

 [image: Mastering Xamarin UI Development - Second Edition]

Mastering Xamarin UI Development

Second Edition

Build robust and a maintainable cross-platform mobile UI with Xamarin and C# 7

Steven F. Daniel

BIRMINGHAM - MUMBAI

 Mastering Xamarin UI Development
Second Edition

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Amarabha Banerjee

Acquisition Editor: Shweta Pant

Content Development Editor: Aishwarya Gawankar

Technical Editor: Rutuja Vaze

Copy Editor: Safis Editing

Project Coordinator: Sheejal Shah

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Graphics: Jason Monteiro

Production Coordinator: Arvindkumar Gupta

First published: January 2017

Second edition: August 2018

Production reference: 1310818

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78899-551-1

www.packtpub.com

To my favorite uncle, Benjamin Jacob Daniel: thank you for always making me smile and for inspiring me to work hard and achieve my dreams; you are a true inspiration and I couldn't have done this without your love, support, and guidance. Thank you.

As always, to Chan Ban Guan, for the continued patience, encouragement, and support, and most of all for believing in me during the writing of this book. I would like to thank my family for their continued love and support, and for always believing in me throughout the writing of this book.

This book would not have been possible without your love and understanding and I would like to thank you from the bottom of my heart.

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

	
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	
Improve your learning with Skill Plans built especially for you

	
Get a free eBook or video every month

	
Mapt is fully searchable

	
Copy and paste, print, and bookmark content

 PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Contributors

 About the author

Steven F. Daniel is the CEO and founder of GENIESOFT STUDIOS, a software development company based in Melbourne, Victoria, that focuses primarily on developing games and business applications for the iOS, Android, and Mac OS X platforms.

He is an experienced software engineer with more than 17 years' experience and is extremely passionate about making people employable by helping them use their existing skills in iOS, Android, and Xamarin to get the job done. He is a member of the SQL Server Special Interest Group (SQLSIG), CocoaHeads, and the Java Community. He was the co-founder and Chief Technology Officer (CTO) at SoftMpire Pty Ltd., a company focused primarily on developing business applications for the iOS and Android platforms.

 About the reviewer

Jeremy Clough has been a programmer for 18 years, and just remembers the early days of C# when it was known as “Cool”. Since then he has developed a passion for F# and other functional programming languages, enjoying it when some of their features make it back into C#.

Senior Principal Developer at SEEK, and officially part of the furniture, Jeremy has been there long enough to have his most embarrassing code refactored out of existence.

 Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

 Acknowledgments

No book is the product of just the author; he just happens to be the one with his name on the cover. Several people contributed to the success of this book, and it would take more space than thanking each one individually.

First and foremost, I want to thank Chan Ban Guan for his constant guidance, support, encouragement, and understanding, throughout the whole writing process. My sincere gratitude to my Acquisition Editors, Shweta Pant and Devanshi Doshi, for giving me the opportunity to author the second edition of this book. To my Content Development Editor, Aishwarya Gawankar, for her understanding and support throughout the whole writing process.

I would also like to thank my Technical Editor, Rutuja Vaze, for her support throughout the final stages of this book. It was a pleasure to be able to work with you on this book; thanks goes to each and everyone of you for making the whole writing process such an enjoyable process. I would like to thank my technical reviewer, Jeremy Clough, for doing an awesome job of reviewing the contents and sharing his valuable feedback to make this book what it is; I am truly grateful.

Thank you also to the entire Packt Publishing team who worked on this book so diligently and tirelessly to help bring out such a high-quality final product. Finally, a big shout out to the engineers at Microsoft for creating Visual Studio for Mac and C#, the number one programming language, and the .NET platform, which helps provide developers with a rich set of tools that enables them to create fun, sophisticated applications using Xamarin and the power of Xamarin.Forms.

Finally, I would like to thank all my friends for their continued support, understanding, and encouragement during the book writing process. I am extremely grateful to have each and everyone of you as my friends, and it is a privilege to know each one of you.

 Table of Contents

 	
 Title Page

	
 Copyright and Credits

 	
 Mastering Xamarin UI Development
Second Edition

	
 Dedication

	
 www.PacktPub.com

 	
 Why subscribe?

	
 PacktPub.com

	
 Contributors

 	
 About the author

	
 About the reviewer

	
 Packt is searching for authors like you

	
 Acknowledgments

	
 Preface

 	
 Who this book is for

	
 What this book covers

	
 To get the most out of this book

 	
 Downloading the example code

	
 Download the color images

	
 Conventions used

	
 Get in touch

 	
 Reviews

	
 Setting Up Visual Studio for Mac

 	
 Downloading and installing Visual Studio for Mac

 	
 Installing Visual Studio for Mac and Xamarin

	
 Exploring the Microsoft Visual Studio for Mac IDE

 	
 Configuring and including additional .NET Runtimes

	
 Defining your Android and iOS SDK locations

	
 Understanding the Xamarin mobile platform

 	
 Benefits of developing apps using the Xamarin mobile platform

	
 Developing native apps using the Xamarin approach

	
 Developing apps using the Xamarin.Forms approach

	
 Creating a Xamarin project for both iOS and Android

 	
 Creating the user interface for our Planetary app using XAML

	
 Displaying a list of planet names using C#

	
 Launching the Planetary app using the iOS simulator

	
 Using and setting Breakpoints in your code

 	
 Setting a Breakpoint in your Planetary App solution

	
 Using the Breakpoints Pad to view Breakpoints that have been set

	
 Creating conditional Breakpoints to perform an action

	
 Using the Visual Studio for Mac built-in debugger

 	
 Overview of the Visual Studio for Mac debugger

	
 Using the debugger to step through your code

	
 Using the Immediate window to print code variable contents

	
 Summary

	
 Building a PhotoLibrary App Using Android

 	
 Creating a native Android app using Visual Studio for Mac

 	
 Adding the Xamarin Media Plugin NuGet package to our solution

	
 Creating the user interface for our PhotoLibrary app using XML

	
 Updating the Strings XML file to include our UI control values

	
 Creating the Styles XML file for our Photo Library app

	
 Creating and implementing the PhotoLibrary Activity class

 	
 Updating the MainActivity class to call the PhotoLibrary Activity

	
 Implementing Material Design in the PhotoLibrary app

 	
 Creating custom themes for the PhotoLibrary application

 	
 Creating custom styles for the Photo Library application UI controls

	
 Applying the custom theme to the PhotoLibrary application

	
 Setting up camera and photo album permissions

 	
 Interacting with the device camera and photo album

	
 Launching the Photo Library app using the Android emulator

	
 Summary

	
 Building a SlidingTiles Game Using Xamarin.iOS

 	
 Creating a native iOS app using Visual Studio for Mac

	
 Creating the SlidingTiles user interface using Storyboards

 	
 Adding a label to our ViewController in the Storyboard

	
 Adding a View to our View Controller in the Storyboard

	
 Adding a reset button to our View Controller in the Storyboard

	
 Adding the Shuffle Button to our View Controller in the Storyboard

	
 Adding the GameTile image to our SlidingTiles game

	
 Implementing the game logic for our SlidingTiles Game

 	
 Creating and implementing the GameTile Interface class

	
 Creating and implementing the GameTile class

	
 Updating the ViewController class to implement our class methods

	
 Creating and implementing the CreateGameBoard method

	
 Creating and implementing the ResetGame_Clicked method

	
 Randomly shuffling our Game Tiles on the Game Board

	
 Implementing the StartNewGame Instance method

	
 Handling touch events in the Game Board user interface

	
 Working with and applying animations to your app

 	
 Creating and implementing animations for the SlidingTiles game

	
 Launching the SlidingTiles game using the iOS simulator

	
 Summary

	
 Creating the TrackMyWalks Native App

 	
 Creating the TrackMyWalks project solution

 	
 Updating the NuGet packages within our solution

	
 Creating and implementing our data model

	
 Creating the WalksMainPage interface using XAML

	
 Implementing the WalksMainPage code using C#

	
 Creating the WalkEntryPage interface using XAML

	
 Implementing the WalkEntryPage code using C#

	
 Creating the WalkTrailInfoPage interface using XAML

	
 Implementing the WalkTrailInfoPage code using C#

 	
 Integrating and implementing maps within your app

	
 Creating the WalkDistancePage interface using XAML

	
 Implementing the WalkDistancePage code using C#

	
 Updating the TrackMyWalks.iOS AppDelegate

	
 Updating the TrackMyWalks.Android MainActivity

	
 Creating the SplashPage interface using XAML

	
 Implementing the SplashPage code using C#

 	
 Updating the App.xaml class to target various platforms

	
 Launching TrackMyWalks using the iOS simulator

	
 Summary

	
 MVVM and Data Binding

 	
 Understanding the MVVM architectural pattern

	
 Creating and implementing the BaseViewModel

	
 Creating the WalksMainPageViewModel using C#

 	
 Updating the WalksMainPage user interface using XAML

	
 Updating the WalksMainPage code-behind using C#

	
 Creating the WalkEntryPageViewModel using C#

 	
 Updating the WalkEntryPage user interface using XAML

	
 Updating the WalkEntryPage code-behind using C#

	
 Creating the WalkTrailInfoPageViewModel using C#

 	
 Updating the WalkTrailInfoPage user interface using XAML

	
 Updating the WalkTrailInfoPage code-behind using C#

	
 Creating the WalkDistancePageViewModel using C#

 	
 Updating the WalkDistancePage user interface using XAML

	
 Updating the WalkDistancePage code-behind using C#

	
 Launching the TrackMyWalks app using the iOS simulator

	
 Summary

	
 Navigating Within the Mvvm Model

 	
 Understanding the Xamarin.Forms Navigation API

	
 Differences between the Navigation and ViewModel approaches

	
 Creating and implementing the NavigationService interface

	
 Creating and implementing the NavigationService class

	
 Updating the BaseViewModel to use the navigation service

	
 Updating the WalksMainPageViewModel using C#

	
 Updating the WalksMainPage code-behind using C#

	
 Updating the WalkEntryPageViewModel using C#

	
 Updating the WalkEntryPage code-behind using C#

	
 Updating the WalkTrailInfoPageViewModel using C#

	
 Updating the WalkTrailInfoPage code-behind using C#

	
 Updating the WalkDistancePageViewModel using C#

	
 Updating the WalkDistancePage code-behind using C#

	
 Updating the SplashPage code-behind using C#

	
 Updating the App.xaml class to use the navigation service

	
 Summary

	
 Adding Location-based Features Within Your App

 	
 Creating and using platform-specific services within your app

 	
 Adding the plugin geolocator NuGet package to our solution

	
 Creating and implementing the ILocationService interface

	
 Creating and implementing the LocationService class

	
 Updating the WalkEntryPageViewModel using C#

	
 Updating the WalkDistancePageViewModel using C#

	
 Creating the CustomMapOverlay class using C#

	
 Updating the WalkDistancePage user interface using XAML

	
 Updating the WalkDistancePage code-behind using C#

	
 Creating and implementing the CustomMapRenderer (iOS)

	
 Creating and implementing the CustomMapRenderer (Android)

	
 Enabling background location updates and permissions

	
 Launching the TrackMyWalks app using the iOS simulator

	
 Summary

	
 Customizing the User Interface

 	
 Customizing the DataTemplate in the WalksMainPage

	
 Applying padding and margins to XAML layouts

 	
 Updating the WalksMainPage user interface using XAML

	
 Updating the WalkEntryPage user interface using XAML

	
 Updating the WalkTrailInfoPage user interface using XAML

	
 Creating and implementing Styles in your App

 	
 Creating and implementing Global Styles using XAML

	
 Updating our WalksMainPage to use the Device Style

	
 Updating our WalkTrailInfoPage to use Explicit and Global Styles

	
 Updating our WalksEntryPage to use our Implicit Style

	
 Creating and using PlatformEffects in your app

 	
 Creating and Implementing the ButtonShadowEffect (iOS)

	
 Creating and implementing the LabelShadowEffect (iOS)

	
 Creating and implementing the ButtonShadowEffect (Android)

	
 Creating and implementing the LabelShadowEffect (Android)

	
 Implementing the ButtonShadowEffect RoutingEffect class

	
 Implementing the LabelShadowEffect RoutingEffect class

	
 Updating the WalksMainPage to use the LabelShadowEffect

	
 Updating the WalkTrailInfoPage to use the LabelShadowEffect

	
 Updating the WalkTrailInfoPage to use the ButtonShadowEffect

	
 Creating and implementing ValueConverters in your app

 	
 Updating the BaseViewModel class to include additional properties

	
 Updating the WalksMainPageViewModel to use our property

	
 Updating the WalksMainPage to use our ImageConverter class

	
 Updating the WalkEntryPage to use our ImageConverter class

	
 Updating the WalkTrailInfoPage to use our ImageConverter class

	
 Launching the TrackMyWalks app using the iOS simulator

	
 Summary

	
 Working with Animations in Xamarin.Forms

 	
 Creating and using Simple Animations in Xamarin.Forms

 	
 Updating the WalkEntryPage to use Simple Animations

	
 Updating the WalkTrailInfoPage to use Simple Animations

	
 Creating and using Easing Functions in Xamarin.Forms

 	
 Updating the WalkTrailInfoPage to use Easing Functions

	
 Creating and implementing your own Custom Animations

 	
 Updating our WalkTrailInfoPage to use Custom Animations

	
 Updating our WalksMainPage to use Custom Animations

	
 Creating and implementing Entrance Animations

 	
 Updating the WalkTrailInfoPage to use Entrance Animations

	
 Updating our WalksMainPage to use Entrance Animations

	
 Updating our WalkEntryPage to use Entrance Animations

	
 Launching the TrackMyWalks app using the iOS simulator

	
 Summary

	
 Working with the Razor Templating Engine

 	
 Understanding the Razor templating engine

	
 Building a BookLibrary app using the Razor templating engine

	
 Adding the SQLite-net NuGet package to our solution

 	
 Creating and implementing the BookLibrary data model

	
 Creating and implementing the BookDatabase interface

	
 Creating and implementing the BookDatabase class

	
 Creating and implementing the BookLibraryListing page

	
 Creating and implementing the BookLibraryAddEdit page

	
 Updating the Book Library cascading style sheet (CSS)

	
 Updating the WebViewController class using C#

	
 Launching the BookLibrary app using the iOS simulator

	
 Summary

	
 Incorporating Microsoft Azure App Services

 	
 Understanding the Microsoft Azure App services platform

	
 Setting up and configuring Microsoft Azure App services

	
 Adding the Newtonsoft.Json NuGet package to our solution

	
 Updating the WalkDataModel for our TrackMyWalks app

	
 Creating and implementing the RestWebService interface

	
 Creating and implementing the RestWebService class

	
 Updating the BaseViewModel class to include our RestWebService

	
 Updating the WalksMainPage code-behind using C#

 	
 Updating the WalksMainPageViewModel using C#

	
 Updating the WalkEntryPage user interface using XAML

 	
 Updating the WalkEntryPageViewModel using C#

	
 Launching the TrackMyWalks app using the iOS simulator

	
 Summary

	
 Making Our App Social Using the Twitter API

 	
 Creating and registering the TrackMyWalks app with the Twitter Developer Portal

 	
 Adding the Xamarin.Auth NuGet Package to our solution

	
 Creating and implementing the TwitterAuthDetails class

	
 Creating and implementing the TwitterWebService interface

	
 Creating and implementing the TwitterWebService class

	
 Creating and implementing the TwitterSignInPageViewModel using C#

	
 Creating and implementing the user interface for the TwitterSignInPage

	
 Creating and implementing the TwitterSignInPageRenderer (iOS)

	
 Updating the WalksMainPage code-behind using C#

	
 Updating the WalkDistancePage user unterface using XAML

	
 Registering the TwitterSignInPage within the App.xaml class

	
 Launching the TrackMyWalks app using the iOS simulator

	
 Summary

	
 Unit Testing Your Xamarin.Forms Apps

 	
 Creating the Unit Testing project within the TrackMyWalks solution

 	
 Adding the Moq NuGet package to the TrackMyWalks.UnitTests project

	
 Adding the TrackMyWalks project to the TrackMyWalks.UnitTests project

	
 Creating and implementing the WalksMainPageViewModelTest class

	
 Creating and implementing the WalksEntryPageViewModelTest class

	
 Running unit tests within the Visual Studio for Mac IDE

	
 Creating a UITest project within the TrackMyWalks solution

 	
 Understanding the most commonly used Xamarin.UITest testing methods

	
 Creating and implementing the CreateNewTrailDetails class for iOS

	
 Updating the WalksMainPage code-behind using C#

	
 Adding the Xamarin.Test Cloud.Agent NuGet package

	
 Running UITests within the Visual Studio for Mac IDE

	
 Summary

	
 Other Books You May Enjoy

 	
 Leave a review - let other readers know what you think

 Preface

Xamarin is the most powerful cross-platform mobile development framework. If you are interested in creating stunning user interfaces for the iOS and Android mobile platforms using the power of Xamarin and Xamarin.Forms, then this is your ticket.

This book will provide you with the knowledge and practical skills that are required to develop real-world Xamarin and Xamarin.Forms applications. You'll learn how to create native Android app that will interact with the device camera and photo gallery, and then create a native iOS sliding tiles game. Moving on, you will learn how to implement complex user interface layouts and create customisable control elements based on the platform, using XAML and C# 7 code to interact with control elements within your XAML ContentPages.

You'll be introduced to the Model-View-ViewModel (MVVM) architecture pattern, and you'll learn how to implement this within your application by creating a NavigationService class that will be used to navigate between your Views and ViewModels. You will also learn how to implement data binding to connect your XAML pages to your ViewModels.

We will then discuss how you can add location-based features by to your apps by creating a LocationService class and using the Xam.Plugin.Geolocator cross-platform library, which will be used to obtain the current device location, and you will learn how to properly perform location updates, whether the application's state is in the foreground or background, by registering the app as a background-necessary application.

We discuss more advanced topics such as how to integrate Microsoft Azure App Services and use the Twitter APIs to incorporate social networking features to obtain information about a Twitter user, as well as posting walk information to the user's Twitter feed.

Moving on, you will learn how to use third-party libraries, such as the Razor Templating Engine, which allows you to create your own HTML5 templates, within the Visual Studio for Mac environment to build a book library HTML5 solution that will use a SQLite.net library to store, update, retrieve, and delete information within a local SQLite database. You'll also implement key data binding techniques that will make your user interfaces dynamic and create personalised animations and visual effects within your user interfaces using custom renderers and the PlatformEffects API to customise and change the appearance of control elements.

At the end of this book, you'll learn how to create and run unit tests using the xUnit and UITest testing frameworks within the Visual Studio for Mac IDE. You'll learn how to write unit tests for your ViewModels that will essentially test the business logic to validate that everything is working correctly, before moving on to test the user interface portion using automated UI testing.

In this book, I have tried my best to keep the code simple and easy to understand by providing a step-by-step approach, with lots of screenshots at each step to make it easier to follow. You will soon be mastering the technology behind the Xamarin and Xamarin.Forms platforms, as well as obtaining the skills required to create your own applications for the Xamarin and Xamarin.Forms platforms.

Feel free to contact me at steven.daniel@geniesoftstudios.com with any queries, or just drop me an email to say a friendly hello.

 Who this book is for

This book is intended for readers who have experience of the C# 6.0 programming language and are interested in learning how to create stunning native and cross-platform user interfaces for the iOS and Android platforms using the Xamarin and Xamarin.Forms frameworks with C# 7. It is assumed that you are familiar with object-oriented programming (OOP) techniques and have experience of developing C# applications using Visual Studio.

 What this book covers

Chapter 1, Setting Up Visual Studio for Mac, focuses on how to download and install Visual Studio Community 2017 for Mac, as well as the Xamarin components for both the iOS and Android platforms. You'll explore some of the features contained within the Visual Studio for Mac IDE, and then gain an understanding of the Xamarin mobile platform. You'll learn how to create your very first Xamarin.Forms cross-platform application and create the user interface using XAML and the underlying C# code. We we also cover how to set and define conditional breakpoints within your code, as well as how to use the built-in debugging tools to debug your application.

Chapter 2, Building a Photo Library App Using Android, focuses on how to develop native Android app using Visual Studio for Mac, Xamarin.Android and C#. You'll learn how to use and work with the Visual Designer to construct the user interface for our PhotoLibrary app using XML and implement Material Design within your apps, as well as creating your own custom themes and then apply theming to your app. You'll learn how to provide the necessary permissions to the AndroidManifest.xml so that we can interact with the device camera and photo album, before launching the app within the Android emulator.

Chapter 3, Building a SlidingTiles Game Using Xamarin.iOS, focuses on how to develop a native iOS app using Visual Studio for Mac, Xamarin.iOS, and C#. You'll learn how to use and work with Storyboards to construct the user interface for our SlidingTiles game by dragging a number of Labels, Views, and Buttons that will make up our game. You'll create a GameTile interface and class that will be used to create each of the tiles for our game, and then implement the remaining logic within the ViewController class to build the game board and create each of our game tiles using the images from an array.

You'll also create an instance method that will randomly shuffle each of our game tiles within our game board using the Random class, and work with the UITouch class to handle touch events to determine when a game tile has been tapped within the game boards UIView, and work with CoreAnimation so that you can apply simple animations to your UIViews by using View Transitions within an animation block, before deploying and launching the app within the iOS Simulator.

Chapter 4, Creating the TrackMyWalks Native App, will focus on how to develop a cross-platform app using Xamarin.Forms and C#, by creating each of the Content Pages that will form the user interface for our app using XAML, as well as creating a C# class that will act as the data-model for our application.

Chapter 5, MVVM and Data Binding, teaches you the concepts behind the MVVM architectural pattern, as well as how to implement the MVVM architectural pattern within the TrackMyWalks application. You'll learn how to create a BaseViewModel base class that every ViewModel will inherit from, as well as creating the associated C# class files for each of our ViewModels that will data-bind to each of the properties defined within our XAML Pages.

The associated properties that we define within the ViewModel for the ContentPage will be used to represent the information that will be displayed within the user interface for our application. You'll also learn how to add ContextActions to your (XAML) content pages, and how to implement the code action events within your code, so that you can respond to those actions.

Chapter 6, Navigating Within the MVVM Model, shows you how you can leverage what you already know about the MVVM architectural design pattern to learn how to navigate between each of the ViewModels within our TrackMyWalks application. You'll learn how to create a NavigationService class and update our BaseViewModel base class that will include a reference to our NavigationService class that each of our ViewModels will utilize. You will then proceed to update each of the ViewModels as well as each of the XAML pages to allow navigation between these pages to happen.

Chapter 7, Adding Location-Based Features within Your App, shows how you can incorporate platform-specific features within your application, which is dependent on the mobile platform that is being run. You will then learn how to incorporate the Xam.Plugin.Geolocator NuGet package that you will use in order to create a LocationService class so that you can obtain current GPS coordinates and handle location updates in the background on the device.

You'll update both the WalkEntryPageViewModel and WalkDistancePageViewModel to allow location-based features to happen and create a CustomMapOverlay class that will be used to display a native Map control, based on the platform. You'll learn how to perform location updates in the background so that you can update the native map control automatically, whenever new location coordinates are obtained.

Chapter 8, Customizing the User Interface, shows how you can use and customize DataTemplates to lay out your Views beautifully and neatly within your user interfaces by modifying your ContentPages. You'll learn how to create and implement various styles within each of your XAML pages, prior to getting accustomed to working with the PlatformEffects API to customize the appearance, as well as applying styling to native control elements for each platform. You'll learn how to set up your margins and apply padding, as well as how to create and implement ValueConverters and ImageConverters.

Chapter 9, Working with Animations in Xamarin.Forms, shows you how to work with the Animation class that comes part of the Xamarin.Forms platform, so that you can apply really cool animations and transition effects to your user interfaces and control elements, by implementing Simple Animations, Easing Functions, and Entrance Animations using C# code.

Chapter 10, Working with the Razor Templating Engine, focuses on how you can use the Razor Templating Engine to create a Book library mobile application using the power of Razor templates. You'll learn how to create a BookItem data-model within your application, as well as how to incorporate the SQLite-net NuGet package within your application, that you will use to create a BookDatabase class, that will include various methods to communicate with a SQLite database to Create, Update, Retrieve, and Delete book items. Finally, you will learn how to create the necessary Razor Template Pages, that will use our BookItem data model to display book information.

Chapter 11, Incorporating Microsoft Azure App Services, focuses on showing you how you can use the Microsoft Azure App Services Platform to create your cloud-based databases. You will learn how to set up and configure a Microsoft Azure App Service, as well as configuring the SQL Server database and the WalkEntries table for our app. You'll incorporate the Newtonsoft.Json NuGet package, as well as modify the WalkDataModel data model. You will then create a RestWebservice class, which will include a number of class instance methods that will be used to communicate with our TrackMyWalks SQL Server database, so you can perform CRUD operations to Create, Update, Retrieve, and Delete walk entries.

Chapter 12, Making Our App Social – Using the Twitter API, focuses on showing you how to create and register our TrackMyWalks app within the Twitter Portal, by applying for a Twitter developer account. You'll incorporate the Xamarin.Auth NuGet package within our solution and create a TwitterService class that we can use to communicate with the Twitter APIs using RESTful web service calls. You will then create a TwitterSignInPage and the associated TwitterSignInPageViewModel and TwitterSignInPageRenderer class, so users can sign into your app using their Twitter credentials.

Finally, you'll update the WalksMainPage code-behind to call our TwitterSignInPage to check to see if the user has signed in, as well as making changes to our WalkDistancePage XAML and code-behind so that we can utilize our TwitterService class to display profile information, as well as posting information about the trail to the user's Twitter feed.

Chapter 13, Unit Testing Your Xamarin.Forms Apps, focuses on showing you how to create and run each of your unit tests using the xUnit and Xamarin.UITest frameworks. You will also learn how to write unit tests for our ViewModels that will essentially test the business logic to validate that everything is working correctly, after which, we will move on to learning how to use the UITest framework to perform testing on the TrackMyWalks user interfaces, using automated testing.

 To get the most out of this book

The minimum requirement for this book is an Intel-based Macintosh computer running macOS High Sierra 10.13. We will be using Visual Studio Community 2017, which is the Integrated Development Environment (IDE) used for creating Xamarin and Xamarin.Forms applications using C# 7, as well as Xcode 9.4.1 to compile our iOS app and run it within the simulator.

Almost all the projects that you create with the help of this book will work and run on the iOS simulator. However, some projects will require an actual iOS or Android device to work correctly. You can download the latest versions of Visual Studio Community 2017 and Xcode from here:

	Visual Studio Community 2017 for Mac: http://xamarin.com/download

	Xcode 9.4.1: https://itunes.apple.com/au/app/xcode/id497799835?mt=12

 Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

	Log in or register to our website using your e-mail address and password.

	Hover the mouse pointer on the SUPPORT tab at the top.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for Mac

	7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Mastering-Xamarin-UI-Development-Second-Edition. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://www.packtpub.com/sites/default/files/downloads/MasteringXamarinUIDevelopmentSecondEdition_ColorImages.pdf.

 Conventions used

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Before we can proceed, we need to create our PlanetaryApp project."

A block of code is set as follows:

 //
 // GameTile.cs
 // Creates each of our tile images for our Tile Slider Game.
 //
 // Created by Steven F. Daniel on 24/04/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using UIKit;
 using SlidingTiles.Interfaces;
 using CoreGraphics;
 using System;

 namespace SlidingTiles.Classes
 {

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:maps="clr-namespace:Xamarin.Forms.Maps;assembly=Xamarin.Forms.Maps"
 x:Class="TrackMyWalks.Views.WalkDistancePage">
 <ContentPage.Content>
 <ScrollView Padding="2,0,2,2">
 <StackLayout Orientation="Vertical" HorizontalOptions="FillAndExpand"
 VerticalOptions="FillAndExpand">
 <maps:Map x:Name="customMap" IsShowingUser="true" MapType="Street" />
 <Button x:Name="EndThisTrail" Text="End this Trail"
 TextColor="White" BackgroundColor="#008080"
 Clicked="EndThisTrailButton_Clicked" Margin="20" />
 </StackLayout>
 </ScrollView>
 </ContentPage.Content>
 </ContentPage>

Any command-line input or output is written as follows:

Last login: Fri Aug 24 16:40:41 on console
stevens-mbp:~ stevendaniel$ curl https://trackmywalk.azurewebsites.net/tables/WalkEntries
--header "ZUMO-API-VERSION:2.0.0

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Alternatively, you can specify it for the Android platform by selecting the Android node in the SDK Locations section."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

 Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

 Setting Up Visual Studio for Mac

Since Xamarin made its appearance several years ago, developers have been delighted with being able to create native mobile applications that can target different OS platforms, as well as having the option of developing apps using either the C# or F# programming languages, enabling developers to distribute their app ideas to either the iOS, Android, or Windows platforms.

As you progress through this book, you'll learn how to apply best practices and design principles when developing cross-platform mobile applications using the Xamarin.Forms platform, to allow developers to build cross-platform user interface layouts that can be shared across the Android, iOS, and Windows mobile platforms.

Since each of these apps can be written using a single programming language, it makes sense to write a single codebase that would compile and build into separate apps for each of these different platforms.

This chapter will begin by showing you how to download and install the Visual Studio for Mac IDE, as well as the Xamarin components for both the iOS and Android platforms. You'll explore some of the features contained in the Visual Studio for Mac IDE and then gain an understanding of the Xamarin mobile platform.

You'll learn how to create your very first cross-platform Xamarin.Forms application for both the iOS and Android platforms, create the user interface using XAML, and create some C# code that will communicate with the XAML code.

To end this chapter, you'll learn how to set Breakpoints and define conditional Breakpoints in your code to pause execution, before moving on to learning how to use the built-in debugging tools to debug your application and launch it in the iOS simulator.

This chapter will cover the following points:

	Downloading and installing the Visual Studio for Mac IDE and the Xamarin Platform SDKs

	Exploring the Visual Studio for Mac IDE

	Understanding the Xamarin mobile platform

	Creating a new Xamarin.Forms project for both iOS and Android

	Setting Breakpoints and defining conditional Breakpoints in your code

	Using the Visual Studio for Mac built-in debugger

 Downloading and installing Visual Studio for Mac

In this section, we will take a look at how to download and install Microsoft Visual Studio for Mac as well as the Xamarin Platform SDKs for both the iOS and Android platforms.

 Installing Visual Studio for Mac and Xamarin

Before we can begin developing applications for the Xamarin platform, we will need to download Visual Studio for Mac. Simply follow these steps:

	Open your browser and type in https://www.visualstudio.com/.

	Next, hover your mouse cursor over the Download for Mac button and click on the Community 2017 for Mac menu option to proceed:

Downloading Visual Studio Community 2017 for Mac

	Next, once the Visual Studio for Mac installer has been downloaded, double-click on it to display Visual Studio for Mac – Installation.

	Then, click on the Continue button to proceed to the next step in the wizard, which can be seen in the following screenshot:

Visual Studio for Mac - Installation

	Next, ensure that the checkboxes for Android, iOS, and macOS, as well as .NET Core, have been selected under the Platforms group and ensure that the checkbox for Xamarin Workbooks & Inspector has been selected under the Tools group, which can be seen in the following screenshot:

Choosing Visual Studio for Mac Platform Components

	Next, click on the Install and Update button to proceed to the next step in the wizard and begin installing the Visual Studio for Mac IDE along with the Xamarin platform SDK and tools, which can be seen in the following screenshot:

Visual Studio for Mac Downloading Components

	Finally, Visual Studio for Mac - installation will proceed to download and begin installing the Microsoft Visual Studio for Mac IDE, as well as downloading the components for the platforms that you have selected.

Now that you have installed the Microsoft Visual Studio for Mac IDE and the Xamarin Platform SDK, as well as the tools for both the iOS and Android platforms, our next step is to explore some of the features of the Visual Studio for Mac IDE, which we will be covering in the next section.

 Exploring the Microsoft Visual Studio for Mac IDE

In this section, we'll take some time and explore the Visual Studio for Mac IDE and learn how to configure its visual appearance, how to set font styles, and how to go about configuring and including additional .NET runtime versions. Lastly, you'll learn how to define the Android and iOS SDK locations.

To begin exploring the Visual Studio for Mac IDE, simply follow these steps:

	From the Visual Studio Community menu, choose the Preferences… menu option, or alternatively press the command + , key combination that can be seen in the following screenshot:

Visual Studio Community for Mac IDE

	Once you have clicked on the Preferences... button, you will be presented with the following screen:

Visual Studio Community for Mac - Preferences

As you can see in the preceding screenshot, you have the ability to configure environment settings, such as Visual Style, Fonts, .NET Runtimes, SDK Locations, and Tasks, as well as your Google Play Accounts and Apple Developer Accounts.

 Configuring and including additional .NET Runtimes

The Visual Studio for Mac IDE Preferences pane provides you with the ability to configure and include additional .NET Runtimes that you would like to compile your application against.

The default runtime that has been set will contain the word (Default) at the end, which signifies that this is the default .NET Runtime that will be used for building and running applications when none has been specified. Refer to the following screenshot:

Visual Studio Community for Mac - .NET Runtimes

From this screen, you have the ability to add new or remove existing .NET Runtimes that you would like to test your applications with, by using the Add or Remove buttons. In the next section, we will look at how to define your Android and iOS SDK locations.

 Defining your Android and iOS SDK locations

The Visual Studio for Mac IDE Preferences pane allows you to define both your Android and iOS SDK locations that you can compile your application against:

	When configuring the SDK Locations for the iOS platform, this will initially default to the current location where the Xcode.app application is located. This is typically found in the Applications folder and will contain the latest iOS platform SDK that has been installed for your version of Xcode:

Visual Studio Community for Mac - Apple SDK Location

	In order to specify a different location for where Xcode.app is located, click on the Browse… button, which can be seen in the preceding screenshot. Alternatively, you can specify it for the Android platform by selecting the Android node in the SDK Locations section.

	In this section, you can specify the Android SDK Location and Android NDK Location, as well as the Java SDK (JDK) Location:

Visual Studio Community for Mac - Android SDK Locations

	You can also install additional SDK Platforms and Tools for the Android platform that you would like to build your application against, or remove those platforms and system images that you no longer wish to target; this can be seen in the following screenshot:

Visual Studio Community for Mac - Choosing Android Platforms

Now that you have explored some of the features contained in the Visual Studio for Mac IDE, our next step is to take a look at, and understand a bit more about, the Xamarin mobile platform, which we will be covering in the next section.

 Understanding the Xamarin mobile platform

The Xamarin platform is essentially a framework that enables developers to develop cross-platform mobile applications, using either the C# or F# programming languages, as well as a runtime that runs on the Android, iOS, and Windows platforms, giving you an app that looks, feels, and behaves completely native.

In this section, we will gain an understanding of what the Xamarin mobile platform is and the benefits of using Xamarin to develop your iOS, Android, and Windows apps.

 Benefits of developing apps using the Xamarin mobile platform

When you use the Xamarin platform to build your mobile apps, you'll have access to all of the features available in the native SDK and you can even use your existing APIs, so that these can be shared across each of the different mobile platforms for iOS, Android, and Windows.

That said, anything you can do in Objective-C, Swift, or Java can be done in C# or F#, with Xamarin and Visual Studio for Mac.

 Developing native apps using the Xamarin approach

When considering developing native iOS, Android, or Windows apps, most developers would either choose to use Objective-C, Swift, or Java. However, there are more ways to build performant and user-friendly mobile apps and Xamarin is one of them. Let's take a look at the benefits of developing native apps using Xamarin.

The Xamarin platform uses a single programming language, C# or F#, which can be used to create apps for the iOS, Android, and Windows platforms, as well as providing you with the flexibility of writing C# code so that you can design your user interfaces specifically for each platform.

The C# programming language is a mature language that is strongly typed to prevent code from producing unexpected behavior. Since C# is one of the .NET framework languages, it can be used with a number of useful .NET features, such as Lambdas, LINQ, and asynchronous programming. The C# source code that you write is then compiled into a native app for each platform.

Technically speaking, Xamarin uses C# and native libraries wrapped in the .NET layer for cross-platform app development. Such applications are often compared to native ones for both iOS and Android mobile development platforms in terms of performance and user experience:

Developing native apps using the Xamarin approach

As you can see from the preceding screenshot, this shows each platform for the Xamarin.iOS, Xamarin.Android, and Windows platforms, each containing their own platform-specific UI code layer and a common Shared C# Backend containing the business logic, which can be shared across all platforms.

 Developing apps using the Xamarin.Forms approach

Developing iOS, Android, or Windows apps using the Xamarin.Forms approach is very different from developing apps using the native approach. Let's take a look at the benefits of developing apps using the Xamarin.Forms approach.

The Xamarin.Forms approach allows you to build your user interfaces, which can then be shared across each of the different mobile development platforms using 100% percent shared C# or F# code.

Using the Xamarin.Forms approach means that your applications will have access to over 40 user interface controls and layouts, which are then mapped to each of the native controls specific to the platform at runtime:

Developing apps using the Xamarin.Forms approach

As you can see from the preceding screenshot, each platform for the Xamarin.iOS, Xamarin.Android, and Windows platforms shares common user interface code, which will be rendered differently on each platform, as well as a common Shared C# Backend containing the business logic that can be shared across all platforms.

Now that you have a good understanding of developing Xamarin apps using the native approach versus developing apps using the Xamarin.Forms approach, we can start to build our first app, which we will be covering in the next section.

 Creating a Xamarin project for both iOS and Android

In this section, we will take a look at how to create a Xamarin.Forms solution for the first time. We will begin by developing the basic structure for our application, as well as creating and designing the user interface files using XAML, and then creating the C# code to display planetary information.

Before we can proceed, we need to create our PlanetaryApp project. It is very simple to create this using Visual Studio for Mac. Simply follow these steps:

	Firstly, launch the Visual Studio application; depending on your version of Visual Studio installed, you'll be presented with the following screen:

Visual Studio Community IDE

	Next, choose the New Project… option, or alternatively choose File|New Solution..., or simply press Shift + command + N.

	Then, choose the Blank Forms App option, which is located under the Multiplatform|App section, and ensure that you have selected C# as the programming language to use.

	Next, click on the Next button to proceed to the next step in the wizard:

Choosing a template for your new project

	Next, enter PlanetaryApp to use as the name for your app in the App Name field and then specify a name for the Organization Identifier field.

	Then, ensure that both the Android and iOS checkboxes have been selected for the Target Platforms field and ensure that the Use .NET Standard option has been selected in the Shared Code section, as shown in the following screenshot:

Configuring your Blank Forms App

The Organization Identifier option for your app needs to be unique. Xamarin recommends that you use the reverse domain style (for example, com.domainName.appName).

	Then, click on the Next button to proceed to the next step in the wizard:

Configuring your new Blank Forms App

	Finally, click on the Create button to save your project at the specified location.

Once your project has been created, you will be presented with the Visual Studio Community 2017 for Mac development environment, containing several project files that the template has created, as shown in the following screenshot:

Components of the PlanetaryApp solution

As you can see from the preceding screenshot, the PlanetaryApp solution has been divided into three main areas. The following table provides a brief description of what each area is used for:

	
Project details

	
Description

	
PlanetaryApp

	
This is the .NET Standard (Shared Library) project that will be responsible for acting as the main architectural layer for the PlanetaryApp solution. This project contains all of the business logic, data objects, Xamarin.Forms ContentPages, Views, and other non-platform-specific code. Any code that you create in this project can be shared across multiple platform-specific projects.

	
PlanetaryApp.Android

	
This is an Android-specific project that contains all of the code and assets required to build and deploy the Android app contained in the solution. By default, this project contains a reference to the PlanetaryApp (.NET Standard Shared Library).

	
PlanetaryApp.iOS

	
This project is an iOS-specific project that contains all of the code and assets required to build and deploy the iOS app contained in the solution. By default, this project contains a reference to the PlanetaryApp (.NET Standard Shared Library).

One thing you will notice is that our solution contains a file called App.xaml.cs, which is part of the .NET Standard (Shared Library). The App.xaml.cs file contains a class named App that inherits from the Xamarin.Forms.Application class hierarchy, as can be seen in the following code snippet:

 //
 // App.xaml.cs
 // Main class that gets called whenever our PlanetaryApp is started
 //
 // Created by Steven F. Daniel on 17/02/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using Xamarin.Forms;

 namespace PlanetaryApp
 {
 public partial class App : Application
 {
 public App()
 {
 InitializeComponent();

 MainPage = new MainPage();
 }

 protected override void OnStart()
 {
 // Handle when your app starts
 }

 protected override void OnSleep()
 {
 // Handle when your app sleeps
 }

 protected override void OnResume()
 {
 // Handle when your app resumes
 }
 }
 }

The App constructor method sets up the MainPage property to a new instance of the ContentPage that will simply display some default text as created by the project wizard. Throughout this chapter, we will be building the initial user interface using XAML and then populating a list of planet names in the control elements contained in the XAML.

 Creating the user interface for our Planetary app using XAML

In this section, we will begin defining the user interface for our MainPage using XAML. This page will be used to display a list of planet names, as well as information relating to the distance the planet is from the sun. There are a number of ways you can go about presenting this information, but for the purpose of this app, we will be using a ListView to present this information.

Let's start by creating the user interface for our MainPage by performing the following steps:

	Open the MainPage.xaml file, which is located as part of the PlanetaryApp group, ensure that it is displayed in the code editor, and enter the following code snippet:

 <?xml version="1.0" encoding="utf-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemsas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:PlanetaryApp" x:Class="PlanetaryApp.MainPage">
 <ListView x:Name="planetsListView" RowHeight="80" HasUnevenRows="True">
 <ListView.ItemTemplate>
 <DataTemplate>
 <TextCell Text="{Binding Name}" TextColor="Black"
 Detail="{Binding Distance}" DetailColor="Red" />
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </ContentPage>

Let's take a look at what we covered in the preceding code snippet:

	We started by defining a ListView and specified the RowHeight to be used for each of the rows that will be allocated and displayed, as well as providing our ListView control with a name, planetsListView.

	Next, we defined the ItemTemplate property of our ListView control, which will be used to display the data items, and then defined a DataTemplate that will be used to handle displaying data from a collection of objects in our ListView.

	Finally, we used the TextCell control and then set the Text property to bind to our name property, and we set the Detail property to bind our distance property, then set the Textcolor and DetailColor properties of our TextCell control.

 Displaying a list of planet names using C#

In this section, we will begin by creating the C# code that will be used to communicate with our PlanetaryApp user interface XAML for our MainPage. We will start by adding code in the MainPage code-behind file.

Let's take a look at how we can achieve this:

	Open the MainPage.xaml.cs code-behind file, ensure that it is displayed in the code editor, and enter in the following code snippet:

 //
 // PlanetaryAppPage.xaml.cs
 // Displays Planetary Information in a Listview control from an array
 //
 // Created by Steven F. Daniel on 17/02/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.Collections.ObjectModel;
 using Xamarin.Forms;

 namespace PlanetaryApp
 {
 public partial class MainPage : ContentPage
 {
 public class Planet
 {
 public string Name { get; set; }
 public string Distance { get; set; }
 }

 public PlanetaryAppPage()
 {
 InitializeComponent();

 // Create and populate a List of Planetary names
 var planets = new ObservableCollection<Planet>() {
 new Planet
 {
 Name = "Mercury",
 Distance = "Distance from Earth: 77 million kilometers"
 },
 new Planet
 {
 Name = "Venus",
 Distance = "Distance from Earth: 261 million kilometers"
 },
 new Planet
 {
 Name = "Earth",
 Distance = "Distance from Sun: 149.6 million kilometers"
 },
 new Planet
 {
 Name = "Mars",
 Distance = "Distance from Earth: 54.6 million kilometers"
 },
 new Planet
 {
 Name = "Jupiter",
 Distance = "Distance from Earth: 588 million kilometers"
 },
 new Planet
 {
 Name = "Saturn",
 Distance = "Distance from Earth: 1.2 billion kilometers"
 },
 new Planet
 {
 Name = "Uranus",
 Distance = "Distance from Earth: 2.6 billion kilometers"
 },
 new Planet
 {
 Name = "Neptune",
 Distance = "Distance from Earth: 4.3 billon kilometers"
 }};

 // Set the PlanetList Item to our ListView to display the items
 planetsListView.ItemsSource = planets;
 }
 }
 }

Let's take a look at what we covered in the preceding code snippet:

	We created a subclass called Planets in the MainPage ContentPage, containing two getters and setters for Name and Distance

	Next, we declared an ObservableCollection called planets, which essentially is a collection that allows any code that has been declared outside the collection to be aware of any changes that occur

	We then initialized our objects for Name and Distance, before finally setting the planets collection to the ItemSource property of the planetsListView property that is contained in the MainPage.xaml file

Now that you have created the user interface and the necessary C# code to populate the ListView contained in our MainPage XAML, our next step is to compile, build, and run the PlanetaryApp in the iOS simulator.

 Launching the Planetary app using the iOS simulator

In this section, we will take a look at how to compile and run our PlanetaryApp. You have the option of choosing to run your application using an actual device, or choosing from a list of simulators available for an iOS device.

Let's begin by performing the following steps:

	Ensure that you have chosen the PlanetaryApp.iOS project from the drop-down menu.

	Next, choose your preferred device from the list of available iOS simulators.

	Then, select the Run|Start Without Debugging menu option, as shown in the following screenshot:

Launching the PlanetaryApp within the iOS Simulator

	Alternatively, you can also build and run the PlanetaryApp by pressing command + Enter.

When the compilation is complete, the iOS simulator will appear automatically and the PlanetaryApp application will be displayed, as shown in the following screenshot:

PlanetaryApp running within the iOS Simulator

As you can see from the preceding screenshot, this currently displays a list of static planetary entries that are displayed in our ListView control contained in our XAML. Congratulations, you have successfully built your first Xamarin.Forms application, as well as the user interface using XAML for the PlanetaryApp ContentPage used by our app!

 Using and setting Breakpoints in your code

In this section, we will learn how we can use the Visual Studio for Mac IDE to set Breakpoints in our PlanetaryApp solution. We'll learn how to create conditional Breakpoints that can be used to perform a specific action.

Next, we will learn how we can utilize the Breakpoints Pad to view all Breakpoints that have been set in a solution. Finally, we will learn how we can use the Visual Studio for Mac debugger to step through our code and display the contents of variables in the Immediate window.

 Setting a Breakpoint in your Planetary App solution

Breakpoints are a good way for you to pause execution at a particular point in the code contained in your project solution, so that you can debug your code or check the contents of a variable.

To set a breakpoint, simply follow the steps outlined here:

	Locate MainPage.xaml.cs in the .NET Standard (Shared Library) and ensure that the MainPage.xaml.cs file is displayed in the code editor window

	To set a Breakpoint, simply click to the left of the line number at the place in your code that you need to troubleshoot, as you can see in the following screenshot:

Setting a Breakpoint within the PlanetaryApp solution

As you can see from the preceding screenshot, whenever you set a breakpoint in your code, you will notice that the line will turn red, but this can be overridden in the Visual Studio for Mac Preferences pane.

 Using the Breakpoints Pad to view Breakpoints that have been set

Whenever you set Breakpoints in your code, rather than navigating through each of your individual code files in your project solution, you can quickly see all of these in one place by viewing them using the Breakpoints Pad.

To view all of the Breakpoints that have been set in your project, follow the steps outlined here:

	Ensure that the MainPage.xaml.cs file is displayed in the code editor window and choose the View|Debug Pads|Breakpoints menu option:

Enable viewing of Breakpoints within your solution

	You will then see all Breakpoints that have been set in your PlanetaryApp project solution, including the ones that have been set in your subprojects, as can be seen in the following screenshot:

Displays all Breakpoints within your solution

As you can see in the preceding screenshot, you will see all Breakpoints that have been set in your .NET Standard (Shared Library) project, and even the ones that have been set in your PlanetaryApp.iOS, PlanetaryApp.Android and PlanetaryApp.UWP subproject solutions.

 Creating conditional Breakpoints to perform an action

In the previous section, we learned about Breakpoints and how you can set these in the code to pause execution whenever your code hits one of them. We also learned how to use the Breakpoints Pad to view all Breakpoints that have been set in your project solution.

Aside from setting Breakpoints, you can also set Conditional Breakpoints that will pause execution based upon whether a condition has been met, which we will covering in this section.

To create a conditional Breakpoint in your project, follow the steps outlined here:

	Ensure that the MainPage.xaml.cs file is displayed in the code editor window.

	Next, right-click in the sidebar to bring up the pop-up menu and choose the New Breakpoint… menu option:

Creating a conditional breakpoint

This will then display the Create a Breakpoint dialog where you can specify properties for certain actions, which can be seen in the following screenshot:

Specifying Breakpoint properties

As you can see in the preceding screenshot, you will see that you can specify either a Breakpoint Action or When to Take Action, as well as setting Additional Conditions whenever a certain condition happens.

 Using the Visual Studio for Mac built-in debugger

In this section, we will learn about the Visual Studio for Mac built-in debugger and how we can use this debugging tool to step through our code and debug our PlanetaryApp. You'll also learn how to work with and use the Immediate window to print out the contents of your code variables.

 Overview of the Visual Studio for Mac debugger

Visual Studio for Mac includes a built-in native debugger that provides debugging support for your iOS, Android, UWP, and Mac applications. The Visual Studio for Mac IDE uses the Mono Soft Debugger, which is a new debugging framework that has been implemented directly into the Mono Framework runtime.

Having this integrated directly into the Mono Framework runtime allows Visual Studio for Mac to debug your managed C# code across each of the different platforms, which can be seen in the following screenshot:

Mono Soft Debugger Interface

For more information on the Mono Soft Debugger, refer to http://www.mono-project.com/docs/advanced/runtime/docs/soft-debugger.

 Using the debugger to step through your code

To start debugging any application, you will need to ensure that your configuration has been set to Debug, as can be seen in the following screenshot:

Setting up your application for debugging

Setting this configuration provides you with a set of helpful tools that support debugging, such as Breakpoints, visualizing the contents of your variables, and viewing the call stack.

Once you have set the configuration for your project solution to Debug, you will need to ensure that you have set the target device or your iOS simulated device that you would like to use, which can be seen in the preceding screenshot.

To start debugging your application, follow these steps:

	Ensure that the MainPage.xaml.cs file is displayed in the code editor window.

	Next, deploy your application by pressing the Play button, or alternatively pressing command + Enter:

Displays the Breakpoint hit within the Visual Studio Community IDE

Whenever you hit a Breakpoint, your code will pause and the line will be highlighted in yellow, as can be seen in the preceding screenshot:

Visual Studio Community IDE Debugging Buttons

You will notice that the debugging tools will appear in the Visual Studio for Mac IDE and consist of four buttons that allow you to run and step through your code.

The following table provides a list of each of the debugging tool buttons, as well as a brief description:

	
Debugging button

	
Description

	
Play

	
When this button is pressed, it will begin executing the code until the next breakpoint is reached.

	
Step Over

	
When this button is pressed, it will execute the next line of code. If the next line is a function call, the Step Over button will execute the code contained in the function, and will then stop at the next line of code after the function call.

	
Step Into

	
When this button is pressed, it will execute the next line of code, and if it is determined that the next line is a function call, the Step Into button will stop at the first line of the function. This will allow you to continue line-by-line debugging of the function. Alternatively, if the next line is not a function, it will behave in the same way as the Step Over button.

	
Step Out

	
When this button is pressed, it will return to the line where the current function was called.

Now that you have an overview of the Visual Studio for Mac built-in debugger and how you can use the debugger to step through your code by using each of the four buttons, our next step is to take a look at how we can use the Immediate window to print the contents of your code variables, which we will be covering in the next section.

 Using the Immediate window to print code variable contents

You can also use the Visual Studio for Mac built-in debugger to investigate and analyze the content of your code variables whenever a Breakpoint is reached. In this section, we will learn how to use the Immediate window to analyze the content of code variables.

To display the Immediate window, follow the steps outlined here:

	Ensure that the MainPage.xaml.cs file is displayed in the code editor window and choose the View|Debug Pads|Immediate menu option:

Enable viewing of the Immediate Window

	You will then see the Immediate window displayed, as can be seen in the following screenshot:

variable contents displayed within the Immediate Window

As you can see in the preceding screenshot, you can see the contents of the planets variable by simply typing the name of the variable in the Immediate window. Since our planets variable is a collection, you can reference properties of the collection. Also, in the Immediate window you can change the contents of any item in the collection.

 Summary

In this chapter, we learned how to download and install the Visual Studio for Mac IDE, along with the Xamarin Platform SDKs. We then explored the Visual Studio for Mac IDE environment and how we can use the Preferences pane to customize the look and feel of the Visual Studio for Mac IDE. Next, we looked at how to configure and include additional .NET Runtimes, as well as how to go about defining your Android and iOS SDK locations. We also learned about the Xamarin mobile platform and the benefits of developing native versus Xamarin.Forms apps using it.

We then learned how to create a cross-platform Xamarin project for both iOS and Android platforms, create the user interface using the XAML syntax, then write the C# code that will be used to communicate with the XAML to populate the ListView control with planet names, before launching this in the iOS simulator.

Next, we learned how to set Breakpoints, as well as create conditional Breakpoints in your code; we learned how to use the Breakpoints Pad to view all existing Breakpoints that have been set in your PlanetaryApp solution.

Finally, we learned about the built-in debugger in the Visual Studio for Mac IDE, and how you can step through your code and use the Immediate window to print the contents of your variables. In the next chapter, you will learn how to build a Photo Library app using Xamarin.Android and C#.

 Building a PhotoLibrary App Using Android

In the previous chapter, we learned how to download and install the Visual Studio for Mac IDE as well as the Xamarin Platform SDKs and components for both the iOS and Android platforms. We also covered some of the features contained in the Visual Studio for Mac IDE and then dived into learning about the Xamarin Mobile platform, as well as the benefits of developing Native versus Xamarin.Forms apps.

We learned how to create a cross-platform Xamarin project for both the iOS and Android platforms, and constructed the user interface by using the XAML syntax and writing the C# code that will be used to communicate with the XAML to populate a ListView control with planet names.

Finally, we learned how to set breakpoints and create conditional breakpoints, as well as using the built-in debugger in the Visual Studio for Mac IDE, which allows you to step through your code and use the Immediate window to print the content of your variables.

This chapter will focus primarily on how to develop a native Android app using Visual Studio for Mac, Xamarin.Android, and C#. You'll learn how to use and work with the Visual Designer in the Visual Studio for Mac IDE to construct the user interface for our PhotoLibrary app using XML and implement Material Design in your apps, as well as create your own custom themes and then apply theming to your app.

To end this chapter, you'll learn how to provide the necessary permissions to AndroidManifest.xml so that we can interact with the device camera and photo album, before launching the app in the Android emulator.

This chapter will cover the following points:

	Creating a native app for the Android platform using Visual Studio for Mac

	Constructing the user interface for the Photo Library app using the Android Visual Designer

	Incorporating the Xamarin Media Plugin NuGet package

	Setting up camera and photo album permissions

	Creating custom themes and styles and applying these to the Photo Library app

	Interacting with the device camera and photo album

	Launching the Photo Library app using the Android emulator

 Creating a native Android app using Visual Studio for Mac

In this section, we will take a look at how to create a native Android solution for the first time. We will begin by developing the basic structure for our application, as well as adding the Xamarin Media Plugin NuGet package and designing the user interface using XML for our PhotoLibrary application.

We will also learn how to update the Strings XML file to include values for our UI control elements that are contained in our XML file. Finally, we will create the styles XML file for our Photo Library app that will be used to style our UI control elements.

Before we can proceed, we need to create our PhotoLibrary project. It is very simple to create this using Visual Studio for Mac. Simply follow these steps:

	Firstly, launch the Visual Studio for Mac application.

	Next, choose the New Solution… option, or alternatively choose File|New|Solution..., or simply press Shift + command + N.

	Then, choose the Android App option, which is located under the Android|App section, and ensure that you have selected C# as the programming language to use:

Choose a template for your new project

	Next, enter PhotoLibrary in the App Name field and then specify a name for the Organisation Identifier field.

	Then, ensure that the Maximum Compatibility option has been selected for the Target Platforms field.

	Next, ensure that the Default option has been selected for the Theme section, as shown in the following screenshot:

Configuring your Android app

The Organization Identifier for your app needs to be unique. Xamarin recommends that you use the reverse domain style (for example, com.domainName.appName).

	Then, click on the Next button to proceed to the next step in the wizard:

Configure your new Android app

	Next, ensure that the Create a project directory within the solution directory checkbox has been selected.

	Then, click on the Create button to save your project at the specified location.

Once your project has been created, you will be presented with the Visual Studio for Mac Community development environment, containing the project files that the template has created for you.

Now that we have created our PhotoLibrary Android application, our next step is to begin adding the Xamarin Media Plugin NuGet package to allow our app to communicate with the device camera and photo gallery, which we will be covering in the next section.

 Adding the Xamarin Media Plugin NuGet package to our solution

In this section, we will begin by adding the Xamarin Media Plugin NuGet package to our solution. The Xamarin Media Plugin is essentially a cross-platform library that you can use to gain access to the device camera and photo album by writing a few lines of code.

Let's start by adding the Xamarin Media Plugin Nuget package to our PhotoLibrary solution by performing the following steps:

	Firstly, ensure that you have the PhotoLibrary solution currently open in the Visual Studio for Mac IDE.

	Then, right-click on the Packages folder and choose the Add Packages... menu option:

PhotoLibrary Solution Contents

	Next, select the Xam.Plugin.Media package from the list, ensuring that you have chosen the latest version from the Version dropdown.

	Finally, click on the Add Package button to add the NuGet Package to the PhotoLibrary solution:

Adding the Xam.Plugin.Media NuGet Package

Once you've added the Xamarin Media Plugin NuGet package to your PhotoLibrary solution, this will add two additional files, Plugin.CurrentActivity and Plugin.Permissions, as well as Xam.Plugin.Media, which can be seen in the following screenshot:

Xam.Plugin.Media added to the Package Folder

The following table provides an explanation of each of the Plugins that have been added to the Packages folder, as well as a brief description:

	
Plugin name

	
Description

	
Plugin.CurrentActivity

	
Provides developers with an easy alternative to accessing an Android application's current activity that is being displayed.

	
Plugin.Permissions

	
This is essentially a cross-platform plugin that is used to request and check for permissions to use the device camera and photo gallery.

	
Xam.Plugin.Media

	
This is essentially a simple cross-platform plugin to take photos and video using the device camera or pick them from the device gallery.

Now that we have added the Xamarin Media Plugin NuGet package to our PhotoLibrary solution, the next step is to create the user interface for our PhotoLibrary application using the Android Visual Designer in the Visual Studio for Mac IDE, which we will cover in the next section.

 Creating the user interface for our PhotoLibrary app using XML

In this section, we will begin by constructing the user interface for our PhotoLibrary application using XML. This will contain two buttons, as well as an ImageView control to display images that have been taken using the device camera or chosen from the device photo gallery.

Let's start by creating the user interface for our PhotoLibrary app by performing the following steps:

	Expand the Resources folder in the PhotoLibrary solution and right-click on the layout folder to display the popup, as shown in the following screenshot.

	Next, choose the New File... option, which is located in the Add menu:

Adding a new file within the layout folder

	Then, choose the Layout option under the Android section, and enter PhotoLibraryUI for the name of the new layout file to be created, as shown in the following screenshot:

Creating a new Android Layout file

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot.

Congratulations, you have created your very first layout file for our PhotoLibrary solution. Our next step is to proceed with creating the user interface:

	Open the PhotoLibraryUI.axml file, which is located as part of the PhotoLibrary|Resources|layout group. You will notice that it opens a blank canvas that contains a header, PhotoLibrary, which is the name for our application.

	Next, ensure that you have selected the Source button, which is located at the bottom of the designer:

Creating the PhotoLibrary user interface

	Then, ensure that the PhotoLibraryUI.axml layout information file is displayed in the code editor and enter the following code snippet:

 <?xml version="1.0" encoding="utf-8"?>
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/takePicture"
 android:id="@+id/takePicture" />
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/chooseFromGallery"
 android:id="@+id/chooseFromGallery" />
 <ImageView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:scaleType="fitXY"
 android:id="@+id/photoImageView" />
 </LinearLayout>

Let's now start by taking a look at what we covered in the preceding code snippet:

	We started by defining a Button tag and specified layout_width and layout_height to match the parent layout information. We also specified the text tag and assigned the takePicture string value that will be used to display the associated text for the button. Lastly, we used the id tag to provide an identifier for the button control that we can use and reference in our code.

	Next, we declared another Button tag and specified layout_width and layout_height to match the parent layout information. We also specified the text tag and assigned the chooseFromGallery string value that will be used to display the associated text for the button. Lastly, we used the id tag to provide an identifier for the button control that we can use and reference in our code.

	Finally, we declared an ImageView tag, and specified layout_width and layout_height, to fill the image in the parent. We also specified the scaleType tag and assigned the fitXY string value that will scale the image so that it fits nicely in our user interface. Lastly, we used the id tag to provide an identifier for the ImageView control that we can use and reference in our code.

Now that you have created the user interface for our Photo Library Android application, our next step is to update the Android Strings XML file to include text values for each of our buttons.

 Updating the Strings XML file to include our UI control values

In this section, we will begin by updating the Android Strings.xml file, which will be used by our application. Strings.xml is essentially a single file that you can use to declare the various strings your application requires; every string that you define must contain a unique ID, so you can reference the ID in your code to use that string.

Let's start by updating the Strings.xml file for our PhotoLibrary app by performing the following steps:

	Expand the Resources | values folder in the PhotoLibrary solution, as shown in the following screenshot:

Contents of the Strings.xml file

	Open the Strings.xml file, which is located as part of the PhotoLibrary| Resources|values group.

	Next, ensure that the Strings.xml file is displayed in the code editor and enter the following code snippet:

 <?xml version="1.0" encoding="utf-8"?>
 <resources>
 <string name="hello">Hello World, Click Me!</string>
 <string name="chooseFromGallery">Choose from Gallery</string>
 <string name="takePicture">Use Camera</string>
 <string name="app_name">PhotoLibrary</string>
 </resources>

Let's now start by taking a look at what we covered in the preceding code snippet:

	We started by defining a string value called chooseFromGallery and assigning the associated text of Choose from Gallery. This assigned text value will be associated with our chooseFromGallery button, which we defined in our user interface.

	Next, we declared another string value called takePicture and assigned the associated text of Use Camera. This assigned text value will be associated with our takePicture button, which we defined in our user interface.

Now that you have created the user interface and updated the Strings.xml file for our PhotoLibrary application, our next step is to create the styles.xml file that will be used to style our UI elements.

 Creating the Styles XML file for our Photo Library app

In this section, we will look at how to create a styles.xml file that will be used to apply styling to our user interface. The benefit of using a styles.xml file is that you can apply styling to our application, as well as each of the UI elements, such as by setting font sizes and colors, and customizing the appearance of control elements.

Let's start by creating the Styles file for our PhotoLibrary app by performing the following steps:

	Expand the Resources folder in the PhotoLibrary solution and right-click on the values folder to display the popup, as shown in the following screenshot.

	Next, choose the New File... option, which is located in the Add menu:

Creating a new Styles.xml file for our PhotoLibrary app

	Then, choose the Empty XML File option under the XML section and enter styles.xml as the name of the new XML file to be created, as shown in the following screenshot:

Creating a new Empty XML File

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot.

Now that we have created our styles.xml file, we can now proceed with creating the PhotoLibrary Activity class that will be used to interact with our user interface control elements.

 Creating and implementing the PhotoLibrary Activity class

In this section, we will start by creating the PhotoLibrary Activity class that will be used to interact with our PhotoLibraryUI user interface, and handle when each of the buttons has been pressed.

Let's start by creating the PhotoLibraryActivity class for our PhotoLibrary app in the following steps:

	Ensure that the PhotoLibrary solution is currently open in the Visual Studio for Mac IDE.

	Next, right-click on the PhotoLibrary project and choose Add|New File... from the pop-up menu, as shown in the following screenshot:

Creating a new Android Activity Class

	Then, choose the Activity option under the Android section and enter PhotoLibraryActivity for the name of the new Activity file to be created, as shown in the following screenshot:

Creating the PhotoLibraryActivity Class

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot.

Now that we have created our PhotoLibraryActivity file, we can proceed with implementing the required code for our Activity file and setting up our button click events, as well as incorporating the Xamarin Media Plugin and Permissions Plugin namespaces.

	Open the PhotoLibraryActivity.cs file, which is located as part of the PhotoLibrary group, ensure that it is displayed in the code editor, and enter the following code snippet:

 //
 // PhotoLibraryActivity.cs
 // Main Activity for the Photo Library Gallery PhotoLibraryUI XML
 // representing the application user interface elements.
 //
 // Created by Steven F. Daniel on 13/03/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Threading.Tasks;
 using Android.App;
 using Android.OS;
 using Android.Widget;

 // Xamarin Media Plugin
 using Plugin.Media;
 using Plugin.Media.Abstractions;

 // Xamarin Permissions Plugin
 using Plugin.Permissions;
 using Plugin.Permissions.Abstractions;

 namespace PhotoLibrary
 {
 [Activity(Label = "PhotoLibraryActivity", MainLauncher = true, Icon = "@mipmap/icon")]
 public class PhotoLibraryActivity : Activity
 {
 protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);

 // Set our view from the "PhotoLibraryUI" layout resource
 SetContentView(Resource.Layout.PhotoLibraryUI);

 // Get our chooseGallery button from the layout resource,
 // and attach an event to it
 Button useCamera = FindViewById<Button>(Resource.Id.takePicture);
 useCamera.Click += TakePictureButton_Clicked;
 Button chooseFromGallery = FindViewById<Button>(Resource.Id.chooseFromGallery);
 chooseFromGallery.Click += ChooseFromGalleryButton_Clicked;
 }
 }
 }

Let's now start by taking a look at what we covered in the preceding code snippet:

	We started by including a reference to the System.Threading.Tasks namespace, which will be used for asynchronous procedure calls.

	Next, we included a reference to the Plugin.Media and Plugin.Permissions namespaces, which will be used to communicate with the device camera and photo gallery.

	Finally, we set our view from the PhotoLibraryUI layout resource, then we created two Button variables, useCamera and chooseFromGallery, using the id from the layout resource file, and then we modified their Click events so that they point to their respective methods, which we will be creating later as we progress throughout this chapter.

 Updating the MainActivity class to call the PhotoLibrary Activity

Now that we have created our PhotoLibraryActivity class and have implemented the necessary method calls, our next step is to make some changes to the MainActivity class, so that it calls our PhotoLibraryActivity class.

The MainActivity class is the main class that gets called from any Android application upon launching, so we will need to make some changes so that our PhotoLibraryActivity will be displayed when our application launches.

Let's start by updating the MainActivity class for our PhotoLibrary app by performing the following steps:

	Open the MainActivity.cs file, which is located as part of the PhotoLibrary group, ensure that it is displayed in the code editor, and then enter the following code snippet:

 using Android.App;
 using Android.Widget;
 using Android.OS;

 namespace PhotoLibrary
 {
 [Activity(Label = "PhotoLibrary", MainLauncher = true, Icon = "@mipmap/icon")]
 public class MainActivity : Activity
 {
 int count = 1;
 protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);

 // Start our Photo Library Activity
 this.StartActivity(typeof(PhotoLibraryActivity));

 // Set our view from the "main" layout resource
 SetContentView(Resource.Layout.Main);

 // Get our button from the layout resource,
 // and attach an event to it
 Button button = FindViewById<Button>(Resource.Id.myButton);
 button.Click += delegate { button.Text = $"{count++} clicks!"; };
 }
 }
 }

Let's take a look at what we covered in the preceding code snippet:

	First, we started by using the StartActivity method of the main activity class

	Next, we used the typeof keyword to ensure that the PhotoLibraryActivity that we are passing in is definitely a class

	Then, if the typeof keyword returns True, we begin instantiating our PhotoLibraryActivity and display this when the MainActivity class is launched.

 Implementing Material Design in the PhotoLibrary app

In the previous sections, we looked at how to create the user interface for our app, update the Strings.xml file, and create the styles.xml file. Lastly, we looked at creating PhotoLibraryActivity and making some changes to the MainActivity class.

In this section, we will learn how to go about creating and implementing custom Material Design Themes, and how to implement Material Design in the PhotoLibrary application.

 Creating custom themes for the PhotoLibrary application

Creating custom themes for your apps is extremely easy. Android themes are similar to using CSS style sheets in your web applications for user interface design. Themes allow you to separate styles from your UI components, which makes maintaining your applications look and feel a lot easier.

Let's take a look at how to create a simple style in our styles.xml file for our PhotoLibrary app by following these simple steps:

	Open the styles.xml file, which is located as part of the PhotoLibrary| Resources|values group, ensure that it is displayed in the code editor, and then enter the following code snippet:

 <?xml version="1.0" encoding="UTF-8"?>
 <resources>
 <!-- A custom theme that is a variation on the light theme with
 a different background color. -->
 <style name="MyCustomTheme">
 <item name="android:windowNoTitle">true</item>
 <item name="android:colorPrimary">#3F51B5</item>
 <item name="android:statusBarColor">#ffffff</item>
 <item name="android:colorPrimaryDark">#303F9F</item>
 </style>
 </resources>

	Let's now start by taking a look at what we covered in the preceding code snippet. Firstly, we started by using <style name to provide a name for our style, which can be anything you want.

	Next, we specified a number of <item name fields, using the android: namespace and specifying values for the windowNoTitle, colorPrimary, statusBarColor, and colorPrimaryDark colors. windowNoTitle will essentially hide the name of the activity and prevent this from being displayed.

 Creating custom styles for the Photo Library application UI controls

Now that you have created the custom theme in the styles.xml file, we can continue modifying this file and create custom styles for our UI components that we created in our PhotoLibraryUIlayout file.

