new planet in this part of the code.

Switch on tuples
We can also use the switch statement with tuples; let's take a look at how to do this:

let myDog = ("Maple", 4)

switch myDog {
case ("Lily", let age):
 print("Lily is my dog and is \(age)")
case ("Maple", let age):
 print("Maple is my dog and is \(age)")
case ("Dash", let age):
 print("Dash is my dog and is \(age)")
default:

Control Flow Chapter 5

[106]

 print("unknown dog")
}

In this code, we created a tuple named myDog that contained the name of my dog and her
age. We then used the switch statement to match the name (the first element of the tuple)
and a let statement to retrieve the age. In this example, the message, Maple is my dog
and is 4, will be printed to the screen.

We can also use the underscore (wildcard) and range operators with tuples in the case
statement, as shown in the following example:

switch myDog { case(_, 0...1): print("Your dog is a puppy") case(_, 2...7):
print("Your dog is middle aged") case(_, 8...): print("Your dog is getting
old") default: print("Unknown") }

In this example, the underscore will match any name, while the range operators will look
for the age of the dog. In this example, since Maple is four years old, the message, Your
dog is middle aged, will be printed to the screen.

Match on wildcard
In Swift, we can also combine the underscore (wildcard) with the where statement. This is
illustrated in the following example:

let myNumber = 10
switch myNumber {
 case _ where myNumber.isMultiple(of: 2):
 print("Multiple of 2")
 case _ where myNumber.isMultiple(of: 3):
 print("Multiple of 3")
 default:
 print("No Match")
}

Control Flow Chapter 5

[107]

In this example, we create an integer variable named myNumber and use the switch
statement to determine whether the value of the variable is a multiple of 2 or 3. Notice the
case statement starts off with an underscore followed by the where statement. The
underscore will match all the values of the variable, and then the where statement is called
to see if it matches the rule defined within it.

Using case and where statements with
conditional statements
As we saw in the last section, the case and where statements within a switch statement
can be very powerful. Using case and where statements within our conditional statements
can also make our code much smaller and easier to read. Conditional statements, such as
if, for, and while, can also make use of the where and case keywords. Let's take a look
at some examples, starting off with using the where statement to filter the results in a for-
in loop.

Filtering with the where statement
In this example, we will take an array of integers and print out only multiples of 3.
However, before we look at how to filter the results with the where statement, let's take a
look at how to do this without the where statement:

for number in 1...30 {
 if number % 3 == 0 {
 print(number)
 }
}

In this example, we use a for-in loop to cycle through the numbers 1 to 30. Within the
for-in loop, we use an if conditional statement to filter out multiples of 3. In this simple
example, the code is relatively easy to read, but let's examine how we can use the where
statement to use fewer lines of code and make them easier to read:

for number in 1...30 where number % 3 == 0 {
 print(number)
}

Control Flow Chapter 5

[108]

We still have the same for-in loop as in the previous example. However, we have now
put the where statement at the end; therefore, we only loop through numbers that are
multiples of 3. Using the where statement shortens our example by two lines and makes it
easier to read, because the where clause is on the same line as the for-in loop, rather than
being embedded in the loop itself.

Now, let's look at how we could filter with the for-case statement.

Filtering with the for-case statement
In this next example, we will use the for-case statement to filter through an array of
tuples and print out only the results that match our criteria. The for-case example is very
similar to using the where statement where it is designed to eliminate the need for an if
statement within a loop to filter the results. In this example, we will use the for-case
statement to filter through a list of World Series winners and print out the year(s) that a
particular team won the World Series:

var worldSeriesWinners = [
 ("Red Sox", 2004),
 ("White Sox", 2005),
 ("Cardinals", 2006),
 ("Red Sox", 2007),
 ("Phillies", 2008),
 ("Yankees", 2009),
 ("Giants", 2010),
 ("Cardinals", 2011),
 ("Giants", 2012),
 ("Red Sox", 2013),
 ("Giants", 2014),
 ("Royals", 2015)
]

for case let ("Red Sox", year) in worldSeriesWinners {
 print(year)
}

Control Flow Chapter 5

[109]

In this example, we created an array of tuples named worldSeriesWinners, where each
tuple in the array contained the name of the team and the year that they won the World
Series. We then use the for-case statement to filter through the array and only print out
the years that the Red Sox won the World Series. The filtering is done within the case
statement, where ("Red Sox", year) states that we want all the results that have the Red
Sox string in the first item of the tuple, and the value of the second item in the year
constant. The for-in loop then loops through the results of the case statement, printing
out the value of the year constant.

The for-case-in statement also makes it very easy to filter out the nil values in an array
of optionals; let's look at an example of this:

let myNumbers: [Int?] = [1, 2, nil, 4, 5, nil, 6]

for case let .some(num) in myNumbers {
 print(num)
}

In this example, we created an array of optionals named myNumbers that could contain
either an integer value or nil. As we saw in Chapter 3, Optional Types, an optional is
internally defined as an enumeration, as shown in the following code:

enum Optional < Wrapped > {
 case none,
 case some(Wrapped)
}

If an optional is set to nil, it will have a value of none, but if it is not nil, it will have a
value of some, with an associated type of the actual value. In our example, when we filter
for .some(num), we are looking for any optional that has a non-nil value. As shorthand for
.some(), we could use the question mark (?) symbol, as we will see in the following
example. This example also combines the for-case-in statement with a where statement
to perform additional filtering:

let myNumbers: [Int?] = [1, 2, nil, 4, 5, nil, 6]

for case let num? in myNumbers where num < 3 {
 print(num)
}

Control Flow Chapter 5

[110]

This example is the same as the previous example, except that we have put the additional
filtering in the where statement. In the previous example, we looped through all of the non-
nil values; however, in this example, we have looped through the non-nil values that are
greater than 3. Let's examine how we do this same filtering without the case or where
statements:

let myNumbers: [Int?] = [1, 2, nil, 4, 5, nil, 6]

for num in myNumbers {
 if let num = num {
 if num < 3 {
 print(num)
 }
 }
}

Using the for-case-in and where statements can greatly reduce the number of lines that
are needed. It also makes our code much easier to read because all the filtering statements
are on the same line.

Let's take a look at one more filtering example. This time, we will look at the if-case
statement.

Using the if-case statement
Using the if-case statement is very similar to using the switch statement. Most of the
time, the switch statement is preferred when we have over two cases that we are trying to
match, but there are instances where the if-case statement is needed. One of those times
is when we are only looking for one or two possible matches, and we do not want to handle
all the possible matches; let's take a look at an example of this:

enum Identifier {
 case Name(String)
 case Number(Int)
 case NoIdentifier
}
var playerIdentifier = Identifier.Number(2)
if case let .Number(num) = playerIdentifier {
 print("Player's number is \(num)")
}

Control Flow Chapter 5

[111]

In this example, we created an enumeration named Identifier that contains three
possible values: Name, Number, and NoIdentifier. We then created an instance of the
Identifier enumeration named playerIdentifier, with a value of Number and an
associated value of 2. We then used the if-case statement to see if the
playerIdentifier had a value for Number and if so, we printed a message to the console.

Just like the for-case statement, we can perform additional filtering with the where
statement. The following example uses the same Identifier enumeration that we used in
the previous example:

var playerIdentifier = Identifier.Number(2)

if case let .Number(num) = playerIdentifier, num == 2 {
 print("Player is either XanderBogarts or Derek Jeter")
}

In this example, we have used the if-case statement to see if the playerIdentifier had
a value of Number, but we also added the where statement to see if the associated value
was equal to 2. If so, we identified the player as either XanderBogarts or Derek Jeter.

As we saw in our examples, using the case and where statements with our conditional
statements can reduce the number of lines that are needed to perform certain types of
filtering. It can also make our code easier to read. Now let's take a look at control transfer
statements.

Control transfer statements
Control transfer statements are used to transfer control to another part of the code. Swift
offers six control transfer statements; these are continue, break, fallthrough, guard,
throws, and return. We will look at the return statement in Chapter 6, Functions, and
will discuss the throws statement in Chapter 11, Availability and Error Handling. The
remaining control transfer statements will be discussed in this section.

The continue statement
The continue statement tells a loop to stop executing the code block and to go to the next
iteration of the loop. The following example shows how we can use this statement to print
out only the odd numbers in a range:

for i in 1...10 {
 if i % 2 == 0 {

Control Flow Chapter 5

[112]

 continue
 }
 print("\(i) is odd")
}

In the preceding example, we looped through a range from 1 to 10. For each iteration of the
for-in loop, we used the remainder (%) operator to see whether the number was odd or
even. If the number is even, the continue statement tells the loop to immediately go to the
next iteration of the loop. If the number is odd, we print that the number is odd and then
move on. The output of the preceding code is as follows:

1 is odd
3 is odd
5 is odd
7 is odd
9 is odd

Now let's take a look at the break statement.

The break statement
The break statement immediately ends the execution of a code block within the control
flow. The following example demonstrates how to break out of a for-in loop when we
encounter the first even number:

for i in 1...10 {
 if i % 2 == 0 {
 break
 }
 print("\(i) is odd")
}

In the preceding example, we loop through the range from 1 to 10. For each iteration of the
for-in loop, we use the remainder (%) operator to see whether the number is odd or even.
If the number is even, we use the break statement to immediately exit the loop. If the
number is odd, we print out that the number is odd, and then go to the next iteration of the
loop. The preceding code has the following output:

1 is odd

Control Flow Chapter 5

[113]

The fallthrough statement
In Swift, the switch statement does not fall through like other languages; however, we can
use the fallthrough statement to force them to fall through. The fallthrough statement
can be very dangerous because, once a match is found, the next case defaults to true and
that code block is executed. This is illustrated in the following example:

var name = "Jon"
var sport = "Baseball"
switch sport {
 case "Baseball":
 print("\(name) plays Baseball")
 fallthrough
 case "Basketball":
 print("\(name) plays Basketball")
 fallthrough
 default:
 print("Unknown sport")
}

When this code is run, the following results are printed to the console:

Jon plays Baseball
Jon plays Basketball
Unknown sport

I recommend that you be very careful about using the fallthrough statement. Apple
purposely disabled falling through on the case statement to avoid the common errors that
programmers make. By using the fallthrough statement, you could introduce these
errors back into your code.

Summary
In this chapter, we covered control flow and functions in Swift. It is essential that you
understand the concepts in this chapter before moving ahead. Every application that we
write, beyond the simple Hello World applications, will rely very heavily on control flow
statements and functions.

Control flow statements are used to make decisions within our application, and functions
are used to group our code into sections that are reusable and organized.

6
Functions

When I first learned to program with the Basic programming language, my first few
programs were written in one long block of code. I quickly realized that I was repeating the
same code over and over, and thought that there must be a better way to do this, which was
when I learned about subroutines and functions. Functions are one of the key concepts that
you need to understand in order to write good code.

In this chapter, we will cover the following topics:

What are functions?
How to return values from a function
How to use parameters in a function
What are Variadic parameters?
What are inout parameters?

In Swift, a function is a self-contained block of code that performs a specific task. Functions
are generally used to logically break our code into reusable named blocks. The function's
name is used to call the function.

When we define a function, we can also optionally define one or more parameters (also
known as arguments). Parameters are named values that are passed into the function by the
code that calls it. These parameters are generally used within the function to perform the
task of the function. We can also define default values for the parameters to simplify how
the function is called.

Every Swift function has a type associated with it. This type is referred to as the return type
and it defines the types of data returned from the function to the code that called it. If a
value is not returned from a function, the return type is Void.

Let's look at how to define functions in Swift.

Functions Chapter 6

[115]

Using a single parameter function
The syntax that's used to define a function in Swift is very flexible. This flexibility makes it
easy for us to define simple C-style functions, or more complex functions, with local and
external parameter names, which we will see later in this chapter. Let's look at some
examples of how to define functions. The following example accepts one parameter and
does not return any value back to the code that called it:

func sayHello(name: String) -> Void {
 let retString = "Hello " + name
 print(retString)
}

In the preceding example, we defined a function named sayHello() that accepted one
parameter, named name. Inside the function, we printed out a greeting to the name of the
person. Once the code within the function is executed, the function exits, and control is
returned back to the code that called it. Rather than printing out the greeting, we could
return it to the code that called it by adding a return type, as follows:

func sayHello2(name: String) ->String {
 let retString = "Hello " + name
 return retString
}

The -> string defines that the return type associated with the function is a string. This
means that the function must return an instance of the String type to the code that calls it.
Inside the function, we build a string constant, named retString, with the greeting
message and then return it using the return statement.

Calling a Swift function is a similar process to calling functions or methods in other
languages, such as C or Java. The following example shows how to call the
sayHello(name:) function, which prints the greeting message to the screen:

sayHello(name:"Jon")

Now, let's look at how to call the sayHello2(name:) function, which returns a value back
to the code that called it:

var message = sayHello2(name:"Jon")
print(message)

Functions Chapter 6

[116]

In the preceding example, we called the sayHello2(name:) function and inputted the
value that was returned in the message variable. If a function defines a return type as the
sayHello2(name:) function does, it must return a value of that type to the code that
called it. Therefore, every possible conditional path within the function must end by
returning a value of the specified type. This does not mean that the code that called the
function is required to retrieve the returned value. As an example, both lines in the
following snippet are valid:

sayHello2(name:"Jon")
var message = sayHello2(name:"Jon")

If you do not specify a variable for the return value to go into, the value is dropped. When
the code is compiled, you will receive a warning if a function returns a value and you do
not put it into a variable or a constant. You can avoid this warning by using an underscore,
as shown in the following example:

_ = sayHello2(name:"Jon")

The underscore tells the compiler that you are aware of the return value, but you do not
want to use it. Using the @discardableResult attribute when declaring a function will
also silence the warning. This attribute is used as follows:

@discardableResult func sayHello2(name: String) ->String {
 let retString = "Hello " + name
 return retString
}

Let's look at how we would define multiple parameters for our functions.

Using a multi-parameter function
We are not limited to just one parameter with our functions; we can also define multiple
parameters. To create a multi-parameter function, we list the parameters in the parentheses
and separate the parameter definitions with commas. Let's look at how to define multiple
parameters in a function:

func sayHello(name: String, greeting: String) {
 print("\(greeting) \(name)")
}

In the preceding example, the function accepts two arguments: name and greeting. We
then print a greeting to the console using both parameters.

Functions Chapter 6

[117]

Calling a multi-parameter function is a little different from calling a single-parameter
function. When calling a multi-parameter function, we separate the parameters with
commas. We also need to include the parameter name for all the parameters. The following
example shows how to call a multi-parameter function:

sayHello(name:"Jon", greeting:"Bonjour")

We do not need to supply an argument for each parameter of the function if we define
default values. Let's look at how to configure default values for our parameters.

Defining a parameter's default values
We can define default values for any parameter by using the equals to operator (=) within
the function definition when we declare the parameters. The following example shows how
to declare a function with a parameter's default values:

func sayHello(name: String, greeting: String = "Bonjour") {
 print("\(greeting) \(name)")
}

In the function declaration, we have defined one parameter without a default value
(name:String) and one parameter with a default value (greeting: String =
"Bonjour"). When a parameter has a default value declared, we are able to call the
function with or without setting a value for that parameter. The following example shows
how to call the sayHello() function without setting the greeting parameter, and also how
to call it when you do set the greeting parameter:

sayHello(name:"Jon")
sayHello(name:"Jon", greeting: "Hello")

In the sayHello(name:"Jon") line, the function will print out the message Bonjour Jon
since it uses the default value for the greeting parameter. In the sayHello(name:"Jon",
greeting: "Hello") line, the function will print out the message Hello Jon since we have
overridden the default value for the greeting parameter.

Functions Chapter 6

[118]

We can declare multiple parameters with default values and override only the ones we
want by using the parameter names. The following example shows how we would do this
by overriding one of the default values when we call it:

func sayHello(name: String = "Test", name2: String = "Kim", greeting:
String = "Bonjour") {
 print("\(greeting) \(name) and \(name2)")
}

sayHello(name:"Jon",greeting: "Hello")

In the preceding example, we declared a function with three parameters, each with a
default value. We then called the function, leaving the name2 parameter with its default
value, while overriding the default values for the remaining two parameters.

The preceding example will print out the message Hello Jon and Kim.

Returning multiple values from a function
There are a couple of ways to return multiple values from a Swift function. One of the most
common ways is to put the values into a collection type (an array or dictionary) and then
return the collection. The following example shows how to return a collection type from a
Swift function:

func getNames() -> [String] {
 var retArray = ["Jon", "Kim", "Kailey", "Kara"]
 return retArray
}

var names = getNames()

In the preceding example, we declared the getNames() function with no parameters and a
return type of [String]. The return type of [String] specifies the return type to be an
array of string types.

In the preceding example, our array could only return string types. If we needed to return
numbers with our strings, we could return an array of the Any type and then use
typecasting to specify the object type. However, this would not be a good design for our
application, as it would be prone to errors. A better way to return values of different types
would be to use a tuple type.

Functions Chapter 6

[119]

When we return a tuple from a function, it is recommended that we use a named tuple to
allow us to use the dot syntax to access the returned values. The following example shows
how to return a named tuple from a function and access the values from the named tuple
that is returned:

func getTeam() -> (team:String, wins:Int, percent:Double) {
 let retTuple = ("Red Sox", 99, 0.611)
 return retTuple
}

var t = getTeam()
print("\(t.team) had \(t.wins) wins")

In the preceding example, we defined the getTeam() function, which returned a named
tuple that contains three values: String, Int, and Double. Within the function, we created
the tuple that we were going to return. Notice that we did not need to define the tuple that
we were going to return as a named tuple, as the value types within the tuple matched the
value types in the function definition. We can now call the function as we would any other
function, and use the dot syntax to access the values of the tuple that is returned. In the
preceding example, the code would print out the following line:

Red Sox had 99 wins
Returning optional values

In the previous sections, we returned non-nil values from our function; however, that is not
always what we need our code to do. What happens if we need to return a nil value from a
function? The following code would not be valid and would cause a nil is incompatible
with return type String exception:

func getName() ->String {
 return nil
}

This code throws an exception because we have defined the return type as a String value,
but we are attempting to return a nil value. If there is a reason to return nil, we need to
define the return type as an optional type to let the code calling it know that the value may
be nil. To define the return type as an optional type, we use the question mark (?) in the
same way as we did when we defined a variable as an optional type. The following
example shows how to define an optional return type:

func getName() ->String? {
 return nil
}

Functions Chapter 6

[120]

The preceding code would not cause an exception.

We can also set a tuple as an optional type, or any value within a tuple as an optional type.
The following example shows how we would return a tuple as an optional type:

func getTeam2(id: Int) -> (team:String, wins:Int, percent:Double)? {
 if id == 1 {
 return ("Red Sox", 99, 0.611)
 }
 return nil
}

In the following example, we could return a tuple as it was defined within our function
definition or nil; either option is valid. If we needed an individual value within our tuple to
be nil, we would need to add an optional type within our tuple. The following example
shows how to return a value of nil within the tuple:

func getTeam() -> (team:String, wins:Int, percent:Double?) {
 let retTuple: (String, Int, Double?) = ("Red Sox", 99, nil)
 return retTuple
}

In the preceding example, we set the percent value to either Double or nil.

Adding external parameter names
In the preceding examples in this section, we defined the parameters' names and value
types in the same way we would define parameters in C code. In Swift, we are not limited
to this syntax as we can also use external parameter names.

External parameter names are used to indicate the purpose of each parameter when we call
a function. An external parameter name for each parameter needs to be defined in
conjunction with its local parameter name. The external parameter name is added before
the local parameter name in the function definition. The external and local parameter
names are separated by a space.

Functions Chapter 6

[121]

Let's look at how to use external parameter names. But before we do, let's review how we
have previously defined functions. In the following two examples, we will define a function
without external parameter names, and then redefine it with external parameter names:

func winPercentage(team: String, wins: Int, loses: Int) -> Double{
 return Double(wins) / Double(wins + loses)
}

In the preceding example, the winPercentage() function accepted three parameters.
These parameters were team, wins, and loses. The team parameter should be of the
String type, and the wins and loses parameters should be of the int type. The following
line of code shows how to call the winPercentage() function:

var per = winPercentage(team: "Red Sox", wins: 99, loses: 63)

Now, let's define the same function with external parameter names:

func winPercentage(baseballTeam team: String, withWins wins: Int, andLoses
losses: Int) -> Double {
 return Double(wins) / Double(wins + losses)
}

In the preceding example, we redefined the winPercentage() function with external
parameter names. In this redefinition, we have the same three parameters: team, wins, and
losses. The difference is how we define the parameters. When using external parameters,
we define each parameter with both an external parameter name and a local parameter
name separated by a space. In the preceding example, the first parameter had an external
parameter name of baseballTeam and an internal parameter name of team.

When we call a function with external parameter names, we need to include the external
parameter names in the function call. The following code shows how to call this function:

var per = winPercentage(baseballTeam:"Red Sox", withWins:99, andLoses:63)

While using external parameter names requires more typing, it does make your code easier
to read. In the preceding example, it is easy to see that the function is looking for the name
of a baseball team, the second parameter is the number of wins, and the last parameter is
the number of losses.

Functions Chapter 6

[122]

Using variadic parameters
A variadic parameter is one that accepts zero or more values of a specified type. Within the
function's definition, we define a variadic parameter by appending three periods (...) to the
parameter's type name. The values of a variadic parameter are made available to the
function as an array of the specified type. The following example shows how we would use
a variadic parameter with a function:

func sayHello(greeting: String, names: String...) {
 for name in names {
 print("\(greeting) \(name)")
 }
}

In the preceding example, the sayHello() function takes two parameters. The first
parameter is of the String type, which is the greeting to use. The second parameter is a
variadic parameter of the String type, which is the names to send the greeting to. Within the
function, a variadic parameter is an array that contains the type specified; therefore, in our
example, the names parameter is an array of String values. In this example, we used a
for-in loop to access the values within the names parameter.

The following line of code shows how to call the sayHello() function with a variadic
parameter:

sayHello(greeting:"Hello", names: "Jon", "Kim")

The preceding line of code will print a greeting to each of the names, as shown here:

Hello Jon
Hello Kim

Inout parameters
If we want to change the value of a parameter and we want those changes to persist once
the function ends, we need to define the parameter as an inout parameter. Any changes
made to an inout parameter are passed back to the variable that was used in the function
call.

Functions Chapter 6

[123]

Two things to keep in mind when we use inout parameters are that these parameters
cannot have default values and that they cannot be variadic parameters.

Let's look at how to use the inout parameters to swap the values of two variables:

func reverse(first: inout String, second: inout String) {
 let tmp = first
 first = second
 second = tmp
}

This function will accept two parameters and swap the values of the variables that are used
in the function call. When we make the function call, we put an ampersand (&) in front of
the variable name, indicating that the function can modify its value. The following example
shows how to call the reverse function:

var one = "One"
var two = "Two"
reverse(first: &one, second: &two)
print("one: \(one) two: \(two)")

In the preceding example, we set variable One to a value of one and variable two to a value
of Two. We then called the reverse() function with the one and two variables. Once the
reverse() function has returned, the variable named one will contain the value Two,
while the variable named two will contain the value One.

Two things to note about inout parameters: a variadic parameter cannot be an inout
parameter and an inout parameter cannot have a default value.

Omitting argument labels
All of the functions in this chapter have used labels when passing arguments into the
functions. If we do not want to use a label, we can omit it by using an underscore. The
following example illustrates this:

func sayHello(_ name: String, greeting: String) {
 print("\(greeting) \(name)")
}

Functions Chapter 6

[124]

Notice the underscore prior to the name label in the parameter list. This indicates that the
name label should not be used when calling this function. Now, we are able to call this
function without using the name label:

sayHello("Jon", greeting: "Hi")

This call would print out Hi Jon.

Putting it all together
To reinforce what we have learned in this chapter, let's look at one more example. For this
example, we will create a function that will test to see whether a string value contains a
valid IPv4 address. An IPv4 address is the address assigned to a computer that uses the
Internet Protocol (IP) to communicate. An IP address consists of four numeric values that
range from 0-255, separated by a dot (period). The following is the code example of a valid
IP address, that is, 10.0.1.250:

func isValidIP(ipAddr: String?) ->Bool {

 guard let ipAddr = ipAddr else {
 return false
 }
 let octets = ipAddr.split { $0 == "."}.map{String($0)}
 guard octets.count == 4 else {
 return false
 }
 for octet in octets {
 guard validOctet(octet: octet) else {
 return false
 }
 }
 return true
}

Since the sole parameter in the isValidIp() function is an optional type, the first thing we
do is verify that the ipAddR parameter is not nil. To do this, we use a guard statement with
optional binding. If the optional binding fails, we return a Boolean false value because nil is
not a valid IP address.

Functions Chapter 6

[125]

If the ipAddr parameter contains a non-nil value, we split the string into an array of
strings, using the dots as delimiters. Since an IP address is supposed to contain four
numbers separated by a dot, we use the guard statement again to check whether the array
contains four elements. If it does not, we return false because we know that the ipAddr
parameter did not contain a valid IP address.

Then, we loop through the values in the array that we created by splitting the original
ipAddr parameter at the dots and passing the values to the validOctet() function. If all
four values are verified by the validOctet() function, we have a valid IP address and we
return a Boolean true value; however, if any of the values fail the validOctet() function,
we return a Boolean false value. Now, let's look at the code for the validOctet()
function:

func validOctet(octet: String) ->Bool {
 guard let num = Int(octet),num >= 0 && num < 256 else {
 return false
 }
 return true
}

The validOctet() function has one String parameter, named octet. This function will
verify that the octet parameter contains a numeric value between 0 and 255; if it does, the
function will return a Boolean true value. Otherwise, it will return a Boolean false value.

Summary
In this chapter, we covered what functions are and how to use them. You will use functions
in every serious application that you write. In the next chapter, we will look at classes and
structures. Classes and structures can contain functions, but these functions are known as
methods.

7
Classes, Structures, and

Protocols
The first programming language that I learned was BASIC. It was a good language to begin
programming with, but once I traded in my Commodore Vic-20 for a PCjr (yes, I had a PCjr
and I really enjoyed it), I realized that there were other, more advanced languages out
there, and I spent a lot of time learning Pascal and C. It wasn't until I started college that I
heard the term object-oriented programming language. At that time, object-oriented
programming languages were so new that there were no real courses on them, but I was
able to experiment a little with C++. After I graduated, I left object-oriented programming
behind, and it really wasn't until several years later, when I started to experiment with C++
again, that I really discovered the power and flexibility of object-oriented programming.In
this chapter, we will cover the following topics:

What are classes and structures?
How to add properties and property observers to classes and structures
How to add methods to classes and structures
How to add initializers to classes and structures
How and when to use access controls
How to create a class hierarchy
How to extend a class

Classes, Structures, and Protocols Chapter 7

[127]

What are classes and structures?
In Swift, classes and structures are very similar. If we really want to master Swift, it is very
important to not only understand what makes classes and structures so similar, but to also
understand what sets them apart, because they are the building blocks of our applications.
Apple describes them as follows:

Classes and structures are general-purpose, flexible constructs that become the building
blocks of your program's code. You define properties and methods to add functionality to
your classes and structures by using the already familiar syntax of constants, variables,
and functions.

Let's begin by taking a quick look at some of the similarities between classes and structures.

Similarities between classes and structures
In Swift, classes and structures are more similar than they are in other languages, such as
Objective-C. The following is a list of some of the features that classes and structures share:

Properties: These are used to store information in our classes and structures
Methods: These provide functionality for our classes and structures
Initializers: These are used when initializing instances of our classes and
structures
Subscripts: These provide access to values using the subscript syntax
Extensions: These help extend both classes and structures

Now, let's take a quick look at some of the differences between classes and structures.

Differences between classes and structures
While classes and structures are very similar, there are also several very important
differences. The following is a list of some of the differences between classes and structures
in Swift:

Type: A structure is a value type, while a class is a reference type
Inheritance: A structure cannot inherit from other types, while a class can
Deinitializers: Structures cannot have custom deinitializers, while a class can

Classes, Structures, and Protocols Chapter 7

[128]

Throughout this chapter, we will be emphasizing the differences between classes and
structures to help us understand when to use each. Before we really dive into classes and
structures, let's look at the difference between value types (structures) and reference types
(classes). To fully understand when to use classes and structures and how to properly use
them, it is important to understand the difference between value and reference types.

Value versus reference types
Structures are value types. When we pass instances of a structure within our application,
we pass a copy of the structure and not the original structure. Classes are reference types;
therefore, when we pass an instance of a class within our application, a reference to the
original instance is passed. It is very important to understand this difference. We will give a
very high-level view here and will provide additional details in Chapter 16, Memory
Management.When we pass structures within our application, we are passing copies of the
structures and not the original structures. Since the function gets its own copy of the
structure, it can change it as needed without affecting the original instance of the
structure.When we pass an instance of a class within our application, we are passing a
reference to the original instance of the class. Since we're passing the instance of the class to
the function, the function is getting a reference to the original instance; therefore, any
changes made within the function will remain once the function exits.To illustrate the
difference between value and reference types, let's look at a real-world object: a book. If we
have a friend who wants to read Mastering Swift 5, we could either buy them their own
copy or share ours.If we bought our friend their own copy of the book, any notes they made
within the book would remain in their copy of the book and would not be reflected in our
copy. This is how passing by value works with structures and variables. Any changes that
are made to the structure or variable within the function are not reflected in the original
instance of the structure or variable.If we share our copy of the book, any notes they made
within the book would stay in the book when they return it to us. This is how passing by
reference works. Any changes that are made to the instance of the class remains when the
function exits.

Creating a class or structure
We use the same syntax to define classes and structures. The only difference is that we
define a class using the class keyword and a structure using the struct keyword. Let's
look at the syntax that's used to create both classes and structures:

class MyClass {
 // MyClass definition

Classes, Structures, and Protocols Chapter 7

[129]

}

struct MyStruct {
 // MyStruct definition
}

In the preceding code, we define a new class named MyClass and a new structure named
MyStruct. This effectively creates two new Swift types named MyClass and MyStruct.
When we name a new type, we want to use the standard naming convention set by Swift,
where the name is in camel case, with the first letter being uppercase. This is also known as
PascalCase. Any method or property defined within the class or structure should also be
named using camel case, with the first letter being uppercase.Empty classes and structures
are not that useful, so let's look at how we can add properties to our classes and structures.

Properties
Properties associate values with a class or a structure. There are two types of properties:

Stored properties: These will store variable or constant values as part of an
instance of a class or structure. Stored properties can also have property
observers that can monitor the property for changes and respond with custom
actions when the value of the property changes.
Computed properties: These do not store a value themselves but instead retrieve
and possibly set other properties. The value returned by a computed property
can also be calculated when it is requested.

Stored properties
A stored property is a variable or constant that is stored as part of an instance of a class or
structure. These are defined with the vcar and let keywords, just like normal variables
and constants. In the following code, we will create a structure named MyStruct and a
class named MyClass. The structure and the class both contain two stored properties, c and
v. The stored property, c, is a constant because it is defined with the let keyword, and v is
a variable because it is defined with the var keyword. Let's look at the following code:

struct MyStruct {
 let c = 5
 var v = ""
}

Classes, Structures, and Protocols Chapter 7

[130]

class MyClass {
 let c = 5
 var v = ""
}

As we can see from the preceding example, the syntax to define a stored property is the
same for both classes and structures. Let's look at how we would create an instance of both
the structure and class. The following code creates an instance of the MyStruct structure,
named myStruct, and an instance of the MyClass class, named myClass:

var myStruct = MyStruct()
var myClass = MyClass()

One of the differences between structures and classes is that, by default, a structure creates
an initializer that lets us populate the stored properties when we create an instance of the
structure. Therefore, we could also create an instance of MyStruct like this:

var myStruct = MyStruct(v: "Hello")

In the preceding example, the initializer is used to set the v variable, and the c constant will
still contain the number 5, which is defined in the structures. If we did not give the constant
an initial value, as shown in the following example, the default initializer would be used to
set the constant as well:

struct MyStruct {
 let c: Int
 var v = ""
}

The following example shows how the initializer for this new structure would work:

var myStruct = MyStruct(c: 10, v: "Hello")

This allows us to define a constant where we set the value when we initialize the class or
structure at runtime, rather than hardcoding the value of the constant within the type.The
order in which the parameters appear in the initializer is the order in which we defined
them. In the previous example, we defined the c constant first, therefore, it is the first
parameter in the initializer. We defined the v parameter next, therefore, it is the second
parameter in the initializer.To set or read a stored property, we use the standard dot syntax.
Let's look at how we would set and read stored properties in Swift:

var x = myClass.c
myClass.v = "Howdy"

Classes, Structures, and Protocols Chapter 7

[131]

In the first line of code, we read the c property and store it into a variable named x. In the
second line of code, we set the v property to the Howdy string.Before we move on to
computed properties, let's create both a structure and class that will represent an employee.
We will be using and expanding these throughout this chapter to show how classes and
structures are similar, and how they differ:

struct EmployeeStruct {
 var firstName = ""
 var lastName = ""
 var salaryYear = 0.0
}

class EmployeeClass {
 var firstName = ""
 var lastName = ""
 var salaryYear = 0.0
}

The employee structure is named EmployeeStruct, and the employee class is named
EmployeeClass. Both the class and structure have three stored properties: firstName,
lastName, and salaryYear.Within the structure and class, we can access these properties
by using the name of the property and the self keyword. Every instance of a structure or
class has a property named self. This property refers to the instance itself; therefore, we
can use it to access the properties within the instance. The following examples show how
we can access the properties with the self keyword within the instance of the structure or
class:

self.firstName = "Jon"
self.lastName = "Hoffman"

Computed properties
Computed properties are properties that do not have backend variable, which are used to
store the values associated with the property. The values of a computed property are
usually computed when code requests it. You can think of a computed property as a
function disguised as a property. Let's look at how we would define a read-only computed
property:

var salaryWeek: Double {
 get{
 return self.salaryYear/52
 }
}

Classes, Structures, and Protocols Chapter 7

[132]

To create a read-only computed property, we begin by defining it as if it were a normal
variable with the var keyword, followed by the variable name, colon, and the variable
type. What comes next is different; we add a curly bracket at the end of the declaration and
then define a getter method, which is called when the value of our computed property is
requested. In this example, the getter method divides the current value of the salaryYear
property by 52 to get the employee's weekly salary.

We can simplify the definition of the read-only computed property by removing the
get keyword, as shown in the following example:

var salaryWeek: Double {
 return self.salaryYear/52
}

Computed properties are not limited to being read-only; we can also write to them. To
enable the salaryWeek property to be writeable, we will add a setter method. The
following example shows how we add a setter method that will set the salaryYear
property, based on the value being passed into the salaryWeek property:

var salaryWeek: Double {
 get {
 return self.salaryYear/52
 }
 set(newSalaryWeek){
 self.salaryYear = newSalaryWeek*52
 }
}

We can simplify the setter definition by not defining a name for the new value. In this case,
the value will be assigned to a default variable named newValue, as shown in the following
example:

var salaryWeek: Double {
 get{
 return self.salaryYear/52
 }
 set{
 self.salaryYear = newValue*52
 }
}

Classes, Structures, and Protocols Chapter 7

[133]

The salaryWeek computed property, as written in the preceding examples, could be
added to either the EmployeeClass class or the EmployeeStruct structure without any
modifications. Let's see how we can do this by adding the salaryWeek property to our
EmployeeClass class:

class EmployeeClass {
 var firstName = ""
 var lastName = ""
 var salaryYear = 0.0

 var salaryWeek: Double {
 get{
 return self.salaryYear/52
 }
 set(newSalaryWeek){
 self.salaryYear = newSalaryWeek*52
 }
 }
}

Now, let's look at how we can add the salaryWeek computed property to
theEmployeeStruct structure:

struct EmployeeStruct {
 var firstName = ""
 var lastName = ""
 var salaryYear = 0.0

 var salaryWeek: Double {
 get{
 return self.salaryYear/52
 }
 set(newSalaryWeek){
 self.salaryYear = newSalaryWeek*52
 }
 }
}

Classes, Structures, and Protocols Chapter 7

[134]

As we can see, the class and structure definitions are the same so far, except for the
initialClass or struct keywords that are used to define them.We read and write to a
computed property exactly as we would to a stored property. Code that is external to the
class or structure should not be aware that the property is a computed property. Let's see
this in action by creating an instance of the EmployeeStruct structure:

var f = EmployeeStruct(firstName: "Jon", lastName: "Hoffman",
 salaryYear: 39_000)
print(f.salaryWeek) //prints 750.00 to the console
f.salaryWeek = 1000
print(f.salaryWeek) //prints 1000.00 to the console
print(f.salaryYear) //prints 52000.00 to the console

The preceding example starts off by creating an instance of the EmployStruct structure
with the salaryYear value being set to 39,000. Next, we print the value of the salaryWeek
property to the console. This value is currently 750.00. We then set the salaryWeek
property to 1,000.00 and print out both the salaryWeek and salaryYear properties to the
console. The values of the salaryWeek and salaryYear properties are now 1,000.00 and
52,000, respectively. As we can see, in this example, setting either the salaryWeek or
salaryYear property changes the values returned by both.Computed properties can be
very useful for offering different views of the same data. For example, if we had a value
that represented the length of something, we could store the length in centimeters and then
use computed properties that calculate the values for meters, millimeters, and
kilometers.Now, let's look at property observers.

Property observers
Property observers are called every time the value of the property is set. We can add
property observers to any non-lazy stored property. We can also add property observers to
any inherited stored or computed property by overriding the property in the subclass,
which we will look at the Overriding properties section.There are two property observers that
we can set in Swift: willSet and didSet. The willSet observer is called right before the
property is set, and the didSet observer is called right after the property is set.One thing to
note about property observers is that they are not called when the value is set during
initialization. Let's look at how we can add a property observer to the salary property of
our EmployeeClass class and EmployeeStruct structure:

var salaryYear: Double = 0.0 {
 willSet(newSalary) {
 print("About to set salaryYear to \(newSalary)")
 }
 didSet {

Classes, Structures, and Protocols Chapter 7

[135]

 if salaryWeek > oldValue {
 print("\(firstName) got a raise.")
 }else {
 print("\(firstName) did not get a raise.")
 }
 }
}

When we add a property observer to a stored property, we need to include the type of the
value being stored within the definition of the property. In the preceding example, we did
not need to define our salaryYear property as a Double type; however, when we add
property observers, the definition is required.After the property definition, we define the
willSet observer, which simply prints out the new value that the salaryYear property
will be set to. We also define a didSet observer, which will check whether the new value is
greater than the old value, and if so, it will print out that the employee got a raise;
otherwise, it will print out that the employee did not get a raise.As with the getter method
with computed properties, we do not need to define the name for the new value of the
willSet observer. If we do not define a name, the new value is put in a constant named
newValue. The following example shows how we can rewrite the previouswillSet
observer without defining a name for the new value:

willSet {
 print("About to set salaryYear to \(newValue)")
}

As we have seen, properties are mainly used to store information associated with a class or
structure. Methods are mainly used to add the business logic to a class or structure. Let's
look at how we can add methods to a class or structure.

Methods
Methods are functions that are associated with an instance of a class or structure. A
method, like a function, will encapsulate the code for a specific task or functionality that is
associated with the class or structure. Let's look at how we can define methods for classes
and structures. The following code will return the full name of the employee by using the
firstName and lastName properties:

func getFullName() -> String {
 return firstName + " " + lastName
}

Classes, Structures, and Protocols Chapter 7

[136]

We define this method exactly as we would define any function. A method is simply a
function that is associated with a specific class or structure, and everything that we learned
about functions in the previous chapters applies to methods. The getFullName() function
can be added directly to the EmployeeClass class or EmployeeStruct structure without
any modification.To access a method, we use the same dot syntax we used to access
properties. The following code shows how we access the getFullName() method of a class
and a structure:

var e = EmployeeClass()
var f = EmployeeStruct(firstName: "Jon", lastName: "Hoffman",
 salaryYear: 50000)

e.firstName = "Jon"
e.lastName = "Hoffman"
e.salaryYear = 50000.00

print(e.getFullName()) //Jon Hoffman is printed to the console
print(f.getFullName()) //Jon Hoffman is printed to the console

In the preceding example, we initialize an instance of both the EmployeeClass class and
EmployeeStruct structure. We populate the structure and class with the same information
and then use the getFullName() method to print the full name of the employee to the
console. In both cases, Jon Hoffman is printed to the console.There is a difference in how
we define methods for classes and structures that need to update property values. Let's
look at how we define a method that gives an employee a raise within the EmployeeClass
class:

func giveRaise(amount: Double) {
 self.salaryYear += amount
}

If we add the preceding code to our EmployeeClass, it works as expected, and when we
call the method with an amount, the employee gets a raise. However, if we try to add this
method as it is written to the EmployeeStruct structure, we receive a mark method and
a mutating to make self mutable error. By default, we are not allowed to update
property values within a method of a structure. If we want to modify a property, we can
mutate the behavior for that method by adding the mutating keyword before the func
keyword of the method declaration. Therefore, the following code would be the correct
way to define the giveRaise(amount:) method for the EmployeeStruct structure:

mutating func giveRase(amount: Double) {
 self.salaryYear += amount
}

Classes, Structures, and Protocols Chapter 7

[137]

In the preceding examples, we use the self property to refer to the current instance of the
type within the instance itself, so when we write self.salaryYear, we ask for the value
of the salaryYear property for the current instance of the type.

The self property should only be used when necessary. We are using it
in these examples to illustrate what it is and how to use it.

The self property is mainly used to distinguish between local and instance variables that
have the same name. Let's look at an example that illustrates this. We can add this function
to either the EmployeeClass or EmployeeStruct type:

func isEqualFirstName(firstName: String) -> Bool {
return self.firstName == firstName}

In the preceding example, the method accepts an argument named firstName. There is
also a property within the type that has the same name. We use the self property to
specify that we want the instance property with the firstName name, and not the local
variable with this name.Other than the mutating keyword being required for methods that
change the value of the structure's properties, methods can be defined and used exactly as
functions are defined and used. Therefore, everything we learned about functions in
Chapter 6, Functions, can be applied to methods.There are times when we want to initialize
properties or perform some business logic when a class or structure is first initialized. For
this, we will use an initializer.

