

React Native Cookbook
Second Edition

Recipes for solving common React Native development
problems

Dan Ward

BIRMINGHAM - MUMBAI

React Native Cookbook
Second Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amarabhab Banerjee
Acquisition Editor: Trusha Shriyan
Content Development Editor: Arun Nadar
Technical Editor: Leena Patil
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Alishon Mendonsa
Production Coordinator: Arvindkumar Gupta

First published: December 2016

Second edition: January 2019

Production reference: 2080419

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-192-6

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Dan Ward is a full-stack developer and web technology consultant who has a number of
years of experience working on mobile applications with React Native, and developing web
applications with React, Vue, and Angular. He's also a co-founder at gitconnected, and co-
editor at the associated Medium publication. His professional interests include React
Native development, modern web development, and technical writing. He also has a BA in
English Literature from Florida State University.

About the reviewer
Ashok Kumar S has been working in the mobile development domain for about six years.
In his early days, he was a JavaScript and Node.js developer. Thanks to his strong web
development skills, he mastered web and mobile development. He is a Google-certified
engineer, a speaker at global-scale conferences, including DroidCon Berlin and MODS, and
also runs a YouTube channel called AndroidABCD for Android developers. He also
contributes to open source heavily with a view to improving his e-karma. He has written
books on Wear OS programming and Mastering Firebase Toolchain. He has also reviewed
books on mobile and web development, namely, Mastering JUnit5, Android Programming for
Beginners, and Building Enterprise JavaScript Applications.

I would like to thank my family, mostly my mother, for her infinite support in every
possible way, as well as family members Shylaja, Sumitra, Krishna, and Vinisha, and my
fiancee, Geetha Shree.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Setting Up Your Environment 8
Technical requirements 9
Installing dependencies 9

Installing Xcode 9
Installing Android Studio 12

How to do it... 12
There's more... 16

Installing Node.js 16
Installing Expo 17
Installing Watchman 18

Initializing your first app 18
Running your app in a simulator/emulator 19

Running your app on an iOS simulator 19
There's more... 21

Running your app on a real device 22
Running your app on an iPhone or Android 22

Summary 23
Further reading 23

Chapter 2: Creating a Simple React Native App 24
Adding styles to elements 24

Getting ready 25
How to do it... 25
How it works... 28
There's more... 29

Using images to mimic a video player 30
Getting ready 30
How to do it... 30
How it works... 34

Creating a toggle button 35
Getting ready 35
How to do it... 35
How it works... 40
There's more... 42

Displaying a list of items 42
Getting ready 42
How to do it... 42
How it works... 49

Table of Contents

[ii]

There's more... 50
Using flexbox to create a layout 50

Getting ready 51
How to do it... 51
How it works... 55
There's more... 56
See also 56

Setting up and using navigation 57
Getting ready 57
How to do it... 57
How it works... 65
See also 65

Chapter 3: Implementing Complex User Interfaces - Part I 66
Creating a reusable button with theme support 66

Getting ready 66
How to do it... 67
How it works... 72

Building a complex layout for tablets using flexbox 74
Getting ready 74
How to do it... 75
There's more... 83
See also 83

Including custom fonts 84
Getting ready 84
How to do it... 84
How it works... 92
See also 93

Using font icons 93
Getting ready 93
How to do it... 94
How it works... 98
See also 98

Chapter 4: Implementing Complex User Interfaces - Part II 99
Dealing with universal applications 99

Getting ready 100
How to do it... 100
How it works... 110
See also 111

Detecting orientation changes 111
Getting ready 111
How to do it... 112
There's more... 119

Using a WebView to embed external websites 119
Getting ready 120

Table of Contents

[iii]

How to do it... 120
How it works... 126

Linking to websites and other applications 127
Getting ready 127
How to do it... 128
How it works... 132
See also 133

Creating a form component 133
Getting ready 133
How to do it... 134
How it works... 139

Chapter 5: Implementing Complex User Interfaces - Part III 140
Introduction 140
Creating a map app 140

Getting ready 141
How to do it... 141
How it works... 145
There's more... 146

Creating an audio player 146
Getting ready 146
How to do it... 147
How it works... 154
There's more... 156

Creating an image carousel 156
Getting ready 157
How to do it... 157
How it works... 164
There's more... 164

Adding push notifications to your app 165
Getting ready 166
How to do it... 167
How it works... 180
There's more... 182

Implementing browser-based authentication 183
Getting ready 183
How to do it... 184
How it works... 189
See also 190

Chapter 6: Adding Basic Animations to Your App 191
Introduction 191
Creating simple animations 192

Getting ready 192
How to do it... 192
How it works... 196

Table of Contents

[iv]

Running multiple animations 198
Getting ready 198
How to do it... 198
How it works... 202

Creating animated notifications 203
Getting ready 203
How to do it... 203
How it works... 212
There's more... 213

Expanding and collapsing containers 213
Getting ready 213
How to do it... 214
How it works... 219
See also 220

Creating a button with a loading animation 220
Getting ready 220
How to do it... 220
How it works... 226

Conclusion 226

Chapter 7: Adding Advanced Animations to Your App 227
Introduction 227
Removing items from a list component 227

Getting ready 227
How to do it... 228
How it works... 235
See also 237

Creating a Facebook reactions widget 237
Getting ready 237
How to do it... 238
How it works... 244

Displaying images in fullscreen 245
Getting ready 246
How to do it... 246
How it works... 255
See also 255

Chapter 8: Working with Application Logic and Data 256
Introduction 256
Storing and retrieving data locally 257

Getting ready 257
How to do it... 257
How it works... 261
See also 262

Retrieving data from a remote API 262

Table of Contents

[v]

Getting ready 263
How to do it... 263
How it works... 266

Sending data to a remote API 266
Getting ready 266
How to do it... 267
How it works... 271

Establishing real-time communication with WebSockets 272
Getting ready 272
How to do it... 273
How it works... 279

Integrating persistent database functionality with Realm 279
Getting ready 280
How to do it... 281
How it works... 285

Masking the application upon network connection loss 285
Getting ready 285
How to do it... 285
How it works... 290

Synchronizing locally persisted data with a remote API 291
Getting ready 291
How to do it... 291
How it works... 295

Logging in with Facebook 295
Getting ready 296
How to do it... 296
How it works... 300

Chapter 9: Implementing Redux 301
Introduction 301
Installing Redux and preparing our project 302

Getting started 302
How to do it... 302
How it works... 303

Defining actions 304
Getting ready 304
How to do it... 305
How it works... 306
There's more... 306

Defining reducers 307
Getting ready 307
How to do it... 307
How it works... 309

Setting up the Redux store 310
How to do it... 311

Table of Contents

[vi]

How it works... 312
Communicating with a remote API 312

Getting ready 313
How to do it... 313
How it works... 317

Connecting the store to the view 317
Getting ready 318
How to do it... 318
How it works... 325

Storing offline content using Redux 326
Getting ready 326
How to do it... 326
How it works... 328

Chapter 10: App Workflow and Third-Party Plugins 329
How this chapter works 329
React Native development tools 331

Expo 331
React Native CLI 332
CocoaPods 333

Planning your app and choosing your workflow 334
How to do it... 335
Expo CLI setup 337

Using NativeBase for cross-platform UI components 337
Getting ready 338

Using a pure React Native app (React Native CLI) 338
Using an Expo app 339

How to do it... 340
How it works... 347

Using glamorous-native for styling UI components 347
Getting ready 348
How to do it... 348
How it works... 352

Using react-native-spinkit for adding animated loading indicators 353
Getting started 354
How to do it... 355
How it works... 359
There's more... 359

Using react-native-side-menu for adding side navigation menus 359
Getting ready 360
How to do it... 360
How it works... 366

Using react-native-modalbox for adding modals 366
Getting ready 367
How to do it... 367

Table of Contents

[vii]

How it works... 373

Chapter 11: Adding Native Functionality - Part I 375
Introduction 375
Exposing custom iOS modules 376

Getting ready 376
How to do it... 377
How it works... 384
See also 385

Rendering custom iOS view components 385
How to do it... 386
How it works... 393

Exposing custom Android modules 393
Getting ready 393
How to do it... 394
How it works... 403

Rendering custom Android view components 403
How to do it... 403
How it works... 410

Chapter 12: Adding Native Functionality - Part II 411
Introduction 411
Reacting to changes in application state 412

How to do it... 412
How it works... 415

Copying and pasting content 415
Getting ready 415
How to do it... 416
How it works... 419

Authenticating via touch ID or fingerprint sensor 420
Getting ready 420
How to do it... 421
How it works... 424

Hiding application content when multitasking 424
Getting ready 424
How to do it... 426
How it works... 432

Background processing on iOS 432
Getting ready 433
How to do it... 433
How it works... 438

Background processing on Android 438
Getting ready 439
How to do it... 439
How it works... 443

Table of Contents

[viii]

Playing audio files on iOS 443
Getting ready 443
How to do it... 444
How it works... 448

Playing audio files on Android 449
Getting ready 449
How to do it... 449

Chapter 13: Integration with Native Applications 453
Introduction 453
Combining a React Native app and a Native iOS app 454

Getting ready 454
How to do it... 455
How it works... 465
See also 466

Communicating from an iOS app to React Native 466
Getting ready 466
How to do it... 467

Communicating from React Native to an iOS app container 474
Getting ready 474
How to do it... 474
How it works... 482

Handle being invoked by an external iOS app 482
Getting ready 482
How to do it... 482
How it works... 489

Combining a React Native app and a native Android app 489
Getting ready 489
How to do it... 490
How it works... 498

Communicating from an Android app to React Native 498
Getting ready 498
How to do it... 499
How it works... 503

Communicating from React Native to an Android app container 503
Getting ready 503
How to do it... 503
How it works... 508

Handle being invoked by an external Android app 508
How to do it... 508
How it works... 510

Chapter 14: Deploying Your App 511
Introduction 511
Deploying development builds to an iOS device 512

Table of Contents

[ix]

Getting ready 512
How to do it... 512
How it works... 514

Deploying development builds to an Android device 514
Getting ready 514
How to do it... 514
There's more... 515
How it works... 515

Deploying test builds to HockeyApp 516
Getting ready 516
How to do it... 517
How it works... 521

Deploying iOS test builds to TestFlight 521
Getting ready 522
How to do it... 522
How it works... 523

Deploying production builds to the Apple App Store 524
Getting ready 524
How to do it... 524
How it works... 526

Deploying production builds to Google Play Store 526
Getting ready 526
How to do it... 527
How it works... 528

Deploying Over-The-Air updates 528
Getting ready 528
How to do it... 528
How it works... 533

Optimizing React Native app size 533
Getting ready 533
How to do it... 533
How it works... 534

Chapter 15: Optimizing the Performance of Your App 535
Introduction 535
Optimizing our JavaScript code 536

Getting ready 536
How to do it... 537
How it works... 539

Optimizing the performance of custom UI components 539
Getting ready 539
How to do it... 539
How it works... 541
See also 541

Keeping animations running at 60 FPS 541

Table of Contents

[x]

Getting ready 541
How to do it... 542
How it works... 545
There's more... 545

Getting the most out of ListView 546
Getting ready 546
How to do it... 546
How it works... 548
See also 548

Boosting the performance of our app 548
How to do it... 549
How it works... 550

Optimizing the performance of native iOS modules 550
Getting ready 551
How to do it... 551
How it works... 552

Optimizing the performance of native Android modules 552
Getting ready 552
How to do it... 552
How it works... 553

Optimizing the performance of native iOS UI components 554
Getting ready 554
How to do it... 554
How it works... 555

Optimizing the performance of native Android UI components 556
Getting ready 556
How to do it... 556
How it works... 557

Appendix A: Other Books You May Enjoy 558
Leave a review - let other readers know what you think 560

Index 561

Preface
Parts of this book require software that is only available for macOS. While React Native
development can be done on a Windows machine, certain aspects, such as running your
applications on iOS devices and in the iOS simulator, or editing native code with Xcode,
can only be done with a Mac.

There are many ways for a developer to build an app for iOS or Android. React Native
stands out as one of the most stable, performant, and developer-friendly options for
building hybrid mobile apps. Developing mobile apps with React Native allows developers
to build iOS and Android apps in a single code base, with the added ability for code-
sharing between the two platforms.

Even better, a developer with experience in building web apps in React will be ahead of the
game, since many of the same patterns and conventions are carried over into React Native.
If you've had experience of building web apps with React, or another framework based
on Model, View, Component (MVC), you'll feel right at home building mobile apps in
React Native.

There are currently two widely-used ways to create and develop a React Native app: with
pure React Native using the React Native CLI, or with Expo (www.expo.io), which is a
comprehensive set of tools, libraries, and services for developing React Native applications.
Unless you need access to certain, often more advanced features of React Native, Expo is
my recommendation for React Native development. Expo has many features that improve
the development experience, such as access to more native functionality via the Expo SDK,
a more flexible and friendly CLI, and a browser-based GUI for common dev tasks. This is
why all of the recipes in this book that do not require pure React Native are implemented
using Expo. For more on the differences between React Native and Expo, check out
the React Native development tools section in Chapter 10, App Workflow and Third-Party
Plugins.

This book is intended to serve as a go-to reference for solutions to common problems you'll
likely face when building a wide variety of apps. Each chapter is presented as a series of
step-by-step recipes that each explain how to build a single feature of an overall app.

http://www.expo.io

Preface

[2]

React Native is an evolving language. At the time of writing, it's still in the 0.5x stage of the
development life cycle, so there are some things that will change in the months and years to
come. Best practices could morph into stale ideas, or the open source packages highlighted
here could fall out of favor. Every recipe in this book has been updated and revised from its
counterpart in the first edition, both to account for updates to the development process and
to improve clarity. I've done all I could to keep this text as up to date as possible, but
technology moves fast, so it's impossible for a book to keep up by itself. The repository for
all of the code covered in this book is hosted on GitHub at . If you find anything in the
code here that doesn't seem to be working correctly, you can submit an issue. Or, if you've
got a better way to do something, consider submitting a pull request!

Any time there's an update to anything in this book, you will be able to find the details and
changes in the GitHub repository.

I hope you find this book helpful on your way through the land of React Native. Happy
developing!

Who this book is for
This book has been designed with beginner to intermediate level React Native developers
in mind. Even if you don't have a lot of experience with web development, the JavaScript
found in this book should hopefully never be over your head. I've tried to avoid complexity
wherever possible, to keep the focus on the lesson being taught within a given recipe.

This book also assumes the developer works on a computer running macOS. While it is
technically possible to develop React Native apps using Windows or Linux, there are a
number of limitations that make macOS machines much more preferable for React Native
development, including the abilities to work with native iOS code via Xcode, run iOS code
on the iOS simulator, and work with the most robust development tools for React Native
app development.

What this book covers
Chapter 1, Setting Up Your Environment, covers the different software we'll be installing to
get started on the development of React Native apps.

Chapter 2, Creating a Simple React Native App, covers the basics of building layouts and
navigation. The recipes in the chapter serve as an introduction to React Native
development, and cover the basic functionality found in most any mobile app.

Preface

[3]

Chapter 3, Implementing Complex User Interfaces – Part I, covers features including custom
fonts and custom reusable themes.

Chapter 4, Implementing Complex User Interfaces – Part II, continues with more recipes based
on UI features. It covers features such as handling screen orientation changes and building
user forms.

Chapter 5, Implementing Complex User Interfaces – Part III, covers other common features
you'll likely need when building complex UIs. This chapter covers adding map support,
implementing browser-based authentication, and creating an audio player.

Chapter 6, Adding Basic Animations to Your App, covers the basics of creating animations.

Chapter 7, Adding Advanced Animations to Your App, continues building on the previous
chapter, with more advanced features.

Chapter 8, Working with Application Logic and Data, introduces us to building apps that
handle data. We'll cover topics including storing data locally and handling network loss
gracefully.

Chapter 9, Implementing Redux, covers implementing the Flux data patter using the Redux
library. Redux is a battle-tested way to handle data flow in React apps, and works just as
well in React Native.

Chapter 10, App Workflow and Third-Party Plugins, covers the different methods a developer
can use to build an app, along with how to build apps using open source code. This will
also cover the differences between building applications with pure React Native (using the
React Native CLI) and building applications with Expo (a comprehensive development).

Chapter 11, Adding Native Functionalities – Part I, covers the basics of working with native
iOS and Android code in a React Native app.

Chapter 12, Adding Native Functionalities – Part II, covers more complex techniques for
communicating between the React Native and native layers.

Chapter 13, Integration with Native Applications, covers integrating React Native with an
existing native app. Not every app can be built from scratch. These recipes should be
helpful for developers who need to integrate their work with an app already in the App
Store.

Preface

[4]

Chapter 14, Deploying Your App, covers the basic process of deploying a React Native app,
as well as details for using HockeyApp to track the metrics of your app.

Chapter 15, Optimizing the Performance of Your App, covers some tips, tricks, and best
practices for writing performant React Native code.

To get the most out of this book
It is assumed that you have the following levels of understanding:

You have some basic programming knowledge.
You are familiar with web development basics.

It will be helpful if you also have the following:

React, Vue, or Angular experience
At least an intermediate level of experience with JavaScript

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[5]

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/ ​warlyware/
react-​native-​cookbook. In case there's an update to the code, it will be updated on the
existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​9781788991926_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "We'll use a state object with a liked Boolean property for this purpose."

A block of code is set as follows:

export default class App extends React.Component {
 state = {
 liked: false,
 };

 handleButtonPress = () => {
 // We'll define the content on step 6
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

onst styles = StyleSheet.create({
 container: {
 flex: 1,
 },
 topSection: {
 flexGrow: 3,
 backgroundColor: '#5BC2C1',
 alignItems: 'center',
 },

https://github.com/warlyware/react-native-cookbook
https://github.com/warlyware/react-native-cookbook
https://github.com/warlyware/react-native-cookbook
https://github.com/warlyware/react-native-cookbook
https://github.com/warlyware/react-native-cookbook
https://github.com/warlyware/react-native-cookbook
https://github.com/warlyware/react-native-cookbook
https://github.com/warlyware/react-native-cookbook
https://github.com/warlyware/react-native-cookbook
https://github.com/warlyware/react-native-cookbook
https://github.com/warlyware/react-native-cookbook
https://github.com/warlyware/react-native-cookbook
https://github.com/warlyware/react-native-cookbook
https://github.com/warlyware/react-native-cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991926_ColorImages.pdf

Preface

[6]

Any command-line input or output is written as follows:

expo init project-name

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click the Components tab, and install a simulator from the list of provided simulators."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

Preface

[7]

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://authors.packtpub.com/
http://www.packt.com/

1
Setting Up Your Environment

The React Native ecosystem has evolved quite a bit since the first edition. The open source
tool Expo.io, in particular, has streamlined both the project initialization and development
phases, making working in React Native even more of a pleasure than it already was in
version 0.36.

With the Expo workflow, you'll be able to build native iOS and Android applications
using only JavaScript, work in the iOS simulator and Android emulator with live reload,
and effortlessly test your app on any real-world device via Expo's app. Until you need
access to native code (say, to integrate with legacy native code from a separate code base),
you can develop your application entirely in JavaScript without ever needing to use Xcode
or Android Studio. If your project ever evolves into an app that must support native code,
Expo provides the ability to eject your project, which changes your app into native code for
use in Xcode and Android Studio. For more information on ejecting your Expo project,
please see Chapter 10, App Workflow and Third-Party Plugins.

Expo is an awesome way to build fully featured apps for Android and iOS devices, without
ever having to deal with native code. Let's get started!

We will cover the following topics in this chapter:

Installing dependencies
Initializing your first application
Running your application in a simulator/emulator
Running your application on a real device

Setting Up Your Environment Chapter 1

[9]

Technical requirements
This chapter will cover installing the tools you'll be using throughout this book. They
include:

Expo
Xcode (for iOS simulator, macOS only)
Android Studio
Node.js
Watchman

Installing dependencies
The first step toward building our first React Native application is installing the
dependencies in order to get started.

Installing Xcode
As mentioned in the introduction of this chapter, Expo provides us with a workflow in
which we can avoid working in Xcode and Android Studio altogether, so we can develop
solely in JavaScript. However, in order to run your app in the iOS simulator, you will need
to have Xcode installed.

Xcode requires macOS, and therefore running your React Native
application in an iOS simulator is only possible on macOS.

Xcode should be downloaded from the App Store. You can search the App Store for Xcode,
or use the following link:
https:/​/​itunes.​apple. ​com/ ​app/ ​xcode/ ​id497799835.

Xcode is a sizable download, so expect this part to take a little while. Once you have
installed Xcode via the App Store, you can run it via the Applications folder in the
Finder:

This is the first screen you will see when launching Xcode. Note, if this is the first1.
time you've installed Xcode, you will not see recent projects listed down the
right-hand side:

https://itunes.apple.com/app/xcode/id497799835
https://itunes.apple.com/app/xcode/id497799835
https://itunes.apple.com/app/xcode/id497799835
https://itunes.apple.com/app/xcode/id497799835
https://itunes.apple.com/app/xcode/id497799835
https://itunes.apple.com/app/xcode/id497799835
https://itunes.apple.com/app/xcode/id497799835
https://itunes.apple.com/app/xcode/id497799835
https://itunes.apple.com/app/xcode/id497799835
https://itunes.apple.com/app/xcode/id497799835
https://itunes.apple.com/app/xcode/id497799835
https://itunes.apple.com/app/xcode/id497799835
https://itunes.apple.com/app/xcode/id497799835
https://itunes.apple.com/app/xcode/id497799835
https://itunes.apple.com/app/xcode/id497799835

Setting Up Your Environment Chapter 1

[10]

From the menu bar, choose Xcode | Preferences... as follows:2.

Setting Up Your Environment Chapter 1

[11]

Click the Components tab, and install a simulator from the list of provided3.
simulators:

Once installed, you can open the simulator from the menu bar: Xcode | Open4.
Developer Tool | Simulator:

Setting Up Your Environment Chapter 1

[12]

Installing Android Studio
Android Studio comes with the official Android emulator, which is the emulator that Expo
recommends for use during development.

How to do it...
Download Android Studio from https:/ ​/​developer. ​android. ​com/​studio/ ​.1.
Open the downloaded file and drag the Android Studio.app icon to2.
the Applications folder icon:

https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/
https://developer.android.com/studio/

Setting Up Your Environment Chapter 1

[13]

Once installed, we'll need to change the Android Studio preferences. Open3.
Android Studio, and then open Preferences from the Android Studio menu in
the system bar. In the Preferences submenus, select Appearance &
Behavior | System Settings | Android SDK. Under the SDK Tools tab, ensure
that you have some version of Android SDK Build-Tools installed, and install it if
isn't installed already.
We'll also need to add the Android SDK location to the system PATH by4.
editing ~/.bash_profile or ~/.bashrc. You can do this by adding the
following line:

export PATH=$PATH:/Users/MY_USER_NAME/Library/Android/sdk

Be sure to replace MY_USER_NAME with your system username.

On macOS, you will also need to add platform-tools to5.
your PATH in ~/.bash_profile or ~/.bashrc. You can do this by adding the
following line:

 PATH=$PATH:/Users/MY_USER_NAME/Library/Android/platform-tools

Be sure to replace MY_USER_NAME with your system username.

If you've never edited a .bash_profile or .bashrc file before, or aren't
familiar with PATH, you can get more information on what purpose they
serve and how to work with them from the following resources:

https:/ ​/​www. ​rc. ​fas.​harvard. ​edu/ ​resources/ ​documentation/
editing- ​your- ​bashrc/ ​

https:/ ​/​www. ​cyberciti. ​biz/ ​faq/​appleosx- ​bash- ​unix-
change- ​set- ​path- ​environment- ​variable/ ​

If the PATH was correctly updated, the adb command should work in the6.
Terminal. You may have to restart your Terminal for the changes to take effect.

https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.rc.fas.harvard.edu/resources/documentation/editing-your-bashrc/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/
https://www.cyberciti.biz/faq/appleosx-bash-unix-change-set-path-environment-variable/

Setting Up Your Environment Chapter 1

[14]

On a fresh install of Android Studio, you'll see a welcome screen. Start a new app7.
to fully open the software. Then, select the AVD Manager from the buttons in the
top -right corner of the window, as indicated in the following steps:

Press Create Virtual Device in the opened modal.8.
Select a device in the Select Hardware screen, and then press Next:9.

Setting Up Your Environment Chapter 1

[15]

Download one of the system images under the Recommended tab of the System10.
Image screen:

Press Finish on the final screen and Android Studio will create your new virtual11.
device. The device can be run at any time by pressing the play button in the row
of buttons in the top-right corner:

To run your app on an Android emulator during development, Expo used to recommend
using the excellent third-party emulator Genymotion. As of Expo version 29, however, they
now recommend using the official emulator that ships with Android Studio.

You can follow the step-by-step guide provided in the official Expo documentation to
ensure that Android Studio is set up to work properly with your Expo development
workflow. The guide can be found at https:/ ​/​docs. ​expo. ​io/​versions/ ​latest/ ​workflow/
android-​studio-​emulator.

https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator
https://docs.expo.io/versions/latest/workflow/android-studio-emulator

Setting Up Your Environment Chapter 1

[16]

This is all the setup you need to get started developing your first React Native app using
Expo! There are, however, a few extra steps you'll need to perform for working with pure
React Native applications (non-Expo applications). Pure React Native app development
will be covered in depth in Chapter 10, App Workflow and Third-Party Plugins. Since this
setup process is a little more involved and subject to change, I recommend referring to the
official guide. You can find these instructions in the React Native: Getting Started guide,
located at https:/​/ ​facebook. ​github. ​io/ ​react- ​native/ ​docs/ ​getting- ​started.
html under the Building Projects with Native Code tab section.

Once Simulator is open, select your desired iOS device via the menu
bar: Hardware | Device | [IOS Version] | [iOS Device]. When running Expo
applications in Simulator in the future, the same device should be used automatically.

The app can be started with the Expo CLI in your Terminal if you run the following
command:

 expo start

The command will build your app and open the Expo Developer Tools in your web
browser. In the Expo Developer Tools, select Run on iOS Simulator.

There's more...
Once you have launched an app in the simulator, you'll be able to press the Run on iOS
Simulator button without opening Simulator from Xcode. It should also remember your
device choice. Opening Simulator from Xcode provides an easy way to choose your
preferred iOS device to simulate.

If you followed the steps in the Expo guide, which can be found in the Installing Android
Studio section, you would have also seen that it covered installing a virtual device that we
can run as our emulator. To start your app on the emulator, just open the Android Virtual
Device you installed in Android Studio, run the expo start command in your Terminal,
and select Run on Android device/emulator.

Installing Node.js
Node.js is a JavaScript runtime built on Chrome's V8 JavaScript engine, and is designed to
build scalable network applications. Node allows JavaScript to be executed in a Terminal,
and is an indispensable tool for any web developer. For more information on what Node.js
is, you can read the project's About Node.js page at https:/ ​/​nodejs. ​org/ ​en/​about/ ​.

https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://nodejs.org/en/about/

Setting Up Your Environment Chapter 1

[17]

According to the Expo installation documentation, Node.js is not technically required, but
as soon as you start actually building something, you'll want to have it. Node.js itself is
outside the scope of this book, but you can check out the Further reading section at the end
of this chapter for more resources on working with Node.js.

There are numerous methods to install Node.js, and it is therefore difficult to recommend a
particular installation method. On macOS, you can install Node.js in one of the following
ways:

Downloading and installing Node.js from the project's site at https:/ ​/​nodejs.
org/​en/ ​download/ ​.
Installing via Homebrew. If you are familiar with Homebrew, this process is
explained succinctly at https:/ ​/​medium. ​com/ ​@katopz/ ​how- ​to- ​install-
specific- ​nodejs- ​version- ​c6e1cec8aa11.
Installing via Node Version Manager (NVM; https:/ ​/ ​github. ​com/ ​creationix/
nvm). NVM allows you to install multiple versions of Node.js and easily switch
between them. Use the instructions provided in the repository's README to
install NVM. This is the recommended method, due to its flexibility, as long as
you're comfortable working in the Terminal.

Installing Expo
The Expo project used to have a GUI-based development environment called the Expo
XDE, which has been replaced with a browser-based GUI called the Expo Developer Tools.
Since the Expo XDE has been deprecated, creating new Expo apps is now always done
using the Expo CLI. This can be installed using npm (Node Package Manager, which comes
as part of Node.js) via the Terminal with the following command:

 npm install expo-cli -g

We'll be using Expo quite a bit throughout this book to create and build out React Native
applications, particularly those apps that do not need access to native iOS or Android code.
Applications built with Expo have some very nice advantages for development, helping
obfuscate native code, streamlining app publishing and push notifications, and providing a
lot of useful functionality built into the Expo SDK. For more information on how Expo
works, and how it fits into the bigger picture of React Native development, see Chapter
10, App Workflow and Third-Party Plugins.

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://medium.com/@katopz/how-to-install-specific-nodejs-version-c6e1cec8aa11
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm

Setting Up Your Environment Chapter 1

[18]

Installing Watchman
Watchman is a tool used internally by React Native. Its purpose is to watch files for
updates, and trigger responses (such as live reloading) when changes occur. The Expo
documentation recommends installing Watchman, since it has been reported that some
macOS users have run into issues without it. The recommended method for installing
Watchman is via Homebrew. The missing package manager for macOS, Homebrew allows
you to install a wide array of useful programs straight from your Terminal. It's an
indispensable tool that should be in every developer's tool bag:

If you don't have Homebrew installed already, run the following command in1.
the Terminal to install it (you can read more about it and view the official
documentation at https:/ ​/ ​brew.​sh/ ​):

/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Once Homebrew has been installed, run the following two commands in2.
Terminal to install watchman:

brew update
brew install watchman

Initializing your first app
This is all the setup you need in order to get started developing your first React Native app
using Expo! There are however a few extra steps you'll need to perform for working with
pure React Native apps (non-Expo apps). Pure React Native app development will be
covered in depth in Chapter 10, App Workflow and Third-Party Plugins. Since this setup
process is a little more involved and subject to change, I recommend referring to the official
guide. You can find these instructions in the React Native | Getting Started guide located
at
https:/​/​facebook. ​github. ​io/ ​react- ​native/ ​docs/ ​getting- ​started. ​html under the
Building Projects with Native Code tab. From here on out, we can use the magic provided
by Expo to easily create new apps for development.

We'll create our first app using Expo via the Expo CLI. Making a new application is as
simple as running the following:

expo init project-name

https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html

Setting Up Your Environment Chapter 1

[19]

Running this command will first prompt you which type of app you'd like to create: either
a blank app, which has no functionality added, or a tabs app, which will create a new app
with minimal tab navigation. For the recipes in this book, we'll be using the blank app
option.

Once you've selected your preferred application type, a new, empty Expo-powered React
Native app in a new project-name directory is created, along with all of the dependencies
needed to start developing right away. All you need to do is begin editing the App.js file
in the new project directory to get to work.

To run our new app, we can cd into the directory, then use the expo start command.
This will automatically build and serve the app, and open a new browser window with the
Expo Developer Tools for your in-development React Native app.

For a list of all of the available commands for the Expo CLI, check out the documentation
at https:/​/​docs.​expo. ​io/ ​versions/ ​latest/ ​guides/ ​expo- ​cli. ​html.

With our first application created, let's move on to running the application in an iOS
simulator and/or Android emulator.

Running your app in a simulator/emulator
You have created a new project, and started running that project with Expo in the last step.
Once we start making changes to our React Native code, wouldn't it be nice to see the
results of those changes? Thanks to Expo, running your project in the installed iOS
simulator or Android emulator has also been streamlined.

Running your app on an iOS simulator
Running your app in the Xcode simulator only takes a few clicks.

Open Xcode.1.
Open the Simulator from the menu bar: Xcode | Open Developer2.
Tool | Simulator:

https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html
https://docs.expo.io/versions/latest/guides/expo-cli.html

Setting Up Your Environment Chapter 1

[20]

The app can be started with the Expo CLI in your Terminal if you run the3.
following command:

expo start

The command will build your app and open the Expo Developer Tools in your
web browser. In the Expo Developer Tools, select Run on iOS Simulator.

The first time you run a React Native app on the iOS simulator via Run on iOS4.
Simulator, the Expo app will be installed on the simulator, and your app will
automatically be opened within the Expo app. The simulated iOS will ask if you
want to Open in "Expo"?. Choose Open:

Setting Up Your Environment Chapter 1

[21]

Upon loading, you will see the Expo Developer menu. You can toggle between5.
this menu and your React Native app by pressing command key + D on your
keyboard:

There's more...
Once you have launched an app in the simulator, you'll be able to press the Run on iOS
Simulator button without opening Simulator from Xcode. It should also remember your
device choice. Opening Simulator from Xcode provides an easy way to choose your
preferred iOS device to simulate.

You can toggle between your React Native app and the Expo Developer menu, a list of
helpful features for development, by pressing command key + M on your keyboard. The
Expo Developer menu should look something like this:

Setting Up Your Environment Chapter 1

[22]

Running your app on a real device
Running your development app on a real device as easy as running your app on a
simulator. With the clever combination of the native Expo app and a QR code, running on a
real device is only a few clicks and taps away!

Running your app on an iPhone or Android
You can get the in-development app running on your phone in three simple steps:

Open the App Store on your iPhone, or the Google Play Store on your Android1.
device.
Search for and download the Expo Client app.2.
While your app is running on your development machine, you should also have3.
the Expo Developer Tools open in a browser. You should see a QR code at the
bottom of the left-hand side menu of the Expo Developer Tools. Use the iPhone's
native Camera app, or the Scan QR Code button in the Expo Client app on
Android, to scan the QR code. This will open your in-development app on the
device within the Expo Client app.

Your React Native app should now be running on your real device, fully equipped with
live reload! You can also shake the device to toggle between your React Native app and the
Expo Developer menu.

Setting Up Your Environment Chapter 1

[23]

Summary
In this chapter, we've gone through all the steps required for getting started with
developing React Native apps, including initializing a new project, emulating running your
new project on your computer, and running your development app on real-world devices.
Thanks to the power of Expo, it's easier to jump in and start working than ever before.

Now that you've got everything set up, it's time to start building!

Further reading
Here's a list of other resources covering similar topics:

The Expo installation documentation at https:/ ​/​docs. ​expo. ​io/​versions/
latest/​introduction/ ​installation. ​html.
Node.js Web Development at https:/ ​/​www. ​packtpub. ​com/ ​mapt/ ​book/ ​web_
development/ ​9781785881503

Introducing Hot Reloading - React Native at https:/ ​/​facebook. ​github. ​io/ ​react-
native/​blog/ ​2016/ ​03/ ​24/ ​introducing- ​hot- ​reloading. ​html. This blog post
from the React Native team describes how Hot Reloading works in depth.
Publishing with Expo at https:/ ​/ ​docs.​expo. ​io/ ​versions/ ​latest/ ​guides/
publishing. ​html. Expo has a publish feature that allows you to share your in-
development React Native application with fellow developers by creating a
persistent URL.
Expo Snack at https:/ ​/​snack. ​expo. ​io. Similar to codepen.io or jsfiddle.net,
Snack lets you live edit a React Native app in the browser!

https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://docs.expo.io/versions/latest/introduction/installation.html
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://www.packtpub.com/mapt/book/web_development/9781785881503
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://docs.expo.io/versions/latest/guides/publishing.html
https://snack.expo.io
https://snack.expo.io
https://snack.expo.io
https://snack.expo.io
https://snack.expo.io
https://snack.expo.io
https://snack.expo.io
https://snack.expo.io
https://snack.expo.io
http://codepen.io
https://jsfiddle.net/

2
Creating a Simple React Native

App
In this chapter, we'll cover the following recipes:

Adding styles to elements
Using images to mimic a video player
Creating a toggle button
Displaying a list of items
Using flexbox to create a layout
Setting up and using navigation

React Native is a fast-growing library. Over the last few years it has become very popular
among the open source community. There's often a new release every other week that
improves performance, adds new components, or provides access to new APIs on the
device.

In this chapter, we'll learn about the most common components in the library. To step
through all of the recipes in this chapter, we'll have to create a new application, so make
sure you have your environment up and running.

Adding styles to elements
We have several components at our disposal, but containers and text are the most common
and useful components to create layouts or other components. In this recipe, we'll see how
to use containers and text, but most importantly we'll see how styles work in React Native.

Creating a Simple React Native App Chapter 2

[25]

Getting ready
Follow the instructions in the previous chapter in order to create a new application. We'll
name this application fake-music-player.

When creating a new application with Expo, a small amount of boilerplate code will be
added to the App.js file in the root folder. This will be the starting point of any React
Native application you build. Feel free to remove all boilerplate at the beginning of each
recipe, as all code (including what's used in the App.js boilerplate) will be discussed.

How to do it...
In the App.js file, we're going to create a stateless component. This component1.
will mimic a small music player. It will only display the name of the song and a
bar to show the progress. The first step is importing our dependencies:

import React from 'react';
import { StyleSheet, Text, View } from 'react-native';

Once we've imported the dependencies, we can build out the component: 2.

export default class App extends React.Component {
 render() {
 const name = '01 - Blue Behind Green Bloches';

 return (
 <View style={styles.container}>
 <View style={styles.innerContainer} />
 <Text style={styles.title}>
 <Text style={styles.subtitle}>Playing:</Text> {name}
 </Text>
 </View>
);
 }
}

Creating a Simple React Native App Chapter 2

[26]

We have our component ready, so now we need to add some styles, to add colors3.
and fonts:

const styles = StyleSheet.create({
 container: {
 margin: 10,
 marginTop: 100,
 backgroundColor: '#e67e22',
 borderRadius: 5,
 },
 innerContainer: {
 backgroundColor: '#d35400',
 height: 50,
 width: 150,
 borderTopLeftRadius: 5,
 borderBottomLeftRadius: 5,
 },
 title: {
 fontSize: 18,
 fontWeight: '200',
 color: '#fff',
 position: 'absolute',
 backgroundColor: 'transparent',
 top: 12,
 left: 10,
 },
 subtitle: {
 fontWeight: 'bold',
 },
});

Creating a Simple React Native App Chapter 2

[27]

As long as our simulator and emulator are running our application, we should4.
see the changes:

Creating a Simple React Native App Chapter 2

[28]

How it works...
In step 1, we included the dependencies of our component. In this case, we used View,
which is a container. If you're familiar with web development, View is similar to div. We
could add more Views inside other Views, Texts, Lists, and any other custom
component that we create or import from a third-party library.

If you're familiar with React you'll notice that, this is a stateless component, which means it
doesn't have any state; it's a pure function and doesn't support any of the life cycle
methods.

We're defining a name constant in the component, but in real-world applications this data
should come from the props. In the return, we're defining the JavaScript XML (JSX) that
we're going to need to render our component, along with a reference to the styles.

Each component has a attribute called style. This property receives an object with all of
the styles that we want to apply to the given component. Styles are not inherited (except for
the Text component) by the child components, which means we need to set individual
styles for each component.

In step 3, we defined the styles for our component. We're using the StyleSheet API to
create all of our styles. We could have used a plain object containing the styles, but by using
the StyleSheet API instead of an object, we gain some performance optimizations, as the
styles will be reused for every renderer, as opposed to creating an object every time the
render method gets executed.

Creating a Simple React Native App Chapter 2

[29]

There's more...
I'd like to call your attention to the definition of the title style in step 3. Here, we've
defined a property called backgroundColor and set transparent as its value. As a good
exercise, let's comment this line of code and see the result:

Creating a Simple React Native App Chapter 2

[30]

On iOS, the text will have an orange background color and it might not be what we really
want to happen in our UI. In order to fix this, we need to set the background color of the
text as transparent. But the question is, why is this happening? The reason is that React
Native adds some optimizations to the text by setting the color from the parent's
background color. This will improve the rendering performance because the rendering
engine won't have to calculate the pixels around each letter of the text and the rendering
will be executed faster.

Think carefully when setting the background color to transparent. If the
component is going to be updating the content very frequently, there
might be some performance issues with text, especially if the text is too
long.

Using images to mimic a video player
Images are an important part of any UI, whether we use them to display icons, avatars, or
pictures. In this recipe, we'll use images to create a mock video player. We'll also display
the icons from the local device and a large image from a remote server (hosted by Flickr).

Getting ready
In order to follow the steps in this recipe, let's create a new application. We're going to
name it fake-video-player.

We're going to display a few images in our application to mimic a video player, so you'll
need corresponding images for your application. I recommend using the icons I used by
downloading them from the repository for this recipe on GitHub at https:/ ​/​github. ​com/
warlyware/​react- ​native- ​cookbook/ ​tree/ ​master/ ​chapter- ​2/​fake- ​video- ​player/ ​images.

How to do it...
The first thing we're going to do is create a new folder called Images in the root1.
of the project. Add the images you've downloaded to the new folder.
In the App.js file, we include all of the dependencies we'll need for this2.
component:

import React from 'react';
import { StyleSheet, View, Image } from 'react-native';

https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/fake-video-player/images

Creating a Simple React Native App Chapter 2

[31]

We need to require the images that'll be displayed in our component. By3.
defining them in constants, we can use the same image in different places:

const playIcon = require('./images/play.png');
const volumeIcon = require('./images/sound.png');
const hdIcon = require('./images/hd-sign.png');
const fullScreenIcon = require('./images/full-screen.png');
const flower = require('./images/flower.jpg');
const remoteImage = { uri:
`https://farm5.staticflickr.com/4702/24825836327_bb2e0fc39b_b.jpg`
};

We're going to use a stateless component to render the JSX. We'll use all of the4.
images we've declared in the previous step:

export default class App extends React.Component {
 render() {
 return (
 <View style={styles.appContainer}>
 <ImageBackground source={remoteImage} style=
 {styles.videoContainer} resizeMode="contain">
 <View style={styles.controlsContainer}>
 <Image source={volumeIcon} style={styles.icon} />
 <View style={styles.progress}>
 <View style={styles.progressBar} />
 </View>
 <Image source={hdIcon} style={styles.icon} />
 <Image source={fullScreenIcon} style={styles.icon} />
 </View>
 </ImageBackground>
 </View>
);
 }
};

Once we have the elements that we're going to render, we need to define the5.
styles for each element:

const styles = StyleSheet.create({
 flower: {
 flex: 1,
 },
 appContainer: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 },
 videoContainer: {

Creating a Simple React Native App Chapter 2

[32]

 backgroundColor: '#000',
 flexDirection: 'row',
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 },
 controlsContainer: {
 padding: 10,
 backgroundColor: '#202020',
 flexDirection: 'row',
 alignItems: 'center',
 marginTop: 175,
 },
 icon: {
 tintColor: '#fff',
 height: 16,
 width: 16,
 marginLeft: 5,
 marginRight: 5,
 },
 progress: {
 backgroundColor: '#000',
 borderRadius: 7,
 flex: 1,
 height: 14,
 margin: 4,
 },
 progressBar: {
 backgroundColor: '#bf161c',
 borderRadius: 5,
 height: 10,
 margin: 2,
 paddingTop: 3,
 width: 80,
 alignItems: 'center',
 flexDirection: 'row',
 },
});

Creating a Simple React Native App Chapter 2

[33]

We're done! Now, when you view the application, you should see something like6.
the following:

Creating a Simple React Native App Chapter 2

[34]

How it works...
In step 2, we required the Image component. This is the component responsible for
rendering images from the local filesystem on the device or from a remote server.

In step 3, we required all of the images. It's good practice to require the images outside of
the component in order to only require them once. On every renderer, React Native will use
the same image. If we were dealing with dynamic images from a remote server, then we'd
need to require them on every renderer.

The require function accepts the path of the image as a parameter. The path is relative to
the folder that our class is in. For remote images, we need to use an object defining uri for
where our file is.

In step 4, a stateless component was declared. We used remoteImage as the background of
our application via an ImageBackground element, since Image elements cannot have child
elements. This element acts similarly to the background-url property in CSS.

The source property of Image accepts an object to load remote images or a reference to the
required file. It's very important to explicitly require every image that we want to use
because when we prepare our application for distribution, images will be added to the
bundle automatically. This is the reason we should avoid doing anything dynamic, such as
the following:

const iconName = playing ? 'pause' : 'play';
const icon = require(iconName);

The preceding code won't include the images in the final bundle. As a result, we'll have
errors when trying to access these images. Instead, we should refactor our code to
something like this:

const pause = require('pause');
const play = require('playing');
const icon = playing ? pause : play;

This way, the bundle will include both images when preparing our application for
distribution, and we can decide which image to display dynamically at runtime.

Creating a Simple React Native App Chapter 2

[35]

In step 5, we defined the styles. Most of the properties are self-explanatory. Even though the
images we're using for icons are white, I've added the tintColor property to show how it
can be used to color images. Give it a try! Change tintColor to #f00 and watch the icons
turn red.

Flexbox is being used to align different portions of the layout. Flexbox in React Native
behaves essentially the same as it does in web development. We'll discuss flexbox more in
the Using flexbox to create a layout recipe later in this chapter, but the complexities of flexbox
itself are outside the scope of this book.

Creating a toggle button
Buttons are an essential UI component in every application. In this recipe, we'll create a
toggle button, which will be unselected by default. When the user taps on it, we'll change
the styles applied to the button to make it appear selected.

We'll learn how to detect the tap event, use an image as the UI, keep the state of the button,
and add styles based on the component state.

Getting ready
Let's create a new app. We're going to name it toggle-button. We're going to use one
image in this recipe. You can download the assets for this recipe from the corresponding
repository hosted on GitHub at https:/ ​/ ​github. ​com/ ​warlyware/ ​react- ​native- ​cookbook/
tree/​master/​chapter- ​2/ ​toggle- ​button/ ​images.

How to do it...
We're going to create a new folder called images in the root of the project and1.
add the heart image to the new folder.

https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/toggle-button/images

Creating a Simple React Native App Chapter 2

[36]

Let's import the dependencies for this class next:2.

import React, { Component } from 'react';
import {
 StyleSheet,
 View,
 Image,
 Text,
 TouchableHighlight,
} from 'react-native';

const heartIcon = require('./images/heart.png');

For this recipe, we need to keep track of whether the button has been pressed.3.
We'll use a state object with a liked Boolean property for this purpose. The
initial class should look like this:

export default class App extends React.Component {
 state = {
 liked: false,
 };

 handleButtonPress = () => {
 // Defined in a later step
 }

 render() {
 // Defined in a later step
 }
}

We need to define the content of our new component inside the render method.4.
Here, we're going to define the Image button and a Text element underneath it:

export default class App extends React.Component {
 state = {
 liked: false,
 };

 handleButtonPress = () => {
 // Defined in a later step
 }

 render() {
 return (
 <View style={styles.container}>
 <TouchableHighlight
 style={styles.button}

Creating a Simple React Native App Chapter 2

[37]

 underlayColor="#fefefe"
 >
 <Image
 source={heartIcon}
 style={styles.icon}
 />
 </TouchableHighlight>
 <Text style={styles.text}>Do you like this app?</Text>
 </View>
);
 }
}

Let's define some styles to set dimensions, position, margins, colors, and so on:5.

const styles = StyleSheet.create({
 container: {
 marginTop: 50,
 alignItems: 'center',
 },
 button: {
 borderRadius: 5,
 padding: 10,
 },
 icon: {
 width: 180,
 height: 180,
 tintColor: '#f1f1f1',
 },
 liked: {
 tintColor: '#e74c3c',
 },
 text: {
 marginTop: 20,
 },
});

Creating a Simple React Native App Chapter 2

[38]

When we run the project on the simulators, we should have something similar to6.
the following screenshot:

Creating a Simple React Native App Chapter 2

[39]

In order to respond to the tap event, we need to define the content of the7.
handleButtonPress function and assign it as a callback to the
onPress property:

 handleButtonPress = () => {
 this.setState({
 liked: !this.state.liked,
 });
 }

 render() {
 return (
 <View style={styles.container}>
 <TouchableHighlight
 onPress={this.handleButtonPress}
 style={styles.button}
 underlayColor="#fefefe"
 >
 <Image
 source={heartIcon}
 style={styles.icon}
 />
 </TouchableHighlight>
 <Text style={styles.text}>Do you like this app?</Text>
 </View>
);
 }

Creating a Simple React Native App Chapter 2

[40]

If we test our code, we won't see anything changing on the UI, even though the8.
state on the component changes when we press the button. Let's add a different
color to the image when the state changes. That way, we'll be able to see a
response from the UI:

 render() {
 const likedStyles = this.state.liked ? styles.liked :
undefined;

 return (
 <View style={styles.container}>
 <TouchableHighlight
 onPress={this.handleButtonPress}
 style={styles.button}
 underlayColor="#fefefe"
 >
 <Image
 source={heartIcon}
 style={[styles.icon, likedStyles]}
 />
 </TouchableHighlight>
 <Text style={styles.text}>Do you like this app?</Text>
 </View>
);
 }

How it works...
In step 2, we imported the TouchableHighlight component. This is the component
responsible for handling the touch event. When the user touches the active area, the content
will be highlighted based on the underlayColor value we have set.

In step 3, we defined the state of Component. In this case, there's only one property on the
state, but we can add as many as needed. In Chapter 3, Implementing Complex User
Interfaces – Part I, we'll see more recipes about handling the state in more complex
scenarios.

Creating a Simple React Native App Chapter 2

[41]

In step 6, we used the setState method to change the value of the liked property. This
method is inherited from the Component class that we're extending.

In step 7, based on the current state of the liked property, we used the styles to set the
color of the image to red or we returned undefined to avoid applying any styles. When
assigning the styles to the Image component, we used an array to assign many objects. This
is very handy because the component will merge all of the styles into one single
object internally. The objects with the highest index will overwrite the properties with the
lowest object index in the array:

Creating a Simple React Native App Chapter 2

[42]

There's more...
In a real application, we're going to use several buttons, sometimes with an icon aligned to
the left, a label, different sizes, colors, and so on. It's highly recommended to create a
reusable component to avoid duplicating code all over our app. In Chapter 3, Implementing
Complex User Interfaces – Part I, we'll create a button component to handle some of these
scenarios.

Displaying a list of items
Lists are everywhere: a list of orders in the user's history, a list of available items in a store,
a list of songs to play. Nearly any application will need to display some kind of information
in a list.

For this recipe, we're going to display several items in a list component. We're going to
define a JSON file with some data, then we're going to load this file using a simple require
to finally render each item with a nice but simple layout.

Getting ready
Let's start by creating an empty app. We'll name this application list-items. We're going
to need an icon to display on each item. The easiest way to get images is to download them
from this recipe's repository hosted on GitHub at https:/ ​/ ​github. ​com/ ​warlyware/ ​react-
native-​cookbook/ ​tree/ ​master/ ​chapter- ​2/​list- ​items/ ​images.

How to do it...
We'll start by creating an images folder and adding basket.png to it. Also,1.
create an empty file in the root of the project called sales.json.

https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-2/list-items/images

Creating a Simple React Native App Chapter 2

[43]

Inside the sales.json file, we'll define the data that we're going to display in2.
the list. Here's some sample data:

[
 {
 "items": 5,
 "address": "140 Broadway, New York, NY 11101",
 "total": 38,
 "date": "May 15, 2016"
 }
]

To avoid cluttering the pages of this book, I've only defined one record, but go3.
ahead and add more content to the array. Copying and pasting the same object
multiple times will do the trick. In addition, you could change some values on
the data so that each item displays unique data in the UI.

In our App.js file, let's import the dependencies we'll need:4.

import React, { Component } from 'react'; import {
 StyleSheet,
 View,
 ListView,
 Image,
 Text,
} from 'react-native';
import data from './sales.json';

const basketIcon = require('./images/basket.png');

Now, we need to create the class to render the list of items. We're going to keep5.
the sales data on the state; that way, we could insert or remove elements easily:

export default class App extends React.Component {
 constructor(props) {
 super(props);
 const dataSource = new ListView.DataSource({
 rowHasChanged: (r1, r2) => r1 !== r2
 });

 this.state = {
 dataSource: dataSource.cloneWithRows(data),
 };
 }

 renderRow(record) {
 // Defined in a later step

Creating a Simple React Native App Chapter 2

[44]

 }

 render() {
 // Defined in a later step
 }
}

In the render method, we need to define the ListView component and we'll use6.
the renderRow method to render each item. The dataSource property defines
the array of elements that we're going to render on the list:

render() {
 return (
 <View style={styles.mainContainer}>
 <Text style={styles.title}>Sales</Text>
 <ListView dataSource={this.state.dataSource}
renderRow={this.renderRow} />
 </View>
);
}

Now, we can define the contents of renderRow. This method receives each object7.
containing all of the information we need. We're going to display the data in
three columns. In the first column, we'll show an icon; in the second column,
we'll show the number of items for each sale and the address where this order
will ship; and the third column will display the date and the total:

 return (
 <View style={styles.row}>
 <View style={styles.iconContainer}>
 <Image source={basketIcon} style={styles.icon} />
 </View>
 <View style={styles.info}>
 <Text style={styles.items}>{record.items} Items</Text>
 <Text style={styles.address}>{record.address}</Text>
 </View>
 <View style={styles.total}>
 <Text style={styles.date}>{record.date}</Text>
 <Text style={styles.price}>${record.total}</Text>
 </View>
 </View>
);

Creating a Simple React Native App Chapter 2

[45]

Once we have the JSX defined, it's time to add the styles. First, we'll define colors,8.
margins, paddings, and so on for the main container, title, and row container. In
order to create the three columns for each row, we need to use the
flexDirection: 'row' property. We'll learn more about this property in the
Using flexbox to create a layout recipe later in this chapter:

const styles = StyleSheet.create({
 mainContainer: {
 flex: 1,
 backgroundColor: '#fff',
 },
 title: {
 backgroundColor: '#0f1b29',
 color: '#fff',
 fontSize: 18,
 fontWeight: 'bold',
 padding: 10,
 paddingTop: 40,
 textAlign: 'center',
 },
 row: {
 borderColor: '#f1f1f1',
 borderBottomWidth: 1,
 flexDirection: 'row',
 marginLeft: 10,
 marginRight: 10,
 paddingTop: 20,
 paddingBottom: 20,
 },
});

Creating a Simple React Native App Chapter 2

[46]

If we refresh the simulators, we should see something similar to the following9.
screenshot:

Now, inside the StyleSheet definition, let's add styles for the icon. We're going10.
to add a yellow circle as the background and change the color of the icon to
white:

 iconContainer: {
 alignItems: 'center',
 backgroundColor: '#feb401',
 borderColor: '#feaf12',

Creating a Simple React Native App Chapter 2

[47]

 borderRadius: 25,
 borderWidth: 1,
 justifyContent: 'center',
 height: 50,
 width: 50,
 },
 icon: {
 tintColor: '#fff',
 height: 22,
 width: 22,
 },

After this change, we'll see a nice icon on the left side of each row, as shown in11.
the following screenshot:

Creating a Simple React Native App Chapter 2

[48]

Finally, we'll add the styles for the text. We need to set color, size,12.
fontWeight, padding, and a few other properties:

 info: {
 flex: 1,
 paddingLeft: 25,
 paddingRight: 25,
 },
 items: {
 fontWeight: 'bold',
 fontSize: 16,
 marginBottom: 5,
 },
 address: {
 color: '#ccc',
 fontSize: 14,
 },
 total: {
 width: 80,
 },
 date: {
 fontSize: 12,
 marginBottom: 5,
 },
 price: {
 color: '#1cad61',
 fontSize: 25,
 fontWeight: 'bold',
 }

Creating a Simple React Native App Chapter 2

[49]

The end result should look similar to the following screenshot:13.

How it works...
In step 5, we created the data source and added data to the state. The
ListView.DataSource class implements performance data processing for the ListView
component. The rowHasChanged property is required, and it should be a function to
compare the next element. In our case, if the changes are different from the current data,
which is represented as (r1, r2) => r1 !== r2, then React Native will know to
respond and re-render the UI.

Creating a Simple React Native App Chapter 2

[50]

When filling up the data source with data, we need to call the cloneWithRows method and
send an array of records.

If we want to add more data, we should call the cloneWithRows method again with an
array containing the previous and new data. The data source will make sure to compute the
differences and re-render the list as necessary.

In step 7, we define the JSX to render the list. Only two properties are required for the list:
the data source we already have from step 6 and renderRow.

The renderRow property accepts a function as a value. This function needs to return the
JSX for each row.

There's more...
We've created a simple layout using flexbox; however, there's another recipe in this chapter
where we'll dive into more detail about using flexbox.

Once we have our list, chances are that we're going to need to see the detail of each order.
You can use the TouchableHighlight component as the main container for each row, so
go ahead and give it a try. If you are not sure how to use the TouchableHighlight
component, take a look at the Creating a toggle button recipe from earlier in this chapter.

Using flexbox to create a layout
In this recipe, we'll learn about flexbox. In the previous recipes in this chapter, we've been
using flexbox to create layouts, but in this recipe, we'll focus on the properties we have at
our disposal by recreating the layout from a random name generator application on the
App Store called Nominazer (https:/ ​/​itunes. ​apple. ​com/ ​us/ ​app/​nominazer/ ​id765422087?
mt=​8).

Working in flexbox in React Native is essentially the same as working with flexbox in CSS.
This means if you're comfortable developing websites with a flexbox layout, then you
already know how to create layouts in React Native! This exercise will cover the basics of
working with flexbox in React Native, but for a list of all of the layout props you can use,
refer to the documentation on Layout Props (https:/ ​/ ​facebook. ​github. ​io/​react- ​native/
docs/​layout-​props. ​html).

https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://itunes.apple.com/us/app/nominazer/id765422087?mt=8
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html

Creating a Simple React Native App Chapter 2

[51]

Getting ready
Let's begin by creating a new blank app. We'll name it flexbox-layout.

How to do it...
In App.js, let's import the dependencies we'll need for our app:1.

import React from 'react';
import { StyleSheet, Text, View } from 'react-native';

Our application only needs a render method since we're building a static2.
layout. The rendered layout consists of a container View element and three
child View elements for each colored section of the app:

export default class App extends React.Component {
 render() {
 return (
 <View style={styles.container}>
 <View style={styles.topSection}> </View>
 <View style={styles.middleSection}></View>
 <View style={styles.bottomSection}></View>
 </View>);
 }
 }

Next, we can begin adding our styles. The first style we'll add will be applied to3.
the View element that wraps our entire app. Setting the flex property to 1 will
cause all children elements to fill all empty space:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 }
});

Now, we can add the styles for the three child View elements. Each section has a4.
flexGrow property applied to it, which dictates how much of the available space
each element should take up. topSection and bottomSection are both set to 3,
so they'll take up the same amount of space. Since the middleSection has
the flexGrow property set to 1, this element will take up one third of the space
that topSection and bottomSection take up:

 topSection: {

Creating a Simple React Native App Chapter 2

[52]

 flexGrow: 3,
 backgroundColor: '#5BC2C1',
 },
 middleSection: {
 flexGrow: 1,
 backgroundColor: '#FFF',
 },
 bottomSection: {
 flexGrow: 3,
 backgroundColor: '#FD909E',
 },

If we open our application in the simulators, we should already be able to see the5.
basic layout taking shape:

Creating a Simple React Native App Chapter 2

[53]

Here, we can add a Text element to each of the three child View elements we6.
created in step 2. Note the newly added code has been highlighted:

 render() {
 return (
 <View style={styles.container}>
 <View style={styles.topSection}>
 <Text style={styles.topSectionText}>
 4 N A M E S
 </Text>
 </View>
 <View style={styles.middleSection}>
 <Text style={styles.middleSectionText}>
 I P S U M
 </Text>
 </View>
 <View style={styles.bottomSection}>
 <Text style={styles.bottomSectionText}>
 C O M
 </Text>
 </View>
 </View>
);
 }

The text for each section defaults to the top-left corner of that section. We can use7.
flexbox to justify and align each of these elements to the desired positions. All
three child View elements have the alignItems flex property set to 'center',
which will cause the children of each element to be centered along the x axis.
justifyContent is used on the middle and bottom sections to define how child
elements should be justified along the y axis:

onst styles = StyleSheet.create({
 container: {
 flex: 1,
 },
 topSection: {
 flexGrow: 3,
 backgroundColor: '#5BC2C1',
 alignItems: 'center',
 },
 middleSection: {
 flexGrow: 1,
 backgroundColor: '#FFF',
 justifyContent: 'center',
 alignItems: 'center',
 },

Creating a Simple React Native App Chapter 2

[54]

 bottomSection: {
 flexGrow: 3,
 backgroundColor: '#FD909E',
 alignItems: 'center',
 justifyContent: 'flex-end'
 }
});

All that's left to be done is to add basic styles to the Text elements to increase8.
fontSize, fontWeight, and the required margin:

 topSectionText: {
 fontWeight: 'bold',
 marginTop: 50
 },
 middleSectionText: {
 fontSize: 30,
 fontWeight: 'bold'
 },
 bottomSectionText: {
 fontWeight: 'bold',
 marginBottom: 30
 }

If we open our application in simulators, we should be able to see our completed9.
layout:

Creating a Simple React Native App Chapter 2

[55]

How it works...
Our application is looking really good, and it was quite easy to accomplish by using
flexbox. We created three distinct sections by using View elements that take up different
fractions of the screen by setting the flexGrow properties to 3, 1, and 3, respectively. This
causes the top and bottom sections to be of equal vertical size, and the middle section to be
one third the size of the top and bottom.

When using flexbox, we have two directions to lay out child content, row and column:

row: This allows us to arrange the children of the container horizontally.
column: This allows us to arrange the children of the container vertically. This is
the default direction in React Native.

When setting flex: 1 as we did with the container View element, we're telling that
element to take up all available space. If we were to remove flex: 1 or set flex to 0, we
can see the layout collapse in on itself, since the container is no longer flexing into all of the
empty space:

Creating a Simple React Native App Chapter 2

[56]

Flexbox is great for supporting different screen resolutions as well. Even though different
devices may have different resolutions, we can ensure consistent layouts that will look
good on any device.

There's more...
There are some differences between how flexbox works in React Native and how it works
in CSS. First, the default flexDirection property in CSS is row, whereas the
default flexDirection property in React Native is column.