Let's take a look at how to create the required styles for our UI controls in our styles.xml file for our PhotoLibrary app by following these simple steps:

	Open the styles.xml file, which is located as part of the PhotoLibrary|Resources |values group, ensure that it is displayed in the code editor, and then enter the following code snippet:

 <?xml version="1.0" encoding="UTF-8"?>
 <resources>
 <!-- A custom theme that is a variation on the light theme with
 a different background color. -->
 <style name="MyCustomTheme">
 <item name="android:windowNoTitle">true</item>
 <item name="android:colorPrimary">#3F51B5</item>
 <item name="android:statusBarColor">#ffffff</item>
 <item name="android:colorPrimaryDark">#303F9F</item>
 </style>

	Create a new <style name tag with the name of camera_button, which will be used by our takePictureButton that we declared in our PhotoLibraryUI.axml layout file. Enter the following code snippet:

 <style name="camera_button">
 <item name="android:layout_width">match_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:textColor">#ffffff</item>
 <item name="android:gravity">center</item>
 <item name="android:layout_margin">3dp</item>
 <item name="android:textSize">20dp</item>
 <item name="android:textStyle">bold</item>
 <item name="android:shadowColor">#000000</item>
 <item name="android:shadowDx">1</item>
 <item name="android:shadowDy">1</item>
 <item name="android:shadowRadius">2</item>
 <item name="android:background">#0433ff</item>
 <item name="android:text">@string/takePicture</item>
 </style>

	Create a new <style name tag with the name of gallery_button, which will be used by our chooseFromGallery that we declared in our PhotoLibraryUI.axml layout file, and enter the following code snippet:

 <style name="gallery_button">
 <item name="android:layout_width">match_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:textColor">#ffffff</item>
 <item name="android:gravity">center</item>
 <item name="android:layout_margin">3dp</item>
 <item name="android:textSize">20dp</item>
 <item name="android:textStyle">bold</item>
 <item name="android:shadowColor">#000000</item>
 <item name="android:shadowDx">1</item>
 <item name="android:shadowDy">1</item>
 <item name="android:shadowRadius">2</item>
 <item name="android:background">#ff2600</item>
 <item name="android:text">@string/chooseFromGallery</item>
 </style>

	Finally, create another <style name tag with the name of photoImageView, which will be used by our photoImageView that we declared in our PhotoLibraryUI.axml layout file, and enter the following code snippet:

 <style name="photoImageView">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">fill_parent</item>
 <item name="android:scaleType">fitXY</item>
 <item name="android:gravity">center</item>
 <item name="android:layout_margin">3dp</item>
 <item name="android:shadowColor">#000000</item>
 <item name="android:shadowDx">1</item>
 <item name="android:shadowDy">1</item>
 <item name="android:shadowRadius">2</item>
 <item name="android:background">#ff9300</item>
 </style>
 </resources>

Let's now start by taking a look at what we covered in the preceding code snippet:

	Firstly, we started by declaring a number of custom styles <style name> and provided a name for our style.

	Next, we specified a number of <item name> fields using the android: namespace, and specified values for layout_width and layout_height. We also specified the textColor, textSize, textStyle, and background colors, as well as specifying the text to display in our buttons.

	For the photoImageView style, we specified the scaleType property, which will fit our chosen image in the imageView.

 Applying the custom theme to the PhotoLibrary application

We have just created a custom theme and created a number of styles for our PhotoLibrary application; our next step is to apply the custom theme to our PhotoLibrary layout file, as well as update our PhotoLibraryActivity class to use our custom theme, which will then apply the theming for our application:

	Open the PhotoLibraryUI.axml file, which is located as part of the PhotoLibrary|Resources|layout group, and ensure that it is displayed in the code editor. Enter the following code snippet:

 <?xml version="1.0" encoding="utf-8"?>
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <Button
 android:id="@+id/takePicture"
 style="@style/camera_button" />
 <Button
 android:id="@+id/chooseFromGallery"
 style="@style/gallery_button" />
 <ImageView
 android:id="@+id/photoImageView"
 style="@style/photoImageView" />
 </LinearLayout>

	Next, we need to open the PhotoLibraryActivity.cs file, which is located as part of the PhotoLibrary group, and set the Theme for our activity.

	Ensure that the PhotoLibraryActivity.cs file is displayed in the code editor and enter the following code snippet:

 //
 // PhotoLibraryActivity.cs
 // Main Activity for the Photo Library Gallery PhotoLibraryUI XML
 // representing the application user interface elements.
 //
 // Created by Steven F. Daniel on 13/03/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Threading.Tasks;
 using Android.App;
 using Android.OS;
 using Android.Widget;

 // Xamarin Media Plugin
 using Plugin.Media;
 using Plugin.Media.Abstractions;

 // Xamarin Permissions Plugin
 using Plugin.Permissions;
 using Plugin.Permissions.Abstractions;

 namespace PhotoLibrary
 {
 [Activity(Label = "PhotoLibraryActivity", MainLauncher = true,
 Icon = "@mipmap/icon", Theme = "@style/MyCustomTheme")]
 ...
 ...
 }

In the preceding code snippet, we modified the [Activity section to include an additional parameter, called Theme. Here, we specified the name of our custom theme, called MyCustomTheme, which we created in our styles.xml file. When using themes in your application, you will need to include the @style parameter. If you don't include this, your application will not compile and will produce application errors.

 Setting up camera and photo album permissions

Before we can start accessing the camera and photo album, we will need to assign certain permissions for our PhotoLibrary Android app. To do this, we need to make some changes to our Android Manifest file to give access to our camera and photo album.

Let's start by updating the AndroidManifest.xml file for our PhotoLibrary app by performing the following steps:

	Expand the Properties folder in the PhotoLibrary solution and double-click on the AndroidManifest.xml file. Ensure that you have selected the Source button, which is located at the bottom of the screen, as shown in the following screenshot:

Setting up Camera and Photo Album Permissions

	Then, ensure that the AndroidManifest.xml file is displayed in the code editor and enter the following code snippet:

 <?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android="http://schemas.android.com/apk/res/android" android:versionCode="1"
 android:versionName="1.0" package="com.geniesoftstudios.PhotoLibrary">
 <uses-sdk android:minSdkVersion="10" />

 <uses-permission android:name="android.permission.CAMERA"/>
 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <application android:allowBackup="true" android:icon="@mipmap/icon"
 android:label="@string/app_name">
 </application>
 </manifest>

Now that we have added the necessary permissions for our PhotoLibrary app in AndroidManifest.xml, we need to implement the remaining instance methods in our PhotoLibraryActivity class and use the Plugin.Permissions namespace to check to see whether we can access our Camera and Photo Gallery.

 Interacting with the device camera and photo album

Now that we have made the necessary changes in the AndroidManifest.xml file, we can proceed to implement the remaining instance methods in our PhotoLibraryActivity class, which will complete our PhotoLibrary application.

	Open the PhotoLibraryActivity.cs class, which is located in the PhotoLibrary solution, and ensure that it is displayed in the code editor window:

 namespace PhotoLibrary
 {
 [Activity(Label = "PhotoLibraryActivity", MainLauncher = true, Icon = "@mipmap/icon",
 Theme = "@android:style/Theme.Material.Light.DarkActionBar")]
 public class PhotoLibraryActivity : Activity
 {
 protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);

 // Set our view from the "main" layout resource
 SetContentView(Resource.Layout.PhotoLibraryUI);
 ...
 ...
 ...
 }

	Next, underneath the OnCreate method, we need to create a new instance method called TakePictureButton_Clicked and enter the following code snippet:

 #region Take Picture using the Android device camera
 public async void TakePictureButton_Clicked(object sender, System.EventArgs args)
 {
 await CrossMedia.Current.Initialize();
 if (!CrossMedia.Current.IsCameraAvailable || !CrossMedia.Current.IsTakePhotoSupported)
 {
 // Display alert dialog - Device has no camera and photo support is denied
 ShowMessageDialog("Permission Denied", "Unable to gain access to the camera.");
 return;
 }
 // Check to see if we have the appropriate permissions
 if (!await Task.Run(() => CheckCameraAlbumPermissions()))
 {
 // Display alert dialog - Permission denied to Camera
 ShowMessageDialog("Permission Denied", "Unable to gain access to the camera.");
 return;
 }
 var imageFilename = await CrossMedia.Current.TakePhotoAsync(new StoreCameraMediaOptions()
 {
 Name = $"{DateTime.UtcNow}.jpg",
 DefaultCamera = CameraDevice.Rear,
 PhotoSize = PhotoSize.Medium,
 SaveToAlbum = true,
 });
 if (imageFilename == null)
 return;

 // Get our chooseGallery button from the layout resource,
 // and attach an event to it
 ImageView photoImageView = FindViewById<ImageView>(Resource.Id.photoImageView);
 photoImageView.SetImageURI(Android.Net.Uri.Parse(imageFilename.Path));
 }
 #endregion

	Next, underneath the TakePictureButton_Clicked instance method, we need to create a new instance method called ChooseFromGalleryButton_Clicked to allow the user to choose a picture from the device's gallery. Enter the following code snippet:

 #region Allow the user to choose a Picture from the phone
 async void ChooseFromGalleryButton_Clicked(object sender, System.EventArgs args)
 {
 if (!CrossMedia.Current.IsPickPhotoSupported)
 {
 // Display our message dialog if choosing a photo is not supported
 ShowMessageDialog("Not Supported", "Choosing a photo is not supported.");
 return;
 }
 // Check to see if we have the appropriate permissions
 if (!await Task.Run(() => CheckCameraAlbumPermissions()))
 {
 // Display our message dialog if we are unable to gain access to the photo album
 ShowMessageDialog("Permission Denied","Unable to gain access to the Photo Album.");
 return;
 }
 var imageFilename = await CrossMedia.Current.PickPhotoAsync();
 if (imageFilename != null)
 {
 ImageView photoImageView = FindViewById<ImageView>(Resource.Id.photoImageView);
 photoImageView.SetImageURI(Android.Net.Uri.Parse(imageFilename.Path));
 }
 }
 #endregion

	Next, underneath the ChooseFromGalleryButton_Clicked instance method, we need to create a new instance method called CheckCameraAlbumPermissions that will check to see whether we have the necessary permissions to access the device camera and gallery. Enter the following code snippet:

 #region Checking for Camera and Photo Album Permissions
 public async Task<bool> CheckCameraAlbumPermissions()
 {
 // Determine if we have permission to our Camera and photo album
 var deviceCameraStatus = await
 CrossPermissions.Current.CheckPermissionStatusAsync(Permission.Camera);
 var deviceAlbumStatus = await
 CrossPermissions.Current.CheckPermissionStatusAsync(Permission.Storage);

 if (deviceCameraStatus != PermissionStatus.Granted ||
 deviceAlbumStatus != PermissionStatus.Granted)
 {
 var results = await CrossPermissions.Current.RequestPermissionsAsync(new[] {
 Permission.Camera, Permission.Storage
 });
 deviceCameraStatus = results[Permission.Camera];
 deviceAlbumStatus = results[Permission.Storage];
 }
 // Check to see if we have access to the camera and photo album
 return (deviceCameraStatus == PermissionStatus.Granted &&
 deviceAlbumStatus == PermissionStatus.Granted);
 }
 #endregion

	Next, underneath the CheckCameraAlbumPermissions instance method, we need to create a new instance method called ShowMessageDialog that will display an alert dialog using title and message as parameters. Enter the following code snippet:

 #region Shows a Message Dialog using the parameters specified
 public void ShowMessageDialog(string title, string message)
 {
 var dialog = new AlertDialog.Builder(this);
 var alert = dialog.Create();
 alert.SetTitle(title);
 alert.SetMessage(message);
 alert.SetButton("OK", (c, ev) => CrossPermissions.Current.OpenAppSettings());
 alert.Show();
 }

Let's now start by taking a look at what we covered in the preceding code snippet:

	In the TakePictureButton_Clicked instance method, we begin by creating a Task.Run() and call the CheckCameraAlbumPermissions instance method, which, when it completes, will return a True or False value.

	Next, if everything is okay, we proceed to display the camera; otherwise, we display an alert dialog informing the user that permissions have been denied using the camera, and then we proceed to launch the device settings app, so the user can manually provide access to the camera.

	Then, in the ChooseFromGalleryButton_Clicked instance method, we again start by creating Task.Run() and calling the CheckCameraAlbumPermissions instance method, which, when it completes, will return a True or False value.

	Next, if everything is okay, we proceed as normal and allow the user to choose a photo from the album; otherwise, we display an alert dialog informing the user that permissions have been denied to the photo album, and then we proceed to launch the settings app so the user can manually provide access to the photo album.

	Then, in the CheckCameraAlbumPermissions instance method, we begin by declaring two variables, deviceCameraStatus and deviceAlbumStatus, and we use the CheckPermissionsStatusAsync method to check for permissions to our Camera and Storage.

	Next, we check to see whether we have been granted permission to use the camera or photo album, and if we haven't, we use the RequestPermissionsAsync method and pass in two parameters to request access to our Camera and Storage. This will then return a results array containing the key-value binding, as well as a value of either Granted or Denied for our Camera and Photo Album. We check to see whether we have been granted access to use the Camera or Photo Album and return a Boolean result.

	Finally, we create the ShowMessageDialog instance method that will be used to display an alert dialog using the title and message parameters for our alert dialog that will be displayed to the user.

Now that you have created the Custom Themes and Styles, and have created the necessary C# code and implemented the necessary instance methods, our next step is to compile, build, and run the PhotoLibrary app using the Android emulator.

 Launching the Photo Library app using the Android emulator

In this section, we will take a look at how to compile and run our PhotoLibrary. You have the option of choosing to run your application using an actual device or choosing from a list of emulators available for an Android device.

Let's begin by performing the following steps:

	Ensure that you have chosen the PhotoLibrary project from the drop-down menu.

	Next, choose your preferred device from the list of available Android emulators.

	Then, select the Run|Start Debugging menu option, as shown in the following screenshot:

Launching the PhotoLibrary App within the Android Emulator

	Alternatively, you can also build and run the PhotoLibrary application by pressing Command + Enter.

When the compilation is complete, the Android emulator will appear automatically and the PhotoLibrary application will be displayed, as shown in the following screenshot:

PhotoLibraryApp displayed within the Android Emulator

As you can see from the preceding screenshot, this currently displays our beautifully themed application, and when the Choose from Gallery button is clicked, we check to see whether we have previously allowed access to our PhotoLibrary by calling our CheckCameraAlbumPermissions instance method. Clicking on the Allow button will display the images that you can choose from, which, upon selection, will download and display the image in the ImageView. Alternatively, clicking on the Use Camera button will not work in the Android emulator, and you will need to run this on a physical device to avoid issues.

 Summary

In this chapter, we focused primarily on how to develop a native Android app using Visual Studio for Mac, Xamarin.Android, and C#. You learned how to use and work with the Visual Designer in the Visual Studio for Mac IDE to construct the user interface for your PhotoLibrary app using XML and implement Material Design in your apps, as well as create your own custom themes and then apply theming to your app.

Finally, you learned how to provide the necessary permissions to AndroidManifest.xml so that we can interact with the device camera and photo album, before launching the app in the Android emulator. In the next chapter, you will learn how to build a tile sliding game using Xamarin.iOS and C#.

 Building a SlidingTiles Game Using Xamarin.iOS

In the previous chapter, we learned how to develop a native Android app using Visual Studio for Mac, Xamarin.Android, and C#. You learned how to use and work with the Visual Designer in the Visual Studio for Mac IDE to construct the user interface for our PhotoLibrary app using XML, and implement Material Design in your apps, as well as create your own custom themes and then apply theming to your app.

Finally, we learned how to provide the necessary permissions to AndroidManifest.xml so that we could interact with the device camera and photo album before launching the app in the Android emulator.

This chapter will focus primarily on how to develop a native iOS app using Visual Studio for Mac, Xamarin.iOS, and C#. You'll learn how to use and work with Storyboards in the Visual Studio for Mac IDE to construct the user interface for our SlidingTiles game by dragging a number of Labels, Views, and Buttons that will make up our game. You'll work with Interfaces and Classes to create the GameTile Interface and Class that will be used to create each of the tiles for our game, and then implement the remaining logic in the ViewController class to build the game board and create each of our game tiles using images from an array.

You'll also create an instance method that will randomly shuffle each of our game tiles on our game board using the Random class and work with the UITouch class to handle touch events to determine when a game tile has been tapped in the game board's UIView.

To end this chapter, you'll learn how to work with CoreAnimation so that you can apply simple animations to your UIViews by using View Transitions in an animation block, before deploying and launching the app in the iOS Simulator.

This chapter will cover the following points:

	Creating a native app for the iOS platform using Visual Studio for Mac

	Constructing the user interface for the Sliding Tiles game using Storyboards

	Working with and handling touch events in the UIView

	Launching the Sliding Tiles game using the iOS Simulator

 Creating a native iOS app using Visual Studio for Mac

In this section, we will take a look at how to create a native iOS solution for the first time. We will begin by developing the basic structure for our application, as well as designing the user interface for our Sliding Tiles game using Storyboards.

We will also learn how to create an Interface and Class for our GameTile, as well as implementing the various methods to create the GameBoard, and seeing how to shuffle game titles randomly in the GameBoard, and how to handle touch events in the GameBoard UI. Finally, we will learn how to work with and implement animations in our GameBoard UI for our SlidingTiles game, before launching our game in the iOS Simulator.

Before we can proceed, we need to create our SlidingTiles project. It is very simple to create this using Visual Studio for Mac. Simply follow the steps listed here:

	Firstly, launch the Visual Studio for Mac application.

	Next, choose the New Solution… option, or alternatively choose the File | New | Solution..., or simply press Shift + command + N.

	Then, choose the Single View App option, which is located in the iOS|App section, and ensure that you have selected C# as the programming language to use:

Creating a new Single View App

	Next, enter SlidingTiles to use as the name for your app in the App Name field, and then specify a name for the Organization Identifier field.

	Then, ensure that the iPad and iPhone options have been selected for the Devices field.

	Next, ensure that you have selected iOS 11.3 as the minimum iOS version that you want to support for the Target field, as shown in the following screenshot:

Configuring your iOS app

The Organization Identifier option for your app needs to be unique. Xamarin recommends that you use the reverse domain style (for example, com.domainName.appName).

	Then, click on the Next button to proceed to the next step in the wizard:

Configuring your new Single View App

	Next, ensure that the Create a project directory in the solution directory checkbox has been selected.

	Then, click on the Create button to save your project to the specified location.

Once your project has been created, you will be presented with the Visual Studio for Mac Community development environment containing the project files that the wizard created for you:

Structure of the SlidingTiles solution

The following table shows a number of important files that are contained in the SlidingTiles solution, as well as a brief description of what each file is used for:

	
Name

	
Description

	
Connected Services

	
This folder allows you to bring the Azure portal workflow into Visual Studio for Mac, so you don't have to leave your project to add services.

	
References

	
This folder contains references to .NET assemblies and any other assemblies that you create, which you can reference throughout your solution.

	
Packages

	
This folder allows you to add NuGet package libraries to your solution.

	
Assets.xcassets

	
This folder allows you to manage and group all versions of your image assets that are required by your application.

	
AppDelegate.cs

	
AppDelegate is basically an object that receives notifications whenever the UIApplication object reaches a certain state and is responsible for handling special UIApplication states.

	
Resources

	
This folder allows you to add additional images, fonts, PDFs, and so on that will be used by your solution.

	
Entitlements.plist

	
iOS apps run in a sandbox, which provides a set of rules that limit access between your application and certain system resources and user data.

Entitlements.plist allows you to provide additional application capabilities and security permissions so that the system can expand the application sandbox, which will give your application additional capabilities.

	
Info.plist

	
The Info.plist file is essentially a structured text file that contains configuration information for a bundled executable.

	
Main.Storyboard

	
This file contains a visual representation of all the screens that make up your application. It contains a sequence of scenes, with each scene representing View, along with any User Interface Control elements and their associated View Controller.

Now that we have created our SlidingTiles iOS application and have a good understanding of the various folders and files that are contained in our solution, our next step is to create the user interface for our SlidingTiles application using Storyboards in the iOS Visual Designer in the Visual Studio for Mac IDE, which we will cover in the next section.

 Creating the SlidingTiles user interface using Storyboards

In this section, we will begin by constructing the user interface for our SlidingTiles application using Storyboards and the Visual Designer for iOS that is included as part of the Visual Studio for Mac IDE.

You will notice that our Main.storyboard already contains a View Controller, which we will be adding UI control elements to, such as a Label, a View, and two Buttons that will be used to reset the current game in progress, as well as randomly shuffling each of the tiles on our game board.

Let's start by opening the Storyboard for our SlidingTiles application and performing the following steps:

	Firstly, locate the Main.storyboard that is contained in the SlidingTiles solution.

	Next, double-click on the Main.storyboard file to display our Storyboard Canvas, as shown in the following screenshot:

Creating the SlidingTiles User Interface within the Storyboard

As you can see from the screenshot, our ViewController is pretty much bare and doesn't contain anything exciting at this stage. As we progress through this section, we will be adding various UI components that will make up our game. Our next step is to add a Label control to our ViewController, which will act as the title for our game.

 Adding a label to our ViewController in the Storyboard

In this section, we will take a look at how we can use labels to display informative text to the user. The Label object is one of the ways in which we can let users know what is happening.

This can be as simple as displaying static text to the user, or to let the user know that we are requesting for the user to enter their username or password. Alternatively, we can use the Label control to inform them whenever something has gone terribly wrong.

Let's start by ensuring that our Toolbox window is currently open and performing the following steps:

	Ensure the SlidingTiles solution is currently open in the Visual Studio for Mac IDE.

	Next, select the View|Pads|Toolbox menu option, as shown in the following screenshot:

Displaying the Toolbox Pane

As you can see from the preceding screenshot, this will bring up the Toolbox window, which will allow you to choose from a number of controls and View Controllers that you can drag to your Storyboard to construct your user interface. There is even a search field, which you can use to search for the item you want to use, rather than scrolling through the list.

	Then, from the Toolbox Library, drag a Label control onto the View Controller.

	Next, resize the Label control so that it fills the width of the View Controller:

Dragging a Label Control to the ViewController

	Then, select the Label control in the View Controller to bring up the Properties window and ensure that the Widget tab has been selected, as shown in the following screenshot:

Properties window for the Label Control

You can display the Properties window by selecting the View|Pads|Properties menu option, as you did previously to display the Toolbox window.

	Next, modify the Name property, which is located in the Identity section, to read gameTitle.

	Then, from the Properties window, modify the Label Text property, which is located in the Label section, to read Sliding Tiles Game.

	Next, modify the Font property to be System 30 pt.

	Then, set the Alignment property to be Center and the Background property to be Yellow.

	Next, select the Label control in the View Controller to bring up the Properties window and select the Layout tab, as shown in the following screenshot:

Layout Section of the Properties window

	Then, modify the X property to read 20 and the Y property to read 40, which are located in the View section.

	Next, modify the Width property to read 374 and the Height property to read 40, which are located in the View section.

At this point, all we have done is add a Label control, but it is good to save our Storyboard by selecting File | Save from the menu bar or alternatively by pressing command + S. Our next step is to add a View control to our View Controller, which will act as the GameBoard for our game.

 Adding a View to our View Controller in the Storyboard

In this section, we will take a look at how we can use Views to act as a means of defining places where we need to present content differently than standard views allow. The advantage of creating custom views is that they allow you to handle interactions with any object that is added to that interface, which you can use to animate things quite easily.

Let's start adding a View object to our View Controller by performing the following steps:

	Ensure the SlidingTiles solution is currently open in the Visual Studio for Mac IDE.

	Then, from the Toolbox Library, drag a View control onto the View Controller.

	Next, resize the View control so that it fills the width of the View Controller and matches the width of the Label control that we added previously:

Adding a View within the View Controller

	Then, select the View control in the View Controller to bring up the Properties window and ensure that the Widget tab has been selected, as shown in the following screenshot:

Modifying the properties for the View control

	Next, from the Properties window, modify the Name property, which is located in the Identity section, to read gameBoardView.

	Then, set the Content Mode property to be Scale To Fill, and set the Background property to be Dark Gray Color.

	Next, select the View control in the View Controller to bring up the Properties window and select the Layout tab, as shown in the following screenshot:

Updating Layout properties for the View control

	Then, modify the X property to read 20 and the Y property to read 102, which are located in the View section.

	Next, modify the Width property to read 374 and the Height property to read 335, which are located in the View section.

Excellent, the user interface for our Sliding Tiles game is coming along quite nicely; we have added a Label control as well as a View control. Before we proceed with adding the remaining controls to our View Controller in our Storyboard, it would be good to save our Storyboard. Our next step is to add a Button control to our View Controller, which will reset the game in progress.

 Adding a reset button to our View Controller in the Storyboard

In this section, we will take a look at how we can use Buttons to respond to user actions when they are tapped on in the View Controller. Buttons contain numerous properties that can be set, as well as things called Control Events and Target/Action Events.

Control Events are executed and respond to actions whenever they are tapped. An example would be when you want to change the color of a button when it has been tapped or play some sound. On the other hand, Target/Action Events calls the underlying instance method to perform the action that is associated with that button where the code resides.

Let's start by adding a Button object to our View Controller, performing the following steps:

	Ensure the SlidingTiles solution is currently open in the Visual Studio for Mac IDE.

	Then, from the Toolbox library, drag a Button control onto the View Controller.

	Next, resize the Button control so that it fills the width of the View Controller and matches the Width of the View control that we added previously:

Adding the Reset Game button to the View Controller

	Then, select the Button control in the View Controller to bring up the Properties window and ensure that the Widget tab has been selected, as shown in the following screenshot:

Modifying the Reset Game button properties

	Next, from the Properties window, modify the Name property, which is located in the Identity section, to read resetGameButton and ensure that the Type property, which is located in the Button section, reads System.

	Then, modify the Label Text property for the Title field, which is located in the Button section, to read Reset Game.

	Next, modify the Font property to be System 24 pt. and set the Text Color property to be White Color, and ensure that you set the Background property to be Red.

Now that we have set up the properties for our Button control, we need to modify the Layout properties for our Reset Game button:

	Select the Button control in the View Controller to bring up the Properties window and select the Layout tab, as shown in the following screenshot:

Modifying Layout properties for the Reset Game button

	Next, modify the X property to read 20 and the Y property to read 472, which are located in the View section.

	Next, modify the Width property to read 374 and the Height property to read 40, which are located in the View section.

Up to now, we have specified properties for our Button control to change the appearance, positioning, and size of the control. Our next step is to set up events for our Button control so that it can respond to actions whenever the button has been pressed, which we will cover next.

	Select the Button control in the View Controller to bring up the Properties window and select the Events tab, as shown in the following screenshot:

Assigning an Event Action to the Reset Game button

	Next, modify the Up Inside property of the button to read ResetGame_Clicked, which is located in the Touch section of the Control Events pane.

	Then, modify the Action property of the button to read ResetGame_Clicked, which is located in the Target/Action Event pane.

Now, we have added our Button control to our Storyboard and have specified the Control Events and Target/Action Event properties for our control, which will respond whenever the user taps on this button. As we progress through this chapter, we will be implementing the code for the ResetGame_Clicked instance method. Our next step is to add one more Button control to our View Controller, which will complete our user interface for our Sliding Tiles Game and will be responsible for shuffling each of our tiles on the game board.

 Adding the Shuffle Button to our View Controller in the Storyboard

In this section, we will take a look at how we can add our final button to our View Controller in our Storyboard, which will complete the construction of our user interface for our Sliding Tiles Game. We will also be modifying properties for this control, applying Layout attributes, and specifying Control Events and Target/Action Events.

Let's start by adding a Button object to our View Controller, performing the following steps:

	Ensure the SlidingTiles solution is currently open in the Visual Studio for Mac IDE.

	Then, from the Toolbox Library, drag a Button control onto the View Controller.

	Next, resize the Button control so that it fills the width of the View Controller and matches the Width of the View control that we added previously.

	Then, select the Button control in the View Controller to bring up the Properties window and ensure that the Widget tab has been selected, as shown in the following screenshot:

Adding the Shuffle Tiles button to our View Controller

	Next, from the Properties window, modify the Name property, which is located in the Identity section, to read shuffleButton and ensure that the Type property, which is located in the Button section, reads System.

	Then, modify the Label Text property for the Title field, which is located in the Button section, to read Shuffle Tiles.

	Next, modify the Font property to be System 24 pt., set the Text Color property to be White Color, and ensure that you set the Background property to be Orange.

Now that we have set up the properties for our Button control, we need to modify the Layout properties for our Shuffle Tiles button and adjust the layout properties for our button.

	Select the Button control in the View Controller to bring up the Properties window and select the Layout tab, as shown in the following screenshot:

Modifying Layout properties for the Shuffle Tiles button

	Next, modify the X property to read 20 and the Y property to read 541, both of which are located in the View section.

	Next, modify the Width property to read 374 and the Height property to read 40, which are located in the View section.

Up to now, we have specified properties for our Button control to change the appearance and the positioning and size of the control. Our next step is to set up events for our Button control so that it can respond to actions whenever the button has been pressed, which we will cover next.

	Select the Button control in the View Controller to bring up the Properties window and select the Events tab, as shown in the following screenshot:

Assigning an Event Action to the Shuffle Tiles button

	Next, modify the Up Inside property of the button to read ShuffleBoardTiles_Clicked, which is located in the Touch section of the Control Events pane.

	Then, modify the Action property of the button to read ShuffleBoardTiles_Clicked, which is located in the Target/Action Event pane.

We have finally added our final Button control to our Storyboard, as well as specifying the Control Events and Target/Action Event properties that will respond whenever the user taps on this button. As we progress through this chapter, we will be implementing the code for the ShuffleBoardTiles_Clicked instance method.

 Adding the GameTile image to our SlidingTiles game

In this section, we will take a look at how we can add the image that will be used for our Game Tiles, which will be displayed in the GameBoard.

Before we can proceed, we need to add the GameTile image to our SlidingTiles project by performing the following steps:

	Ensure the SlidingTiles solution is currently open in the Visual Studio for Mac IDE.

	Then, unzip the Assets.zip file that comes as part of the accompanying code bundle.

	Next, double-click on the Assets folder to display the folder's contents.

	Then, drag the game_tile.png image from the Assets folder to the Resources folder contained in the SlidingTiles project, as shown in the following screenshot:

Adding the Game Tile image to the Resources folder

If you want to use your own game tile images, you will need to ensure that the image dimensions are 141 x 141 for the width and height; otherwise, you will experience issues when the tiles are placed on the GameBoard.

Now that we have added the game tile image to our SlidingTiles project solution, we can start to implement the game logic for our Sliding Tiles game.

 Implementing the game logic for our SlidingTiles Game

In this section, we will start by creating and implementing the logic needed to complete our SlidingTiles game. We will start by creating and implementing a GameTile Interface and Class, which will be used to create and store each of our GameTiles.

We will then move on to implementing the required code, as well as the necessary instance method implementations that will make up and complete our game.

 Creating and implementing the GameTile Interface class

As explained in the introduction to this section, we will start by creating the GameTile interface class for our SlidingTiles game, which will be used to create instances of each game tile that will be displayed in the gameboard View control we added to our ViewController contained in our Storyboard.

Let's start by creating the IGameTile interface for our SlidingTiles app by performing the following steps:

	Ensure that the SlidingTiles solution is open in the Visual Studio for Mac IDE.

	Next, right-click on the SlidingTiles project and choose Add|New Folder from the pop up menu, as shown in the following screenshot:

Creating a new Folder within the SlidingTiles solution

	Then, enter Interfaces for the name of the new folder to be created, then right-click on the Interfaces folder and choose Add|New File... from the pop up menu, as shown in the following screenshot:

Creating a new Empty Interface within the Interfaces folder

	Next, choose the Empty Interface option under the General section and enter IGameTile for the name of the new Interface file to be created, as shown in the following screenshot:

Creating the IGameTile Interface

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our IGameTile interface file, we can proceed with implementing the required code for our Interface class.

	Locate and open the IGameTile.cs file, which is located as part of the SlidingTiles group, ensure that it is displayed in the code editor, and enter the following code snippet:

 //
 // IGameTile.cs
 // Interface class for the GameTile class
 //
 // Created by Steven F. Daniel on 24/04/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using UIKit;

 namespace SlidingTiles.Interfaces
 {
 public interface IGameTile
 {
 UIImage DrawTileText(UIImage uiImage, string sText,
 UIColor textColor, int iFontSize);
 }
 }

Let's take a look at what we covered in the preceding code snippet:

	First, we started by including a reference to the UIKit namespace that will be used to allow us to access iOS-specific user interface components, such as UIButton, UIView, UIImageView, and so on

	Next, we declared an instance method called DrawTileText, which contains a number of parameters that will be used to draw text onto a specified image

	Then, we declared a uiImage parameter that is the image that we want to use

	Next, we declared an sText parameter that will be the text we want to place in the image

 Creating and implementing the GameTile class

Now that we have created our GameTile Interface class, our next step is to proceed with creating the GameTile class and then implement the underlying code for our DrawTileText instance method.

Let's start by creating the GameTile class for our SlidingTiles app, performing the following steps:

	Right-click on the SlidingTiles project and create a new folder called Classes by choosing Add|New Folder from the pop up menu, like you did in the previous section.

	Next, right-click on the Classes folder and choose Add|New File... from the pop up menu, as shown in the following screenshot:

Creating a new Empty Class within the Classes folder

	Next, choose the Empty Class option under the General section and enter GameTile for the name of the new Class file to be created, as shown in the following screenshot:

Creating the GameTile Class

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our GameTile Class file, we can proceed with implementing the required code for our class.

	Locate and open the GameTile.cs file, which is part of the SlidingTiles group, ensure that it is displayed in the code editor, and enter the following code snippet:

 //
 // GameTile.cs
 // Creates each of our tile images for our Tile Slider Game.
 //
 // Created by Steven F. Daniel on 24/04/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using UIKit;
 using SlidingTiles.Interfaces;
 using CoreGraphics;
 using System;

 namespace SlidingTiles.Classes
 {

	Next, underneath namespace, we need to ensure that our GameTile class inherits from the UIImageView class, as well as our IGameTile interface, by updating the class declaration:

 public class GameTile : UIImageView, IGameTile
 {

	Then, underneath the GameTile class declaration, we need to create two GameTile class constructors; one that accepts no parameters, and an other that accepts Row and Col, as well as defining two integer properties for our Row and Col that will be used by our class:

 // GameTile Class Constructor
 public GameTile()
 {
 }

 // Overload GameTile Class Constructor
 public GameTile(int row, int col)
 {
 this.Row = row;
 this.Col = col;
 }

 // Define the properties that will be used by our class
 public int Row { private set; get; }
 public int Col { private set; get; }

	Next, we need to create the DrawTileText instance method that will be used to draw text onto the supplied image, which is passed in to the instance method declaration:

 // Instance method to draw our tile with additional text
 public UIImage DrawTileText(UIImage uiImage, string sText,
 UIColor textColor, int iFontSize)
 {
 nfloat fWidth = uiImage.Size.Width;
 nfloat fHeight = uiImage.Size.Height;
 CGColorSpace colorSpace = CGColorSpace.CreateDeviceRGB();
 using (CGBitmapContext ctx = new CGBitmapContext(IntPtr.Zero,
 (nint)fWidth,
 (nint)fHeight, 8, 4 * (nint)fWidth,
 CGColorSpace.CreateDeviceRGB(),
 CGImageAlphaInfo.PremultipliedFirst))
 {
 ctx.DrawImage(new CGRect(0, 0, (double)fWidth,(double)fHeight), uiImage.CGImage);
 ctx.SelectFont("HelveticaNeue-Bold", iFontSize, CGTextEncoding.MacRoman);

 // Measure the text's width - This involves drawing an
 // invisible string to calculate the X position difference
 float start, end, textWidth;

 // Get the texts current position
 start = (float)ctx.TextPosition.X;

 // Set the drawing mode to invisible
 ctx.SetTextDrawingMode(CGTextDrawingMode.Invisible);

 // Draw the text at the current position
 ctx.ShowText(sText);

 // Get the end position
 end = (float)ctx.TextPosition.X;

 // Subtract start from end to get the text's width
 textWidth = end - start;
 nfloat fRed, fGreen, fBlue, fAlpha;

 // Set the fill color to black. This is the text color.
 textColor.GetRGBA(out fRed, out fGreen, out fBlue, out fAlpha);
 ctx.SetFillColor(fRed, fGreen, fBlue, fAlpha);

 // Set the drawing mode back to something that will actually draw
 // Fill for example
 ctx.SetTextDrawingMode(CGTextDrawingMode.Fill);

 // Draw the text at given coords.
 ctx.ShowTextAtPoint(50, 50, sText);
 return UIImage.FromImage(ctx.ToImage());
 }
 }
 }
 }

Let's take a look at what we covered in the preceding code snippet:

	First, we started by including a reference to the UIKit namespace that will be used to allow us to access iOS-specific user interface components, such as UIButton, UIView, UIImageView, and so on.

	Next, we included a reference to our SlidingTiles.Interface namespace so that our GameTile class can inherit the instance methods contained in the interface.

	Then, we included references to both the CoreGraphics and System namespaces, so that we have access to graphics capabilities for image manipulation. We then modified the GameTile class declaration to inherit from both the UIImageView and IGameTile interfaces. It will become clear why we need to inherit from UIImageView as we progress through this chapter.

	Next, we defined two Class Constructors for our GameTile class, one where we instantiate our class without parameters, and one where we need to pass in the row and column for each tile that will be placed in the GameBoard View control.

	Then, we declared a CGColorSpace colorSpace variable that creates and returns a device-dependent RGB color space, and we created a CGBitmapContext ctx variable that creates an in-memory bitmap.

	Next, we use the DrawImage method of the CGBitmapContext class to create our image in memory and draw the text on the image using the HelveticaNeue-Bold font, with the font size that we passed into our DrawTileText instance method.

	Then, we measured the width of the text that we wanted to place in the image, calculated the starting position of the text, and set the drawing mode to invisible by using the CGTextDrawingMode.Invisible property. We then called the ShowText method of CGBitmapContext to draw the text at the current position.

	Next, we calculated the ending position of the text that we wanted to place in the image, and then calculated the width of the text by subtracting the starting and ending positions for the text's width.

	Then, we set the fill color to black and set the drawing mode to Fill using the CGTextDrawingMode class, before drawing the text at the given coordinates and returning the modified image using the FromImage method of the UIImage class.

For more information on the CGBitmapContext and CGColorSpace classes, as well as the various types of different class available, refer to the Xamarin Developer documentation at https://developer.xamarin.com/api/type/CoreGraphics.CGBitmapContext/.

 Updating the ViewController class to implement our class methods

In this section, we will look at updating our ViewController class and start to implement each of the class methods that will make up our Sliding Tiles game. If you remember, the ViewController class is essentially a C# class file that is bound to our View Controller contained in our Main.storyboard file, which we saw when we were designing the user interface for our game.

As you start to build your own projects, your Storyboard will essentially contain more than one View Controller, and each View Controller will have its own associated ViewController class, as well as the instance methods that make up the class.

Let's start by modifying the ViewController class for our SlidingTiles app, performing the following steps:

	Locate and open the ViewController.cs file, which is located as part of the SlidingTiles group, ensure that it is displayed in the code editor, and enter the following code snippet:

 //
 // ViewController.cs
 // Main game logic for the Letter Tiles Sliding game
 //
 // Created by Steven F. Daniel on 24/04/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Collections.Generic;
 using CoreGraphics;
 using Foundation;
 using SlidingTiles.Classes;
 using UIKit;

 namespace SlidingTiles
 {
 public partial class ViewController : UIViewController
 {

	Next, we need to declare each of the game variables that will be used by our game; we use the #region and #endregion tags to ensure that all variable declarations are contained in these tags:

 #region 1 - Declare our game variables for our game
 float gameViewWidth;
 float gameViewHeight;
 float tileWidth;
 float tileHeight;

 // Declare size of each of our grid cells
 int gridCellSize = 5;

 // Declare and set up our tiles array
 GameTile[,] tiles = new GameTile[5, 5];

 // Declare an array for our game tile images and game tile indexes
 List<UIImageView> gameTileImagesArray = new List<UIImageView>();
 List<CGPoint> GameTileCoords = new List<CGPoint>();

 // Declare our empty tile position
 CGPoint emptyTilePos;
 #endregion

 protected ViewController(IntPtr handle) : base(handle)
 {
 // Note: this .ctor should not contain any initialization logic.
 }

 public override void ViewDidLoad()
 {
 base.ViewDidLoad();
 // Perform any additional setup after loading the view, typically from a nib.
 }

	Next, we need to update the ViewDidAppear method, which will be called whenever our view appears onscreen; enter the following code snippet:

 #region 2 - Layout our Game Board
 public override void ViewDidAppear(bool animated)
 {
 base.ViewDidAppear(animated);

 // Obtain the Width and Height for our GameBoard
 gameViewWidth = (float)gameBoardView.Frame.Size.Width;
 gameViewHeight = (float)gameBoardView.Frame.Size.height;

 // call our method to start a new game
 startNewGame();
 }
 #endregion

Let's take a look at what we covered in the preceding code snippets:

	First, we started by including various references to the System, CoreGraphics, Foundation, SlidingTiles.Classes, and UIKit namespaces, which will allow us to access .NET-specific and iOS-specific methods and so on.

	Next, we declared the game variables that will be used by our SlidingTiles game. We declared variables for our game board view and tile widths, as well as declaring the size that each of our game board tiles will be.

	Then, we declared and set up our tiles array using our GameTile class, defined our tiles to be 5 x 5 (Rows, Columns), and then declared two arrays that will store our game tile images, as well as the index positions of each tile that is placed on the game board.

	Next, we declared an empty tile position variable, which will place an empty tile on the game board.

	Then, we modified the ViewDidAppear method to ensure that our game board view has been displayed correctly in the GameBoard View.

	Next, we assigned the width and height of the gameBoardView to our gameViewWidth and gameViewHeight, and then called our startNewGame instance method, which we will be creating as we progress through this section.

For more information on the UIImageView class, as well as the various types of different class available, refer to the Xamarin Developer documentation at https://developer.xamarin.com/api/type/UIKit.UIImageView/.

 Creating and implementing the CreateGameBoard method

In this section, we will look at implementing the CreateGameBoard instance method in our ViewController class. The CreateGameBoard instance method will be responsible for creating our game board and placing each of the tiles in our GameBoard View, using the GameTile class that we created previously.

Let's start by modifying the ViewController class for our SlidingTiles app by performing the following steps:

	Ensure that the ViewController.cs file is currently displayed in the code editor.

	Next, underneath the ViewDidAppear method, we need to create a new instance method called CreateGameBoard that will be called whenever our view appears onscreen; enter the following code snippet:

 #region 3 - Instance method to create our Game Board and Game Tiles
 public void CreateGameBoard()
 {
 // Specify the Width and Heights for each of our Tiles
 tileWidth = this.gameViewWidth / this.gridCellSize;
 tileHeight = this.gameViewHeight / this.gridCellSize;

 // Specify our tile width and tile centre values
 float tileCenterX = tileWidth / 2;
 float tileCenterY = tileHeight / 2;

 // Initialise our tile counter value
 int counter = 65;

 // Build our game board with images from our array
 for (int row = 0; row < this.gridCellSize; row++)
 {
 for (int column = 0; column < this.gridCellSize; column++)
 {
 // Create a new tile by instantiating a new instance of our
 // GameTile class
 GameTile tile = new GameTile(row, column);
 tile.Frame = new CGRect(0, 0, tileWidth, tileHeight);
 tile.Image = tile.DrawTileText(UIImage.FromFile("game_tile.png"),
 Convert.ToChar(counter).ToString(), UIColor.White, 65);

 tile.Center = new CGPoint(tileCenterX, tileCenterY);
 tile.UserInteractionEnabled = true;

 // Store our Tile Coordinates in our ArrayList object
 GameTileCoords.Add(new CGPoint(tileCenterX, tileCenterY));

 // Add the tile to our Tile Images
 gameTileImagesArray.Add(tile);
 gameBoardView.AddSubview(tile);

 // Increment to the next tile position and image in array.
 tileCenterX = tileCenterX + tileWidth;
 counter = counter + 1;
 }
 tileCenterX = tileWidth / 2;
 tileCenterY = tileCenterY + tileHeight;
 }
 // Remove the last tile from the gameBoard and our gameTileImagesArray
 var emptyTile = gameTileImagesArray[gameTileImagesArray.Count - 1];
 emptyTile.RemoveFromSuperview();
 gameTileImagesArray.RemoveAt(gameTileImagesArray.Count - 1);
 }
 #endregion

Let's take a look at what we covered in the preceding code snippet:

	Firstly, in the CreateGameBoard instance method, we started by creating two floating point variables, tileCenterX and tileCenterY, which will be used to specify the width and height of each tile that is placed on the game board.

	Next, we calculated the width of each tile, using the width of our gameViewWidth divided by the gridCellSize, which is the size of each tile.

	Then, we initialized our tile counter value, which will start from the letter A.

	Next, we created a loop to build our game board with images from our array, iterating from zero to the total number of tiles that we want to have in each row and column.

	Then, we created a new tile instance by instantiating a new instance of our GameTile class, using the row and column and defining the frame width and height. We then set the image to use for our GameTile using the DrawTileText instance method. You will notice that we use the Convert.ToChar method to convert the value of our counter to a character, and then we set the text color and font size to use.

	Next, we set the Center property to where we wanted to place the tile on our game board using the CGPoint method and passing in the tileCenterX and tileCenterY values, as well as setting the UserInteractionEnabled property to true, which will allow the user to tap on the tile in the game board.

	Then, we stored the tile coordinates in our GameTileCoords List object and added this tile to our gameTileImagesArray, as well as our gameBoardView, using the AddSubview method.

	Next, we removed the last tile from our game board using the RemoveFromSuperview method, and removed the tile from our gameTileImagesArray so that we have an empty spot on our game board and we can shift tiles around.

For more information on the AddSubView and CGPoint classes, as well as the various types of different class available, refer to the Xamarin Developer documentation at https://developer.xamarin.com/api/type/CoreGraphics.CGPoint/ and

https://developer.xamarin.com/api/member/UIKit.UIView.AddSubview/.

 Creating and implementing the ResetGame_Clicked method

In this section, we will look at implementing the ResetGame_Clicked instance method in our ViewController class. The ResetGame_Clicked instance method will be responsible for resetting the game in progress, which, if you remember when we were constructing our user interface for our game, we created an event for with our Reset Game button.

Let's start by modifying the ViewController class for our SlidingTiles app by performing the following steps:

	Ensure that the ViewController.cs file is currently displayed in the code editor.

	Next, underneath the CreateGameBoard instance method, we need to create an event method called ResetGame_Clicked that will be called whenever the user taps on this button; enter the following code snippet:

 #region 4 - Instance method that will reset the current game in progress
 partial void ResetGame_Clicked(UIButton sender)
 {
 // Set up our UIAlertController as well as the Action methods
 UIApplication.SharedApplication.InvokeOnMainThread(new Action(() =>
 {
 var alert = UIAlertController.Create("Reset Game",
 "Are you sure you want to start again?",
 UIAlertControllerStyle.Alert);

 // set up button event handlers
 alert.AddAction(UIAlertAction.Create("OK", UIAlertActionStyle.Default, a =>
 {
 startNewGame();
 }));
 alert.AddAction(UIAlertAction.Create("Cancel", UIAlertActionStyle.Default, null));

 // Display the UIAlertController to the current view
 this.ShowViewController(alert, sender);
 }));
 }
 #endregion

Let's take a look at what we covered in the preceding code snippet:

	Firstly, in the ResetGame_Clicked instance method, we started by setting up our UIAlertController class and used the InvokeOnMainThread method, which will wait for your code running on the main thread to execute before continuing. If we didn't use the InvokeOnMainThread method, our dialog would not be displayed to the user.

	Next, we called the Create method on the UIAlertController class to create a UIAlertController object, which will display an alert to the user that includes a title, a message, and the UIAlertControllerStyle preferred style, and then returns that UIAlertController object.

	Then, we set up our button event handlers, using the AddAction method, calling the UIAlertAction.Create action, and setting the UIAlertActionStyle that is required by the controller to display a button for the user to choose.

	Finally, we displayed the UIAlertController to the current view using the ShowViewController method, passing in the UIAlertController and the sender object, which in this case is the Reset Game button.

For more information on the UIAlertController class, as well as the various types of different class available, refer to the Xamarin Developer documentation at https://developer.xamarin.com/api/type/UIKit.UIAlertController/.

 Randomly shuffling our Game Tiles on the Game Board

In this section, we will look at implementing the ShuffleBoardTiles_Clicked instance method in our ViewController class. The ShuffleBoardTiles_Clicked instance method will be responsible for randomly shuffling our GameTiles on the game board, which, if you remember when we were constructing our user interface for our game, we created an event for with our Shuffle Tiles button.

We will use the Random class to generate a random number that will be used to specify a new location to place each of our GameTile images on the game board.

Let's start by modifying the ViewController class for our SlidingTiles app by performing the following steps:

	Ensure that the ViewController.cs file is currently displayed in the code editor.

	Next, underneath the ResetGame_Clicked event method, we need to create an event method called ShuffleBoardTiles_Clicked that will be called whenever the user taps on this button; enter the following code snippet:

 #region 5 - Instance method to randomly shuffle our game tiles
 partial void ShuffleBoardTiles_Clicked(UIButton sender)
 {
 var tempGameTileCoords = new List<CGPoint>(GameTileCoords);
 foreach (UIImageView any in gameTileImagesArray)
 {
 var randGen = new Random();
 int randomIndex = randGen.Next(0, tempGameTileCoords.Count);
 any.Center = (CGPoint)tempGameTileCoords[randomIndex];
 tempGameTileCoords.RemoveAt(randomIndex);
 }
 emptyTilePos = (CGPoint)tempGameTileCoords[0];
 tempGameTileCoords.Clear();
 }
 #endregion

Let's take a look at what we covered in the preceding code snippet:

	Firstly, in the ShuffleBoardTiles_Clicked instance method, we started by creating a new tempGameTileCoords variable that creates an array of CGPoints and stores them in a List object.

	Next, we iterated through all images in our gameTileImagesArray of type UIImageView, and then used the Random class to create a random number that will be used to specify a new location to place each of our GameTile images by setting the Center property.

	Then, we removed randomIndex from our tempGameTileCoords array and set our emptyTilePos variable to point to the first location in our tempGameTileCoords array.

For more information on the Random class, refer to the Xamarin Developer documentation at https://developer.xamarin.com/api/type/System.Random/.

 Implementing the StartNewGame Instance method

In this section, we will look at implementing the startNewGame instance method in our ViewController class. The startNewGame instance method will be responsible for starting a new game whenever the ViewDidAppear method is fired or the user taps on the Reset Game button.

Let's start by modifying the ViewController class for our SlidingTiles app by performing the following steps:

	Ensure that the ViewController.cs file is currently displayed in the code editor.

	Next, underneath the ShuffleBoardTiles_Clicked event method, we need to create an event method called startNewGame that will be called whenever a new game is required; enter the following code snippet:

 #region 6 - Instance method to end the current game and start a new game
 void startNewGame()
 {
 // Remove remnants of our ImageViews from our GameBoard
 foreach (UIImageView any in gameBoardView.Subviews)
 {
 any.RemoveFromSuperview();
 }
 // Clear out our game tile arrays
 gameTileImagesArray.Clear();
 GameTileCoords.Clear();

 // Initialise our grid cell size
 gridCellSize = 5;
 CreateGameBoard();
 shuffleBoardTiles_Clicked(shuffleButton);
 }
 #endregion

Let's take a look at what we covered in the preceding code snippet:

	Firstly, in the startNewGame instance method, we started by creating a loop that will iterate through all subviews that are contained in the gameBoardView and remove them from the ViewControllers superview hierarchy

	Next, we cleared out both of our gameTileImagesArray and GameTileCoords arrays, so that we don't end up with duplicate tiles appearing

	Then, we initialized our gridCellSize to the default size of each game tile

	Next, we called our CreateGameBoard instance method to randomly create each of our GameTiles

	Finally, we called the ShuffleBoardTiles_Clicked event method to shuffle each of our game tiles, so that they will be randomly placed on the game board

For more information on the RemoveFromSuperview class, refer to the Xamarin Developer documentation at https://developer.xamarin.com/api/member/UIKit.UIView.RemoveFromSuperview/.

 Handling touch events in the Game Board user interface

In this section, we will look at implementing the necessary logic in our ViewController class and learn how to work with the UITouch class to handle touch events to determine when a Game Tile has been tapped on the Game Board.

Let's start by modifying the ViewController class for our SlidingTiles app by performing the following steps:

	Ensure that the ViewController.cs file is currently displayed in the code editor.

	Next, underneath the startNewGame instance method, we need to create and implement an event method called TouchesEnded that will be called whenever a touch has happened in the game board view; enter the following code snippet:

 #region 7 - Handling touch events in the Game Board
 public override void TouchesEnded(NSSet touches, UIEvent evt)
 {
 base.TouchesEnded(touches, evt);

 if (touches.Count == 1)
 {
 try
 {
 // Get the touch that was activated in the view
 var myTouch = (UITouch)touches.AnyObject;
 var touchedView = (UIImageView)myTouch.View;

 if (gameTileImagesArray.Contains(touchedView))
 {
 var thisCenter = touchedView.Center;
 touchedView.Center = emptyTilePos;
 emptyTilePos = thisCenter;
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("touchedView is not a UIImageView: " + e.Message);
 }
 }
 }
 #endregion

Let's take a look at what we covered in the preceding code snippet:

	Firstly, in the TouchesEnded event method, we started by checking the number of touches that have been detected in the ViewController, and then we obtained the touch location that was activated in the gameboard View.

	Next, we declared a touchedView variable that returns the View (our Game Tile) that was touched on the GameBoard.

	Then, we used the Contains property method of our gameTileImagesArray to check to see whether the GameTile that was tapped on our GameBoard is indeed in our array.

	Next, if we have determined that the view is in our gameTileImagesArray, we get the center location of the View and declare a number of floating point variables, calculate the horizontal and vertical distance of the View, as well as the distance between each tile.

	Finally, we set the center point of the view to be that of the empty tile position, and then set the empty tile position to be the tile that was tapped in the GameBoard view.

For more information on the UITouch class, refer to the Xamarin Developer documentation at https://developer.xamarin.com/guides/ios/application_fundamentals/touch/touch_in_ios/.

 Working with and applying animations to your app

In this section, you'll learn how to work with CoreAnimation so that you can apply simple animations to your UIViews by using View Transitions in an animation block.

Core Animation is essentially a graphics rendering and animation framework that is available on both the iOS and Mac OS X platforms and allows you to animate visual elements of your app, providing rich and smooth animation without having any impact on CPU performance.

 Creating and implementing animations for the SlidingTiles game

In this section, we will look at how easy it is to implement animations in our SlidingTiles game. You'll work with CoreAnimation and the Animate property of the UIView class to handle animations, which will make our game come alive whenever a Game Tile is tapped on the Game Board.

So, let's start by applying the final touches to our SlidingTiles game by modifying the ViewController class, performing the following steps:

	Ensure that the ViewController.cs file is currently displayed in the code editor.

	Next, locate the TouchesEnded event method and enter the following code snippet:

 #region 7 - Handling touch events in the Game Board
 public override void TouchesEnded(NSSet touches, UIEvent evt)
 {
 base.TouchesEnded(touches, evt);

 if (touches.Count == 1)
 {
 try
 {
 // Get the touch that was activated in the view
 var myTouch = (UITouch)touches.AnyObject;
 var touchedView = (UIImageView)myTouch.View;

 if (gameTileImagesArray.Contains(touchedView))
 {
 var thisCenter = touchedView.Center;
 UIView.Animate(.15f, () => // animation
 {
 touchedView.Center = emptyTilePos;
 },
 () => // completion
 {
 emptyTilePos = thisCenter;
 });
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("touchedView is not a UIImageView: " + e.Message);
 }
 }
 }
 #endregion

In the preceding code snippet, we modified the TouchesEnded event method to include additional functionality that will execute our GameTile once it has been tapped on the GameBoard. We encapsulated touchedView.Center in a UIView.Animate animation block that will execute for a period of 15 seconds. Once completed, the completion block will then be called and we set the empty tile position to be the tile that was tapped in the GameBoard view.

For more information on the CoreAnimation class, refer to the Xamarin Developer documentation at https://developer.xamarin.com/guides/ios/platform_features/graphics_animation_ios/core_animation/.

Now that you have created all of the necessary C# code and implemented the necessary instance methods in our GameTile Interface and Class, as well as updating the ViewController class to include all of the necessary instance and event methods for our game, our next step is to compile, build, and run the SlidingTiles game using the iOS Simulator.

 Launching the SlidingTiles game using the iOS simulator

In this section, we will take a look at how to compile and run our SlidingTiles game. You have the option of choosing to run your application using an actual device or choosing from a list of iOS simulators that mimic each of the different types of iOS device.

Let's begin by performing the following steps:

	Ensure that you have chosen Debug|iPhoneSimulator from the drop-down menu.

	Next, choose your preferred device from the list of available iOS Simulators.

	Then, select the Run | Start Debugging menu option, as shown in the following screenshot:

Launching the SlidingTiles game within the iOS Simulator

	Alternatively, you can also build and run the SlidingTiles application by pressing Command + Enter.

When the compilation is complete, the iOS Simulator will appear automatically and the SlidingTiles application will be displayed, as shown in the following screenshot:

The Sliding Tiles Game running within the iOS Simulator

As you can see from the preceding screenshot, this currently displays our SlidingTiles game. Clicking on the Reset Game button will display the dialog, and when clicking on the Shuffle Tiles button, it will randomly shuffle our tiles in our View control.

 Summary

In this chapter, we focused primarily on how to develop a native iOS app using Visual Studio for Mac, Xamarin.iOS, and C#. You learned how to work with Storyboards in the Visual Studio for Mac IDE to construct the user interface for our SlidingTiles game, and then learned how to create the GameTile Interface and Class that will be used to create each of the tiles for our game.

Next, we implemented the remaining logic in our ViewController class that completed our SlidingTiles game. We created an instance method that is used to build our game board, created each of our game tiles using the images from our Array, and also created an instance method that randomly shuffles and arranges each of our game tiles on our game board.

Lastly, we learned how to work with the UITouch class to handle touch events to determine when a game tile has been tapped on the Game Board. You learned about CoreAnimation and how you can apply simple animations to your UIViews by using View Transitions in an animation block before deploying and launching the app in the iOS Simulator.

In the next chapter, you will learn how to create and set up a basic cross-platform native app using Microsoft Visual Studio for Mac and Xamarin.Forms.

You'll also learn how to create C# classes that will act as the model, and then create the various content pages that will form the user interface for your app. We will also cover how to add new, and update existing, NuGet packages to your solutions.

 Creating the TrackMyWalks Native App

In the previous chapter, we learned how to develop a native iOS app using Visual Studio for Mac, Xamarin.iOS, and C#. You learned how to use and work with Storyboards within the Visual Studio for Mac IDE to construct the user interface for our SlidingTiles game by dragging a number of Labels, Views, and Buttons that will make up our game.

We also covered how to work with interfaces and classes and how you can use them to create the GameTile interface and class, which will be used to create each of the tiles for our game. We then implemented the remaining logic within the ViewController class to build the game board and created each of our game tiles using the images from an array. We learned how to create an instance method that randomly shuffled each of the game tiles within the game board by using the Random class, and used the UITouch class to handle touch events to determine when a game tile has been tapped within the game board's UIView.

Finally, we learned how to work with Core Animation to apply simple animations to our UIViews using View Transitions within an animation block, before deploying and launching the app within the iOS Simulator.

This chapter will focus on how to develop a cross-platform app using Visual Studio for Mac, Xamarin.Forms, and C#. This native app will form the basic foundation for the subsequent chapters, where we will continually build upon this application and apply new concepts, such as implementing MVVM, Animations, DataTemplates, PlatformEffects, Location-based services, Microsoft Azure, and Facebook Integrations.

By the end of this chapter, you will have learned how to create a C# class that will act as the data model for our application, as well as learned how to create content pages that will form the user interface for our app using XAML.

This chapter will cover the following topics:

	Creating a cross-platform TrackMyWalks app using Visual Studio for Mac

	Creating the data model that will form the basis for the TrackMyWalks app

	Creating the user interfaces for the TrackMyWalks app using XAML

	Creating the underlying C# code for the TrackMyWalks ContentPages

	Launching the TrackMyWalks app using the iOS Simulator

 Creating the TrackMyWalks project solution

In this section, we will take a look at how to create a cross-platform Xamarin.Forms solution. We will begin by developing the basic structure for our application, as well as adding the necessary data model and designing the user interface files using XAML.

Before we can proceed, we need to create our TrackMyWalks project. It is very simple to create this using Visual Studio for Mac. Simply follow these steps:

	First, launch the Visual Studio for Mac application.

	Next, choose the New Solution… option, or alternatively choose File | New | Solution..., or simply press Shift + command + N.

	Then, choose the Blank Forms App option, which is located under the Multiplatform | App section. Ensure that you have selected C# as the programming language to use:

Creating the Xamarin.Forms Blank Forms App

	Next, enter TrackMyWalks as the name for your app in the App Name field, and then specify a name for the Organization Identifier field.

	Then, ensure that both Android and iOS have been selected for the Target Platforms field.

	Next, ensure that you have selected Use .NET Standard for the Shared Code field, as shown in the following screenshot:

Configuring your Blank Forms App

The Organization Identifier option for your app needs to be unique. Xamarin recommends that you use the reverse domain style (for example, com.domainName.appName).

	Then, click on the Next button to proceed to the next step in the wizard:

Configuring your new Blank Forms App

	Finally, click on the Create button to save your project at the specified location.

Once your project has been created, you will be presented with the Visual Studio for Mac Community development environment, which contains several project files that the template wizard has created for you.

To find out what each of the project files are used for and the roles each play within the solution, refer to the section on Creating a Xamarin Project for both iOS and Android, which is located within Chapter 1, Setting up Visual Studio for Mac.

Now that we have created our TrackMyWalks solution, our next step is to update the NuGet packages that are contained within our solution, which we will cover in the next section.

 Updating the NuGet packages within our solution

In this section, we will take a look at how to update each of the NuGet packages that are contained within the TrackMyWalks solution.

You'll notice that within each project that is contained within our solution, that it will contain a Packages folder, with the exception that our .NET Standard shared-code project contains a Dependencies | NuGet folder, as well as an SDK folder.

Whenever you create a new Xamarin.Forms project, you will notice that if you expand the Packages folder within each of your Android or iOS solutions, the Xamarin.Forms NuGet package will automatically be included.

A NuGet package is essentially the package manager for the Microsoft Development Platform that contains the client tools which provide the capability for producing and consuming .NET packages.

Let's take a look at how to go about updating the NuGet packages within the TrackMyWalks solution to ensure that we are running the latest Xamarin.Forms packages. Follow these steps to do so:

Right-click on the TrackMyWalks solution and choose the Update NuGet Packages menu option, as shown in the following screenshot:

Updating the NuGet Packages within the TrackMyWalks solution

Once you have selected this option, Microsoft Visual Studio for Mac will proceed to update each package that is contained within the TrackMyWalks solution for each of the platform-specific projects. It will require you to accept their license terms for each of the packages prior to installing them.

Up until this point, all we have done is create our solution and updated the NuGet packages contained within our solution. The next step is to start creating the data model that will be used to represent each of our trail walks, as well as create each of the ContentPages that will be used to represent our user interface for our TrackMyWalks app using XAML.

 Creating and implementing our data model

In this section, we will take a look at how to create the data model that will be used to define information that's related to our trail entries. The advantage of creating a data model is that it is much easier to add additional properties to this model, and then implement these in the relevant class files.

Another advantage of using a data model is that you can bind this model to a database or bind this to data that's stored within a Microsoft Azure database. As we progress through this chapter, you'll see how you can use this model to set up and initialize walk entries for our TrackMyWalks page using a ListView control to display trail information for each row contained within the ListView.

Let's start by creating the WalkDataModel class for our TrackMyWalks app by performing the following steps:

	Ensure that the TrackMyWalks solution is open within the Visual Studio for Mac IDE.

	Next, right-click on the TrackMyWalks project, and choose Add | New Folder from the pop-up menu, as shown in the following screenshot:

Creating the Models folder within the TrackMyWalks solution

	Then, enter Models for the name of the new folder to be created, and then right-click on the Models folder.

	Next, choose Add | New File... from the pop-up menu, as shown in the following screenshot:

Creating a New File within the Models folder

	Then, choose the Empty Class option under the General section and enter WalkDataModel for the name of the class to be created, as shown in the following screenshot:

Creating the WalkDataModel Class

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our WalkDataModel class file, we can proceed with implementing the required code for our class.

	Locate and open the WalkDataModel.cs file, which is located as part of the TrackMyWalks group, and ensure that it is displayed within the code editor. Enter the following code snippet:

 //
 // WalkDataModel.cs
 // The TrackMyWalks Database Model
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;

 namespace TrackMyWalks.Models
 {
 public class WalkDataModel
 {
 public int Id { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }
 public double Latitude { get; set; }
 public double Longitude { get; set; }
 public double Distance { get; set; }
 public string Difficulty { get; set; }
 public string ImageUrl { get; set; }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we started by including a reference to the System namespace that will be used to ensure that our WalkDataModel class allows single inheritance. We don't need to specify or inherit from the object class, as the System.Object class is inherited implicitly by your class and will be taken care of by the compiler so that you don't need to explicitly say WalkDataModels : System.Object (though you can if you want to).

	Next, we defined a number of properties that will be used to define and describe our WalkDataModel and store all of the trail information that will be displayed within the ListView control for our TrackMyWalks ContentPage.

 Creating the WalksMainPage interface using XAML

In this section, we will begin by defining the user interface for our WalksMainPage using XAML. This page will be used to display a list of trail walks information, as well as information relating to the distance and difficulty of each trail. There are a number of ways you can go about presenting this information, but for the purposes of our app, we will be using a ListView to present this information.

Let's start by creating the user interface for our WalksMainPage by performing the following steps:

	First, create a new folder within the TrackMyWalks project called Views, as you did in the previous section for Models.

	Next, right-click on the Views folder, and choose Add | New File... from the pop-up menu.

	Then, choose the Forms ContentPage XAML option under the Forms section and enter WalksMainPage for the name of the XAML file to be created, as shown in the following screenshot:

Creating the WalksMainPage Forms ContentPage XAML

	Then, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our WalksMainPage XAML file, we can proceed with defining the user interface and implementing the underlying code for our class.

	Locate and open the WalksMainPage.xaml file, which is located in the Views folder, and ensure that it is displayed within the code editor. Enter the following code snippet:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TrackMyWalks.Views.WalksMainPage">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Add" Clicked="AddWalk_Clicked" />
 </ContentPage.ToolbarItems>
 <ContentPage.Content>
 <StackLayout>
 <ListView x:Name="WalkEntriesListView" RowHeight="80" HasUnevenRows="true"
 SeparatorColor="#ddd" ItemTapped="myWalkEntries_ItemTapped">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ImageCell ImageSource="{Binding ImageUrl}" Text="{Binding Title}"
 Detail="{Binding Description}"/>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
 </ContentPage.Content>
 </ContentPage>

Now, let's start by taking a look at what we defined within the preceding XAML:

	We started by defining ContentPage.ToolbarItems and specified the ToolbarItem Text property as well as the associated Clicked event for the toolbar item called AddWalk_Clicked.

	Next, we defined a StackLayout control that will be used to stack each of our WalkEntries on top of each other, and a ListView control that will be used to display the data items. We also specified the RowHeight for each of the rows within the ListView.

	Then, we specified the SeperatorColor to use and the ItemTapped property that will be called whenever an item has been tapped within the ListView control. Then, we defined a DataTemplate property, which will be used to handle the displaying of data from a collection of objects within our ListView.

	Finally, we used the ImageCell control and then set the ImageSource property to bind to our ImageUrl property. We also set the Text property to bind to our Title, and the Detail property to bind to our Description property within our WalkDataModel.

 Implementing the WalksMainPage code using C#

Now that we have defined our user interface for our ContentPage using XAML, the next step is to begin creating the underlying C# code within our WalksMainPage code-behind file, which will be used to populate our data model with static data. This will then display this information within our ListView.

Let's take a look at how we can achieve this by following these steps:

Open the WalksMainPage.xaml.cs code-behind file, ensuring that it is displayed within the code editor, and enter in the following code snippet:

 //
 // WalksMainPage.xaml.cs
 // Displays Walk Information within a ListView control from an array
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Collections.ObjectModel;
 using TrackMyWalks.Models;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class WalksMainPage : ContentPage
 {
 public WalksMainPage()
 {
 InitializeComponent();

 // Update the page title for our Main Page
 Title = "Track My Walks";
 this.InitialiseWalks();
 }

 public void InitialiseWalks()
 {
 // Create a collection that will raise an event,
 // whenever an object is added or removed from
 // our WalksListModel collection.
 var WalksListModel = new ObservableCollection<WalkDataModel> {

 // Populate our collection with some dummy data that will be used
 // to populate our ListView
 new WalkDataModel
 {
 Id = 1,
 Title = "10 Mile Brook Trail, Margaret River",
 Description = "The 10 Mile Brook Trail starts in the Rotary Park
 near Old Kate, a preserved steam engine at the northern edge of
 Margaret River. ",
 Latitude = -33.9727604,
 Longitude = 115.0861599,
 Distance = 7.5,
 Difficulty = "Medium",
 ImageUrl = "http://trailswa.com.au/media/cache/media/images/
 trails/_mid/FullSizeRender1_600_480_c1.jpg"
 },
 new WalkDataModel
 {
 Id = 2,
 Title = "Ancient Empire Walk, Valley of the Giants",
 Description = "The Ancient Empire is a 450 metre walk trail that
 takes you around and through some of the giant tingle trees
 including the most popular of the gnarled veterans, known
 as Grandma Tingle.",
 Latitude = -34.9749188,
 Longitude = 117.3560796,
 Distance = 450,
 Difficulty = "Hard",
 ImageUrl = "http://trailswa.com.au/media/cache/media/images/
 trails/_mid/Ancient_Empire_534_480_c1.jpg"
 }};
 // Populate our ListView with entries from our WalksListModel
 WalkEntriesListView.ItemsSource = WalksListModel;
 }

 // Instance method to call the WalkEntryPage to add a Walk Entry
 public void AddWalk_Clicked(object sender, EventArgs e)
 {
 App.SelectedItem = null;
 Navigation.PushAsync(new WalkEntryPage());
 }

 // Instance method to call the WalkTrailInfoPage using the selected item
 public void myWalkEntries_ItemTapped(object sender, ItemTappedEventArgs e)
 {
 // Get the selected item from our ListView
 App.SelectedItem = e.Item as WalkDataModel;
 Navigation.PushAsync(new WalkTrailInfoPage());
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we started by including references to both the System.Collections.ObjectModel and TrackMyWalks.Models namespaces so that we can access the classes that are defined within these namespaces.

	Next, we modified the Title property for our ContentPage, and then created our InitialiseWalks instance method and created an ObservableCollection called WalksListModel, which essentially is a collection that will raise an event whenever an object is added or removed from our WalksListModel collection.

	Then, we used the Add method to add values to each of our properties contained within our WalkDataModel, before finally setting the WalksListModel collection to the ItemsSource property of the WalkEntriesListView property that is contained within the WalksMainPage.xaml file.

	Next, we created the AddWalk_Clicked event method that will be called whenever the Add button is tapped. We initialized our App.SelectedItem variable to null since we are creating a new walk entry, and then we used the PushAsync method of the Navigation class to navigate to our WalkEntryPage.