Custom initializers
Initializers are called when we initialize a new instance of a type (class or structure).
Initialization is the process of preparing an instance for use. The initialization process can
include setting initial values for stored properties, verifying that external resources are
available, or setting up the UI properly. Initializers are generally used to ensure that the
instance of the class or structure is properly initialized prior to first use.Initializers are
special methods that are used to create a new instance of a type. We define an initializer
similarly to defining other methods, but we must use the init keyword as the name of the
initializer to tell the compiler that this method is an initializer. In its simplest form, the
initializer does not accept any arguments. Let's look at the syntax that's used to write a
simple initializer:

init() {
 //Perform initialization here
}

Classes, Structures, and Protocols Chapter 7

[138]

This format works for both classes and structures. By default, all classes and structures
have an empty default initializer that can be overridden. We used these default initializers
when we initialized the EmployeeClass class and EmployeeStruct structure in the
previous section.Structures also have an additional default initializer, which we saw with
the EmployeeStruct structure, that accepts a value for each stored property and initializes
them with those values. Let's look at how we add custom initializers to the
EmployeeClass class and EmployeeStruct structure.In the following code, we create
three custom initializers that will work for both theEmployeeClassclass and
EmployeeStruct structure:

init() {
 firstName = ""
 lastName = ""
 salaryYear = 0.0
}
init(firstName: String, lastName: String) {
 self.firstName = firstName
 self.lastName = lastName
 salaryYear = 0.0
}
init(firstName: String, lastName: String, salaryYear: Double) {
 self.firstName = firstName
 self.lastName = lastName
 self.salaryYear = salaryYear
}

The first initializer, init(), will set all of the stored properties to their default values. The
second initializer, init(firstName: String, lastName: String), will populate the
firstName and lastName properties with the values of the arguments. The third
initializer, init(firstName: String, lastName: String, salaryYear: Double),
will populate all the properties with the values of the arguments.In the previous example,
we can see that in Swift, an initializer does not have an explicit return value, but it does
return an instance of the type. This means that we do not define a return type for the
initializer or have a return statement within the initializer. Let's look at how we could use
these initializers:

var g = EmployeeClass()
var h = EmployeeStruct(firstName: "Me", lastName: "Moe")
var i = EmployeeClass(firstName: "Me", lastName: "Moe", salaryYear: 45_000)

Classes, Structures, and Protocols Chapter 7

[139]

The g instances of the EmployeeClass use the init() initializer to create an instance of
theEmployeeClass class; therefore, all the properties of this instance contain their default
values.The h instance of the EmployeeStruct uses the init(firstName: String,
lastName: String) initializer to create an instance of the EmployeeStruct structure;
therefore, the firstName property is set to Me and the lastName property is set to Moe,
which are the two arguments passed into the initializer. The salaryYear property is still
set to the default value of 0.0.The i instance of the EmployeeClass uses the
init(firstName: String, lastName: String, salaryYear: Double0 initializer to
create an instance of the EmployeeClass class; therefore, the firstNamE property is set to
Me, the lastName property is set to Moe, and the salaryYear property is set to
45_000.Since all the initializers are identified with the init keyword, the parameters and
parameter types are used to identify which initializer to use.A class, unlike a structure, can
have a deinitializer. A deinitializer is called just before an instance of the class is destroyed
and removed from memory. In Chapter 16, Memory Management, we will show examples of
the deinitializer and see when it is called.Let's look at internal and external parameter
names with initializers.

Internal and external parameter names
Just like functions, the parameters associated with an initializer can have separate internal
and external names. If we do not supply external parameter names for our parameters,
Swift will automatically generate them for us. In the previous examples, we did not include
external parameter names in the definition of the initializers, so Swift created them for us
using the internal parameter name as the external parameter name.If we wanted to supply
our own parameter names, we would do so by putting the external parameter name before
the internal parameter name, exactly as we do with any normal function. Let's look at how
we can define our own external parameter names by redefining one of the initializers
within our EmployeeClass class:

init(employeeWithFirstName firstName: String, lastName lastName: String,
andSalary salaryYear: Double) {
 self.firstName = firstName
 self.lastName = lastName
 self.salaryYear = salaryYear
}

Classes, Structures, and Protocols Chapter 7

[140]

In the preceding example, we created the init(employeeWithFirstName firstName:
String, lastName lastName: String, andSalary salaryYear: Double)

initializer. This initializer will create an instance of the EmployeeClass class and populate
the instance properties with the value of the arguments. In this example, each of the
parameters has both external and internal property names. Let's look at how we would use
this initializer, with the external property names:

var i = EmployeeClass(withFirstName: "Me", lastName: "Moe", andSalary:
45000)

Notice that we are now using the external parameter names as defined in the initializer.
Using external parameter names can help make our code more readable and help
differentiate between different initializers.So, what will happen if our initializer fails? For
example, what if our class relies on a specific resource, such as a web service that is not
currently available? This is where failable initializers come in.

Failable initializers
A failable initializer is an initializer that may fail to initialize the resources needed for a
class or a structure, thereby rendering the instance unusable. When using a failable
initializer, the result of the initializer is an optional type, containing either a valid instance
of the type or nil.An initializer can be made failable by adding a question mark (?) after the
init keyword. Let's look at how we can create a failable initializer that will not allow a
new employee to be initialized with a salary of less than $20,000 a year:

init?(firstName: String, lastName: String, salaryYear: Double) {
 self.firstName = firstName
 self.lastName = lastName
 self.salaryYear = salaryYear
 if self.salaryYear < 20_000 {
 return nil
 }
}

Classes, Structures, and Protocols Chapter 7

[141]

In the previous examples, we did not include a return statement within the initializer
because Swift does not need to return the initialized instance; however, in a failable
initializer, if the initialization fails, it must return nil. If the initializer successfully initializes
the instance, we do not need to return anything. Therefore, in our example, if the yearly
salary that is passed in is less than $20,000 a year, we return nil, indicating that the
initialization failed, otherwise nothing will be returned. Let's look at how we would use a
failable initializer to create an instance of a class or structure:

if let f = EmployeeClass(firstName: "Jon", lastName: "Hoffman",
 salaryYear: 29_000) {
 print(f.getFullName())
} else {
 print("Failed to initialize")
}

In the previous example, we initialize the instance of the EmployeeClass class with a
yearly salary of greater than $20,000; therefore, the instance gets initialized correctly and
the full name of Jon Hoffman is printed to the console. Now, let's try to initialize an
instance of the EmployeeClass class with a yearly salary of less than $20,000 to see how it
fails:

if let f = EmployeeClass(firstName: "Jon", lastName: "Hoffman",
 salaryYear: 19_000) {
 print(f.getFullName())
} else {
 print("Failed to initialize")
}

In the preceding example, the yearly salary that we are attempting to initialize for our
employee is less than $20,000 therefore the initialization fails and a Failed to initialize message
is printed to the console.There are times when we want to restrict access to certain parts of
our code. For this, we use access controls.

Classes, Structures, and Protocols Chapter 7

[142]

Access controls
Access controls enable us to hide implementation details and only expose the interfaces we
want to expose. This feature is handled with access controls. We can assign specific access
levels to both classes and structures. We can also assign specific access levels to properties,
methods, and initializers that belong to our classes and structures.In Swift, there are five
access levels:

Open: This is the most visible access control level. It allows us to use the
property, method, class, and so on anywhere we want to import the module.
Basically, anything can use an item that has an access-control level of open.
Anything that is marked open can be subclassed or overridden by any item
within the module they are defined in and any module that imports the module
it is defined in. This level is primarily used by frameworks to expose the
framework's public API. The open-access control is only available to classes and
members of a class.
Public: This access level allows us to use the property, method, class, and so on
anywhere we want to import the module. Basically, anything can use an item
that has an access-control level of public. Anything that is marked public can be
subclassed or overridden only by any item within the module they are defined
in. This level is primarily used by frameworks to expose the framework's public
API.
Internal: This is the default access level. This access level allows us to use the
property, method, class, and so on in the module the item is defined in. If this
level is used in a framework, it lets other parts of the framework use the item but
code outside the framework will be unable to access it.
Fileprivate: This access control allows access to the properties and methods from
any code within the same source file that the item is defined in.
Private: This is the least visible access-control level. It only allows us to use the
property, method, class, and so on, within extensions of the declaration defined
in the source file that defines it.

Classes, Structures, and Protocols Chapter 7

[143]

When we are developing frameworks, the access controls really become useful. We will
need to mark the public-facing interfaces as public or open so that other modules, such as
applications that import the framework, can use them. We will then use the internal and
private access-control levels to mark the interfaces that we want to use internally to the
framework and the source file, respectively.To define access levels, we place the name of
the level before the definition of the entity. The following code shows examples of how we
can add access levels to several entities:

private struct EmployeeStruct {}
public class EmployeeClass {} internal class EmployeeClass2 {}
public var firstName = "Jon" internal var lastName = "Hoffman"
private var salaryYear = 0.0
public func getFullName() -> String {}
private func giveRaise(amount: Double) {}

There are some limitations with access controls, but these limitations are there to ensure
that access levels in Swift follow a simple guiding principle: no entity can be defined in
terms of another entity that has a lower (more restrictive) access level. This means that we
cannot assign a higher (less restrictive) access level to an entity when it relies on another
entity that has a lower (more restrictive) access level.The following examples demonstrate
this principle:

We cannot mark a method as being public when one of the arguments or the
return type has an access level of private, because external code would not have
access to the private type
We cannot set the access level of a method or property to public when the class
or structure has an access level of private, because external code would not be
able to access the constructor when the class is private

Inheritance
The concept of inheritance is a basic object-oriented development concept. Inheritance
allows a class to be defined as having a certain set of characteristics, and then other classes
can be derived from that class. The derived class inherits all of the features of the class it is
inheriting from (unless the derived class overrides those characteristics) and then usually
adds additional characteristics of its own.

Classes, Structures, and Protocols Chapter 7

[144]

With inheritance, we can create what is known as a class hierarchy. In a class hierarchy, the
class at the top of the hierarchy is known as the base class, and the derived classes are
known as subclasses. We are not limited to only creating subclasses from a base class, we
can also create subclasses from other subclasses. The class that a subclass is derived from is
known as the parent or superclass. In Swift, a class can have only one parent class. This is
known as single inheritance.

Inheritance is one of the fundamental differences that separates classes
from structures. Classes can be derived from a parent or superclass, but a
structure cannot.

Subclasses can call and access the properties, methods, and subscripts of their superclass.
They can also override the properties, methods, and subscripts of their superclass.

Subclasses can add property observers to properties that they inherit from a superclass so
that they can be notified when the values of the properties change. Let's look at an example
that illustrates how inheritance works in Swift.We will start off by defining a base class
named Plant. The Plant class will have two properties: height and age. It will also have
one method: growHeight(). The height property will represent the height of the plant,
the age property will represent the age of the plant, and the growHeight() method will be
used to increase the height of the plant. Here is how we would define the Plant class:

class Plant {
 var height = 0.0
 var age = 0
 func growHeight(inches: Double) {
 height += inches;
 }
}

Now that we have our Plant base class, let's see how we would define a subclass of it. We
will name this subclass Tree. The Tree class will inherit the age and height properties of
the Plant class and add one more property, named limbs. It will also inherit the
growHeight() method of the Plant class and add two more methods: limbGrow(),
where new limbs are grown, and limbFall(), where limbs fall off the tree. Let's have a
look at the following code:

class Tree: Plant {
 var limbs = 0
 func limbGrow() {
 self.limbs += 1
 }
 func limbFall() {

Classes, Structures, and Protocols Chapter 7

[145]

 self.limbs -= 1
 }
}

We indicate that a class has a superclass by adding a colon and the name of the superclass
to the end of the class definition. In this example, we indicated that the Tree class has a
superclass named Plant.Now, let's look at how we could use the Tree class that inherited
the age and heightproperties from the Plant class:

var tree = Tree()
tree.age = 5
tree.height = 4
tree.limbGrow()
tree.limbGrow()

The preceding example begins by creating an instance of the Tree class. We then set the
Age and height properties to 5 and 4, respectively, and add two limbs to the tree by calling
the limbGrow() method twice.We now have a base class named Plant that has a subclass
named Tree. This means that the super (or parent) class of Tree is the Plant class. This
also means that one of the subclasses (or child classes) of Plant is named Tree. There are,
however, lots of different kinds of trees in the world. Let's create two subclasses from the
Tree class. These subclasses will be the PineTree class and the OakTree class:

class PineTree: Tree {
 var needles = 0
}

class OakTree: Tree {
 var leaves = 0
}

Classes, Structures, and Protocols Chapter 7

[146]

The class hierarchy now looks like this:

It is important to keep in mind that, in Swift, a class can have multiple subclasses; however,
a class can have only one superclass. There are times when a subclass needs to provide its
own implementation of a method or property that it inherited from its superclass. This is
known as overriding.

Overriding methods and properties
To override a method, property, or subscript, we need to prefix the definition with the
override keyword. This tells the compiler that we intend to override something in the
superclass, and that we did not make a duplicate definition by mistake. The override
keyword prompts the Swift compiler to verify that the superclass (or one of its parents) has
a matching declaration that can be overridden. If it cannot find a matching declaration in
one of the superclasses, an error will be thrown.

Classes, Structures, and Protocols Chapter 7

[147]

Overriding methods
Let's look at how we can override a method. We will start by adding a getDetails()
method to the Plant class that we will then override in the child classes. The following
code shows the code for the new Plant class:

class Plant {
 var height = 0.0
 var age = 0
 func growHeight(inches: Double) {
 self.height += inches;
 }
 func getDetails() -& String {
 return "Plant Details"
 }
}

Now, let's see how we can override the getDetails() method in the Tree class:

class Tree: Plant {
 private var limbs = 0
 func limbGrow() {
 self.limbs += 1
 }
 func limbFall() {
 self.limbs -= 1
 }
 override func getDetails() -> String {
 return "Tree Details"
 }
}

The thing to note here is that we do not use the override keyword in the Plant class
because it is the first class to implement this method; however, we do include it in the Tree
class since we are overriding the getDetails() method from the Plant class. Now, let's
see what happens if we call the getDetails() method from an instance of the Plant and
Tree classes:

var plant = Plant()
var tree = Tree()
print("Plant: \(plant.getDetails())")
print("Tree: \(tree.getDetails())")

Classes, Structures, and Protocols Chapter 7

[148]

The previous example will print the following two lines to the console:

Plant: Plant Details
Tree: Tree Details

As we can see, the getDetails() method in the Tree subclass overrides the
getDetails() of its parent Plant class.Inside the Tree class, we can still call the
getDetails() method (or any overridden method, property, or subscript) of its superclass
by using the super prefix. We will begin by replacing the getDetails() method in the
Plant class with the following method, which will generate a string that contains the
values of the height and age properties:

func getDetails() -> String {
 return "Height:\(height) age:\(age)"
}

Now, we will replace the getDetails() method for the Tree class with the following
method, which will call the getDetails() method of the superclass:

override func getDetails() -> String {
 let details = super.getDetails()
 return "\(details) limbs:\(limbs)"
}

In the preceding example, we begin by calling the getDetails() method of the superclass
(the Plant class in this case) to get a string that contains the tree's height and age. We then
build a new string object that combines the results of the getDetails() method and a new
string that contains the number of limbs from the Tree class. This new string is then
returned. Let's look at what happens if we call this new method:

var tree = Tree()
tree.age = 5
tree.height = 4
tree.limbGrow()
tree.limbGrow()
print(tree.getDetails())

If we run the preceding code, the following line will be printed to the console:

Height: 4.0 age: 5 limbs: 2

As we can see, the string that is returned contains the height and age information from
thePlant class and the limbs information from the Tree class.

Classes, Structures, and Protocols Chapter 7

[149]

Overriding properties
We can provide custom getters and setters to override any inherited property. When we
override a property, we must provide the name and the type of property we are overriding
so that the compiler can verify that one of the classes in the class hierarchy has a matching
property to override.Let's see how we can override a property by adding the following
property to our Plantclass:

var description: String {
 return "Base class is Plant."
}

The description property is a basic read-only property. This property returns the Base
class is Plant string. Now, let's override this property by adding the following
property to the Tree class:

override var description: String {
 return "\(super.description) I am a Tree class."
}

The same override keyword is used when overriding both properties and methods. This
keyword tells the compiler that we want to override a property so that the compiler can
verify that another class in the class hierarchy contains a matching property to override. We
then implement the property as we would any other property. Calling the description
property for an instance of the Tree class will result in the Base class is Plant. I am
a Tree class string being returned.There are times when we want to prevent a subclass
from overriding the properties and methods. There are also times when we want to prevent
an entire class from being subclassed. Let's see how we can do this.

Preventing overrides
To prevent overrides or subclassing, we can use the final keyword. To use the final
keyword, we add it before the item's definition. Examples are final func, final var,
and final class.Any attempt to override an item marked with this keyword will result
in a compile-time error.

Classes, Structures, and Protocols Chapter 7

[150]

Protocols
There are times when we would like to describe the implementations (methods, properties,
and other requirements) of a type without actually providing any implementation. For this,
we can use protocols.Protocols define a blueprint of methods, properties, and other
requirements for a class or a structure. A class or a structure can then provide an
implementation that conforms to those requirements. The class or structure that provides
the implementation is said to conform to the protocol.Protocols are very important to the
Swift language. The entire Swift standard library is based on them, and we will be looking
at protocols and how to use them in Chapter 8, Using Protocols and Protocol Extensions, and
Chapter 9, Protocol Oriented Design.

Protocol syntax
The syntax to define a protocol is very similar to how we define a class or a structure. The
following example shows the syntax that's used to define a protocol:

protocol MyProtocol {
 //protocol definition here
}

We state that a class or structure conforms to a protocol by placing the name of the protocol
after the type's name, separated by a colon. Here is an example of how we would state that
a structure conforms to the MyProtocol protocol:

struct MyStruct: MyProtocol {
 // Structure implementation here
}

A type can conform to multiple protocols. We list the protocols that the type conforms to by
separating them with commas. The following example shows how we would state that our
structure conforms to multiple protocols:

struct MyStruct: MyProtocol, AnotherProtocol, ThirdProtocol {
 // Structure implementation here
}

If we need a class to both inherit from a superclass and implement a protocol, we would list
the superclass first, followed by the protocols. The following example illustrates this:

class MyClass: MySuperClass, MyProtocol, MyProtocol2 {
 // Class implementation here
}

Classes, Structures, and Protocols Chapter 7

[151]

Property requirements
A protocol can require that the conforming type provides certain properties with a
specified name and type. The protocol does not say whether the property should be a
stored or computed property because the implementation details are left up to the
conforming type.When defining a property within a protocol, we must specify whether the
property is a read-only or read-write property by using the get and set keywords. Let's
look at how we would define properties within a protocol by creating a protocol named
FullName:

protocol FullName {
 var firstName: String { get set }
 var lastName: String { get set }
}

The FullName protocol defines two properties, which any type that conforms to the
protocol must implement. These are the firstName and lastName properties, and both are
read-write properties. If we wanted to specify that the property is read-only, we would
define it with only the get keyword, like this:

var readOnly: String { get }

Let's see how we can create a Scientist class that conforms to this protocol:

class Scientist: FullName {
 var firstName = ""
 var lastName = ""
}

If we had forgotten to include either of the required properties, we would have received an
error message letting us know the property we forgot. We also need to make sure that the
type of the property is the same. For example, if we change the definition of the lastName
property in the Scientist class to var lastName = 42, we will also receive an error
message because the protocol specifies that we must have a lastName property of the
string type.

Classes, Structures, and Protocols Chapter 7

[152]

Method requirements
A protocol can require that the conforming class or structure provides certain methods. We
define a method within a protocol exactly as we do within a class or structure, except
without the method body. Let's add a getFullName() method to our FullName protocol
and Scientist class:

protocol FullName {
 var firstName: String { get set }
 var lastName: String { get set }
 func getFullName() -> String
}

Now, we need to add a getFullName() method to our Scientist class so that it will
conform to the protocol:

class Scientist: FullName {
 var firstName = ""
 var lastName = ""
 var field = ""

 func getFullName() -> String {
 return "\(firstName) \(lastName) studies \(field)"
 }
}

Structures can conform to Swift protocols exactly as classes do. In fact, the majority of the
Swift standard library are structures that implement the various protocols that make up the
standard library. The following example shows how we can create a FootballPlayer
structure that also conforms to the FullName protocol:

struct FootballPlayer: FullName {
 var firstName = ""
 var lastName = ""
 var number = 0

 func getFullName() -> String {
 return "\(firstName) \(lastName) has the number \(number)"
 }
}

Classes, Structures, and Protocols Chapter 7

[153]

When a class or structure conforms to a Swift protocol, we can be sure that it has
implemented the required properties and methods. This can be very useful when we want
to ensure that certain properties or methods are implemented over various classes, as
ourpreceding examples show.Protocols are also very useful when we want to decouple our
code from requiring specific types. The following code shows how we would decouple our
code using the FullName protocol, the Scientist class, and the FootballPlayer
structure that we have already built:

var scientist = Scientist()
scientist.firstName = "Kara"
scientist.lastName = "Hoffman"
scientist.field = "Physics"

var player = FootballPlayer()

player.firstName = "Dan"
player.lastName = "Marino"
player.number = 13

var person: FullName
person = scientist
print(person.getFullName())
person = player
print(person.getFullName())

In the preceding code, we begin by creating an instance of the Scientist class and the
FootballPlayer structure. We then create a person variable that is of the FullName
(protocol) type and set it to the scientist instance that we just created. We then call
the getFullName() method to retrieve our description. This will print out the Kara
Hoffman studies Physics message to the console.We then set the person variable
equal to the player instance and call the getFullName() method again. This will print
out the Dan Marino has the number 13 message to the console.As we can see, the
person variable does not care what the actual implementation type is. Since we defined the
person variable to be of the FullName type, we can set the variable to an instance of any
type that conforms to the FullName protocol. This is called polymorphism. We will cover
polymorphism and protocols more in Chapter 8, Using Protocols and Protocol Extensions,
and Chapter 9, Protocol Oriented Design.

Classes, Structures, and Protocols Chapter 7

[154]

Extensions
With extensions, we can add new properties, methods, initializers, and subscripts, or make
an existing type conform to a protocol without modifying the source code for the type. One
thing to note is that extensions cannot override the existing functionality.To define an
extension, we use the extension keyword, followed by the type that we are extending.
The following example shows how we would create an extension that extends the string
class:

extension String {
 //add new functionality here
}

Let's see how extensions work by adding a reverse() method and a
firstLetterproperty to Swift's standard string class:

extension String {
 var firstLetter: Character? {
 get {
 return self.first
 }
 }

 func reverse() -> String {
 var reverse = ""
 for letter in self {
 reverse = "\(letter)" + reverse
 }
 return reverse
 }
}

When we extend an existing type, we define properties, methods, initializers, subscripts,
and protocols in exactly the same way as we would normally define them in a standard
class or structure. In the string extension example, wecan see that we define the reverse()
method and the firstLetter property exactly as we would define them in a normal type.
We can then use these methods exactly as we would use any other method, as the following
example shows:

var myString = "Learning Swift is fun"
print(myString.reverse())
print(myString.firstLetter!)

Classes, Structures, and Protocols Chapter 7

[155]

Swift 4 did add the reversed() method to the string type, which should be preferred over
the one we created here. This example just illustrates how to use extensions.Extensions are
very useful for adding extra functionality to an existing type from external frameworks,
even for Apple's frameworks, as demonstrated in this example. It is preferred to use
extensions to add extra functionality to types from external frameworks rather than
subclassing, because it allows us to continue to use the type throughout our code rather
than changing the type to the subclass.Before we finish this chapter, let's take another look
at optional chaining now that we have an understanding of classes and structures.

Optional chaining
Optional binding allows us to unwrap one optional at a time, but what would happen if we
had optional types embedded within other optional types? This would force us to have
optional binding statements embedded within other optional binding statements. There is a
better way to handle this: by using optional chaining. Before we look at optional chaining,
let's see how this would work with optional binding. We will start off by defining three
types that we will be using for our examples in this section:

class Collar {
 var color: String
 init(color: String) {
 self.color = color
 }
}

class Pet {
 var name: String
 var collar: Collar?
 init(name: String) {
 self.name = name
 }
}

class Person {
 var name: String
 var pet: Pet?
 init(name: String) {
 self.name = name
 }
}

Classes, Structures, and Protocols Chapter 7

[156]

In this example, we begin by defining a Collar class, which has one property defined. This
property is named color, which is of the string type. We can see that the color property is
not an optional; therefore, we can safely assume that it will always have a valid value.Next,
we define a Pet class that has two properties defined. These properties are named name
and collar. The name property is of the string type and the collar property is an
optional that may contain an instance of the Collar type or may contain no value.Finally,
we define a Person class, which also has two properties. These properties are named ame
and pet. The name property is of the string type and the pet property is an optional
thatmay contain an instance of the Pet type or may contain no value.For the examples that
follow, let's use the following code to initialize the classes:

var jon = Person(name: "Jon")
var buddy = Pet(name: "Buddy")
jon.pet = buddy

var collar = Collar(color: "red")
buddy.collar = collar

Now, let's say that we want to get the color of the collar for a person's pet; however, the
person may not have a pet (the pet property may be nil) or the pet may not have a collar
(the collar property may be nil). We could use optional binding to drill down through
each layer, as shown in the following example:

if let tmpPet = jon.pet, let tmpCollar = tmpPet.collar {
 print("The color of the collar is \(tmpCollar.color)")
} else {
 print("Cannot retrieve color")
}

Classes, Structures, and Protocols Chapter 7

[157]

While this example is perfectly valid and would print out a The color of the collar
is red message, the code is rather messy and hard to follow because we have multiple
optional binding statements on the same line, where the second optional binding statement
is dependent on the first one.Optional chaining allows us to drill down through multiple
optional type layers of properties, methods, and subscripts in one line of code. These layers
can be chained together and if any layer returns a nil, the entire chain gracefully fails and
returns nil. If none of the values returns nil, the last value of the chain is returned. Since
the results of optional chaining may be a nil value, the results are always returned as an
optional type, even if the final value we are retrieving is a non-optional type.To specify
optional chaining, we place a question mark (?) after each of the optional values within the
chain. The following example shows how to use optional chaining to make the preceding
example much cleaner and easier to read:

if let color = jon.pet?.collar?.color {
 print("The color of the collar is \(color)")
} else {
 print("Cannot retrieve color")
}

In this example, we put a question mark after the pet and collar properties to signify that
they are of the optional type and that, if either value is nil, the whole chain will return
nil. This code would also print out the The color of the collar is red message;
however, it is much easier to read than the preceding example because it clearly shows us
what optionals we are dependent on.

Summary
In this chapter, we took an in-depth look at classes and structures. We saw what makes
them so similar and also what makes them so different. In the upcoming chapters, it will be
important to remember that classes are reference types while structures are value types. We
also looked at protocols and extensions.As this chapter ends, we end the introduction to the
Swift programming language. At this point, we have enough knowledge of the Swift
language to begin writing our own applications; however, there is still much to learn.In the
following chapters, we will look in more depth at some of the concepts that we've already
discussed, such as protocols and subscripts. We will also see how we can use rotocol-
oriented programming techniques to write easy-to-manage code. Finally, we will have
chapters that will help us write better code, such as a sample Swift style guide, and a
chapter on design patterns.

8
Using Protocols and Protocol

Extensions
While watching the presentations from WWDC 2015 about protocol extensions and
protocol-oriented programming (POP), I will admit that I was very skeptical. I have
worked with object-oriented programming (OOP) for so long that I was unsure whether
this new programming paradigm would solve all of the problems that Apple was claiming
it would. Since I am not one who lets my skepticism get in the way of trying something
new, I set up a new project that mirrored the one I was currently working on, but wrote the
code using Apple's recommendations for POP. I also used protocol extensions extensively
in the code. I can honestly say that I was amazed by how much cleaner the new project was
compared to the original one. I believe that protocol extensions are going to be one of those
defining features that set one programming language apart from the rest. I also believe that
many major languages will soon have similar features.

In this chapter, you will learn about the following topics:

How are protocols used as a type?
How do we implement polymorphism in Swift using protocols?
How do we use protocol extensions?
Why we would want to use protocol extensions?

While protocol extensions are basically syntactic sugar, they are, in my opinion, one of the
most important additions to the Swift programming language. With protocol extensions,
we are able to provide method and property implementations to any type that conforms to
a protocol. To really understand how useful protocols and protocol extensions are, let's get
a better understanding of protocols.

Using Protocols and Protocol Extensions Chapter 8

[159]

While classes, structures, and enumerations can all conform to protocols in Swift, for this
chapter, we will be focusing on classes and structures. Enumerations are used when we
need to represent a finite number of cases, and while there are valid use cases where we
would have an enumeration conform to a protocol, they are very rare in my experience. Just
remember that anywhere we refer to a class or structure, we can also use an enumeration.

Let's begin exploring protocols by seeing how they are full-fledged types in Swift.

Protocols as types
Even though no functionality is implemented in a protocol, they are still considered a full
fledged type in the Swift programming language and can be used like any other type. This
means that we can use protocols as a parameter type or as a return type in a function.

We can also use them as the type for variables, constants, and collections. Let's take a look
at some examples. For these few examples, we will use the following PersonProtocol
protocol:

protocol PersonProtocol {
 var firstName: String { get set }
 var lastName: String { get set }
 var birthDate: Date { get set }
 var profession: String { get }
 init(firstName: String,lastName: String, birthDate: Date)
}

In this first example, a protocol is used as a parameter type and a return type for a function:

func updatePerson(person: PersonProtocol) -> PersonProtocol {
 // Code to update person goes here return person
}

In this example, the updatePerson() function accepts one parameter of the
PersonProtocol protocol type and returns a value of the PersonProtocol protocol type.
This next example shows how to use a protocol as a type for constants, variables, or
properties:

var myPerson: PersonProtocol

Using Protocols and Protocol Extensions Chapter 8

[160]

In this example, we create a variable of the PersonProtocol protocol type that is named
myPerson. Protocols can also be used as the item type for storing a collection, such as
arrays, dictionaries, or sets:

var people: [PersonProtocol] = []

In this final example, we created an array of the PersonProtocol protocol type. Even
though the PersonProtocol protocol does not implement any functionality, we can still
use protocols when we need to specify a type. However, a protocol cannot be instantiated
in the same way as a class or a structure. This is because no functionality is implemented in
a protocol. As an example, when trying to create an instance of the PersonProtocol
protocol, as shown in the following example, we would receive a compile-time error:

var test = PersonProtocol(firstName: "Jon", lastName: "Hoffman",
birthDate:bDateProgrammer)

We can use the instance of any type that conforms to our protocol wherever the protocol
type is required. As an example, if we've defined a variable to be of the PersonProtocol
protocol type, we can then populate that variable with any class or structure that conforms
to this protocol. For this example, let's assume that we have two types, named
SwiftProgrammer and FootballPlayer, that conform to the PersonProtocol protocol:

var myPerson: PersonProtocol

myPerson = SwiftProgrammer(firstName: "Jon", lastName: "Hoffman",
birthDate: bDateProgrammer)
print("\(myPerson.firstName) \(myPerson.lastName)")

myPerson = FootballPlayer(firstName: "Dan", lastName: "Marino",
birthDate:bDatePlayer)
print("\(myPerson.firstName) \(myPerson.lastName)")

In this example, we start off by creating the myPerson variable of the PersonProtocol
protocol type. We then set the variable with an instance of the SwiftProgrammer type and
print out the first and last names. Next, we set the myPerson variable to an instance of the
FootballPlayer type and print out the first and last names again. One thing to note is
that Swift does not care whether the instance is a class or structure. The only thing that
matters is that the type conforms to the PersonProtocol protocol type.

We can use the PersonProtocol protocol as the type for an array, which means that we
can populate the array with instances of any type that conforms to the protocol. Once again,
it does not matter whether the type is a class or a structure, as long as it conforms to the
PersonProtocol protocol.

Using Protocols and Protocol Extensions Chapter 8

[161]

Polymorphism with protocols
What we saw in the previous examples is a form of polymorphism. The word polymorphism
comes from the Greek roots poly, meaning many, and morphe, meaning form. In
programming languages, polymorphism is a single interface to multiple types (many
forms). In the previous example, the single interface was the PersonProtocol protocol
and the multiple types were any type that conforms to that protocol.

Polymorphism gives us the ability to interact with multiple types in a uniform manner. To
illustrate this, we can extend the previous example where we created an array of the
PersonProtocol types and looped through the array. We can then access each item in the
array using the properties and methods defined in the PersonProtocol protocol,
regardless of the actual type. Let's see an example of this:

for person in people {
print("\(person.firstName)\(person.lastName):\(person.profession)")
}

When we define the type of a variable, constant, collection type, and so on to be a protocol
type, we can use the instance of any type that conforms to that protocol. This is a very
important concept to understand, and is one of the many things that make protocols and
protocol extensions so powerful.

When we use a protocol to access instances, as shown in the previous example, we are
limited to using only properties and methods that are defined in the protocol itself. If we
want to use properties or methods that are specific to the individual types, we need to cast
the instance to that type.

Type casting with protocols
Typecasting is a way to check the type of the instance and/or to treat the instance as a
specified type. In Swift, we use the is keyword to check whether an instance is a specific
type, and the as keyword to treat the instance as a specific type.

To start, let's see how we would check the instance type using the is keyword. The
following example shows how this is done:

for person in people {
 if let p = person as? SwiftProgrammer {
 print("\(person.firstName) is a Swift Programmer")
 }
}

Using Protocols and Protocol Extensions Chapter 8

[162]

In this example, we use the if conditional statement to check whether each element in the
people array is an instance of the SwiftProgrammer type and, if so, we print that the
person is a Swift programmer to the console. While this is a good method to check whether
we have an instance of a specific class or structure, it is not very efficient if we want to
check for multiple types. It would be more efficient to use a switch statement, as shown in
the next example:

for person in people {
 switch person {
 case is SwiftProgrammer:
 print("\(person.firstName) is a Swift Programmer")
 case is FootballPlayer:
 print("\(person.firstName) is a Football Player")
 default:
 print("\(person.firstName) is an unknown type")
 }
}

In the previous example, we showed how to use the switch statement to check the instance
type for each element of the array. To do this check, we use the is keyword in each of the
case statements in an attempt to match the instance type.

In Chapter 5, Control Flow, we saw how to filter conditional statements with the where
statement. We can also use the where statement with the is keyword to filter the array, as
shown in the following example:

for person in people where person is SwiftProgrammer {
 print("\(person.firstName) is a Swift Programmer")
}

Now let's look at how we can cast an instance of a class or structure to a specific type. To do
this, we would use the as keyword. Since the cast can fail if the instance is not of the
specified type, the as keyword comes in two forms: as? and as!. With the as? form, if the
casting fails, it returns a nil, and with the as! form, if the casting fails, we get a runtime
error. Therefore, it is recommended to use the as? form unless we are absolutely sure of the
instance type or we perform a check of the instance type prior to doing the cast.

While we do show examples of typecasting with as! in this book, so you
are aware that it is there, we highly recommend that you do not use it in
your projects because it can cause a runtime error.

Using Protocols and Protocol Extensions Chapter 8

[163]

Let's look at how we would use the as? keyword to cast an instance of a class or structure to
a specified type:

for person in people {
 if let p = person as? SwiftProgrammer {
 print("\(person.firstName) is a Swift Programmer")
 }
}

Since the as? keyword returns an optional, we use optional binding to perform the cast, as
shown in this example.

Now that we have covered the basics of protocols, let's dive into one of the most exciting
features of Swift: protocol extensions.

Protocol extensions
Protocol extensions allow us to extend a protocol to provide method and property
implementations to conforming types. They also allow us to provide common
implementations to all the conforming types, eliminating the need to provide an
implementation in each individual type or the need to create a class hierarchy. While
protocol extensions may not seem too exciting, once you see how powerful they really are,
they will transform the way you think about and write code.

Let's begin by looking at how we would use protocol extensions within a very simplistic
example. We will start by defining a protocol named Dog, as follows:

protocol Dog {
 var name: String { get set }
 var color: String { get set }
}

With this protocol, we state that any type that conforms to the Dog protocol must have the
two properties of the String type, named name and color. Next, let's define the three
types that conform to this Dog protocol. We will name these types JackRussel, WhiteLab,
and Mutt. The following code shows how we would define these types:

struct JackRussel: Dog{
 var name: String
 var color: String
}

class WhiteLab: Dog{
 var name: String

Using Protocols and Protocol Extensions Chapter 8

[164]

 var color: String
 init(name: String, color: String) {
 self.name = name
 self.color = color
 }
}

struct Mutt: Dog{
 var name: String
 var color: String
}

We purposely created the JackRussel and Mutt types as structures and the WhiteLab
type as a class to show the differences between how the two types are set up, and to
illustrate how they are treated the same when it comes to protocols and protocol
extensions.

The biggest difference we can see in this example is that structure types provide a default
initiator, but in the class we must provide the initiator to populate the properties.

Now let's say that we want to provide a method named speak to each type that conforms
to the protocol. Prior to protocol extensions, we would have started off by adding the
method definition to the protocol, as shown in the following code:

protocol Dog{
 var name: String { get set }
 var color: String { get set }
 func speak() -> String
}

Once the method is defined in the protocol, we would then need to provide an
implementation of the method in every type that conforms to the protocol. Depending on
the number of types that conformed to this protocol, this could take a bit of time to
implement and it could affect a lot of code. The following code sample shows how we
might implement this method:

struct JackRussel: Dog{
 var name: String
 var color: String
 func speak() -> String {
 return "Woof Woof"
 }
}

class WhiteLab: Dog{
 var name: String
 var color: String

Using Protocols and Protocol Extensions Chapter 8

[165]

 init(name: String, color: String) {
 self.name = nameself.color = color}

 func speak() -> String {
 return "Woof Woof"
 }
}

struct Mutt: Dog{
 var name: String
 var color: String
 func speak() -> String {
 return "Woof Woof"
 }
}

While this method works, it is not very efficient because any time we update the protocol,
we need to update all the types that conform to it, and therefore duplicate a lot of code, as
shown in this example. If we need to change the default behavior of the speak() method,
we would have to go into each implementation and change the method. This is where
protocol extensions come in.

With protocol extensions, we could take the speak() method definition out of the protocol
itself and define it with the default behavior in the protocol extension.

If we are implementing a method in a protocol extension, we are not
required to define it in the protocol.

The following code shows how we would define the protocol and the protocol extension:

protocol Dog{
 var name: String { get set }
 var color: String { get set }
}

extension Dog{
func speak() -> String {
 return "Woof Woof"
 }
}

Using Protocols and Protocol Extensions Chapter 8

[166]

We begin by defining the Dog protocol with the original two properties. We then create a
protocol extension that extends it and contains the default implementation of the speak()
method. With this code, there is no need to provide an implementation of the speak()
method in all of the types that conform to the Dog protocol, because they automatically
receive the implementation as part of the protocol.

Let's see how this works by setting the three types that conform to the Dog protocol back to
their original implementations, then they should receive the speak() method from the
protocol extension:

struct JackRussel: Dog{
 var name: String
 var color: String
}
class WhiteLab: Dog{
 var name: String
 var color: String
 init(name: String, color: String) {
 self.name = name
 self.color = color
 }
}

struct Mutt: Dog{
 var name: String
 var color: String
}

We can now use each of the types, as shown in the following code:

let dash = JackRussel(name: "Dash", color: "Brown and White")
let lily = WhiteLab(name: "Lily", color: "White")
let maple = Mutt(name: "Buddy", color: "Brown")

let dSpeak = dash.speak() // returns "woof woof"
let lSpeak = lily.speak() // returns "woof woof"
let bSpeak = maple.speak() // returns "woof woof"

Using Protocols and Protocol Extensions Chapter 8

[167]

As we can see in this example, by adding the speak() method to the Dog protocol
extension, we are automatically adding that method to all the types that conform to the
protocol. The speak() method in the protocol extension can be considered a default
implementation of the method because we are able to override it in the type
implementations. As an example, we could override the speak() method in the Mutt
structure, as shown in the following code:

struct Mutt: Dog{
 var name: String
 var color: String
 func speak() -> String {
 return "I am hungry"
 }
}

When we call the speak() method for an instance of the Mutt type, it will return the I am
hungry string.

In this chapter, we named our protocols with the protocol suffix. This was
done to make it very clear that this was a protocol. This is not how we
would normally name our types. The following example gives a better
example of how we would properly name protocols. You can read
additional information about Swift's naming conventions in the Swift API
design guidelines: https://swift.org/documentation/api-design-
guidelines/#general-conventions.

Now that we have seen how to use protocols and protocol extensions, let's look at a more
real-world example. In numerous apps across multiple platforms (iOS, Android, and
Windows), I have needed to validate user input as it is entered. This validation can be done
very easily with regular expressions; however, we do not want various regular expressions
littered throughout our code. It is very easy to solve this problem by creating different
classes or structures that contain the validation code; however, we would have to organize
these types to make them easy to use and maintain. Prior to protocol extensions in Swift, I
would use a protocol to define the validation requirements and then create structures that
would conform to the protocol for each validation that I needed. Let's look at this pre-
protocol extension method.

A regular expression is a sequence of characters that defines a particular
pattern. This pattern can then be used to search a string to see whether the
string matches the pattern or contains a match of the pattern. Most major
programming languages contain a regular expression parser, and if you
are not familiar with regular expressions, it may be worthwhile to
learning more about them.

https://swift.org/documentation/api-design-guidelines/#general-conventions
https://swift.org/documentation/api-design-guidelines/#general-conventions
https://swift.org/documentation/api-design-guidelines/#general-conventions
https://swift.org/documentation/api-design-guidelines/#general-conventions
https://swift.org/documentation/api-design-guidelines/#general-conventions
https://swift.org/documentation/api-design-guidelines/#general-conventions
https://swift.org/documentation/api-design-guidelines/#general-conventions
https://swift.org/documentation/api-design-guidelines/#general-conventions
https://swift.org/documentation/api-design-guidelines/#general-conventions
https://swift.org/documentation/api-design-guidelines/#general-conventions

Using Protocols and Protocol Extensions Chapter 8

[168]

The following code shows the TextValidating protocol that defines the requirements for
any type that we want to use for text validation:

protocol TextValidating {
 var regExMatchingString: String { get }
 var regExFindMatchString: String { get }
 var validationMessage: String { get }
 func validateString(str: String) -> Bool
 func getMatchingString(str: String) -> String?
}

The Swift API design guidelines (https:/ ​/ ​swift. ​org/ ​documentation/ ​api-​design-
guidelines/​) state that protocols that describe what something is should be named as a
noun, while protocols that describe a capability should be named with a suffix of -able, -
ible, or -ing. With this in mind, we named the text validation protocol TextValidating.