The flex property also behaves a bit differently in React Native. Instead of setting flex to
a string value, it can be set to a positive integer, 0, or -1. As the official React Native
documentation states:

When flex is a positive number, it makes the component flexible and it'll be sized
proportional to its flex value. So, a component with flex set to 2 will take twice the space as
a component with flex set to 1. When flex is 0, the component is sized according to width
and height and is inflexible. When flex is -1, the component is normally sized according
width and height. However, if there's not enough space, the component will shrink to its
minWidth and minHeight.

There's a lot more to talk about with flexbox, but for now we've gotten our feet wet. In
Chapter 3, Implementing Complex User Interfaces – Part I, we'll learn more about layouts.
 we'll learn more about layouts, and we'll create a complex layout that uses more of the
available layout properties.

See also
React Native Layout Props documentation (https:/ ​/ ​facebook. ​github. ​io/
react-​native/ ​docs/ ​layout- ​props. ​html)
React Native Text Style Props documentation (https:/ ​/​facebook. ​github. ​io/
react-​native/ ​docs/ ​text- ​style- ​props. ​html)
Yoga (https:/ ​/ ​github. ​com/ ​facebook/ ​yoga)—Facebook's Flexbox
implementation utilized by React Native
An excellent Stack Overflow post that covers how React Native flex properties
work, with examples—https:/ ​/ ​stackoverflow. ​com/​questions/ ​43143258/ ​flex-
vs-​flexgrow- ​vs- ​flexshrink- ​vs-​flexbasis- ​in- ​react- ​native

https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/layout-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://facebook.github.io/react-native/docs/text-style-props.html
https://github.com/facebook/yoga
https://github.com/facebook/yoga
https://github.com/facebook/yoga
https://github.com/facebook/yoga
https://github.com/facebook/yoga
https://github.com/facebook/yoga
https://github.com/facebook/yoga
https://github.com/facebook/yoga
https://github.com/facebook/yoga
https://github.com/facebook/yoga
https://github.com/facebook/yoga
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native
https://stackoverflow.com/questions/43143258/flex-vs-flexgrow-vs-flexshrink-vs-flexbasis-in-react-native

Creating a Simple React Native App Chapter 2

[57]

Setting up and using navigation
For any application that has more than one view, a navigation system is of paramount
importance. The need for navigation is so pervasive in application development that Expo
provides two templates when you create a new application: Blank or Tab Navigation. This
recipe is based on a very pared down version of the Tab Navigation app template provided
by Expo. We'll still begin the recipe with a Blank app and build our basic Tab Navigation
app from scratch to better understand all of the requisite parts. After completing this recipe,
I encourage you to start a new app with the Tab Navigation template to see some of the
more advanced features we'll be covering in later chapters, including push notifications and
stack navigation.

Getting ready
Let's go ahead and create a new blank application named simple-navigation. We're also
going to need a third-party package for handling our navigation. We'll be using 1.5.9
version of the react-navigation package. Using a newer version of this package will not
work properly with this code, as the package's API has recently gone through breaking
changes.. In the Terminal, navigate to the root of the new project and install this package
with the following command:

yarn add react-navigation@1.5.9

That's all of the setup we need. Let's build!

How to do it...
Inside the App.js file, let's import our dependencies:1.

import React from 'react';
import { StyleSheet, View } from 'react-native';

The App component for this app will be very simple. We just need an App class2.
with a render function that renders our app container. We'll also add styles for
filling the window and adding a white background:

export default class App extends React.Component {
 render() {
 return (
 <View style={styles.container}>
 </View>

Creating a Simple React Native App Chapter 2

[58]

);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#fff',
 }
});

The next step for App.js will be to import and use the MainTabNavigator3.
component, which is a new component that we'll create in step 4:

React.Component {
 render() {
 return (
 <View style={styles.container}>
 <MainTabNavigator />
 </View>
);
 }
}

We'll need to create a new file for our MainTabNavigator component. Let's4.
create a new folder in the root of the project called navigation. In this new
folder, we'll create MainTabNavigator.js for our navigation component.
In MainTabNavigator.js, we can import all of the dependencies we need for5.
navigation. The dependencies include three screens
(HomeScreen, LinksScreen, and SettingsScreen). We'll add these screens in
later steps:

import React from 'react';
import { Ionicons } from '@expo/vector-icons';
import { TabNavigator, TabBarBottom } from 'react-navigation';

import HomeScreen from '../screens/HomeScreen';
import LinksScreen from '../screens/LinksScreen';
import SettingsScreen from '../screens/SettingsScreen';

Creating a Simple React Native App Chapter 2

[59]

Our navigation component will use the TabNavigator method provided by6.
react-navigation for defining the routes and navigation for our
app. TabNavigator takes two parameters: a RouteConfig object to define each
route and a TabNavigatorConfig object to define the options for our
TabNavigator component:

export default TabNavigator({
 // RouteConfig, defined in step 7.
}, {
 // TabNavigatorConfig, defined in steps 8 and 9.
});

First, we'll define the RouteConfig object, which will create a route map for our7.
application. Each key in the RouteConfig object serves as the name of the route.
We set the screen property for each route to the corresponding screen component
we want to be displayed on that route:

export default TabNavigator({
 Home: {
 screen: HomeScreen,
 },
 Links: {
 screen: LinksScreen,
 },
 Settings: {
 screen: SettingsScreen,
 },
}, {
 // TabNavigatorConfig, defined in steps 8 and 9.
});

TabNavigatorConfig has a little more to it. We pass the TabBarBottom8.
component provided by react-navigation to the tabBarComponent property
to declare what kind of tab bar we want to use (in this case, a tab bar designed for
the bottom of the screen). tabBarPosition defines whether the bar is on the top
or bottom of the screen. animationEnabled specifies whether transitions are
animated, and swipeEnabled declares whether views can be changed via
swiping:

export default TabNavigator({
 // Route Config, defined in step 7.
}, {
 navigationOptions: ({ navigation }) => ({
 // navigationOptions, defined in step 9.
 }),

Creating a Simple React Native App Chapter 2

[60]

 tabBarComponent: TabBarBottom,
 tabBarPosition: 'bottom',
 animationEnabled: false,
 swipeEnabled: false,
});

In the navigationOptions property of the TabNavigatorConfig object, we'll9.
define dynamic navigationOptions for each route by declaring a function that
takes the navigation prop for the current route/screen. We can use this function
to decide how the tab bar will behave per route/screen, since it's designed to
return an object that sets navigationOptions for the appropriate screen. We'll
use this pattern to define the appearance of the tabBarIcon property for each
route:

 navigationOptions: ({ navigation }) => ({
 tabBarIcon: ({ focused }) => {
 // Defined in step 10
 },
 }),

The tabBarIcon property is set to a function whose parameters are the props for10.
the current route. We'll use the focused prop to decide whether to render a
colored in icon or an outlined icon, depending on the current route. We
get routeName from the navigation prop via navigation.state, define icons
for each of our three routes, and return the rendered icon for the appropriate
route. We'll use the Ionicons component provided by Expo to create each icon
and define the icon's color based on whether the icon's route is focused:

 navigationOptions: ({ navigation }) => ({
 tabBarIcon: ({ focused }) => {
 const { routeName } = navigation.state;

 let iconName;
 switch (routeName) {
 case 'Home':
 iconName = `ios-information-circle`;
 break;
 case 'Links':
 iconName = `ios-link`;
 break;
 case 'Settings':
 iconName = `ios-options`;
 }
 return (
 <Ionicons name={iconName}
 size={28} style={{marginBottom: -3}}

Creating a Simple React Native App Chapter 2

[61]

 color={focused ? Colors.tabIconSelected :
 Colors.tabIconDefault}
 />
);
 },
 }),

The last step in setting up MainTabNavigator is to create the Colors constant11.
used to color each icon:

const Colors = {
 tabIconDefault: '#ccc',
 tabIconSelected: '#2f95dc',
}

Our routing is now complete! All that's left now is to create the three screen12.
components for each of the three routes we imported and defined
in MainTabNavigator.js. For simplicity's sake, each of the three screens will
have identical code, except for background color and identifying text.
In the root of the project, we need to create a screens folder to house our three13.
screens. In the new folder, we'll need to make HomeScreen.js,
LinksScreen.js, and SettingsScreen.js.
Let's start by opening the newly created HomeScreen.js and adding the14.
necessary dependencies:

import React from 'react';
import {
 StyleSheet,
 Text,
 View,
} from 'react-native';

The HomeScreen component itself is quite simple, just a full color page with the15.
word Home in the middle of the screen to show which screen we're currently on:

export default class HomeScreen extends React.Component {
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.headline}>
 Home
 </Text>
 </View>
);
 }
}

Creating a Simple React Native App Chapter 2

[62]

We'll also need to add the styles for our Home screen layout:16.

const styles = StyleSheet.create({
 container: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center',
 backgroundColor: '#608FA0',
 },
 headline: {
 fontWeight: 'bold',
 fontSize: 30,
 color: 'white',
 }
});

All that's left now is to repeat step 14, step 15, and step 16 for the remaining two17.
screens, along with some minor changes. LinksScreen.js should look like
HomeScreen.js with the following highlighted sections updated:

import React from 'react';
import {
 StyleSheet,
 Text,
 View,
} from 'react-native';

export default class LinksScreen extends React.Component {
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.headline}>
 Links
 </Text>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center',
 backgroundColor: '#F8759D',
 },
 headline: {
 fontWeight: 'bold',

Creating a Simple React Native App Chapter 2

[63]

 fontSize: 30,
 color: 'white',
 }
});

Similarly, inside SettingsScreen.js, we can create the third screen component18.
using the same structure as the previous two screens:

import React from 'react';
import {
 StyleSheet,
 Text,
 View,
} from 'react-native';

export default class SettingsScreen extends React.Component {
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.headline}>
 Settings
 </Text>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center',
 backgroundColor: '#F0642E',
 },
 headline: {
 fontWeight: 'bold',
 fontSize: 30,
 color: 'white',
 }
});

Creating a Simple React Native App Chapter 2

[64]

Our application is complete! When we view our application in the simulator, it19.
should have a tab bar along the bottom of the screen that transitions between our
three routes:

Creating a Simple React Native App Chapter 2

[65]

How it works...
In this recipe, we covered one of the most common and fundamental navigation patterns in
native apps, the tab bar. The React Navigation library is a very robust, feature rich
navigation solution and will likely be able to provide your app with any kind of navigation
needed. We'll cover more uses of React Navigation in Chapter 3, Implementing Complex User
Interfaces - Part I.

See also
React Navigation official documentation (https:/ ​/​reactnavigation. ​org/ ​)
Expo's guide on routing and navigation (https:/ ​/ ​docs. ​expo. ​io/​versions/
latest/​guides/ ​routing- ​and- ​navigation. ​html)

https://reactnavigation.org/
https://reactnavigation.org/
https://reactnavigation.org/
https://reactnavigation.org/
https://reactnavigation.org/
https://reactnavigation.org/
https://reactnavigation.org/
https://reactnavigation.org/
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html
https://docs.expo.io/versions/latest/guides/routing-and-navigation.html

3
Implementing Complex User

Interfaces - Part I
In this chapter, we will implement complex user interfaces. We will learn more about using
flexbox to create components that work on different screen sizes, how to detect orientation
changes, and more.

The chapter will cover the following recipes:

Creating a reusable button with theme support
Building a complex layout for tablets using flexbox
Including custom fonts
Using font icons

Creating a reusable button with theme
support
Reusability is very important when developing software. We should avoid repeating the
same thing over and over again, and instead we should create small components that we
can reuse as many times as possible.

In this recipe, we will create a Button component, and we are also going to define several
properties to change its look and feel. While going through this recipe, we will learn how to
dynamically apply different styles to a component.

Getting ready
We need to create an empty app. Let's name it reusable-button.

Implementing Complex User Interfaces - Part I Chapter 3

[67]

How to do it...
In the root of our new app, we'll need to create a new Button folder for our1.
reusable button-related code. Let's also create index.js and styles.js in our
new Button folder.
We will start by importing the dependencies for our new component. In the2.
Button/index.js file, we will be creating a Button component. This means
we'll need to import the Text and TouchableOpacity components. You'll
notice we're also importing styles that do not exist yet. We will define these styles
in a different file later in this recipe. In the Button/index.js file, we should
have these imports:

import React, { Component } from 'react';

import {
 Text,
 TouchableOpacity,
} from 'react-native';

import {
 Base,
 Default,
 Danger,
 Info,
 Success
} from './styles';

Now that we have our dependencies imported, let's define the class for this3.
component. We are going to need some properties and two methods. It's also
required that we export this component so we can use it elsewhere:

export default class Button extends Component {
 getTheme() {
 // Defined in a later step
 }

 render() {
 // Defined in a later step
 }
}

Implementing Complex User Interfaces - Part I Chapter 3

[68]

We need to select the styles to apply to our component based on the given4.
properties. For this purpose, we will define the getTheme method. This
method will check whether any of the properties are true and will return the
appropriate styles. If none are true, it will return the Default style:

 getTheme() {
 const { danger, info, success } = this.properties;

 if (info) {
 return Info;
 }

 if (success) {
 return Success;
 }

 if (danger) {
 return Danger;
 }

 return Default;
 }

It's required that all components have a render method. Here, we need to return5.
the JSX elements for this component. In this case, we will get the styles for the
given properties and apply them to the TouchableOpacity component.
We are also defining a label for the button. Inside this label, we will render the
children property. If a callback function is received, then it will be executed
when the user presses this component:

 render() {
 const theme = this.getTheme();
 const {
 children,
 onPress,
 style,
 rounded,
 } = this.properties;

 return (
 <TouchableOpacity
 activeOpacity={0.8}
 style={[
 Base.main,
 theme.main,
 rounded ? Base.rounded : null ,

Implementing Complex User Interfaces - Part I Chapter 3

[69]

 style,
]}
 onPress={onPress}
 >
 <Text style={[Base.label, theme.label]}>{children}</Text>
 </TouchableOpacity>
);
 }

We are almost done with our Button component. We still need to define our6.
styles, but first let's move over to the App.js file in the root of the project. We
need to import the dependencies, including the Button component we have
created.
We are going to display an alert message when the user clicks the button,
therefore, we also need to import the Alert component:

import React from 'react';
import {
 Alert,
 StyleSheet,
 View
} from 'react-native';
import Button from './Button';

Once we have all the dependencies, let's define a stateless component that7.
renders a few buttons. The first button will use the default style, and the second
button will use the success style, which will add a nice green color to the button's
background. The last button will display an alert when it gets pressed. For that,
we need to define the callback function that will use the Alert component, just
setting the title and message:

export default class App extends React.Component {
 handleButtonPress() {
 Alert.alert('Alert', 'You clicked this button!');
 }

 render() {
 return(
 <View style={styles.container}>
 <Button style={styles.button}>
 My first button
 </Button>
 <Button success style={styles.button}>
 Success button
 </Button>
 <Button info style={styles.button}>

Implementing Complex User Interfaces - Part I Chapter 3

[70]

 Info button
 </Button>
 <Button danger rounded style={styles.button}
 onPress={this.handleButtonPress}>
 Rounded button
 </Button>
 </View>
);
 }
}

We are going to add some styles for how the main layout should align and justify8.
each button, along with some margins:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center',
 },
 button: {
 margin: 10,
 },
});

If we try to run the app now, we will get some errors. This is because we haven't9.
declared the styles for our button. Let's work on that now. Inside the
Button/styles.js file, we need to define the base styles. These styles will be
applied to every instance of the button. Here, we will define a radius, padding,
font color, and all the common styles that we need for this component:

import { StyleSheet } from 'react-native';

const Base = StyleSheet.create({
 main: {
 padding: 10,
 borderRadius: 3,
 },
 label: {
 color: '#fff',
 },
 rounded: {
 borderRadius: 20,
 },
});

Implementing Complex User Interfaces - Part I Chapter 3

[71]

Once we have the common styles for our button, we need to define the styles for10.
the Danger, Info, Success, and Default themes. For this, we are going to
define different objects for each theme. Inside each theme, we will use the same
object but with specific styles for that theme.
To keep things simple, we are only going to change the backgroundColor, but
we do have the option to use as many style properties as we want:

const Danger = StyleSheet.create({
 main: {
 backgroundColor: '#e74c3c',
 },
});

const Info = StyleSheet.create({
 main: {
 backgroundColor: '#3498db',
 },
});

const Success = StyleSheet.create({
 main: {
 backgroundColor: '#1abc9c',
 },
});

const Default = StyleSheet.create({
 main: {
 backgroundColor: 'rgba(0 ,0 ,0, 0)',
 },
 label: {
 color: '#333',
 },
});

Finally, let's export the styles. This step is necessary so that the Button11.
component can import all the styles for each theme:

export {
 Base,
 Danger,
 Info,
 Success,
 Default,
};

Implementing Complex User Interfaces - Part I Chapter 3

[72]

If we open the app, we should be able to see our completed layout:12.

How it works...
In this example, we made use of the TouchableOpacity component. This component
allows us to define a nice animation that changes the opacity when the user presses the
button.

Implementing Complex User Interfaces - Part I Chapter 3

[73]

We can use the activeOpacity property to set the opacity value when the button gets
pressed. The value can be any number between 0 and 1, where 0 is completely transparent.

If we press the rounded button, we will see a native Alert message, as shown in the
following screenshot:

Implementing Complex User Interfaces - Part I Chapter 3

[74]

Building a complex layout for tablets using
flexbox
Flexbox is really convenient when it comes to creating responsive layouts. React Native
uses flexbox as a layout system, and if you are already familiar with these concepts, it will
be really easy for you to start creating layouts of any kind.

As discussed in the previous chapter, there are some differences between the way flexbox
works in React Native as compared to how it works in CSS. For more information on the
differences between React Native and CSS flexbox, please refer to the How it works... section
of the Using flexbox to create a layout recipe in Chapter 2, Creating a Simple React Native App.

In this recipe, we will create a layout to display a list of blog posts. Each post will be a small
card with an image, an excerpt, and a button to read more. We will use flexbox to arrange
the posts on the main container based on screen size. This will allow us to handle the screen
rotation by properly aligning the cards in both landscape and portrait.

Getting ready
We are going to need a new app for this recipe. Let's name it tablet-flexbox.

When we create a new app with Expo, there is an app.json that gets created at the base of
the project that provides some basic configuration. In this recipe, we are building an app
that we want to be sure looks good on a tablet, particularly in landscape mode. When we
open app.json, we should see an orientation property set to 'portrait'. This
property determines which orientations should be allowed within our app. The
orientation property accepts 'portrait' (lock app to portrait mode), 'landscape'
(lock app to landscape mode), and 'default' (allow app to adjust screen orientation
based on the device's orientation). For our app, we will set the orientation to
'landscape' so that we can support both landscape and portrait layouts.

Implementing Complex User Interfaces - Part I Chapter 3

[75]

We'll also be using some images, which need to be hosted remotely for this recipe to
properly simulate loading remote data and displaying images with the Image component. I
have uploaded these images to the www.imgur.com image hosting service, and referenced
these remote images in the data.json file that the recipe uses for its consumable data. If,
for any reason these remote images don't load properly for you, they are also in included in
the repository for this recipe under the /assets folder. Feel free to upload them to any
server or hosting service, and update the image URLs in data.json accordingly. The
repository can be found on GitHub at https:/ ​/​github. ​com/​warlyware/ ​react- ​native-
cookbook/​tree/​master/ ​chapter- ​3/ ​tablet- ​flexbox.

How to do it...
First, we need to create a Post folder in the root of the project. We need to also1.
create an index.js and a styles.js file in the new Post folder. We will use
this Post component to display each post for our app. Finally, we need to add a
data.json file to the root of the project, which we will use to define a list of
posts.
Now we can move on to building the App.js component. First, we need to2.
import the dependencies for this class. We are going to use a ListView
component to render the list of posts. We'll also need Text and
View components for content containers. We are going to create a custom Post
component to render each post on the list, and we will also need to import the
data.json file:

import React, { Component } from 'react';
import { ListView, StyleSheet, Text, View } from 'react-native';

import Post from './Post';
import data from './data.json';

http://www.imgur.com
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-3/tablet-flexbox

Implementing Complex User Interfaces - Part I Chapter 3

[76]

Let's create the class for the App component. Here, we will use the data from the3.
.json file to create the dataSource for the list. We will add some actual data to
our data.json file in the next step. In the render method, we are going to
define a simple top toolbar and the List component. We are going to use the
Post component for every record and get the dataSource from the state.

If you have any questions regarding the ListView component, you should take a
look at the recipe in Chapter 2, Creating a Simple React Native App, where we
created a list of orders:

const dataSource = new ListView.DataSource({
 rowHasChanged: (r1, r2) => r1 !== r2,
});

export default class App extends Component {
 state = {
 dataSource: dataSouce.cloneWithRows(data.posts),
 };

 render() {
 return (
 <View style={styles.container}>
 <View style={styles.toolbar}>
 <Text style={styles.title}>Latest posts</Text>
 </View>
 <ListView
 dataSource={this.state.dataSource}
 renderRow={post => <Post {...post} />}
 style={styles.list}
 contentContainerStyle={styles.content}
 />
 </View>
);
 }
}

Implementing Complex User Interfaces - Part I Chapter 3

[77]

Two files are still missing: the .json file with the data and the Post component.4.
In this step, we will create the data that we are going to use for each post. To
make things simple, there is only one record of data in the following code
snippet, but the rest of the POST object I used in this recipe can be found in the
data.json file of the code repository for this recipe, located at https:/ ​/​github.
com/​warlyware/ ​react- ​native- ​cookbook/ ​blob/ ​master/ ​chapter- ​3/ ​tablet-
flexbox/ ​data. ​json:

{
 "posts": [
 {
 "title": "The Best Article Ever Written",
 "img": "https://i.imgur.com/mf9daCT.jpg",
 "content": "Lorem ipsum dolor sit amet...",
 "author": "Bob Labla"
 },
 // Add more records here.
]
}

Now that we have some data, we are ready to work on the Post component. In5.
this component, we need to display the image, title, and button. Since this
component does not need to know about state, we will use a stateless
component. The following code uses all the components we learned about in
Chapter 2, Creating a Simple React Native App. If something is unclear, please
review that chapter again.
This component receives the data as a parameter, which we then use for
displaying the content in the component. The Image component will use the img
property defined on each object in the data.json file to display the remote
image:

import React from 'react';
import {
 Image,
 Text,
 TouchableOpacity,
 View
} from 'react-native';

import styles from './styles';

const Post = ({ content, img, title }) => (
 <View style={styles.main}>
 <Image
 source={{ uri: img }}

https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json
https://github.com/warlyware/react-native-cookbook/blob/master/chapter-3/tablet-flexbox/data.json

Implementing Complex User Interfaces - Part I Chapter 3

[78]

 style={styles.image}
 />
 <View style={styles.content}>
 <Text style={styles.title}>{title}</Text>
 <Text>{content}</Text>
 </View>
 <TouchableOpacity style={styles.button} activeOpacity={0.8}>
 <Text style={styles.buttonText}>Read more</Text>
 </TouchableOpacity>
 </View>
);

export default Post;

Once we have defined the component, we also need to define the styles for each6.
post. Let's create an empty StyleSheet export so that the Post component
relying on styles.js will properly function:

import { StyleSheet } from 'react-native';

const styles = StyleSheet.create({
 // Defined in later steps
});

export default styles;

If we try to run the app, we should be able to see the data from the .json file on7.
the screen. It won't be very pretty though, since, we haven't applied any styles
yet.
We have everything we need on the screen. Now we are ready to start working8.
on the layout. First, let's add styles for our Post container. We'll be
setting width, height, borderRadius, and a few others. Let's add them to
the /Post/styles.js file:

const styles = StyleSheet.create({
 main: {
 backgroundColor: '#fff',
 borderRadius: 3,
 height: 340,
 margin: 5,
 width: 240,
 }
});

Implementing Complex User Interfaces - Part I Chapter 3

[79]

By now, we should see small boxes vertically aligned. That's some progress, but9.
we need to add more styles to the image so we can see it onscreen. Let's add an
image property to the same styles const from the last step. The resizeMode
property will allow us to set how we want to resize the image. In this case, by
selecting cover, the image will keep the aspect ratio of the original:

 image: {
 backgroundColor: '#ccc',
 height: 120,
 resizeMode: 'cover',
 }

For the content of the post, we want to take up all of the available height on the10.
card, therefore we need to make it flexible and add some padding. We'll also add
overflow: hidden to the content to avoid overflowing the View element. For
the title, we only need to change the fontSize and add a margin to the
bottom:

 content: {
 padding: 10,
 overflow: 'hidden',
 flex: 1,
 },
 title: {
 fontSize: 18,
 marginBottom: 5,
 },

Finally, for the button, we will set the backgroundColor to green and the text to11.
white. We also need to add some padding and margin for spacing:

 button: {
 backgroundColor: '#1abc9c',
 borderRadius: 3,
 padding: 10,
 margin: 10,
 },
 buttonText: {
 color: '#fff',
 textAlign: 'center',
 }

Implementing Complex User Interfaces - Part I Chapter 3

[80]

If we refresh the simulator, we should see our posts in small cards. Currently, the12.
cards are arranged vertically, but we want to render all of them horizontally. We
are going to fix that in the following steps:

Primary styles have been added for all post elements

Currently, we can only see the first three items on the list in a column instead of13.
in a row across the screen. Let's return to the App.js file and start adding our
styles. We add flex: 1 to the container so that our layout will always fill the
screen. We also want to show a toolbar at the top. For that, we just need to define
some padding and color as follows:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 },
 toolbar: {
 backgroundColor: '#34495e',
 padding: 10,
 paddingTop: 20,
 },
 title: {
 color: '#fff',
 fontSize: 20,
 textAlign: 'center',
 }
});

Implementing Complex User Interfaces - Part I Chapter 3

[81]

Let's add some basic styles to the list as well. Just a nice background color and14.
some padding. We'll also add the flex property, which will ensure the list takes
all the available height on the screen. We only have two components here: the
toolbar and the list. The toolbar is taking about 50 px. If we make the list flexible,
it will take all of the remaining available space, which is exactly what we want
when rotating the device or when running the app in different screen resolutions:

 list: {
 backgroundColor: '#f0f3f4',
 flex: 1,
 paddingTop: 5,
 paddingBottom: 5,
 }

If we check the app in the simulator once more, we should be able to see the15.
toolbar and list being laid out as expected:

Styles have been applied to each post to give them a card like appearance

Implementing Complex User Interfaces - Part I Chapter 3

[82]

We are almost done with this app. All we have left to do is to arrange the cards16.
horizontally. This can be achieved with flexbox in three simple steps:

 content: {
 flexDirection: 'row',
 flexWrap: 'wrap',
 justifyContent: 'space-around',
 },

The first step is applying these content styles via the contentContainerStyle
property in the ListView component. Internally, the ListView component will
apply these styles to the content container, which wraps all of the child views.
We then set the flexDirection to row. This will horizontally align the cards on
the list; however, this presents a new problem: we can only see one single row of
posts. To fix the problem, we need to wrap the items. We do this by setting
the flexWrap property to wrap, which will automatically move the items that
don't fit in the view to the next row. Lastly, we use the justifyContent
property and set it to center, which will center our ListView in the middle of
our app.

We now have a responsive app that looks good on a tablet in landscape mode:17.

Side-by-side comparison of iPad and Android tablet screenshots in landscape mode

Implementing Complex User Interfaces - Part I Chapter 3

[83]

And looks just as good in portrait mode:

Side-by-side comparison of iPad and Android tablet screenshots in portrait mode

There's more...
Expo also provides a ScreenOrientation helper for changing the orientation
configuration of the app. This helper also allows for more granular orientation settings
(such as ALL_BUT_UPSIDE_DOWN or LANDSCAPE_RIGHT). If your app needs dynamic,
granular control over screen orientation, see the ScreenOrientation Expo documentation
for information: https:/ ​/​docs. ​expo. ​io/ ​versions/ ​v24. ​0.​0/ ​sdk/​screen- ​orientation.
html.

See also
Official documentation on static image resources and the <Image> component can be found
at https://facebook.github.io/react-native/docs/images.html.

https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://docs.expo.io/versions/v24.0.0/sdk/screen-orientation.html
https://facebook.github.io/react-native/docs/images.html

Implementing Complex User Interfaces - Part I Chapter 3

[84]

Including custom fonts
At some point, we are probably going to want to display text with a custom font family.
Until now, we've been using the default font, but we can use any other that we like.

Before Expo, the process of adding custom fonts was more difficult, required working with
native code, and needed to be implemented differently in iOS and Android. Luckily,
through the use of Expo's font helper library, this has become streamlined and simplified.

In this recipe, we will import a few fonts and then display text using each of the imported
font families. We will also use different font styles, such as bold and italic.

Getting ready
In order to work on this example we need some fonts. You can use whatever fonts you
want. I recommend going to Google Fonts (https:/ ​/ ​fonts. ​google. ​com/ ​) and downloading
your favorites. For this recipe, we will be using the Josefin Sans and Raleway fonts.

Once you have the fonts downloaded, let's create an empty app and name it custom-
fonts. When we create a blank app with Expo, it creates an assets folder in the root of
the project for placing all of your assets (images, fonts, and so on), so we'll follow the
standard and add our fonts to this folder. Let's create the /assets/fonts folder and add
our custom font files downloaded from Google Fonts.

When downloading fonts from Google Fonts, you'll get a .zip file containing a .ttf file
for each of the font family variants. We will be using the regular, bold, and italic variations,
so copy the corresponding .ttf files for each variant in each family to our /assets/fonts
folder.

How to do it...
With our font files in place, the first step is to open App.js and add the imports1.
we'll need:

import React from 'react';
import { Text, View, StyleSheet } from 'react-native';
import { Font } from 'expo';

https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/
https://fonts.google.com/

Implementing Complex User Interfaces - Part I Chapter 3

[85]

Next, we'll add a simple component for displaying some text that we want to2.
style with our custom fonts. We'll start with just one Text element to display the
regular variant of the Roboto font:

export default class App extends React.Component {
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.josefinSans}>
 Hello, Josefin Sans!
 </Text>
 </View>
);
 }
}

Let's also add some starter styles for the component we've just created. For now,3.
we'll just increase the font size for our josefinSans class styles:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#fff',
 alignItems: 'center',
 justifyContent: 'center',
 },
 josefinSans: {
 fontSize: 40,
 }
});

If we open the app now in our simulator, we will see the Hello, Josefin Sans!4.
text displayed in the middle of the screen using the default font:

Implementing Complex User Interfaces - Part I Chapter 3

[86]

Let's load our JosefinSans-Regular.ttf font file so that we can style our text5.
with it. We'll use the componentDidMount life cycle hook provided by React
Native to tell our app when to start loading the font:

export default class App extends React.Component {

 componentDidMount() {
 Font.loadAsync({
 'josefin-sans-regular': require('./assets/fonts/JosefinSans-
Regular.ttf'),
 });
 }

 render() {

Implementing Complex User Interfaces - Part I Chapter 3

[87]

 return (
 <View style={styles.container}>
 <Text style={styles.josefinSans}>
 Hello, Josefin Sans!
 </Text>
 </View>
);
 }
}

Next, we'll add the font we're loading to the styles being applied to our Text6.
element:

const styles = StyleSheet.create({
 // Other styles from step 3
 josefinSans: {
 fontSize: 40,
 fontFamily: 'josefin-sans-regular'
 }
});

We now have styles, right? Well, not quite. If we look back at our simulators,7.
we'll see that we're getting an error instead:

console.error: "fontFamily 'josefin-sans-regular' is not a system
font and has not been loaded through Expo.Font.loadAsync"

But we did just load fonts via Expo.Font.loadAsync! What gives? It turns out8.
we have a race condition on our hands. The josefinSans styles we defined for
our Text element are being applied before the Josefin Sans font has been loaded.
To handle this problem, will need to use the component's state to keep track of
the load status of the font:

export default class App extends React.Component {
 state = {
 fontLoaded: false
 };

Implementing Complex User Interfaces - Part I Chapter 3

[88]

Now that our component has a state, we can update the state's fontLoaded9.
property to true once the font is loaded. Using the ES6 feature async/await
makes this succinct and straightforward. Let's do this in our
componentDidMount code block:

 async componentDidMount() {
 await Font.loadAsync({
 'josefin-sans-regular': require('./assets/fonts/JosefinSans-
 Regular.ttf'),
 });
 }

Since we are now awaiting the Font.loadAsync() call, we can set the state of10.
fontLoaded to true once the call is complete:

 async componentDidMount() {
 await Font.loadAsync({
 'josefin-sans-regular': require('./assets/fonts/JosefinSans-
 Regular.ttf'),
 });

 this.setState({ fontLoaded: true });
 }

All that's left to do is to update our render method to only render the Text11.
element that depends on the custom font when the fontLoaded state property is
true:

 <View style={styles.container}>
 {
 this.state.fontLoaded ? (
 <Text style={styles.josefinSans}>
 Hello, Josefin Sans!
 </Text>
) : null
 }
 </View>

Implementing Complex User Interfaces - Part I Chapter 3

[89]

Now, when we check out our app in the simulators, we should see our custom12.
font being applied:

Let's load the rest of our fonts so that we can use them in our app as well:13.

 await Font.loadAsync({
 'josefin-sans-regular': require('./assets/fonts/JosefinSans-
 Regular.ttf'),
 'josefin-sans-bold': require('./assets/fonts/JosefinSans-
 Bold.ttf'),
 'josefin-sans-italic': require('./assets/fonts/JosefinSans-

Implementing Complex User Interfaces - Part I Chapter 3

[90]

 Italic.ttf'),
 'raleway-regular': require('./assets/fonts/Raleway-
 Regular.ttf'),
 'raleway-bold': require('./assets/fonts/Raleway-Bold.ttf'),
 'raleway-italic': require('./assets/fonts/Raleway-
 Italic.ttf'),
 });

We'll also need Text elements for displaying text in each of our new font14.
families/variants. Note that we'll also need to wrap all our Text elements in
another View element, since JSX expressions require that there be only one
parent node. We're also now passing the style property an array of styles to
apply in order to consolidate the fontSize and padding styles we'll be applying
in the next step:

 render() {
 return (
 <View style={styles.container}>
 {
 this.state.fontLoaded ? (
 <View style={styles.container}>
 <Text style={[styles.josefinSans,
 styles.textFormatting]}>
 Hello, Josefin Sans!
 </Text>
 <Text style={[styles.josefinSansBold,
 styles.textFormatting]}>
 Hello, Josefin Sans!
 </Text>
 <Text style={[styles.josefinSansItalic,
 styles.textFormatting]}>
 Hello, Josefin Sans!
 </Text>
 <Text style={[styles.raleway,
styles.textFormatting]}>
 Hello, Raleway!
 </Text>
 <Text style={[styles.ralewayBold,
 styles.textFormatting]}>
 Hello, Raleway!
 </Text>
 <Text style={[styles.ralewayItalic,
 styles.textFormatting]}>
 Hello, Raleway!
 </Text>
 </View>
) : null

Implementing Complex User Interfaces - Part I Chapter 3

[91]

 }
 </View>
);
 }

All that's left to apply our custom fonts is to add the new styles to the15.
StyleSheet:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#fff',
 alignItems: 'center',
 justifyContent: 'center',
 },
 josefinSans: {
 fontFamily: 'josefin-sans-regular',
 },
 josefinSansBold: {
 fontFamily: 'josefin-sans-bold',
 },
 josefinSansItalic: {
 fontFamily: 'josefin-sans-italic',
 },
 raleway: {
 fontFamily: 'raleway-regular',
 },
 ralewayBold: {
 fontFamily: 'josefin-sans-bold'
 },
 ralewayItalic: {
 fontFamily: 'josefin-sans-italic',
 },
 textFormatting: {
 fontSize: 40,
 paddingBottom: 20
 }
});

Now, in our app, we'll see six different text elements, each styled with its own16.
custom font:

Implementing Complex User Interfaces - Part I Chapter 3

[92]

How it works...
In step 5 and step 6, we used the componentDidMount React life cycle hook to tell when
our app finishes loading. While it may seem tempting to use componentWillMount, this
too will throw an error, since componentWillMount is not guaranteed to wait for our
Font.loadAsync to finish. By using componentDidMount, we can also assure we are not
blocking the initial rendering of the app.

Implementing Complex User Interfaces - Part I Chapter 3

[93]

In step 9, we used the ES6 feature async/await. You're likely familiar with this pattern if
you're a web developer, but if you'd like more information, I've included an awesome
article from ponyfoo.com in the See also section at the end of this recipe, which does a great
job of explaining how async/await works.

In step 11, we used a ternary statement to render either our custom font styled Text
element if loaded, or to render nothing if it's not loaded by returning null.

Fonts loaded through Expo don’t currently support the fontWeight or
fontStyle properties—you will need to load those variations of the font
and specify them by name, as we have done here with bold and italic.

See also
A great article on async/await can be found at https:/ ​/ ​ponyfoo. ​com/ ​articles/
understanding-​javascript- ​async- ​await.

Using font icons
Icons are an indispensable part of almost any app, particularly in navigation and buttons.
Similar to Expo's font helper, covered in the previous chapter, Expo also has an icon helper
that makes adding icon fonts much less of a hassle than using vanilla React Native. In this
recipe, we'll see how to use the icon helper module with the popular FontAwesome and
Ionicons icon font libraries.

Getting ready
We'll need to make a new project for this recipe. Let's name this project font-icons.

http://ponyfoo.com
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await

Implementing Complex User Interfaces - Part I Chapter 3

[94]

How to do it...
We'll begin by opening App.js and importing the dependencies that we need to1.
build the app:

import React from 'react';
import { StyleSheet, Text, View } from 'react-native';
import { FontAwesome, Ionicons } from '@expo/vector-icons';

Next, we can add the shell of the application, where we will display the icons:2.

export default class App extends React.Component {
 render() {
 return (
 <View style={styles.container}>
 </View>
);
 }
}

Inside of the View element, let's add two more View elements for holding icons3.
from each icon set:

export default class App extends React.Component {
 render() {
 return (
 <View style={styles.container}>
 <View style={styles.iconRow}>

 </View>
 <View style={styles.iconRow}>

 </View>
 </View>
);
 }
}

Implementing Complex User Interfaces - Part I Chapter 3

[95]

Now, let's add the styles for each of our declared elements. As we've seen in4.
previous recipes, the container styles fill the screen with flex: 1 and center
the items with alignItems and justifyContent set to center. The iconRow
property sets the flexDirection to row so that our icons will be lined up in a
row:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#fff',
 alignItems: 'center',
 justifyContent: 'center',
 },
 iconRow: {
 flexDirection: 'row',
 },
});

Now that the basic structure of our app is in place, let's add our icons. In the first5.
row of icons, we'll use four FontAwesome components to display four icons from
the FontAwesome font library. The name property determines which icon should
be used, the size property sets the size of the icon in pixels, and the color sets
what color the icon should be:

<View style={styles.iconRow}>
 <FontAwesome style={styles.iconPadding} name="glass" size={48}
color="green" />
 <FontAwesome style={styles.iconPadding} name="beer" size={48}
color="red" />
 <FontAwesome style={styles.iconPadding} name="music" size={48}
color="blue" />
 <FontAwesome style={styles.iconPadding} name="taxi" size={48}
color="#1CB5AD" />
</View>

Just as in CSS, the color property can be a color keyword defined in the
CSS specification (you can check out the full list in the MDN docs
at https:/ ​/ ​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/ ​CSS/ ​color_ ​value),
or a hex code for a given color.

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value

Implementing Complex User Interfaces - Part I Chapter 3

[96]

In the next View element, we'll add icons from the Ionicons font library. As you6.
can see, the Ionicons element takes the same properties as the FontAwesome
elements used in the previous step:

<View style={styles.iconRow}>
 <Ionicons style={styles.iconPadding} name="md-pizza" size={48}
color="orange" />
 <Ionicons style={styles.iconPadding} name="md-tennisball"
size={48} color="maroon" />
 <Ionicons style={styles.iconPadding} name="ios-thunderstorm"
size={48} color="purple" />
 <Ionicons style={styles.iconPadding} name="ios-happy" size={48}
color="#DF7977" />
</View>

The last step in this recipe is to add the remaining style, iconPadding, which7.
just adds some padding to evenly space out each of our icons:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#fff',
 alignItems: 'center',
 justifyContent: 'center',
 },
 iconRow: {
 flexDirection: 'row',
 },
 iconPadding: {
 padding: 8,
 }
});

Implementing Complex User Interfaces - Part I Chapter 3

[97]

That's all it takes! When we check out our app, there will be two rows of icons,8.
each row showcasing icons from FontAwesome and Ionicons respectively:

Implementing Complex User Interfaces - Part I Chapter 3

[98]

How it works...
The vector-icons package that comes with Expo provides access to 11 full icon sets. All
you have to do is import the associated component (for example, the FontAwesome
component for Font Awesome icons) and provide it with the name that corresponds to the
icon in the set that you'd like to use. You can find a full, searchable list of all the icons you
can use with the vector-icons helper library in the vector-icons directory, hosted at
https:/​/​expo.​github. ​io/ ​vector- ​icons/ ​. Simply set the element's name property to the
icon name listed in the directory, add size and color properties, and you're done!

As the GitHub README for vector-icons states, this library is a compatibility
layer created for using the icons provided by the react-native-vector-icons package
in Expo. You can find this package at https:/ ​/​github. ​com/ ​oblador/ ​react- ​native-
vector-​icons. If you are building a React Native app without Expo, you can get the same
functionality by using the react-native-vector-icons library instead.

See also
A catalog of all of the icons available in the vector-icons library can be found at https:/
/​expo.​github.​io/ ​vector- ​icons/ ​.

https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://github.com/oblador/react-native-vector-icons
https://github.com/oblador/react-native-vector-icons
https://github.com/oblador/react-native-vector-icons
https://github.com/oblador/react-native-vector-icons
https://github.com/oblador/react-native-vector-icons
https://github.com/oblador/react-native-vector-icons
https://github.com/oblador/react-native-vector-icons
https://github.com/oblador/react-native-vector-icons
https://github.com/oblador/react-native-vector-icons
https://github.com/oblador/react-native-vector-icons
https://github.com/oblador/react-native-vector-icons
https://github.com/oblador/react-native-vector-icons
https://github.com/oblador/react-native-vector-icons
https://github.com/oblador/react-native-vector-icons
https://github.com/oblador/react-native-vector-icons
https://github.com/oblador/react-native-vector-icons
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/

4
Implementing Complex User

Interfaces - Part II
This chapter will cover more recipes on building UIs with React Native. We'll get our first
look at linking to other applications and websites, handling a change in device orientation,
and how to build a form for collecting user input.

In this chapter, we will cover the following recipes:

Dealing with universal applications
Detecting orientation changes
Using a WebView to embed external websites
Linking to websites and other applications
Creating a form component

Dealing with universal applications
One of the benefits of using React Native is its ability to easily create universal applications.
We can share a lot of code between phone and tablet applications. The layouts might
change, depending on the device, but we can reuse pieces of code for both types of device
across layouts.

In this recipe, we will build an app that runs on phones and tablets. The tablet version will
include a different layout, but we will reuse the same internal components.

Implementing Complex User Interfaces - Part II Chapter 4

[100]

Getting ready
For this recipe, we will show a list of contacts. For now, we will load the data from
a .json file. We will explore how to load remote data from a Representational State
Transfer (REST) API in a later chapter.

Let's open the following URL and copy the generated JSON to a file called data.json at
the root of the project. We will use this data to render the list of contacts. It returns a JSON
object of fake user data at http:/ ​/ ​api. ​randomuser. ​me/​? ​results= ​20.

Let's create a new app called universal-app.

How to do it...
Let's open App.js and import the dependencies we'll need in this app, as well as1.
our data.json file we created in the previous Getting ready section. We'll also
import a Device utility from ./utils/Device, which we will build in a later
step:

import React, { Component } from 'react';
import { StyleSheet, View, Text } from 'react-native';
import Device from './utils/Device';

import data from './data.json';

Here, we're going to create the main App component and its basic layout. This2.
top-level component will decide whether to render the phone or tablet UI. We
are only rendering two Text elements. The renderDetail text should be
displayed on tablets only and the renderMaster text should be displayed on
phones and tablets:

export default class App extends Component {
 renderMaster() {
 return (
 <Text>Render on phone and tablets!!</Text>
);
 }

 renderDetail() {
 if (Device.isTablet()) {
 return (
 <Text>Render on tablets only!!</Text>
);

http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20

Implementing Complex User Interfaces - Part II Chapter 4

[101]

 }
 }

 render() {
 return (
 <View style={styles.content}>
 {this.renderMaster()}
 {this.renderDetail()}
 </View>
);
 }
}

Under the App component, we'll add a few basic styles. The styles temporarily3.
include paddingTop: 40 so that our rendered text is not overlapped by the
device's system bar:

const styles = StyleSheet.create({
 content: {
 paddingTop: 40,
 flex: 1,
 flexDirection: 'row',
 },
});

If we try to run our app as it is, it will fail with an error telling us that4.
the Device module cannot be found, so let's create it. The purpose of this utility
class is to calculate whether the current device is a phone or tablet, based on the
screen dimensions. It will have an isTablet method and an isPhone method.
We need to create a utils folder in the root of the project and add a Device.js
for the utility. Now we can add the basic structure of the utility:

import { Dimensions, Alert } from 'react-native';

// Tablet portrait dimensions
const tablet = {
 width: 552,
 height: 960,
};

class Device {
 // Added in next steps
}

const device = new Device();
export default device;

Implementing Complex User Interfaces - Part II Chapter 4

[102]

Let's start building out the utility by creating two methods: one to get the5.
dimensions in portrait and the other to get the dimensions in landscape.
Depending on the device rotation, the values of width and height will change,
which is why we need these two methods to always get the correct values,
whether the device is landscape or portrait:

class Device {
 getPortraitDimensions() {
 const { width, height } = Dimensions.get("window");

 return {
 width: Math.min(width, height),
 height: Math.max(width, height),
 };
 }

 getLandscapeDimensions() {
 const { width, height } = Dimensions.get("window");

 return {
 width: Math.max(width, height),
 height: Math.min(width, height),
 };
 }
}

Now let's create the two methods our app will use to determine whether the app6.
is running on a tablet or a phone. To calculate this, we need to get the dimensions
in portrait mode and compare them with the dimensions we have defined for a
tablet:

 isPhone() {
 const dimension = this.getPortraitDimensions();
 return dimension.height < tablet.height;
 }

 isTablet() {
 const dimension = this.getPortraitDimensions();
 return dimension.height >= tablet.height;
 }

Implementing Complex User Interfaces - Part II Chapter 4

[103]

Now, if we open the app, we should see two different texts being rendered,7.
depending on whether we're running the app on a phone or a tablet:

The utility works as expected! Let's return to working on the renderMaster8.
method of the main App.js. We want this method to render the list of contacts
that live in the data.json file. Let's import a new component, which we'll build
out in the following steps, and update the renderMaster method to use our
new component:

import UserList from './UserList';

export default class App extends Component {
 renderMaster() {
 return (
 <UserList contacts={data.results} />
);
 }

Implementing Complex User Interfaces - Part II Chapter 4

[104]

 //...
}

Let's create a new UserList folder. Inside this folder, we need to create9.
the index.js and styles.js files for the new component. The first thing we
need to do is import the dependencies into the new index.js, create the
UserList class, and export it as the default:

import React, { Component } from 'react';
import {
 StyleSheet,
 View,
 Text,
 ListView,
 Image,
 TouchableOpacity,
} from 'react-native';
import styles from './styles';

export default class UserList extends Component {
 // Defined in the following steps
}

We've already covered how to create a list. If you are not clear on how the10.
ListView component works, read the Displaying a list of items recipe in Chapter
2, Creating a Simple React Native App. In the constructor of the class, we will create
the dataSource and then add it to the state:

export default class UserList extends Component {
 constructor(properties) {
 super(properties);
 const dataSource = new ListView.DataSource({
 rowHasChanged: (r1, r2) => r1 !== r2
 });

 this.state = {
 dataSource: dataSource.cloneWithRows(properties.contacts),
 };
 }
 //...
}

Implementing Complex User Interfaces - Part II Chapter 4

[105]

The render method also follows the same pattern introduced in the ListView11.
recipe, Displaying a list of items, from Chapter 2, Creating a Simple React Native
App:

render() {
 return (
 <View style={styles.main}>
 <Text style={styles.toolbar}>
 My contacts!
 </Text>
 <ListView dataSource={this.state.dataSource}
 renderRow={this.renderContact}
 style={styles.main} />
 </View>);
 }

As you can see, we need to define the renderContact method to render each of12.
the rows. We are using the TouchableOpacity component as the main wrapper,
which will allow us to use a callback function to perform some actions when a
list item is pressed. For now, we are not doing anything when the button is
pressed. We will learn more about communicating between components using
Redux in Chapter 9, Implementing Redux:

 renderContact = (contact) => {
 return (
 <TouchableOpacity style={styles.row}>
 <Image source={{uri: `${contact.picture.large}`}} style=
 {styles.img} />
 <View style={styles.info}>
 <Text style={styles.name}>
 {this.capitalize(contact.name.first)}
 {this.capitalize(contact.name.last)}
 </Text>
 <Text style={styles.phone}>{contact.phone}</Text>
 </View>
 </TouchableOpacity>
);
 }

We don't have a way to capitalize the texts using styles, so we need to use13.
JavaScript for that. The capitalize function is quite simple, and sets the first
letter of the given string to uppercase:

 capitalize(value) {
 return value[0].toUpperCase() + value.substring(1);
 }

Implementing Complex User Interfaces - Part II Chapter 4

[106]

We are almost done with this component. All that's left are the styles. Let's14.
open the /UserList/styles.js file and add styles for the main container and
the toolbar:

import { StyleSheet } from 'react-native';

export default StyleSheet.create({
 main: {
 flex: 1,
 backgroundColor: '#dde6e9',
 },
 toolbar: {
 backgroundColor: '#2989dd',
 color: '#fff',
 paddingTop: 50,
 padding: 20,
 textAlign: 'center',
 fontSize: 20,
 },
 // Remaining styles added in next step.
});

Now, for each row, we want to render the image of each contact on the left, and15.
the contact's name and phone number on the right:

 row: {
 flexDirection: 'row',
 padding: 10,
 },
 img: {
 width: 70,
 height: 70,
 borderRadius: 35,
 },
 info: {
 marginLeft: 10,
 },
 name: {
 color: '#333',
 fontSize: 22,
 fontWeight: 'bold',
 },
 phone: {
 color: '#aaa',
 fontSize: 16,
 },

Implementing Complex User Interfaces - Part II Chapter 4

[107]

Let's switch over to the App.js file and remove the paddingTop property we16.
used for making text legible in step 7; the line to be removed is shown in bold:

const styles = StyleSheet.create({
 content: {
 paddingTop: 40,
 flex: 1,
 flexDirection: 'row',
 },
});

If we try to run our app, we should be able to see a really nice list on the phone as17.
well as the tablet, and the same component on the two different devices:

Implementing Complex User Interfaces - Part II Chapter 4

[108]

We are already displaying two different layouts based on the current device!18.
Now we need to work on the UserDetail view, which will show the selected
contact. Let's open App.js, import the UserDetail views, and update
the renderDetail method, as follows:

import UserDetail from './UserDetail';

export default class App extends Component {
 renderMaster() {
 return (
 <UserList contacts={data.results} />
);
 }

 renderDetail() {
 if (Device.isTablet()) {
 return (
 <UserDetail contact={data.results[0]} />
);
 }
 }
}

As mentioned earlier, in this recipe, we are not focusing on sending data
from one component to another, but instead on rendering a different
layout in tablets and phones. Therefore, we will always send the first
record to the user details view for this recipe.

To make things simple and to make the recipe as short as possible, for the user19.
details view, we will only display a toolbar and some text showing the first and
last name of the given record. We are going to use a stateless component here:

import React from 'react';
import {
 View,
 Text,
} from 'react-native';
import styles from './styles';

const UserList = ({ contact }) => (
 <View style={styles.main}>
 <Text style={styles.toolbar}>Details should go here!</Text>
 <Text>
 This is the detail view:{contact.name.first}
{contact.name.last}
 </Text>
 </View>

Implementing Complex User Interfaces - Part II Chapter 4

[109]

);

export default UserList;

Finally, we need to style this component. We want to assign three-quarters of the20.
screen to the details page and one-quarter to the master list. This can be done
easily by using flexbox. Since the UserList component has a flex property of 1,
we can set the flex property of UserDetail to 3, allowing UserDetail to take
up 75% of the screen. Here are the styles we'll add to
the /UserDetail/styles.js file:

import { StyleSheet } from 'react-native';

const styles = StyleSheet.create({
 main: {
 flex: 3,
 backgroundColor: '#f0f3f4',
 },
 toolbar: {
 backgroundColor: '#2989dd',
 color: '#fff',
 paddingTop: 50,
 padding: 20,
 textAlign: 'center',
 fontSize: 20,
 },
});

export default styles;

Implementing Complex User Interfaces - Part II Chapter 4

[110]

If we try to run our app again, we will see that on the tablet, it will render a nice21.
layout showing both the list view and the detail view, while on the phone it only
shows the list of contacts:

How it works...
In the Device utility, we imported a dependency that React Native provides called
Dimension for getting the dimensions of the current device. We also defined
a tablet constant in the Device utility, which is an object containing
the width and height that is used with Dimension to calculate whether the device is a
tablet or not. The values of this constant are based on the smallest Android tablet available
on the market.

In step 5, we got the width and height by calling
the Dimensions.get("window") method, and then we got the maximum and minimum
values depending on the orientation we wanted.

Implementing Complex User Interfaces - Part II Chapter 4

[111]

In step 12, it's important to note that we used an arrow function to define
the renderContact method. Using an arrow function keeps the correct binding scope,
otherwise, the this in the call to this.capitalize would be bound to the wrong scope.
Check the See also section for more information on how both the this keyword and arrow
functions work.

See also
A good explanation of ES6 arrow functions from ponyfoo at https:/ ​/​ponyfoo.
com/​articles/ ​es6- ​arrow- ​functions- ​in-​depth

An in-depth look at how this works in JavaScript by Kyle Simpson at https:/ ​/
github.​com/ ​getify/ ​You- ​Dont- ​Know- ​JS/​blob/ ​master/
this%20%26%20object%20prototypes/ ​ch2. ​md

Detecting orientation changes
When building complex interfaces, it's very common to render different UI components,
based on the device's orientation. This is especially true when dealing with tablets.

In this recipe, we will render a menu based on screen orientation. In landscape, we will
render an expanded menu with icons and texts, and in portrait, we will only render the
icons.

Getting ready
To support orientation changes, we are going to use Expo's helper utility called
ScreenOrientation.

We will also use the FontAwesome component provided by the Expo
package @expo/vector-icons. The Using font icons recipe in Chapter 2, Creating a Simple
React Native App, describes how to use this component.

https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://ponyfoo.com/articles/es6-arrow-functions-in-depth
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md

Implementing Complex User Interfaces - Part II Chapter 4

[112]

Before we get started, let's create a new app called screen-orientation. We'll also need
to make a tweak to the app.json file that Expo creates in the root of the directory. This file
has a few basic settings Expo uses when building the app. One of these settings is
orientation, which is automatically set to portrait for every new app. This setting
determines the orientations the app allows, and can be set to portrait, landscape, or
default. If we change this to default, our app will allow both portrait and landscape
orientations.

To see these changes take effect, be sure to restart your Expo project.

How to do it...
We'll start by opening App.js and adding the imports we'll be using:1.

import React from 'react';
import {
 Dimensions,
 StyleSheet,
 Text,
 View
} from 'react-native';

Next, we'll add the empty App class for the component, along with some basic2.
styles:

export default class App extends React.Component {

}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#fff'
 },
 text: {
 fontSize: 40,
 }
});

Implementing Complex User Interfaces - Part II Chapter 4

[113]

With the shell of our app in place, we can now add the render method. In the3.
render method, you'll notice we've got a View component using the onLayout
property, which will fire off whenever the orientation of the device changes. The
onLayout will then run this.handleLayoutChange, which we will define in
the next step. In the Text element, we simply display the value of orientation
on the state object:

export default class App extends React.Component {
 render() {
 return (
 <View
 onLayout={() => this.handleLayoutChange}
 style={styles.container}
 >
 <Text style={styles.text}>
 {this.state.orientation}
 </Text>
 </View>
);
 }
}

Let's create the handleLayoutChange method of our component, as well as the4.
getOrientation function that the handleLayoutChange method calls.
The getOrientation function uses the React Native Dimensions utility to get
the width and height of the screen. If height > width, we know that the device
is in portrait orientation, and if not, then it is in landscape orientation. By
updating state, a re-render will be initiated, and the value of
this.state.orientation will reflect the orientation:

 handleLayoutChange() {
 this.getOrientation();
 }

 getOrientation() {
 const { width, height } = Dimensions.get('window');
 const orientation = height > width ? 'Portrait' : 'Landscape';
 this.setState({
 orientation
 });
 }

Implementing Complex User Interfaces - Part II Chapter 4

[114]

If we run the app at this point, we'll get the error TypeError: null is not an5.
object: (evaluating 'this.state.orientation'). This happens because the render
method is attempting to read from the this.state.orientation value before
it's even been defined. We can easily fix this problem by getting the orientation
before render runs for the first time, via the React life cycle
componentWillMount hook:

 componentWillMount() {
 this.getOrientation();
 }

That's all it takes to get the basic functionality we're looking for! Run the app6.
again and you should see the displayed text reflect the orientation of the device.
Rotate the device, and the orientation text should update:

Implementing Complex User Interfaces - Part II Chapter 4

[115]

Now that the orientation state value is updating properly, we can focus on the7.
UI. As mentioned before, we will create a menu that renders the options slightly
differently based on the current orientation. Let's import a Menu component,
which we'll build out in the next steps, and update the render method of our
App component to use the new Menu component. Notice that we are now passing
this.state.orientation to the orientation property of the Menu
component:

import Menu from './Menu';

export default class App extends React.Component {

 // ...

 render() {
 return (
 <View
 onLayout={() => {this.handleLayoutChange()}}
 style={styles.container}
 >
 <Menu orientation={this.state.orientation} />
 <View style={styles.main}>
 <Text>Main Content</Text>
 </View>
 </View>
);
 }
}

Let's also update the styles for our App component. You can replace the styles8.
from step 2 with the following code. By setting the flexDirection to row on the
container styles, we'll be able to display the two components horizontally:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'row',
 },
 main: {
 flex: 1,
 backgroundColor: '#ecf0f1',
 justifyContent: 'center',
 alignItems: 'center',
 }
});

Implementing Complex User Interfaces - Part II Chapter 4

[116]

Next, let's build out the Menu component. We'll need to create a9.
new /Menu/index.js file, which will define the Menu class. This
component will receive the orientation property and decide how to render the
menu options based on the orientation value. Let's start by importing the
dependencies for this class:

import React, { Component } from 'react';
import { StyleSheet, View, Text } from 'react-native';
import { FontAwesome } from '@expo/vector-icons';

Now we can define the Menu class. On the state object, we will define an array10.
of options. These option objects will be used to define the icons. As discussed
in the Using font icons recipe in the previous chapter we can define icons via
keywords, as defined in the vector-icon directory, found at https:/ ​/ ​expo.
github.​io/ ​vector- ​icons/ ​:

export default class Menu extends Component {
 state = {
 options: [
 {title: 'Dashboard', icon: 'dashboard'},
 {title: 'Inbox', icon: 'inbox'},
 {title: 'Graphs', icon: 'pie-chart'},
 {title: 'Search', icon: 'search'},
 {title: 'Settings', icon: 'gear'},
],
 };

 // Remainder defined in following steps
}

The render method for this component loops through the array of options in11.
the state object:

 render() {
 return (
 <View style={styles.content}>
 {this.state.options.map(this.renderOption)}
 </View>
);
 }

https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/
https://expo.github.io/vector-icons/

Implementing Complex User Interfaces - Part II Chapter 4

[117]

As you can see, inside the JSX in the last step, there's a call to renderOption. In12.
this method, we are going to render the icon and the label for each option. We'll
also use the orientation value to toggle showing the label, and to change the
icon's size:

 renderOption = (option, index) => {
 const isLandscape = this.properties.orientation ===
'Landscape';
 const title = isLandscape
 ? <Text style={styles.title}>{option.title}</Text>
 : null;
 const iconSize = isLandscape ? 27 : 35;

 return (
 <View key={index} style={[styles.option, styles.landscape]}>
 <FontAwesome name={option.icon} size={iconSize}
color="#fff" />
 {title}
 </View>
);
 }

In the previous code block, notice that we are defining a key property.
When dynamically creating a new component, we always need to set
a key property. This property should be unique for each item, since it's
used internally by React. In this case, we are using the index of
the loop iteration. This way, we can be assured that every item will have a
unique key value since the data is static. You can read more about it in the
official documentation at https:/ ​/​reactjs. ​org/ ​docs/ ​lists- ​and- ​keys.
html.

Finally, we'll define the styles for the menu. First, we will set13.
the backgroundColor to dark blue, and then, for each option, we'll change
the flexDirection to render the icon and label horizontally. The rest of the
styles add margins and paddings so that the menu items are nicely spaced apart:

const styles = StyleSheet.create({
 content: {
 backgroundColor: '#34495e',
 paddingTop: 50,
 },
 option: {
 flexDirection: 'row',
 paddingBottom: 15,
 },

https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html

Implementing Complex User Interfaces - Part II Chapter 4

[118]

 landscape: {
 paddingRight: 30,
 paddingLeft: 30,
 },
 title: {
 color: '#fff',
 fontSize: 16,
 margin: 5,
 marginLeft: 20,
 },
});

If we run our application now, it will display the menu UI differently depending14.
on the orientation of the screen. Rotate the device, and the layout will
automatically update:

Implementing Complex User Interfaces - Part II Chapter 4

[119]

There's more...
In this recipe, we had a look at the app.json file that exists as part of every Expo project.
There are many useful settings that can be adjusted in this file that affect the build process
of the project. You can use this file to adjust orientation lock, define an app icon, and set a
splash screen, among many other settings. You can review all of the settings supported by
app.json in the Expo configuration documentation, hosted at https:/ ​/ ​docs. ​expo. ​io/
versions/​latest/ ​guides/ ​configuration. ​html.