	Finally, we created the myWalkEntries_ItemTapped event method, which will be responsible for displaying the WalkTrailInfoPage when a row has been tapped on within the WalkEntriesListView and using the ItemTappedEventArgs parameter to determine the item that has been tapped within the ListView, before calling the WalkTrailInfoPage using the Navigation.PushAsync method.

 Creating the WalkEntryPage interface using XAML

In this section, we will begin by defining the user interface for our WalkEntryPage using XAML. This page is called whenever the user taps on the Add button from the WalksMainPage and will be used to allow the user to add new walk trail information.

There are a number of ways you can go about presenting this information to collect data, but for the purpose of our app, we will be using a TableView and a number of EntryCell fields, as well as a Picker control.

Let's start by creating the user interface for our WalkEntryPage by performing the following steps:

	First, create a new Forms ContentPage XAML called WalkEntryPage, as you did in the section entitled Creating the WalksMainPage interface using XAML, located within this chapter.

	Next, ensure that the WalkEntryPage.xaml file is displayed within the code editor, and enter the following code snippet:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TrackMyWalks.Views.WalkEntryPage">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Save" Clicked="SaveWalkItem_Clicked" />
 </ContentPage.ToolbarItems>
 <ContentPage.Content>
 <TableView Intent="Form">
 <TableView.Root>
 <TableSection Title="Enter Walk Trail Information">
 <EntryCell Label="Title:" Placeholder="Provide a Title for this trail" />
 <EntryCell Label="Description:" Placeholder="Provide trail description" />
 <EntryCell Label="Latitude:" Placeholder="Provide latitude coordinates"
 Keyboard="Numeric" />
 <EntryCell Label="Longitude:" Placeholder="Provide longitude coordinates"
 Keyboard="Numeric" />
 <EntryCell Label="Distance:" Placeholder="Provide trail distance"
 Keyboard="Numeric"/>
 <ViewCell>
 <StackLayout Orientation="Horizontal" Margin="15,0">
 <Label Text="Trail Difficulty Level:" VerticalOptions="Center" />
 <Picker Title="Choose Difficulty" VerticalOptions="Center"
 HorizontalOptions="EndAndExpand">
 <Picker.ItemsSource>
 <x:Array Type="{x:Type x:String}">
 <x:String>Easy</x:String>
 <x:String>Medium</x:String>
 <x:String>Hard</x:String>
 <x:String>Extreme</x:String>
 </x:Array>
 </Picker.ItemsSource>
 </Picker>
 </StackLayout>
 </ViewCell>
 <EntryCell Label="Image URL:" Placeholder="Provide an Image URL" />
 </TableSection>
 </TableView.Root>
 </TableView>
 </ContentPage.Content>
 </ContentPage>

Now, let's start by taking a look at what we defined within the preceding XAML:

	We started by defining ContentPage.ToolbarItems and specified the ToolbarItem Text property as well as the associated Clicked event for the toolbar item called SaveWalkItem_Clicked.

	Next, we defined a TableView control and set the Intent to Form so that our TableView will act as a Form, and we set the TableRoot for our TableView that will be the parent to one or more TableSections. We then proceeded to add each of our EntryCell fields to our TableSection property of our TableView control, with each TableSection defined within the TableView consisting of a heading and one or more ViewCells, which in our case are the EntryCell fields.

	We then defined a StackLayout control as well as a Label control and Picker control, which will be used to display and allow the user to choose the level of difficulty for the trail. Then, we set the ItemsSource property for our Picker control to include an array of strings containing the various difficulty levels.

	Finally, we declared an EntryCell property that will allow the user to specify the URL location for the image to use for the trail.

 Implementing the WalkEntryPage code using C#

Now that we have defined our user interface for our ContentPage using XAML, the next step is to begin creating the underlying C# code within our WalkEntryPage code-behind file, which will eventually be used to save all information entered within this page to a database and refresh our ListView that's contained within our WalksMainPage.

Let's take a look at how we can achieve this by following these steps:

Open the WalkEntryPage.xaml.cs code-behind file, ensuring that it is displayed within the code editor, and enter the following code snippet:

 //
 // WalkEntryPage.xaml.cs
 // Data Entry screen that allows new walk information to be added
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class WalkEntryPage : ContentPage
 {
 public WalkEntryPage()
 {
 InitializeComponent();

 // Update the page title for our Walks Entry Page
 Title = "New Walk Entry Page";
 }
 // Instance method that saves the new walk entry
 public void SaveWalkItem_Clicked(object sender, EventArgs e)
 {
 Navigation.PopToRootAsync(true);
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we modified the Title property for our ContentPage, within our WalkEntryPage constructor.

	Next, we created the SaveWalkItem_Clicked event method, which will be called whenever the Save button is tapped to save the walk information that's entered into the WalksMainPage. Obviously, we will be refactoring the WalkEntryPage throughout this book, which will actually send the information entered to the server using a RESTful API and refresh the WalksMainPage.

	Finally, we used the PopToRootAsync method of the Navigation class to remove the WalkEntryPage from the navigation stack and return to the calling page.

 Creating the WalkTrailInfoPage interface using XAML

In this section, we will begin by defining the user interface for our WalkTrailInfoPage using XAML. This page will be used to display information relating to the chosen trail from the ListView contained within our WalksMainPage.

Let's start by creating the user interface for our WalkTrailInfoPage by performing the following steps:

	First, create a new Forms ContentPage XAML called WalkTrailInfoPage, like you did in the section entitled Creating the WalksMainPage interface using XAML, located within this chapter.

	Next, ensure that the WalkTrailInfoPage.xaml file is displayed within the code editor and enter the following code snippet:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TrackMyWalks.Views.WalkTrailInfoPage">
 <ContentPage.Content>
 <ScrollView Padding="10">
 <StackLayout Orientation="Vertical" HorizontalOptions="FillAndExpand">
 <Image x:Name="TrailImage" Aspect="AspectFill" Source="{Binding ImageUrl}"
 HorizontalOptions="FillAndExpand" VerticalOptions="FillAndExpand" />
 <Label x:Name="TrailName" FontSize="28" FontAttributes="Bold" TextColor="Black"
 Text="{Binding Title}" />
 <Label x:Name="TrailKilometers" FontSize="12" TextColor="Black"
 Text="{Binding Distance, StringFormat='Kilometers: {0} km'}" />
 <Label x:Name="TrailDifficulty" FontSize="12" TextColor="Black"
 Text="{Binding Difficulty, StringFormat='Difficulty: {0}'}" />
 <Label x:Name="TrailFullDescription" FontSize="11" TextColor="Black"
 Text="{Binding Description}" HorizontalOptions="FillAndExpand" />
 <Button x:Name="BeginTrailWalk" Text="Begin this Trail" TextColor="White"
 BackgroundColor="#008080" Clicked="BeginTrailWalk_Clicked"/>
 </StackLayout>
 </ScrollView>
 </ContentPage.Content>
 </ContentPage>

Now, let's start by taking a look at what we defined within the preceding XAML:

	We started by defining a ScrollView control that will allow our ContentPage to scroll its contents, if the information being displayed is too big to fit within actual devices' screen real estate. Then, we specified the Padding property to represent the distance between an element as well as its child elements.

	Next, we defined a StackLayout control as well as defined the Image and Label fields. We also set the Text properties to each of the properties defined within our WalkDataItem class and then declared a Button control called BeginTrailWalk.

	Finally, we updated the Text and TextColor controls, and the BackgroundColor property, as well as the associated Clicked event for the Button called BeginTrailWalk_Clicked.

 Implementing the WalkTrailInfoPage code using C#

Now that we have defined our user interface for our ContentPage using XAML, our next step is to begin creating the underlying C# code within our WalkTrailInfoPage code-behind file, which will populate each of our Bindings with the chosen trail information from the WalksMainPage, which will be passed in as a parameter to this class.

Let's take a look at how we can achieve this by following these steps:

Open the WalkTrailInfoPage.xaml.cs code-behind file, ensuring that it is displayed within the code editor, and enter the following code snippet:

 //
 // WalkTrailInfoPage.xaml.cs
 // Displays related trail information chosen from the WalksMainPage
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using Xamarin.Forms;
 using TrackMyWalks.Models;

 namespace TrackMyWalks.Views
 {
 public partial class WalkTrailInfoPage : ContentPage
 {
 public WalkTrailInfoPage()
 {
 InitializeComponent();

 // Update the page title for our Walk Information Page
 Title = "Trail Walk Information";

 // Set the Binding Context for our ContentPage
 this.BindingContext = App.SelectedItem;
 }
 // Instance method that proceeds to begin a new walk trail
 public void BeginTrailWalk_Clicked(object sender, EventArgs e)
 {
 if (App.SelectedItem == null)
 return;

 Navigation.PushAsync(new WalkDistancePage());
 Navigation.RemovePage(this);
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we started by including a reference to our TrackMyWalks.Models namespace so that we can access our WalkDataModel class as well as the properties.

	Next, within the WalkTrailInfoPage constructor, we modified the Title property for our ContentPage, and then we set the binding context for our ContentPage using the App.SelectedItem which points to our data-model, containing our walk entry information for the chosen item from the ListView on the WalksMainPage.

	Finally, we created the BeginTrailWalk_Clicked event method, which will be called whenever the BeginTrailWalk button is tapped. We checked to ensure that our App.SelectedItem object is valid and then called the WalkDistancePage, using the Navigation.PushAsync method and then calling the RemovePage method of the Navigation class to remove the WalkTrailInfoPage from the navigation stack.

 Integrating and implementing maps within your app

In this section, we will be taking a look at how to work with and integrate mapping capabilities for our TrackMyWalks application. We will learn how to add the NuGet package in Xamarin.Forms.Maps to our shared-code project.

The main purpose of the Xamarin.Forms.Maps control is to allow you to display a map inside your Xamarin.Forms application or within a ContentPage. You can see a map of your current location, add pin placeholders within the map, and also provide a route between two locations.

Let's take a look at how we can achieve this by following these steps:

	Right-click on the TrackMyWalks solution and choose the Add Packages... menu option, as shown in the following screenshot:

Adding Packages to the NuGet Folder

	Next, enter maps within the Search field located within the Add Package dialog and then select the Xamarin.Forms.Maps option within the list, as shown in the following screenshot:

Adding the Xamarin.Forms.Maps NuGet Package

	Then, ensure that you choose the latest version to install for the Version field (this will be displayed by default). It must match the version of Xamarin.Forms that you are using, otherwise, you will experience issues when you compile and run your solution.

	Finally, click on the Add Package button to add the NuGet package in Xamarin.Forms.Maps to the TrackMyWalks shared-core solution.

	Repeat this process to add the Xamarin.Forms.Maps NuGet package for both the iOS and Android projects that are contained within the Packages folder within the TrackMyWalks solution, as shown in the following screenshot:

Adding the Xamarin.Forms.Maps NuGet Package to the iOS and Android projects

Now that you have added the NuGet package for Xamarin.Forms.Maps, we can begin utilizing this control within the WalkDistancePage ContentPage, which we will be covering in the next section.

 Creating the WalkDistancePage interface using XAML

In this section, we will begin by defining the user interface for our WalkDistancePage using XAML. This page will be used to display a full-screen map with a pin placeholder that, when tapped, will display information relating to the chosen trail from the ListView that's contained within our WalksMainPage.

Let's start by creating the user interface for our WalkDistancePage by performing the following steps:

	First, create a new Forms ContentPage XAML called WalkDistancePage, like you did in the section entitled Creating the WalksMainPage interface using XAML, located within this chapter.

	Next, ensure that the WalkDistancePage.xaml file is displayed within the code editor and enter the following code snippet:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:maps="clr-namespace:Xamarin.Forms.Maps;assembly=Xamarin.Forms.Maps"
 x:Class="TrackMyWalks.Views.WalkDistancePage">
 <ContentPage.Content>
 <ScrollView Padding="10">
 <StackLayout Orientation="Vertical" HorizontalOptions="FillAndExpand">
 <maps:Map WidthRequest="320" HeightRequest="200" x:Name="MyCustomTrailMap"
 IsShowingUser="true" MapType="Street" />
 <Button x:Name="EndThisTrail" Text="End this Trail" TextColor="White"
 BackgroundColor="#008080" Clicked="EndThisTrailButton_Clicked" />
 </StackLayout>
 </ScrollView>
 </ContentPage.Content>
 </ContentPage>

Now, let's start by taking a look at what we defined within the preceding XAML:

	We started by defining a ScrollView control that will allow our ContentPage to scroll its contents if the information being displayed is too big to fit within the actual devices' screen real-estate. Then, we specified the Padding property to represent the distance between an element as well as its child elements.

	Next, we defined a StackLayout control as well as defined the <maps:Map field, which will be used to represent our map. We also set the WidthRequest and HeightRequest properties, which will be used to define our map control.

	Then, we specified a name for our map control called MyCustomTrailMap so that we can reference this within our code-behind file, and then set the IsShowingUser and MapType properties that will display the user's current location within the map control, as well as set the type of map to use.

	Finally, we declared a Button control called EndThisTrail and updated the Text and TexColor controls, and the BackgroundColor property, as well as the associated Clicked event for the Button called EndThisTrailButton_Clicked.

For more information on the different MapTypes that are available within Xamarin.Forms, refer to the Xamarin Developer Documentation at https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.maptype?view=xamarin-forms.

 Implementing the WalkDistancePage code using C#

Now that we have defined our user interface for our ContentPage using XAML, the next step is to begin creating the underlying C# code within our WalkDistancePage code-behind file, which will be used to interact with our Map control and place a pin placeholder that will contain information relating to the chosen trail from the ListView control that is contained within our WalksMainPage.

Let's take a look at how we can achieve this by following these steps:

Open the WalkDistancePage.xaml.cs code-behind file, ensuring that it is displayed within the code editor, and enter the following code snippet:

 //
 // WalkDistancePage.xaml.cs
 // Displays related trail information within a map using a pin placeholder
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using TrackMyWalks.Models;
 using Xamarin.Forms;
 using Xamarin.Forms.Maps;

 namespace TrackMyWalks.Views
 {
 public partial class WalkDistancePage : ContentPage
 {
 public WalkDistancePage()
 {
 InitializeComponent();

 // Update the page title for our Distance Travelled Page
 Title = "Distance Travelled Information";

 // Place a pin on the map for the chosen walk type
 MyCustomTrailMap.Pins.Add(new Pin
 {
 Type = PinType.Place,
 Position = new Position(
 App.SelectedItem.Latitude,
 App.SelectedItem.Longitude),
 Label = App.SelectedItem.Title,
 Address = "Difficulty: " +
 App.SelectedItem.Difficulty + "
 Total Distance: " +
 App.SelectedItem.Distance,
 Id = App.SelectedItem.Title
 });

 // Create a region around the map within a one-kilometer radius
 MyCustomTrailMap.MoveToRegion(MapSpan.FromCenterAndRadius(new
 Position(App.SelectedItem.Latitude,
 App.SelectedItem.Longitude), Distance.FromKilometers(1.0)));
 }

 // Instance method that ends the current trail and returns back to the main screen.
 public void EndThisTrailButton_Clicked(object sender, EventArgs e)
 {
 App.SelectedItem = null;
 Navigation.PopToRootAsync(true);
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we started by including a reference to TrackMyWalks.Models so that we can access our WalkDataItem class as well as the properties defined within that class. We also included a reference to the Xamarin.Forms.Maps namespace so that we can access all of the features of our Map control that we defined within our XAML.

	Next, within the WalkDistancePage constructor, we modified the Title property for our ContentPage, and then placed a pin on the map by using the Position property of the MyCustomTrailMap. We did the same for the Latitude and Longitude coordinates by using App.SelectedItem, which points to our data model, containing our walk entry information for the chosen walk trail.

	Next, we assigned values for the Title and Address, as well as an Id for our pin placeholder, and then called the MoveToRegion method to create a region around the map within a 1-k radius around the trail walk area.

	Finally, we created the EndThisTrailButton_Clicked event method, which will be called whenever the EndThisTrail button is tapped. We then initialized our App.SelectedItem object to null, prior to calling the PopToRootAsync method of the Navigation class to remove the WalkDistancePage from the navigation stack and return to our main WalksMainPage.

 Updating the TrackMyWalks.iOS AppDelegate

In this section, we need to make changes to the AppDelegate class for our TrackMyWalks.iOS project so that we can initialize our Xamarin.FormsMaps library, otherwise we won't be able to use any of the map features.

The AppDelegate class gets notified whenever the object to which it is connected to reaches certain events or states. In this case, the Application Delegate is an object which receives notifications whenever the UIApplication object reaches certain states. In many respects, it is a specialized one-to-one Observer pattern.

Let's take a look at how we can achieve this by following these steps:

	First, expand the TrackMyWalks.iOS solution project that is contained within the TrackMyWalks solution.

	Next, double-click on the AppDelegate.cs file, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 //
 // AppDelegate.cs
 // Application Delegate class for the TrackMyWalks.iOS Project
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using Foundation;
 using UIKit;

 namespace TrackMyWalks.iOS
 {
 // The UIApplicationDelegate for the application. This class is responsible for launching the
 // User Interface of the application, as well as listening (and optionally responding) to
 // application events from iOS.
 [Register("AppDelegate")]
 public partial class AppDelegate : global::Xamarin.Forms.Platform.iOS.FormsApplicationDelegate
 {
 //
 // This method is invoked when the application has loaded and is ready to run. In this
 // method you should instantiate the window, load the UI into it and then make the window
 // visible.
 //
 // You have 17 seconds to return from this method, or iOS will terminate your application.
 //
 public override bool FinishedLaunching(UIApplication app, NSDictionary options)
 {
 global::Xamarin.Forms.Forms.Init();

 // Initialise our Xamarin.FormsMaps library
 Xamarin.FormsMaps.Init();
 LoadApplication(new App());
 return base.FinishedLaunching(app, options);
 }
 }
 }

In the preceding code snippet, we began by making some changes to the FinishedLaunching method within the AppDelegate class to initialize our Xamarin.FormsMaps library by making a call to the Xamarin.FormsMaps.Init() method. The FinishedLaunching method is called whenever your application launches. If we forget to reference our Xamarin.FormsMaps.Init() method, the WalkDistancePage content page will cause issues when running the app.

 Updating the TrackMyWalks.Android MainActivity

In this section, we need to make changes to the MainActivity class for our TrackMyWalks.Android project so that we can initialize our Xamarin.FormsMaps library, otherwise we won't be able to use any of the map features.

The MainActivity class begins immediately after your app launches. Once the main activity is running, it can launch other activities, which in turn can launch subactivities. When the application exits, it does so by terminating the main activity and any other activities terminate in a cascade form from within the main activity.

Let's take a look at how we can achieve this by following these steps:

	First, expand the TrackMyWalks.Android solution project that is contained within the TrackMyWalks solution.

	Next, double-click on the MainActivity.cs file, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 //
 // MainActivity.cs
 // MainActivity class for the TrackMyWalks.Android Project
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using Android.App;
 using Android.Content.PM;
 using Android.OS;

 namespace TrackMyWalks.Droid
 {
 [Activity(Label = "TrackMyWalks", Icon = "@mipmap/icon",
 Theme = "@style/MainTheme",
 MainLauncher = true,
 ConfigurationChanges = ConfigChanges.ScreenSize | ConfigChanges.Orientation)]
 public class MainActivity : global::Xamarin.Forms.Platform.Android.FormsAppCompatActivity
 {
 protected override void OnCreate(Bundle bundle)
 {
 TabLayoutResource = Resource.Layout.Tabbar;
 ToolbarResource = Resource.Layout.Toolbar;

 base.OnCreate(bundle);

 // Initialise our Xamarin.FormsMaps library
 Xamarin.FormsMaps.Init(this, bundle);
 global::Xamarin.Forms.Forms.Init(this, bundle);
 LoadApplication(new App());
 }
 }
 }

In the preceding code snippet, we began by making changes to the OnCreate method within the MainActivity class to initialize our Xamarin.Forms.Maps library by making a call to the Xamarin.FormsMaps.Init() method, which accepts two parameters, the first one being the current class instance, and the second one being the bundle identifier. The OnCreate method is called whenever your application launches. If we forget to reference our Xamarin.FormsMaps.Init() method, the WalkDistancePage content page will cause issues when running the app.

For more information on the Xamarin.Forms.Maps library, as well as the various types of classes that are available, please refer to the Xamarin developer documentation at https://developer.xamarin.com/api/namespace/Xamarin.Forms.Maps/.

 Creating the SplashPage interface using XAML

In this section, we will begin by defining the user interface for our SplashPage using XAML. This page will only be used and displayed whenever we launch our TrackMyWalks.Android project and will essentially display an image that fills the whole screen.

Let's start by creating the user interface for our SplashPage by performing the following steps:

	First, create a new Forms ContentPage XAML called SplashPage, like you did in the section entitled Creating the WalksMainPage interface using XAML, located within this chapter.

	Next, ensure that the SplashPage.xaml file is displayed within the code editor and enter the following code snippet:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TrackMyWalks.Views.SplashPage">
 <ContentPage.Content>
 <StackLayout x:Name="ImageFrame" Orientation="Vertical"
 AbsoluteLayout.LayoutBounds="0, 0, 1, 1" AbsoluteLayout.LayoutFlags="All">
 <Image Source="icon.png" Aspect="AspectFill" VerticalOptions="FillAndExpand"
 HorizontalOptions="FillAndExpand">
 </Image>
 </StackLayout>
 </ContentPage.Content>
 </ContentPage>

Now, let's start by taking a look at what we defined within the preceding XAML:

	First, we defined a StackLayout control as well as specified a name for our StackLayout control called ImageFrame. Then, we set the Orientation and layout information using the LayoutBounds and LayoutFlags properties on the AbsoluteLayout class so that the image resizes within the view.

	Finally, we declared an Image control and then assigned the Source property to the image that we would like to use and set the Aspect property so that our image fills and expands within the ContentPage.

 Implementing the SplashPage code using C#

Now that we have defined our user interface for our ContentPage using XAML, the next step is to begin creating the underlying C# code within our SplashPage code-behind file, which will be used to handle applying a 3-s timer on our splash screen, before navigating to our WalksMainPage.

Let's take a look at how we can achieve this by following these steps:

Open the SplashPage.xaml.cs code-behind file, ensuring that it is displayed within the code editor, and enter the following code snippet:

 //
 // SplashPage.xaml.cs
 // Displays a timed splash screen for the TrackMyWalks application
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.Threading.Tasks;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class SplashPage : ContentPage
 {
 public SplashPage()
 {
 InitializeComponent();
 }

 protected override async void OnAppearing()
 {
 base.OnAppearing();

 // Set a wait delay of 3 seconds on our Splash Screen
 await Task.Delay(3000);

 // Create a new navigation page, using the WalksMainPage
 Application.Current.MainPage = new NavigationPage(new WalksMainPage());
 }
 }
 }

In the preceding code snippet, we began by including a reference to the System.Threading.Tasks namespace and then we used the Task.Delay method which will create a task that will complete after a specified time has passed, which in our case is 3 seconds. The parameter that this method accepts is specified in milliseconds. Once the specified amount of time has passed, we modify the Application.Current.MainPage property to call our WalksMainPage by creating a new instance of the NavigationPage class.

For more information about the Task.Delay class, refer to the Microsoft Developer Documentation at https://msdn.microsoft.com/en-us/library/hh194873(v=vs.110).aspx.

 Updating the App.xaml class to target various platforms

Now that we have successfully created all of the ContentPages that make up the user interface for our TrackMyWalks app using XAML, as well as implemented the code within the code-behind files for each of the user interfaces, the next step is to make some changes to our App.xaml.cs file.

The App.xaml.cs file is essentially the main class for the Xamarin.Forms application and is called whenever our TrackMyWalks app is started. Within this class, we will make some changes to the OnStart method to check what target OS platform we are running on and then call and display our SplashPage for our TrackMyWalks.Android app. Alternatively, if we are running on iOS, we will display the main page for our application.

Let's take a look at how we can achieve this by following these steps:

	Open the App.xaml.cs located within the TrackMyWalks group and ensure that it is displayed within the code editor.

	Next, locate the OnStart method and enter the following highlighted code sections, as shown in the following code snippet:

 //
 // App.xaml.cs
 // Main class that gets called whenever our TrackMyWalks app is started
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using Xamarin.Forms;
 using Xamarin.Forms.Xaml;
 using TrackMyWalks.Views;
 using TrackMyWalks.Models;

 [assembly: XamlCompilation(XamlCompilationOptions.Compile)]
 namespace TrackMyWalks
 {
 public partial class App : Application
 {
 public App()
 {
 InitializeComponent();
 }

 protected override void OnStart()
 {
 // Check what Target OS Platform we are running on whenever the app starts
 if (Device.RuntimePlatform.Equals(Device.Android))
 {
 MainPage = new SplashPage();
 }
 else
 {
 // Set the root page for our application
 MainPage = new NavigationPage(new WalksMainPage());
 }
 }

 // Declare our WalkDataModel that will store our Walk Trail Details
 public static WalkDataModel SelectedItem { get; set; }

 protected override void OnSleep()
 {
 // Handle when your app sleeps
 }

 protected override void OnResume()
 {
 // Handle when your app resumes
 }
 }
 }

Now, let's start by taking a look at what we defined within the preceding XAML:

	First, we started by including a reference to our TrackMyWalks.Views and TrackMyWalks.Models namespaces, and then within the OnStart method, we checked to see what OS platform we are running on when the application starts.

	Next, we used the Device.RuntimePlatform method to check if we are running on the Android platform by using the Device class, and if we are, we set the MainPage property to a new instance of our SplashPage to display the splash screen for our Android app.

	Then, if we are running on the iOS platform, we simply set the root page for our application by creating a new instance of the NavigationPage class and pass in the WalksMainPage ContentPage.

	Finally, we declared a static variable called SelectedItem that points to the WalkDataModel data model, which will be used to store our walk trail details.

Now that you have created all of the necessary user interface files using XAML and the underlying C# code, as well as implemented the necessary instance and event methods for our app, the next step is to compile, build, and run the TrackMyWalks application within the iOS simulator.

 Launching TrackMyWalks using the iOS simulator

In this section, we will take a look at how to compile and run the TrackMyWalks application. You have the option of choosing to run your application by using an actual device or choosing from a list of iOS simulators that mimic each of the different types of iOS devices.

Let's begin by performing the following steps:

	Ensure that you have chosen the Debug | iPhone Simulator from the drop-down menu.

	Next, choose your preferred device from the list of available iOS Simulators.

	Then, select the Run | Start Debugging menu option, as shown in the following screenshot:

Launching the TrackMyWalks app within the iOS Simulator

	Alternatively, you can also build and run the TrackMyWalks application by pressing the Command + Return key combinations.

	When the compilation is complete, the iOS Simulator will appear automatically and the TrackMyWalks application will be displayed, as shown in the following screenshot:

Creating a New Walk Entry within the Track My Walks app

As you can see from the preceding screenshot, this currently displays our TrackMyWalks application, displaying a list of static walk entries within our ListView. Clicking on the Add button will display the New Walk Entry Page, where you can begin entering information relating to the trail.

Currently, any information that is entered within this page will not be saved. As we progress throughout this book, we will be refactoring these pages to allow this to happen. When you click on the Save button, the user will be redirected to the Track My Walks screen:

Displays the navigation flow whenever a walk trail has been selected

The preceding screenshot shows you the navigation flow between each of the pages whenever a trail has been selected from the ListView, with the final screen showing the Distance Travelled Information ContentPage, along with a marker pinpointing information related to the trail within the map.

 Summary

In this chapter, we created a cross-platform Xamarin.Forms application for both iOS and Android platforms, and then created a data model that will be used to store information related to trails that will be used by our application. We then created a number of content pages that were populated with static data using our data model. Finally, we looked at how to use the navigation APIs that are included as part of the Xamarin.Forms platform to help navigate between each of the different content pages, before running the TrackMyWalks application within the iOS Simulator.

As we progress through this book, we will be enhancing our app to include better architectural design patterns, nicer looking user interface elements, as well as real-time data that is to be synchronized through the use of RESTful web service APIs.

In the next chapter, you'll learn about the concepts behind the MVVM architectural pattern as well as how to implement the MVVM architectural pattern within the TrackMyWalks application. You'll learn how to create a BaseViewModel class that each of our ViewModels will inherit from, as well as create each of the associated C# class files for each of our ViewModels that will data-bind to each of the properties that are defined within our XAML pages.

 MVVM and Data Binding

In the previous chapter, we created a cross-platform Xamarin.Forms application for both iOS and Android platforms, and then created a data model that stored information relating to walking trails used by our application. We then created a number of content pages using XAML that were populated with static data using our data model. Finally, we looked at how to use the navigation APIs included as part of the Xamarin.Forms platform to help navigate between each of the different content pages, before running the TrackMyWalks application within the iOS Simulator.

The Model-View-ViewModel (MVVM) architectural pattern was invented with the XAML in mind, which was created by Microsoft back in 2008. It is well-suited for use with the MVVM architectural pattern, as it enforces a separation of the XAML user interface from the underlying data model, through a class that will act as a connection between the View and the ViewModel, which can be connected through data bindings, which have been defined within the XAML file.

This chapter teaches you the concepts behind the MVVM architectural pattern, as well as how to implement the MVVM architectural pattern within the TrackMyWalks application. You'll learn how to create a BaseViewModel base class that every ViewModel will inherit from, as well as create the associated C# class files for each of our ViewModels that will data-bind to each of the properties defined within our XAML pages.

The associated properties that we define within the ViewModel for the ContentPage will be used to represent the information that will be displayed within the user interface for our application. We will learn how to add ContextActions to our XAML content pages, and how to implement the code action events within our code, so that we can respond to those actions.

This chapter will cover the following topics:

	Understanding the MVVM architectural pattern as well as data binding

	Creating and implementing the Base-Model class that the ViewModels will inherit

	Updating the user interface pages using XAML to include data binding

	Creating and implementing the underlying ViewModels using C# code

	Implementing the data bindings within our user interfaces using XAML

	Launching the TrackMyWalks app using the iOS Simulator

 Understanding the MVVM architectural pattern

In this section, we will take a look at the MVVM architectural pattern and the communication between the components that make up the architecture.

The MVVM design pattern is designed to control the separation between the user interfaces (Views), the ViewModels that contain the actual binding to the model, and the models that contain the actual structure of the entities, which represent information that's stored on a database or from a web service.

The following diagram shows the communication between each of the components contained within the MVVM architectural pattern:

Components of the MVVM architectural pattern

As you can see from the preceding diagram, the MVVM architectural design pattern is divided into three main areas. The following table provides a brief description of what each area is used for:

	
Type

	
Description

	
Model

	
The Model is basically a representation of business-related entities that are used by an application. It is responsible for fetching data from either a database or web service, and then deserialised to the entities contained within the Model.

	
View

	
The View component of the MVVM model represents the actual screens that make up the application, along with any custom control components and control elements, such as Buttons, Labels, and EntryCells. The views contained within the MVVM pattern are platform-specific, which means that they are dependent on the platform APIs that render the information contained within the application's user interface.

	
ViewModel

	
The ViewModel controls and manipulates each of the views by acting as their main data context. The ViewModel contains various properties that are bound to the information contained within each model, that are then bound to each of the views to represent this information within the user interface. ViewModels can also contain command objects that provide action-based events to trigger the execution of event methods that occur within the View. An example could be whenever the user taps on a ToolBar item or button. ViewModels generally implement the INotifyPropertyChanged interface, which will then fire a PropertyChanged event whenever changes to a collection occur.

Now that you have a reasonably good understanding of each of the components that are contained within the MVVM architectural pattern, our next step is to begin creating and implementing the BaseViewModel, as well as updating each of our XAML user interface files for our TrackMyWalks application, so that it can bind to each of the entities contained within our data model.

 Creating and implementing the BaseViewModel

In this section, we will take a look at how to create the BaseViewModel class that will essentially be an abstract class containing basic functionality that each of our ViewModels will inherit from and implement the INotifyPropertyChanged interface. The advantage of creating a BaseViewModel class is that it is much easier to add additional functionality to this model, and then implement these in the relevant class files.

Let's start by creating the BaseViewModel class for our TrackMyWalks application by performing the following steps:

	Ensure that the TrackMyWalks solution is open within the Visual Studio for Mac IDE.

	Next, right-click on the TrackMyWalks project, and choose Add | New Folder from the pop-up menu, as shown in the following screenshot:

Creating the ViewModels Folder within the TrackMyWalks project

	Then, enter ViewModels for the name of the new folder to be created. After, right-click on the ViewModels folder and choose Add|New File... from the pop-up menu, as shown in the following screenshot:

Adding a New File to the ViewModels folder

	Next, choose the Empty Class option under the General section and enter BaseViewModel for the name of the class to be created, as shown in the following screenshot:

Creating the BaseViewModel Class

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our BaseViewModel class file, we can proceed with implementing the required code for our class.

	Locate and open the BaseViewModel.cs file, which is located as part of the TrackMyWalks group, and ensure that it is displayed within the code editor. Then, enter the following code snippet:

 // BaseViewModel.cs
 // BaseView Model Class that each of our ViewModels will inherit from
 //
 // Created by Steven F. Daniel on 5/06/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.ComponentModel;
 using System.Runtime.CompilerServices;
 using System.Threading.Tasks;

 namespace TrackMyWalks.ViewModels
 {
 public abstract class BaseViewModel : INotifyPropertyChanged
 {
 public const string PageTitlePropertyName = "PageTitle";
 string pageTitle;
 public string PageTitle
 {
 get => pageTitle;
 set { pageTitle = value; OnPropertyChanged(); }
 }
 protected BaseViewModel()
 {
 }

 public abstract Task Init();
 public event PropertyChangedEventHandler PropertyChanged;
 protected virtual void OnPropertyChanged([CallerMemberName] string propertyName = null)
 {
 PropertyChangedEventHandler handler = PropertyChanged;
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
 }
 public abstract class BaseViewModel<TParam> : BaseViewModel
 {
 protected BaseViewModel()
 {
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we started by creating an abstract class that inherits from the INotifyPropertyChanged interface, which allows the View (content page) to be notified whenever properties contained within the ViewModel change.

	Next, we declared a string constant PageTitlePropertyName, as well as a getter and setter called PageTitle that will be used to reference the current page.

	Then, we declared an Init method that will be used to initialize the ViewModel, as well as declared a PropertyChanged variable that will be used to indicate whenever properties on the object have changed.

	Next, we created the OnPropertyChanged instance method, which will be called when it has determined that a change has occurred on a property within the ViewModel from a child class.

	Finally, we declared an abstract class BaseViewModel that inherits from the BaseViewModel and accepts a parameter called TParam.

The INotifyPropertyChanged interface is used to notify whenever the value of a property has changed within the ViewModel.

 Creating the WalksMainPageViewModel using C#

Now that we have created our BaseViewModel class which will be used and inherited by each of the ViewModels that we create, the next step is to start creating the WalksMainPageViewModel class that will be used by our WalksMainPage.

The WalksMainPageViewModel ViewModel class will be used to populate our data model and display the information within our ListView by setting the BindingContext within the ContentPage.

Let's take a look at how we can achieve this by following these steps:

	Ensure that the TrackMyWalks solution is open within the Visual Studio for Mac IDE.

	Next, right-click on the ViewModels folder and choose Add|New File... from the pop-up menu.

	Then, choose the Empty Class option under the General section and enter WalksMainPageViewModel for the name of the class to be created, as shown in the following screenshot:

Creating the WalksMainPageViewModel Class

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our WalksMainPageViewModel class file, we can proceed with implementing the underlying code for our class.

	 Open the WalksMainPageViewModel.cs class and ensure that it is displayed within the code editor. Then, enter the following code snippet:

 //
 // WalksMainPageViewModel.cs
 // The ViewModel for our WalksMainPage ContentPage
 //
 // Created by Steven F. Daniel on 5/06/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.Collections.ObjectModel;
 using System.Threading.Tasks;
 using TrackMyWalks.Models;

 namespace TrackMyWalks.ViewModels
 {
 public class WalksMainPageViewModel : BaseViewModel
 {
 // Create our WalksListModel Observable Collection
 public ObservableCollection<WalkDataModel> WalksListModel;

 public WalksMainPageViewModel()
 {
 }

 // Instance method to add and retrieve our Walk Trail items
 public void GetWalkTrailItems()
 {
 // Specify our List Collection to store the items being read
 WalksListModel = new ObservableCollection<WalkDataModel> {

 // Populate our collection with some dummy data that will be
 // used to populate our ListView
 new WalkDataModel
 {
 Id = 1,
 Title = "10 Mile Brook Trail, Margaret River",
 Description = "The 10 Mile Brook Trail starts in the Rotary Park near
 Old Kate, a preserved steam engine at the northern edge of Margaret River.",
 Latitude = -33.9727604,
 Longitude = 115.0861599,
 Distance = 7.5,
 Difficulty = "Medium",
 ImageUrl = "http://trailswa.com.au/media/cache/media/images/trails/_mid/
 FullSizeRender1_600_480_c1.jpg"
 },
 new WalkDataModel
 {
 Id = 2,
 Title = "Ancient Empire Walk, Valley of the Giants",
 Description = "The Ancient Empire is a 450 metre walk trail that takes
 you around and through some of the giant tingle trees including the most
 popular of the gnarled veterans, known as Grandma Tingle.",
 Latitude = -34.9749188,
 Longitude = 117.3560796,
 Distance = 450,
 Difficulty = "Hard",
 ImageUrl = "http://trailswa.com.au/media/cache/media/images/trails/_mid/
 Ancient_Empire_534_480_c1.jpg"
 }};
 }
 // Instance method to initialise the WalksMainPageViewModel
 public override async Task Init()
 {
 await Task.Factory.StartNew(() =>
 {
 // Call our GetWalkTrailItems method to populate our collection
 GetWalkTrailItems();
 });
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including references to the System.Collections.ObjectModel, System.Threading.Tasks, and the TrackMyWalks.Models namespaces so that we can access the classes that are defined within these namespaces.

	Next, we ensured that our WalksMainPageViewModel inherits from our BaseViewModel class, and then created an ObservableCollection called WalksListModel, which is essentially a collection that will raise an event whenever an object is added or removed from our WalksListModel collection.

	Then, we created an instance method called GetWalkTrailItems and used the Add method to add values to each of the properties contained within our WalkDataModel.

	Finally, we created the Init instance method that we defined within our BaseViewModel to initialize our ViewModel and then called the GetWalkTrailItems instance method to populate our WalksListModel collection.

 Updating the WalksMainPage user interface using XAML

In this section, we will begin by updating the user interface for our WalksMainPage using XAML in order to define a series of ContextActions menu items that the user can choose from, as well as display a list of trails walks as well as the Image, Title, and Description associated with the walk trail by using a ListView to present this information.

Let's start by updating the user interface for our WalksMainPage by performing the following steps:

	Locate and open the WalksMainPage.xaml file which is located in the Views folder.

	Next, ensure that it is displayed within the code editor and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" x:Class="TrackMyWalks.Views.WalksMainPage">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Add" Clicked="AddWalk_Clicked" />
 </ContentPage.ToolbarItems>
 <ContentPage.Content>
 <StackLayout>
 <ListView x:Name="WalkEntriesListView" RowHeight="80" HasUnevenRows="true"
 SeparatorColor="#ddd" ItemTapped="myWalkEntries_ItemTapped">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <ViewCell.ContextActions>
 <MenuItem Clicked="OnEditItem" CommandParameter="{Binding .}"
 Text="Edit" IsDestructive="False" />
 <MenuItem Clicked="OnDeleteItem" CommandParameter="{Binding .}"
 Text="Delete" IsDestructive="True" />
 </ViewCell.ContextActions>
 <StackLayout x:Name="cellLayout" Padding="10,5,10,5"
 Orientation="Horizontal" HorizontalOptions="FillAndExpand">
 <Image Aspect="AspectFit" Source="{Binding ImageUrl}"
 VerticalOptions="FillAndExpand" />
 <StackLayout x:Name="DetailsLayout" Padding="10,0,0,0"
 HorizontalOptions="FillAndExpand">
 <Label Text="{Binding Title}" FontAttributes="Bold"
 FontSize="16" TextColor="Black" />
 <Label Text="{Binding Description}" FontAttributes="None"
 FontSize="12" TextColor="Blue" />
 </StackLayout>
 </StackLayout>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
 </ContentPage.Content>
 </ContentPage>

Now, let's start by taking a look at what we've updated within the preceding XAML:

	We started by defining a ViewCell as well as a ViewCell.ContextActions that will contain two MenuItems, as well as assigned the associated Clicked event for editing and deleting items from the ListView and/or our WalkDataModel data model.

	Next, we defined a StackLayout control called x:Name="cellLayout" and used the Image control, and then set the Source property to bind to our ImageUrl property from our data model. Then, we set our Padding, as well as the Orientation and HorizontalOptions.

	Finally, we created another StackLayout control called x:Name="DetailsLayout" that will be used to display our walk trail details by setting the Text property to bind to our Title and Description data bindings within our WalkDataModel.

 Updating the WalksMainPage code-behind using C#

Now that we have updated our user interface to include our ContextActions as well as each of the menu item choices that we would like to appear, including each of the various data bindings, the next step is to begin updating the underlying C# code within our WalksMainPage code-behind file so that it can communicate with our ViewModel and populate our ListView with information from our WalkDataModel.

Let's take a look at how we can achieve this by following these steps:

Open the WalksMainPage.xaml.cs code-behind file, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 //
 // WalksMainPage.xaml.cs
 // Displays Walk Information within a ListView control from an array//
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using TrackMyWalks.Models;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class WalksMainPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalksMainPageViewModel _viewModel =>
 BindingContext as WalksMainPageViewModel;

 public WalksMainPage()
 {
 InitializeComponent();

 // Update the Title and Initialise our BindingContext for
 // the Page
 this.Title = "Track My Walks Listing";
 this.BindingContext = new WalksMainPageViewModel();
 }

 // Instance method to call the WalkEntryPage to add a Walk Entry
 public void AddWalk_Clicked(object sender, EventArgs e)
 {
 App.SelectedItem = null;
 Navigation.PushAsync(new WalkEntryPage());
 }

 // Instance method to call the WalkTrailInfoPage using the
 // selected item
 public void myWalkEntries_ItemTapped(object sender, ItemTappedEventArgs e)
 {
 // Get the selected item from our ListView
 App.SelectedItem = e.Item as WalkDataModel;
 Navigation.PushAsync(new WalkTrailInfoPage());
 }

 // Instance method to call the WalkEntryPage to allow item
 // to be edited
 public async void OnEditItem(object sender, EventArgs e)
 {
 // Get the selected item to be edited from our ListView
 var selectedItem = (WalkDataModel)((MenuItem)sender).CommandParameter;
 App.SelectedItem = selectedItem;
 await Navigation.PushAsync(new WalkEntryPage());
 }

 // Instance method to remove the trail item from our
 // collection
 public async void OnDeleteItem(object sender, EventArgs e)
 {
 // Get the selected item to be deleted from our ListView
 var selectedItem = (WalkDataModel)((MenuItem)sender).CommandParameter;

 // Prompt the user with a confirmation dialog to confirm
 if (await DisplayAlert("Delete Walk Entry Item",
 "Are you sure you want to delete this Walk Entry Item?",
 "OK", "Cancel"))
 {
 // Remove Walk Item from our WalkListModel collection
 _viewModel.WalksListModel.Remove(selectedItem);
 }
 else
 return;
 }

 // Method to initialise our View Model when the ContentPage
 // appears
 protected override async void OnAppearing()
 {
 base.OnAppearing();
 if (_viewModel != null)
 {
 // Call the Init method to initialise the ViewModel
 await _viewModel.Init();
 }

 // Set up and initialise the binding for our ListView
 WalkEntriesListView.SetBinding(ItemsView<Cell>.ItemsSourceProperty,
 new Binding("."));
 WalkEntriesListView.BindingContext = _viewModel.WalksListModel;
 }
 }
}

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including a reference to the TrackMyWalks.ViewModels namespace so that we can access the classes and instance methods that are defined within the namespace.

	Next, we returned the BindingContext that will be used by our WalksMainPage ContentPage by defining a getter property that points to our WalksMainPageViewModel.

	Then, we modified the Title property for our ContentPage, and then initialized and set the BindingContext of our WalksMainPage ContentPage to a new instance of our WalksMainPageViewModel.

	Next, we created the OnEditItem instance method that will be called whenever the Edit context-menu item is tapped within the ListView. We get the selected item to be edited by using the CommandParameter of the sender object from the MenuItem class and assign this to our App.SelectedItem property and then call the PushAsync method of the Navigation class to navigate to our WalkEntryPage.

	Then, we created the OnDeleteItem instance method that will be called whenever the Delete context-menu item is tapped within the ListView. We get the selected item to be deleted by using the CommandParameter of the sender object from the MenuItem class and display a confirmation dialog that will prompt the user to confirm the deletion, and if OK has been selected, we remove the walk information from our WalkListModel object collection within our ViewModel by using the Remove method. Alternatively, we just return from the OnDeleteItem instance method.

	Then, we created the OnAppearing method, which will be used to initialize our ViewModel whenever the ContentPage appears on screen. We checked to see if our _viewModel contains a value, and then called the Init instance method so that we could initialize our ViewModel.

	Finally, we set up and initialize the binding for our ListView by setting the ItemsSourceProperty and BindingContext to our WalksListModel, which we defined within our WalksMainPageViewModel.

 Creating the WalkEntryPageViewModel using C#

Now that we have updated the WalksMainPage code-behind file so that it communicates with our WalksMainPageViewModel as well as each of the associated data bindings for the ContentPage that will be used by the ViewModel, the next step is to create and implement the underlying C# code for our ViewModel that will be used by our WalkEntryPage code-behind file. This allows the user to add or edit walk trail information within our WalkDataModel data model, as well as validate the information that's provided.

Let's take a look at how we can achieve this by following these steps:

	First, create a new Empty Class called WalkEntryPageViewModel, like you did in the section entitled Creating the WalksMainPageViewModel using C#, located within this chapter.

	Next, ensure that the WalkEntryPageViewModel.cs file is displayed within the code editor and enter the following code snippet:

 //
 // WalkEntryPageViewModel.cs
 // The ViewModel for our WalkEntryPage ContentPage
 //
 // Created by Steven F. Daniel on 5/06/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Threading.Tasks;
 using TrackMyWalks.Models;

 namespace TrackMyWalks.ViewModels
 {
 public class WalkEntryPageViewModel : BaseViewModel
 {
 public WalkEntryPageViewModel()
 {
 // Update the title if we are creating a new Walk Entry
 if (App.SelectedItem == null)
 {
 PageTitle = "Adding Trail Details";
 App.SelectedItem = new WalkDataModel();

 // Set the default values when creating a new Trail
 Title = "New Trail Entry";
 Difficulty = "Easy";
 Distance = 1.0;
 }
 else
 {
 // Otherwise, we must be editing an existing entry
 PageTitle = "Editing Trail Details";
 }
 }

 // Checks to see if we have provided a Title and Description
 public bool ValidateFormDetailsAndSave()
 {
 if (App.SelectedItem != null &&
 !string.IsNullOrEmpty(App.SelectedItem.Title) &&
 !string.IsNullOrEmpty(App.SelectedItem.Description))
 {
 // Save the selected item to our database and/or model
 }
 else
 {
 return false;
 }
 return true;
 }

 // Update each EntryCell on the WalkEntryPage with values from our Model
 public string Title
 {
 get => App.SelectedItem.Title;
 set { App.SelectedItem.Title = value; OnPropertyChanged(); }
 }
 public string Description
 {
 get => App.SelectedItem.Description;
 set { App.SelectedItem.Description = value; OnPropertyChanged(); }
 }
 public double Latitude
 {
 get => App.SelectedItem.Latitude;
 set { App.SelectedItem.Latitude = value; OnPropertyChanged(); }
 }
 public double Longitude
 {
 get => App.SelectedItem.Longitude;
 set { App.SelectedItem.Longitude = value; OnPropertyChanged(); }
 }
 public double Distance
 {
 get => App.SelectedItem.Distance;
 set { App.SelectedItem.Distance = value; OnPropertyChanged(); }
 }
 public String Difficulty
 {
 get => App.SelectedItem.Difficulty;
 set { App.SelectedItem.Difficulty = value; OnPropertyChanged(); }
 }
 public String ImageUrl
 {
 get => App.SelectedItem.ImageUrl;
 set { App.SelectedItem.ImageUrl = value; OnPropertyChanged(); }
 }

 // Instance method to initialise the WalkEntryPageViewModel
 public override async Task Init()
 {
 await Task.Factory.StartNew(() =>
 {
 });
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including references to the System.Collections.ObjectModel, System.Threading.Tasks, and TrackMyWalks.Models namespaces so that we can access the classes that are defined within these namespaces.

	Next, we ensured that our WalkEntryPageViewModel inherits from our BaseViewModel class. Then, within our class constructor, we checked the value for our App.SelectedItem property to see if we were creating a new walk entry, and proceeded to update the PageTitle, as well as initialize the App.SelectedItem property to a new instance of our WalkDataModel class.

	Then, we initialized our ViewModel with default values whenever we created a new trail item. Alternatively, if we were editing an existing walk trail item, we updated the PageTile to reflect this.

	Next, we created an instance method called ValidateFormDetailsAndSave and checked to see if we had a value for our App.SelectedItem, as well as see if we had provided values for both our Title and Description properties, prior to saving the details either to a database, or back to the data model. Alternatively, if any validation errors had been detected, we returned a value of false.

	Finally, we created a number of properties that were to be bound to each of the EntryCell fields within our WalkEntryPage and created the Init instance method that we defined within our BaseViewModel, which can be used to initialize our ViewModel.

 Updating the WalkEntryPage user interface using XAML

In this section, we will begin by updating the user interface for our WalkEntryPage using XAML to specify the Binding Modes for each of our EntryCell fields, which will be used to allow the user to add new walk trail information whenever the user taps on the Add button or chooses the Edit menu context action from the WalksMainPage.

Let's start by updating the user interface for our WalkEntryPage by performing the following steps:

Locate and open the WalkEntryPage.xaml file which is located in the Views folder, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

<?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" x:Class="TrackMyWalks.Views.WalkEntryPage">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Save" Clicked="SaveWalkItem_Clicked" />
 </ContentPage.ToolbarItems>
 <ContentPage.Content>
 <TableView Intent="Form">
 <TableView.Root>
 <TableSection Title="Enter Walk Trail Information">
 <EntryCell Label="Title:" Text="{Binding Title, Mode=TwoWay}"
 Placeholder="Provide a Title for this trail" />
 <EntryCell Label="Description:" Text="{Binding Description, Mode=TwoWay}"
 Placeholder="Provide trail description" />
 <EntryCell Label="Latitude:" Text="{Binding Latitude, Mode=TwoWay}"
 Placeholder="Provide latitude coordinates" Keyboard="Numeric" />
 <EntryCell Label="Longitude:" Text="{Binding Longitude, Mode=TwoWay}"
 Placeholder="Provide longitude coordinates" Keyboard="Numeric" />
 <EntryCell Label="Distance:" Text="{Binding Distance, Mode=TwoWay}"
 Placeholder="Provide trail distance" Keyboard="Numeric" />
 <ViewCell>
 <StackLayout Orientation="Horizontal" Margin="15,0">
 <Label Text="Trail Difficulty Level:" VerticalOptions="Center" />
 <Picker Title="Choose Difficulty" VerticalOptions="Center"
 HorizontalOptions="FillAndExpand"
 SelectedItem="{Binding Difficulty, Mode=TwoWay}">
 <Picker.ItemsSource>
 <x:Array Type="{x:Type x:String}">
 <x:String>Easy</x:String>
 <x:String>Medium</x:String>
 <x:String>Hard</x:String>
 <x:String>Extreme</x:String>
 </x:Array>
 </Picker.ItemsSource>
 </Picker>
 </StackLayout>
 </ViewCell>
 <EntryCell Label="Image URL:" Text="{Binding ImageUrl, Mode=TwoWay}"
 Placeholder="Provide an Image URL" />
 </TableSection>
 </TableView.Root>
 </TableView>
 </ContentPage.Content>
 </ContentPage>

Now, let's start by taking a look at what we defined within the preceding XAML:

	We started by specifying the Binding as well as the binding Mode that we would like to set for each of our EntryCell fields. Here, we used the TwoWay binding to indicate that the binding should propagate any changes from the ViewModel to each of the bindable objects that we have specified, in both directions.

	Finally, we updated the Binding and binding Mode for our Picker control, as well as specified the Binding and binding Mode for our Image URL EntryCell property that will allow the user to specify the URL location for the image to use for the trail.

The following table provides a brief description of the different binding types, and when you should use these within your applications:

	
Binding Mode

	
Description

	
OneWay

	
The OneWay binding indicates that the binding should only propagate changes from a source (usually the ViewModel) to target the BindableObject. This is the default mode for most BindableProperty values.

	
OneWayToSource

	
The OneWayToSource binding indicates that the binding only propagates changes from the target BindableObject to the ViewModel and is mainly used for read-only BindableProperty values.

	
TwoWay

	
The TwoWay binding indicates that the binding should propagate the changes from the ViewModel to the target BindableObject in both directions.

 Updating the WalkEntryPage code-behind using C#

Now that we have updated our WalkEntryPage user interface to include the various data bindings and the different binding modes for each of our EntryCell fields, the next step is to begin updating the underlying C# code within our WalkEntryPage code-behind file so that it can communicate with our WalkEntryPageViewModel. This will eventually be used to save all information entered within this page to a database and to refresh the ListView contained within our WalksMainPage.

Let's take a look at how we can achieve this by following these steps:

Open the WalkEntryPage.xaml.cs code-behind file, ensuring that it is displayed within the code editor, and enter the following code snippet:

 //
 // WalkEntryPage.xaml.cs
 // Data Entry screen that allows new walk information to be added
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class WalkEntryPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalkEntryPageViewModel _viewModel => BindingContext as WalkEntryPageViewModel;

 public WalkEntryPage()
 {
 InitializeComponent();

 // Update the Title and Initialise our BindingContext for the Page
 Title = "New Walk Entry Page";
 BindingContext = new WalkEntryPageViewModel();
 SetBinding(TitleProperty, new Binding(BaseViewModel.PageTitlePropertyName));
 }

 // Instance method that saves the new walk entry
 public async void SaveWalkItem_Clicked(object sender, EventArgs e)
 {
 // Prompt the user with a confirmation dialog to confirm
 if (await DisplayAlert("Save Walk Entry Item",
 "Proceed and save changes?", "OK", "Cancel"))
 {
 // Attempt to save and validate our Walk Entry Item
 if (!_viewModel.ValidateFormDetailsAndSave())
 // Error Saving - Must have Title and description
 await DisplayAlert("Validation Error",
 "Title and Description are required.", "OK");
 else
 // Navigate back to the Track My Walks Listing page
 await Navigation.PopToRootAsync(true);
 }
 else
 {
 // Navigate back to the Track My Walks Listing page
 await Navigation.PopToRootAsync(true);
 }
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including a reference to the TrackMyWalks.ViewModels namespace so that we can access the classes and instance methods that are defined within the namespace, and then return the BindingContext that will be used by our WalkEntryPage ContentPage by defining a getter property that points to our WalkEntryPageViewModel.

	Then, we modified the Title property and initialized and set the BindingContext of our WalkEntryPage to a new instance of our WalkEntryPageViewModel. Then, we modified the BaseViewModel.PageTitlePropertyName using the TitleProperty property of the WalkEntryPage ContentPage.

	Next, within the SaveWalkItem_Clicked instance method, we displayed a confirmation dialog that prompts the user to confirm the saving of the walk entry, and if OK has been selected, we attempt to validate and save the walk entry item by calling the ValidateFormDetailsAndSave instance method that we declared within our ViewModel.

	Finally, we check to see if there are any validation errors. We display an alert using the DisplayAlert method, otherwise, we use the PopToRootAsync method of the Navigation class to remove the WalkEntryPage from the navigation stack. Alternatively, if no validation errors have occurred, or we click Cancel within the confirmation dialog, we use the PopToRootAsync method of the Navigation class to remove the WalkEntryPage from the navigation stack.

 Creating the WalkTrailInfoPageViewModel using C#

Now that we have updated the WalkEntryPage code-behind file so that it communicates with WalkEntryPageViewModel as well as each of the associated data bindings for the ContentPage that'll be used by ViewModel, the next step is to create and implement the underlying C# code for ViewModel. This'll be used by WalkTrailInfoPage code-behind file so that it can display information related to the chosen walk trail from WalksMainPage.

Let's take a look at how we can achieve this by following these steps:

	First, create a new Empty Class called WalkTrailInfoPageViewModel, like you did in the section entitled Creating the WalksMainPageViewModel using C#, located within this chapter.

	Next, ensure that the WalkTrailInfoPageViewModel.cs file is displayed within the code editor and enter the following code snippet:

 //
 // WalkTrailInfoPageViewModel.cs
 // The ViewModel for our WalkTrailInfoPage ContentPage
 //
 // Created by Steven F. Daniel on 5/06/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Threading.Tasks;

 namespace TrackMyWalks.ViewModels
 {
 public class WalkTrailInfoPageViewModel : BaseViewModel
 {
 public WalkTrailInfoPageViewModel()
 {
 }

 // Update each control on the WalkTrailInfoPage with values from our Model
 public string Title => App.SelectedItem.Title;
 public string Description => App.SelectedItem.Description;
 public double Distance => App.SelectedItem.Distance;
 public String Difficulty => App.SelectedItem.Difficulty;
 public String ImageUrl => return App.SelectedItem.ImageUrl;

 // Instance method to initialise the WalkTrailInfoPageViewModel
 public override async Task Init()
 {
 await Task.Factory.StartNew(() =>
 {
 });
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including references to the System and the System.Threading.Tasks namespaces so that we can access the classes that are defined within these namespaces.

	Next, we ensured that our WalkTrailInfoPageViewModel inherits from our BaseViewModel class, and then we created a number of properties that will be bound to each control that is located within the WalkTrailInfoPage ContentPage by using the values from our App.SelectedItem property.

	Finally, we created the Init instance method that we defined within our BaseViewModel, which can be used to initialize our ViewModel.

 Updating the WalkTrailInfoPage user interface using XAML

In this section, we will begin by updating the user interface for our WalkTrailInfoPage, using XAML to make some minor changes to our ScrollView control Padding property. We do this in order to adjust the layout space and the bounding region of how the child elements should be displayed when displaying the chosen walk trail information from the ListView control that is contained within the WalksMainPage.

Let's start by updating the user interface for our WalkTrailInfoPage by performing the following steps:

Locate and open the WalkTrailInfoPage.xaml file which is located in the Views folder, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

<?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" x:Class="TrackMyWalks.Views.WalkTrailInfoPage">
 <ContentPage.Content>
 <ScrollView Padding="5,0,2,5">
 <StackLayout Orientation="Vertical" HorizontalOptions="FillAndExpand">
 <Image x:Name="TrailImage" Aspect="AspectFill" Source="{Binding ImageUrl}"
 HorizontalOptions="FillAndExpand" VerticalOptions="FillAndExpand" />
 <Label x:Name="TrailName" FontSize="20" FontAttributes="Bold"
 TextColor="Black" Text="{Binding Title}" />
 <Label x:Name="TrailKilometers" FontSize="12" TextColor="Black"
 Text="{Binding Distance, StringFormat='Kilometers: {0} km'}" />
 <Label x:Name="TrailDifficulty" FontSize="12" TextColor="Black"
 Text="{Binding Difficulty, StringFormat='Difficulty: {0}'}" />
 <Label x:Name="TrailFullDescription" FontSize="11" TextColor="Black"
 Text="{Binding Description}" HorizontalOptions="FillAndExpand" />
 <Button x:Name="BeginTrailWalk" Text="Begin this Trail" TextColor="White"
 BackgroundColor="#008080" Clicked="BeginTrailWalk_Clicked" Margin="20"/>
 </StackLayout>
 </ScrollView>
 </ContentPage.Content>
 </ContentPage>

In the preceding code snippet, we began by making some minor changes to our ScrollView control that will allow our ContentPage to scroll its contents if the information being displayed is too big to fit within actual devices' screen real estate. We updated the Padding property to represent the layout space and the bounding region into which each of the child elements should be arranged by specifying values for the Left, Top, Right, and Bottom values.

 Updating the WalkTrailInfoPage code-behind using C#

Now that we have updated our WalkTrailInfoPage user interface to include the updated Padding property that will represent the layout space and the bounding region into which each of the child elements should be arranged when displaying our walk trail information, the next step is to begin updating the underlying C# code within our WalkTrailInfoPage code-behind file. We do this so that it can communicate with our WalkTrailInfoPageViewModel, which will be used to display information associated with the chosen walk trail.

Let's take a look at how we can achieve this by following these steps:

Open the WalkTrailInfoPage.xaml.cs code-behind file, ensuring that it is displayed within the code editor, and enter the following code snippet:

 //
 // WalkTrailInfoPage.xaml.cs
 // Displays related trail information chosen from the WalksMainPage
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using Xamarin.Forms;
 using TrackMyWalks.ViewModels;

 namespace TrackMyWalks.Views
 {
 public partial class WalkTrailInfoPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalkTrailInfoPageViewModel _viewModel =>
 BindingContext as WalkTrailInfoPageViewModel;

 public WalkTrailInfoPage()
 {
 InitializeComponent();

 // Update the Title and Initialise our BindingContext for the Page
 this.Title = "Trail Walk Information";
 this.BindingContext = new WalkTrailInfoPageViewModel();
 }

 // Instance method that proceeds to begin a new walk trail
 public void BeginTrailWalk_Clicked(object sender, EventArgs e)
 {
 if (App.SelectedItem == null)
 return;

 Navigation.PushAsync(new WalkDistancePage());
 Navigation.RemovePage(this);
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including a reference to the TrackMyWalks.ViewModels namespace so that we can access the classes and instance methods that are defined within the namespace, and then return the BindingContext that will be used by our WalkTrailInfoPage ContentPage by defining a getter property that points to our WalkTrailInfoPageViewModel.

	Finally, we modified the Title property and initialized and set the BindingContext of our WalkTrailInfoPage to a new instance of our WalkTrailInfoPageViewModel.

 Creating the WalkDistancePageViewModel using C#

Now that we have updated the WalkTrailInfoPage code-behind file so that it communicates with our WalkTrailInfoPageViewModel as well as each of the associated data bindings for the ContentPage that will be used by the ViewModel, the next step is to create and implement the underlying C# code for our ViewModel. This will be used by our WalkDistancePage code-behind file so that it can display information related to the chosen walk trail from our WalksMainPage.

Let's take a look at how we can achieve this by following these steps:

	First, create a new Empty Class called WalkDistancePageViewModel, like you did in the section entitled Creating the WalksMainPageViewModel using C#, located within this chapter.

	Next, ensure that the WalkDistancePageViewModel.cs file is displayed within the code editor and enter the following code snippet:

 //
 // WalkDistancePagePageViewModel.cs
 // The ViewModel for our WalkDistancePage ContentPage
 //
 // Created by Steven F. Daniel on 5/06/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Threading.Tasks;

 namespace TrackMyWalks.ViewModels
 {
 public class WalkDistancePageViewModel : BaseViewModel
 {
 public WalkDistancePageViewModel()
 {
 }

 // Update each control on the WalkDistancePage with values from our Model
 public string Title => App.SelectedItem.Title;
 public string Description => App.SelectedItem.Description;
 public double Latitude => App.SelectedItem.Latitude;
 public double Longitude => App.SelectedItem.Longitude;
 public double Distance => App.SelectedItem.Distance;
 public String Difficulty => App.SelectedItem.Difficulty;
 public String ImageUrl => App.SelectedItem.ImageUrl;

 // Instance method to initialise the WalkDistancePageViewModel
 public override async Task Init()
 {
 await Task.Factory.StartNew(() =>
 {
 });
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including references to the System and the System.Threading.Tasks namespaces so that we can access the classes that are defined within these namespaces.

	Next, we ensured that our WalkDistancePageViewModel inherits from our BaseViewModel class. Then, we created a number of properties that will be bound to each control that is located within the WalkDistancePage ContentPage, using the values from our App.SelectedItem property.

	Finally, we created the Init instance method that we defined within our BaseViewModel, which can be used to initialize our ViewModel.

 Updating the WalkDistancePage user interface using XAML

In this section, we will begin by updating the user interface for our WalkDistancePage by using XAML. This will be used to display a full-screen map with a pin placeholder that, when tapped, will display information related to the chosen trail from the ListView contained within our WalksMainPage.

Let's start by updating the user interface for our WalkTrailInfoPage by performing the following steps:

Locate and open the WalkDistancePage.xaml file which is located in the Views folder, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

<?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" xmlns:maps="clr-namespace:Xamarin.Forms.Maps;assembly=Xamarin.Forms.Maps" x:Class="TrackMyWalks.Views.WalkDistancePage">
 <ContentPage.Content>
 <ScrollView Padding="2,0,2,2">
 <StackLayout Orientation="Vertical" HorizontalOptions="FillAndExpand"
 VerticalOptions="FillAndExpand">
 <maps:Map x:Name="customMap" IsShowingUser="true" MapType="Street" />
 <Button x:Name="EndThisTrail" Text="End this Trail" TextColor="White"
 BackgroundColor="#008080" Clicked="EndThisTrailButton_Clicked"
 Margin="20" />
 </StackLayout>
 </ScrollView>
 </ContentPage.Content>
 </ContentPage>

Now, let's start by taking a look at what we defined within the preceding XAML:

	We began by making some minor changes to our ScrollView control, which will allow our ContentPage to scroll its contents if the information being displayed is too big to fit within the actual devices' screen real-estate.

	Next, we updated the Padding property to represent the layout space and the bounding region into which each of the child elements should be arranged by specifying values for the left, top, right, and bottom values. Then,we defined a StackLayout control as well as defined the <maps:Map> field, which will be used to represent our map. Finally, we specified a name for our map control called CustomMap so that we can reference this within our code-behind file.

	Finally, we set the IsShowingUser and MapType properties that will display the user's current location within the map control, as well as set the type of map to use.

 Updating the WalkDistancePage code-behind using C#

Now that we have updated our user interface for our ContentPage using XAML, to include minor changes to our ScrollView control, as well as specify the Padding layout values for the arrangement of our child elements and specify properties for our CustomMap control, the next step is to begin updating the underlying C# code within our WalkDistancePage code-behind file in order to communicate with our WalkDistancePageViewModel. This will be used to interact with our Map control and place a pin placeholder that will contain information associated with the chosen walk trail from the ListView contained within our WalksMainPage.

Let's take a look at how we can achieve this by following these steps:

Open the WalkDistancePage.xaml.cs code-behind file, ensuring that it is displayed within the code editor, and enter the following code snippet:

 //
 // WalkDistancePage.xaml.cs
 // Displays related trail information within a map using a
 // pin placeholder
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;
 using Xamarin.Forms.Maps;

 namespace TrackMyWalks.Views
 {
 public partial class WalkDistancePage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalkDistancePageViewModel _viewModel =>
 BindingContext as WalkDistancePageViewModel;

 public WalkDistancePage()
 {
 InitializeComponent();

 // Update the Title and Initialise our BindingContext
 // for the Page
 Title = "Distance Travelled Information";
 this.BindingContext = new WalkDistancePageViewModel();

 // Create a pin placeholder within the map containing the
 // walk information
 customMap.Pins.Add(new Pin
 {
 Type = PinType.Place,
 Position = new Position(_viewModel.Latitude, _viewModel.Longitude),
 Label = _viewModel.Title,
 Address = "Difficulty: " + _viewModel.Difficulty + " Total Distance: " +
 _viewModel.Distance, Id = _viewModel.Title
 });

 // Create a region around the map within a one-kilometer radius
 customMap.MoveToRegion(MapSpan.FromCenterAndRadius(new
 Position(_viewModel.Latitude, _viewModel.Longitude),
 Distance.FromKilometers(1.0)));
 }

 // Instance method that ends the current trail and returns
 // back to the main screen
 public void EndThisTrailButton_Clicked(object sender, EventArgs e)
 {
 App.SelectedItem = null;
 Navigation.PopToRootAsync(true);
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including a reference to the TrackMyWalks.ViewModels namespace so that we can access the classes and instance methods that are defined within the namespace, and then return the BindingContext that will be used by our WalkDistancePage ContentPage by defining a getter property that points to our WalkDistancePageViewModel.

	Next, we modified the Title property and initialized and set the BindingContext of our WalkDistancePage to a new instance of our WalkDistancePageViewModel.

	Then, we created a pin placeholder within our map by using the Pins.Add method of our CustomMap, and then specified the Type and Position properties of the CustomMap by using the Latitude and Longitude coordinates of the chosen walk trail.

	Finally, we assigned values for the Title and Address, as well as an Id for our pin placeholder, and then called the MoveToRegion method to create a region around the map within a 1-k radius around the trail walk area.

You have created all of the necessary ViewModels and have updated each of the user interface files using XAML, as well as implemented the necessary instance and event methods and have made the necessary changes to the underlying C# code for our app. The next step is to compile, build, and run the TrackMyWalks application within the iOS simulator.

 Launching the TrackMyWalks app using the iOS simulator

In this section, we will take a look at how to compile and run the TrackMyWalks application. You have the option of choosing to run your application using an actual device or choosing from a list of iOS simulators that mimic each of the different types of iOS devices.

Let's begin by performing the following steps:

	Ensure that you have chosen the Debug | iPhone Simulator from the drop-down menu.

	Next, choose your preferred device from the list of available iOS Simulators.

	Then, select the Run | Start Debugging menu option, as shown in the following screenshot:

Launching the TrackMyWalks app within the iOS Simulator

	Alternatively, you can also build and run the TrackMyWalks application by pressing the Command + Return key combinations.

When the compilation is complete, the iOS Simulator will appear automatically and the TrackMyWalks application will be displayed, as shown in the following screenshot:

Adding of new Trail details with Validation

As you can see from the preceding screenshot, it displays our TrackMyWalks application, along with a list of static walk entries that have been defined within our WalksMainPageViewModel and displayed within our ListView. Clicking on the Add button will display the Adding Trail Details, where you can begin entering information related to the trail. You will notice that, since we are creating a new trail walk entry, our Title, Trail Difficulty Level, as well as the Distance EntryCell fields have been populated with the default values that we specified within our WalkEntryPageViewModel.

Clicking on the Save button will display a dialog asking the user if they would like to proceed and save changes. When clicking on the OK button without specifying values for both the Title and Description EntryCell fields, they will receive the Validation Error dialog. Alternatively, clicking on the Cancel button from the Save Walk Entry Item dialog will redirect the user back to the Track My Walks Listing screen:

Deleting an existing Walk Entry Item

The preceding screenshot shows you the navigation flow between each of the pages whenever a trail item that needs to be edited has been selected from the ContextActions MenuItems. When the Edit option has been selected, this will display the Editing Trail Details screen, where the user can make changes and save this back to the model. Alternatively, if the user chooses the Delete button, this will display the Delete Walk Entry Item dialog, asking the user if they would like to proceed with the deletion.