In this protocol, we define three properties and two methods that any type that conforms to
a protocol must implement. The three properties are as follows:

regExMatchingString: This is a regular expression string used to verify that
the input string contains only valid characters.
regExFindMatchString: This is a regular expression string used to retrieve a
new string from the input string that contains only valid characters. This regular
expression is generally used when we need to validate the input in real-time as
the user enters information, because it will find the longest matching prefix of the
input string.
validationMessage: This is the error message to display if the input string
contains non-valid characters.

The two methods for this protocol are as follows:

validateString: This method will return true if the input string contains only
valid characters. The regExMatchingString property will be used in this
method to perform the match.
getMatchingString: This method will return a new string that contains only
valid characters. This method is generally used when we need to validate the
input in real-time as the user enters information because it will find the longest
matching prefix of the input string. We will use the regExFindMatchString
property in this method to retrieve the new string.

https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/
https://swift.org/documentation/api-design-guidelines/

Using Protocols and Protocol Extensions Chapter 8

[169]

Now let's see how we can create a structure that conforms to this protocol. The following
structure would be used to verify that the input string contains only alpha characters:

struct AlphaValidation1: TextValidating {
 static let sharedInstance = AlphaValidation1()
 private init(){}
 let regExFindMatchString = "^[a-zA-Z]{0,10}"
 let validationMessage = "Can only contain Alpha characters"
 var regExMatchingString: String {
 get {
 return regExFindMatchString + "$"
 }
 }
 func validateString(str: String) -> Bool {
 if let _ = str.range(of: regExMatchingString, options:
 .regularExpression) {
 return true
 } else {
 return false
 }
 }
 func getMatchingString(str: String) -> String? {
 if let newMatch = str.range(of: regExFindMatchString,
 options:.regularExpression) {
 return String(str[newMatch])
 } else {
 return nil
 }
 }
}

In this implementation, the regExFindMatchString and validationMessage properties
are stored properties, and the regExMatchingString property is a computed property.
We also implement the validateString() and getMatchingString() methods within
the structure.

Normally, we would have several different types that conform to the protocol, where each
one would validate a different type of input. As we can see from the AlphaValidation1
structure, there is a bit of code involved with each validation type. A lot of the code would
also be duplicated in each type. The code for both methods and the
regExMatchingString property would probably be duplicated in every validation class.
This is not ideal, but if we want to avoid creating a class hierarchy with a superclass that
contains the duplicate code (it is recommended that we prefer value types over reference
types), prior to protocol extensions, we have no other choice. Now let's see how we would
implement this using protocol extensions.

Using Protocols and Protocol Extensions Chapter 8

[170]

With protocol extensions, we need to think about the code a little differently. The big
difference is that we neither need nor want to define everything in the protocol. With
standard protocols, all the methods and properties that you would want to access using a
protocol interface would have to be defined within the protocol.

With protocol extensions, it is preferable for us to not define a property or method in the
protocol if we are going to be defining it within the protocol extension. Therefore, when we
rewrite our text validation types with protocol extensions, TextValidating would be
greatly simplified to look like this:

protocol TextValidating {
 var regExFindMatchString: String { get }
 var validationMessage: String { get }
}

In the original TextValidating protocol, we defined three properties and two methods.
As we can see in this new protocol, we are only defining two properties. Now that we have
our TextValidating protocol defined, let's create the protocol extension for it:

extension TextValidating {
 var regExMatchingString: String {
 get {
 return regExFindMatchString + "$"
 }
 }
 func validateString(str: String) -> Bool {
 if let _ = str.range(of:regExMatchingString,
 options:.regularExpression){
 return true
 } else {
 return false
 }
 }
 func getMatchingString(str: String) -> String? {
 if let newMatch = str.range(of:regExFindMatchString,
 options:.regularExpression) {
 return str.substring(with: newMatch)
 } else {
 return nil
 }
 }
}

Using Protocols and Protocol Extensions Chapter 8

[171]

In the TextValidating protocol extension, we define the two methods and the property
that were defined in the original TextValidating protocol but were not defined in the
new one. Now that we have created the protocol and protocol extension, we are able to
define our new text validation types. In the following code, we define three structures that
we will use to validate text as a user types it in:

struct AlphaValidation: TextValidating {
 static let sharedInstance = AlphaValidation()
 private init(){}
 let regExFindMatchString = "^[a-zA-Z]{0,10}"
 let validationMessage = "Can only contain Alpha characters"
}

struct AlphaNumericValidation: TextValidating {
 static let sharedInstance = AlphaNumericValidation()
 private init(){}
 let regExFindMatchString = "^[a-zA-Z0-9]{0,15}"
 let validationMessage = "Can only contain Alpha Numeric characters"
}

struct DisplayNameValidation: TextValidating {
 static let sharedInstance = DisplayNameValidation()
 private init(){}
 let regExFindMatchString = "^[\\s?[a-zA-Z0-9\\-_\\s]]{0,15}"
 let validationMessage = "Can only contain Alphanumeric Characters"
}

In each of the text-validation structures, we create a static constant and a private initializer
so that we can use the structure as a singleton. For more information on the singleton
pattern, please see The singleton design pattern section of Chapter 18, Adopting Design
Patterns in Swift.

After we define the singleton pattern, all we do in each type is set the values for the
regExFindMatchString and validationMessage properties. Now we have virtually no
duplicate code. The only code that is duplicated is the code for the singleton pattern and
that is not something we would want to put in the protocol extension because we would
not want to force the singleton pattern on all the conforming types.

We can now use the text validation types, as shown in the following code:

var testString = "abc123"

var alpha = AlphaValidation.sharedInstance
alpha.getMatchingString(str:testString)
alpha.validateString(str: testString)

Using Protocols and Protocol Extensions Chapter 8

[172]

In the previous code snippet, a new string is created to validate and get the shared instance
of the AlphaValidation type. Then getMatchingString() is used to retrieve the longest
matching prefix of the test string, which will be acbc. Then, the validateString()
method is used to validate the test string, but since the test string contains numbers, the
method will return false.

Do I need to use protocols?
Do you need to use protocols and protocol extensions when you already know OOP? The
short answer is no; however, it is highly recommended. In Chapter 9, Protocol Oriented
Design, we look at what makes protocol-oriented design so powerful to show you why you
should prefer protocols with POP over OOP. By understanding protocols and protocol-
oriented design, you will understand the Swift standard library better.

Swift's standard library
The Swift standard library defines a base layer of functionality for writing Swift
applications. Everything we have used so far in this book is from the Swift standard library.
The library defines the fundamental data types, such as the String, Int, and Double
types. It also defines collections, optional, global functions, and all the protocols that these
types conform to.

One of the best sites to see everything that makes up the standard library is http:/ ​/
swiftdoc.​org. This site lists all the types, protocols, operators, and globals that make up
the standard library and contains documentation for all of it.

Let's look at how protocols are used in the standard library by looking at the
documentation. When you first visit the home page, you will be greeted with a searchable
list of everything that makes up the standard library. There is also a complete list of all
Swift types that you can select from. Let's look at the Swift Array type by clicking on the
Array link. This will take you to the documentation page for the Array type.

http://swiftdoc.org/
http://swiftdoc.org/
http://swiftdoc.org/
http://swiftdoc.org/
http://swiftdoc.org/
http://swiftdoc.org/

Using Protocols and Protocol Extensions Chapter 8

[173]

These documentation pages are extremely useful and contain a lot of information about the
various types that make up the standard library, including samples of how to use them. For
our discussion, we are interested in the section labeled Inheritance:

As we can see, the Array type conforms to 14 protocols, but this only shows us a small part
of the picture. If we click on the view protocol hierarchy link, we can see the full protocol
hierarchy that the array conforms to. This hierarchy looks like this:

From what you have learned in this and previous chapters, you should be able to
understand this diagram; however, you may not understand why the hierarchy is laid out
like it is. In the next chapter, Protocol Oriented Ddesign, we will look at how to design our
applications and frameworks using a protocol-oriented approach. At the end of that
chapter, we will take a closer look at this protocol hierarchy.

Using Protocols and Protocol Extensions Chapter 8

[174]

Summary
In this chapter, we saw that protocols are treated as full-fledged types by Swift. We also
saw how polymorphism can be implemented in Swift with protocols. We concluded this
chapter with an in-depth look at protocol extensions and saw how we would use them in
Swift.Protocols and protocol extensions are the backbone of Apple's new POP paradigm.
This new model for programming has the potential to change the way we write and think
about code. While we did not specifically cover POP in this chapter, getting to grips with
the topics in this chapter gives us the solid understanding of protocols and protocol
extensions needed to learn about this new programming model.In the next chapter, we will
look at how to use protocols and protocol extensions when we are designing our
application.

9
Protocol Oriented Design

When Apple announced Swift 2 at the World Wide Developers Conference (WWDC) in
2016, they also declared that Swift was the world's first protocol-oriented programming
(POP) language. By its name, we might assume that protocol-oriented programming is all
about protocol; however, that would be a wrong assumption. Protocol-oriented
programming is about so much more than just protocol; it is actually a new way of not only
writing applications, but also thinking about programming.

In this chapter, we will cover the following topics:

What is the difference between OOP and POP design?
What is protocol-oriented design?
What is protocol composition?
What is protocol inheritance?

Days after Dave Abrahams did his presentation on POP at WWDC 2016, there were
numerous tutorials on the internet about POP that took a very object-oriented approach to
it. By this statement, I mean the approach taken by these tutorials focused on replacing the
superclass with protocols and protocol extensions. While protocols and protocol extensions
are arguably two of the more important concepts of POP, these tutorials seem to be missing
some very important concepts.

In this chapter, we will be comparing a protocol-oriented design with an object-oriented
design to highlight some of the conceptual differences between the two. We will look at
how we can use protocols and protocol extensions to replace superclasses, and how we can
use POP to create a cleaner and easier-to-maintain code base. To do this, we will look at
how to define animal types for a video game in both an object-oriented and a protocol-
oriented way. Let's start off by defining the requirements for our animals.

Protocol Oriented Design Chapter 9

[176]

Requirements
When we develop applications, we usually have a set of requirements that we need to
develop toward. With that in mind, let's define the requirements for the animal types that
we will be creating in this chapter:

We will have three categories of animals: sea, land, and air.
Animals may be members of multiple categories. For example, an alligator can be
a member of both the land and sea categories.
Animals may attack and/or move when they are on a tile that matches the
categories they are in.
Animals will start off with a certain number of hit points, and if those hit points
reach 0 or less, then they will be considered dead.

For our example here, we will define two animals, the Lion and Alligator, but we know that
the number of animal types will grow as we develop the game.

We will start off by looking at how we would design our animal types using an object-
oriented approach.

Object-oriented design
Before we start writing code, let's create a very basic diagram that shows how we would
design the Animal class hierarchy. In this diagram, we will simply show the classes
without much detail. This diagram will help us picture the class hierarchy in our mind. The
following diagram shows the class hierarchy for the object-oriented design:

Protocol Oriented Design Chapter 9

[177]

This diagram shows that we have one superclass named Animal, and two subclasses
named Alligator and Lion. We may think with the three categories (land, air, and sea)
that we would want to create a larger class hierarchy where the middle layer would contain
the classes for the land, air, and sea animals. This would allow us to separate the code for
each animal category; however, that is not possible with our requirements. The reason this
is not possible is that any of the animal types can be members of multiple categories, and
with a class hierarchy, each class can have one and only one superclass. This means that the
Animal superclass will need to contain the code required for each of the three categories.

Let's begin by looking at the code for the Animal superclass.

We will start the Animal superclass by defining 10 properties. These properties will define
what type of animal it is and what type of attacks/movements it can do. We also define a
property that will keep track of the hit points for the animal.

We defined these properties as fileprivate variables. We will need to set these properties in
the subclasses that we defined in the same source file; however, we do not want external
entities to change them. The preference is for these to be constants, but with an object-
oriented approach; a subclass cannot set/change the value of a constant defined in a
superclass. For this to work, the subclass will need to be defined in the same physical file as
the superclass. You can read about fileprivate access control within the proposal at https:/
/​github.​com/​apple/ ​swift- ​evolution/ ​blob/ ​master/ ​proposals/ ​25- ​scoped- ​access-
level.md:

class Animal {
 fileprivate var landAnimal = false
 fileprivate var landAttack = false
 fileprivate var landMovement = false

 fileprivate var seaAnimal = false
 fileprivate var seaAttack = false
 fileprivate var seaMovement = false

 fileprivate var airAnimal = false
 fileprivate var airAttack = false
 fileprivate var airMovement = false

 fileprivate var hitPoints = 0
}

https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md
https://github.com/apple/swift-evolution/blob/master/proposals/25-scoped-access-level.md

Protocol Oriented Design Chapter 9

[178]

Next, we will define an initializer that will set the properties. We will set all the properties
to false by default, and the hit points to zero. It will be up to the subclasses to set the
appropriate properties that apply:

init() {
landAnimal = false
landAttack = false
landMovement = false
airAnimal = false
airAttack = false
airMovement = false
seaAnimal = false
seaAttack = false
seaMovement = false
hitPoints = 0
}

Since our properties are fileprivate, we need to create some getter methods so that we can
retrieve their values. We will also create a couple of additional methods that will see if the
animal is alive. We will need another method that will deduct hit points when the animal
takes a hit:

func isLandAnimal() -> Bool {
 return landAnimal
}
func canLandAttack() -> Bool {
 return landAttack
}
func canLandMove() -> Bool {
 return landMovement
}
func isSeaAnimal() -> Bool {
 return seaAnimal
}
func canSeaAttack() -> Bool {
 return seaAttack
}
func canSeaMove() -> Bool {
 return seaMovement
}
func isAirAnimal() -> Bool {
 return airAnimal
}
func canAirAttack() -> Bool {
 return airAttack
}
func canAirMove() -> Bool {

Protocol Oriented Design Chapter 9

[179]

 return airMovement
}
func doLandAttack() {}
func doLandMovement() {}
func doSeaAttack() {}
func doSeaMovement() {}
func doAirAttack() {}
func doAirMovement() {}
func takeHit(amount: Int) {
 hitPoints -= amount
}
func hitPointsRemaining() -> Int {
 return hitPoints
}
func isAlive() -> Bool {
 return hitPoints > 0 ? true : false
}

One big disadvantage of this design, as noted previously, is that all the subclasses need to
be in the same physical file as the Animal superclass. Considering how large the animal
classes can be once we get in all of the game logic, we probably do not want all of these
types in the same file. To avoid this, we could set the properties to internal or public, but
that would not prevent the values from being changed by instances of other types. This is a
major drawback of our object-oriented design.

Now that we have our Animal superclass, we can create the Alligator and Lion classes,
which will be subclasses of the Animal class:

class Lion: Animal {
 override init() {
 super.init()
 landAnimal = true
 landAttack = true
 landMovement = true
 hitPoints = 20
 }
 override func doLandAttack() {
 print("Lion Attack")
 }
 override func doLandMovement() {
 print("Lion Move")
 }
}

class Alligator: Animal {
 override init() {
 super.init()

Protocol Oriented Design Chapter 9

[180]

 landAnimal = true
 landAttack = true
 landMovement = true
 seaAnimal = true
 seaAttack = true
 seaMovement = true
 hitPoints = 35
 }
 override func doLandAttack() {
 print("Alligator Land Attack")
 }
 override func doLandMovement() {
 print("Alligator Land Move")
 }
 override func doSeaAttack() {
 print("Alligator Sea Attack")
 }
 override func doSeaMovement() {
 print("Alligator Sea Move")
 }

}

As we can see, these classes set the functionality needed for each animal. The Lion class
contains the functionality for a land animal and the Alligator class contains the
functionality for both land and sea animals.

Another disadvantage of this object-oriented design is that we do not have a single point
that defines what type of animal (air, land, or sea) this is. It is very easy to set the wrong
flag or add the wrong function when we cut and paste, or type in the code. This may lead
us to have an animal like this:

class landAnimal: Animal {
 override init() {
 super.init()
 landAnimal = true
 airAttack = true
 landMovement = true
 hitPoints = 20
 }
 override func doLandAttack() {
 print("Lion Attack")
 }
 override func doLandMovement() {
 print("Lion Move")
 }
}

Protocol Oriented Design Chapter 9

[181]

In the previous code, we set the landAnimal property to true; however, we accidentally
set airAttack to true as well. This will give us an animal that can move on land, but
cannot attack, since the landAttack property is not set. Hopefully, we would catch these
types of errors in testing; however, as we will see later in this chapter, a protocol-oriented
approach would help prevent coding errors like this.

Since both classes have the same Animal superclass, we can use polymorphism to access
them through the interface provided by the Animal superclass:

var animals = [Animal]()
animals.append(Alligator())
animals.append(Alligator())
animals.append(Lion())

for (index, animal) in animals.enumerated() {
 if animal.isAirAnimal() {
 print("Animal at \(index) is Air")
 }
 if animal.isLandAnimal() {
 print("Animal at \(index) is Land")
 }
 if animal.isSeaAnimal() {
 print("Animal at \(index) is Sea")
 }
}

The way we designed the animal types here would work; however, there are several
drawbacks in this design. The first drawback is the large monolithic Animal superclass.
Those who are familiar with designing characters for video games probably realize how
much functionality is missing from this superclass and its subclasses. This is on purpose, so
that we can focus on the design and not the functionality. For those who are not familiar
with designing characters for video games, trust me when I say that this class may get very
large.

Another drawback is not being able to define constants in the superclass that the subclasses
can set. We could define various initializers for the superclass that would correctly set the
constants for the different animal categories; however, these initializers will become pretty
complex and hard to maintain as we add more animals. The builder pattern could help us
with the initialization, but as we are about to see, a protocol-oriented design would be even
better.

Protocol Oriented Design Chapter 9

[182]

One final drawback that I am going to point out is the use of flags (landAnimal,
seaAnimal, and airAnimal properties) to define the type of animal, and the type of attack
and movements an animal can perform. If we do not correctly set these flags, then the
animal will not behave correctly. As an example, if we set the seaAnimal flag rather than
the landAnimal flag in the Lion class, then the lion will not be able to move or attack on
land. Trust me, it is very easy, even for the most experienced developers, to set flags
wrongly.

Now let's look at how we would define this same functionality in a protocol-oriented way.

Protocol-oriented design
Just like our object-oriented design, we will start off with a diagram that shows the types
needed and the relationships between them. The following diagram shows our protocol-
oriented design:

As we can see, the POP design is quite different from the OOP design. In this design, we
use three techniques that make POP significantly different from OOP. These techniques are
protocol inheritance, protocol composition, and protocol extensions. We looked at protocol
extensions in the previous chapter, but we have not covered protocol inheritance or
composition yet. It is important to understand these concepts, so before we go into the
design, let's look at what protocol inheritance and protocol composition are.

Protocol Oriented Design Chapter 9

[183]

Protocol inheritance
Protocol inheritance is where one protocol can inherit the requirements from one or more
protocols. This is similar to class inheritance in OOP, but instead of inheriting functionality,
we are inheriting requirements. We can also inherit requirements from multiple protocols,
whereas a class in Swift can have only one superclass. Let's start off by defining four
protocols, named Name, Age, Fur, and Hair:

protocol Name {
 var firstName: String { get set }
 var lastName: String { get set }
}

protocol Age {
 var age: Double { get set }
}

protocol Fur {
 var furColor: String { get set }
}

protocol Hair {
 var hairColor: String { get set }
}

Each of the four protocols has different requirements.

There is one thing that I would like to point out. If you find yourself
creating protocols with single requirements (as shown in this example),
you probably want to reconsider your overall design. Protocols should not
be this granular because we end up with too many protocols and they
become hard to manage. We are using smaller protocols here as examples.

Now let's look at how we can use these protocols and protocol inheritance to create
additional protocols. We will define two more protocols, named Person and Dog:

protocol Person: Name, Age, Hair {
 var height: Double { get set }
}

protocol Dog: Name, Age, Fur {
 var breed: String { get set }
}

Protocol Oriented Design Chapter 9

[184]

In this example, any type that conforms to the Person protocol will need to fulfill the
requirements of the Name, Age, and Hair protocols, as well as the requirements defined
within the Person protocol itself. Any type that conforms to the Dog protocol will need to
fulfill the requirements of the Name, Age, and Fur protocols as well as the requirements
defined within the Dog protocol itself. This is the basis of protocol inheritance, where we
can have one protocol inherit the requirements of one or more protocols.

Protocol inheritance is extremely powerful because we can define several smaller protocols
and mix/match them to create larger protocols. You will want to be careful not to create
protocols that are too granular because they will become hard to maintain and manage.

Protocol composition
Protocol composition allows types to conform to more than one protocol. This is one of the
many advantages that protocol-oriented design has over object-oriented design. With
object-oriented design, a class can have only one superclass. This can lead to very large,
monolithic superclasses, as we saw in the Object-oriented design section of this chapter. With
protocol-oriented design, we are encouraged to create multiple smaller protocols with very
specific requirements. Let's look at how protocol composition works. Let's add another
protocol, named Occupation, to our example from the Protocol inheritance section:

protocol Occupation {
 var occupationName: String { get set }
 var yearlySalary:Double { get set }
 var experienceYears: Double { get set }
}

Next let's create a new type named Programmer that will conform to both the Person and
Occupation protocols:

struct Programmer: Person, Occupation {
 var firstName: String
 var lastName: String
 var age: Double
 var hairColor: String
 var height: Double
 var occupationName: String
 var yearlySalary: Double
 var experienceYears: Double
}

Protocol Oriented Design Chapter 9

[185]

In this example, the Programmer structure conforms to all the requirements from both the
Person and Occupation protocols. Keep in mind that the Person protocol is a composite
of the requirements from the Name, Age, Hair, and Person protocols; therefore, the
Programmer type will need to conform to all those protocols plus the Occupation
protocol.

Once again, I want to warn you not to make your protocols too granular. Protocol
inheritance and composition are really powerful features but can also cause problems if
used wrongly.

Protocol composition and inheritance may not seem that powerful on their own; however,
when we combine them with protocol extensions, we have a very powerful programming
paradigm. Let's look at how powerful this paradigm is.

Protocol-oriented design
We will begin by rewriting the Animal superclass as a protocol:

protocol Animal {
 var hitPoints: Int { get set }
}

In the Animal protocol, the only item that we are defining is the hitPoints property. If we
were putting in all the requirements for an animal in a video game, this protocol would
contain all the requirements that would be common to every animal. To be consistent with
our object-oriented design, we only need to add the hitPoints property to this protocol.

Next, we need to add an Animal protocol extension, which will contain the functionality
that is common for all types that conform to the protocol. Our Animal protocol extension
would contain the following code:

extension Animal {
 mutating func takeHit(amount: Int) {
 hitPoints -= amount
}
 func hitPointsRemaining() -> Int {
 return hitPoints
}
 func isAlive() -> Bool {
 return hitPoints > 0 ? true : false
 }
}

Protocol Oriented Design Chapter 9

[186]

The Animal protocol extension contains the same takeHit(), hitPointsRemaining(),
and isAlive() methods that we saw in the Animal superclass from the object-oriented
example. Any type that conforms to the Animal protocol will automatically inherit these
three methods.

Now let's define our LandAnimal, SeaAnimal, and AirAnimal protocols. These protocols
will define the requirements for the land, sea, and air animals respectively:

protocol LandAnimal: Animal {
 var landAttack: Bool { get }
 var landMovement: Bool { get }

 func doLandAttack()
 func doLandMovement()
}

protocol SeaAnimal: Animal {
 var seaAttack: Bool { get }
 var seaMovement: Bool { get }

 func doSeaAttack()
 func doSeaMovement()
}

protocol AirAnimal: Animal {
 var airAttack: Bool { get }
 var airMovement: Bool { get }

 func doAirAttack()
 func doAirMovement()
}

Unlike the Animal superclass in the object-oriented design, these three protocols only
contain the functionality needed for their particular type of animal. Each of these protocols
only contains four lines of code, while the Animal superclass from the object-oriented
example contains significantly more. This makes our protocol design much easier to read
and manage. The protocol design is also much safer because the functionality for the
various animal types is isolated in their own protocol rather than being embedded in a
giant superclass. We are also able to avoid the use of flags to define the animal category
and, instead, define the category of the animal by the protocols it conforms to.

In a full design, we would probably need to add some protocol extensions for each of the
animal types, but once again, to be consistent with our object-oriented design, we do not
need them for our example here.

Protocol Oriented Design Chapter 9

[187]

Now, let's look at how we would create our Lion and Alligator types using protocol-
oriented design:

struct Lion: LandAnimal {
 var hitPoints = 20
 let landAttack = true
 let landMovement = true

 func doLandAttack() {
 print("Lion Attack")
}
 func doLandMovement() {
 print("Lion Move")
 }
}

struct Alligator: LandAnimal, SeaAnimal {
 var hitPoints = 35
 let landAttack = true
 let landMovement = true
 let seaAttack = true
 let seaMovement = true

 func doLandAttack() {
 print("Alligator Land Attack")
 }
 func doLandMovement() {
 print("Alligator Land Move")
 }
 func doSeaAttack() {
 print("Alligator Sea Attack")
 }
 func doSeaMovement() {
 print("Alligator Sea Move")
 }
}

Notice that we specify that the Lion type conforms to the LandAnimal protocol, while the
Alligator type conforms to both the LandAnimal and SeaAnimal protocols. As we saw
previously, having a single type that conforms to multiple protocols is called protocol
composition, and is what allows us to use smaller protocols, rather than one giant
monolithic superclass, as we did in the object-oriented example.

Protocol Oriented Design Chapter 9

[188]

Both the Lion and Alligator types originate from the Animal protocol; therefore, they
will inherit the functionality added with the Animal protocol extension. If our animal type
protocols also had extensions, then they would also inherit the function added by those
extensions as well. With protocol inheritance, composition, and extensions, our concrete
types contain only the functionality needed by the particular animal types that they
conform to, unlike in the object-oriented design, where each animal would contain all of the
functionality from the huge, single superclass.

Since the Lion and Alligator types originate from the Animal protocol, we can still use
polymorphism as we did in the object-oriented example. Let's look at how this works:

var animals = [Animal]()

 animals.append(Alligator())
 animals.append(Alligator())
 animals.append(Lion())

 for (index, animal) in animals.enumerated() {
 if let _ = animal as? AirAnimal {
 print("Animal at \(index) is Air")
 }
 if let _ = animal as? LandAnimal {
 print("Animal at \(index) is Land")
 }
 if let _ = animal as? SeaAnimal {
 print("Animal at \(index) is Sea")
 }
}

In this example, we create an array that will contain Animal types named animals. We then
create two instances of the Alligator type and one instance of the Lion type that are
added to the animals array. Finally, we use a for-in loop to loop through the array and print
out the animal type based on the protocol that the instance conforms to.

Using the where statement with protocols
With protocols, we are able to use the where statement to filter the instances of our types.
For example, if we only want to get the instances that conform to the SeaAnimal protocol,
we can create a for loop as follows:

for (index, animal) in animals.enumerated() where animal is SeaAnimal {
 print("Only Sea Animal: \(index)")
}

Protocol Oriented Design Chapter 9

[189]

This will retrieve only the animals that conform to the SeaAnimal protocol. This is a lot
safer than using flags as we did in the object-oriented design example.

Structures versus classes
You may have noticed that in the object-oriented design we used classes, while in the
protocol-oriented design example we used structures. Classes, which are reference types,
are one of the pillars of object-oriented programming and every major object-oriented
programming language uses them. For Swift, Apple has said that we should prefer value
types (structures) to reference types (classes). While this may seem odd for anyone who has
extensive experience with object-oriented programming, there are several good reasons for
this recommendation.

The biggest reason, in my opinion, for using structures (value types) over classes is the
performance gain we get. Value types do not incur the additional overhead for reference
counting that reference types incur. Value types are also stored on the stack, which
provides better performance as compared to reference types, which are stored on the heap.
It is also worth noting that copying values is relatively cheap in Swift.

Keep in mind that, as our value types get large, the performance cost of copying can negate
the other performance gains of value types. In the Swift standard library, Apple has
implemented copy-on-write behavior to reduce the overhead of copying large value types.

With copy-on-write behavior, we do not create a new copy of our value type when we
assign it to a new variable. The copy is postponed until one of the instances changes the
value. This means that, if we have an array of one million numbers, when we pass this
array to another array we will not make a copy of the one million numbers until one of the
arrays changes. This can greatly reduce the overhead incurred from copying instances of
our value types.

Value types are also a lot safer than reference types, because we do not have multiple
references pointing to the same instance, as we do with reference types. This really becomes
apparent when we are dealing with a multithreaded environment. Value types are also
safer because we do not have memory leaks caused by common programming errors, such
as the strong reference cycles that we will discuss in Chapter 16, Memory Management.

Don't worry if you do not understand some of the items discussed in this section. The thing
to understand is that value types, like structures, are safer, and for the most part provide
better performance in Swift, as compared to reference types, such as classes.Now that we
have a better understanding of protocol-oriented design, let's once again look at the array
structure provided in the Swift standard library.

Protocol Oriented Design Chapter 9

[190]

The array structure
At the end of Chapter 6, Using Protocols and Protocol Extensions, we looked at the array
structure provided in the Swift standard library. Now that we have a better understanding
of protocol-oriented design, let's look at the protocol hierarchy for this structure again. The
following diagram shows the protocol hierarchy:

As we can see, the protocol hierarchy for the array structure uses protocol-oriented design.
Protocol inheritance is used in several places within the array protocol hierarchy. For
example, the Collection protocol inherits from the Sequence protocol, and the
MutableCollection protocol inherits from the Collection protocol.

Protocol composition is used because the array protocol inherits directly from eight
different protocols. When you add in the protocol inheritance and composition, the array
actually conforms to all 14 protocols shown in this diagram.

Summary
As we have read through this chapter and looked at some of the advantages that protocol-
oriented design has over object-oriented design, we may think that protocol-oriented
design is clearly superior to object-oriented design. However, this assumption would not be
entirely correct.

Object-oriented design has been around since the 1970s and is a tried and true
programming paradigm. Protocol-oriented design is the new kid on the block and was
designed to correct some of the issues with object-oriented design.

Protocol Oriented Design Chapter 9

[191]

Object-oriented and protocol-oriented design have similar philosophies, such as creating
custom types that model real-world objects, and polymorphism to use a single interface to
interact with multiple types. The difference is how these philosophies are implemented.

To me, the code base in a project that uses protocol-oriented design is much safer, easier to
read, and easier to maintain as compared to a project that uses an object-oriented design.
This does not mean that I am going to stop using object-oriented design altogether. I can
still see a need for class hierarchy in certain instances.

Remember that when we are designing our application, we should always use the right tool
for the job. We would not want to use a chainsaw to cut a piece of 2 x 4 lumber, but we also
would not want to use a skill saw to cut down a tree. Therefore, the winner is the
programmer who has the choice of using different programming paradigms rather than
being limited to only one. In the next chapter, we will look at Generics.

10
Generics

My first experience with generics was back in 2004, when they were first introduced in the
Java programming language. I can still remember picking up my copy of The Java
Programming Language, Fourth Edition, which covered Java 5 and reading about Java's
implementation of generics. Since then, I have used generics in several projects, not only in
Java but also in other languages. If you are familiar with generics in other languages, such
as Java, the syntax that Swift uses will be very familiar to you. Generics allow us to write
very flexible and reusable code; however, just like with subscripts, we need to make sure
that we use them properly and do not overuse them.

In this chapter, we will cover the following topics:

What are generics?
How to create and use generic functions?
How to create and use generic types?
How to use associated types with protocols?

Introducing generics
The concept of generics has been around for a while, so it should not be a new concept to
developers coming from languages such as Java or C#. The Swift implementation of
generics is very similar to these languages. For those developers coming from languages
that do not have generics, such as Objective-C, they might seem a bit foreign at first, but
once you start using them you will realize how powerful they are.

Generics Chapter 10

[193]

Generics allow us to write very flexible and reusable code that avoids duplication. With a
type-safe language, such as Swift, we often need to write functions, classes, and structures
that are valid for multiple types. Without generics, we need to write separate functions for
each type we wish to support; however, with generics, we can write one generic function to
provide the functionality for multiple types. Generics allow us to tell a function or type I
know Swift is a type-safe language, but I do not know the type that will be needed yet. I will give you
a placeholder for now and will let you know what type to enforce later.

In Swift, we have the ability to define both generic functions and generic types. Let's look at
generic functions first.

Generic functions
Let's begin by examining the problem that generics tries to solve, and then we will see how
generics solve this problem. Let's say that we wanted to create functions that swapped the
values of two variables (as described in the first part of this chapter); however, for our
application, we need to swap two integer types, two Double types, and two String
types. The following code shows what these functions could look like:

func swapInts(a: inout Int,b: inout Int) {
 let tmp = a
 a = b
 b = tmp
}

func swapDoubles(a: inout Double,b: inout Double) {
 let tmp = a
 a = b
 b = tmp
}

func swapStrings(a: inout String, b: inout String) {
 let tmp = a
 a = b
 b = tmp
}

Generics Chapter 10

[194]

With these three functions, we can swap the original values of two Integer types, two
Double types, and two String types. Now, let's say, as we develop our application
further, we find out that we also need to swap the values of two unsigned Integer types,
two Float types, and even a couple of custom types. We might easily end up with eight or
more swap functions. The worst part is that each of these functions contains duplicate code.
The only difference between these functions is that the parameter types change. While this
solution does work, generics offer a much simpler and more elegant solution that
eliminates all the duplicate code. Let's see how we would condense all three of the
preceding functions into a single generic function:

func swapGeneric<T>(a: inout T, b: inout T) {
 let tmp = a
 a = b
 b = tmp
}

Let's look at how we defined the swapGeneric function. The function itself looks pretty
similar to a normal function, except for the capital T. The capital T, as used in the
swapGeneric function, is a placeholder type, and tells Swift that we will be defining the
type later. When a type is defined, it will be used in place of all the placeholders.

To define a generic function, we include the placeholder type between two angular brackets
(<T>) after the function's name. We can then use that placeholder type in place of any type
definition within the parameter definitions, the return type, or the function itself. The big
thing to keep in mind is that, once the placeholder is defined as a type, all the other
placeholders assume that type. Therefore, any variable or constant defined with that
placeholder must conform to that type.

There is nothing special about the capital T; we could use any valid identifier in place of T.
We can also use descriptive names, such as key and value, as the Swift language does with
dictionaries. The following definitions are perfectly valid:

func swapGeneric<G>(a: inout G, b: inout G) {
 //Statements
}

func swapGeneric<xyz>(a: inout xyz, b: inout xyz) {
 //Statements
}

Generics Chapter 10

[195]

In most documentation, generic placeholders are defined with either T (for type) or E (for
element). We will, for the purposes of this chapter, use the capital T to define generic
placeholders. It is also good practice to use the capital T to define a generic placeholder
within our code so that the placeholder is easily recognized when we are looking at the
code at a later time.

If you do not like using the capital T or capital E to define generics, try to
be consistent. I would recommend that you avoid the use of different
identifiers to define generics throughout your code.

If we need to use multiple generic types, we can create multiple placeholders by separating
them with commas. The following example shows how to define multiple placeholders for
a single function:

func testGeneric<T,E>(a: T, b: E) {
 //Statements
}

In this example, we are defining two generic placeholders, T and E. In this case, we can set
the T placeholder to one type and the E placeholder to a different type.

Let's look at how to call a generic function. The following code will swap two integers
using the swapGeneric<T>(inout a: T, inout b: T) function:

var a = 5
 var b = 10
swapGeneric(a: &a, b: &b)
print("a:\(a) b:\(b)")

If we run this code, the output will be a: 10 b: 5. We can see that we do not have to do
anything special to call a generic function. The function infers the type from the first
parameter and then sets all the remaining placeholders to that type. Now, if we need to
swap the values of two strings, we will call the same function, as follows:

var c = "My String 1"
var d = "My String 2"
swapGeneric(a: &c, b: &d)
print("c:\(c) d:\(d)")

Generics Chapter 10

[196]

We can see that the function is called in exactly the same way as we called it when we
wanted to swap two integers. One thing that we cannot do is pass two different types into
the swap function, because we defined only one generic placeholder. If we attempt to run
the following code, we will receive an error:

var a = 5
var c = "My String 1"
swapGeneric(a: &a, b: &c)

The error that we will receive is that it cannot convert the value of type
Stringtoexpectedargument type Int, which tells us that we are attempting to use a
String value when an Int value is expected. The reason the function is looking for an Int
value is because the first parameter that we pass into the function is an Int value, and,
therefore, all the generic types in the function became Int types.

Now, let's say we have the following function, which has multiple generic types defined:

func testGeneric<T,E>(a: T, b: E) {
 print("\(a)\(b)")
}

This function would accept parameters of different types; however, since they are of
different types, we would be unable to swap the values because they are different. There
are also other limitations to generics. For example, we may think that the following generic
function would be valid; however, we would receive an error if we tried to implement it:

func genericEqual<T>(a: T, b: T) -> Bool{
 return a == b
}

The error that we receive is due to the fact that the binary operator, ==, cannot be applied to
two T operands. Since the type of the arguments is unknown at the time the code is
compiled, Swift does not know whether it is able to use the equal operator on the types,
and, therefore, the error is thrown. We might think that this is a limit that will make
generics hard to use; however, we have a way to tell Swift that we expect the type,
represented by the placeholder, will have a certain functionality. This is done with type
constraints.

Generics Chapter 10

[197]

A type constraint specifies that a generic type must inherit from a specific class or conform
to a particular protocol. This allows us to use the methods or properties defined by the
parent class or protocol within the generic function. Let's look at how to use type
constraints by rewriting the genericEqual function to use the comparable protocol:

func testGenericComparable<T: Comparable>(a: T, b: T) -> Bool{
 return a == b
}

To specify the type constraint, we put the class or protocol constraint after the generic
placeholder, where the generic placeholder and the constraint are separated by a colon.
This new function works as we might expect, and it will compare the values of the two
parameters and return true if they are equal or false if they are not.

We can declare multiple constraints just like we declare multiple generic types. The
following example shows how to declare two generic types with different constraints:

func testFunction<T: MyClass, E: MyProtocol>(a: T, b: E) {
 //Statements
}

In this function, the type defined by the T placeholder must inherit from the MyClass class,
and the type defined by the E placeholder must conform to the MyProtocolprotocol. Now
that we have looked at generic functions, let's look at generic types.

Generic types
We already had a general introduction to how generic types work when we looked at Swift
arrays and dictionaries. A generic type is a class, structure, or enumeration, that can work
with any type, just like the way Swift arrays and dictionaries work. As we recall, Swift
arrays and dictionaries are written so that they can contain any type. The catch is that we
cannot mix and match different types within an array or dictionary. When we create an
instance of our generic type, we define the type that the instance will work with. After we
define that type, we cannot change the type for that instance.

To demonstrate how to create a generic type, let's create a simple List class. This class will
use a Swift array as the backend storage for the list, and will let us add items to the list or
retrieve values from the list.

Generics Chapter 10

[198]

Let's begin by seeing how to define our generic list type:

class List<T> {
}

The preceding code defines the generic list type. We can see that we use the <T> tag to
define a generic placeholder, just like we did when we defined a generic function. This T
placeholder can then be used anywhere within the type instead of a concrete type
definition.

To create an instance of this type, we would need to define the type of items that our list
will hold. The following example shows how to create instances of the generic list type for
various types:

var stringList = List<String>()
var intList = List<Int>()
var customList = List<MyObject>()

The preceding example creates three instances of the List class. The stringList instance
can be used with instances of the String type, the intList instance can be used with
instances of the integer type, and the customList instance can be used with instances of
the MyObject type.

We are not limited to using generics only with classes. We can also define structures and
enumerations as generics. The following example shows how to define a generic structure
and a generic enumeration:

struct GenericStruct<T> {
}

enum GenericEnum<T> {
}

Now let's add the backend storage array to our List class. The items that are stored in this
array need to be of the same type that we define when we initiate the class; therefore, we
will use the T placeholder for the array's definition. The following code shows the List
class with an array named items. The items array will be defined using the T placeholder,
so it will hold the same types that we defined for the class:

class List<T> {
 var items = [T]()
}

Generics Chapter 10

[199]

This code defines our generic List type and uses T as the type placeholder. We can then
use this T placeholder anywhere in the class to define the type of an item. That item will
then be of the same type that we defined when we created the instance of the List class.
Therefore, if we create an instance of the list type, such as var stringList =
List<String>() , the items array will be an array of string instances. If we created an
instance of the List type, such as var intList = List<Int>(), the item array will be an
array of integer instances.

Now, we need to create the add() method, which will be used to add an item to the list.
We will use the T placeholder within the method declaration to define that the item
parameter will be of the same type that we declared when we initiated the class. Therefore,
if we create an instance of the list type to use the string type, we will be required to use an
instance of the string type as the parameter for the add() method. However, if we create
an instance of the list type to use the integer type, we will be required to use an instance
of the integer type as the parameter for the add() method.

Here is the code for the add() function:

func add(item: T) {
 items.append(item)
}

To create a standalone generic function, we add the <T> declaration after the function name
to declare that it is a generic function; however, when we use a generic method within a
generic type, we do not need the <T> declaration. Instead, we just need to use the type that
we defined in the class declaration. If we wanted to introduce another generic type, we
could define it with the method declaration.

Now, let's add the getItemAtIndex() method, which will return the item from the
backend array, at the specified index:

func getItemAtIndex(index: Int) -> T? {
 if items.count>index {
 return items[index]
 } else {
 return nil
 }
}

The getItemAtIndex() method accepts one argument, which is the index of the item we
want to retrieve. We then use the T placeholder to specify that our return type is an
optional that might be of the T type or that might be nil. If the backend storage array
contains an item at the specified index, we will return that item; otherwise, we return nil.

Generics Chapter 10

[200]

Now, let's look at our entire generic list class:

class List<T> {
 var items = [T]()
 func add(item: T) {
 items.append(item)
 }
 func getItemAtIndex(index: Int) -> T? {
 if items.count > index {
 return items[index]
 } else {
 return nil
 }
 }
}

As we can see, we initially defined the generic T placeholder type in the class declaration.
We then used this placeholder type within our class. In our List class, we use this
placeholder in three places. We use it as the type for our items array, as the parameter type
for our add() method, and as the optional return type in the getItemAtIndex() method.