Expo also provides the ScreenOrientation utility, which can be used instead to declare
the allowed orientations for your app. Using the utility's main method
ScreenOrientation.allow(orientation), will overwrite the corresponding setting in
app.json. The utility also provides more granular options than the setting in app.json,
such as ALL_BUT_UPSIDE_DOWN and LANDSCAPE_RIGHT. For more on this utility, you can
read the documentation at https:/ ​/​docs. ​expo. ​io/ ​versions/ ​latest/ ​sdk/ ​screen-
orientation.​html.

Using a WebView to embed external
websites
For many applications, it's required that external links can be visited and displayed within
the app. This can be for showing a third-party website, online help, and the terms and
conditions of using your app, among other things.

In this recipe, we will see how to open a WebView by clicking on a button in our app and
dynamically setting the URL value. We'll also be using the react-navigation package for
creating basic stack navigation in this recipe. Please check out the Setting up and using
navigation recipe in Chapter 3, Implementing Complex User Interfaces – Part I for a deeper
dive into building navigation.

If the needs of your app are better met by loading external websites via the device's
browser, see the next recipe, Linking to websites and other applications.

https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html
https://docs.expo.io/versions/latest/sdk/screen-orientation.html

Implementing Complex User Interfaces - Part II Chapter 4

[120]

Getting ready
We will need to create a new app for our WebView-based recipe. Let's name our new app
web-view. We'll also be using react-navigation, so be sure to install this as well. You
can use yarn or npm to install the package. In the root of the project, run the following:

yarn add react-navigation

Alternatively, install them using npm:

npm install --save react-navigation

How to do it...
Let's start by opening the App.js file. In this file, we'll be using the1.
StackNavigator component provided by the react-navigation package.
First, let's add the imports we'll be using in this file. HomeScreen is a component
we will be building later in this recipe:

import React, { Component } from 'react';
import { StackNavigator } from 'react-navigation';

import HomeScreen from './HomeScreen';

Now that we have our imports, let's use the StackNavigator component to2.
define the first route; we'll be using a Home route with links that should be
displayed using the React Native WebView component. The
navigationOptions property allows us to define a title to be displayed in the
navigation header:

const App = StackNavigator({
 Home: {
 screen: HomeScreen,
 navigationOptions: ({ navigation }) => ({
 title: 'Home'
 }),
 },
});

export default App;

Implementing Complex User Interfaces - Part II Chapter 4

[121]

We are now ready to create the HomeScreen component. Let's create a new3.
folder in the root of our project, called HomeScreen, and add an index.js file to
the folder. As usual, we can begin with our imports:

import React, { Component } from 'react';
import {
 TouchableOpacity,
 View,
 Text,
 SafeAreaView,
} from 'react-native';

import styles from './styles';

Now we can declare our HomeScreen component. Let's also add a state object4.
to the component with a links array. This array has an object for each link we'll
be using in this component. I've provided four links for you to use; however,
you can edit the title and url in each links array object to any websites you'd
like:

export default class HomeScreen extends Component {
 state = {
 links: [
 {
 title: 'Smashing Magazine',
 url: 'https://www.smashingmagazine.com/articles/'
 },
 {
 title: 'CSS Tricks',
 url: 'https://css-tricks.com/'
 },
 {
 title: 'Gitconnected Blog',
 url: 'https://medium.com/gitconnected'
 },
 {
 title: 'Hacker News',
 url: 'https://news.ycombinator.com/'
 }
],
 };
}

Implementing Complex User Interfaces - Part II Chapter 4

[122]

We're ready to add a render function to this component. Here, we are using the5.
SafeAreaView for the container element. This works just like a normal View
element, but also accounts for the notch area on the iPhone X so that no part of
our layout is obscured by the device bezels. You'll notice that we are using map to
map over the links array from the previous step, passing each one to the
renderButton function:

 render() {
 return (
 <SafeAreaView style={styles.container}>
 <View style={styles.buttonList}>
 {this.state.links.map(this.renderButton)}
 </View>
 </SafeAreaView>
);
 }

Now that we have defined the render method, we'll need to create the6.
renderButton method that it's using. This method takes each link as a
parameter called button, and the index, which we'll use as the unique key for
each element renderButton is creating. For more on this point, see the Tip in
step 12 of the second recipe in this chapter, Detecting orientation changes.
The TouchableOpacity button element will fire
this.handleButtonPress(button) when pressed:

 renderButton = (button, index) => {
 return (
 <TouchableOpacity
 key={index}
 onPress={() => this.handleButtonPress(button)}
 style={styles.button}
 >
 <Text style={styles.text}>{button.title}</Text>
 </TouchableOpacity>
);
 }

Implementing Complex User Interfaces - Part II Chapter 4

[123]

Now we need to create the handleButtonPress method used in the previous7.
step. This method uses the url and title properties from the passed-in button
parameter. We can then use these in a call to
this.properties.navigation.navigate(), passing in the name of the route
we want to navigate to and the parameters that should be passed along to that
route. We have access to a property called navigation because we are using
StackNavigator, which we set up in step 2:

 handleButtonPress(button) {
 const { url, title } = button;
 this.properties.navigation.navigate('Browser', { url, title });
 }

The HomeScreen component is done, except for the styles. Let's add a8.
styles.js file in the HomeScreen folder to define these styles:

import { StyleSheet } from 'react-native';

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 },
 buttonList: {
 flex: 1,
 justifyContent: 'center',
 },
 button: {
 margin: 10,
 backgroundColor: '#c0392b',
 borderRadius: 3,
 padding: 10,
 paddingRight: 30,
 paddingLeft: 30,
 },
 text: {
 color: '#fff',
 textAlign: 'center',
 },
});

export default styles;

Implementing Complex User Interfaces - Part II Chapter 4

[124]

Now, if we open the app, we should see the HomeScreen component being9.
rendered with our list of four link buttons, and a header with the title Home
rendered in the native style on each device. Since there is no Browser route in
our StackNavigator, however, the buttons will not actually do anything when
pressed:

Let's return to the App.js file and add the Browser route. First, we'll need to10.
import the BrowserScreen component, which we'll create in the following
steps:

import BrowserScreen from './BrowserScreen';

Implementing Complex User Interfaces - Part II Chapter 4

[125]

Now that the BrowserScreen component has been imported, we can add it to11.
the StackNavigator object to create a Browser route. In navigationOptions,
we're defining a dynamic title based on the parameters passed to the route. These
parameters are the same as the object we passed into the
navigation.navigate() call as the second argument in step 7:

const App = StackNavigator({
 Home: {
 screen: HomeScreen,
 navigationOptions: ({ navigation }) => ({
 title: 'Home'
 }),
 },
 Browser: {
 screen: BrowserScreen,
 navigationOptions: ({ navigation }) => ({
 title: navigation.state.params.title
 }),
 },
});

We are ready to create the BrowserScreen component. Let's create a new folder12.
in the root of the project called BrowserScreen with a new index.js file inside,
then add the imports this component needs:

import React, { Component } from 'react';
import { WebView } from 'react-native';

The BrowserScreen component is fairly simple. It consists only of a render13.
method that reads the params property from the navigation.state property
passed in to call to the this.properties.navigation.navigate that fires
when a button is pressed, as defined in step 7. All we need to do is render the
WebView component and set its source property to an object with the uri
property set to params.url:

export default class BrowserScreen extends Component {
 render() {
 const { params } = this.properties.navigation.state;

 return(
 <WebView
 source={{uri: params.url}}
 />
);
 }
}

Implementing Complex User Interfaces - Part II Chapter 4

[126]

Now, if we go back to the app running in the simulator, we can see our WebView14.
in action!

Hacker News and Smashing Magazine visited from our app

How it works...
Using a WebView to open external sites is a great way to allow a user to consume external
websites while keeping them in our app. Many applications out there do this, allowing the
user to return to the main portion of the app easily.

In step 6, we used an arrow function to bind the function in the onPress property to the
scope of the current class instance, since we are using this function when looping through
the array of links.

Implementing Complex User Interfaces - Part II Chapter 4

[127]

In step 7, whenever a button is pressed, we use the title and URL that are bound to that
button, passing them along as parameters as we navigate to the Browser screen. The
navigationOptions in step 11 use this same title value as the title of the screen.
The navigationOptions take a function whose first parameter is an object containing
navigation, which provides the parameters used when navigating. In step 11, we
structure navigation from this object so that we can set the view's title
to navigation.state.params.title.

Thanks to the StackNavigator component provided by react-navigation, we get a
header with OS-specific animations, built in with a back button. You can read the
StackNavigation documentation for more information on this component at https:/ ​/
reactnavigation.​org/ ​docs/ ​stack- ​navigator. ​html.

Step 13 uses the URL passed to the BrowserScreen component to render a WebView by
using the URL in the WebView's source property. You can find a list of all available
WebView properties in the official documentation located at https:/ ​/​facebook. ​github.
io/​react-​native/ ​docs/ ​webview. ​html.

Linking to websites and other applications
We have learned how to use a WebView to render a third-party website as an embedded
part of our app. However, sometimes, we might want to use the native browser to open a
site, link to other native system applications (such as email, phone, and SMS), or even deep
link to a completely separate app.

In this recipe, we will link to an external site via both the native browser and a browser
modal within our app, create links to the phone and messaging applications, and create a
deep link that will open the Slack app and automatically load the #general channel in the
gitconnected.com Slack group.

You will need to run this app on a real device in order to open the links in
this app that use the device's system applications, such as email, phone,
and SMS links. In my experience, this will not work in the simulator.

Getting ready
Let's create a new app for this recipe. We'll call it linking-app.

https://reactnavigation.org/docs/stack-navigator.html
https://reactnavigation.org/docs/stack-navigator.html
https://reactnavigation.org/docs/stack-navigator.html
https://reactnavigation.org/docs/stack-navigator.html
https://reactnavigation.org/docs/stack-navigator.html
https://reactnavigation.org/docs/stack-navigator.html
https://reactnavigation.org/docs/stack-navigator.html
https://reactnavigation.org/docs/stack-navigator.html
https://reactnavigation.org/docs/stack-navigator.html
https://reactnavigation.org/docs/stack-navigator.html
https://reactnavigation.org/docs/stack-navigator.html
https://reactnavigation.org/docs/stack-navigator.html
https://reactnavigation.org/docs/stack-navigator.html
https://reactnavigation.org/docs/stack-navigator.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
https://facebook.github.io/react-native/docs/webview.html
http://gitconnected.com

Implementing Complex User Interfaces - Part II Chapter 4

[128]

How to do it...
Let's start by opening App.js and adding the imports we'll be using: 1.

import React from 'react';
import { StyleSheet, Text, View, TouchableOpacity, Platform } from
'react-native';
import { Linking } from 'react-native';
import { WebBrowser } from 'expo';

Next, let's add both an App component and a state object. In this app, the state2.
object will house all of the links that we'll be using in this recipe in an array
called links. Notice how the url property in each links object has a protocol
attached to it (tel, mailto, sms, and so on). These protocols are used by the
device to properly handle each link:

export default class App extends React.Component {
 state = {
 links: [
 {
 title: 'Call Support',
 url: 'tel:+12025550170',
 type: 'phone'
 },
 {
 title: 'Email Support',
 url: 'mailto:support@email.com',
 type: 'email',
 },
 {
 title: 'Text Support',
 url: 'sms:+12025550170',
 type: 'text message',
 },
 {
 title: 'Join us on Slack',
 url: 'slack://channel?team=T5KFMSASF&id=C5K142J57',
 type: 'slack deep link',
 },
 {
 title: 'Visit Site (internal)',
 url: 'https://google.com',
 type: 'internal link'
 },
 {
 title: 'Visit Site (external)',

Implementing Complex User Interfaces - Part II Chapter 4

[129]

 url: 'https://google.com',
 type: 'external link'
 }
]
 }

}

The phone number used in the Text Support and Call Support buttons is
an unused number at the time of writing, as generated by https:/ ​/
fakenumber. ​org/ ​. This number is likely to still be unused, but this could
possibly change. Feel free to use a different fake number for these links,
just make sure to keep the protocol in place.

Next, let's add the render function for our app. The JSX here is simple: we map3.
over the state.links array from the previous step, passing each to our
renderButton function defined in the next step:

 render() {
 return(
 <View style={styles.container}>
 <View style={styles.buttonList}>
 {this.state.links.map(this.renderButton)}
 </View>
 </View>
);
 }

Let's build out the renderButton method used in the last step. For each link, we4.
create a button with TouchableOpacity and set the onPress property to
execute the handleButtonPress and pass it the button property:

 renderButton = (button, index) => {
 return(
 <TouchableOpacity
 key={index}
 onPress={() => this.handleButtonPress(button)}
 style={styles.button}
 >
 <Text style={styles.text}>{button.title}</Text>
 </TouchableOpacity>
);
 }

https://fakenumber.org/
https://fakenumber.org/
https://fakenumber.org/
https://fakenumber.org/
https://fakenumber.org/
https://fakenumber.org/
https://fakenumber.org/

Implementing Complex User Interfaces - Part II Chapter 4

[130]

Next, we can build out the handleButtonPress function. Here, we'll be using5.
the type property that we've added to each object in the links array. If the type
is 'internal link', we want to open the URL within our app using the
Expo WebBrowser component's openBrowserAsync method, and for everything
else, we'll use the React Native Linking component's openURL method.
If there's a problem with the openURL call and the URL is using the slack://
protocol, it means the device does not know how to handle the protocol,
probably because the slack app isn't installed. We'll handle this problem with
the handleMissingApp function, which we'll add in the next step:

 handleButtonPress(button) {
 if (button.type === 'internal link') {
 WebBrowser.openBrowserAsync(button.url);
 } else {
 Linking.openURL(button.url).catch(({ message }) => {
 if (message.includes('slack://')) {
 this.handleMissingApp();
 }
 });
 }
 }

Now we can create our handleMissingApp function. Here, we use the React6.
Native helper Platform, which provides information about the platform the app
is running on. Platform.OS will always return the operating system, which, on
phones, should always resolve to either 'ios' or 'android'. You can read more
about the capabilities of Platform in the official documentation at https:/ ​/
facebook. ​github. ​io/ ​react- ​native/ ​docs/ ​platform- ​specific- ​code. ​html.
If the link to the Slack app does not work as expected, we'll use
Linking.openURL again; this time, to open the app in the app store appropriate
for the device:

 handleMissingApp() {
 if (Platform.OS === 'ios') {
Linking.openURL(`https://itunes.apple.com/us/app/id618783545`);
 } else {
 Linking.openURL(
`https://play.google.com/store/applications/details?id=com.Slack`
);
 }
 }

https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html
https://facebook.github.io/react-native/docs/platform-specific-code.html

Implementing Complex User Interfaces - Part II Chapter 4

[131]

Our app doesn't have any styles yet, so let's add some. Nothing fancy here, just 7.
aligning the buttons in the center of the screen, coloring and centering text, and
providing padding on each button:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#fff',
 justifyContent: 'center',
 alignItems: 'center',
 },
 buttonList: {
 flex: 1,
 justifyContent: 'center',
 },
 button: {
 margin: 10,
 backgroundColor: '#c0392b',
 borderRadius: 3,
 padding: 10,
 paddingRight: 30,
 paddingLeft: 30,
 },
 text: {
 color: '#fff',
 textAlign: 'center',
 },
});

Implementing Complex User Interfaces - Part II Chapter 4

[132]

That's all there is to this app. Once we load the app, there should be a column of 8.
buttons representing each of our links. The Call Support and Email
Support buttons will not work on the iOS simulator. Run this recipe on a real
device to see all of the links working properly.:

How it works...
In step 2, we defined all the links that our app uses. Each link object has a type property
that we use in the handleButtonPress method defined in step 5.

Implementing Complex User Interfaces - Part II Chapter 4

[133]

This handleButtonPress function uses the link's type to determine which one of two
strategies will be used. If the link's type is 'internal link', we want to open the link
with the device browser as a modal that pops up within the app itself. For this purpose, we
can use Expo's WebBrowser helper, passing the URL to its openBrowserAsync method. If
the link's type is 'external link', we'll open the link with React Native's Linking
helper. This lets you see the different ways you can open a website from your app.

The Linking helper can handle protocols other than HTTP and HTTPS as well. By simply
using the proper protocol in the link we pass to Linking.openURL, we can open the
telephone (tel:), messaging (sms:), or email (mailto:).

Linking.openURL can also handle deep links to other applications, as long as the app you
want to link to has a protocol for doing so, such as how we open Slack by using the
slack:// protocol. For more information on Slack's deep linking protocol and what you
can do with it, visit their documentation at https:/ ​/​api. ​slack. ​com/ ​docs/ ​deep- ​linking.

In step 5, we catch any error caused by calling Linking.openURL, check whether the error
was caused by the Slack protocol using message.includes('slack://'), and if so, we
know the Slack app is not installed on the device. In this case, we fire handleMissingApp,
which opens the app store link for Slack using the appropriate link, as determined by
Platform.OS.

See also
Official documentation on the Linking module can be found at https:/ ​/​docs. ​expo. ​io/
versions/​latest/ ​guides/ ​linking. ​html.

Creating a form component
Most applications require a way to input data, whether it's a simple registration and login
form or a more complex component with many input fields and controls.

In this recipe, we will create a form component to handle text inputs. We will collect data
using different keyboards, and show an alert message with the resulting information.

Getting ready
We need to create an empty app. Let's name it user-form.

https://api.slack.com/docs/deep-linking
https://api.slack.com/docs/deep-linking
https://api.slack.com/docs/deep-linking
https://api.slack.com/docs/deep-linking
https://api.slack.com/docs/deep-linking
https://api.slack.com/docs/deep-linking
https://api.slack.com/docs/deep-linking
https://api.slack.com/docs/deep-linking
https://api.slack.com/docs/deep-linking
https://api.slack.com/docs/deep-linking
https://api.slack.com/docs/deep-linking
https://api.slack.com/docs/deep-linking
https://api.slack.com/docs/deep-linking
https://api.slack.com/docs/deep-linking
https://api.slack.com/docs/deep-linking
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html
https://docs.expo.io/versions/latest/guides/linking.html

Implementing Complex User Interfaces - Part II Chapter 4

[134]

How to do it...
Let's start by opening App.js and adding our imports. The imports include the1.
UserForm component that we'll be building out in a later step:

import React from 'react';
import {
 Alert,
 StyleSheet,
 ScrollView,
 SafeAreaView,
 Text,
 TextInput,
} from 'react-native';

import UserForm from './UserForm';

Since this component is going to be very simple, we are going to create a stateless2.
component for our App. We will only render a top toolbar inside
a ScrollView for the UserForm component:

const App = () => (
 <SafeAreaView style={styles.main}>
 <Text style={styles.toolbar}>Fitness App</Text>
 <ScrollView style={styles.content}>
 <UserForm />
 </ScrollView>
 </SafeAreaView>
);

const styles = StyleSheet.create({
 // Defined in a later step
});

export default App;

We need to add some styles to these components. We'll add some colors and3.
padding, as well as setting the main class to flex: 1 to fill the remainder of the
screen:

const styles = StyleSheet.create({
 main: {
 flex: 1,
 backgroundColor: '#ecf0f1',
 },
 toolbar: {

Implementing Complex User Interfaces - Part II Chapter 4

[135]

 backgroundColor: '#1abc9c',
 padding: 20,
 color: '#fff',
 fontSize: 20,
 },
 content: {
 padding: 10,
 },
});

We have defined the main App component. Now let's get to work on the actual4.
form. Let's create a new directory called UserForm in the base of the project and
add an index.js file. Then, we'll import all the dependencies for this class:

import React, { Component } from 'react';
import {
 Alert,
 StyleSheet,
 View,
 Text,
 TextInput,
 TouchableOpacity,
} from 'react-native';

This is the class that will render the inputs and keep track of the data. We are5.
going to save the data on the state object, so we'll start by initializing state as
an empty object:

export default class UserForm extends Component {
 state = {};

 // Defined in a later step
}

const styles = StyleSheet.create({
 // Defined in a later step
});

Implementing Complex User Interfaces - Part II Chapter 4

[136]

In the render method, we are going to define the components that we want to6.
display, which in this case are three text inputs and a button. We are going to
define a renderTextfield method that accepts a configuration object as a
parameter. We'll define the name of the field, the placeholder, and
the keyboard type that should be used on the input. In addition, we're also
calling a renderButton method that will render the Save button:

 render() {
 return (
 <View style={styles.panel}>
 <Text style={styles.instructions}>
 Please enter your contact information
 </Text>
 {this.renderTextfield({ name: 'name', placeholder: 'Your
 name' })}
 {this.renderTextfield({ name: 'phone', placeholder: 'Your
 phone number', keyboard: 'phone-pad' })}
 {this.renderTextfield({ name: 'email', placeholder: 'Your
 email address', keyboard: 'email-address'})}
 {this.renderButton()}
 </View>
);
 }

To render the text fields, we are going to use the TextInput component in our7.
renderTextfield method. This TextInput component is provided by React
Native and works on both iOS and Android. The keyboardType property allows
us to set the keyboard that we want to use. The four available keyboards on both
platforms are default, numeric, email-address, and phone-pad:

 renderTextfield(options) {
 return (
 <TextInput
 style={styles.textfield}
 onChangeText={(value) => this.setState({ [options.name]:
 value })}
 placeholder={options.label}
 value={this.state[options.name]}
 keyboardType={options.keyboard || 'default'}
 />
);
 }

Implementing Complex User Interfaces - Part II Chapter 4

[137]

We already know how to render buttons and respond to the Press action. If this8.
is unclear, I recommend reading the Creating a reusable button with theme support
recipe in Chapter 3, Implementing Complex User Interfaces – Part I:

 renderButton() {
 return (
 <TouchableOpacity
 onPress={this.handleButtonPress}
 style={styles.button}
 >
 <Text style={styles.buttonText}>Save</Text>
 </TouchableOpacity>
);
 }

We need to define the onPressButton callback. For simplicity, we'll just show9.
an alert with the input data that we have on the state object:

 handleButtonPress = () => {
 const { name, phone, email } = this.state;

 Alert.alert(`User's data`,`Name: ${name}, Phone: ${phone},
 Email: ${email}`);
 }

We are almost done with this recipe! All we need to do is apply some styles –10.
some colors, padding, and margins; nothing fancy really:

const styles = StyleSheet.create({
 panel: {
 backgroundColor: '#fff',
 borderRadius: 3,
 padding: 10,
 marginBottom: 20,
 },
 instructions: {
 color: '#bbb',
 fontSize: 16,
 marginTop: 15,
 marginBottom: 10,
 },
 textfield: {
 height: 40,
 marginBottom: 10,
 },
 button: {
 backgroundColor: '#34495e',

Implementing Complex User Interfaces - Part II Chapter 4

[138]

 borderRadius: 3,
 padding: 12,
 flex: 1,
 },
 buttonText: {
 textAlign: 'center',
 color: '#fff',
 fontSize: 16,
 },
});

If we run our app, we should be able to see a form that uses native controls on11.
both Android and iOS, as expected:

Implementing Complex User Interfaces - Part II Chapter 4

[139]

You might not be able to see the keyboard as defined
by keyboardType when running your app in a simulator. Run the app on
a real device to ensure that the keyboardType is properly changing the
keyboard for each TextInput.

How it works...
In step 8, we defined the TextInput component. In React (and React Native), we can use
two types of input: controlled and uncontrolled components. In this recipe, we're using
controlled input components, as recommended by the React team.

A controlled component will have a value property, and the component will always
display the content of the value property. This means that we need a way to change the
value when the user starts typing into the input. If we don't update that value, then the text
in the input won't ever change, even if the user tries to type something.

In order to update the value, we can use the onChangeText callback and set the new
value. In this example, we are using the state to keep track of the data and we are setting a
new key on the state with the content of the input.

An uncontrolled component, on the other hand, will not have a value property assigned.
We can assign an initial value using the defaultValue property.
Uncontrolled components have their own state, and we can get their value by using
an onChangeText callback, just as we can with controlled components.

5
Implementing Complex User

Interfaces - Part III
In this chapter, we will cover the following recipes:

Creating a map app
Creating an audio player
Creating an image carousel
Adding push notifications to your app
Implementing browser-based authentication

Introduction
In this chapter, we'll cover some of the more advanced features you might need to add to
an app. The applications we'll build in this chapter include building a fully functional audio
player, map integration, and implementing browser-based authentication so that your app
can connect to public APIs for developers.

Creating a map app
Using a mobile device is a portable experience, so it's no surprise that maps are a common
part of many iOS and Android applications. Your app may need to tell a user where they
are, where they're going, or where other users are in real time.

Implementing Complex User Interfaces - Part III Chapter 5

[141]

In this recipe, we'll be making a simple app that uses Google Maps on Android, and
Apple's Maps app on iOS, to display a map centered on the user's location. We will be
using Expo's Location helper library to get the latitude and longitude of the user and will
use that data to render the map using Expo's MapView component. MapView is an Expo
ready version of the react-native-maps package created by Airbnb, so you can expect the
react-native-maps documentation to apply, which can be found at https:/ ​/ ​github. ​com/
react-​community/​react- ​native- ​maps.

Getting ready
We will need to create a new app for this recipe. Let's call it map-app. Since the user pin in
this recipe will use a custom icon, we'll also need an image for that. I used the icon You Are
Here by Maico Amorim, which you can download from https:/ ​/​thenounproject. ​com/
term/​you-​are-​here/ ​12314/ ​. Feel free to use any image you'd like to represent the user pin.
Save the image to the assets folder in the root of the project.

How to do it...
We'll start by opening App.js and adding our imports:1.

import React from 'react';
import {
 Location,
 Permissions,
 MapView,
 Marker
} from 'expo';
import {
 StyleSheet,
 Text,
 View,
} from 'react-native';

Next, let's define the App class and the initial state. In this recipe, state will2.
only need to keep track of the user's location, which we initialize to null:

export default class App extends Component {
 state = {
 location: null
 }
 // Defined in following steps
}

https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://thenounproject.com/term/you-are-here/12314/
https://thenounproject.com/term/you-are-here/12314/
https://thenounproject.com/term/you-are-here/12314/
https://thenounproject.com/term/you-are-here/12314/
https://thenounproject.com/term/you-are-here/12314/
https://thenounproject.com/term/you-are-here/12314/
https://thenounproject.com/term/you-are-here/12314/
https://thenounproject.com/term/you-are-here/12314/
https://thenounproject.com/term/you-are-here/12314/
https://thenounproject.com/term/you-are-here/12314/
https://thenounproject.com/term/you-are-here/12314/
https://thenounproject.com/term/you-are-here/12314/
https://thenounproject.com/term/you-are-here/12314/
https://thenounproject.com/term/you-are-here/12314/
https://thenounproject.com/term/you-are-here/12314/
https://thenounproject.com/term/you-are-here/12314/
https://thenounproject.com/term/you-are-here/12314/

Implementing Complex User Interfaces - Part III Chapter 5

[142]

Next, we'll define the componentDidMount life cycle hook, which will ask the3.
user to grant permission to access the user's location via the device's geolocation.
If the user grants the app permission to use its location, the return object will
have a status property with the value 'granted'. If granted, we'll get the
user's location with this.getLocation, defined in the next step:

 async componentDidMount() {
 const permission = await
Permissions.askAsync(Permissions.LOCATION);
 if (permission.status === 'granted') {
 this.getLocation();
 }
 }

The getLocation function is simple. It grabs the location information from the4.
device's GPS using the getCurrentPositionAsync method of the Location
component, then saves that location information to state. That information
contains the latitude and longitude of the user, which we'll use when we render
the map:

 async getLocation() {
 let location = await Location.getCurrentPositionAsync({});
 this.setState({
 location
 });
 }

Now, let's use that location information to render our map. First, we'll check that5.
a location has been saved on state. If so, we'll render the MapView, and
otherwise render null. The only property we need to set to render our map is
the initialRegion property, which defines the location the map should display
when it is first rendered. We'll pass this property on the object with the latitude
and longitude saved to state, and define a starting zoom level
with latitudeDelta and longitudeDelta:

 renderMap() {
 return this.state.location ?
 <MapView
 style={styles.map}
 initialRegion={{
 latitude: this.state.location.coords.latitude,
 longitude: this.state.location.coords.longitude,
 latitudeDelta: 0.09,
 longitudeDelta: 0.04,
 }}

Implementing Complex User Interfaces - Part III Chapter 5

[143]

 >
 // Map marker is defined in next step
 </MapView> : null
 }

Within the MapView, we'll need to add a marker at the user's current location.6.
The Marker component is part of the MapView parent component, so in the JSX
we'll define a MapView.Marker child element of the MapView element. This
element takes the user's location, a title, and description for displaying when the
icon is tapped, and a custom image via the image property:

 <MapView
 style={styles.map}
 initialRegion={{
 latitude: this.state.location.coords.latitude,
 longitude: this.state.location.coords.longitude,
 latitudeDelta: 0.09,
 longitudeDelta: 0.04,
 }}
 >
 <MapView.Marker
 coordinate={this.state.location.coords}
 title={"User Location"}
 description={"You are here!"}
 image={require('./assets/you-are-here.png')}
 />
 </MapView> : null

Now, let's define our render function. It simply renders the map within a7.
containing View element:

 render() {
 return (
 <View style={styles.container}>
 {this.renderMap()}
 </View>
);
 }

Lastly, let's add our styles. We'll set flex to 1 on both the container and the map,8.
so that both fill the screen:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#fff',
 },

Implementing Complex User Interfaces - Part III Chapter 5

[144]

 map: {
 flex: 1
 }
});

Now, if we open the app, we'll see a map rendered with our custom user icon at9.
the location provided by the device! Unfortunately, Google Maps integration
may not work in the Android emulator, so a real device may be needed to test
the Android implementation of the app. Check out the There's more... section at
the end of this recipe for more information. Don't be surprised that the iOS app
running on a simulator displays the user's location in San Francisco; this is due to
how Xcode location defaults work. Run it on a real iOS device to see it
render your location:

Implementing Complex User Interfaces - Part III Chapter 5

[145]

How it works...
By making use of the MapView component provided by Expo, the implementation of a map
in your React Native app is now a much simpler and straightforward process than it once
was.

In step 3, we made use of the Permissions helper library. Permissions has a method
called askAsync, which takes one parameter defining what type of permissions your app
would like to request from the user. Permissions also has constants for each type of
permission you can request from the user. These permission types include LOCATION,
NOTIFICATIONS (which we'll use later in this chapter), CAMERA, AUDIO_RECORDING,
CONTACTS, CAMERA_ROLL, and CALENDAR. Since we need the location in this recipe, we
passed in the constant Permissions.LOCATION. Once the askAsync return promise
resolves, the return object will have a status property and an expiration property. If the
user has allowed the requested permission, status will be set to the 'granted'string. If
granted, we will fire off our getLocation method.

In step 4, we defined the function that gets the location from the device's GPS. We call the
getCurrentPositionAsync method of the Location component. This method will
return an object with a coords property and a timestamp property. The coords property
gives us access to the latitude and longitude, as well as the altitude, accuracy
(radius of uncertainty for the location, measured in meters), altitudeAccuracy (accuracy
of the altitude value, in meters (iOS only)), heading, and speed. Once received, we save
the location to state so that the render function will be called, and our map will be
rendered.

In step 5, we defined the renderMap method to render the map. First, we check whether
there is a location, and if there is, we render the MapView element. This element only
requires us to define the value for one property: initialRegion. This property takes an
object with four properties: latitude, longitude, latitudeDelta, and
longitudeDelta. We set the latitude and longitude equal to those in the state object,
and provide initial values for latitudeDelta and longitudeDelta. These last two
properties dictate the initial zoom level that the map should be rendered at; the larger this
number is, the more zoomed out the map will be. I suggest experimenting with these two
values to see how they affect the rendered map.

In step 6, we added the marker to the map by adding a MapView.Marker element as a child
of the MapView element. We defined the coordinates by passing the info saved on state
(state.location.coords) to the coords property, and set a title and description
for the marker's popup when tapped. We were also able to easily define a custom pin by
inlining our custom image with a require statement in the image property.

Implementing Complex User Interfaces - Part III Chapter 5

[146]

There's more...
As mentioned previously, you can read the docs for the react-native-maps project to learn
more about the features of this excellent library (https:/ ​/​github. ​com/​react- ​community/
react-​native-​maps). For instance, you can easily customize the appearance of your Google
map by using Google Maps Styling Wizard (https:/ ​/​mapstyle. ​withgoogle. ​com/ ​) to
generate a mapStyle JSON object, then pass that object to the MapView
component's customMapStyle property. Or, you could add geometric shapes to your map
with the Polygon and Circle components.

Once you're ready to deploy your app, there are a few follow-up steps that you will need to
take to take to ensure the map works properly on Android. You can read the details on how
deploying to a standalone Android app with a MapView component works in the Expo
documentation at https:/ ​/ ​docs. ​expo. ​io/ ​versions/ ​latest/ ​sdk/ ​map- ​view#deploying- ​to-
a-​standalone-​app- ​on- ​android.

There is a known issue that could cause problems when rendering Google
Maps within the Android simulator. You can refer to the following
GitHub link for more information: https:/ ​/​github. ​com/​react- ​native-
community/ ​react- ​native- ​maps/ ​issues/ ​942.

Creating an audio player
Audio players are another common interface built into many applications. Whether your
app needs to play audio files stored locally on the device or stream audio from a remote
location, Expo's Audio component comes to the rescue.

In this recipe, we'll be building a full-fledged basic audio player, with play/pause, next
track, and previous track functionality. For simplicity, we'll be hardcoding the information
for the tracks we'll be using, but in a real-world scenario, you'll likely be working with
similar objects to what we're defining: an object with a track title, album name, artist name,
and a URL to a remote audio file. I've chosen three random live tracks from the Internet
Archive's Live Music Archive (https:/ ​/ ​archive. ​org/ ​details/ ​etree).

Getting ready
We'll need to create a new app for this recipe. Let's call it audio-player.

https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://mapstyle.withgoogle.com/
https://mapstyle.withgoogle.com/
https://mapstyle.withgoogle.com/
https://mapstyle.withgoogle.com/
https://mapstyle.withgoogle.com/
https://mapstyle.withgoogle.com/
https://mapstyle.withgoogle.com/
https://mapstyle.withgoogle.com/
https://mapstyle.withgoogle.com/
https://mapstyle.withgoogle.com/
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://docs.expo.io/versions/latest/sdk/map-view#deploying-to-a-standalone-app-on-android
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://github.com/react-native-community/react-native-maps/issues/942
https://archive.org/details/etree
https://archive.org/details/etree
https://archive.org/details/etree
https://archive.org/details/etree
https://archive.org/details/etree
https://archive.org/details/etree
https://archive.org/details/etree
https://archive.org/details/etree
https://archive.org/details/etree
https://archive.org/details/etree
https://archive.org/details/etree

Implementing Complex User Interfaces - Part III Chapter 5

[147]

How to do it...
Let's start by opening up App.js and adding the dependencies we'll need:1.

import React, { Component } from 'react';
import { Audio } from 'expo';
import { Feather } from '@expo/vector-icons';
import {
 StyleSheet,
 Text,
 TouchableOpacity,
 View,
 Dimensions
} from 'react-native';

An audio player needs audio to play. We'll create a playlist array to hold the2.
audio tracks. Each track is represented by an object with
a title, artist, album, and uri:

const playlist = [
 {
 title: 'People Watching',
 artist: 'Keller Williams',
 album: 'Keller Williams Live at The Westcott Theater on
2012-09-22',
 uri:
'https://ia800308.us.archive.org/7/items/kwilliams2012-09-22.at853.
flac16/kwilliams2012-09-22at853.t16.mp3'
 },
 {
 title: 'Hunted By A Freak',
 artist: 'Mogwai',
 album: 'Mogwai Live at Ancienne Belgique on 2017-10-20',
 uri:
'https://ia601509.us.archive.org/17/items/mogwai2017-10-20.brussels
.fm/Mogwai2017-10-20Brussels-07.mp3'
 },
 {
 title: 'Nervous Tic Motion of the Head to the Left',
 artist: 'Andrew Bird',
 album: 'Andrew Bird Live at Rio Theater on 2011-01-28',
 uri:
'https://ia800503.us.archive.org/8/items/andrewbird2011-01-28.early
.dr7.flac16/andrewbird2011-01-28.early.t07.mp3'
 }
];

Implementing Complex User Interfaces - Part III Chapter 5

[148]

Next, we'll define our App class and initial state object with four properties:3.

isPlaying for defining whether the player is playing or paused
playbackInstance to hold the Audio instance
volume and currentTrackIndex for the currently playing track
isBuffering to display a Buffering... message while the track is
buffering at the beginning of playback

As shown in following code:

export default class App extends Component {
 state = {
 isPlaying: false,
 playbackInstance: null,
 volume: 1.0,
 currentTrackIndex: 0,
 isBuffering: false,
 }

 // Defined in following steps
}

Let's define the componentDidMount life cycle hook next. We'll use this method4.
to configure the Audio component via the setAudioModeAsync method,
passing in an options object with a few recommended settings. These will be
discussed more in the How it works... section at the end of the recipe. After this,
we'll load the audio with loadAudio, defined in the next step:

 async componentDidMount() {
 await Audio.setAudioModeAsync({
 allowsRecordingIOS: false,
 playThroughEarpieceAndroid: true,
 interruptionModeIOS: Audio.INTERRUPTION_MODE_IOS_DO_NOT_MIX,
 playsInSilentModeIOS: true,
 shouldDuckAndroid: true,
 interruptionModeAndroid:
 Audio.INTERRUPTION_MODE_ANDROID_DO_NOT_MIX,
 });
 this.loadAudio();
 }

Implementing Complex User Interfaces - Part III Chapter 5

[149]

The loadAudio function will handle loading the audio for our player. First, we'll5.
create a new instance of Audio.Sound. We'll then call the
setOnPlaybackStatusUpdate method on our new Audio instance, passing in a
handler that will be called whenever the state of playback within the instance has
changed. Finally, we call loadAsync on the instance, passing it a source from the
playlist array, as well as a status object with the volume and a shouldPlay
property set to the isPlaying value of state. The third parameter dictates
whether we want to wait for the file to finish downloading before it is played, so
we pass in false:

async loadAudio() {
 const playbackInstance = new Audio.Sound();
 const source = {
 uri: playlist[this.state.currentTrackIndex].uri
 }
 const status = {
 shouldPlay: this.state.isPlaying,
 volume: this.state.volume,
 };
 playbackInstance
 .setOnPlaybackStatusUpdate(
 this.onPlaybackStatusUpdate
);
 await playbackInstance.loadAsync(source, status, false);
 this.setState({
 playbackInstance
 });
 }

We still need to define the callback for handling status updates. All we need to6.
do in this function is set the value of isBuffering on state to
the isBuffering value on the status parameter that was passed in from the
setOnPlaybackStatusUpdate function call:

 onPlaybackStatusUpdate = (status) => {
 this.setState({
 isBuffering: status.isBuffering
 });
 }

Implementing Complex User Interfaces - Part III Chapter 5

[150]

Our app now knows how to load an audio file from the playlist array and7.
update state with the current buffering status of the loaded audio file, which
we'll use later in the render function to display a message to the user. All that's
left is to add the behavior for the player itself. First, we'll handle the play/pause
state. The handlePlayPause method checks the value
of this.state.isPlaying to determine whether the track should be played or
paused, and calls the associated method on the playbackInstance accordingly.
Finally, we need to update the value of isPlaying for state:

 handlePlayPause = async () => {
 const { isPlaying, playbackInstance } = this.state;
 isPlaying ? await playbackInstance.pauseAsync() : await
playbackInstance.playAsync();
 this.setState({
 isPlaying: !isPlaying
 });
 }

Next, let's define the function for handling skipping to the previous track. First,8.
we'll clear the current track from the playbackInstance by
calling unloadAsync. We'll update the currentTrackIndex value of state to
either one less than the current value, or 0 if we're at the beginning of the
playlist array. Then, we'll call this.loadAudio to load the proper track:

 handlePreviousTrack = async () => {
 let { playbackInstance, currentTrackIndex } = this.state;
 if (playbackInstance) {
 await playbackInstance.unloadAsync();
 currentTrackIndex === 0 ? currentTrackIndex = playlist.length
 - 1 : currentTrackIndex -= 1;
 this.setState({
 currentTrackIndex
 });
 this.loadAudio();
 }
 }

Implementing Complex User Interfaces - Part III Chapter 5

[151]

Not surprisingly, handleNextTrack is the same as the preceding function, but9.
this time we'll either add 1 to the current index, or set the index to 0 if we're at
the end of the playlist array:

 handleNextTrack = async () => {
 let { playbackInstance, currentTrackIndex } = this.state;
 if (playbackInstance) {
 await playbackInstance.unloadAsync();
 currentTrackIndex < playlist.length - 1 ? currentTrackIndex
+=
 1 : currentTrackIndex = 0;
 this.setState({
 currentTrackIndex
 });
 this.loadAudio();
 }
 }

It's time to define our render function. We will need three basic pieces in our UI:10.
a 'Buffering...' message when the track is playing but still buffering, a
section for displaying information for the current track, and a section to hold the
player's controls. The 'Buffering...' message will only display if both
this.state.isBuffering and this.state.isPlaying are true. The song
info is rendered via the renderSongInfo method, which we'll define in step 12:

 render() {
 return (
 <View style={styles.container}>
 <Text style={[styles.largeText, styles.buffer]}>
 {this.state.isBuffering && this.state.isPlaying ?
 'Buffering...' : null}
 </Text>
 {this.renderSongInfo()}
 <View style={styles.controls}>

 // Defined in next step.

 </View>
 </View>
);
 }

Implementing Complex User Interfaces - Part III Chapter 5

[152]

The player controls are made up of three TouchableOpacity button elements,11.
each with a corresponding icon from the Feather icon library. You can find more
information on using icons in Chapter 3, Implementing Complex User Interfaces –
Part I. We'll determine whether to display the Play icon or the Pause icon
depending on the value of this.state.isPlaying:

 <View style={styles.controls}>
 <TouchableOpacity
 style={styles.control}
 onPress={this.handlePreviousTrack}
 >
 <Feather name="skip-back" size={32} color="#fff"/>
 </TouchableOpacity>
 <TouchableOpacity
 style={styles.control}
 onPress={this.handlePlayPause}
 >
 {this.state.isPlaying ?
 <Feather name="pause" size={32} color="#fff"/> :
 <Feather name="play" size={32} color="#fff"/>
 }
 </TouchableOpacity>
 <TouchableOpacity
 style={styles.control}
 onPress={this.handleNextTrack}
 >
 <Feather name="skip-forward" size={32} color="#fff"/>
 </TouchableOpacity>
 </View>

The renderSongInfo method returns basic JSX for displaying the metadata12.
associated with the track currently playing:

 renderSongInfo() {
 const { playbackInstance, currentTrackIndex } = this.state;
 return playbackInstance ?
 <View style={styles.trackInfo}>
 <Text style={[styles.trackInfoText, styles.largeText]}>
 {playlist[currentTrackIndex].title}
 </Text>
 <Text style={[styles.trackInfoText, styles.smallText]}>
 {playlist[currentTrackIndex].artist}
 </Text>
 <Text style={[styles.trackInfoText, styles.smallText]}>
 {playlist[currentTrackIndex].album}
 </Text>
 </View>

Implementing Complex User Interfaces - Part III Chapter 5

[153]

 : null;
 }

All that's left to add are the styles. The styles defined here are well-covered13.
ground by now, and don't go beyond centering, colors, font size, and adding
padding and margins:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#191A1A',
 alignItems: 'center',
 justifyContent: 'center',
 },
 trackInfo: {
 padding: 40,
 backgroundColor: '#191A1A',
 },
 buffer: {
 color: '#fff'
 },
 trackInfoText: {
 textAlign: 'center',
 flexWrap: 'wrap',
 color: '#fff'
 },
 largeText: {
 fontSize: 22
 },
 smallText: {
 fontSize: 16
 },
 control: {
 margin: 20
 },
 controls: {
 flexDirection: 'row'
 }
});

Implementing Complex User Interfaces - Part III Chapter 5

[154]

You can now check out your app in the simulator, and you should have a fully14.
working audio player! Note that audio playback in the Android emulator may be
too slow for the playback to work properly, and may sound very choppy. Open
the app on a real Android device to hear the track playing properly:

How it works...
In step 4, we initialized options on the Audio component once the app finished loading via
the componentDidMount method. The Audio component's setAudioModeAsync method
takes an option object as its only parameter.

Implementing Complex User Interfaces - Part III Chapter 5

[155]

Let's review some of the options we used in this recipe:

interruptionModeIOS and interruptionModeAndroid set how the audio in
your app should interact with the audio from other applications on the device.
We used the Audio component's INTERRUPTION_MODE_IOS_DO_NOT_MIX
and INTERRUPTION_MODE_ANDROID_DO_NOT_MIX enums, respectively, to
declare that our app's audio should interrupt any other applications playing
audio.

playsInSilentModeIOS is a Boolean that determines whether your app should
play audio when the device is in silent mode.

shouldDuckAndroid is a Boolean that determines whether your app's audio
should lower in volume (duck) when audio from another app interrupts your
app. While this setting defaults to true, I've added it to the recipe so that you're
aware that it's an option.

In step 5, we defined the loadAudio method, which performs the heavy lifting in this
recipe. First, we created a new instance of the Audio.Sound class and saved it to the
playbackInstance variable for later use. Next, we set the source and status variables
that will be passed into the loadAsync function on the playbackInstance for actually
loading the audio file. In the source object, we set the uri property to the corresponding
uri property on the object in the playlist array at the index stored in
this.state.currentTrackIndex. In the status object, we set the volume to the volume
value saved on state, and set shouldPlay, a Boolean that determines whether the audio
should be playing, initially to this.state.isPlaying. And, since we want to stream the
remote MP3 file instead of waiting for the entire file to download, we pass false the third,
downloadFirst, parameter.

Before calling the loadAsync method, we first
called setOnPlaybackStatusUpdate of playbackInstance, which takes a callback
function that should be called when the state of playbackInstance has changed. We
defined that handler in step 6. The handler simply saves the isBuffering value from the
callback's status parameter to the isBuffering property of state, which will fire a
rerender, updating the 'Buffering...' message in the UI accordingly.

Implementing Complex User Interfaces - Part III Chapter 5

[156]

In step 7, we defined the handlePlayPause function for toggling play and pause
functionality in the app. If there's a track playing, this.state.isPlaying will be true,
so we'll call the pauseAsync function on the playbackInstance otherwise, we'll call
playAsync to start playing the audio again. Once we've played or paused, we update the
value of isPlaying on state.

In step 8 and step 9, we created the functions that handle skipping to the next and previous
tracks. Each of these functions increases or decreases the value of
this.state.currentTrackIndex as appropriate, so that by the time this.loadAudio is
called at the bottom of each function, it will load the track associated with the object in the
playlist array at the new index.

There's more...
The features of our current app are more basic than you'll find in most audio players, but
all the tools you need for building a feature-rich audio player are at your disposal. For
instance, you could display the current track time in the UI by tapping into
the positionMillis property on the status parameter in the
setOnPlaybackStatusUpdate callback. Or, you could use a React Native Slider
component to allow the user to adjust the volume or playback rate. Expo's Audio
component provides all the building blocks for a great audio player app.

Creating an image carousel
There are all kinds of applications that make use of image carousels. Any time there's a
collection of images that you'd like your user to be able to peruse, a carousel is likely
among the most effective UI patterns for accomplishing the task.

There are a number of packages in the React Native community for handling the creation of
carousels, but in my experience none are more stable or more versatile than react-native-
snap-carousel (https:/ ​/​github. ​com/ ​archriss/ ​react- ​native- ​snap- ​carousel). This
package provides a great API for customizing the look and behavior of your carousel, and
supports Expo app development without the need for ejecting. You can easily change how
slides appear as they slide in and out of the carousel frame via the Carousel component's
layout property, and as of version 3.6, you can even create custom interpolations!

https://github.com/archriss/react-native-snap-carousel
https://github.com/archriss/react-native-snap-carousel
https://github.com/archriss/react-native-snap-carousel
https://github.com/archriss/react-native-snap-carousel
https://github.com/archriss/react-native-snap-carousel
https://github.com/archriss/react-native-snap-carousel
https://github.com/archriss/react-native-snap-carousel
https://github.com/archriss/react-native-snap-carousel
https://github.com/archriss/react-native-snap-carousel
https://github.com/archriss/react-native-snap-carousel
https://github.com/archriss/react-native-snap-carousel
https://github.com/archriss/react-native-snap-carousel
https://github.com/archriss/react-native-snap-carousel
https://github.com/archriss/react-native-snap-carousel
https://github.com/archriss/react-native-snap-carousel
https://github.com/archriss/react-native-snap-carousel
https://github.com/archriss/react-native-snap-carousel

Implementing Complex User Interfaces - Part III Chapter 5

[157]

While you are not limited to only displaying images with this package, we'll be building a
carousel that just displays images along with a caption to keep the recipe simple. We'll be
using the excellent license-free photo site unsplash.com to get random images for
displaying in our carousel via the Unsplash Source project hosted at source.unsplash.com.
Unsplash Source allows you to easily request random images from Unsplash without
needing to access the official API. You can visit the Unsplash Source site for more
information on how it works.

Getting ready
We'll need to create a new app for this recipe. Let's call this app carousel.

How to do it...
We'll start by opening App.js and importing dependencies:1.

import React, { Component } from 'react';
import {
 SafeAreaView,
 StyleSheet,
 Text,
 View,
 Image,
 TouchableOpacity,
 Picker,
 Dimensions,
} from 'react-native';
import Carousel from 'react-native-snap-carousel';

http://www.unsplash.com
http://source.unsplash.com

Implementing Complex User Interfaces - Part III Chapter 5

[158]

Next, let's define the App class and the initial state object. The state has three2.
properties: a Boolean for whether we're currently displaying the carousel or not,
a layoutType property for setting the layout style of our carousel, and an array
of imageSearchTerms we'll use later to get images from Unsplash Source. Feel
free to change the imageSearchTerms array to your heart's content:

export default class App extends React.Component {
 state = {
 showCarousel: false,
 layoutType: 'default',
 imageSearchTerms: [
 'Books',
 'Code',
 'Nature',
 'Cats',
]
 }

 // Defined in following steps
}

Let's define the render method next. We'll just check the value of3.
this.state.showCorousel and either show the carousel or the controls
accordingly:

 render() {
 return (
 <SafeAreaView style={styles.container}>
 {this.state.showCarousel ?
 this.renderCarousel() :
 this.renderControls()
 }
 </SafeAreaView>
);
 }

Implementing Complex User Interfaces - Part III Chapter 5

[159]

Next, let's create the renderControls function. This will be the layout the user4.
sees when they first open the app, and consists of a React Native Picker for
selecting a layout type to use in the carousel and a button for opening the
carousel. The Picker has three options available: default, tinder, and stack:

 renderControls = () => {
 return(
 <View style={styles.container}>
 <Picker
 selectedValue={this.state.layoutType}
 style={styles.picker}
 onValueChange={this.updateLayoutType}
 >
 <Picker.Item label="Default" value="default" />
 <Picker.Item label="Tinder" value="tinder" />
 <Picker.Item label="Stack" value="stack" />
 </Picker>
 <TouchableOpacity
 onPress={this.toggleCarousel}
 style={styles.openButton}
 >
 <Text style={styles.openButtonText}>Open Carousel</Text>
 </TouchableOpacity>
 </View>
)
 }

Let's define the toggleCarousel function. This function simply sets the value of5.
showCarousel on state to its opposite. By defining a toggle function, we can
use the same function to both open and close the carousel:

 toggleCarousel = () => {
 this.setState({
 showCarousel: !this.state.showCarousel
 });
 }

Implementing Complex User Interfaces - Part III Chapter 5

[160]

Similarly, the updateLayoutType method just updates the layoutType on6.
state to the layoutType value passed into it from the Picker component:

 updateLayoutType = (layoutType) => {
 this.setState({
 layoutType
 });
 }

The renderCarousel function returns the markup for the carousel. It's made up7.
of a button for closing the carousel and the Carousel component itself. This
component takes a layout property, as set by the Picker. It also has a
data property, which takes the data that should be looped over for each carousel
slide, and a renderItem callback that handles the rendering of each individual
slide:

 renderCarousel = () => {
 return(
 <View style={styles.carouselContainer}>
 <View style={styles.closeButtonContainer}>
 <TouchableOpacity
 onPress={this.toggleCarousel}
 style={styles.button}
 >
 <Text style={styles.label}>x</Text>
 </TouchableOpacity>
 </View>
 <Carousel
 layout={this.state.layoutType}
 data={this.state.imageSearchTerms}
 renderItem={this.renderItem}
 sliderWidth={350}
 itemWidth={350}
 >
 </Carousel>
 </View>
);
 }

Implementing Complex User Interfaces - Part III Chapter 5

[161]

We still need the function that handles the rendering of each slide. This function8.
receives one object parameter containing the next item in the array passed to the
data property. We'll return an Image component that uses the item parameter
value to get a random item from Unsplash Source that's 350x350 in size. We'll
also add a Text element to display the type of image being displayed:

 renderItem = ({item}) => {
 return (
 <View style={styles.slide}>
 <Image
 style={styles.image}
 source={{ uri: `https://source.unsplash.com/350x350/?
 ${item}`}}
 />
 <Text style={styles.label}>{item}</Text>
 </View>
);
 }

The last thing we'll need is some styles to lay out our UI. The container styles9.
apply to the main wrapping SafeAreaView element, so we set
justifyContent to 'space-evenly' so that the Picker and
TouchableOpacity components fill up the screen. To display the close button in
the top-right corner of the screen, we'll apply flexDirection: 'row
and justifyContent: 'flex-end' to the wrapping element. The rest of the
styles are just dimensions, colors, padding, margins, and font size:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'column',
 backgroundColor: '#fff',
 alignItems: 'center',
 justifyContent: 'space-evenly',
 },
 carouselContainer: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center',
 backgroundColor: '#474747'
 },
 closeButtonContainer: {
 width: 350,
 flexDirection: 'row',
 justifyContent: 'flex-end'
 },

Implementing Complex User Interfaces - Part III Chapter 5

[162]

 slide: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 },
 image: {
 width:350,
 height: 350,
 },
 label: {
 fontSize: 30,
 padding: 40,
 color: '#fff',
 backgroundColor: '#474747'
 },
 openButton: {
 padding: 10,
 backgroundColor: '#000'
 },
 openButtonText: {
 fontSize: 20,
 padding: 20,
 color: '#fff',
 },
 closeButton: {
 padding: 10
 },
 picker: {
 height: 150,
 width: 100,
 backgroundColor: '#fff'
 }
});

Implementing Complex User Interfaces - Part III Chapter 5

[163]

We've completed our carousel app. It probably won't win any design awards, but10.
it's a working carousel app with smooth, native-feeling behavior:

Implementing Complex User Interfaces - Part III Chapter 5

[164]

How it works...
In step 4, we defined the renderControls function, which renders the UI when the app is
first launched. This is the first recipe in which we've used the Picker component. It's a part
of the core React Native library and provides the drop-down type selector used to select
options in many applications. The selectedValue property is the value tied to whichever
item is currently selected in the picker. By setting it to this.state.layoutType, we'll
default the selection to the 'default' layout, and keep the values synced when a different
Picker item is selected. Each item in the picker is represented by a Picker.Item
component. Its label property defines the display text for the item, and the value
property represents the string value for the item. Since we provided the onValueChange
property with the updateLayoutType function, it will be called whenever a new item is
selected, which in turn will update this.state.layoutType accordingly.

In step 7, we defined the JSX for the carousel. The carousel's data and renderItem
properties are required, and work together to render each slide in the carousel. When the
carousel is instantiated, the array passed into the data property will be looped over, and
the renderItem callback function will be called for each item in the area, with that item
passed into the renderItem as a parameter. We also set the sliderWidth and itemWidth
properties, which are required for horizontal carousels.

In step 8, we defined the renderItem function that gets called for each entry in the array
passed into data. We set the source of the returned Image component to an Unsplash
source URL, which will return a random image of the type requested.

There's more...
There are a few things we could do to improve this recipe. We could make use of
the Image.prefetch() method to download the first image before opening the carousel,
so that the image is ready right away, or add an input to allow the user to select their own
image search terms.

The react-native-snap-carousel package provides a great way to build a multimedia
carousel for a React Native app. There are a number of features we didn't have the time to
cover here, including parallax images and custom pagination. For the adventurous
developer, the package provides a way to create custom interpolations, allowing you to
make your own layouts beyond the three built-in layouts.

Implementing Complex User Interfaces - Part III Chapter 5

[165]

Adding push notifications to your app
Push notifications are a great way to provide a constant feedback loop between the app and
the user by continually providing app-specific data that's relevant to the user. Messaging
applications send notifications when new messages arrive. Reminder applications display a
notification to remind the user of a task at a specific time or location. A podcast app might
use notifications to inform the user that a new episode has been published. A shopping app
could use notifications to alert the user to check out a limited-time deal.

Push notifications are a proven way to increase user interaction and retention. If your app
makes use of time-sensitive or event-based data, push notifications could be a valuable
asset. In this recipe, we'll be using Expo's push notification implementation,
which simplifies some of the setup that would be required with a vanilla React Native
project. If the needs of your app demand a non-Expo project, I would
recommend considering the react-native-push-notification package at https:/ ​/​github.
com/​zo0r/​react-​native- ​push- ​notification.

In this recipe, we'll be making a very simplistic messaging app with push notifications.
We'll request proper permissions, then register a push notification token to an Express
server we'll be building. We'll also render a TextInput for the user to enter a message into.
When the Send button is pressed, the message will be sent to our server, and the server will
send a push notification via Expo's push notification server, with the message from the app,
to all devices that have registered a token with our Express server.

Thanks to Expo's built-in push notification service, the complicated work of creating a
notification for each native device is offloaded to an Expo hosted backend. The Express
server we build in this recipe will just pass off JSON objects for each push notification to the
Expo backend, and the rest is taken care of. The following diagram from the Expo docs
(https:/​/​docs.​expo. ​io/ ​versions/ ​latest/ ​guides/ ​push- ​notifications) illustrates the life
cycle of a push notification:

https://github.com/zo0r/react-native-push-notification
https://github.com/zo0r/react-native-push-notification
https://github.com/zo0r/react-native-push-notification
https://github.com/zo0r/react-native-push-notification
https://github.com/zo0r/react-native-push-notification
https://github.com/zo0r/react-native-push-notification
https://github.com/zo0r/react-native-push-notification
https://github.com/zo0r/react-native-push-notification
https://github.com/zo0r/react-native-push-notification
https://github.com/zo0r/react-native-push-notification
https://github.com/zo0r/react-native-push-notification
https://github.com/zo0r/react-native-push-notification
https://github.com/zo0r/react-native-push-notification
https://github.com/zo0r/react-native-push-notification
https://github.com/zo0r/react-native-push-notification
https://github.com/zo0r/react-native-push-notification
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications

Implementing Complex User Interfaces - Part III Chapter 5

[166]

Image source: https:/ ​/ ​docs. ​expo. ​io/ ​versions/ ​latest/ ​guides/ ​push- ​notifications/ ​

While implementing push notifications using Expo is less setup work than it would
otherwise be, the requirements of the technology still mean we will need to run a server for
handling registrations and sending notifications, which means this recipe will be a little
longer than most. Let's get started!

Getting ready
One of the first things we'll need to do in this app is request permission from the device to
use push notifications. Unfortunately, push notification permissions do not work properly
in emulators, so a real device will be needed to test this app.

https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/
https://docs.expo.io/versions/latest/guides/push-notifications/

Implementing Complex User Interfaces - Part III Chapter 5

[167]

We'll also need to be able to access the push notification server from an address outside of
the localhost. In a real-world setup, the push notification server would already have a
public URL, but in a development environment, the easiest solution is to create a tunnel
that exposes the development push notification server to the internet. We'll be using the
ngrok tool for this purpose, since it is a mature, robust, and incredibly easy-to-use solution.
You can read more about the software at https:/ ​/​ngrok. ​com.

First, install ngrok globally via npm using the following command:

npm i -g ngrok

Once it's installed, you can create a tunnel from the internet to a port on your local machine
by executing ngrok with the https parameter:

ngrok https [port-to-expose]

We'll use this command later in the recipe to expose the development server.