Clicking on the OK button, the code will proceed and remove the item from the WalksListModel within our ViewModel, but will reappear when the ListView is refreshed the next time round. As we progress throughout this book, we will be refactoring these pages to allow this to happen. Alternatively, clicking on the Cancel button will dismiss the dialog:

Navigation flow whenever a walk trail has been selected

The preceding screenshot shows the navigation flow between each of the pages whenever a trail has been selected from the ListView, with the final screen showing the Distance Travelled Information ContentPage, along with a marker pinpointing the coordinates related to the chosen trail, along with its associated information.

 Summary

In this chapter, we learned about the architecture behind the MVVM architecture pattern, as well as the different components and roles that they play. You then learned how to create an abstract BaseViewModel class that contained various properties with additional class methods.

We then created various ViewModel classes that inherited the properties and methods from our BaseViewModel class, and then proceeded to make some additional changes to each of the user interface ContentPages using XAML. Next, we updated each of the code-behind files for each of our ContentPages in order to implement the ViewModels so that the bindable object properties defined within the XAML could be bound to those properties defined within the associated ViewModel.

Lastly, you learned how to work with ContextActions and specified the associated Clicked method event for each menu item within the WalksMainPage XAML. You also implemented the instance methods to the MenuItems when they were clicked, before running the TrackMyWalks app within the iOS Simulator.

In the next chapter, you'll build upon your working knowledge of the MVVM architectural design pattern and learn how to navigate smoothly between each ViewModel by creating a C# class that will act as a navigation service for our app, and then refactor the existing ViewModels to allow navigation between these views to happen.

 Navigating Within the Mvvm Model

In the previous chapter, you learned about the Model-View-ViewModel (MVVM) architecture, as well as how to implement the MVVM pattern within the TrackMyWalks application. You learned how to create a BaseViewModel base class that each of our ViewModels will inherit from, as well as how to go about creating the associated C# class files for each of our ViewModels that will data bind to each of the properties defined within our XAML Pages. Finally, you learned how to add ContextActions to your (XAML) content pages, and how to implement the code action events within your code, so that you can respond to those actions.

In this chapter, you'll learn how to leverage what you already know about the MVVM architectural design pattern to learn how to navigate between each of the ViewModels within our TrackMyWalks application.

You'll learn how to create a NavigationService Interface and Class, as well as update our BaseViewModel base class, which will include a reference to our NavigationService class that each of our ViewModels will utilize. Finally, you will update each of the ViewModels as well as each of the XAML pages to allow navigation between these pages to happen.

This chapter will cover the following points:

	Understanding the Xamarin.Forms Navigation API

	Creating and implementing a NavigationService class that each of our ViewModels will use

	Updating the XAML code-behind pages to use the NavigationService class

	Updating the underlying ViewModels to use the NavigationService class

	Implementing the data bindings within our user interfaces using XAML

 Understanding the Xamarin.Forms Navigation API

In this section, we will take a look at the Xamarin.Forms Navigation API architectural pattern, as well as gain an understanding of the different types of navigation patterns that are available for us. The Xamarin.Forms Navigation API is exposed through the Xamarin.Forms.INavigation interface, and is implemented by using the Navigation property. This can be called from any Xamarin.Forms object, typically from the Xamarin.Forms.Page, which inherits from the ContentPage class that is part of the Xamarin.Forms.Core assembly namespace.

The Xamarin.Forms Navigation API supports two different types of navigation: Hierarchical and Modal. The following table provides a brief description of what each area is used for:

	
Type

	
Description

	
Hierarchical

	
The Hierarchical navigation type is basically a stack-based navigation pattern that enables users to move iteratively through each of the Views within the hierarchy, and then navigate back out again, one screen at a time, thus removing them from the navigation stack.

	
Modal

	
The Modal navigation type is a single pop-up screen that interrupts the hierarchical navigation by requiring that the user respond to an action, prior to the screen or popup being dismissed.

The Hierarchical navigation provides a means of navigating through the navigational structure and is the most widely used approach. This involves the user tapping their way forward through a series of pages and navigating back through the navigation stack, using the navigation methods available on Android or iOS devices.

The following diagram shows the process of moving from one page to another within the Hierarchical model, and what happens when popping pages from the navigation stack:

Navigating within the Hierarchical model

As you can see from the preceding screenshot, whenever a View is pushed onto the navigation stack, this will become the most active page. Alternatively, when you want to return to the previous page, the application will start to Pop the current page from the navigation stack, and the new top-most View will then become the active View. The Modal navigation pattern displays a View on top of the current View that prevents the user from interacting with the View underneath it. This approach provides the user with choices for what they want to do prior to the Modal View being closed.

The INavigation interface, which is part of the Xamarin.Forms.NavigationPage, implements and exposes two separate read-only properties: NavigationStack and ModalStack. This will allow you to view both the Hierarchical and Modal navigation stacks. The INavigation interface provides you with a number of methods that allow you to asynchronously Push (Add) and Pop (Remove) Views onto the navigation stack and modal stacks, which are explained in the following table, along with a brief description of what each area is used for:

	
Type

	
Description

	
PushAsync(Page page)

	
The PushAsync(Page page) method adds a new Page to the top of the navigation stack that enables users to move deeper within the View hierarchy.

	
PopAsync()

	
The PopAsync() method allows you to navigate back through the navigation stack to the previous page, but only if one has previously been added to the navigation stack.

	
PushModalAsync(Page page)

	
The PushModalAsync(Page page) method allows you to display the Page modally whenever you need to display an informational message to the user, or to request information from the user. A good example of a Modal page would be a sign-in page where you need to get the user's credentials.

	
PopModalAsync()

	
The PopModalAsync() method allows you to dismiss the currently displayed Page and returns you through the navigation stack to the Page that is displayed underneath.

As well as the aforementioned navigational methods, the Xamarin.Forms.INavigation interface provides you with a number of additional methods that will help you manipulate the navigation stack, which are explained in the following table, along with a brief description of what each area is used for:

	
Type

	
Description

	
InsertPageBefore(Page page, Page before)

	
The InsertPageBefore(Page page, Page before) method allows you to insert a new Page before a specific Page that has already been added to the navigation stack.

	
RemovePage(Page page)

	
The RemovePage(Page page) method allows you to remove a specific Page within the navigation stack.

	
PopToRootAsync()

	
The PopToRootAsync() method allows you to navigate back to the first Page that is contained within the navigation stack, as well as remove all of the other Pages contained within the navigation stack hierarchy.

Now that you have a reasonably good understanding of each of the components that are contained within the Navigation API architectural pattern, our next step is to begin learning about some of the different approaches for navigating between Views and ViewModels.

 Differences between the Navigation and ViewModel approaches

In this section, we will take a look at the different approaches when performing navigation within your ViewModels that are contained within a Xamarin.Forms application. Whenever you navigate between your ViewModels, there are a couple of approaches you should consider before going down this path.

One approach would be to use the View (Page) navigation approach, which involves navigating to another View by using a direct reference to that page, for example, using Navigation.PushAsync(new WalksMainPage());. Alternatively, if you want to use the ViewModel approach to navigate to a View (Page) using the associated Views (Page) ViewModel, you would first need to form some sort of mapping between each of the Views (Page) as well as their associated ViewModels.

By creating a Dictionary or key-value type property within the NavigationService, this will maintain a one-to-one mapping for each of the Views and their associated ViewModel. In the MVVM architectural pattern, any actions that are taken by the user on a particular View (Page) are bound to commands that are part of the View (Page), as well as the ViewModels, and so this process needs to be thought through differently when navigating to another View (Page), or even the previous View (Page) within the navigation stack, when performing such tasks as saving data or updating a map's location.

As such, we need to rethink how we can achieve navigating through our ViewModels, which leverages the MVVM architectural design pattern within our app, so that it can be controlled by the ViewModels and not by the underlying Views (Pages).

Now that you have a good understanding of the different ways in which you can navigate through your Views (Pages), by either using the Navigation approach or using the ViewModel approach that leverages the MVVM architectural design pattern approach, our next step is to begin creating and implementing the NavigationService class, which will be used to help you navigate within the ViewModels for our TrackMyWalks application.

 Creating and implementing the NavigationService interface

In this section, we will take a look at how to create the INavigationService class, which will essentially contain various instance methods that will be used by our BaseViewModel class, that each of our ViewModels class constructors will implement in the INavigationService interface. The advantage of creating an INavigationService class is that it's much easier to add additional class instance methods that will be used by those ViewModels that utilize this interface.

Let's start by creating the NavigationService class for our TrackMyWalks app by performing the following steps:

	Ensure that the TrackMyWalks solution is open within the Visual Studio for Mac IDE.

	Next, right-click on the TrackMyWalks project, and choose Add|New Folder from the pop-up menu, as shown in the following screenshot:

Creating the Services folder within the TrackMyWalks project

	Then, enter Services for the name of the new folder to be created, right-click on the Services folder, and choose Add|New File... from the pop-up menu, as shown in the following screenshot:

Adding a New File to the Services folder

	Next, choose the Empty Interface option under the General section and enter INavigation for the name of the class to be created, as shown in the following screenshot:

Creating the INavigationService Interface

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our INavigationService interface, we can proceed with implementing the required code for our class.

	Locate and open the INavigationService.cs file, which is located as part of the TrackMyWalks group, and ensure that it is displayed within the code editor. Enter the following code snippet:

 //
 // INavigationService.cs
 // Navigation Service Interface that each of our ViewModels will use
 //
 // Created by Steven F. Daniel on 16/06/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Threading.Tasks;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;

 namespace TrackMyWalks.Services
 {
 public interface INavigationService
 {
 // Asynchronously removes the most recent page from the navigation stack.
 Task<Page> RemoveViewFromStack();

 // Returns to the Root Page after removing the current page from the
 // navigation stack
 Task BackToMainPage();

 // Navigate to a particular ViewModel within our MVVM Model
 Task NavigateTo<TVM>() where TVM : BaseViewModel;
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we started by creating an interface class that will contain various class instance methods that will be utilized by our NavigationService class, as well as our Views (Content Page) and within our ViewModels.

	Then, we declared a RemoveViewFromStack instance method, which will be responsible for removing the most recent page from within the navigation stack.

	Next, we declared a BackToMainPage instance method, which will be responsible for returning the user back to the Root main page, after removing the current page from the navigation stack.

	Finally, we declared our NavigateTo instance method, which declares a generic type that will be used to restrict the ViewModel to only use objects of the BaseViewModel base class.

The Task class is essentially used to handle asynchronous operations, which is done by ensuring that the method you initiated will eventually finish, thus completing the task and returning a Task object, almost instantaneously, although the underlying work within the method could likely finish later.

Whenever you use the Task object, you can use the await keyword to wait for the task to complete, which will essentially block the current thread, and wait until the asynchronous method has completed.

 Creating and implementing the NavigationService class

In this section, we will take a look at how to create the NavigationService class, which will inherit from our INavigationService interface and implement the underlying instance methods that we declared within our interface class to help navigate between our ViewModels.

Let's start by creating the NavigationService class for our TrackMyWalks app by performing the following steps:

	Ensure that the TrackMyWalks solution is open within the Visual Studio for Mac IDE.

	Next, right-click on the Services folder, and choose Add|New File... from the pop-up menu.

	Then, choose the Empty Class option under the General section and enter NavigationService for the name of the class to be created, as shown in the following screenshot:

Creating the NavigationService Class

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our NavigationService class, we can proceed with implementing the required code for our class.

	Locate and open the NavigationService.cs file, which is located as part of the TrackMyWalks group, and ensure that it is displayed within the code editor. Enter the following code snippet:

 //
 // NavigationService.cs
 // Navigation Service Class that each of our ViewModels will utilise
 //
 // Created by Steven F. Daniel on 16/06/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Reflection;
 using System.Threading.Tasks;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;

 [assembly: Dependency(typeof(NavigationService))]
 namespace TrackMyWalks.Services
 {
 public class NavigationService : INavigationService
 {
 public INavigation XFNavigation { get; set; }
 readonly IDictionary<Type, Type> _viewMapping = new Dictionary<Type, Type>();

 // Register our ViewModel and View within our Dictionary
 public void RegisterViewMapping(Type viewModel, Type view)
 {
 _viewMapping.Add(viewModel, view);
 }
 // Removes the most recent Page from the navigation stack.
 public Task<Page> RemoveViewFromStack()
 {
 return XFNavigation.PopAsync();
 }
 // Returns to the Root Page after removing the current page
 // from the navigation stack
 public Task BackToMainPage()
 {
 return XFNavigation.PopToRootAsync(true);
 }
 // Navigates navigates to a specific ViewModel
 public async Task NavigateTo<TVM>() where TVM : BaseViewModel
 {
 await NavigateToView(typeof(TVM));
 if (XFNavigation.NavigationStack.Last().BindingContext is BaseViewModel)
 await ((BaseViewModel)(XFNavigation.NavigationStack.Last().
 BindingContext)).Init();
 }
 // Navigates to a specific ViewModel within our dictionary
 // viewMapping
 public async Task NavigateToView(Type viewModelType)
 {
 Type viewType;
 if (!_viewMapping.TryGetValue(viewModelType, out viewType))
 throw new ArgumentException("No view found in View Mapping
 for " + viewModelType.FullName + ".");

 var constructor = viewType.GetTypeInfo().
 DeclaredConstructors.FirstOrDefault(
 dc =>!dc.GetParameters().Any());

 var view = constructor.Invoke(null) as Page;
 await XFNavigation.PushAsync(view, true);
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we started by initializing our NavigationService class to be marked as a dependency by adding the Dependency metadata attribute so that it can be resolved by the Xamarin.Forms DependencyService class. This will enable our class to find and use the method implementations defined by our INavigationService interface.

	Next, we need to ensure that our NavigationService class inherits from the INavigationService interface so that it can access the instance methods, as well as any getters and setters.

	Then, we created an INavigationService property called XFNavigation, which will provide our class with a reference to the current navigation instance that will need to be set up when the navigation service class is first initialized within our App.xaml.cs file.

	Next, we declared a _viewMapping variable, which will be used to store all of the ViewModel and Views (Pages) mappings, prior to declaring a RegisterViewMapping instance method, which will be used to register each of our ViewModels and Views (Pages) within our Dictionary _viewMapping object.

	Next, we created our RemoveViewFromStack instance method, which will be responsible for removing the most recently added page from within our navigation stack, and created a BackToMainPage instance method, which will be responsible for removing all of the pages from the navigation stack, including the current page, and display the Root page.

	Then, we created our NavigateTo instance method, which will be used to navigate to a specific ViewModel that is contained within our _viewMapping Dictionary object, by calling the NavigateToView instance method, and then calling the Init method within the associated ViewModel to initialize the BindingContext.

	Finally, we created our NavigateToView instance method, which accepts the ViewModel as a parameter, and which will be used to navigate to the specified ViewModel within our _viewMapping object. We used the TryGetValue method to check to see whether the view can be found within the _viewMapping Dictionary. Then, we navigate to the ViewModel if it is found.

For more information on the DependencyService class, refer to the Microsoft Developer Documentation at https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/dependency-service/introduction.

 Updating the BaseViewModel to use the navigation service

Now that we have created both our NavigationService Interface and Class, we will be able to navigate within our ViewModels. The next step is to update the underlying C# code within our BaseViewModel class. Since our BaseViewModel class is used by each of our ViewModels, it makes sense to add these additional properties and instance methods within the BaseViewModel class.

Let's take a look at how we can achieve this by following these steps:

	Open the BaseViewModel.cs class, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 //
 // BaseViewModel.cs
 // BaseView Model Class that each of our ViewModels will inherit from
 //
 // Created by Steven F. Daniel on 5/06/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.ComponentModel;
 using System.Runtime.CompilerServices;
 using System.Threading.Tasks;
 using TrackMyWalks.Services;

 namespace TrackMyWalks.ViewModels
 {
 public abstract class BaseViewModel : INotifyPropertyChanged
 {
 public INavigationService Navigation { get; set; }
 public const string PageTitlePropertyName = "PageTitle";

 string pageTitle;
 public string PageTitle
 {
 get => pageTitle;
 set { pageTitle = value; OnPropertyChanged(); }
 }
 protected BaseViewModel(INavigationService navService)
 {
 Navigation = navService;
 }
 public abstract Task Init();
 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void OnPropertyChanged([CallerMemberName]
 string propertyName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
 }
 public abstract class BaseViewModel<TParam> : BaseViewModel
 {
 protected BaseViewModel(INavigationService navService) : base(navService)
 {
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including a reference to the TrackMyWalks.Services namespace so that we can access the classes and instance methods that are defined within the namespace.

	Finally, we created a Navigation property that points to our INavigationService class and defines the getter and setter properties. We also modified the BaseViewModel class constructor to include a parameter called navService, which will be required by each of the ViewModels that inherit from this class.

 Updating the WalksMainPageViewModel using C#

Now that we have updated our BaseViewModel class to reference our NavigationService class, which will be used and inherited by each of the ViewModels that we create, we can now proceed and start updating the WalksMainPageViewModel class so that it can use our navigation service.

Let's take a look at how we can achieve this by following these steps:

	Ensure that the TrackMyWalks solution is open within the Visual Studio for Mac IDE.

	Open the WalksMainPageViewModel.cs class, ensuring that it is displayed within the code editor, and enter the following highlighted code sections within the code snippet:

 //
 // WalksMainPageViewModel.cs
 // The ViewModel for our WalksMainPage ContentPage
 //
 // Created by Steven F. Daniel on 5/06/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.Collections.ObjectModel;
 using System.Threading.Tasks;
 using TrackMyWalks.Models;
 using TrackMyWalks.Services;

 namespace TrackMyWalks.ViewModels
 {
 public class WalksMainPageViewModel : BaseViewModel
 {
 // Create our WalksListModel Observable Collection
 public ObservableCollection<WalkDataModel> WalksListModel;
 public WalksMainPageViewModel(INavigationService navService) : base(navService)
 {
 }

 // Instance method to add and retrieve our Walk Trail items
 public void GetWalkTrailItems()
 {
 // Specify our List Collection to store the items being read
 WalksListModel = new ObservableCollection<WalkDataModel>();

 // Populate our collection with some dummy data that will be
 // used to populate our ListView
 ...
 ...
 // Instance method to initialise the WalksMainPageViewModel
 public override async Task Init()
 {
 await Task.Factory.StartNew(() =>
 {
 // Call our GetWalkTrailItems method to populate our
 // collection
 GetWalkTrailItems();
 });
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including a reference to the TrackMyWalks.Services namespace so that we can access the classes and instance methods that are defined within the namespace.

	Finally, we modified the WalksMainPageViewModel class constructor to include a parameter called navService that references our INavigationService interface. Since our ViewModel inherits from the BaseViewModel class, we have to honor this agreement.

 Updating the WalksMainPage code-behind using C#

Now that we have updated our WalksMainPageViewModel to take advantage of our NavigationService, which will enable our ViewModel to navigate within the navigation stack, the next step is to begin updating the underlying C# code within our WalksMainPage code-behind file so that it will communicate with our ViewModel so that we can navigate.

Let's take a look at how we can achieve this by following these steps:

	Open the WalksMainPage.xaml.cs code-behind file, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 //
 // WalksMainPage.xaml.cs
 // Displays Walk Information within a ListView control from an array
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using TrackMyWalks.Models;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class WalksMainPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalksMainPageViewModel _viewModel => BindingContext as WalksMainPageViewModel;

 public WalksMainPage()
 {
 InitializeComponent();

 // Update the Title and Initialise our BindingContext for the Page
 this.Title = "Track My Walks Listing";
 this.BindingContext = new WalksMainPageViewModel(DependencyService.
 Get<INavigationService>());
 }

 // Instance method to call the WalkEntryPage to add a Walk Entry
 public async void AddWalk_Clicked(object sender, EventArgs e)
 {
 App.SelectedItem = null;
 await _viewModel.Navigation.NavigateTo<WalkEntryPageViewModel>();
 }

 // Instance method to call the WalkTrailInfoPage using the selected item
 public async void myWalkEntries_ItemTapped(object sender, ItemTappedEventArgs e)
 {
 // Get the selected item from our ListView
 App.SelectedItem = e.Item as WalkDataModel;
 await _viewModel.Navigation.NavigateTo<WalkTrailInfoPageViewModel>();
 }

 // Instance method to call the WalkEntryPage to allow item to be edited
 public async void OnEditItem(object sender, EventArgs e)
 {
 // Get the selected item to be edited from our ListView
 var selectedItem = (WalkDataModel)((MenuItem)sender).CommandParameter;
 App.SelectedItem = selectedItem;
 await _viewModel.Navigation.NavigateTo<WalkEntryPageViewModel>();
 }

 // Instance method to remove the trail item from our collection
 public async void OnDeleteItem(object sender, EventArgs e)
 {
 // Get the selected item to be deleted from our ListView
 var selectedItem = (WalkDataModel)((MenuItem)sender).CommandParameter;

 // Prompt the user with a confirmation dialog to confirm
 if (await DisplayAlert("Delete Walk Entry Item", "Are you sure you want
 to delete this Walk Entry Item?", "OK", "Cancel"))
 {
 // Remove Walk Item from our WalkListModel collection
 _viewModel.WalksListModel.Remove(selectedItem);
 }
 else
 return;
 }

 // Method to initialise our View Model when the ContentPage appears
 protected override async void OnAppearing()
 {
 base.OnAppearing();

 if (_viewModel != null)
 {
 // Call the Init method to initialise the ViewModel
 await _viewModel.Init();
 }

 // Set up and initialise the binding for our ListView
 WalkEntriesListView.SetBinding(ItemsView<Cell>.ItemsSourceProperty,
 new Binding("."));
 WalkEntriesListView.BindingContext = _viewModel.WalksListModel;
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including a reference to the TrackMyWalks.Services namespace so that we can access the classes and instance methods that are defined within the namespace.

	Next, we modified the BindingContext of our WalksMainPage to a new instance of our WalksMainPageViewModel, which uses the DependencyService class and includes our INavigationService interface.

	Then, we updated the AddWalk_Clicked instance method to use the NavigateTo instance method of the _viewModel.Navigation property that takes the WalkEntryPageViewModel as the ViewModel to navigate within the navigation stack.

	Next, we updated the myWalkEntries_ItemTapped instance method to use the NavigateTo instance method of the _viewModel.Navigation property that takes the WalkTrailInfoPageViewModel as the ViewModel to navigate within the navigation stack.

	Finally, we updated the OnEditItem instance method that will be called whenever the Edit context menu item is tapped within the ListView. We use the NavigateTo instance method of the _viewModel.Navigation property that accepts the WalkEntryPageViewModel as the ViewModel to navigate within the navigation stack.

 Updating the WalkEntryPageViewModel using C#

Now that we have updated our WalksMainPage code-behind file so that it can reference our NavigationService class, thereby enabling it to navigate to our ViewModels within our navigation stack, we can proceed and start updating the WalksEntryPageViewModel class so that it can use our navigation service.

Let's take a look at how we can achieve this by following these steps:

	Ensure that the WalkEntryPageViewModel.cs file is displayed within the code editor and enter in the following highlighted code sections within the code snippet:

 //
 // WalkEntryPageViewModel.cs
 // The ViewModel for our WalkEntryPage ContentPage
 //
 // Created by Steven F. Daniel on 5/06/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Threading.Tasks;
 using TrackMyWalks.Models;
 using TrackMyWalks.Services;

 namespace TrackMyWalks.ViewModels
 {
 public class WalkEntryPageViewModel : BaseViewModel
 {
 public WalkEntryPageViewModel(INavigationService navService) : base(navService)
 {
 // Update the title if we are creating a new Walk Entry
 if (App.SelectedItem == null)
 {
 PageTitle = "Adding Trail Details";
 App.SelectedItem = new WalkDataModel();

 // Set the default values when creating a new Trail
 Title = "New Trail Entry";
 Difficulty = "Easy";
 Distance = 1.0;
 }
 else
 {
 // Otherwise, we must be editing an existing entry
 PageTitle = "Editing Trail Details";
 }
 }
 ...
 ...
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including a reference to the TrackMyWalks.Services namespace so that we can access the classes and instance methods that are defined within the namespace.

	Finally, we modified the WalkEntryPageViewModel class constructor to include a parameter called navService that references our INavigationService interface. Since our ViewModel inherits from the BaseViewModel class, we have to honor this agreement.

 Updating the WalkEntryPage code-behind using C#

Now that we have updated our WalkEntryPageViewModel to take advantage of the NavigationService that will enable our ViewModel to navigate within the navigation stack, the next step is to begin updating the underlying C# code within our WalkEntryPage code-behind file so that it will communicate with our ViewModel to allow for navigation.

Let's take a look at how we can achieve this by following these steps:

	Open the WalkEntryPage.xaml.cs code-behind file, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 //
 // WalkEntryPage.xaml.cs
 // Data Entry screen that allows new walk information to be added
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class WalkEntryPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalkEntryPageViewModel _viewModel => BindingContext as WalkEntryPageViewModel;

 public WalkEntryPage()
 {
 InitializeComponent();

 // Update the Title and Initialise our BindingContext
 // for the Page
 Title = "New Walk Entry Page";
 BindingContext = new WalkEntryPageViewModel(DependencyService.
 Get<INavigationService>());
 SetBinding(TitleProperty, new Binding(BaseViewModel.PageTitlePropertyName));
 }

 // Instance method that saves the new walk entry
 public async void SaveWalkItem_Clicked(object sender, EventArgs e)
 {
 // Prompt the user with a confirmation dialog to confirm
 if (await DisplayAlert("Save Walk Entry Item",
 "Proceed and save changes?", "OK", "Cancel"))
 {
 // Attempt to save and validate our Walk Entry Item
 if (!_viewModel.ValidateFormDetailsAndSave())
 // Error Saving - Must have Title and description
 await DisplayAlert("Validation Error", "Title and
 Description are required.", "OK");
 else
 // Navigate back to the Track My Walks Listing page
 await _viewModel.Navigation.RemoveViewFromStack();
 }
 else
 {
 // Navigate back to the Track My Walks Listing page
 await _viewModal.Navigation.RemoveViewFromStack();
 }
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including a reference to the TrackMyWalks.Services namespace so that we can access the classes and instance methods that are defined within the namespace.

	Next, we modified the BindingContext of our WalkEntryPage to a new instance of our WalkEntryPageViewModel that uses the DependencyService class and includes our INavigationService interface.

	Finally, we updated the SaveWalkItem_Clicked instance method to use the PopToRootAsync instance method of the _viewModel.Navigation property to remove the WalkEntryPage from the navigation stack. Alternatively, if no validation errors have occurred, or we click Cancel within the confirmation dialog, we can use the PopToRootAsync method of the _viewModel.Navigation property to remove the WalkEntryPage from the navigation stack.

 Updating the WalkTrailInfoPageViewModel using C#

Now that we have updated our WalkEntryPage code-behind file so that it can reference our NavigationService class so that it can navigate to our ViewModels within our navigation stack, we can now proceed and start updating the WalkTrailInfoPageViewModel class so it can use our navigation service.

Let's take a look at how we can achieve this by following these steps:

	Ensure that the WalkTrailInfoPageViewModel.cs file is displayed within the code editor and enter the following highlighted code sections within the code snippet:

 //
 // WalkTrailInfoPageViewModel.cs
 // The ViewModel for our WalkTrailInfoPage ContentPage
 //
 // Created by Steven F. Daniel on 5/06/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Threading.Tasks;
 using TrackMyWalks.Services;

 namespace TrackMyWalks.ViewModels
 {
 public class WalkTrailInfoPageViewModel : BaseViewModel
 {
 public WalkTrailInfoPageViewModel(INavigationService navService) : base(navService)
 {
 }
 // Update each control on the WalkTrailInfoPage with values
 // from our Model
 ...
 ...
 // Instance method to initialise the WalkTrailInfoPageViewModel
 public override async Task Init()
 {
 await Task.Factory.StartNew(() =>
 {
 });
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including a reference to the TrackMyWalks.Services namespace so that we can access the classes and instance methods that are defined within the namespace.

	Finally, we modified the WalkTrailInfoPageViewModel class constructor to include a parameter called navService that references our INavigationService interface. Since our ViewModel inherits from the BaseViewModel class, we have to honor this agreement.

 Updating the WalkTrailInfoPage code-behind using C#

Now that we have updated our WalkTrailInfoPageViewModel to take advantage of the NavigationService that will enable our ViewModel to navigate within the navigation stack, the next step is to begin updating the underlying C# code within our WalkTrailInfoPage code-behind file so that it will communicate with our ViewModel to allow for navigation.

Let's take a look at how we can achieve this by following these steps:

	Open the WalkTrailInfoPage.xaml.cs code-behind file, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 //
 // WalkTrailInfoPage.xaml.cs
 // Displays related trail information chosen from the WalksMainPage
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using Xamarin.Forms;
 using TrackMyWalks.ViewModels;
 using TrackMyWalks.Services;

 namespace TrackMyWalks.Views
 {
 public partial class WalkTrailInfoPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalkTrailInfoPageViewModel _viewModel => BindingContext as WalkTrailInfoPageViewModel;

 public WalkTrailInfoPage()
 {
 InitializeComponent();

 // Update the Title and Initialise our BindingContext for the Page
 this.Title = "Trail Walk Information";
 this.BindingContext = new WalkTrailInfoPageViewModel(DependencyService.
 Get<INavigationService>());
 }

 // Instance method that proceeds to begin a new walk trail
 public async void BeginTrailWalk_Clicked(object sender, EventArgs e)
 {
 if (App.SelectedItem == null)
 return;
 await _viewModel.Navigation.NavigateTo<WalkDistancePageViewModel>();
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including a reference to the TrackMyWalks.Services namespace so that we can access the classes and instance methods that are defined within the namespace.

	Next, we modified the BindingContext of our WalkTrailInfoPage to a new instance of our WalkTrailInfoPageViewModel that uses the DependencyService class and includes our INavigationService interface.

	Finally, we updated the BeginTrailWalk_Clicked instance method to use the NavigateTo instance method of the _viewModel.Navigation property that takes the WalkDistancePageViewModel as the ViewModel to navigate to within the navigation stack.

 Updating the WalkDistancePageViewModel using C#

Now that we have updated our WalkTrailInfoPage code-behind file so that it can reference the NavigationService class, thereby enabling it to navigate to our ViewModels within our navigation stack, we can proceed and start updating the WalkDistancePageViewModel class so that it can use our navigation service.

Let's take a look at how we can achieve this by following these steps:

	Ensure that the WalkDistancePageViewModel.cs file is displayed within the code editor and enter the following highlighted code sections within the code snippet:

 //
 // WalkDistancePagePageViewModel.cs
 // The ViewModel for our WalkDistancePage ContentPage
 //
 // Created by Steven F. Daniel on 5/06/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Threading.Tasks;
 using TrackMyWalks.Services;

 namespace TrackMyWalks.ViewModels
 {
 public class WalkDistancePageViewModel : BaseViewModel
 {
 public WalkDistancePageViewModel(INavigationService navService) : base(navService)
 {
 }
 // Update each control on the WalkDistancePage with values
 // from our Model
 ...
 ...
 // Instance method to initialise the WalkDistancePageViewModel
 public override async Task Init()
 {
 await Task.Factory.StartNew(() =>
 {
 });
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including a reference to the TrackMyWalks.Services namespace so that we can access the classes and instance methods that are defined within the namespace.

	Finally, we modified the WalkDistancePageViewModel class constructor to include a parameter called navService that references our INavigationService interface. Since our ViewModel inherits from the BaseViewModel class, we have to honor this agreement.

 Updating the WalkDistancePage code-behind using C#

Now that we have updated our WalkDistancePageViewModel to take advantage of the NavigationService that will enable our ViewModel to navigate within the navigation stack, the next step is to begin updating the underlying C# code within our WalkDistancePage code-behind file so that it will communicate with our ViewModel to allow for navigation.

Let's take a look at how we can achieve this by following these steps:

	Open the WalkDistancePage.xaml.cs code-behind file, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 //
 // WalkDistancePage.xaml.cs
 // Displays related trail information within a map using a pin placeholder
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;
 using Xamarin.Forms.Maps;

 namespace TrackMyWalks.Views
 {
 public partial class WalkDistancePage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalkDistancePageViewModel _viewModel => BindingContext as WalkDistancePageViewModel;

 public WalkDistancePage()
 {
 InitializeComponent();

 // Update the Title and Initialise our BindingContext for the Page
 Title = "Distance Travelled Information";
 this.BindingContext = new WalkDistancePageViewModel(DependencyService.
 Get<INavigationService>());

 // Create a pin placeholder within the map containing the walk information
 customMap.Pins.Add(new Pin
 {
 Type = PinType.Place,
 Position = new Position(_viewModel.Latitude, _viewModel.Longitude),
 Label = _viewModel.Title,
 Address = "Difficulty: " + _viewModel.Difficulty +
 " Total Distance: " + _viewModel.Distance, Id = _viewModel.Title
 });

 // Create a region around the map within a one-kilometer radius
 customMap.MoveToRegion(MapSpan.FromCenterAndRadius(new
 Position(_viewModel.Latitude, _viewModel.Longitude),
 Distance.FromKilometers(1.0)));
 }

 // Instance method that ends the current trail and returns
 // back to the main screen
 public async void EndThisTrailButton_Clicked(object sender, EventArgs e)
 {
 App.SelectedItem = null;
 await _viewModel.Navigation.BackToMainPage();
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including a reference to the TrackMyWalks.Services namespace so that we can access the classes and instance methods that are defined within the namespace.

	Next, we modified the BindingContext of our WalkDistancePage to a new instance of our WalkDistancePageViewModel that uses the DependencyService class and includes our INavigationService interface.

	Finally, we updated the EndThisTrailButton_Clicked instance method to use the PopToRootAsync instance method of the _viewModel.Navigation property to remove the WalkDistancePage from the navigation stack.

 Updating the SplashPage code-behind using C#

Now that we have updated each of our ViewModels so that they can take advantage of our NavigationService class, as well as updating each of the underlying C# code, contained within the ContentPages for our TrackMyWalks application, the next step is to begin updating the underlying C# code within our SplashPage code-behind file. We do this in order to update the MainPage and NavigationBar color, as well as initialize the navigation service property for our application.

Let's take a look at how we can achieve this by following these steps:

	Open the SplashPage.xaml.cs code-behind file, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 //
 // SplashPage.xaml.cs
 // Displays a timed splash screen for the TrackMyWalks application
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.Threading.Tasks;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class SplashPage : ContentPage
 {
 public SplashPage()
 {
 InitializeComponent();
 }

 protected override async void OnAppearing()
 {
 base.OnAppearing();

 // Set a wait delay of 3 seconds on our Splash Screen
 await Task.Delay(3000);

 // Update the Main Page and update the NavigationBar
 // color for our app
 Application.Current.MainPage = new NavigationPage(
 new WalksMainPage())
 {
 BarBackgroundColor = Color.CadetBlue,
 BarTextColor = Color.White,
 };
 // Update the Application's Navigation Service property
 App.NavService.XFNavigation = Application.Current.MainPage.Navigation;
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We began by updating the OnAppearing method, which will initialize our ContentPage whenever it appears on-screen. Then, we modified the Application.Current.MainPage property to call our WalksMainPage by creating a new instance of the NavigationPage class, and then specified values for the BarBackgroundColor and BarTextColor properties of the NavigationPage class.

	Finally, we updated the application's App.NavService.XFNavigation property to point to the Navigation property of our MainPage object for our ContentPage.

 Updating the App.xaml class to use the navigation service

Now that we have successfully updated each of our ViewModels and ContentPages to take advantage of our NavigationService so that our ViewModels will be able to navigate to each ViewModel and ContentPage within the navigation stack, the next step is to make some additional changes within our OnStart method. We do this in order to declare a NavService property that will be used to navigate between each of our ViewModels, as well as create an instance of our navigation service class.

Finally, we will see how to register each of our ViewModels and ContentPages on our navigation stack and check to see what Target OS Platform we are running on so that we can call the appropriate NavigationPage.

Let's take a look at how we can achieve this by following these steps:

	Open the App.xaml.cs file, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 //
 // App.xaml.cs
 // Main class that gets called whenever our TrackMyWalks app is started
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using Xamarin.Forms;
 using Xamarin.Forms.Xaml;
 using TrackMyWalks.Views;
 using TrackMyWalks.Models;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;

 [assembly: XamlCompilation(XamlCompilationOptions.Compile)]
 namespace TrackMyWalks
 {
 public partial class App : Application
 {
 public App()
 {
 InitializeComponent();

 // Initialise and create an instance of our navigation
 // service class
 NavService = DependencyService.Get<INavigationService>() as NavigationService;
 }

 protected override void OnStart()
 {
 // Check what Target OS Platform we are running on whenever the app starts
 if (Device.RuntimePlatform.Equals(Device.Android))
 {
 // Set the Root Page for our Application
 MainPage = new NavigationPage(new SplashPage());
 }
 else
 {
 // Set the Root Page and update the NavigationBar color for our app
 MainPage = new NavigationPage(new WalksMainPage())
 {
 BarBackgroundColor = Color.IndianRed,
 BarTextColor = Color.White,
 };
 }

 // Set the current main page to our Navigation Service
 NavService.XFNavigation = MainPage.Navigation;

 // Register each of our View Models on our Navigation Stack
 NavService.RegisterViewMapping(typeof(WalksMainPageViewModel),
 typeof(WalksMainPage));
 NavService.RegisterViewMapping(typeof(WalkEntryPageViewModel),
 typeof(WalkEntryPage));
 NavService.RegisterViewMapping(typeof(WalkTrailInfoPageViewModel),
 typeof(WalkTrailInfoPage));
 NavService.RegisterViewMapping(typeof(WalkDistancePageViewModel),
 typeof(WalkDistancePage));
 }

 // Declare our SelectedItem property that will store our
 // Walk Trail details
 public static WalkDataModel SelectedItem { get; set; }

 // Declare our NavService property that will be used to
 // navigate between ViewModels
 public static NavigationService NavService { get; set; }

 protected override void OnSleep()
 {
 // Handle when your app sleeps
 }

 protected override void OnResume()
 {
 // Handle when your app resumes
 }
 }
 }

Now, let's start by taking a look at what we defined within the preceding XAML:

	We started by including a reference to the TrackMyWalks.Services namespace, and then, within the App constructor, we updated the NavService property to an instance of our NavigationService class. We did this by using the DependencyService class, which includes our INavigationService interface.

	Next, within the OnStart method, we checked to see what OS Platform we were running on when the application started using the Device.RuntimePlatform method. We performed a check to see whether we were running on the Android platform using the Device class and set the MainPage class to a new NavigationPage instance of our SplashPage.

	Then, we created a new instance of the NavigationPage class and set the Navigation property of the MainPage class to our XFNavigation.NavService property, prior to updating BarBackgroundColor and BarTextColor of the NavigationBar class.

	Next, we called the RegisterViewMapping instance method on the NavService property to register each of our ViewModels and the associated XAML ContentPages to our navigation stack.

	Finally, we declared a static variable called NavService that points to our NavigationService, which will be used to handle all of the navigation within our navigation stack.

 Summary

In this chapter, we learned about the architecture behind the Xamarin.Forms Navigation API architecture, which provides us with a better method of performing navigation within the ViewModel. Then, we learned the differences between navigating using the Navigation and the ViewModel approaches.

You then learned how to create and implement a Navigation Interface and Class that will be used by each of our ViewModels to handle the navigation between our Views and ViewModels. We then updated our BaseViewModel class to include a property to our INavigationService interface.

Lastly, we updated each of our ViewModels to make use of the INavigation interface, as well as the code-behind files for each of our ContentPages that will implement the ViewModels, so that the bindable object properties defined within the XAML can be bound to those properties that are defined within the associated ViewModel.

In the next chapter, you'll learn how to incorporate platform-specific features within your app, depending on the mobile platform that is being run, as well as learn how to incorporate the Xam.Plugin.Geolocator NuGet package that you will use in order to create a LocationService Interface and Class. This will include a number of class instance methods that both our iOS and Android platforms will use to obtain current GPS coordinates and handle location updates in the background on the device.

 Adding Location-based Features Within Your App

In the previous chapter, we learned how to leverage what we already know about the Model-View-ViewModel (MVVM) architectural design pattern and learned how to navigate between each of our ViewModels within our TrackMyWalks application. You learned how to create a BaseViewModel base class that each of our ViewModels will inherit from, as well as how to go about creating the associated C# class files for each of our ViewModels that will data bind to each of the properties defined within our XAML pages.

To end the chapter, you learned how to add ContextActions to your (XAML) content pages, and how to implement the code action events within your code so that you can respond to those actions.

In this chapter, you'll learn how to incorporate platform-specific features within your application, dependent on the mobile platform that is being run, as well as learn how to incorporate the Xam.Plugin.Geolocator NuGet package that you will use in order to create a LocationService Interface and Class, which will include a number of class instance methods that both our iOS and Android platforms will use to obtain current GPS coordinates and hande location updates in the background on the device.

You'll update both the WalkEntryPageViewModel and WalkDistancePageViewModel classes to allow location-based features to happen and create a CustomMapOverlay class that will be used to display a native Map control, based on the platform.

Finally, you'll make some minor changes to the WalkDistancePage.xaml file so that it can use the CustomMapOverlay class and then make changes within the WalkDistancePage.xaml.cs code-behind file to handle location updates, as well as perform location updates in the background to update the native Map control automatically, whenever new location coordinates are obtained.

This chapter will cover the following topics:

	The benefits of using and implementing platform-specific services within your application

	Incorporating the Xam.Plugin.Geolocator NuGet package within our shared-core solution

	Creating and implementing a LocationService class using C#

	Creating and implementing a CustomMapOverlay class using C#

	Updating the WalkEntryPageViewModel to use the LocationService class

	Updating the WalkDistancePageViewModel to use the LocationService class

	Updating the WalkDistancePage XAML page to use our CustomMapOverlay class

	Updating the WalkDistancePage code-behind to use the LocationService class

	Enabling location-based background updates for both our iOS and Android projects

 Creating and using platform-specific services within your app

As mentioned in the introduction to this chapter, we created a customized NavigationService Interface and Class and then updated our BaseViewModel to include a property reference to our INavigationService so that each of our ViewModels can reference it.

The benefits of using an interface and class to define a platform-specific service is that they can be used within each of your ViewModels. Then, the implementations of the service can be provided using dependency injection.

This is achieved by declaring the DependencyService meta tag, with each of those implementations being actual services, or even Mock services that can be used to unit test your ViewModels, which we will be covering in Chapter 13, Unit Testing your Xamarin.Forms Apps.

In addition to the NavigationService interface and class that we created within our previous chapter, we can use a couple of other platform-specific feature services to enrich the data and user experience. In this section, we'll take a look at how to create a LocationService class that will enable us to get specific geolocation coordinates from the actual device for both our iOS and Android platforms.

 Adding the plugin geolocator NuGet package to our solution

In this section, we will begin by adding the Xam.Plugin.Geolocator NuGet package to our TrackMyWalks shared-core solution, which is essentially a cross-platform library that you can use to obtain current device GPS location coordinates, as well as perform location updates within the background by writing a few lines of code to access the various Properties and Methods available within this class.

Let's start by adding the Xam.Plugin.Geolocator NuGet package to our TrackMyWalks app by performing the following the steps:

	Right-click on the Dependencies|NuGet folder, located within the TrackMyWalks solution, and choose the Add Packages... menu option, as you did in Chapter 4, Creating the TrackMyWalks Native app.

	Next, within the Search field located within the Add Packages dialog, you need to enter in Plugin.Geolocator and select the Xam.Plugin.Geolocator option within the list, as shown in the following screenshot:

Adding the Xam.Plugin.Geolocator NuGet Package

	Then, make sure that you choose the latest version to install from the dropdown list for the Version field (this will be displayed by default).

	Finally, click on the Add Package button to add the Xam.Plugin.Geolocator NuGet package to the TrackMyWalks shared-core solution.

Now that you have added the NuGet package for the Xam.Plugin.Geolocator, we can begin utilizing this control by creating a LocationService Interface and Class that will be used by our ViewModels and ContentPages (Views).

 Creating and implementing the ILocationService interface

In this section, we'll take a look at how to create the ILocationService class, which will essentially contain various instance methods that will be used by our LocationService class. The advantage of creating an ILocationService class is that it's much easier to add additional class instance methods that will be used by those ViewModels and ContentPages (Views) that utilize this interface.

Let's start by creating the ILocationService interface for our TrackMyWalks app by performing the following steps:

	Ensure that the TrackMyWalks solution is open within the Visual Studio for Mac IDE.

	Next, right-click on the Services folder, and choose Add|New File... from the pop-up menu, as shown in the following screenshot:

Creating a New File within the Services Folder

	Next, choose the Empty Interface option under the General section and enter ILocationService for the name of the interface to be created, as shown in the following screenshot:

Creating the ILocationService Interface

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our ILocationService interface, we can proceed with implementing the required code for our class.

	Locate and open the ILocationService.cs file, which is located as part of the TrackMyWalks group, and ensure that it is displayed within the code editor. Then, enter the following code snippet:

 //
 // ILocationService.cs
 // Location Service Interface used by our Location Service Class
 //
 // Created by Steven F. Daniel on 28/06/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.Threading.Tasks;
 using Plugin.Geolocator.Abstractions;

 namespace TrackMyWalks.Services
 {
 public interface ILocationService
 {
 // Asynchronously gets the current GPS location from the device.
 Task<Position> GetCurrentPosition();

 // Asynchronously listens for changes in the GPS coordinates
 Task StartListening();

 // Stops listening for changes in GPS location updates
 void StopListening();
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including references to the System.Threading.Tasks and Plugin.Geolocator.Abstractions namespaces so that we can access the classes that are defined within these namespaces. We included the Plugin.Geolocator.Abstractions namespace, so that we can listen to changes within our GPS coordinates, as well as retrieve the current location's position.

	Next, we created an interface class that will contain various class instance methods that will be utilized by our LocationService class, as well as our Views (Content Page) and within our ViewModels.

	Then, we declared a GetCurrentPosition instance method that will be responsible for asynchronously retrieving the current GPS location from the device.

	Next, we declared a StartListening instance method that will essentially listen for changes in the GPS coordinates from the device and return the position.

	Finally, we declared our StopListening instance method that will essentially cease listening for changes in GPS location updates.

The Task class is essentially used to handle asynchronous operations, which is done by ensuring that the method you initiated will eventually finish, thus completing the task and returning back a Task object, almost instantaneously, although the underlying work within the method could likely finish later.

Whenever you use the Task object, you can use the await keyword to wait for the task to complete, which will essentially block the current thread and wait until the asynchronous method has completed.

 Creating and implementing the LocationService class

In this section, we will take a look at how to create the LocationService class that will inherit from our ILocationService interface, and implement the underlying instance methods that we declared within our interface class. We did this to help us retrieve and continually listen for changes within the GPS location coordinates which will be used by our ViewModels and ContentPages (Views).

Let's start by creating the LocationService class for our TrackMyWalks app by performing the following steps:

	Ensure that the TrackMyWalks solution is open within the Visual Studio for Mac IDE.

	Next, right-click on the Services folder and choose Add|New File... from the pop-up menu.

	Then, choose the Empty Class option under the General section and enter LocationService for the name of the class to be created, as shown in the following screenshot:

Creating the LocationService Class

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our LocationService class, we can proceed with implementing the required code for our class.

	Locate and open the LocationService.cs file, which is located as part of the TrackMyWalks group, and ensure that it is displayed within the code editor. Then, enter the following code snippet:

 //
 // LocationService.cs
 // Location Service Class that will be used retrieve GPS Coordinates
 //
 // Created by Steven F. Daniel on 28/06/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Threading.Tasks;
 using TrackMyWalks.Services;
 using Xamarin.Forms;
 using Plugin.Geolocator;
 using Plugin.Geolocator.Abstractions;
 using System.Diagnostics;

 [assembly: Dependency(typeof(LocationService))]
 namespace TrackMyWalks.Services
 {
 public class LocationService : ILocationService
 {
 // Declare our EventHandler that can be referenced within the App
 public event EventHandler<PositionEventArgs> PositionChanged;

 // Retrieves the current GPS Coordinates for the device
 public async Task<Position> GetCurrentPosition()
 {
 Position position = null;
 try
 {
 // Initialise our current location and set the accuracy in Meters
 var locator = CrossGeolocator.Current;
 locator.DesiredAccuracy = 200;

 // Check and get a cached position if we have one
 position = await locator.GetLastKnownLocationAsync();
 if (position != null) return position;

 // Check to see if Location Services are available / enabled
 if (!locator.IsGeolocationAvailable ||
 !locator.IsGeolocationEnabled)
 {
 return null;
 }
 // Call the GetPositionAsync to retrieve the GPS Coordinates
 position = await locator.GetPositionAsync(TimeSpan.FromSeconds(1),
 null, true);
 }
 catch (Exception ex)
 {
 Debug.WriteLine("There was a problem getting the location: " + ex);
 }
 // Return the current location coordinates
 return position;
 }

 // Asynchronously listens for changes in GPS location updates
 public async Task StartListening()
 {
 // Check to see if we are currently listening for updates
 if (CrossGeolocator.Current.IsListening)
 return;

 // Check what Target OS Platform we are running on whenever
 // the app starts
 if (Device.RuntimePlatform.Equals(Device.Android))
 {
 await CrossGeolocator.Current.StartListeningAsync(
 TimeSpan.FromSeconds(5), 10, true);
 }
 else
 {
 // Start listening for changes in location within the
 // Background for iOS
 await CrossGeolocator.Current.StartListeningAsync(
 TimeSpan.FromSeconds(1), 100, true, new ListenerSettings
 {
 ActivityType = ActivityType.AutomotiveNavigation,
 AllowBackgroundUpdates = true,
 DeferLocationUpdates = true,
 DeferralDistanceMeters = 500,
 DeferralTime = TimeSpan.FromSeconds(1),
 ListenForSignificantChanges = false,
 PauseLocationUpdatesAutomatically = false
 });
 }
 // EventHandler to determine whenever the GPS
 // position changes
 CrossGeolocator.Current.PositionChanged += (sender, e) =>
 {
 // Raise our PositionChanged EventHandler,
 // using the Coordinates
 PositionChanged.Invoke(sender, e);
 };
 }
 // Stops listening for location service updates on the device
 public async void StopListening()
 {
 // Checks to see if we are currently listening for updates
 if (!CrossGeolocator.Current.IsListening)
 return;

 // Stops listening for updates, and removes our
 // PositionChanged EventListener
 await CrossGeolocator.Current.StopListeningAsync();
 CrossGeolocator.Current.PositionChanged -= PositionChanged;
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we started by including references to the System.Threading.Tasks, Plugin.Geolocator, and the Plugin.Geolocator.Abstractions namespaces so that we can access the classes that are defined within these namespaces. We need to include the Plugin.Geolocator and Plugin.Geolocator.Abstractions namespaces so that we can listen to changes within our GPS coordinates, as well as retrieve the current location's position.

	Next, we started by initializing our LocationService class to be marked as a dependency by adding the Dependency metadata attribute so that it can be resolved by the Xamarin.Forms DependencyService class. This will enable our class to find and use the method implementations defined by our ILocationService interface.

	Then, we needed to ensure that our LocationService class inherited from the ILocationService interface, so that it can access the instance methods, as well as any getters and setters.

	Then, we created an EventHandler property called PropertyChanged, that will store the GPS location coordinates whenever the location changes so that we can reference it within our ViewModels.

	Next, we created our GetCurrentPosition instance method, which will be responsible for retrieving the current device's GPS location. We initialized our current location object and set the accuracy to check within meters, prior to checking for and getting the cached position, if we have one.

	Then, we checked to see if we had location services enabled by calling both the IsGeolocationAvailable and IsGeolocationEnabled methods of the CrossGeolocator class. We return null if they have been disabled. Alternatively, we could call GeoPositionAsync to retrieve and return the current GPS geo coordinates.

	Next, we created our StartListening instance method, which will be responsible for asynchronously listening for changes in GPS location updates. We check to see if we were currently listening for updates by calling the IsListening property of the CrossGeolocator class, and returned our instance method if we were.

	Then, we proceeded to check what target OS platform we are running on and start listening for changes in the location for Android, and listened for changes within the background for iOS.

	Next, we created and subscribed to our EventHandler to determine whenever the GPS position changes using the PositionChanged property of the CrossGeolocator class, and then used the Invoke method on the main UI Thread and passed the GPS coordinates.

	Finally, we created our StopListening instance method, which will be responsible for stopping listening for location service and background updates on the device. We checked to see if we were currently listening for updates, prior to calling the StopListeningAsync method on our CrossGeolocator class, and then unsubscribed from our EventListener.

For more information on the DependencyService class, refer to the Microsoft Developer Documentation at https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/dependency-service/introduction.

 Updating the WalkEntryPageViewModel using C#

Now that we have created our ILocationService interface, as well as implemented the instance methods and EventHandlers within our LocationService class, we can now proceed and start updating the WalksEntryPageViewModel class so that it can use our LocationService to populate our Latitude and Longitude properties with the determined device's GPS coordinates.

Let's take a look at how we can achieve this by following these steps:

	Ensure that the WalkEntryPageViewModel.cs file is displayed within the code editor and enter the following highlighted code sections within the code snippet:

 //
 // WalkEntryPageViewModel.cs
 // The ViewModel for our WalkEntryPage ContentPage
 //
 // Created by Steven F. Daniel on 5/06/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Threading.Tasks;
 using TrackMyWalks.Models;
 using TrackMyWalks.Services;

 namespace TrackMyWalks.ViewModels
 {
 public class WalkEntryPageViewModel : BaseViewModel
 {
 public WalkEntryPageViewModel(INavigationService navService) : base(navService)
 {
 // Update the title if we are creating a new Walk Entry
 if (App.SelectedItem == null)
 {
 PageTitle = "Adding Trail Details";
 App.SelectedItem = new WalkDataModel();

 // Set the default values when creating a new Trail
 Title = "New Trail Entry";
 Difficulty = "Easy";
 Distance = 1.0;
 }
 else
 {
 // Otherwise, we must be editing an existing entry
 PageTitle = "Editing Trail Details";
 }
 }

 // Checks to see if we have provided a Title and Description
 public bool ValidateFormDetailsAndSave()
 {
 if (App.SelectedItem != null &&
 !string.IsNullOrEmpty(App.SelectedItem.Title) &&
 !string.IsNullOrEmpty(App.SelectedItem.Description))
 {
 // Save the selected item to our database and/or model
 }
 else
 {
 return false;
 }
 return true;
 }

 // Get the current device GPS location Coordinates
 public async Task GetMyLocation()
 {
 // Get the current determined GPS position coordinates
 // from the device
 var position = await new LocationService().GetCurrentPosition();

 if (position == null) return;

 // If we are Adding a new Walk Entry, update the Latitude
 // and Longitude Coordinates
 if (App.SelectedItem.Latitude.Equals(0) &&
 App.SelectedItem.Longitude.Equals(0))
 {
 Latitude = position.Latitude;
 Longitude = position.Longitude;
 }
 }
 ...
 ...
 // Instance method to initialise the WalkEntryPageViewModel
 public override async Task Init()
 {
 await Task.Factory.StartNew(async () =>
 {
 // Call our GetMyLocation method to obtain our
 // GPS Coordinates
 await GetMyLocation();
 });
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by creating our GetMyLocation instance method, which will be responsible for asynchronously obtaining the current device GPS location coordinates. We then got the current determined GPS position coordinates from the device by calling the GetCurrentPosition instance method.

	Next, we checked to see if we were adding a new walk entry by checking the values of the Latitude and Longitude properties, and then updated the properties using the determined GPS device coordinates.

	Finally, we modified the Init instance method to initialize our ViewModel. Then, we called the GetMyLocation instance method to obtain our GPS coordinates and update our Latitude and Longitude ViewModel properties.

 Updating the WalkDistancePageViewModel using C#

Now that we have updated our WalkEntryPageViewModel ViewModel so that it can communicate with our LocationService class to obtain the current GPS Latitude and Longitude coordinates of the device, we can now proceed to start updating the WalkDistancePageViewModel class. We are doing this so that it can use our location service to obtain the current GPS device location, as well as handle checking for changes in GPS location in the background and raising an EventHandler containing the updated coordinates that we can reference within our WalkDistancePage.xaml.cs code-behind file.

Let's take a look at how we can achieve this by following these steps:

	Ensure that the WalkDistancePageViewModel.cs file is displayed within the code editor and enter the following highlighted code sections within the code snippet:

 //
 // WalkDistancePagePageViewModel.cs
 // The ViewModel for our WalkDistancePage ContentPage
 //
 // Created by Steven F. Daniel on 5/06/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Threading.Tasks;
 using TrackMyWalks.Services;
 using Plugin.Geolocator.Abstractions;

 namespace TrackMyWalks.ViewModels
 {
 public class WalkDistancePageViewModel : BaseViewModel
 {
 // Initialise our location service variable that points to
 // our LocationService class
 LocationService location;
 public event EventHandler<PositionEventArgs> CoordsChanged;

 public WalkDistancePageViewModel(INavigationService navService) : base(navService)
 {
 }

 // Instance method to get the current GPS location
 // Coordinates from device
 public async Task<Position> GetCurrentLocation()
 {
 // Initialise our location service variable that points to
 // our LocationService class
 location = new LocationService();
 location.PositionChanged += (sender, e) =>
 {
 // Raise our PositionChanged EventHandler, using
 // the Coordinates
 CoordsChanged.Invoke(sender, e);
 };

 // Get the current device GPS location coordinates
 var position = await location.GetCurrentPosition();
 return position;
 }

 // Instance method to begin listening for changes in
 // GPS coordinates
 public async void OnStartUpdate()
 {
 await location.StartListening();
 }

 // Instance method to stop listening for changes
 // in location
 public void OnStopUpdate()
 {
 location.StopListening();
 }
 ...
 ...
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we started by including a reference to the Plugin.Geolocator.Abstractions namespace so that we can listen to changes within our GPS coordinates, as well as retrieve the current location position and continually listen for background updates.

	Next, we created an EventHandler property called CoordsChanged, which will store the GPS location coordinates whenever the location changes so that we can reference it within our ViewModels.

	Then, we created our GetCurrentLocation instance method, which will be responsible for retrieving the current device's GPS location. We created and initialized our location object and subscribed to our EventHandler to determine whenever the GPS position changes by using the PositionChanged property of the CrossGeolocator class. Then, we raised our CoordsChanged EventHandler by using the Invoke method on the main UI Thread and passed the GPS coordinates.

	Finally, we created our OnStartUpdate instance method, which will be responsible for listening for the location service and background updates on the device. We then created our OnStopUpdate instance method, which will stop listening for background updates on the device, as well as unsubscribe from our EventHandler.

 Creating the CustomMapOverlay class using C#

In this section, we will take a look at how to create the CustomMapOverlay class that will inherit from our Xamarin.Forms.Maps namespace and implement the underlying properties and instance methods. These will be used to create a native map overlay using a CustomRenderer class for both our iOS and Android platforms.

Let's start by creating the CustomMapOverlay class by performing the following steps:

	First, create a new Empty Class called CustomMapOverlay within the Views folder, as you did in the section entitled Creating and implementing the LocationService class, located within this chapter.

	Next, ensure that the CustomMapOverlay.cs file is displayed within the code editor and enter the following code snippet:

 //
 // CustomMapOverlay.cs
 // Displays a custom map overlay using the stored Route Coordinates
 //
 // Created by Steven F. Daniel on 28/06/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.Collections.Generic;
 using Xamarin.Forms.Maps;

 namespace TrackMyWalks.Views.MapOverlay
 {
 public class CustomMapOverlay : Map
 {
 public List<Position> RouteCoordinates { get; set; }
 public CustomMapOverlay()
 {
 RouteCoordinates = new List<Position>();
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we started by ensuring that our class inherits from the Xamarin.Forms.Maps Map interface so that it can access the instance methods as well as any getter and setter implementations.

	Next, we declared a property instance variable called RouteCoordinates, which will be used to store the route coordinates. These will be used by our CustomRenderer classes for our iOS and Android platforms.

	Finally, within the CustomOverlay class constructor, we set our RouteCoordinates property to a new instance of the List class, passing in the Position of the Xamarin.Forms.Maps namespace.

 Updating the WalkDistancePage user interface using XAML

In this section, we will begin by updating the user interface for our WalkDistancePage, using XAML, which will use our CustomOverlay class to display a full-screen map with pin placeholders that will mark the starting and ending positions for the chosen trail from the ListView contained within our WalksMainPage. We will also remove our End this Trail button and add this as a ToolbarItem to the NavigationBar of our WalkDistancePage.xaml file.

Let's start by updating the user interface for our WalkDistancePage by performing the following steps:

	Open the WalkDistancePage.xaml file, which is located in the Views folder, and ensure that it is displayed within the code editor. Then, enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:TrackMyWalks.Views.MapOverlay;assembly=TrackMyWalks"
 x:Class="TrackMyWalks.Views.WalkDistancePage">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="End Trail" Clicked="EndTrailButton_Clicked" />
 </ContentPage.ToolbarItems>
 <ContentPage.Content>
 <ScrollView Padding="2,0,2,2">
 <StackLayout Orientation="Vertical"
 HorizontalOptions="FillAndExpand"
 VerticalOptions="FillAndExpand">
 <local:CustomMapOverlay x:Name="customMap"
 IsShowingUser="true" MapType="Street" />
 </StackLayout>
 </ScrollView>
 </ContentPage.Content>
 </ContentPage>

Now, let's start by taking a look at what we defined within the preceding XAML:

	We began by making some minor changes to our ContentPage so that we could include a xmlns:local namespace that will point to our CustomMapOverlay MapOverlay namespace.

	Next, we added a ToolBarItem for our End Trail button to our NavigationBar, and set up the Clicked event to our EndTrailButton_Clicked instance method, which will return to the WalksMainPage when clicked.

	Finally, we defined a <local:CustomMapOverlay namespace, which will be used to represent our CustomMapOverlay class. Then, we specified a name for our CustomMapOverlay control called customMap so that we can reference this within our code-behind file.

For more information on the different MapTypes that are available within Xamarin.Forms, refer to the Xamarin Developer documentation at https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.maps.maptype?view=xamarin-forms.

 Updating the WalkDistancePage code-behind using C#

Now that we have updated our user interface for our ContentPage using XAML to include minor changes to our ContentPage control, as well as specify properties for our CustomMapOverlay local namespace, the next step is to begin updating the underlying C# code within our WalkDistancePage code-behind file. We will do this to communicate with our WalkDistancePageViewModel, which will be used to interact with our CustomMapOverlay control, and place a pin placeholder that will contain information associated with the chosen walk trail from the ListView contained within our WalksMainPage.

Let's take a look at how we can achieve this by following these steps:

Open the WalkDistancePage.xaml.cs code-behind file, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 //
 // WalkDistancePage.xaml.cs
 // Displays related trail information within a map using a pin placeholder
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using Plugin.Geolocator.Abstractions;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;
 using Xamarin.Forms.Maps;
 using System.Threading.Tasks;
 using TrackMyWalks.Views.MapOverlay;

 namespace TrackMyWalks.Views
 {
 public partial class WalkDistancePage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalkDistancePageViewModel _viewModel =>
 BindingContext as WalkDistancePageViewModel;

 // Create a variable that will store our original saved Position
 Task<Plugin.Geolocator.Abstractions.Position> origPosition;

 public WalkDistancePage()
 {
 InitializeComponent();

 // Update the Title and Initialise our BindingContext
 // for the Page
 Title = "Distance traveled Information";
 this.BindingContext = new WalkDistancePageViewModel(DependencyService.
 Get<INavigationService>());

 // Get the current GPS location coordinates and listen
 // for updates
 origPosition = _viewModel.GetCurrentLocation();
 _viewModel.CoordsChanged += Location_CoordsChanged;
 _viewModel.OnStartUpdate();

 // Instantiate our Custom Map Overlay
 customMap = new CustomMapOverlay
 {
 MapType = MapType.Street
 };

 // Clear all previously created Pins on our CustomMap
 customMap.Pins.Clear();

 // Create the Pin placeholder that will represent our
 // current location
 CreatePinPlaceholder(PinType.Place,
 origPosition.Result.Latitude,
 origPosition.Result.Longitude,
 "",
 "My Location", 1);

 // Create the Pin placeholder that will represent our
 // ending location
 CreatePinPlaceholder(PinType.Place,
 _viewModel.Latitude,
 _viewModel.Longitude,
 _viewModel.Title,
 "Difficulty: " + _viewModel.Difficulty +
 " Total Distance: " + _viewModel.Distance, 2);

 // Add the Starting and Ending Latitude and Longitude
 // Coordinates
 customMap.RouteCoordinates.Add(new Xamarin.Forms.Maps.Position(
 origPosition.Result.Latitude,
 origPosition.Result.Longitude));
 customMap.RouteCoordinates.Add(new Xamarin.Forms.Maps.Position(
 _viewModel.Latitude,
 _viewModel.Longitude));

 // Create and Initialise a map region within a
 // one-kilometre radius
 customMap.MoveToRegion(MapSpan.FromCenterAndRadius(
 new Xamarin.Forms.Maps.Position(
 origPosition.Result.Latitude,
 origPosition.Result.Longitude),
 Distance.FromKilometers(1)));

 // Display our Custom Map for the detected device
 // Platform
 Content = customMap;
 }

 // Instance method to handle updating the UI whenever the
 // location changes
 void Location_CoordsChanged(object sender, PositionEventArgs e)
 {
 Device.BeginInvokeOnMainThread(() =>
 {
 // Calculate the total distance traveled from the
 // origPosition to the Current GPS Coordinate
 var distancetraveled = origPosition.Result.CalculateDistance(
 e.Position,
 GeolocatorUtils.DistanceUnits.Kilometers);

 // Create a new Pin Placeholder, showing the current GPS
 // Coordinate and the distance traveled
 CreatePinPlaceholder(PinType.SavedPin,
 e.Position.Latitude,
 e.Position.Longitude,
 String.Format("traveled: {0:0.00} KM",
 distancetraveled), "", 3);
 });
 }

 // Instance method to create a pin placeholder to the custom map
 public void CreatePinPlaceholder(PinType pinType, double latitude,
 double longitude,
 String label,
 String address, int Id)
 {
 customMap.Pins.Add(new Pin
 {
 Type = pinType,
 Position = new Xamarin.Forms.Maps.Position(latitude, longitude),
 Label = label,
 Address = address,
 Id = Id
 });

 // Show the users current location on the map
 customMap.IsShowingUser = true;
 }

 // Instance method that ends the current trail and returns
 // back to the main screen
 public async void EndTrailButton_Clicked(object sender, EventArgs e)
 {
 // Stop listening for location updates prior to navigating
 App.SelectedItem = null;
 _viewModel.OnStopUpdate();
 await _viewModel.Navigation.BackToMainPage();
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including a reference to the Plugin.Geolocator.Abstractions and TrackMyWalks.Views.MapOverlay namespaces so that we can access the classes and instance methods that are defined within the namespaces.

	Next, we created a variable called origPosition that will be used to store our original saved GPS coordinates and make a call to our GetCurrentLocation instance method to get the current GPS location coordinates, and subscribed to our CoordsChanged property EventHandler. This will start listening for location updates by calling the OnStartUpdate instance method within our ViewModel.

	Then, we instantiated a new instance of our CustomMapOverlay class and set the default MapType to be used, prior to calling the Clear method to clear all previously created Pins on our CustomMap.

	Next, we created a pin placeholder that will be used to represent our current location within the Map by calling the CreatePinPlaceholder instance method. Then, we created another pin placeholder that will represent our ending location.

	Then, we called our RouteCoordinates instance method within our CustomMapOverlay class to add the starting and ending Latitude and Longitude coordinates, and then created and initialized a map region within a one-kilometers radius using the origPosition coordinates and set the ContentPage for our WalkDistancePage to use our customMap.

	Next, we created our Location_CoordsChanged instance method, which will be called by our CoordsChanged property whenever the device's GPS location coordinates have changed. We used the BeginInvokeOnMainThread method of the Device class to update the Map using the main UI Thread.

	Then, we created a variable called distancetraveled that will calculate the total distance traveled from the origPosition to the current GPS coordinate in Kilometres. This will use the CalculateDistance method and create a new pin placeholder to show the current GPS coordinate and the distance traveled, which will be displayed when the pin is tapped.

	Next, we created our CreatePinPlaceholder instance method which will be used to create a pin placeholder within the customMap using the Latitude and Longitude coordinates, and call the IsShowingUser property of the customMap to show the user's current location continually as their location changes.

	Finally, we modified the name of our EndThisTrailButton_Clicked instance method to EndTrailButton_Clicked, and added the async and await keywords to the method. The EndTrialButton_Clicked instance method is responsible for stopping listening for location updates using the OnStopUpdate instance method, prior to navigating to the WalksMainPage.

 Creating and implementing the CustomMapRenderer (iOS)

In this section, we will begin by creating the CustomMapRenderer class for the iOS section of our TrackMyWalks solution, which will essentially contain various instance methods that will be used by our LocationService class. The advantage of creating a CustomMapRenderer class is that it's much easier to add additional class instance methods that will be used by those ViewModels that utilize this interface.

Let's start by creating the CustomMapRenderer class for our TrackMyWalks app by performing the following steps:

	Ensure that the TrackMyWalks solution is open within the Visual Studio for Mac IDE.

	Next, right-click on the TrackMyWalks.iOS project and choose Add|New Folder from the pop-up menu. Then, enter CustomRenderers for the name of the new folder to be created.

	Afterwards, right-click on the CustomRenderers folder and choose Add|New File... from the pop-up menu, as shown in the following screenshot:

Creating a New File within the CustomRenderers folder

	Next, create a new Empty Class called CustomMapRenderer within the CustomRenderers folder, as you did in the section entitled Creating and implementing the LocationService class, located within this chapter.