Now, let's look at how to use the List class. When we use a generic type, we define the
type to be used within the class between angled brackets, such as <type>. The following
code shows how to use the List class to store instances of the String types:

var list = List<String>()
list.add(item: "Hello")
list.add(item: "World")
print(list.getItemAtIndex(index: 1))

In this code, we start off by creating an instance of the List type, called list, and specify
that it will store instances of the String type. We then use the add() method twice to store
two items in the list instance. Finally, we use the getItemAtIndex() method to retrieve
the item at index number 1, which will display Optional(World) to the console.

We can also define our generic types with multiple placeholder types, similarly to how we
use multiple placeholders in our generic methods. To use multiple placeholder types, we
separate them with commas. The following example shows how to define multiple
placeholder types:

class MyClass<T,E>{
 //Code
}

Generics Chapter 10

[201]

We then create an instance of the MyClass type that uses instances of the String
and Integer types, like this:

var mc = MyClass<String, Int>()

We can also use type constraints with generic types. Once again, using a type constraint for
a generic type is exactly the same as using one with a generic function. The following code
shows how to use a type constraint to ensure that the generic type conforms to the
comparable protocol:

class MyClass<T: Comparable>{}

So far in this chapter, we have seen how to use placeholder types with functions and types.
Now let's see how we can conditionally add extensions to a generic type.

Conditionally adding extensions with
generics
We can add extensions to a generic type conditionally if the type conforms to a protocol.
For example, if we wanted to add a sum() method to our generic List type only if the type
for T conforms to the numeric protocol, we could do this as follows:

extension List where T: Numeric {
 func sum () -> T {
 return items.reduce (0, +)
 }
}

This extension will add the sum() method to any List instance where the T type conforms
to the numeric protocol. This means that the list instance in the previous example, where
the list was created to hold String types, would not receive this method.

In the following code, where we create an instance of the List type that contains integers,
the instance will receive sum() and can be used as shown:

var list2 = List<Int>()
list2.add(item: 2)
list2.add(item: 4)
list2.add(item: 6)
print(list2.sum())

Now let's look at conditional conformance, which was added to Swift in version 4.1.

Generics Chapter 10

[202]

Conditional conformance
Conditional conformance allows a generic type to conform to a protocol only if the type
meets certain conditions. For example, if we wanted our List type to conform to the
equitable protocol only if the type stored in the list also conformed to the equitable
protocol, we could use the following code:

extension List: Equatable where T: Equatable {
 static func ==(l1:List, l2:List) -> Bool {
 if l1.items.count != l2.items.count {
 return false
 }
 for (e1, e2) in zip(l1.items, l2.items) {
 if e1 != e2 {
 return false
 }
 }
 return true
 }
}

This code will add conformance to the Equitable protocol to any instance of the List type
where the type that is stored in the list also conforms to the Equitable protocol.

There is a new function shown here that we have not talked about: the
zip() function. This function will loop through two sequences, in our
case arrays, simultaneously and create pairs (e1 and e2) that we can
compare.

The comparison function will first check to see that each array contains the same number of
elements and if not, it will return false. It then loops through each array, simultaneously
comparing the elements of the arrays; if any of the pairs do not match, it will return false. If
the previous tests pass, true is returned, which indicates that the List instances are equal
because the elements in the list are the same.

Now let's see how we can add generic subscripts to a non-generic type.

Generics Chapter 10

[203]

Generic subscripts
Prior to Swift 4, if we wanted to use generics with a subscript, we had to define the
subscript at the class or structure level. This forced us to make generic methods when it felt
like we should be using subscripts. Starting with Swift 4, we can create generic subscripts,
where either the subscript's return type or its parameters may be generic. Let's look at how
we can create a generic subscript. In this first example, we will create a subscript that will
accept one generic parameter:

subscript<T: Hashable>(item: T) -> Int {
 return item.hashValue
}

When we create a generic subscript, we define the placeholder type after the subscript
keyword. In the previous example, we define the T placeholder type and use a type
constraint to ensure that the type conforms to the Hashable protocol. This will allow us to
pass in an instance of any type that conforms to the Hashable protocol.

As we mentioned at the start of this section, we can also use generics for the return type of a
subscript. We define the generic placeholder for the return type exactly as we did for the
generic parameter. The following example illustrates this:

subscript<T>(key: String) -> T? {
 return dictionary[key] as? T
}

In this example, we define the T placeholder type after the subscript keyword, as we did in
the previous example. We then use this type as our return type for the subscript.

Associated types
An associated type declares a placeholder name that can be used instead of a type within a
protocol. The actual type to be used is not specified until the protocol is adopted. When
creating generic functions and types, we used a very similar syntax, as we have seen
throughout this chapter. Defining associated types for a protocol, however, is very
different. We specify an associated type using the associatedtype keyword.

Let's see how to use associated types when we define a protocol. In this example, we will
define the QueueProtocol protocol, which defines the capabilities that need to be
implemented by the queue that implements it:

protocol QueueProtocol {
 associatedtype QueueType

Generics Chapter 10

[204]

 mutating func add(item: QueueType)
 mutating func getItem() -> QueueType?
 func count() -> Int
}

In this protocol, we defined one associated type, named QueueType. We then used this
associated type twice within the protocol: once as the parameter type for the add() method
and once when we defined the return type of the getItem() method as an optional type
that might return an associated type of QueueType or nil.

Any type that implements the QueueProtocol protocol must be able to specify the type to
use for the QueueType placeholder, and must also ensure that only items of that type are
used where the protocol uses the QueueType placeholder.

Let's look at how to implement QueueProtocol in a non-generic class called IntQueue.
This class will implement the QueueProtocol protocol using the Integer type:

class IntQueue: QueueProtocol {
 var items = [Int]()
 func add(item: Int) {
 items.append(item)
}
 func getItem() -> Int? {
 return items.count > 0 ? items.remove(at: 0) : nil
}
 func count() -> Int {
 return items.count
 }
}

In the IntQueue class, we begin by defining our backend storage mechanism as an array of
integer types. We then implement each of the methods defined in the QueueProtocol
protocol, replacing the QueueType placeholder defined in the protocol with the Integer
type. In the add() method, the parameter type is defined as an instance of the integer type,
and in the getItem() method, the return type is defined as an optional that might return
an instance of the integer type or nil.

We use the IntQueue class as we would use any other class. The following code shows
this:

var intQ = IntQueue()
intQ.add(item: 2)
intQ.add(item: 4)
print(intQ.getItem()!)
intQ.add(item: 6)

Generics Chapter 10

[205]

We begin by creating an instance of the IntQueue class, named intQ. We then call the
add() method twice to add two values of the integer type to the intQ instance. We then
retrieve the first item in the intQ instance by calling the getItem() method. This line will
print the number 2 to the console. The final line of code adds another instance of the integer
type to the intQ instance.

In the preceding example, we implemented the QueueProtocol protocol in a non-generic
way. This means that we replaced the placeholder types with an actual type. QueueType
was replaced by the Integer type. We can also implement the QueueProtocol with a
generic type. Let's see how we would do this:

class GenericQueue<T>: QueueProtocol {
 var items = [T]()
 func add(item: T) {
 items.append(item)
 }
 func getItem() -> T? {
 return items.count > 0 ? items.remove(at:0) : nil
 }
 func count() -> Int {
 return items.count
 }
}

As we can see, the GenericQueue implementation is very similar to the IntQueue
implementation, except that we define the type to use as the generic placeholder, T. We can
then use the GenericQueue class as we would use any generic class. Let's look at how to
use the GenericQueue class:

var intQ2 = GenericQueue<Int>()
intQ2.add(item: 2)
intQ2.add(item: 4)
print(intQ2.getItem()!)
intQ2.add(item: 6)

We begin by creating an instance of the GenericQueue class that will use the integer type
and name it intQ2. Next, we call the add() method twice to add two instances of the
integer type to the intQ2 instance. We then retrieve the first item in the queue that was
added using the getItem() method and print the value to the console. This line will print
the number 2 to the console.

Generics Chapter 10

[206]

We can also use type constraints with associated types. When the protocol is adapted, the
type defined for the associated type must inherit from the class or conform to the protocol
defined by the type constraint. The following line defines an associated type with a type
constraint:

associatedtype QueueType: Hashable

In this example, we specify that, when the protocol is implemented, the type defined for the
associated type must conform to the Hashable protocol.

Summary
Generic types can be incredibly useful, and they are also the basis of the Swift standard
collection types (arrays and dictionaries); however, as mentioned in the introduction to this
chapter, we have to be careful to use them correctly.

We saw a couple of examples in this chapter that show how generics can make our lives
easier. The swapGeneric() function that was shown at the beginning of the chapter is a
good use of a generic function because it allows us to swap two values of any type we
choose, while only implementing the swap code once.

The generic List type is also a good example of how to make custom collection types that
can be used to hold any type. How we implemented the generic List type in this chapter is
similar to how Swift implements an array and dictionary with generics.

In the next chapter, we will look at error handling with Swift and how we can make a
feature only available if the device that the user is using has a certain version of the OS.

11
Availability and Error Handling

When I first started writing applications with objective-C, one of the most noticeable
deficiencies was the lack of exception handling. Most modern programming languages,
such as Java and C#, use try...catch blocks, or something similar, for exception handling.
While objective-C did have the try...catch block, it wasn't used within the Cocoa
framework itself, and it never really felt like a true part of the language. I have significant
experience in C, so I was able to understand how Apple's frameworks received and
responded to errors. To be honest, I sometimes preferred this method, even though I had
grown accustomed to exception handling with Java and C#. When Swift was first
introduced, I was hoping that Apple would put true error handling into the language so we
would have the option of using it; however, it was not in the initial release of Swift. When
Swift 2 was released, Apple added error handling to Swift. While this error handling may
look similar to exception handling in Java and C#, there are some very significant
differences.

We will cover the following topics in this chapter:

How to use the do-catch block in Swift
How to represent errors
How to use the defer statement
How to use the availability attribute

Native error handling
Languages such as Java and C# generally refer to the error-handling process as exception
handling. Within the Swift documentation, Apple refers to this process as error handling.
While on the outside, Java and C# exception handling may look somewhat similar to Swift's
error handling, there are some significant differences that those familiar with exception
handling in other languages will notice throughout this chapter.

Availability and Error Handling Chapter 11

[208]

Representing errors
Before we can really understand how error handling works in Swift, we must see how we
can represent an error. In Swift, errors are represented by values of types that conform to
the Error protocol. Swift's enumerations are very well-suited to modeling error conditions
because we have a finite number of error conditions to represent.

Let's look at how we would use an enumeration to represent an error. For this, we will
define a fictitious error named MyError with three error conditions, Minor, Bad, and
Terrible:

enum MyError: Error {
 case Minor
 ase Bad
 case Terrible
}

In this example, we define that the MyError enumeration conforms to the Error protocol.
We then define the three error conditions: Minor, Bad, and Terrible. That is all there is to
defining a basic error condition.

We can also use the associated values with our error conditions to allow us to add more
details about the error condition. Let's say that we want to add a description to the Terrible
error condition. We would do it like this:

enum MyError: Error {
 case Minor
 case Bad
 case Terrible(description:String)
}

Those who are familiar with exception handling in Java and C# can see that representing
errors in Swift is a lot cleaner and easier, because we do not need to create a lot of
boilerplate code or a full class. With Swift, it can be as simple as defining an enumeration
with our error conditions. Another advantage is that it is very easy to define multiple error
conditions and group them together so that all related error conditions are of one type.

Now let's see how we can model errors in Swift. For this example, let's look at how we
would assign numbers to players on a baseball team. For a baseball team, every new player
who is called up is assigned a unique number. This number must also be within a certain
range, because only two numbers fit on a baseball jersey.

Availability and Error Handling Chapter 11

[209]

Therefore, we would have three error conditions: number is too large, number is too small,
and number is not unique. The following example shows how we might represent these
error conditions:

enum PlayerNumberError: Error {
 case NumberTooHigh(description: String)
 case NumberTooLow(description: String)
 case NumberAlreadyAssigned
}

With the PlayerNumberError type, we define three very specific error conditions that tell us
exactly what went wrong. These error conditions are also grouped together in one type
since they are all related to assigning the players' numbers.

This method of defining errors allows us to define very specific errors that let our code
know exactly what went wrong if an error condition occurs. It also lets us group the errors
so that all related errors can be defined in the same type.

Now that we know how to represent errors, let's look at how to throw errors.

Throwing errors
When an error occurs in a function, the code that called the function must be made aware of
it; this is called throwing the error. When a function throws an error, it assumes that the
code that called the function, or some code further up the chain, will catch and recover
appropriately from the error.

To throw an error from a function, we use the throws keyword. This keyword lets the code
that called it know that an error may be thrown from the function. Unlike exception
handling in other languages, we do not list the specific error types that may be thrown.

Since we do not list the specific error types that may be thrown from a
function within the function's definition, it would be good practice to list
them in the documentation and comments for the function, so that other
developers who use the function know what error types to catch.

Soon we will look at how we can throw errors. But first, let's add a fourth error to the
PlayerNumberError type that we defined earlier. This error condition is thrown if we are
trying to retrieve a player by their number, but no player has been assigned that number.

Availability and Error Handling Chapter 11

[210]

The new PlayerNumberError type will now look similar to this:

enum PlayerNumberError: Error {
 case NumberTooHigh(description: String)
 case NumberTooLow(description: String)
 case NumberAlreadyAssigned
 case NumberDoesNotExist
}

To demonstrate how to throw errors, let's create a BaseballTeam structure that will
contain a list of players for a given team. These players will be stored in a dictionary object
named players, and will use the player's number as the key, because we know that each
player must have a unique number. The BaseballPlayer type, which will be used to
represent a single player, will be a typealias for a tuple type, and is defined like this:

typealias BaseballPlayer = (firstName: String, lastName: String, number:
Int)

In this BaseballTeam structure, we will have two methods. The first one will be named
addPlayer(). This method will accept one parameter of the BaseballPlayer type and
will attempt to add the player to the team. This method can also throw one of three error
conditions: NumberTooHigh, NumberTooLow, or NumberAlreadyExists. Here is how we
would write this method:

mutating func addPlayer(player: BaseballPlayer) throws {
 guard player.number < maxNumber else {
 throw PlayerNumberError.NumberTooHigh(description: "Max number
 is \(maxNumber)")
 }
 guard player.number > minNumber else {
 throw PlayerNumberError.NumberTooLow(description: "Min number
 is \(minNumber)")
 }
 guard players[player.number] == nil else {
 throw PlayerNumberError.NumberAlreadyAssigned

 }
 players[player.number] = player
}

We can see that the throws keyword is added to the method's definition. The throws
keyword lets any code that calls this method know that it may throw an error and the error
must be handled. We then use the three guard statements to verify that the number is not
too large, not too small, and is unique in the players dictionary. If any of the conditions are
not met, we throw the appropriate error using the throws keyword. If we make it through
all three checks, the player is then added to the players dictionary.

Availability and Error Handling Chapter 11

[211]

The second method that we will be adding to the BaseballTeam structure is the
getPlayerByNumber() method. This method will attempt to retrieve the baseball player
that is assigned a given number. If no player is assigned that number, this method will
throw a NumberDoesNotExist error. The getPlayerByNumber() method will look
similar to this:

func getPlayerByNumber(number: Int) throws -> BaseballPlayer {
 if let player = players[number] {
 return player
 } else {
 throw PlayerNumberError.NumberDoesNotExist
 }
}

We have added the throws keyword to this method definition as well; however, this
method also has a return type. When we use the throws keyword with a return type, it
must be placed before the return type in the method's definition.

Within the method, we attempt to retrieve the baseball player with the number that is
passed into the method. If we are able to retrieve the player, we return it; otherwise, we
throw the NumberDoesNotExist error. Note that if we throw an error from a method that
has a return type, a return value is not required.

Now let's see how to catch an error with Swift.

Catching errors
When an error is thrown from a function, we need to catch it in the code that called it; this
is done using the do-catch block. We use the try keyword, within the do-catch block, to
identify the places in the code that may throw an error. The do-catch block with a try
statement takes the following syntax:

do {
 try [Some function that throws]
 [code if no error was thrown]
} catch [pattern] {
 [Code if function threw error]
}

If an error is thrown, it is propagated out until it is handled by a catch clause. The catch
clause consists of the catch keyword, followed by a pattern to match the error against. If the
error matches the pattern, the code within the catch block is executed.

Availability and Error Handling Chapter 11

[212]

Let's look at how we can use the do-catch block by calling both the getPlayerByNumber()
and addPlayer() methods of the BaseballTeam structure. Let's look at the
getPlayerByNumber() method first, since it only throws one error condition:

do {
 let player = try myTeam.getPlayerByNumber(number: 34)
 print("Player is \(player.firstName) \(player.lastName)")
} catch PlayerNumberError.NumberDoesNotExist {
 print("No player has that number")
}

Within this example, the do-catch block calls the getPlayerByNumber() method of the
BaseballTeam structure. This method will throw the NumberDoesNotExist error
condition if no player on the team has been assigned this number; therefore, we attempt to
match this error in the catch statement.

Any time an error is thrown within a do-catch block, the remainder of the code within the
block is skipped and the code within the catch block, which matches the error, is executed.
Therefore, in our example, if the NumberDoesNotExist error is thrown by the
getPlayerByNumber() method, the print statement is never reached.

We do not have to include a pattern after the catch statement. If a pattern is not included
after the catch statement, or if we put in an underscore, the catch statement will match all
error conditions. For example, either one of the following two catch statements will catch all
errors:

do {
 // our statements
} catch {
 // our error conditions
}

do {
 // our statements
} catch _ {
 // our error conditions
}

If we want to capture the error, we can use the let keyword, as shown in the following
example:

do {
 // our statements
} catch let error {
 print("Error:\(error)")
}

Availability and Error Handling Chapter 11

[213]

Now, let's look at how we can use the catch statement, similar to a switch statement, to
catch different error conditions. To do this, we will call the addPlayer() method of the
BaseballTeam structure:

do {
 try myTeam.addPlayer(player:("David", "Ortiz", 34))
} catch PlayerNumberError.NumberTooHigh(let description) {
 print("Error: \(description)")
} catch PlayerNumberError.NumberTooLow(let description) {
 print("Error: \(description)")
} catch PlayerNumberError.NumberAlreadyAssigned {
 print("Error: Number already assigned")
}

In this example, we have three catch statements. Each catch statement has a different
pattern to match; therefore, they will each match a different error condition. If you recall,
the NumberTooHigh and NumberToLow error conditions have associated values. To retrieve
the associated value, we use the let statement within the parentheses, as shown in the
example.

It is always good practice to make your last catch statement an empty catch statement so
that it will catch any error that did not match any of the patterns in the previous catch
statements. Therefore, the previous example should be rewritten like this:

do {
 try myTeam.addPlayer(player:("David", "Ortiz", 34))
} catch PlayerNumberError.NumberTooHigh(let description) {
 print("Error: \(description)")
} catch PlayerNumberError.NumberTooLow(let description) {

 print("Error: \(description)")
} catch PlayerNumberError.NumberAlreadyAssigned {
 print("Error: Number already assigned")
} catch {
 print("Error: Unknown Error")
}

We can also let the errors propagate out rather than immediately catching them. To do this,
we just need to add the throws keyword to the function definition. For instance, in the
following example, rather than catching the error, we could let it propagate out to the code
that called the function, like this:

func myFunc() throws {
 try myTeam.addPlayer(player:("David", "Ortiz", 34))
}

Availability and Error Handling Chapter 11

[214]

If we are certain that an error will not be thrown, we can call the function using a forced-try
expression, which is written as try!. The forced-try expression disables error propagation
and wraps the function call in a runtime assertion so no error will be thrown from this call.
If an error is thrown, you will get a runtime error, so be very careful when using this
expression.

It is highly recommended that you avoid using the forced-try expression
in production code since it can cause a runtime error and cause your
application to crash.

When I work with exceptions in languages such as Java and C#, I see a lot of empty catch
blocks. This is where we need to catch the exception, because one might be thrown;
however, we do not want to do anything with it. In Swift, the code would look something
like this:

do {
 let player = try myTeam.getPlayerByNumber(number: 34)
 print("Player is \(player.firstName) \(player.lastName)")
} catch {}

Code like this is one of the things that I dislike about exception handling. Well, the Swift
developers have an answer for this: try?, which attempts to perform an operation that may
throw an error and converts it into an optional value; therefore, the results of the operation
will be nil if an error was thrown, or the result of the operation if there was no error
thrown.

Since the results of try? are returned in the form of an optional, we would normally use this
with optional binding. We could rewrite the previous example like this:

if let player = try? myTeam.getPlayerByNumber(number: 34) {
 print("Player is \(player.firstName) \(player.lastName)")
}

As we can see, this makes our code much cleaner and easier to read.

If we need to perform some cleanup action, regardless of whether we had any errors, we
can use a defer statement. We use defer statements to execute a block of code just before the
code execution leaves the current scope. The following example shows how we can use the
defer statement:

func deferFunction(){
 print("Function started")
 var str: String?

Availability and Error Handling Chapter 11

[215]

 defer {
 print("In defer block")
 if let s = str {
 print("str is \(s)")
 }
 }
 str = "Jon"
 print("Function finished")
}

If we called this function, the first line printed to the console would be function started. The
execution of the code would skip over the defer block, and Function finished would then be
printed to the console. Finally, the defer block of code would be executed just before we
leave the function's scope, and we would see the In defer block message. The following is
the output of this function:

Function started
Function finished
In defer block
str is Jon

The defer block will always be called before the execution leaves the current scope, even if
an error is thrown. The defer statement is very useful when we want to make sure we
perform all the necessary cleanup, even if an error is thrown. For example, if we
successfully open a file to write to, we will always want to make sure we close that file,
even if we encounter an error during the write operation.

In this case, we could put the file-closed functionality in a defer block to make sure that the
file was always closed prior to leaving the current scope.

Next, let's look at how we would use the new availability attribute with Swift.

The availability attribute
Using the latest SDK gives us access to all the latest features for the platform that we are
developing for; however, there are times when we want to also target older platforms. Swift
allows us to use the availability attribute to safely wrap code to run only when the correct
version of the operating system is available. This availability was first introduced in Swift 2.

The availability attribute is only available when we use Swift on Apple
platforms.

Availability and Error Handling Chapter 11

[216]

The availability blocks essentially let us, if we are running the specified version of the
operating system or higher, run this code or otherwise run some other code. There are two
ways in which we can use the availability attribute. The first way allows us to execute a
specific block of code that can be used with an if or a guard statement. The second way
allows us to mark a method or type as available only on certain platforms.

The availability attribute accepts up to six comma-separated arguments, which allow us to
define the minimum version of the operating system or application extension needed to
execute our code. These arguments are as follows:

iOS: This is the minimum iOS version that is compatible with our code
OSX: This is the minimum OS X version that is compatible with our code
watchOS: This is the minimum watchOS version that is compatible with our code
tvOS: This is the minimum tvOS version that is compatible with our code
iOSApplicationExtension: This is the minimum iOS application extension
that is compatible with our code
OSXApplicationExtension: This is the minimum OS X application extension
that is compatible with our code

After the argument, we specify the minimum version that is required. We only need to
include the arguments that are compatible with our code. As an example, if we are writing
an iOS application, we only need to include the iOS argument in the availability attribute.
We end the argument list with an * (asterisk) as it is a placeholder for future versions. Let's
look at how we would execute a specific block of code only if we met the minimum
requirements:

if #available(iOS 9.0, OSX 10.10, watchOS 2, *) {
 //Available for iOS 9, OSX 10.10, watchOS 2 or above
 print("Minimum requirements met")
} else {
 //Block on anything below the above minimum requirements
 print("Minimum requirements not met")
}

In this example, the if #available(iOS 9.0, OSX 10.10, watchOS 2, *) line of code prevents the
block of code from executing when the application is run on a system that does not meet
the specified minimum operating system version. In this example, we also use the else
statement to execute a separate block of code if the operating system does not meet the
minimum requirements.

Availability and Error Handling Chapter 11

[217]

We can also restrict access to a function or a type. In the previous code, the available
attribute was prefixed with the # (pound, also known as octothorpe and hash) character. To
restrict access to a function or type, we prefix the available attribute with an @ (at)
character. The following example shows how we could restrict access to a type and
function:

@available(iOS 9.0, *)
 func testAvailability() {
 // Function only available for iOS 9 or above
}

@available(iOS 9.0, *)
struct TestStruct {
 // Type only available for iOS 9 or above
}

In the previous example, we specified that the testAvailability() function and the
testStruct() type could only be accessed if the code was run on a device that has iOS
version 9 or newer. In order to use the @available attribute to block access to a function or
type, we must wrap the code that calls that function or type with the #available attribute.

The following example shows how we could call the testAvailability() function:

if #available(iOS 9.0, *) {
 testAvailability()
} else {
 // Fallback on earlier versions
}

In this example, the testAvailability() function is only called if the application is
running on a device that has iOS version 9 or later.

Summary
In this chapter, we looked at Swift's error-handling features. While we are not required to
use this feature in our custom types, it does give us a uniform way to handle and respond
to errors. Apple has also started to use this error handling in their frameworks. It is
recommended that we use error handling in our code.

We also looked at the availability attribute, which allows us to develop applications that
take advantage of the latest features of our target operating systems, while still allowing
our applications to run on older versions. In the next chapter, we'll take a look at how to
write custom subscripts.

12
Custom Subscripting

Custom subscripts were added to Objective-C in 2012. At that time, Chris Lattner was
already two years into developing Swift, and, like other good features, subscripts were
added to the Swift language. I have not used custom subscripts in many other languages,
however, I do find myself using subscripts extensively when I am developing in Swift. The
syntax for using subscripts in Swift seems like a natural part of the language, possibly
because they were part of the language when it was released and not added in later. Once
you start using subscripts in Swift, you may find them indispensable.

In this chapter, we will cover the following topics:

What are custom subscripts?
Adding custom subscripts to classes, structures, or enumerations
Creating read/write and read-only subscripts
Using external names without custom subscripts
Using multidimensional subscripts

Introducing subscripts
Subscripts, in the Swift language, are used as shortcuts for accessing elements of a
collection, list, or sequence. We can use them in our custom types to set or retrieve the
values by index rather than using getter and setter methods. Subscripts, if used correctly,
can significantly enhance the usability and readability of our custom types.

We can define multiple subscripts for a single type. When types have multiple subscripts,
the appropriate subscript will be chosen based on the type of index passed in with the
subscript. We can also set external parameter names for our subscripts that can help
distinguish between subscripts that have the same types.

Custom Subscripting Chapter 12

[219]

We use custom subscripts just like we use subscripts for arrays and dictionaries. For
example, to access an element in an array, we use the Array[index] syntax. When we
define a custom subscript for our custom types, we also access them with the same
ourType[key] syntax.

When creating custom subscripts, we should try to make them feel like a natural part of the
class, structure, or enumeration. As mentioned previously, subscripts can significantly
enhance the usability and readability of our code, but if we try to overuse them, they will
not feel natural and will be hard to use and understand.

In this chapter, we will look at several examples of how we can create and use custom
subscripts; however, before we show how to use custom subscripts, let's review how
subscripts are used with Swift arrays to understand how subscripts are used within the
Swift language itself. We should use subscripts in a similar manner to how Apple uses
them within the language to make our custom subscripts easy to understand and use.

Subscripts with Swift arrays
The following example shows how to use subscripts to access and change the values of an
array:

var arrayOne = [1, 2, 3, 4, 5, 6]
print(arrayOne[3]) //Displays '4'
arrayOne[3] = 10
print(arrayOne[3]) //Displays '10'

In the preceding example, we create an array of integers and then use the subscript syntax
to display and change the element at index three. Subscripts are mainly used to set or
retrieve information from a collection. We generally do not use subscripts when specific
logic needs to be applied to determine which item to select. As an example, we would not
want to use subscripts to append an item to the end of the array or to retrieve the number
of items in the array. To append an item to the end of an array, or to get the number of
items in an array, we will use functions or properties, such as the following:

arrayOne.append(7) //append 7 to the end of the array
arrayOne.count //returns the number of items in an array

Subscripts in our custom types should follow the same standard set by the Swift language
itself, so other developers that use our types are not confused by the implementation. The
key to knowing when to use subscripts, and when not to, is to understand how they will be
used.

Custom Subscripting Chapter 12

[220]

Creating and using custom subscripts
Let's look at how to define a subscript that is used to read and write to a backend array.
Reading and writing to a backend storage class is one of the most common uses of custom
subscripts; however as we will see in this chapter, we do not need to have a backend
storage class. The following code shows how to use a subscript to read and write to an
array:

class MyNames {
 private var names = ["Jon", "Kim", "Kailey", "Kara"]
 subscript(index: Int) -> String {
 get {
 return names[index]
 }
 set {
 names[index] = newValue
 }
 }
}

As we can see, the syntax for subscripts is similar to how we define properties within a
class using the get and set keywords. The difference is that we declare the subscript using
the subscript keyword. We then specify one or more inputs and the return type.

We can now use the custom subscript just like we used subscripts with arrays and
dictionaries. The following code shows how to use the subscript in the preceding example:

var nam = MyNames()
print(nam[0]) //Displays 'Jon'
nam[0] = "Buddy"
print(nam[0]) //Displays 'Buddy'

In the preceding code, we create an instance of the MyNames class and display the original
name at index 0. We then change the name at index 0 and redisplay it. In this example, we
use the subscript that we defined in the MyNames class to retrieve and set elements of the
names array within the class.

While we could make the names array available for external code to read and write directly,
this would lock our code into using an array to store the data. In the future, if we wanted to
change the backend storage mechanism to a dictionary object, or even an SQLite database,
we would have a hard time doing so, because all of the external code would also have to be
changed. Subscripts are very good at hiding how we store information within our custom
types; therefore, external code that uses these custom types does not rely on specific storage
implementations.

Custom Subscripting Chapter 12

[221]

If we gave direct access to the names array, we would also be unable to verify that the
external code was inserting valid information into the array. With subscripts, we can add
validation to our setters to verify that the data being passed in is correct before adding it to
the array. This can be very useful when we are creating a framework or a library.

Read-only custom subscripts
We can also make the subscript read-only by either not declaring a setter method within the
subscript or by not implicitly declaring a getter or setter method. The following code shows
how to declare a read-only property by not declaring a getter or setter method:

//No getter/setters implicitly declared
 subscript(index: Int) -> String {
 return names[index]
}

The following example shows how to declare a read-only property by only declaring a
getter method:

//Declaring only a getter
subscript(index: Int) -> String {
 get {
 return names[index]
 }
}

In the first example, we do not define either a getter or setter method; therefore, Swift sets
the subscript as read-only, and the code acts as if it were in a getter definition. In the second
example, we specifically set the code in a getter definition. Both examples are valid read-
only subscripts. One thing to note is that write-only subscripts are not valid in Swift.

Calculated subscripts
While the preceding example is very similar to using stored properties in a class or
structure, we can also use subscripts in a similar manner to the computed properties. Let's
look at how to do this:

struct MathTable {
 var num: Int
 subscript(index: Int) -> Int {
 return num * index
 }
}

Custom Subscripting Chapter 12

[222]

In the preceding example, we used an array as the backend storage mechanism for the
subscript. In this example, we use the value of the subscript to calculate the return value.
We would use this subscript as follows:

var table = MathTable(num: 5)
print(table[4])

This example will display the calculated value of 5 (the number defined in the
initialization) multiplied by 4 (the subscript value), which is equal to 20.

Subscript values
In the preceding subscript examples, all of the subscripts accepted integers as the value for
the subscript; however, we are not limited to integers. In the following example, we will
use a String type as the value for the subscript. The subscript keyword will also return
a String type:

struct Hello {
 subscript (name: String) -> String {
 return "Hello \(name)"
 }
}

In this example, the subscript takes a string as the value within the subscript and returns a
message saying Hello. Let's look at how to use this subscript:

var hello = Hello()
print(hello["Jon"])

This example will display a Hello Jon message to the console.

External names for subscripts
As mentioned earlier in this chapter, we can have multiple subscript signatures for our
custom types. The appropriate subscript will be chosen based on the type of index passed
into the subscript. There are times when we may wish to define multiple subscripts that
have the same type. For this, we could use external names in a similar way to how we
define external names for the parameters of a function.

Custom Subscripting Chapter 12

[223]

Let's rewrite the original MathTable structure to include two subscripts that each accept an
integer as the subscript type; however, one will perform a multiplication operation, and the
other will perform an addition operation:

struct MathTable {
 var num: Int
 subscript(multiply index: Int) -> Int {
 return num * index
 }
 subscript(add index: Int) -> Int {
 return num + index
 }
}

As we can see, in this example we define two subscripts, and each subscript accepts an
integer type. The difference between the two subscripts is the external name within the
definition. In the first subscript, we define an external name, multiply, because we
multiply the value of the subscript by the num property within this subscript. In the second
subscript, we define an external name, add, because we add the value of the subscript to
the num property within the subscript.

Let's look at how to use these two subscripts:

var table = MathTable(num: 5)
print(table[multiply: 4]) //Displays 20 because 5*4=20
print(table[add: 4]) //Displays 9 because 5+4=9

If we run this example, we will see that the correct subscript is used, based on the external
name within the subscript.

Using external names within our subscript is very useful if we need multiple subscripts of
the same type. I would not recommend using external names unless they are needed to
distinguish between multiple subscripts.

Multidimensional subscripts
While the most common subscripts are those that take a single parameter, subscripts are
not limited to single parameters. They can take any number of input parameters, and these
parameters can be of any type.

Custom Subscripting Chapter 12

[224]

Let's look at how we could use a multidimensional subscript to implement a Tic-Tac-Toe
board. A Tic-Tac-Toe board looks similar to the following diagram:

The board can be represented by a two-dimensional array, where each dimension has three
elements. Each player will then take a turn placing his/her pieces (typically x or o) onto the
board until one player has three pieces in a row or the board is full.

Let's look at how we could implement a Tic-Tac-Toe board using a multidimensional array
and multidimensional subscripts:

struct TicTacToe {
 var board = [["","",""],["","",""],["","",""]]
 subscript(x: Int, y: Int) -> String {
 get {
 return board[x][y]
 }
 set {
 board[x][y] = newValue
 }
 }
}

We start the Tic-Tac-Toe structure by defining a 3×3 array, also known as a matrix, which
will represent the game board. We then define a subscript that can be used to set and
retrieve player pieces on the board. The subscript will accept two integer values. We define
multiple parameters for our subscripts by putting the parameters between parentheses. In
this example, we are defining the subscript with the parameters (x: Int, y: Int). We
can then use the x and y variable names within our subscripts to access the values that are
passed in.

Custom Subscripting Chapter 12

[225]

Let's look at how to use this subscript to set the user's pieces on the board:

var board = TicTacToe()
board[1,1] = "x"
board[0,0] = "o"

If we run this code, we will see that we added the x piece to the center square and the
o piece to the upper-left square, so our game board will look similar to the following:

We are not limited to using only one type for our multidimensional subscripts. For
example, we could have a subscript of (x: Int, y: Double, z: String).

We can also add external names for our multidimensional subscript types to help identify
what values are used for and to distinguish between subscripts that have the same types.
Let's take a look at how to use multiple types and external names with subscripts, by
creating a subscript that will return an array of string instances based on the values of the
subscript:

struct SayHello {
 subscript(messageText message: String, messageName name: String,
 number number: Int) -> [String]{
 var retArray: [String] = []
 for _ in 0..<number {
 retArray.append("\(message) \(name)")
 }
 return retArray
 }
}

In the SayHello structure, we define our subscript as follows:

subscript(messageText message: String,messageName name: String, number
number: Int) -> [String]

Custom Subscripting Chapter 12

[226]

This defines a subscript with three elements. Each element has an external name
(messageText, messageName, and number) and an internal name (message, name, and
number). The first two elements are of the string type and the last one is an integer type. We
use the first two elements to create a message for the user that will repeat the number of
times defined by the last (number) element. We will use this subscript as follows:

var message = SayHello()
var ret = message[messageText:"Bonjour",messageName:"Jon",number:5]

If we run this code, we will see that the ret variable contains an array of five strings, where
each string equals Bonjour Jon. Now let's look at one of the most controversial new
additions to the Swift language; Dynamic Member Lookup.

Dynamic member lookup
Dynamic member lookup enables a call to a property that will be dynamically resolved at
runtime. This may not make a lot of sense without seeing an example, so let's look at one.
Let's say that we had a structure that represented a baseball team. This structure has a
property that represents the city the team was from and another property that represented
the nickname of the team. The following code shows this structure:

struct BaseballTeam {
 let city: String
 let nickName: String
}

In this structure, if we wanted to retrieve the full name of the baseball team, including the
city and nickname, we could easily create a method as shown in the following example:

func fullname() -> String {
 return "\(city) \(nickName)"
}

This is how you would do it in most object-oriented programming languages; however, in
our code, which uses the BaseballTeam structure, we would retrieve the city and
nickname as properties with the dot notation and the full name as a method. The following
code shows how we would use both the city property and the fullname method:

var redsox = BaseballTeam(city: "Boston", nickName: "Red Sox")
let city = redsox.city
let fullname = redsox.fullname()

Custom Subscripting Chapter 12

[227]

We can create a much cleaner interface using dynamic member lookups. To use dynamic
member lookups, the first thing we need to do is to add the @dynamicMemberLookup
attribute when we define the BaseballTeam structure, as shown in the following code:

@dynamicMemberLookup
struct BaseballTeam {
 let city: String
 let nickName: String
 let wins: Double
 let losses: Double
 let year: Int
}

Now we will need to add the lookup to the BaseballTeam structure. This is done by
implementing the subscript(dynamicMember:) subscript. The following code shows
how we would create a lookup to retrieve both the full name and the winning percentage
for the BaseballTeam structure:

subscript(dynamicMember key: String) -> String {
 switch key {
 case "fullname":
 return "\(city) \(nickName)"
 case "percent":
 let per = wins/(wins+losses)
 return String(per)
 default:
 return "Unknown request"
 }
}

This code will retrieve the key passed in and use a switch statement, using that key, to
determine what information to return from the subscript. With this code added to the
BaseballTeam structure we can use the lookup as shown in the following example:

var redsox = BaseballTeam(city: "Boston", nickName: "Red Sox", wins: 108,
 losses: 54, year: 2018)

print("The \(redsox.fullname) won \(redsox.percent) of their games in
\(redsox.year)")

Notice how we are able to access both fullname and percent from the instance of the
BaseballTeam structure as if they were normal properties. This makes our code much
cleaner and easier to read. However, there is one thing to keep in mind when using lookups
like this: there is no way to control what keys are passed into the lookup.

Custom Subscripting Chapter 12

[228]

In the previous example, we called fullname and percent, however, we could just as
easily have called flower or dog with no warning from the compiler. This is why there is a lot
of controversy attached to dynamic member lookup, because there is no compile time
warning if you do something wrong.

If you use dynamic member lookup, make sure you verify the key and handle any instances
when something unexpected is sent, as we did with the previous example using the default
case of the switch statement.

Now that we have seen how to use subscripts, lets take a quick look at when not to use
custom subscripts.

When not to use a custom subscript
As we have seen in this chapter, creating custom subscripts can really enhance our code;
however, we should avoid overusing them or using them in a way that is not consistent
with standard subscript usage. The way to avoid overusing subscripts is to examine how
subscripts are used in Swift's standard libraries.

Let's look at the following example:

class MyNames {
 private var names:[String] = ["Jon", "Kim", "Kailey", "Kara"]
 var number: Int {
 get {
 return names.count
 }
 }
 subscript(add name: String) -> String {
 names.append(name)
 return name
 }
 subscript(index: Int) -> String { get {
 return names[index]
 }
 set {
 names[index] = newValue
 }
 }
}

Custom Subscripting Chapter 12

[229]

In the preceding example, within the MyNames class, we define an array of names that are
used within our application. As an example, let's say that within our application we display
this list of names and allow users to add names to it. Within the MyNames class, we then
define the following subscript, which allows us to append a new name to the array:

subscript(add name: String) -> String {
 names.append(name)
 return name
}

This would be a poor use of subscripts, because its usage is not consistent with how
subscripts are used within the Swift language itself. This might cause confusion when the
class is used. It would be more appropriate to rewrite this subscript as a function, such as
the following:

func append(name: String) {
 names.append(name)
}

Remember, when you are using custom subscripts, make sure that you are using them
appropriately.

Summary
As we saw in this chapter, adding support for subscripts to our custom types can greatly
enhance their readability and usability. We saw that subscripts can be used to add an
abstraction layer between our backend storage class and external code. Subscripts can also
be used in a similar manner to computed properties, where the subscript is used to
calculate a value. As we noted, the key with subscripts is to use them appropriately and in
a manner that is consistent with subscripts in the Swift language.

In the next chapter, we will look at what closures are and how to use them.

13
Working with Closures

Today, most major programming languages have functionalities similar to those of closures
in Swift. Some of these implementations are really hard to use (objective-C blocks), while
others are easy (Java lambdas and C# delegates). I have found that the functionality that
closures provide is especially useful when developing frameworks. I have also used them
extensively when communicating with remote services over a network connection. While
blocks in Objective-C are incredibly useful, the syntax used to declare a block was
absolutely horrible. Luckily, when Apple was developing the Swift language, they made
the syntax of closures much easier to use and understand.

In this chapter, we will cover the following topics:

What are closures?
How to create a closure?
How to use a closure?
What are examples of useful closures?
How to avoid strong reference cycles within closures?

An introduction to closures
Closures are self-contained blocks of code that can be passed around and used throughout
our application. We can think of the Int type as a type that contains an integer, and a
String type as a type that contains a string. In this context, a closure can be thought of as a
type that contains a block of code. This means that we can assign closures to a variable, pass
them as arguments to functions, and return them from a function.

Working with Closures Chapter 13

[231]

Closures have the ability to capture and store references to any variable or constant from
the context in which they were defined. This is known as closing over the variables or
constants and, for the most part, Swift will handle the memory management for us. The
only exception is in creating a strong reference cycle, and we will look at how to resolve this
in the Creating strong reference cycles with closures section of Chapter 16, Memory
Management.

Closures in Swift are similar to blocks in Objective-C; however, closures in Swift are a lot
easier to use and understand. Let's look at the syntax used to define a closure in Swift:

{
 (<#parameters#>) -> <#return-type#>
 in <#statements#>
}

The syntax used to create a closure looks very similar to the syntax we use to create
functions, and in Swift, global and nested functions are closures. The biggest difference in
the format between closures and functions is the in keyword. The in keyword is used in
place of curly brackets to separate the definition of the closure's parameter and return types
from the body of the closure.

There are many uses for closures, and we will go over a number of them later in this
chapter, but first we need to understand the basics of closures. Let's start by looking at
some very basic closures so that we can get a better understanding of what they are, how to
define them, and how to use them.