Let's create a new app for this recipe. We'll call it push-notifications. We're going to
need three extra npm packages for this recipe: express for the push notification
server, esm for using ES6 syntax support on the server, and expo-server-sdk for
processing push notifications. Install them with yarn:

yarn add express esm expo-server-sdk

Alternatively, install them using npm:

npm install express esm expo-server-sdk --save

How to do it...
Let's start with building the App. We'll start that by adding the dependencies we1.
need to App.js:

import React from 'react';
import {
 StyleSheet,
 Text,
 View,
 TextInput,
 TouchableOpacity
} from 'react-native';
import { Permissions, Notifications } from 'expo';

https://ngrok.com
https://ngrok.com
https://ngrok.com
https://ngrok.com
https://ngrok.com
https://ngrok.com
https://ngrok.com

Implementing Complex User Interfaces - Part III Chapter 5

[168]

We're going to declare two constants for the API endpoints on our server, but the2.
url will be generated by ngrok when we run the server later in the recipe, so
we'll update the value of these constants at that point:

const PUSH_REGISTRATION_ENDPOINT = 'http://generated-ngrok-
url/token';
const MESSAGE_ENPOINT = 'http://generated-ngrok-url/message';

Let's create the App component and initialize the state object. We'll need3.
a notification property to hold notifications received by the Notifications
listener, which we will define in a later step:

export default class App extends React.Component {
 state = {
 notification: null,
 messageText: ''
 }

 // Defined in following steps
}

Let's define the method that will handle registering the push notification token to4.
the server. We'll ask for notification permission from the user via the askAsync
method on the Permissions component. If permission is granted, get the token
from the device from the getExpoPushTokenAsync method of
the Notifications component:

 registerForPushNotificationsAsync = async () => {
 const { status } = await
Permissions.askAsync(Permissions.NOTIFICATIONS);
 if (status !== 'granted') {
 return;
 }
 let token = await Notifications.getExpoPushTokenAsync();

 // Defined in following steps
 }

Implementing Complex User Interfaces - Part III Chapter 5

[169]

Once we have the appropriate token, we'll send it over to the push notification5.
server for registration. We will then make a POST request
to PUSH_REGISTRATION_ENDPOINT, sending a token object and user object in
the request body. I've hardcoded the values in the user object, but in a real app
this would be the metadata you've stored for the current user:

 registerForPushNotificationsAsync = async () => {
 // Defined in above step

 fetch(PUSH_REGISTRATION_ENDPOINT, {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 },
 body: JSON.stringify({
 token: {
 value: token,
 },
 user: {
 username: 'warly',
 name: 'Dan Ward'
 },
 }),
 });

 // Defined in next step
 }

After the token is registered, we'll set up an event listener to listen to any6.
notifications that occur while the app is open and foregrounded. In certain cases,
we will need to manually handle displaying the information from an incoming
push notification. Check the How it works... section at the end of this recipe for
more on why this is necessary and how it can be leveraged. We'll define the
handler in the next step:

 registerForPushNotificationsAsync = async () => {
 // Defined in above steps

 this.notificationSubscription =
 Notifications.addListener(this.handleNotification);
 }

Implementing Complex User Interfaces - Part III Chapter 5

[170]

Whenever a new notification is received, the handleNotification method will7.
be run. We'll just store the new notification passed to this callback on the state
object for later use in the render function:

handleNotification = (notification) => {
 this.setState({ notification });
}

We want our app to ask for permission to use push notifications, and to register8.
the push notification token when the app launches. We'll utilize the
componentDidMount life cycle hook to run
our registerForPushNotificationsAsync method:

 componentDidMount() {
 this.registerForPushNotificationsAsync();
 }

The UI will be very minimal to keep the recipe simple. It's made up of9.
a TextInput for the message text, a Send button for sending the message, and
a View for displaying any notifications heard by the notification listener:

 render() {
 return (
 <View style={styles.container}>
 <TextInput
 value={this.state.messageText}
 onChangeText={this.handleChangeText}
 style={styles.textInput}
 />
 <TouchableOpacity
 style={styles.button}
 onPress={this.sendMessage}
 >
 <Text style={styles.buttonText}>Send</Text>
 </TouchableOpacity>
 {this.state.notification ?
 this.renderNotification()
 : null}
 </View>
);
 }

Implementing Complex User Interfaces - Part III Chapter 5

[171]

The TextInput component defined in the previous step is missing the method it10.
needs for its onChangeText property. Let's create that method next. It just saves
the text input by the user to this.state.messageText so it can be used by the
value property and elsewhere:

 handleChangeText = (text) => {
 this.setState({ messageText: text });
 }

The TouchableOpacity component's onPress property calls the sendMessage11.
method to send the message text when the user presses the button. In this
function, we'll just take the message text and POST it to the MESSAGE_ENDPOINT
on our push notification server. The server will handle things from there. Once
the message is sent, we'll clear the messageText property on state:

 sendMessage = async () => {
 fetch(MESSAGE_ENPOINT, {
 method: 'POST',
 headers: {
 Accept: 'application/json',
 'Content-Type': 'application/json',
 },
 body: JSON.stringify({
 message: this.state.messageText,
 }),
 });
 this.setState({ messageText: '' });
 }

The last piece we need for the App is the styles. These styles are straightforward,12.
and should all look quite familiar by now:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#474747',
 alignItems: 'center',
 justifyContent: 'center',
 },
 textInput: {
 height: 50,
 width: 300,
 borderColor: '#f6f6f6',
 borderWidth: 1,
 backgroundColor: '#fff',
 padding: 10

Implementing Complex User Interfaces - Part III Chapter 5

[172]

 },
 button: {
 padding: 10
 },
 buttonText: {
 fontSize: 18,
 color: '#fff'
 },
 label: {
 fontSize: 18
 }
});

With the React Native app portion out of the way, let's move on to the server13.
portion. First, we'll create a new server folder in the root of the project with an
index.js file inside of it. Let's start by importing express to run the server
and expo-server-sdk to handle the registration and sending of push
notifications. We'll create an Express server app and store it in the app const, and
a new instance of the Expo server SDK in the expo const. We'll also add a
savedPushTokens array for storing any tokens that are registered with the React
Native app, and a PORT_NUMBER const for the port we want to run the server on:

import express from 'express';
import Expo from 'expo-server-sdk';

const app = express();
const expo = new Expo();

let savedPushTokens = [];
const PORT_NUMBER = 3000;

Our server will need to expose two endpoints (one for registering tokens, and14.
one for accepting messages from the React Native app), so we'll create two
functions that will be executed when these routes are hit. We'll define
the saveToken function first. It just takes a token, checks whether it's stored in
the savedPushTokens array, and pushes it to the array if it isn't there already:

const saveToken = (token) => {
 if (savedPushTokens.indexOf(token === -1)) {
 savedPushTokens.push(token);
 }
}

Implementing Complex User Interfaces - Part III Chapter 5

[173]

The other function our server needs is a handler for sending push notifications15.
when a message is received from the React Native app. We'll loop over all of the
tokens that have been saved to the savedPushTokens array and create a
message object for each token. Each message object has a title of Message
received!, which will display in bold on the push notification, and the message
text as the body of the notification:

const handlePushTokens = (message) => {
 let notifications = [];
 for (let pushToken of savedPushTokens) {
 if (!Expo.isExpoPushToken(pushToken)) {
 console.error(`Push token ${pushToken} is not a valid Expo
push token`);
 continue;
 }
 notifications.push({
 to: pushToken,
 sound: 'default',
 title: 'Message received!',
 body: message,
 data: { message }
 })
 }

 // Defined in following step
}

Once we have an array of messages, we can send them to Expo's server, which in16.
turn will send the push notification to all registered devices. We'll send the
messages array via the expo server's chunkPushNotifications and
sendPushNotificationsAsync methods, and console.log the success
receipts, or an error, as appropriate to the server console. There's more on how
this works in the How it works... section at the end of this recipe:

const handlePushTokens = (message) => {
 // Defined in previous step

 let chunks = expo.chunkPushNotifications(notifications);

 (async () => {
 for (let chunk of chunks) {
 try {
 let receipts = await
expo.sendPushNotificationsAsync(chunk);
 console.log(receipts);
 } catch (error) {

Implementing Complex User Interfaces - Part III Chapter 5

[174]

 console.error(error);
 }
 }
 })();
}

Now that we have the functions defined for handling push notifications and17.
messages, let's expose those functions by creating API endpoints. If you're not
familiar with Express, it's a powerful and easy-to-use framework for running a
web server in Node. You can quickly get up to speed on the basics of routing
with the basic routing docs
at https://expressjs.com/en/starter/basic-routing.html.
We'll be working with JSON data, so the first step will be applying the JSON
parser middleware with a call to express.json():

app.use(express.json());

Even though we won't really be using the root path (/) of the server, it's good18.
practice to define one. We'll just respond with a message that the server is
running:

app.get('/', (req, res) => {
 res.send('Push Notification Server Running');
});

First, let's implement the endpoint for saving a push notification token. When a19.
POST request is sent to the /token endpoint, we'll pass the token value to the
saveToken function and return a response stating that the token was received:

app.post('/token', (req, res) => {
 saveToken(req.body.token.value);
 console.log(`Received push token, ${req.body.token.value}`);
 res.send(`Received push token, ${req.body.token.value}`);
});

Likewise, the /message endpoint will take the message from the request body20.
and pass it to the handlePushTokens function for processing. Then, we'll send
back a response that the message was received:

app.post('/message', (req, res) => {
 handlePushTokens(req.body.message);
 console.log(`Received message, ${req.body.message}`);
 res.send(`Received message, ${req.body.message}`);
});

https://expressjs.com/en/starter/basic-routing.html

Implementing Complex User Interfaces - Part III Chapter 5

[175]

The last piece to the server is the call to Express's listen method on the server21.
instance, which will start the server:

app.listen(PORT_NUMBER, () => {
 console.log('Server Online on Port ${PORT_NUMBER}');
});

We're going to need a way to start the server, so we'll add a custom script to22.
the package.json file called serve. Open the package.json file and update it
to have a scripts object with a new serve script. With this added, we can run the
server with yarn via the yarn run serve command or with npm via the
command npm run serve. The package.json file should look something like
this:

{
 "main": "node_modules/expo/AppEntry.js",
 "private": true,
 "dependencies": {
 "esm": "^3.0.28",
 "expo": "^27.0.1",
 "expo-server-sdk": "^2.3.3",
 "express": "^4.16.3",
 "react": "16.3.1",
 "react-native":
"https://github.com/expo/react-native/archive/sdk-27.0.0.tar.gz"
 },
 "scripts": {
 "serve": "node -r esm server/index.js"
 }
}

We've got all the code in place, let's use it! As mentioned previously, push23.
notification permissions do not work properly on the emulator, so a real device
will be needed to test the push notification functionality. First, we'll fire up our
newly created server by running the following commands:

 yarn run serve
 npm run serve

Implementing Complex User Interfaces - Part III Chapter 5

[176]

You should be greeted by the Server Online message we defined in the listen
method call in step 21:

Next, we'll need to run ngrok to expose our server to the internet. Open a new24.
Terminal window and create an ngrok tunnel with the following command:

 ngrok http 3000

You should see the ngrok interface in the Terminal. This displays the URLs
generated by ngrok. In this case, ngrok is forwarding my server located at
http://localhost:3000 to the URL http://ddf558bd.ngrok.io. Let's copy
that URL:

You can test that the server is running and accessible from the internet by visiting25.
the generated URL in a browser. Navigating directly to this URL behaves exactly
the same as navigating to http://localhost:3000, which means the GET
endpoint we defined in previous step should run. That function returns the Push
Notification Server Running string, and should display in your browser:

Implementing Complex User Interfaces - Part III Chapter 5

[177]

Now that we've confirmed that the server is running, let's update the React26.
Native app to use the correct server URL. In step 2, we added to constants to hold
our API endpoints, but we didn't have the correct URL yet. Let's update these
URLs to reflect the tunnel URL generated by ngrok:

const PUSH_REGISTRATION_ENDPOINT =
'http://ddf558bd.ngrok.io/token';
const MESSAGE_ENPOINT = 'http://ddf558bd.ngrok.io/message';

As mentioned previously, you'll need to run this app on a real device for the27.
permissions request to work correctly. As soon as you open the app, you should
be prompted by the device, asking if you'd like to allow the app to send
notifications:

Implementing Complex User Interfaces - Part III Chapter 5

[178]

As soon as Allow is selected, the push notification token will be sent to the28.
server's /token endpoint to be saved. This should also print the associated
console.log statement in the server Terminal with the saved token. In this case,
my iPhone's push token is the string
ExponentPushToken[g5sIEbOm2yFdzn5VdSSy9n]:

At this point, if you have a second Android or iOS device, go ahead and open the29.
React Native app on that device as well. If not, don't worry. There's another easy
way to test that our push notification functionality is working without using a
second device.
You can use the React Native app's text input to send a message to other30.
registered devices.. If you've got a second device that has registered a token with
the server, it should receive a push notification corresponding to the newly sent
message. You should also see two new instances of console.log in the server:
one that displays the received message, and another that displays the receipts
array received back from the Expo servers. Each receipt object in the array will
have a status property with the value 'ok' if the operation was successful:

Implementing Complex User Interfaces - Part III Chapter 5

[179]

If you don't have a second device to test on, you can use Expo's push notification31.
tool, hosted at https:/ ​/​expo. ​io/​dashboard/ ​notifications. Just copy the push
token from the server Terminal and paste it into the input labeled EXPO PUSH
TOKEN (from your app). To emulate a message sent from our React Native app,
set MESSAGE TITLE to Message received!, MESSAGE BODY to the
message text you'd like to send, and check the Play Sound checkbox. If you like,
you can also emulate the data object by providing a JSON object with a key of
"message" and a value of your message text,such as { "message": "This is
a test message." }. The received message should then look something like
this screenshot:

https://expo.io/dashboard/notifications
https://expo.io/dashboard/notifications
https://expo.io/dashboard/notifications
https://expo.io/dashboard/notifications
https://expo.io/dashboard/notifications
https://expo.io/dashboard/notifications
https://expo.io/dashboard/notifications
https://expo.io/dashboard/notifications
https://expo.io/dashboard/notifications
https://expo.io/dashboard/notifications
https://expo.io/dashboard/notifications

Implementing Complex User Interfaces - Part III Chapter 5

[180]

How it works...
The recipe we built here is a little contrived, but the core concepts needed to request
permissions, register tokens, accept app data, and send push notifications in response to
app data are all there.

In step 4, we defined the first part of the registerForPushNotificationsAsync
function. We began by asking the user for their permission to send them notifications from
our app via the Permissions.askAsync method, passing in the constant for the push
notifications permission, Permissions.NOTIFICATIONS. We then saved the status
property from the resolved return object, which will have the value 'granted' if the user
granted permission. If we don't get permission, we return right away; otherwise, we get
the token from Expo's Notifications component by calling getExpoPushTokenAsync.
This function returns a token string, which will be in the following format:

 ExponentPushToken[xxxxxxxxxxxxxxxxxxxxxx]

In step 5, we defined the POST call to the server's registration endpoint (/token). This
function sends the token in the request body, which is then saved on the server using the
saveToken function defined in step 14.

In step 6, we created an event listener that will listen for any new incoming push
notifications. This is done by calling Notifications.addListener and passing in a
callback function to be executed every time a new notification is received. On iOS devices,
the system is designed to only produce a push notification if the app sending the push
notification isn't open and foregrounded. That means if you try to send your user a push
notification while they're currently using your app, they will never receive it.

To overcome this issue, Expo suggests manually displaying the push notification data from
within your app. This Notifications.addListener method was created to fulfill this
need. When a push notification is received, the callback passed to addListener will be
executed and will receive the new notification object as a parameter. In step 7, we saved this
notification to state so that the UI would be re-rendered accordingly. We only displayed
the message text in a Text component in this recipe, but you could also use a modal for a
more notification-like presentation.

In step 11, we created the sendMessage function, which posts the message text stored on
state to the server's /message endpoint. This will execute the handlePushToken server
function defined in step 15.

Implementing Complex User Interfaces - Part III Chapter 5

[181]

In step 13, we started working on the server, which utilizes Express and the Expo server
SDK. A new server is created with express by calling express() directly, as a local const,
usually named app by convention. We were able to create a new Expo server SDK instance
with new Expo(), storing it in the expo const. We later used the Expo server SDK to send
the push notification using expo, define routes using app in steps 17 to step 20, and initiate
the server by calling app.listen() in step 22.

In step 14, we defined the saveToken function, which will be executed when the /token
endpoint is used by the React Native app to register a token. This function saves the
incoming token to the savedPushTokens array, to be used later when a message arrives
from a user. In a real app, this is where you would likely want to save the tokens to a
persistent database of some kind, such as SQL, MongoDB, or Firebase Database.

In step 15, we started defining the handlePushTokens function, which runs when the
React Native app uses the /message endpoint. The function loops over the
savedPushTokens array for processing. Each token is checked for validity using the Expo
server SDK's isExpoPushToken method, which takes in a token and returns true if the
token is valid. If it's invalid, we log an error to the server console. If it's valid, we push a
new notification object onto the local notifications array for batch processing in the next
step. Each notification object requires a to property with the value set to a valid Expo push
token. All other properties are optional. The optional properties we set were as follows:

Sound: Can be default to play the default notification sound or null for no
sound
Title: The title of the push notification, usually displayed in bold
Body: The body of the push notification
Data: A custom data JSON object

In step 16, we used the Expo server SDK's chunkPushNotifications instance method to
create an array of data chunks optimized for sending to Expo's push notification server. We
then looped over the chunks, and sent each chunk to Expo's push notification server via
the expo.sendPushNotificationsAsync method. It returned a promise that resolved to
an array of receipts for each push notification. If the process is successful, there will be a {
status: 'ok' } object for each notification in the array.

This endpoint's behavior is simpler than a real server would probably be, because most
message applications would have a more complicated way of handling a message. At the
very least, there would likely be a list of recipients that would dictate which registered
devices would in turn receive a particular push notification. The logic was intentionally
kept simple to portray the basic flow.

Implementing Complex User Interfaces - Part III Chapter 5

[182]

In step 18, we defined the first accessible route on our server, the root (/) path. Express
provides the get and post helper methods for easily making API endpoints for GET and
POST requests respectively. The callback function receives a request object and response
object as parameters. All server URLs need to respond to the request; otherwise, the request
would time out. The response is sent via the send method on the response object. This
route doesn't process any data, so we just returned the string indicating that our server is
running.

In step 19 and step 20, we defined POST endpoints for /token and /message, which will
execute saveToken and handlePushTokens respectively. We also added console.log
statements to each, to log the token and the message to the server Terminal for ease of
development.

In step 21, we defined the listen method on our Express server, which starts the server.
The first parameter is the port number to listen for requests on, and the second parameter is
a callback function, usually used to console.log a message to the server Terminal that the
server has been started.

In step 22, we added a custom script to the package.json file of our project. Any
command that can be run in the Terminal can be made a custom npm script by adding
a scripts key to the package.json file set to an object whose keys are the name of the
custom script, and whose values are the command that should be executed when that
custom script is run. In this recipe, we defined a custom scripted named serve that runs
the node -r esm server/index.js command. This command runs our server file
(server/index.js) with Node, using the esm npm package we installed at the beginning
of this recipe. Custom scripts can be executed with npm:

npm run [custom-script-name]

They can also be executed using yarn:

yarn run [custom-script-name]

There's more...
Push notifications can be complicated, but thankfully Expo simplifies the process in a
number of ways. There's great documentation on Expo's push notification service, which
covers the specifics of notification timing, Expo server SDKs in other languages, and how to
implement notifications over HTTP/2. I encourage you to read more at https:/ ​/​docs.
expo.​io/​versions/ ​latest/ ​guides/ ​push- ​notifications.

https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications

Implementing Complex User Interfaces - Part III Chapter 5

[183]

Implementing browser-based authentication
In the Logging in with Facebook recipe in Chapter 8, Working with Application Logic and
Data, we will cover using the Expo Facebook component to create a login workflow for
providing our app with the user's basic Facebook account information. Expo also provides
a Google component, which provides similar functionality for getting a user's Google
account information. But what do we do if we want to create a login workflow that uses
account information from a different site? In this case, Expo provides the AuthSession
component.

AuthSession is built on Expo's WebBrowser component, which we've already used
in Chapter 4, Implementing Complex User Interfaces – Part II. The typical login workflow
consists of four steps:

The user initiates the login process1.
The web browser opens to the login page2.
The authentication provider provides a redirect on successful login3.
The React Native app handles the redirect4.

In this app, we'll be using the Spotify API to get Spotify account information for our app via
user login. Head over to https:/ ​/ ​beta. ​developer. ​spotify. ​com/ ​dashboard/
applications to create a new Spotify dev account (if you don't already have one) and a
new app. The app can be named whatever you like. Once the app is created with Spotify,
you'll see a client ID string displayed in the information for your app. We'll need this ID
when building the React Native app.

Getting ready
We will need a new app for this recipe. Let's name the app browser-based-auth.

The redirect URI also needs to be whitelisted in the Spotify app we created previously. The
redirect should be in the form
of https://auth.expo.io/@YOUR_EXPO_USERNAME/YOUR_APP_SLUG. Since my Expo
username is warlyware, and since this React Native app we're building is named
browser-based-auth, my redirect URI is
https://auth.expo.io/@warlyware/browser-based-auth. Be sure to add this to
the Redirect URIs list in the settings of the Spotify app.

https://beta.developer.spotify.com/dashboard/applications
https://beta.developer.spotify.com/dashboard/applications
https://beta.developer.spotify.com/dashboard/applications
https://beta.developer.spotify.com/dashboard/applications
https://beta.developer.spotify.com/dashboard/applications
https://beta.developer.spotify.com/dashboard/applications
https://beta.developer.spotify.com/dashboard/applications
https://beta.developer.spotify.com/dashboard/applications
https://beta.developer.spotify.com/dashboard/applications
https://beta.developer.spotify.com/dashboard/applications
https://beta.developer.spotify.com/dashboard/applications
https://beta.developer.spotify.com/dashboard/applications
https://beta.developer.spotify.com/dashboard/applications
https://beta.developer.spotify.com/dashboard/applications

Implementing Complex User Interfaces - Part III Chapter 5

[184]

How to do it...
We'll start by opening App.js and importing the dependencies we will be using:1.

import React, { Component } from 'react';
import { TouchableOpacity, StyleSheet, Text, View } from 'react-
native';
import { AuthSession } from 'expo';
import { FontAwesome } from '@expo/vector-icons';

Let's also declare the CLIENT_ID as a constant to be used later. Copy the client2.
ID for the Spotify app we created previously so that we can save it in the
CLIENT_ID const:

const CLIENT_ID = Your-Spotify-App-Client-ID;

Let's create the App class and the initial state. The userInfo property will hold3.
the user information we receive back from the Spotify API, and didError is a
Boolean for tracking whether an error occurred during login:

export default class App extends React.Component {
 state = {
 userInfo: null,
 didError: false
 };

 // Defined in following steps
}

Next, let's define the method that logs the user in to Spotify. The AuthSession4.
component's getRedirectUrl method provides the redirect URL needed for
returning to the React Native app after login, which is the same redirect URI we
saved in the Spotify app in the Getting ready section of this recipe. We'll then use
the redirect URL in the login request, which we'll launch with the
AuthSession.startAsync method, passing in an options object with the
authUrl property set to the Spotify endpoint for authorizing user data with an
app. There's more information on this URL in the How it works... section at the
end of this recipe:

 handleSpotifyLogin = async () => {
 let redirectUrl = AuthSession.getRedirectUrl();
 let results = await AuthSession.startAsync({
 authUrl:
`https://accounts.spotify.com/authorize?client_id=${CLIENT_ID}
 &redirect_uri=${encodeURIComponent(redirectUrl)}

Implementing Complex User Interfaces - Part III Chapter 5

[185]

 &scope=user-read-email&response_type=token`
 });

 // Defined in next step
 };

We saved the results of hitting the Spotify endpoint for user authentication in the5.
local results variable. If the type property on the results object returns
anything other than 'success', then an error occurred, so we'll update the
didError property of state accordingly. Otherwise, we'll hit the /me endpoint
with the access token we received from authorization to get the user's info, which
we'll save to this.state.userInfo:

 handleSpotifyLogin = async () => {

 if (results.type !== 'success') {
 this.setState({ didError: true });
 } else {
 const userInfo = await
axios.get(`https://api.spotify.com/v1/me`, {
 headers: {
 "Authorization": `Bearer ${results.params.access_token}`
 }
 });
 this.setState({ userInfo: userInfo.data });
 }
 };

Now that the auth related methods are defined, let's create the render function.6.
We'll use the FontAwesome Expo icon library to display the Spotify logo, add a
button to allow the user to log in, and add methods for rendering either an error
or the user info, depending on the value of this.state.didError. We'll also
disable the login button once there's data saved on the userInfo property
of state:

 render() {
 return (
 <View style={styles.container}>
 <FontAwesome
 name="spotify"
 color="#2FD566"
 size={128}
 />
 <TouchableOpacity
 style={styles.button}

Implementing Complex User Interfaces - Part III Chapter 5

[186]

 onPress={this.handleSpotifyLogin}
 disabled={this.state.userInfo ? true : false}
 >
 <Text style={styles.buttonText}>
 Login with Spotify
 </Text>
 </TouchableOpacity>
 {this.state.didError ?
 this.displayError() :
 this.displayResults()
 }
 </View>
);
 }

Next, let's define the JSX for handling errors. The template just displays a generic7.
error message to indicate that the user should try again:

 displayError = () => {
 return (
 <View style={styles.userInfo}>
 <Text style={styles.errorText}>
 There was an error, please try again.
 </Text>
 </View>
);
 }

The displayResults function will be a View component that displays the user's8.
image, username, and email address if there is userInfo saved to state,
otherwise it will prompt the user to log in:

 displayResults = () => {
 { return this.state.userInfo ? (
 <View style={styles.userInfo}>
 <Image
 style={styles.profileImage}
 source={ {'uri': this.state.userInfo.images[0].url} }
 />
 <View>
 <Text style={styles.userInfoText}>
 Username:
 </Text>
 <Text style={styles.userInfoText}>
 {this.state.userInfo.id}
 </Text>
 <Text style={styles.userInfoText}>
 Email:

Implementing Complex User Interfaces - Part III Chapter 5

[187]

 </Text>
 <Text style={styles.userInfoText}>
 {this.state.userInfo.email}
 </Text>
 </View>
 </View>
) : (
 <View style={styles.userInfo}>
 <Text style={styles.userInfoText}>
 Login to Spotify to see user data.
 </Text>
 </View>
)}
 }

The styles for this recipe are quite simple. It uses a column flex layout, applies9.
the Spotify color scheme of black and green, and adds font sizes and margins:

const styles = StyleSheet.create({
 container: {
 flexDirection: 'column',
 backgroundColor: '#000',
 flex: 1,
 alignItems: 'center',
 justifyContent: 'space-evenly',
 },
 button: {
 backgroundColor: '#2FD566',
 padding: 20
 },
 buttonText: {
 color: '#000',
 fontSize: 20
 },
 userInfo: {
 height: 250,
 width: 200,
 alignItems: 'center',
 },
 userInfoText: {
 color: '#fff',
 fontSize: 18
 },
 errorText: {
 color: '#fff',
 fontSize: 18
 },
 profileImage: {

Implementing Complex User Interfaces - Part III Chapter 5

[188]

 height: 64,
 width: 64,
 marginBottom: 32
 }
});

Now, if we look at the app, we should be able to log in to Spotify, and see the10.
associated image, username, and email address for the account used to log in:

Implementing Complex User Interfaces - Part III Chapter 5

[189]

How it works...
In step 4, we created the method for handling the Spotify login process. The
AuthSession.startAsync method just needed an authUrl, which was provided by the
Spotify Developers documentation. The four pieces required are the Client-ID, the
redirect URI for handling the response from Spotify, a scope parameter indicating the
scope of user information the app is requesting, and a response_type parameter of
token. We only need basic information from the user, so we requested a scope type
of user-read-email. For information on all the scopes available, check the documentation
at https:/​/​beta.​developer. ​spotify. ​com/​documentation/ ​general/ ​guides/ ​scopes/ ​.

In step 5, we completed the Spotify login handler. If the login was not successful, we
updated didError on state accordingly. If it was successful, we used that response to
access the Spotify API endpoint for getting user data (https:/ ​/​api. ​spotify. ​com/ ​v1/ ​me).
We defined the Authorization header of the GET request
with Bearer ${results.params.access_token} to validate the request, as per
Spotify's documentation. On the success of this request, we stored the returned user data in
the userInfo state object, which re-rendered the UI and displayed the user's information.

For a deeper dive into Spotify's auth process, you can find the guide at https:/ ​/​beta.
developer.​spotify. ​com/ ​documentation/ ​general/ ​guides/ ​authorization- ​guide/ ​.

https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://beta.developer.spotify.com/documentation/general/guides/scopes/
https://api.spotify.com/v1/me
https://api.spotify.com/v1/me
https://api.spotify.com/v1/me
https://api.spotify.com/v1/me
https://api.spotify.com/v1/me
https://api.spotify.com/v1/me
https://api.spotify.com/v1/me
https://api.spotify.com/v1/me
https://api.spotify.com/v1/me
https://api.spotify.com/v1/me
https://api.spotify.com/v1/me
https://api.spotify.com/v1/me
https://api.spotify.com/v1/me
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/
https://beta.developer.spotify.com/documentation/general/guides/authorization-guide/

Implementing Complex User Interfaces - Part III Chapter 5

[190]

See also
Expo Permissions docs: https:/ ​/​docs. ​expo. ​io/ ​versions/ ​latest/ ​sdk/
permissions

Expo MapView docs: https:/ ​/​docs. ​expo. ​io/​versions/ ​latest/ ​sdk/ ​map- ​view

Airbnb's React Native Maps package: https:/ ​/​github. ​com/ ​react- ​community/
react-​native- ​maps

Expo Audio docs: https:/ ​/​docs. ​expo. ​io/ ​versions/ ​latest/ ​sdk/ ​audio

React Native Image Prefetch docs: https:/ ​/ ​facebook. ​github. ​io/​react- ​native/
docs/​image. ​html#prefetch

React Native Snap Carousel Custom Interpolations docs: https:/ ​/​github. ​com/
archriss/ ​react- ​native- ​snap- ​carousel/ ​blob/ ​master/ ​doc/ ​CUSTOM_
INTERPOLATIONS. ​md

Expo Push Notifications docs: https:/ ​/​docs. ​expo. ​io/ ​versions/ ​latest/
guides/​push- ​notifications

Express Basic Routing guide: https:/ ​/​expressjs. ​com/ ​en/​starter/ ​basic-
routing. ​html

esm package: https:/ ​/ ​github. ​com/ ​standard- ​things/ ​esm

Expo server SDK for Node: https:/ ​/​github. ​com/ ​expo/ ​exponent- ​server- ​sdk-
node

ngrok package: https:/ ​/ ​github. ​com/ ​inconshreveable/ ​ngrok

https://docs.expo.io/versions/latest/sdk/permissions
https://docs.expo.io/versions/latest/sdk/permissions
https://docs.expo.io/versions/latest/sdk/permissions
https://docs.expo.io/versions/latest/sdk/permissions
https://docs.expo.io/versions/latest/sdk/permissions
https://docs.expo.io/versions/latest/sdk/permissions
https://docs.expo.io/versions/latest/sdk/permissions
https://docs.expo.io/versions/latest/sdk/permissions
https://docs.expo.io/versions/latest/sdk/permissions
https://docs.expo.io/versions/latest/sdk/permissions
https://docs.expo.io/versions/latest/sdk/permissions
https://docs.expo.io/versions/latest/sdk/permissions
https://docs.expo.io/versions/latest/sdk/permissions
https://docs.expo.io/versions/latest/sdk/permissions
https://docs.expo.io/versions/latest/sdk/permissions
https://docs.expo.io/versions/latest/sdk/permissions
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://docs.expo.io/versions/latest/sdk/map-view
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://github.com/react-community/react-native-maps
https://docs.expo.io/versions/latest/sdk/audio
https://docs.expo.io/versions/latest/sdk/audio
https://docs.expo.io/versions/latest/sdk/audio
https://docs.expo.io/versions/latest/sdk/audio
https://docs.expo.io/versions/latest/sdk/audio
https://docs.expo.io/versions/latest/sdk/audio
https://docs.expo.io/versions/latest/sdk/audio
https://docs.expo.io/versions/latest/sdk/audio
https://docs.expo.io/versions/latest/sdk/audio
https://docs.expo.io/versions/latest/sdk/audio
https://docs.expo.io/versions/latest/sdk/audio
https://docs.expo.io/versions/latest/sdk/audio
https://docs.expo.io/versions/latest/sdk/audio
https://docs.expo.io/versions/latest/sdk/audio
https://docs.expo.io/versions/latest/sdk/audio
https://docs.expo.io/versions/latest/sdk/audio
https://docs.expo.io/versions/latest/sdk/audio
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://facebook.github.io/react-native/docs/image.html#prefetch
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://github.com/archriss/react-native-snap-carousel/blob/master/doc/CUSTOM_INTERPOLATIONS.md
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://docs.expo.io/versions/latest/guides/push-notifications
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://github.com/standard-things/esm
https://github.com/standard-things/esm
https://github.com/standard-things/esm
https://github.com/standard-things/esm
https://github.com/standard-things/esm
https://github.com/standard-things/esm
https://github.com/standard-things/esm
https://github.com/standard-things/esm
https://github.com/standard-things/esm
https://github.com/standard-things/esm
https://github.com/standard-things/esm
https://github.com/standard-things/esm
https://github.com/standard-things/esm
https://github.com/expo/exponent-server-sdk-node
https://github.com/expo/exponent-server-sdk-node
https://github.com/expo/exponent-server-sdk-node
https://github.com/expo/exponent-server-sdk-node
https://github.com/expo/exponent-server-sdk-node
https://github.com/expo/exponent-server-sdk-node
https://github.com/expo/exponent-server-sdk-node
https://github.com/expo/exponent-server-sdk-node
https://github.com/expo/exponent-server-sdk-node
https://github.com/expo/exponent-server-sdk-node
https://github.com/expo/exponent-server-sdk-node
https://github.com/expo/exponent-server-sdk-node
https://github.com/expo/exponent-server-sdk-node
https://github.com/expo/exponent-server-sdk-node
https://github.com/expo/exponent-server-sdk-node
https://github.com/expo/exponent-server-sdk-node
https://github.com/inconshreveable/ngrok
https://github.com/inconshreveable/ngrok
https://github.com/inconshreveable/ngrok
https://github.com/inconshreveable/ngrok
https://github.com/inconshreveable/ngrok
https://github.com/inconshreveable/ngrok
https://github.com/inconshreveable/ngrok
https://github.com/inconshreveable/ngrok
https://github.com/inconshreveable/ngrok
https://github.com/inconshreveable/ngrok
https://github.com/inconshreveable/ngrok

6
Adding Basic Animations to

Your App
In this chapter, we will cover the following recipes:

Creating simple animations
Running multiple animations
Creating animated notifications
Expanding and collapsing containers
Creating a button with a loading animation

Introduction
In order to provide a good user experience, we'll likely want to add some animations to
direct the user's attention, to highlight specific actions, or just to add a distinctive touch to
our app.

There's an initiative in progress to move all the processing from JavaScript to the native
side. At the time of writing (React Native Version 0.58), we can choose to use the native
driver to run all these calculations in the native world. Unfortunately, this cannot be used
with all animations, particularly those related to layout, such as flexbox properties. Read
more about caveats when using native animation in the documentation at http:/ ​/
facebook.​github. ​io/ ​react- ​native/ ​docs/ ​animations#caveats.

All of the recipes in this chapter use the JavaScript implementation. The React Native team
has promised to use the same API when moving all of the processing to the native side, so
we don't need to worry about breaking changes to the existing API.

http://facebook.github.io/react-native/docs/animations#caveats
http://facebook.github.io/react-native/docs/animations#caveats
http://facebook.github.io/react-native/docs/animations#caveats
http://facebook.github.io/react-native/docs/animations#caveats
http://facebook.github.io/react-native/docs/animations#caveats
http://facebook.github.io/react-native/docs/animations#caveats
http://facebook.github.io/react-native/docs/animations#caveats
http://facebook.github.io/react-native/docs/animations#caveats
http://facebook.github.io/react-native/docs/animations#caveats
http://facebook.github.io/react-native/docs/animations#caveats
http://facebook.github.io/react-native/docs/animations#caveats
http://facebook.github.io/react-native/docs/animations#caveats
http://facebook.github.io/react-native/docs/animations#caveats
http://facebook.github.io/react-native/docs/animations#caveats
http://facebook.github.io/react-native/docs/animations#caveats
http://facebook.github.io/react-native/docs/animations#caveats

Adding Basic Animations to Your App Chapter 6

[192]

Creating simple animations
In this recipe, we will learn the basics of animations. We will use an image to create a
simple linear movement from the right to the left of the screen.

Getting ready
In order to go through this recipe, we need to create an empty app. Let's call it simple-
animation.

We are going to use a PNG image of a cloud for this recipe. You can find the image in the
recipe's repository hosted on GitHub at https:/ ​/​github. ​com/ ​warlyware/ ​react- ​native-
cookbook/​tree/​master/ ​chapter- ​6/ ​simple- ​animation/ ​assets/ ​images. Place the image in
the /assets/images folder for use in the app.

How to do it...
Let's begin by opening App.js and importing the dependencies for the App class.1.
The Animated class will be responsible for creating the values for the animation.
It provides a few components that are ready to be animated, and it also provides
several methods and helpers to run smooth animations.
The Easing class provides several helper methods for both calculating
movements (such as linear and quadratic) and predefined animations (such
as bounce, ease, and elastic).
We are going to use the Dimensions class to get the current device size so that
we know where to place the element in the initialization of the animation:

import React, { Component } from 'react';
import {
 Animated,
 Easing,
 Dimensions,
 StyleSheet,
 View,
} from 'react-native';

https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/simple-animation/assets/images

Adding Basic Animations to Your App Chapter 6

[193]

We'll also initialize some constants that we are going to need in our app. In this2.
case, we are going to get the device dimensions, set the size of the image, and
require our image that will be animated:

const { width, height } = Dimensions.get('window');
const cloudImage = require('./assets/images/cloud.png');
const imageHeight = 200;
const imageWidth = 300;

Now, let's create the App component. We are going to use two methods from the3.
component's life cycle system. If you are not familiar with this concept, please
review the related React docs (http:/ ​/​reactjs. ​cn/​react/ ​docs/ ​component-
specs.​html). This page also has a really nice tutorial on how life cycle hooks
work:

export default class App extends Component {
 componentWillMount() {
 // Defined on step 4
 }

 componentDidMount() {
 // Defined on step 7
 }

 startAnimation () {
 // Defined on step 5
 }

 render() {
 // Defined on step 6
 }
}

const styles = StyleSheet.create({
 // Defined on step 8
});

http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html

Adding Basic Animations to Your App Chapter 6

[194]

In order to create an animation, we need to define a standard value to drive the4.
animation. Animated.Value is a class that handles the animation values for each
frame over time. The first thing we need to do is to create an instance of this class
when the component is created. In this case, we are using the
componentWillMount method, but we can also use the constructor or even
the default values of a property:

 componentWillMount() {
 this.animatedValue = new Animated.Value();
 }

Once we have created the animated value, we can define the animation. We are5.
also creating a loop by passing the start method of Animated.timing an
arrow function that executes this startAnimation function again. Now, when
the image reaches the end of the animation, we will start the same animation
again to create an infinitely looping animation:

 startAnimation() {
 this.animatedValue.setValue(width);
 Animated.timing(
 this.animatedValue,
 {
 toValue: -imageWidth,
 duration: 6000,
 easing: Easing.linear,
 useNativeDriver: true,
 }
).start(() => this.startAnimation());
 }

We have our animation in place, but we are currently only calculating the values6.
for each frame over time, not doing anything with those values. The next step is
to render the image on the screen and set the property on the styles that we want
to animate. In this case, we want to move the element on the x-axis; therefore, we
should update the left property:

 render() {
 return (
 <View style={styles.background}>
 <Animated.Image
 style={[
 styles.image,
 { left: this.animatedValue },
]}
 source={cloudImage}
 />

Adding Basic Animations to Your App Chapter 6

[195]

 </View>
);
 }

If we refresh the simulator, we will see the image on the screen, but it's not being7.
animated yet. In order to fix this, we need to call the startAnimation method.
We will start the animation once the component is fully rendered, using the
componentDidMount lifecycle hook:

 componentDidMount() {
 this.startAnimation();
 }

If we run the app again, we will see how the image is moving at the top of the8.
screen, just like we wanted! As a final step, let's add some basic styles to the app:

const styles = StyleSheet.create({
 background: {
 flex: 1,
 backgroundColor: 'cyan',
 },
 image: {
 height: imageHeight,
 position: 'absolute',
 top: height / 3,
 width: imageWidth,
 },
});

Adding Basic Animations to Your App Chapter 6

[196]

The output is as shown in the following screenshot:

How it works...
In step 5, we set the animation values. The first line resets the initial value every time we call
this method. For this example, the initial value will be the width of the device, which will
move the image to the right-hand side of the screen, where we want to start our animation.

Adding Basic Animations to Your App Chapter 6

[197]

Then, we use the Animated.timing function to create an animation based on time and
take two parameters. For the first parameter, we pass in animatedValue, which we created
in the componentWillMount lifecycle hook in step 4. The second parameter is an object
with configurations for the animation. In this case, we are going to set the end value to
minus the width of the image, which will place the image on the left-hand side of the
screen. We complete the animation there.

With the entire configuration in place, the Animated class will calculate all the frames
required in the 6 seconds allotted to perform a linear animation from right to left (via the
duration property being set to 6000 milliseconds).

We have another helper provided by React Native that can be paired with Animated, called
Easing. In this case, we are using the linear property of the Easing helper class. Easing
provides other common easing methods, such as elastic and bounce. Take a look at the
Easing class documentation and try setting different values for the easing property to see
how each works. You can find the documentation at https:/ ​/​facebook. ​github. ​io/​react-
native/​docs/​easing. ​html.

Once the animation is configured correctly, we need to run it. We do this by calling the
start method. This method receives an optional callback function parameter that will be
executed when the animation is completed. In this case, we are running the
same startAnimation function recursively. This will create an infinite loop, which is what
we want to achieve.

In step 6, we are rendering the image. If we want to animate an image, we should always
use the Animate.Image component. Internally, this component will handle the values of
the animation and will set each value for every frame on the native component. This avoids
running the render method in the JavaScript layer on every frame, allowing for smoother
animations.

Along with the Image, we can also animate the View, Text, and ScrollView components.
There's support for all four of these components out of the box, but we could also create a
new component and add support for animations via
Animated.createAnimatedComponent(). All four of these components are able to
handle style changes. All we have to do is pass animatedValue to the property that we
want to animate, in this case the left property, but we could use any of the available styles
on each component.

https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html
https://facebook.github.io/react-native/docs/easing.html

Adding Basic Animations to Your App Chapter 6

[198]

Running multiple animations
In this recipe, we will learn how to use the same animation values in several elements. This
way, we can reuse the same values, along with interpolation, to get different values for the
remaining elements.

This animation will be similar to the previous recipe. This time, we will have two clouds:
one will be smaller with slower movement, the other larger and faster moving. At the
center of the screen, we will have a static airplane. We won't add any animation to the
airplane, but the moving clouds will make it appear as though the plane is moving.

Getting ready
Let's start this recipe by creating an empty app called multiple-animations.

We are going to use three different images: two clouds and an airplane. You can download
the images from the recipe's repository, hosted on GitHub at https:/ ​/​github. ​com/
warlyware/​react- ​native- ​cookbook/ ​tree/ ​master/ ​chapter- ​6/​multiple- ​animations/
assets/​images. Make sure to place the images in the /assets/images folder.

How to do it...
Let's start by opening App.js and adding our imports:1.

import React, { Component } from 'react';
import {
 View,
 Animated,
 Image,
 Easing,
 Dimensions,
 StyleSheet,
} from 'react-native';

Additionally, we need to define some constants and require the images that we2.
are going to use for the animations. Note that we're using the same cloud image
as cloudImage1 and cloudImage2, but we will treat them as separate entities in
this recipe:

const { width, height } = Dimensions.get('window');
const cloudImage1 = require('./assets/images/cloud.png');
const cloudImage2 = require('./assets/images/cloud.png');

https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-6/multiple-animations/assets/images

Adding Basic Animations to Your App Chapter 6

[199]

const planeImage = require('./assets/images/plane.gif');
const cloudHeight = 100;
const cloudWidth = 150;
const planeHeight = 60;
const planeWidth = 100;

In the next step, we are going to create the animatedValue instance when the3.
component gets created, then we will start the animation when the component is
fully rendered. We are creating an animation that runs in an infinite loop. The
initial value will be 1 and the final value will be 0. If you are not clear about this
code, make sure to read the first recipe in this chapter:

export default class App extends Component {
 componentWillMount() {
 this.animatedValue = new Animated.Value();
 }

 componentDidMount() {
 this.startAnimation();
 }

 startAnimation () {
 this.animatedValue.setValue(1);
 Animated.timing(
 this.animatedValue,
 {
 toValue: 0,
 duration: 6000,
 easing: Easing.linear,
 }
).start(() => this.startAnimation());
 }

 render() {
 // Defined in a later step
 }
}

const styles = StyleSheet.create({
 // Defined in a later step
});

Adding Basic Animations to Your App Chapter 6

[200]

The render method in this recipe is going to be quite different from the last. In4.
this recipe, we are going to animate two images using the same animatedValue.
The animated value will return values from 1 to 0; however, we want to move
the clouds from right to left, so we need to set the left value on each element.
In order to set the correct values, we need to interpolate animatedValue. For the
smaller cloud, we will set the initial left value to the width of the device, but for
the bigger cloud, we will set the initial left value far away from the right-hand
edge of the device. This will make the movement distance bigger, and therefore it
will move faster:

 render() {
 const left1 = this.animatedValue.interpolate({
 inputRange: [0, 1],
 outputRange: [-cloudWidth, width],
 });

 const left2 = this.animatedValue.interpolate({
 inputRange: [0, 1],
 outputRange: [-cloudWidth*5, width + cloudWidth*5],
 });

 // Defined in a later step
 }

Once we have the correct left values, we need to define the elements we want5.
to animate. Here, we will set the interpolated value to the left styles property:

 render() {
 // Defined in a later step

 return (
 <View style={styles.background}>
 <Animated.Image
 style={[
 styles.cloud1,
 { left: left1 },
]}
 source={cloudImage1}
 />
 <Image
 style={styles.plane}
 source={planeImage}
 />
 <Animated.Image
 style={[
 styles.cloud2,

Adding Basic Animations to Your App Chapter 6

[201]

 { left: left2 },
]}
 source={cloudImage2}
 />
 </View>
);
 }

As for the last step, we need to define some styles, just to set the width and6.
height of each cloud as well as assign styles to the top:

const styles = StyleSheet.create({
 background: {
 flex: 1,
 backgroundColor: 'cyan',
 },
 cloud1: {
 position: 'absolute',
 width: cloudWidth,
 height: cloudHeight,
 top: height / 3 - cloudWidth / 2,
 },
 cloud2: {
 position: 'absolute',
 width: cloudWidth * 1.5,
 height: cloudHeight * 1.5,
 top: height/2,
 },
 plane: {
 position: 'absolute',
 height: planeHeight,
 width: planeWidth,
 top: height / 2 - planeHeight,
 left: width / 2 - planeWidth,
 }
});

Adding Basic Animations to Your App Chapter 6

[202]

If we refresh our app, we should see the animation:7.

How it works...
In step 4, we defined the interpolations to get the left value for each cloud. The
interpolate method receives an object with two required configurations,
inputRange and outputRange.

Adding Basic Animations to Your App Chapter 6

[203]

The inputRange configuration receives an array of values. These values should always be
ascending values; you could use negative values too, as long as the values are ascending.

outputRange should match the number of values defined on inputRange. These are the
values that we need as a result of the interpolation.

For this recipe, inputRange goes from 0 to 1, which are the values of our animatedValue.
In outputRange, we defined the limits of the movement that we need.

Creating animated notifications
In this recipe, we will create a notification component from scratch. When showing the
notification, the component will slide in from the top of the screen. After a few seconds, we
will automatically hide it by sliding it out.

Getting ready
We are going to create an app. Let's call it notification-animation.

How to do it...
We'll start by working on the App component. First, let's import all the required1.
dependencies:

import React, { Component } from 'react';
import {
 Text,
 TouchableOpacity,
 StyleSheet,
 View,
 SafeAreaView,
} from 'react-native';
import Notification from './Notification';

Adding Basic Animations to Your App Chapter 6

[204]

Once we have all the dependencies imported, we can define the App class. In this2.
case, we are going to initialize the state with a notify property equal to false.
We are going to use this property to show or hide the notification. By default, the
notification will not be shown onscreen. To make things simple, we will define
the message property in the state with the text we want to display:

export default class App extends Component {
 state = {
 notify: false,
 message: 'This is a notification!',
 };

 toggleNotification = () => {
 // Defined on later step
 }

 render() {
 // Defined on later step
 }
}

const styles = StyleSheet.create({
 // Defined on later step
});

Inside the render method, we need to show the notification only if the notify3.
property is true. We can achieve this by using an if statement:

 render() {
 const notify = this.state.notify
 ? <Notification
 autoHide
 message={this.state.message}
 onClose={this.toggleNotification}
 />
 : null;
 // Defined on next step
 }

Adding Basic Animations to Your App Chapter 6

[205]

In the previous step, we only defined the reference to the Notification4.
component, but we are not using it yet. Let's define a return with all of the JSX
needed for this app. To keep things simple, we are only going to define a toolbar,
some text, and a button to toggle the state of the notification when pressed:

 render() {
 // Code from previous step
 return (
 <SafeAreaView>
 <Text style={styles.toolbar}>Main toolbar</Text>
 <View style={styles.content}>
 <Text>
 Lorem ipsum dolor sit amet, consectetur adipiscing
 elit,
 sed do eiusmod tempor incididunt ut labore et
 dolore magna.
 </Text>
 <TouchableOpacity
 onPress={this.toggleNotification}
 style={styles.btn}
 >
 <Text style={styles.text}>Show notification</Text>
 </TouchableOpacity>
 <Text>
 Sed ut perspiciatis unde omnis iste natus error sit
 accusantium doloremque laudantium.
 </Text>
 {notify}
 </View>
 </SafeAreaView>
);
 }

We also need to define the method that toggles the notify property on the5.
state, which is very simple:

 toggleNotification = () => {
 this.setState({
 notify: !this.state.notify,
 });
 }

Adding Basic Animations to Your App Chapter 6

[206]

We are almost done with this class. The only things left are the styles. In this case,6.
we will only add basic styles such as color, padding, fontSize,
backgroundColor, and margin, nothing really special:

 const styles = StyleSheet.create({
 toolbar: {
 backgroundColor: '#8e44ad',
 color: '#fff',
 fontSize: 22,
 padding: 20,
 textAlign: 'center',
 },
 content: {
 padding: 10,
 overflow: 'hidden',
 },
 btn: {
 margin: 10,
 backgroundColor: '#9b59b6',
 borderRadius: 3,
 padding: 10,
 },
 text: {
 textAlign: 'center',
 color: '#fff',
 },
 });

If we try to run the app, we will see an error that the ./Notification module7.
couldn't be resolved. Let's fix that by defining the Notification component.
Let's create a Notifications folder, with an index.js file inside of it. Then,
we can import our dependencies:

import React, { Componen } from 'react';
import {
 Animated,
 Easing,
 StyleSheet,
 Text,
} from 'react-native';

Adding Basic Animations to Your App Chapter 6

[207]

Once we have the dependencies imported, let's define the props and the initial8.
state of our new component. We are going to define something very simple, just
a property to receive the message to display, and two callback functions to
allow the running of some actions when the notification appears on the screen
and when it gets closed. We'll also add a property to set the number of
milliseconds to display the notification before it autohides:

export default class Notification extends Component {
 static defaultProps = {
 delay: 5000,
 onClose: () => {},
 onOpen: () => {},
 };

 state = {
 height: -1000,
 };
}

It's finally time to work on the animation! We need to start the animation as soon9.
as the component gets rendered. If there's something not clear in the following
code, I recommend you take a look at the first and second recipes in this chapter:

 componentWillMount() {
 this.animatedValue = new Animated.Value();
 }

 componentDidMount() {
 this.startSlideIn();
 }

 getAnimation(value, autoHide) {
 const { delay } = this.props;
 return Animated.timing(
 this.animatedValue,
 {
 toValue: value,
 duration: 500,
 easing: Easing.cubic,
 delay: autoHide ? delay : 0,
 }
);
 }

Adding Basic Animations to Your App Chapter 6

[208]

So far, we've defined a method to get the animation. For the slide-in movement,10.
we need to calculate the values from 0 to 1. Once the animation is complete, we
need to run the onOpen callback. If the autoHide property is set to true when
the onOpen method is called, we will automatically run the slide-out animation
to remove the component:

 startSlideIn () {
 const { onOpen, autoHide } = this.props;

 this.animatedValue.setValue(0);
 this.getAnimation(1)
 .start(() => {
 onOpen();
 if (autoHide){
 this.startSlideOut();
 }
 });
 }

Similar to the preceding step, we need a method for the slide-out movement.11.
Here, we need to calculate the values from 1 to 0. We are sending
the autoHide value as a parameter to the getAnimation method. This will
automatically delay the animation by the amount of milliseconds defined by the
delay property (in our case, 5 seconds). After the animation has completed, we
need to run the onClose callback function, which will remove the component
from the App class:

 startSlideOut() {
 const { autoHide, onClose } = this.props;

 this.animatedValue.setValue(1);
 this.getAnimation(0, autoHide)
 .start(() => onClose());
 }

Adding Basic Animations to Your App Chapter 6

[209]

Finally, let's add the render method. Here, we will get the message value12.
provided by props. We also need the height of the component to move the
component to the initial position of the animation; by default, it's -1000 but we
will set the correct value at runtime in the next steps. The animatedValue goes
from 0 to 1 or 1 to 0, depending on whether the notification is opening or
closing; therefore, we need to interpolate it to get the actual values. The
animation will go from minus the height of the component to 0; this will result in
a nice slide in/out animation:

 render() {
 const { message } = this.props;
 const { height } = this.state;
 const top = this.animatedValue.interpolate({
 inputRange: [0, 1],
 outputRange: [-height, 0],
 });
 // Defined on next step
 }
}

To keep things as simple as possible, we will return an Animated.View with13.
some text. Here, we are setting the top style with the interpolation result,
meaning we will animate the top style. As mentioned before, we need to
calculate the height of the component at runtime. In order to achieve that, we
need to use the onLayout property of the view. This function will be called every
time the layout updates and will send the new dimensions of this component as a
parameter:

 render() {
 // Code from previous step
 return (
 <Animated.View
 onLayout={this.onLayoutChange}
 style={[
 styles.main,
 { top }
]}
 >
 <Text style={styles.text}>{message}</Text>
 </Animated.View>
);
 }
}

Adding Basic Animations to Your App Chapter 6

[210]

The onLayoutChange method will be very simple. We just need to get the new14.
height and update the state. This method receives an event. From this object,
we can grab useful information. For our purposes, we will access the data
at nativeEvent.layout in the event object. The layout object contains the
screen's width and height, and the x and y positions on the screen where
the Animated.View called this function:

 onLayoutChange = (event) => {
 const {layout: { height } } = event.nativeEvent;
 this.setState({ height });
 }

For the last step, we will add some styles to the notification component. Since we15.
want this component to animate on top of anything else, we need to set the
position to absolute, and set the left and right properties to 0. We'll also
add some color and padding:

 const styles = StyleSheet.create({
 main: {
 backgroundColor: 'rgba(0, 0, 0, 0.7)',
 padding: 10,
 position: 'absolute',
 left: 0,
 right: 0,
 },
 text: {
 color: '#fff',
 },
 });

Adding Basic Animations to Your App Chapter 6

[211]

The final app should look something like the following screenshot:16.

Adding Basic Animations to Your App Chapter 6

[212]

How it works...
In step 3, we defined the Notification component. This component receives three
parameters: a flag to automatically hide the component after a few seconds, the message
that we want to display, and a callback function that will be executed when the
notification gets closed.

When the onClose callback gets executed, we will toggle the notify property to remove
the Notification instance and clear the memory.

In step 4, we defined the JSX to render the components of our app. It's important to render
the Notification component after the others so that the component will appear on top of
all other components.

In step 6, we defined the state of our component. The defaultProps object sets the
default values for each property. These values will be applied if no value is assigned to the
given property.

We defined the default for each callback as an empty function. This way, we don't have
to check whether those props have a value before trying to execute them.

For the initial state, we defined the height property. The actual height value will be
calculated at runtime based on the content received in the message property. This means
we need to initially render the component far away from the original position. Since there's
a short delay when the layout is calculated, we don't want to display the notification at all
before it moves to the correct position.

In step 9, we created the animation. The getAnimation method receives two parameters:
the delay to be applied and the autoHide Boolean, which determines whether the
notification automatically closes. We used this method in step 10 and step 11.

In step 13, we defined the JSX for this component. The onLayout function is very useful for
getting the dimensions of the component when there are updates to the layout. For
example, if the device orientation changes, the dimensions will change, in which case we
would like to update the initial and final coordinates for the animation.

Adding Basic Animations to Your App Chapter 6

[213]

There's more...
The current implementation works pretty well, but there's a performance problem we
should address. Currently, the onLayout method gets executed on every frame of the
animation, which means we are updating the state on every frame, which leads to the
component re-rendering on every frame! We should avoid this, and only update it once to
get the actual height.

To fix this, we could add a simple validation just to update the state if the current value is
different than the initial value. This will avoid updating the state on every frame and we
won't force the render over and over again:

onLayoutChange = (event) => {
 const {layout: { height } } = event.nativeEvent;
 if (this.state.height === -1000) {
 this.setState({ height });
 }
}

While this works for our purposes, we could also go further and make sure the height also
gets updated when the orientation changes. However, we'll stop here, as this recipe is quite
long already.

Expanding and collapsing containers
In this recipe, we will create a custom container element with a title and content. When
a user presses the title, the content will collapse or expand. This recipe will allow us to
explore the LayoutAnimation API.

Getting ready
Let's start by creating a new app. We'll call it collapsable-containers.

Once we have created the app, let's also create a Panel folder with an index.js file in it
for housing our Panel component.

Adding Basic Animations to Your App Chapter 6

[214]

How to do it...
Let's start by focusing on the Panel component. First, we need to import all the1.
dependencies that we are going to use for this class:

import React, { Component } from 'react';
import {
 View,
 LayoutAnimation,
 StyleSheet,
 Text,
 TouchableOpacity,
} from 'react-native';

Once we have the dependencies, let's declare the defaultProps for initializing2.
this component. In this recipe, we only need to initialize the expanded property
to false:

export default class Panel extends Component {
 static defaultProps = {
 expanded: false
 };
}

const styles = StyleSheet.create({
 // Defined on later step
});

We are going to use the height property on the state object to expand or3.
collapse the container. The first time this component gets created, we need to
check the expanded property in order to set the correct initial height:

 state = {
 height: this.props.expanded ? null : 0,
 };

Let's render the required JSX elements for this component. We need to get the4.
height value from state and set it to the content's style view. When pressing
the title element, we will execute the toggle method (defined later) to change
the height value of the state:

 render() {
 const { children, style, title } = this.props;
 const { height } = this.state;

 return (

Adding Basic Animations to Your App Chapter 6

[215]

 <View style={[styles.main, style]}>
 <TouchableOpacity onPress={this.toggle}>
 <Text style={styles.title}>
 {title}
 </Text>
 </TouchableOpacity>
 <View style={{ height }}>
 {children}
 </View>
 </View>
);
 }

As mentioned before, the toggle method will be executed when the title5.
element is pressed. Here, we will toggle the height on the state and call the
animation we want to use when updating the styles on the next render cycle:

 toggle = () => {
 LayoutAnimation.spring();
 this.setState({
 height: this.state.height === null ? 0 : null,
 })
 }

To complete this component, let's add some simple styles. We need to set the6.
overflow to hidden, otherwise the content will be shown when the component
is collapsed:

const styles = StyleSheet.create({
 main: {
 backgroundColor: '#fff',
 borderRadius: 3,
 overflow: 'hidden',
 paddingLeft: 30,
 paddingRight: 30,
 },
 title: {
 fontWeight: 'bold',
 paddingTop: 15,
 paddingBottom: 15,
 }

Adding Basic Animations to Your App Chapter 6

[216]

Once we have our Panel component defined, let's use it on the App class. First,7.
we need to require all the dependencies in App.js:

import React, { Component } from 'react';
import {
 Text,
 StyleSheet,
 View,
 SafeAreaView,
 Platform,
 UIManager
} from 'react-native';
import Panel from './Panel';

In the previous step, we imported the Panel component. We are going to declare8.
three instances of this class in the JSX:

 export default class App extends Component {
 render() {
 return (
 <SafeAreaView style={[styles.main]}>
 <Text style={styles.toolbar}>Animated containers</Text>
 <View style={styles.content}>
 <Panel
 title={'Container 1'}
 style={styles.panel}
 >
 <Text style={styles.panelText}>
 Temporibus autem quibusdam et aut officiis
 debitis aut rerum necessitatibus saepe
 eveniet ut et voluptates repudiandae sint et
 molestiae non recusandae.
 </Text>
 </Panel>
 <Panel
 title={'Container 2'}
 style={styles.panel}
 >
 <Text style={styles.panelText}>
 Et harum quidem rerum facilis est et expedita
 distinctio. Nam libero tempore,
 cum soluta nobis est eligendi optio cumque.
 </Text>
 </Panel>
 <Panel
 expanded
 title={'Container 3'}
 style={styles.panel}

Adding Basic Animations to Your App Chapter 6

[217]

 >
 <Text style={styles.panelText}>
 Nullam lobortis eu lorem ut vulputate.
 </Text>
 <Text style={styles.panelText}>
 Donec id elementum orci. Donec fringilla lobortis
 ipsum, vitae commodo urna.
 </Text>
 </Panel>
 </View>
 </SafeAreaView>
);
 }
}

We are using the React Native LayoutAnimation API in this recipe. This API is9.
disabled on Android by default in the current version of React Native. Before the
App component mounts, we'll use the Platform helper with the UIManager to
enable this feature on Android devices:

 componentWillMount() {
 if (Platform.OS === 'android') {
 UIManager.setLayoutAnimationEnabledExperimental(true);
 }
 }

Finally, let's add some styles to the toolbar and the main container. We just need10.
some simple styles you're likely used to by now: padding, margin, and color:

const styles = StyleSheet.create({
 main: {
 flex: 1,
 },
 toolbar: {
 backgroundColor: '#3498db',
 color: '#fff',
 fontSize: 22,
 padding: 20,
 textAlign: 'center',
 },
 content: {
 padding: 10,
 backgroundColor: '#ecf0f1',
 flex: 1,
 },
 panel: {
 marginBottom: 10,

Adding Basic Animations to Your App Chapter 6

[218]

 },
 panelText: {
 paddingBottom: 15,
 }
});

The final app should look similar to the following screenshots: 11.

Adding Basic Animations to Your App Chapter 6

[219]

How it works...
In step 3, we set the initial height of the content. If the expanded property was set to true,
then we should show the content. By setting the height value to null, the layout system
will calculate the height based on the content; otherwise, we need to set the value to 0,
which will hide the content when the component is collapsed.

In step 4, we defined all the JSX for the Panel component. There are a few concepts in this
step worth covering. First, the children property is passed in from the props object,
which will contain any elements defined between <Panel> and </Panel> when this
component is used in the App class. This is very helpful because, by using this property, we
are allowing this component to receive any other components as children.

In this same step, we're also getting the height from the state object and setting it as the
style applied to the View with the collapsible content. This will update the height,
causing the component to correspondingly expand or collapse. We also declared the
onPress callback, which toggles the height on the state when the title element is
pressed.

In step 7, we defined the toggle method, which toggles the height value. Here, we used
the LayoutAnimation class. By calling the spring method, the layout system will animate
every change that happens to the layout on the next render. In this case, we are only
changing height, but we can change any other property we want, such as opacity,
position, or color.