	Then, ensure that the CustomMapRenderer.cs file which is located as part of the TrackMyWalks.iOS group is displayed within the code editor and enter the following code snippet:

 //
 // CustomMapRenderer.cs
 // Draws an overlay onto a Custom Native Map that maps out the route
 // taken
 //
 // Created by Steven F. Daniel on 28/06/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using CoreLocation;
 using MapKit;
 using ObjCRuntime;
 using TrackMyWalks.iOS;
 using TrackMyWalks.Views.MapOverlay;
 using UIKit;
 using Xamarin.Forms;
 using Xamarin.Forms.Maps.iOS;
 using Xamarin.Forms.Platform.iOS;

 [assembly: ExportRenderer(typeof(CustomMapOverlay), typeof(CustomMapRenderer))]
 namespace TrackMyWalks.iOS
 {
 public class CustomMapRenderer : MapRenderer
 {
 MKPolylineRenderer polylineRenderer;

 protected override void OnElementChanged(ElementChangedEventArgs<View> e)
 {
 base.OnElementChanged(e);

 // Redraw the map whenever the RouteCoordinates property has
 // changed to draw the line from PointA to PointB
 if (e.OldElement == null)
 {
 var formsMap = (CustomMapOverlay)e.NewElement;
 var nativeMap = Control as MKMapView;

 nativeMap.OverlayRenderer = GetOverlayRenderer;
 CLLocationCoordinate2D[] coords = new CLLocationCoordinate2D[
 formsMap.RouteCoordinates.Count];

 int index = 0;
 foreach (var position in formsMap.RouteCoordinates)
 {
 coords[index] = new CLLocationCoordinate2D(
 position.Latitude, position.Longitude);
 index++;
 }
 var routeOverlay = MKPolyline.FromCoordinates(coords);
 nativeMap.AddOverlay(routeOverlay);
 }
 }

 // Customize the rendering of our Polyline overlay within the map
 MKOverlayRenderer GetOverlayRenderer(MKMapView mapView, IMKOverlay overlayWrapper)
 {
 if (polylineRenderer == null && !Equals(overlayWrapper, null))
 {
 var overlay = Runtime.GetNSObject(overlayWrapper.Handle) as IMKOverlay;
 polylineRenderer = new MKPolylineRenderer(overlay as MKPolyline)
 {
 FillColor = UIColor.Red,
 StrokeColor = UIColor.Red,
 LineWidth = 3,
 Alpha = 0.4f
 };
 }
 return polylineRenderer;
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we started by adding the ExportRenderer assembly attribute to our CustomMapRenderer class to register the custom renderer with Xamarin.Forms.

	Then, we ensured that our CustomMapRenderer class inherits from the Xamarin.Forms MapRenderer class, prior to creating a polylineRenderer variable by using the MKPolylineRenderer class of the MapKit namespace for the iOS platform.

	Next, we created and overridden the OnElementChanged method to add the polyline overlay within the native MKMapView control for the iOS platform. We did this by using the AddOverlay class by converting the Latitude and Longitude coordinates from the RouteCoordinates collection into a CLLocationCoordinate2D class.

	Finally, we created the GetOverlayRenderer method, which will be used to customize the rendering of our polyline overlay within the MKMapView control. We did this by creating and using the MKPolylineRenderer instance and passing in the overlay parameter, as well as setting the properties for the line to be drawn.

 Creating and implementing the CustomMapRenderer (Android)

In this section, we will begin creating the CustomMapRenderer class for the Android section of our TrackMyWalks solution, which will essentially contain various instance methods that will be used by our LocationService class. The advantage of creating a CustomMapRenderer class is that it's much easier to add additional class instance methods that will be used by those ViewModels that utilize this interface.

Let's start by creating the CustomMapRenderer class for our TrackMyWalks.Android app by performing the following steps:

	First, create a new folder called CustomRenderers within the TrackMyWalks.Android folder, as you did in the section entitled Creating and implementing the CustomMapRenderer (iOS), located within this chapter.

	Next, create a new Empty Class called CustomRenderer within the CustomRenderers folder.

	Then, open the CustomMapRenderer.cs file, which is located as part of the TrackMyWalks.Android group and ensure that it is displayed within the code editor. Then, enter the following code snippet:

 //
 // CustomMapRenderer.cs
 // Draws an overlay onto a Custom Native Map that maps out the route
 // taken
 //
 // Created by Steven F. Daniel on 28/06/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using Android.Content;
 using Android.Gms.Maps.Model;
 using TrackMyWalks.Droid;
 using TrackMyWalks.Views.MapOverlay;
 using Xamarin.Forms;
 using Xamarin.Forms.Maps;
 using Xamarin.Forms.Maps.Android;

 [assembly: ExportRenderer(typeof(CustomMapOverlay), typeof(CustomMapRenderer))]
 namespace TrackMyWalks.Droid
 {
 public class CustomMapRenderer : MapRenderer
 {
 CustomMapOverlay formsMap;

 public CustomMapRenderer(Context context) : base(context)
 {
 }

 // Redraw the map whenever the RouteCoordinates property has
 // changed to draw the line from PointA to PointB
 protected override void OnElementChanged(Xamarin.Forms.Platform.Android.
 ElementChangedEventArgs<Map> e)
 {
 base.OnElementChanged(e);

 if (e.OldElement == null)
 {
 formsMap = (CustomMapOverlay)e.NewElement;
 Control.GetMapAsync(this);
 }
 }

 // Customize the rendering of our Polyline overlay within the map
 protected override void OnMapReady(Android.Gms.Maps.GoogleMap map)
 {
 base.OnMapReady(map);

 var polylineOptions = new PolylineOptions();
 polylineOptions.InvokeColor(0x66FF0000);

 // Extract each position from our RouteCoordinates List
 foreach (var position in formsMap.RouteCoordinates)
 {
 // Add each Latitude and Longitude position to our
 // PolylineOptions
 polylineOptions.Add(new LatLng(position.Latitude,
 position.Longitude));
 }

 // Finally, add the Polyline to our map
 NativeMap.AddPolyline(polylineOptions);
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by adding the ExportRenderer assembly attribute to our CustomMapRenderer class to register the custom renderer with Xamarin.Forms, prior to ensuring that our CustomMapRenderer class inherits from the Xamarin.Forms MapRenderer class. Then, we created a formsMap variable that points to our CustomMapOverlay class.

	Next, we created and overridden the OnElementChanged method to redraw the map whenever the element within the map changes. We also initialized our formsMap variable to an instance of our CustomMapOverlay class and called the GetMapAsync method, which will raise an event to the OnMapReady method.

	Then, we created and overridden the OnMapReady method, which will be used to customize the rendering of our polyline overlay within the GoogleMap control by creating and using the PolylineOptions instance, and setting the color for our line by using the InvokeColor method which will execute on the main UI Thread.

	Finally, we iterated through our RouteCoordinates collection to extract each of our Latitude and Longitude coordinates and added these to our polylineOptions variable, prior to drawing the Polyline to our map using the AddPolyline method.

 Enabling background location updates and permissions

In this section, we will take a look at how we can enable background location updates and set the required permissions within our iOS and Android subprojects. We will start by making the necessary changes to our TrackMyWalks.iOS solution, and then move on to applying the changes for the TrackMyWalks.Android solution.

Let's see how we can achieve this by performing the following steps:

	First, double-click on the Info.plist file within the TrackMyWalks.iOS project solution, and ensure that the Application tab is displayed, as shown in the following screenshot:

Enabling Background Modes and Location updates

	Next, scroll down to the Background Modes section, and ensure that both the Enable Background Modes and Location updates checkboxes are checked, as shown in the preceding screenshot.

	Our next step is to begin creating additional key-entries. Ensure that the Info.plist file is displayed, and then click on the Source tab, as shown in the following screenshot:

Adding Location specific key entries to the Info.plist

	Next, create each of the key properties and their associated descriptions within the Source tab, as shown in the following table, by clicking within the Add new entry section of the Info.plist file, as shown in the preceding screenshot:

	
Key

	
Description

	
NSLocationAlwaysAndWhenInUseUsageDescription

	
TrackMyWalks would like to access your location at all times.

	
NSLocationWhenInUseUsageDescription

	
TrackMyWalks would like to access your location when it is being used.

	
NSLocationAlwaysUsageDescription

	
TrackMyWalks would like to access your location at all times.

Next, we also need to configure our Android portion of our TrackMyWalks.Android project by modifying the AndroidManifest.xml file.

	Double-click on the AndroidManifest.xml file, which is contained within the Properties folder within the TrackMyWalks.Android solution, and ensure that the Application tab is selected, as shown in the following screenshot:

Adding Location specific permissions to the AndroidManifest.xml

	Next, ensure that both the AccessCoarseLocation and AccessFineLocation checkboxes are ticked, as shown in the preceding screenshot.

	Then, ensure that the Source tab is currently selected and that the AndroidManifest.xml file is displayed within the code-editor window, as shown in the following screenshot:

Adding Location specific permissions to the AndroidManifest.xml

	Next, within the AndroidManifest.xml file, enter the following highlighted code sections:

 <?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0"
 package="com.geniesoftstudios.TrackMyWalks">

 <uses-sdk android:minSdkVersion="25" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
 <uses-feature android:name="android.hardware.location"
 android:required="false"/>
 <uses-feature android:name="android.hardware.location.gps"
 android:required="false"/>
 <uses-feature android:name="android.hardware.location.network"
 android:required="false"/>
 <application android:label="TrackMyWalks.Android">
 <meta-data android:name="com.google.android.geo.API_KEY"
 android:value="<PROVIDE YOUR API_KEY HERE>"/>
 </application>
 </manifest>

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we started by adding permissions that will allow our TrackMyWalks.Android app to access location information and handle updates within the background by using the ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION permissions.

	Next, we specified the different types of features that we would like our Android app to utilize. Here, we used the <uses-feature tag and specified that we wanted to access location features to monitor changes in location coordinates over the cellular network.

	Finally, we needed to specify an API_KEY value that is required for our TrackMyWalks.Android app to function correctly. If you don't include this, your application won't work, and your app will crash when trying to obtain a geolocation.

For more information on how to create a Google Maps API Key for the TrackMyWalks.Android app, refer to the Xamarin Developer documentation at https://xamarinhelp.com/google-maps-api-key-xamarin-android-app/.

Now that you have made all of the necessary changes to the user interface files by using XAML and ViewModels, which will make use of our LocationService class, as well as implement the necessary instance and event methods and have made the necessary changes to the underlying C# code for our app, our next step is to compile, build, and run the TrackMyWalks application within the iOS simulator.

 Launching the TrackMyWalks app using the iOS simulator

In this section, we will begin by compiling and running the TrackMyWalks application to see how our application looks, since we have made changes to our XAML and ViewModels, as well as the underlying C# code within our code-behind files to utilize our LocationService class.

Let's see how we can achieve this by performing the following steps:

	Ensure that you have chosen the TrackMyWalks.iOS platform from the dropdown menu.

	Next, ensure that you have chosen the Debug option from the dropdown menu.

	Then, choose your preferred device from the list of available iOS Simulators.

	Next, select the Run|Start Debugging menu option, as shown in the following screenshot:

Launching the TrackMyWalks app within the iOS Simulator

	Alternatively, you can also build and run the TrackMyWalks application by pressing the Command + Return key combinations.

When the compilation is complete, the iOS Simulator will appear automatically and the TrackMyWalks application will be displayed, as shown in the following screenshot:

Adding Trail Details screen displaying Latitude and Longitude coordinates

As you can see from the preceding screenshot, it displays our TrackMyWalks application, along with a list of static walk entries that have been defined within our WalksMainPageViewModel and displayed within our ListView. Clicking on the Add button will display the Adding Trail Details, where you can begin entering information relating to the trail. This screen also displayed the Latitude and Longitude coordinates which were obtained from our LocationService class, and have been blurred out:

Navigation flow between each screen for the chosen Walk Trail

The preceding screenshot shows the navigation flow between each of the pages whenever a trail has been selected from the ListView, with the final screen showing the Distance traveled Information ContentPage, along with our oolyline drawn between our starting and ending position. It also shows the markers pinpointing the coordinates relating to the chosen trail, along with the distance traveled for each pin when tapped.

Since we are running this within the iOS Simulator, you can simulate various locations to display within the Map by choosing the Debug|Location menu option, as shown in the following screenshot:

Simulating various locations within the iOS Simulator

As you can see from the preceding screenshot, we have chosen the Freeway Drive simulated location to show each of our pin markers, as well as calculate the distance that has been traveled from the starting GPS coordinate location.

 Summary

In this chapter, you learned how to incorporate platform-specific features within the TrackMyWalks application, dependent on the mobile platform that is being run, as well as how to incorporate the Xam.Plugin.Geolocator NuGet package within the shared-core project solution.

You also learned how to create a LocationService Interface and Class, which included a number of class instance methods that our iOS and Android platforms will use to handle location-based features, like obtaining current GPS coordinates and handling location updates in the background on the device. You then updated the WalkEntryPageViewModel and WalkDistancePageViewModel classes to allow location-based features to happen and created a CustomMapOverlay class that will be used to display a native Map control, based on the platform. Lastly, you updated the WalkDistancePage.xaml and the code-behind file to handle location updates as well as perform location updates in the background and update the native Map control automatically whenever new location coordinates are obtained.

In the next chapter, you'll work with DataTemplates to layout your Views beautifully and neatly within your application's user interface by modifying your ContentPages (Views). You will also get accustomed to working with the Xamarin.Forms PlatformEffects API to customize the appearance, as well as learn how to style native control elements for each platform.

Finally, you'll learn how to set up your margins and padding for each platform using the OnPlatform XAML tag, before moving on to learning how to manipulate the visual appearance of data-bound fields using ValueConverters and ImageConverters.

 Customizing the User Interface

In the previous chapter, we learned how to incorporate platform-specific features into the TrackMyWalks application, depending on the mobile platform that is being run, as well as how to incorporate the NuGet package into the shared-core project solution.

You learned how to create a LocationService Interface and Class, which included a number of class instance methods used by our iOS and Android platforms to handle location-based features and obtain current GPS coordinates, as well as handling location updates in the background on the mobile device. You learned how to make relevant changes to both WalkEntryPageViewModel and WalkDistancePageViewModel to allow for location-based features to work, before moving on to creating a CustomMapOverlay class that will be used to display a native Map control, based on the current platform.

Lastly, you updated WalkDistancePage.xaml and the code-behind file to handle location updates so that it will automatically update the native Map control whenever new location coordinates are obtained.

In this chapter, you'll learn how to customize DataTemplates to lay out your Views beautifully and neatly in your application's user interface by modifying your ContentPages (Views). You will also learn how to create and implement various styles in your XAML pages, prior to getting accustomed to working with the PlatformEffects API to customize the appearance, as well as styling native control elements for each platform.

Finally, you'll learn how to set up your margins and padding for each platform using the OnPlatform XAML tag, before moving on to learning how to manipulate the visual appearance of data-bound fields using ValueConverters and ImageConverters.

This chapter will cover the following points:

	Customizing the DataTemplate in the WalksMainPage to lay out content neatly

	Customizing Padding and Margins in your XAML pages

	Creating and implementing various Xamarin.Forms Styles in your XAML Pages

	Implementing RoutingEffects to access platform-specific PlatformEffects using C#

	Implementing PlatformEffects to customize the appearance of control elements using C#

	Implementing ValueConverters and ImageConverters in your app using C#

	Updating the BaseViewModel class to include additional properties using C#

 Customizing the DataTemplate in the WalksMainPage

One of the features that comes as part of the Xamarin.Forms platform is the ability to manipulate the user interface by leveraging the various platform-specific APIs that are available, whether it be manipulating the appearance of controls and their elements using custom renderers or changing the appearance and styling of native control elements.

In this section, we will begin by updating the DataTemplate in our WalksMainPage, using XAML to apply additional features to change the appearance of control elements, such as updating font sizes based on the platform that our app is running on and using the OnPlatform argument.

Let's start by updating the user interface for our WalksMainPage by performing the following steps:

	Locate and open the WalksMainPage.xaml file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TrackMyWalks.Views.WalksMainPage">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Add" Clicked="AddWalk_Clicked" />
 </ContentPage.ToolbarItems>
 <StackLayout>
 <ListView x:Name="WalkEntriesListView" HasUnevenRows="true"
 SeparatorColor="#ddd" ItemTapped="myWalkEntries_ItemTapped">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <ViewCell.ContextActions>
 <MenuItem Clicked="OnEditItem"
 CommandParameter="{Binding .}" Text="Edit"
 IsDestructive="False" />
 <MenuItem Clicked="OnDeleteItem"
 CommandParameter="{Binding .}" Text="Delete"
 IsDestructive="True" />
 </ViewCell.ContextActions>
 <StackLayout x:Name="cellLayout" Padding="2,2"
 Orientation="Horizontal" HorizontalOptions="FillAndExpand">
 <Image Aspect="AspectFill" Source="{Binding ImageUrl}"
 WidthRequest="140" HeightRequest="140"
 VerticalOptions="FillAndExpand"
 HorizontalOptions="FillAndExpand" />
 <StackLayout x:Name="DetailsLayout" Padding="5,0"
 HorizontalOptions="FillAndExpand">
 <Label Text="{Binding Title}"
 FontAttributes="Bold"
 TextColor="Black">
 <Label.FontSize>
 <OnPlatform x:TypeArguments="x:Double">
 <On Platform="Android, WinPhone" Value="14" />
 <On Platform="iOS" Value="16" />
 </OnPlatform>
 </Label.FontSize>
 </Label>
 <Label Text="{Binding Distance,
 StringFormat='Kilometers: {0} km'}"
 FontAttributes="Bold" FontSize="12"
 TextColor="#666" />
 <Label Text="{Binding Difficulty,
 StringFormat='Difficulty: {0}'}"
 FontAttributes="Bold" FontSize="12"
 TextColor="Black" />
 <StackLayout Spacing="3" Orientation="Vertical">
 <Label Text="{Binding Description}"
 FontAttributes="None" FontSize="12"
 TextColor="Blue"
 VerticalOptions="FillAndExpand" />
 </StackLayout>
 </StackLayout>
 </StackLayout>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
 </ContentPage>

Let's now take a look at what we defined in the preceding XAML:

	We started by making some minor changes to our DataTemplate by defining a Label.FontSize attribute, which will set the FontSize based on the platform that our app is running on using the OnPlatform and specifying the x:TypeArguments of Double

	We used the On Platform attribute, passed in each platform that we want to check for, and assigned the font size value for each platform prior to defining the Spacing and Orientation values for our StackLayout to display the Description that is associated with each trail

 Applying padding and margins to XAML layouts

In this section, we will take a look at how to apply and set Padding and Margins in each of your XAML Pages. The advantage of applying padding and setting margins in your XAML pages is that it allows you to customize the presentation of your control elements, so that those elements will display nicely in your user interface, based on the platform that your app is being run on.

 Updating the WalksMainPage user interface using XAML

In this section, we will take a look at how to update the user interface for our WalksMainPage to apply padding and set margins in your XAML, so that our control elements will display neatly in our user interface, based on the platform that is being run and using the OnPlatform tag.

Let's start by updating the user interface for our WalksMainPage by performing the following steps:

	Locate and open the WalksMainPage.xaml file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TrackMyWalks.Views.WalksMainPage">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Add" Clicked="AddWalk_Clicked" />
 </ContentPage.ToolbarItems>
 <StackLayout>
 <ListView x:Name="WalkEntriesListView" HasUnevenRows="true" SeparatorColor="#ddd"
 ItemTapped="myWalkEntries_ItemTapped">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <ViewCell.ContextActions>
 <MenuItem Clicked="OnEditItem"
 CommandParameter="{Binding .}" Text="Edit"
 IsDestructive="False" />
 <MenuItem Clicked="OnDeleteItem"
 CommandParameter="{Binding .}" Text="Delete"
 IsDestructive="True" />
 </ViewCell.ContextActions>
 <StackLayout x:Name="cellLayout" Orientation="Horizontal"
 HorizontalOptions="FillAndExpand">
 <StackLayout.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="Android, WinPhone"
 Value="0,0" />
 <On Platform="iOS" Value="2,2" />
 </OnPlatform>
 </StackLayout.Padding>
 <Image Aspect="AspectFill" Source="{Binding ImageUrl}" WidthRequest="140"
 HeightRequest="140" VerticalOptions="FillAndExpand"
 HorizontalOptions="FillAndExpand" />
 <StackLayout x:Name="DetailsLayout" HorizontalOptions="FillAndExpand">
 <StackLayout.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="Android, WinPhone"
 Value="5,0" />
 <On Platform="iOS" Value="5,0" />
 </OnPlatform>
 </StackLayout.Padding>
 <Label Text="{Binding Title}" FontAttributes="Bold" TextColor="Black">
 <Label.FontSize>
 <OnPlatform x:TypeArguments="x:Double">
 <On Platform="Android, WinPhone"
 Value="14" />
 <On Platform="iOS" Value="16" />
 </OnPlatform>
 </Label.FontSize>
 </Label>
 <Label Text="{Binding Distance,
 StringFormat='Kilometers: {0} km'}"
 FontAttributes="Bold" FontSize="12"
 TextColor="#666" />
 <Label Text="{Binding Difficulty,
 StringFormat='Difficulty: {0}'}"
 FontAttributes="Bold" FontSize="12"
 TextColor="Black" />
 <StackLayout Spacing="3" Orientation="Vertical">
 <Label Text="{Binding Description}"
 FontAttributes="None"
 FontSize="12" TextColor="Blue"
 VerticalOptions="FillAndExpand" />
 </StackLayout>
 </StackLayout>
 </StackLayout>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
 </ContentPage>

Let's now take a look at what we defined in the preceding XAML:

	We started by adding the StackLayout.Padding for our cellLayout and specifying the OnPlatform and TypeArguments, as well as specifying the Thickness parameter since we are working with the Padding feature of the StackLayout control

	We used the On Platform attribute, which is used to specify each of the platforms that we want to target and provide a value for the Value property

	We defined the StackLayout.Padding for our DetailsLayout, and also specified OnPlatform and TypeArguments, then specify the Thickness parameter, since we are working with the Padding feature of the StackLayout control

	Finally, we used the <On Platform tag to specify each of the platforms that we want to target and provide a value for the Value property

 Updating the WalkEntryPage user interface using XAML

In this section, we will take a look at how to update the user interface for our WalkEntryPage to define Margins in your XAML, so that our control elements will display neatly in our user interface, based on the platform that is being run and using the OnPlatform attribute.

Let's start by updating the user interface for our WalkEntryPage by performing the following steps:

	Locate and open the WalkEntryPage.xaml file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TrackMyWalks.Views.WalkEntryPage">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Save" Clicked="SaveWalkItem_Clicked" />
 </ContentPage.ToolbarItems>
 <ContentPage.Content>
 <TableView Intent="Form">
 <TableView.Root>
 <TableSection Title="Enter Walk Trail Information">
 <EntryCell Label="Title:" Text="{Binding Title, Mode=TwoWay}"
 Placeholder="Provide a Title for this trail" />
 <EntryCell Label="Description:" Text="{Binding Description, Mode=TwoWay}"
 Placeholder="Provide trail description" />
 <EntryCell Label="Latitude:" Text="{Binding Latitude, Mode=TwoWay}"
 Placeholder="Provide latitude coordinates" Keyboard="Numeric" />
 <EntryCell Label="Longitude:" Text="{Binding Longitude, Mode=TwoWay}"
 Placeholder="Provide longitude coordinates" Keyboard="Numeric" />
 <EntryCell Label="Distance:" Text="{Binding Distance, Mode=TwoWay}"
 Placeholder="Provide trail distance" Keyboard="Numeric" />
 <ViewCell>
 <StackLayout Orientation="Horizontal">
 <StackLayout.Margin>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="Android, WinPhone"
 Value="15,0" />
 <On Platform="iOS"
 Value="15,0" />
 </OnPlatform>
 </StackLayout.Margin>
 <Label Text="Trail Difficulty Level:" VerticalOptions="Center" />
 <Picker Title="Choose Difficulty"
 VerticalOptions="Center"
 HorizontalOptions="FillAndExpand"
 SelectedItem="{Binding Difficulty, Mode=TwoWay}">
 <Picker.ItemsSource>
 <x:Array Type="{x:Type x:String}">
 <x:String>Easy</x:String>
 <x:String>Medium</x:String>
 <x:String>Hard</x:String>
 <x:String>Extreme</x:String>
 </x:Array>
 </Picker.ItemsSource>
 </Picker>
 </StackLayout>
 </ViewCell>
 <EntryCell Label="Image URL:" Text="{Binding ImageUrl, Mode=TwoWay}"
 Placeholder="Provide an Image URL" />
 </TableSection>
 </TableView.Root>
 </TableView>
 </ContentPage.Content>
 </ContentPage>

Let's now take a look at what we defined in the preceding XAML:

	We start by adding the <StackLayout.Margin for our StackLayout and specifying the OnPlatform and TypeArguments, as well as specifying the Thickness parameter, since we are working with the Margin feature of the StackLayout control

	Finally, we use the <On Platform attribute to specify each of the platforms that we want to target and provided a value for the Value property

 Updating the WalkTrailInfoPage user interface using XAML

In this section, we will take a look at how to update the user interface for our WalkTrailInfoPage to define padding in your XAML, so that our control elements will display neatly in our user interface, based on the platform that is being run and using the OnPlatform tag.

Let's start by updating the user interface for our WalkTrailInfoPage by performing the following steps:

	Locate and open the WalkTrailInfoPage.xaml file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TrackMyWalks.Views.WalkTrailInfoPage">
 <ContentPage.Content>
 <ScrollView>
 <StackLayout.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="Android, WinPhone" Value="2,0" />
 <On Platform="iOS" Value="2,0" />
 </OnPlatform>
 </StackLayout.Padding>
 <StackLayout Orientation="Vertical" HorizontalOptions="FillAndExpand">
 <Image x:Name="TrailImage" Aspect="AspectFill"
 Source="{Binding ImageUrl}"
 HorizontalOptions="FillAndExpand"
 VerticalOptions="FillAndExpand" />
 <Label x:Name="TrailName" FontSize="20" FontAttributes="Bold"
 TextColor="Black" Text="{Binding Title}"/>
 <Label x:Name="TrailKilometers" FontSize="12" TextColor="Black"
 Text="{Binding Distance, StringFormat='Kilometers: {0} km'}" />
 <Label x:Name="TrailDifficulty" FontSize="12" TextColor="Black"
 Text="{Binding Difficulty, StringFormat='Difficulty: {0}'}" />
 <Image Aspect="AspectFill" HeightRequest="50"
 WidthRequest="50" HorizontalOptions="Start"
 Source="{Binding Difficulty,
 Converter={StaticResource imageConverter}}" />
 <Label x:Name="TrailFullDescription" FontSize="11" TextColor="Black"
 Text="{Binding Description}" HorizontalOptions="FillAndExpand" />
 <Button x:Name="BeginTrailWalk" Text="Begin this Trail"
 TextColor="White" BackgroundColor="#008080"
 Clicked="BeginTrailWalk_Clicked" Margin="20">
 </Button>
 </StackLayout>
 </ScrollView>
 </ContentPage.Content>
 </ContentPage>

Let's now take a look at what we defined in the preceding XAML:

	We started by adding the StackLayout.Padding for our StackLayout and specifying the OnPlatform and TypeArguments, as well as specifying the Thickness parameter, since we are working with the Padding feature of the StackLayout control

	We use the On Platform attribute to specify each of the platforms that we want to target and provided a value for the Value property

 Creating and implementing Styles in your App

In this section, we will be taking a look at the various styles that are offered by the Xamarin.Forms platform, which you can implement in your XAML pages. Styles can be created to customize each control's appearance, and we will look at how to create Global Styles, which are made available globally by adding them into the application's ResourceDictionary, to avoid duplication of styles across your XAML pages and controls.

Lastly, we will also look at how we can define Implicit and Explicit Styles, how we can apply these to controls in your XAML pages, and how we can work with Device styles that come as part of the Xamarin.Forms platform and apply these to your Label controls in your XAML pages.

 Creating and implementing Global Styles using XAML

In this section, we will take a look at how to update our application's App.xaml file and define a Global Style that can be used by each of our XAML pages in our TrackMyWalks app. The advantage of declaring a Global Style in your application's App.xaml file is that it helps avoid duplication of styles across each of your pages or the controls that you have defined in these pages.

Whenever you create a Xamarin.Forms application, it is created from a template that uses the App class and implements the Application subclass. In order to create a Global style at the application level, you declare a style in the ResourceDictionary using XAML.

Let's take a look at how we can achieve this by following these steps:

	Open the App.xaml file and ensure that it is displayed in the code editor, then enter the following highlighted code sections:

 <?xml version="1.0" encoding="utf-8"?>
 <Application xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TrackMyWalks.App">
 <Application.Resources>
 <ResourceDictionary>
 <Style x:Key="buttonStyle" TargetType="Button">
 <Setter Property="HorizontalOptions" Value="CenterAndExpand" />
 <Setter Property="BorderColor" Value="Black" />
 <Setter Property="BorderRadius" Value="2" />
 <Setter Property="BorderWidth" Value="2" />
 <Setter Property="WidthRequest" Value="300" />
 <Setter Property="TextColor" Value="White" />
 <Setter Property="BackgroundColor" Value="MediumSeaGreen"/>
 </Style>
 </ResourceDictionary>
 </Application.Resources>
 </Application>

Let's now take a look at what we covered in the preceding code snippet:

	We declared a ResourceDictionary and created a single explicit buttonStyle, then set the TargetType, which will be used to set the appearance of all Button instances in a XAML page.

	We created a number of setter properties that we can apply to our Button control. Here, we specified the HorizontalOptions to be CenteredAndExpand, which will center our button control in our XAML and expand it so that it takes up the width of the XAML page.

	We applied properties to set the BorderColor, as well as defining the BorderRadius, BorderWidth, and requested Width to use for our Button, as well as its TextColor and BackgroundColor.

 Updating our WalksMainPage to use the Device Style

In this section, we will take a look at how to update the user interface for our WalksMainPage to

apply Device Styles to our XAML elements using the Device.Styles class so that our control elements will take on each of the platform-specific styles of the platforms that our app is running on.

Let's start by updating the user interface for our WalksMainPage by perf

orming the following steps:

	
Locate and open the WalksMainPage.xaml file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TrackMyWalks.Views.WalksMainPage">

 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Add" Clicked="AddWalk_Clicked" />
 </ContentPage.ToolbarItems>
 <StackLayout>
 <ListView x:Name="WalkEntriesListView" HasUnevenRows="true"
 SeparatorColor="#ddd" ItemTapped="myWalkEntries_ItemTapped">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <ViewCell.ContextActions>
 <MenuItem Clicked="OnEditItem"
 CommandParameter="{Binding .}" Text="Edit"
 IsDestructive="False" />
 <MenuItem Clicked="OnDeleteItem"
 CommandParameter="{Binding .}" Text="Delete"
 IsDestructive="True" />
 </ViewCell.ContextActions>
 <StackLayout x:Name="cellLayout" Orientation="Horizontal"
 HorizontalOptions="FillAndExpand">
 <StackLayout.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="Android, WinPhone"
 Value="0,0" />
 <On Platform="iOS"
 Value="2,2" />
 </OnPlatform>
 </StackLayout.Padding>
 <Image Aspect="AspectFill" Source="{Binding ImageUrl}"
 WidthRequest="140" HeightRequest="140"
 VerticalOptions="FillAndExpand"
 HorizontalOptions="FillAndExpand" />
 <StackLayout x:Name="DetailsLayout" HorizontalOptions="FillAndExpand">
 <StackLayout.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="Android, WinPhone"
 Value="5,0" />
 <On Platform="iOS"
 Value="5,0" />
 </OnPlatform>
 </StackLayout.Padding>
 <Label Text="{Binding Title}" FontAttributes="Bold"
 TextColor="Black" Style="{DynamicResource TitleStyle}">
 <Label.FontSize>
 <OnPlatform x:TypeArguments="x:Double">
 <On Platform="Android, WinPhone"
 Value="14" />
 <On Platform="iOS"
 Value="16" />
 </OnPlatform>
 </Label.FontSize>
 </Label>
 <Label Text="{Binding Distance,
 StringFormat='Kilometers: {0} km'}"
 FontAttributes="Bold" TextColor="#666"
 Style="{DynamicResource CaptionStyle}" />
 <Label Text="{Binding Difficulty,
 StringFormat='Difficulty: {0}'}"
 FontAttributes="Bold" TextColor="Black"
 Style="{DynamicResource ListItemTextStyle}" />
 <StackLayout Spacing="3" Orientation="Vertical">
 <Label Text="{Binding Description}" FontAttributes="None"
 TextColor="Blue" VerticalOptions="FillAndExpand"
 Style="{DynamicResource BodyStyle}" />
 </StackLayout>
 </StackLayout>
 </StackLayout>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
 </ContentPage>

Let's now take a look at what we covered in the preceding code snippet:

	First, we started by adding the Style property to our Title and using the DynamicResource to apply the device-specific TitleStyle

	We proceeded to add the Style property to our Distance bindable property and use the DynamicResource to apply the device-specific CaptionStyle

	We added the Style property to our Difficulty bindable property to use the DynamicResource to apply the device-specific ListItemTextStyle

	We added the Style property to our Description bindable property and used the DynamicResource to apply the device-specific BodyStyle

For more information on the Device.Styles class, please refer to the Microsoft Developer Documentation at https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.device.styles?view=xamarin-forms.

 Updating our WalkTrailInfoPage to use Explicit and Global Styles

In this section, we will take a look at how to update the user interface for our WalkTrailInfoPage, to apply Explicit Styles to our XAML elements so that our control elements will take on each of the platform-specific styles that our app is running on.

Whenever you use Explicit Styles, these must be declared in your XAML pages using a ResourceDictionary, and unlike Global Styles, they must be added to the XAML page using one or more Style declarations.

A Style is made Explicit by giving its declaration an x:Key attribute, which provides it with a descriptive key in the ResourceDictionary. These will then need to be applied to specific visual elements by setting their Style properties, as we will see in this section.

Let's start by updating the user interface for our WalkTrailInfoPage by performing the following steps:

	
Locate and open the WalkTrailInfoPage.xaml file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="TrackMyWalks.Views.WalkTrailInfoPage">
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style x:Key="labelTrailName" TargetType="Label">
 <Setter Property="HorizontalOptions" Value="Start" />
 <Setter Property="FontAttributes" Value="Bold" />
 <Setter Property="Style" Value="{DynamicResource TitleStyle}" />
 <Setter Property="TextColor" Value="Black" />
 </Style>
 <Style x:Key="labelTrailKilometers" TargetType="Label">
 <Setter Property="HorizontalOptions" Value="Start" />
 <Setter Property="FontAttributes" Value="Bold" />
 <Setter Property="Style" Value="{DynamicResource CaptionStyle}" />
 <Setter Property="TextColor" Value="Black" />
 </Style>
 <Style x:Key="labelTrailDifficulty" TargetType="Label">
 <Setter Property="HorizontalOptions" Value="Start" />
 <Setter Property="FontAttributes" Value="Bold" />
 <Setter Property="Style" Value="{DynamicResource ListItemTextStyle}" />
 <Setter Property="TextColor" Value="Black" />
 </Style>
 <Style x:Key="labelTrailDescription" TargetType="Label">
 <Setter Property="HorizontalOptions" Value="Start" />
 <Setter Property="Style" Value="{DynamicResource BodyStyle}" />
 <Setter Property="TextColor" Value="MidnightBlue" />
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>
 <ScrollView>
 <StackLayout.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="Android, WinPhone" Value="2,0" />
 <On Platform="iOS" Value="2,0" />
 </OnPlatform>
 </StackLayout.Padding>
 <StackLayout Orientation="Vertical" HorizontalOptions="FillAndExpand">
 <Image x:Name="TrailImage" Aspect="AspectFill"
 Source="{Binding ImageUrl}" HorizontalOptions="FillAndExpand"
 VerticalOptions="FillAndExpand" />
 <Label x:Name="TrailName" Text="{Binding Title}"
 Style="{DynamicResource labelTrailName}">
 </Label>
 <Label x:Name="TrailKilometers" Text="{Binding Distance,
 StringFormat='Kilometers: {0} km'}"
 Style="{StaticResource labelTrailKilometers}" />
 <Label x:Name="TrailDifficulty" Text="{Binding Difficulty,
 StringFormat='Difficulty: {0}'}"
 Style="{StaticResource labelTrailDifficulty}" />
 <Label x:Name="TrailFullDescription" Text="{Binding Description}"
 HorizontalOptions="FillAndExpand"
 Style="{StaticResource labelTrailDescription}" />
 <Button x:Name="BeginTrailWalk" Text="Begin this Trail"
 Clicked="BeginTrailWalk_Clicked" Margin="20"
 Style="{StaticResource buttonStyle}">
 </Button>
 </StackLayout>
 </ScrollView>
 </ContentPage>

Let's now take a look at what we covered in the preceding code snippet:

	We declared the ResourceDictionary in our ContentPage.Resources attribute, and then we created a single Explicit labelTrailName and set the TargetType, which will be used to set the appearance of Label instances in the XAML page that we apply this attribute to, using the descriptive Key.

	We created a number of setter properties that we can apply to our Label control. Here, we specified the HorizontalOptions to be Start, which will left-align our button control in our XAML page prior to setting FontAttributes, as well as defining Style using the Device.Styles class and the device-specific class type and specifying TextColor to use for this control element.

	We added the Style property to each of our Label control elements using StaticResource to apply the Explicit Style.

	We added the Style property to our Button using StaticResource to apply the Global Style to our control element, which we defined in our App.xaml file. If you remember, Global Styles can also be referred to as Explicit or Implicit Styles.

For more information on the Style class, please refer to the Microsoft Developer Documentation at https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.style?view=xamarin-forms.

 Updating our WalksEntryPage to use our Implicit Style

In this section, we will take a look at how to update the user interface for our WalksEntryPage, to apply Implicit Styles to each of the XAML element controls that are of the same type without requiring each control to reference the style.

Implicit Styles are very different from Global and Explicit Styles, as they don't require you to specify the x:Key declaration attribute. The Style will then be applied to all visual elements that match the TargetType, as we will see in this section.

Let's start by updating the user interface for our WalkTrailInfoPage by performing the following steps:

	Locate and open the WalkTrailInfoPage.xaml file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:valueConverters="clr-namespace:TrackMyWalks.ValueConverters"
 x:Class="TrackMyWalks.Views.WalkEntryPage">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Save" Clicked="SaveWalkItem_Clicked" />
 </ContentPage.ToolbarItems>
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style TargetType="Picker">
 <Setter Property="VerticalOptions" Value="Center"/>
 <Setter Property="HorizontalOptions" Value="FillAndExpand"/>
 <Setter Property="TextColor" Value="Red"/>
 <Setter Property="FontSize" Value="{DynamicResource CaptionStyle}"/>
 <Setter Property="BackgroundColor" Value="LightGoldenrodYellow"/>
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.Content>
 <TableView Intent="Form">
 <TableView.Root>
 <TableSection Title="Enter Walk Trail Information">
 <EntryCell Label="Title:"
 Text="{Binding Title, Mode=TwoWay}"
 Placeholder="Provide a Title for this trail" />
 <EntryCell Label="Description:"
 Text="{Binding Description, Mode=TwoWay}"
 Placeholder="Provide trail description" />
 <EntryCell Label="Latitude:"
 Text="{Binding Latitude, Mode=TwoWay}"
 Placeholder="Provide latitude coordinates" Keyboard="Numeric" />
 <EntryCell Label="Longitude:"
 Text="{Binding Longitude, Mode=TwoWay}"
 Placeholder="Provide longitude coordinates" Keyboard="Numeric" />
 <EntryCell Label="Distance:"
 Text="{Binding Distance, Mode=TwoWay}"
 Placeholder="Provide trail distance" Keyboard="Numeric" />
 <ViewCell>
 <StackLayout Orientation="Horizontal">
 <StackLayout.Margin>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="Android, WinPhone"
 Value="15,0" />
 <On Platform="iOS"
 Value="15,0" />
 </OnPlatform>
 </StackLayout.Margin>
 <Label Text="Difficulty:" VerticalOptions="Center" />
 <Picker Title="Choose Difficulty"
 SelectedItem="{Binding Difficulty, Mode=TwoWay}">
 <Picker.ItemsSource>
 <x:Array Type="{x:Type x:String}">
 <x:String>Easy</x:String>
 <x:String>Medium</x:String>
 <x:String>Hard</x:String>
 <x:String>Extreme</x:String>
 </x:Array>
 </Picker.ItemsSource>
 </Picker>
 </StackLayout>
 </ViewCell>
 <EntryCell Label="Image URL:"
 Text="{Binding ImageUrl, Mode=TwoWay}"
 Placeholder="Provide an Image URL" />
 </TableSection>
 </TableView.Root>
 </TableView>
 </ContentPage.Content>
 </ContentPage>

Let's now take a look at what we covered in the preceding code snippet:

	We declared the ResourceDictionary in our ContentPage.Resources tag, and then we created and set the TargetType, which will be used to set the appearance of all Picker instances that are declared in our XAML page.

	We created a number of setter properties that we can apply to our picker control. Here, we specified VerticalOptions to be Center, which will center our control in our XAML page.

	We set the HorizontalOptions and specified TextColor, FontSize, and BackgroundColor to use for this control element.

Now that you have created and implemented the necessary Global, Implicit, Explicit, and Device Styles in your XAML pages, our next step is to take a look at how we can use and work with the PlatformEffects API to create and implement ButtonShadowEffects and LabelShadowEffects for both iOS and Android platforms.

 Creating and using PlatformEffects in your app

In this section, we will see how we can work with the PlatformEffects API, which will allow us to customize the appearance and styling of our Xamarin.Forms native control elements for both the iOS and Android platforms. You will notice that these implementations have the same class names, but will be implemented completely differently, as you will see once we start.

We will look at how to create two completely different platform-effects, ButtonShadowEffect and LabelShadowEffect, for both iOS and Android platforms.

 Creating and Implementing the ButtonShadowEffect (iOS)

In this section, we will begin creating the ButtonShadowEffect class for the iOS section of our TrackMyWalks solution, which will essentially contain platform-specific methods that will be used by our ButtonShadowEffect class. The advantage of creating a ButtonShadowEffect class is that it's much easier to modify or add additional control properties that will be used by the XAML pages that utilize this class.

Let's start by creating the ButtonShadowEffect class for our TrackMyWalks app by performing the following the steps:

	Ensure that the TrackMyWalks solution is open in the Visual Studio for Mac IDE.

	Right-click on the TrackMyWalks.iOS project, choose Add|New Folder from the pop-up menu, and enter CustomEffects for the name of the new folder to be created.

	Right-click on the CustomEffects folder and choose Add|New File... from the pop-up menu, as shown in the following screenshot:

Creating a New File within the CustomEffects folder

	Create a new Empty Class called ButtonShadowEffect in the CustomEffects folder, as shown in the following screenshot:

Creating the ButtonShadowEffect Class for iOS

	Ensure that the ButtonShadowEffect.cs file, which is located as part of the TrackMyWalks.iOS group, is displayed in the code editor and enter the following code snippet:

 //
 // ButtonShadowEffect.cs
 // Creates a custom Button Shadow Effect using
 // PlatformEffects (iOS)
 //
 // Created by Steven F. Daniel on 16/07/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using UIKit;
 using Xamarin.Forms;
 using Xamarin.Forms.Platform.iOS;

 [assembly: ResolutionGroupName("GeniesoftStudios")]
 [assembly: ExportEffect(
 typeof(TrackMyWalks.iOS.CustomEffects.ButtonShadowEffect),
 "ButtonShadowEffect")]

 namespace TrackMyWalks.iOS.CustomEffects
 {
 public class ButtonShadowEffect : PlatformEffect
 {
 protected override void OnAttached()
 {
 try
 {
 Container.Layer.ShadowOpacity = 0.5f;
 Container.Layer.ShadowColor = UIColor.Black.CGColor;
 Container.Layer.ShadowRadius = 2;
 }
 catch (Exception ex)
 {
 Console.WriteLine("Cannot set property on attached control.
 Error: " + ex.Message);
 }
 }

 protected override void OnDetached()
 {
 Container.Layer.ShadowOpacity = 0;
 }
 }
 }

Let's now take a look at what we covered in the preceding code snippet:

	We started by including references to the System, UIKit, Xamarin.Forms, and Xamarin.Forms.Platform.iOS namespaces so that we can access the classes that are defined in these namespaces

	We added the ResolutionGroupName and ExportEffect assembly attribute to our ButtonShadowEffect class, to register the custom effect with Xamarin.Forms so that we can reference this in our XAML pages

	Then, we ensured that our ButtonShadowEffect class inherits from the PlatformEffect class, so that we can access each of the platform-specific method implementations of the PlatFormEffect class

	We created and implemented the OnAttached method, used the Container property to reference the platform-specific Button control, and applied shadowing effects to our button control by updating the properties for our control

	We created the OnDetached method, which will be used to perform any cleanup whenever the control is detached from a Xamarin.Forms Button control

 Creating and implementing the LabelShadowEffect (iOS)

In this section, we will begin creating the LabelShadowEffect class for the iOS section of our TrackMyWalks solution, which will essentially contain platform-specific methods that will be used by our LabelShadowEffect class. The advantage of creating a LabelShadowEffect class is that it's much easier to modify or add additional control properties that will be used by those XAML pages that utilize this class.

Let's start creating the LabelShadowEffect class for our TrackMyWalks app by performing the following the steps:

	Ensure that the TrackMyWalks solution is open in the Visual Studio for Mac IDE.

	In the TrackMyWalks.iOS project, right-click on the CustomEffects folder and choose Add|New File... from the pop-up menu.

	Create a new Empty Class called ButtonShadowEffect in the CustomEffects folder, as you did in the section of this chapter entitled Creating and Implementing the ButtonShadowEffect (iOS) of this chapter.

	Ensure that the LabelShadowEffect.cs file, which is located as part of the TrackMyWalks.iOS group, is displayed in the code editor and enter the following code snippet:

 //
 // LabelShadowEffect.cs
 // Creates a custom Label Shadow Effect using
 // PlatFormEffects (iOS)
 //
 // Created by Steven F. Daniel on 16/07/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using CoreGraphics;
 using Xamarin.Forms;
 using Xamarin.Forms.Platform.iOS;

 [assembly: ExportEffect(
 typeof(TrackMyWalks.iOS.CustomEffects.LabelShadowEffect),
 "LabelShadowEffect")]

 namespace TrackMyWalks.iOS.CustomEffects
 {
 public class LabelShadowEffect : PlatformEffect
 {
 protected override void OnAttached()
 {
 try
 {
 Control.Layer.CornerRadius = 5;
 Control.Layer.ShadowColor = Color.Black.ToCGColor();
 Control.Layer.ShadowOffset = new CGSize(4, 4);
 Control.Layer.ShadowOpacity = 0.5f;
 }
 catch (Exception ex)
 {
 Console.WriteLine("Cannot set property on attached control.
 Error: " + ex.Message);
 }
 }

 protected override void OnDetached()
 {
 }
 }
 }

Let's now take a look at what we covered in the preceding code snippet:

	We started by including references to the System, CoreGraphics, Xamarin.Forms, and Xamarin.Forms.Platform.iOS namespaces, so that we can access the classes that are defined in these namespaces.

	We added the ExportEffect assembly attribute to our LabelShadowEffect class to register the custom effect with Xamarin.Forms, so that we can reference this in our XAML pages. You will have noticed that we don't need to add the ResolutionGroupName assembly attribute, as there can only be one declaration of this for the iOS platform, and any attempt to add the assembly attribute again will result in a compilation error occurring.

	We ensured that our LabelShadowEffect class inherits from the PlatformEffect class, so that we can access each of the platform-specific method implementations of the PlatFormEffect class.

	We created and implemented the OnAttached method, and used the Container property to reference the platform-specific Label control, then apply shadowing effects to our button control by updating the properties for our control.

	We created the OnDetached method that will be used to perform any cleanup whenever the control is detached from a Xamarin.Forms Label control.

 Creating and implementing the ButtonShadowEffect (Android)

In this section, we will begin creating the ButtonShadowEffect class for the Android section of our TrackMyWalks solution, which will essentially contain platform-specific methods that will be used by our ButtonShadowEffect class. The advantage of creating a ButtonShadowEffect class is that it's much easier to modify or add additional control properties that will be used by those XAML pages that utilize this class.

Let's start by creating the ButtonShadowEffect class for our TrackMyWalks app by performing the following the steps:

	Ensure that the TrackMyWalks solution is open in the Visual Studio for Mac IDE.

	Right-click on the TrackMyWalks.Android project, choose Add | New Folder from the pop-up menu, and enter CustomEffects for the name of the new folder to be created.

	Right-click on the CustomEffects folder and choose Add | New File... from the pop-up menu, as shown in the following screenshot:

Creating the ButtonShadowEffect Class for Android

	Next, create a new Empty Class called ButtonShadowEffect in the CustomEffects folder, as you did in the section entitled Creating and Implementing the ButtonShadowEffect (iOS) in this chapter.

	Then, ensure that the ButtonShadowEffect.cs file, which is located as part of the TrackMyWalks.Android group, is displayed in the code editor and enter the following code snippet:

 //
 // ButtonShadowEffect.cs
 // Creates a custom Button Shadow Effect using
 // PlatformEffects (Android)
 //
 // Created by Steven F. Daniel on 16/07/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using Xamarin.Forms;
 using Xamarin.Forms.Platform.Android;
 using System;

 [assembly: ResolutionGroupName("GeniesoftStudios")]
 [assembly: ExportEffect(
 typeof(TrackMyWalks.Droid.CustomEffects.ButtonShadowEffect),
 "ButtonShadowEffect")]

 namespace TrackMyWalks.Droid.CustomEffects
 {
 public class ButtonShadowEffect : PlatformEffect
 {
 protected override void OnAttached()
 {
 try
 {
 var control = Control as Android.Widget.Button;
 Android.Graphics.Color color = Android.Graphics.Color.Red;
 control.SetShadowLayer(12, 4, 4, color);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Cannot set property on attached control.
 Error: " + ex.Message);
 }
 }

 protected override void OnDetached()
 {
 throw new NotImplementedException();
 }
 }
 }

Let's now take a look at what we cover in the preceding code snippet:

	We started by including references to the Xamarin.Forms, Xamarin.Forms.Platform.Android, and System namespaces so that we can access the classes that are defined in these namespaces.

	We added the ResolutionGroupName and ExportEffect assembly attributes to our ButtonShadowEffect class, to register the custom effect with Xamarin.Forms so that we can reference this in our XAML pages.

	We ensured that our ButtonShadowEffect class inherits from the PlatformEffect class, so that we can access each of the platform-specific method implementations of the PlatFormEffect class.

	We created and implemented the OnAttached method, used the Container property to reference the platform-specific Button control, and apply shadowing effects to our button control by updating the properties for our control.

	We created the OnDetached method, which will be used to perform any cleanup whenever the control is detached from a Xamarin.Forms Button control.

 Creating and implementing the LabelShadowEffect (Android)

In this section, we will begin creating the LabelShadowEffect class for the Android section of our TrackMyWalks solution, which will essentially contain platform-specific methods that will be used by our LabelShadowEffect class. The advantage of creating a LabelShadowEffect class is that it's much easier to modify or add additional control properties that will be used by those XAML pages that utilize this class.

Let's start creating the LabelShadowEffect class for our TrackMyWalks app by performing the following the steps:

	Ensure that the TrackMyWalks solution is open in the Visual Studio for Mac IDE.

	In the TrackMyWalks.Android project, right-click on the CustomEffects folder and choose Add | New File... from the pop-up menu.

	Create a new Empty Class called LabelShadowEffect in the CustomEffects folder, as you did in the section entitled Creating and Implementing the ButtonShadowEffect (Android) in this chapter.

	Ensure that the LabelShadowEffect.cs file, which is located as part of the TrackMyWalks.Android group, is displayed in the code editor and enter the following code snippet:

 //
 // LabelShadowEffect.cs
 // Creates a custom Label Shadow Effect using
 // PlatformEffects (Android)
 //
 // Created by Steven F. Daniel on 16/07/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using Xamarin.Forms;
 using Xamarin.Forms.Platform.Android;

 [assembly: ExportEffect(
 typeof(TrackMyWalks.Droid.CustomEffects.LabelShadowEffect),
 "LabelShadowEffect")]

 namespace TrackMyWalks.Droid.CustomEffects
 {
 public class LabelShadowEffect : PlatformEffect
 {
 protected override void OnAttached()
 {
 try
 {
 var control = Control as Android.Widget.TextView;
 float radius = 5;
 float distanceX = 4;
 float distanceY = 4;
 Android.Graphics.Color color = Color.White.ToAndroid();
 control.SetShadowLayer(radius, distanceX, distanceY, color);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Cannot set property on attached control.
 Error: " + ex.Message);
 }
 }

 protected override void OnDetached()
 {
 }
 }
 }

Let's now take a look at what we covered in the preceding code snippet:

	We started by including references to the System, Xamarin.Forms, and Xamarin.Forms.Platform.Android namespaces, so that we can access the classes that are defined in these namespaces.

	We added the ExportEffect assembly attribute to our LabelShadowEffect class, to register the custom effect with Xamarin.Forms so that we can reference this in our XAML pages. You will have noticed that we don't need to add the ResolutionGroupName assembly attribute, as there can only be one declaration of this for the Android platform, and any attempt to add the assembly attribute again will result in a compilation error occurring.

	We ensured that our LabelShadowEffect class inherits from the PlatformEffect class, so that we can access each of the platform-specific method implementations of the PlatFormEffect class.

	We created and implemented the OnAttached method, used the Container property to reference the platform-specific Label control, and applied shadowing effects to our button control by updating the properties for our control.

	We created the OnDetached method that will be used to perform any cleanup whenever the control is detached from a Xamarin.Forms Label control.

 Implementing the ButtonShadowEffect RoutingEffect class

In this section, we will begin creating the ButtonShadowEffect class for the shared project section of our TrackMyWalks solution. This class will essentially contain a routing reference to our platform-specific class used by our ButtonShadowEffect class. Since we cannot directly reference PlatformEffects classes that have been created for each platform, we will need to create a RoutingEffect class, referencing the same name as we defined in each platform, so that it will make it much easier to access these in our XAML pages that utilize this effect.

Let's start by creating the ButtonShadowEffect RoutingEffect class for our TrackMyWalks app by performing the following steps:

	Ensure that the TrackMyWalks solution is open in the Visual Studio for Mac IDE.

	Right-click on the TrackMyWalks shared project and choose Add | New Folder from the pop-up menu and enter CustomEffects for the name of the new folder to be created.

	Right-click on the CustomEffects folder and choose Add | New File... from the pop-up menu, as shown in the following screenshot:

Creating a New File within the CustomEffects Folder

	Create a new Empty Class called ButtonShadowEffect in the CustomEffects folder, as shown in the following screenshot:

Creating the ButtonShadowEffect Class

	Ensure that the ButtonShadowEffect.cs file, which is located as part of the TrackMyWalks group, is displayed in the code editor and enter the following code snippet:

 //
 // ButtonShadowEffect.cs
 // Creates a Button Shadow Effect using the
 // RoutingEffect Class
 //
 // Created by Steven F. Daniel on 16/07/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using Xamarin.Forms;

 namespace TrackMyWalks.CustomEffects
 {
 public class ButtonShadowEffect : RoutingEffect
 {
 public ButtonShadowEffect() :
 base("GeniesoftStudios.ButtonShadowEffect")
 {
 }
 }
 }

Let's now take a look at what we covered in the preceding code snippet:

	We started by including references to the Xamarin.Forms namespace, so that we can access the classes that are defined in these namespaces.

	We ensured that our ButtonShadowEffect class inherits from the RoutingEffect class, so that we can access each of the platform-specific method implementations of the PlatFormEffect class.

	We created the ButtonShadowEffect class constructor and ensured that this inherits from the base class that points to the ResolutionGroupName and PlatformEffect assembly attributes in our platform-specific ButtonShadowEffect class, so that we can reference this in our XAML pages.

 Implementing the LabelShadowEffect RoutingEffect class

In this section, we will begin creating the LabelShadowEffect class for the shared project section of our TrackMyWalks solution. This class will essentially contain a routing reference to our platform-specific class used by our LabelShadowEffect class. Since we cannot directly reference PlatformEffects classes that have been created for each platform, we will need to create a RoutingEffect class, referencing the same name as we defined in each platform, so that it will make it much easier to access these in our XAML pages that utilize this effect.

Let's start by creating the LabelShadowEffect RoutingEffect class for our TrackMyWalks app by performing the following the steps:

	Ensure that the TrackMyWalks solution is open in the Visual Studio for Mac IDE.

	In the TrackMyWalks project, right-click on the CustomEffects folder and choose Add | New File... from the pop-up menu.

	Create a new Empty Class called LabelShadowEffect in the CustomEffects folder, as you did in the section entitled Implementing the ButtonShadowEffect RoutingEffect Class in this chapter.

	Ensure that the LabelShadowEffect.cs file, which is located as part of the TrackMyWalks group, is displayed in the code editor and enter the following code snippet:

 //
 // LabelShadowEffect.cs
 // Creates a Label Shadow Effect using the
 // RoutingEffect Class
 //
 // Created by Steven F. Daniel on 16/07/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using Xamarin.Forms;

 namespace TrackMyWalks.CustomEffects
 {
 public class LabelShadowEffect : RoutingEffect
 {
 public LabelShadowEffect() :
 base("GeniesoftStudios.LabelShadowEffect")
 {
 }
 }
 }

Let's now take a look at what we covered in the preceding code snippet:

	We started by including references to the Xamarin.Forms namespace, so that we can access the classes that are defined there

	We ensured that our LabelShadowEffect class inherits from the RoutingEffect class, so that we can access each of the platform-specific method implementations of the PlatFormEffect class

	We created the LabelShadowEffect class constructor, and ensured that this inherits from the base class that points to the ResolutionGroupName and PlatformEffect assembly attributes in our platform-specific LabelShadowEffect class, so that we can reference this in our XAML pages

 Updating the WalksMainPage to use the LabelShadowEffect

In this section, we will take a look at how to update the user interface for our WalksMainPage to apply PlatformEffects and utilize our LabelShadowEffect in your XAML, so that our control elements will take on our custom effect based on the platform that is being run.

Let's start by updating the user interface for our WalksMainPage by performing the following steps:

	Locate and open the WalksMainPage.xaml file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:customEffect="clr-namespace:TrackMyWalks.CustomEffects"
 x:Class="TrackMyWalks.Views.WalksMainPage">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Add" Clicked="AddWalk_Clicked" />
 </ContentPage.ToolbarItems>
 <StackLayout>
 <ListView x:Name="WalkEntriesListView" HasUnevenRows="true"
 SeparatorColor="#ddd" ItemTapped="myWalkEntries_ItemTapped">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <ViewCell.ContextActions>
 <MenuItem Clicked="OnEditItem"
 CommandParameter="{Binding .}" Text="Edit"
 IsDestructive="False" />
 <MenuItem Clicked="OnDeleteItem"
 CommandParameter="{Binding .}" Text="Delete"
 IsDestructive="True" />
 </ViewCell.ContextActions>
 ...
 ...
 ...
 <StackLayout x:Name="DetailsLayout"
 HorizontalOptions="FillAndExpand">
 ...
 ...
 ...
 <Label Text="{Binding Title}" FontAttributes="Bold"
 TextColor="Black" Style="{DynamicResource TitleStyle}“>
 <Label.FontSize>
 <OnPlatform x:TypeArguments="x:Double">
 <On Platform="Android, WinPhone"
 Value="14" />
 <On Platform="iOS"
 Value="16" />
 </OnPlatform>
 </Label.FontSize>
 <Label.Effects>
 <customEffect:LabelShadowEffect />
 </Label.Effects>
 </Label>
 ...
 ...
 ...
 </StackLayout>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
 </ContentPage>

Let's now take a look at what we covered in the preceding code snippet:

	We started by creating a xmlns:customEffect a reference to our CustomEffects namespace so that we can access PlatformEffect in our XAML that we have defined in our namespace

	We added the Label.Effects attribute to our Label attribute for {Binding Title}, and then referenced the customEffect assembly namespace so that we can access the platform-specific LabelShadowEffect to use

 Updating the WalkTrailInfoPage to use the LabelShadowEffect

In this section, we will take a look at how to update the user interface for our WalkTrailInfoPage to apply PlatformEffects and utilize our LabelShadowEffect in our XAML, so that our control elements will take on our custom effect based on the platform that is being run.

Let's start by updating the user interface for our WalkTrailInfoPage by performing the following steps:

	Locate and open the WalkTrailInfoPage.xaml file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:customEffect="clr-namespace:TrackMyWalks.CustomEffects"
 x:Class="TrackMyWalks.Views.WalkTrailInfoPage">
 <ScrollView>
 <StackLayout.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="Android, WinPhone"
 Value="2,0" />
 <On Platform="iOS"
 Value="2,0" />
 </OnPlatform>
 </StackLayout.Padding>
 <StackLayout Orientation="Vertical" HorizontalOptions="FillAndExpand">
 <Image x:Name="TrailImage" Aspect="AspectFill"
 Source="{Binding ImageUrl}" HorizontalOptions="FillAndExpand"
 VerticalOptions="FillAndExpand" />
 <Label x:Name="TrailName" Text="{Binding Title}"
 Style="{DynamicResource labelTrailName}">
 <Label.Effects>
 <customEffect:LabelShadowEffect />
 </Label.Effects>
 </Label>
 ...
 ...
 ...
 <Button x:Name="BeginTrailWalk" Text="Begin this Trail"
 Clicked="BeginTrailWalk_Clicked" Margin="20"
 Style="{StaticResource buttonStyle}">
 </Button>
 </StackLayout>
 </ScrollView>
 </ContentPage>

Let's now take a look at what we covered in the preceding code snippet:

	We started by creating a xmlns:customEffect, a reference to our CustomEffects namespace, so that we can access the PlatformEffect in our XAML that we have defined in our namespace

	We added the Label.Effects attribute to our Label attribute for our TrailName, and then referenced the customEffect assembly namespace so that we can access the platform-specific LabelShadowEffect to use

 Updating the WalkTrailInfoPage to use the ButtonShadowEffect

In this section, we will take a look at how to update the user interface for our WalkTrailInfoPage to apply PlatformEffects and utilize our ButtonShadowEffect in your XAML, so that our control elements will take on our custom effect based on the platform that is being run.

Let's start by updating the user interface for our WalkTrailInfoPage by performing the following steps:

	Locate and open the WalkTrailInfoPage.xaml file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:customEffect="clr-namespace:TrackMyWalks.CustomEffects"
 x:Class="TrackMyWalks.Views.WalkTrailInfoPage">
 <ScrollView>
 <StackLayout.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="Android, WinPhone" Value="2,0" />
 <On Platform="iOS" Value="2,0" />
 </OnPlatform>
 </StackLayout.Padding>
 <StackLayout Orientation="Vertical" HorizontalOptions="FillAndExpand">
 <Image x:Name="TrailImage" Aspect="AspectFill"
 Source="{Binding ImageUrl}" HorizontalOptions="FillAndExpand"
 VerticalOptions="FillAndExpand" />
 <Label x:Name="TrailName" Text="{Binding Title}"
 Style="{DynamicResource labelTrailName}">
 <Label.Effects>
 <customEffect:LabelShadowEffect />
 </Label.Effects>
 </Label>
 ...
 ...
 ...
 <Button x:Name="BeginTrailWalk" Text="Begin this Trail"
 Clicked="BeginTrailWalk_Clicked" Margin="20"
 Style="{StaticResource buttonStyle}">
 <Button.Effects>
 <customEffect:ButtonShadowEffect />
 </Button.Effects>
 </Button>
 </StackLayout>
 </ScrollView>
 </ContentPage>

Let's now take a look at what we covered in the preceding code snippet:

	We started by creating a xmlns:customEffect, a reference to our CustomEffects namespace, so that we can access PlatformEffect in our XAML that we have defined in our namespace.

	We added the Button.Effects attribute to our Button attribute for BeginTrailWalk, and then referenced the customEffect assembly namespace, so that we can access the platform-specific ButtonShadowEffect to use.

Whenever you work with the PlatformEffect class to create platform-specific classes for each of your mobile platforms, this class exposes a number of properties that you can use and these are explained in the following table:

	
PlatformEffect

	
Description

	
Container

	
The Container type is responsible for referencing the platform-specific control that is being used to implement the layout.

	
Control

	
The Control type is responsible for referencing the platform-specific control that is being used to implement the Xamarin.Forms control.

	
Element

	
The Element type is responsible for referencing the Xamarin.Forms control that is currently being rendered.

Whenever you create your own PlatformEffects, they will always inherit from the PlatformEffect class, which is dependent on the platform that your app is run on. However, the API for an effect is pretty much identical across each of the platforms, as they derive from PlatformEffect<T, T> and will contain different generic parameters.

There are also two very important attributes that you need to ensure that you set for each class that subclasses from the PlatformEffect class, and these are explained in the following table:

	
AttributeType

	
Description

	
ResolutionGroupName

	
This attribute is responsible for setting up a company-wide namespace that prevents name collisions with other effects of the same name. It is worth mentioning that you can create multiple PlatformEffect classes, but you can only apply the ResolutionGroupName attribute once per project.

	
ExportEffect

	
This attribute is responsible for registering the effect with a unique ID that is used by the Xamarin.Forms platform, along with the group name. The ExportEffect attribute takes two parameters, which are the name of the effect and a unique string that will be used to locate the effect prior to applying it to the control.

For more information on the PlatformEffect class, please refer to the Microsoft Developer Documentation at https://docs.microsoft.com/en-au/xamarin/xamarin-forms/app-fundamentals/effects/.

Now that you have created the necessary PlatformEffects and RoutingEffects class implementations for both the iOS and Android platforms, our next step is to begin creating a ValueConverter class that will be used to display images in our XAML pages based on a String value.

 Creating and implementing ValueConverters in your app

In this section, we will begin creating the ImageConverter class for our TrackMyWalks solution. ValueConverters are an important concept in data binding, as they allow you to customize the appearance of a data property at the time it is bound. This process is quite similar to Windows Presentation Foundation (WPF) on the Windows application development platform.

The Xamarin.Forms platform provides you with a number of ValueConverter interfaces as part of its API. These are extremely helpful as they allow you to toggle the visibility of elements based on a Boolean property, or display an image based on a String property.

Let's start creating the ImageConverter class for our TrackMyWalks app by performing the following the steps:

	Ensure that the TrackMyWalks solution is open in the Visual Studio for Mac IDE.

	Right-click on the TrackMyWalks shared project, choose Add | New Folder from the pop-up menu, and enter ValueConverters for the name of the new folder to be created.

	Right-click on the ValueConverters folder and choose Add | New File... from the pop-up menu, as shown in the following screenshot:

Creating the ImageConverter Class within the ValueConverters folder

	Create a new Empty Class called ImageConverter in the ValueConverters folder, as you did in the section entitled Implementing the ButtonShadowEffect RoutingEffect Class in this chapter.

	Ensure that the ImageConverter.cs file, which is located as part of the TrackMyWalks shared project group, is displayed in the code editor and enter the following code snippet:

 //
 // ImageConverter.cs
 // ValueConverter class for converting difficulty property
 // Values to an image
 //
 // Created by Steven F. Daniel on 16/07/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Globalization;
 using Xamarin.Forms;

 namespace TrackMyWalks.ValueConverters
 {
 public class ImageConverter : IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 // Declare our Difficulty Level based on the value
 // parameter
 var DiffLevel = (String)value;

 // Determine the type of URL to return based on the
 // difficulty level
 switch (DiffLevel)
 {
 case "Easy":
 return "http://www.trailhiking.com.au/wp-content/
 uploads/2013/08/g1.jpeg";
 case "Medium":
 return "http://www.trailhiking.com.au/wp-content/
 uploads/2013/08/g2.jpeg";
 case "Hard":
 return "http://www.trailhiking.com.au/wp-content/
 uploads/2013/08/g3.jpeg";
 case "Extreme":
 return "http://www.trailhiking.com.au/wp-content/
 uploads/2013/08/g5.jpeg";
 default:
 return "http://www.trailhiking.com.au/wp-content/
 uploads/2013/08/g1.jpeg";
 }
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
 }

Let's now take a look at what we covered in the preceding code snippet:

	We started by including references to the System, System.Globalization, and Xamarin.Forms namespaces, so that we can access the classes that are defined in these namespaces

	We ensured that our ImageConverter class inherits from the IValueConverter class, so that we can access the method implementations of the IValueConverter class

	We created the Convert method and declared a DiffLevel variable, which will contain the data-bound difficulty level from our XAML page, and then we return back the URL based on the level of difficulty determined

	We created the ConvertBack method, which will be used to perform any conversions from the URL to the difficulty level; we don't need to do anything here in this instance

 Updating the BaseViewModel class to include additional properties

Now that we have created our ImageConverter class, which will be used to convert a level of difficulty and return the associated URL for the image to be displayed in our XAML pages, our next step is to update the underlying C# code in our BaseViewModel class. Since our BaseViewModel class is used by each of our ViewModels, it makes sense to add these additional properties and instance methods in the BaseViewModel class.

Let's take a look at how we can achieve this by performing the following steps:

	Locate and open the WalkBaseViewModel.cs class, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 //
 // BaseViewModel.cs
 // BaseView Model Class that each of our ViewModels will inherit from
 //
 // Created by Steven F. Daniel on 5/06/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.ComponentModel;
 using System.Runtime.CompilerServices;
 using System.Threading.Tasks;
 using TrackMyWalks.Services;

 namespace TrackMyWalks.ViewModels
 {
 public abstract class BaseViewModel : INotifyPropertyChanged
 {
 public INavigationService Navigation { get; set; }
 public const string PageTitlePropertyName = "PageTitle";

 string pageTitle;
 public string PageTitle
 {
 get => pageTitle;
 set { pageTitle = value; OnPropertyChanged(); }
 }

 protected BaseViewModel(INavigationService navService)
 {
 Navigation = navService;
 }

 public abstract Task Init();
 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void OnPropertyChanged([CallerMemberName] string propertyName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }

 bool isProcessBusy;
 public bool IsProcessBusy
 {
 get => isProcessBusy;
 set { isProcessBusy = value; OnPropertyChanged(); }
 }
 }

 public abstract class BaseViewModel<TParam> : BaseViewModel
 {
 protected BaseViewModel(INavigationService navService) : base(navService)
 {
 }
 }
 }

In the preceding code snippet, we begin by creating a Boolean property called IsProcessBusy, which will only be set to True when we are in the process of actually loading data in our ListView or following some process that takes a long time. The IsProcessBusy property defines the getter and setter implementations. Whenever the value of the isProcessBusy variable changes, we make a call to the OnPropertyChanged event to tell the ViewModel that a change has been made.

 Updating the WalksMainPageViewModel to use our property

Now that we have updated our BaseViewModel class, which includes our IsProcessBusy property, which will in turn be used and inherited by each of the ViewModels that we create, we can start updating the WalksMainPageViewModel class, so that it can use our IsProcessBusy property whenever we populate data in our ListView.