Simple closures
We will begin by creating a very simple closure that does not accept any arguments and
does not return any value. All it does is print Hello World to the console. Let's look at the
following code:

let clos1 = { () -> Void in
 print("Hello World")
}

In this example, we create a closure and assign it to the clos1 constant. Since there are no
parameters defined between the parentheses, this closure will not accept any parameters.
Also, the return type is defined as Void; therefore, this closure will not return any value.
The body of the closure contains one line, which prints Hello World to the console.

Working with Closures Chapter 13

[232]

There are many ways to use closures; in this example, all we want to do is execute it. We
can execute the closure as follows:

clos1()

After executing the closure, we will see that Hello World is printed to the console. At this
point, closures may not seem that useful, but as we get further along in this chapter, we will
see how useful and powerful they can be.

Let's look at another simple example. This closure will accept one string parameter named
name but will not return a value. Within the body of the closure, we will print out a
greeting to the name passed into the closure through the name parameter. Here is the code
for this second closure:

let clos2 = {
 (name: String) -> Void in
 print("Hello \(name)")
}

The big difference between the clos2 closure and the clos1 closure is that we define a
single string parameter between the parentheses. As we can see, we define parameters for
closures just like we define parameters for functions.We can execute this closure in the
same way in which we executed the clos1 closure. The following code shows how this is
done:

clos2("Jon")

This example, when executed, will print the Hello Jon message to the console. Let's look
at another way we can use the clos2 closure.

Our original definition of closures stated that Closures are self-contained blocks of code
that can be passed around and used throughout our application code. This tells us that we
can pass our closure from the context that they were created in to other parts of our code.
Let's look at how to pass our clos2 closure into a function. We will define a function that
accepts our clos2 closure, as follows:

func testClosure(handler: (String) -> Void) {
 handler("Dasher")
}

Working with Closures Chapter 13

[233]

We define the function just like we would any other function; however, in the parameter
list, we define a parameter named handler, and the type defined for the handler parameter
is (String) -> Void. If we look closely, we can see that the (String) -> Void
definition of the handler parameter matches the parameter and return types that we
defined for the clos2 closure. This means that we can pass the clos2 closure into the
function. Let's look at how to do this:

testClosure(handler: clos2)

We call the testClosure() function just like any other function, and the closure that is
being passed in looks like any other variable. Since the clos2 closure is executed in the
testClosure() function, we will see the message, HelloDasher, printed to the console
when this code is executed.As we will see a little later in this chapter, the ability to pass
closures to functions is what makes closures so exciting and powerful. As the final piece to
the closure puzzle, let's look at how to return a value from a closure. The following example
shows this:

let clos3 = {
 (name: String) -> String in
 return "Hello \(name)"
}

The definition of the clos3 closure looks very similar to how we defined the clos2
closure. The difference is that we changed the Void return type to a String type. Then, in
the body of the closure, instead of printing the message to the console, we used the return
statement to return the message. We can now execute the clos3 closure just like the
previous two closures or pass the closure to a function like we did with the clos2 closure.
The following example shows how to execute the clos3 closure:

var message = clos3("Buddy")

After this line of code is executed, the message variable will contain the Hello Buddy
string. The previous three examples of closures demonstrate the format and how to define a
typical closure. Those who are familiar with Objective-C can see that the format of closures
in Swift is a lot cleaner and easier to use. The syntax for creating closures that we have
shown so far in this chapter is pretty short; however, we can shorten it even more. In this
next section, we will look at how to do this.

Working with Closures Chapter 13

[234]

Shorthand syntax for closures
In this section, we will look at a couple of ways to shorten the syntax.

Using the shorthand syntax for closures is really a matter of personal
preference. A lot of developers like to make their code as small and
compact as possible, and they take great pride in doing so. However, at
times this can make the code hard to read and understand for other
developers.

The first shorthand syntax for closures that we are going to look at is one of the most
popular, which is the syntax we saw when we were using algorithms with arrays in
Chapter 4, Using Swift Collections. This format is mainly used when we want to send a
really small (usually one line) closure to a function, like we did with the algorithms for
arrays. Before we look at this shorthand syntax, we need to write a function that will accept
a closure as a parameter:

func testFunction(num: Int, handler:() -> Void) {
 for _ in 0..<num {
 handler()
 }
}

This function accepts two parameters; the first parameter is an integer named num, and the
second parameter is a closure named handler which does not have any parameters and
does not return any value. Within the function, we create a for loop that will use the num
integer to define how many times it loops. Within the for loop, we call the handler
closure that was passed into the function.Now let's create a closure and pass it to
testFunction() as follows:

let clos = {
 () -> Void in
 print("Hello from standard syntax")
}
testFunction(num: 5, handler: clos)

This code is very easy to read and understand; however, it does take five lines of code.
Now let's look at how to shorten it by writing the closure inline within the function call:

testFunction(num: 5,handler: {print("Hello from Shorthand closure")})

Working with Closures Chapter 13

[235]

In this example, we created the closure inline within the function call, using the same
syntax that we used with the algorithms for arrays. The closure is placed in between two
curly brackets ({}), which means the code to create the closure is {print("Hello from
Shorthand closure")}. When this code is executed, it will print out the Hello from
Shorthand closure message five times on the screen.The ideal way to call the
testFunction() with a closure, for both compactness and readability, would be as
follows:

testFunction(num: 5) {
 print("Hello from Shorthand closure")
}

Having the closure as the final parameter allows us to leave off the label when calling the
function. This example gives us both compact and readable code.Let's look at how to use
parameters with this shorthand syntax. We will begin by creating a new function that will
accept a closure with a single parameter. We will name this function testFunction2. The
following example shows what the new testFunction2 function does:

func testFunction2(num: Int, handler: (_ : String)->Void) {
 for _ in 0..<num {
 handler("Me")
 }
}

In testFunction2, we define the closure like this: (_ : String)->Void. This definition
means that the closure accepts one parameter and does not return any value. Now let's look
at how to use the same shorthand syntax to call this function:

testFunction2(num: 5){
 print("Hello from \($0)")
}

The difference between this closure definition and the previous one is $0. The $0 parameter
is shorthand for the first parameter passed into the function. If we execute this code, it
prints out the Hello from Me message five times.Using the dollar sign ($) followed by a
number with inline closures allows us to define the closure without having to create a
parameter list in the definition. The number after the dollar sign defines the position of the
parameter in the parameter list. Let's examine this format a bit more, because we are not
limited to only using the dollar sign ($) and number shorthand format with inline closures.
This shorthand syntax can also be used to shorten the closure definition by allowing us to
leave the parameter names off. The following example demonstrates this:

let clos5: (String, String) -> Void = {
 print("\($0) \($1)")
}

Working with Closures Chapter 13

[236]

In this example, the closure has two string parameters defined; however, we do not give
them names. The parameters are defined like this: (String, String). We can then access
the parameters within the body of the closure using $0 and $1. Also, note that the closure
definition is after the colon (:), using the same syntax that we use to define a variable type
rather than inside the curly brackets. When we use anonymous arguments, this is how we
would define the closure. It will not be valid to define the closure as follows:

let clos5b = {
 (String, String) in
 print("\
 ($0) \($1)")
}

In this example, we will receive an error letting us know that this format is not valid. Next,
let's look at how we would use the clos5 closure:

clos5("Hello", "Kara")

Since Hello is the first string in the parameter list, it is accessed with $0, and as Kara is the
second string in the parameter list, it is accessed with $1. When we execute this code, we
will see the HelloKara message printed to the console.This next example is used when the
closure doesn't return any value. Rather than defining the return type as Void, we can use
parentheses, as the following example shows:

let clos6: () -> () = {
 print("Howdy")
}

In this example, we define the closure as () -> (). This tells Swift that the closure does
not accept any parameters and also does not return a value. We will execute this closure as
follows:

clos6()

As a personal preference, I am not very fond of this shorthand syntax. I think the code is
much easier to read when the void keyword is used rather than the parentheses.

We have one more shorthand closure example to demonstrate before we begin showing
some really useful examples of closures. In this last example, we will demonstrate how we
can return a value from the closure without the need to include the return keyword. If the
entire closure body consists of only a single statement, we can omit the return keyword,
and the results of the statement will be returned. Let's look at an example of this:

let clos7 = {(first: Int, second: Int) -> Int in first + second }

Working with Closures Chapter 13

[237]

In this example, the closure accepts two parameters of the integer type and will return an
instance of the integer type. The only statement within the body of the closure adds the first
parameter to the second parameter. However, if you notice, we do not include the return
keyword before the additional statement. Swift will see that this is a single statement
closure and will automatically return the results, just as if we put the return keyword
before the additional statement. We do need to make sure the result type of our statement
matches the return type of the closure.

All of the examples shown in the previous two sections were designed to show how to
define and use closures. On their own, these examples did not really show off the power of
closures and they did not show how incredibly useful closures are. The remainder of this
chapter is written to demonstrate the power and usefulness of closures in Swift.

Using closures with Swift's array algorithms
In Chapter 4, Using Swift Collections, we looked at several built-in algorithms that we can
use with Swift's arrays. In that chapter, we briefly looked at how to add simple rules to
each of these algorithms with very basic closures. Now that we have a better understanding
of closures, let's look at how we can expand on these algorithms using more advanced
closures.

In this section, we will primarily be using the map algorithm for consistency purposes;
however, we can use the basic ideas demonstrated with any of the algorithms. We will start
by defining an array to use:

let guests = ["Jon", "Kim", "Kailey", "Kara"]

This array contains a list of names and the array is named guests. This array will be used
for the majority of examples in this section. Now that we have our guests array, let's add a
closure that will print a greeting to each of the names in the array:

guests.map { name in
 print("Hello \(name)")
}

Since the map algorithm applies the closure to each item of the array, this example will
print out a greeting for each name within the array. After the first section in this chapter,
we should have a pretty good understanding of how this closure works. Using the
shorthand syntax that we saw in the previous section, we could reduce the preceding
example down to the following single line of code:

guests.map {print("Hello \($0)")}

Working with Closures Chapter 13

[238]

This is one of the few times, in my opinion, where the shorthand syntax may be easier to
read than the standard syntax.Now, let's say that rather than printing the greeting to the
console, we wanted to return a new array that contained the greetings. For this, we would
return a String type from our closure, as shown in the following example:

var messages = guests.map {
 (name:String) -> String in
 return "Welcome \(name)"
}

When this code is executed, the messages array will contain a greeting to each of the
names in the guests array, while the array will remain unchanged. We could access the
greetings as follows:

for message in messages {
 print("\(message)")
}

The preceding examples in this section showed how to add a closure to the map algorithm
inline. This is good if we only had one closure that we wanted to use with the map
algorithm, but what if we had more than one closure that we wanted to use, or if we
wanted to use the closure multiple times or reuse it with different arrays? For this, we
could assign the closure to a constant or variable and then pass in the closure, using its
constant or variable name, as needed. Let's look at how to do this. We will begin by
defining two closures. One of the closures will print a greeting for each element in the
array, and the other closure will print a goodbye message for each element in the array:

let greetGuest = { (name:String) -> Void in
 print("Hello guest named \(name)")
}

let sayGoodbye = { (name:String) -> Void in
 print("Goodbye \(name)")
}

Now that we have two closures, we can use them with the map algorithm as needed. The
following code shows how to use these closures interchangeably with the guests array:

guests.map(greetGuest)
guests.map(sayGoodbye)

Working with Closures Chapter 13

[239]

When we use the greetGuest closure with the guests array, the greetings message is
printed to the console, and when we use the sayGoodbye closure with the guests array,
the goodbye message is printed to the console. If we had another array named guests2, we
could use the same closures for that array, as shown in the following example:

guests.map(greetGuest)
guests2.map(greetGuest)
guests.map(sayGoodbye)
guests2.map(sayGoodbye)

All of the examples in this section so far have either printed a message to the console or
returned a new array from the closure. We are not limited to such basic functionality in our
closures. For example, we can filter the array within the closure, as shown in the following
example:

let greetGuest2 = {
 (name:String) -> Void in
 if (name.hasPrefix("K")) {
 print("\(name) is on the guest list")
 } else {

 print("\(name) was not invited")
 }
}

In this example, we print out a different message depending on whether the name starts
with the letter K.

As mentioned earlier in the chapter, closures have the ability to capture and store
references to any variable or constant from the context in which they were defined. Let's
look at an example of this. Let's say that we have a function that contains the highest
temperature for the last seven days at a given location and this function accepts a closure as
a parameter. This function will execute the closure on the array of temperatures. The
function can be written as follows:

func temperatures(calculate:(Int)->Void) {
 var tempArray = [72,74,76,68,70,72,66]
 tempArray.map(calculate)
}

Working with Closures Chapter 13

[240]

This function accepts a closure, defined as (Int)-> Void. We then use the map algorithm
to execute this closure for each item of the tempArray array. The key to using a closure
correctly in this situation is to understand that the temperatures function does not know,
or care, about what goes on inside the calculate closure. Also, be aware that the closure is
also unable to update or change the items within the function's context, which means that
the closure cannot change any other variable within the temperature's function; however, it
can update variables in the context that it was created in.

Let's look at the function that we will create the closure in. We will name this function
testFunction:

func testFunction() {
 var total = 0
 var count = 0
 let addTemps = {
 (num: Int) -> Void in
 total += num
 count += 1
 }
 temperatures(calculate: addTemps)
 print("Total: \(total)")
 print("Count: \(count)")
 print("Average: \(total/count)")
}

In this function, we begin by defining two variables, named total and count, where both
variables are of the integer type. We then create a closure named addTemps that will be
used to add all the temperatures from the temperatures function together. The addTemps
closure will also count how many temperatures there are in the array. To do this, the
addTemps closure calculates the sum of each item in the array and keeps the total in the
total variable that was defined at the beginning of the function. The addTemps closure
also keeps track of the number of items in the array by incrementing the count variable for
each item. Notice that neither the total nor count variables are defined within the closure;
however, we are able to use them within the closure because they were defined in the same
context as the closure.

We then call the temperatures function and pass it the addTemps closure. Finally, we
print the total, count, and average temperature to the console. When testFunction is
executed, we will see the following output to the console:

Total: 498
Count: 7
Average: 71

Working with Closures Chapter 13

[241]

As we can see from the output, the addTemps closure is able to update and use items that
are defined within the context that it was created in, even when the closure is used in a
different context.

Now that we have looked at using closures with the array map algorithm, let's look at using
closures by themselves. We will also look at the ways we can clean up our code to make it
easier to read and use.

Changing functionality
Closures also give us the ability to change the functionality of types on the fly. In Chapter
10, Generics, we saw that generics give us the ability to write functions that are valid for
multiple types. With closures, we are able to write functions and types whose functionality
can change, based on the closure that is passed in. In this section, we will show you how to
write a function whose functionality can be changed with a closure.

Let's begin by defining a type that will be used to demonstrate how to swap out a
functionality. We will name this type TestType:

struct TestType {
 typealias getNumClosure = ((Int, Int) -> Int)

 var numOne = 5
 var numTwo = 8

 var results = 0;

 mutating func getNum(handler: getNumClosure) -> Int {
 results = handler(numOne,numTwo)
 print("Results: \(results)")
 return results
 }
}

We begin this type by defining a typealias for our closure, which is named
getNumClosure. Any closure that is defined as a getNumClosure closure will take two
integers and return a single integer. Within this closure, we assume that it does something
with the integers that we pass in to get the value to return, but it really doesn't have to do
anything with the integers. To be honest, this class doesn't really care what the closure does
as long as it conforms to the getNumClosure type. Next, we define three integers, named
numOne, numTwo, and results.

Working with Closures Chapter 13

[242]

We also define a method named getNum(). This method accepts a closure that conforms to
the getNumClosure type as its only parameter. Within the getNum() method, we execute
the closure by passing in the numOne and numTwo variables, and the integer that is returned
is put into the results class variable.Now let's look at several closures that conform to the
getNumClosure type that we can use with the getNum() method:

var max: TestType.getNumClosure = {
 if $0 > $1 {
 return $0
 } else {
 return $1
 }
}

var min: TestType.getNumClosure = {
 if $0 < $1 {
 return $0
 } else {
 return $1
 }
}

var multiply: TestType.getNumClosure = {
 return $0 * $1
}

var second: TestType.getNumClosure = {
 return $1
}

var answer: TestType.getNumClosure = {
 var _ = $0 + $1
 return 42
}

In this code, we define five closures that conform to the getNumClosure type:

max: This returns the maximum value of the two integers that are passed
in min: This returns the minimum value of the two integers that are passed
in multiply: This multiplies both the values that are passed in and returns the
product
second: This returns the second parameter that was passed in
answer: This returns the answer to life, the universe, and everything

Working with Closures Chapter 13

[243]

In the answer closure, we have an extra line that looks like it does not have a purpose:

var _= $0 + $1.

We do this deliberately because the following code is not valid:

var answer: TestType.getNumClosure = {
 return 42
}

This type gives us the error: contextual type for closure argument list expects two
arguments, which cannot be implicitly ignored. As we can see by the error, Swift will
not let us ignore the expected parameters within the body of the closure. In the second
closure, Swift assumes that there are two parameters because $1 specifies the second
parameter. We can now pass each one of these closures to the getNum() method to change
the functionality of the function to suit our needs. The following code illustrates this:

var myType = TestType()

myType.getNum(handler: max)
myType.getNum(handler: min)
myType.getNum(handler: multiply)
myType.getNum(handler: second)
myType.getNum(handler: answer)

When this code is run, we will receive the following results for each of the closures:

For Max: Results: 8
For Min: Results: 5
For Multiply: Results: 40
For Second: Results: 8
For Answer: Results: 42

The last example we are going to show you is one that is used a lot in frameworks,
especially ones that have a functionality that is designed to be run asynchronously.

Selecting a closure based on results
In the final example, we will pass two closures to a method, and then, depending on some
logic, one or possibly both of the closures will be executed. Generally, one of the closures is
called if the method was successfully executed and the other closure is called if the method
failed.

Working with Closures Chapter 13

[244]

Let's start by creating a type that will contain a method that will accept two closures and
then execute one of the closures based on the defined logic. We will name this type
TestType. Here is the code for the TestType type:

class TestType {
 typealias ResultsClosure = ((String) -> Void)

 func isGreater(numOne: Int, numTwo: Int, successHandler:
 ResultsClosure, failureHandler: ResultsClosure) {
 if numOne > numTwo {
 successHandler("\(numOne) is greater than \(numTwo)")
 }
 else {
 failureHandler("\(numOne) is not greater than \(numTwo)")
}

 }
}

We begin this type by creating a typealias that defines the closure that we will use for
both the successful and failure closures. We will name this typealiasResultsClosure.
This example also illustrates why you should use a typealias rather than retyping the
closure definition. It saves us a lot of typing and prevents us from making mistakes. In this
example, if we do not use a typealias, we would need to retype the closure definition
four times, and if we need to change the closure definition, we would need to change it in
four spots. With the type alias, we only need to type the closure definition once and then
use the alias throughout the remaining code.

We then create a method named isGreater, which takes two integers as the first two
parameters, and two closures as the next two parameters. The first closure is named
successHandler, and the second closure is named failureHandler. Within this method,
we check whether the first integer parameter is greater than the second. If the first integer is
greater, the successHandler closure is executed; otherwise, the failureHandler closure
is executed.Now, let's create two closures outside of the TestType structure. The code for
these two closures is as follows:

var success: TestType.ResultsClosure = {
 print("Success: \($0)")
}

var failure: TestType.ResultsClosure = {
 print("Failure: \($0)")
}

Working with Closures Chapter 13

[245]

Note that both closures are defined as the TestClass.ResultsClosure type. In each
closure, we simply print a message to the console to let us know which closure was
executed. Normally, we would put some functionality in the closure.We will then call the
method with both the closures, as follows:

var test = TestType()
test.isGreater(numOne: 8, numTwo: 6, successHandler: success,
failureHandler: failure)

Note that in the method call, we are sending both the success closure and the failure
closure. In this example, we will see the Success: 8 is greater than 6 message. If
we reversed the numbers, we would see the Failure: 6 is not greater than 8
message. This use case is really good when we call asynchronous methods, such as loading
data from a web service. If the web service call was successful, the success closure is called;
otherwise, the failure closure is called.

One big advantage of using closures like this is that the UI does not freeze while we wait
for the asynchronous call to complete. This also involves a concurrency piece, which we
will be covering in Chapter 14, Concurrency and Parallelism in Swift. As an example, imagine
we tried to retrieve data from a web service, as follows:

var data = myWebClass.myWebServiceCall(someParameter)

Our UI would freeze while we wait for the response, or we would have to make the call in a
separate thread so that the UI would not hang. With closures, we pass the closures to the
networking framework and rely on the framework to execute the appropriate closure when
it is done. This relies on the framework to implement concurrency correctly, to make the
calls asynchronously, but a decent framework should handle that for us.

Summary
In this chapter, we saw that we can define a closure just like we can define an Integer or
String type. We can assign closures to a variable, pass them as an argument to functions,
and return them from functions.

Closures capture strong references to any constants or variables from the context in which
the closure was defined. We do have to be careful with this functionality, to make sure that
we do not create a strong reference cycle, which would lead to memory leaks in our
applications.

Swift closures are very similar to blocks in Objective-C, but they have a much cleaner and
more eloquent syntax. This makes them a lot easier to use and understand.

Working with Closures Chapter 13

[246]

Having a good understanding of closures is vital to mastering the Swift programming
language and will make it easier to develop great applications that are easy to maintain.
They are also essential for creating first-class frameworks that are easy both to use and to
maintain.

The use cases that we looked at in this chapter are by no means the only useful use cases for
closures. I can promise you that the more you use closures in Swift, the more uses you will
find for them. Closures are definitely one of the most powerful and useful features of the
Swift language, and Apple did a great job by implementing them.

In the next chapter, we will look at how we can use grand central dispatch and operation
Queues to add concurrency and parallelism to our application's code.

14
Concurrency and Parallelism in

Swift
When I first started learning Objective-C, I already had a good understanding of
concurrency and multitasking with my background in other languages, such as C and Java.
This background made it very easy for me to create multithreaded applications using
threads. Then, Apple changed everything when they released Grand Central Dispatch
(GCD) with OS X 10.6 and iOS 4. At first, I went into denial; there was no way GCD could
manage my application's threads better than I could. Then, I entered the anger phase; GCD
was hard to use and understand. Next was the bargaining phase; maybe I can use GCD
with my threading code, so I could still control how the threading worked. Then, there was
the depression phase; maybe GCD does handle threading better than I could. Finally, I
entered the wow phase; this GCD thing is really easy to use and works amazingly well.
After using GCD and operation queues with Objective-C, I do not see a reason for using
manual threads with Swift.

In this chapter, we will learn about the following topics:

What are basics of concurrency and parallelism
How to use GCD to create and manage concurrent dispatch queues
How to use GCD to create and manage serial dispatch queues
How to use various GCD functions to add tasks to the dispatch queues
How to use Operation and OperationQueues to add concurrency to our
applications

Concurrency and Parallelism in Swift Chapter 14

[248]

Concurrency and parallelism
Concurrency is the concept of multiple tasks starting, running, and completing within the
same time period. This does not necessarily mean that the tasks are executing
simultaneously. In fact, in order for tasks to be run simultaneously, our application needs to
be running on a multicore or multiprocessor system. Concurrency allows us to share the
processor or cores for multiple tasks; however, a single core can only execute one task at a
given time.

Parallelism is the concept of two or more tasks running simultaneously. Since each core of
our processor can only execute one task at a time, the number of tasks executing
simultaneously is limited to the number of cores within our processors and the number of
processors that we have. As an example, if we have a four-core processor, then we are
limited to running four tasks simultaneously. Today's processors can execute tasks so
quickly that it may appear that larger tasks are executing simultaneously. However, within
the system, the larger tasks are actually taking turns executing subtasks on the cores.

In order to understand the difference between concurrency and parallelism, let's look at
how a juggler juggles balls. If you watch a juggler, it seems they are catching and throwing
multiple balls at any given time, however, a closer look reveals that they are, in fact, only
catching and throwing one ball at a time. The other balls are in the air waiting to be caught
and thrown. If we want to be able to catch and throw multiple balls simultaneously, we
need to have multiple jugglers.

This example is really good because we can think of jugglers as the cores of a processer. A
system with a single core processor (one juggler), regardless of how it seems, can only
execute one task (catch and throw one ball) at a time. If we want to execute more than one
task at a time, we need to use a multicore processor (more than one juggler).

Back in the old days when all of the processors were single-core, the only way to have a
system that executed tasks simultaneously was to have multiple processors in the system.
This also required specialized software to take advantage of the multiple processors. In
today's world, just about every device has a processor that has multiple cores, and both iOS
and macOS are designed to take advantage of these multiple cores to run tasks
simultaneously.

Traditionally, the way applications added concurrency was to create multiple threads;
however, this model does not scale well to an arbitrary number of cores. The biggest
problem with using threads was that our applications ran on a variety of systems (and
processors), and in order to optimize our code, we needed to know how many
cores/processors could be efficiently used at a given time, which is usually not known at the
time of development.

Concurrency and Parallelism in Swift Chapter 14

[249]

To solve this problem, many operating systems, including iOS and macOS, started relying
on asynchronous functions. These functions are often used to initiate tasks that could
possibly take a long time to complete, such as making an HTTP request or writing data to
disk. An asynchronous function typically starts the long running task and then returns
prior to the task's completion. Usually, this task runs in the background and uses a callback
function (such as closure in Swift) when the task completes.

These asynchronous functions work great for the tasks that the OS provides them for, but
what if we need to create our own asynchronous functions and do not want to manage the
threads ourselves? For this, Apple provides a couple of technologies. In this chapter, we
will be covering two of these: GCD and operation queues.

GCD is a low-level, C-based API that allows specific tasks to be queued up for execution
and schedules the execution on any of the available processor cores. Operation queues are
similar to GCD; however, they are Foundation objects and are internally implemented
using GCD.

Let's begin by looking at GCD.

Grand Central Dispatch
Prior to Swift 3, using GCD felt like writing low-level C code. The API was a little
cumbersome and sometimes hard to understand because it did not use any of the Swift
language design features. This all changed with Swift 3 because Apple took up the task of
rewriting the API so it would meet the Swift 3 API guidelines.

GCD provides what is known as dispatch queues to manage submitted tasks. The queues
manage these submitted tasks and execute them in a First-In, First-Out (FIFO) order. This
ensures that the tasks are started in the order they were submitted.

A task is simply some work that our application needs to perform. For example, we can
create tasks that perform simple calculations, read/write data to disk, make an HTTP
request, or anything else that our application needs to do. We define these tasks by placing
the code inside either a function or a closure and adding it to a dispatch queue.

Concurrency and Parallelism in Swift Chapter 14

[250]

GCD provides three types of queues:

Serial queues: Tasks in a serial queue (also known as a private queue) are
executed one at a time in the order they were submitted. Each task is started only
after the preceding task is completed. Serial queues are often used to synchronize
access to specific resources because we are guaranteed that no two tasks in a
serial queue will ever run simultaneously. Therefore, if the only way to access the
specific resource is through the tasks in the serial queue, then no two tasks will
attempt to access the resource at the same time or out of order.
Concurrent queues: Tasks in a concurrent queue (also known as a global
dispatch queue) execute concurrently; however, the tasks are still started in the
order that they were added to the queue. The exact number of tasks that can be
executed at any given instance is variable and is dependent on the system's
current conditions and resources. The decision on when to start a task is up to
GCD and is not something that we can control within our application.
Main dispatch queue: The main dispatch queue is a globally available serial
queue that executes tasks on the application's main thread. Since tasks put into
the main dispatch queue run on the main thread, it is usually called from a
background queue when some background processing has finished and the user
interface needs to be updated.

Dispatch queues offer several advantages over traditional threads. The first and foremost
advantage is that, with dispatch queues, the system handles the creation and management
of threads rather than the application itself. The system can scale the number of threads
dynamically, based on the overall available resources of the system and the current system
conditions. This means that dispatch queues can manage the threads with greater efficiency
than we could.

Another advantage of dispatch queues is that we are able to control the order in which the
tasks are started. With serial queues, not only do we control the order in which tasks are
started, but we also ensure that one task does not start before the preceding one is
complete. With traditional threads, this can be very cumbersome and brittle to implement,
but with dispatch queues, as we will see later in this chapter, it is quite easy.

Concurrency and Parallelism in Swift Chapter 14

[251]

Calculation type
Before we look at how to use dispatch queues, let's create a class that will help us to
demonstrate how the various types of queues work. This class will contain two basic
functions and we will name the class DoCalculations. The first function will simply
perform some basic calculations and then return a value. Here is the code for this function,
which is named doCalc():

func doCalc() {
 let x = 100
 let y = x*x
 _ = y/x
}

The other function, which we will name performCalculation(), accepts two parameters.
One is an integer named iterations and the other is a string named tag. The
performCalculation() function calls the doCalc() function repeatedly until it calls the
function the same number of times as defined by the iterations parameter. We also use
the CFAbsoluteTimeGetCurrent() function to calculate the elapsed time it took to
perform all of the iterations, and then print the elapsed time with the tag string to the
console. This will let us know when the function completes and how long it took to
complete it. Here is the code for this function:

func performCalculation(_ iterations: Int, tag: String) {
 let start = CFAbsoluteTimeGetCurrent()
 for _ in 0 ..< iterations {
 self.doCalc()
 }
 let end = CFAbsoluteTimeGetCurrent()
 print("time for \(tag):\(end-start)")
}

These functions will be used together to keep our queues busy, so we can see how they
work. Let's begin by looking at how we would create a dispatch queue.

Creating queues
We use the DispatchQueue initializer to create a new dispatch queue. The following code
shows how we would create a new dispatch queue:

let concurrentQueue = DispatchQueue(label: "cqueue.hoffman.jon",
 attributes: .concurrent)
let serialQueue = DispatchQueue(label: "squeue.hoffman.jon")

Concurrency and Parallelism in Swift Chapter 14

[252]

The first line would create a concurrent queue with the label of cqueue.hoffman.jon,
while the second line would create a serial queue with the label of squeue.hoffman.jon.
ispatchQueue initializer takes the following parameters:

Label: This is a string label that is attached to the queue to uniquely identify it in
debugging tools, such as instruments and crash reports. It is recommended that
we use a reverse DNS naming convention. This parameter is optional and can be
nil.
Attributes: This specifies the type of queue to make. This can be
DispatchQueue.Attributes.serial,
DispatchQueue.Attributes.concurrent, or nil. If the this parameter is nil,
a serial queue is created. You can use .serial or .concurrent as we showed in
the sample code.

Some programming languages use the reverse DNS naming convention to
name certain components. This convention is based on a registered
domain name that is reversed. As an example, if we worked for a
company that had a domain name of mycompany.com with a product
called widget, the reverse DNS name will be com.mycompany.widget.

Creating and using a concurrent queue
A concurrent queue will execute the tasks in a FIFO order; however, the tasks will execute
concurrently and finish in any order. Let's see how we would create and use a concurrent
queue. The following line will create the concurrent queue that we will be using for this
section and will also create an instance of the DoCalculations type that will be used to
test the queue:

let cqueue = DispatchQueue(label: "cqueue.hoffman.jon",
 attributes:.concurrent)
let calculation = DoCalculations()

The first line will create a new dispatch queue that we will name cqueue, and the second
line creates an instance of the DoCalculations type. Now, let's see how we would use our
concurrent queue by using the performCalculation() method from the
DoCalculations type to perform some calculations:

let c = {calculation.performCalculation(1000, tag: "async1")}
cqueue.async(execute: c)

Concurrency and Parallelism in Swift Chapter 14

[253]

In the preceding code, we created a closure, which represents our task and simply calls the
performCalculation() function of the DoCalculation instance, requesting that it runs
through 1,000 iterations of the doCalc() function. Finally, we use the async(execute:)p
method of our queue to execute it. This code will execute the task in a concurrent dispatch
queue, which is separate from the main thread.

While the preceding example works perfectly, we can actually shorten the code a little bit.
The next example shows that we do not need to create a separate closure as we did in the
preceding example. We can also submit the task to execute, as follows:

cqueue.async {
 calculation.performCalculation(1000, tag: "async1")
}

This shorthand version is how we usually submit small code blocks to our queues. If we
have larger tasks or tasks that we need to submit multiple times, we will generally want to
create a closure and submit the closure to the queue as we showed in the first example.

Let's see how a concurrent queue works by adding several items to the queue and looking
at the order and time that they return. The following code will add three tasks to the queue.
Each task will call the performCalculation() function with various iteration counts.
Remember that the performCalculation() function will execute the calculation routine
continuously until it is executed the number of times defined by the iteration count passed
in. Therefore, the larger the iteration count we pass into the function, the longer it should
take to execute. Let's look at the following code:

cqueue.async {
 calculation.performCalculation(10000000, tag: "async1")
}

cqueue.async {
 calculation.performCalculation(1000, tag: "async2")
}

cqueue.async {
 calculation.performCalculation(100000, tag: "async3")
}

Concurrency and Parallelism in Swift Chapter 14

[254]

Note that each of the functions is called with a different value in the tag parameter. Since
the performCalculation() function prints out the tag variable with the elapsed time,
we can see the order in which the tasks complete and the time they took to execute. If we
execute the preceding code, we should see results similar to this:

time for async2: 0.000200986862182617
time for async3: 0.00800204277038574
time for async1: 0.461670994758606

The elapsed time will vary from one run to the next and from system to
system.

Since the queues function in a FIFO order, the task that had the tag of async1 was executed
first. However, as we can see from the results, it was the last task to finish. Since this is a
concurrent queue, if it is possible (if the system has the available resources), the blocks of
code will execute concurrently. This is why tasks with the tags of async2 and async3
completed prior to the task that had the async1 tag, even though the execution of the
async1 task began before the other two.

Now, let's see how a serial queue executes tasks.

Creating and using a serial queue
A serial queue functions a little different than a concurrent queue. A serial queue will only
execute one task at a time and will wait for one task to complete before starting the next
one. This queue, like the concurrent dispatch queue, follows the FIFO order. The following
line of code will create a serial queue that we will be using for this section and will create an
instance of the DoCalculations type:

let squeue = DispatchQueue(label: "squeue.hoffman.jon")
let calculation = DoCalculations()

The first line will create a new serial dispatch queue that we name squeue, and the second
line creates the instance of the DoCalculations type. Now, let's see how we would use
our serial queue by using the performCalculation() method from the DoCalculations
type to perform some calculations:

let s = {calculation.performCalculation(1000, tag: "sync1")}
squeue.async (execute: s)

Concurrency and Parallelism in Swift Chapter 14

[255]

In the preceding code, we created a closure, which represents our task, that simply calls the
performCalculation() function of the DoCalculation instance, requesting that it runs
through 1,000 iterations of the doCalc() function. Finally, we use the async(execute:)
method of our queue to execute it. This code will execute the task in a serial dispatch queue,
which is separate from the main thread. As we can see from this code, we use the serial
queue exactly like we use the concurrent queue.

We can shorten this code a little bit, just like we did with the concurrent queue. The
following example shows how we would do this with a serial queue:

squeue.async {
 calculation.performCalculation(1000, tag: "sync2")
}

Let's see how the serial queue works by adding several items to the queue and looking at
the order in which they complete. The following code will add three tasks, which will call
the performCalculation() function with various iteration counts, to the queue:

squeue.async {
 calculation.performCalculation(100000, tag: "sync1")
}

squeue.async {
 calculation.performCalculation(1000, tag: "sync2")
}

squeue.async {
 calculation.performCalculation(100000, tag: "sync3")
}

Just as we did in the concurrent queue example, we call the performCalculation()
function with various iteration counts and different values in the tag parameter. Since the
performCalculation() function prints out the tag string with the elapsed time, we can
see the order that the tasks complete in and the time it takes to execute. If we execute this
code, we should see the following results:

time for sync1: 0.00648999214172363
time for sync2: 0.00009602308273315
time for sync3: 0.00515800714492798

The elapsed time will vary from one run to the next and from system to
system.

Concurrency and Parallelism in Swift Chapter 14

[256]

Unlike the concurrent queues, we can see that the tasks completed in the same order that
they were submitted in, even though the sync2 and sync3 tasks took considerably less
time to complete. This demonstrates that a serial queue only executes one task at a time and
that the queue waits for each task to complete before starting the next one.

In the previous examples, we used the async method to execute the code blocks. We could
also use the sync method.

Async versus sync
In the previous examples, we used the async method to execute the code blocks. When we
use the async method, the call will not block the current thread. This means that the
method returns and the code block is executed asynchronously.

Rather than using the async method, we could use the sync method to execute the code
blocks. The sync method will block the current thread, which means it will not return until
the execution of the code has completed. Generally, we use the async method, but there are
use cases where the sync method is useful. This use case is usually when we have a
separate thread and we want that thread to wait for some work to finish.

Executing code on the main queue function
The DispatchQueue.main.async(execute:) function will execute code on the
application's main queue. We generally use this function when we want to update our code
from another thread or queue.

The main queue is automatically created for the main thread when the application starts.
This main queue is a serial queue; therefore, items in this queue are executed one at a time,
in the order that they were submitted. We will generally want to avoid using this queue
unless we have a need to update the user interface from a background thread.

The following code example shows how we would use this function:

let squeue = DispatchQueue(label: "squeue.hoffman.jon")
squeue.async{
 let resizedImage = image.resize(to: rect)
 DispatchQueue.main.async {
 picView.image = resizedImage
 }
}

Concurrency and Parallelism in Swift Chapter 14

[257]

In the previous code, we assume that we have added a method to the UIImage type that
will resize the image. In this code, we create a new serial queue and, in that queue, we
resize an image. This is a good example of how to use a dispatch queue because we would
not want to resize an image on the main queue since it would freeze the UI while the image
is being resized. Once the image is resized, we then need to update a UIImageView with
the new image; however, all updates to the UI need to occur on the main thread. Therefore,
we will use the DispatchQueue.main.async function to perform the update on the main
queue.

There will be times when we need to execute tasks after a delay. If we were using a
threading model, we would need to create a new thread, perform some sort of delay or
sleep function, and execute our task. With GCD, we can use the asyncAfter function.

Using asyncAfter
The asyncAfter function will execute a block of code asynchronously after a given delay.
This is very useful when we need to pause the execution of our code. The following code
sample shows how we would use the asyncAfter function:

let queue2 = DispatchQueue(label: "squeue.hoffman.jon")
let delayInSeconds = 2.0
let pTime = DispatchTime.now() + Double(delayInSeconds *
Double(NSEC_PER_SEC)) / Double(NSEC_PER_SEC)
queue2.asyncAfter(deadline: pTime) {
 print("Times Up")
}

In this code, we begin by creating a serial dispatch queue. We then create an instance of the
DispatchTime type and calculate the time to execute the block of code based on the
current time. We then use the asyncAfter function to execute the code block after the
delay.

Now, that we have looked at GCD, let's look at operation queues.

Concurrency and Parallelism in Swift Chapter 14

[258]

Using the Operation and OperationQueue
types
The Operation and OperationQueue types, working together, provide us with an
alternative to GCD for adding concurrency to our applications. Operation queues are part
of the Foundation framework and function like dispatch queues as they are a higher-level
of abstraction over GCD.

We define the tasks (Operations) that we wish to execute and then add the tasks to the
operation queue. The operation queue will then handle the scheduling and execution of
tasks. Operation queues are instances of the OperationQueue class and operations are
instances of the Operation class.

An operation represents a single unit of work or task. The Operation type is an abstract
class that provides a thread-safe structure for modeling the state, priority, and
dependencies. This class must be subclassed to perform any useful work; we will look at
how to subclass this class in the Subclassing the Operation class section of this chapter.

Apple provides a concrete implementation of the Operation type that we can use as-is for
situations where it does not make sense to build a custom subclass. This subclass is
BlockOperation.

More than one operation queue can exist at the same time, and, in fact, there is always at
least one operation queue running. This operation queue is known as the main queue. The
main queue is automatically created for the main thread when the application starts and is
where all of the UI operations are performed.

There are several ways that we can use the Operation and OperationQueue classes to
add concurrency to our application. In this chapter, we will look at three of these ways. The
first one we will look at is the use of the BlockOperation implementation of the
Operation abstract class.

Using BlockOperation
In this section, we will be using the same DoCalculation class that we used in the Grand
Central Dispatch section to keep our queues busy with work so that we could see how the
OpererationQueue class works.

Concurrency and Parallelism in Swift Chapter 14

[259]

The BlockOperation class is a concrete implementation of the Operation type that can
manage the execution of one or more blocks. This class can be used to execute several tasks
at once without the need to create separate operations for each task.

Let's see how we can use the BlockOperation class to add concurrency to our application.
The following code shows how to add three tasks to an operation queue using a single
BlockOperation instance:

let calculation = DoCalculations()
let blockOperation1: BlockOperation = BlockOperation.init(
 block: {
 calculation.performCalculation(10000000, tag: "Operation 1")
 }
)
blockOperation1.addExecutionBlock({
 calculation.performCalculation(10000, tag: "Operation 2")
 }
)
blockOperation1.addExecutionBlock({
 calculation.performCalculation(1000000, tag: "Operation 3")
 }
)
let operationQueue = OperationQueue()
operationQueue.addOperation(blockOperation1)

In this code, we begin by creating an instance of the DoCalculation class and an instance
of the OperationQueue class. Next, we created an instance of the BlockOperation class
using the init constructor. This constructor takes a single parameter, which is a block of
code that represents one of the tasks we want to execute in the queue. Next, we add two
additional tasks using the addExecutionBlock() method.

One of the differences between dispatch queues and operations is that, with dispatch
queues, if resources are available, the tasks are executed as they are added to the queue.
With operations, the individual tasks are not executed until the operation itself is submitted
to an operation queue. This allows us to initiate all of the operations into a single block
operation prior to executing them.

Once we add all of the tasks to the BlockOperation instance, we then add the operation to
the OperationQueue instance that we created at the beginning of the code. At this point,
the individual tasks within the operation start to execute.

This example shows how to use BlockOperation to queue up multiple tasks and then
pass the tasks to the operation queue. The tasks are executed in a FIFO order; therefore, the
first task that is added will be the first task executed. However, the tasks can be executed
concurrently if we have the available resources.