The LayoutAnimation class contains a couple of predefined animations. In this recipe, we
used spring, but we could also use linear or easeInEaseOut, or you could create your
own using the configureNext method.

If we remove the LayoutAnimation, we won't see an animation; the component will
expand and collapse by jumping from 0 to total height. But by adding that single line, we're
able to easily add a nice, smooth animation. If you need more control over the animation,
you'll probably want to use the Animation API instead.

In step 9, we checked the OS property on the Platform helper, which returned the
'android' or 'ios' strings, depending on which device the app is running on. If the app
is running on Andriod, we use the UIManager helper's
setLayoutAnimationEnabledExperimental method to enable the LayoutAnimation
API.

Adding Basic Animations to Your App Chapter 6

[220]

See also
LayoutAnimation API documentation at https:/ ​/​facebook. ​github. ​io/ ​react-
native/​docs/ ​layoutanimation. ​html

A quick intro to React's props.children at https:/ ​/​codeburst. ​io/ ​a-​quick-
intro-​to- ​reacts- ​props- ​children- ​cb3d2fce4891

Creating a button with a loading animation
In this recipe, we'll continue working with the LayoutAnimation class. Here, we will
create a button, and when the user presses the button, we will show a loading indicator and
animate the styles.

Getting ready
To get started, we'll need to create an empty app. Let's call it button-loading-
animation.

Let's also create a Button folder with an index.js file in it for our Button component.

How to do it...
Let's start with the Button/index.js file. First, we'll import all the1.
dependencies for this component:

import React, { Component } from 'react';
import {
 ActivityIndicator,
 LayoutAnimation,
 StyleSheet,
 Text,
 TouchableOpacity,
 View,
} from 'react-native';

https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://facebook.github.io/react-native/docs/layoutanimation.html
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://codeburst.io/a-quick-intro-to-reacts-props-children-cb3d2fce4891
https://facebook.github.io/react-native/docs/layoutanimation.html

Adding Basic Animations to Your App Chapter 6

[221]

We're going to use only four props for this component: a label, a loading2.
Boolean to toggle displaying either the loading indicator or the label inside the
button, a callback function to be executed when the button is pressed, and
custom styles. Here, we'll init the defaultProps for loading to false, and the
handleButtonPress to an empty function:

export default class Button extends Component {
 static defaultProps = {
 loading: false,
 onPress: () => {},
 };
 // Defined on later steps
}

We'll keep the render method of this component as simple as possible. We'll3.
render the label and the activity indicator based on the value of the loading
property:

 render() {
 const { loading, style } = this.props;

 return (
 <TouchableOpacity
 style={[
 styles.main,
 style,
 loading ? styles.loading : null,
]}
 activeOpacity={0.6}
 onPress={this.handleButtonPress}
 >
 <View>
 {this.renderLabel()}
 {this.renderActivityIndicator()}
 </View>
 </TouchableOpacity>
);
 }

Adding Basic Animations to Your App Chapter 6

[222]

In order to render the label, we need to check whether the loading property is4.
false. If it is, then we return only a Text element with the label we received
from props:

 renderLabel() {
 const { label, loading } = this.props;
 if(!loading) {
 return (
 <Text style={styles.label}>{label}</Text>
);
 }
 }

Likewise, the renderActivityIndicator indicator should only apply if the5.
value of the loading property is true. If so, we will return the
ActivityIndicator component. We'll use the props
of ActivityIndicator to define a size of small and a color of white (#fff):

 renderActivityIndicator() {
 if (this.props.loading) {
 return (
 <ActivityIndicator size="small" color="#fff" />
);
 }
 }

One method is still missing from our class: handleButtonPress. We need to6.
inform the parent of this component when the button has been pressed, which
can be done by calling the onPress callback passed to this component via props.
We'll also use the LayoutAnimation to queue an animation on the next render:

 handleButtonPress = () => {
 const { loading, onPress } = this.props;

 LayoutAnimation.easeInEaseOut();
 onPress(!loading);
 }

To complete this component, we need to add some styles. We'll define some7.
colors, rounded corners, alignment, padding, and so on. For the loading styles,
which will be applied when the loading indicator is displayed, we'll update the
padding to create a circle around the loading indicator:

const styles = StyleSheet.create({
 main: {
 backgroundColor: '#e67e22',

Adding Basic Animations to Your App Chapter 6

[223]

 borderRadius: 20,
 padding: 10,
 paddingLeft: 50,
 paddingRight: 50,
 },
 label: {
 color: '#fff',
 fontWeight: 'bold',
 textAlign: 'center',
 backgroundColor: 'transparent',
 },
 loading: {
 padding: 10,
 paddingLeft: 10,
 paddingRight: 10,
 },
});

We are done with the Button component. Now, lets's work on the App class.8.
Let's start by importing all the dependencies:

import React, { Component } from 'react';
import {
 Text,
 StyleSheet,
 View,
 SafeAreaView,
 Platform,
 UIManager
} from 'react-native';
import Button from './Button';

The App class is relatively simple. We will only need to define a loading9.
property on the state object, which will toggle the Button's animation. We'll
also render a toolbar and a Button:

export default class App extends Component {
 state = {
 loading: false,
 };

 // Defined on next step

 handleButtonPress = (loading) => {
 this.setState({ loading });
 }

 render() {

Adding Basic Animations to Your App Chapter 6

[224]

 const { loading } = this.state;

 return (
 <SafeAreaView style={[styles.main, android]}>
 <Text style={styles.toolbar}>Animated containers</Text>
 <View style={styles.content}>
 <Button
 label="Login"
 loading={loading}
 onPress={this.handleButtonPress}
 />
 </View>
 </SafeAreaView>
);
 }
}

As in the last recipe, we'll need to manually enable the LayoutAnimation API10.
on Android devices:

 componentWillMount() {
 if (Platform.OS === 'android') {
 UIManager.setLayoutAnimationEnabledExperimental(true);
 }
 }

Finally, we'll add some styles, just some colors, padding, and alignment for11.
centering the button on the screen:

const styles = StyleSheet.create({
 main: {
 flex: 1,
 },
 toolbar: {
 backgroundColor: '#f39c12',
 color: '#fff',
 fontSize: 22,
 padding: 20,
 textAlign: 'center',
 },
 content: {
 padding: 10,
 backgroundColor: '#ecf0f1',
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center',
 },
});

Adding Basic Animations to Your App Chapter 6

[225]

The final app should look similar to the following screenshot:12.

Adding Basic Animations to Your App Chapter 6

[226]

How it works...
In step 3, we added the render method for the Button component. Here, we received the
loading property and, based on that value, we applied the corresponding styles to the
TouchableOpacity button element. We also used two methods: one for rendering the
label and the other for rendering the activity indicator.

In step 6, we executed the onPress callback. By default, we declared an empty function, so
we don't have to check whether the value is present or not.

The parent of this button should be responsible for updating the loading property when the
onPress callback is called. From this component, we are only responsible for informing the
parent when this button has been pressed.

The LayoutAnimation.eadeInEaseOut method only queues an animation for the next
render phase, which means the animation isn't executed right away. We are responsible for
changing the styles that we want to animate. If we don't change any styles, then we won't
see any animations.

The Button component doesn't know how the loading property gets updated. It might be
because of a fetch request, a timeout, or any other action. The parent component is
responsible for updating the loading property. Whenever any changes happen, we apply
the new styles to the button and a smooth animation will occur.

In step 9, we defined the content of the App class. Here, we make use of our Button
component. When the button is pressed, the state of the loading property is updated,
which will cause the animation to run every time the button is pressed.

Conclusion
In this chapter, we've covered the fundamentals of animating your React Native app. These
recipes have been aimed at both providing useful practical code solutions, and also
establishing how to use the basic building blocks so that you are better equipped to create
animations that fit your app. Hopefully, by now, you should be getting comfortable with
the Animated and LayoutAnimation animation helpers. In Chapter 7, Adding Advanced
Animations to Your App, we will combine the things we've learned here to build out more
complex and interesting app-centric UI animations.

7
Adding Advanced Animations to

Your App
In this chapter, we'll cover the following recipes:

Removing items from a list component
Creating a Facebook reactions widget
Displaying images in fullscreen

Introduction
In the previous chapter, we covered the basics of using the two main animation helpers in
React Native: Animated and LayoutAnimation. In this chapter, we'll take these concepts
further by building out more complicated recipes that exhibit common native UX patterns.

Removing items from a list component
In this recipe, we'll learn how to create list items in a ListView with an animated sideways
slide. If the user slides the item past a threshold, the item is removed. This is a common
pattern in many mobile apps with editable lists. We are also going to see how to
use PanResponder to handle drag events.

Getting ready
We need to create an empty app. For this recipe, we'll name it removing-list-items.

We also need to create a new ContactList folder and two files inside
it: index.js and ContactItem.js.

Adding Advanced Animations to Your App Chapter 7

[228]

How to do it...
Let's start by importing the dependencies for the main App class, as follows: 1.

import React from 'react';
import {
 Text,
 StyleSheet,
 SafeAreaView,
} from 'react-native';
import ContactList from './ContactList';

This component will be simple. All we need to render is a toolbar and2.
the ContactList component that we imported in the previous step, as follows:

const App = () => (
 <SafeAreaView style={styles.main}>
 <Text style={styles.toolbar}>Contacts</Text>
 <ContactList style={styles.content} />
 </SafeAreaView>
);

const styles = StyleSheet.create({
 main: {
 flex: 1,
 },
 toolbar: {
 backgroundColor: '#2c3e50',
 color: '#fff',
 fontSize: 22,
 padding: 20,
 textAlign: 'center',
 },
 content: {
 padding: 10,
 flex: 1,
 },
});

export default App;

This is all we need in order to start working on the actual list. Let's open the file3.
at ContactList/index.js and import all of the dependencies, as follows:

import React, { Component } from 'react';
import {
 ListView,

Adding Advanced Animations to Your App Chapter 7

[229]

 ScrollView,
} from 'react-native';
import ContactItem from './ContactItem';

We then need to define some data. In a real-world app, we would fetch the data4.
from an API, but to keep things simple and focused only on the drag
functionality, let's just define the data in this same file:

const data = [
 { id: 1, name: 'Jon Snow' },
 { id: 2, name: 'Luke Skywalker' },
 { id: 3, name: 'Bilbo Baggins' },
 { id: 4, name: 'Bob Labla' },
 { id: 5, name: 'Mr. Magoo' },
];

The state for this component will only contain two properties: the data for the5.
list and a Boolean value that will be updated when the dragging starts or ends. If
you are not familiar with how ListView works, checkout the Displaying a list of
items recipe in Chapter 2, Creating a Simple React Native App. Let's define the data
as follows:

export default class ContactList extends Component {
 ds = new ListView.DataSource({
 rowHasChanged: (r1, r2) => r1 !== r2
 });

 state = {
 dataSource: this.ds.cloneWithRows(data),
 swiping: false,
 };
 // Defined in later steps
}

The render method only needs to display the list. In6.
the renderScrollComponent property, we'll enable scrolling only when the
user is not swiping an item on the list. If the user is swiping, we want to disable
vertical scrolling, as follows:

 render() {
 const { dataSource, swiping } = this.state;

 return (
 <ListView
 key={data}
 enableEmptySections
 dataSource={dataSource}

Adding Advanced Animations to Your App Chapter 7

[230]

 renderScrollComponent={
 (props) => <ScrollView {...props}
scrollEnabled={!swiping}/>
 }
 renderRow={this.renderItem}
 />
);
 }

The renderItem method will return each item in the list. Here, we need to send7.
the contact information as a property, along with three callbacks:

 renderItem = (contact) => (
 <ContactItem
 contact={contact}
 onRemove={this.handleRemoveContact}
 onDragEnd={this.handleToggleSwipe}
 onDragStart={this.handleToggleSwipe}
 />
);

We need to toggle the value of the swiping property on the state object, which8.
will toggle whether vertical scroll on the list is locked or not:

 handleToggleSwipe = () => {
 this.setState({ swiping: !this.state.swiping });
 }

When removing an item, we need to find the index of the given contact and9.
then remove it from the original list. After that, we need to
update dataSource on the state to re-render the list with the resulting data:

 handleRemoveContact = (contact) => {
 const index = data.findIndex(
 (item) => item.id === contact.id
);
 data.splice(index, 1);

 this.setState({
 dataSource: this.ds.cloneWithRows(data),
 });
 }

Adding Advanced Animations to Your App Chapter 7

[231]

We are done with the list, so now let's focus on the list items. Let's open10.
the ContactList/ContactItem.js file and import the dependencies we'll
need:

import React, { Component } from 'react';
import {
 Animated,
 Easing,
 PanResponder,
 StyleSheet,
 Text,
 TouchableHighlight,
 View,
} from 'react-native';

We need to define defaultProps for this component. The defaultProps object11.
will need an empty function for each of the four props being passed into it from
the parent ListView element. The onPress function will execute when the item
is pressed, the onRemove function will execute when the contact gets removed,
and two drag functions will listen for drag events. On state , we only need to
define an animated value to hold the x and y coordinates of the dragging, as
follows:

export default class ContactItem extends Component {
 static defaultProps = {
 onPress: () => {},
 onRemove: () => {},
 onDragEnd: () => {},
 onDragStart: () => {},
 };

 state = {
 pan: new Animated.ValueXY(),
 };

When the component is created, we need to configure PanResponder. We will12.
do this in the componentWillMount life cycle hook. PanResponder is
responsible for handling gestures. It provides a simple API to capture the events
generated by the user's finger, as follows:

 componentWillMount() {
 this.panResponder = PanResponder.create({
 onMoveShouldSetPanResponderCapture: this.handleShouldDrag,
 onPanResponderMove: Animated.event(
 [null, { dx: this.state.pan.x }]
),

Adding Advanced Animations to Your App Chapter 7

[232]

 onPanResponderRelease: this.handleReleaseItem,
 onPanResponderTerminate: this.handleReleaseItem,
 });
 }

Now let's define the actual functions that will get executed for each callback13.
defined in the previous step. We can start with the handleShouldDrag method,
as follows:

 handleShouldDrag = (e, gesture) => {
 const { dx } = gesture;
 return Math.abs(dx) > 2;
 }

handleReleaseItem is a little bit more complicated. We are going to split this14.
method into two steps. First, we need to figure out whether the current item
needs to be removed or not. In order to do that, we need to set a threshold. If the
user slides the element beyond our threshold, we'll remove the item, as follows:

 handleReleaseItem = (e, gesture) => {
 const { onRemove, contact,onDragEnd } = this.props;
 const move = this.rowWidth - Math.abs(gesture.dx);
 let remove = false;
 let config = { // Animation to origin position
 toValue: { x: 0, y: 0 },
 duration: 500,
 };

 if (move < this.threshold) {
 remove = true;
 if (gesture.dx > 0) {
 config = { // Animation to the right
 toValue: { x: this.rowWidth, y: 0 },
 duration: 100,
 };
 } else {
 config = { // Animation to the left
 toValue: { x: -this.rowWidth, y: 0 },
 duration: 100,
 };
 }
 }
 // Remainder in next step
 }

Adding Advanced Animations to Your App Chapter 7

[233]

Once we have the configurations for the animation, we are ready to move the15.
item! First, we'll execute the onDragEnd callback and, if the item should be
removed, we'll run the onRemove function, as follows:

 handleReleaseItem = (e, gesture) => {
 // Code from previous step

 onDragEnd();
 Animated.spring(
 this.state.pan,
 config,
).start(() => {
 if (remove) {
 onRemove(contact);
 }
 });
 }

We have the full dragging system in place. Now we need to define16.
the render method. We just need to display the contact name within
the TouchableHighlight element, wrapped inside an Animated.View, as
follows:

 render() {
 const { contact, onPress } = this.props;

 return (
 <View style={styles.row} onLayout={this.setThreshold}>
 <Animated.View
 style={[styles.pan, this.state.pan.getLayout()]}
 {...this.panResponder.panHandlers}
 >
 <TouchableHighlight
 style={styles.info}
 onPress={() => onPress(contact)}
 underlayColor="#ecf0f1"
 >
 <Text>{contact.name}</Text>
 </TouchableHighlight>
 </Animated.View>
 </View>
);
 }

Adding Advanced Animations to Your App Chapter 7

[234]

We need one more method on this class, which is fired on layout change via17.
the View element's onLayout prop. setThreshold will get the
current width of row and set threshold. In this case, we're setting it to be a
third of the width of the screen. These values are required to decide whether to
remove the item or not, as follows:

 setThreshold = (event) => {
 const { layout: { width } } = event.nativeEvent;
 this.threshold = width / 3;
 this.rowWidth = width;
 }

Finally, we'll add some styles to the rows, as follows:18.

const styles = StyleSheet.create({
 row: {
 backgroundColor: '#ecf0f1',
 borderBottomWidth: 1,
 borderColor: '#ecf0f1',
 flexDirection: 'row',
 },
 pan: {
 flex: 1,
 },
 info: {
 backgroundColor: '#fff',
 paddingBottom: 20,
 paddingLeft: 10,
 paddingTop: 20,
 },
});

The final app should look something like this screenshot:19.

Adding Advanced Animations to Your App Chapter 7

[235]

How it works...
In step 5, we defined the swiping property on the state. This property is just a Boolean
that will be set to true when the dragging starts and to false when it has completed. We
need this information in order to lock the vertical scrolling on the list while dragging
around the item.

Adding Advanced Animations to Your App Chapter 7

[236]

In step 7, we defined the content of each row in the list. The onDragStart property receives
the handleToggleSwipe method, which will be executed when the dragging starts. We are
also going to execute the same method when the dragging is completed.

In the same step, we also send the handleRemoveContact method to each item. As the
name suggests, we are going to remove the current item from the list when the user swipes
it out.

In step 11, we defined defaultProps and state for the item component. In past recipes,
we have been creating animations using a single value, but for this case we need to handle
the x and y coordinates, so we'll need an instance of Animated.ValueXY. Internally, this
class handles two Animated.Value instances, and therefore the API is almost identical to
those we've seen before.

In step 12, PanResponder gets created. The gesture system in React Native, like the event
system in the browser, handles gestures in two phases when there's a touch event: the
capture and the bubble. In our case, we need to use the capture phase to figure out whether
the current event is pressing the item or whether it's trying to drag
it. onMoveShouldSetPanResponderCapture will capture the event. Then, we need to
decide whether we'll drag the item or not by returning true or false.

The onPanResponderMove prop will get the values from the animation on each frame,
which will be applied to the pan object in the state. We need to use Animated.event to
access the animation values for each frame. In this case, we only need the x value. Later,
we'll use this value to run a different animation while returning the element to its original
place or removing it from the screen.

The onPanResponderRelease function will be executed when the user releases the item.
If, for any other reason, the dragging gets interrupted, onPanResponderTerminate will
get executed instead.

In step 13, we need to check whether the current event is a simple press or a drag. We can
do this by checking the delta on the x-axis. If the touch event has been moved more than
two pixels, then the user is trying to drag the item, otherwise, they're trying to press the
button. We evaluate the difference as an absolute number because the movement could be
from left to right or right to left, and we want to accommodate both movements.

In step 14, we need to get the distance the item has moved with respect to the width of the
device. If this distance is below our threshold we defined in setThreshold, then we need
to remove these items. We are defining the config object for each animation, which will
otherwise return the item to the original position. But if we need to remove the item, we
check the direction and set the configuration accordingly.

Adding Advanced Animations to Your App Chapter 7

[237]

In step 16, we defined the JSX. We set the styles that we want to animate
on Animated.View. In this case, it's the left property, but instead of manually creating an
object, we can call the getLayout method from our instance of Animated.ValueXY that
we stored in state.pan, which returns the top and left properties with their existing
values.

In the same step, we also set the event handlers for Animated.View by spreading
out this.panResponder.panHandlers with a spread operator, which binds the dragging
configuration we defined in the previous steps to Animated.View.

We also defined a call to the onPress callback from props, passing in the
current contact information.

See also
You can find the PanResponder API documentation at:

https:/​/​facebook. ​github. ​io/ ​react- ​native/ ​docs/ ​panresponder. ​html

Creating a Facebook reactions widget
In this recipe, we'll be creating a component that emulates the Facebook reaction widget.
We will have a like button image which, when pressed, will show five icons. The row of
icons will use a staggered slide-in animation while increasing opacity from 0 to 1.

Getting ready
Let's create an empty app called facebook-widget.

We are going to need some images to display a fake timeline. A few pictures of your cat
will work, or you can use the cat pictures included in the corresponding repository on
GitHub (https:/​/ ​github. ​com/ ​warlyware/ ​react- ​native- ​cookbook/ ​tree/ ​master/ ​chapter-
7/​facebook-​widget). We'll also need five icons to display the five reactions, such as, angry,
laughing, heart, and surprised, which can also be found in the corresponding repository.

To start we'll create two JavaScript files in our empty
app: Reactions/index.js and Reactions/Icon.js. We need to copy our cat pictures to
an images/ folder in the root of the app, and the reaction icons should be placed
in Reactions/images.

https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://facebook.github.io/react-native/docs/panresponder.html
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/facebook-widget

Adding Advanced Animations to Your App Chapter 7

[238]

How to do it...
We are going to be creating a fake Facebook timeline on the App class. Let's start1.
by importing the dependencies, as follows:

import React from 'react';
import {
 Dimensions,
 Image,
 Text,
 ScrollView,
 StyleSheet,
 SafeAreaView,
} from 'react-native';
import Reactions from './Reactions';

We'll need to import some images to render in our timeline. The JSX in this step2.
is very simple: it's just a toolbar, a ScrollView with two Image, and
two Reaction components, as follows:

const image1 = require('./images/01.jpg');
const image2 = require('./images/02.jpg');
const { width } = Dimensions.get('window');

const App = () => (
 <SafeAreaView style={styles.main}>
 <Text style={styles.toolbar}>Reactions</Text>
 <ScrollView style={styles.content}>
 <Image source={image1} style={styles.image}
resizeMode="cover" />
 <Reactions />
 <Image source={image2} style={styles.image}
resizeMode="cover" />
 <Reactions />
 </ScrollView>
 </SafeAreaView>
);

export default App;

We need to add some basic styles for this component, as follows:3.

const styles = StyleSheet.create({
 main: {
 flex: 1,
 },
 toolbar: {

Adding Advanced Animations to Your App Chapter 7

[239]

 backgroundColor: '#3498db',
 color: '#fff',
 fontSize: 22,
 padding: 20,
 textAlign: 'center',
 },
 content: {
 flex: 1,
 },
 image: {
 width,
 height: 300,
 },
});

We are ready to start working on the Reactions component of this recipe. Let's4.
start by importing dependencies, as follows. We will build out the
imported Icon component in later steps:

import React, { Component } from 'react';
import {
 Image,
 Text,
 TouchableOpacity,
 StyleSheet,
 View,
} from 'react-native';
import Icon from './Icon';

Let's define defaultProps and the initial state next. We'll also need to require5.
the like icon image to display it on screen, as follows:

const image = require('./images/like.png');

export default class Reactions extends Component {
 static defaultProps = {
 icons: [
 'like', 'heart', 'angry', 'laughing', 'surprised',
],
 };

 state = {
 show: false,
 selected: '',
 };

 // Defined at later steps
}

Adding Advanced Animations to Your App Chapter 7

[240]

Let's define two methods: one that sets the selected value of state to the6.
selected reaction, and another that toggles the show value of state to show or
hide the row of reactions accordingly, as follows:

 onSelectReaction = (reaction) => {
 this.setState({
 selected: reaction,
 });
 this.toggleReactions();
 }

 toggleReactions = () => {
 this.setState({
 show: !this.state.show,
 });
 };

We'll define the render method for this component. We are going to display an7.
image, which when pressed, will call the toggleReactions method that we
defined previously, as follows:

 render() {
 const { style } = this.props;
 const { selected } = this.state;

 return (
 <View style={[style, styles.container]}>
 <TouchableOpacity onPress={this.toggleReactions}>
 <Image source={image} style={styles.icon} />
 </TouchableOpacity>
 <Text>{selected}</Text>
 {this.renderReactions()}
 </View>
);
 }

You'll notice in this step that we're calling the renderReactions method. Next,8.
we'll render all of the icons that we want to display when the user presses the
main reaction button, as follows:

 renderReactions() {
 const { icons } = this.props;
 if (this.state.show) {
 return (
 <View style={styles.reactions}>
 { icons.map((name, index) => (
 <Icon

Adding Advanced Animations to Your App Chapter 7

[241]

 key={index}
 name={name}
 delay={index * 100}
 index={index}
 onPress={this.onSelectReaction}
 />
))
 }
 </View>
);
 }
 }

We need to set styles for this component. We'll set sizes for the reaction icon9.
images and define some padding. The reactions container will have a height
of 0, since the icons will be floating, and we don't want any extra space added:

const styles = StyleSheet.create({
 container: {
 padding: 10,
 },
 icon: {
 width: 30,
 height: 30,
 },
 reactions: {
 flexDirection: 'row',
 height: 0,
 },
});

The Icon component is currently missing, so if we try to run our app at this10.
point, it will fail. Let's build out this component by opening the
Reactions/Icon.js file and adding the imports for the component, as follows:

import React, { Component } from 'react';
import {
 Animated,
 Dimensions,
 Easing,
 Image,
 StyleSheet,
 TouchableOpacity,
 View,
} from 'react-native';

Adding Advanced Animations to Your App Chapter 7

[242]

Let's define the icons we'll be using. We are going to use an object for the icons so11.
that we can easily retrieve each image by its key name, as follows:

const icons = {
 angry: require('./images/angry.png'),
 heart: require('./images/heart.png'),
 laughing: require('./images/laughing.png'),
 like: require('./images/like.png'),
 surprised: require('./images/surprised.png'),
};

Now we should define defaultProps for this component. We don't need to12.
define an initial state:

export default class Icon extends Component {
 static defaultProps = {
 delay: 0,
 onPress: () => {},
 };

}

The icons should appear on screen via an animation, so we'll need to create and13.
run the animation when the component is mounted, as follows:

 componentWillMount() {
 this.animatedValue = new Animated.Value(0);
 }

 componentDidMount() {
 const { delay } = this.props;

 Animated.timing(
 this.animatedValue,
 {
 toValue: 1,
 duration: 200,
 easing: Easing.elastic(1),
 delay,
 }
).start();
 }

Adding Advanced Animations to Your App Chapter 7

[243]

When the icon is pressed, we need to execute the onPress callback to inform the14.
parent that a reaction was selected. We will send the name of the reaction as a
parameter, as follows:

 onPressIcon = () => {
 const { onPress, name } = this.props;
 onPress(name);
 }

The last piece of the puzzle is the render method, where we'll define the JSX for15.
this component, as follows:

 render() {
 const { name, index, onPress } = this.props;
 const left = index * 50;
 const top = this.animatedValue.interpolate({
 inputRange: [0, 1],
 outputRange: [10, -95],
 });
 const opacity = this.animatedValue;

 return (
 <Animated.View
 style={[
 styles.icon,
 { top, left, opacity },
]}
 >
 <TouchableOpacity onPress={this.onPressIcon}>
 <Image source={icons[name]} style={styles.image} />
 </TouchableOpacity>
 </Animated.View>
);
 }

As the final step, we'll add styles for each icon. We need the icons to float, so16.
we'll set position to absolute and width and height to 40 pixels. After this
change, we should be able to run our app:

 icon: {
 position: 'absolute',
 },
 image: {
 width: 40,
 height: 40,
 },
});

Adding Advanced Animations to Your App Chapter 7

[244]

The final app should look something like this screenshot:17.

How it works...
In step 2, we defined the Reactions component in the timeline. For now, we are not
focusing on handling data, but rather on displaying the UI. Therefore, we are not sending
any callback via Reactions props to get the selected value.

In step 5, we defined defaultProps and the initial state.

Adding Advanced Animations to Your App Chapter 7

[245]

We have two properties in the state:

The show prop is a Boolean. We use it to toggle the reactions icons when the user
presses the main button. When false, we hide the reactions, and when true, we
run the animation to show each icon.
selected contains the current selection. Every time a new reaction gets selected,
we are going to update this prop.

In step 8, we render the icons. Here, we need to send the name of the icon to every instance
created. We also send a delay of 100 milliseconds for each icon, which will create a nice
stagger animation. The onPress prop receives the onSelectReaction method defined in
step 6, which sets the selected reaction on state.

In step 13, we create the animation. First, we define the animatedValue variable
using the Animated.Value helper, which, as mentioned in previous recipes, is the class
responsible for holding the value for each frame in the animation. As soon as the
component is mounted, we run the animation. The animations progress from 0 to 1, with a
duration of 200 milliseconds and using an elastic easing function, and we delay the
animation based on the received delay prop.

In step 15, we defined the JSX for the Icon component. Here we animate
the top and opacity properties. For the top property, we need to interpolate the values
from animatedValue, so that the icon moves 95 pixels up from its original position. The
required values for the opacity property are from 0 to 1, and since we don't need to
interpolate anything to accomplish this, we can use animatedValue directly.

The left value is calculated based on the index: we just move the icon 50 pixels to the left
of the previous icon, which will avoid rendering the icons all in the sample place.

Displaying images in fullscreen
In this recipe, we'll create a timeline of images. When the user presses any of the images, it
will fullscreen the image with a black background.

We will use an opacity animation for the background, and we'll slide the image in from its
original position.

Adding Advanced Animations to Your App Chapter 7

[246]

Getting ready
Let's create an empty app called photo-viewer.

In addition, we'll also create PostContainer/index.js for showing each image in the
timeline, and PhotoViewer/index.js for showing the selected image in fullscreen.

You can either use the images included in this recipe's repository hosted on GitHub
(https:/​/​github.​com/ ​warlyware/ ​react- ​native- ​cookbook/ ​tree/ ​master/ ​chapter- ​7/
photo-​viewer), or use a few photos of your own. Place them in an images folder in the root
of the project.

How to do it...
We are going to display a timeline with images in the App class. Let's import all1.
of the dependencies, including the two other components we'll build out in later
steps, as follows:

import React, { Component } from 'react';
import {
 Dimensions,
 Image,
 Text,
 ScrollView,
 StyleSheet,
 SafeAreaView,
} from 'react-native';
import PostContainer from './PostContainer';
import PhotoViewer from './PhotoViewer';

In this step, we'll define the data that we are going to render. It's just a simple2.
array of objects containing title and image, as follows:

const image1 = require('./images/01.jpg');
const image2 = require('./images/02.jpg');
const image3 = require('./images/03.jpg');
const image4 = require('./images/04.jpg');

const timeline = [
 { title: 'Enjoying the fireworks', image: image1 },
 { title: 'Climbing the Mount Fuji', image: image2 },
 { title: 'Check my last picture', image: image3 },
 { title: 'Sakuras are beautiful!', image: image4 },
];

https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer
https://github.com/warlyware/react-native-cookbook/tree/master/chapter-7/photo-viewer

Adding Advanced Animations to Your App Chapter 7

[247]

Now we need to declare the initial state of this component. We will update3.
the selected and position properties when any of the images gets pressed, as
follows:

export default class App extends Component {
 state = {
 selected: null,
 position: null,
 };
 // Defined in following steps
}

In order to update state, we are going to declare two methods: one to set the4.
value of the image that has been pressed and another to remove those values
when the viewer gets closed:

 showImage = (selected, position) => {
 this.setState({
 selected,
 position,
 });
 }

 closeViewer = () => {
 this.setState({
 selected: null,
 position: null,
 });
 }

Now we are ready to work on the render method. Here we'll need to render5.
each image inside ScrollView so the list will be scrollable, as follows:

 render() {
 return (
 <SafeAreaView style={styles.main}>
 <Text style={styles.toolbar}>Timeline</Text>
 <ScrollView style={styles.content}>
 {
 timeline.map((post, index) =>
 <PostContainer key={index} post={post}
 onPress={this.showImage} />
)
 }
 </ScrollView>
 {this.renderViewer()}
 </SafeAreaView>

Adding Advanced Animations to Your App Chapter 7

[248]

);
 }

In the previous step, we are calling the renderViewer method. Here we'll show6.
the viewer component only if there's a post selected in the state. We are also
sending the initial position to start the animation and a callback to close the
viewer, as follows:

 renderViewer() {
 const { selected, position } = this.state;

 if (selected) {
 return (
 <PhotoViewer
 post={selected}
 position={position}
 onClose={this.closeViewer}
 />
);
 }
 }

The styles for this component are very simple, only some colors and padding, as7.
follows:

const styles = StyleSheet.create({
 main: {
 backgroundColor: '#ecf0f1',
 flex: 1,
 },
 toolbar: {
 backgroundColor: '#2c3e50',
 color: '#fff',
 fontSize: 22,
 padding: 20,
 textAlign: 'center',
 },
 content: {
 flex: 1,
 },
});

Adding Advanced Animations to Your App Chapter 7

[249]

The timeline is complete, but if we try to run our app, it will fail. Let's work on8.
the PostContainer component. We'll start by importing the dependencies, as
follows:

import React, { Component } from 'react';
import {
 Dimensions,
 Image,
 Text,
 TouchableOpacity,
 StyleSheet,
 View,
} from 'react-native';

We only need two props for this component. The post prop will receive the9.
image data, title and image, and the onPress prop is a callback that we'll
execute when the image gets pressed, as follows:

const { width } = Dimensions.get('window');

export default class PostContainer extends Component {
 static defaultProps = {
 onPress: ()=> {},
 };
 // Defined on following steps
}

This component will be inside of ScrollView. This means its position will be10.
changing when the user starts scrolling the content. When pressing the image, we
need to get the current position on the screen and send this information to the
parent component, as follows:

 onPressImage = (event) => {
 const { onPress, post } = this.props;
 this.refs.main.measure((fx, fy, width, height, pageX, pageY) =>
{
 onPress(post, {
 width,
 height,
 pageX,
 pageY,
 });
 });
 }

Adding Advanced Animations to Your App Chapter 7

[250]

It's time to define the JSX for this component. To keep things simple, we are only11.
going to render image and title:

 render() {
 const { post: { image, title } } = this.props;

 return (
 <View style={styles.main} ref="main">
 <TouchableOpacity
 onPress={this.onPressImage}
 activeOpacity={0.9}
 >
 <Image
 source={image}
 style={styles.image}
 resizeMode="cover"
 />
 </TouchableOpacity>
 <Text style={styles.title}>{title}</Text>
 </View>
);
 }

As always, we need to define some styles for this component. We are going to12.
add some colors and padding, as follows:

const styles = StyleSheet.create({
 main: {
 backgroundColor: '#fff',
 marginBottom: 30,
 paddingBottom: 10,
 },
 content: {
 flex: 1,
 },
 image: {
 width,
 height: 300,
 },
 title: {
 margin: 10,
 color: '#ccc',
 }
});

Adding Advanced Animations to Your App Chapter 7

[251]

If we run the app now, we should be able to see the timeline, however if we press13.
any of the images, an error will be thrown. We need to define the viewer, so let's
open the PhotoViewer/index.js file and import the dependencies:

import React, { Component } from 'react';
import {
 Animated,
 Dimensions,
 Easing,
 Text,
 TouchableOpacity,
 StyleSheet,
} from 'react-native';

Let's define props for this component. In order to center the image on the screen,14.
we need to know the height of the current device:

const { width, height } = Dimensions.get('window');

export default class PhotoViewer extends Component {
 static defaultProps = {
 onClose: () => {},
 };
 // Defined on following steps
}

We want to run two animations when showing this component, so we'll need to15.
initialize and run the animation after the component is mounted. The animation
is simple: it just goes from 0 to 1 in 400 milliseconds with some easing applied,
as follows:

 componentWillMount() {
 this.animatedValue = new Animated.Value(0);
 }

 componentDidMount() {
 Animated.timing(
 this.animatedValue,
 {
 toValue: 1,
 duration: 400,
 easing: Easing.in,
 }
).start();
 }

Adding Advanced Animations to Your App Chapter 7

[252]

When the user presses the close button, we need to execute the onClose callback16.
to inform the parent that this component needs to be removed, as follows:

 onPressBtn = () => {
 this.props.onClose();
 }

We are going to split the render method into two steps. First, we need to17.
interpolate the values for the animations, as follows:

 render() {
 const { post: { image, title }, position } = this.props;
 const top = this.animatedValue.interpolate({
 inputRange: [0, 1],
 outputRange: [position.pageY, height/2 - position.height/2],
 });
 const opacity = this.animatedValue;
 // Defined on next step
 }

We only need to define three elements: Animated.View to animate the18.
background, Animated.Image to display the image, and a close button. We are
setting the opacity style to the main view, which will animate the image
background from transparent to black. The image will slide in at the same time,
creating a nice effect:

// Defined on previous step
 render() {
 return (
 <Animated.View
 style={[
 styles.main,
 { opacity },
]}
 >
 <Animated.Image
 source={image}
 style={[
 styles.image,
 { top, opacity }
]}
 />
 <TouchableOpacity style={styles.closeBtn}
 onPress={this.onPressBtn}
 >
 <Text style={styles.closeBtnText}>X</Text>
 </TouchableOpacity>

Adding Advanced Animations to Your App Chapter 7

[253]

 </Animated.View>
);
 }

We are almost done! The last step in this recipe is to define the styles. We need to19.
set the position of the main container to absolute so that the image is on top of
everything else. We'll also move the close button to the top-right of the screen, as
follows:

const styles = StyleSheet.create({
 main: {
 backgroundColor: '#000',
 bottom: 0,
 left: 0,
 position: 'absolute',
 right: 0,
 top: 0,
 },
 image: {
 width,
 height: 300,
 },
 closeBtn: {
 position: 'absolute',
 top: 50,
 right: 20,
 },
 closeBtnText: {
 fontSize: 20,
 color: '#fff',
 fontWeight: 'bold',
 },
});

Adding Advanced Animations to Your App Chapter 7

[254]

The final app should look similar to the following screenshot:20.

Adding Advanced Animations to Your App Chapter 7

[255]

How it works...
In step 4, we defined two properties on state: selected and position.
The selected property holds the image data for the pressed image, which can be any of
the timeline objects defined in step 3. The position property will hold the current y-
coordinate on the screen, which is used later to animate the image from its original position
to the center of the screen.

In step 5, we map over the timeline array to render each post. We used
the PostContainer element for each post, sending the post information and using
the onPress callback to set the pressed image.

In step 10, we need the current position of the image. To achieve this, we use
the measure method from the component we want to get the information from. This
method receives a callback function and retrieves, among other properties, width, height,
and the current position on the screen.

We are using a reference to access the component, declared in the JSX on the next step.

In step 11, we declared the JSX for the component. In the main wrapper container, we set
the ref property, which is used to get the current position of the image. Whenever we want
to access a component on any of the methods of the current class, we use a reference. We
can create references by simply setting the ref property and assigning a name to any
component.

In step 18, we interpolate the animation values to get the correct top value for each frame.
The output of that interpolation will start from the current position of the image and
progress to the middle of the screen. This way, depending on whether the values
are negative or positive, the animation will run from bottom to top, or the other way
around.

We don't need to interpolate opacity, since the current animated value already goes
from 0 to 1.

See also
An in depth explanation of Refs and the DOM can be found at the following link:

https:/​/​reactjs. ​org/ ​docs/ ​refs- ​and- ​the- ​dom. ​html.

https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html

8
Working with Application Logic

and Data
 In this chapter, we will cover the following recipes:

Storing and retrieving data locally
Retrieving data from a remote API
Sending data to a remote API
Establishing real-time communication with WebSockets
Integrating persistent database functionality with Realm
Masking the application upon network connection loss
Synchronizing locally persisted data with a remote API

Introduction
One of the most important aspects of developing any application is handling data. This
data may come locally from the user, may be served by a remote server that exposes an
API, or, as with most business applications, may be some combination of both. You may be
wondering what strategies are best for dealing with data, or how to even accomplish
simple tasks such as making an HTTP request. Luckily, React Native makes your life that
much simpler by providing mechanisms for easily dealing with data from all different
sources.

The open source community has taken things a step further and provided some excellent
modules that can be used with React Native. In this chapter, we will discuss how to work
with data in all aspects, and how it integrates into our React Native applications.

Working with Application Logic and Data Chapter 8

[257]

Storing and retrieving data locally
When developing a mobile app, we need to consider the network challenges that need to be
overcome. A well-designed app should allow the user to continue using the app when
there is no internet connection. This requires the app to save data locally on the device
when there's no internet connection, and to also sync that data with the server when the
network is available again.

Another challenge to overcome is network connectivity, which might be slow or limited. To
improve the performance of our app, we should save critical data on the local device to
avoid putting stress on our server API.

In this recipe, we will learn about a basic and effective strategy for saving and retrieving
data locally from the device. We will create a simple app with a text input and two buttons,
one to save the content of the field and one to load the existing content. We will use the
AsyncStorage class to achieve our goal.

Getting ready
We need to create an empty app named local-data-storage.

How to do it...
We'll begin with the App component. Let's start by importing all of the1.
dependencies:

import React, { Component } from 'react';
import {
 Alert,
 AsyncStorage,
 StyleSheet,
 Text,
 TextInput,
 TouchableOpacity,
 View,
} from 'react-native';

Working with Application Logic and Data Chapter 8

[258]

Now, let's create the App class. We are going to create a key constant so that we2.
can set the name of the key we will use to save the content. On the state, we'll
have two properties: one to keep the value from the text input component, and
another to load and display the currently stored value:

const key = '@MyApp:key';

export default class App extends Component {
 state = {
 text: '',
 storedValue: '',
 };
 //Defined in later steps
}

When the component mounts, we want to load the existing stored value if it3.
exists. We'll display the content once the app loads, so we'll need to read the local
value in the componentWillMount life cycle method:

 componentWillMount() {
 this.onLoad();
 }

The onLoad function loads the current content from the local storage. Like4.
localStorage in the browser, it's as easy as using the key we defined when
saving the data:

 onLoad = async () => {
 try {
 const storedValue = await AsyncStorage.getItem(key);
 this.setState({ storedValue });
 } catch (error) {
 Alert.alert('Error', 'There was an error while loading the
 data');
 }
 }

Saving the data is straightforward as well. We'll declare a key to save any data5.
we want to associate with that key, via the setItem method of AsyncStorage:

 onSave = async () => {
 const { text } = this.state;

 try {
 await AsyncStorage.setItem(key, text);
 Alert.alert('Saved', 'Successfully saved on device');
 } catch (error) {

Working with Application Logic and Data Chapter 8

[259]

 Alert.alert('Error', 'There was an error while saving the
 data');
 }
 }

Next, we need a function for saving the value from the input text to the state.6.
When the value of the input changes, we will get the new value and save it to the
state:

 onChange = (text) => {
 this.setState({ text });
 }

Our UI will be simple: just a Text element to render the saved content, a7.
TextInput component to allow the user to enter a new value, and two buttons.
One button will call the onLoad function to load the current saved value, and the
other will save the value from the text input:

 render() {
 const { storedValue, text } = this.state;

 return (
 <View style={styles.container}>
 <Text style={styles.preview}>{storedValue}</Text>
 <View>
 <TextInput
 style={styles.input}
 onChangeText={this.onChange}
 value={text}
 placeholder="Type something here..."
 />
 <TouchableOpacity onPress={this.onSave} style=
 {styles.button}>
 <Text>Save locally</Text>
 </TouchableOpacity>
 <TouchableOpacity onPress={this.onLoad} style=
 {styles.button}>
 <Text>Load data</Text>
 </TouchableOpacity>
 </View>
 </View>
);
 }

Working with Application Logic and Data Chapter 8

[260]

Finally, let's add some styles. This will be simple colors, paddings, margins, and8.
a layout, as covered in Chapter 2, Creating a Simple React Native App:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#fff',
 },
 preview: {
 backgroundColor: '#bdc3c7',
 width: 300,
 height: 80,
 padding: 10,
 borderRadius: 5,
 color: '#333',
 marginBottom: 50,
 },
 input: {
 backgroundColor: '#ecf0f1',
 borderRadius: 3,
 width: 300,
 height: 40,
 padding: 5,
 },
 button: {
 backgroundColor: '#f39c12',
 padding: 10,
 borderRadius: 3,
 marginTop: 10,
 },
});

Working with Application Logic and Data Chapter 8

[261]

The final app should look similar to the following screenshot:9.

How it works...
The AsyncStorage class allows us to easily save data on the local device. On iOS, this is
accomplished by using dictionaries on text files. On Android, it will use RocksDB or
SQLite, depending on what's available.

Working with Application Logic and Data Chapter 8

[262]

It's not recommended to save sensitive information using this method, as
the data is not encrypted.

In step 4, we loaded the current saved data. The AsyncStorage API contains a getItem
method. This method receives the key we want to retrieve as a parameter. We are using the
await/async syntax here since this call is asynchronous. After we get the value, we just set
it to state; this way, we will be able to render the data on the view.

In step 7, we saved the text from the state. Using the setItem method, we can set a new
key with any value we want. This call is asynchronous, therefore we used the await/async
syntax.

See also
A great article on how async/await in JavaScript works, available at https:/ ​/ ​ponyfoo.
com/​articles/​understanding- ​javascript- ​async- ​await.

Retrieving data from a remote API
In the previous chapters we used data from a JSON file or directly defined in the source
code. While that worked for our previous recipes, it's rarely very helpful in real-world
applications.

In this recipe, we will learn how to request data from an API. We will make a GET request
from an API to get a JSON response. For now, however, we are only going to display the
JSON in a text element. We'll be using the Fake Online REST API for Testing and
Prototyping, hosted at http:/ ​/​jsonplaceholder. ​typicode. ​com and powered by the
excellent development test API software, JSON Server (https:/ ​/​github. ​com/ ​typicode/
json-​server).

We will keep this app simple so that we can focus on data management. We will have a text
component that will display the response from the API and also add a button that requests
the data when pressed.

https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
https://ponyfoo.com/articles/understanding-javascript-async-await
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server

Working with Application Logic and Data Chapter 8

[263]

Getting ready
We need to create an empty app. Let's name this one remote-api.

How to do it...
Let's start by importing our dependencies into the App.js file:1.

import React, { Component } from 'react';
import {
 StyleSheet,
 Text,
 TextInput,
 TouchableOpacity,
 View
} from 'react-native';

We are going to define a results property on the state. This property will2.
hold the response from the API. We'll need to update the view once we get the
response:

export default class App extends Component {
 state = {
 results: '',
 };
 // Defined later
}

const styles = StyleSheet.create({
 // Defined later
});

We'll send the request when the button is pressed. Next, let's create a method to3.
handle that request:

 onLoad = async () => {
 this.setState({ results: 'Loading, please wait...' });
 const response = await
fetch('http://jsonplaceholder.typicode.com/users', {
 method: 'GET',
 });
 const results = await response.text();
 this.setState({ results });
 }

Working with Application Logic and Data Chapter 8

[264]

In the render method, we'll display the response, which will be read from the4.
state. We will use a TextInput to display the API data. Via properties, we'll
declare editing as disabled and support multiline functionality. The button will
call the onLoad function that we created in the previous step:

 render() {
 const { results } = this.state;

 return (
 <View style={styles.container}>
 <View>
 <TextInput
 style={styles.preview}
 value={results}
 placeholder="Results..."
 editable={false}
 multiline
 />
 <TouchableOpacity onPress={this.onLoad} style=
 {styles.btn}>
 <Text>Load data</Text>
 </TouchableOpacity>
 </View>
 </View>
);
 }

Finally, we'll add some styles. Again, this will just be the layout, colors, margins,5.
and padding:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#fff',
 },
 preview: {
 backgroundColor: '#bdc3c7',
 width: 300,
 height: 400,
 padding: 10,
 borderRadius: 5,
 color: '#333',
 marginBottom: 50,
 },
 btn: {

Working with Application Logic and Data Chapter 8

[265]

 backgroundColor: '#3498db',
 padding: 10,
 borderRadius: 3,
 marginTop: 10,
 },
});

The final app should look similar to the following screenshot:6.

Working with Application Logic and Data Chapter 8

[266]

How it works...
In step 4, we sent the request to the API. We use the fetch method to make the request. The
first parameter is a string with the URL of the endpoint, while the second parameter is a
configuration object. For this request, the only option we need to define is the request
method to GET, but we can also use this object to define headers, cookies, parameters, and
many other things.

We are also using async/await syntax to wait on the response and finally set it on the
state. If you prefer, you could, of course, use promises for this purpose instead.

Also, note how we are using an arrow function here to properly handle the scope. This will
automatically set the correct scope when this method is assigned to the onPress callback.

Sending data to a remote API
In the previous recipe, we covered how to get data from an API using fetch. In this recipe,
we will learn how to POST data to the same API. This app will emulate creating a forum
post, and the request for the post will have title, body, and user parameters.

Getting ready
Before going through this recipe, we need to create a new empty app named remote-api-
post.

In this recipe, we will also be using the very popular axios package for handling our API
requests. You can install it via the Terminal with yarn:

yarn add axios

Alternatively, you can use npm:

npm install axios --save

Working with Application Logic and Data Chapter 8

[267]

How to do it...
First, we'll need to open the App.js file and import the dependencies we'll be1.
using:

import React, { Component } from 'react';
import axios from 'axios';
import {
 Alert,
 ScrollView,
 StyleSheet,
 Text,
 TextInput,
 TouchableOpacity,
 SafeAreaView,
} from 'react-native';

We'll define the App class with a state object that has three properties. The2.
title and body properties will be used for making the request, and results
will hold the API's response:

const endpoint = 'http://jsonplaceholder.typicode.com/posts';

export default class App extends Component {
 state = {
 results: '',
 title: '',
 body: '',
 };

 const styles = StyleSheet.create({
 // Defined later
 });
}

After saving a new post, we will request all of the posts from the API. We are3.
going to define an onLoad method to fetch the new data. This code works just
the same as the onLoad method in the previous recipe, but this time, we'll be
using the axios package to create the request:

 onLoad = async () => {
 this.setState({ results: 'Loading, please wait...' });
 const response = await axios.get(endpoint);
 const results = JSON.stringify(response);
 this.setState({ results });
 }

Working with Application Logic and Data Chapter 8

[268]

Let's work on saving the new data. First, we need to get the values from the4.
state. We could also run some validations here to make sure that the title
and body are not empty. On the POST request, we need to define the content type
of the request, which, in this case, will be JSON. We will hard code the userId
property to 1. In a real app, we would have probably gotten this value from a
previous API request. After the request has completed, we get the JSON
response, which, if successful, will fire the onLoad method that we defined
previously:

 onSave = async () => {
 const { title, body } = this.state;
 try {
 const response = await axios.post(endpoint, {
 headers: {
 'Content-Type': 'application/json;charset=UTF-8',
 },
 params: {
 userId: 1,
 title,
 body
 }
 });
 const results = JSON.stringify(response);
 Alert.alert('Success', 'Post successfully saved');
 this.onLoad();
 } catch (error) {
 Alert.alert('Error', `There was an error while saving the
 post: ${error}`);
 }
 }

The save functionality is complete. Next, we need methods for saving the title5.
and body to the state. These methods will be executed as the user types in the
input text, keeping track of the values on the state object:

 onTitleChange = (title) => this.setState({ title });
 onPostChange = (body) => this.setState({ body });

Working with Application Logic and Data Chapter 8

[269]

We have everything we need for the functionality, so let's add the UI. The6.
render method will display a toolbar, two input texts, and a Save button for
calling the onSave method that we defined in step 4:

 render() {
 const { results, title, body } = this.state;

 return (
 <SafeAreaView style={styles.container}>
 <Text style={styles.toolbar}>Add a new post</Text>
 <ScrollView style={styles.content}>
 <TextInput
 style={styles.input}
 onChangeText={this.onTitleChange}
 value={title}
 placeholder="Title"
 />
 <TextInput
 style={styles.input}
 onChangeText={this.onPostChange}
 value={body}
 placeholder="Post body..."
 />
 <TouchableOpacity onPress={this.onSave} style=
 {styles.button}>
 <Text>Save</Text>
 </TouchableOpacity>
 <TextInput
 style={styles.preview}
 value={results}
 placeholder="Results..."
 editable={false}
 multiline
 />
 </ScrollView>
 </SafeAreaView>
);
 }

Working with Application Logic and Data Chapter 8

[270]

Finally, let's add the styles to define the layout, color, padding, and margins:7.

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#fff',
 },
 toolbar: {
 backgroundColor: '#3498db',
 color: '#fff',
 textAlign: 'center',
 padding: 25,
 fontSize: 20,
 },
 content: {
 flex: 1,
 padding: 10,
 },
 preview: {
 backgroundColor: '#bdc3c7',
 flex: 1,
 height: 500,
 },
 input: {
 backgroundColor: '#ecf0f1',
 borderRadius: 3,
 height: 40,
 padding: 5,
 marginBottom: 10,
 flex: 1,
 },
 button: {
 backgroundColor: '#3498db',
 padding: 10,
 borderRadius: 3,
 marginBottom: 30,
 },
});

Working with Application Logic and Data Chapter 8

[271]

The final app should look similar to the following screenshot:8.

How it works...
In step 2, we defined three properties on the state. The results property will contain the
response from the server API, which we later use to display the value in the UI.

Working with Application Logic and Data Chapter 8

[272]

We used the title and body properties to hold the values from the input text components
so that the user can create a new post. Those values will then be sent to the API when
pressing the Save button.

In step 6, we declared the elements on the UI. We used two inputs for post data and the
Save button, which calls the onSave method when pressed. Finally, we used input text to
display the result.

Establishing real-time communication with
WebSockets
In this recipe, we will integrate WebSockets in a React Native application. We are going to
use the Hello World of WebSockets applications, that is, a simple chat app. This app will
allow users to send and receive messages.

Getting ready
To support WebSockets on React Native, we will need to run a server to handle all
connected clients. The server should be able to broadcast a message when it receives a
message from any of the connected clients.

We'll start with a new, empty React Native app. We'll name it web-sockets. In the root of
the project, let's add a server folder with an index.js file inside of it. If you don't already
have it, you'll need Node to run the server. You can get Node.js from https:/ ​/​nodejs. ​org/
 or by using the Node Version Manager (https:/ ​/ ​github. ​com/ ​creationix/ ​nvm).

We'll be using the excellent WebSocket package, ws. You can add the package via the
Terminal with yarn:

yarn add ws

Alternatively, you can use npm:

npm install --save ws

https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm

Working with Application Logic and Data Chapter 8

[273]

Once you've got the package installed, add the following code to the /server/index.js
file. Once this server is running, it will listen for incoming connections via
server.on('connection') and incoming messages via socket.on('message'). For
more information on how ws works, you can check out the documentation at https:/ ​/
github.​com/​websockets/ ​ws:

const port = 3001;
const WebSocketServer = require('ws').Server;
const server = new WebSocketServer({ port });

server.on('connection', (socket) => {
 socket.on('message', (message) => {
 console.log('received: %s', message);

 server.clients.forEach(client => {
 if (client !== socket) {
 client.send(message);
 }
 });
 });
});

console.log(`Web Socket Server running on port ${port}`);

Once the server code is in place, you can start up the server using Node by running the
following command in the Terminal at the root of the project:

node server/index.js

Leave the server running so that, once we've built the React Native app, we can use the
server to communicate between clients.

How to do it...
First, let's create the App.js file and import all the dependencies we'll be using:1.

import React, { Component } from 'react';
import {
 Dimensions,
 ScrollView,
 StyleSheet,
 Text,
 TextInput,
 SafeAreaView,
 View,

https://github.com/websockets/ws
https://github.com/websockets/ws
https://github.com/websockets/ws
https://github.com/websockets/ws
https://github.com/websockets/ws
https://github.com/websockets/ws
https://github.com/websockets/ws
https://github.com/websockets/ws
https://github.com/websockets/ws
https://github.com/websockets/ws

Working with Application Logic and Data Chapter 8

[274]

 Platform
} from 'react-native';

On the state object, we'll declare a history property. This property will be an2.
array for holding all of the messages that have been sent back and forth between
users:

export default class App extends Component {
 state = {
 history: [],
 };
 // Defined in later steps
}

const styles = StyleSheet.create({
 // Defined in later steps
});

Now, we need to integrate WebSockets into our app by connecting to the server3.
and setting up the callback functions for receiving messages, errors, and when
the connection is opened or closed. We will do this when the component has
been created, by using the componentWillMount life cycle hook:

 componentWillMount() {
 const localhost = Platform.OS === 'android' ? '10.0.3.2' :
 'localhost';

 this.ws = new WebSocket(`ws://${localhost}:3001`);
 this.ws.onopen = this.onOpenConnection;
 this.ws.onmessage = this.onMessageReceived;
 this.ws.onerror = this.onError;
 this.ws.onclose = this.onCloseConnection;
 }

Let's define the callbacks for opened/closed connections and for handling4.
received errors. We are just going to log the actions, but this is where we could
show an alert message when the connection is closed, or display an error
message when an error is thrown by the server:

 onOpenConnection = () => {
 console.log('Open!');
 }

 onError = (event) => {
 console.log('onerror', event.message);
 }

Working with Application Logic and Data Chapter 8

[275]

 onCloseConnection = (event) => {
 console.log('onclose', event.code, event.reason);
 }

When receiving a new message from the server, we need to add it to the5.
history property on the state so that we can render the new content as soon as
it arrives:

 onMessageReceived = (event) => {
 this.setState({
 history: [
 ...this.state.history,
 { isSentByMe: false, messageText: event.data },
],
 });
 }

Now, on to sending the message. We need to define a method that will get 6.
executed when the user presses the Return key on the keyboard. We need to do
two things at this point: add the new message to history, and then send the
message through the socket:

 onSendMessage = () => {
 const { text } = this.state;

 this.setState({
 text: '',
 history: [
 ...this.state.history,
 { isSentByMe: true, messageText: text },
],
 });
 this.ws.send(text);
 }

In the previous step, we got the text property from the state. We need to keep7.
track of the value whenever the user types something into the input, so we'll
need a function for listening to keystrokes and saving the value to state:

 onChangeText = (text) => {
 this.setState({ text });
 }

Working with Application Logic and Data Chapter 8

[276]

We have all of the functionality in place, so let's work on the UI. In the render8.
method, we'll add a toolbar, a scroll view to render all of the messages in
history, and a text input to allow the user to send a new message:

 render() {
 const { history, text } = this.state;

 return (
 <SafeAreaView style={[styles.container, android]}>
 <Text style={styles.toolbar}>Simple Chat</Text>
 <ScrollView style={styles.content}>
 { history.map(this.renderMessage) }
 </ScrollView>
 <View style={styles.inputContainer}>
 <TextInput
 style={styles.input}
 value={text}
 onChangeText={this.onChangeText}
 onSubmitEditing={this.onSendMessage}
 />
 </View>
 </SafeAreaView>
);
 }

To render the messages from history, we'll loop through the history array9.
and render each message via the renderMessage method. We'll need to check
whether the current message belongs to the user on this device so that we can
apply the appropriate styles:

 renderMessage(item, index){
 const sender = item.isSentByMe ? styles.me : styles.friend;

 return (
 <View style={[styles.msg, sender]} key={index}>
 <Text>{item.msg}</Text>
 </View>
);
 }

Working with Application Logic and Data Chapter 8

[277]

Finally, let's work on the styles! Let's add styles to the toolbar, the history10.
component, and the text input. We need to set the history container as flexible,
since we want it to take up all of the available vertical space:

const styles = StyleSheet.create({
 container: {
 backgroundColor: '#ecf0f1',
 flex: 1,
 },
 toolbar: {
 backgroundColor: '#34495e',
 color: '#fff',
 fontSize: 20,
 padding: 25,
 textAlign: 'center',
 },
 content: {
 flex: 1,
 },
 inputContainer: {
 backgroundColor: '#bdc3c7',
 padding: 5,
 },
 input: {
 height: 40,
 backgroundColor: '#fff',
 },
 // Defined in next step
});

Now, on to the styles for each message. We are going to create a common styles11.
object called msg for all messages, then styles for messages from the user on the
device, and finally, styles for messages from others, changing the color and
alignment accordingly:

 msg: {
 margin: 5,
 padding: 10,
 borderRadius: 10,
 },
 me: {
 alignSelf: 'flex-start',
 backgroundColor: '#1abc9c',
 marginRight: 100,
 },
 friend: {
 alignSelf: 'flex-end',

Working with Application Logic and Data Chapter 8

[278]

 backgroundColor: '#fff',
 marginLeft: 100,
 }

The final app should look similar to the following screenshot:12.

Working with Application Logic and Data Chapter 8

[279]

How it works...
In step 2, we declared the state object with a history array for keeping track of messages.
The history property will hold objects representing all of the messages being exchanged
between clients. Each object will have two properties: a string with the message text, and a
Boolean flag to determine the sender. We could add more data here, such as the name of
the user, a URL of the avatar image, or anything else we might need.

In step 3, we connected to the socket provided by the WebSocket server and set up callbacks
for handling socket events. We specified the server address as well as the port.

In step 5, we defined the callback to execute when a new message is received from the
server. Here, we add a new object to the history array on the state every time a new
message is received. Each message object has the properties isSentByMe and
messageText.

In step 6, we sent the message to the server. We need to add the message to the history
because the server will broadcast the message to all other clients, but not the author of the
message. To keep track of this message, we need to manually add it to the history.

Integrating persistent database functionality
with Realm
As your application becomes more complex, you will likely reach a point where you need
to store data on the device. This could be business data, such as user lists, to avoid having
to make expensive network connections to a Remote API. Maybe you don't have an API at
all and your application works as a self-sufficient entity. Regardless of the situation, you
may benefit from leveraging a database to store your data. There are multiple options for
React Native applications. The first option is AsyncStorage, which we covered in the
Storing and retrieving data locally recipe in this chapter. You could also consider SQLite, or
you could write an adapter to an OS-specific data provider, such as Core Data.

Another excellent option is using a mobile database, such as Realm. Realm is an extremely
fast, thread-safe, transactional, object-based database. It is primarily designed for use by
mobile devices, with a straightforward JavaScript API. It supports other features, such as
encryption, complex querying, UI bindings, and more. You can read all about it at https:/ ​/
realm.​io/​products/ ​realm- ​mobile- ​database/ ​.

https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/

Working with Application Logic and Data Chapter 8

[280]

In this recipe, we will walk through using Realm in React Native. We will create a simple
database and perform basic operations, such as inserting, updating, and deleting records.
We will then display these records in the UI.