Let's take a look at how we can achieve this by performing the following steps:

	Locate and open the WalksMainPageViewModel.cs class, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 //
 // WalksMainPageViewModel.cs
 // The ViewModel for our WalksMainPage ContentPage
 //
 // Created by Steven F. Daniel on 5/06/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.Collections.ObjectModel;
 using System.Threading.Tasks;
 using TrackMyWalks.Models;
 using TrackMyWalks.Services;

 namespace TrackMyWalks.ViewModels
 {
 public class WalksMainPageViewModel : BaseViewModel
 {
 // Create our WalksListModel Observable Collection
 public ObservableCollection<WalkDataModel> WalksListModel;

 public WalksMainPageViewModel(INavigationService navService) : base(navService)
 {
 }

 // Instance method to add and retrieve our Walk Trail items
 public async Task GetWalkTrailItems()
 {
 // Check our IsProcessBusy property to see if we are already processing
 if (IsProcessBusy)
 return;

 // If we aren't processing, we need to set our IsProcessBusy property to true
 IsProcessBusy = true;

 // Specify our List Collection to store the items being read
 WalksListModel = new ObservableCollection<WalkDataModel> {

 // Populate our collection with some dummy data that will be used to populate our ListView
 new WalkDataModel
 {
 Id = 1,
 Title = "10 Mile Brook Trail, Margaret River",
 Description = "The 10 Mile Brook Trail starts in the Rotary Park
 near Old Kate, a preserved steam engine at the northern edge
 of Margaret River. ",
 Latitude = -33.9727604,
 Longitude = 115.0861599,
 Distance = 7.5,
 Difficulty = "Medium",
 ImageUrl = "http://trailswa.com.au/media/cache/media/images/trails/_mid/
 FullSizeRender1_600_480_c1.jpg"
 },
 new WalkDataModel
 {
 Id = 2,
 Title = "Ancient Empire Walk, Valley of the Giants",
 Description = "The Ancient Empire is a 450 metre walk trail that
 takes you around and through some of the giant tingle trees including
 the most popular of the gnarled veterans, known as Grandma Tingle.",
 Latitude = -34.9749188,
 Longitude = 117.3560796,
 Distance = 450,
 Difficulty = "Hard",
 ImageUrl = "http://trailswa.com.au/media/cache/media/images/trails/_mid/
 Ancient_Empire_534_480_c1.jpg"
 }};

 // Add a temporary timer, so that we can see our progress indicator working
 await Task.Delay(3000);

 // Set our IsProcessBusy property value back to false when finished
 IsProcessBusy = false;
 }

 // Instance method to initialise the WalksMainPageViewModel
 public override async Task Init()
 {
 await Task.Factory.StartNew(async () =>
 {
 // Call our GetWalkTrailItems method to populate our collection
 await GetWalkTrailItems();
 });
 }
 }
 }

Let's take a look at what we covered in the preceding code snippet:

	We started by modifying the method signature for our GetWalkTrailItems instance method, by making it return a Task object and also handle asynchronous calls.

	We checked our IsProcessBusy property to see whether we are already processing items, and if we aren't, we initialize our IsProcessBusy property to True.

	We added a temporary timer using the Delay method of the Task object, so that we can see our progress indicator working, but we will be removing this in Chapter 11, Incorporating Microsoft Azure App Services, when we load the Walk Trail information from an API. Finally, we set the IsProcessBusy property value back to False when we have finished to tell BaseViewModel that we have completed processing our Walk Trail Items.

 Updating the WalksMainPage to use our ImageConverter class

In this section, we will take a look at how to update the user interface for our WalksMainPage, to apply ValueConverters and utilize ImageConverter in our XAML, so that we can display an image for the data-bind property of our Difficulty level.

Let's start by updating the user interface for our WalksMainPage by performing the following steps:

	Locate and open the WalksMainPage.xaml file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:customEffect="clr-namespace:TrackMyWalks.CustomEffects"
 xmlns:valueConverters="clr-namespace:TrackMyWalks.ValueConverters"
 x:Class="TrackMyWalks.Views.WalksMainPage">

 <ContentPage.Resources>
 <ResourceDictionary>
 <valueConverters:ImageConverter x:Key="imageConverter" />
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Add" Clicked="AddWalk_Clicked" />
 </ContentPage.ToolbarItems>
 <StackLayout>
 <ListView x:Name="WalkEntriesListView" HasUnevenRows="true"
 SeparatorColor="#ddd" ItemTapped="myWalkEntries_ItemTapped">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <ViewCell.ContextActions>
 <MenuItem Clicked="OnEditItem"
 CommandParameter="{Binding .}" Text="Edit"
 IsDestructive="False" />
 <MenuItem Clicked="OnDeleteItem"
 CommandParameter="{Binding .}" Text="Delete"
 IsDestructive="True" />
 </ViewCell.ContextActions>
 <StackLayout x:Name="cellLayout" Orientation="Horizontal"
 HorizontalOptions="FillAndExpand">
 <StackLayout.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="Android, WinPhone"
 Value="0,0" />
 <On Platform="iOS"
 Value="2,2" />
 </OnPlatform>
 </StackLayout.Padding>
 <Image Aspect="AspectFill" Source="{Binding ImageUrl}"
 WidthRequest="140" HeightRequest="140"
 VerticalOptions="FillAndExpand"
 HorizontalOptions="FillAndExpand" />
 <StackLayout x:Name="DetailsLayout"
 HorizontalOptions="FillAndExpand">
 <StackLayout.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="Android, WinPhone"
 Value="5,0" />
 <On Platform="iOS"
 Value="5,0" />
 </OnPlatform>
 </StackLayout.Padding>
 <Label Text="{Binding Title}" FontAttributes="Bold"
 TextColor="Black" Style="{DynamicResource TitleStyle}">
 <Label.FontSize>
 <OnPlatform x:TypeArguments="x:Double">
 <On Platform="Android, WinPhone" Value="14" />
 <On Platform="iOS" Value="16" />
 </OnPlatform>
 </Label.FontSize>
 <Label.Effects>
 <customEffect:LabelShadowEffect />
 </Label.Effects>
 </Label>
 <Label Text="{Binding Distance,
 StringFormat='Kilometers: {0} km'}"
 FontAttributes="Bold" TextColor="#666"
 Style="{DynamicResource CaptionStyle}" />
 <Label Text="{Binding Difficulty,
 StringFormat='Difficulty: {0}'}"
 FontAttributes="Bold" TextColor="Black"
 Style="{DynamicResource ListItemTextStyle}" />
 <Image Aspect="AspectFit" HeightRequest="50"
 WidthRequest="50" HorizontalOptions="Start"
 Source="{Binding Difficulty,
 Converter={StaticResource imageConverter}}" />
 <StackLayout Spacing="3" Orientation="Vertical">
 <Label Text="{Binding Description}" FontAttributes="None"
 TextColor="Blue" VerticalOptions="FillAndExpand"
 Style="{DynamicResource BodyStyle}" />
 </StackLayout>
 </StackLayout>
 </StackLayout>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
 </ContentPage>

Let's now take a look at what we cover in the preceding code snippet:

	We started by creating a xmlns:valueConverters reference to our ValueConverters namespace, so that we can access the ImageConverter in our XAML that we have defined in our namespace

	We created a ResourceDictionary attribute, added the ImageConverter class in our valueConverters namespace, and defined a value for the Key property so that we can reference the imageConverter name in our XAML page.

	We created an Image attribute and set the Aspect ratio to use, as well as the Height, Width, and HorizontalOptions, and the Source property for the image

	You'll notice that for our Source property, we provided the Converter property in our binding for our difficulty level, in order to use the imageConverter ValueConverter, which will take a String value for our Difficulty and return the URL to use

 Updating the WalkEntryPage to use our ImageConverter class

In this section, we will take a look at how to update the user interface for our WalkEntryPage to apply ValueConverters and utilize ImageConverter in your XAML, so that we can display an image for the data-bind property for our difficulty level.

Let's start by updating the user interface for our WalkEntryPage by performing the following steps:

	Locate and open the WalkEntryPage.xaml file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:valueConverters="clr-namespace:TrackMyWalks.ValueConverters"
 x:Class="TrackMyWalks.Views.WalkEntryPage">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Save" Clicked="SaveWalkItem_Clicked" />
 </ContentPage.ToolbarItems>
 <ContentPage.Resources>
 <ResourceDictionary>
 <valueConverters:ImageConverter x:Key="imageConverter" />
 </ResourceDictionary>
 <ResourceDictionary>
 <!-- Creating an Implicit Style in XAML -->
 <Style TargetType="Picker">
 <Setter Property="VerticalOptions" Value="Center"/>
 <Setter Property="HorizontalOptions" Value="FillAndExpand"/>
 <Setter Property="TextColor" Value="Red"/>
 <Setter Property="FontSize" Value="{DynamicResource CaptionStyle}"/>
 <Setter Property="BackgroundColor" Value="LightGoldenrodYellow"/>
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.Content>
 <TableView Intent="Form">
 <TableView.Root>
 <TableSection Title="Enter Walk Trail Information">
 <EntryCell Label="Title:" Text="{Binding Title, Mode=TwoWay}"
 Placeholder="Provide a Title for this trail" />
 <EntryCell Label="Description:" Text="{Binding Description, Mode=TwoWay}"
 Placeholder="Provide trail description" />
 <EntryCell Label="Latitude:" Text="{Binding Latitude, Mode=TwoWay}"
 Placeholder="Provide latitude coordinates" Keyboard="Numeric" />
 <EntryCell Label="Longitude:" Text="{Binding Longitude, Mode=TwoWay}"
 Placeholder="Provide longitude coordinates" Keyboard="Numeric" />
 <EntryCell Label="Distance:" Text="{Binding Distance, Mode=TwoWay}"
 Placeholder="Provide trail distance" Keyboard="Numeric" />
 <ViewCell>
 <StackLayout Orientation="Horizontal">
 <StackLayout.Margin>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="Android, WinPhone" Value="15,0" />
 <On Platform="iOS" Value="15,0" />
 </OnPlatform>
 </StackLayout.Margin>
 <Label Text="Difficulty:" VerticalOptions="Center" />
 <Image Aspect="AspectFill" HeightRequest="50"
 WidthRequest="50" HorizontalOptions="Start"
 Source="{Binding Difficulty,
 Converter={StaticResource imageConverter}}" />
 <Picker Title="Choose Difficulty"
 SelectedItem="{Binding Difficulty, Mode=TwoWay}">
 <Picker.ItemsSource>
 <x:Array Type="{x:Type x:String}">
 <x:String>Easy</x:String>
 <x:String>Medium</x:String>
 <x:String>Hard</x:String>
 <x:String>Extreme</x:String>
 </x:Array>
 </Picker.ItemsSource>
 </Picker>
 </StackLayout>
 </ViewCell>
 <EntryCell Label="Image URL:" Text="{Binding ImageUrl, Mode=TwoWay}"
 Placeholder="Provide an Image URL" />
 </TableSection>
 </TableView.Root>
 </TableView>
 </ContentPage.Content>
 </ContentPage>

Let's now take a look at what we cover in the preceding code snippet:

	We started by creating a xmlns:valueConverters reference to our ValueConverters namespace, so that we can access the ImageConverter in our XAML that we have defined in our namespace.

	We create a ResourceDictionary attribute, added the ImageConverter class in our valueConverters namespace, and defined a value for the Key property so that we can reference the imageConverter name in our XAML page.

	We created an Image attribute and set the Aspect ratio to use, as well as Height, Width, and HorizontalOptions and the Source property for the image.

	You'll notice that for our Source property, we provided the Converter property in our binding for our difficulty level, in order to use the imageConverter ValueConverter, which will take a String value for our Difficulty and return the URL to use. Whenever you change the Picker value, the image will update to represent the chosen difficulty level.

 Updating the WalkTrailInfoPage to use our ImageConverter class

In this section, we will take a look at how to update the user interface for our WalkTrailInfoPage to apply ValueConverters and utilize ImageConverter in your XAML, so that we can display an image for the data binding property for our Difficulty level.

Let's start updating the user interface for our WalkTrailInfoPage by performing the following steps:

	Locate and open the WalkTrailInfoPage.xaml file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:valueConverters="clr-namespace:TrackMyWalks.ValueConverters"
 xmlns:customEffect="clr-namespace:TrackMyWalks.CustomEffects"
 x:Class="TrackMyWalks.Views.WalkTrailInfoPage">
 <ContentPage.Resources>
 <ResourceDictionary>
 <valueConverters:ImageConverter x:Key="imageConverter" />
 </ResourceDictionary>
 <ResourceDictionary>
 <Style x:Key="labelTrailName" TargetType="Label">
 <Setter Property="HorizontalOptions" Value="Start" />
 <Setter Property="FontAttributes" Value="Bold" />
 <Setter Property="Style" Value="{DynamicResource TitleStyle}" />
 <Setter Property="TextColor" Value="Black" />
 </Style>
 <Style x:Key="labelTrailKilometers" TargetType="Label">
 <Setter Property="HorizontalOptions" Value="Start" />
 <Setter Property="FontAttributes" Value="Bold" />
 <Setter Property="Style" Value="{DynamicResource CaptionStyle}" />
 <Setter Property="TextColor" Value="Black" />
 </Style>
 <Style x:Key="labelTrailDifficulty" TargetType="Label">
 <Setter Property="HorizontalOptions" Value="Start" />
 <Setter Property="FontAttributes" Value="Bold" />
 <Setter Property="Style" Value="{DynamicResource ListItemTextStyle}" />
 <Setter Property="TextColor" Value="Black" />
 </Style>
 <Style x:Key="labelTrailDescription" TargetType="Label">
 <Setter Property="HorizontalOptions" Value="Start" />
 <Setter Property="Style" Value="{DynamicResource BodyStyle}" />
 <Setter Property="TextColor" Value="MidnightBlue" />
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>
 <ScrollView>
 <StackLayout.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="Android, WinPhone" Value="2,0" />
 <On Platform="iOS" Value="2,0" />
 </OnPlatform>
 </StackLayout.Padding>
 <StackLayout Orientation="Vertical" HorizontalOptions="FillAndExpand">
 <Image x:Name="TrailImage" Aspect="AspectFill" Source="{Binding ImageUrl}"
 HorizontalOptions="FillAndExpand" VerticalOptions="FillAndExpand" />
 <Label x:Name="TrailName" Text="{Binding Title}"
 Style="{DynamicResource labelTrailName}">
 <Label.Effects>
 <customEffect:LabelShadowEffect />
 </Label.Effects>
 </Label>
 <Label x:Name="TrailKilometers" Text="{Binding Distance,
 StringFormat='Kilometers: {0} km'}"
 Style="{StaticResource labelTrailKilometers}"/>
 <Label x:Name="TrailDifficulty" Text="{Binding Difficulty,
 StringFormat='Difficulty: {0}'}"
 Style="{StaticResource labelTrailDifficulty}"/>
 <Image Aspect="AspectFill" HeightRequest="50" WidthRequest="50"
 HorizontalOptions="Start"
 Source="{Binding Difficulty, Converter={StaticResource imageConverter}}"/>
 <Label x:Name="TrailFullDescription" Text="{Binding Description}"
 HorizontalOptions="FillAndExpand"
 Style="{StaticResource labelTrailDescription}"/>
 <Button x:Name="BeginTrailWalk" Text="Begin this Trail"
 Clicked="BeginTrailWalk_Clicked"
 Margin="20" Style="{StaticResource buttonStyle}">
 <Button.Effects>
 <customEffect:ButtonShadowEffect />
 </Button.Effects>
 </Button>
 </StackLayout>
 </ScrollView>
 </ContentPage>

Let's now take a look at what we covered in the preceding code snippet:

	We started by creating a xmlns:valueConverters reference to our ValueConverters namespace, so that we can access the ImageConverter class in our XAML that we have defined in our namespace

	We created a ResourceDictionary attribute, added the ImageConverter class in our valueConverters namespace, and defined a value for the Key property so that we can reference the imageConverter name in our XAML page

	We created an Image attribute and set the Aspect ratio to use, as well as Height, Width, and HorizontalOptions and the Source property for the image

	You'll notice that, for our Source property, we provided the Converter property in our binding for our difficulty level, in order to use the imageConverter ValueConverter, which will take a String value for our Difficulty and return the URL to use

Now that you have created the underlying C# code to incorporate PlatformEffects and ValueConverters, implemented the necessary properties for our BaseViewModel and WalksMainPageViewModel classes, and then implemented the various Styles and applied Padding and Margins to your XAML pages to change the appearance of control elements for our app, our next step is to compile, build, and run the TrackMyWalks application in the iOS Simulator.

 Launching the TrackMyWalks app using the iOS simulator

In this section, we will compile and run the TrackMyWalks application to see how our application looks, since we have made changes to our XAML pages to implement the various styles, such as Device, Implicit, Explicit, and Global Styles, as well as the underlying C# code to work with the PlatformEffects API to create LabelShadowEffect and ButtonShadowEffect, as well as our ImageConverter.

Let's see how we can achieve this by performing the following steps:

	Ensure that you have chosen the TrackMyWalks.iOS platform from the drop-down menu.

	Ensure that you have chosen the Debug option from the drop-down menu.

	Choose your preferred device from the list of available iOS Simulators.

	Select the Run|Start Debugging menu option shown in the following screenshot:

Launching the TrackMyWalks app within the iOS Simulator

	Alternatively, you can also build and run the TrackMyWalks application by pressing the Command + Return keys.

When the compilation is complete, the iOS Simulator will appear automatically and the TrackMyWalks application will be displayed, as shown in the following screenshot:

Navigation flow between each screen for the chosen Walk Trail

The preceding screenshot shows each walk displayed in the ListView control; an associated image to represent the level of difficulty, which is pulled from the ImageValueConverter class; and the LabelShadowEffect PlatformEffect. When the Add button on the Track My Walks Listing page is clicked, this will display the Adding Trail Details page, which displays the ImageConverter for the chosen level of difficulty when the value changes in the Picker control. You'll notice that our Picker contains the Implicit Style that we assigned.

Lastly, you can see the navigation flow between each of the pages whenever a trail is selected from ListView, which will display the Trail Walk Information ContentPage, our ImageConverter, and PlatformEffects for both LabelShadowEffect and ButtonShadowEffect, as well as the Global Style that we defined in our App.xaml.

 Summary

In this chapter, you learned how to customize DataTemplates to lay out your Views beautifully and neatly in your application's user interface by modifying your ContentPages (Views). You learned how to create and implement the various styles in your XAML pages, prior to getting accustomed to working with the PlatformEffects API to customize the appearance by creating a ButtonShadowEffect and LabelShadowEffect class for both the iOS and Android platforms, so you can style native control elements that can be rendered and used with the XAML pages for each platform. Next, you learned how to set up your margins and padding for each platform using the OnPlatform XAML attribute, before moving on to learning how to manipulate the visual appearance of data-bound fields using ValueConverters and ImageConverters.

In the next chapter, you'll work with the various animation classes that come as part of the Xamarin.Forms platform, so that you can customize the appearance of your user interface and control elements. You'll get accustomed to working with basic animations and how to set the duration of an animation, before moving on to learning how to work with easing functions and creating your very own custom easing functions to apply scaling to control elements. Finally, you'll learn how to work with Entrance animations to apply fading, prior to creating your own custom animations and implementing these in your ContentPages (Views).

 Working with Animations in Xamarin.Forms

In the previous chapter, we learned how to customize DataTemplates to lay out your Views beautifully and neatly in your application's user interface by modifying your ContentPages (Views).

You also learned how to create, implement, and use the various styles in your XAML pages, prior to getting accustomed to working with the PlatformEffects API to customize the appearance and styling of native control elements for each platform by creating ButtonShadow and LabelShadow classes that inherit from the PlatformEffect class for each platform.

You then learned how to set up your margins and padding for each platform using the OnPlatform XAML tag, before moving on to learning how to manipulate the visual appearance of data-bound fields using ValueConverters and ImageConverters.

In this chapter, you will learn how to work with the various Animation classes that come as part of the Xamarin.Forms platform, so that you can apply really cool animations and transition effects to your user interfaces and control elements. You will get accustomed to working with and using Simple Animations in your XAML to create the necessary C# code in your ContentPages to interact with your XAML control elements, to apply various animation techniques to those controls that Rotate, Scale, Translate, and Fade.

You will learn how to implement and use Easing Functions in your ContentPages, using C# code and the Easing class, which will allow you to specify a transfer function that controls how animations speed up or slow down as they're running, by creating Custom Easing Functions that interact with your XAML control Visual Elements.

Finally, you'll learn how to work with the different types of transition effects called Entrance Animations, which you can use to apply Fading to your Views using ViewExtensions extension methods, which will allow you to create FadingEntrance, SlidingEntrance, and SwingingEntrance animations for your ContentPage (View) or XAML control elements whenever the ContentPage is displayed on the screen.

This chapter will cover the following points:

	Implementing Simple Animations with Xamarin.Forms in your XAML pages using C#

	Implementing Easing Functions for XAML elements using C#

	Implementing Custom Animations using the Xamarin.Forms and Animation classes and C#

	Implementing Entrance Animations for your XAML elements using C#

 Creating and using Simple Animations in Xamarin.Forms

In this section, we will take a look at how to work with Simple Animations in your Xamarin.Forms XAML and ContentPages using C#. The Xamarin.Forms platform includes its own animation classes that are straightforward to use to create simple animations, as well as being versatile enough to provide you with the ability of creating more complex animations.

Simple Animations make use of the ViewExtensions class, which provides you with extension methods that can be used to construct simple animations. The ViewExtensions class provides you with a LayoutTo extension method, which is only intended for use with layouts to animate transitions between layout states that contain size and property changes, and should only be used by classes that use the Layout subclass.

Before we start working with Simple Animations in our XAML and ContentPages (Views), let's take a moment to look at the various extension methods provided to us by the ViewExtensions class, which are explained in the following table:

	Extension method
	Description

	TranslateTo
	This is responsible for animating the TranslationX and TranslationY properties of a given visual element that has been defined in your XAML page.

	ScaleTo
	This is responsible for animating the Scale property of a given visual element that has been defined in your XAML page.

	RelScaleTo
	This is responsible for applying an incremental animated increase or decrease to the Scale property of a given visual element that has been defined in your XAML page.

	RotateTo
	This is responsible for animating the Rotation property of a given visual element that has been defined in your XAML page.

	RelRotateTo
	This applies an incremental animated increase or decrease to the Rotation property of a given visual element that has been defined in your XAML page.

	RotateXTo
	This is responsible for animating around the RotationX property of a given visual element that has been defined in your XAML page.

	RotateYTo
	This is responsible for animating around the RotationY property of a given visual element that has been defined in your XAML page.

	FadeTo
	This is responsible for animating the Opacity property of a given visual element that has been defined in your XAML page.

As you can see in the preceding table, the ViewExtensions class contains a variety of extension methods, as well as including a CancelAnimations method that can be used to cancel animations at any point in time.

Whenever you use these extension methods, they will contain an animation property, which by default has been set to 250 milliseconds. However, you can change the duration of each animation whenever you create the animation, using any of the extension methods. When working with the animation property, the extension methods in the ViewExtensions class are all asynchronous method calls, and these return a Task<bool> object. Whenever the animation completes, it will return a value of false and if the animation is cancelled, it will return a value of true.

Therefore, whenever you define your animation class methods, you should always specify the await operator, which will help make it possible to determine whenever your animation completes, and then you can handle it accordingly. Now that you have an understanding of what Simple Animations are, as well as the various extension methods available to you through the ViewExtensions class, our next step is to begin implementing some Simple Animations.

 Updating the WalkEntryPage to use Simple Animations

In this section, we will take a look at how to update the user interface for our WalkEntryPage to include naming to our control elements in our XAML, so that we can access these controls in our code-behind and apply Simple Animations and other animations using C# code.

Let's start updating the user interface for our WalkEntryPage by performing the following steps:

	Locate and open the WalEntryPage.xaml file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:valueConverters="clr-namespace:TrackMyWalks.ValueConverters"
 x:Class="TrackMyWalks.Views.WalkEntryPage">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Save" Clicked="SaveWalkItem_Clicked" />
 </ContentPage.ToolbarItems>
 <ContentPage.Resources>
 <ResourceDictionary>
 <valueConverters:ImageConverter x:Key="imageConverter" />
 </ResourceDictionary>
 <ResourceDictionary>
 <Style TargetType="Picker">
 <Setter Property="VerticalOptions" Value="Center"/>
 <Setter Property="HorizontalOptions" Value="FillAndExpand"/>
 <Setter Property="TextColor" Value="Red"/>
 <Setter Property="FontSize" Value="{DynamicResource CaptionStyle}"/>
 <Setter Property="BackgroundColor" Value="LightGoldenrodYellow"/>
 </Style>
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.Content>
 <TableView Intent="Form" x:Name="WalkDetails">
 <TableView.Root>
 ...
 ...
 <Image Aspect="AspectFill" x:Name="DifficultyLevel"
 HeightRequest="50" WidthRequest="50"
 HorizontalOptions="Start"
 Source="{Binding Difficulty,
 Converter={StaticResource imageConverter}}" />
 ...
 ...
 </TableView.Root>
 </TableView>
 </ContentPage.Content>
 </ContentPage>

	Locate and open the WalkEntryPage.xaml.cs code-behind file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 //
 // WalkEntryPage.xaml.cs
 // Data Entry screen that allows new walk information to be
 // added
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class WalkEntryPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalkEntryPageViewModel _viewModel => BindingContext as WalkEntryPageViewModel;

 public WalkEntryPage()
 {
 InitializeComponent();
 ...
 ...
 }
 ...
 ...
 // Method to initialise our View Model when the ContentPage appears
 protected override async void OnAppearing()
 {
 base.OnAppearing();

 // Create a Simple Animation to rotate our Difficulty
 // Level Image
 DifficultyLevel.AnchorY = (Math.Min(DifficultyLevel.Width,
 DifficultyLevel.Height) / 2) /
 DifficultyLevel.Height;

 await DifficultyLevel.RotateTo(360, 2000, Easing.BounceOut);
 }
 }
 }

Let's take a look at what we defined in our XAML and code snippet:

	We started by adding the x:Name="WalkDetails" property to our TableView property, so that we can access TableView in our code-behind file, in order to apply various animation techniques as we progress through this chapter

	We added x:Name="DifficultyLevel" to our Image property, just like we did when we defined our TableView property, so that we can access our image in our code-behind file in order to apply various animations

	We modified our OnAppearing method and defined a simple animation to rotate our DifficultyLevel Image by setting the AnchorY property on our image, which is calculated to center the image from the top of the image to the center point of the layout

	We used the await keyword on our RotateTo extension method, and passed in 360, which will ensure that the image makes a full 360-degree rotation around the center point of the layout, and specify a duration of 2 seconds over which to animate the transition

	We used the BounceOut property of the Easing class to bounce our image when the animation completes

We will discuss more about the Easing class as we progress through this chapter, particularly in the Creating and using Easing Functions in Xamarin.Forms section.

 Updating the WalkTrailInfoPage to use Simple Animations

In this section, we will take a look at how to update the user interface for our WalkTrailInfoPage to include naming to our control elements in our XAML, so that we can access these controls in our code-behind and apply Simple Animations and other animations using C# code.

Let's start updating the user interface for our WalkTrailInfoPage by performing the following steps:

	Locate and open the WalkTrailInfoPage.xaml file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:valueConverters="clr-namespace:TrackMyWalks.ValueConverters"
 xmlns:customEffect="clr-namespace:TrackMyWalks.CustomEffects"
 x:Class="TrackMyWalks.Views.WalkTrailInfoPage">
 <ContentPage.Resources>
 <ResourceDictionary>
 <valueConverters:ImageConverter x:Key="imageConverter" />
 </ResourceDictionary>
 ...
 ...
 </ContentPage.Resources>
 <ScrollView x:Name="TrailInfoScrollView">
 <StackLayout.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="Android, WinPhone" Value="2,0" />
 <On Platform="iOS" Value="2,0" />
 </OnPlatform>
 </StackLayout.Padding>
 <StackLayout Orientation="Vertical" HorizontalOptions="FillAndExpand">
 <Image x:Name="TrailImage" Aspect="AspectFill"
 Source="{Binding ImageUrl}"
 HorizontalOptions="FillAndExpand"
 VerticalOptions="FillAndExpand" />
 <Label x:Name="TrailName" Text="{Binding Title}"
 Style="{StaticResource labelTrailName}">
 <Label.Effects>
 <customEffect:LabelShadowEffect />
 </Label.Effects>
 </Label>
 ...
 ...
 <Button x:Name="BeginTrailWalk" Text="Begin this Trail"
 Clicked="BeginTrailWalk_Clicked"
 Margin="20" Style="{StaticResource buttonStyle}">
 <Button.Effects>
 <customEffect:ButtonShadowEffect />
 </Button.Effects>
 </Button>
 </StackLayout>
 </ScrollView>
 </ContentPage>

	Locate and open the WalkTrailInfoPage.xaml.cs code-behind file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 //
 // WalkTrailInfoPage.xaml.cs
 // Displays related trail information chosen from the WalksMainPage
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using Xamarin.Forms;
 using TrackMyWalks.ViewModels;
 using TrackMyWalks.Services;

 namespace TrackMyWalks.Views
 {
 public partial class WalkTrailInfoPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalkTrailInfoPageViewModel _viewModel =>
 BindingContext as WalkTrailInfoPageViewModel;

 public WalkTrailInfoPage()
 {
 InitializeComponent();
 ...
 ...
 }
 // Instance method that proceeds to begin a new walk trail
 public async void BeginTrailWalk_Clicked(object sender,
 EventArgs e)
 {
 if (App.SelectedItem == null)
 return;

 // Create a Simple Animation to rotate our Begin Trail
 // Walk Button
 await BeginTrailWalk.RotateTo(360, 1000);
 BeginTrailWalk.Rotation = 0;
 await _viewModel.Navigation.NavigateTo<WalkDistancePageViewModel>();
 }
 }
 }

Let's take a look at what we defined in our XAML and code snippet:

	We started by adding the x:Name="TrailInfoScrollView" property to our ScrollView property so that we can access ScrollView in our code-behind file, in order to apply various animation techniques as we progress through this chapter.

	We added the x:Name="BeginTrailWalk" property to our Button property, just like we did when we defined our ScrollView property, so that we can access our button in our code-behind file in order to apply various animations.

	We modified our OnAppearing method and defined a simple animation to rotate our BeginTrailWalk button by using the await keyword on our RotateTo extension method. We passed in 360, which will ensure that the image makes a full 360-degree rotation around the center point of the layout, and specify a duration of 1 second over which to animate the transition.

	Once the animation completes, we reset the BeginTrailWalk button's Rotation property to 0, which ensures that the Rotation property doesn't remain at 360 after the animation has concluded.

 Creating and using Easing Functions in Xamarin.Forms

In this section, we will take a look at how to work with Easing Functions in your Xamarin.Forms XAML and ContentPages using C#. We are extremely fortunate that the Xamarin.Forms platform includes an Easing class that allows you to specify what is called a transfer function, which is able to control how animations speed up or slow down while they are running.

Before we start working with Easing Functions in our XAML and ContentPages (Views), let's take a moment to look at the various predefined Easing Function methods provided to us by the Easing class, which are explained in the following table:

	
Easing function

	
Description

	
BounceIn

	
This is responsible for bouncing the animation at the beginning.

	
BounceOut

	
This is responsible for bouncing the animation at the end.

	
CubicIn

	
This is responsible for slowly accelerating the animation.

	
CubicOut

	
This is responsible for decelerating the animation quickly.

	
Linear

	
This is the default easing function and uses a constant velocity.

	
SinIn

	
This is responsible for performing an animation with smooth acceleration.

	
SinOut

	
This is responsible for performing an animation with smooth deceleration.

	
SpringIn

	
This is responsible for causing the animation to very quickly accelerate towards the end, when the animation completes.

	
SpringOut

	
This is responsible for causing the animation to very quickly decelerate towards the end, when the animation completes.

As you can see in the preceding table, the Easing class contains a variety of easing function methods that you can utilize in your Xamarin.Forms and native applications. Now that you have an understanding of what Easing Functions are, as well as starting to become accustomed to the various easing function methods available to you through the Easing class, our next step is to begin implementing some of these Easing Functions.

 Updating the WalkTrailInfoPage to use Easing Functions

In this section, we will take a look at how to update our code-behind file for our WalkTrailInfoPage to create and implement an Easing Function that will be called whenever the BeginTrailWalk button is clicked using C# code.

Let's start updating the code-behind for our WalkTrailInfoPage by performing the following steps:

	Locate and open the WalkTrailInfoPage.xaml.cs code-behind file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 //
 // WalkTrailInfoPage.xaml.cs
 // Displays related trail information chosen from the
 // WalksMainPage
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using Xamarin.Forms;
 using TrackMyWalks.ViewModels;
 using TrackMyWalks.Services;

 namespace TrackMyWalks.Views
 {
 public partial class WalkTrailInfoPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalkTrailInfoPageViewModel _viewModel =>
 BindingContext as WalkTrailInfoPageViewModel;

 public WalkTrailInfoPage()
 {
 InitializeComponent();
 ...
 ...
 }
 // Instance method that proceeds to begin a new walk trail
 public async void BeginTrailWalk_Clicked(object sender,
 EventArgs e)
 {
 if (App.SelectedItem == null)
 return;

 // Create a Simple Animation to rotate our Begin Trail
 // Walk Button
 await BeginTrailWalk.RotateTo(360, 1000);
 BeginTrailWalk.Rotation = 0;

 // Create and Apply an Easing Function to our Button
 await BeginTrailWalk.RotateTo(15, 1000, new Easing(t =>
 Math.Sin(Math.PI * t) *
 Math.Sin(Math.PI * 20 * t)));

 await _viewModel.Navigation.NavigateTo<WalkDistancePageViewModel>();
 }
 }
 }

Let's take a look at what we defined in the preceding code snippet:

	We started by modifying our OnAppearing method to define an Easing Function that will essentially be used to rotate our BeginTrailWalk button, using the await keyword on our RotateTo extension method, and passed in 15, which will ensure that the button performs a 15-degree rotation. We specified a duration length of 1 second over which to animate the transition.

	You will notice that our RotateTo extension method looks quite similar to the Simple Animation that we declared previously, with the exception that we are using the Easing constructor to create a custom easing function by specifying a lambda expression, and using the Math.Sin method to create a fast wobble effect.

For more information on the ViewExtensions class, please refer to the Xamarin.Forms documentation at https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions?view=xamarin-forms.

 Creating and implementing your own Custom Animations

In this section, we will take a look at how to we can work with Custom Animations, and implement these in your Xamarin.Forms XAML and ContentPages using C#. Custom Animations make use of the Animation class, which essentially is the parent class for all Xamarin.Forms animations, as well as making use of the extension methods contained in the ViewExtensions class, to create one or a series of Animation objects.

Whenever you create an Animation object, you'll need to specify a number of parameter objects, as well as include the starting and ending values for the property that is being animated. You will also need to ensure you declare a Callback method that changes the value of the property.

You can also use the Animation object to specify any number of child animations, which can be run in parallel, by calling the Commit method and specifying the duration of the animation. Now that you have an understanding of what Custom Animations are, our next step is to begin implementing them and see how we can use them in our code-behind through C# code.

 Updating our WalkTrailInfoPage to use Custom Animations

In this section, we will take a look at how to update our code-behind file for our WalkTrailInfoPage to create and implement a Custom Animation using the Animation class, which will be called whenever the BeginTrailWalk button is clicked using C# code.

Let's start updating the code-behind for our WalkTrailInfoPage by performing the following steps:

	Locate and open the WalkTrailInfoPage.xaml.cs code-behind file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 //
 // WalkTrailInfoPage.xaml.cs
 // Displays related trail information chosen from the
 // WalksMainPage
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using Xamarin.Forms;
 using TrackMyWalks.ViewModels;
 using TrackMyWalks.Services;

 namespace TrackMyWalks.Views
 {
 public partial class WalkTrailInfoPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalkTrailInfoPageViewModel _viewModel =>
 BindingContext as WalkTrailInfoPageViewModel;

 public WalkTrailInfoPage()
 {
 InitializeComponent();
 ...
 ...
 }
 // Method to initialise our View Model when the ContentPage appears
 protected override async void OnAppearing()
 {
 base.OnAppearing();

 // Create a Custom Animation for our BeginTrailWalk button
 var animation = new Animation(v =>
 BeginTrailWalk.BackgroundColor = Color.FromHsla(
 v, 1, 0.5), start: 0, end: 1);

 animation.Commit(this, "BeginWalkCustomAnimation",
 16,
 5000,
 Easing.Linear, (v, c) =>
 BackgroundColor = Color.Default,() => true);
 }
 // Instance method that proceeds to begin a new walk trail
 public async void BeginTrailWalk_Clicked(object sender, EventArgs e)
 {
 if (App.SelectedItem == null)
 return;
 ...
 ...
 }
 }
 }

Let's take a look at what we defined in the preceding code snippet:

	We started by creating and implementing our OnAppearing method to create a Custom Animation for our BeginTrailWalk button.

	We declared an animation variable, which creates an instance of our Animation class and uses a callback lambda expression method, which, when executed when the animated value changes, animates the BackgroundColor of the BeginTrailWalk button created by the Color.FromHsla method using hue values ranging from 0 to 1.

	We used the Commit method on the animation variable and specified a name for our Custom Animation that will be used to access and track the animation, as well as its current state. Then, we specified a time in milliseconds that will be used to run between frames, as well as a duration of 5 seconds.

	We specified the Easing.Linear to use for the transition, and then create an Action to set BackgroundColor to Color.Default when the animation has completed, prior to creating and specifying a function that will be called to return the value of true.

 Updating our WalksMainPage to use Custom Animations

In this section, we will take a look at how to update the user interface for our WalksMainPage to include naming to our control elements in our XAML, so that we can access these controls in our code-behind and apply Custom Animations and other animations using C# code.

Let's start updating the user interface for our WalksMainPage by performing the following steps:

	Locate and open the WalksMainPage.xaml file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:customEffect="clr-namespace:TrackMyWalks.CustomEffects"
 xmlns:valueConverters="clr-namespace:TrackMyWalks.ValueConverters"
 x:Class="TrackMyWalks.Views.WalksMainPage">
 <ContentPage.Resources>
 <ResourceDictionary>
 <valueConverters:ImageConverter x:Key="imageConverter" />
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Add" Clicked="AddWalk_Clicked" />
 </ContentPage.ToolbarItems>
 <StackLayout>
 <ActivityIndicator IsRunning="true" x:Name="progressIndicator"
 HorizontalOptions="CenterAndExpand"
 VerticalOptions="CenterAndExpand"
 IsVisible="{Binding IsProcessBusy}" />
 <Label Text="Loading Walk Information..." FontAttributes="Bold"
 TextColor="Black" HorizontalTextAlignment="Center"
 IsVisible="{Binding IsProcessBusy}" x:Name="LoadingWalkInfo">
 <Label.FontSize>
 <OnPlatform x:TypeArguments="x:Double">
 <On Platform="Android, WinPhone" Value="12" />
 <On Platform="iOS" Value="14" />
 </OnPlatform>
 </Label.FontSize>
 </Label>
 ...
 ...
 <ListView x:Name="WalkEntriesListView" HasUnevenRows="true"
 SeparatorColor="#ddd" ItemTapped="myWalkEntries_ItemTapped">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 ...
 ...
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
 </ContentPage>

	Locate and open the WalksMainPage.xaml.cs code-behind file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 //
 // WalksMainPage.xaml.cs
 // Displays Walk Information in a ListView control from an array
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using TrackMyWalks.Models;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class WalksMainPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalksMainPageViewModel _viewModel =>
 BindingContext as WalksMainPageViewModel;

 public WalksMainPage()
 {
 InitializeComponent();
 ...
 ...
 }
 ...
 ...
 // Method to initialise our View Model when the ContentPage appears
 protected override async void OnAppearing()
 {
 base.OnAppearing();

 if (_viewModel != null)
 {
 // Call the Init method to initialise the ViewModel
 await _viewModel.Init();
 }

 // Create a Custom Animation for our LoadingWalkInfo Label

 // Create parent animation object
 var parentAnimation = new Animation();

 // Create "ZoomIn" animation and add to parent.
 var ZoomInAnimation = new Animation(v => LoadingWalkInfo.Scale = v,
 1, 2,
 Easing.BounceIn, null);
 parentAnimation.Add(0, 0.5, ZoomInAnimation);

 // Create "ZoomOut" animation and add to parent.
 var ZoomOutAnimation = new Animation(v => LoadingWalkInfo.Scale = v,
 2, 1,
 Easing.BounceOut, null);
 parentAnimation.Insert(0.5, 1, ZoomOutAnimation);

 // Commit parent animation
 parentAnimation.Commit(this, "CustomAnimation", 16, 5000, null, null);
 ...
 ...
 }
 }
 }

Let's take a look at what we defined in our XAML and code snippet:

	We started by adding the x:Name="LoadingWalkInfo" property to our Label property for our ActivityIndicator, which will be used by our Loading Walk Information… so that we can access our LabelWalkInfo in our code-behind file, in order to apply various animation techniques as we progress through this chapter.

	We defined a Label.FontSize attribute and set the FontSize based on the platform that our app is running using the OnPlatform attribute, and then specifying the x:TypeArguments of Double.

	We modified our OnAppearing method to define a Custom Animation that will be used to animate our LabelWalkInfo label, and we created a parentAnimation object variable that will be used to add child animations to it so that they can be run in parallel.

	We declares a ZoomInAnimation object variable, which creates an instance of the Animation class that uses a callback lambda expression method, which will adjust the Scale property, as well as specifying the starting and ending values and the transition effect to use for Easing.BounceIn and the method to call when the animation completes.

	We used the Add property of our parentAnimation object to add our ZoomInAnimation object. We also specified at which points the animation should begin and finish, as well as the name of the animation object that we would like to add.

	We declared a ZoomInAnimation object variable, which creates an instance of the Animation class that uses a callback lambda expression method that will adjust the Scale property, as well as specifying the starting and ending values and the transition effect to use of Easing.BounceOut and the method to call when the animation completes.

	We used the Add property of our parentAnimation object to add our ZoomOutAnimation object. We also specified at which points the animation should begin and finish, as well as the name of the animation object that we would like to add.

	We used the Commit method on the parentAnimation variable, and specified a name for our Custom Animation that will be used to access and track the animation, as well as its current state and specify a time in milliseconds that will be used to run between frames as well as the duration of 5 seconds, and specifying a value of null when the animation has completed, and specifying null that will be called to return the value.

For more information on the Animation class, please refer to the Xamarin.Forms documentation at https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.animation?view=xamarin-forms.

 Creating and implementing Entrance Animations

In this section, we will take a look at how to we can work with Entrance Animations and implement these in your Xamarin.Forms XAML and ContentPages using C#. When you create Entrance Animations, these make use of the Animation class, which is the parent class for all Xamarin.Forms animations, as well as making use of the extension methods contained in the ViewExtensions class to create one or a series of Animation objects.

Before we start working with Entrance Animations in our XAML and ContentPages (Views), let's take a moment to look at the various predefined Entrance Animation methods provided to us by the ViewExtensions and Animation classes, which are explained in the following table:

	
Entrance animation

	
Description

	
FadingEntrance

	
This animation type uses the FadeTo extension method to allow you to fade in the contents of your XAML page.

	
SlidingEntrance

	
This animation type uses the TranslateTo extension method to allow you to slide in the contents of your XAML page from the side.

	
SwingingEntrance

	
This animation type uses the RotateYTo extension method to allow you to animate around the RotationY axis. You can also use the RotateXTo extension method, which will allow you to animate around the RotationX axis.

Now that you have an understanding of what Easing Functions are, as well as starting to get accustomed to the various easing functions methods available to you through the ViewExtensions class, our next step is to begin implementing some of these Entrance Animations.

 Updating the WalkTrailInfoPage to use Entrance Animations

In this section, we will take a look at how to update our code-behind file for our WalkTrailInfoPage to create and implement a SlidingEntrance animation through the TranslateTo extension method in the OnAppearing method, using C# code that will be called whenever our ContentPage is displayed.

Let's start updating the code-behind for our WalkTrailInfoPage by performing the following steps:

	Locate and open the WalkTrailInfoPage.xaml.cs code-behind file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 //
 // WalkTrailInfoPage.xaml.cs
 // Displays related trail information chosen from the WalksMainPage
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using Xamarin.Forms;
 using TrackMyWalks.ViewModels;
 using TrackMyWalks.Services;
 using System.Threading.Tasks;

 namespace TrackMyWalks.Views
 {
 public partial class WalkTrailInfoPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalkTrailInfoPageViewModel _viewModel =>
 BindingContext as WalkTrailInfoPageViewModel;

 public WalkTrailInfoPage()
 {
 InitializeComponent();
 ...
 ...
 }

 // Method to initialise our View Model when the ContentPage appears
 protected override async void OnAppearing()
 {
 base.OnAppearing();

 // Create a SlidingEntrance Animation for WalkTrailInfoPage
 double offset = 1000;
 foreach (View view in TrailInfoScrollView.Children)
 {
 view.TranslationX = offset;
 offset *= -1;
 await Task.WhenAny(view.TranslateTo(0, 0, 1000,
 Easing.SpringOut), Task.Delay(100));
 }
 ...
 ...
 }

 // Instance method that proceeds to begin a new walk trail
 public async void BeginTrailWalk_Clicked(object sender,
 EventArgs e)
 {
 if (App.SelectedItem == null)
 return;
 ...
 ...
 }
 }
 }

Let's take a look at what we covered in the preceding code snippet:

	We started by including a reference to our System.Threading.Tasks namespace so that we can access the classes that are defined in this namespace.

	We modified our OnAppearing method to create a SlidingEntrance animation, declare an offset variable, and then iterate through every child view contained in the TrailInfoScrollView section of our XAML ContentPage.

	We set the TranslationX property to our offset variable, and then updated the offset variable from the values between 1000 and -1000. We used the Task.WhenAny method that creates a task that will complete when any of the supplied tasks have completed in the method.

	We used the TranslateTo extension method, which will animate each child view's TranslationX and TranslationY properties, as well as updating their current values to their new values.

	We specified the transition effect to use for Easing.SpringOut, as well as specifying a delay, in milliseconds, of 0.1 seconds using the Task.Delay method.

For more information on the TranslateTo extension method, please refer to the Xamarin.Forms documentation at https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.translateto?view=xamarin-forms#Xamarin_Forms_ViewExtensions_TranslateTo_Xamarin_Forms_VisualElement_System_Double_System_Double_System_UInt32_Xamarin_Forms_Easing_.

 Updating our WalksMainPage to use Entrance Animations

In this section, we will take a look at how to update our code-behind file for our WalksMainPage to create and implement a FadingEntrance animation with the FadeTo extension method in the OnAppearing method, using C# code that will be called whenever our ContentPage is displayed.

Let's start updating the code-behind for our WalksMainPage by performing the following steps:

	Locate and open the WalksMainPage.xaml.cs code-behind file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 //
 // WalksMainPage.xaml.cs
 // Displays Walk Information in a ListView control from an array
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using TrackMyWalks.Models;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class WalksMainPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalksMainPageViewModel _viewModel =>
 BindingContext as WalksMainPageViewModel;

 public WalksMainPage()
 {
 InitializeComponent();
 ...
 ...
 }
 ...
 ...
 // Method to initialise our View Model when the ContentPage appears
 protected override async void OnAppearing()
 {
 base.OnAppearing();

 if (_viewModel != null)
 {
 // Call the Init method to initialise the ViewModel
 await _viewModel.Init();
 }

 // Create a FadingEntrance Animation to fade our WalkEntriesListView
 WalkEntriesListView.Opacity = 0;
 await WalkEntriesListView.FadeTo(1, 4000);
 ...
 ...
 }
 }
 }

Let's take a look at what we covered in the preceding code snippet:

	We started by modifying our OnAppearing method to create a FadingEntrance animation, and set the Opacity property for our WalkEntriesListView to fade our ListView.

	We used the FadeTo extension method, which will animate our WalkEntriesListView, and we specified the Opacity value to fade to, as well as specifying a duration in milliseconds of 4 seconds over which to animate the transition.

For more information on the FadeTo extension method, please refer to the Xamarin.Forms documentation at https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.fadeto?view=xamarin-forms

 Updating our WalkEntryPage to use Entrance Animations

In this section, we will take a look at how to update our code-behind file for our WalkEntryPage, to create and implement a SwingingEntrance animation with the RotateYTo extension method in the OnAppearing method, using C# code that will be called whenever our ContentPage is displayed.

Let's start updating the code-behind for our WalkEntryPage by performing the following steps:

	Locate and open the WalkEntryPage.xaml.cs code-behind file, which is located in the Views folder, ensure that it is displayed in the code editor, and enter the following highlighted code sections:

 //
 // WalkEntryPage.xaml.cs
 // Data Entry screen that allows new walk information to be added
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class WalkEntryPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalkEntryPageViewModel _viewModel =>
 BindingContext as WalkEntryPageViewModel;

 public WalkEntryPage()
 {
 InitializeComponent();
 ...
 ...
 }

 // Method to initialise our View Model when the ContentPage appears
 protected override async void OnAppearing()
 {
 base.OnAppearing();

 // Create a SwingingEntrance Animation for our WalkDetails TableView
 WalkDetails.RotationY = 180;
 await WalkDetails.RotateYTo(0, 1000, Easing.BounceOut);
 WalkDetails.AnchorX = 0.5;
 ...
 ...
 }
 }
 }

Let's take a look at what we covered in the preceding code snippet:

	We started by modifying our OnAppearing method to create a SwingingEntrance animation, and then we set the RotationY property for our WalkDetails, which will be the final rotation value that will be set to our TableView.

	We used the RotateYTo extension method, which will animate around the RotationY property for our WalkDetails XAML visual element. We specified a rotation value of 0 to use, as well as specifying a length in milliseconds of 10 seconds over which to animate the transition using the Easing.BounceOut transition effect, prior to setting and initializing the AnchorX property to 0.5, which will anchor the view to the top-left position.

For more information on the RotateYTo extension method, please refer to the Xamarin.Forms documentation at https://docs.microsoft.com/en-us/dotnet/api/xamarin.forms.viewextensions.rotateyto?view=xamarin-forms.

Now, you have applied the necessary changes to our XAML ContentPages, as well as the underlying C# code to incorporate SimpleAnimations, EasingFunctions, CustomAnimations, and finally EntranceAnimations, which we can use to apply beautiful animation and transition effects to each of your XAML of a given visual element that has been defined in your XAML page. Our next step is to compile, build, and run the TrackMyWalks application in the iOS simulator.

 Launching the TrackMyWalks app using the iOS simulator

In this section, we will compile and run the TrackMyWalks application to see how our application looks, since we have made changes to our XAML pages while creating the underlying C# code to implement the various animation and transition effects.

Let's see how we can achieve this by performing the following steps:

	Ensure that you have chosen the TrackMyWalks.iOS platform from the drop-down menu.

	Ensure that you have chosen the Debug option from the drop-down menu.

	Choose your preferred device from the list of available iOS Simulators.

	Select the Run | Start Debugging menu option, as shown in the following screenshot:

Launching the TrackMyWalks app within the iOS Simulator

	Alternatively, you can also build and run the TrackMyWalks application by pressing the Command + Return keys.

When the compilation is complete, the iOS Simulator will appear automatically and the TrackMyWalks application will be displayed, as shown in the following screenshot:

Displays the various animation techniques applied to each of the screens

The preceding screenshot shows the ActivityIndicator spinner control, along with the associated Loading Walk information... text, which is displayed while the trail walks are loaded in the ListView, which contains the Custom Animation that we applied to ZoomIn and ZoomOut out Label. You'll also notice that our ListView control also contains our FadingEntrance animation, which nicely fades our ListView control in.

When the Add button on the Track My Walks Listing page is clicked, this will display the Adding Trail Details page, which creates a Simple Animation that will rotate our Difficulty Level image and use our SwingingEntrance animation, which performs a swinging animation effect on our TableView object:

Displays the Trail Walk Information screen using the SlidingEntrance animation

The preceding screenshot displays the Trail Walk Information ContentPage whenever a trail has been selected from ListView. You will also notice that we are using our SlidingEntrance animation effect, which slides our View in from the right-hand side, as well as using our Custom Animation, which performs a color cycle effect on our Begin this Trail button.

 Summary

In this chapter, you learned how to work with the various Animation classes that come as part of the Xamarin.Forms platform so that you can apply really cool animations and transition effects to your user interfaces and control elements. You learned how to use and implement Simple Animations in your XAML, as well as create the necessary C# code in your ContentPages to interact with your XAML control elements so that you can apply various animation techniques to those controls that Rotate, Scale, Translate, and Fade.

You learned how to implement Easing Functions by creating the necessary C# code in your ContentPages, as well as using the Easing class, which allows you to specify a transfer function that controls how animations speed up or slow down as they're running, by creating Custom Easing Functions that interact with your XAML visual control elements.

Lastly, you worked with the different types of transition effects which are called Entrance Animations, which you can use to apply Fading to your Views using the FadingEntrance class, as well as the SlidingEntrance and SwingingEntrance classes, to provide animations to your ContentPage (View) or XAML control elements whenever ContentPage is displayed to the screen.

In the next chapter, you'll learn about the Razor HTML Templating Engine, and how you can use it to create a hybrid mobile solution. You'll learn how to build a mobile book library solution using the power of Razor templates, as well as how to use and define models in your application.

Finally, you will learn how to work with SQLite and connect our book library solution up to a database to store, retrieve, update, and delete book details.

 Working with the Razor Templating Engine

In the previous chapter, we learned how to work with the various Animation classes that come as part of the Xamarin.Forms platform, so that you can apply really cool animations and transition effects to your user interfaces and control elements. We learned how to work with and use simple animations within your XAML, as well as how to create the necessary C# code within your ContentPages to interact with your XAML control elements in order to apply various animation techniques to the controls that Rotate, Scale, Translate, and Fade.

We also learned about easing functions, and how you can implement these within your ContentPages using C# code by making use of the Easing class, which allows you to specify a transfer function that is able to control the speed of running animations by creating custom easing functions that are able to interact with your XAML control visual elements.

Lastly, you learned how to work with the different types of transition effects, which you can use to apply Fading to your views using the FadingEntrance class, as well as the SlidingEntrance and SwingingEntrance classes, which you can use to provide animations to your ContentPage (view) or XAML control elements whenever the ContentPage is displayed on the screen.

In this chapter, you will learn about the Razor templating engine, and how you can use it to create a hybrid mobile solution. You'll learn how to build a book library mobile solution using the power of Razor templates, as well as how to use and define BookItem database models within your application.

You'll learn how to incorporate the SQLite-net NuGet package that you will use in order to create a BookDatabase interface and class, which will include a number of class instance methods that will be used to communicate with our SQLite database so that you can create, update, retrieve, and delete book items. Finally, you will learn how to create the necessary Razor template pages that will integrate with our BookItem data model, as well as how to implement the necessary class instance methods within the WebViewController class.

This chapter will cover the following topics:

	Understanding what exactly the Razor templating engine is

	Building a Book Library app using the Razor templating engine

	Incorporating the SQLite-net NuGet package to our solution

	Creating and implementing a BookDatabase class using C#

	Creating the BookLibrary database model for our Book Library app

	Creating and implementing the BookLibaryListing Razor template page

	Creating and implementing the BookLibaryAddEdit Razor template page

	Updating the BookLibrary Cascading Style Sheet (CSS)

	Implementing the necessary class instance methods within the WebViewController class

 Understanding the Razor templating engine

The Razor templating engine was first introduced as part of the ASP.NET MVC architecture, and was originally designed to run on a web server to generate HTML files to be served to a variety of web browsers. Since Razor made its first appearance on the development scene, the Razor engine has definitely come a long way, and now extends the standard HTML syntax so that you can use C# to express the layout of your HTML files, as well as incorporate CSS stylesheets and JavaScript very easily.

Razor is a markup syntax for embedding server-based code into web pages, and is generally identified as having a .cshtml file extension. When working with the static model class within Razor templates, each Razor template has the ability to reference a Model class, which can be of any custom type, and properties can be accessed directly from within the template by having the ability to mix HTML and C# syntax easily, as you can see in the following screenshot:

Razor Templating Engine using the Static Model

When working with Razor templates using the SQLite database model, you can use a Razor template to reference a Model class using the @model directive to communicate with an SQLite database, and then write to those properties contained within the Model, and display information within those properties in your template, as you can see in the following screenshot:

Razor Templating Engine using the SQLite database model

As you work through this chapter, you will see how you can utilize the Razor templating engine and equip yourself with the flexibility of building cross-platform, templated, HTML views that make use of both JavaScript and CSS, as well as how to gain access to the underlying platform APIs using the power of C#.

For more information on ASP.NET web programming using the Razor syntax (C#), please refer to the Microsoft developer documentation at https://docs.microsoft.com/en-us/aspnet/web-pages/overview/getting-started/introducing-razor-syntax-c.

 Building a BookLibrary app using the Razor templating engine

In this section, we will take a look at how to create a Razor templating solution. We will begin by developing the basic structure for our application, as well as creating a BookItem data model and a BookDatabase class, designing the Razor template pages user interface files using HTML5, and implementing the necessary class instance methods within the WebViewController class.

Before we can proceed, we need to create our BookLibrary project for the iOS platform. It is very simple to create this using Visual Studio for Mac. Simply go through the following steps:

	Launch the Visual Studio for Mac application.

	Next, choose the New Solution… option, or, alternatively, choose File | New | Solution... or simply press Shift + Command + N.  

	Then, choose the WebView App option, which is located under the iOS | App section, as shown in the following screenshot. Ensure that you have selected C# as the programming language to use:

Creating a new WebView App iOS Project

	Next, enter BookLibrary as the name for your app in the App Name field and then specify a name for the Organization Identifier field.

	Then, ensure that both iPad and iPhone have been selected for the Devices field, and also ensure that you have chosen the minimum version of iOS that we would like our app to support in the Target field, as shown in the following screenshot:

Configuring your iOS app details

The Organization Identifier option for your app needs to be unique. Xamarin recommends that you use the reverse domain style to write the name (for example, com.domainName.appName).

	Then, click on the Next button to proceed to the next step in the wizard, as shown in the following screenshot:  

Configuring your new WebView App

	Next, ensure that you update the Solution Name field to BookLibrary.iOS, and ensure that the Create a project directory within the solution directory. checkbox has been selected.

	Finally, click on the Create button to save your project at the specified location.

Once your project has been created, you will be presented with the Visual Studio for Mac Community development environment, containing several project files that the template wizard created for you, as shown in the following screenshot:

The BookLibrary iOS app Project Structure

As you can see from the preceding screenshot, the BookLibrary project has been divided into three separate folders. The following table provides brief descriptions of what each section is used for:

	
Folder Name

	
Description

	
Models

	
This section is responsible for representing the model that our views will use, and contains a structure of the fields that will be displayed or written to by our Razor template pages.

	
Resources

	
This section contains a place for you to add any images and Cascading style sheets (CSS) or JavaScript files that will be used by your application.

	
Views

	
This section contains all of the HTML5 Razor template pages that will be used and referenced by your application in order to function correctly. These files need to contain the .cshtml extension.

To find out what each of the additional project files are used for and the roles that each play within the solution, refer to the Creating a Xamarin project for both iOS and Android section in Chapter 1, Setting Up Visual Studio for Mac.

 Adding the SQLite-net NuGet package to our solution

In this section, we will begin by adding the SQLite-net NuGet package to our BookLibrary project—which is essentially a cross-platform library that you can use to create, retrieve, update, or permanently delete (CRUD) information within the SQLite database—by writing a few lines of code to access the various properties and methods available within this class.

Let's start by adding the SQLite-net NuGet package to our BookLibrary project by going through the following steps:

	Right-click on the Packages folder and choose the Add Packages… menu option, as shown in the following screenshot:

Adding new NuGet Packages to the BookLibrary project

	Next, within the Search field located within the Add Packages dialog, enter SQLite-net and then select the sqlite-net option within the list, as shown in the following screenshot:

Adding the sqlite-net NuGet Package to the BookLibrary Project

	Then, ensure that you have chosen the latest version to install for the Version field (this will be displayed by default).

	Finally, click on the Add Package button to add the sqlite-net NuGet package to your solution.

Now that you have added the sqlite-net NuGet package to your BookLibrary project, our next step is to start creating our BookItem data model that will represent each of our book items, as well as creating each of the Razor template pages that will be used to represent our user interface for our BookLibrary app using HTML5.

 Creating and implementing the BookLibrary data model

In this section, we will take a look at how to create our BookLibrary data model class, which will define information relating to our book item entries, as well as define database-specific attributes and attach them to properties defined within our model. It will also implement the remaining required properties within our data model.

The advantage of creating a data model is that it is much easier to add additional properties to this model and then implement these in the relevant class files, or Razor template pages. Another advantage of using a data model is that you can bind this model to a database or bind this to data stored within a Microsoft Azure database. As we progress throughout this chapter, you'll see how you can use this model to communicate with our SQLite database to create, retrieve, update, and delete information, by performing CRUD operations.

Let's start by creating the BookItem class for our BookLibrary app by going through the following steps:

	Ensure that the BookLibrary.iOS solution is open within the Visual Studio for Mac IDE.

	Next, right-click on the Models folder contained within the BookLibrary project, and choose Add | New File… from the pop-up menu, as shown in the following screenshot:

Creating a New File within the Models folder

	Next, choose the Empty Class option under the General section and enter BookItem for the name of the class to be created, as shown in the following screenshot:

Creating the BookItem Class

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our BookItem class file, we can proceed with implementing the required code for our class.

	Locate and open the BookItem.cs file, which is located within the Models folder as part of the BookLibrary project, and ensure that it is displayed within the code editor. Enter the following code snippet:

 //
 // BookItem.cs
 // BookLibrary Database Model
 //
 // Created by Steven F. Daniel on 02/08/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using SQLite;

 namespace BookLibrary.Models
 {
 public class BookItem
 {
 [PrimaryKey, AutoIncrement]
 public int Id { get; set; }
 public string Title { get; set; }
 public string Author { get; set; }
 public string Category { get; set; }
 public string PublishedYear { get; set; }
 public string Publisher { get; set; }
 public string NoPages { get; set; }
 public string Isbn { get; set; }
 public string Summary { get; set; }
 public string ImageUrl { get; set; }
 }
 }

Let's now start by taking a look at what we entered in the preceding code snippet:

	We started by including a reference to the SQLite namespace so that we can access the classes and instance method implementations that are defined within the namespace.

	Next, we defined a [PrimaryKey, AutoIncrement] database attribute for our Id field, which will tell our BookLibrary database to set the Id property to automatically increment whenever a new item is added to our database.

	Finally, we declare additional property attributes that will make up our database model.

If you've used relational databases in the past, such as Microsoft SQL Server, Oracle, or Microsoft Access, this should be quite familiar to you.

Now that you have added the NuGet package for the SQLite-net, we can begin utilizing this control by creating a BookDatabase interface and class that will be used by our Razor template pages and handling all of the connections to our database, as well as handling all of the (CRUD) operations of each of our book entries.

The Android version of the BookItem class database model is available in the companion source code for this book.

 Creating and implementing the BookDatabase interface

In this section, we'll take a look at how to create the IBookDatabase class that will essentially contain various instance methods that will be used by our BookDatabase class. The advantage of creating an IBookDatabase class is that it's much easier to add additional class instance methods that will be used by any classes that utilize this interface.

Let's start by creating the IBookDatabase interface for our BookLibrary app by going through the following steps:

	Ensure that the BookLibrary.iOS solution is open within the Visual Studio for Mac IDE.

	Next, right-click on the BookLibrary project and choose Add | New Folder from the pop-up menu, as shown in the following screenshot:

Creating a New Folder within the BookLibrary Project

	Then, enter the name of the new folder to be created in Database for, right-click on the Database folder, and choose Add | New File... from the pop-up menu, as shown in the following screenshot:

Creating a New File within the Database Folder

	Next, choose the Empty Interface option under the General section and enter IBookDatabase for the name of the interface that is to be created, as shown in the following screenshot:

Creating the IBookDatabase Interface

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our IBookDatabase interface, we can proceed with implementing the required code for our class.

	Locate and open the IBookDatabase.cs file, which is located within the Database folder, as part of the BookLibrary project, and ensure that it is displayed within the code editor. Enter the following code snippet:

 //
 // IBookDatabase.cs
 // Book Database Interface used by our Book Database Class
 //
 // Created by Steven F. Daniel on 02/08/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.Collections.Generic;
 using BookLibrary.Models;

 namespace BookLibrary.Database
 {
 public interface IBookDatabase
 {
 // Gets all of the book library items from our database.
 IEnumerable<BookItem> GetItems();

 // Gets a specific book item from the database.
 BookItem GetItem(int id);

 // Saves the book item currently being edited.
 int SaveItem(BookItem item);

 // Deletes a specific book item from the database.
 int DeleteItem(int id);
 }
 }

Let's take a look at what we entered in the preceding code snippet:

	We started by including references to the System.Collections.Generic namespace so that we can access the classes that are defined within these namespaces. We also included a reference to the BookLibrary.Models namespace so that we can access our BookItem database model.

	Next, we created an interface class that will contain various class instance methods that will be utilized by our BookDatabase class, as well as our WebViewController class.

	Then, we declared a GetItems instance method that will be responsible for retrieving all of the existing book items from the SQLite database.

	Next, we declared a GetItem instance method that will essentially retrieve a specific book item from the SQLite database using the Id within the database.

	Then, we declared a SaveItem instance method that will be responsible for saving the book item that is currently being added or edited.

	Finally, we declared a DeleteItem instance method that will essentially permanently delete a specific book item from the SQLite database using the Id within the database.

 Creating and implementing the BookDatabase class

In this section, we will take a look at how to create the BookDatabase class that will inherit from our IBookDatabase interface and implement the underlying instance methods that we declared within our interface class so that we can communicate with SQLite.net in order to perform all database actions for our BookLibrary application.

Let's start by creating the BookDatabase class for our BookLibrary app by going through the following steps:

	Ensure that the BookLibrary.iOS solution is open within the Visual Studio for Mac IDE.

	Next, right-click on the Database folder and choose Add | New File... from the pop-up menu.

	Then, choose the Empty Class option under the General section and enter BookDatabase as the name of the class to be created, as shown in the following screenshot:

Creating the BookDatabase Class

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our BookDatabase class, we can proceed with implementing the required code for our class.

	Locate and open the BookDatabase.cs file, which is located within the Database folder as part of the BookLibrary project, and ensure that it is displayed within the code editor. Enter the following code snippet:

 //
 // BookDatabase.cs
 // Book Database Class that will be used to handle performing of CRUD operations
 //
 // Created by Steven F. Daniel on 02/08/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.Collections.Generic;
 using System.Linq;
 using BookLibrary.Models;
 using SQLite;

 namespace BookLibrary.Database
 {
 public class BookDatabase : IBookDatabase
 {
 static object locker = new object();
 static SQLiteConnection conn;
 static BookDatabase database;

 /// <summary>
 /// Returns an instance of our BookDatabase class
 /// </summary>
 /// <value>The current BookDatabase class instance.</value>
 public static BookDatabase Database => database;

 /// <summary>
 /// Create our Book Library Database tables.
 /// </summary>
 /// <param name="connection">Connection.</param>
 public static void CreateDatabase(SQLiteConnection connection)
 {
 conn = connection;

 // Create the tables within our Book Library Database
 conn.CreateTable<BookItem>();
 database = new BookDatabase();
 }
 /// <summary>
 /// Gets all of the book library items from our database.
 /// </summary>
 /// <returns>The items.</returns>
 public IEnumerable<BookItem> GetItems()
 {
 // Set a mutual-exclusive lock on our database, while
 // retrieving items.
 lock (locker)
 {
 return conn.Table<BookItem>().ToList();
 }
 }
 /// <summary>
 /// Gets a specific book item from the database.
 /// </summary>
 /// <returns>The item.</returns>
 /// <param name="id">Identifier.</param>
 public BookItem GetItem(int id)
 {
 // Set a mutual-exclusive lock on our database, while
 // retrieving the book item.
 lock (locker)
 {
 return conn.Table<BookItem>().FirstOrDefault(x => x.Id == id);
 }
 }
 /// <summary>
 /// Saves the book item currently being edited.
 /// </summary>
 /// <returns>The item.</returns>
 /// <param name="item">Item.</param>
 public int SaveItem(BookItem item)
 {
 // Set a mutual-exclusive lock on our database, while
 // saving/updating our book item.
 lock (locker)
 {
 if (item.Id != 0)
 {
 conn.Update(item);
 return item.Id;
 }
 else
 {
 return conn.Insert(item);
 }
 }
 }
 /// <summary>
 /// Deletes a specific book item from the database.
 /// </summary>
 /// <returns>The item.</returns>
 /// <param name="id">Identifier.</param>
 public int DeleteItem(int id)
 {
 // Set a mutual-exclusive lock on our database, while
 // deleting our book item.
 lock (locker)
 {
 return conn.Delete<BookItem>(id);
 }
 }
 }
 }

Let's take a look at what we entered in the preceding code snippet:

	We started by including references to the System.Collections.Generic, System.Linq, and SQLite namespaces so that we can access the classes that are defined within these namespaces. We included a reference to the BookLibrary.Models namespace so that we can access our BookItem database model.

	Next, we created a locker variable that will be used to create a mutually-exclusive lock on the database while we are either creating, retrieving, updating, or deleting book items.

	Then, we declared a conn variable that will point to an instance of our SQLiteConnection object, which is located within the SQLite.cs class, as well as declaring a Database variable that will point to an instance of our BookDatabase so that we can perform database operations.

	Next, we create the CreateDatabase instance method that accepts a conn object, which is an instance of our SQLiteConnection class, and this instance method will be used to create the necessary database table structure, based on our BookItem data model.

	Then, we create the GetItems instance method that will be used to extract all of the existing book entries that have been saved to the database. We use the LINQ language query syntax to iterate and retrieve all items from our BookItem table and convert this collection to a List instance, as determined by the ToList() method.

	Next, we create the SaveItem instance method that will save the book item to the BookItem database table. In this instance method, you will notice that we are handling two different case scenarios. The first scenario stipulates that, if the item we are saving is an existing item, then we need to check the id for the book item, and if it is a non-zero value, then we proceed to update the book item using the Update method on the database object and return the book item id. However, if the item is a new book record—all new books that get created will have an id of 0—then this will be directly inserted into the BookItem table using the Insert method on the database object.

	Finally, we create the DeleteItem instance method that will, as you might have guessed, delete an existing book item from the BookItem database table using the book item's id, and then call the Delete method on the database object.

Now that you have created the BookDatabase interface and class that will be used to handle all of the operations for creating, retrieving, updating, and deleting book items from our BookLibary database, this will be used by our WebViewController.cs class to interact with each of our Razor template pages.

The Android version of the BookDatabase class is available in the companion source code for this book.

 Creating and implementing the BookLibraryListing page

In this section, we will begin by building the user interface for our BookLibraryListing using HTML by defining HTML tags. This Razor template page will use our BookItem data model to visually display all items that have been added to the BookItem database table, as well as allow the user to create new book items.