Concurrency and Parallelism in Swift Chapter 14

[260]

The output from this code should look similar to this:

time for Operation 2: 0.00546294450759888
time for Operation 3: 0.0800899863243103
time for Operation 1: 0.484337985515594

What if we do not want the tasks to run concurrently? What if we wanted them to run
serially like the serial dispatch queue? We can set a property in the operation queue that
defines the number of tasks that can be run concurrently in the queue. The property is
named maxConcurrentOperationCount, and is used like this:

operationQueue.maxConcurrentOperationCount = 1

However, if we add this line to our previous example, it will not work as expected. To see
why this is, we need to understand what the property actually defines. If we look at Apple's
OperationQueue class reference, the definition of the property is, the maximum number of
queued operations that can execute at the same time.

What this tells us is that this property defines the number of operations (this is the
keyword) that can be executed at the same time. The BlockOperation instance, which we
added all of the tasks to, represents a single operation, therefore, no other
BlockOperation added to the queue will execute until the first one is complete, but the
individual tasks within the operation will execute concurrently. To run the tasks serially,
we would need to create a separate instance of BlockOperation for each task.

Using an instance of the BlockOperation class is good if we have several tasks that we
want to execute concurrently, but they will not start executing until we add the operation to
an operation queue. Let's look at a simpler way of adding tasks to an operation queue using
the addOperationWithBlock() method.

Using the addOperation() method of the
operation queue
The OperationQueue class has a method named addOperation(), which makes it easy to
add a block of code to the queue. This method automatically wraps the block of code in an
operation object and then passes that operation to the queue. Let's see how to use this
method to add tasks to a queue:

let operationQueue = OperationQueue()
let calculation = DoCalculations()
operationQueue.addOperation() {
 calculation.performCalculation(10000000, tag: "Operation1")

Concurrency and Parallelism in Swift Chapter 14

[261]

}
operationQueue.addOperation() {
 calculation.performCalculation(10000, tag: "Operation2")
}
operationQueue.addOperation() {
 calculation.performCalculation(1000000, tag: "Operation3")
}

In the BlockOperation example earlier in this chapter, we added the tasks that we wished
to execute into a BlockOperation instance. In this example, we are adding the tasks
directly to the operation queue, and each task represents one complete operation. Once we
create the instance of the operation queue, we then use the addOperation() method to
add the tasks to the queue.

Also, in the BlockOperation example, the individual tasks did not execute until all of the
tasks were added, and then that operation was added to the queue. This example is similar
to the GCD example where the tasks began executing as soon as they were added to the
operation queue.

If we run the preceding code, the output should be similar to this:

time for Operation2: 0.0115870237350464
time for Operation3: 0.0790849924087524
time for Operation1: 0.520610988140106

You will notice that the operations are executed concurrently. With this example, we can
execute the tasks serially by using the maxConcurrentOperationCount property that we
mentioned earlier. Let's try this by initializing the OperationQueue instance as follows:

var operationQueue = OperationQueue()
operationQueue.maxConcurrentOperationCount = 1

Now, if we run the example, the output should be similar to this:

time for Operation1: 0.418763995170593
time for Operation2: 0.000427007675170898
time for Operation3: 0.0441589951515198

In this example, we can see that each task waited for the previous task to complete prior to
starting.

Concurrency and Parallelism in Swift Chapter 14

[262]

Using the addOperation() method to add tasks to the operation queue is generally easier
than using the BlockOperation method; however, the tasks will begin as soon as they are
added to the queue. This is usually the desired behavior, although there are use cases
where we do not want the tasks executing until all operations are added to the queue, as we
saw in the BlockOperation example.

Now, let's look at how we can subclass the Operation class to create an operation that we
can add directly to an operation queue.

Subclassing the Operation class
The previous two examples showed how to add small blocks of code to our operation
queues. In these examples, we called the performCalculations method in the
DoCalculation class to perform our tasks. These examples illustrate two really good ways
to add concurrency for functionality that is already written, but what if, at design time, we
want to design our DoCalculation class itself for concurrency? For this, we can subclass
the Operation class.

The Operation abstract class provides a significant amount of infrastructure. This allows
us to very easily create a subclass without a lot of work. We will need to provide at least an
initialization method and a main method. The main method will be called when the queue
begins executing the operation.

Let's see how to implement the DoCalculation class as a subclass of the Operation class;
we will call this new class MyOperation:

class MyOperation: Operation {
 let iterations: Int
 let tag: String
 init(iterations: Int, tag: String) {
 self.iterations = iterations self.tag = tag
 }

 override func main() {
 performCalculation()
 }

 func performCalculation() {
 let start = CFAbsoluteTimeGetCurrent()
 for _ in 0 ..< iterations {
 self.doCalc()
 }

Concurrency and Parallelism in Swift Chapter 14

[263]

 let end = CFAbsoluteTimeGetCurrent()
 print("time for \(tag):\(end-start)")
 }

 func doCalc() {
 let x=100
 let y = x*x
 _ = y/x
 }
}

We begin by defining that the MyOperation class is a subclass of the Operation class.
Within the implementation of the class, we define two class constants, which represent the
iteration count and the tag that the performCalculations() method uses. Keep in mind
that when the operation queue begins executing the operation, it will call the main()
method with no parameters; therefore any parameters that we need to pass it must be
passed through initializers.

In this example, our initializer takes two parameters that are used to set the iterations
and tag class constants. Then, the main() method, which the operation queue is going to
call to begin execution of the operation, simply calls the performCalculation() method.

We can now very easily add instances of our MyOperation class to an operation queue, as
follows:

let operationQueue = NSOperationQueue() operationQueue.addOperation(
 MyOperation(iterations: 10000000, tag:"Operation 1")
)
operationQueue.addOperation(MyOperation(
 iterations: 10000, tag:"Operation 2")
)
operationQueue.addOperation(
 MyOperation(iterations: 1000000, tag:"Operation 3")
)

If we run this code, we will see the following results:

time for Operation 2: 0.00187397003173828
time for Operation 3: 0.104826986789703
time for Operation 1: 0.866684019565582

As we saw earlier, we can also execute the tasks serially by setting
the maxConcurrentOperationCount property of the operation queue to 1.

Concurrency and Parallelism in Swift Chapter 14

[264]

If we know that we need to execute some functionality concurrently prior to writing the
code, I would recommend subclassing the Operation class, as shown in this example,
rather than using the previous examples. This gives us the cleanest implementation;
however, there is nothing wrong with using the BlockOperation class or the
addOperation() methods described earlier in this section.

Summary
Before we consider adding concurrency to our application, we should make sure that we
understand why we are adding it and ask ourselves whether it is necessary. While
concurrency can make our application more responsive by offloading work from our main
application thread to a background thread, it also adds extra overhead and complexity to
our code. I have even seen numerous applications, in various languages, which actually run
better after we pulled out some of the concurrency code. This is because the concurrency
was not well thought out or planned. With this in mind, it is always a good idea to think
and talk about concurrency while we are discussing the application's expected behavior.

At the start of this chapter, we had a discussion about running tasks concurrently
compared to running tasks in parallel. We also discussed the hardware limitations that
restrict how many tasks can run in parallel on a given device. Having a good understand of
those concepts is very important to understanding how and when to add concurrency to
our projects.

While GCD is not limited to system-level applications, before we use it in our application,
we should consider whether operation queues would be easier and more appropriate for
our needs. In general, we should use the highest level of abstraction that meets our needs.
This will usually point us to using operation queues; however, there really is nothing
preventing us from using GCD, and it may be more appropriate for our needs.

One thing to keep in mind with operation queues is that they add additional overhead
because they are Foundation objects. For the large majority of applications, this little extra
overhead should not be an issue or even noticed; however, for some projects, such as games
that need every last resource that they can get, this extra overhead might very well be an
issue.

One last thing to keep in mind is there has been a lot of talk about overhauling the Swift
concurrency model in Swift. While this is not going to happen with within Swift 5 it is
something to keep an eye on as it will be changing in the future. You can read the Swift
Concurrency Manifesto here: https:/ ​/​gist. ​github. ​com/ ​lattner/
31ed37682ef1576b16bca1432ea9f782. ​

https://gist.github.com/lattner/31ed37682ef1576b16bca1432ea9f782
https://gist.github.com/lattner/31ed37682ef1576b16bca1432ea9f782
https://gist.github.com/lattner/31ed37682ef1576b16bca1432ea9f782
https://gist.github.com/lattner/31ed37682ef1576b16bca1432ea9f782
https://gist.github.com/lattner/31ed37682ef1576b16bca1432ea9f782
https://gist.github.com/lattner/31ed37682ef1576b16bca1432ea9f782
https://gist.github.com/lattner/31ed37682ef1576b16bca1432ea9f782
https://gist.github.com/lattner/31ed37682ef1576b16bca1432ea9f782
https://gist.github.com/lattner/31ed37682ef1576b16bca1432ea9f782
https://gist.github.com/lattner/31ed37682ef1576b16bca1432ea9f782
https://gist.github.com/lattner/31ed37682ef1576b16bca1432ea9f782
https://gist.github.com/lattner/31ed37682ef1576b16bca1432ea9f782
https://gist.github.com/lattner/31ed37682ef1576b16bca1432ea9f782

15
Custom Types

In most traditional object-oriented programming languages, we create classes (which are
reference types) as blueprints for our objects. In Swift, unlike other object-oriented
languages, structures have much of the same functionality as classes, however, they are
value types. Apple has said that we should prefer value types, such as structures, to
reference types, but what are the differences between a reference type and a value type?

In this chapter, you will explore the following topics:

The differences between value types and reference types
Why recursive data types cannot be created as a value type
How to implement copy-on-write in your custom type
How to conform to the equitable protocol

As we saw in Chapter 7, Classes, Structures, and Protocols, we have the ability to create our
custom types as either a reference type (or class) or a value type (or structure). Let's review
the differences between these two types because it is important to understand these
differences when determining what type to use for our custom types.

Value types and reference types
Structures are value types; when we pass instances of a structure in our application, we
pass a copy of the structure and not the original structure. Classes are reference types;
therefore, when we pass an instance of a class within our application, a reference to the
original instance is also passed. It is very important to understand this difference. We will
discuss a very high-level view here and will provide additional details in Chapter 16,
Memory management.

When we pass structures in our application, we are passing copies of the structures and not
the original structures. This means that the function gets its own copy of the structure,
which it can change as needed without affecting the original instance of the structure.

Custom Types Chapter 15

[266]

When we pass an instance of a class in our application, we are passing a reference to the
original instance of the class. Since we're passing the instance of the class to the function,
the function is getting a reference to the original instance; therefore, any changes made
within the function will remain once the function exits.

To illustrate the difference between value types and reference types, let's examine a real-
world object: a book. If we have a friend who wants to read Mastering Swift, we could either
buy them their own copy or share ours.

If we bought our friend their own copy of the book, then any notes they made in the book
would remain in their copy of the book and would not be reflected in our copy. This is how
passing by value works with structures and variables. Any changes that are made to the
structure or variable within the function are not reflected in the original instance of the
structure or variable.

If we share our copy of the book, then any notes that were made in the book will stay in the
book when it is returned. This is how passing by reference works. Any changes that are
made to the instance of the class remains when the function exits.

When we pass an instance of a value type, if we are actually passing a copy of the instance,
you may be wondering about the performance of large value types when they are passed
from one part of our code to another. For structures that have the possibility of becoming
too large, we can use copy-on-write.

The explanation in the previous paragraphs is pretty straightforward; however, it is a very
important concept that we must understand. In this section, we are going to examine the
differences between value types and reference types so that we know when to use each
type.

Let's begin by creating two types; one is going to be a structure (or value type) and the
other is going to be a class (or reference type). We will be using these types in this section to
demonstrate the differences between value types and reference types. The first type that we
will examine is named MyValueType. We will implement MyValueType using a structure,
which means that it is a value type, as its name suggests:

struct MyValueType {
 var name: String
 var assignment: String
 var grade: Int
}

Custom Types Chapter 15

[267]

In MyValueType, we define three properties. Two of the properties are of the String type
(name and assignment) and one is of the Integer type (grade). Now, let's take a look at how
we can implement this as a class:

class MyReferenceType {
 var name: String
 var assignment: String
 var grade: Int

 init(name: String, assignment: String, grade: Int) {
 self.name = name
 self.assignment = assignment
 self.grade = grade
 }
}

The MyReferenceType type defines the same three properties as in the MyValueType type,
however, we need to define an initializer in the MyReferenceType type that we did not
need to define in the MyValueType type. The reason for this is that structures provide us
with a default initializer that will initialize all the properties that need to be initialized if we
do not provide a default initializer.

Let's take a look at how we can use each of these types. The following code shows how we
can create instances of each of these types:

var ref = MyReferenceType(name: "Jon", assignment: "Math Test
 1", grade: 90)
var val = MyValueType(name: "Jon", assignment: "Math Test 1",
 grade: 90)

As you can see in this code, instances of structures are created in exactly the same way as
the instances of classes. Being able to use the same format to create instances of structures
and classes is good because it makes our lives easier; however, we do need to bear in mind
that value types behave in a different manner to reference types. Let's explore this; the first
thing we need to do is create two functions that will change the grades for the instances of
the two types:

func extraCreditReferenceType(ref: MyReferenceType, extraCredit: Int)
{
 ref.grade += extraCredit
}

func extraCreditValueType(val: MyValueType, extraCredit: Int) {
 val.grade += extraCredit
}

Custom Types Chapter 15

[268]

Each of these functions takes an instance of one of our types and an extra credit amount.
Within the function, we will add the extra credit amount to the grade. If we try to use this
code we will receive an error in the extraCreditValueType() function telling us that the
left-side of the mutable operation is not mutable. The reason for this is that a value type
parameter, by default, is immutable because the function is receiving an immutable copy of
the parameter.

Using a value type like this protects us from making accidental changes to the instances;
this is because the instances are scoped to the function or type in which they are created.
Value types also protect us from having multiple references to the same instance. Therefore,
they are, by default, thread (concurrency) safe because each thread will have its own
version of the value type. If we absolutely need to change an instance of a value type
outside of its scope, we could use an inouct parameter.

We define an inout parameter by placing the inout keyword at the start of the
parameter's definition. An inout parameter has a value that is passed into the function.
This value is then modified by the function and is passed back out of the function to replace
the original value.

Let's explore how we can use an inout parameter. We will begin by creating a function
that is designed to retrieve the grade for an assignment from a data store. However, to
simplify our example, we will simply generate a random score. The following code
demonstrates how we can write this function.

Let's take a look at how we can use value types with the inout keyword to create a version
of the previous example that will work correctly. The first thing we need to do is modify
the getGradesForAssignment() function to use an instance of MyValueType that it can
modify:

func getGradeForAssignment(assignment: inout MyValueType) {
 // Code to get grade from DB
 // Random code here to illustrate issue
 let num = Int(arc4random_uniform(20) + 80)
 assignment.grade = num
 print("Grade for \(assignment.name) is \(num)")
}

Custom Types Chapter 15

[269]

This function is designed to retrieve the grade for the assignment that is defined in the
MyValueTypeinstance and is then passed into the function. Once the grade is retrieved, we
will use it to set the grade property of the MyValueType instance. We will also print the
grade out to the console so that we can see what grade it is. Now explore how we can use
this function:

var mathGrades = [MyValueType]()
var students = ["Jon", "Kim", "Kailey", "Kara"]
var mathAssignment = MyValueType(name: "", assignment: "Math
Assignment", grade: 0)
for student in students {
 mathAssignment.name = student
 getGradeForAssignment(assignment: &mathAssignment)
 mathGrades.append(mathAssignment)
}

for assignment in mathGrades {
 print("\(assignment.name): grade \(assignment.grade)")
}

In the previous code, we created a mathGrades array that will store the grades for our
assignment and a students array that will contain the names of the students that we wish
to retrieve the grades for. We then created an instance of the MyValueType structure that
contains the name for the assignment. We will use this instance to request the grades from
the getGradeForAssignment() function. Notice that when we pass in the
mathAssignment instance, we prefix the name of the instance with the & symbol. This lets
us know that we are passing the reference to the original instance and not a copy. Now that
everything is defined, we will loop through the list of students to retrieve the grades. The
output of this code will look similar to the following snippet:

Grade for Jon is 87
Grade for Kim is 81
Grade for Kailey is 90
Grade for Kara is 83
Jon: grade 87
Kim: grade 81
Kailey: grade 90
Kara: grade 83

The output from this code is what we expected to see, where each instance in the
mathGrades array represents the correct grade. The reason this code works correctly is
because we are passing a reference fromthe mathAssignment instance to the
getGradeForAssignment() function, and not a copy.

Custom Types Chapter 15

[270]

There are some things we cannot do with value types that we can do with reference (or
class) types. The first thing that we will look at is the recursive data type.

Recursive data types for reference types
A recursive data type is a type that contains other values of the same type as a property for
the type. Recursive data types are used when we want to define dynamic data structures,
such as lists and trees. The size of these dynamic data structures can grow or shrink
depending on our runtime requirements.

Linked lists are perfect examples of a dynamic data structure that we can implement using
a recursive data type. A linked list is a group of nodes that are linked together and where,
in its simplest form, each node maintains a link to the next node in the list. The following
diagram shows how a very basic linked list works:

Each node in the list contains some value or data, and it also contains the link to the next
node in the list. If one of the nodes in the list loses the reference to the next node, then the
remainder of the list will be lost because each node is only aware of the next node. Some
linked lists maintain a link to both the previous nodes and the following nodes to allow us
to move both forward and backward through the list.

The following code shows how we can create a linked list using a reference type:

class LinkedListReferenceType {
 var value: String
 var next: LinkedListReferenceType?
 init(value: String) {
 self.value = value
 }
}

Custom Types Chapter 15

[271]

In the LinkedListReferenceType class, we have two properties. The first property is
named value and it contains the data for this instance. The second property is named next,
which points to the next item in the linked list. If the next property is nil, then this instance
will be the last node in the list. If we try to implement this linked list as a value type, the
code will be similar to the following code:

struct LinkedListValueType {
 var value: String
 var next: LinkedListValueType?
}

When we add this code to a playground, we receive the following error: Recursive value
type LinkedListValueType is not allowed. This tells us that Swift does not allow
recursive value types. However, we are able to implement them as a reference type, which
we discussed earlier.

If you think about it, recursive value types are a really bad idea because of how value types
function. Let's examine this for a minute, because it will really stress the difference between
value types and reference types. It will also help you to understand why we need reference
types.

Let's say that we are able to create the LinkedListValueType structure without any
errors. Now let's create three nodes for our list, as shown in the following code:

var one = LinkedListValueType(value: "One",next: nil)
var two = LinkedListValueType (value: "Two",next: nil)
var three = LinkedListValueType (value: "Three",next: nil)

Now we will link these nodes together using the following code:

one.next =
two two.next = three

Do you see the problem with this code? If not, think about how a value type is passed. In
the first line, one.next = two, we are not actually setting the next property to the original
two instance; in fact, we are actually setting it to a copy of the two instance. This means that
in the next line, two.next = three, we are setting the next property of the original two
instance to the three instance.

Custom Types Chapter 15

[272]

However, this change is not reflected back in the copy that was made for the next property
of the one instance. Sounds a little confusing? Let's clear it up a little by looking at a
diagram that shows the state of our three LinkedListValueType instances if we were able
to run this code:

As you can see from the diagram, the next property of the one instance is pointing to a copy
of the two instance whose next property is still nil. The next property of the original two
instance, however, is pointing to the three instance. This means that, if we try to go
through the list by starting at the one instance, we will not reach the three instance because
the copy of the two instance will still have a next property that is nil.

Another thing that we can only do with reference (or class) types is class inheritance.

Inheritance for reference types
In object-oriented programming, inheritance refers to one class (known as a sub or child
class) being derived from another class (known as a super or parent class). The subclass will
inherit methods, properties, and other characteristics from the superclass. With inheritance,
we can also create a class hierarchy where we can have multiple layers of inheritance.

Let's take a look at how we can create a class hierarchy with classes in Swift. We will start
off by creating a base class named Animal:

class Animal {
 var numberOfLegs = 0
 func sleeps() {
 print("zzzzz")
 }
 func walking() {
 print("Walking on \(numberOfLegs) legs")
 }
 func speaking() {

Custom Types Chapter 15

[273]

 print("No sound")
 }
}

In the Animal class, we defined one property (numberOfLegs) and three methods
(sleeps(), walking(), and speaking()). Now, any class that is a subclass of the Animal
class will also have these properties and methods. Let's examine how this works by creating
two classes that are subclasses of the Animal class. These two classes will be named Biped
(an animal with two legs) and Quadruped (an animal with four legs):

class Biped: Animal {
 override init() {
 super.init()
 numberOfLegs = 2
 }
}

class Quadruped: Animal {
 override init() {
 super.init()
 numberOfLegs = 4
 }
}

Since these two classes inherit all the properties and methods from the Animal class, all we
need to do is create an initializer that sets the numberOfLegs property to the correct
number of legs. Now, let's add another layer of inheritance by creating a Dog class that will
be a subclass of the Quadruped class:

class Dog: Quadruped {
 override func speaking() {
 print("Barking")
 }
}

In the Dog class, we inherited from the Quadruped class, which, in turn, inherits from the
Animal class. Therefore, the Dog class will have all the properties, methods, and
characteristics of both the Animal and Quadruped classes. If the Quadruped class overrides
anything from the

Animal class, then the Dog class will inherit the version from the Quadruped class.

Custom Types Chapter 15

[274]

We can create very complex class hierarchies in this manner; for example, the following
diagram expands on the class hierarchy that we just created to add several other animal
classes:

Class hierarchies can get very complex. However, as you just saw, they can eliminate a lot
of duplicate code because our subclasses inherit methods, properties, and other
characteristics from their superclasses. Therefore, we do not need to recreate them in all of
the subclasses.

The biggest drawback of a class hierarchy is the complexity. When we have a complex
hierarchy (as shown in the preceding diagram), it is easy to make a change and not realize
how it is going to affect all of the subclasses. If you consider the dog and cat classes, for
example, we may want to add a furColor property to our Quadruped class so that we can
set the color of the animal's fur. However, horses do not have fur; they have hair. So, before
we can make any changes to a class in our hierarchy, we need to understand how it will
affect all the subclasses in the hierarchy.

In Swift, it is best to avoid using complex class hierarchies (as shown in this example), and
instead use a protocol-oriented design, unless, of course, there are specific reasons to use
them. Now that we have a good understanding of reference and value types let's explore
dynamic dispatch.

Custom Types Chapter 15

[275]

Dynamic dispatch
In the previous section, we learned how to use inheritance with classes in order to inherit
and override the functionality defined in a super class. You may be wondering how and
when the appropriate implementation is chosen. The process of choosing which
implementation to call is performed at runtime and is known as dynamic dispatch.

One of the key points to understand from the last paragraph is that the implementation is
chosen at runtime. What this means is that a certain amount of runtime overhead is
associated with using class inheritance, as shown in the Inheritance for reference types section.
For most applications, this overhead is not a concern; however, for performance-sensitive
applications such as games this overhead can be costly.

One of the ways that we can reduce the overhead associated with dynamic dispatch is to
use the final keyword. The final keyword puts a restriction on the class, method, or
function to indicate that it cannot be overridden, in the case of a method or function, or
subclasses, in the case of a class.

To use the final keyword, you put it prior to the class, method, or function declaration, as
shown in the following code:

final func myFunc() {}
final var myProperty = 0
final class MyClass {}

In the Inheritance for reference types section, we defined a class hierarchy that started with the
Animal superclass. If we want to restrict subclasses from overriding the walking()
method and the numberOfLegs property, we can change the Animal implementation, as
shown in the next example:

class Animal {
 final varnumberOfLegs = 0

 func sleeps() {
 print("zzzzz")
 }

 final func walking() {
 print("Walking on \(numberOfLegs) legs")
 }

 func speaking() {
 print("No sound")
 }
}

Custom Types Chapter 15

[276]

This change allows the application, at runtime, to make a direct call to the walking()
method rather than an indirect call that gives the application a slight performance increase.
If you must use a class hierarchy, it is good practice to use the final keyword wherever
possible; however, it is better to use a protocol-oriented design, with value types to avoid
this.

Now, let's take a look at something that can help with the performance of our custom value
types: copy-on-write.

Copy-on-write
Normally, when we pass an instance of a value type, such as a structure, a new copy of the
instance is created. This means that if we have a large data structure that contains 100,000
elements, then every time we pass that instance we will have to copy all 100,000 elements.
This can have a detrimental impact on the performance of our applications, especially if we
pass the instance to numerous functions.

To solve this issue, Apple has implemented the copy-on-write feature for all the data
structures (such as Array, Dictionary, and Set) in the Swift standard library. With copy-
on-write, Swift does not make a second copy of the data structure until a change is made to
that data structure. Therefore, if we pass an array of 50,000 elements to another part of our
code, and that code does not make any changes to the array, we will avoid the runtime
overhead of copying all the elements.

This is a very useful feature and can greatly increase the performance of our applications.
However, our custom value types do not automatically get this feature by default. In this
section, we will explore how we can use reference types and value types together to
implement the copy-on-write feature for our custom value types. To do this, we will create
a very basic queue type.

We will start off by creating a backend storage type called BackendQueue and will
implement it as a reference type. The following code gives our BackendQueue type the
basic functionality of a queue type:

fileprivate class BackendQueue<T> {
 private var items = [T]()

 public func addItem(item: T) {
 items.append(item)
 }

 public func getItem() -> T? {

Custom Types Chapter 15

[277]

 if items.count > 0 {
 return items.remove(at: 0)
 } else {
 return nil
 }
 }
 public func count() -> Int {
 return items.count
 }
}

The BackendQueue type is a generic type that uses an array to store the data. This type
contains three methods, which enables us to add items to the queue, retrieve an item from
the queue, and to return the number of items in the queue. We use the fileprivate access
level to prevent the use of this type outside of the defining source file, because it should
only be used to implement the copy-on-write feature for our main queue type.

We now need to add a couple of extra items to the BackendQueue type so that we can use
it to implement the copy-on-write feature for the main queue type. The first thing that we
will add is a public default initializer and a private initializer that can be used to create a
new instance of the BackendQueue type; the following code shows the two initializers:

public init() {}
private init(_ items: [T]) {
 self.items = items
}

The public initializer will be used to create an instance of the BackendQueue type without
any items in the queue. The private initializer will be used internally to create a copy of
itself that contains any items that are currently in the queue. Now we will need to create a
method that will use the private initializer to create a copy of itself when required:

public func copy() -> BackendQueue<T> {
 return BackendQueue<T>(items)
}

It could be very easy to make the private initializer public and then let the main queue type
call that initializer to create the copy; however, it is good practice to keep the logic needed
to create the new copy within the type itself. The reason why you should do this is because
if you need to make changes to the type, that may affect how the type is copied. Instead, the
logic that you need to change the type is embedded within the type itself and is easy to
find. Additionally, if you use the BackendQueue type as the backend storage for multiple
types, you will only need to make the changes to the copy logic in one place if it changes.

Custom Types Chapter 15

[278]

Here is the final code for the BackendQueue type:

fileprivate class BackendQueue<T> {
 private var items = [T]()

 public init() {}
 private init(_ items: [T]) {
 self.items = items
 }

 public func addItem(item: T) {
 items.append(item)
 }

 public func getItem() -> T? {
 if items.count > 0 {
 return items.remove(at: 0)
 } else {
 return nil
 }
 }
 public func count() -> Int {
 return items.count
 }
 public func copy() -> BackendQueue<T> {
 return BackendQueue<T>(items)
 }
}

Now let's create our Queue type, which will use the BackendQueue type to implement the
copy-on-write feature. The following code adds the basic queue functionality to our Queue
type:

struct Queue {
 private var internalQueue = BackendQueue<Int>()

 public mutating func addItem(item: Int) {
 internalQueue.addItem(item: item)
 }
 public mutating func getItem() -> Int? {
 return internalQueue.getItem()
 }
 public func count() -> Int {
 return internalQueue.count()
 }
}

Custom Types Chapter 15

[279]

The Queue type is implemented as a value type. This type has one private property of the
BackendQueue type, which will be used to store the data. This type contains three methods
to add items to the queue, retrieve an item from the queue, and to return the number of
items in the queue. Now let's explore how we can add the copy-on-write feature to the
Queue type.

Swift has a global function named isKnownUniquelyReferenced(). This function will
return true if there is only one reference to an instance of a reference type, or false if there is
more than one reference.

We will begin by adding a function to check whether there is a unique reference to the
internalQueue instance. This will be a private function named
checkUniquelyReferencedInternalQueue. The following code shows how we can
implement this method:

mutating private func checkUniquelyReferencedInternalQueue() {
 if !isKnownUniquelyReferenced(&internalQueue) {
 internalQueue = internalQueue.copy()
 print("Making a copy of internalQueue")
 } else {
 print("Not making a copy of internalQueue")
 }
}

In this method, we check to see whether there are multiple references to the
internalQueue instances. If there are multiple references, then we know that we have
multiple copies of the Queue instance and, therefore, we can create a new copy.

The Queue type itself is a value type; therefore, when we pass an instance of the Queue type
within our code, the code that we pass the instance to receives a new copy of that instance.
The BackendQueue type, which the Queue type is using, is a reference type. Therefore,
when a copy is made of a Queue instance, then that new copy receives a reference to the
original Queue's BackendQueue instance and not a new copy. This means that each
instance of the Queue type has a reference to the same internalQueue instance. Consider
the following code as an example; both queue1 and queue2 have references to the same
internalQueue instance:

var queue1 = Queue()
var queue2 = queue1

Custom Types Chapter 15

[280]

In the Queue type we know that both the addItem() and getItem() methods change the
internalQueue instance. Therefore, before we make these changes we will want to call the
checkUniquelyReferencedInternalQueue() method to create a new copy of the
internalQueue instance. These two methods will now have the following code:

public mutating func addItem(item: Int) {
 checkUniquelyReferencedInternalQueue()
 internalQueue.addItem(item: item)
}
public mutating func getItem() -> Int? {
 checkUniquelyReferencedInternalQueue()
 return internalQueue.getItem()
}

With this code, when either the addItem() or getItem() methods are called - which will
change the data in the internalQueue instance - we use the
checkUniquelyReferencedInternalQueue() method to create a new instance of the
data structure.

Let's add one additional method to the Queue type, which will allow us to see whether
there is a unique reference to the internalQueue instance or not. Here is the code for this
method:

mutating public func uniquelyReferenced() -> Bool{
 return isKnownUniquelyReferenced(&internalQueue)
}

Here is the full code listing for the Queue type:

struct Queue {
 private var internalQueue = BackendQueue<Int>()

 mutating private func checkUniquelyReferencedInternalQueue() {
 if !isKnownUniquelyReferenced(&internalQueue) {
 print("Making a copy of internalQueue")
 internalQueue = internalQueue.copy()
 } else {
 print("Not making a copy of internalQueue")
 }
 }

 public mutating func addItem(item: Int) {
 checkUniquelyReferencedInternalQueue()
 internalQueue.addItem(item: item)
 }
 public mutating func getItem() -> Int? {

Custom Types Chapter 15

[281]

 checkUniquelyReferencedInternalQueue();
 return internalQueue.getItem()
 }
 public func count() -> Int {
 return internalQueue.count()
 }
 mutating public func uniquelyReferenced() -> Bool{
 return isKnownUniquelyReferenced(&internalQueue)
 }
}

Now let's examine how the copy-on-write functionality works with the Queue type. We
will start off by creating a new instance of the Queue type, add an item to the queue, and
then check whether we have a unique reference to the internalQueue instance. The
following code demonstrates how to do this:

var queue3 = Queue()
queue3.addItem(item: 1)

print(queue3.uniquelyReferenced())

When we add the item to the queue, the following messages will be printed to the console.
This tells us that within the checkUniquelyReferencedInternalQueue() method, it
was determined that there was only one reference to the internalQueue instance:

Not making a copy of internalQueue

We can verify this by printing the results of the uniquelyReference() method to the
console. Now let's make a copy of the queue3 instance by passing it to a new variable, as
follows:

var queue4 = queue3

Now let's check whether we have a unique reference to the internalQueue instances of
either the queue3 or queue4 instance. The following code will do this:

print(queue3.uniquelyReferenced())
print(queue4.uniquelyReferenced())

This code will print two false messages to the console, letting us know that neither
instance has a unique reference to their internalQueue instances. Now let's add an item to
either one of the queues. The following code will add another item to the queue3 instance:

queue3.addItem(item: 2)

Custom Types Chapter 15

[282]

When we add the item to the queue, we will see the following message printed to the
console:

Making a copy of internalQueue

This message tells us that when we add the new item to the queue, a new copy of the
internalQueue instance is created. In order to verify this, we can print the results of the
uniquelyReferenced() methods to the console again. If you do check this, you will see
two true messages printed to the console this time rather than two false methods. We
can now add additional items to the queues and we will see that we are not creating new
instances of the internalQueue instance because each instance of the Queue type now has
its own copy.

If you are planning on creating your own data structure that may contain
a large number of items, it is recommended that you implement it with
the copy-on-write feature as described here.

If you are comparing your custom types, it is also recommended that you implement the
equatable protocol within these custom types. This will enable you to compare two
instances of the type using the equal to (==) and not equal to (!=) operators.

Implementing the equatable protocol
In this section, we will demonstrate how we can conform to the Equatable protocol using
extensions. When a type conforms to the Equatable protocol, we can use the equal-to (==)
operator to compare for equality and the not-equal-to (!=) operator to compare for
inequality.

If you will be comparing instances of a custom type, then it is a good idea
to have that type conform to the Equatable protocol because it makes
comparing instances very easy.

Let's start off by creating the type that we will compare. We will name this type, Place:

struct Place {
 let id: String
 let latitude: Double
 let longitude: Double
}

Custom Types Chapter 15

[283]

In the Place type, we have three properties that represent the ID of the place and the
latitude and longitude coordinates for its location. If there are two instances of the Place
type that have the same ID and coordinates, then they will be considered the same place.

To implement the Equatable protocol, we can create a global function, however, that is
not the recommended solution for protocol-oriented programming. We could also add a
static function to the Place type itself, but sometimes it is better to pull the functionality
needed to conform to a protocol out of the implementation itself. The following code will
make the Place type conform to the Equatable protocol:

extension Place: Equatable {
 static func ==(lhs: Place, rhs: Place) -> Bool {
 return lhs.id == rhs.id &&
 lhs.latitude == rhs.latitude &&
 lhs.longitude == rhs.longitude
 }
}

We can now compare the instances of the Place type as follows:

var placeOne = Place(id: "Fenway Park", latitude: 42.3467,
 longitude: -71.0972)
var placeTwo = Place(id: "Wrigley Field", latitude: 41.9484,
 longitude: -87.6553)

print(placeOne == placeTwo)

This will print false because Fenway Park and Wrigley Field are two different baseball
stadiums.

You may be wondering why we said that it may be better to pull the functionality needed
to conform to a protocol out of the implementation itself. Well, think about some of the
larger types that you have created in the past. Personally speaking, I have seen types that
had several hundred lines of code and conformed to numerous protocols. By pulling the
code that is needed to conform to a protocol out of the type's implementation and putting it
in its own extension, we are making our code much easier to read and maintain in the
future because the implementation code is isolated in its own extension.

Custom Types Chapter 15

[284]

Summary
In this chapter, we looked at the differences between value types and reference types. We
also looked at how to implement copy-on-write and the equatable protocol with our
custom types. We can implement the copy-on-write feature with value types that may
become. We can implement the equatable protocol for any custom type, including reference
types, when we need to compare two instances.

While Swift takes care of managing the memory for us, it is still a good idea to understand
how this memory management works so that we can avoid the pitfalls that may cause it to
fail. In the next chapter, we will look at how memory management in Swift works and
demonstrate how it can fail.

16
Memory Management

For many years, the primary languages that I used was C and C based object-oriented
languages. These languages required a good handle on managing memory and knowing
when to release memory. Luckily modern languages like Swift take care of managing the
memory for us however it is a good idea to understand how this memory management
works so we can avoid the pitfalls that cause this memory management to fail.

In this chapter we will learn:

How ARC works
What is a Strong Reference Cycle
How to use Weak and unowned to prevent strong reference cycles

As we saw in Chapter15, Custom Types, structures are value types and classes are reference
types. What this means is that when we pass an instance of a structure within our
application, such as a parameter of a method, we create a new instance of the structure in
the memory. This new instance of the structure is only valid while the application is in the
scope where the structure was created. Once the structure goes out of scope, the new
instance of the structure is automatically destroyed, and the memory is released. This
makes memory management of structures very easy and mostly painless.

Classes, on the other hand, are reference types. This means that we allocate memory for the
instance of the class only once which is when it is initially created. When we pass an
instance of the class within our application, either as a function argument or by assigning it
to a variable, we are really passing a reference to where the instance is stored in memory.
Since the instance of a class may be referenced in multiple scopes (unlike a structure), it
cannot be automatically destroyed, and memory is not released when it goes out of scope
because it may be referenced in another scope. Therefore, Swift needs some form of
memory management to track and release the memory used by instances of classes when
the class is no longer needed. Swift uses Automatic Reference Counting (ARC) to track
and manage memory usage.

Memory Management Chapter 16

[286]

With ARC, for the most part, memory management in Swift simply works. ARC will
automatically track the references to instances of classes, and when an instance is no longer
needed (no references pointing to it), ARC will automatically destroy the instance and
release the memory. There are a few instances where ARC requires additional information
about relationships to properly manage the memory. Before we look at the instances where
ARC needs help, let's look at how ARC itself works.

How ARC works
Whenever we create a new instance of a class, ARC allocates the memory needed to store
that class. This ensures that there is enough memory to store the information associated
with that instance of the class, and also locks the memory so that nothing overwrites it.
When the instance of the class is no longer needed, ARC will release the memory allocated
for the class so that it can be used for other purposes. This ensures that we are not tying up
memory that is no longer needed.

If ARC were to release the memory for an instance of a class that is still needed, it would
not be possible to retrieve the class information from memory. If we did try to access the
instance of the class after the memory was released, there is a possibility that the
application would crash or the data would be corrupt. To ensure memory is not released
for an instance of a class that is still needed, ARC counts how many times the instance is
referenced, that is, how many active properties, variables, or constants are pointing to the
instance of the class. Once the reference count for an instance of a class equals zero (nothing
is referencing the instance), the memory is marked for release.

All the previous examples run properly in a playground, however, the following examples
will not. When we run sample code in a playground, ARC does not release objects that we
create; this is by design so that we can see how the application runs and also the state of the
objects at each step. Therefore, we will need to run these samples as an iOS or macOS
project. Let's look at an example of how ARC works. We begin by creating a MyClass class
with the following code:

class MyClass {
 var name = ""
 init(name: String) {
 self.name = name
 print("Initializing class with name \(self.name)")
 }
 deinit {
 print("Releasing class with name \(self.name)")
 }
}

Memory Management Chapter 16

[287]

In this class we have a name property with an initiator that will accept a string value which
will be used to set the name property. This class also has a deinitializer that is called just
before an instance of the class is destroyed and removed from memory. This deinitializer
prints out a message to the console that lets us know that the instance of the class is about
to be removed.

Now, let's look at the code that shows how ARC creates and destroys instances of a class:

var class1ref1: MyClass? = MyClass(name: "One")
var class2ref1: MyClass? = MyClass(name: "Two")
var class2ref2: MyClass? = class2ref1

print("Setting class1ref1 to nil")
class1ref1 = nil
print("Setting class2ref1 to nil")
class2ref1 = nil
print("Setting class2ref2 to nil")
class2ref2 = nil

In the example, we begin by creating two instances of the MyClass class named
class1ref1 (which stands for class 1 reference 1) and class2ref1 (which stands for class
2 reference 1). We then create a second reference to class2ref1 named class2ref2.
Now, in order to see how ARC works, we need to begin setting the references to nil. We
start out by setting class1ref1 to nil. Since there is only one reference to class1ref1,
the deinitializer will be called. Once the deinitializer completes its task, in our case it prints
a message to the console letting us know that the instance of the class has been destroyed
and the memory has been released.

We then set class2ref1 to nil, but there is a second reference to this class (class2ref2)
that prevents ARC from destroying the instance so that the deinitializer is not called.
Finally, we set class2ref2 to nil, which allows ARC to destroy this instance of the
MyClass class.

If we run this code, we will see the following output, which illustrates how ARC works:

Initializing class with name One
Initializing class with name Two
Setting class1ref1 to nil
Releasing class with name One
Setting class2ref1 to nil
Setting class2ref2 to nil
Releaseing class with name Two

Memory Management Chapter 16

[288]

From the example, it seems that ARC handles memory management very well. However, it
is possible to write code that will prevent ARC from working properly.

Strong reference cycles
A strong reference cycle is where the instances of two classes holds a strong reference to
each other, preventing ARC from releasing either instance. Once again, we are not able to
use a playground for this example, so we need to create an Xcode project. In this project, we
start off by creating two classes named MyClass1_Strong and MyClass2_Strong with the
following code:

class MyClass1_Strong {
 var name = ""
 var class2: MyClass2_Strong?
 init(name: String) {
 self.name = name
 print("Initializing class1_Strong with name \(self.name)")
 }
 deinit {
 print("Releasing class1_Strong with name \(self.name)")
 }
}

class MyClass2_Strong {
 var name = ""
 var class1: MyClass1_Strong?
 init(name: String) {
 self.name = name
 print("Initializing class1_Strong with name \(self.name)")
 }
 deinit {
 print("Releasing class1_Strong with name \(self.name)")
 }
}

As we can see from the code, MyClass1_Strong contains an instance of
MyClass2_Strong, therefore, the instance of MyClass2_Strong cannot be released until
MyClass1_Strong is destroyed. We can also see from the code that MyClass2_Strong
contains an instance of MyClass1_Strong, therefore, the instance of MyClass1_Strong
cannot be released until MyClass2_Strong is destroyed. This creates a cycle of
dependency in which neither instance can be destroyed until the other one is destroyed.

Memory Management Chapter 16

[289]

Let's see how this works by running the following code:

var class1: MyClass1_Strong? = MyClass1_Strong(name: "Class1_Strong")
var class2: MyClass2_Strong? = MyClass2_Strong(name: "Class2_Strong")

class1?.class2 = class2
class2?.class1 = class1

print("Setting classes to nil")
class2 = nil
class1 = nil

In this example we create instances of both the MyClass1_Strong and MyClass2_Strong
classes. We then set the class2 property of the class1 instance to the MyClass2_Strong
instance. We also set the class1 property of the class2 instance to the MyClass1_Strong
instance. This means that the MyClass1_Strong instance cannot be destroyed until the
MyClass2_Strong instance is destroyed. This means that the reference counters for each
instance will never reach zero, therefore, ARC cannot destroy the instances, which creates a
memory leak. A memory leak is where an application continues to use memory and does
not properly release it. This can cause an application to eventually crash.