Getting ready
Let's create a new empty React Native app named realm-db.

Installing Realm requires running the following command:

 react-native link

Because of this, we will be working on an app that is ejected from Expo. This means that
you could create this app with the following command:

 react-native init

Alternatively, you could create a new Expo app with the following command:

 expo init

Then, you can eject the app that was created with Expo via the following command:

 expo eject

Once you've created a React Native app, be sure to install the CocoaPods dependencies via
the ios directory by using cd inside the new app and running the following:

 pod install

Refer to Chapter 10, App Workflow and Third-party Plugins, for a in-depth explanation of
how CocoaPods works, and how ejected (or pure React Native) applications differ from
Expo React Native applications.

In the Sending data to a remote API recipe, we handled our AJAX calls with
the axios package. In this recipe, we will be using the native JavaScript fetch method for
AJAX calls. Either method works just as well, and having exposure to both will hopefully
allow you to decide which you prefer for your projects.

Once you've taken care of creating an ejected app, install Realm with yarn:

yarn add realm

Working with Application Logic and Data Chapter 8

[281]

Alternatively, you can use npm:

npm install --save realm

With the package installed, you can link the native packages with the following code:

react-native link realm

How to do it...
First, let's open App.js and import the dependencies we'll be using:1.

import React, { Component } from 'react';
import {
 StyleSheet,
 Text,
 View,
 TouchableOpacity
} from 'react-native';
import Realm from 'realm';

Next, we need to instantiate our Realm database, which we'll do in the2.
componentWillMount method. We'll keep a reference to it by using
the realm class variable:

export default class App extends Component {
 realm;
 componentWillMount() {
 const realm = this.realm = new Realm({
 schema: [
 {
 name: 'User',
 properties: {
 firstName: 'string',
 lastName: 'string',
 email: 'string'
 }
 }
]
 });
 }
 // Defined in later steps.
}

Working with Application Logic and Data Chapter 8

[282]

To create the User entries, we will use the random user generator API provided3.
by randomuser.me. Let's create a method with the getRandomUser function. This
will fetch this data:

 getRandomUser() {
 return fetch('https://randomuser.me/api/')
 .then(response => response.json());
 }

We'll also need a method for creating users in our app. The createUser method4.
will use the function we defined previously to get a random user, before saving it
to our realm database with the realm.write method and the realm.create
method:

 createUser = () => {
 const realm = this.realm;

 this.getRandomUser().then((response) => {
 const user = response.results[0];
 const userName = user.name;
 realm.write(() => {
 realm.create('User', {
 firstName: userName.first,
 lastName: userName.last,
 email: user.email
 });
 this.setState({users:realm.objects('User')});
 });
 });
 }

Since we're interacting with a database, we should also add a function for5.
updating a User in the database. updateUser will, for simplicity, take the first
record in the collection and change its information:

 updateUser = () => {
 const realm = this.realm;
 const users = realm.objects('User');

 realm.write(() => {
 if(users.length) {
 let firstUser = users.slice(0,1)[0];
 firstUser.firstName = 'Bob';
 firstUser.lastName = 'Cookbook';
 firstUser.email = 'react.native@cookbook.com';
 this.setState(users);
 }

http://randomuser.me

Working with Application Logic and Data Chapter 8

[283]

 });
 }

Finally, let's add a way to delete our users. We'll add a deleteUsers method for6.
removing all users. This is achieved by calling realm.write with a callback
function that executes realm.deleteAll:

 deleteUsers = () => {
 const realm = this.realm;
 realm.write(() => {
 realm.deleteAll();
 this.setState({users:realm.objects('User')});
 });
 }

Let's build our UI. We will render a list of User objects and a button for each of7.
our create, update, and delete methods:

 render() {
 const realm = this.realm;
 return (
 <View style={styles.container}>
 <Text style={styles.welcome}>
 Welcome to Realm DB Test!
 </Text>
 <View style={styles.buttonContainer}>
 <TouchableOpacity style={styles.button}
 onPress={this.createUser}>
 <Text style={styles.buttontext}>Add User</Text>
 </TouchableOpacity>
 <TouchableOpacity style={styles.button}
 onPress={this.updateUser}>
 <Text>Update First User</Text>
 </TouchableOpacity>
 <TouchableOpacity style={styles.button}
 onPress={this.deleteUsers}>
 <Text>Remove All Users</Text>
 </TouchableOpacity>
 </View>
 <View style={styles.container}>
 <Text style={styles.welcome}>Users:</Text>
 {this.state.users.map((user, idx) => {
 return <Text key={idx}>{user.firstName} {user.lastName}
 {user.email}</Text>;
 })}
 </View>
 </View>

Working with Application Logic and Data Chapter 8

[284]

);
 }

Once we run the app on either platform, our three buttons for interacting with8.
the database should display over the live data that's saved in our Realm
database:

Working with Application Logic and Data Chapter 8

[285]

How it works...
The Realm database is built in C++ and its core is known as the Realm Object Store. There
are products that encapsulate this object store for each major platform (Java, Objective-C,
Swift, Xamarin, and React Native). The React Native implementation is a JavaScript adapter
for Realm. From the React Native side, we do not need to worry about the implementation
details. Instead, we get a clean API for persisting and retrieving data. The step 4 to step
6 demonstrate using some basic Realm methods. If you want to see more of what you can
do with the API, check out the documentation for this, which can be found at https:/ ​/
realm.​io/​docs/​react- ​native/ ​latest/ ​api/ ​.

Masking the application upon network
connection loss
An internet connection is not always available, especially when people are moving around
a city, on the train, or hiking in the mountains. A good user experience will inform the user
when their connection to the internet has been lost.

In this recipe, we will create an app that shows a message when network connection is lost.

Getting ready
We need to create an empty app. Let's name it network-loss.

How to do it...
Let's start by importing the necessary dependencies into App.js:1.

import React, { Component } from 'react';
import {
 SafeAreaView,
 NetInfo,
 StyleSheet,
 Text,
 View,
 Platform
} from 'react-native';

https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/

Working with Application Logic and Data Chapter 8

[286]

Next, we'll define the App class and a state object for storing the connectivity2.
status. The online Boolean will be true if connected, and the offline Boolean
will be true if it isn't:

export default class App extends Component {
 state = {
 online: null,
 offline: null,
 };

 // Defined in later steps
}

After the component has been created, we need to get the initial network status.3.
We are going to use the NetInfo class's getConnectionInfo method to get the
current status, and we'll also set up a callback that's going to be executed when
the status changes:

 componentWillMount() {
 NetInfo.getConnectionInfo().then((connectionInfo) => {
 this.onConnectivityChange(connectionInfo);
 });
 NetInfo.addEventListener('connectionChange',
 this.onConnectivityChange);
 }

When the component is about to be destroyed, we need to remove the listener via4.
the componentWillUnmount life cycle:

 componentWillUnmount() {
 NetInfo.removeEventListener('connectionChange',
 this.onConnectivityChange);
 }

Let's add the callback that gets executed when the network status changes. It just5.
checks whether the current network type is none, and sets the
state accordingly:

 onConnectivityChange = connectionInfo => {
 this.setState({
 online: connectionInfo.type !== 'none',
 offline: connectionInfo.type === 'none',
 });
 }

Working with Application Logic and Data Chapter 8

[287]

Now, we know when the network is on or off, but we still need a UI for6.
displaying information. Let's render a toolbar with some dummy text as the
content:

 render() {
 return (
 <SafeAreaView style={styles.container}>
 <Text style={styles.toolbar}>My Awesome App</Text>
 <Text style={styles.text}>Lorem...</Text>
 <Text style={styles.text}>Lorem ipsum...</Text>
 {this.renderMask()}
 </SafeAreaView>
);
 }

As you can see from the previous step, there's a renderMask function. This 7.
function will return a modal when the network is offline, and nothing if it's
online:

 renderMask() {
 if (this.state.offline) {
 return (
 <View style={styles.mask}>
 <View style={styles.msg}>
 <Text style={styles.alert}>Seems like you do not have
 network connection anymore.</Text>
 <Text style={styles.alert}>You can still continue
 using the app, with limited content.</Text>
 </View>
 </View>
);
 }
 }

Finally, let's add the styles for our app. We'll start with the toolbar and content:8.

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#F5FCFF',
 },
 toolbar: {
 backgroundColor: '#3498db',
 padding: 15,
 fontSize: 20,
 color: '#fff',
 textAlign: 'center',

Working with Application Logic and Data Chapter 8

[288]

 },
 text: {
 padding: 10,
 },
 // Defined in next step
}

For the disconnection message, we will render a dark mask on top of all content,9.
and a container with the text at the center of the screen. For the mask, we need to
set the position to absolute, and then set the top, bottom, right, and left to
0. We'll also add opacity to the mask's background color, and justify and align
the content to the center:

const styles = StyleSheet.create({
 // Defined in previous step
 mask: {
 alignItems: 'center',
 backgroundColor: 'rgba(0, 0, 0, 0.5)',
 bottom: 0,
 justifyContent: 'center',
 left: 0,
 position: 'absolute',
 top: 0,
 right: 0,
 },
 msg: {
 backgroundColor: '#ecf0f1',
 borderRadius: 10,
 height: 200,
 justifyContent: 'center',
 padding: 10,
 width: 300,
 },
 alert: {
 fontSize: 20,
 textAlign: 'center',
 margin: 5,
 }
});

Working with Application Logic and Data Chapter 8

[289]

To see the mask displayed in the emulators, the emulated device must be10.
disconnected from the internet. For the iOS simulator, simply disconnect your
Mac's Wi-Fi or unplug the Ethernet to disconnect the simulator from the internet.
On the Android emulator, you can disable the Wi-Fi connection of the phone via
the toolbar:

Working with Application Logic and Data Chapter 8

[290]

Once the device has been disconnected from the internet, the mask should 11.
display accordingly:

How it works...
In step 2, we created the initial state object with two properties: online will be true
when a network connection is available, and offline will be true when it's not available.

In step 3, we retrieved the initial network status and set up a listener to check when the
status changes. The network type returned by NetInfo will be either wifi, cellular,
unknown, or none. Android also has the extra options of bluetooth, ethernet, and WiMAX
(for WiMAX connections). You can read the documentation to see all of the available
values: https:/​/​facebook. ​github. ​io/ ​react- ​native/ ​docs/ ​netinfo. ​html.

https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html
https://facebook.github.io/react-native/docs/netinfo.html

Working with Application Logic and Data Chapter 8

[291]

In step 5, we defined the method that will execute whenever the network status changes,
and set the state values of online and offline accordingly. Updating the state re-
renders the DOM, and the mask is displayed if there is no connection.

Synchronizing locally persisted data with a
remote API
When using a mobile app, network connectivity is something that is often taken for
granted. But what happens when your app needs to make an API call, and the user has just
lost connectivity? Fortunately for us, React Native has a module that reacts to the network
connectivity status. We can architect our application in a way that supports the loss of
connectivity by synchronizing our data automatically as soon as the network connection is
restored.

This recipe will show a simple implementation of using the NetInfo module to control
whether or not our application will make an API call. If connectivity is lost, we will keep a
reference of the pending request and complete it when the network access is restored. We
will be using http:/ ​/​jsonplaceholder. ​typicode. ​com again to make a POST request to a
live server.

Getting ready
For this recipe, we will use an empty React Native application named syncing-data.

How to do it...
We'll start this recipe by importing our dependencies into App.js:1.

import React from 'react';
import {
 StyleSheet,
 Text,
 View,
 NetInfo,
 TouchableOpacity
} from 'react-native';

http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com

Working with Application Logic and Data Chapter 8

[292]

We'll need to add the pendingSync class variable, which we'll use for storing a2.
pending request when there is no network connection available. We'll also create
the state object with properties for tracking whether the app is connected
(isConnected), the status of a sync (syncStatus), and the response from the
server after our POST request is made (serverResponse):

export default class App extends React.Component {
 pendingSync;

 state = {
 isConnected: null,
 syncStatus: null,
 serverResponse: null
 }

 // Defined in later steps
}

In the componentWillMount life cycle hook, we'll get the status of the network3.
connection via the NetInfo.isConnected.fetch method, setting the
state's isConnected property with the response. We'll also add an event listener
to the connectionChange event for keeping track of changes to the connection:

 componentWillMount() {
 NetInfo.isConnected.fetch().then(isConnected => {
 this.setState({isConnected});
 });
 NetInfo.isConnected.addEventListener('connectionChange',
 this.onConnectionChange);
 }

Next, let's implement the callback that will be executed by the event listener we4.
defined in the previous step. In this method, we update the isConnected
property of state. Then, if the pendingSync class variable is defined, it means
we've got a cached POST request, so we'll submit that request and update the
state accordingly:

 onConnectionChange = (isConnected) => {
 this.setState({isConnected});
 if (this.pendingSync) {
 this.setState({syncStatus : 'Syncing'});
 this.submitData(this.pendingSync).then(() => {
 this.setState({syncStatus : 'Sync Complete'});
 });
 }
 }

Working with Application Logic and Data Chapter 8

[293]

Next, we need to implement a function that will actually make the API call when5.
there is an active network connection:

 submitData(requestBody) {
 return fetch('http://jsonplaceholder.typicode.com/posts', {
 method : 'POST',
 body : JSON.stringify(requestBody)
 }).then((response) => {
 return response.text();
 }).then((responseText) => {
 this.setState({
 serverResponse : responseText
 });
 });
 }

The last thing we need to do before we can work on our UI is add a function for6.
handling the onPress event on the Submit Data button we will be rendering.
This will either perform the call immediately or be saved in this.pendingSync
if there is no network connection:

 onSubmitPress = () => {
 const requestBody = {
 title: 'foo',
 body: 'bar',
 userId: 1
 };
 if (this.state.isConnected) {
 this.submitData(requestBody);
 } else {
 this.pendingSync = requestBody;
 this.setState({syncStatus : 'Pending'});
 }
 }

Now, we can build out our UI, which will render the Submit Data button and7.
show the current connection status, sync status, and most recent response from
the API:

 render() {
 const {
 isConnected,
 syncStatus,
 serverResponse
 } = this.state;
 return (
 <View style={styles.container}>

Working with Application Logic and Data Chapter 8

[294]

 <TouchableOpacity onPress={this.onSubmitPress}>
 <View style={styles.button}>
 <Text style={styles.buttonText}>Submit Data</Text>
 </View>
 </TouchableOpacity>
 <Text style={styles.status}>
 Connection Status: {isConnected ? 'Connected' :
 'Disconnected'}
 </Text>
 <Text style={styles.status}>
 Sync Status: {syncStatus}
 </Text>
 <Text style={styles.status}>
 Server Response: {serverResponse}
 </Text>
 </View>
);
 }

You can disable the network connection in the simulator in the same way as8.
described in step 10 of the previous recipe:

Working with Application Logic and Data Chapter 8

[295]

How it works...
This recipe leverages the NetInfo module to control when an AJAX request should be
made.

In step 6, we defined the method that's executed when the Submit Data button is pressed. If
there is no connectivity, we save the request body into the pendingSync class variable.

In step 3, we defined the componentWillMount life cycle hook. Here, two NetInfo method
calls retrieve the current network connection status and attach an event listener to the
change event.

In step 4, we defined the function that will be executed whenever the network connection
has changed, which informs the state's isConnected Boolean property appropriately. If
the device is connected, we also check to see whether there is a pending API call, and
complete the request if it exists.

This recipe could also be expanded on to support a queue system of pending calls, which
would allow multiple AJAX requests to be delayed until an internet connection was re-
established.

Logging in with Facebook
Facebook is the largest social media platform in existence, with well over 1 billion users
worldwide. This means that there's a good chance that your users will have a Facebook
account. Your app can register and link with their account, allowing you to use their
Facebook credentials as a login for your app. Depending on the requested permissions, this
will also allow you to access data such as user information, and pictures, and even give you
the ability to access shared content. You can read more about the available permission
options from the Facebook docs at https:/ ​/​developers. ​facebook. ​com/ ​docs/ ​facebook-
login/​permissions#reference- ​public_ ​profile.

In this recipe, we will cover a basic method for logging into Facebook via an app to get a
session token. We'll then use that token to access the basic /me endpoint provided by
Facebook's Graph API, which will give us the user's name and ID. For more complex
interactions with the Facebook Graph API, you can look at the documentation, which can
be found at https:/ ​/​developers. ​facebook. ​com/​docs/ ​graph- ​api/​using- ​graph- ​api.

https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api
https://developers.facebook.com/docs/graph-api/using-graph-api

Working with Application Logic and Data Chapter 8

[296]

To keep this recipe simple, we will be building an Expo app that uses
the Expo.Facebook.logInWithReadPermissionsAsync method to do the heavy lifting
of logging into Facebook, which will also allow us to bypass much of the setup that's
otherwise necessary for such an app. If you wish to interact with Facebook without using
Expo, you will likely want to use the React Native Facebook SDK, which requires a lot more
steps. You can find the SDK at https:/ ​/​github. ​com/​facebook/ ​react- ​native- ​fbsdk.

Getting ready
For this recipe, we'll create a new app called facebook-login. You will need to have an
active Facebook account to test its functionality.

A Facebook Developer account is also necessary for this recipe. Head over to https:/ ​/
developers.​facebook. ​com to sign up if you don't have one. Once you are logged in, you
can use the dashboard to create a new app. Make note of the app ID once it's been created,
as we'll need it for the recipe.

How to do it...
Let's start by opening the App.js file and adding our imports:1.

import React from 'react';
import {
 StyleSheet,
 Text,
 View,
 TouchableOpacity,
 Alert
} from 'react-native';
import Expo from 'expo';

Next, we'll declare the App class and add the state object. The state will keep2.
track of whether the user is logged in with the loggedIn Boolean, and will save
the retrieved user data from Facebook in an object called facebookUserInfo:

export default class App extends React.Component {
 state = {
 loggedIn: false,
 facebookUserInfo: {}
 }
 // Defined in later steps
}

https://github.com/facebook/react-native-fbsdk
https://github.com/facebook/react-native-fbsdk
https://github.com/facebook/react-native-fbsdk
https://github.com/facebook/react-native-fbsdk
https://github.com/facebook/react-native-fbsdk
https://github.com/facebook/react-native-fbsdk
https://github.com/facebook/react-native-fbsdk
https://github.com/facebook/react-native-fbsdk
https://github.com/facebook/react-native-fbsdk
https://github.com/facebook/react-native-fbsdk
https://github.com/facebook/react-native-fbsdk
https://github.com/facebook/react-native-fbsdk
https://github.com/facebook/react-native-fbsdk
https://github.com/facebook/react-native-fbsdk
https://github.com/facebook/react-native-fbsdk
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com

Working with Application Logic and Data Chapter 8

[297]

Next, let's define the logIn method of our class. This will be the method that's3.
called when the Login button is pressed. This method uses
the logInWithReadPermissionsAsync Expo helper class of
the Facebook method to prompt the user with a Facebook login screen. Replace
the first parameter, labeled APP_ID in the following code, with your App's ID:

 logIn = async () => {
 const { type, token } = await
 Facebook.logInWithReadPermissionsAsync(APP_ID, {
 permissions: ['public_profile'],
 });

 // Defined in next step
 }

In the second half of the logIn method, if the request is successful, we'll make a4.
call to the Facebook Graph API using the token that was received from logging in
to request the logged-in user's information. Once the response resolves, we set
the state accordingly:

 logIn = async () => {
 //Defined in step above

 if (type === 'success') {
 const response = await fetch(`https://graph.facebook.com/me?
 access_token=${token}`);
 const facebookUserInfo = await response.json();
 this.setState({
 facebookUserInfo,
 loggedIn: true
 });
 }
 }

We'll also need a simple render function. We'll display a Login button for5.
logging in, as well as Text elements that will display user information once the
login has completed successfully:

 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.headerText}>Login via Facebook</Text>
 <TouchableOpacity
 onPress={this.logIn}
 style={styles.button}
 >

Working with Application Logic and Data Chapter 8

[298]

 <Text style={styles.buttonText}>Login</Text>
 </TouchableOpacity>

 {this.renderFacebookUserInfo()}
 </View>
);
 }

As you can see in the preceding render function, we're calling6.
this.renderFacebookUserInfo to render user information. This method
simply checks whether the user in logged in via this.state.loggedIn. If they
are, we'll display the user's information. If not, we'll return null to display
nothing:

 renderFacebookUserInfo = () => {
 return this.state.loggedIn ? (
 <View style={styles.facebookUserInfo}>
 <Text style={styles.facebookUserInfoLabel}>Name:</Text>
 <Text style={styles.facebookUserInfoText}>
 {this.state.facebookUserInfo.name}</Text>
 <Text style={styles.facebookUserInfoLabel}>User ID:</Text>
 <Text style={styles.facebookUserInfoText}>
 {this.state.facebookUserInfo.id}</Text>
 </View>
) : null;
 }

Finally, we'll add styles to complete the layout, setting padding, margins, color,7.
and font sizes:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#fff',
 alignItems: 'center',
 justifyContent: 'center',
 },
 button: {
 marginTop: 30,
 padding: 10,
 backgroundColor: '#3B5998'
 },
 buttonText: {
 color: '#fff',
 fontSize: 30
 },
 headerText: {

Working with Application Logic and Data Chapter 8

[299]

 fontSize: 30
 },
 facebookUserInfo: {
 paddingTop: 30
 },
 facebookUserInfoText: {
 fontSize: 24
 },
 facebookUserInfoLabel: {
 fontSize: 20,
 marginTop: 10,
 color: '#474747'
 }
});

Now, if we run the app, we'll see our Login button, a login modal when the8.
Login button is pressed, and the user's information, which will be displayed once
the user has successfully logged in:

Working with Application Logic and Data Chapter 8

[300]

How it works...
Interacting with Facebook in our React Native app is made much easier than it otherwise
would be, via Expo's Facebook helper library.

In step 5, we created the logIn function, which uses
Facebook.logInWithReadPermissionsAsync to make the login request to Facebook. It
takes two parameters: an appID and an options object. In our case, we're only setting the
permissions option. The permissions option takes an array of strings for each type of
permission requested, but for our purpose, we only use the most basic
permission, 'public_profile'.

In step 6, we completed the logIn function. It makes a call to Facebook's Graph API
endpoint, /me, upon successful login, using the token provided by the data that's returned
from logInWithReadPermissionsAsync. The user's information and the login status are
saved to state, which will trigger a re-render and display the user's data on the screen.

This recipe intentionally only makes a call to one simple API endpoint. You could use the
return data from this endpoint to populate user data in your app. Alternatively, you could
use the same token that was received from logging in to perform any actions provided by
the Graph API. To see what kind of data is at your disposal via the API, you can view the
reference docs at https:/ ​/ ​developers. ​facebook. ​com/ ​docs/ ​graph- ​api/ ​reference.

https://developers.facebook.com/docs/graph-api/reference
https://developers.facebook.com/docs/graph-api/reference
https://developers.facebook.com/docs/graph-api/reference
https://developers.facebook.com/docs/graph-api/reference
https://developers.facebook.com/docs/graph-api/reference
https://developers.facebook.com/docs/graph-api/reference
https://developers.facebook.com/docs/graph-api/reference
https://developers.facebook.com/docs/graph-api/reference
https://developers.facebook.com/docs/graph-api/reference
https://developers.facebook.com/docs/graph-api/reference
https://developers.facebook.com/docs/graph-api/reference
https://developers.facebook.com/docs/graph-api/reference
https://developers.facebook.com/docs/graph-api/reference
https://developers.facebook.com/docs/graph-api/reference
https://developers.facebook.com/docs/graph-api/reference
https://developers.facebook.com/docs/graph-api/reference
https://developers.facebook.com/docs/graph-api/reference

9
Implementing Redux

In this chapter, we'll go step by step through the process of adding Redux to our app. We'll
cover the following recipes:

Installing Redux and preparing our project
Defining actions
Defining reducers
Setting up the store
Communicating with a remote API
Connecting the store to the views
Storing offline content using Redux
Showing network connectivity status

Introduction
At some point during the development of most applications, we'll need a better way to
handle the state of the overall app. This will ease sharing data across components and
provide a more robust architecture for scaling our app in the future.

In order to get a better understanding of Redux, the structure of this chapter will differ
from previous chapters, since we'll be creating one app through all of these recipes. Each
recipe in this chapter will depend on the last recipe.

We will be building a simple app for displaying user posts, and we'll use a ListView
component to display the data returned from the API. We'll be using the excellent mock
data API we've used before located at https:/ ​/​jsonplaceholder. ​typicode. ​com.

https://jsonplaceholder.typicode.com
https://jsonplaceholder.typicode.com
https://jsonplaceholder.typicode.com
https://jsonplaceholder.typicode.com
https://jsonplaceholder.typicode.com
https://jsonplaceholder.typicode.com
https://jsonplaceholder.typicode.com
https://jsonplaceholder.typicode.com
https://jsonplaceholder.typicode.com

Implementing Redux Chapter 9

[302]

Installing Redux and preparing our project
In this recipe, we'll install Redux in an empty application, and we'll define the basic folder
structure of our app.

Getting started
We'll need a new empty app for this recipe. Let's call it redux-app.

We'll also need two dependencies: redux for handling state management and react-
redux for gluing together Redux and React Native. You can install them from the
command line with yarn:

yarn add redux react-redux

Or you can use npm:

npm install --save redux react-redux

How to do it...
As part of this recipe, we'll build out the folder structure that the app will use.1.
Let's add a components folder with an Album folder inside of it to hold the
photo album component. We'll also need a redux folder to hold all of our Redux
code.
Inside the redux folder, let's add an index.js file for Redux initialization. We2.
also need a photos directory, with an actions.js file and a reducer.js file.
For now, the App.js file will only contain an Album component, which we'll3.
define later:

import React, { Component } from 'react';
import { StyleSheet, SafeAreaView } from 'react-native';

import Album from './components/Album';

const App = () => (
 <SafeAreaView style={styles.container}>
 <Album />
 </SafeAreaView>
);

Implementing Redux Chapter 9

[303]

const styles = StyleSheet.create({
 container: {
 flex: 1,
 },
});

export default App;

How it works...
In Getting started, we installed the redux and react-redux libraries. The react-redux
library contains the necessary bindings to integrate Redux with React. Redux is not
exclusively designed to work with React. You can use Redux with any other JavaScript
libraries out there. By using react-redux, we'll be able to seamlessly integrate Redux into
our React Native application.

In step 2, we created the main folders we'll use for our app:

The components folder will contain our app components. In this case, we're only
adding one Album component to keep this recipe simple.
The redux folder will contain all of the Redux related code (initialization,
actions, and reducers).

In a medium to large app, you will probably want to separate your React Native
components further. The React community standard is to split the app's components into
three separate types:

Components: The community calls them presentational components. In simple
terms, these are the kind of components that are not aware of any business logic
or Redux actions. These components only receive data via props and should be
reusable on any other project. A button or panel would be a perfect example of a
presentational component.
Containers: These are components that directly receive data from Redux and
are able to call actions. In here, we'll define components such as a header that
displays the logged in user. Usually, these components internally use
presentational components.
Pages/Views: These are the main modules in the app that use containers and
presentational components.

Implementing Redux Chapter 9

[304]

For more information on structuring your Redux powered components, I recommend the
excellent article, Structure your React-Redux project for scalability and maintainability, at the
following link:

https:/​/​levelup. ​gitconnected. ​com/ ​structure- ​your- ​react- ​redux- ​project- ​for-
scalability-​and- ​maintainability- ​618ad82e32b7

We will also need to create a redux/photos folder. In this folder, we'll create the
following:

The actions.js file, which will contain all of the actions the app can perform.
We will talk more about actions on the next recipe.
The reducer.js file, which will contain all the code managing the data in the
Redux store. We will dig deeper into this subject in later recipes.

Defining actions
An action is a payload of information that sends data to the store. Using these actions is the
only way components can request or send data to the Redux store, which serves as the
global state object for the entire app. An action is just a plain JavaScript object. We'll be
defining functions that return these actions. A function that returns an action is called an
action creator.

In this recipe, we'll create the actions to load the initial images for the gallery. During this
recipe, we'll be adding hardcoded data, but later on, we'll request this data from an API to
create a more realistic scenario.

Getting ready
Let's continue working on the code from the previous recipe. Make sure to follow those
steps in order to have Redux installed and build out the folder structure that we'll use for
this project.

https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7
https://levelup.gitconnected.com/structure-your-react-redux-project-for-scalability-and-maintainability-618ad82e32b7

Implementing Redux Chapter 9

[305]

How to do it...
We'll need to define types for each the action. Open the1.
redux/photos/actions.js file. Action types are defined as constants that can
later be referenced in actions and reducers, as follows:

export const FETCH_PHOTOS = 'FETCH_PHOTOS';

Now let's create our first action creator. Every action needs a type property to2.
define it, and actions will often have a payload property of data to pass along
with the action. In this recipe, we're hardcoding a mock API response made up of
an array of two photo objects, as follows:

export const fetchPhotos = () => {
 return {
 type: FETCH_PHOTOS,
 payload: {
 "photos": [
 {
 "albumId": 2,
 "title": "dolore esse a in eos sed",
 "url": "http://placehold.it/600/f783bd",
 "thumbnailUrl": "http://placehold.it/150/d83ea2",
 "id": 2
 },
 {
 "albumId": 2,
 "title": "dolore esse a in eos sed",
 "url": "http://placehold.it/600/8e6eef",
 "thumbnailUrl": "http://placehold.it/150/bf6d2a",
 "id": 3
 }
]
 }
 }
}

We will need an action creator for each action we want the app to be able to3.
execute, and we want this app to be able to add and remove images. First, let's
add the addBookmark action creator, as follows:

export const ADD_PHOTO = 'ADD_PHOTO';
export const addPhoto = (photo) => {
 return {
 type: ADD_PHOTO,
 payload: photo

Implementing Redux Chapter 9

[306]

 };
}

Likewise, we'll need another action creator for removing photos:4.

export const REMOVE_PHOTO = 'REMOVE_PHOTO';
export const removePhoto = (photo) => {
 return {
 type: REMOVE_PHOTO,
 payload: photo
 };
}

How it works...
In step 1, we defined the action's type to indicate what it does, which in this case is fetch
images. We use a constant since it will be used in multiple places, including action creators,
reducers, and tests.

In step 2, we declared an action creator. Actions are simple JavaScript objects that define an
event that happens in our app that will affect the state of the app. We use actions to interact
with data that lives in the Redux store.

There's only one single requirement: each action must have a type property. In addition, an
action will often include a payload property that holds data relevant to the action. In this
case, we are using an array of photo objects.

An action is valid as long as the type property is defined. If we want to
send anything else, it is a common convention to use the payload
property as popularized by the flux pattern. However, the name property
isn't inherently special. We could name this params or data and the
behavior would remain the same.

There's more...
Currently, we have defined the action creators, which are simple functions that return
actions. In order to use them, we need to use the dispatch method provided by the
Redux store. We will learn more about the store in later recipes.

Implementing Redux Chapter 9

[307]

Defining reducers
At this point, we have created a few actions for our app. As discussed earlier, actions define
that something should happened, but we haven't created anything for putting the action
into motion. That's where reducers come in. Reducers are functions that define how an
action should affect the data in the Redux store. All accessing of data in the store
happens in a reducer.

Reducers receive two parameters: state and action. The state parameter represents the
global state of the app, and the action parameter is the action object being used by the
reducer. Reducers return a new state parameter reflecting the changes that are associated
with a given action parameter. In this recipe, we'll introduce a reducer for fetching the
photos by using the actions we defined in the previous recipe.

Getting ready
This recipe depends on the previous recipe, Defining actions. Be sure to start from the
beginning of this chapter to avoid any problems or confusion.

How to do it...
Let's start by opening the photos/reducer.js file and importing all of the1.
action types we defined in the previous recipe, as follows:

import {
 FETCH_PHOTOS,
 ADD_PHOTO,
 REMOVE_PHOTO
} from './actions';

We'll define an initial state object for the state in this reducer. It has a photos2.
property initialized to an empty array for the currently loaded photos, as follows:

const initialState = () => return {
 photos: []
};

Implementing Redux Chapter 9

[308]

We can now define the reducer function. It'll receive two parameters, the3.
current state and the action that has been dispatched, as follows:

export default (state = initialState, action) => {
 // Defined in next steps
}

React Native components can also have a state object, but that is an
entirely separate state from that which Redux uses. In this
context, state refers to the global state stored in the Redux store.

State is immutable, so instead of manipulating state, inside the reducer function,4.
we need to return a new state for the current action, as follows:

export default (state = initialState, action) => {
 switch (action.type) {
 case FETCH_PHOTOS:
 return {
 ...state,
 photos: [...action.payload],
 };
 // Defined in next steps
}

In order to add a new bookmark to the array, all we need to do is get the payload5.
of the action and include it in the new array. We can use the spread operator to
spread the current photos array on state, then add action.payload to the
new array, as follows:

 case ADD_PHOTO:
 return {
 ...state,
 photos: [...state.photos, action.payload],
 };

If we want to remove an item from the array, we can use the filter method, as6.
follows:

 case REMOVE_PHOTO:
 return {
 ...state,
 photos: state.photos.filter(photo => {
 return photo.id !== action.payload.id
 })
 };

Implementing Redux Chapter 9

[309]

The final step is to combine all of the reducers that we have. In a larger app, you7.
will likely have reason to break your reducers into separate files. Since we're only
using one reducer, this step is technically optional, but it illustrates how multiple
reducers can be combined together with Redux's combineReducers helper. Let's
use it in the redux/index.js file, which we'll also use to initiate the Redux store
in the next recipe, as follows:

import { combineReducers } from 'redux';
import photos from './photos/reducers';
const reducers = combineReducers({
 photos,
});

How it works...
In step 1, we imported all of the action types that we declared in the previous recipe. We use
these types to determine what action should be taken and how action.payload should
affect the Redux state.

In step 2, we defined the initial state of the reducer function. For now, we only need an
empty array for our photos, but we could add other properties to the state, such as Boolean
properties of isLoading and didError to track loading and error states. These can, in
turn, be used to update the UI during and in response to async actions.

In step 3, we defined the reducer function, which receives two parameters: the current
state and the action that is being dispatched. We set the initial state to initialState if we
are not provided with one. This way, we can ensure that the photos array exists at all times
within the app, which will help in avoiding errors in cases where actions get dispatched
that don't affect the Redux state.

In step 4, we defined an action for fetching photos. Remember that state is never directly
manipulated. If the action's type matches the case, a new state object is created by
combining the current state.photos array with the incoming photos
on action.payload.

The reducer function should be pure. This means there shouldn't be side effects on any of
the input values. Mutating the state or the action is bad practice and should always be
avoided. A mutation can lead to inconsistent data or not triggering a render correctly. Also,
in order to prevent side effects, we should avoid executing any AJAX requests inside the
reducer.

Implementing Redux Chapter 9

[310]

In step 5, we created the action for adding a new element to the photos array, but instead of
using Array.push, we are returning a new array and appended the incoming element to
the last position to avoid mutating the original array on the state.

In step 6, we added an action for removing the bookmark from the state. The easiest way to
do this is by using the filter method so we can ignore the element with the ID that was
received on the action's payload.

In step 7, we use the combineReducers function to merge all of the reducers into a single
global state object that will be saved in the store. This function will call each reducer with
the key in the state that corresponds to that reducer; this function is exactly the same as the
following:

import photosReducer from './photos/reducer';

const reducers = function(state, action) {
 return {
 photos: photosReducer(state.photos, action),
 };
}

The photos reducer has only been called on the part of the state that cares about photos.
This will help you avoid managing all state data in a single reducer.

Setting up the Redux store
The Redux store is responsible for updating the information that is calculated on the state
inside reducers. It is a single global object, which can be accessed via the store's getState
method.

In this recipe, we'll tie together the actions and the reducer we created in previous recipes.
We will use the existing actions to affect data that lives in the store. We will also learn how
to log changes on the state by subscribing to the store changes. This recipe serves more as a
proof of concept of how actions, reducers, and the store work together. We'll dive deeper
into how Redux is more commonly used within apps later in this chapter.

Implementing Redux Chapter 9

[311]

How to do it...
Let's open the redux/index.js file and import the createStore function1.
from redux, as follows:

import { combineReducers, createStore } from 'redux';

Creating the store is extremely simple; all we need to do is call the function 2.
imported in step 1 and send the reducers as the first parameter, as follows:

const store = createStore(reducers);
export default store;

That's it! We've set up the store, so now let's dispatch some actions. The next3.
steps in this recipe will be removed from the final project since they're for testing
our setup. Let's start by importing the action creators we would like to dispatch:

import {
 loadPhotos,
 addPhotos,
 removePhotos,
} from './photos/actions';

Before dispatching any actions, let's subscribe to the store, which will allow us to4.
listen to any changes that occur in the store. For our current purposes, we only
need to console.log the result of store.getState(), as follows:

const unsubscribe = store.subscribe(() => {
 console.log(store.getState());
});

Let's dispatch some actions and see the resulting state in the Developer console:5.

store.dispatch(loadPhotos());

In order to add a new bookmark, we need to dispatch the addBookmark action6.
creator with the photos object as the parameter:

store.dispatch(addPhoto({
 "albumId": 2,
 "title": "dolore esse a in eos sed",
 "url": `http://placehold.it/600/`,
 "thumbnailUrl": `http://placehold.it/150/`
}));

Implementing Redux Chapter 9

[312]

To remove an item, we pass along the id of the photo we want to remove to the7.
action creator, since this is what the reducer is using to find the item that should
be deleted:

store.dispatch(removePhoto({ id: 1 }));

After executing all of these actions, we can stop listening to changes on the store8.
by running the unsubscribe function we created in step 4 when we subscribed to
the store, as follows:

unsubscribe();

We need to import the redux/index.js file into the App.js file, which will run9.
all of the code in this recipe so we can see the related console.log messages in
the Developer console:

import store from './redux';

How it works...
In step 3, we imported the action creators we created in the earlier recipe, Defining actions.
Even though we don't yet have a UI, we can use the Redux store and observe the changes
as they happen. All it takes is calling an action creator and then dispatching the resulting
action.

In step 5, we called the dispatch method from the store instance. dispatch takes an
action, which is created by the loadBookmarks action creator. The reducer will be called in
turn, which will set the new photos on the state.

Once we have our UI in place, we'll dispatch the actions in a similar fashion from our
components, which will update the state, ultimately triggering a re-render of the
component, displaying the new data.

Communicating with a remote API
We are currently loading the bookmarks from hardcoded data in the action. In a real app,
we're much more likely to be getting data back from an API. In this recipe, we'll use a
Redux middleware to help with the process of fetching data from an API.

Implementing Redux Chapter 9

[313]

Getting ready
In this recipe, we'll be using axios to make all AJAX requests. Install it with npm:

npm install --save axios

Or you can install it with yarn:

yarn add axios

For this recipe, we'll be using the Redux middleware, redux-promise-middleware.
Install the package with npm:

npm install --save redux-promise-middleware

Or you can install it with yarn:

yarn add redux-promise-middleware

This middleware will create and automatically dispatch three related actions for each AJAX
request made in our app: one when a request begins, one when a request succeeds, and one
for when a request fails. Using this middleware, we are able to define an action creator that
returns an action object with a promise for a payload. In our case, we'll be creating the
async action, FETCH_PHOTOS, whose payload is an API request. The middleware will
create and dispatch an action of the FETCH_PHOTOS_PENDING type. When the request
resolves, the middleware will create and dispatch either an action of
the FETCH_PHOTOS_FULFILLED type with the resolved data as the payload if the request
was successful or an action of the FETCH_PHOTOS_REJECTED type with the error as
a payload if the request failed.

How to do it...
Let's start by adding the new middleware to our Redux store. In1.
the redux/index.js file, let's add the Redux method, applyMiddleware. We'll
also add the new middleware we just installed, as follows:

import { combineReducers, createStore, applyMiddleware } from
'redux';
import promiseMiddleware from 'redux-promise-middleware';

Implementing Redux Chapter 9

[314]

In the call to createStore that we defined previously, we can pass2.
in applyMiddleware as the second parameter. applyMiddleware takes one
parameter, which is the middleware we want to use, promiseMiddleware:

const store = createStore(reducers,
applyMiddleware(promiseMiddleware()));

Unlike some other popular Redux middleware solutions such as redux-
thunk, promiseMiddleware must be invoked when it is passed to
applyMiddleware. It is a function that returns the middleware.

We're going to be making real API requests in our actions now, so we need to3.
import axios into redux/photos/actions. We'll also add the API's base URL.
We are using the same dummy data API we used in previous chapters, hosted
at http:/ ​/​jsonplaceholder. ​typicode. ​com, as follows:

import axios from 'axios';
const API_URL='http://jsonplaceholder.typicode.com';

Next, we'll update our action creators. We'll first update the types we need for4.
handling AJAX requests, as follows:

export const FETCH_PHOTOS = 'FETCH_PHOTOS';
export const FETCH_PHOTOS_PENDING = 'FETCH_PHOTOS_PENDING';
export const FETCH_PHOTOS_FULFILLED = 'FETCH_PHOTOS_FULFILLED';
export const FETCH_PHOTOS_REJECTED = 'FETCH_PHOTOS_REJECTED';

Instead of returning dummy data as payload for this action, we'll return a GET5.
request. Since this is a Promise, it will trigger our new middleware. Also, notice
how the action's type is FETCH_PHOTOS. This will cause the middleware to
automatically create FETCH_PHOTOS_PENDING, FETCH_PHOTOS_FULFILLED with
a payload of resolved data when successful, and FETCH_PHOTOS_REJECTED
with a payload of the error that occurred, as follows:

export const fetchPhotos = () => {
 return {
 type: FETCH_PHOTOS,
 payload: axios.get(`${API_URL}/photos?_page=1&_limit=20`)
 }
}

http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com

Implementing Redux Chapter 9

[315]

Just like the FETCH_PHOTOS action, we'll be making use of the same middleware6.
provided types for the ADD_PHOTO action, as follows:

export const ADD_PHOTO = 'ADD_PHOTO';
export const ADD_PHOTO_PENDING = 'ADD_PHOTO_PENDING';
export const ADD_PHOTO_FULFILLED = 'ADD_PHOTO_FULFILLED';
export const ADD_PHOTO_REJECTED = 'ADD_PHOTO_REJECTED';

The action creator itself will no longer just return the passed in photo as the7.
payload, but instead will pass a POST request promise for adding the image via
the API, as follows:

export const addPhoto = (photo) => {
 return {
 type: ADD_PHOTO,
 payload: axios.post(`${API_URL}/photos`, photo)
 };
}

We can follow the same pattern to convert the REMOVE_PHOTO action into an8.
AJAX request that uses the API to delete a photo. Like the other two action
creators for ADD_PHOTO and FETCH_PHOTOS, we'll define the action types for
each action, then return the delete axios request as the action's payload. Since
we'll need photoId in the reducer when we remove the image object from the
Redux store, we also pass that along as an object on the action's meta property,
as follows:

export const REMOVE_PHOTO = 'REMOVE_PHOTO';
export const REMOVE_PHOTO_PENDING = 'REMOVE_PHOTO_PENDING';
export const REMOVE_PHOTO_FULFILLED = 'REMOVE_PHOTO_FULFILLED';
export const REMOVE_PHOTO_REJECTED = 'REMOVE_PHOTO_REJECTED';
export const removePhoto = (photoId) => {
 console.log(`${API_URL}/photos/${photoId}`);
 return {
 type: REMOVE_PHOTO,
 payload: axios.delete(`${API_URL}/photos/${photoId}`),
 meta: { photoId }
 };
}

Implementing Redux Chapter 9

[316]

We also need to revisit our reducers to adjust the expected payload.9.
In redux/reducers.js, we'll start by importing all of the action types we'll be
using, and we'll update initialState. For reasons that will be apparent in the
next recipe, let's rename the array of photos on the state object
to loadedPhotos, as follows:

import {
 FETCH_PHOTOS_FULFILLED,
 ADD_PHOTO_FULFILLED,
 REMOVE_PHOTO_FULFILLED,
} from './actions';

const initialState = {
 loadedPhotos: []
};

In the reducer itself, update each case to take the FULFILLED variation of the10.
base action: FETCH_PHOTOS becomes FETCH_PHOTOS_FULFILLED, ADD_PHOTOS
becomes ADD_PHOTOS_FULFILLED, and REMOVE_PHOTOS
becomes REMOVE_PHOTOS_FULFILLED. We'll also update all of the references to
the photos array of state from photos to loadedPhotos. When using axios,
all response objects will contain a data parameter that holds the actual data
received from the API, which means we'll also need to update all references of
action.payload to action.payload.data. And in
the REMOVE_PHOTO_FULFILLED reducer, we can no longer find photoId
at action.payload.id, which is why we passed photoId on the action's meta
property in step 8, therefore action.payload.id
becomes action.meta.photoId, as follows:

export default (state = initialState, action) => {
 switch (action.type) {
 case FETCH_PHOTOS_FULFILLED:
 return {
 ...state,
 loadedPhotos: [...action.payload.data],
 };
 case ADD_PHOTO_FULFILLED:
 return {
 ...state,
 loadedPhotos: [action.payload.data, ...state.loadedPhotos],
 };
 case REMOVE_PHOTO_FULFILLED:
 return {
 ...state,
 loadedPhotos: state.loadedPhotos.filter(photo => {

Implementing Redux Chapter 9

[317]

 return photo.id !== action.meta.photoId
 })
 };
 default:
 return state;
 }
}

How it works...
In step 2, we applied the middleware that was installed in the Getting started section. As
mentioned before, this middleware will allow us to make just one action creator for AJAX
actions that automatically creates individual action creators for the PENDING, FULFILLED,
and REJECTED request states.

In step 5, we defined the fetchPhotos action creator. You'll recall from the previous
recipes that actions are plain JavaScript objects. Since we defined a Promise on the action's
payload property, redux-promise-middleware will intercept this action and
automatically create the three associated actions for the three possible request states.

In step 7 and step 8, we defined the addPhoto action creator and the removePhoto action
creator which, just like fetchPhotos, have an AJAX request as the action payload.

By utilizing this middleware, we are able to avoid repeating the same boilerplate over and
over for making different AJAX requests.

In this recipe, we only handled the success conditions of the AJAX requests made in the
app. It would be wise in a real app to also handle the error states represented with actions
types ending in _REJECTED. This will be a great place to handle an error by saving it to the
Redux store, so that the view can display error information when it occurs.

Connecting the store to the view
So far, we have set up the state, we have included middleware, and we've defined actions,
action creators, and reducers for interacting with a remote API. However, we are not able to
show any of this data on the screen. In this recipe, we'll enable our component to access the
store that we have created.

Implementing Redux Chapter 9

[318]

Getting ready
This recipe depends on all of the previous ones, so make sure to follow each recipe
preceding this one.

In the first recipe of this chapter, we installed the react-redux library along with our
other dependencies. In this recipe, we are finally going to make use of it.

We'll also be using a third-party library for generating random color hexes, which we'll use
to request colored images from the placeholder image service at https:/ ​/​placehold. ​it/ ​.
Before we begin, install randomcolor with npm:

npm install --save randomcolor

Or you can install it with yarn:

yarn add randomcolor

How to do it...
Let's start by wiring the Redux store to the React Native app in App.js. We'll1.
start with the imports, importing Provider from react-redux and the store we
created earlier. We'll also import the Album component we'll be defining shortly,
as follows:

import React, { Component } from 'react';
import { StyleSheet, SafeAreaView } from 'react-native';
import { Provider } from 'react-redux';
import store from './redux';

import Album from './components/Album';

https://placehold.it/
https://placehold.it/
https://placehold.it/
https://placehold.it/
https://placehold.it/
https://placehold.it/
https://placehold.it/
https://placehold.it/

Implementing Redux Chapter 9

[319]

It's the job of the Provider to connect our Redux store to the React Native app2.
so that the app's components can communicate with the store. Provider should
be used to wrap the entire app, and since this app lives in the Album component,
we'll wrap the Album component with the Provider component. Provider
takes a store prop, where we'll pass in our Redux store. The app and the store
are wired:

const App = () => (
 <Provider store={store}>
 <Album />
 </Provider>
);

export default App;

Let's turn to the Album component. The component will live3.
at components/Album/index.js. We'll start with the imports. We'll import the
randomcolor package for generating random color hexes, as mentioned in
the Getting started section. We'll also import connect from react-redux, and
the action creators we defined in previous recipes. connect will wire our app to
the Redux store, and we can then use the action creators to affect the store's state,
as follows:

import React, { Component } from 'react';
import {
 StyleSheet,
 Text,
 View,
 SafeAreaView,
 ScrollView,
 Image,
 TouchableOpacity
} from 'react-native';
import randomColor from 'randomcolor';
import { connect } from 'react-redux';
import {
 fetchPhotos,
 addPhoto,
 removePhoto
} from '../../redux/photos/actions';

Implementing Redux Chapter 9

[320]

Let's create the Album class, however, instead of directly exporting Album as the4.
default export, we'll use connect to wire Album to the store. Note
that connect is called with two sets of parentheses and that the component is
passed into the second set, as follows:

class Album extends Component {

}

export default connect()(Album);

The first set of parentheses in a call to connect takes two function parameters:5.
mapStateToProps and mapDispatchToProps. We'll define mapStateToProps
first, which takes state as a parameter. This state is our global Redux state
object containing all of our data. The function returns an object of the pieces
of state that we want to use in our component. In our case, we just need
the loadedPhotos property from the photos reducer. By setting this value
to photos in the return object, we can expect this.props.photos to be the
value stored in state.photos.loadedPhotos. And it will change
automatically when the Redux store is updated:

class Album extends Component {

}

const mapStateToProps = (state) => {
 return {
 photos: state.photos.loadedPhotos
 }
}

export default connect(mapStateToProps)(Album);

Similarly, the mapDispatchToProps function will map our action creators to the6.
component's props as well. The function receives the Redux method, dispatch,
which is used to execute an action creator. We'll map the execution of each action
creator to a key of the same name, so that this.props.fetchPhotos() will
execute dispatch(fetchPhotos()), and so on, as follows:

class Album extends Component {

}

const mapStateToProps = (state) => {
 return {

Implementing Redux Chapter 9

[321]

 photos: state.photos.loadedPhotos
 }
}

const mapDispatchToProps = (dispatch) => {
 return {
 fetchPhotos: () => dispatch(fetchPhotos()),
 addPhoto: (photo) => dispatch(addPhoto(photo)),
 removePhoto: (id) => dispatch(removePhoto(id))
 }
}

export default connect(mapStateToProps, mapDispatchToProps)(Album);

Now that we've got our Redux store wired to our component, let's create the7.
component itself. We can make use of the componentDidMount life cycle hook to
fetch our photos, as follows:

class Album extends Component {
 componentDidMount() {
 this.props.fetchPhotos();
 }
 // Defined on later steps
}

We will also need a method for adding photos. Here, we'll use the randomcolor8.
package (imported as randomColor by convention) to create an image with the
placehold.it service. The generated color string comes back with a hash
prefixing the hex value, which the request to the image service doesn't want, so
we can simply remove it with a replace call. To add the photo, we just call
the addPhoto function mapped to props, passing in the new photo object, as
follows:

 addPhoto = () => {
 const photo = {
 "albumId": 2,
 "title": "dolore esse a in eos sed",
 "url": `http://placehold.it/600/${randomColor().replace('#',
 '')}`,
 "thumbnailUrl":
 `http://placehold.it/150/${randomColor().replace('#', '')}`
 };
 this.props.addPhoto(photo);
 }

http://placehold.it

Implementing Redux Chapter 9

[322]

We will also need a removePhoto function. All this function needs to do is call9.
the removePhoto function that has been mapped to props, passing in the ID of
the photo to be removed, as follows:

 removePhoto = (id) => {
 this.props.removePhoto(id);
 }

The template for the app will need a TouchableOpacity button for adding10.
photos, a ScrollView for holding all of the images in a scrollable list, and all of
our images. Each Image component will also be wrapped in
a TouchableOpacity component for calling the removePhoto method when an
image is pressed, as follows:

 render() {
 return (
 <SafeAreaView style={styles.container}>
 <Text style={styles.toolbar}>Album</Text>
 <ScrollView>
 <View style={styles.imageContainer}>
 <TouchableOpacity style={styles.button} onPress=
 {this.addPhoto}>
 <Text style={styles.buttonText}>Add Photo</Text>
 </TouchableOpacity>
 {this.props.photos ? this.props.photos.map((photo) => {
 return(
 <TouchableOpacity onPress={() =>
 this.removePhoto(photo.id)} key={Math.random()}>
 <Image style={styles.image}
 source={{ uri: photo.url }}
 />
 </TouchableOpacity>
);
 }) : null}
 </View>
 </ScrollView>
 </SafeAreaView>
);
 }

Implementing Redux Chapter 9

[323]

Finally, we'll add styles so that the app has a layout, as follows. There's nothing11.
here we haven't covered many times before:

const styles = StyleSheet.create({
 container: {
 backgroundColor: '#ecf0f1',
 flex: 1,
 },
 toolbar: {
 backgroundColor: '#3498db',
 color: '#fff',
 fontSize: 20,
 textAlign: 'center',
 padding: 20,
 },
 imageContainer: {
 flex: 1,
 flexDirection: 'column',
 justifyContent: 'center',
 alignItems: 'center',
 },
 image: {
 height: 300,
 width: 300
 },
 button: {
 margin: 10,
 padding: 20,
 backgroundColor: '#3498db'
 },
 buttonText: {
 fontSize: 18,
 color: '#fff'
 }
});

Implementing Redux Chapter 9

[324]

The app is complete! Clicking on the Add Photo button will add a new photo to12.
the beginning of the list of images, and pressing an image will remove it. Note,
since we are using a dummy data API, the POST and DELETE requests will return
proper responses for the given action. However, no data is actually added or
deleted to the database. This means that the image list will reset if the app is
refreshed, and that you can expect errors if you attempt to delete any photos
you've just added with the Add Photo button. Feel free to connect this app to a
real API and database to see the expected results:

Implementing Redux Chapter 9

[325]

How it works...
In step 4, we used the connect method provided by react-redux to empower the Album
component with a connection to the Redux store we've been working on this entire chapter.
The call to connect returns a function that is immediately executed via the second set of
parentheses. By passing the Album component into this returning function, connect glues
the component and the store together.

In step 5, we defined the mapStateToProps function. The first parameter in this function
is state from the Redux store, which is injected into the function by connect. Whatever
keys are defined in the object returned from mapStateToProps will be properties on the
component's props. The value of these props will be subscribed to state in the Redux
store, so that any change affecting these pieces of state will be automatically updated
within the component.

While mapStateToProps will map state in the Redux store to the component
props, mapDispatchToProps will map the action creators to the component props. In step 6,
we defined this function. It has the special Redux method, dispatch, injected into it for
calling action creators that live in the store. mapDispatchToProps returns an object,
mapping the dispatch calls for actions to the components props at the specified keys.

In step 7, we created the componentDidMount method. All the component needs to do to
get the photos it needs while mounting is to call the action creator mapped
to this.props.fetchPhotos. That's all! The fetchPhotos action creator will be
dispatched. The fetchPhoto action returned from the action creator will be processed by
the redux-promise-middleware we applied in a previous recipe since the payload
property of this action has a Promise stored on it in the form of an axios AJAX request.
The middleware will intercept the action, process the request, and send a new action to the
reducers with the resolved data on the payload property. If it was a successful request, the
action with the FETCH_PHOTOS_FULFILLED type will be dispatched with the resolved data,
and if not, the FETCH_PHOTOS_REJECTED action will be dispatched with the error
as payload. On success, the case in the reducer for handling FETCH_PHOTOS_FULFILLED
will execute, loadedPhotos will be updated in the store, and in
turn, this.props.photos will also be updated. Updating the component props will
trigger a re-render, and the new data will be displayed on the screen.

In step 8 and step 9, we followed the same pattern to define addPhoto and removePhoto,
which call the action creators of the same name. The action produced by the action creators
are handled by the middleware, the proper reducer handles the resulting action, and if
the state in the Redux store changes, all subscribed props will be automatically updated!

Implementing Redux Chapter 9

[326]

Storing offline content using Redux
Redux is an excellent tool for keeping track of an app's state while it it's running. But what
if we have data that we need to store without using an API? For instance, we could save the
state of a component so that when a user closes and reopens the app, the previous state of
that component can be restored, allowing us to persist a piece of an app's persistent across
sessions. Redux data persistence could also be useful for caching information to avoid
calling the API more than necessary. You can refer to the Masking the application upon
network connection loss recipe in Chapter 8, Working with Application Logic and Data, for more
information on how to detect and handle network connectivity status.

Getting ready
This recipe depends on the previous ones, so make sure to follow along with all of the
previous recipes. In this recipe, we'll be using the redux-persist package to persist the
data in our app's Redux store. Install it with npm:

npm install --save redux-persist

Or you can install it with yarn:

yarn add redux-persist

How to do it...
Let's start by adding the dependencies we'll need in redux/index.js.1.
The storage method we're importing from redux-persist here will use React
Native's AsyncStorage method to store Redux data between sessions, as
follows:

import { persistStore, persistReducer } from 'redux-persist'
import storage from 'redux-persist/lib/storage';

We'll be using a simple config object for configuring our redux-persist2.
instance. config requires a key property for the key used to store the data with
AsyncStore and a storage property that takes the storage instance, as follows:

const persistConfig = {
 key: 'root',
 storage
}

Implementing Redux Chapter 9

[327]

We'll use the persistReducer method we imported in step 1. This method takes3.
the config object we created in step 2 as the first argument and our reducers as
the second:

const reducers = combineReducers({
 photos,
});

const persistedReducer = persistReducer(persistConfig, reducers);

Now let's update our store to use the new persistedReducer method. Also4.
note how we no longer export store as the default export, since we'll need two
exports from this file:

export const store = createStore(persistedReducer,
applyMiddleware(promiseMiddleware()));

The second export we need from this file is persistor. persistor will work to5.
persist the Redux store between sessions. We can create persistor by calling
the persistStore method and passing in store, as follows:

export const persistor = persistStore(store);

Now that we've got both store and persistor as exports6.
from redux/index.js, we're ready to apply them in App.js. We'll start by
importing them, and we'll import the PersistGate component from redux-
persist. PersistGate will ensure that our cached Redux store is loaded before
any components are loaded:

import { PersistGate } from 'redux-persist/integration/react'
import { store, persistor } from './redux';

Let's update the App component to use PersistGate. The component takes two7.
props: the imported persistor prop and a loading prop. We'll be
passing null to the loading prop, but if we had a loading indicator component,
we could pass this in, and PersistGate would display this loading indicator as
data is restored, as follows:

const App = () => (
 <Provider store={store}>
 <PersistGate loading={null} persistor={persistor}>
 <Album />
 </PersistGate>
 </Provider>
);

Implementing Redux Chapter 9

[328]

In order to test the persistence of our Redux store, let's adjust8.
the componentDidMount method in the Album component. We'll delay the call
to fetchPhotos for two seconds, so that we can see the saved data before it is
fetched again from the API, as follows:

 componentDidMount() {
 setTimeout(() => {
 this.props.fetchPhotos();
 }, 2000);
 }

Depending on what kind of data you're persisting, this kind of functionality could be
applied to a number of situations, including persisting user data and app state, even after
the app's been closed. It can also be used to improve the offline experience of an app,
caching API requests if they can't be made right away and providing users with data filled
views.

How it works...
In step 2, we created the config object for configuring redux-persist. The object is only
required to have the key and store properties, but also supports quite a few others. You
can see all of the options this config takes via the type definition hosted here: https:/ ​/
github.​com/​rt2zz/ ​redux- ​persist/ ​blob/ ​master/ ​src/ ​types. ​js#L13- ​L27.

In step 7, we used the PersistGate component, which is how the documentation
recommends delaying rendering until restoring persisted data is complete. If we have a
loading indicator component, we can pass it to the loading prop for being displayed while
data is restored.

https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27
https://github.com/rt2zz/redux-persist/blob/master/src/types.js#L13-L27

10
App Workflow and Third-Party

Plugins
This chapter works a bit differently, so we will first look into it before we go ahead and
cover the following recipes:

React Native development tools
Planning your app and choosing your workflow
Using NativeBase for cross-platform UI components
Using glamorous-native for styling UI components
Using react-native-spinkit for adding animated loading indicators
Using react-native-side-menu for adding side navigation menus
Using react-native-modalbox for adding modals

How this chapter works
In this chapter, we'll be taking a closer look at how each method of bootstrapping a new
React Native app works, and how we can integrate third-party packages that may or may
not be Expo friendly. In previous chapters, the focus has been entirely on building
functional pieces of a React Native app. In this chapter, many of these recipes will therefore
also serve a secondary purpose of illustrating how different packages can be implemented
using different workflows.

In most of the recipes in this chapter, we will begin with a pure React Native project
initialized with the React Native CLI command, which is done as follows:

 react-native init

App Workflow and Third-Party Plugins Chapter 10

[330]

When creating a new React Native app, you'll need to choose the right tooling for
initializing your app. Generally speaking, the tools you use for bootstrapping and
developing your React Native app will either focus on streamlining the development
process and purposefully obfuscating native code from you for the sake of ease and mental
overhead, or keep your development process flexible by providing access to all native code
and allowing the use of more third-party plugins.

There are two methods for initializing and developing your app: Expo and the React Native
CLI. Until recently, there was a distinct third method, using Create React Native App
(CRNA). CRNA has since been merged with the Expo project, and only continues to exist
as a separate entity to provide backwards compatibility.

Expo falls into the first category of tools, providing a more robust and developer-friendly
development workflow at the cost of some flexibility. Apps bootstrapped with Expo also
have access to a multitude of useful features provided by the Expo SDK, such as
BarcodeScanner, MapView, ImagePicker, and so many more.

Initialize an app with the React Native CLI, via the following command:

 react-native init

This provides flexibility at the cost of ease of development.

 react-native init

It is said to be a pure React Native app, since none of the native code is hidden away from
the developer.