Let's start by creating the user interface for our BookLibraryListing by going through the following steps:

	Right-click on the Views folder and choose Add | New File... from the pop-up menu.

	Then, choose the Preprocessed Razor Template option under the Text Templating section and enter BookLibraryListing for the name of the Razor template to be created, as shown in the following screenshot:

Creating the Book Library Listing Razor Template

	Then, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our BookLibraryListing Razor template page, we can proceed with defining the user interface and implementing the underlying code for our class.

	Locate and open the BookLibraryListing.cshtml file, which is located in the Views folder, and ensure that it is displayed within the code editor. Enter the following code snippet:

 @using BookLibrary.Models
 @model List<BookItem>
 <html>
 <head>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <p></p>
 <h1>Book Library Listing</h1>
 <table>
 <thead>
 <tr>
 <th></th>
 <th>Image</th>
 <th>Title</th>
 <th>Author</th>
 <th>ISBN</th>
 </tr>
 </thead>
 <tr>
 Add New Book
 </tr>
 @foreach (var book in @Model)
 {
 <tbody>
 <tr>
 <td>
 Edit
 </td>
 <td></td>
 <td>@book.Title</td>
 <td>@book.Author</td>
 <td>@book.Isbn</td>
 </tr>
 </tbody>
 }
 </table>
 </body>
 </html>

Let's take a look at what we defined in the preceding Razor template page:

	We started by defining the HTML layout information that will be used by our BookLibraryListing Razor template page, and then we import the BookLibrary namespace so that we can have access to our BookItem data model, as specified by the @model directive, and this must be the very first line preceding the <html> tag within each Razor template page. You will notice that we specify a List type for our @model directive. This is because we are iterating through each of our book items within our Model, and display the ImageUrl, Title, Author, and Isbn details for each book that we read from our BookItem database table.

	Next, we set up an href tag that points to our WebViewController.cs class, and we specify a hybrid:CreateNewBook tag to call the BookLibraryAddEdit.cshtml Razor template page to allow the user to create a new book entry. We don't need to pass in an id for the book, as this will be automatically assigned once the book has successfully been written to the BookItem database table.

	Finally, we set up an href tag that points to our WebViewController.cs class, and we specify a hybrid:EditBookDetails tag to call the BookLibraryAddEdit.cshtml Razor template page to allow the user to retrieve and display the book entry details for the chosen book item using the associated id.

 Creating and implementing the BookLibraryAddEdit page

In the previous section, we created and implemented the BookLibraryListing Razor template page that will be used to display a list of all book items that have been previously added to the BookItem database table. Our next step is to begin creating the BookLibraryAddEdit Razor template page—which will be used to allow the user to create a new book item or edit an existing book item—and save this to our BookItem database table.

Let's start by creating the user interface for our BookLibraryAddEdit by going through the following steps:

	Right-click on the Views folder and choose Add | New File... from the pop-up menu, as you did when creating the BookLibraryListing, in the Creating and implementing the BookLibraryListing page section in this chapter.

	Next, choose the Preprocessed Razor Template option under the Text Templating section and enter BookLibraryAddEdit as the name of the Razor template to be created.

	Finally, click on the New button to allow the wizard to proceed and create the new file. Now that we have created our BookLibraryAddEdit Razor template, we can proceed with defining the user interface and implementing the underlying code for our class.

	Locate and open the BookLibraryAddEdit.cshtml file, which is located in the Views folder, and ensure that it is displayed within the code editor. Enter the following code snippet:

 @using BookLibrary.Models
 @model BookItem
 <html>
 <head>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 @if (Model.Id > 0)
 {
 <h1>Editing Book Details</h1>
 }
 else
 {
 <h1>Adding Book Details</h1>
 }
 <table>
 <form action="hybrid:SaveBookDetails" method="GET">
 <input name="Id" type="hidden" value="@Model.Id" />
 <tr>
 <td>
 <label for="Title">Book Title:</label>
 <input id="Title" name="Title" type="text"
 placeholder="Book Title" value="@Model.Title" />
 </td>
 <tr>
 <td>
 <label for="ImageUrl">Book Image URL:</label>
 <input id="ImageUrl" name="ImageUrl" type="text"
 placeholder="Book Image URL" value=@Model.ImageUrl />
 </td>
 <tr>
 <td>
 <label for="Author">Author Name:</label>
 <input id="Author" name="Author" type="text"
 placeholder="Author name" value="@Model.Author" />
 </td>
 <tr>
 <td>
 <label for="Category">Category:</label>
 <input id="Category" name="Category" type="text"
 placeholder="Book Category" value="@Model.Category" />
 </td>
 <tr>
 <td>
 <label for="PublishedYear">Published Year:</label>
 <input id="PublishedYear" name="PublishedYear"
 placeholder="Published Year" value="@Model.PublishedYear" />
 </td>
 <tr>
 <td>
 <label for="Publisher">Publisher:</label>
 <input id="Publisher" name="Publisher"
 placeholder="Publisher" value="@Model.Publisher" />
 </td>
 <tr>
 <td>
 <label for="Pages">No. Pages:</label>
 <input id="Pages" name="NoPages" type="number"
 placeholder="Total Pages" maxlength="4" value="@Model.NoPages" />
 </td>
 <tr>
 <td>
 <label for="ISBN">Book ISBN:</label>
 <input id="ISBN" name="Isbn" type="text"
 placeholder="Book ISBN" value="@Model.Isbn" />
 </td>
 <tr>
 <td>
 <label for="Summary">Book Summary:</label>
 <textarea id="Summary" name="Summary" placeholder="Book Summary"
 rows="10" cols="45">@Model.Summary</textarea>
 </td>
 <tr>
 <td colspan="8">
 <input type="submit" name="Button" value="Save" />
 <input type="submit" name="Button" value="Cancel" />
 @if (Model.Id > 0)
 {
 <input type="submit" name="Button" value="Delete" />
 }
 </td>
 </tr>
 </form>
 </table>
 </body>
 </html>

Let's take a look at what we defined within the preceding Razor template page:

	As we did for our BookLibraryListing Razor template page, we started by defining the HTML layout information that will be used by our BookLibraryAddEdit Razor Template page, and then we imported the BookLibrary namespace so that we can have access to our BookItem data model, as specified by the @model directive. We've already explained that this must be the very first line preceding the <html> tag within each Razor template page.

	Next, we used some JavaScript code that will check whether we are creating or editing an existing book within our BookLibrary database, and then we displayed the relevant heading to the BookLibraryAddEdit Razor template page.

	Then, we set up a form action tag that will be used when the form gets submitted whenever the Save, Cancel, or Delete button is pressed, and we make a call to the WebViewController.cs class to call the appropriate action.

	Finally, we specified a hybrid:SaveBookDetails tag that will pass the form parameters to our WebViewController.cs class in order to save the book details to the BookItem database table for the associated id. You will notice that we have some JavaScript code that checks to see whether we are currently editing an existing book. Once it has done this, it will display the Delete button so that the user can choose to delete the book entry.

The Android versions for each of the Razor template pages are available in the companion source code for this book.

 Updating the Book Library cascading style sheet (CSS)

In this section, we will need to make some additional changes to the Styles.css file. This file is essentially a cascading style sheet (CSS) that can be used by each of our Razor template pages. As a result, the Razor template pages will inherit everything that it contains.

We will basically be adding some additional tags that will apply changes to the table and body component of each of our Razor template pages, as well as setting padding to margins, font sizes, font styles, font colors, and URL link colors.

Let's start by updating the Style.css file by going through the following steps:

	Locate and open the Style.css file, which is located in the Resources folder or the Assets folder (in Android) and ensure that it is displayed within the code editor. Enter the following highlighted code sections:

 /* This is a minimal style sheet intended to demonstrate how to include static content
 in your hybrid app. Other static content, such as javascript files and images, can
 be included in this same folder(Resources on iOS or Assets on Android), with the same
 Build Action (BundleResource on iOS or AndroidAsset on Android), to be accessible from
 a path starting at the root of your hybrid application. */

 #page {
 margin-top: 10px;
 }
 input {
 width: 100%;
 }
 img {
 width: 100%;
 height: auto;
 }
 html, body {
 margin: 7px;
 padding: 0px;
 border: 0px;
 color: #000;
 background: #ffffe0;
 }
 html, body, p, th, td, li, dd, dt {
 font: 1em Arial, Helvetica, sans-serif;
 }
 h1 {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 28;
 }
 thead {
 color: green;
 }
 tbody {
 color: blue;
 }
 table, th, td {
 border: 1px solid black;
 }
 a:link {
 color: #00f;
 }

In the preceding snippet, we started by specifying and defining a number of HTML tags that each of our Razor template pages will inherit. Let's take a look at what we defined within the preceding Razor template:

	We started by specifying and defining a number of HTML tags that each of our Razor template pages will inherit. We specified an input tag that will adjust the width to 100% for all input tags that have been defined within the Razor template pages.

	Next, we specify an img tag that defines the width and height to use for all images that have been declared within an img tag within each of your Razor template pages. We also specify tags for both our html and body, and provide values for our margin, padding, border, color, and background color.

	Then, we specify and define the font style that will be used for each of our html, body, p, th, td, li, dd, and dt tags. We also specify the font-family and font-size for all h1 tags that have been defined within each of the Razor template pages.

	Finally, we declare colors for our thead and tbody tags, as well as define border colors and border width, for each of our table, th, and td tags. We also specify the color to use for all website URL links.

The Android version of the Style.css file is available in the companion source code for this book.

 Updating the WebViewController class using C#

In this section, we will begin implementing the code for our BookLibrary application that will be responsible for communicating and interacting with our Razor template pages, as well as handling the actions associated with each Razor template page. The WebViewController class will communicate with and use our BookDatabase class in order to handle the addition, retrieval, and deletion of book items.

Let's start by updating the WebViewController.cs by going through the following steps:

	Locate and open the WebViewController.cs file, which is located in the BookLibrary project, and ensure that it is displayed within the code editor. Enter the following highlighted code sections:

 //
 // WebViewController.cs
 // Web Container for representing Razor Templates within a Web View
 //
 // Created by Steven F. Daniel on 02/08/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using Foundation;
 using UIKit;
 using System.IO;
 using SQLite;
 using BookLibrary.Views;
 using System.Collections.Specialized;
 using BookLibrary.Database;
 using BookLibrary.Models;
 using System.Linq;

 namespace BookLibrary
 {
 public partial class WebViewController : UIViewController
 {
 static bool UserInterfaceIdiomIsPhone
 {
 get { return UIDevice.CurrentDevice.UserInterfaceIdiom ==
 UIUserInterfaceIdiom.Phone; }
 }
 protected WebViewController(IntPtr handle) : base(handle)
 {
 // Note: this .ctor should not contain any initialization logic.
 }
 public override void ViewDidLoad()
 {
 base.ViewDidLoad();

 // Intercept URL loading to handle native calls from browser
 WebView.ShouldStartLoad += HandleShouldStartLoad;

 // Declare the name to use for our database name
 var sqliteFilename = "BookLibrary.db";
 string documentsPath = Environment.GetFolderPath(Environment.SpecialFolder.Personal);
 string libraryPath = Path.Combine(documentsPath, "..", "Library");
 var databasePath = Path.Combine(libraryPath, sqliteFilename);

 // Set a connection to our database
 var databaseConn = new SQLiteConnection(databasePath);
 BookDatabase.CreateDatabase(databaseConn);

 // Render the view to use our BookLibraryListing.cshtml file
 var model = BookDatabase.Database.GetItems().ToList();
 var template = new BookLibraryListing() { Model = model };
 var page = template.GenerateString();

 // Load the rendered HTML into the view with a base URL that points
 // to the root of the bundled Resources folder
 WebView.LoadHtmlString(page, NSBundle.MainBundle.BundleUrl);
 }

 public override void DidReceiveMemoryWarning()
 {
 base.DidReceiveMemoryWarning();
 // Release any cached data, images, etc that aren't in use.
 }

 bool HandleShouldStartLoad(UIWebView webView, NSUrlRequest request,
 UIWebViewNavigationType navigationType)
 {
 // If the URL is not our own custom scheme, just let the webView
 // load the URL as usual
 const string scheme = "hybrid:";
 if (request.Url.Scheme != scheme.Replace(":", ""))
 return true;

 // This handler will treat everything between the protocol and
 // "?" as the method name. The querystring has all of the parameters.
 var resources = request.Url.ResourceSpecifier.Split('?');
 var method = resources[0];
 var parameters = System.Web.HttpUtility.ParseQueryString(resources[1]);

 switch (method)
 {
 case "CreateNewBook":
 CreateNewBook(webView);
 break;
 case "EditBookDetails":
 EditBookDetails(webView, parameters);
 break;
 case "SaveBookDetails":
 SaveBookDetails(webView, parameters);
 break;
 default:
 // Cases not covered are handled here.
 break;
 }
 return false;
 }
 /// <summary>
 /// Handles the creation of our new book entry.
 /// </summary>
 /// <param name="webView">Web view.</param>
 void CreateNewBook(UIWebView webView)
 {
 var template = new BookLibraryAddEdit() { Model = new BookItem() };
 var page = template.GenerateString();
 webView.LoadHtmlString(page, NSBundle.MainBundle.BundleUrl);
 }
 /// <summary>
 /// Handles the editing of our book details.
 /// </summary>
 /// <param name="webView">Web view.</param>
 /// <param name="parameters">Parameters.</param>
 void EditBookDetails(UIWebView webView, NameValueCollection parameters)
 {
 var model = BookDatabase.Database.GetItem(Convert.ToInt32(parameters["Id"]));
 var template = new BookLibraryAddEdit() { Model = model };
 var page = template.GenerateString();
 webView.LoadHtmlString(page, NSBundle.MainBundle.BundleUrl);
 }
 /// <summary>
 /// Saves the book details to the SQLite BookDetails Database.
 /// </summary>
 /// <param name="webView">Web view.</param>
 /// <param name="parameters">Parameters.</param>
 void SaveBookDetails(UIWebView webView, NameValueCollection parameters)
 {
 // Points to our Edit Book Details HTML page.
 var button = parameters["Button"];
 switch (button)
 {
 case "Save":
 SaveDetailsToDatabase(parameters);
 break;
 case "Delete":
 DeleteBookDetails(parameters);
 break;
 case "Cancel":
 break;
 default:
 // Cases not covered are handled here.
 break;
 }
 var model = BookDatabase.Database.GetItems().ToList();
 var template = new BookLibraryListing() { Model = model };
 webView.LoadHtmlString(template.GenerateString(), NSBundle.MainBundle.BundleUrl);
 }
 /// <summary>
 /// Saves the book details to our SQLite database.
 /// </summary>
 /// <returns>The details to database.</returns>
 /// <param name="parameters">Parameters.</param>
 void SaveDetailsToDatabase(NameValueCollection parameters)
 {
 var book = new BookItem
 {
 Id = Convert.ToInt32(parameters["Id"]),
 Title = parameters["Title"],
 Author = parameters["Author"],
 Category = parameters["Category"],
 PublishedYear = parameters["PublishedYear"],
 Publisher = parameters["Publisher"],
 NoPages = parameters["NoPages"],
 Isbn = parameters["Isbn"],
 Summary = parameters["Summary"],
 ImageUrl = parameters["ImageUrl"]
 };
 BookDatabase.Database.SaveItem(book);
 }
 /// <summary>
 /// Handle when the Delete button has been pressed
 /// </summary>
 /// <returns>The book details.</returns>
 /// <param name="parameters">Parameters.</param>
 void DeleteBookDetails(NameValueCollection parameters)
 {
 BookDatabase.Database.DeleteItem(Convert.ToInt32(parameters["Id"]));
 }
 }
 }

Let's take a look at what we entered in the preceding code snippet:

	First, we started by including references to the System.IO, SQLite, System.Collections.Generic, and System.Linq namespaces so that we can access the classes that are defined within these namespaces. We include references to our BookLibrary.Views, BookLibrary.Database, and BookLibrary.Models namespaces so that we can access each of our Razor pages, as well as the instance methods defined within our BookDatabase class and our BookItem database model.

	Next, we modified the ViewDidLoad method and declared the name to use for our database name. Then we specified the location to save the BookLibrary.db database to, which is determined by the databasePath string, and then proceeded to set up a connection to our database.

	Then, we called the GetItems instance method on our BookDatabase.Database namespace to return all existing book entries within the database and assign this to our model.

	Next, we specified the BookLibraryListing Razor page and passed in the model that will be used to populate the Model within our Razor page. Then we proceeded to call the GenerateString method on our template so that we can execute the template within the main application bundle and return the output as a string, prior to loading this within our WebView using the LoadHtmlString method.

	Then, within the HandleShouldStartLoad method, we created a switch statement to handle the type of method operation that we obtained from our Razor page directly, using the hybrid: tag.

	Next, we created and implemented the CreateNewBook instance method that will be responsible for handling the creation of our new book entry. This method accepts the name of the webView so that it knows where to display its content. We specified the BookLibraryAddEdit Razor page and set the Model to our BookItem data model to populate the content. We called the GenerateString method on our template to execute the Razor page within the main application bundle and return the output as a string, prior to loading this within our webView using the LoadHtmlString method.

	Then, we created and implemented the EditBookDetails instance method that will be responsible for handling the editing of our existing book entry. This method accepts the name of the webView so that it knows where to display its content. We specified the BookLibraryAddEdit Razor page and set the Model to our BookItem data model to populate the content. We called the GenerateString method on our template to execute the Razor page within the main application bundle and return the output as a string, prior to loading this within our webView using the LoadHtmlString method.

	Next, we created and implemented the SaveBookDetails instance method that will be responsible for handling the saving of the book entry. This method accepts the name of the webView so that it knows where to display its content, as well as the parameters used and the button that was pressed within the BookLibraryAddEdit Razor page. We used a switch statement to handle the type of button operation and handle it accordingly.

	Then, we created and implemented the SaveDetailsToDatabase instance method that will be responsible for handling the saving of our book entry to the BookLibrary SQLite database. This method accepts a list of parameters that have been entered within the BookLibraryAddEdit Razor page, and constructs a BookItem database model that gets passed to the SaveItem instance method within our BookDatabase class.

	Finally, we created the DeleteBookDetails instance method that will be responsible for deleting our book entry within the BookLibrary SQLite database. This method accepts a list of parameters that have been entered within the BookLibraryAddEdit Razor page and passes the id of the book entry to the DeleteItem instance method within our BookDatabase class.

The Android version of the MainActivity.cs class is available in the companion source code for this book.

Now that we have finished creating all of the necessary Razor template pages, as well as our BookItem database model and BookDatabase interface and class, as well as implementing the required instance methods within our WebViewController class, our next step is to compile, build, and run our application within the iOS simulator.

 Launching the BookLibrary app using the iOS simulator

In this section, we will compile, build, and run the BookLibrary application to see how our application looks, since we have created each of our Razor template pages, and have made some modifications to our updated style.css cascading style sheet (CSS).

Let's see how we can achieve this by going through the following steps:

	Ensure that you have chosen the Debug | iPhoneSimulator option from the drop-down menu.

	Next, choose your preferred device from the list of available iOS simulators.

	Then, select the Run | Start Debugging menu option, as shown in the following screenshot:

Launching the BookLibrary app within the iOS Simulator

	Alternatively, you can also build and run the BookLibrary application by pressing Command + Return on the keyboard.

When the compilation is complete, the iOS simulator will appear automatically and the BookLibrary application will be displayed, as shown in the following screenshot:

Adding new Book Details to the Book Library Listing

The preceding screenshot displays our Book Library Listing Razor page, which shows a blank listing the first time the application is run. The BookLibrary database has been created. When the Add New Book link is clicked on, this will display the Adding Book Details Razor page, along with some information that has been populated, as shown in the following screenshot:

Editing an existing Book within the Book Library Listing screen

The preceding screenshot displays our Book Library Listing Razor page, which is populated with book entries that have been entered within our BookLibrary database. Clicking on the Edit link beside the book item will display the Editing Book Details Razor page with the information retrieved from the BookLibrary SQLite database. You will notice that since we are editing an existing book entry, our BookListingAddEdit Razor page will display the Delete button, which wasn't displayed when we were creating a new book entry.

 Summary

In this chapter, you learned about the Razor templating engine, the components of a Razor template solution, and the differences between using a static model class and the SQLite database model within our Razor templates.

You then learned how to build a BookLibrary application and incorporate the SQLite-net NuGet package, as well as how to define a BookItem database model and create a BookDatabase interface and class, which will include a number of class instance methods that will be used to communicate with our SQLite database so that you can create, update, retrieve, and delete book items. Lastly, you learned how to create the necessary Razor template pages that will integrate with our BookItem data model, as well as how to implement additional HTML tags within our style.css file. You also learned how to implement the necessary class instance methods within the WebViewController class.

In the next chapter, you'll learn about Microsoft Azure App Services and how you can use this to create your very first live, cloud-based backend HTTP web service to handle all communications between the cloud and the app. You will do this by creating a RestWebService interface and class that will allow the app to consume RESTful web services so that it can store, retrieve, and delete walk trail information from a Microsoft Azure database that we will be creating for a TrackMyWalks app.

 Incorporating Microsoft Azure App Services

In the previous chapter, you learned about the Razor templating engine, the components of a Razor template solution, and the differences between using a static model class and the SQLite database model, before moving on to learning how to build a BookLibrary mobile solution using the power of Razor templates and how to use and define BookItem database models within your application.

You then learned how to incorporate the SQLite-net NuGet package that you will use in order to create a BookDatabase interface and class. As part of learning this, you also learned about a number of class instance methods that will communicate with our SQLite database so that you can create, update, retrieve, and delete book items. Lastly, you learned how to create the necessary Razor template pages that will integrate with our BookItem data model and how to implement additional HTML tags within our style.css file, as well as how to implement the necessary class instance methods within the WebViewController class.

In this chapter, you'll learn about the Microsoft Azure App Services platform, and how you can leverage this platform to create your cloud-based databases using RESTful web service APIs that will be used to handle all communication between the TrackMyWalks mobile application. You will then set up and configure a Microsoft Azure app service in order to create a mobile app service, data connection, SQL Server database, and WalkEntries table. You will also learn how to incorporate the Newtonsoft.Json NuGet package, as well as modify the WalkDataModel data model.

Next, you will create a RestWebservice interface and class, which will include a number of class instance methods that will be used to communicate with our TrackMyWalks SQL Server database so you can perform CRUD operations to create, update, retrieve, and delete walk entries.

You will then modify the BaseViewModel class to include an AzureDatabase property to our RestWebService class, as well as make some changes to the underlying code-behind files that will communicate with our SQL Server database.

Finally, you will update the user interface for the WalkEntryPage to include an ActivityIndicator, which will display information to the user whenever a walk item is being saved to the database. You will also make changes to the WalkEntryPageViewModel to initialize properties for communicating with the ActivityIndicator.

This chapter will cover the following topics:

	Setting up our TrackMyWalks app to use Microsoft Azure App Services

	Incorporating the Json.Net NuGet package to our TrackMyWalks solution

	Updating the WalkDataModel database model for our TrackMyWalks app

	Creating and implementing a RestWebService interface and class using C#

	Updating the BaseViewModel class to use our RestWebService class

	Updating the WalkEntryPageViewModel to use our RestWebService class

	Updating the WalksMainPageViewModel to use our RestWebService class

	Updating the WalksMainPage to use the updated ViewModel

	Launching the TrackMyWalks app using the iOS simulator

 Understanding the Microsoft Azure App services platform

In this section, we will look at the steps required to set up the TrackMyWalks application within Microsoft Azure. Nearly all mobile applications that you will develop will require the ability to communicate with an API in order to store, retrieve, update, and delete information. This API can be an existing one that someone within your organisation has already created, but sometimes you will need to create your own API for your application.

Microsoft Azure (or Azure as it's more commonly known) is essentially a cloud-based platform that was created by Microsoft back in February 2010. Azure was designed for building, deploying, and managing several applications and their associated services, such as SaaS, PaaS, and IaaS.

The following table provides a brief description of each of the Microsoft Azure-specific associated services and what each one is used for:

	
Service

	
Description

	
Saas

	
The software-as-a-service component basically provides a software licensing and delivery model, where software is licensed on a subscription basis and is hosted centrally.

	
Paas

	
The platform-as-a-service component essentially provides customers with a platform to develop, run, and manage applications without the complexities of maintaining the infrastructure when developing and launching an app.

	
Iaas

	
The infrastructure-as-a-service component provides virtualized computing resources over the internet.

Now that you have a reasonably good understanding of each of the components that are contained within the Microsoft Azure platform, our next step is to begin setting up and configuring our application, as well as creating the SQL Server database and data connections, including the database tables that will be used by our TrackMyWalks application to store walk trail information.

One of the main benefits of using Microsoft Azure mobile apps is that it provides you with a very quick and easy way to get a fully functional backend service up and running within a matter of minutes.

 Setting up and configuring Microsoft Azure App services

In this section, we will begin by setting up and configuring our TrackMyWalks app within the Microsoft Azure platform. We will look at the steps involved in creating our TrackMyWalks Azure App service—as well as those involved in creating the SQL Server database and the data connections—prior to creating the WalkEntries table so that we can store our walk trail information using the TrackMyWalks app.

Let's take a look at how we can achieve this by going through the following steps:

	First, open your browser, type in https://portal.azure.com/, and log in to the Microsoft Azure Portal using your credentials.

If you don't already have a Microsoft Azure account, you can create one for free at https://azure.microsoft.com/en-us/pricing/free-trial/.

	Next, from the Microsoft Azure page, click on the Create a resource button and select the Mobile option under the Azure Marketplace section, and then choose the Mobile App option under the Featured section, as shown in the following screenshot:

Microsoft Azure Marketplace Dashboard

	Next, enter TrackMyWalks as the name for our app in the App name field, and choose your Subscription type from the drop-down list. Then, ensure that the Create new option has been selected, or you can use an existing one.

	Then, enter TrackMyWalks for the Resource Group and click on the Create button to create our Mobile App, as shown in the following screenshot:

Creating a new Mobile App within the Microsoft Azure Portal

Now that you have successfully created your Mobile App within the Microsoft Azure platform, our next step is to begin setting up the database that will allow our TrackMyWalks app to store walk trail information.

Let's start setting up the database by going through the following steps:

	Click on the Dashboard button under the Microsoft Azure section, and click on the trackmywalk App Service from the Dashboard section, as shown in the following screenshot:

The Microsoft Azure Dashboard showing the trackmywalk App Service

	Next, within the search field, enter Data and then click on the Data connections option under the MOBILE section, as shown in the following screenshot:

The Microsoft Azure Data Connections section

	Then, within the trackmywalk – Data connections screen, click on the Add button, as shown in the following screenshot:

The TrackMyWalk - Data Connections Screen

	Next, within the Add Data connection screen, ensure that you have selected SQL Database from the Type drop-down, and click on the OK button to save your changes in order to create a new data connection for our TrackMyWalks SQL Server database, as shown in the following screenshot:

Creating a new data connection for our TrackMyWalks SQL Database

Once you have created the TrackMyWalks Mobile App and SQL Server database within the Microsoft Azure platform, by default, your database won't contain any database tables or table data. Before we can start communicating and consuming the RestWebService API within our TrackMyWalks app, we will need to create a new table that will be used to store our walk trail entries.

Let's create a new table within our database by going through the following steps:

	First, from the Dashboard, click on the trackmywalk App Service and choose the Easy tables option, located under the MOBILE section on the trackmywalk – Easy tables page, as shown in the following screenshot:

The TrackMyWalk - Easy Tables screen

	Next, click on the Add button to display the Add a table screen, and enter WalkEntries in the Name field.

	Then, leave the default permissions that have been set for our Insert permission, Update permission, Delete permission, Read permission, and Undelete permission drop-down entries, as shown in the following screenshot:

Creating the WalkEntries table for the TrackMyWalks app

	Finally, click on the OK button to save your changes, and your WalkEntries table will be created and displayed under the trackmywalks – Easy tables section.

Whenever you choose the Allow anonymous access permission during the creation of your tables, you are essentially making the API available without providing any specific authentication headers as part of the HTTP request.

Before we can start making any calls to our RestWebService API and consuming this within our TrackMyWalks app, we will run a quick check to see whether our API endpoint is working correctly. This is achieved by issuing a GET HTTPMethod request, using the curl https://trackmywalk.azurewebsites.net/tables/WalkEntries --header "ZUMO-API-VERSION:2.0.0" command.

If you have set everything up correctly within the Microsoft Azure Portal, you should receive a 200 (success) status code back, along with an empty collection in the response body, as follows:

 curl https://trackmywalk.azurewebsites.net/tables/WalkEntries --header "ZUMO-API-VERSION:2.0.0" []

If you prefer not to use the command, there are several REST console clients that exist out there for you to choose from. I tend to use Postman for handling REST APIs, which can be downloaded from http://www.getpostman.com/.

Now, you have successfully created the TrackMyWalks SQL Server database, as well as the Data Connections, and WalkEntries table. Our next step is to add the Newtonsoft.Json NuGet package to our TrackMyWalks solution.

 Adding the Newtonsoft.Json NuGet package to our solution

In this section, we will begin by adding the Newtonsoft.Json NuGet package to our TrackMyWalks shared-core solution, which is essentially a high-performance JSON framework for the .NET platform, which allows you to serialize and deserialize any type of .NET object with help from the JSON serializer class.

We will also have the ability to translate LINQ capabilities into JSON to enable us to create, parse, query, and modify the JSON structure that we receive back from our WalkEntries table, located on the Microsoft Azure platform.

Let's start by adding the Newtonsoft.Json NuGet package to our TrackMyWalks app by going through the following steps:

	Right-click on the Dependencies | NuGet folder, located within the TrackMyWalks solution, and choose the Add Packages... menu option, as you did in Chapter 4, Creating the TrackMyWalks Native App.

	Next, within the Search field located within the Add Packages dialog, you need to enter json.net and select the Newtonsoft.Json option within the list, as shown in the following screenshot:

Adding the Newtonsoft.Json NuGet Package

	Then, make sure that you choose the latest version to install from the drop-down list for the Version field (this will be displayed by default).

	Finally, click on the Add Package button to add the Newtonsoft.Json NuGet package to the TrackMyWalks shared-core solution.

Now that you have added the NuGet package for the Newtonsoft.Json, we can begin utilizing this control by updating our WalkDataModel class to include additional JsonProperty attributes that will be used by our instances of ViewModel and ContentPage (views), which we will cover in the next section.

 Updating the WalkDataModel for our TrackMyWalks app

In this section, we will begin updating our WalkDataModel so that it can communicate and interact with our RestWebService class, which will call methods to perform CRUD operations to create, retrieve, update, and delete walk trail information within our SQL Server database.

Let's take a look at how we can achieve this by going through the following steps:

	Locate and open the WalkDataModel.cs file, which is located in the Models folder, and ensure that it is displayed within the code editor. Enter the following highlighted code sections:

 //
 // WalkDataModel.cs
 // Data Model that will store Walk Trail Information
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using Newtonsoft.Json;

 namespace TrackMyWalks.Models
 {
 public class WalkDataModel
 {
 [JsonProperty("id")]
 public string Id { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }
 public double Latitude { get; set; }
 public double Longitude { get; set; }
 public double Distance { get; set; }
 public string Difficulty { get; set; }
 public string ImageUrl { get; set; }
 }
 }

Let's now start by taking a look at what we covered in the preceding code snippet:

	First, we included a reference to the Newtonsoft.Json namespace so that we have access to the classes that are defined within this namespace.

	Lastly, we defined a [JsonProperty("id")] attribute for our Id string property that will serve as a unique primary key for each record that we will store within the database. The id property will create a database table field for the corresponding Id string property name.

For more information on the JsonProperty properties, refer to the json.NET documentation at https://www.newtonsoft.com/json/help/html/Properties_T_Newtonsoft_Json_Serialization_JsonProperty.htm.

 Creating and implementing the RestWebService interface

In this section, we'll take a look at how to create the IRestWebService class, which will essentially contain various instance methods that will be used by our RestWebService class. The advantage of creating an IRestWebService class is that it's much easier to add additional class instance methods that will be used by those instances of ViewModel and ContentPage (views) that utilize this interface.

Let's start by creating the IRestWebService interface for our TrackMyWalks app by going through the following steps:

	Ensure that the TrackMyWalks solution is open within the Visual Studio for Mac IDE.

	Next, right-click on the Services folder and choose Add | New File... from the pop-up menu, as you did in the Creating and implementing the LocationService interface section in Chapter 7, Adding Location-based Features Within Your App.

	Then, choose the Empty Interface option under the General section and enter IRestWebService for the name of the interface to be created, as shown in the following screenshot:

Creating the IRestWebService Interface

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our IRestWebService interface, we can proceed with implementing the required code for our class.

	Then, locate and open the IRestWebService.cs file, which is located within the Services folder, and ensure that it is displayed within the code editor. Enter the following code snippet:

 //
 // IRestWebService.cs
 // REST WebService Interface used by our Rest WebService Class
 //
 // Created by Steven F. Daniel on 06/08/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using TrackMyWalks.Models;

 namespace TrackMyWalks.Services
 {
 public interface IRestWebService
 {
 // Gets all of the Walk Entries from our database.
 Task<List<WalkDataModel>> GetWalkEntries();

 // Saves our Walk Entry to the database.
 Task SaveWalkEntry(WalkDataModel item, bool isAdding);

 // Deletes a specific Walk Entry from the database.
 Task DeleteWalkEntry(string id);
 }
 }

Let's now take a look at what we covered in the preceding code snippet:

	We started by including references to the System.Collections.Generic and the System.Threading.Tasks namespaces so that we can access the classes that are defined within these namespaces. We also included a reference to the TrackMyWalks.Models namespace so that we can access our WalkDataModel database model.

	Next, we declared a GetWalkEntries instance method that will be responsible for asynchronously retrieving all of the existing walk entries from our SQL Server database contained on our Microsoft Azure platform and returning a List WalkDataModel object.

	Then, we declared a SaveWalkEntry instance method that will be responsible for asynchronously saving the book item that is currently being added or edited to the WalkEntries table within the SQL Server database.

	Finally, we declared a DeleteWalkEntry instance method that will essentially permanently delete a specific walk entry from the SQL Server database, using the id within the WalkEntries table.

The Task class is essentially used to handle asynchronous operations, which is done by ensuring that the method you initiated will eventually finish, thus completing the task and returning a Task object almost instantaneously, although the underlying work within the method could likely finish later.

Whenever you use the Task object, you can use the await keyword to wait for the task to complete, which will essentially block the current thread and wait until the asynchronous method has completed.

 Creating and implementing the RestWebService class

In this section, we will take a look at how to create the RestWebService class that will inherit from our IRestWebService interface and implement the underlying instance methods that we declared within our interface class to help us communicate with our SQL Server database, so that we can perform CRUD operations that will be used by our instances of ViewModel and ContentPage (views).

Let's start by creating the RestWebService class for our TrackMyWalks app by going through the following steps:

	Right-click on the Services folder and choose Add | New File... from the pop-up menu.

	Then, choose the Empty Class option under the General section and enter RestWebService as the name of the class to be created, as shown in the following screenshot:

Creating the RestWebService Class

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our RestWebService class, we can proceed with implementing the required code for our class.

	Then, locate and open the RestWebService.cs file, which is located within the Services folder, and ensure that it is displayed within the code editor. Enter the following code snippet:

 //
 // RestWebService.cs
 // REST WebService Class that will be used to handle performing of CRUD operations
 //
 // Created by Steven F. Daniel on 06/08/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Collections.Generic;
 using System.Diagnostics;
 using System.Net.Http;
 using System.Text;
 using System.Threading.Tasks;
 using Newtonsoft.Json;
 using TrackMyWalks.Models;

 namespace TrackMyWalks.Services
 {
 public class RestWebService : IRestWebService
 {
 // Declare our HttpClient manager object
 HttpClient client;

 // Declare our RestWebService Constructor
 public RestWebService()
 {
 client = new HttpClient();
 client.BaseAddress = new Uri("https://trackmywalk.azurewebsites.net");
 client.MaxResponseContentBufferSize = 256000;
 client.DefaultRequestHeaders.Add("ZUMO-API-VERSION", "2.0.0");
 }

 // Retrieves all of the Walk Entries from our database.
 public async Task<List<WalkDataModel>> GetWalkEntries()
 {
 // Declare our WalkEntries Items List Collection to populate resultset
 var Items = new List<WalkDataModel>();
 try
 {
 var response = await client.GetAsync("tables/WalkEntries");
 if (response.IsSuccessStatusCode)
 {
 var content = await response.Content.ReadAsStringAsync();
 Items = JsonConvert.DeserializeObject<List<WalkDataModel>>(content);
 }
 }
 catch (Exception ex)
 {
 // Catch and output any error messages that have occurred
 Debug.WriteLine("An error occurred {0}", ex.Message);
 }
 return Items;
 }

 // Saves the Walk Entry item that is currently being added/edited.
 public async Task SaveWalkEntry(WalkDataModel item, bool isAdding)
 {
 try
 {
 HttpResponseMessage responseMessage;
 var json = JsonConvert.SerializeObject(item);
 var content = new StringContent(json, Encoding.UTF8, "application/json");

 // Check to see if we are adding or editing, handle accordingly.
 if (isAdding)
 {
 responseMessage = await client.PostAsync("tables/WalkEntries", content);
 }
 else
 {
 responseMessage = await client.PutAsync("tables/WalkEntries", content);
 }
 // Check to see if we have successfully written the item to the database
 if (responseMessage.IsSuccessStatusCode)
 {
 Debug.WriteLine("WalkEntry Item successfully saved.");
 }
 }
 catch (Exception ex)
 {
 // Catch and output any error messages that have occurred
 Debug.WriteLine("An error occurred {0}", ex.Message);
 }
 }

 // Deletes a specific Walk Entry from the database using the id.
 public async Task DeleteWalkEntry(string id)
 {
 try
 {
 var response = await client.DeleteAsync("/tables/WalkEntries/" + id);
 if (response.IsSuccessStatusCode)
 {
 Debug.WriteLine("WalkEntry Item was successfully deleted.");
 }
 }
 catch (Exception ex)
 {
 // Catch and output any error messages that have occurred
 Debug.WriteLine("An error occurred {0}", ex.Message);
 }
 }
 }
 }

Let's take a look at what we covered in the preceding code snippet:

	We started by including references to the various System namespaces, as well as the Newtonsoft.Json namespace, so that we can access the classes that are defined within these namespaces. We also included a reference to the TrackMyWalks.Models namespace so that we can access our WalkDataModel database model.

	Next, we need to ensure that our RestWebService class inherits from the IRestWebService interface so that it can access the instance methods, as well as any getters and setters.

	Then, we created a client variable that will be used to create an HttpClient manager object that we can use to perform REST HTTP requests.

	Next, we modified the RestWebService class constructor to set up and initialize our client object to a new instance of the HttpClient class and set the BaseAddress property to a new Uri object that will point to our Microsoft Azure endpoint Url of TrackMyWalks.

	Then, we set the MaxResponseContentBufferSize property on the client object, which is responsible for getting or setting the maximum number of bytes to buffer when reading the response content.

	Next, we set the DefaultRequestHeaders property on the client object, which is responsible for getting the headers. This property should be sent with each request that is sent. We used the Add method and specify the key–value pair of ZUMO-API-VERSION and 2.0.0, which is essentially a special header that is used by the HTTP client when communicating with Microsoft Azure databases.

	Then, we declared a GetWalkEntries instance method that will be responsible for asynchronously retrieving all of the existing walk entries from our SQL Server database contained on our Microsoft Azure platform. We declared an Items List object variable, and we called the client.GetAsync method to send the GET request to the web service by specifying our tables/WalkEntries URI. Then we received the response from the web service.

	Next, we checked the IsSuccessStatusCode property of the response object to indicate whether the HTTP request succeeded or failed. If the REST service sends back an HTTP status code of 200 (OK) in the response, then we read the content of the response asynchronouslyusing the ReadAsStringAsync method and convert the content from JSON to a List of WalkDataModel objects.

	Then, we declared a SaveWalkEntry instance method that will be responsible for asynchronously saving the walk entry that is currently being added or edited to our SQL Server database contained on our Microsoft Azure platform. We then declared a responseMessage variable that will contain the response returned from the REST service, and convert the WalkDataModel item object to a JSON payload that will be embedded within the body of the HTTP content that will be sent to the web service.

	Next, we checked to see whether we are adding, and then called either the client.PostAsync or client.PutAsync method to send the POST or PUT request to the web service by specifying our tables/WalkEntries URI, and then received the response from the web service. We checked the status code of the IsSuccessStatusCode property of the response object to see whether the HTTP request succeeded or failed.

	Finally, we declared a DeleteWalkEntry instance method that will essentially permanently delete a specific walk entry from the SQL Server database using the id within the WalkEntries table. We called the client.DeleteAsync method to send the DELETE request to the web service by specifying our tables/WalkEntries URI, passing in the id as the parameter of the item to delete, and then receiving the response from the web service. We checked the status code of the IsSuccessStatusCode property of the response object to indicate whether the HTTP request succeeded or failed.

The HTTP class exposes several different types of HTTP methods that are used by the HttpMethod class. These are explained in the following table, which also contains a brief description of what each HttpMethod is used for:

	
HTTP Method

	
Description

	
GET

	
GET tells the HttpMethod class protocol that we are ready to request message content over HTTP to retrieve information from our REST API and then return this information, based on the representation format specified within the REST API.

	
POST

	
POST tells the HttpMethod class protocol that we want to create a new entry within our table, as specified by the REST API.

	
PUT

	
PUT tells the HttpMethod class protocol that we want to update an existing entry within our table, as specified by the REST API.

	
DELETE

	
DELETE tells the HttpMethod class protocol that we want to delete an existing entry within our table, as specified by the REST API.

For more information on the HttpClient class, refer to the Microsoft developer documentation at https://msdn.microsoft.com/en-us/library/system.net.http.httpclient(v=vs.118).aspx. If you are interested in learning more about client and server versioning in mobile apps and mobile services, refer to the Microsoft Azure documentation at https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-client-and-server-versioning.

 Updating the BaseViewModel class to include our RestWebService

Now we have created both our RestWebService interface and class, which will allow us to communicate with the Microsoft Azure platform, as well as our SQL Server database to perform CRUD operations, that will enable us to create, retrieve, update, and delete walk entries.

Our next step is to update the underlying C# code within our BaseViewModel class. Since our BaseViewModel class is used by each of our instances of ViewModel, it makes sense to add these additional properties and instance methods within the BaseViewModel class.

Let's start by updating the BaseViewModel class for our TrackMyWalks app by going through the following steps:

	Locate and open the BaseViewModel.cs file, which is located within the ViewModels folder, and ensure that it is displayed within the code editor. Enter the following highlighted code sections:

 //
 // BaseViewModel.cs
 // BaseView Model Class that each of our ViewModels will inherit from
 //
 // Created by Steven F. Daniel on 5/06/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.ComponentModel;
 using System.Runtime.CompilerServices;
 using System.Threading.Tasks;
 using TrackMyWalks.Services;

 namespace TrackMyWalks.ViewModels
 {
 public abstract class BaseViewModel : INotifyPropertyChanged
 {
 public INavigationService Navigation { get; set; }
 Public IRestWebService AzureDatabase { get; set; }

 public const string PageTitlePropertyName = "PageTitle";

 string pageTitle;
 public string PageTitle
 {
 get => pageTitle;
 set { pageTitle = value; OnPropertyChanged(); }
 }

 protected BaseViewModel(INavigationService navService)
 {
 Navigation = navService;
 AzureDatabase = new RestWebService();
 }

 public abstract Task Init();
 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void OnPropertyChanged([CallerMemberName] string propertyName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }

 bool isProcessBusy;
 public bool IsProcessBusy
 {
 get => isProcessBusy;
 set { isProcessBusy = value; OnPropertyChanged(); }
 }
 }

 public abstract class BaseViewModel<TParam> : BaseViewModel
 {
 protected BaseViewModel(INavigationService navService) : base(navService)
 {
 }
 }
 }

Let's take a look at what we covered in the preceding code snippet:

	First, we created an AzureDatabase property that points to our IRestWebService class, and we defined the getter and setter properties.

	Lastly, we modified the BaseViewModel class constructor to initialize our AzureDatabase property to a new instance of our RestWebService class.

 Updating the WalksMainPage code-behind using C#

Now, we have updated our BaseViewModel class to include a property that references our RestWebService class. Our next step is to begin updating the underlying C# code within our WalksMainPage code-behind file so that it can communicate with our RestWebService class and the associated ViewModel to populate our ListView with information from our WalkDataModel, which we will populate from our SQL Server database within the Microsoft Azure platform.

Let's take a look at how we can achieve this by going through the following steps:

	Locate and open the WalksMainPage.xaml.cs file, which is located within the Views folder, and ensure that it is displayed within the code editor. Enter the following highlighted code sections:

 //
 // WalksMainPage.xaml.cs
 // Displays Walk Information within a ListView control from an array
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using TrackMyWalks.Models;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class WalksMainPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalksMainPageViewModel _viewModel =>
 BindingContext as WalksMainPageViewModel;

 public WalksMainPage()
 {
 InitializeComponent();
 ...
 ...
 }
 ...
 ...
 // Instance method to remove the trail item from our collection
 public async void OnDeleteItem(object sender, EventArgs e)
 {
 // Get the selected item to be deleted from our ListView
 var selectedItem = (WalkDataModel)((MenuItem)sender).CommandParameter;

 // Prompt the user with a confirmation dialog to confirm
 if (await DisplayAlert("Delete Walk Entry Item",
 "Are you sure you want to delete this Walk Entry Item?",
 "OK", "Cancel"))
 {
 // Remove Walk Item from our WalkListModel collection
 // and SQL Server database
 _viewModel.WalksListModel.Remove(selectedItem);

 await _viewModel.AzureDatabase.DeleteWalkEntry(selectedItem.Id);
 await DisplayAlert("Delete Walk Entry Item",
 selectedItem.Title +
 " has been deleted from the database.", "OK");
 }
 else
 return;
 }

 // Method to initialise our View Model when the ContentPage appears
 protected override async void OnAppearing()
 {
 base.OnAppearing();

 if (_viewModel != null)
 {
 // Call the Init method to initialise the ViewModel
 await _viewModel.Init();
 }
 ...
 ...
 }
 }
 }

Let's take a look at what we covered in the preceding code snippet:

	We modified the OnDeleteItem instance method that will be called whenever the Delete context menu item is tapped within the ListView. We then got the selected item that was to be deleted using the CommandParameter of the sender object from the MenuItem class and displayed a confirmation dialog that will prompt the user to confirm the deletion.

	Next, assuming that the user clicked the OK button, we proceeded to delete the selectedItem from our SQL Server database, by calling the DeleteWalkEntry method on our AzureDatabase property using the Id of the selectedItem.

	Finally, we removed the selected walk item from our WalkListModel object collection using the Remove method and passing in the selectedItem object. Alternatively, we just return from the OnDeleteItem instance method.

 Updating the WalksMainPageViewModel using C#

Now, we have updated our WalksMainPage code-behind file to handle deletions from the SQL Server database. Our next step is to start implementing the necessary code within the WalksMainPageViewModel class, which will be used by our WalksMainPage.

The WalksMainPageViewModel ViewModel class will be used to populate our data model from our SQL Server database by calling the GetWalkEntries on our AzureDatabase property and displaying the information within our ListView by setting the BindingContext within the ContentPage.

Let's take a look at how we can achieve this by going through the following steps:

	Locate and open the WalksMainPageViewModel.cs file, which is located within the ViewModels folder, and ensure that it is displayed within the code editor. Enter the following highlighted code sections:

 //
 // WalksMainPageViewModel.cs
 // The ViewModel for our WalksMainPage ContentPage
 //
 // Created by Steven F. Daniel on 5/06/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.Collections.ObjectModel;
 using System.Threading.Tasks;
 using TrackMyWalks.Models;
 using TrackMyWalks.Services;

 namespace TrackMyWalks.ViewModels
 {
 public class WalksMainPageViewModel : BaseViewModel
 {
 // Create our WalksListModel Observable Collection
 public ObservableCollection<WalkDataModel> WalksListModel;

 public WalksMainPageViewModel(INavigationService navService) :
 base(navService)
 {
 }

 // Instance method to add and retrieve our Walk Trail items
 public async Task GetWalkTrailItems()
 {
 // Check our IsProcessBusy property to see if we are
 // already processing
 if (IsProcessBusy)
 return;

 // If we aren't processing, we need to set our IsProcessBusy
 // property to true
 IsProcessBusy = true;

 // Populate our WalkListModel List Collection with items from our
 // Microsoft Azure Web Service
 WalksListModel = new ObservableCollection<WalkDataModel> await
 AzureDatabase.GetWalkEntries());

 // Set our IsProcessBusy property value back to false when finished
 IsProcessBusy = false;
 }

 // Instance method to initialise the WalksMainPageViewModel
 public override async Task Init()
 {
 await Task.Factory.StartNew(async () =>
 {
 // Call our GetWalkTrailItems method to populate our collection
 await GetWalkTrailItems();
 });
 }
 }
 }

Let's take a look at what we covered in the preceding code snippet:

	We started by modifying our GetWalkTrailItems instance method to include the async keyword so that our method can handle asynchronous calls.

	Next, we created a WalksListModel ObservableCollection collection object that will raise an event whenever an object is added to or removed from our WalksListModel collection.

	Finally, we used the await keyword and called the GetWalkEntries instance method on our AzureDatabase property that we defined within our BaseViewModel to populate our WalksListModel collection.

 Updating the WalkEntryPage user interface using XAML

In this section, we will take a look at how to update the user interface for our WalkEntryPage so that it includes an ActivityIndicator as well as a Label control element within our XAML, so that we can access these controls within our code-behind file, and provide information feedback to the user whenever walk entry information is being saved to our SQL Server database.

Let's start by updating the user interface for our WalkEntryPage by going through the following steps:

	Locate and open the WalkEntryPage.xaml file, which is located within the Views folder, and ensure that it is displayed within the code editor. Enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:valueConverters="clr-namespace:TrackMyWalks.ValueConverters"
 x:Class="TrackMyWalks.Views.WalkEntryPage">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Save" Clicked="SaveWalkItem_Clicked" />
 </ContentPage.ToolbarItems>
 <ContentPage.Resources>
 ...
 ...
 </ContentPage.Resources>
 <ContentPage.Content>
 <StackLayout>
 <ActivityIndicator IsRunning="true" x:Name="progressIndicator"
 HorizontalOptions="CenterAndExpand"
 VerticalOptions="CenterAndExpand"
 IsVisible="{Binding IsProcessBusy}" />
 <Label Text="Saving walk information..." FontAttributes="Bold"
 TextColor="MediumVioletRed" HorizontalTextAlignment="Center"
 IsVisible="{Binding IsProcessBusy}" x:Name="SavingWalkInfo">
 <Label.FontSize>
 <OnPlatform x:TypeArguments="x:Double">
 <On Platform="Android, WinPhone" Value="12" />
 <On Platform="iOS" Value="14" />
 </OnPlatform>
 </Label.FontSize>
 </Label>
 <TableView Intent="Form" x:Name="WalkDetails">
 <TableView.Root>
 ...
 ...
 </TableView.Root>
 </TableView>
 </StackLayout>
 </ContentPage.Content>
 </ContentPage>

	Next, locate and open the WalkEntryPage.xaml.cs file, which is located in the Views folder, and ensure that it is displayed within the code editor. Enter the following highlighted code sections:

 //
 // WalkEntryPage.xaml.cs
 // Data Entry screen that allows new walk information to be added
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class WalkEntryPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalkEntryPageViewModel _viewModel =>
 BindingContext as WalkEntryPageViewModel;

 public WalkEntryPage()
 {
 InitializeComponent();

 // Update the Title and Initialise our BindingContext
 // for the Page
 Title = "New Walk Entry Page";
 BindingContext = new WalkEntryPageViewModel(DependencyService.
 Get<INavigationService>());
 SetBinding(TitleProperty, new Binding(BaseViewModel.PageTitlePropertyName));
 }

 // Instance method that saves the new walk entry
 public async void SaveWalkItem_Clicked(object sender, EventArgs e)
 {
 // Prompt the user with a confirmation dialog to confirm
 if (await DisplayAlert("Save Walk Entry Item", "Proceed and save changes?",
 "OK", "Cancel"))
 {
 // Attempt to save and validate our Walk Entry Item
 if (!await _viewModel.ValidateFormDetailsAndSave())
 // Error Saving - Must have Title, Description and Image URL
 await DisplayAlert("Validation Error",
 "Title, Description, and Image URL are required.", "OK");
 else
 // Navigate back to the Track My Walks Listing page
 await _viewModel.Navigation.RemoveViewFromStack();
 }
 else
 {
 // Navigate back to the Track My Walks Listing page
 await _viewModel.Navigation.RemoveViewFromStack();
 }
 }

 // Method to initialise our View Model when the ContentPage appears
 protected override async void OnAppearing()
 {
 base.OnAppearing();
 ...
 ...
 }
 }
 }

Let's take a look at what we defined within our XAML and code snippet:

	First, we started by adding the ActivityIndicator within a StackLayout attribute, and provided values for the name property x:Name="progressIndicator", as well as specifying an IsRunning property that will be used to determine the running status.

	Next, we specified the IsVisible property that will be bound to our IsProcessBusy property that we declared within our BaseViewModel class, which we will set accordingly within our ViewModel.

	Then, we added the x:Name="SavingWalkInfo" property to our Label property for our ActivityIndicator that will be used to display informative feedback information to the user whenever they click on the Save Toolbar button in order to save a walk item to the SQL Server database.

	Next, we defined a Label.FontSize attribute and set the FontSize based on the platform that our app is running on using the OnPlatform attribute and specifying the x:TypeArguments of Double.

	Then, we updated the SaveWalkItem_Clicked instance method to update our ValidateFormDetailsAndSave method declared within our WalkEntryPageViewModel, so that it included the await keyword, since our instance method calls our SaveWalkEntry instance method on our AzureDatabase property within the WalkEntryPageViewModel.

	Finally, we called the RemoveViewFromStack instance method on the _viewModel.Navigation property to remove the WalkEntryPage from the navigation stack.

 Updating the WalkEntryPageViewModel using C#

Now that we have updated our WalkEntryPage user interface to include our ActivityIndicator, as well as made some changes to the code-behind file for the SaveWalkItem_Click method, we can now proceed to update the WalksEntryPageViewModel class so it can use our AzureDatabase property to save walk entries to our SQL Server database.

Let's take a look at how we can achieve this by going through the following steps:

	Locate and open the WalkEntryPageViewModel.cs file, which is located in the ViewModels folder, and ensure that it is displayed within the code editor. Enter the following highlighted code sections:

 //
 // WalkEntryPageViewModel.cs
 // The ViewModel for our WalkEntryPage ContentPage
 //
 // Created by Steven F. Daniel on 5/06/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Threading.Tasks;
 using TrackMyWalks.Models;
 using TrackMyWalks.Services;

 namespace TrackMyWalks.ViewModels
 {
 public class WalkEntryPageViewModel : BaseViewModel
 {
 // Handle Adding/Editing of Walk Entry Items
 bool isAdding;

 public WalkEntryPageViewModel(INavigationService navService) :
 base(navService)
 {
 // Update the title if we are creating a new Walk Entry
 if (App.SelectedItem == null)
 {
 PageTitle = "Adding Trail Details";
 App.SelectedItem = new WalkDataModel();

 // We are adding a new Walk Entry to our Azure Database
 isAdding = true;

 // Set the default values when creating a new Trail
 Title = "New Trail Entry";
 Difficulty = "Easy";
 Distance = 1.0;
 }
 else
 {
 // Otherwise, we must be editing an existing entry
 PageTitle = "Editing Trail Details";
 isAdding = false;
 }
 }

 // Checks to see if we have provided a Title and Description
 public async Task<bool> ValidateFormDetailsAndSave()
 {
 if (App.SelectedItem != null &&
 !string.IsNullOrEmpty(App.SelectedItem.Title) &&
 !string.IsNullOrEmpty(App.SelectedItem.Description) &&
 !string.IsNullOrEmpty(App.SelectedItem.ImageUrl))
 {
 // Check our IsProcessBusy property to see if we are
 // already processing
 if (IsProcessBusy)
 return false;

 // If we aren't processing, we need to set our IsProcessBusy
 // property to true
 IsProcessBusy = true;

 // Save our Walk Entry details to our Microsoft Azure Database
 await AzureDatabase.SaveWalkEntry(App.SelectedItem, isAdding);
 IsProcessBusy = false;
 }
 else
 {
 // Initialise our IsProcessBusy property to false
 IsProcessBusy = false;
 return false;
 }
 // Initialise our IsProcessBusy property to false
 IsProcessBusy = false;
 return true;
 }
 ...
 ...

 // Instance method to initialise the WalkEntryPageViewModel
 public override async Task Init()
 {
 await Task.Factory.StartNew(async () =>
 {
 // Initialise our IsProcessBusy property to false
 IsProcessBusy = false;

 // Call our GetMyLocation method to obtain our
 // GPS Coordinates
 await GetMyLocation();
 });
 }
 }
 }

Let's take a look at what we covered in the preceding code snippet:

	We started by creating an isAdding that is responsible for determining whether we are adding or editing a new or existing walk item. Then we modified the WalkEntryPageViewModel constructor to initialize our isAdding property.

	Next, we updated the ValidateFormDetailsAndSave instance method and checked to see whether we had a value for our App.SelectedItem. We also checked whether the user had provided values for our Title, Description, and ImageUrl properties, prior to saving the details.

	Then, we checked our IsProcessBusy property to see whether we are currently processing, and initialized our IsProcessBusy property to true, prior to calling the SaveWalkEntry instance method on our AzureDatabase property to save the walk entry to the SQL Server database.

	Next, we initialized the IsProcessBusy property to false to stop hiding the SavingWalkInfo Label, located on our WalkEntryPage XAML, and returned true to the calling method that called our ValidateFormDetailsAndSave instance method.

	Finally, within the Init method, we initialized our IsProcessBusy property to false when the WalkEntryPageViewModel was initialized.

Now that you have finished making the necessary changes to the WalkDataModel model, as well as creating the RestWebService interface and class, and have updated all of the required XAML pages, including making the necessary changes to the instances of ViewModel to take advantage of our AzureDatabase property and the RestWebService class, our next step is to compile, build, and run our application within the iOS simulator.

 Launching the TrackMyWalks app using the iOS simulator

In this section, we will compile, build, and run the TrackMyWalks application to see how our application looks, since we have made additional changes to our WalkEntryPage, and have implemented RESTful API calls to our SQL Server database, which is located on the Microsoft Azure platform.

Let's see how we can achieve this by going through the following steps:

	Ensure that you have chosen the TrackMyWalks.iOS platform from the drop-down menu.

	Next, ensure that you have chosen the Debug option from the drop-down menu.

	Then, choose your preferred device from the list of available iOS simulators.

	Next, select the Run | Start Debugging menu option, as shown in the following screenshot:

Launching the TrackMyWalks app within the iOS Simulator

	Alternatively, you can also build and run the TrackMyWalks application by pressing Command + Return on the keyboard.

When the compilation is complete, the iOS simulator will appear automatically and the TrackMyWalks application will be displayed, as shown in the following screenshot:

Adding and Saving of new Trail Details within the Track My Walks application

The preceding screenshot displays our TrackMyWalks application with an empty Track My Walks Listing, since our TrackMyWalks SQL Server database doesn't contain any walk entries at the moment. Clicking on the Add button will display the Adding Trail Details, where you can begin entering information relating to the trail. Clicking on the Save button will display a dialog asking the user whether they would like to proceed and save the changes made.

Upon clicking the OK button, it will display an ActivitySpinner control, along with the associated Saving Walk Information… text, which is displayed while the trail is written to our SQL Server database, after which you will be taken back to the Track My Walks Listing, where your walk information will be displayed as it is. Alternatively, clicking on the Cancel button will not save the walk information to the database, and will take you back to the Track My Walks Listing page.

The following screenshot displays the Track My Walks Listing page, along with the trail walk information that you just saved to the SQL Server database. Sliding the walk entry from the left will display the ContextMenu, which will give you the option to either Edit or Delete the walk entry information from the database:

Deleting an existing Walk Entry Item from the Track My Walks Listing Screen

Clicking on the Delete button will display a dialog asking the user whether they would like to proceed with the deletion of the walk entry, and if the user clicks the OK button, then the walk entry will be deleted from the database and a dialog will be displayed letting the user know that this has happened. Alternatively, clicking on the Cancel button will dismiss the dialog.

 Summary

In this chapter, you learned about the Microsoft Azure App services platform and how you can use this platform to create your cloud-based databases using RESTful web service APIs to handle all communication between the TrackMyWalks mobile application. You then set up and configured a Microsoft Azure App service to create a mobile app service, data connection, SQL Server database, and a WalkEntries table, and learned how to incorporate the Newtonsoft.Json NuGet package, as well as modify the WalkDataModel data model.

Next, you created a RestWebservice interface and class—which included a number of class instance methods that will be used to communicate with our database—so that you can perform CRUD operations to create, update, retrieve, and delete walk entries. You then made changes to the BaseViewModel class so that it included an AzureDatabase property in our RestWebService class, and then you made several changes to the underlying code-behind files to communicate with our SQL Server database in order to perform operations for the saving and deletion of walk entry items.

Lastly, you made changes to the user interface for the WalkEntryPage so that it included an ActivityIndicator, which will display information to the user whenever a walk item is saved to the database. You also made some underlying changes to the WalkEntryPageViewModel to initialize properties for communicating with the ActivityIndicator.

In the next chapter, you'll learn how to apply for a Twitter developer account so that you can incorporate social networking features by creating and registering our TrackMyWalks app within the Twitter Developer Portal. You'll incorporate the Xamarin.Auth NuGet package within our solution and create a TwitterService interface and class so that we can communicate with the Twitter APIs using RESTful web service calls. You will then create a TwitterSignInPage, as well as the associated TwitterSignInPageViewModel and TwitterSignInPageRenderer classes, so that users can sign into your app using their Twitter credentials. Finally, you'll update the WalksMainPage code-behind to call our TwitterSignInPage to check to see whether the user has signed in. You will also make changes to our WalkDistancePage XAML and code-behind so that we can utilize our TwitterService class to display profile information, as well as to post information about the trail to the user's Twitter feed.

 Making Our App Social Using the Twitter API

In the previous chapter, you learned about the Microsoft Azure App Services Platform, and how you can leverage this platform to create your cloud-based databases, using RESTful Webservice APIs that will be used to handle all communication between the TrackMyWalks mobile app. You learned how to set up and configure a Microsoft Azure App Service to create a Mobile AppService, Data connection, SQL Server database, and the WalkEntries table, prior to incorporating the Newtonsoft.Json NuGet package and modifying the WalkDataModel data model.

Next, you created a RestWebservice Interface and Class that included a number of class instance methods used to communicate with our TrackMyWalks SQL Server database, so that you could perform CRUD operations to Create, Update, Retrieve, and Delete walk entries, and modified the BaseViewModel class to include an AzureDatabase property with our RestWebService class. You also made some changes to the underlying code-behind files that will communicate with our SQL Server database. Finally, you updated the user interface for the WalkEntryPage to include an ActivityIndicator, which will display information to the user whenever a walk item is being saved to the database, as well as made changes to the WalkEntryPageViewModel to initialize properties for communicating with the ActivityIndicator.

In this chapter, you'll learn how to apply for a Twitter developer account so that you can incorporate social networking features by creating and registering our TrackMyWalks app within the Twitter Developer Portal. You'll incorporate the Xamarin.Auth NuGet package within our solution and create a TwitterService Interface and Class that we can use to communicate with the Twitter APIs using RESTful webservice calls. You will then create a TwitterSignInPage as well as the associated TwitterSignInPageViewModel and TwitterSignInPageRenderer classes so that users can sign into your app using their Twitter credentials.

Finally, you'll update the WalksMainPage code-behind to call our TwitterSignInPage to check to see whether the user has signed in, as well as make changes to our WalkDistancePage XAML and code-behind so that we can utilize our TwitterService class to display profile information, as well as post information about the trail to the user's Twitter feed.

This chapter will cover the following topics:

	Creating and registering the TrackMyWalks app with the Twitter Developer Portal

	Incorporating the Xamarin.Auth NuGet package into our TrackMyWalks solution

	Creating and implementing the TwitterAuthDetails class using C#

	Creating and implementing a TwitterService Interface and Class using C#

	Creating and implementing the user interface for the TwitterSignInPage

	Creating and implementing the TwitterSignInPageViewModel using C#

	Creating and implementing the TwitterSignInPageRenderer (iOS)

	Updating the WalksMainPage code-behind to call our TwitterSignInPage

	Updating the WalkDistancePage user interface using XAML and code-behind using C#

	Updating the App.xaml to add the TwitterSignInPage to our MVVM navigation

	Launching the TrackMyWalks app using the iOS Simulator

 Creating and registering the TrackMyWalks app with the Twitter Developer Portal

In this section, we will begin by applying for a Twitter Developer account, and then move on to creating and registering the TrackMyWalks application by creating an AppID within the Twitter Developer Portal that we can associate our app with. Doing this, we can then communicate with Twitter using the Twitter APIs.

Let's take a look at how we can achieve this by performing the following steps:

	First, open your browser, type in https://developer.twitter.com/en/apply-for-access, and click on the Apply for a developer account button:

Applying for a Twitter Developer Account

	Next, you will be prompted to log into Twitter using your Twitter credentials. Once you have done that, you will be presented with the Account / Getting Started screen.

	Then, click on the Create an app button that is located under the Getting Started heading, as shown in the following screenshot:

Creating/Registering a new app within the Twitter Portal

	Next, click on the Create an app button located under the Create your first app heading within the Apps section, as shown in the following screenshot:

Creating your first app within the Twitter Portal

	Then, enter Track My Walks as the name for our app in the App name (required) field, which will be displayed within the Twitter sign in page for our app.

	Next, enter Track My Walks app to describe our app in the Application description (required) field. Also, provide a website URL to use for our app for the Website URL (required) field, as shown in the following screenshot:

Specifying application details for your app

	Then, enter https://mobile.twitter.com/home in the Callback URLs field, which will be used to redirect the user to the page upon successfully signing into Twitter and your app.

	Next, enter the name for your organization in the Organization name field (this field is completely optional). This is displayed within the Twitter sign-in page for your app, as shown in the following screenshot:

Specifying application details for your app

	Then, you will need to provide a description to describe your application for the Tell us how this app will be used (required) field, as shown in the following screenshot:

The Tell us how this app will be used (required) field is a mandatory requirement, and is only visible to Twitter employees. This is to help them better understand how your app will be used, as well as what your app will enable your customers to achieve.

Specifying application details for your app

	Next, click on the Create button to display the Review our Developer Terms dialog, which you will need to adhere to, prior to your app being created, as shown in the following screenshot:

Reviewing the Developer Agreement and Policy Terms

	Finally, click on the Create button to proceed with the creation of your app. You will then be presented with the App Details section with details about the app you just created within the Twitter Developer Portal, as shown in the following screenshot:

Your newly created App Details within the Twitter Developer Portal

Now that we have successfully applied for a Twitter developer account, as well as successfully created the Track My Walks App details within the Twitter Developer Portal, our next step is to take a look at what each of the relevant tabs contains and is used for, as shown in the following screenshot:

Track My Walks Application Keys and tokens section

The Keys and tokens section contains important information that will allow our TrackMyWalks app to successfully communicate with our Track My Walks App ID, using the Consumer API keys for both our API Key and API secret Key. We will need to provide these for our RESTful Webservice when calling the Twitter API to allow our app to sign in, as can be seen in the preceding screenshot.

You have the option of regenerating new Consumer API Keys, if you don't like the ones that were generated for you initially, by clicking on the Regenerate button.

Track My Walks Application Access Permissions section

The Permissions section, contains important information pertaining to how the TrackMyWalks app will function. Within this screen, you can set different levels of access permissions that will affect how your application will function and communicate with Twitter through the use of the Twitter APIs.

Any changes that you make to the Permissions section for your app on this screen will be reflected in the access tokens that are generated once the permissions are updated.

Now that you have successfully created the TrackMyWalks application ID within the Twitter Developer Portal, our next step is to add the Xamarin.Auth NuGet package to our TrackMyWalks solution.

 Adding the Xamarin.Auth NuGet Package to our solution

In this section, we will begin by adding the Xamarin.Auth NuGet package to our TrackMyWalks shared-core solution. The Xamarin.Auth package is essentially a cross-platform API that is used for authenticating users by using API calls.

Let's start by adding the Xamarin.Auth NuGet package to our TrackMyWalks app by performing the following steps:

	Right-click on Dependencies | NuGet folder, located within the TrackMyWalks solution, and choose the Add Packages... menu option, as you did in Chapter 4, Creating the TrackMyWalks Native App.

	Next, within the Search field located within the Add Packages dialog, you need to enter xamarin.auth and select the Xamarin.Auth option within the list, as shown in the following screenshot:

Adding the Xamarin.Auth NuGet Package

	Then, make sure that you choose the latest version to install from the drop-down list for the Version field (this will be displayed by default).

	Finally, click on the Add Package button to add the Xamarin.Auth NuGet package to the TrackMyWalks shared core solution.

Now that you have added the Xamarin.Auth NuGet package, we can begin utilizing this control by creating a TwitterAuthDetails class that will be used by our ViewModels and ContentPages (Views), which we will cover in the next section.

 Creating and implementing the TwitterAuthDetails class

In this section, we will create the TwitterAuthDetails class, which will essentially contain various properties and instance methods that will be used by our TwitterWebService class.

Let's start by creating the TwitterAuthDetails class for our TrackMyWalks app by performing the following steps:

	Ensure that the TrackMyWalks solution is open within the Visual Studio for Mac IDE.

	Next, right-click on the Services folder, and choose Add | New File... from the pop-up menu, as you did in the section entitled Creating and implementing the LocationService class within Chapter 7, Adding Location-based Features Within Your App.

	Then, choose the Empty Class option under the General section and enter TwitterAuthDetails for the name of the class to be created, as shown in the following screenshot:

Creating the TwitterAuthDetails Class

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our TwitterAuthDetails class, we can proceed with implementing the required code for our class.