To resolve a strong reference cycle, we need to prevent one of the classes from keeping a
strong hold on the instance of the other class, thereby allowing ARC to destroy them both.
Swift provides two ways of doing this by letting us define the properties as either a weak or
unowned reference.

The difference between a weak reference and an unowned reference is that the instance
which a weak reference refers to can be nil, whereas the instance that an unowned
reference is referring to cannot be nil. This means that when we use a weak reference, the
property must be an optional property, since it can be nil. Let's see how we would use
unowned and weak references to resolve a strong reference cycle. Let's start by looking at
the unowned reference.

We begin by creating two more classes, MyClass1_Unowned and MyClass2_Unowned:

class MyClass1_Unowned {
 var name = ""
 unowned let class2: MyClass2_Unowned
 init(name: String, class2: MyClass2_Unowned) {
 self.name = name
 self.class2 = class2
 print("Initializing class1_Unowned with name \(self.name)")
 }
 deinit {
 print("Releasing class1_Unowned with name \(self.name)")

Memory Management Chapter 16

[290]

 }
 }

class MyClass2_Unowned {
 var name = ""
 var class1: MyClass1_Unowned?
 init(name: String) {
 self.name = name
 print("Initializing class2_Unowned with name \(self.name)")
 }
 deinit {
 print("Releasing class2_Unowned with name \(self.name)")
 }
}

The MyClass1_Unowned class looks pretty similar to classes in the preceding example. The
difference here is the MyClass1_Unowned class--we set the class2 property to unowned,
which means it cannot be nil and it does not keep a strong reference to the instance that it
is referring to. Since the class2 property cannot be nil, we also need to set it when the class
is initialized.

Let's see how we can initialize and deinitialize the instances of these classes with the
following code:

let class2 = MyClass2_Unowned(name: "Class2_Unowned")
let class1: MyClass1_Unowned? = MyClass1_Unowned(name:
"class1_Unowned",class2: class2)
 class2.class1 = class1
 print("Classes going out of scope")

In the preceding code, we create an instance of the MyClass_Unowned class and then use
that instance to create an instance of the MyClass1_Unowned class. We then set the class1
property of the MyClass2 instance to the MyClass1_Unowned instance we just created.
This creates a reference cycle of dependency between the two classes again, but this time,
the MyClass1_Unowned instance is not keeping a strong hold on the MyClass2_Unowned
instance, allowing ARC to release both instances when they are no longer needed.

If we run this code, we see the following output, showing that both the MyClass3 and

MyClass4 instances are released, and the memory is freed:

Initializing class2_Unowned with name Class2_Unowned
Initializing class1_Unowned with name class1_Unowned
Classes going out of scope
Releasing class2_Unowned with name Class2_Unowned
Releasing class1_Unowned with name class1_Unowned

Memory Management Chapter 16

[291]

As we can see, both instances are properly released. Now let's look at how we would use a
weak reference to prevent a strong reference cycle. Once again, we begin by creating two
new classes:

class MyClass1_Weak {
 var name = ""
 var class2: MyClass2_Weak?
 init(name: String) {
 self.name = name
 print("Initializing class1_Weak with name \(self.name)")
}
deinit {
print("Releasing class1_Weak with name \(self.name)")
}
}

class MyClass2_Weak {
 var name = ""
 weak var class1: MyClass1_Weak?
 init(name: String) {
 self.name = name
 print("Initializing class2_Weak with name \(self.name)")
}
 deinit {
print("Releasing class2_Weak with name \(self.name)")
}

}

The MyClass1_Weak and MyClass2_Weak classes look very similar to the previous classes
we created that showed how a strong reference cycle works. The difference is that we
define the class1 property in the MyClass2_Weak class as a weak reference.

Now, let's see how we can initialize and deinitialize instances of these classes with the
following code:

let class1: MyClass1_Weak? = MyClass1_Weak(name: "Class1_Weak")
let class2: MyClass2_Weak? = MyClass2_Weak(name: "Class2_Weak")

class1?.class2 = class2 class2?.class1 = class1

print("Classes going out of scope")

Memory Management Chapter 16

[292]

In the preceding code, we create instances of the MyClass1_Weak and MyClass2_Weak
classes and then set the properties of those classes to point to the instance of the other class.
Once again, this creates a cycle of dependency, but since we set the class1 property of the
MyClass2_Weak class to weak, it does not create a strong reference, allowing both instances
to be released.

If we run the code, we will see the following output, showing that both the MyClass5 and
MyClass6 instances are released and the memory is freed:

Initializing class1_Weak with name Class1_Weak
Initializing class2_Weak with name Class2_Weak
Classes going out of scope
Releasing class1_Weak with name Class1_Weak Releasing class2_Weak with name
Class2_Weak

It is recommended that you avoid creating circular dependencies, as shown in this section,
but there are times when you may need them. For those times, remember that ARC needs
some help to release them.

Summary
In this chapter we explained how ARC worked to give you an understanding of how
memory is managed in your application. We are showed what a string reference cycle is
and explained how it can cause ARC to fail. We concluded the chapter by showing how we
can use weak and unowned references to prevent strong reference cycles.

In the next chapter we will look at how to properly format our Swift code for consistency
and readability.

17
Swift Formatting and Style

Guider
Throughout my development experience, every time I learned a new programming
language, there was usually some mention of how the code for that language should be
written and formatted. Early in my development career (which was a long time ago), these
recommendations were very basic formatting recommendations, such as how to indent
your code, or having one statement per line. It really wasn't until the last 10-12 years that I
started to see complex and detailed formatting and style guides for different programming
languages. Today, you will be hard-pressed to find a development shop with more than
two or three developers that does not have a style/formatting guide for each language that
they use. Even companies that do not create their own style guides generally refer back to
some standard guide published by other companies, such as Google, Oracle, or Microsoft.
These style guides help teams to write consistent and easy-to-maintain code.

In this chapter, you will learn in the following:

What a style guide is
What makes a good style guide
Why it is important to use a style guide
How to create a sample style guide

What is a programming style guide?
Coding styles are very personal, and every developer has his or her own preferred style.
These styles can vary from language to language, from person to person, and also over
time. The personal nature of coding styles can make it difficult to have a consistent and
readable code base when numerous individuals are contributing to the code.

Swift Formatting and Style Guider Chapter 17

[294]

While most developers might have their own preferred styles, the recommended or
preferred style between languages can vary. As an example, in C#, when we name a
method or function, it is preferred that we use PascalCase, which is similar to CamelCase
except the first letter is capitalized. In most other languages, such as C, Objective-C, and
Java, it is also recommended that we use CamelCase, where the first letter is lowercase.

The best applications are coded so they are easy to maintain, and the code is easy to read. It
is hard for large projects and companies with many developers to have code that is easy to
maintain and read if every developer uses their own coding style. This is why companies
and projects with multiple developers usually adopt programming style guides for each
language that they use.

A programming style guide defines a set of rules and guidelines that a developer should
follow while writing applications with a specific language within a project or company.
These style guides can differ greatly between companies or projects and reflect how a
company or project expects code to be written. These guides can also change over time. It is
important to follow these style guides to maintain a consistent code base.

A lot of developers do not like the idea of being told how they should write code, and claim
that as long as their code functions correctly, it shouldn't matter how they format their
code. This type of philosophy doesn't work in a coding team or in a sports team, like a
basketball team. What do you think would happen if all the players on a basketball team
believed that they could all play the way they wanted to and the team was better when they
did their own thing? That team would probably lose the majority of its games. It is
impossible for a basketball team (or any sports team, for that matter) to win most of its
games unless its members are working together. It is up to the coach to make sure that
everyone is working together and executing the same game plan, just like it is up to the
team leader of the development project to make sure all the developers are writing code
according to the adopted style guide.

Your style guide
The style guide that we define in this book is just a guide. It reflects the author's opinion on
how Swift code should be written and is meant to be a good starting point for creating your
own style guide. If you really like this guide and adopt it as it is, great. If there are parts
that you do not agree with and you change them within your guide, that is great as well.
The appropriate style for you and your team is the one that you and your team feel
comfortable with, and it may or may not be different from the guide in this book. Don't be
afraid to adjust your style guide as needed.

Swift Formatting and Style Guider Chapter 17

[295]

One thing that is noticeable in the style guide within this chapter, and most good style
guides, is that there is very little explanation about why each item is preferred or not
preferred. Style guides should give enough details so that the reader understands the
preferred and non-preferred methods for each item, but should also be small and compact
to make them easy and quick to read. If a developer has questions about why a particular
method is preferred, they should bring that concern up with the development group. With
that in mind, let's get started with the guide.

Do not use semicolons at the end of statements
Unlike a lot of languages, Swift does not require semicolons at the end of statements.
Therefore, we should not use them. Let's look at the following code:

//Preferred Method
var name = "Jon"
print(name)

//Non-preferred Method
var name = "Jon";
print(name);

Do not use parentheses for conditional
statements
Unlike a lot of languages, parentheses are not required around conditional statements;
therefore, we should avoid using them unless they are needed for clarification. Let's look at
the following code:

//Preferred Method
if speed == 300_000_000 {
 print("Speed of light")
}
//Non-Preferred Method
if (speed == 300_000_000) {
 print("Speed of light")
}

Swift Formatting and Style Guider Chapter 17

[296]

Naming
We should always use descriptive names with CamelCase for customer types, methods,
variables, constants, and so on. Let's look at some general naming rules.

Custom types
Custom types should have a descriptive name that describes what the type is for. The name
should be in PascalCase. Here are examples of proper names and non-proper names
based on our style guide:

// Proper Naming Convention
BaseballTeam
LaptopComputer

//Non-Proper Naming Convention
baseballTeam
//Starts with a lowercase letter Laptop_Computer uses an underscore

Functions and methods
Function names should be descriptive, describing the function or method. They should be
in CamelCase. Here are some examples of proper and non-proper names:

//Proper Naming Convention
getCityName
playSound

//Non-Proper Naming Convention
get_city_name //All lowercase and has an underscore
PlaySound //Begins with an upper case letter

Constants and variables
Constants and variables should have a descriptive name. They should begin with a
lowercase letter and be in CamelCase. The only exception is when the constant is global; in
that case, the name of the constant should contain all uppercase characters with the words
separated by underscores. I have seen numerous guides that frown upon having all-
uppercase names, but I personally like them for constants in the global scope, because it
stands out that they are globally, not locally, scoped.

Swift Formatting and Style Guider Chapter 17

[297]

Here are some examples of proper and non-proper names:

//Proper Names
playerName
driveSize
//Non-Proper Names
PlayerName //Starts with uppercase letter
drive_size //Has underscore in name

Indenting
Indenting width in Xcode, by default, is defined as four spaces, and tab width is also
defined as four spaces. We should leave this as the default. The following screenshot shows
the indentation setting in Xcode:

We should add an extra blank line between functions/methods. We should also use a blank
line to separate functionality within a function or method. That being said, using many
blank lines within a function or method might signify that we should break the function
into multiple functions.

Swift Formatting and Style Guider Chapter 17

[298]

Comments
We should use comments as needed to explain how and why our code is written. We
should use block comments before custom types and functions. We should use double
slashes to comment our code in one line. Here is an example of how comments should be
written:

/**
 This is a block comment that should be used
 to explain a class or function
**/
public class EmployeeClass {
 // This is an inline comment with double slashes
 var firstName = ""
 var lastName = ""

/**
 Use Block comments for functions
 - parameter paramName: use this tag for parameters
 - returns: explain what is returned
 - throws: Error thrown
**/
 func getFullName() -> String {
 return firstName + " " + lastName
 }
}

When we are commenting methods, we should also use the documentation tags, which will
generate documentation in Xcode, as shown in the preceding example. At a minimum, we
should use the following tags if they apply to our method:

Parameter: This is used for parameters
Returns: This is used for what is returned
Throws: This is used to document errors that may be thrown

Using the self keyword
Since Swift does not require us to use the self keyword when accessing properties or
invoking methods of an object, we should avoid using it unless we need to distinguish
between an instance property and local variables. Here is an example of when you should
use the self keyword:

public class EmployeeClass {
 var firstName = ""

Swift Formatting and Style Guider Chapter 17

[299]

 var lastName = ""
 func setName(firstName: String, lastName: String) {
 self.firstName = firstName
 self.lastName = lastName
 }
}

Here is an example of when not to use the self keyword:

public class EmployeeClass {
 var firstName = ""
 var lastName = ""
 func getFullName() -> String {
 return self.firstName + " " + self.lastName
 }
}

Constants and variables
The difference between constants and variables is that the value of a constant never
changes, whereas the value of a variable may change. Wherever possible, we should define
constants rather than variables.

One of the easiest ways of doing this is by defining everything as a constant by default, and
then changing the definition to a variable only after you reach a point in your code that
requires you to change it. In Swift, you will get a warning if you define a variable and then
never change the value within your code.

Optional types
Only use optional types when absolutely necessary. If there is no absolute need for a nil
value to be assigned to a variable, we should not define it as an optional.

Using optional binding
We should avoid forced unwrapping of optionals, as there is rarely any need to do this. We
should prefer optional binding or optional chaining over forced unwrapping.

Swift Formatting and Style Guider Chapter 17

[300]

The following examples show the preferred and non-preferred methods where
the myOptional variable is defined as an optional:

//Preferred Method Optional Binding
 if let value = myOptional {
 // code if myOptional is not nil
} else {
 // code if myOptional is nil
}

//Non-Preferred Method
 if myOptional != nil {
 // code if myOptional is not nil
} else {
 // code if myOptional is nil
}

If there are several optionals that we need to unwrap, we should include them in the same
if-let or guard statement, rather than unwrapping them on separate lines. There are
times, however, when our business logic may require us to handle nil values differently
and this may require us to unwrap the optionals on separate lines. The following examples
show the preferred and non-preferred methods:

//Preferred Method Optional Binding
if let value1 = myOptional1, let value2 = myOptional2 {
 // code if myOptional1 and myOptional2 is not nil
 } else {
 // code if myOptional1 and myOptional2 is nil
}

//Non-Preferred Method Optional Binding
if let value1 = myOptional1 {
 if let value2 = myOptional2 {
 // code if myOptional is not nil
 } else {
 // code if myOptional2 is nil
 }
 } else {
 // code if myOptional1 is nil
}

Swift Formatting and Style Guider Chapter 17

[301]

Using optional chaining instead of optional binding for
multiple unwrapping
When we need to unwrap multiple layers, we should use optional chaining over multiple
optional binding statements. The following example shows the preferred and non-preferred
methods:

//Preferred Method
if let color = jon.pet?.collar?.color {
 print("The color of the collar is \(color)")
} else {
 print("Cannot retrieve color")
}

//Non-Preferred Method
if let tmpPet = jon.pet, let tmpCollar = tmpPet.collar{
 print("The color of the collar is \(tmpCollar.color)")
} else {
 print("Cannot retrieve color")
}

Using type inference
Rather than defining variable types, we should let Swift infer the type. The only time we
should define the variable or constant type is when we are not giving it a value while
defining it. Let's look at the following code:

//Preferred method
var myVar = "String Type" //Infers a String type
var myNum = 2.25 //Infers a Double type

//Non-Preferred method
var myVar: String = "String Type"
var myNum: Double = 2.25

Swift Formatting and Style Guider Chapter 17

[302]

Using shorthand declaration for collections
When declaring native Swift collection types, we should use the shorthand syntax, and,
unless absolutely necessary, we should initialize the collection. The following example
shows the preferred and non-preferred methods:

//Preferred Method
var myDictionary: [String: String] = [:]
var strArray: [String] = []
var strOptional: String?

//Non-Preferred Method
var myDictionary: Dictionary<String,String>
var strArray: Array<String>
var strOptional: Optional<String>

Using switch rather than multiple if statements
Wherever possible, we should prefer to use a single switch statement over multiple
if statements. The following example shows the preferred and non-preferred methods:

//Preferred Method
let speed = 300_000_000
switch speed {
 case 300_000_000: print("Speed of light")
 case 340:
 print("Speed of sound")
 default:
 print("Unknown speed")
}

//Non-preferred Method
let speed = 300_000_000
if speed == 300_000_000 {
 print("Speed of light")
} else if speed == 340 {
 print("Speed of sound")
} else {
 print("Unknown speed")
}

Swift Formatting and Style Guider Chapter 17

[303]

Don't leave commented-out code in your
application
If we comment out a block of code while we attempt to replace it, once we are comfortable
with the changes we should remove the code that we commented out. Having large blocks
of code commented out can make the code base look messy and harder to follow.

Summary
When we are developing an application in a team environment, it is important to have a
well-defined coding style that is adhered to by everyone on the team. This allows us to
have a code base that is easy to read and maintain.

If a style guide remains static for too long, it means that it is probably not keeping up with
the latest changes within the language. What is "too long" is different for each language. For
example, with the C language, too long will be defined in years, since the language is very
stable; however, with Swift, the language is new, and changes are coming pretty often, so
too long can probably be defined as a couple of months.

It is recommended that we keep our style guides in a versioning control system so that we
can refer to the older versions if need be. This allows us to pull the older versions of the
style guide and refer back to them when we are looking at older code.

It is recommended, not only with Swift but other languages as well, that you use a Lint tool
to check and enforce good coding practices. For Swift there is a great tool called SwiftLint
(https:/​/​github.​com/ ​realm/ ​SwiftLint) which has a command-line tool.

As you work on a style guide for your organization, you may want to keep an eye on Swift-
Evolution Proposal SE-0250 (https:/ ​/ ​github. ​com/ ​apple/ ​swift- ​evolution/ ​blob/ ​master/
proposals/​0250-​swift- ​style- ​guide- ​and- ​formatter. ​md). This proposal is to create an
official Swift style guidelines and formatter. If this proposal is accepted and an official style
guide is released then you should adopt those guidelines.

https://github.com/realm/SwiftLint
https://github.com/realm/SwiftLint
https://github.com/realm/SwiftLint
https://github.com/realm/SwiftLint
https://github.com/realm/SwiftLint
https://github.com/realm/SwiftLint
https://github.com/realm/SwiftLint
https://github.com/realm/SwiftLint
https://github.com/realm/SwiftLint
https://github.com/realm/SwiftLint
https://github.com/realm/SwiftLint
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md
https://github.com/apple/swift-evolution/blob/master/proposals/0250-swift-style-guide-and-formatter.md

18
Adopting Design Patterns in

Swift
While the first publication of the Gang of Four's Design Patterns: Elements of Reusable Object-
Oriented Software was released in October of 1994, I have only been paying attention to
design patterns for the last 12 years. Like most experienced developers, when I first started
reading about design patterns, I recognized a lot of the patterns because I had already been
using them without realizing what they were. I would have to say that in the past 12 years
since I first read about design patterns, I have not written a serious application without
using at least one of the Gang of Four's design patterns. I will tell you that I am definitely
not a design pattern zealot, and if I get into a conversation about design patterns, there are
usually only a couple of them that I can name without having to look them up. But one
thing that I do remember is the concepts behind the major patterns and the problems they
are designed to solve. This way, when I encounter one of these problems, I can look up the
appropriate pattern and apply it. So, remember, as you go through this chapter, to take the
time to understand the major concepts behind design patterns rather than trying to
memorize the patterns themselves.

In this chapter, you will learn about the following topics:

What are design patterns?
What types of pattern make up the creational, structural, and behavioral
categories of design patterns?
How to implement the builder and singleton creational patterns in Swift?
How to implement the bridge, facade, and proxy structural patterns in Swift?
How to implement the strategy and command behavioral patterns in Swift?

Adopting Design Patterns in Swift Chapter 18

[305]

What are design patterns?
Every experienced developer has a set of informal strategies that shape how they design
and write applications. These strategies are shaped by their past experiences and the
obstacles that they have had to overcome in previous projects. While these developers
might swear by their own strategies, it does not mean that their strategies have been fully
vetted. The use of these strategies can also introduce inconsistent implementations between
different projects and developers.

While the concept of design patterns dates back to the mid 80s, they did not gain popularity
until the Gang of Four released 'Elements of Reusable Object-Oriented Software', published
in 1994. The book's authors, Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides (also known as the Gang of Four), discuss the pitfalls of object- oriented
programming and describe 23 classic software design patterns. These 23 patterns are
broken up into three categories: creational, structural, and behavioral.

A design pattern identifies common software development problems and provides a
strategy to deal with them. These strategies have been proven, over the years, to be an
effective solution for the problems they are intended to solve. Using these patterns can
greatly speed up the development process because they provide us with solutions that have
already been proven to solve several common software development problems.

Another advantage that we get when we use design patterns is consistent code that is easy
to maintain because, months or years from now, when we look at the code we will
recognize the patterns and understand what the code does. If we properly document the
code and document the design pattern we are implementing, it will also help other
developers to understand what the code is doing.

The two main philosophies behind design patterns are code reuse and flexibility. As a
software architect, it is essential that we build reusability and flexibility into the code. This
allows us to easily maintain the code in the future and also makes it easier for the
applications to expand to meet future requirements, because we all know how quickly
requirements change.

While there is a lot to like about design patterns, and they are extremely beneficial for
developers and architects, they are not the solution for world hunger that some developers
make them out to be. Sometime in your development career, you will probably meet a
developer or an architect who thinks that design patterns are immutable laws. These
developers usually try to force the use of design patterns even when they are not necessary.
A good rule of thumb is to make sure that you have a problem that needs to be fixed before
you try to fix it.

Adopting Design Patterns in Swift Chapter 18

[306]

Design patterns are starting points for avoiding and solving common programming
problems. We can think of each design pattern as a recipe for a food dish. Just like a good
recipe, we can tinker and adjust it to meet the particular tastes. But we usually do not want
to stray too far from the original recipe because we may mess it up.

There are also times when we do not have a recipe for a certain dish that we want to make,
just like there are times when there isn't a design pattern to solve the problem we face. In
cases like this, we can use the knowledge of design patterns and their underlying
philosophy to come up with an effective solution for the problem.

Design patterns are generally split into three categories. These are as follows:

Creational patterns: Creational patterns support the creation of objects
Structural patterns: Structural patterns concern types and object compositions

Behavioral patterns: Behavioral patterns communicate between types

While the Gang of Four defined over 20 design patterns, we are only going to look at
examples of some of the more popular patterns in this chapter. Let's start off by looking at
creational patterns.

Design patterns were originally defined for object-oriented programming.
In this chapter, where possible, we will focus on implementing patterns in
a more protocol-oriented way. Therefore, the examples in this chapter
may look a little different from examples in other design pattern books,
but the underlying philosophy of the solutions will be the same.

Creational patterns
Creational patterns are design patterns that deal with how an object is created. These
patterns create objects in a manner suitable for a particular situation.

There are two basic ideas behind creational patterns. The first is encapsulating the
knowledge of which concrete types should be created and the second is hiding how the
instances of these types are created.

Adopting Design Patterns in Swift Chapter 18

[307]

There are five well-known patterns that are a part of the creational pattern category. They
are as follows:

Abstract factory pattern: This provides an interface for creating related objects
without specifying the concrete type
Builder pattern: This separates the construction of a complex object from its
representation, so the same process can be used to create similar types
Factory method pattern: This creates objects without exposing the underlying
logic of how the object (or which type of object) is created
Prototype pattern: This creates an object by cloning an existing one
Singleton pattern: This allows one (and only one) instance of a class for the
lifetime of an applications

In this chapter, we are going to show examples of how to implement the singleton and
builder patterns in Swift. Let's start off by looking at one of the most controversial and
possibly overused design patterns, the singleton pattern.

The singleton design pattern
The use of the singleton pattern is a fairly controversial subject among certain corners of the
development community. One of the main reasons for this is that the singleton pattern is
probably the most overused and misused pattern. Another reason this pattern is
controversial is because the singleton pattern introduces a global state into an application,
which provides the ability to change the object at any point within the application. The
singleton pattern can also introduce hidden dependencies and tight compiling. My
personal opinion is that, if the singleton pattern is used correctly, there is nothing wrong
with using it. However, we do need to be careful not to misuse it.

The singleton pattern restricts the instantiation of a class to a single instance for the lifetime
of an application. This pattern is very effective when we need exactly one object to
coordinate actions within the application. An example of a good use of a singleton is if the
application communicates with a remote device over Bluetooth and we also want to
maintain that connection throughout the application. Some would say that we could pass
the instance of the connection class from one page to the next, which is essentially what a
singleton is. In my opinion, the singleton pattern, in this instance, is a much cleaner
solution, because with the singleton pattern any page that needs the connection can get it
without forcing every page to maintain the instance. This also allows us to maintain the
connection without having to reconnect each time we go to another page.

Adopting Design Patterns in Swift Chapter 18

[308]

Understanding the problem
The problem that the singleton pattern is designed to address is when we need one and
only one instance of a type for the lifetime of the application. The singleton pattern is
usually used when we need centralized management of an internal or external resource,
and a single global point of access. Another popular use of the singleton pattern is when we
want to consolidate a set of related activities needed throughout the application that do not
maintain a state in one place.

In Chapter 7, Classes, Structures, and Protocols, we used the singleton pattern in the text
validation example because we only needed one instance of the text validation types
throughout the lifetime of the application. In this example, we used the singleton pattern
for the text validation types because we wanted to create a single instance of the types that
could then be used by all the components of the application without requiring us to create
new instances of the types. These text validation types did not have a state that could be
changed. They only had methods that performed the validation on the text and constants
that defined how to validate the text. While some may disagree with me, I believe types like
these are excellent candidates for the singleton pattern because there is no reason to create
multiple instances of these types.

Understanding the solution
There are several ways to implement the singleton pattern in Swift. In the method that we
use here, a single instance of the class is created the first time the class constant is accessed.
We will then use the class constant to gain access to this instance throughout the lifetime of
the application. We will also create a private initializer that will prevent external code from
creating additional instances of the class.

Note that we use the word class in this description and not type. The
reason for this is that the singleton pattern can only be implemented with
reference types.

Implementing the singleton pattern
Let's look at how we implement the singleton pattern with Swift. The following code
example shows how to create a singleton class:

class MySingleton {
 static let sharedInstance = MySingleton()
 var number = 0
 private init() {}
}

Adopting Design Patterns in Swift Chapter 18

[309]

We can see that, within the MySingleton class, we created a static constant named
sharedInstance, which contains an instance of the MySingleton class. A static constant
can be called without having to instantiate the class. Since we declared the
sharedInstance constant static, only one instance will exist throughout the lifecycle of the
application, thereby creating the singleton pattern.

We also created the private initiator, which cannot be accessed outside of the class, which
will restrict other code from creating additional instances of the MySingleton class.

Now, let's see how this pattern works. The MySingleton pattern has another property,
named number, which is an integer. We will monitor how this property changes as we use
the sharedInstance property to create multiple variables of the MySingleton type, as
shown in the following code:

var singleA = MySingleton.sharedInstance
var singleB = MySingleton.sharedInstance
var singleC = MySingleton.sharedInstance

singleB.number = 2
print(singleA.number)
print(singleB.number)
print(singleC.number)

singleC.number = 3
print(singleA.number)
print(singleB.number)
print(singleC.number)

In this example, we used the sharedInstance property to create three variables of the
MySingleton type. We initially set the number property of the second MySingleton
variable (singleB) to the number 2. When we printed out the value of the number
property for the singleA, singleB, and singleC instances we saw that the number
property for all three equalled 2. We then changed the value of the number property of the
third MySingleton instance (singleC) to the number 3.

When we printed out the value of the number property again, we saw that all three now
have the value of 3. Therefore, when we change the value of the number property in any of
the instances, the values of all three changes because each variable is pointed to the same
instance.

In this example, we implemented the singleton pattern using a reference (class) type
because we wanted to ensure that only one instance of the type existed throughout the
application. If we implemented this pattern with a value type, such as a structure or an
enumeration, we would run the risk of there being multiple instances of the type.

Adopting Design Patterns in Swift Chapter 18

[310]

If you recall, each time we pass an instance of a value type, we are actually passing a copy
of that instance, which means that, if we implemented the singleton pattern with a value
type, each time we called the sharedInstance property we would receive a new copy,
which would effectively break the singleton pattern.

The singleton pattern can be very useful when we need to maintain the state of an object
throughout the application; however, be careful not to overuse it. The singleton pattern
should not be used unless there is a specific requirement (requirement is the keyword here)
for having one, and only one, instance of the class throughout the lifecycle of the
application. If we are using the singleton pattern simply for convenience, then we are
probably misusing it.

Keep in mind that, while Apple recommends that we prefer value types to reference types,
there are still plenty of examples, such as the singleton pattern, where we need to use
reference types. When we continuously tell ourselves to prefer value types to reference
types, it can be very easy to forget that there are times where a reference type is needed.
Don't forget to use reference types with this pattern.

Now, let's look at the builder design pattern.

The builder design pattern
The builder pattern helps us with the creation of complex objects and enforces the process
of how these objects are created. With this pattern, we generally separate the creation logic
from the complex type and put it in another type. This allows us to use the same
construction process to create different representations of the type.

Understanding the problem
The problem that the builder pattern is designed to address is when an instance of a type
requires a large number of configurable values. We could set the configuration options
when we create instances of the class, but that can cause issues if the options are not set
correctly or we do not know the proper values for all the options. Another issue is the
amount of code that may be needed to set all the configurable options each time we create
an instance of the types.

Understanding the solution
The builder pattern solves this problem by introducing an intermediary known as a builder
type. This builder type contains most, if not all, of the information necessary to create an
instance of the original complex type.

Adopting Design Patterns in Swift Chapter 18

[311]

There are two methods that we can use to implement the builder pattern. The first method
is to have multiple builder types where each of the types contains the information to
configure the original complex object in a specific way. In the second method, we
implement the builder pattern with a single builder type that sets all the configurable
options to a default value and then we would change the values as needed.

In this section, we will look at both ways to use the builder pattern, because it is important
to understand how each works.

Implementing the builder pattern
Before we show how we would use the builder pattern, let's look at how to create a
complex structure without the builder pattern and the problems we run into.

The following code creates a structure named BurgerOld, and does not use the builder
pattern:

struct BurgerOld {
 var name: String
 var patties: Int
 var bacon: Bool
 var cheese: Bool
 var pickles: Bool
 var ketchup: Bool
 var mustard: Bool
 var lettuce: Bool
 var tomato: Bool
 init(name: String, patties: Int, bacon: Bool, cheese: Bool,
 pickles:Bool,ketchup: Bool,mustard: Bool,lettuce: Bool, tomato: Bool) {
 self.name = name
 self.patties = patties
 self.bacon = bacon
 self.cheese = cheese
 self.pickles = pickles
 self.ketchup = ketchup
 self.mustard = mustard
 self.lettuce = lettuce
 self.tomato = tomato
 }
}

Adopting Design Patterns in Swift Chapter 18

[312]

In the BurgerOld structure, we have several properties that define which condiments are
on the burger and the name of the burger. Since we need to know which items are on the
burgers and which items aren't, when we create an instance of the BurgerOld structure the
initializer requires us to define each item. This can lead to some complex initializations
throughout the application, not to mention that, if we had more than one standard burger
(bacon cheeseburger, cheeseburger, hamburger, and so on), we would need to make sure
that each is defined correctly. Let's see how to create instances of the BurgerOld class:

// Create Hamburger
var hamburger = BurgerOld(name: "Hamburger", patties: 1, bacon: false,
cheese: false, pickles: false, ketchup: false, mustard: false, lettuce:
false, tomato: false)

// Create Cheeseburger
var cheeseburger = BurgerOld(name: "Cheeseburger", patties: 1 , bacon:
false, cheese: false, pickles: false, ketchup: false, mustard: false,
lettuce: false, tomato: false)

As we can see, creating instances of the BurgerOld type requires a lot of code. Now, let's
look at a better way to do this. In this example, we will show how to use multiple builder
types where each type will define the condiments that are on a particular burger. We will
begin by creating a BurgerBuilder protocol that will have the following code in it:

protocol BurgerBuilder {
 var name: String { get }
 var patties: Int { get }
 var bacon: Bool { get }
 var cheese: Bool { get }
 var pickles: Bool { get }
 var ketchup: Bool { get }
 var mustard: Bool { get }

 var lettuce: Bool { get }
 var tomato: Bool { get }
}

This protocol simply defines the nine properties that will be required for any type that
implements this protocol. Now, let's create two structures that implement this protocol: the
HamburgerBuilder and the CheeseBurgerBuilder structures:

struct HamburgerBuilder: BurgerBuilder {
 let name = "Burger"
 let patties = 1
 let bacon = false
 let cheese = false
 let pickles = true

Adopting Design Patterns in Swift Chapter 18

[313]

 let ketchup = true
 let mustard = true
 let lettuce = false
 let tomato = false
}

struct CheeseBurgerBuilder: BurgerBuilder {
 let name = "CheeseBurger"
 let patties = 1
 let bacon = false
 let cheese = true
 let pickles = true
 let ketchup = true
 let mustard = true
 let lettuce = false
 let tomato = false
}

In both the HamburgerBuilder and the CheeseBurgerBuilder structures, all we are
doing is defining the values for each of the required properties. In more complex types, we
might need to initialize additional resources.

Now, let's look at the Burger structure, which will use instances of the BurgerBuilder
protocol to create instances of itself. The following code shows this new Burger type:

struct Burger {
 var name: String
 var patties: Int
 var bacon: Bool
 var cheese: Bool
 var pickles: Bool
 var ketchup: Bool
 var mustard: Bool
 var lettuce: Bool
 var tomato: Bool

 init(builder: BurgerBuilder) {
 self.name = builder.name
 self.patties = builder.patties
 self.bacon = builder.bacon
 self.cheese = builder.cheese
 self.pickles = builder.pickles
 self.ketchup = builder.ketchup
 self.mustard = builder.mustard
 self.lettuce = builder.lettuce
 self.tomato = builder.tomato
 }

Adopting Design Patterns in Swift Chapter 18

[314]

 func showBurger() {
 print("Name:\(name)")
 print("Patties: \(patties)")
 print("Bacon: \(bacon)")
 print("Cheese: \(cheese)")
 print("Pickles: \(pickles)")
 print("Ketchup: \(ketchup)")
 print("Mustard: \(mustard)")
 print("Lettuce: \(lettuce)")
 print("Tomato: \(tomato)")
 }
}

The difference between this Burger structure and the BurgerOld structure shown earlier is
the initializer. In the previous BurgerOld structure, the initializer took nine arguments-one
for each constant defined in the structure. In the new Burger structure, the initializer takes
one argument, which is an instance of a type that conforms to the BurgerBuilder
protocol. This new initializer allows us to create instances of the Burger class as follows:

// Create Hamburger
var myBurger = Burger(builder: HamburgerBuilder())
myBurger.showBurger()

// Create Cheeseburger with tomatoes
var myCheeseBurger = Burger(builder: CheeseBurgerBuilder())
// Lets hold the tomatoes
myCheeseBurger.tomato = false
myCheeseBurger.showBurger()

If we compare how we create instances of the new Burger structure to the earlier
BurgerOld structure, we can see that it is much easier to create instances of the Burger
structure. We also know that we are correctly setting the property values for each type of
burger because the values are set directly in the builder classes.

As we mentioned earlier, there is a second method that we can use to implement the
builder pattern. Rather than having multiple builder types, we can have a single builder
type that sets all the configurable options to a default value; then we change the values as
needed. I use this implementation method a lot when I am updating older code because it is
easy to integrate it with preexisting code.

For this implementation, we will create a single BurgerBuilder structure. This structure
will be used to create instances of the BurgerOld structure and will, by default, set all the
ingredients to their default values.

Adopting Design Patterns in Swift Chapter 18

[315]

The BurgerBuilder structure also gives us the ability to change which ingredients will go
on the burger prior to creating instances of the BurgerOld structure. We create the
BurgerBuilder structure as follows:

struct BurgerBuilder {
 var name = "Burger"
 var patties = 1
 var bacon = false
 var cheese = false
 var pickles = true
 var ketchup = true
 var mustard = true
 var lettuce = false
 var tomato = false

 mutating func setPatties(choice: Int) {
 self.patties = choice
 }
 mutating func setBacon(choice: Bool) {
 self.bacon = choice
 }
 mutating func setCheese(choice: Bool) {
 self.cheese = choice
 }
 mutating func setPickles(choice: Bool) {
 self.pickles = choice
 }
 mutating func setKetchup(choice: Bool) {
 self.ketchup = choice
 }
 mutating func setMustard(choice: Bool) {
 self.mustard = choice
 }
 mutating func setLettuce(choice: Bool) {
 self.lettuce = choice
 }
 mutating func setTomato(choice: Bool) {
 self.tomato = choice
}
func buildBurgerOld(name: String) -> BurgerOld {
 return BurgerOld(name: name, patties: self.patties,bacon:
 self.bacon, cheese: self.cheese,pickles: self.pickles,
 ketchup: self.ketchup,mustard: self.mustard, lettuce:
 self.lettuce,tomato: self.tomato)
 }
}

Adopting Design Patterns in Swift Chapter 18

[316]

In the BurgerBuilder structure, we define the nine properties (ingredients) for the burger
and then create a setter method for each of the properties except for the name property. We
also create one method named buildBurgerOld(), which will create an instance of the
BurgerOld structure based on the values of the properties for the BurgerBuilder
instance. We use the BurgerBuilder structure as follows:

var burgerBuilder = BurgerBuilder()
burgerBuilder.setCheese(choice: true)
burgerBuilder.setBacon(choice: true)
var jonBurger = burgerBuilder.buildBurgerOld(name: "Jon's Burger")

In this example, we create an instance of the BurgerBuilder structure. We then use the
setCheese() and setBacon() methods to add cheese and bacon to the burger. Finally,
we call the buildBurgerOld() method to create the instance of the burgerOld structure.

As we can see, both methods that were used to implement the builder pattern greatly
simplify the creation of the complex type. Both methods also ensured that the instances
were properly configured with default values. If you find yourself creating instances of
types with very long and complex initialization commands, I recommend that you look at
the builder pattern to see if you can use it to simplify the initialization.

Now, let's look at structural design patterns.

Structural design patterns
Structural design patterns describe how types can be combined to form larger structures.
These larger structures can generally be easier to work with and hide a lot of the complexity
of the individual types. Most patterns in the structural pattern category involve connections
between objects.

There are seven well-known patterns that are part of the structural design pattern type.
These are as follows:

Adapter: This allows types with incompatible interfaces to work together
Bridge: This is used to separate the abstract elements of a type from the
implementation so the two can vary
Composite: This allows us to treat a group of objects as a single object
Decorator: This lets us add or override behavior in an existing method of an
object

Adopting Design Patterns in Swift Chapter 18

[317]

Facade: This provides a simplified interface for a larger and more complex body
of code
Flyweight: This allows us to reduce the resources needed to create and use a
large number of similar objects
Proxy: This is a type acting as an interface for another class or classes

In this chapter, we are going to give examples of how to use the bridge, facade, and proxy
patterns in Swift. Let's start off by looking at the bridge pattern.

The bridge pattern
The bridge pattern decouples the abstraction from the implementation so that they can both
vary independently. The bridge pattern can also be thought of as a two-layer abstraction.

Understanding the problem
The bridge pattern is designed to solve a couple of problems, but the one we are going to
focus on here tends to arise over time as new requirements come in with new features. At
some point as these come in, we will need to change how the features interact. Eventually
this will require us to refactor the code.

In object-oriented programming, this is known as an exploding class hierarchy, but it can
also happen in protocol-oriented programming.

Understanding the solution
The bridge pattern solves this problem by taking the interacting features and separating the
functionality that is specific to each feature from the functionality that is shared between
them. A bridge type can then be created, which will encapsulate the shared functionality,
bringing them together.

Implementing the bridge pattern
To demonstrate how we would use the bridge pattern, we will create two features. The first
feature is a message feature that will store and prepare a message that we wish to send out.
The second feature is the sender feature that will send the message through a specific
channel, such as email or SMS messaging.

Adopting Design Patterns in Swift Chapter 18

[318]

Let's start off by creating two protocols named Message and Sender. The Message protocol
will define the requirements for types that are used to create messages. The Sender protocol
will be used to define the requirements for types that are used to send the messages
through the specific channels. The following code shows how we define these two
protocols:

protocol Message {
 var messageString: String { get set }
 init(messageString: String)
 func prepareMessage()
}

protocol Sender {
 func sendMessage(message: Message)
}

The Message protocol defines a single property named messageString of the String
type. This property will contain the text of the message and cannot be nil. We also define
one initiator and a method named prepareMessage(). The initializer will be used to set
the messageString property and anything else required by the message type. The
prepareMessage() method will be used to prepare the message prior to sending it. This
method can be used to encrypt the message, add formatting, or do anything else to the
message prior to sending it.

The Sender protocol defines a method named sendMessage(). This method will send the
message through the channel defined by conforming types. In this function, we will need to
ensure that the prepareMessage() method from the message type is called prior to
sending the message.

Now let's see how we define two types that conform to the Message protocol:

class PlainTextMessage: Message {
 var messageString: String
 required init(messageString: String) {
 self.messageString = messageString
 }
 func prepareMessage() {
 //Nothing to do
 }
}

class DESEncryptedMessage: Message {
 var messageString: String
 required init(messageString: String) {
 self.messageString = messageString
 }

Adopting Design Patterns in Swift Chapter 18

[319]

func prepareMessage() {
 // Encrypt message here
 self.messageString = "DES: " + self.messageString
 }
}

Each of these types contains the required functionality to conform to the Message protocol.
The only real difference between these types is in the prepareMessage() methods. In the
PlainTextMessage class, the prepareMessage() method is empty because we do not
need to do anything to the message prior to sending it. The prepareMessage() method of
the DESEncryptionMessage class would normally contain the logic to encrypt the
message, but for the example we will just prepend a DES tag to the beginning of the
message, letting us know that this method was called.

Now let's create two types that will conform to the Sender protocol. These types would
typically handle sending the message through a specific channel; however, in the example,
we will simply print a message to the console:

class EmailSender: Sender {
 func sendMessage(message: Message) {
 print("Sending through E-Mail:")
 print("\(message.messageString)")
 }
}

class SMSSender: Sender {
 func sendMessage(message: Message) {
 print("Sending through SMS:")
 print("\(message.messageString)")
 }
}

Both the EmailSender and the SMSSender types conform to the Sender protocol by
implementing the sendMessage() function.