As a rule of thumb, a pure React Native app will be required if using third-party packages
whose setup requires running the following command:

 react-native link

So what do you do when you are halfway through building an app with Expo, only to find
out that a package integral to your app's requirements is not supported by an Expo
development workflow? Luckily, Expo has a method for turning an Expo project into a
pure React Native app, just as if it had been created with the following command:

expo eject

App Workflow and Third-Party Plugins Chapter 10

[331]

When a project is ejected, all of the Native code is unpacked into ios and android folders,
and the App.js file is split into App.js and index.js, exposing the code that mounts the
root React Native component.

But what if your Expo app depends on features provided by the Expo SDK? After all, much
of the value of developing with Expo comes from the excellent features the SDK provides,
including AuthSession, Permissions, WebBrowser, and others.

That’s where ExpoKit comes into play. When you choose to eject from a project, you’re
given the option of including ExpoKit as part of the ejected project. Including ExpoKit will
ensure that all of the Expo dependencies being used in your app will continue to work, and
also give you the ability to continue using all the features of the Expo SDK, even after the
app has been ejected.

For a deeper understanding of the eject processes, you can read the Expo documentation
at https:/​/​docs.​expo. ​io/ ​versions/ ​latest/ ​expokit/ ​eject.

React Native development tools
As with any development tools, there is going to be a trade-off between flexibility and ease
of use. I encourage you start by using Expo for your React Native development workflow,
unless you’re sure you’ll need access to the native code.

Expo
This was taken from the expo.io site:

"Expo is a free and open source toolchain built around React Native to help you build
native iOS and Android projects using JavaScript and React."

Expo is becoming an ecosystem of its own, and is made up of five interconnected tools:

Expo CLI: The command-line interface for Expo.
We've been using the Expo CLI to create, build, and serve apps. A list of all the
commands supported by the CLI can be found in the official documentation at
the following link:

 https://docs.expo.io/versions/latest/workflow/expo-cli

https://docs.expo.io/versions/latest/expokit/eject
https://docs.expo.io/versions/latest/expokit/eject
https://docs.expo.io/versions/latest/expokit/eject
https://docs.expo.io/versions/latest/expokit/eject
https://docs.expo.io/versions/latest/expokit/eject
https://docs.expo.io/versions/latest/expokit/eject
https://docs.expo.io/versions/latest/expokit/eject
https://docs.expo.io/versions/latest/expokit/eject
https://docs.expo.io/versions/latest/expokit/eject
https://docs.expo.io/versions/latest/expokit/eject
https://docs.expo.io/versions/latest/expokit/eject
https://docs.expo.io/versions/latest/expokit/eject
https://docs.expo.io/versions/latest/expokit/eject
https://docs.expo.io/versions/latest/expokit/eject
https://docs.expo.io/versions/latest/expokit/eject
https://docs.expo.io/versions/latest/expokit/eject
https://docs.expo.io/versions/latest/expokit/eject
http://expo.io
https://docs.expo.io/versions/latest/workflow/expo-cli

App Workflow and Third-Party Plugins Chapter 10

[332]

Expo developer tools: This is a browser-based tool that automatically runs
whenever an Expo app is started from the Terminal via the expo start
command. It provides active logs for your in-development app, and quick access
to running the app locally and sharing the app with other developers.
Expo Client: An app for Android and iOS. This app allows you to run your React
Native project within the Expo app on the device, without the need for installing
it. This allows developers to hot reload on a real device, or share development
code with anyone else without the need for installing it.
Expo Snack: Hosted at https:/ ​/​snack. ​expo. ​io, this web app allows you to
work on a React Native app in the browser, with a live preview of the code
you’re working on. If you've ever used CodePen or JSFiddle, Snack is the same
concept applied to React Native applications.
Expo SDK: This is the SDK that houses a wonderful collection of JavaScript APIs
that provide Native functionality not found in the base React Native package,
including working with the device's accelerometer, camera, notifications,
geolocation, and many others. This SDK comes baked in with every new project
created with Expo.

These tools together make up the Expo workflow. With the Expo CLI, you can create and
build new applications with Expo SDK support baked in. The CLI also provides a simple
way to serve your in-development app by automatically pushing your code to Amazon S3
and generating a URL for the project. From there, the CLI generates a QR code linked to the
hosted code. Open the Expo Client app on your iPhone or Android device, scan the QR
code, and BOOM there’s your app, equipped with hot reload! And since the app is hosted
on Amazon S3, you can even share the in-development app with other developers in real
time.

React Native CLI
The original bootstrapping method for creating a new React Native app using
the command is as follows:

react-native init

This is provided by the React Native CLI. You'll likely only be using this method of
bootstrapping a new app if you're sure you'll need access to the native layer of the app.

https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/

App Workflow and Third-Party Plugins Chapter 10

[333]

In the React Native community, an app created with this method is said to be a pure React
Native app, since all of the development and Native code files are exposed to the
developer. While this provides the most freedom, it also forces the developer to maintain
the native code. If you’re a JavaScript developer that’s jumped onto the React Native
bandwagon because you intend on writing native applications solely with JavaScript,
having to maintain the native code in a React Native project is probably the biggest
disadvantage of this method.

On the other hand, you'll have access to more third-party plugins when working on an app
that's been bootstrapped this process.

Get direct access to the native portion of the code base. You'll also be able to sidestep a few
of the limitations in Expo currently, particularly the inability to use background audio or
background GPS services.

CocoaPods
Once you begin working with apps that have components that use native code, you're
going to be using CocoaPods in your development as well. CocoaPods is a dependency
manager for Swift and Objective-C Cocoa projects. It works nearly the same as npm, but
manages open source dependencies for native iOS code instead of JavaScript code.

We won't be using CocoaPods much in this book, but React Native makes use of
CocoaPods for some of its iOS integration, so having a basic understanding of the manager
can be helpful. Just as the package.json file houses all of the packages for a JavaScript
project managed with npm, CocoaPods uses a Podfile for listing a project's iOS
dependencies. Likewise, these dependencies can be installed using the command:

 pod install

Ruby is required for CocoaPods to run. Run the command at the command line to verify
Ruby is already installed:

 ruby -v

If not, it can be installed with Homebrew with the command:

 brew install ruby

App Workflow and Third-Party Plugins Chapter 10

[334]

Once Ruby has been installed, CocoaPods can be installed via the command:

sudo gem install cocoapods

If you encounter any issues while installing, you can read the official CocoaPods Getting
Started guide at https:/ ​/​guides. ​cocoapods. ​org/ ​using/ ​getting- ​started. ​html.

Planning your app and choosing your
workflow
When trying to choose which development workflow best fits your app's needs, here are a
few things you should consider:

Will I need access to the native portion of the code base?
Will I need any third-party packages in my app that are not supported by Expo,
that is require running the command react-native link?
Will my app need to play audio while it is not in the foreground?
Will my app need location services while it is not in the foreground?
Am I comfortable working, at least nominally, in Xcode and Android Studio?

In my experience, Expo usually serves as the best starting place. It provides a lot of benefits
to the development process, and gives you an escape hatch in the eject process if your app
grows beyond the original requirements. I would recommend only starting development
with the React Native CLI if you're sure your app needs something that cannot be provided
by an Expo app, or if you're sure you will need to work on the native code.

I also recommend browsing the Native Directory hosted at http:/ ​/​native. ​directory. This
site has a very large catalog of the third-party packages available for React Native
development. Each package listed on the site has an estimated stability, popularity, and
links to documentation. Arguably the best feature of the Native Directory, however, is the
ability to filter packages by what kind of device/development they support, including iOS,
Android, Expo, and web. This will help you narrow down your package choices and better
indicate which workflow should be adopted for a given app.

https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
https://guides.cocoapods.org/using/getting-started.html
http://native.directory
http://native.directory
http://native.directory
http://native.directory
http://native.directory
http://native.directory
http://native.directory

App Workflow and Third-Party Plugins Chapter 10

[335]

How to do it...
We'll begin with the React Native CLI setup of our app, which will create a new pure React
Native app, giving us access to all of the Native code, but also requiring that Xcode and
Android Studio are installed.

You may recall from Chapter 1, Setting Up Your Environment, that some
of these steps have already been covered in detail. There is no need to
reinstall anything listed here that was described there as well.

First, we'll install all the dependencies needed for working with a pure React1.
Native app, starting with the Homebrew (https:/ ​/​brew. ​sh/ ​) package manager
for macOS. As stated on the project's home page, Homebrew can be easily
installed from the Terminal via the following command:

/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Once Homebrew is installed, it can be used to install the dependencies needed2.
for React Native development: Node.js and nodemon. If you're a JavaScript
developer, you've likely already got Node.js installed. You can check it's installed
via the following command:

node -v

This command will list the version of Node.js that's installed, if any. Note that
you will need Node.js version 8 or higher for React Native development. If
Node.js is not already installed, you can install it with Hombrew via the following
command:

brew install node

We also need the nodemon package, which React Native uses behind the scenes3.
to enable things like live reload during development. Install nodemon with
Homebrew via the following command:

brew install watchman

We'll also of course need the React Native CLI for running the commands that4.
bootstrap the React Native app. This can be installed globally with npm via the
following command:

npm install -g react-native-cli

https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/

App Workflow and Third-Party Plugins Chapter 10

[336]

With the CLI installed, all it takes to create a new pure React Native app is the5.
following:

react-native init name-of-project

This will create a new project in a new name-of-project directory. This project
has all Native code exposed, and requires Xcode for running the iOS app and
Android Studio for running the Android app. Luckily, installing Xcode for
supporting iOS React Native development is a simple process. The first step is to
download Xcode from the App Store and install it. The second step is to install
the Xcode command-line tools. To do this, open Xcode, choose Preferences... from
the Xcode menu, open the Locations panel, and install the most recent version
from the Command Line Tools dropdown:

Unfortunately, setting up Android Studio for supporting Android React Native6.
development is not as cut and dry, and requires some very specific steps for
installing it. Since this process is particularly involved, and since there is some
likelihood that the process will have changed by the time you read this chapter, I
recommend referring to the official documentation for in-depth, up-to-date
instructions on installing all Android development dependencies. These
instructions are hosted at the following URL:

https://facebook.github.io/react-native/docs/getting-started.html#java
-development-kit

https://facebook.github.io/react-native/docs/getting-started.html#java-development-kit
https://facebook.github.io/react-native/docs/getting-started.html#java-development-kit
https://facebook.github.io/react-native/docs/getting-started.html#java-development-kit

App Workflow and Third-Party Plugins Chapter 10

[337]

Now that all dependencies have been installed, we're able to run our pure React7.
Native project via the command line. The iOS app can be executed via the
following:

react-native run-ios

And the Andriod app can be started with this:

react-native run-android

Be sure you are already running the Android emulator before trying to open your
Android app. These commands should start up your app on the associated
emulator for the correct platform, install the new app, and run the app within the
emulator. If you have any trouble with either of these commands not behaving as
expected, you might be able to find an answer in the React Native troubleshooting
docs, hosted here:

https:/​/ ​facebook. ​github. ​io/ ​react- ​native/ ​docs/ ​troubleshooting.
html#content

Expo CLI setup
The Expo CLI can be installed using the Terminal with npm via the following command:

npm install -g expo-cli

The Expo CLI can be used to do all the great things the Expo GUI client can do. For all the
commands that can be run with the CLI, check out the docs here:

https:/​/​docs.​expo. ​io/ ​versions/ ​latest/ ​workflow/ ​expo- ​cli

Using NativeBase for cross-platform UI
components
Similar to Bootstrap on the web, NativeBase is a collection of React Native components for
improving the efficiency of React Native app development. The components cover a wide
range of use cases for building out UI in Native applications,
including ActionSheets, Badges, Cards, Drawers, and grid layouts.

https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://facebook.github.io/react-native/docs/troubleshooting.html#content
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli
https://docs.expo.io/versions/latest/workflow/expo-cli

App Workflow and Third-Party Plugins Chapter 10

[338]

NativeBase is a library that supports both pure React Native applications (those created
with the React Native CLI via react-native init) and Expo powered applications.
Instructions for installing NativeBase into one type of project or another is outlined in
the Getting Started section of the NativeBase documentation, hosted here:

https:/​/​github.​com/ ​GeekyAnts/ ​NativeBase#4- ​getting- ​started

Since this is the case, we'll take this opportunity to outline both scenarios in the Getting
ready section of this recipe.

Getting ready
Whichever method of bootstrapping you use for this recipe, we'll be keeping the How to do
it... section of the recipe as consistent as possible. One difference that we'll need to take into
account is the project naming convention of each app creation method. Pure React Native
applications are named in Pascal case (MyCoolApp) and Expo applications are named in
kebab case (my-cool-app). If you're creating a pure React Native app, you can use the app
name NativeBase, and if you're using Expo you can name it native-base.

Using a pure React Native app (React Native CLI)
Assuming you've followed the introduction to this chapter, you should already have the
React Native CLI installed globally. If not, go ahead and do so now with npm:

npm install -g react-native-cli

To create a new pure React app with the CLI, we'll use the following command:

 react-native init NativeBase

This creates a new pure React Native app in a folder called NativeBase in the current
directory. The next step is to install the required peer dependencies. Let's cd into the
new NativeBase directory and install the native-base package using npm:

npm install native-base --save

Alternatively, you can use yarn:

yarn add native-base

Finally, we will install the Native dependencies with the following command:

react-native link

https://github.com/GeekyAnts/NativeBase#4-getting-started
https://github.com/GeekyAnts/NativeBase#4-getting-started
https://github.com/GeekyAnts/NativeBase#4-getting-started
https://github.com/GeekyAnts/NativeBase#4-getting-started
https://github.com/GeekyAnts/NativeBase#4-getting-started
https://github.com/GeekyAnts/NativeBase#4-getting-started
https://github.com/GeekyAnts/NativeBase#4-getting-started
https://github.com/GeekyAnts/NativeBase#4-getting-started
https://github.com/GeekyAnts/NativeBase#4-getting-started
https://github.com/GeekyAnts/NativeBase#4-getting-started
https://github.com/GeekyAnts/NativeBase#4-getting-started
https://github.com/GeekyAnts/NativeBase#4-getting-started
https://github.com/GeekyAnts/NativeBase#4-getting-started
https://github.com/GeekyAnts/NativeBase#4-getting-started
https://github.com/GeekyAnts/NativeBase#4-getting-started

App Workflow and Third-Party Plugins Chapter 10

[339]

If we open up the project in an IDE and look at the folder structure of this pure React
Native app, we'll see a few slight differences from the Expo applications we've become
accustomed to at this point. First, the repository has an ios and an android folder, each
containing Native code for the respective platform. There's also an index.js file at the root
of the project that is not included in an app bootstrapped with Expo. In an app made with
Expo, this file would be obscured away, just like the ios and android folders, as follows:

import { AppRegistry } from 'react-native';
import App from './App';

AppRegistry.registerComponent('NativeBase', () => App);

This simply serves as the bootstrapping process of your React Native app at
runtime. AppRegistry is imported from the react-native packages, the main App
component is imported from the App.js file at the root of the directory, and
the AppRegistry method registerComponent is called with two parameters: the name of
our app (NativeBase), and an anonymous function that returns the App component. For
more information on AppRegistry, you can find the documentation here:

https:/​/​facebook. ​github. ​io/ ​react- ​native/ ​docs/ ​appregistry. ​html

One other minor difference is the existence of two sets of development instructions in
the App.js boilerplate code, displaying the appropriate dev instructions through the use of
the Platform component.

Remember to stop and think whenever you see a third-party React Native package whose
installation instructions include running the following command:

 react-native link

It is usually safe to assume it is not compatible with an Expo app unless explicitly stated
otherwise. In the case of NativeBase, we have an option to use either setup, so let's cover
getting started with our other option next, bootstrapping with Expo.

Using an Expo app
Setting up Native Base in an app created with Expo is as simple as installing the required
dependencies with npm or yarn. First, we can create the app using the Expo CLI on the
command line:

 expo init native-base

https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html
https://facebook.github.io/react-native/docs/appregistry.html

App Workflow and Third-Party Plugins Chapter 10

[340]

Once the app is created, we can cd into it and install the dependencies for NativeBase
with npm:

npm install native-base @expo/vector-icons --save

Alternatively, you can use yarn:

yarn add native-base @expo/vector-icons

When using NativeBase with Expo, the NativeBase documentation recommends loading
fonts asynchronously with the Expo.Font.loadAsync method in
the componentWillMount method in the App.js component. We'll cover how to do this in
the appropriate step in the How to do it... section of this recipe. You can start up the
app from the CLI with the following command:

 expo start

How to do it...
We'll start by adding the imports we'll be using in the App component in App.js.1.
While this app won't have much functionality, we will be using a number of
components from NativeBase to see how they can help improve your workflow,
as follows:

import React, { Component } from 'react';
import { View, Text, StyleSheet } from 'react-native'
import {
 Spinner,
 Button,
 Body,
 Title,
 Container,
 Header,
 Fab,
 Icon,
} from 'native-base';

App Workflow and Third-Party Plugins Chapter 10

[341]

Next, let's declare the App class and define a starting state object. We'll be2.
adding a FAB section to show how NativeBase lets you easily add fly-out menu
buttons to your app. We will track whether this menu should be displayed or not
with the fabActive Boolean. We'll also use the loading Boolean later in the
render method, as follows:

export default class App extends Component {
 state = {
 loading: true
 fabActive: false
 }
 // Defined on following steps
}

You may recall from the Getting ready section of the recipe, if you're developing3.
an app with Expo, NativeBase suggests loading the fonts used by NativeBase via
the Expo.Font.loadAsync function. In the componentWillMount method,
we'll initialize and await the loading of require fonts, then set the loading
property on state to false. The loading property will be referenced in
the render method to determine whether the app has finished loading, as
follows:

// Other import statements
import { Font, AppLoaded } from 'expo';

export default class App extends Component {
 state = {
 fabActive: false
 }

 async componentWillMount() {
 await Font.loadAsync({
 'Roboto': require('native-base/Fonts/Roboto.ttf'),
 'Roboto_medium': require('native-
base/Fonts/Roboto_medium.ttf'),
 'Ionicons': require('@expo/vector-icons/fonts/Ionicons.ttf'),
 });
 this.setState({ loading: false });
 }
 // Defined on following steps
}

App Workflow and Third-Party Plugins Chapter 10

[342]

Since this app is mostly UI, we're ready to start building the render function. To4.
make sure fonts are loaded before we use them, we return the App placeholder
Expo component, AppLoading, if the loading property of state is true,
otherwise we'll render the App UI. AppLoading will instruct the app to continue
displaying the app's splash screen until the component is removed.

If you chose to start this recipe with a pure React Native project, you
won't have access to Expo components. You can simply return an
empty View instead of AppLoading in this case.

We'll start with the Container component, along with the Header, Body,5.
and Title helper components. This will act as the container for the page,
displaying a header at the top of the page with the title Header Title!

 render() {
 if (this.state.loading) {
 return <AppLoading />;
 } else {
 return (
 <Container>
 <Header>
 <Body>
 <Title>Header Title!</Title>
 </Body>
 </Header>
 </Container>
);
 }
 }

App Workflow and Third-Party Plugins Chapter 10

[343]

At this point, the app should look similar to the following screenshot:

App Workflow and Third-Party Plugins Chapter 10

[344]

In the following code, the Header will have a few more UI elements from6.
NativeBase. The Spinner component allows for easily displaying a loading
spinner with the desired color passed in as a prop. The Button component
provides buttons with more built-in customizability when compared with the
vanilla TouchableOpacity component. Here, we're using the block prop to
spread the buttons across their container, and an info and success prop on
each to apply their respective default blue and green background colors:

 <Container>
 <Header>
 <Body>
 <Title>Header Title!</Title>
 </Body>
 </Header>
 <View style={styles.view}>
 <Spinner color='green' style={styles.spinner} />
 <Button block info
 onPress={() => { console.log('button 1 pressed') }}
 >
 <Text style={styles.buttonText}>Click Me! </Text>
 </Button>
 <Button block success
 onPress={() => { console.log('button 2 pressed') }}
 >
 <Text style={styles.buttonText}>No Click Me!</Text>
 </Button>
 {this.renderFab()}
 </View>
 </Container>

The preceding render function also refers to a renderFab method we have not7.
yet defined. This makes use of the Icon and Fab components. NativeBase uses
the same vector-icons package as Expo under the hood (defaulting to Ionicon
fonts if no type prop is provided), which was covered in the Using Font icons
recipe in Chapter 3, Implementing Complex User Interfaces – Part I, so please refer
to that recipe for more information:

 renderFab = () => {
 return (
 <Fab active={this.state.fabActive}
 direction="up"
 style={styles.fab}
 position="bottomRight"
 onPress={() => this.setState({ fabActive:
 !this.state.fabActive })}>
 <Icon name="share" />

App Workflow and Third-Party Plugins Chapter 10

[345]

 <Button style={styles.facebookButton}
 onPress={() => { console.log('facebook button pressed')
}}
 >
 <Icon name="logo-facebook" />
 </Button>
 <Button style={styles.twitterButton}
 onPress={() => { console.log('twitter button pressed')}}
 >
 <Icon name="logo-twitter" />
 </Button>
 </Fab>
);
 }

Let's round this recipe out with a few styles to align things within the View and8.
apply colors to our layout, as follows:

const styles = StyleSheet.create({
 view: {
 flex: 1,
 backgroundColor: '#fff',
 alignItems: 'center',
 justifyContent: 'center',
 paddingBottom: 40
 },
 buttonText: {
 color: '#fff'
 },
 fab: {
 backgroundColor: '#007AFF'
 },
 twitterButton: {
 backgroundColor: '#1DA1F2'
 },
 facebookButton: {
 backgroundColor: '#3B5998'
 },
 spinner: {
 marginBottom: 180
 }
});

App Workflow and Third-Party Plugins Chapter 10

[346]

Looking back at the completed app, there's now a nice spread of UI that is cross-9.
platform and easy to use:

App Workflow and Third-Party Plugins Chapter 10

[347]

How it works...
While the more complicated portion of this recipe was the set-up of the app itself, we had a
quick review of a few of the components provided by NativeBase that might be able to help
you develop your next app more efficiently. If you prefer to work in a widget-based system
similar to what Bootstrap (https:/ ​/ ​getbootstrap. ​com/ ​) or Semantic-UI (https:/ ​/
semantic-​ui.​com/ ​) provide on the web platform, be sure to give NativeBase a spin. For
more information on all of the components that NativeBase offers and how to use them,
you can find the official documentation at http:/ ​/​docs. ​nativebase. ​io/ ​Components. ​html.

Using glamorous-native for styling UI
components
As a JavaScript developer, you're likely familiar with CSS on the web and how it's used to
style web pages and web applications. More recently, a technique called CSS-in-JS has came
along in web development, which uses the power of JavaScript to adapt CSS for a more
modular, component-based styling approach. One of the main benefits of CSS-in-JS tools is
their ability to produce styles that are scoped to a given element, instead of the default
cascading behavior of vanilla JavaScript. Scoped CSS allows a developer to apply styles in a
more predictable and modular way. This in turn increases usability in larger organizations
and makes packaging and publishing styled components easier. If you'd like to learn more
about how CSS-in-JS works or where CSS-in-JS comes from conceptually, I've written an
article on the topic on the gitconnected Medium blog called A Brief History of CSS-in-JS: How
We Got Here and Where We're Going, hosted at:

https:/​/​levelup. ​gitconnected. ​com/ ​a-​brief- ​history- ​of- ​css-​in- ​js- ​how-​we- ​got- ​here-
and-​where-​were-​going- ​ea6261c19f04.

The StyleSheet component that comes packaged with React Native is an implementation
of CSS-in-JS. One of the most popular implementations of CSS-in-JS on the web is
glamorous, a library created by the venerable Kent C. Dodds. This library inspired the
excellent React Native styling library glamorous-native, which we will be using in this
recipe.

https://getbootstrap.com/
https://getbootstrap.com/
https://getbootstrap.com/
https://getbootstrap.com/
https://getbootstrap.com/
https://getbootstrap.com/
https://getbootstrap.com/
https://getbootstrap.com/
https://semantic-ui.com/
https://semantic-ui.com/
https://semantic-ui.com/
https://semantic-ui.com/
https://semantic-ui.com/
https://semantic-ui.com/
https://semantic-ui.com/
https://semantic-ui.com/
https://semantic-ui.com/
http://docs.nativebase.io/Components.html
http://docs.nativebase.io/Components.html
http://docs.nativebase.io/Components.html
http://docs.nativebase.io/Components.html
http://docs.nativebase.io/Components.html
http://docs.nativebase.io/Components.html
http://docs.nativebase.io/Components.html
http://docs.nativebase.io/Components.html
http://docs.nativebase.io/Components.html
http://docs.nativebase.io/Components.html
http://docs.nativebase.io/Components.html
http://docs.nativebase.io/Components.html
http://docs.nativebase.io/Components.html
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04

App Workflow and Third-Party Plugins Chapter 10

[348]

Getting ready
We'll need to create a new app for this recipe. This package does not require running the
following command during setup:

react-native link

So, should work just fine with an Expo app. Let's name the recipe glamorous-app.

We will also need to install the glamorous-app package. This can be installed with npm:

npm install --save glamorous-native

Or, we can use yarn:

yarn add glamorous-native

How to do it...
Let's start by importing all the dependencies we'll need in App.js, as follows:1.

import React from 'react';
import glamorous from 'glamorous-native';

Our app will need a containing View element to hold all of the other components2.
displayed in the app. Instead of styling this element with an object passed to
the StyleSheet component, like we've been doing in all previous recipes, we'll
use glamorous by passing a style object to the view method, which returns a
styled View component that we store in a const called Container for later use,
 as follows:

const Container = glamorous.view({
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#fff',
});

App Workflow and Third-Party Plugins Chapter 10

[349]

Similarly, we'll add three styled Text components using glamorous.text. By3.
doing this, we have three more styled and explicitly named components ready to
be used in render, as follows:

const Headline = glamorous.text({
 fontSize: 30,
 paddingBottom: 8
});

const SubHeading = glamorous.text({
 fontSize: 26,
 paddingBottom: 8
});

const ButtonText = glamorous.text({
 fontSize: 18,
 color: 'white'
});

We'll also make a reusable Button component with4.
the glamorous.touchableHighlight method. This method shows
how glamorous components can also be created with multiple style declarations
of different types. The second parameter passed to touchableHighlight in this
case is a function that updates the backgroundColor style depending on
the props defined on the element, as follows:

const Button = glamorous.touchableHighlight(
 { padding: 10 },
 props => ({backgroundColor: props.warning ? 'red' : 'blue'})
);

We can also create components styled inline, thanks to the special versions of5.
React Native components glamorous ships with. We will use an Image
component, but instead of importing it from react-native, we use the Image
component from the imported glamorous package, as follows:

const { Image } = glamorous;

App Workflow and Third-Party Plugins Chapter 10

[350]

Now, we are ready to declare the App component. App will only need a render6.
function for rendering all our newly styled components, as follows:

export default class App extends React.Component {
 render() {
 // Defined in following steps.
 }
}

Let's begin building out the render function by adding the Container7.
component we created in step 2. The improvement in code readability is already
apparent. The Container is explicitly named and needs no other attributes or
properties to declare styles, as follows:

 render() {
 return (
 <Container>
 // Defined on following steps
 </Container>
);
 }

Let's add the Image component that we pulled from the imported glamorous8.
library in step 5. Notice how we are able to declare style properties such
as height, width, and borderRadius as props directly on the component,
unlike the vanilla Image component:

 <Container>
 <Image
 height={250}
 width={250}
 borderRadius={20}
 source={{ uri: 'http://placehold.it/250/3B5998' }}
 />
 // Defined on following steps
 </Container>

App Workflow and Third-Party Plugins Chapter 10

[351]

Now, we'll add the Headline and Subheading components we created in step 3.9.
Just like the Container component, these two components read much more
clearly than one View and two Text elements ever could:

 <Container>
 <Image
 height={250}
 width={250}
 borderRadius={20}
 source={{ uri: 'http://placehold.it/250/3B5998' }}
 />
 <Headline>I am a headline</Headline>
 <SubHeading>I am a subheading</SubHeading>
 // Defined in following steps
 <Container>

Finally, we'll add the Button component we created in step 4, and the10.
ButtonText component we created in step 3. Both buttons have an onPress
method like any TouchableOpacity or TouchableHighlight component
would, but the second Button also has a warning prop, causing it to have a red
background instead of blue:

 <Button
 onPress={() => console.log('Thanks for clicking me!')}
 >
 <ButtonText>
 Click Me!
 </ButtonText>
 </Button>
 <Button
 warning
 onPress={() => console.log(`You shouldn't have clicked me!`)}
 >
 <ButtonText>
 Don't Click Me!
 </ButtonText>
 </Button>

App Workflow and Third-Party Plugins Chapter 10

[352]

All of our glamorous components have been added to the render method. If11.
you run the app, you should be greeted by a fully styled UI.

How it works...
In step 2 and step 3, we created styled View and Text components by using the
corresponding glamorous method and passing in an object containing all the styles that
should be applied to that particular component.

App Workflow and Third-Party Plugins Chapter 10

[353]

In step 4, we created a reusable Button styled component by applying the same method
used for creating the View and Text components in previous steps. The way styles are
declared in this component is different, however, and shows off the versatility glamorous-
native has when processing styles. You can pass any number of style collections as
parameters to a glamorous component constructor and they will all be applied. This
includes dynamic styles, which usually take the form of using props defined on the
component to apply different styles. In step 10, we used our Button element. If the
prop warning is present, as it is on the first Button in render, the backgroundColor will
be red. Otherwise, it will be blue. This provides a very nice system for applying simple
and reusable theming across multiple types of components.

In step 5, we pulled the Image component from the glamorous library to use in place of the
React Native Image component. This special version of the component behaves the same as
its React Native counterpart, along with the benefit of being able to apply styles directly to
the element itself. In step 8, where we used that component, we were able to
apply height, width, and borderRadius styles without ever having to use the style
prop.

Using react-native-spinkit for adding
animated loading indicators
No matter what kind of app you are building, there's a very good chance your app will
need to wait on data of one kind or another, whether it be loading assets or waiting on a
response from an AJAX request. When this situation arises, you'll probably also want a way
for your app to indicate to the user that some required piece of data is still loading. One
easy-to-use solution to this problem is using react-native-spinkit. This package
provides 15 (four of which are iOS-only) professional looking, easy-to-use loading
indicators for displaying while data is loading in your app.

This package requires the following command to be run:

react-native link

So, it is probably safe to assume that it will not work with an Expo app (unless that app is
subsequently ejected). This will provide us with another recipe that depends on a pure
React Native workflow.

App Workflow and Third-Party Plugins Chapter 10

[354]

Getting started
Now that we've established that this recipe will be built in pure React Native, we can begin
by initializing a new app from the command line named SpinKitApp as follows:

react-native init SpinKitApp

This command will begin the scaffolding process. Once it has completed, cd into the new
SpinKitApp directory and add react-native spinkit with npm:

npm install react-native-spinkit@latest --save

Or use yarn:

yarn add react-native-spinkit@latest

With the library installed, we must link it before it can be used with the command:

react-native link

At this point, the app is bootstrapped and the dependencies have been installed. The app
can then be run in the iOS or Android simulators via this:

react-native run-ios

Or, use this:

react-native run-android

When launching a pure React Native project in the iOS simulator, if you
wish to specify a device, you can pass the simulator argument set to a
string value for the desired device. For example, react-native run-
ios --simulator="iPhone X" will launch the app in a simulated
iPhone X.

When launching a pure React Native project in an Android emulator via
the command line, you must open the Android emulator you intend to
use before running this command.

We'll also be making use of the randomcolor library again in this recipe. Install it with
npm:

npm install randomcolor --save

App Workflow and Third-Party Plugins Chapter 10

[355]

Or use yarn:

yarn add randomcolor

How to do it...
We'll start by adding the dependencies to the App.js file in the root of the1.
project, as follows:

import React, { Component } from 'react';
import {
 StyleSheet,
 View,
 TouchableOpacity,
 Text
} from 'react-native';
import Spinner from 'react-native-spinkit';
import randomColor from 'randomcolor';

We're going to be setting up the app in this recipe to cycle through all of the2.
loading spinner types provided by react-native-spinkit. To do this, let's
create an array with strings for each possible type of spinner. Since the last four
types are not fully supported in Android, they will all appear as the same
Plane spinner on Android, as follows:

const types = [
 'Bounce',
 'Wave',
 'WanderingCubes',
 'Pulse',
 'ChasingDots',
 'ThreeBounce',
 'Circle',
 '9CubeGrid',
 'FadingCircleAlt',
 'FadingCircle',
 'CircleFlip',
 'WordPress',
 'Arc',
 'ArcAlt'
];

App Workflow and Third-Party Plugins Chapter 10

[356]

Now, we can begin building the App component. We will need a state object3.
with four properties: an isVisible property to track whether the spinner
should be displayed, a type property for holding the current spinner type, a
typeIndex for keeping our place in the types array, and a color. We'll initialize
color to a random hex code by simply calling randomColor(), as follows:

export default class App extends Component {
 state = {
 isVisible: true,
 typeIndex: 0,
 type: types[0],
 color: randomColor()
 }
}

We'll need a function for changing the properties of the Spinner component,4.
which we will define later in the render method. This function simply increases
the typeIndex by one, or sets it back to 0 if the end of the array has been
reached, then updates state accordingly, as follows:

 changeSpinner = () => {
 const { typeIndex } = this.state;
 let nextType = typeIndex === types.length - 1 ? 0 : typeIndex +
 1;
 this.setState({
 color: randomColor(),
 typeIndex: nextType,
 type: types[nextType]
 });
 }

App Workflow and Third-Party Plugins Chapter 10

[357]

The render method will be made up of the Spinner component, wrapped in5.
a TouchableOpacity component for changing the type and color of Spinner.
We will also add a Text component for displaying the current Spinner type, as
follows:

 render() {
 return (
 <View style={styles.container}>
 <TouchableOpacity onPress={this.changeSpinner}>
 <Spinner
 isVisible={this.state.isVisible}
 size={120}
 type={this.state.type}
 color={this.state.color}
 />
 </TouchableOpacity>
 <Text style={styles.text}>{this.state.type}</Text>
 </View>
);
 }

Finally, let's add a few styles to the center content and increase the font size of6.
the Text element via the text class, as follows:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#fff',
 },
 text: {
 paddingTop: 40,
 fontSize: 25
 }
});

App Workflow and Third-Party Plugins Chapter 10

[358]

With the recipe complete, we should see a loader that changes on press. Thanks7.
to react-native-spinkit, this is all it takes to add slick loading indicators to
our React Native applications!

App Workflow and Third-Party Plugins Chapter 10

[359]

How it works...
In step 5, we defined the app's render method, where we made use of the Spinner
component. The Spinner component has four optional props:

isVisible: A Boolean that determines whether the component should be
displayed. Default: true
color: A hex code to determine the spinner's color. Default: #000000
size: Determines what size the spinner should be, in pixels. Default: 37
type: A string that determines the type of spinner to use. Default: Plane

Since the isVisible prop on the Spinner component is set to the value of isVisible on
the state object, we can simply toggle this property to true whenever a long running
process begins (such as waiting on the response from an AJAX request), and set it back to
false when the operation completes.

There's more...
Even though the app we've created in this recipe is fairly simple, it has illustrated both
how react-native-spinkit can be implemented, and how using third-party packages
that require the react-native link command works in practice. There are all kinds of
third-party packages available to use in your next React Native app, thanks to the hard
work of countless open source contributors. Being equipped to utilize any third-party
package that suits your app's needs, no matter what requirements those package have, will
be a vital tool in planning and developing React Native projects.

Using react-native-side-menu for adding
side navigation menus
Side menus are a common UX pattern for displaying options, controls, app settings,
navigation, and other secondary information in mobile applications. The react-native-
side-menu third-party package provides an excellent, straightforward way to implement
side menus in a React Native app. In this recipe, we will be building an app that has a side
menu housing buttons that change the background.

App Workflow and Third-Party Plugins Chapter 10

[360]

Getting ready
Setting up the react-native-side-menu package does not require the command:

 react-native link

So feel free to create this app with Expo or as a pure React Native app. We need to create a
new app for this recipe, and for project naming purposes we'll assume this app is being
built with Expo and name it side-menu-app. If you're using pure React Native, you can
name it SideMenuApp.

We will also need to install react-native-side-menu into our project with npm:

npm install react-native-side-menu --save

Or, use yarn:

yarn add react-native-side-menu

How to do it...
Let's start this recipe by adding all the imports we'll need in the App.js file in1.
the root of the project. One of these imports is a Menu component, which we'll
create in a later step:

import React from 'react';
import { StyleSheet, Text, View, TouchableOpacity } from 'react-
native';
import SideMenu from 'react-native-side-menu';
import Menu from './components/Menu';

Next, let's define the App class and the initial state. state only needs two2.
properties in this app: an isOpen Boolean to keep track of when the side menu
should be open, and a selectedBackgroundColor property whose value is a
string representing the currently selected background color, as follows:

export default class App extends React.Component {
 state = {
 isOpen: false,
 selectedBackgroundColor: 'green'
 }
 // Defined in following steps
}

App Workflow and Third-Party Plugins Chapter 10

[361]

Our app will need a method for changing the selectedBackgroundColor3.
property on state. This method takes a color string as a parameter, and sets
that color to selectedBackgroundColor. It will also set state.isOpen
to false so that the side menu closes when a color is selected from the menu, as
follows:

 changeBackgroundColor = color => {
 this.setState({
 isOpen: false,
 selectedBackgroundColor: color,
 });
 }

We're ready to define the render method App. First, let's set up the Menu4.
component so it can be used by SideMenu in the next step. We still haven't
created the Menu component, but we'll be using an onColorSelected property
to pass along the changeBackgroundColor method, as follows:

 render() {
 const menu = <Menu onColorSelected={this.changeBackgroundColor}
 />;

 // Defined in next step
 }

The rendered UI consists of four pieces. The first is a View component, which has5.
a style property tied to state.selectedBackgroundColor. This View
component holds a single TouchableOpacity button component, which opens
the side menu whenever it's pressed. The SideMenu component has a required
menu prop, which takes the component that will act as the side menu itself, and
so we'll pass the Menu component to this property, as follows:

 render() {
 const menu = <Menu onColorSelected={this.changeBackgroundColor}
/>;

 return (
 <SideMenu
 menu={menu}
 isOpen={this.state.isOpen}
 onChange={(isOpen) => this.setState({ isOpen })}
 >
 <View style={[
 styles.container,
 { backgroundColor: this.state.selectedBackgroundColor }

App Workflow and Third-Party Plugins Chapter 10

[362]

]}>
 <TouchableOpacity
 style={styles.button}
 onPress={() => this.setState({ isOpen: true })}
 >
 <Text style={styles.buttonText}>Open Menu</Text>
 </TouchableOpacity>
 </View>
 </SideMenu>
);
 }

As the final touch for this component, let's add basic styles to center the layout,6.
and apply colors and font sizes, as follows:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center',
 },
 button: {
 backgroundColor: 'black',
 padding: 20,
 borderRadius: 10
 },
 buttonText: {
 color: 'white',
 fontSize: 25
 }
});

It's time to create the Menu component. Let's create a component folder with7.
a Menu.js file inside. We'll start with the component imports. As we've done in
previous recipes, we'll also use Dimensions to store the dimensions of the app
window in a variable for applying styles, as follows:

import React from 'react';
import {
 Dimensions,
 StyleSheet,
 View,
 Text,
 TouchableOpacity
} from 'react-native';

const window = Dimensions.get('window');

App Workflow and Third-Party Plugins Chapter 10

[363]

The Menu component needs only to be a presentational component, since it has8.
no state or need for life cycle hooks. The component will receive
onColorSelected as a property, which we'll make use of in the next step, as
follows:

const Menu = ({ onColorSelected }) => {
 return (
 // Defined on next step
);
}

export default Menu;

The body of the Menu component is simply a list of TouchableOpacity buttons9.
that, when pressed, call onColorSelected, passing in the corresponding color,
as follows:

 <View style={styles.menu}>
 <Text style={styles.heading}>Select a Color</Text>
 <TouchableOpacity onPress={() => onColorSelected('green')}>
 <Text style={styles.item}>
 Green
 </Text>
 </TouchableOpacity>
 <TouchableOpacity onPress={() => onColorSelected('blue')}>
 <Text style={styles.item}>
 Blue
 </Text>
 </TouchableOpacity>
 <TouchableOpacity onPress={() => onColorSelected('orange')}>
 <Text style={styles.item}>
 Orange
 </Text>
 </TouchableOpacity>
 <TouchableOpacity onPress={() => onColorSelected('pink')}>
 <Text style={styles.item}>
 Pink
 </Text>
 </TouchableOpacity>
 <TouchableOpacity onPress={() => onColorSelected('cyan')}>
 <Text style={styles.item}>
 Cyan
 </Text>
 </TouchableOpacity>
 <TouchableOpacity onPress={() => onColorSelected('yellow')}>
 <Text style={styles.item}>
 Yellow

App Workflow and Third-Party Plugins Chapter 10

[364]

 </Text>
 </TouchableOpacity>
 <TouchableOpacity onPress={() => onColorSelected('purple')}>
 <Text style={styles.item}>
 Purple
 </Text>
 </TouchableOpacity>
 </View>

Let's add a few styles to layout the Menu component, apply colors, and apply font10.
sizes. Note that we're also using the window variable we defined in step 7 to set
the height and width of the component equal to that of the screen, as follows:

const styles = StyleSheet.create({
 menu: {
 flex: 1,
 width: window.width,
 height: window.height,
 backgroundColor: '#3C3C3C',
 justifyContent: 'center',
 padding: 20,
 },
 heading: {
 fontSize: 22,
 color: '#f6f6f6',
 fontWeight: 'bold',
 paddingBottom: 20
 },
 item: {
 fontSize: 25,
 paddingTop: 10,
 color: '#f6f6f6'
 }
});

App Workflow and Third-Party Plugins Chapter 10

[365]

Our app is complete! When the Open Menu button is pressed, a smoothly11.
animated side menu will slide out from the left, displaying a list of colors for the
user to choose from. When a color is selected from the list, the background color
of the app changes and the menu slides back to closed:

App Workflow and Third-Party Plugins Chapter 10

[366]

How it works...
In step 4, we created the render function for the main App component. We stored the Menu
component in a menu variable so that it can be legibly passed to the menu property of
SideMenu, as we did in step 5. We pass the changeBackgroundColor class method via
the onColorSelected prop on our Menu component so that we can use it to properly
update state in the App component.

We then pass the Menu component to SideMenu as the menu prop, which wires the two
components together. The second props is isOpen, which dictates whether the side menu
should be open. The third prop, onChange, takes a callback function that's executed every
time the menu is opened or closed. The onChange callback is provided an isOpen
parameter that we used to update the value of isOpen on state so that it stays in sync.

The containing View element has a style prop set to an array with both the container
styles defined in step 6 and an object with the backgroundColor key set
to selectedBackgroundColor on state. This will cause the background color of
the View component to change to this value whenever it updates.

In step 8 and step 9, we built out the render method of the Menu component.
Each TouchableOpacity button is wired to call onColorSelected, passing in the color
associated with the pressed button. This in turn runs changeBackgroundColor in the
parent App class, which updates state.selectedBackgroundColor on
setting state.isOpen to false, causing the background color to change and the side
menu to close.

Using react-native-modalbox for adding
modals
Another common piece of many mobile UIs is the modal. Modals are the perfect solution
for isolating data in a meaningful way, alerting a user of updated info, displaying a
required action that blocks other user interactions (like a login screen), and so much more.

App Workflow and Third-Party Plugins Chapter 10

[367]

We will be making use of the third-party package react-native-modalbox. This package
provides an easy-to-understand and versatile API for creating modals, with options
including the following:

 position: Top, bottom, center
entry: Direction modal enters from—top or bottom?
backdropColor

backdropOpacity

For all of the available options, refer to the documentation at:

https:/​/​github.​com/ ​maxs15/ ​react- ​native- ​modalbox

Getting ready
We will need a new app for this recipe. The react-native-modalbox package is Expo
friendly, so we can create this app with Expo. We'll name this app modal-app. If using a
pure React Native project, a name such as ModalApp will work, to match naming
conventions.

We will also need the third-party package. It can be installed with npm:

npm install react-native-modalbox --save

Or, use yarn:

yarn add react-native-modalbox

How to do it...
Let's start by opening the App.js file in the root of the project and add the1.
imports, as follows:

import React from 'react';
import Modal from 'react-native-modalbox';
import {
 Text,
 StyleSheet,
 View,
 TouchableOpacity
} from 'react-native';

https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox

App Workflow and Third-Party Plugins Chapter 10

[368]

Next, we will define and export the App component, as well as the initial state2.
object, as follows. For this app, we'll only need an isOpen Boolean for keeping
track of whether one of our modals should be opened or closed:

export default class App extends Component {
 state = {
 isOpen: false
 };
 // Defined on following steps
}

Let's skip ahead to building out the render method next. The template is made3.
up of two TouchableOpacity button components that when pressed, open their
respective modal. We'll be defining those two modals in the following steps.
These buttons will call two methods for rendering each Modal of the two modal
components, as follows:

 render = () => {
 return (
 <View style={styles.container}>
 <TouchableOpacity
 onPress={this.openModal1}
 style={styles.button}
 >
 <Text style={styles.buttonText}>
 Open Modal 1
 </Text>
 </TouchableOpacity>
 <TouchableOpacity
 onPress={this.openModal2}
 style={styles.button}
 >
 <Text style={styles.buttonText}>
 Open Modal 2
 </Text>
 </TouchableOpacity>
 {this.renderModal1()}
 {this.renderModal2()}
 </View>
);
 }

App Workflow and Third-Party Plugins Chapter 10

[369]

Now, we're ready to define the renderModal1 method. The Modal component4.
needs a ref prop to be assigned a string, which will be used to refer to the Modal
when we want to open or close it, as follows:

 renderModal1 = () => {
 return(
 <Modal
 style={[styles.modal, styles.modal1]}
 ref={'modal1'}
 onClosed={this.onClose}
 onOpened={this.onOpen}
 >
 <Text style={styles.modalText}>
 Hello from Modal 1
 </Text>
 </Modal>
)
 }

Let's add the openModal1 method next. This is the method that is called5.
by onPress on the first TouchableOpacity component we added in
the render method in step 3. By passing the modal1 string to the ref prop on
the Modal component we defined in step 4, we're able to access the modal
as this.refs.modal1. Calling the open method on this ref opens the modal.
More on this in the How it works... section at the end of this recipe. Add
the openModal1 method as follows:

 openModal1 = () => {
 this.refs.modal1.open();
 }

The Modal we defined in step 4 also has onClosed and onOpened props, which6.
each take a callback that's executed when the modal is closed or opened,
respectively. Let's define the callbacks for these props next. In this recipe, we'll
just be firing a console.log as a proof of concept, as follows:

 onClose = () => {
 console.log('modal is closed');
 }

 onOpen = () => {
 console.log('modal is open');
 }

App Workflow and Third-Party Plugins Chapter 10

[370]

We're ready to define the second modal. This Modal component's ref prop will7.
be set to the string modal2, and we'll add two other optional props we didn't use
on the other modal. The first is position, which can be set to top, bottom,
or center (default). The isOpen prop provides a secondary way of opening and
closing a modal via a Boolean. The content of the modal has
a TouchableOpacity with an OK button that, when pressed, will set
the isOpen Boolean on the state object to false, closing the modal, as follows:

renderModal2 = () => {
 return(
 <Modal
 style={[styles.modal, styles.modal2]}
 ref={'modal2'}
 position={'bottom'}
 onClosed={this.onCloseModal2}
 isOpen={this.state.isOpen}
 >
 <Text style={styles.modalText}>
 Hello from Modal 2
 </Text>
 <TouchableOpacity
 onPress={() => this.setState({isOpen: false})}
 style={styles.button}
 >
 <Text style={styles.buttonText}>
 OK
 </Text>
 </TouchableOpacity>
 </Modal>
)
 }

Since we're using the state Boolean isOpen to manipulate the state of the8.
modal, the openModal2 method will illustrate an alternative method for opening
and closing the modal. By setting isOpen on state to true, the second modal
will open, as follows:

 openModal2 = () => {
 this.setState({ isOpen: true });
 }

App Workflow and Third-Party Plugins Chapter 10

[371]

You might have also noticed that the second modal, defined in step 7, has a9.
different onClosed callback. If the user presses the OK button, the isOpen value
on state will be successfully updated to false, but if they dismiss the modal by
touching the backdrop, it will not. Adding the onCloseModal2 method
guarantees that the isOpen value of the state is properly kept in sync no matter
how the user dismisses the modal, as follows:

 onCloseModal2 = () => {
 this.setState({ isOpen: false });
 }

The last step in this recipe is applying styles. We'll have a modal class for shared10.
modal styles, modal1 and modal2 classes for styles unique to each modal, and
classes for applying colors, padding, and margin to buttons and text, as follows:

const styles = StyleSheet.create({
 container: {
 backgroundColor: '#f6f6f6',
 justifyContent: 'center',
 alignItems: 'center',
 flex: 1
 },
 modal: {
 width: 300,
 justifyContent: 'center',
 alignItems: 'center'
 },
 modal1: {
 height: 200,
 backgroundColor: "#4AC9B0"
 },
 modal2: {
 height: 300,
 backgroundColor: "#6CCEFF"
 },
 modalText: {
 fontSize: 25,
 padding: 10,
 color: '#474747'
 },
 button: {
 backgroundColor: '#000',
 padding: 16,
 borderRadius: 10,
 marginTop: 20
 },
 buttonText: {

App Workflow and Third-Party Plugins Chapter 10

[372]

 fontSize: 30,
 color: '#fff'
 }
});

This recipe is complete, and we now have an app with two basic modals,11.
displayed on button press, and living in harmony in the same component:

App Workflow and Third-Party Plugins Chapter 10

[373]

How it works...
In step 4, we defined the first Modal component. We defined the onClosed and onOpened
props, passing the onClose and onOpen class methods to these props. Whenever
this Modal component is opened, this.onOpen will fire, and this.onClose will execute
when the Modal is closed. While we didn't do anything exciting with these methods in this
recipe, these hooks could serve as the perfect opportunity for logging user actions related to
the modal. Or if the modal houses a form, onOpen could be used to pre-populate some
form inputs with data, and onClose could save the form data to the state object for use as
the modal is closed.

In step 5, we defined the method that the first TouchableOpacity button component
executes when pressed: openModal1. In this method, we made use of the Modal
component's ref. Refs are a core feature of React itself, and provide a place on the
component instance for storing DOM nodes and/or React elements that are created in the
component's render method. Just as React (and React Native) components have both state
and props (this.state, and this.props in a class component), they can also have refs
(which live on this.ref). For more on how refs in React work, check the documentation
at:

https:/​/​reactjs. ​org/ ​docs/ ​refs- ​and- ​the- ​dom. ​html

Since we set the ref prop on the first Modal to the string modal1, we're able to access this
same component in the openModal1 method with the reference this.ref.modal1.
Since Modal has an open and a close method, calling this.ref.modal1.open() opens
the Modal with a ref of modal1.

This is not the only way to open and close a Modal component, as illustrated with the
second modal we defined in step 7. Since this component has an isOpen prop, the modal
can be opened or closed by changing the Boolean value being passed to the prop. By
setting isOpen to be the isOpen value of the state, we can use the OK button in this modal
to close the modal from within, by setting isOpen to false on state. In step 8, we defined
the openModal2 method, which also illustrates opening the second modal by changing the
value of isOpen on state.

In step 9, we defined a separate isClosed callback for keeping the isOpen value of
state in sync in case the user dismisses the modal by pressing the backdrop instead of the
modal's OK button. An alternative strategy would have been to disable the user's ability to
dismiss the modal via pressing the backdrop, by adding the backdropPressToClose
property to the Modal component and setting it to false.

https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html

App Workflow and Third-Party Plugins Chapter 10

[374]

There are a number of other optional props provided by the react-native-modalbox
package that can make modal creation easier. We used position in this recipe to declare
that the second modal be placed at the bottom of the screen, and you can view all other
available props for Modal in the documentation at:

https:/​/​github.​com/ ​maxs15/ ​react- ​native- ​modalbox

The react-native-modalbox library supports multiple modals in a
single component; however, attempting to use the isOpen prop on more
than one of these modals will cause all of those modals to open at once,
which is unlikely to be the desired behavior.

https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox
https://github.com/maxs15/react-native-modalbox

11
Adding Native Functionality -

Part I
In this chapter, we'll cover the following recipes:

Exposing custom iOS modules
Rendering custom iOS view components
Exposing custom Android modules
Rendering custom Android view components

Introduction
One of the core principles in React Native development is writing JavaScript to build truly
native mobile applications. To accomplish this, many native APIs and UI components are
exposed through an abstraction layer and are accessed through the React Native bridge.
While the React Native and Expo teams continue to improve and expand on the already
impressive APIs that currently exist, through the native APIs we can access functionality
that isn't available otherwise, such as vibration, contacts, and native alerts and toasts.

By exposing the native view components, we're able to leverage all of the rendering
performance the device has to offer, as we're not going through a WebView as in a hybrid
app. This gives a native look and feel that adapts to the platform the user is running the
app on. With React Native, we're already able to render many native view components
including maps, lists, input fields, toolbars, and pickers.

Adding Native Functionality - Part I Chapter 11

[376]

While React Native comes with many built-in native modules and view components, we're
sometimes in a position where we need some custom functionality leveraging the native
application layer that isn't provided out of the box. Fortunately, there's an extremely rich
open source community supporting React Native that not only contributes to the library
itself, but also publishes libraries that export some common native modules and view
components. If you can't find a first- or third-party library to accomplish what you need,
you can always build it yourself.

In this chapter, we'll cover recipes that go over exposing custom native functionality,
whether it's an API or view component, on both platforms.

There will be a lot of generated code in the native portions of the code
we'll be using in these recipes. The code blocks provided throughout this
chapter will, like in previous chapters, continue to display all of the code
used in a particular step, whether it's added by us or generated, unless
stated otherwise. This is intended to ease the burden of understanding the
context of a piece of code, and facilitates the discussion of these pieces of
generated code when further explanation is warranted.

Exposing custom iOS modules
As you begin developing more interesting and complex React Native applications, you
could possibly reach a point where executing certain code would be only possible (or
significantly improved) in the native layer. This allows for executing data processing that's
faster in the native layer when compared with JavaScript, and for accessing certain native
functionality that isn't otherwise exposed, such as file I/O, or leveraging existing native
code from other applications or libraries in your React Native app.

This recipe will walk you through the process of executing some native Objective-C or
Swift code and communicating with the JavaScript layer. We'll build a native
HelloManager module that will greet our user with a message. We'll also show how to
execute native Objective-C and Swift code, taking in arguments, and showing several ways
of communicating back with the UI (or JavaScript) layer.

Getting ready
For this recipe, we'll need a new empty, pure React Native application. Let's call
it NativeModuleApp.

Adding Native Functionality - Part I Chapter 11

[377]

In this recipe, we'll also make use of the react-native-button library. This library will
allow us to work with a Button component that's more sophisticated than the React
Native counterparts. It can be installed with npm:

npm install react-native-button --save

Or it can be installed using yarn:

yarn add react-native-button

How to do it...
We'll start by opening the iOS Project in Xcode. The project file has an1.
.xcodeproj file extension and is located in the ios/ directory in the root of the
project. In our case, the file will be called NativeModuleApp.xcodeproj.
We need to make a new file by selecting and right-clicking on the group/folder2.
that matches the project name, then clicking on New File... as shown in the
following:

Adding Native Functionality - Part I Chapter 11

[378]

We'll be making a Cocoa class, so select Cocoa Class and click Next.3.
We'll use HelloManager for the Class name and set the Subclass of4.
to NSObject, and the Language as Objective-C as shown in the following:

After clicking Next, we'll be prompted to choose the directory for the new class.5.
We want to save it to the NativeModuleApp directory.
Creating this new Cocoa class has added two new files to the project: a header6.
file (HelloManager.h) and an implementation file (HelloManager.m).
Inside the header file (HelloManager.h), you should see some generated code7.
implementing the new HelloManager protocol. We need to import the
React RCTBridgeModule library as well. The file should ultimately look like this:

#import <Foundation/Foundation.h>
#import <React/RCTBridgeModule.h>

@interface HelloManager : NSObject <RCTBridgeModule>

@end

Adding Native Functionality - Part I Chapter 11

[379]

The implementation file (HelloManager.m) houses the functionality of our8.
module. In order for our React Native app to be able to access this module from
the JavaScript layer, we need to register it with the React Bridge. This is done by
adding RCT_EXPORT_MODULE() after the @implementation tag. Also note that
the header file should already be imported into this file as well:

#import "HelloManager.h"

@implementation HelloManager
RCT_EXPORT_MODULE();

@end

We need to add the function we'll be exporting to the React Native app. We'll9.
create a greetUser method that will take two arguments, name and isAdmin.
These arguments will be used to create a greeting message using string
concatenation and then send it back to the JavaScript layer via callback:

#import "HelloManager.h"

@implementation HelloManager
RCT_EXPORT_MODULE();

RCT_EXPORT_METHOD(
 greetUser: (NSString *)name isAdmin:(BOOL *)isAdmin callback:
(RCTResponseSenderBlock) callback
) {
 NSString *greeting =
 [NSString stringWithFormat:
 @"Welcome %@, you %@ an administrator.", name, isAdmin ?
@"are" : @"are not"];

 callback(@[greeting]);
}

@end

Adding Native Functionality - Part I Chapter 11

[380]

We're ready to switch over to the JavaScript layer, which will have a UI that will10.
invoke the native HelloManager greetUser method we've just created, then
display its output. Fortunately, the React Native bridge does all of the heavy
lifting for us and leaves us with a simple-to-use JavaScript object that mimics the
NativeModules API. In this example, we'll be using TextInput and Switch to
provide name and the isAdmin value for the native modules method. Let's start
with out imports in App.js:

import React, { Component } from 'react';
import {
 StyleSheet,
 Text,
 View,
 NativeModules,
 TextInput,
 Switch
} from 'react-native';
import Button from 'react-native-button';

We can use the NativeModules component we imported to get11.
the HelloManager protocol we created from the native layer:

const HelloManager = NativeModules.HelloManager;

Let's create the App component and define the initial state object. We'll add12.
a greetingMessage property for saving the message received from the native
module, userName for storing the entered user name, and an isAdmin Boolean
for representing whether the user is an administrator:

export default class App extends Component {
 state = {
 greetingMessage: null,
 userName: null,
 isAdmin: false
 }
 // Defined on following steps
}

Adding Native Functionality - Part I Chapter 11

[381]

We're ready to start building the render method. First, we'll need a TextInput13.
component for getting a user name from the user, and a Switch component for
toggling the isAdmin state:

 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.label}>
 Enter User Name
 </Text>
 <TextInput
 ref="userName"
 autoCorrect={false}
 style={styles.inputField}
 placeholder="User Name"
 onChangeText={(text) => this.setState({ userName: text })
}
 />
 <Text style={styles.label}>
 Admin
 </Text>
 <Switch style={styles.radio}
 value={this.state.isAdmin}
 onValueChange={(value) =>
 this.setState({ isAdmin: value })
 }
 />

 // Continued below
 </View>
);
 }

The UI will also need Button for submitting the callback to the native module14.
and a Text component for displaying the message returned from the native
module:

 render() {
 return (
 // Defined above.
 <Button
 disabled={!this.state.userName}
 style={[
 styles.buttonStyle,
 !this.state.userName ? styles.disabled : null
]}
 onPress={this.greetUser}

Adding Native Functionality - Part I Chapter 11

[382]

 >
 Greet (callback)
 </Button>
 <Text style={styles.label}>
 Response:
 </Text>
 <Text style={styles.message}>
 {this.state.greetingMessage}
 </Text>
 </View>
);
 }

With the UI rendering the necessary components, we're ready to wire up15.
the onPress handler of Button to a call to the native layer. This function passes
the displayResults class method as the third parameter, which is the callback
to be used by the native greetUser function. We'll define displayResults in
the next step:

 greetUser = () => {
 HelloManager.greetUser(
 this.state.userName,
 this.state.isAdmin,
 this.displayResults
);
 }

displayResults will need to do two things: blur the TextInput using the16.
refs associated with the component and set greetingMessage on state to
the results returned from the native module:

 displayResults = (results) => {
 this.refs.userName.blur();
 this.setState({ greetingMessage: results });
 }

Adding Native Functionality - Part I Chapter 11

[383]

The last step is adding the styles to the layout and styling the app:17.

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 inputField:{
 padding: 20,
 fontSize: 30
 },
 label: {
 fontSize: 18,
 marginTop: 18,
 textAlign: 'center',
 },
 radio: {
 marginBottom: 20
 },
 buttonStyle: {
 padding: 20,
 backgroundColor: '#1DA1F2',
 color: '#fff',
 fontSize: 18
 },
 message: {
 fontSize: 22,
 marginLeft: 50,
 marginRight: 50,
 },
 disabled: {
 backgroundColor: '#3C3C3C'
 }
});

Adding Native Functionality - Part I Chapter 11

[384]

We now have a working React Native app that's able to communicate directly18.
with the native iOS layer:

How it works...
The app we built in this recipe will serve as the foundation for many of the following
recipes in this chapter. It's also the method Facebook uses to implement many bundled
React Native APIs.

Adding Native Functionality - Part I Chapter 11

[385]

There are several important concepts to keep in mind going forward. Any native module
class we want to use in the JavaScript layer has to extend RCTBridgeModule, as it contains
functionality for registering our class onto the React Native bridge. We register our class
with the RCT_EXPORT_MODULE method call, which registers methods on the module once
the module has been registered. Registering the module along with its respective methods
and properties is what allows us to interface with the native layer from the JavaScript layer.

The greetUser method is executed when the button is pressed. This function in turn
makes a call to HelloManager.greetUser, passing the userName and isAdmin properties
from state and the displayResults function as a callback. displayResults sets the
new greetingMessage on state, causing the UI to be refreshed and the message to be
displayed.