	Then, locate and open the TwitterAuthDetails.cs file, which is located within the Services folder, and ensure that it is displayed within the code editor. Then, enter the following code snippet:

 //
 // TwitterAuthDetails.cs
 // TwitterAuthDetails class that will store Twitter related information
 //
 // Created by Steven F. Daniel on 10/08/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using Newtonsoft.Json.Linq;
 using Xamarin.Auth;

 namespace TrackMyWalks.Services
 {
 public class TwitterAuthDetails
 {
 // Property to store the currently logged in user
 public static bool isLoggedIn => !string.IsNullOrWhiteSpace(AuthToken);

 // Declare and define your Twitter Consumer Key
 public static string ConsumerKey => "YOUR_CONSUMER_API_KEY";
 public static string ConsumerSecret => "YOUR_CONSUMER_API_SECRET";

 // Declare a property to get our Twitter User Details
 static JObject _userDetails;
 public static JObject UserDetails => _userDetails;

 // Instance method to store our Twitter User Details
 public static void StoreUserDetails(JObject userDetails)
 {
 _userDetails = userDetails;
 }

 // Property to get our Twitter Authentication Token
 static string _authToken;
 public static string AuthToken => _authToken;

 // Instance method to store our Twitter Auth Token
 public static void StoreAuthToken(string authToken)
 {
 _authToken = authToken;
 }

 // Property to get our Twitter Authentication Token Secret
 static string _authTokenSecret;
 public static string AuthTokenSecret => _authTokenSecret;

 // Instance method to store our Twitter Auth Token Secret
 public static void StoreTokenSecret(string authTokenSecret)
 {
 _authTokenSecret = authTokenSecret;
 }

 // Property to get our Twitter Authentication Account Details
 static Account _authAccount;
 public static Account AuthAccount => _authAccount;

 // Instance method to store our Twitter Authentication Account Details
 public static void StoreAccountDetails(Account authAccount)
 {
 _authAccount = authAccount;
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we included a reference to the Newtonsoft.Json.Linq and Xamarin.Auth namespaces so that we have access to the classes that are defined within this namespace.

	Next, we defined an isLoggedIn property method, which will be used to determine whether the user has been signed into Twitter and our app by checking the AuthToken property.

	Then, we declare and define our Twitter Consumer Keys, which can be obtained from the Consumer API Keys section within the Keys and tokens tab within the App Details section in the Twitter Developer Portal.

	Finally, we declared various properties to get and store our Twitter user details and obtained our authentication tokens for the logged-in AuthToken and AuthTokenSecret token keys.

 Creating and implementing the TwitterWebService interface

In this section, we will create the ITwitterWebService class, which will essentially contain various instance methods that will be used by our TwitterWebService class. The advantage of creating an ITwitterWebService class is that it's much easier to add additional class instance methods that will be used by other classes that utilize this interface.

Let's start by creating the ITwitterWebService interface for our TrackMyWalks app by performing the following steps:

	Right-click on the Services folder, and choose Add | New File... from the pop-up menu, as you did in the section entitled Creating and implementing the LocationService interface within Chapter 7, Adding Location-based Features Within Your App.

	Then, choose the Empty Interface option under the General section and enter ITwitterWebService for the name of the interface to be created, as shown in the following screenshot:

Creating the ITwitterWebService Interface

	Next, click on the New button to allow the wizard to proceed and create the new file, as shown in the preceding screenshot. Now that we have created our ITwitterWebService interface, we can proceed with implementing the required code for our class.

	Then, locate and open the ITwitterWebService.cs file, which is located within the Services folder, and ensure that it is displayed within the code editor. Then, enter the following code snippet:

 //
 // ITwitterWebService.cs
 // TwitterWebService Interface used by our TwitterWebService Class
 //
 // Created by Steven F. Daniel on 10/08/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.Threading.Tasks;
 using Newtonsoft.Json.Linq;
 using Xamarin.Auth;

 namespace TrackMyWalks.Services
 {
 public interface ITwitterService
 {
 // Instance method to get the user's Twitter Profile Details
 Task<JObject> GetTwitterProfile(Account e);

 // Instance method to post a Tweet message to the users Twitter Feed
 Task<string> TweetMessage(string message, Account e);
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including references to the System.Threading.Tasks, Newtonsoft.Json.Linq, and Xamarin.Auth namespaces so that we can access the classes that are defined within these namespaces.

	Next, we declared a GetTwitterProfile instance method, which will be responsible for asynchronously retrieving the Twitter profile details for the logged-in user.

	Finally, we declared a TweetMessage instance method that will be responsible for asynchronously posting walk trail information to the logged-in Twitter user's feed.

 Creating and implementing the TwitterWebService class

In this section, we will create the TwitterWebService class that will inherit from our ITwitterWebService interface and implement the underlying instance methods that we declared within our interface class. They will help us to communicate with our app that we created within the Twitter Developer Portal.

Let's start by creating the TwitterWebService class for our TrackMyWalks app by performing the following steps:

	Firstly, right-click on the Services folder and choose Add | New File... from the pop-up menu.

	Next, create a new Empty Class called TwitterWebService within the Services folder, as you did in the section entitled Creating and implementing the TwitterAuthDetails class, located within this chapter.

	Then, ensure that the TwitterWebService.cs file, which is located within the Services folder, is displayed within the code editor, and enter the following code snippet:

 //
 // TwitterWebService.cs
 // TwitterWebService Class that will communicate with the Twitter API
 //
 // Created by Steven F. Daniel on 10/08/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Collections.Generic;
 using System.Net.Http;
 using System.Threading.Tasks;
 using Newtonsoft.Json.Linq;
 using Xamarin.Auth;

 namespace TrackMyWalks.Services
 {
 public class TwitterWebService : ITwitterWebService
 {
 // Declare our HttpClient Manager objects
 HttpClient client;

 // Declare our Twitter Web Service Class Constructor
 public TwitterWebService()
 {
 client = new HttpClient();
 client.BaseAddress = new Uri("https://api.twitter.com/1.1");
 client.MaxResponseContentBufferSize = 256000;
 }

 // Gets the users Twitter Profile Information using the supplied
 // Account information
 public async Task<JObject> GetTwitterProfile(Account account)
 {
 // Construct our RequestUrl using our BaseAddress and the Twitter API
 var RequestUrl = new Uri(String.Format($"{client.BaseAddress}/account/
 verify_credentials.json"));

 // Get our profile information using the RequestUrl and the account
 // information of the user
 var oRequest = new OAuth1Request("GET", RequestUrl, null, account);
 var response = await oRequest.GetResponseAsync();

 // Return the response object back to the caller
 return JObject.Parse(response?.GetResponseText());
 }

 // Sends a twitter message using the supplied Account information
 public async Task<string> TweetMessage(string message, Account account)
 {
 // Construct our RequestUrl using our BaseAddress and the Twitter API
 var RequestUrl = new Uri(String.Format($"{client.BaseAddress}/statuses/update.json"));

 // Add the Authentication headers that are required for the request
 var oAuthData = new Dictionary<string, string>();
 oAuthData.Add("status", message);
 oAuthData.Add("trim_user", "1");

 // Post the Tweet, using the RequestUrl and oAuthData header information
 var oRequest = new OAuth1Request("POST", RequestUrl, oAuthData, account);
 var response = await oRequest.GetResponseAsync();

 // Return the response string back to the caller
 return response?.GetResponseText();
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we started by including references to the System. namespaces, Newtonsoft.Json.Linq and Xamarin.Auth, so that we can access the classes that are defined within these namespaces.

	Next, we needed to ensure that our TwitterWebService class inherits from the ITwitterWebService interface so that it can access the instance methods as well as any getters and setters.

	Next, we declared a client variable, which will be used to create an HttpClient manager object. We can use this to perform HTTP requests. We also modified the TwitterWebService class constructor to set up and initialize our client object to a new instance of the HttpClient class and set the BaseAddress property to a new Uri object that will point to the Twitter endpoint.

	Then, we set the MaxResponseContentBufferSize property on the client object, which is responsible for getting or setting the maximum number of bytes to buffer when reading the response content.

	Next, we declared a GetTwitterProfile instance method that will be responsible for asynchronously retrieving the user's Twitter profile information using their Account details. We then created a RequestUrl variable that constructs our Twitter API endpoint using the BaseAddress of the client object and declared a oRequest object variable and called the GET method on our OAuth1Request class.

	Next, we sent the RequestUrl to our oRequest.GetResponseAsync method to receive the response from the web service, and then parsed the Result.GetResponseText using the JObject.Parse method and returned the value.

	Then, we declared a TweetMessage instance method that will be responsible for asynchronously retrieving the user's Twitter profile information using their Account details and creating a RequestUrl variable that constructs our Twitter API endpoint using the BaseAddress of the client object. We then declared a oRequest object variable and called the POST method on our OAuth1Request class.

	Finally, we sent the RequestUrl to our oRequest.GetResponseAsync method to receive the response from the web service, and parsed the response?.GetResponseText, which will return the string value that was posted to Twitter.

 Creating and implementing the TwitterSignInPageViewModel using C#

In this section, we'll take a look at how to create the TwitterSignInPageViewModel class so that it can communicate with our TwitterSignInPage, as well as any data bindings associated with the ContentPage that will be used by the ViewModel. We will create and implement the underlying C# code for our ViewModel, which will be used by our TwitterSignInPage code-behind file so that it can navigate within our NavigationStack.

Let's start by creating the TwitterSignInPageViewModel for our TrackMyWalks app by performing the following steps:

	Ensure that the TrackMyWalks solution is open within the Visual Studio for Mac IDE.

	Next, right-click on the ViewModels folder, and choose Add | New File... from the pop-up menu, as you did in the section entitled Creating the WalksMainPageViewModel using C# within Chapter 5, MVVM and Data Binding.

	Then, ensure that the TwitterSignInPageViewModel.cs file, which is located within the ViewModels folder, is displayed within the code editor, and enter the following code snippet:

 //
 // TwitterSignInPageViewModel.cs
 // The ViewModel for our TwitterSignInPage ContentPage
 //
 // Created by Steven F. Daniel on 10/08/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.Threading.Tasks;
 using TrackMyWalks.Services;

 namespace TrackMyWalks.ViewModels
 {
 public class TwitterSignInPageViewModel : BaseViewModel
 {
 public TwitterSignInPageViewModel(INavigationService navService) :
 base(navService)
 {
 }
 // Instance method to initialise the TwitterSignInPageViewModel
 public override async Task Init()
 {
 await Task.Factory.StartNew(() =>
 {
 });
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including references to the System.Threading.Tasks namespace so that we can access the classes that are defined within this namespace. We have also included a reference to the TrackMyWalks.Services namespace so that we can access our Navigation object, which will enable us to navigate within the NavigationStack.

	Next, we made sure that our TwitterSignInPageViewModel inherits from our BaseViewModel class and created the Init instance method that we defined within our BaseViewModel so that it can initialize our TwitterSignInPageViewModel.

 Creating and implementing the user interface for the TwitterSignInPage

In this section, we will update the underlying C# code within our TwitterSignInPage code-behind file so that it can communicate with our TwitterSignInPageViewModel. This will be used as a container to display our Twitter sign in dialog that will use our TwitterSignInPageRenderer PageRenderer, which we will create as we progress throughout this chapter.

Let's start by creating the TwitterSignInPage interface for our TrackMyWalks app by performing the following steps:

	Right-click on the Services folder and choose Add | New File... from the pop-up menu.

	Next, create a new Forms ContentPage XAML class called TwitterSignIn within the Views folder, as you did in the section entitled Creating the WalksMainPage interface using XAML, located within Chapter 4, Creating the TrackMyWalks Native App.

	Then, ensure that the TwitterSignInPage.xaml.cs file, which is located within the Views folder, is displayed within the code editor, and enter the following code snippet:

 //
 // TwitterSignInPage.xaml.cs
 // Displays the Twitter Sign In Page using the Twitter API
 //
 // Created by Steven F. Daniel on 10/08/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class TwitterSignInPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 TwitterSignInPageViewModel _viewModel =>
 BindingContext as TwitterSignInPageViewModel;

 public TwitterSignInPage()
 {
 InitializeComponent();

 // Update the Title and Initialise our BindingContext for the Page
 this.Title = "Track My Walks Twitter Sign In";
 this.BindingContext = new TwitterSignInPageViewModel(DependencyService.
 Get<INavigationService>());
 }

 // Method to initialise our View Model when the ContentPage appears
 protected override async void OnAppearing()
 {
 base.OnAppearing();

 // Check to see if we have logged in and remove our Twitter
 // Sign In Page
 if (_viewModel != null && TwitterAuthDetails.isLoggedIn)
 {
 // Pops our Twitter Sign In Page from our Navigation Stack
 await Navigation.PopAsync();
 }
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including references to the Xamarin.Forms namespace so that we can access the classes that are defined within this namespace. We have included a reference to the TrackMyWalks namespaces so that we can access our Navigation methods and properties defined within our BaseViewModel class.

	Next, we returned the BindingContext that will be used by our TwitterSignInPage ContentPage by returning the TwitterSignInPageViewModel. We also set the Title property of our ContentPage and set the BindingContext to a new instance of our TwitterSignInPageViewModel to use our DependencyService class, which will include our INavigationService interface.

	Then, we created the OnAppearing method, which will be used to initialize our ViewModel whenever the ContentPage appears on screen. We checked to see whether our _viewModel contains a value, and we checked the isLoggedIn property that we declared within our TwitterAuthDetails class to see whether the user had logged into Twitter using our TrackMyWalks app.

	Finally, if our isLoggedIn property contains a valid AuthToken, which we objected from Twitter, we proceed to remove our Twitter sign in page from our Navigation Stack.

 Creating and implementing the TwitterSignInPageRenderer (iOS)

In this section, we'll take a look at how to create the TwitterSignInPageRender class for the iOS section of our TrackMyWalks solution, which will essentially contain platform-specific methods relating to the iOS platform. These will communicate with our Twitter API in order to display the Twitter sign in dialog within our TwitterSignInPage XAML ContentPage.

Let's start by creating the TwitterSignInPageRenderer class for our TrackMyWalks app by performing the following steps:

	Ensure that the TrackMyWalks solution is open within the Visual Studio for Mac IDE.

	Next, within the TrackMyWalks.iOS project, right-click on the CustomRenderers folder, and choose Add | New File... from the pop-up menu.

	Then, create a new Empty Class called TwitterSignInPageRenderer within the CustomRenderers folder, as you did in the section entitled Creating and implementing the CustomMapRenderer (iOS) within Chapter 7, Adding Location-Based Features Within Your App.

	Next, ensure that the TwitterSignInPageRenderer.cs file, which is located as part of the TrackMyWalks.iOS group, is displayed within the code editor, and enter the following code snippet:

 //
 // TwitterSignInPageRenderer.cs
 // TrackMyWalks Twitter SignIn Page (iOS)
 //
 // Created by Steven F. Daniel on 10/08/2018.
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using Xamarin.Forms;
 using Xamarin.Forms.Platform.iOS;
 using Xamarin.Auth;
 using TrackMyWalks.iOS;
 using TrackMyWalks.Views;
 using TrackMyWalks.Services;

 [assembly: ExportRenderer(typeof(TwitterSignInPage), typeof(TwitterSignInPageRenderer))]
 namespace TrackMyWalks.iOS
 {
 public class TwitterSignInPageRenderer : PageRenderer
 {
 string oAuth_Token = String.Empty;
 string oAuth_Token_Secret = String.Empty;

 public override void ViewDidAppear(bool animated)
 {
 base.ViewDidAppear(animated);

 // Instance method that will display a Twitter Sign In Page
 var auth = new OAuth1Authenticator(
 consumerKey: TwitterAuthDetails.ConsumerKey,
 consumerSecret: TwitterAuthDetails.ConsumerSecret,
 requestTokenUrl: new Uri("https://api.twitter.com/oauth/request_token"),
 authorizeUrl: new Uri("https://api.twitter.com/oauth/authorize"),
 accessTokenUrl: new Uri("https://api.twitter.com/oauth/access_token"),
 callbackUrl: new Uri("https://mobile.twitter.com/home"));

 // Prevent displaying the Cancel button on the Twitter sign on page
 auth.AllowCancel = false;

 // Define our completion handler once the user has successfully signed in
 auth.Completed += (object sender, AuthenticatorCompletedEventArgs e) =>
 {
 if (e.IsAuthenticated)
 {
 e.Account.Properties.TryGetValue("oauth_token", out oAuth_Token);
 e.Account.Properties.TryGetValue("oauth_token_secret", out oAuth_Token_Secret);

 // Instantiate our class to Store our Twitter Authentication Token
 TwitterAuthDetails.StoreAuthToken(oAuth_Token);
 TwitterAuthDetails.StoreTokenSecret(oAuth_Token_Secret);
 TwitterAuthDetails.StoreAccountDetails(e.Account);
 }
 // Dismiss our Twitter Authentication UI Dialog
 DismissViewController(true, () =>
 {
 });
 };
 PresentViewController(auth.GetUI(), true, null);
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by including references to the System, Xamarin.Forms, and TrackMyWalks namespaces so that we can access the classes that are defined within these namespaces. You'll notice that we have also included a reference to the Xamarin.Auth namespace so that we can communicate with our Twitter platform by sending web service requests. We included a reference to the ExportRenderer assembly attribute to our class so that it can register the PageRenderer with Xamarin.Forms, and so that we can reference this within our TwitterSignInPage.

	Next, we needed to ensure that our TwitterSignInPageRenderer class inherits from the PageRenderer class so that we can access each of the platform-specific method implementations of the ViewRenderer class. We also initialized the values for our oAuth_Token and oAuth_Token_Secret variables. We then proceeded to create and implement the ViewDidAppear method that will be called when the ViewController appears on screen, and we declared an auth variable that calls the OAuth1Authenticator class, which is responsible for managing the user interface and handling communication with Twitter authentication services.

	Then, we passed in the API key values for our consumerKey and consumerSecret, which we can obtain for our app within the Twitter Developer Portal. We also provided values for authorizeUrl, accessTokenUrl, and callbackUrl, which will be called when we have successfully signed into Twitter. We set the AllowCancel property of our auth object to false to prevent our form from being dismissed by the user and started listening to the Completed event of the OAuth1Authenticator instance. Finally, we checked the IsAuthenticated property of the AuthenticatorCompletedEventArgs to determine whether the authentication succeeded.

	Next, we obtained values for oauth_token and oauth_token_secret and stored them in the StoreAuthToken and StoreTokenSecret methods, along with the Account property of our AuthenticatorCompletedEventArgs, and stored these within the StoreAccountDetails method.

	Finally, if we have determined that a successful login has happened, we make a call to the DismissViewController method to dismiss the currently presented Twitter UI. If we haven't determined that the user has signed in, we display the PresentViewController dialog, which is passing in the auth.GetUI method.

The Android version of the TwitterSignInPageRenderer is available in the companion source code for this book.

 Updating the WalksMainPage code-behind using C#

Now that we have created the TwitterSignInPageRenderer class that will be responsible for displaying the Twitter UI dialog, our next step is to begin updating the underlying C# code within our WalksMainPage code-behind file. This will give it the ability to display our TwitterSignInPage ViewModel if we haven't determined that the user has signed in.

Let's take a look at how we can achieve this by following these steps:

	Locate and open the WalksMainPage.xaml.cs file, which is located within the Views folder, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 //
 // WalksMainPage.xaml.cs
 // Displays Walk Information within a ListView control from an array
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using TrackMyWalks.Models;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class WalksMainPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalksMainPageViewModel _viewModel =>
 BindingContext as WalksMainPageViewModel;

 public WalksMainPage()
 {
 InitializeComponent();
 ...
 ...
 }
 ...
 ...
 // Method to initialise our View Model when the ContentPage appears
 protected override async void OnAppearing()
 {
 base.OnAppearing();

 // Perform a check to see if we have logged into Twitter already
 if (_viewModel != null)
 {
 // Call the Init method to initialise the ViewModel
 await _viewModel.Init();

 if (!TwitterAuthDetails.isLoggedIn)
 {
 // We need to Navigate and display our Twitter Sign In Page
 await _viewModel.Navigation.NavigateTo<TwitterSignInPageViewModel>();
 }
 }
 ...
 ...

In the preceding code snippet, we started by modifying the OnAppearing method that will check the isLoggedIn property within our TwitterAuthDetails class to determine whether the user has already signed into our app, and then navigated to our TwitterSignInPageViewModel using the Navigation property of our _viewModel and the NavigateTo instance method.

 Updating the WalkDistancePage user unterface using XAML

In this section, we will update the user interface for our WalkDistancePage in order to modify our ToolbarItem, since we will need to display additional items when retrieving Twitter profile information and posting Tweets to the users Twitter feed. Within our code-behind file, we will use the DisplayActionSheet method to display a list of choices that the user can choose from so that they can retrieve profile information, post tweets, and end the current trail in progress.

Let's start by updating the user interface for our WalkDistancePage by performing the following steps:

	Locate and open the WalkDistancePage.xaml file, which is located within the Views folder, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:TrackMyWalks.Views.MapOverlay;assembly=TrackMyWalks"
 x:Class="TrackMyWalks.Views.WalkDistancePage">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Options" Clicked="OptionsButton_Clicked"/>
 </ContentPage.ToolbarItems>
 <ContentPage.Content>
 ...
 ...
 </ContentPage.Content>
 </ContentPage>

	Next, locate and open the WalkDistancePage.xaml.cs file, which is located in the Views folder, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 //
 // WalkDistancePage.xaml.cs
 // Displays related trail information within a map using a pin placeholder
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using Plugin.Geolocator.Abstractions;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;
 using Xamarin.Forms.Maps;
 using System.Threading.Tasks;
 using TrackMyWalks.Views.MapOverlay;
 using System.Text;

 namespace TrackMyWalks.Views
 {
 public partial class WalkDistancePage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalkDistancePageViewModel _viewModel =>
 BindingContext as WalkDistancePageViewModel;

 // Create a variable that will store our original saved Position
 Task<Plugin.Geolocator.Abstractions.Position> origPosition;

 // Create a TwitterObject variable that will contain an instance to
 // our TwitterWebService class
 TwitterWebService TwitterObject;

 public WalkDistancePage()
 {
 InitializeComponent();

 // Create an instance to our TwitterWebService class
 TwitterObject = new TwitterWebService();
 ...
 ...
 }
 ...
 ...
 // Instance method that presents the user with additional options
 public async void OptionsButton_Clicked(object sender, EventArgs e)
 {
 // Display our Action Sheet with a list of choices for the user to choose
 var action = await DisplayActionSheet("What would you like to do?",
 "Cancel", null,
 "Show Twitter Profile",
 "Post Twitter Message",
 "End Current Trail");
 switch (action)
 {
 case "Show Twitter Profile":
 ShowTwitterProfile();
 break;
 case "Post Twitter Message":
 PostTwitterMessage();
 break;
 case "End Current Trail":
 EndTrailButton_Clicked(sender, e);
 break;
 }
 }
 // Instance method to get our Twitter Profile Details
 public async void ShowTwitterProfile()
 {
 // Call our Instance method to get the user's Twitter Profile Details
 var ProfileInfo = await TwitterObject.GetTwitterProfile(
 TwitterAuthDetails.AuthAccount);

 // Construct our message to display within an alert dialog
 var profileDetails = new StringBuilder();
 profileDetails.AppendFormat("\nId: {0}",
 ProfileInfo.GetValue("id"));
 profileDetails.AppendFormat("\nName: {0}",
 ProfileInfo.GetValue("name"));
 profileDetails.AppendFormat("\nScreen Name: {0}",
 ProfileInfo.GetValue("screen_name"));
 profileDetails.AppendFormat("\nLocation: {0}",
 ProfileInfo.GetValue("location"));
 profileDetails.AppendFormat("\nDescription: {0}",
 ProfileInfo.GetValue("description"));
 profileDetails.AppendFormat("\nFriends: {0}",
 ProfileInfo.GetValue("friends_count"));
 profileDetails.AppendFormat("\nFollowers: {0}",
 ProfileInfo.GetValue("followers_count"));
 profileDetails.AppendFormat("\nFavourites: {0}",
 ProfileInfo.GetValue("favourites_count"));
 profileDetails.AppendFormat("\nurl: {0}",
 ProfileInfo.GetValue("url"));

 // Display an alert dialog with the user's profile details
 await DisplayAlert("Twitter Profile Details",
 profileDetails.ToString(), "OK");
 }

 // Instance method to allow the user to post a message to their Twitter Feed
 public async void PostTwitterMessage()
 {
 // Construct our message to post to the users Twitter Feed
 var sbMessage = new StringBuilder();
 sbMessage.AppendLine("Track My Walks - Trail Details");
 sbMessage.AppendFormat("\nTitle: {0}", App.SelectedItem.Title);
 sbMessage.AppendFormat("\nDistance: {0}", App.SelectedItem.Distance);
 sbMessage.AppendFormat("\nDifficulty: {0}", App.SelectedItem.Difficulty);
 sbMessage.AppendFormat("\nImageURL: {0}", App.SelectedItem.ImageUrl);

 // Call our Instance method to Tweet the message to the
 // users twitter page. We need to truncate our string so that it
 // is within the Twitter allowable message constraints
 var tweet = sbMessage.ToString().Substring(0, 128);
 var response = TwitterObject.TweetMessage(tweet, TwitterAuthDetails.AuthAccount);

 // Display an alert dialog to let the user know their message
 // has been posted.
 await DisplayAlert("Posted to Twitter",
 "Trail Information has been posted.", "OK");
 }
 // Instance method to terminate the current Trail
 public async void EndTrailButton_Clicked(object sender, EventArgs e)
 {
 // Initialise our Selected Item property
 App.SelectedItem = null;

 // Stop listening for location updates prior to navigating
 _viewModel.OnStopUpdate();

 // Navigate back to the Track My Walks Listing Page
 await _viewModel.Navigation.BackToMainPage();
 }

Now, let's start by taking a look at what we defined within our XAML and code snippet:

	First, we started by modifying the ToolbarItem within the ContentPage.ToolbarItems section, and provided values for the Text property. We also updated the Clicked property to call our OptionsButton_Clicked instance method declared within our WalkDistancePage code-behind so as to display a list of choices for the user to choose from.

	Then, we included a reference to our System.Text namespace so that we can access the classes that are defined within these namespaces, which we will use for our StringBuilder class.

	Next, within our WalkDistancePage class constructor, we created a TwitterObject variable, which will be used to create an instance to our TwitterWebService class, and create a OptionsButton_Clicked instance method that will display an ActionSheet with a list of choices for the user to choose from when the Options button is clicked within our WalkDistancePage XAML ContentPage.

	Then, we created the ShowTwitterProfile instance method, which will be used to get the Twitter profile details for the logged-in user, and call our GetTwitterProfile method within our TwitterWebService class and pass in the AuthAcount details for the user. We used the StringBuilder class to construct the information that we would like to display about the user and displayed this within an alert dialog using the DisplayAlert class.

	Next, we created the PostTwitterMessage instance method that will be used to post a message to the user's Twitter feed for the logged-in user. We used the StringBuilder class to construct information about the current walk that we would like to post, and created a tweet variable to truncate the string so that it is within Twitter's allowable message length of 128 characters.

	Finally, we called our TweetMessage method within our TwitterWebService class and passed in our tweet message variable as well as the AuthAcount details for the user, and displayed an alert dialog using the DisplayAlert class to let the user know that their message has been posted.

 Registering the TwitterSignInPage within the App.xaml class

Now that we have successfully updated each of our ViewModels and ContentPages to take advantage of our TwitterSignInPage and our TwitterWebService, our next step is to make additional changes within our OnStart method in order to register our TwitterSignInPage and TwitterSignInPageViewModel within our NavigationService. We are doing this so that we can navigate between each of our ViewModels.

Let's take a look at how we can achieve this by following these steps:

	Locate and open the App.xaml.cs file, which is located in the TrackMyWalks project folder, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 //
 // App.xaml.cs
 // Main class that gets called whenever our TrackMyWalks app is started
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Threading.Tasks;
 using TrackMyWalks.Models;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using TrackMyWalks.Views;
 using Xamarin.Forms;
 using Xamarin.Forms.Xaml;

 [assembly: XamlCompilation(XamlCompilationOptions.Compile)]
 namespace TrackMyWalks
 {
 public partial class App : Application
 {
 public App()
 {
 InitializeComponent();
 ...
 ...
 }
 protected override void OnStart()
 {
 ...
 ...
 // Register each of our View Models on our Navigation Stack
 NavService.RegisterViewMapping(typeof(WalksMainPageViewModel),
 typeof(WalksMainPage));
 NavService.RegisterViewMapping(typeof(WalkEntryPageViewModel),
 typeof(WalkEntryPage));
 NavService.RegisterViewMapping(typeof(WalkTrailInfoPageViewModel),
 typeof(WalkTrailInfoPage));
 NavService.RegisterViewMapping(typeof(WalkDistancePageViewModel),
 typeof(WalkDistancePage));
 NavService.RegisterViewMapping(typeof(TwitterSignInPageViewModel),
 typeof(TwitterSignInPage));
 }
 // Declare our SelectedItem property that will store our Walk Trail details
 public static WalkDataModel SelectedItem { get; set; }

 // Declare our NavService property that will be used to navigate between ViewModels
 public static NavigationService NavService { get; set; }

 #region Twitter Sign In Page Property and Instance methods to remove
 and Navigate (Android Only)
 // Action property method to remove our TwitterSignInPage from
 // the NavigationStack
 public static Action RemoveTwitterSignInPage =>
 new Action(() => NavService.XFNavigation.PopAsync());

 // Navigate to our WalksMainPage, once we have successfully signed in
 public async static Task NavigateToWalksMainPage()
 {
 await NavService.XFNavigation.PushAsync(new WalksMainPage());
 }
 #endregion
 ...
 ...
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	We started by calling the RegisterViewMapping instance method on the NavService property to register our TwitterSignInPage and TwitterSignInPageViewModel on our navigation stack.

	Next, we declared a RemoveTwitterSignInPage property to call the PopAsync method on our XFNavigation property that is contained within our NavService class in order to remove our TwitterSignInPageViewModel from the navigation stack.

	Finally, we created the NavigateToWalksMainPage instance method, which will call the PushAsync method on our XFNavigation property that is contained within our NavService class, in order to push our WalksMainPage ContentPage onto our navigation stack.

Now that you have finished creating the TwitterWebService, and have updated all of the required XAML pages, including making the necessary changes to the ViewModels and ContentPages to take advantage of our TwitterWebService class, our next step is to compile, build, and run our application within the iOS Simulator.

 Launching the TrackMyWalks app using the iOS simulator

In this section, we will compile, build, and run the TrackMyWalks application to see how our application looks. We have made considerable changes to our TrackMyWalks application to include social networking features that will communicate with the Twitter APIs using our TwitterWebService class.

Let's see how we can achieve this by performing the following steps:

	Ensure you have chosen the Debug | iPhoneSimulator option from the drop-down menu.

	Next, choose your preferred device from the list of available iOS Simulators.

	Then, select the Run | Start Debugging menu option, as shown in the following screenshot:

Launching the TrackMyWalks app within the iOS Simulator

	Alternatively, you can also build and run the TrackMyWalks application by pressing the Command + Return key combinations. When the compilation is complete, the iOS Simulator will appear automatically and the TrackMyWalks application will be displayed, as shown in the following screenshot:

Displays the Twitter Authentication SignIn Screen

The preceding screenshot displays our TrackMyWalks application along with our Twitter Sign In Page, which asks the user if they would like to Authorize Track My Walks to use your account?

In order to proceed, you will need to provide your login credentials and click on the Authorize app button. Upon successfully determining that your login credentials have been validated by Twitter, you will then see the Track My Walks Listing page displayed, along with the Trail Walk Information page whenever an item has been selected within the Track My Walks Listing screen:

Twitter Profile Details and Posting to the users Twitter Feed

The preceding screenshot displays the Distance Travelled Information page, with the trail walk that you chose on the previous screen. Clicking on the Options button will display a pop-up dialog, asking the user to choose from a list of options. If the user clicks on the Show Twitter Profile button, it will display the Twitter Profile Details within a dialog. If you click on the Post Twitter Message button, it will post the current walk trail information to the user's Twitter feed, as can be seen in the final screen. Alternatively, clicking on the End Current Trail button will end the trail and take the user back to the Track My Walks Listing page, as can be seen in the previous screenshot.

 Summary

In this chapter, you learned how to apply for a Twitter developer account so that you can incorporate social networking features by creating and registering our TrackMyWalks app within the Twitter Developer Portal. You then incorporated the Xamarin.Auth NuGet package within our solution and created a TwitterService Interface and Class that we can use to communicate with the Twitter APIs using RESTful web service calls. Next, you created the TwitterSignInPage, along with the associated TwitterSignInPageViewModel and TwitterSignInPageRenderer classes, so that users can sign into your app using their Twitter credentials. You updated the WalksMainPage code-behind to call our TwitterSignInPage to check whether the user has signed in.

Finally, you made changes to our WalkDistancePage XAML and code-behind so that we can utilize our TwitterService class to display profile information, as well as post information about the trail to the user's Twitter feed.

In the final chapter, you'll learn how to create and run unit tests using the NUnit and UITest frameworks. You will also learn how to write unit tests for our ViewModels, which will essentially test the business logic to validate that everything is working correctly. After this, we will move on to learning how to use the UITest framework to perform testing on the TrackMyWalks user interfaces by using Automated Testing.

 Unit Testing Your Xamarin.Forms Apps

In the previous chapter, you learned how to apply for a Twitter developer account so that you could incorporate social networking features by creating and registering our TrackMyWalks app within the Twitter Developer Portal. You then incorporated the Xamarin.Auth NuGet package within our solution and created a TwitterService Interface and Class that we can use to communicate with the Twitter APIs using RESTful web service calls. You created a TwitterSignInPage, as well as the associated TwitterSignInPageViewModel and TwitterSignInPageRenderer classes, so that users can sign into your app using their Twitter credentials.

Finally, you updated the WalksMainPage code-behind to call our TwitterSignInPage to check to see whether the user has signed in, as well as made changes to our WalkDistancePage XAML and code-behind so that we can utilize our TwitterService class to display profile information and post information about the trail to the user's Twitter feed.

In this final chapter, you will learn how to create and run each of your unit tests using the Xunit and Xamarin.UITest frameworks. You will also learn how to write unit tests for our ViewModels, which will essentially test the business logic to validate that everything is working correctly. After this, we will move on to learning how to use the Xamarin.UITest framework to perform testing on the TrackMyWalks user interfaces by using automated UI testing.

This chapter will cover the following topics:

	Creating a new Unit Testing project within the TrackMyWalks solution

	Incorporating the Moq NuGet package into our TrackMyWalks.UnitTests project

	Creating and implementing the WalksMainPageViewModelTest class using C#

	Creating and implementing the WalkEntryPageViewModelTest class using C#

	Creating a new Xamarin.UITest project within our TrackMyWalks solution

	Understanding the most commonly used UITest testing methods

	Creating and implementing the CreateNewTrailDetails class using C#

	Updating the WalksMainPage code-behind using C#

	Adding the Xamarin.TestCloud.Agent NuGet package to our TrackMyWalks.iOS project

	Updating the AppDelegate class within the TrackMyWalks.iOS project

	Running your unit tests and UI tests using the Visual Studio for Mac IDE

 Creating the Unit Testing project within the TrackMyWalks solution

During the development of our TrackMyWalks application, we have designed the user interfaces using the XAML markup language, as well as created each of our ViewModels and ContentPages, as well as the required class files for handling the navigation between each of our ViewModels. We also obtained the user's GPS coordinates and handling communication with Microsoft Azure App Services and Twitter using their APIs.

In this section, we will begin by creating a unit testing project for our TrackMyWalks application so that we can run these independently from our TrackMyWalks iOS and Android projects. One of the great benefits of using Visual Studio or Visual Studio for Mac to handle your Unit Tests is that they leverage the popular NUnit testing framework for performing unit tests.

Let's take a look at how we can achieve this by performing the following steps:

	First, ensure that the TrackMyWalks solution is open within the Visual Studio for Mac IDE.

	Next, right-click on the TrackMyWalks solution and choose Add | Add New Project… from the pop-up menu, as shown in the following screenshot:

Adding a New Project to the TrackMyWalks Solution

	Then, choose the xUnit Test Project option located under the Multiplatform | Tests section, ensuring that you have selected C# as the programming language to use:

Creating a new xUnit Test Project

	Then, click on the Next button to proceed to the next step in the wizard and accept the default Target Framework to use (this will be displayed by default), as shown in the following screenshot:

Configuring the Target Framework to use for the xUnit Test Project

	Then, enter TrackMyWalks.UnitTests to use as the name for your new project in the Project Name field, as shown in the following screenshot:

Configuring the xUnit Test Project

	Finally, click on the Create button to proceed with the creation of your project at the specified location.

Now that we have successfully created the TrackMyWalks.UnitTests project within our TrackMyWalks solution, our next step is to begin adding the Moq NuGet package to our TrackMyWalks.UnitTests project.

 Adding the Moq NuGet package to the TrackMyWalks.UnitTests project

In this section, we will begin by adding the Moq (pronounced as Mock) NuGet package to our TrackMyWalks.UnitTests project. The Moq library is essentially one of the most popular mocking frameworks that is available for the .NET platform, and we will be using it to help us test our ViewModels for our TrackMyWalks application.

Let's take a look at how we can achieve this by performing the following steps:

	Right-click on the Dependencies|NuGet folder, which is located within the TrackMyWalks.UnitTests project, and choose the Add Packages... menu option, as you did in the section entitled Adding the Newtonsoft.Json NuGet package to our solution within Chapter 11, Incorporating Microsoft Azure App Services:

Adding a new Dependency to the TrackMyWalks.UnitTests Project

	Next, within the Search field located within the Add Packages dialog, you need to enter Moq and select the Moq option within the list, as shown in the following screenshot:

Adding the Moq NuGet Package to the TrackMyWalks.UnitTests Project

	Then, make sure that you choose the latest version to install from the drop-down list for the Version field (this will be displayed by default).

	Finally, click on the Add Package button to add the Moq NuGet package to the TrackMyWalks.UnitTests project.

Now that you have added the Moq NuGet package, we can begin utilizing this control when we start creating and writing the test case scenarios for our each of our unit tests, which we will cover as we progress through this chapter.

 Adding the TrackMyWalks project to the TrackMyWalks.UnitTests project

In this section, since we will be creating unit tests that will be used to perform testing on our ViewModels, we will need to ensure that we have added a reference to our TrackMyWalks project within the TrackMyWalks.UnitTests project.

Let's take a look at how we can achieve this by performing the following steps:

	Right-click on the Dependencies folder and choose Edit References… from the pop-up menu, as shown in the following screenshot:

Adding the TrackMyWalks Project to the TrackMyWalks.UnitTests Project

	Next, select the TrackMyWalks project by clicking on the checkbox, which will essentially include both our iOS and Android platform projects, as shown in the following screenshot:

Including the TrackMyWalks Project for both the iOS and Android Platforms

	Finally, click on the OK button so that it will add the TrackMyWalks project to our TrackMyWalks.UnitTests project.

 Creating and implementing the WalksMainPageViewModelTest class

In this section, we'll take a look at how to create the WalksMainPageViewModelTest class, which will essentially check to see when our ViewModel passes or fails under different test scenarios.

Let's see how we can achieve this by performing the following steps:

	Right-click on the TrackMyWalks.UnitTests project, choose Add | New File... from the pop-up menu, and choose the Empty Class option under the General section.

	Next, enter WalksMainPageViewModelTest for the name of the class to be created, as shown in the following screenshot:

Creating the WalksMainPageViewModelTest Class

	Then, click on the New button to proceed and create the new class. Then, with the WalksMainPageViewModelTest.cs file open, enter the following code snippet:

 //
 // WalksMainPageViewModelTest.cs
 // Unit Test of the WalksMainPageViewModel
 //
 // Created by Steven F. Daniel on 14/08/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.Threading.Tasks;
 using Moq;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xunit;

 namespace TrackMyWalks.UnitTest
 {
 public class WalksMainPageViewModelTest
 {
 [Fact]
 public async Task CheckIfWalkEntryIsNotNull()
 {
 var navMock = new Mock<INavigationService>().Object;
 var viewModel = new WalksMainPageViewModel(navMock);
 // Arrange
 viewModel.WalksListModel = null;
 // Act
 await viewModel.GetWalkTrailItems();
 // Assert
 Assert.NotNull(viewModel.WalksListModel);
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we included references to the System.Threading.Tasks, Moq, and Xunit namespaces so that we have access to the class method implementations that are defined within these namespaces. You'll notice that we have also included references to both our TrackMyWalks.Services and TrackMyWalks.ViewModels namespaces so that we can access our ViewModels and NavigationService class.

	Next, within the WalksMainPageViewModelTest class, we defined the [Fact] attribute, which is part of the Xunit namespace, to indicate that our method should be run by the Xunit Test Runner component. Then, we created our CheckIfWalkEntryIsNotNull instance method that will handle asynchronous calls and be responsible for performing a test to see if our WalksListModel contains valid items.

	Then, we declared a navMock variable instance of the Mock class that is contained within our Moq library to create a new instance of our INavigationService interface, and then we initialized our WalksListModel to null.

	Next, we called the GetWalkTrailItems instance method that is contained within our ViewModel to communicate with our Microsoft Azure App Services using RESTful webservice API calls in order to return a list of all walk items that are contained within the WalkEntries table.

	Finally, we used the NotNull method on the Assert class to determine if the WalksListModel contains items which will render the test as passing or failing.

The [Fact] attribute indicates that our method should be run by the Xunit Test Runner component. To find out more information about the Assert class, refer to the Microsoft Developer documentation at https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.unittesting.assert.aspx.

 Creating and implementing the WalksEntryPageViewModelTest class

In this section, we'll take a look at how to create the WalkEntryPageViewModelTest class that will be used for our second unit test to ensure that our ViewModel is properly initialized after the Init instance method is called to determine if our unit test passes or fails under each of the different test conditions.

Let's see how we can achieve this by performing the following steps:

	Right-click on the TrackMyWalks.UnitTests project and choose Add | New File... from the pop-up menu. Then, choose the Empty Class option under the General section, as you did in the section entitled Creating and implementing the WalksMainPageViewModelTest located within this chapter.

	Next, enter WalkEntryPageViewModelTest for the name of the class to be created and click on the New button to proceed. Then, with the WalkEntryPageViewModelTest.cs file open, enter the following code snippet:

 //
 // WalkEntryPageViewModelTest.cs
 // Unit Test of the WalkEntryPageViewModel
 //
 // Created by Steven F. Daniel on 14/08/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System.Threading.Tasks;
 using Moq;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xunit;

 namespace TrackMyWalks.UnitTest
 {
 public class WalkEntryPageViewModelTest
 {
 [Fact]
 public async Task CheckIfEntryTitleIsEqual()
 {
 var navMock = new Mock<INavigationService>().Object;
 var viewModel = new WalkEntryPageViewModel(navMock);
 // Arrange
 viewModel.Title = "New Walk Entry";
 // Act
 await viewModel.Init();
 // Assert
 Assert.Equal("New Walk Entry", viewModel.Title);
 }
 [Fact]
 public async Task CheckIfDifficultyIsEqual()
 {
 var navMock = new Mock<INavigationService>().Object;
 var viewModel = new WalkEntryPageViewModel(navMock);
 // Arrange
 viewModel.Difficulty = "Easy";
 // Act
 await viewModel.Init();
 // Assert
 Assert.Equal("Hard", viewModel.Difficulty);
 }
 [Fact]
 public async Task CheckIfDistanceIsNotEqual()
 {
 var navMock = new Mock<INavigationService>().Object;
 var viewModel = new WalkEntryPageViewModel(navMock);
 // Arrange
 viewModel.Distance = 256;
 // Act
 await viewModel.Init();
 // Assert
 Assert.NotEqual("0", viewModel.Difficulty);
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we included references to the System.Threading.Tasks, Moq, and Xunit namespaces, so we have access to the class method implementations that are defined within these namespaces. You'll notice that we have also included references to our TrackMyWalks.Services and TrackMyWalks.ViewModels namespaces, so that we can access our ViewModels and NavigationService class.

	Next, within the WalkEntryPageViewModelTest class, we defined the [Fact] attribute to indicate that our method should be run by the Xunit Test Runner component. Then, we created our CheckIfEntryTitleIsEqual instance method that will handle asynchronous calls as well as perform a test to see if the Title property contained within our WalkEntryPageViewModel is equal. We then declared a navMock variable instance of the Mock class that is contained within our Moq library in order to create a new instance of our INavigationService interface.

	Then, we initialized the Title property within our ViewModel to the value that we want to check and called the Init instance method. We then used the Equal method on the Assert class to determine after our ViewModel was initialized whether the Title property matches the value we want to check to determine if our test passes or fails.

	Next, we created our CheckIfDifficultyIsEqual instance method that will handle asynchronous calls as well as perform a test to see if the Difficulty property is equal. We declared a navMock variable instance of the Mock class that is contained within our Moq library,to create a new instance of our INavigationService interface.

	Then, we initialized the Title property within our ViewModel to the value that we want to check, prior to calling the Init instance method, and used the Equal method on the Assert class to determine if the Difficulty property matches the value we want to check. We do this to determine if our test passes or fails.

	Next, we created our CheckIfDistanceIsNotEqual instance method that will handle asynchronous calls as well as perform a test to see if the Distance property is equal. We declared a navMock variable instance of the Mock class that is contained within our Moq library to create a new instance of our INavigationService interface.

	Finally, we initialized the Distance property within our ViewModel to the value that we want to check, prior to calling the Init instance method, and used the NotEqual method on the Assert class to determine if the Distance property matches the value we want to check. We do this to determine if our test passes or fails.

You will notice that for each of the unit tests that we created in the preceding code snippets, they were presented with the [Fact] attribute, as well as the Arrange-Act-Assert pattern. The following table provides a brief description of what each of the Arrange-Act-Assert patterns are used for:

	
Pattern

	
Description

	
Arrange

	
The Arrange test pattern will essentially perform all of the setting up and initialization conditions for your test.

	
Act

	
The Act test pattern will ensure that your test will successfully interact with the application.

	
Assert

	
The Assert test pattern will examine the results of the actions that were initially performed within the Act step to verify the results.

For more information on the Arrange-Act-Assert pattern, refer to the Unit Testing Enterprise Apps documentation at https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/unit-testing.

Now that you have created your unit tests and have a reasonably good understanding of what each of the Arrange-Act-Assert patterns are, our next step is to begin running our unit tests within the Visual Studio for Mac IDE.

 Running unit tests within the Visual Studio for Mac IDE

In this section, we will take a look at how we can use the Visual Studio for Mac IDE to run each of our unit tests, containing the various test conditions that we created in the previous sections. The advantage of running these tests within Visual Studio for Mac is that you can see if your unit tests pass or fail, as well as the reasons behind it.

Let's take a look at how we can achieve this by performing the following steps:

	First, ensure that you have chosen the Debug option from the drop-down menu.

	Next, select the Run | Run Unit Tests menu option, as shown in the following screenshot:

Running the Unit Tests using the Visual Studio for Mac IDE

When the compilation of the unit tests is complete, you will be presented with the outcome of each of the test results, which can be filtered by which were Successful Tests, Failed Tests, or Ignored Tests within the Test Results pane, as shown in the following screenshot:

Test Results for each of the Unit Tests that have been run

Should any of your tests fail, these will be displayed within the Test Results pane under the Failed Tests tab, along with their associated Stack Trace, which shows the source code file where the exception occurred. You will also notice that the message that we provided within the Assert.Equal method will also be displayed as part of the Failure result, as shown in the following screenshot:

Test Results Pane showing the Stack Trace and Errors of each Failed Test

Within the Test Results pane, you have the option of filtering each of your test results or even rerunning your unit tests again by clicking on the Rerun Tests button.

The following table provides a brief description of what each test result relates to within the Test Results pane:

	
Test Result

	
Description

	
Successful Tests

	
The Successful Tests section displays all successfully executed tests that passed all of the test case conditions.

	
Inconclusive Tests

	
The Inconclusive Tests section displays each of the test results that were found to be inconclusive, meaning that a firm result could not be determined.

	
Failed Tests

	
The Failed Tests section displays each test that did not meet the test case conditions that were specified.

	
Ignored Tests

	
The Ignored Tests section displays each test that was ignored as specified by the [Ignore] attribute within the test case conditions.

	
Output

	
The Output section displays a console output for each of the tests that were executed and will contain any unit tests that successfully passed, failed, or ignored, or were found to be inconclusive.

	
Rerun Tests

	
The Rerun Tests section enables you to rerun your unit tests again, without the need for recompiling your test case conditions.

Now that you have a good understanding of how to create your own unit tests using the Xunit testing framework, we can now look at how to create another form of unit testing, which is called automated UI testing, using the Xamarin.UITest framework that we will be covering in the next section.

 Creating a UITest project within the TrackMyWalks solution

In the previous section, we saw how easy it is to create various unit tests that enable us to create different test case scenarios to test each of our ViewModels within the TrackMyWalks project. That said, while unit testing generally ensures that a significant amount of code is tested, it is primarily focused on testing the actual business logic contained within the app, which unfortunately leaves the user interface portion of your application untested.

In this section, we will look at how we can use automated UI testing to automate specific actions within your application's user interface to ensure that it is working as expected. Fortunately, Visual Studio for Mac provides you with a rich set of tools for creating automated UI test scenarios that can be written using either C# or F# and makes use of the UITest framework.

Let's take a look at how we can achieve this by performing the following steps:

	First, right-click on the TrackMyWalks solution and choose Add | Add New Project… from the pop-up menu, as you did in the section entitled Creating the unit testing project solution using Xunit located within this chapter.

	Next, choose the UI Test App option which is located under the Multiplatform | Tests section, ensuring that you have selected C# as the programming language to use:

Creating and Adding the UI Test App Project to the TrackMyWalks Solution

	Then, click on the Next button to proceed to the next step in the wizard and enter TrackMyWalks.UITests as the name for your new project in the Project Name field, as shown in the following screenshot:

Configuring your new UI Test App Project

	Finally, click on the Create button to proceed with the creation of your project at the specified location, as shown in the following screenshot:

The TrackMyWalks.UITests Project displayed within the TrackMyWalks Solution

You will notice that when we created our TrackMyWalks.UITests project, the wizard created two class files, Tests.cs and AppInitializer.cs. Tests.cs is used as a starting point to write automated UI tests and the AppInitializer.cs class is used by Tests.cs and any other UI tests that you create on your own.

 Understanding the most commonly used Xamarin.UITest testing methods

In this section, we will learn about some of the commonly used methods that we can use with the Xamarin.UITest framework, which provides you with a way in which you can automate the interactions between your Android or iOS apps, using either C# or F#, as well as the NUnit testing framework.

The following table describes some of the more commonly used methods and the ones that we will be using to test the TrackMyWalks app:

	
UITest methods

	
Description

	
Screenshot()

	
The Screenshot method is used to take a screenshot of the current state of the app.

	
Tap()

	
The Tap method is used to send a tap to interact with a specific element that is contained on the app's current screen.

	
EnterText()

	
The EnterText method is used to populate text within a specific element that is contained on the app's current screen.

	
ClearText()

	
The ClearText method is used to remove text within a specific element that is contained on the app's current screen.

	
Query()

	
The Query method is used to find a specific element or all elements that are contained within the app's current screen.

	
Repl()

	
The Repl method is commonly used to interact in real-time with the app through the terminal command line using the UITest APIs.

	
WaitForElement()

	
The WaitForElement method is used to pause the execution of the current running test, until a specific element appears on the app's current screen, within a specific timeout period.

Using methods such as Query and WaitForElement returns an AppResult[] array object that you can use to determine the results of a call. An example would be that, if you use the Query method call that returns an empty result, you can be sure that the element doesn't exist within the app's current screen.

The Xamarin UITest framework only provides support for both the iOS and Android platforms and doesn't provide support for the UWP platform.

The following table describes the methods relating to the AppQuery class that are used by the Query and WaitForElement methods of the IApp interface:

	
AppQuery Methods

	
Description

	
Class()

	
The Class method is used to find elements that are contained within the app's current screen based on their class type.

	
Marked()

	
The Marked method is used to find elements that are contained within the app's current screen, by referring to them by their text values or identifier.

	
Css()

	
The Css method is used to perform CSS selector operations on the contents of a WebView that are contained on the app's current screen.

For more information on the Xamarin.UITest class methods, refer to the Xamarin developer documentation at https://developer.xamarin.com/api/namespace/Xamarin.UITest/.

Now that you have some insight into some of the most commonly used UITest methods, we can start to create and implement our UI tests using some of the methods of the Xamarin.UITest framework that we will be covering over the next couple of sections.

 Creating and implementing the CreateNewTrailDetails class for iOS

In this section, we'll take a look at how to create and implement the CreateNewTrailDetails class, which will be used to perform automated UI testing for the iOS platform so that we can handle signing into Twitter and create a brand new walk trail entry using the Xamarin.UITest framework.

Let's see how we can achieve this by performing the following steps:

	Right-click on the TrackMyWalks.UITests project and choose Add | New File... from the pop-up menu. Then, choose the Test Fixture option under the NUnit section.

	Next, enter CreateNewTrailDetails for the name of the class to be created, as shown in the following screenshot:

Creating the CreateNewTrailDetails Test Fixture Class

	Then, click on the New button to proceed and create the new class. With the CreateNewTrailDetails.cs file open, enter the following code snippet:

 //
 // CreateNewTrailDetails.cs
 // Automated UI Testing to validate signing into Twitter and create
 // a new Walk Trail Entry
 //
 // Created by Steven F. Daniel on 14/08/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using System.Linq;
 using NUnit.Framework;
 using Xamarin.UITest;

 namespace TrackMyWalks.UITests
 {
 // Set this attribute to indicate which platforms you would like to test
 // i.e., iOS and Android
 [TestFixture(Platform.iOS)]
 public class CreateNewTrailDetails
 {
 // IApp interface is responsible for handling the communication with the app
 IApp app;

 // Platform parameter is responsible for indicating on which
 // platform Xamarin should launch
 Platform platform;
 string entryCellPlatformClassName;

 // This is the class constructor for the CreateNewTrailDetails with
 // setting for the platform
 public CreateNewTrailDetails(Platform platform)
 {
 this.platform = platform;
 entryCellPlatformClassName = (this.platform == Platform.iOS ? "UITextField" :
 "EntryCellEditText");
 }

 // The BeforeEachTest instance method is setup before each test is
 // launched and the app object is initialised
 [SetUp]
 public void BeforeEachTest()
 {
 app = AppInitializer.StartApp(platform);
 }

 // The AppLaunches instance method REPL console is invoked (with REPL
 // we are able to test our app manually and all actions will be displayed
 // within the app screen
 [Test]
 public void AppLaunches()
 {
 app.Repl();
 }

 // Create the CreateBrandNewTrailEntry Test to create a new Trail Entry
 [Test]
 public void CreateBrandNewTrailEntry()
 {
 // Sign in to Twitter (If using Two-Factor Authentication, you'll
 // need to comment this out)
 HandleTwitterSignIn();

 // Wait for the Track My Walks Listing to appear by checking the
 // navigation bar title
 var navigationBarTitle = "Track My Walks Listing";
 var mainScreen = app.WaitForElement(x => x.Marked(navigationBarTitle)
 .Class("UINavigationBar"));

 // Validate to ensure that our Track My Walks Listing screen was displayed
 Assert.IsTrue(mainScreen.Any(), navigationBarTitle + "screen wasn't
 shown after signing in.");

 // Click on the Add button from our Track My Walks Listing screen
 app.Tap(x => x.Marked("Add"));
 var WalkEntryPageScreenTitle = "Adding Trail Details";
 var WalkEntryPageScreen = app.WaitForElement(x => x.Marked(WalkEntryPageScreenTitle)
 .Class("UINavigationBar"));
 // Validate to ensure that our Adding Trail Details screen was displayed
 Assert.IsTrue(WalkEntryPageScreen.Any(), WalkEntryPageScreenTitle + "
 screen wasn't shown after tapping the Add button.");

 // Populate our Adding Trail Details EntryCell Fields
 PopulateWalkEntryDetailsForm();

 // Tap on the Save button to save the details and exit
 app.Tap(x => x.Marked("Save"));
 var SaveWalkEntryDialogTitle = "Save Walk Entry Item";
 var SaveWalkEntryDialogScreen = app.WaitForElement(x =>
 x.Marked(SaveWalkEntryDialogTitle));
 app.Tap(x => x.Marked("OK"));

 // Validate to ensure that our Save Walk Entry Item Details screen
 // was displayed
 Assert.IsTrue(SaveWalkEntryDialogScreen.Any(), navigationBarTitle + "
 screen wasn't shown after tapping the Save button.");
 }

 // Instance method to handle populating the Walk Entry Details Form
 public void PopulateWalkEntryDetailsForm()
 {
 // Clear the default text entry for our Title EntryCell
 app.ClearText(x => x.Class(entryCellPlatformClassName).Index(0));
 app.EnterText(x => x.Class(entryCellPlatformClassName).Index(0),
 "New UITest Walk Entry");
 app.DismissKeyboard();

 // Enter in some default text for our Description EntryCell
 app.ClearText(x => x.Class(entryCellPlatformClassName).Index(1));
 app.EnterText(x => x.Class(entryCellPlatformClassName).Index(1), "This is a
 new description entry, using the UITest automation features");
 app.DismissKeyboard();

 // Enter in some default text for our Distance EntryCell
 app.ClearText(x => x.Class(entryCellPlatformClassName).Index(4));
 app.EnterText(x => x.Class(entryCellPlatformClassName).Index(4), "256");
 app.DismissKeyboard();

 // Enter in some default text for our Image URL
 app.ClearText(x => x.Class(entryCellPlatformClassName).Index(6));
 app.EnterText(x => x.Class(entryCellPlatformClassName).Index(6),"https://heuft.com/
 upload/image/400x267/no_image_placeholder.png");
 app.DismissKeyboard();
 }

 // Instance methods that will handle signing into Twitter
 public void HandleTwitterSignIn()
 {
 // Set up and initialise our Twitter Credentials
 var TwitterUsername = "YOUR_TWITTER_USERNAME";
 var TwitterPassword = "YOUR_TWITTER_PASSWORD";

 // Enter values for our username and password within the WebView
 app.Tap(x => x.WebView().Css("[id=username_or_email]"));
 app.EnterText(x => x.WebView().Css("[id=username_or_email]"), TwitterUsername);
 app.DismissKeyboard();
 app.Tap(x => x.WebView().Css("[id=password]"));
 app.EnterText(x => x.WebView().Css("[id=password]"), TwitterPassword);
 app.DismissKeyboard();

 // Tap the Authorize app button in the WebView use
 // id=cancel for Cancel button
 app.ScrollDownTo(x => x.WebView().Css("[id=allow]"));
 app.Tap(x => x.WebView().Css("[id=allow]"));
 }
 }
 }

Now, let's start by taking a look at what we covered in the preceding code snippet:

	First, we included references to the System, System.Linq and Xamarin.UITest namespaces so that we have access to the class method implementations that are defined within these namespaces.

	Next, we updated and set the TestFixture attribute to indicate which platforms we would like to test. For example, iOS and Android declare an IApp app interface that is responsible for handling all of the communication within the app, as well as declare a platform variable that is responsible for indicating which platform Xamarin.UITest should launch. It also declares a string variable called entryCellPlatformClassName that will be responsible for returning the TextField property depending on the platform that we are testing on. If we are testing on iOS, we will return the UITextField class, whereas under Android, it will use the EntryCellEditText class.

	Then, we updated our CreateNewTrailDetails class constructor method and added the Platform platform parameter. We then updated the parameter variable that we declared at the beginning of our class, as well as updated our entryCellPlatformClassName variable, to use the correct TextField based on the platform we are testing on, prior to creating the BeforeEachTest instance method and specifying the [SetUp] attribute that will be called before each test is launched to initialize the app object using the platform parameter that we are testing on.

	Next, we created the AppLaunches instance method that will invoke the REPL console, where you can manually test the app, as well as perform actions that will interact and be displayed within the app screen.

	Then, we created the CreateBrandNewTrail instance method that will perform actions to create a new trail entry when it is executed by the Xamarin.UITest framework. Within this method, we called the HandleTwitterSignIn instance method, which will perform the steps required to sign in to Twitter.

	Next, we declared a navigationBarTitle variable and a mainScreen variable. We used the app.WaitForElement method to check and wait for the text contained within the navigationBarTitle to appear on-screen and used the Assert.IsTrue method to validate that our screen appeared on screen.

	Then, we performed the steps to click on the Add button that is located on the Track My Walks Listing page and used the WaitForElement method to validate that the associated text for the Adding Trail Details appeared on screen. We then used the Assert.IsTrue method to validate accordingly.

	Next, we called the PopulateWalkEntryDetailsForm instance method to perform the steps to populate the EntryCell fields within the WalkEntryPage, and clicked on the Save button to display the Save Walk Entry Item dialog. Then, we used the WaitForElement method to wait for the dialog to appear and then used the Tap method to click on the OK button, at which point we saved the details to the SQL Server database that is stored within Microsoft Azure App Services. We used the Assert.IsTrue method to validate that our Save Walk Entry Item dialog did actually appear on screen.

	Then, we declared the PopulateWalkEntryDetailsForm instance method that will be responsible for handling the steps specifically for the creation of a new walk entry. We used the ClearText and EnterText methods of the Xamarin.UITest framework that will locate each EntryCell within the Adding Trail Details form and populated it with the necessary information. The DismissKeyboard method is responsible for dismissing the keyboard from the view and continued to the next step.

	Finally, we created the HandleTwitterSignIn instance method that will be responsible for handling the steps specifically related to the Twitter sign-in process. This process uses the user's login credentials to automate the login process, prior to carrying out other steps within the Twitter user interface.

 Updating the WalksMainPage code-behind using C#

Now that we have created the CreateNewTrailDetails class that will be responsible for handling the automated UI testing using the UITest framework, our next step is to begin updating the underlying C# code within our WalksMainPage code-behind file in order to disable displaying our TwitterSignInPage ViewModel.

Let's take a look at how we can achieve this by following these steps:

	Locate and open the WalksMainPage.xaml.cs file which is located within the Views folder, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 //
 // WalksMainPage.xaml.cs
 // Displays Walk Information within a ListView control from an array//
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using System;
 using TrackMyWalks.Models;
 using TrackMyWalks.Services;
 using TrackMyWalks.ViewModels;
 using Xamarin.Forms;

 namespace TrackMyWalks.Views
 {
 public partial class WalksMainPage : ContentPage
 {
 // Return the Binding Context for the ViewModel
 WalksMainPageViewModel _viewModel => BindingContext as WalksMainPageViewModel;

 public WalksMainPage()
 {
 InitializeComponent();
 ...
 ...
 }
 ...
 ...
 // Method to initialise our View Model when the ContentPage appears
 protected override async void OnAppearing()
 {
 base.OnAppearing();

 // Perform a check to see if we have logged into Twitter already
 if (_viewModel != null)
 {
 // Call the Init method to initialise the ViewModel
 await _viewModel.Init();
 /*
 if (!TwitterAuthDetails.isLoggedIn)
 {
 // We need to Navigate and display our Twitter Sign In Page
 await _viewModel.Navigation.NavigateTo<TwitterSignInPageViewModel>();
 }
 */
 }
 ...
 ...

	In the preceding code snippet, we started by modifying the OnAppearing method by commenting out the code that checks the isLoggedIn property within our TwitterAuthDetails class in order to determine if the user has already signed into our app. Then, we navigated to our TwitterSignInPageViewModel using the Navigation property of our _viewModel and the NavigateTo instance method.

If you have configured your Twitter account to use Two-Factor Authentication, you will need to comment out the preceding code within the code snippet, as this will cause problems when running the UITests, as you'll need to manually enter in the code that is generated and provided by Twitter. Alternatively, if you are not using Two-Factor Authentication, you can skip this section altogether.

 Adding the Xamarin.Test Cloud.Agent NuGet package

In this section, we will begin by adding the Xamarin.TestCloud.Agent NuGet package to our TrackMyWalks.iOS project. The Xamarin.TestCloud.Agent library allows you to execute your Xamarin.UITest using the C# programming language as well as the NUnit framework to validate the functionality of your iOS and Android apps within the Visual Studio for Mac environment.

Let's take a look at how we can achieve this by performing the following steps:

	Right-click on the Dependencies | NuGet folder that is located within the TrackMyWalks.iOS project and choose the Add Packages... menu option, as you did in the section entitled Adding the Moq NuGet package to our TrackMyWalks.UnitTests project, located within this chapter.

	Next, within the Search field located within the Add Packages dialog, you need to enter testcloud and select the Xamarin.TestCloud.Agent option within the list, as shown in the following screenshot:

Adding the Xamarin.TestCloud.Agent NuGet Package

	Then, make sure that you choose the latest version to install from the drop-down list for the Version field (this will be displayed by default).

	Next, click on the Add Package button to add the Xamarin.TestCloud.Agent NuGet package to the TrackMyWalks.iOS project.

	Then, locate and open the AppDelegate.cs file which is located in the TrackMyWalks.iOS project folder, ensuring that it is displayed within the code editor, and enter the following highlighted code sections:

 //
 // AppDelegate.cs
 // Application Delegate class for the TrackMyWalks.iOS Project
 //
 // Created by Steven F. Daniel on 14/05/2018
 // Copyright © 2018 GENIESOFT STUDIOS. All rights reserved.
 //
 using Foundation;
 using UIKit;

 namespace TrackMyWalks.iOS
 {
 ...
 ...
 public override bool FinishedLaunching(UIApplication app, NSDictionary options)
 {
 global::Xamarin.Forms.Forms.Init();

 // Initialise our Xamarin.FormsMaps library
 Xamarin.FormsMaps.Init();
 #if ENABLE_TEST_CLOUD
 Xamarin.Calabash.Start();
 #endif
 LoadApplication(new App());
 return base.FinishedLaunching(app, options);
 }
 }

In the preceding code snippet, we started by defining the ENABLE_TEST_CLOUD compiler variable that is wrapped within the #if and #endif directive that includes a call to the Xamarin.Calabash.Start method. The Xamarin.Calabash.Start method will only be started when it has been defined under specific configurations, as defined within the compiler configurations settings for the TrackMyWalks.iOS project.

Calabash is essentially an Automated UI Acceptance Testing framework that allows you to write and execute tests that validate the functionality of your iOS and Android applications.

We have just added the code that will essentially start our Xamarin Test Cloud functionality, however, for this to work, we will need to perform an additional step, which is to make some modifications to the compiler configurations of our TrackMyWalks.iOS project.

	Right-click on the TrackMyWalks.iOS project, and choose the Options menu option.

	Next, within the Project Options – TrackMyWalks.iOS dialog, choose the Compiler option which is located under the Build section.

	Then, ensure that you have chosen Debug(Active) from the Configuration drop-down.

	Next, ensure that you have chosen the iPhoneSimulator from the Platform drop-down.

	Then, add the ENABLE_TEST_CLOUD to the end of the existing list within the Define Symbols section, as shown in the following screenshot:

Defining additional Compiler Configurations for Enabling Test Cloud Support

	Finally, click on the OK button to save your changes and close the dialog.

Now that you have modified the compiler configurations for your TrackMyWalks.iOS project, we can finally build and run our Xamarin.UITests right within the Visual Studio for Mac IDE, similarly to how we did when executing our Xunit tests. However, this needs to be handled very differently, which we will be covering in the next section.

 Running UITests within the Visual Studio for Mac IDE

In this section, we will take a look at how to run our Xamarin.UITests using the Visual Studio for Mac IDE. Prior to running your TrackMyWalks.UnitTests project, you will need to add your iOS and Android projects to the Test Apps node of the Unit Tests pane. If you don't do this, your Xamarin.UITests will continually fail until you add these projects to your TrackMyWalks.UITests project.

Let's take a look at how we can achieve this by performing the following steps:

	First, ensure that you have chosen the Debug option from the drop-down menu.

	Next, select the View|Unit Tests menu option, as shown in the following screenshot:

Running UITests within the Visual Studio for Mac IDE

	Then, right-click on the Test Apps node within the Unit Tests pane, and click on the Add App Project menu option, as shown in the following screenshot:

Adding a new App Project to run the UI Tests against

	Next, from the Select a project or solution dialog, select each of your projects for the various platforms, as shown in the following screenshot:

Selecting the TrackMyWalks.iOS Project to add to the list of UI Tests

	Then, click on the OK button to save your changes and close the dialog.

If you don't see your TrackMyWalks.iOS app project listed within the Select a project or solution dialog, you have have forgotten to add the Xamarin Test Cloud Agent NuGet package to your TrackMyWalks.iOS project.

	Finally, right-click on the TrackMyWalks.UITests node, located within the Unit Tests pane, and click on the Run Test menu option, as shown in the following screenshot:

Running the TrackMyWalks UITests within the Visual Studio for Mac IDE

When the TrackMyWalks application starts to run, the Xamarin.UITest framework will automatically deploy your app to the iOS Simulator and run through each of the steps that you have specified within your test methods which have the [Test] attribute. Once each of the tests have been completed, they will appear within the Unit Tests pane.

 Summary

In this chapter, you learned how to create and run unit tests and UITests for the TrackMyWalks application, using the Xunit and Xamarin.UITest frameworks. You learned how to add the Moq NuGet package to the TrackMyWalks.UnitTests project within the TrackMyWalks solution so that you can test the business logic within your ViewModels in order to validate that everything is working correctly, and returning the results you are looking for.

Next, we moved on and created the TrackMyWalks.UITests project using the Xamarin.UITest framework so that we could perform testing on the user interface using Automated UI Testing. You then learned how to create, test, and execute each of your tests locally using the Xamarin Test Cloud Agent and the Calabash framework by adding the iOS projects to the TrackMyWalks.UITests project.

This was the final chapter. I sincerely hope that you had lots of fun developing apps throughout our journey working through this book. You are now equipped with enough knowledge and expertise to understand what it takes to build rich and engaging apps for both the Xamarin and Xamarin.Forms platforms by using a host of exciting concepts and techniques that are unique to each platform. I can't wait to see what you build and I wish you the very best of luck with your Xamarin and Xamarin.Forms adventures.

 Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Xamarin.Forms - Second Edition

Ed Snider

ISBN: 9781788290265

	Implement the Model-View-View-Model (MVVM) pattern and data-binding in Xamarin.Forms mobile apps

	Extend the Xamarin.Forms navigation API with a custom ViewModel-centric navigation service

	Leverage the inversion of control and dependency injection patterns in Xamarin.Forms mobile apps

	Work with online and offline data in Xamarin.Forms mobile apps

	Test business logic in Xamarin.Forms mobile apps

	Use platform-specific APIs to build rich custom user interfaces in Xamarin.Forms mobile apps

	Explore how to improve mobile app quality using Visual Studio AppCenter

Xamarin Blueprints

Michael Williams

ISBN: 9781785887444

	Discover eight different ways to create your own Xamarin applications

	Improve app performance by using SQLite for data-intensive applications

	Set up a simple web service to feed JSON data into mobile applications

	Store files locally with Xamarin.Forms using dependency services

	Use Xamarin extension libraries to create effective applications with less coding

 Leave a review - let other readers know what you think

Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!