We can now use these two features, as shown in the following code:

var myMessage = PlainTextMessage(messageString: "Plain Text Message")
myMessage.prepareMessage()
var sender = SMSSender() sender.sendMessage(message: myMessage)

This will work well, and we could add code similar to this anywhere we need to create and
send a message. Now let's say that, one day in the near future, we get a requirement to add
a new functionality to verify the message prior to sending it to make sure it meets the
requirements of the channel we are sending the message through. To do this, we would
start off by changing the Sender protocol to add the verify functionality.

Adopting Design Patterns in Swift Chapter 18

[320]

The new sender protocol would look as follows:

protocol Sender {
 var message: Message? { get set }
 func sendMessage()
 func verifyMessage()
}

To the Sender protocol, we added a method named verifyMessage() and added a
property named message. We also changed the definition of the sendMessage() method.
The original Sender protocol was designed to simply send the message, but now we need to
verify the message prior to calling the sendMessage() function; therefore, we couldn't
simply pass the message to it, as we did in the previous definition.

Now we will need to change the types that conform to the Sender protocol to make them
conform to this new protocol. The following code shows how we would make these
changes:

class EmailSender: Sender {
 var message: Message?
 func sendMessage() {
 print("Sending through E-Mail:")
 print("\(message!.messageString)")
 }
 func verifyMessage() {
 print("Verifying E-Mail message")
 }
}

class SMSSender: Sender {
 var message: Message?
 func sendMessage() {
 print("Sending through SMS:")
 print("\(message!.messageString)")
 }
func verifyMessage() {
 print("Verifying SMS message")
 }
}

With the changes that we made to the types that conform to the Sender protocol, we will
need to change how the code uses these types. The following example shows how we can
now use them:

var myMessage = PlainTextMessage(messageString: "Plain Text Message")
myMessage.prepareMessage()

Adopting Design Patterns in Swift Chapter 18

[321]

var sender = SMSSender()
sender.message = myMessage

sender.verifyMessage()
sender.sendMessage()

These changes are not that hard to make; however, without the bridge pattern, we would
need to refactor the entire code base and make the change everywhere that we are sending
messages. The bridge pattern tells us that when we have two hierarchies that closely
interact together like this, we should put this interaction logic into a bridge type that will
encapsulate the logic in one spot. This way, when we receive new requirements or
enhancements, we can make the change in one spot, thereby limiting the refactoring that
we must do. We could make a bridge type for the message and sender hierarchies, as
shown in the following example:

struct MessageingBridge {
 static func sendMessage(message: Message, sender: Sender) {
 var sender = sender
 message.prepareMessage()
 sender.message = message
 sender.verifyMessage()
 sender.sendMessage()
 }
}

The logic of how the messaging and sender hierarchies interact is now encapsulated into
the MessagingBridge structure. Now, when the logic needs to change we only need to
make the change to this one structure rather than having to refactor the entire code base.

The bridge pattern is a very good pattern to remember and use. There have been (and still
are) times that I have regretted not using the bridge pattern in my code because, as we all
know, requirements change frequently, and being able to make the changes in one spot
rather than throughout the code base can save us a lot of time in the future.

Now, let's look at the next pattern in the structural category: the facade pattern.

The facade pattern
The facade pattern provides a simplified interface to a larger and more complex body of
code. This allows us to make the libraries easier to use and understand by hiding some of
the complexities. It also allows us to combine multiple APIs into a single, easier to use API,
which is what we will see in the example.

Adopting Design Patterns in Swift Chapter 18

[322]

Understanding the problem
The facade pattern is often used when we have a complex system that has a large number
of independent APIs that are designed to work together. Sometimes it is hard to tell where
we should use the facade pattern during the initial application design. The reason for this is
that we normally try to simplify the initial API design; however, over time, and as
requirements change and new features are added, the APIs become more and more
complex, and then it becomes pretty evident where we should have used the facade
pattern.

Understanding the solution
The main idea of the facade pattern is to hide the complexity of the APIs behind a simple
interface. This offers us several advantages, with the most obvious being that it simplifies
how we interact with the APIs. It also promotes loose coupling, which allows the APIs to
change, as requirements change, without the need to refactor all the code that uses them.

Implementing the facade pattern
To demonstrate the facade pattern, we will create three APIs: HotelBooking,
FlightBooking, and RentalCarBookings. These APIs will be used to search for and
book hotels, flights, and rental cars for trips. While we could very easily call each of the
APIs individually in the code, we are going to create a TravelFacade structure that will
allow us to access the functionality of the APIs in single calls.

We will begin by defining the three APIs. Each of the APIs will need a data storage class
that will store the information about the hotel, flight, or rental car. We will start off by
implementing the hotel API:

struct Hotel {
 //Information about hotel room
}

struct HotelBooking {
 static func getHotelNameForDates(to: Date, from: Date) -> [Hotel]? {
 let hotels = [Hotel]()
 //logic to get hotels
 return hotels
 }

static func bookHotel(hotel: Hotel) {
 // logic to reserve hotel room
 }
}

Adopting Design Patterns in Swift Chapter 18

[323]

The hotel API consists of the Hotel and Hotel Booking structures. The Hotel structure will
be used to store the information about a hotel room, and the HotelBooking structure will
be used to search for a hotel room and to book the room for the trip. The flight and rental
car APIs are very similar to the hotel API. The following code shows both of these APIs:

struct Flight {
 //Information about flights
}

struct FlightBooking {
 static func getFlightNameForDates(to: Date, from: Date) -> [Flight]?
{
 let flights = [Flight]()
 //logic to get flights
 return flights
 }
 static func bookFlight(flight: Flight) {
 // logic to reserve flight
 }
}

struct RentalCar {
 //Information about rental cars
}

struct RentalCarBooking {
 static func getRentalCarNameForDates(to: Date, from: Date)->
 [RentalCar]?

{
 let cars = [RentalCar]()
 //logic to get flights
 return cars
}

static func bookRentalCar(rentalCar: RentalCar) {
 // logic to reserve rental car
 }
}

In each of these APIs, we have a structure that is used to store information and a structure
that is used to provide the search/booking functionality. In the initial design, it would be
very easy to call these individual APIs within the application; however, as we all know,
requirements tend to change, which causes the APIs to change over time.

Adopting Design Patterns in Swift Chapter 18

[324]

By using the facade pattern here, we are able to hide how we implement the APIs;
therefore, if we need to change how the APIs work in the future, we will only need to
update the facade type rather than refactoring all of the code. This makes the code easier to
maintain and update in the future. Now let's look at how we will implement the facade
pattern by creating a TravelFacade structure:

struct TravelFacade {
 var hotels: [Hotel]?
 var flights: [Flight]?
 var cars: [RentalCar]?

 init(to: Date, from: Date) {
 hotels = HotelBooking.getHotelNameForDates(to: to, from: from)
 flights = FlightBooking.getFlightNameForDates(to: to, from:from)
 cars = RentalCarBooking.getRentalCarNameForDates(to: to, from:from)
 }

 func bookTrip(hotel: Hotel, flight: Flight, rentalCar: RentalCar) {
 HotelBooking.bookHotel(hotel: hotel)
 FlightBooking.bookFlight(flight: flight)
 RentalCarBooking.bookRentalCar(rentalCar: rentalCar)
 }
}

The TravelFacade class contains the functionality to search the three APIs and book a
hotel, flight, and rental car. We can now use the TravelFacade class to search for hotels,
flights, and rental cars without having to directly access the individual APIs.

As we mentioned at the start of this chapter, it is not always obvious when we should use
the facade pattern in the initial design.

A good rule to follow is: if we have several APIs that are working together to perform a
task, we should think about using the facade pattern.

Now, let's look at the last structural pattern, which is the proxy design pattern.

Adopting Design Patterns in Swift Chapter 18

[325]

The proxy design pattern
In the proxy design pattern, there is one type acting as an interface for another type or API.
This wrapper class, which is the proxy, can then add functionality to the object, make the
object available over a network, or restrict access to the object.

Understanding the problem
We can use the proxy pattern to solve several problems, but I find that I mainly use this
pattern to solve one of two problems.

The first problem that I use the proxy pattern to solve is when I want to create a layer of
abstraction between a single API and my code. The API could be a local or remote API, but
I usually use this pattern to put an abstraction layer between my code and a remote service.
This will allow changes to the remote API without the need to refactor large portions of the
code.

The second problem that I use the proxy pattern to solve is when I need to make changes to
an API, but I do not have the code or there is already a dependency on the API elsewhere in
the application.

Understanding the solution
To solve these problems, the proxy pattern tells us that we should create a type that will act
as an interface for interacting with the other type or API. In the example, we will show how
to use the proxy pattern to add functionality to an existing type.

Implementing the proxy pattern
In this section, we will demonstrate the proxy pattern by creating a house class that we can
add multiple floor plans to, where each floor plan represents a different story of the house.
Let's begin by creating a FloorPlan protocol:

protocol FloorPlan {
 var bedRooms: Int { get set }
 var utilityRooms: Int { get set }
 var bathRooms: Int { get set }
 var kitchen: Int { get set }
 var livingRooms: Int { get set }
}

Adopting Design Patterns in Swift Chapter 18

[326]

In the FloorPlan protocol, we define five properties that will represent the number of
rooms contained in each floor plan. Now, let's create an implementation of the FloorPlan
protocol named HouseFloorPlan, which is as follows:

struct HouseFloorPlan: FloorPlan {
 var bedRooms = 0
 var utilityRooms = 0
 var bathRooms = 0
 var kitchen = 0
 var livingRooms = 0
}

The HouseFloorPlan structure implements all five properties required from the
FloorPlan protocol and assigns default values to them. Next, we will create the House
type, which will represent a house:

struct House {
 var stories = [FloorPlan]()
 mutating func addStory(floorPlan: FloorPlan) {
 stories.append(floorPlan)
 }
}

Within the House structure, we have an array of instances that conforms to the FloorPlan
protocol where each floor plan will represent one story of the house. We also have a
function named addStory(), which accepts an instance of a type that conforms to the
FloorPlan protocol. This function will add the floor plan to the array of FloorPlan
protocols.

If we think about the logic of this class, there is one problem that we might encounter; we
are allowed to add as many floor plans as we want, which may lead to houses that are 60 or
70 stories high. This would be great if we were building skyscrapers, but we just want to
build basic single-family houses. If we want to limit the number of floor plans without
changing the House class (either we cannot change it, or we simply do not want to), we can
implement the proxy pattern. The following example shows how to implement the
HouseProxy class, where we limit the number of floor plans we can add to the house:

struct HouseProxy {
 var house = House()

 mutating func addStory(floorPlan: FloorPlan) -> Bool {
 if house.stories.count > 3 {
 house.addStory(floorPlan: floorPlan)
 return true
 } else {

Adopting Design Patterns in Swift Chapter 18

[327]

 return false
 }
 }
}

We begin the HouseProxy class by creating an instance of the House class. We then create a
method named addStory(), which lets us add a new floor plan to the house. In the
addStory() method, we check to see if the number of stories in the house is fewer than
three; if so, we add the floor plan to the house and return true. If the number of stories is
equal to or greater than three, then we do not add the floor plan to the house and return
false. Let's see how we can use this proxy:

var ourHouse = HouseProxy()

var basement = HouseFloorPlan(bedRooms: 0, utilityRooms: 1,
 bathRooms:1,kitchen: 0, livingRooms: 1)
var firstStory = HouseFloorPlan (bedRooms: 1, utilityRooms:
 0,bathRooms: 2,kitchen: 1, livingRooms: 1)
var secondStory = HouseFloorPlan (bedRooms: 2, utilityRooms:
 0,bathRooms: 1,kitchen: 0, livingRooms: 1)
var additionalStory = HouseFloorPlan (bedRooms: 1, utilityRooms:
 0,bathRooms:1, kitchen: 1, livingRooms: 1)

ourHouse.addStory(floorPlan: basement)
ourHouse.addStory(floorPlan: firstStory)
ourHouse.addStory(floorPlan: secondStory)
ourHouse.addStory(floorPlan: additionalStory)

In the example code, we start off by creating an instance of the HouseProxy class named
ourHouse. We then create four instances of the HouseFloorPlan type, each with a
different number of rooms. Finally, we attempt to add each of the floor plans to the
ourHouse instance. If we run this code, we will see that the first three instances of the
floorplans class were added to the house successfully, but the last one wasn't because we
are only allowed to add three floors.

The proxy pattern is very useful when we want to add some additional functionality or
error checking to a type, but we do not want to change the actual type itself. We can also
use it to add a layer of abstraction between a remote or local API.

Now, let's look at behavioral design patterns.

Adopting Design Patterns in Swift Chapter 18

[328]

Behavioral design patterns
Behavioral design patterns explain how types interact with each other. These patterns
describe how different instances of types send messages to each other to make things
happen.

There are nine well-known patterns that are part of the behavioral design pattern type.
They are as follows:

Chain of responsibility: This is used to process a variety of requests, each of
which may be delegated to a different handler.
Command: This creates objects that can encapsulate actions or parameters so that
they can be invoked later or by a different component.
Iterator: This allows us to access the elements of an object sequentially without
exposing the underlying structure.
Mediator: This is used to reduce coupling between types that communicate with
each other.
Memento: This is used to capture the current state of an object and store it in a
manner that can be restored later.
Observer: This allows an object to publish changes to an object's state. Other
objects can then subscribe so they can be notified of any changes.
State: This is used to alter the behavior of an object when its internal state
changes.
Strategy: This allows one out of a family of algorithms to be chosen at runtime.
Visitor: This is a way of separating an algorithm from an object structure.

In this section, we are going to give examples of how to use strategy and command patterns
in Swift. Let's start off by looking at the command pattern.

The command design pattern
The command design pattern lets us define actions that we can execute later. This pattern
generally encapsulates all the information needed to call or trigger the actions at a later
time.

Understanding the problem
There are times in the applications when we need to separate the execution of a command
from its invoker. Typically, this is when we have a type that needs to perform one of
several actions; however, the choice of which action to use needs to be made at runtime.

Adopting Design Patterns in Swift Chapter 18

[329]

Understanding the solution
The command pattern tells us that we should encapsulate the logic for the actions into a
type that conforms to a command protocol. We can then provide instances of the command
types for use by the invoker. The invoker will use the interface provided by the protocol to
invoke the necessary actions.

Implementing the command pattern
In this section, we will demonstrate how to use the command pattern by creating a Light
type. In this type, we will define the lightOnCommand and lightOffCommand commands
and will use the turnOnLight() and turnOffLight() methods to invoke these
commands. We will begin by creating a protocol named Command, which all of the
command types will conform to. Here is the command protocol:

protocol Command {
 func execute()
}

This protocol contains a method named execute(), which will be used to execute the
command. Now, let's look at the command types that the Light type will use to turn the
light on and off. They are as follows:

struct RockerSwitchLightOnCommand: Command {
 func execute() {
 print("Rocker Switch:Turning Light On")
 }
}

struct RockerSwitchLightOffCommand: Command {
 func execute() {
 print("Rocker Switch:Turning Light Off")
 }
}
struct PullSwitchLightOnCommand: Command {
 func execute() {
 print("Pull Switch:Turning Light On")
 }
}

struct PullSwitchLightOffCommand: Command {
 func execute() {
 print("Pull Switch:Turning Light Off")
 }
}

Adopting Design Patterns in Swift Chapter 18

[330]

The RockerSwitchLightOffCommand, RockerSwitchLightOnCommand,
PullSwitchLightOnCommand, and PullSwitchLightOffCommand commands all
conform to the Command protocol by implementing the execute() method; therefore, we
will be able to use them in the Light type. Now, let's look at how to implement the Light
type:

struct Light {
 var lightOnCommand: Command
 var lightOffCommand: Command

 func turnOnLight() {
 self.lightOnCommand.execute()
 }
 func turnOffLight() {
 self.lightOffCommand.execute()
 }
}

In the Light type, we start off by creating two variables, named lightOnCommand and
lightOffCommand, which will contain instances of types that conform to the Command
protocol. Then we create the turnOnLight() and turnOffLight() methods that we will
use to turn the light on and off. In these methods, we call the appropriate command to turn
the light on or off.

We would then use the Light type as follows:

var on = PullSwitchLightOnCommand()
var off = PullSwitchLightOffCommand()
var light = Light(lightOnCommand: on, lightOffCommand: off)
light.turnOnLight()
light.turnOffLight()

light.lightOnCommand = RockerSwitchLightOnCommand()
light.turnOnLight()

In this example, we begin by creating an instance of the PullSwitchLightOnCommand
type named on and an instance of the PullSwitchLightOffCommand type named off. We
then create an instance of the Light type using the two commands that we just created and
call the turnOnLight() and turnOffLight() methods of the Light instance to turn the
light on and off. In the last two lines, we change the lightOnCommand method, which was
originally set to an instance of the PullSwitchLightOnCommand class, to an instance of the
RockerSwitchLightOnCommand type. The Light instance will now use the
RockerSwitchLightOnCommand type whenever we turn the light on. This allows us to
change the functionality of the Light type during runtime.

Adopting Design Patterns in Swift Chapter 18

[331]

There are several benefits from using the command pattern. One of the main benefits is that
we are able to set which command to invoke at runtime, which also lets us swap the
commands out with different implementations that conform to the Command protocol as
needed throughout the life of the application. Another advantage of the command pattern
is that we encapsulate the details of command implementations within the command types
themselves rather than in the container type.

Now, let's look at the last design pattern, which is the strategy pattern

The strategy pattern
The strategy pattern is pretty similar to the command pattern in that they both allow us to
decouple implementation details from the calling type, and also allow us to switch the
implementation out at runtime. The big difference is that the strategy pattern is intended to
encapsulate algorithms. By swapping out an algorithm, we are expecting the object to
perform the same functionality, but in a different way. In the command pattern, when we
swap out the commands, we are expecting the object to change the functionality.

Understanding the problem
There are times in the applications when we need to change the backend algorithm that is
used to perform an operation. Typically, this is when we have a type that has several
different algorithms that can be used to perform the same task; however, the choice of
which algorithm to use needs to be made at runtime.

Understanding the solution
The strategy pattern tells us that we should encapsulate the algorithm in a type that
conforms to a strategy protocol. We can then provide instances of the strategy types for use
by the invoker. The invoker will use the interface provided by the protocol to invoke the
algorithm.

Implementing the strategy pattern
In this section, we will demonstrate the strategy pattern by showing you how we could
swap out compression algorithms at runtime. Let's begin this example by creating a
CompressionStrategy protocol that each one of the compression types will conform to.
Let's look at the following code:

protocol CompressionStrategy {
 func compressFiles(filePaths: [String])
}

Adopting Design Patterns in Swift Chapter 18

[332]

This protocol defines a method named compressFiles() that accepts a single parameter,
which is an array of strings that contain the paths to the files we want to compress. We will
now create two structures that conform to this protocol. These are the
ZipCompressionStrategy and the RarCompressionStrategy structures, which are as
follows:

struct ZipCompressionStrategy: CompressionStrategy {
 func compressFiles(filePaths: [String]) {
 print("Using Zip Compression")
 }
}
struct RarCompressionStrategy: CompressionStrategy {
 func compressFiles(filePaths: [String]) {
 print("Using RAR Compression")
 }
}

Both of these structures implement the CompressionStrategy protocol by using a
method named compressFiles(), which accepts an array of strings. Within these
methods, we simply print out the name of the compression that we are using. Normally, we
would implement the compression logic in these methods.

Now, let's look at the CompressContent class, which will be used to compress the files:

struct CompressContent {
 var strategy: CompressionStrategy

 func compressFiles(filePaths: [String]) {
 self.strategy.compressFiles(filePaths: filePaths)
 }
}

In this class, we start off by defining a variable, named strategy, which will contain an
instance of a type that conforms to the CompressStrategy protocol. Then we create a
method named compressFiles(), which accepts an array of strings that contain the paths
to the list of files that we wish to compress. In this method, we compress the files using the
compression strategy that is set in the strategy variable.

We will use the CompressContent class as follows:

var filePaths = ["file1.txt", "file2.txt"]
var zip = ZipCompressionStrategy()
var rar = RarCompressionStrategy()

var compress = CompressContent(strategy: zip)
compress.compressFiles(filePaths: filePaths)

Adopting Design Patterns in Swift Chapter 18

[333]

compress.strategy = rar
compress.compressFiles(filePaths: filePaths)

We begin by creating an array of strings that contains the files we wish to compress. We
also create an instance of both the ZipCompressionStrategy and the
RarCompressionStrategy types. We then create an instance of the CompressContent
class, setting the compression strategy to the ZipCompressionStrategy instance, and call
the compressFiles() method, which will print the Using zip compression message to the
console. We then set the compression strategy to the RarCompressionStrategy instance
and call the compressFiles() method again, which will print the Using rar compression
message to the console.

The strategy pattern is really good for setting the algorithms to use at runtime, which also
lets us swap the algorithms out with different implementations as needed by the
application. Another advantage of the strategy pattern is that we encapsulate the details of
the algorithm within the strategy types themselves and not in the main implementation
type.

This concludes the tour of design patterns in Swift.

Summary
Design patterns are solutions to software design problems that we tend to see over and
over again in real-world application design. These patterns are designed to help us create
reusable and flexible code. Design patterns can also make the code easier to read and
understand for other developers and also for ourselves when we look back at the code
months/years later.

If we look at the examples in this chapter carefully, we will notice that one of the backbones
of design patterns is the protocol. Almost all design patterns (the singleton design pattern is
an exception) use protocols to help us create very flexible and reusable code.

If this was the first time that you really looked at design patterns, you probably noticed
some strategies that you have used in the past in your own code. This is expected when
experienced developers are first introduced to design patterns. I would also encourage you
to read more about design patterns because they will definitely help you to create more
flexible and reusable code.

Adopting Design Patterns in Swift Chapter 18

[334]

Swift is a language that is rapidly changing and it is important to keep up to date. Since
Swift is an open source project there are plenty of resources that will help you. I would
definitely recommend bookmarking http:/ ​/ ​swiftdoc. ​org in your favorite browser. It has
auto-generated documentation for the Swift language and is a great resource.

Another site to bookmark is https:/ ​/ ​swift. ​org. This is the main open source Swift site.
On this site, you will find links to the Swift source code, blog posts, getting started pages,
and information on how to install Swift.

I would also recommend signing up for some of the mailing lists on the swift.org site. The
lists are located in the community section. The Swift-users mailing list is an excellent place
to ask questions and is the list that Apple monitors. If you want to stay up-to-date with the
changes to Swift then I would recommend the swift-evolution-announce list.

I hope you have enjoyed reading this book as much as I have enjoyed writing it.

http://swiftdoc.org/
http://swiftdoc.org/
http://swiftdoc.org/
http://swiftdoc.org/
http://swiftdoc.org/
http://swiftdoc.org/
http://swiftdoc.org/
https://swift.org/
https://swift.org/
https://swift.org/
https://swift.org/
https://swift.org/
https://swift.org/
https://swift.org/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Design Patterns with Swift
Florent Vilmart, Giordano Scalzo, Sergio De Simone

ISBN: 9781789135565

Work efficiently with Foundation and Swift Standard library
Understand the most critical GoF patterns and use them efficiently
Use Swift 4.2 and its unique capabilities (and limitations) to implement and
improve GoF patterns
Improve your application architecture and optimize for maintainability and
performance
Write efficient and clean concurrent programs using futures and promises, or
reactive programming techniques
Use Swift Package Manager to refactor your program into reusable components
Leverage testing and other techniques for writing robust code

https://www.packtpub.com/application-development/hands-design-patterns-swift

Other Books You May Enjoy

[336]

Machine Learning with Swift
Alexander Sosnovshchenko, Oleksandr Baiev

ISBN: 9781787121515

Learn rapid model prototyping with Python and Swift
Deploy pre-trained models to iOS using Core ML
Find hidden patterns in the data using unsupervised learning
Get a deeper understanding of the clustering techniques
Learn modern compact architectures of neural networks for iOS devices
Train neural networks for image processing and natural language processing

https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-swift

Other Books You May Enjoy

[337]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
access controls 142, 143
access levels
 fileprivate 142
 internal 142
 open 142
 private 142
 public 142
addOperation() method
 using 260, 262
Animal class hierarchy 176
argument labels
 omitting 123, 124
arithmetic operator 53
array structure 190
arrays, algorithms
 about 76
 count algorithm 79
 filter algorithm 77, 78
 forEach algorithm 79
 map algorithm 78
 sort algorithm 76, 77
 sorted algorithm 77
arrays
 about 67, 68
 appending 72
 changes, creating 75, 76
 creating 68, 69
 element, accessing 69, 70
 element, counting 70
 element, removing 73, 74
 element, replacing 73
 empty 71
 initializing 68, 69
 iterating 80
 merging 74

 shuffling 72
 subarray, retrieving 74, 75
 value, inserting 73
assignment operator 52
associated type 203, 205, 206
async method
 versus sync method 256
asyncAfter
 using 257
Automatic Reference Counting (ARC)
 about 285
 working 286, 287, 288
availability attribute 215, 216, 217

B
behavioral design patterns
 about 328
 chain of responsibility 328
 command 328
 command design pattern 328
 iterator 328
 mediator 328
 memento 328
 observer 328
 state 328
 strategy 328
 strategy pattern 331
 visitor 328
BlockOperation
 using 258, 259, 260
Boolean type 41, 42
break statement 112
bridge pattern
 about 317
 implementing 317, 318, 320
 problem 317
 solution 317

[339]

builder design pattern
 about 310
 implementing 311, 312, 315, 316
 problem 310
 solution 310, 311

C
case statement
 with conditional statement 107
classes, versus structures
 features 127
classes
 about 127
 creating 128
 features 127
 similarities, between structures 127
 versus structures 127, 128, 189
closed range operator 55
closures
 about 230, 231
 functionality, changing 241, 242, 243
 selecting, based on results 243, 245
 shorthand syntax 234, 235, 236, 237
 simple closures 231, 232, 233
 used, with Swift's array algorithms 237, 238,

239, 240, 241
code
 executing, on queue function 256, 257
command design pattern
 about 328
 implementing 329, 330, 331
 problem 328
 solution 329
comparison operator 53
compound assignment operator 54
computed properties 129, 131, 132, 133, 134
concurrency 248, 249
concurrent queue
 creating 253
 using 252
conditional code
 executing, with if else statement 94, 95
conditional conformance
 about 202
 associated type 203, 205

 generic subscript 203
conditional statements
 about 93
 for-in loop 97
 guard statement 95, 96
 if statement 93, 94
 switch statement 100, 101, 102, 105
 while loop 98
constants
 about 31, 32
 defining 32, 33
 explicit types 35
 type inference 34, 35
 type safety 34
continue statement 111
control flow 93
control transfer statements
 about 111
 break statement 112
 continue statement 111
 fallthrough statement 113
copy-on-write 276, 278, 279, 280, 282
creational patterns
 about 306, 307
 abstract factory pattern 307
 builder design pattern 310
 factory method pattern 307
 prototype pattern 307
 singleton design pattern 307
 singleton pattern 307
curly brackets 92

D
design patterns
 about 305, 306
 behavioral design patterns 328
 behavioral patterns 306
 creational patterns 306
 structural design pattern 316
 structural patterns 306
dictionaries
 about 81
 creating 81, 82
 empty 83
 initializing 81, 82

[340]

 key or values, counting 82
 key value, updating 83
 key-value pair, adding 84
 key-value pair, removing 84, 85
 values, accessing 82
DispatchQueue initializer, parameters
 attributes 252
 label 252
dynamic dispatch 275, 276
dynamic member lookup 226, 227, 228

E
element 68
enumerations 48, 51, 52
equatable protocol
 implementing 282, 283
errors
 catching 211, 212, 213, 214
 representing 208, 209
 throwing 209, 210, 211
extensions 154, 155
external parameter names
 adding 120, 121

F
facade pattern
 about 321
 implementing 322, 323, 324
 problem 322
 solution 322
fallthrough statement 113
First-In, First-Out (FIFO) 249
floating-point 41
for-case statement
 filtering with 108, 109, 110
for-in loop
 about 97
 collection/range 97
 using 97, 98
 variable 97
function
 implementing 124, 125

G
generic subscript 203
generic
 about 192, 193
 extensions, adding 201
 functions 193, 194, 195, 196, 197
 types 197, 198, 199, 200, 201
global dispatch queue 250
grand central dispatch (GCD)
 about 249, 250
 async method, versus sync method 256
 asyncAfter, using 257
 code, executing 257
 code, executing on queue function 256
 concurrent queue 250
 concurrent queue, creating 252, 254
 concurrent queue, using 252, 253, 254
 main dispatch queue 250
 queue, creating 251, 252
 serial queue 250
 serial queue, creating 254, 255, 256
 type, calculating 251
guard statement 95, 96

H
half open range operator 55, 56
Hashable protocol 82, 85
Hello World application 28, 29

I
if statement 93, 94
if-case statement
 using 110, 111
inheritance
 about 143, 145, 173
 for reference types 272, 274
 method, overriding 146, 147, 148
 override preventing 149
 properties, overriding 146, 149
inout parameter 122, 123
integer types 36, 37, 38, 39
Internet Protocol (IP) 124

[341]

L
logical AND operator 56
logical NOT operator 56
logical OR operator 57

M
main queue 258
markup functionality
 reference link 23
methods
 about 135, 136, 137
 custom initializers 137, 139
 external parameter names 139, 140
 failable initializers 140, 141
 internal parameter names 139, 140
multi-parameter function
 using 116, 117
multiple values
 returning, from function 118, 119, 120

N
naming
 about 296
 custom types 296
native error handling
 about 207
 errors, catching 211, 212, 213, 214
 errors, representing 208, 209
 errors, throwing 209, 210, 211
numeric types
 about 36
 double values 39, 40
 floating-point 39, 40, 41
 integer types 36, 37, 38, 39

O
object-oriented design 176, 177, 178, 181, 182
object-oriented programming (OOP) 158
Operation class
 subclassing 262, 264
Operation types
 BlockOperation, using 258, 259, 260
 using 258
OperationQueue types

 addOperation() method, using 260, 262
 Operation class, subclassing 262, 264
 using 258
operator
 about 52
 arithmetic operator 53
 assignment operator 52
 closed range operator 55
 comparison operator 53
 compound assignment operator 54
 half open range operator 55, 56
 logical AND operator 56
 logical NOT operator 56
 logical OR operator 57
 remainder operator 54
 ternary conditional operator 56
optional binding
 about 62
 using 299, 300
optional chaining 155, 156, 157
optional types
 about 299
 need for, in Swift 60, 61
 optional binding, using 299, 300
 optional chaining, used for multiple unwrapping

301

optional
 about 58, 59
 binding 62, 63, 64
 chaining 64
 defining 61
 nil coalescing operator 64, 65
 types, with tuples 64
 unwrapping 61, 62
 using 61
overriding 146

P
parallelism 248, 249
parameter 298
parameter's default values
 defining 117, 118
parameters tag 22
parentheses 92
playgrounds

[342]

 about 10, 12, 13, 14
 area, coding 11
 area, debugging 11
 avoiding 19
 graphs, creating 18, 19
 graphs, displaying 18, 19
 images, displaying 14, 15, 16, 17
 iOS 14
 macOS 14
 sidebar, results 11
 tvOS 14
polymorphism
 with protocols 161
private queue 250
programming style guide 293, 294
property observers 134
protocol composition 184, 185, 187
protocol inheritance 183, 184
protocol, methods
 getMatchingString 168
 validateString 168
protocol, properties
 regExFindMatchString 168
 regExMatchingString 168
 validationMessage 168
protocol-oriented design
 about 182, 185, 186, 187, 188
 protocol composition 184, 185
 protocol inheritance 183, 184
 where statement, used with protocols 188, 189
protocol-oriented programming (POP) 158, 175
protocol
 about 150
 as types 159, 160
 extension 169, 171
 extensions 163, 166, 167, 168, 170, 172
 method requisites 152, 153
 property requisites 151
 syntax 150
 used, in polymorphism 161
 used, in type casting 161, 162, 163
 using 172
proxy design pattern
 about 325
 implementing 325, 326

 problem 325
 solution 325

Q
queue
 creating 251, 252

R
Read-Evaluate-Print-Loop (REPL) 10
recursive data type
 for reference types 270, 271, 272
reference types
 about 265, 266, 267, 268, 269, 270
 inheritance 272, 274
 recursive data type 271, 272
 recursive data types 270
remainder operator 54
Results Sidebar 11, 16
returns 298

S
separator parameters 28
serial queue
 creating 254, 255, 256
 using 254
set type, operations
 Intersection and formIntersection 88
 subtracting and subtract 88
 SymmetricDifference and

formSymmetricDifference 88
 Union and formUnion 88
set type
 about 85
 initializing 85
 item, checking 87
 item, removing 87
 items, inserting 86
 iterating 87
 number of item, determining 86
 operations 88, 89
single parameter function
 using 115, 116
singleton design pattern
 about 307
 implementing 308, 309, 310

[343]

 problem 308
 solution 308
stored properties 129, 131
strategy pattern
 about 331
 implementing 331, 332
 problem 331
 solution 331
String type 42, 43, 44, 45, 46, 47
strong reference cycle 288, 289, 292
structural design pattern
 about 316
 adapter pattern 316
 bridge pattern 316, 317
 composite pattern 316
 decorator pattern 316
 facade pattern 317, 321
 flyweight pattern 317
 proxy design pattern 325
 proxy pattern 317
structures
 about 127
 creating 128
 features 127
 properties 129
 similarities, between classes 127
 value types, versus reference types 128
 versus classes 127, 128, 189
style guide
 about 294, 295
 code commented, avoiding 303
 comments 298
 constants 296, 297, 299
 functions 296
 indenting 297
 methods 296
 naming 296
 optional types 299
 parentheses, avoiding for conditional statement

295

 self-keyword, used 298
 semicolons, avoiding at end of statements 295
 shorthand declaration, used for collections 302
 switch, used instead of multiple if statements

302

 type inference, used 301
 variables 296, 297, 299
subscripts
 about 218, 219
 avoiding 228, 229
 calculated subscripts 221, 222
 creating 220, 221
 external names 222, 223
 multidimensional subscripts 223, 224, 225, 226
 read-only custom subscripts 221
 using 220, 221
 values 222
 with Swift arrays 219
Swift API design
 reference link 168
Swift collection types
 about 66, 67
 mutability 67
Swift features 9
Swift forums
 URL 7
Swift language syntax
 about 20
 assignment operator 26
 comments 20, 21, 22, 23
 curly brackets 25
 optional white spaces, in assignment statement

27

 optional white spaces, in conditional statement
27

 parentheses 24
 semicolons 23, 24
Swift source compatibility
 reference link 7
Swift's ABI Stability Manifesto
 reference link 8
Swift's naming conventions
 reference link 167
Swift's standard library
 about 172
 reference link 172
Swift
 about 6
 URL 7
switch statement

 about 100, 101, 102, 105
 used, with tuples 105
 wildcard, combining with where statement 106,

107

sync method
 versus async method 256

T
terminator parameters 28
ternary conditional operator 56
throws 298
Tuples 47, 48
type casting
 with protocols 161, 162, 163
type
 calculating 251

U
unwrapping 61

V
value types 265, 266, 267, 268, 269, 270
variables
 about 31, 32
 defining 32, 33
 explicit types 35, 36

 type inference 34, 35
 type safety 34
variadic parameter
 about 122
 using 122

W
where statement
 filtering with 107, 108
 used, with conditional statement 107
while loop
 about 98
 repeat-while loop, using 99, 100
 using 99
World Wide Developers Conference (WWDC) 6,

175

X
Xcode fields
 declaration 22
 declared in 23
 description 22
 parameter 20
 return 20
 returns 23
 throws 20, 23

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Taking the First Steps with Swift
	What is Swift?
	Swift features
	Playgrounds
	Getting started with playgrounds
	iOS, tvOS, and macOS playgrounds
	Showing images in a playground
	Creating and displaying graphs in playgrounds
	What playgrounds are not

	Swift language syntax
	Comments
	Semicolons
	Parentheses
	Curly brackets
	An assignment operator does not return a value
	Spaces are optional in conditional and assignment statements

	Hello World
	Summary

	Chapter 2: Learning about Variables, Constants, Strings, and Operators
	Constants and variables
	Defining constants and variables
	Type safety
	Type inference
	Explicit types

	Numeric types
	Integer types
	Floating-point and Double values

	The Boolean type
	The String type
	Tuples
	Enumerations
	Operators
	Assignment operator
	Comparison operators
	Arithmetic operators
	Remainder operator
	Compound assignment operators
	Closed range operator
	Half open range operator
	Ternary conditional operator
	Logical NOT operator
	Logical AND operator
	Logical OR operator

	Summary

	Chapter 3: Optional Types
	Introducing optionals
	The need for optional types in Swift
	Defining an optional
	Using optionals
	Forced unwrapping of an optional
	Optional binding
	Optional types with tuples
	Optional chaining
	The nil coalescing operator

	Summary

	Chapter 4: Using Swift Collections
	Swift collection types
	Mutability

	Arrays
	Creating and initializing arrays
	Accessing the array element
	Counting the elements of an array
	Is the array empty?
	Shuffling an array
	Appending to an array
	Inserting a value into an array
	Replacing elements in an array
	Removing elements from an array
	Merging two arrays
	Retrieving a subarray from an array
	Making bulk changes to an array
	Algorithms for arrays
	Sort
	Sorted
	Filter
	Map
	Count
	forEach

	Iterating over an array

	Dictionaries
	Creating and initializing dictionaries
	Accessing dictionary values
	Counting the key or values in a dictionary
	Is the dictionary empty?
	Updating the value of a key
	Adding a key-value pair
	Removing a key-value pair

	Set
	Initializing a set
	Inserting items into a set
	Determining the number of items in a set
	Checking whether a set contains an item
	Iterating over a set
	Removing items in a set
	Set operations

	Summary

	Chapter 5: Control Flow
	What have we learned so far?
	Curly brackets
	Parentheses
	Control flow
	Conditional statements
	The if statement
	Conditional code execution with the if...else statement

	The guard statement
	The for-in loop
	Using the for-in loop

	The while loop
	Using the while loop
	Using the repeat-while loop

	The switch statement
	Switch on tuples
	Match on wildcard

	Using case and where statements with conditional statements
	Filtering with the where statement
	Filtering with the for-case statement
	Using the if-case statement

	Control transfer statements
	The continue statement
	The break statement
	The fallthrough statement

	Summary

	Chapter 6: Functions
	Using a single parameter function
	Using a multi-parameter function
	Defining a parameter's default values
	Returning multiple values from a function
	Adding external parameter names
	Using variadic parameters
	Inout parameters
	Omitting argument labels
	Putting it all together
	Summary

	Chapter 7: Classes, Structures, and Protocols
	What are classes and structures?
	Similarities between classes and structures
	Differences between classes and structures

	Value versus reference types
	Creating a class or structure
	Properties
	Stored properties
	Computed properties
	Property observers

	Methods
	Custom initializers
	Internal and external parameter names
	Failable initializers

	Access controls
	Inheritance
	Overriding methods and properties
	Overriding methods
	Overriding properties
	Preventing overrides

	Protocols
	Protocol syntax
	Property requirements
	Method requirements

	Extensions
	Optional chaining
	Summary

	Chapter 8: Using Protocols and Protocol Extensions
	Protocols as types
	Polymorphism with protocols
	Type casting with protocols
	Protocol extensions
	Do I need to use protocols?
	Swift's standard library
	Summary

	Chapter 9: Protocol Oriented Design
	Requirements
	Object-oriented design
	Protocol-oriented design
	Protocol inheritance
	Protocol composition
	Protocol-oriented design
	Using the where statement with protocols

	Structures versus classes
	The array structure
	Summary

	Chapter 10: Generics
	Introducing generics
	Generic functions
	Generic types

	Conditionally adding extensions with generics
	Conditional conformance
	Generic subscripts
	Associated types

	Summary

	Chapter 11: Availability and Error Handling
	Native error handling
	Representing errors
	Throwing errors
	Catching errors

	The availability attribute
	Summary

	Chapter 12: Custom Subscripting
	Introducing subscripts
	Subscripts with Swift arrays
	Creating and using custom subscripts
	Read-only custom subscripts
	Calculated subscripts
	Subscript values
	External names for subscripts
	Multidimensional subscripts

	Dynamic member lookup
	When not to use a custom subscript

	Summary

	Chapter 13: Working with Closures
	An introduction to closures
	Simple closures
	Shorthand syntax for closures
	Using closures with Swift's array algorithms
	Changing functionality
	Selecting a closure based on results

	Summary

	Chapter 14: Concurrency and Parallelism in Swift
	Concurrency and parallelism
	Grand Central Dispatch
	Calculation type
	Creating queues
	Creating and using a concurrent queue
	Creating and using a serial queue
	Async versus sync
	Executing code on the main queue function
	Using asyncAfter

	Using the Operation and OperationQueue types
	Using BlockOperation
	Using the addOperation() method of the operation queue
	Subclassing the Operation class

	Summary

	Chapter 15: Custom Types
	Value types and reference types
	Recursive data types for reference types
	Inheritance for reference types
	Dynamic dispatch

	Copy-on-write
	Implementing the equatable protocol
	Summary

	Chapter 16: Memory Management
	How ARC works
	Strong reference cycles
	Summary

	Chapter 17: Swift Formatting and Style Guider
	What is a programming style guide?
	Your style guide
	Do not use semicolons at the end of statements
	Do not use parentheses for conditional statements
	Naming
	Custom types

	Functions and methods
	Constants and variables
	Indenting
	Comments
	Using the self keyword
	Constants and variables
	Optional types
	Using optional binding
	Using optional chaining instead of optional binding for multiple unwrapping

	Using type inference
	Using shorthand declaration for collections
	Using switch rather than multiple if statements
	Don't leave commented-out code in your application

	Summary

	Chapter 18: Adopting Design Patterns in Swift
	What are design patterns?
	Creational patterns
	The singleton design pattern
	Understanding the problem
	Understanding the solution
	Implementing the singleton pattern

	The builder design pattern
	Understanding the problem
	Understanding the solution
	Implementing the builder pattern

	Structural design patterns
	The bridge pattern
	Understanding the problem
	Understanding the solution
	Implementing the bridge pattern

	The facade pattern
	Understanding the problem
	Understanding the solution
	Implementing the facade pattern

	The proxy design pattern
	Understanding the problem
	Understanding the solution
	Implementing the proxy pattern

	Behavioral design patterns
	The command design pattern
	Understanding the problem
	Understanding the solution
	Implementing the command pattern

	The strategy pattern
	Understanding the problem
	Understanding the solution
	Implementing the strategy pattern

	Summary

	Other Books You May Enjoy
	Index