See also
An explanation of how React Native applications boot up: https:/ ​/​levelup.
gitconnected. ​com/ ​wait- ​what- ​happens- ​when- ​my- ​react- ​native- ​application-
starts-​an- ​in- ​depth- ​look- ​inside- ​react- ​native- ​5f306ef3250f

A deep dive into how React Native events actually work: https:/ ​/ ​levelup.
gitconnected. ​com/ ​react- ​native- ​events- ​in-​gory- ​details- ​what- ​happens- ​on-
the-​way- ​to- ​listeners- ​2cee6c55940c

Rendering custom iOS view components
While it's very important to leverage the devices processing power in executing code on the
native layer in our React Native application, it's equally important to leverage its rendering
power to show native UI components. React Native can render any UI component that's an
implementation of UIView inside an application. These components can be lists, form
fields, tables, graphics, and so on.

https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/wait-what-happens-when-my-react-native-application-starts-an-in-depth-look-inside-react-native-5f306ef3250f
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c
https://levelup.gitconnected.com/react-native-events-in-gory-details-what-happens-on-the-way-to-listeners-2cee6c55940c

Adding Native Functionality - Part I Chapter 11

[386]

For this recipe, we'll create a React Native application titled NativeUIComponent.

In this recipe, we'll take a native UIButton and expose it as a React Native view
component. You'll be able to set the button label and attach a handler for when it's pressed.

How to do it...
Let's start by opening the iOS project in Xcode. The project file is located in the1.
ios/ directory of the project and should be
called NativeUIComponent.xcodeproj.
Select and right-click on the group that matches your project name and click on2.
New File...:

Adding Native Functionality - Part I Chapter 11

[387]

We'll be making a Cocoa class, so select Cocoa Class and click Next.3.
We'll be creating a button, so let's name the Class Button and set the Subclass4.
of to UIView and the Language as Objective-C:

After clicking Next, we'll be prompted to choose the directory for the new class.5.
We want to save it to the NativeUIComponent directory to create the class.

We're also going to need a ButtonViewManager class as well. You can repeat6.
steps 2 to 5 with ButtonViewManager as the class name and RCTViewManager
as the subclass.
First, we're going to implement our Button UI class. In the header (Button.h)7.
file, we'll import RCTComponent.h from React and add an onTap property to
wire up our tap event:

#import <UIKit/UIKit.h>
#import "React/RCTComponent.h"

@interface Button : UIView

@property (nonatomic, copy) RCTBubblingEventBlock onTap;

@end

Adding Native Functionality - Part I Chapter 11

[388]

Let's work on the implementation file (Button.m). We'll start by creating8.
references for our UIButton instance and the string that will hold the button
label:

#import "Button.h"
#import "React/UIView+React.h"

@implementation Button {
 UIButton *_button;
 NSString *_buttonText;
}

// Defined in following steps

The bridge will look for a setter for the buttonText property. This is where we'll9.
set the UIButton instance title field:

-(void) setButtonText:(NSString *)buttonText {
 NSLog(@"Set text %@", buttonText);
 _buttonText = buttonText;
 if(_button) {
 [_button setTitle:
 buttonText forState:UIControlStateNormal];
 [_button sizeToFit];
 }
}

Our Button will accept an onTap event handler from the React Native app. We10.
need to wire this to our UIButton instance through an action selector:

- (IBAction)onButtonTap:(id)sender {
 self.onTap(@{});
}

We need to instantiate the UIButton and place it inside a React Subview. We'll11.
call this method layoutSubviews:

-(void) layoutSubviews {
 [super layoutSubviews];
 if(_button == nil) {
 _button =
 [UIButton buttonWithType:UIButtonTypeRoundedRect];
 [_button addTarget:self action:@selector(onButtonTap:)
 forControlEvents:UIControlEventTouchUpInside];
 [_button setTitle:
 _buttonText forState:UIControlStateNormal];
 [_button sizeToFit];

Adding Native Functionality - Part I Chapter 11

[389]

 [self insertSubview:_button atIndex:0];
 }
}

Let's import the React RCTViewManager in the ButtonViewManager.h header12.
file:

#import "React/RCTViewManager.h"

@interface ButtonViewManager : RCTViewManager

@end

Now we need to implement our ButtonViewManager, which will interface with13.
our React Native application. Let's work on the implementation file
(ButtonViewManager.m) to make this happen. We use
RCT_EXPORT_VIEW_PROPERTY to pass along the buttonText property
and onTap method to the React Native layer:

#import "ButtonViewManager.h"
#import "Button.h"
#import "React/UIView+React.h"

@implementation ButtonViewManager
RCT_EXPORT_MODULE()

- (UIView *)view {
 Button *button = [[Button alloc] init];
 return button;
}

RCT_EXPORT_VIEW_PROPERTY(buttonText, NSString);
RCT_EXPORT_VIEW_PROPERTY(onTap, RCTBubblingEventBlock);

@end

We are ready to switch over to the React Native layer. We're going to need a14.
custom Button component, so let's create a new components folder in the root
of the project with a new Button.js file inside of it. We'll also need to import
the requireNativeComponent component from React Native for interfacing
with our native UI component:

import React, { Component } from 'react';
import {
 StyleSheet,
 Text,

Adding Native Functionality - Part I Chapter 11

[390]

 View
} from 'react-native';
import Button from './components/Button';

The Button component will grab the native Button module we created earlier15.
via the requireNativeComponent React Native helper. The call takes a string to
be used as the component's name in the React Native layer as the first parameter,
and the second takes the Button component in the file, effectively wiring the two
together:

export default class Button extends Component {
 render() {
 return <ButtonView {...this.properties} />;
 }
}

const ButtonView = requireNativeComponent('ButtonView', Button);

We're ready to build out the main App component in the App.js file in the root16.
of the project. We'll start with the imports, which will include the Button
component we created in the last two steps:

import React, { Component } from 'react';
import {
 StyleSheet,
 Text,
 View
} from 'react-native';
import Button from './components/Button';

Let's define the App component and the initial state object. The count property17.
will keep track of the number of times the Button component has been pressed:

export default class App extends Component {
 state = {
 count: 0
 }
 // Defined on following steps
}

Adding Native Functionality - Part I Chapter 11

[391]

We're ready to define the render method, which will just consist of the Button18.
component, along with a Text element for displaying the current button press
count:

 render() {
 return (
 <View style={styles.container}>
 <Button buttonText="Click Me!"
 onTap={this.handleButtonTap}
 style={styles.button}
 />
 <Text>Button Pressed Count: {this.state.count}</Text>
 </View>
);
 }

You may recall that the Button component we created has an onTap property,19.
which takes a callback function. In this case we'll just use this function to increase
the counter that lives on state:

 handleButtonTap = () => {
 this.setState({
 count: this.state.count + 1
 });
 }

Let's wrap up this recipe with a few basic styles:20.

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 button: {
 height: 40,
 width: 80
 }
});

Adding Native Functionality - Part I Chapter 11

[392]

The app is complete! When the button is pressed, the function passed21.
to onTap will be executed, increasing the counter by one:

Adding Native Functionality - Part I Chapter 11

[393]

How it works...
In this recipe, we exposed a basic native UI component. This is the same method by which
all of the UI components built into React Native (for example, Slider, Picker,
and ListView) were created.

The most important requirement in creating UI components is that your
ViewManager extends RCTViewManager and returns an instance of
UIView. In our case, we're wrapping UIButton with a React-specific
UIView extension, which improves our ability to layout and style the
component.

The next important factor is sending properties and reacting to component events. In step
13, we used the RCT_EXPORT_VIEW_PROPERTY method provided by React Native to
register the buttonText and onTap view properties that will come from the JavaScript
layer to the Button component. That Button component is then created and returned to be
used in the JavaScript layer:

- (UIView *)view {
 Button *button = [[Button alloc] init];
 return button;
}

Exposing custom Android modules
Often, you'll find the need for React Native applications to interface with native iOS and
Android code. Having discussed integrating native iOS modules, now it's time to cover the
equivalent recipes in Android.

This recipe will take us through writing our first Android native module. We're going to
create a HelloManager native module with a greetUser method that takes name and
an isAdmin Boolean as arguments, which will return a greeting message that we'll display
in the UI.

Getting ready
For this recipe, we'll need to create another pure React Native app. Let's name this
project NativeModuleApp as well.

Adding Native Functionality - Part I Chapter 11

[394]

We'll also be making use of the react-native-button library again, which can be
installed with npm:

npm install react-native-button --save

Alternatively, it can be installed using yarn:

yarn add react-native-button

How to do it...
We'll start by opening the new project's Android code in Android Studio. From1.
the Android Studio welcome screen, you can select Open an existing Android
Studio project, then select the android directory inside of the project folder.
Once the project has loaded, let's open the project explorer (that is, the directory2.
tree) on the left side of Android Studio and expand the package structure to find
the Java source files, which should live in app/java/com.nativemoduleapp.
The folder should already have two .java files in it, MainActivity
and MainApplication:

Right-click on the com.nativemoduleapp package, select New | Java Class, and3.
name the class HelloManager. Also, be sure to set the Kind field to Class:

Adding Native Functionality - Part I Chapter 11

[395]

We'll also need a HelloPackage class in the same directory. You can repeat4.
steps 2 and 3 to create this class, simply applying the new name and keeping the
Kind field set to Class.
Let's start by implementing our HelloManager native module. We'll start with5.
the package name and the dependencies we'll need in this file:

package com.nativemoduleapp;

import com.facebook.react.bridge.Callback;
import com.facebook.react.bridge.ReactApplicationContext;
import com.facebook.react.bridge.ReactContextBaseJavaModule;
import com.facebook.react.bridge.ReactMethod;

ReactContextBaseJavaModule is the base class for all React Native modules,6.
so we'll be creating the HelloManager class as a subclass of it. We also need to
define a getName method, which is used for registering native modules with the
React Native bridge. This is one difference from the iOS native module
implementations, as those are defined via class name:

public class HelloManager extends ReactContextBaseJavaModule {
 public HelloManager(ReactApplicationContext reactContext) {
 super(reactContext);
 }

Adding Native Functionality - Part I Chapter 11

[396]

 @Override
 public String getName() {
 return "HelloManager";
 }
}

Now that we've set up our HelloManager native module, it's time to add the7.
greetUser method to it, which will expect as arguments name, isAdmin, and
the callback that will be executed to send the message to the React Native layer:

public class HelloManager extends ReactContextBaseJavaModule {
 // Defined in previous steps

 @ReactMethod
 public void greetUser(String name, Boolean isAdmin, Callback
callback) {
 System.out.println("User Name: " + name + ", Administrator: " +
(isAdmin ? "Yes" : "No"));
 String greeting = "Welcome " + name + ", you " + (isAdmin ?
"are" : "are not") + " an administrator";

 callback.invoke(greeting);
 }
}

Another step that's unique to Android is having to register the native module8.
with the application, which is a two-step process. The first step is to add our
HelloManager module to the HelloPackage class we created earlier. We'll start
with the dependencies for HelloPackage.java:

package com.nativemoduleapp;

import com.facebook.react.ReactPackage;
import com.facebook.react.bridge.NativeModule;
import com.facebook.react.bridge.ReactApplicationContext;
import com.facebook.react.uimanager.ViewManager;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

Adding Native Functionality - Part I Chapter 11

[397]

The implementation of HelloPackage simply follows the pattern provided by9.
the official documentation (https:/ ​/​facebook. ​github. ​io/ ​react- ​native/ ​docs/
native-​modules- ​android. ​html). The most important piece here is the call
to modules.add, where a new instance of HelloManager is passed in
with reactContext as its parameter:

public class HelloPackage implements ReactPackage {

 @Override
 public List<ViewManager>
createViewManagers(ReactApplicationContext reactContext) {
 return Collections.emptyList();
 }

 @Override
 public List<NativeModule>
createNativeModules(ReactApplicationContext reactContext) {
 List<NativeModule> modules = new ArrayList<>();
 modules.add(new HelloManager(reactContext));

 return modules;
 }
}

The second step in registering the native module with the React Native app is to10.
add HelloPackage to the MainApplication module. Most of the code here is
generated by the React Native bootstrapping process. The getPackages method
needs to be updated to take both new MainReactPackage() and new
HelloPackage() as arguments passed to Arrays.asList:

package com.nativemoduleapp;

import android.app.Application;

import com.facebook.react.ReactApplication;
import com.facebook.react.ReactNativeHost;
import com.facebook.react.ReactPackage;
import com.facebook.react.shell.MainReactPackage;
import com.facebook.soloader.SoLoader;

import java.util.Arrays;
import java.util.List;

public class MainApplication extends Application implements
ReactApplication {

https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html
https://facebook.github.io/react-native/docs/native-modules-android.html

Adding Native Functionality - Part I Chapter 11

[398]

 private final ReactNativeHost mReactNativeHost = new
ReactNativeHost(this) {
 @Override
 public boolean getUseDeveloperSupport() {
 return BuildConfig.DEBUG;
 }

 @Override
 protected List<ReactPackage> getPackages() {
 return Arrays.asList(
 new MainReactPackage(),
 new HelloPackage()
);
 }

 @Override
 protected String getJSMainModuleName() {
 return "index";
 }
 };

 @Override
 public ReactNativeHost getReactNativeHost() {
 return mReactNativeHost;
 }

 @Override
 public void onCreate() {
 super.onCreate();
 SoLoader.init(this, /* native exopackage */ false);
 }
}

We're all done on the Java portion of this recipe. We need to build our UI, which11.
will invoke the native HelloManager greetUser method and display its
output. In this example, we'll be using TextInput and Switch to provide name
and the isAdmin value for the native module method. This is the same
functionality as we implemented on iOS in the Exposing custom iOS modules
recipe. Let's get to building out App.js, starting with the dependencies we'll
need:

import React, { Component } from 'react';
import {
 StyleSheet,
 Text,
 View,
 NativeModules,

Adding Native Functionality - Part I Chapter 11

[399]

 TextInput,
 Switch,
 DeviceEventEmitter
} from 'react-native';
import Button from 'react-native-button';

We need to make a reference to the HelloManager object that lives on the12.
imported NativeModules component:

const { HelloManager } = NativeModules;

Let's create the App class and the initial state:13.

export default class App extends Component {
 state = {
 userName: null,
 greetingMessage: null,
 isAdmin: false
 }
}

We're ready to define the component's render function. This piece of code will14.
not be described in great detail, as it's basically the same render function
defined in the Exposing custom iOS modules recipe at the beginning of this chapter:

 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.label}>
 Enter User Name
 </Text>
 <TextInput
 ref="userName"
 autoCorrect={false}
 style={styles.inputField}
 placeholder="User Name"
 onChangeText={(text) => this.setState({ userName: text })
 }
 />
 <Text style={styles.label}>
 Admin
 </Text>
 <Switch
 style={styles.radio}
 onValueChange={
 value => this.setState({ isAdmin: value })
 }
 value={this.state.isAdmin}

Adding Native Functionality - Part I Chapter 11

[400]

 />
 <Button
 disabled={!this.state.userName}
 style={[
 styles.buttonStyle,
 !this.state.userName ? styles.disabled : null
]}
 onPress={this.greetUser}
 >
 Greet
 </Button>
 <Text style={styles.label}>
 Response:
 </Text>
 <Text style={styles.message}>
 {this.state.greetingMessage}
 </Text>
 </View>
);
 }

With the UI rendering the necessary components, we now need to wire up15.
the onPress handler of Button to make the native call
via HelloManager.greetUser:

 updateGreetingMessage = (result) => {
 this.setState({
 greetingMessage: result
 });
 }

 greetUser = () => {
 this.refs.userName.blur();
 HelloManager.greetUser(
 this.state.userName,
 this.state.isAdmin,
 this.updateGreetingMessage
);
 }

Adding Native Functionality - Part I Chapter 11

[401]

We'll add styles to layout and style the app. Again, these are the same styles as16.
used in the Exposing custom iOS modules recipe at the beginning of this chapter:

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 inputField:{
 padding: 20,
 fontSize: 30,
 width: 200
 },
 label: {
 fontSize: 18,
 marginTop: 18,
 textAlign: 'center',
 },
 radio: {
 marginBottom: 20
 },
 buttonStyle: {
 padding: 20,
 backgroundColor: '#1DA1F2',
 color: '#fff',
 fontSize: 18
 },
 message: {
 fontSize: 22,
 marginLeft: 50,
 marginRight: 50,
 },
 disabled: {
 backgroundColor: '#3C3C3C'
 }
});

Adding Native Functionality - Part I Chapter 11

[402]

The final app should look similar to the following screenshot:17.

Adding Native Functionality - Part I Chapter 11

[403]

How it works...
This recipe covers the foundation for much of what we'll be doing with adding native
Android modules in future recipes. All native module classes need to extend
ReactContextBaseJavaModule, implement the constructor, and define the getName
method. All methods that should be exposed to the React Native layer need to have the
@ReactMethod annotation. Creating a React Native Android native module has more
overhead as compared with iOS, since you have to also wrap your module in a class that
implements ReactPackage (in this recipe, that's the HelloPackage module), and register
the package with the React Native project. This is done in steps 7 and 8.

In the JavaScript portion of the recipe, the greetUser function is executed when the user
presses the Button component. This, in turn, makes a call to HelloManager.greetUser,
passing along the userName and isAdmin properties from state and the
updateGreetingMessage method as a callback. The updateGreetingMessage sets the
new greetingMessage on state, causing a refresh of the UI and the message to be
displayed.

Rendering custom Android view
components
One reason React Native has gained so much popularity so far is its ability to render truly
native UI components. With native UI components on Android, we're able to leverage not
only the GPU rendering power, but we also get the native look and feel of native
components, including native fonts, colors, and animations. Web and hybrid applications
on Android use CSS polyfills to simulate a native animation but, in React Native, we can
get the real thing.

We'll need a new pure React Native app for this recipe. Let's name it NativeUIComponent.
In this recipe, we'll take a native Button and expose it as a React Native view component.

How to do it...
Let's start by opening the Android project in Android Studio. In the Android1.
Studio welcome screen, select Open an existing Android Studio project and
open the android directory of the project.

Adding Native Functionality - Part I Chapter 11

[404]

Open the project explorer and expand the package structure until you can see the2.
Java source files (for example, app/java/com.nativeuicomponent):

Right-click on the package and select New | Java Class. Use3.
ButtonViewManager for the class name and set the Kind field to Class.
Use the same method to also create a ButtonPackage class.4.
 Let's begin implementing our ButtonViewManager class, which must be a5.
subclass of SimpleViewManager<View>. We'll start with the imports and define
the class itself:

package com.nativeuicomponent;

import android.view.View;
import android.widget.Button;

import com.facebook.react.bridge.Arguments;
import com.facebook.react.bridge.ReactContext;
import com.facebook.react.bridge.WritableMap;
import com.facebook.react.uimanager.SimpleViewManager;
import com.facebook.react.uimanager.ThemedReactContext;
import com.facebook.react.uimanager.annotations.ReactProp;
import com.facebook.react.uimanager.events.RCTEventEmitter;

public class ButtonViewManager extends SimpleViewManager<Button>

Adding Native Functionality - Part I Chapter 11

[405]

implements View.OnClickListener {
 // Defined on following steps
}

The file class name ButtonViewManager follows the Android naming
convention of adding the suffix ViewManager to any View component.

Let's start the class definition with the getName method that returns the string6.
name we're assigning the component, which in this case is ButtonView:

public class ButtonViewManager extends SimpleViewManager<Button>
implements View.OnClickListener{
 @Override
 public String getName() {
 return "ButtonView";
 }

 // Defined on following steps.
}

The createViewInstance method is required for defining how React should7.
initialize the module:

 @Override
 protected Button createViewInstance(ThemedReactContext
reactContext) {
 Button button = new Button(reactContext);
 button.setOnClickListener(this);
 return button;
 }

setButtonText will be used from the properties on the React Native element to8.
set the text on the button:

 @ReactProp(name = "buttonText")
 public void setButtonText(Button button, String buttonText) {
 button.setText(buttonText);
 }

The onClick method defines what will happen when the button is pressed. This9.
method uses RCTEventEmitter to handle receiving events from the React
Native layer:

 @Override
 public void onClick(View v) {

Adding Native Functionality - Part I Chapter 11

[406]

 WritableMap map = Arguments.createMap();
 ReactContext reactContext = (ReactContext) v.getContext();
reactContext.getJSModule(RCTEventEmitter.class).receiveEvent(v.getI
d(), "topChange", map);
 }

Just like in the last recipe, we need to add ButtonViewManager to10.
ButtonPackage; however, this time, we're defining it as ViewManager and not
NativeModule:

package com.nativeuicomponent;

import com.facebook.react.ReactPackage;
import com.facebook.react.bridge.NativeModule;
import com.facebook.react.bridge.ReactApplicationContext;
import com.facebook.react.uimanager.ViewManager;

import java.util.Arrays;
import java.util.Collections;
import java.util.List;

public class ButtonPackage implements ReactPackage {
 @Override
 public List<ViewManager>
createViewManagers(ReactApplicationContext reactContext) {
 return Arrays.<ViewManager>asList(new ButtonViewManager());
 }

 @Override
 public List<NativeModule>
createNativeModules(ReactApplicationContext reactContext) {
 return Collections.emptyList();
 }
}

The last step in the Java layer is adding ButtonPackage11.
to MainApplication. MainApplication.java already has quite a bit of
boilerplate code in it, and we'll only need to change the getPackages method:

 @Override
 protected List<ReactPackage> getPackages() {
 return Arrays.<ReactPackage>asList(
 new MainReactPackage(),
 new ButtonPackage()
);
 }

Adding Native Functionality - Part I Chapter 11

[407]

Switching over to the JavaScript layer, let's build out our React Native app. First,12.
let's create a new Button component in components/Button.js in the project's
root directory. This is where the native button will live inside the React Native
layer of the app. The render method uses the native button as ButtonView,
which we'll define in the next step:

import React, { Component } from 'react';
import { requireNativeComponent, View } from 'react-native';

export default class Button extends Component {
 onChange = (event) => {
 if (this.properties.onTap) {
 this.properties.onTap(event.nativeEvent.message);
 }
 }

 render() {
 return(
 <ButtonView
 {...this.properties}
 onChange={this.onChange}
 />
);
 }
}

We can create the native button as a React Native component with13.
the requireNativeComponent helper, which takes three parameters: the string
ButtonView to define the components name, the Button component defined in
the previous step, and the options object. There's more information on this object
in the How it works... section at the end of this recipe:

const ButtonView = requireNativeComponent(
 'ButtonView',
 Button, {
 nativeOnly: {
 onChange: true
 }
 }
);

We're ready to define the App class. Let's start with dependencies, including the14.
Button component created previously:

import React, { Component } from 'react';
import {

Adding Native Functionality - Part I Chapter 11

[408]

 StyleSheet,
 Text,
 View
} from 'react-native';

import Button from './components/Button';

The App component in this recipe is essentially the same as the Rendering custom15.
iOS view components recipe earlier in this chapter. The custom onTap property is
fired when the Button component is pressed, adding 1 to the count property
on state:

export default class App extends Component {
 state = {
 count: 0
 }

 onButtonTap = () => {
 this.setState({
 count : this.state.count + 1
 });
 }

 render() {
 return (
 <View style={styles.container}>
 <Button buttonText="Press Me!"
 onTap={this.onButtonTap}
 style={styles.button}
 />
 <Text>
 Button Pressed Count: {this.state.count}
 </Text>
 </View>
);
 }
}

Let's add a few styles to layout and size the app's UI:16.

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 button: {

Adding Native Functionality - Part I Chapter 11

[409]

 height: 40,
 width: 150
 }
});

The final app should look similar to the following screenshot:17.

Adding Native Functionality - Part I Chapter 11

[410]

How it works...
When defining a native view, as we did with the ButtonViewManager class, it must extend
SimpleViewManager and render a type that extends View. In our recipe, we rendered a
Button view, and we used the @ReactProp annotation for defining properties. When we
need to communicate back to the JavaScript layer, we fire an event from the native
component, which we implemented in step 9 of this recipe.

In step 12, we created an onChange listener, which will execute the event handler passed in
from the Android layer (event.nativeEvent.message).

Regarding the use of the nativeOnly option on step 13, from the React Native documents:

Sometimes you'll have some special properties that you need to expose for
the native component, but don't actually want them as part of the API for
the associated React component. For example, Switch has a custom
onChange handler for the raw native event, and exposes an
onValueChange handler property that is invoked with just the Boolean
value, rather than the raw event. Since you don't want these native only
properties to be part of the API, you don't want to put them in
propTypes, but if you don't, you'll get an error. The solution is simply to
call them out via the nativeOnly option.

12
Adding Native Functionality -

Part II
In this chapter, we will cover the following recipes:

Reacting to changes in application state
Copying and pasting content
Authenticating via touch ID or fingerprint sensor
Hiding application content when multitasking
Background processing on iOS
Background processing on Android
Playing audio files on iOS
Playing audio files on Android

Introduction
In this chapter, we will continue with more recipes that touch on different aspects of
writing React Native apps that interact with native iOS and Android code. We will cover
example apps that leverage built-in and community created modules. The recipes cover a
range of topics, from rendering a basic button to creating a multithreaded process that does
not block the main application thread.

Adding Native Functionality - Part II Chapter 12

[412]

Reacting to changes in application state
The average mobile device user has several apps that they use on a regular basis. Ideally,
along with the other social media apps, games, media players, and more, users will also be
using your React Native app. Any specific user may spend a short time in each application
because he or she multitasks. What if we wanted to react to when the user leaves our app
and re-enters? We could use this as a chance to sync data with the server, or to tell the user
that we're happy to see them return, or to politely ask for a rating on the app store.

This recipe will cover the basics of reacting to changes in the state of the application, which
is to say reacting to when the app is in the foreground (active), background, or inactive.

For this recipe, let's create a new pure React Native app titled AppStateApp.

How to do it...
Fortunately, React Native provides support for listening to changes to the state of1.
the app through the AppState module. Let's begin building out the app by
adding dependencies to the App.js file, as follows:

import React, { Component } from 'react';
import {
 AppState,
 StyleSheet,
 Text,
 View
} from 'react-native';

Adding Native Functionality - Part II Chapter 12

[413]

In the recipe, we're going to keep track of the previous state to see where the user2.
came from. If it's their first time entering the app, we will welcome them, and if
they're returning, we will welcome them back instead. To do so, we need to keep
a reference to the previous and current app states. We'll use instance
variables previousAppState and currentAppStates instead of using state for
this purpose, simply to avoid potential naming confusion. We'll use state to
hold the status message to the user, as follows:

export default class App extends Component {
 previousAppState = null;
 currentAppState = 'active';
 state = {
 statusMessage: 'Welcome!'
 }
 // Defined on following steps
}

When the component mounts, we'll use the AppState component to add an3.
event listener to the change event. Whenever the app's state changes (for
example, when the app is backgrounded), the change event will be fired,
whereupon we'll fire our handleAppStateChange handler, defined in the next
step, as follows:

 componentWillMount() {
 AppState.addEventListener('change', this.handleAppStateChange);
 }

The handleAppStateChange method will receive the appState as a parameter,4.
which we can expect to be one of three strings: inactive if the app is unloaded
from memory, background if the app is in memory and backgrounded,
and active if the app is foregrounded. We'll use a switch statement to update
the statusMessage on state accordingly:

 handleAppStateChange = (appState) => {
 let statusMessage;

 this.previousAppState = this.currentAppState;
 this.currentAppState = appState;
 switch(appState) {
 case 'inactive':
 statusMessage = "Good Bye.";
 break;
 case 'background':
 statusMessage = "App Is Hidden...";
 break;

Adding Native Functionality - Part II Chapter 12

[414]

 case 'active':
 statusMessage = 'Welcome Back!'
 break;
 }
 this.setState({ statusMessage });
 }

The render method is very basic in this recipe, since it only needs to display the5.
status message to the user, as follows:

 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.welcome}>
 {this.state.statusMessage}
 </Text>
 </View>
);
 }

The styles for this app are basic, adding font size, color, and margin, as follows:6.

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#fff',
 },
 welcome: {
 fontSize: 40,
 textAlign: 'center',
 margin: 10,
 },
 instructions: {
 textAlign: 'center',
 color: '#333333',
 marginBottom: 5,
 },
});

The completed app should now display the appropriate status message7.
depending on the state of the app on a given device.

Adding Native Functionality - Part II Chapter 12

[415]

How it works...
In this recipe, we made use of the built-in AppState module. The module listens to
the Activity events on Android, and on iOS it uses NSNotificationCenter to register a
listener on various UIApplication events. Note that both platforms support
the active and background states; however, the inactive state is an iOS only concept.
Android does not explicitly support the inactive state due to its multitasking
implementation, so only toggles apps between background and active states. To achieve
the equivalent of the iOS inactive state on Android, see the Hiding application content when
multitasking recipe later in this chapter.

Copying and pasting content
One of the most used features in both desktop and mobile operating systems is the
clipboard for copying and pasting content. A common scenario on mobile is filling forms
with lengthy text, such as long email addresses or passwords. Instead of typing it with a
few typos, it would be easier to just open your contacts application and copy the email from
there and paste it into your TextInput field.

This recipe will show a basic example on both Android and iOS of how we can copy and
paste text inside our React Native application. In our sample app, we will have both a
static Text view and a TextInput field that you can use to copy its contents to the
clipboard. Also, there will be a button that outputs the contents of the clipboard to the
view.

Getting ready
For this recipe, we'll create a pure React Native application titled CopyPasteApp.

In this recipe, we will be using react-native-button again. Install it with npm:

npm install react-native-button

Alternatively, we can use yarn:

yarn add react-native-button

Adding Native Functionality - Part II Chapter 12

[416]

How to do it...
Let's start off by creating a ClipboardText component that both uses1.
a Text component to display text and provides the ability to copy its contents to
the clipboard via long press. Let's create a component folder in the root of the
project, and a ClipboardText.js file inside of it. We'll start by importing
dependencies, as follows:

import React, { Component } from 'react';
import {
 StyleSheet,
 Text,
 View,
 Clipboard,
 TextInput
} from 'react-native';
import Button from 'react-native-button';

Next we'll define the App class and the initial state. We will use2.
the clipboardContent property on state for storing text being pasted from
the clipboard into the UI, as follows:

export default class App extends Component {
 state = {
 clipboardContent: null
 }
 // Defined in following steps
}

The UI will have one Text component whose text will by copyable via long3.
press. Let's define the copyToClipboard method. We'll grab the input via
its ref (which we'll define later), and access the component's text via
its props.children property. Once the text has been stored in a local variable,
we simply pass it to the setString method of Clipboard to copy the text to the
clipboard, as follows:

 copyToClipboard = () => {
 const sourceText = this.refs.sourceText.props.children;
 Clipboard.setString(sourceText);
 }

Adding Native Functionality - Part II Chapter 12

[417]

Similarly, we'll also need a method that will paste text into the app's UI from the4.
clipboard. This method will use the getString method of Clipboard, and save
the returned string to the clipboardContent property of state, re-rendering
the app's UI to reflect the pasted text, as follows:

 getClipboardContent = async () => {
 const clipboardContent = await Clipboard.getString();
 this.setState({
 clipboardContent
 });
 }

The render method will be made up of two sections: the first is made of things5.
to copy, and the second is a way for pasting text from the clipboard into the UI.
Let's start with the first section, which consists of a Text input
whose onLongPress prop is wired to the copyToClipboard method we created
in step 3, and a text input for normal native copy/pasting:

 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.instructions}>
 Tap and Hold the next line to copy it to the Clipboard:
 </Text>
 <Text
 ref="sourceText"
 onLongPress={this.copyToClipboard}
 >
 React Native Cookbook
 </Text>
 <Text style={styles.instructions}>
 Input some text into the TextInput below and Cut/Copy as
 you normally would:
 </Text>
 <TextInput style={styles.textInput} />

 // Defined on next step
 </View>
);
 }

Adding Native Functionality - Part II Chapter 12

[418]

The second portion of the UI consists of a Text component for displaying the6.
current value saved in clipboardContent on state, and a button that will
paste from the clipboard using the getClipboardContent method we defined
in step 4:

 render() {
 return (
 <View style={styles.container}>
 // Defined in previous step
 <View style={styles.row}>
 <Text style={styles.rowText}>
 Clipboard Contents:
 </Text>
 </View>
 <View style={styles.row}>
 <Text style={styles.content}>
 {this.state.clipboardContent}
 </Text>
 </View>
 <Button
 containerStyle={styles.buttonContainer}
 style={styles.buttonStyle}
 onPress={this.getClipboardContent}
 >
 Paste Clipboard
 </Button>
 </View>
);
 }

Adding Native Functionality - Part II Chapter 12

[419]

The final app should look similar to the following screenshot:

How it works...
In this recipe, we built a simple copy and paste application by using the Clipboard API
provided by React Native. The Clipboard module currently only supports content of
type String, even though the devices can copy more complicated data. This module makes
using the clipboard as easy as calling the methods setString and getString.

Adding Native Functionality - Part II Chapter 12

[420]

Authenticating via touch ID or fingerprint
sensor
Security is a paramount concern in software, especially when there is any sort of
authentication. Breaches and leaked passwords have become a part of the daily news cycle,
and companies of all sizes are wising up to the need for implementing added security
measures in their apps. One such measure in mobile devices is biometric authentication,
which uses fingerprint scanning or face recognition technology to provide supplementary
identification methods.

This recipe covers how to add fingerprint scanning and face recognition security. Thanks to
the react-native-touch-id library, this process has been simplified and streamlined in
React Native app development.

Getting ready
For this recipe we'll need a new pure React Native app. Let's call it BiometricAuth.

We'll be using the react-native-button and react-native-touch-id libraries. Install
them with npm:

npm install react-native-button react-native-touch-id --save

Alternatively, we can use yarn:

yarn add react-native-button react-native-touch-id

Once installed, react-native-touch-id will need to be linked, so be sure to follow up
with:

react-native link

Permissions will also need to be adjusted manually. For Android permissions, locate
the AndroidManifest.xml file in the project, which should be at
BiometricAuth/android/app/src/main/AndroidManifest.xml. Along with the other
permissions in this file, you'll need to add the following:

<uses-permission android:name="android.permission.USE_FINGERPRINT" />

Adding Native Functionality - Part II Chapter 12

[421]

For iOS permissions, you'll need to update the Info.plist file in a text editor. The
Info.plist can be found at BiometricAuth/ios/BiometricAuth/Info.plist. Along
with all the other entries, add the following:

<key>NSFaceIDUsageDescription</key>
<string>Enabling Face ID allows you quick and secure access to your
account.</string>

How to do it...
Let's start by adding dependencies to the App.js file, as follows:1.

import React, { Component } from 'react';
import {
 StyleSheet,
 Text,
 View
} from 'react-native';
import Button from 'react-native-button';
import TouchID from 'react-native-touch-id';

Next we'll define that App class and the initial state. We'll keep track of the2.
authentication status on the authStatus property of state, as follows:

export default class App extends Component {
 state = {
 authStatus: null
 }
 // Defined in following steps
}

Let's define the authenticate method, which will be fired on button press, and3.
will initiate authentication on the device. We can initiate authentication by
executing the TouchID component's authenticate method. This method's first
parameter is an optional string explaining the reason for the request, as follows:

 authenticate = () => {
 TouchID.authenticate('Access secret information!')
 .then(this.handleAuthSuccess)
 .catch(this.handleAuthFailure);
 }

Adding Native Functionality - Part II Chapter 12

[422]

This method fires the handleAuthSuccess method on success. Let's define it4.
now. This method simply updates the authStatus property of state to the
string Authenticated, as follows:

 handleAuthSuccess = () => {
 this.setState({
 authStatus : 'Authenticated'
 });
 }

Similarly, if authentication fails, the handleAuthFailure function will be called,5.
which will update the same state.authStatus to the string Not
Authenticated, as follows:

 handleAuthFailure = () => {
 this.setState({
 authStatus : 'Not Authenticated'
 });
 }

The render method will need a button to initiate the authentication request, and6.
two Text components: one for a label, and one to display the authentication
status, as follows:

 render() {
 return (
 <View style={styles.container}>
 <Button
 containerStyle={styles.buttonContainer}
 style={styles.button}
 onPress={this.authenticate}>
 Authenticate
 </Button>
 <Text style={styles.label}>Authentication Status</Text>
 <Text style={styles.welcome}>{this.state.authStatus}</Text>
 </View>
);
 }

Adding Native Functionality - Part II Chapter 12

[423]

Finally, we'll add styles to color, size, and layout the UI, as follows:7.

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#fff',
 },
 welcome: {
 fontSize: 20,
 textAlign: 'center',
 margin: 10,
 },
 label: {
 textAlign: 'center',
 color: '#333333',
 marginBottom: 5,
 },
 buttonContainer: {
 width: 150,
 padding: 10,
 margin: 5,
 height: 40,
 overflow: 'hidden',
 backgroundColor: '#FF5722'
 },
 button: {
 fontSize: 16,
 color: 'white'
 }
});

Adding Native Functionality - Part II Chapter 12

[424]

How it works...
This recipe has illustrated how simple it is to incorporate native fingerprint and facial
recognition security into a React Native app. The call to TouchID.authenticate also
takes a second, optional options object parameter with three properties: title for the title
of the confirmation dialog (Android only), color for the color of the dialog (Android only),
and a fallbackLabel for editing the default Show Password label (iOS only).

Hiding application content when
multitasking
Keeping the theme of application security going, we have to be wary sometimes of
unwanted eyes and hands touching our devices and potentially getting access to our
applications. In order to protect the user from prying eyes while looking at sensitive
information, we can mask our application when the application is hidden, but still active.
Once the user returns to the application, we would simply remove the mask and the user
can continue using the app as normal. A good use case for this would be in a banking or
password app that hides sensitive information when the app is not in the foreground.

This recipe will show you how to render an image to mask your application and remove it
once the application returns to the foreground or active state. We will cover both iOS and
Android; however, the implementation varies in its entirety. For iOS, we employ a pure
Objective-C implementation for optimal performance. For Android, we're going to have to
make some modifications to the MainActivity in order to send an event to our JavaScript
layer that the application has lost focus. We will handle the rendering of the image mask
there.

Getting ready
We're going to need an image handy to use as the mask when the app is not foregrounded.
I chose to use an iPhone wallpaper, which you can find at:

http:/​/​www.​hdiphone7wallpapers. ​com/ ​2016/ ​09/ ​white- ​squares- ​iphone- ​7-​and- ​7- ​plus-
wallpapers.​html

http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html
http://www.hdiphone7wallpapers.com/2016/09/white-squares-iphone-7-and-7-plus-wallpapers.html

Adding Native Functionality - Part II Chapter 12

[425]

The image is a sort of stylized mosaic pattern. It looks like this:

You can of course use whatever image you'd like. In this recipe, the image file will be
named hidden.jpg, so rename your image accordingly.

We'll need a new pure React Native app. Let's call it HiddenContentApp.

Adding Native Functionality - Part II Chapter 12

[426]

How to do it...
Let's begin by adding the mask image to the iOS portion of the app. We'll need to1.
open the ios folder of the project in Xcode, located in the ios/ directory of the
new React Native app.
We can add the hidden.jpg image to the project by dragging and dropping the2.
image into the Images.xcassets folder of the project in Xcode, as shown in this
screenshot:

Next we'll add a new implementation and two methods to3.
the AppDelegate.m file. The entirety of the file can be found as follows,
including generated code. The code we're adding is marked in bold for clarity.
We're extending the applicationWillResignActive method, which will fire
whenever a given app changes from being foregrounded, to add
an imageView with the hidden.jpg as its image. Similarly, we also need to
extend the opposite method, applicationDidBecomeActive, to remove the
image when the app is re-foregrounded:

#import "AppDelegate.h"

#import <React/RCTBundleURLProvider.h>
#import <React/RCTRootView.h>

@implementation AppDelegate {
 UIImageView *imageView;
}

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

Adding Native Functionality - Part II Chapter 12

[427]

{
 NSURL *jsCodeLocation;

 jsCodeLocation = [[RCTBundleURLProvider sharedSettings]
jsBundleURLForBundleRoot:@"index" fallbackResource:nil];

 RCTRootView *rootView = [[RCTRootView alloc]
initWithBundleURL:jsCodeLocation
moduleName:@"HiddenContentApp"
initialProperties:nil
launchOptions:launchOptions];
 rootView.backgroundColor = [[UIColor alloc] initWithRed:1.0f
green:1.0f blue:1.0f alpha:1];

 self.window = [[UIWindow alloc] initWithFrame:[UIScreen
mainScreen].bounds];
 UIViewController *rootViewController = [UIViewController new];
 rootViewController.view = rootView;
 self.window.rootViewController = rootViewController;
 [self.window makeKeyAndVisible];
 return YES;
}

- (void)applicationWillResignActive:(UIApplication *)application {
 imageView = [[UIImageView alloc] initWithFrame:[self.window
frame]];
 [imageView setImage:[UIImage imageNamed:@"hidden.jpg"]];
 [self.window addSubview:imageView];
}

- (void)applicationDidBecomeActive:(UIApplication *)application {
 if(imageView != nil) {
 [imageView removeFromSuperview];
 imageView = nil;
 }
}

@end

With the previous three steps, all of the work required for displaying the mask in4.
the iOS app is complete. Let's move on to the Android portion by opening the
Android portion of the project in Android Studio. In Android Studio,
select Open an existing Android Studio project and open the android directory
of the project.

Adding Native Functionality - Part II Chapter 12

[428]

The only native code we'll need to update in the Android project lives5.
in MainActivity.java, located here:

We'll need to add one method, as well as the three imports from React that the method
uses. Again, the complete MainActivity.java file is below, with added code marked in
bold. We're defining an onWindowFocusChanged method that extends the base method's
functionality. The base onWindowFocusChanged Android method is fired whenever a
given app's focus has changed, passing with it a hasFocus Boolean representing whether
the app has focus or not. Our extension will effectively pass that hasFocus Boolean from
the parent method down to the React Native layer via an event we're
naming focusChange, as follows:

package com.hiddencontentapp;

import com.facebook.react.ReactActivity;
import com.facebook.react.bridge.Arguments;
import com.facebook.react.bridge.WritableMap;
import com.facebook.react.modules.core.DeviceEventManagerModule;

public class MainActivity extends ReactActivity {

 /**
 * Returns the name of the main component registered from JavaScript.
 * This is used to schedule rendering of the component.
 */
 @Override
 protected String getMainComponentName() {
 return "HiddenContentApp";
 }

 @Override
 public void onWindowFocusChanged(boolean hasFocus) {
 super.onWindowFocusChanged(hasFocus);
 if
(getReactNativeHost().getReactInstanceManager().getCurrentReactContext(

Adding Native Functionality - Part II Chapter 12

[429]

) != null) {
 WritableMap params = Arguments.createMap();
 params.putBoolean("appHasFocus", hasFocus);

 getReactNativeHost().getReactInstanceManager()
 .getCurrentReactContext()
.getJSModule(DeviceEventManagerModule.RCTDeviceEventEmitter.class)
 .emit("focusChange", params);
 }
 }
}

To use the hidden.jpg mask image in Android, we'll need to also add it to the 6.
React Native project. Let's create a new assets folder in the root of the React
Native project, and add the hidden.jpg image file to the new folder.
With the native pieces in place, we're ready to turn to the JavaScript portion of7.
the app. Let's add the imports we'll be using to App.js, as follows:

import React, {Component} from 'react';
import {
 StyleSheet,
 Text,
 View,
 DeviceEventEmitter,
 Image
} from 'react-native';

Next, let's create the App class and the initial state. The state will only need8.
a showMask Boolean, which will dictate if the mask should be displayed, as
follows:

export default class App extends Component {
 state = {
 showMask: null
 }
 // Defined in following steps
}

Adding Native Functionality - Part II Chapter 12

[430]

When the component mounts, we want to register an event listener to listen to9.
events emitted from the native Android layer using
the DeviceEventEmitter's addListener method, passing the
string focusChange as the name of the event to listen for as the first parameter,
and a callback to execute as the second parameter. As you may
recall, focusChange is the name we assigned the event
in MainActivity.java in the onWindowFocusChange method in step 5.
Register the event listener as follows:

 componentWillMount() {
 this.subscription = DeviceEventEmitter.addListener(
 'focusChange',
 this.onFocusChange
);
 }

In this step we will save the event listener to the class member10.
this.subscription. This will allow for the event listener to be cleaned up once
the component is unmounted. We achieve this by simply calling the remove
method on this.subscription when the component unmounts, via the
componentWillUnmount life cycle hook, as follows:

 componentWillUnmount() {
 this.subscription.remove();
 }

Let's define the onFocusChange handler used in step 9. The method receives11.
a params object with an appHasFocus Boolean that's been passed from the
native layer via the onWindowFocusChanged method defined in step 5. By
setting the showMask Boolean on state to the inverse of
the appHasFocus Boolean, we can use that in the render function to toggle
displaying the hidden.jpg image, as follows:

 onFocusChange = (params) => {
 this.setState({showMask: !params.appHasFocus})
 }

The render method's main content is not important in this recipe, but we can12.
use it to apply the hidden.jpg mask image when the showMask property on
state is true, as follows:

 render() {
 if(this.state.showMask) {
 return (<Image source={require('./assets/hidden.jpg')} />);

Adding Native Functionality - Part II Chapter 12

[431]

 }
 return (
 <View style={styles.container}>
 <Text style={styles.welcome}>Welcome to React
Native!</Text>
 </View>
);
 }

The app is complete. Once the app is loaded, you should be able to go to the app13.
selection view (double pressing home on iOS, or the square button on Android)
and see the mask image applied to the app when it is not foregrounded. Note
that Android emulators may not properly apply the mask as expected, so this
feature might require an Android device for testing:

Adding Native Functionality - Part II Chapter 12

[432]

How it works...
In this recipe we've seen an example of having to use two separate approaches for
accomplishing the same task. For iOS, we handled displaying the image
mask exclusively in the native layer, without any need for the React Native layer. For
Android, we used React Native to handle the image masking.

In step 3 we extended two Objective-C methods: applicationWillResignActive, which
fires when an app changes from being foregrounded,
and applicationDidBecomeActive, which fires when the app is foregrounded. For each
event, we simply toggle an imageView that displays the hidden.jpg image store in
the Images.xcassettes folder in the Xcode project.

In step 5 we used the React class RCTDeviceEventEmitter from
the DeviceEventManagerModule to emit an event named focusChange, passing along
a params object with the appHasFocus boolean to the React Native layer, as follows:

 getReactNativeHost().getReactInstanceManager()
 .getCurrentReactContext()
 .getJSModule(DeviceEventManagerModule.RCTDeviceEventEmitter.class)
 .emit("focusChange", params);
 }

In step 9 we defined the componentWillMount life cycle hook, which sets up an event
listener for this focusChange event that will be emitted from the native Android layer,
firing the onFocusChange method, which will update the value
of state's showMask value based on the native appHasFocus value, triggering a rerender,
displaying the mask as appropriate.

Background processing on iOS
Over the last several years, processing power in mobile devices has increased considerably.
Users are demanding richer experiences and one method of achieving improved
performance on modern mobile devices is via multithreading. Most mobile devices today
are powered by multicore processors, and their operating systems now offer developers
easy abstractions for executing code in the background, without interfering with the
performance of the app's UI.

This recipe will cover both the use of iOS's Grand Central Dispatch (GCD) to execute
asynchronous background processing on a new thread, and communicating back to the
React Native layer when the processing is complete.

Adding Native Functionality - Part II Chapter 12

[433]

Getting ready
For this recipe, we'll need a new pure React Native application. Let's name
it MultiThreadingApp.

We'll also be using the react-native-button library. Install it with npm:

npm install react-native-button --save

Alternatively, we can use yarn:

yarn add react-native-button --save

How to do it...
We'll start by opening the iOS Project in Xcode, located in the ios directory of1.
the new React Native app.
Let's add a new Cocoa class file named BackgroundTaskManager of2.
subclass NSObject. Refer to the Exposing Custom iOS Modules recipe in this
chapter for more details on doing this in Xcode.
Next, lets wire the new module to the React RCTBrideModule in the new3.
module's header file, BackgroundTaskManager.h. The code to be added is
marked in bold in the following snippet:

#import <Foundation/Foundation.h>
#import <dispatch/dispatch.h>
#import "RCTBridgeModule.h"

@interface BackgroundTaskManager : NSObject <RCTBridgeModule> {
 dispatch_queue_t backgroundQueue;
}

@end

We'll implement the native module in the BackgroundTaskManager.m file.4.
Again, the new code we're adding is marked in bold in the following snippet:

#import "BackgroundTaskManager.h"
#import "RCTBridge.h"
#import "RCTEventDispatcher.h"

@implementation BackgroundTaskManager

@synthesize bridge = _bridge;

Adding Native Functionality - Part II Chapter 12

[434]

RCT_EXPORT_MODULE();

RCT_EXPORT_METHOD(loadInBackground) {
 backgroundQueue =
dispatch_queue_create("com.moduscreate.bgqueue", NULL);
 dispatch_async(backgroundQueue, ^{
 NSLog(@"processing background");
 [self.bridge.eventDispatcher
sendAppEventWithName:@"backgroundProgress" body:@{@"status":
@"Loading"}];
 [NSThread sleepForTimeInterval:5];
 NSLog(@"slept");
 dispatch_async(dispatch_get_main_queue(), ^{
 NSLog(@"Done processing; main thread");
 [self.bridge.eventDispatcher
sendAppEventWithName:@"backgroundProgress" body:@{@"status":
@"Done"}];
 });
 });
}

@end

Let's turn to the JavaScript layer next. We'll start by adding dependencies to5.
the App.js file. As part of the dependencies, we will also need to import
the BackgroundTaskManager native module that we defined in step 3 and step 4,
as follows:

import React, { Component } from 'react';
import {
 StyleSheet,
 Text,
 View,
 NativeModules,
 NativeAppEventEmitter
} from 'react-native';
import Button from 'react-native-button';

const BackgroundTaskManager = NativeModules.BackgroundTaskManager;

Let's define the App class, with an initial state of backgroundTaskStatus set to6.
the string Not Started, and a doNothingCount property initialized to 0, as
follows:

 export default class App extends Component {
 state = {
 backgroundTaskStatus: 'Not Started',

Adding Native Functionality - Part II Chapter 12

[435]

 counter: 0
 }
 // Defined in following steps
}

We'll need to listen to the backgroundProcess event that will be emitted from7.
the native iOS layer from the custom module we created in step 3 and step 4. Let's
set up an event listener using the NativeAppEventEmitter React Native
component, which sets the backgroundTaskStatus property of state to the
value of status on the event object received from the native event, as follows:

 componentWillMount = () => {
 this.subscription = NativeAppEventEmitter.addListener(
 'backgroundProgress',
 event => this.setState({ backgroundTaskStatus: event.status
})
);
 }

When the component unmounts, we need to remove the event listener from the8.
previous step, as follows:

 componentWillUnmount = () => {
 this.subscription.remove();
 }

The UI will have two buttons that will each need a method to call when pressed.9.
The runBackgroundTask will run the loadInBackground method that we
defined and exported from the native iOS layer on
the BackgroundTaskManager custom native module.
The increaseCounter button will simply increase the counter property
on state by 1, serving to show how the main thread is not blocked, as follows:

 runBackgroundTask = () => {
 BackgroundTaskManager.loadInBackground();
 }

 increaseCounter = () => {
 this.setState({
 counter: this.state.counter + 1
 });
 }

Adding Native Functionality - Part II Chapter 12

[436]

The UI of the app will consist of two buttons to show the Button components,10.
and a Text component for displaying the values saved on state. The Run
Task button will execute the runBackgroundTask method to kick off a
background process, and this.state.backgroundTaskStatus will update to
display a new status for the process. For the five seconds that the background
process is running, pressing the Increase Counter button will still increase the
counter by 1, demonstrating that the background process is non-blocking, as
shown in the following snippet:

 render() {
 return (
 <View style={styles.container}>
 <Button
 containerStyle={styles.buttonContainer}
 style={styles.buttonStyle}
 onPress={this.runBackgroundTask}>
 Run Task
 </Button>
 <Text style={styles.instructions}>
 Background Task Status:
 </Text>
 <Text style={styles.welcome}>
 {this.state.backgroundTaskStatus}
 </Text>
 <Text style={styles.instructions}>
 Pressing "Increase Conter" button shows that the task is
 not blocking the main thread
 </Text>
 <Button
 containerStyle={[
 styles.buttonContainer,
 styles.altButtonContainer
]}
 style={styles.buttonStyle}
 onPress={this.increaseCounter}
 >
 Increase Counter
 </Button>
 <Text style={styles.instructions}>
 Current Count:
 </Text>
 <Text style={styles.welcome}>
 {this.state.counter}
 </Text>
 </View>
);
 }

Adding Native Functionality - Part II Chapter 12

[437]

As a final step, let's layout and style the app with the styles block, as follows:11.

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 welcome: {
 fontSize: 20,
 textAlign: 'center',
 margin: 10,
 },
 instructions: {
 textAlign: 'center',
 color: '#333333',
 marginBottom: 5,
 marginLeft: 20,
 marginRight: 20
 },
 buttonContainer: {
 width: 150,
 padding: 10,
 margin: 5,
 height: 40,
 overflow: 'hidden',
 borderRadius: 4,
 backgroundColor: '#FF5722'
 },
 altButtonContainer : {
 backgroundColor : '#CDDC39',
 marginTop : 30
 },
 buttonStyle: {
 fontSize: 16,
 color: 'white'
 }
});

Adding Native Functionality - Part II Chapter 12

[438]

How it works...
In this recipe, we created a native module similar to the module covered in the Exposing
custom iOS modules recipe from earlier in this chapter. We defined the native module to
perform arbitrary execution in the background of the React Native app. In this recipe the
background process is made up of the following three steps:

Spawn a new thread.1.
Sleep for five seconds on the new thread.2.
After the five second sleep (simulating the end of a running background3.
process), an event is dispatched from the iOS layer to the React Native layer,
letting it know that the process has been completed. This is accomplished via the
OS's GCD API.

The purpose of the UI in this app is to exhibit that multithreading has been achieved. If the
background process was executed in the React Native layer, due to JavaScript's single-
threaded nature, the app would have locked up for five seconds while that process was
running. When you press a button, the bridge is invoked, whereupon messages can be
posted to the native layer. If the native thread is currently busy sleeping, then we cannot
process this message. By offloading that processing to a new thread, both can be executed
at the same time.

Background processing on Android
In this recipe we'll be building out an Android equivalent to the previous recipe. This
recipe will also use the native Android layer to create a new process, keep that process
running by sleeping for five seconds, and allow user interaction via the button to exhibit
that the app's main processing thread is not blocked.

While the end result will be very much the same, spawning a new process in an Android
project is handled a bit differently from iOS. This recipe will make use of the
native AsyncTask function, specialized for handling short-running background processes,
to allow execution in the React Native layer without blocking the main thread.

Adding Native Functionality - Part II Chapter 12

[439]

Getting ready
For this recipe we'll need to create a new pure React Native app. Let's name
it MultiThreadingApp.

We will also be using the react-native-button library. Install it with npm:

npm install react-native-button --save

Alternatively, we can use yarn:

yarn add react-native-button

How to do it...
Let's start by opening the Android project in Android Studio. In Android Studio,1.
select Open an existing Android Studio project and open the android directory
of the new project.
We'll need two new Java classes: BackgroundTaskManager and2.
BackgroundTaskPackage.
Now that both classes have been created, let's open3.
BackgroundTaskManager.java and begin implementing the native module
that will wrap an AsyncTask operation, starting with imports and defining the
class. Furthermore, like any other native Android module, we'll need to define
the getName method, used to provide React Native with a name for the module,
as follows:

package com.multithreadingapp;

import android.os.AsyncTask;

import com.facebook.react.bridge.Arguments;
import com.facebook.react.bridge.ReactApplicationContext;
import com.facebook.react.bridge.ReactContextBaseJavaModule;
import com.facebook.react.bridge.ReactMethod;
import com.facebook.react.bridge.WritableMap;
import com.facebook.react.modules.core.DeviceEventManagerModule;

public class BackgroundTaskManager extends
ReactContextBaseJavaModule {
 public BackgroundTaskManager(ReactApplicationContext
reactApplicationContext) {
 super(reactApplicationContext);

Adding Native Functionality - Part II Chapter 12

[440]

 }

 @Override
 public String getName() {
 return "BackgroundTaskManager";
 }

 // Defined in following steps
}

In order to execute an AsyncTask, it needs to be subclassed by a private class.4.
We'll need to add a new private inner BackgroundLoadTask subclass for this.
Before we define it, let's first add a loadInBackground method that will
ultimately be exported to the React Native layer. This method simply creates a
new instance of BackgroundLoadTask and calls its execute method, as follows:

public class BackgroundTaskManager extends
ReactContextBaseJavaModule {
 // Defined in previous step
 @ReactMethod
 public void loadInBackground() {
 BackgroundLoadTask backgroundLoadTask = new
BackgroundLoadTask();
 backgroundLoadTask.execute();
 }
}

The BackgroundLoadTask subclass will also be using a helper function for5.
sending events back and forth across the React Native bridge to communicate the
status of the background process. The sendEvent method takes
an eventName and params as arguments, then uses React
Native's RCTDeviceEventEmitter class to emit the event, as follows:

public class BackgroundTaskManager extends
ReactContextBaseJavaModule {
 // Defined in steps above

 private void sendEvent(String eventName, WritableMap params) {
getReactApplicationContext().getJSModule(DeviceEventManagerModule.R
CTDeviceEventEmitter.class).emit(eventName, params);
 }
}

Adding Native Functionality - Part II Chapter 12

[441]

Now let's move on to defining the BackgroundLoadTask subclass, which6.
extends AsyncTask. The subclass will be made up of three
methods: doInBackground for spinning up a new thread and sleeping it for five
minutes, onProgressUpdate for sending a "Loading" status to the React
Native layer, and onPostExecute for sending a "Done" status when the
background task has completed, as follows:

public class BackgroundTaskManager extends
ReactContextBaseJavaModule {
 // Defined in above steps

 private class BackgroundLoadTask extends AsyncTask<String,
String, String> {
 @Override
 protected String doInBackground(String... params) {
 publishProgress("Loading");
 try {
 Thread.sleep(5000);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return "Done";
 }

 @Override
 protected void onProgressUpdate(String... values) {
 WritableMap params = Arguments.createMap();
 params.putString("status", "Loading");
 sendEvent("backgroundProgress", params);
 }

 @Override
 protected void onPostExecute(String s) {
 WritableMap params = Arguments.createMap();
 params.putString("status", "Done");
 sendEvent("backgroundProgress", params);
 }
 }
}

Since the only difference between the iOS implementation and the Android7.
implementation lives in the native layer of the recipe, you can follow step 5 to step
11 of the previous recipe to implement the JavaScript portion of the app.

Adding Native Functionality - Part II Chapter 12

[442]

The final app should behave and look (aside from differences in devices) the8.
same as the app in the previous recipe:

Adding Native Functionality - Part II Chapter 12

[443]

How it works...
In this recipe, we mimicked the functionality we created in the Background processing on
iOS recipe on Android. We created an Android native module with a method which, when
invoked, performs arbitrary execution in the background (sleep for five seconds). When the
process is complete, it emits an event to the React Native layer, whereupon we update the
app UI to reflect the status of the background process. Android has multiple options for
performing multithreaded operations natively. In this recipe, we used AsyncTask, since it
is geared towards short-running (several seconds) processes, it is relatively simple to
implement, and the operating system manages thread creation and resource allocation for
us. You can read more about AsyncTask in the official documentation at:

 https:/​/​developer. ​android. ​com/ ​reference/ ​android/ ​os/​AsyncTask

Playing audio files on iOS
In the chapter Implementing Complex User Interfaces – Part III, we covered building out a
relatively sophisticated little audio player in the Creating an Audio Player recipe using
the Audio component provided by the Expo SDK. One of the shortcoming of
Expo's Audio component, however, is that it cannot be used to play audio when the app is
backgrounded. Using the native layer is currently the only way to achieve this.

In this recipe, we will create a native module to show the iOS MediaPicker and then select a
music file to play. The selected file will play through the native iOS media player, which
allows audio to be played when the app is backgrounded, and allows the user to control the
audio via the native iOS control center.

Getting ready
For this recipe, we'll need to create a new pure React Native app. Let's call
it AudioPlayerApp.

We'll also be using the react-native-button library, which can be installed with npm:

npm install react-native-button --save

https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/AsyncTask

Adding Native Functionality - Part II Chapter 12

[444]

Alternatively, we can use yarn:

yarn add react-native-button

This is a recipe that should only be expected to work on a real device. You'll also want to
make sure you have music synced to the iOS device and available in the media library.

How to do it...
Let's start by opening the iOS Project in Xcode located in the ios directory of the1.
new React Native app.
Next, we'll create a new Objective-C Cocoa class called MediaManager.2.
In the MediaManager header (.h) file, we need to3.
import MPMediaPickerController and MPMusicPlayerController, along
with the React Native bridge (RCTBridgeModule), as follows:

#import <Foundation/Foundation.h>
#import <MediaPlayer/MediaPlayer.h>

#import <React/RCTBridgeModule.h>
#import <React/RCTEventDispatcher.h>

@interface MediaManager : NSObject<RCTBridgeModule,
MPMediaPickerControllerDelegate>

@property (nonatomic, retain) MPMediaPickerController *mediaPicker;
@property (nonatomic, retain) MPMusicPlayerController *musicPlayer;

@end

First, we are going to need to work on adding the native MediaPicker in4.
the MediaManager implementation (MediaManager.m). The first methods will
be for showing and hiding
the MediaPicker: showMediaPicker and hideMediaPicker, as follows:

#import "MediaManager.h"
#import "AppDelegate.h"

@implementation MediaManager
RCT_EXPORT_MODULE();

@synthesize bridge = _bridge;
@synthesize musicPlayer;

Adding Native Functionality - Part II Chapter 12

[445]

#pragma mark private-methods

-(void)showMediaPicker {
 if(self.mediaPicker == nil) {
 self.mediaPicker = [[MPMediaPickerController alloc]
initWithMediaTypes:MPMediaTypeAnyAudio];
 [self.mediaPicker setDelegate:self];
 [self.mediaPicker setAllowsPickingMultipleItems:NO];
 [self.mediaPicker setShowsCloudItems:NO];
 self.mediaPicker.prompt = @"Select song";
 }
 AppDelegate *delegate = (AppDelegate *)[[UIApplication
sharedApplication] delegate];
 [delegate.window.rootViewController
presentViewController:self.mediaPicker animated:YES
completion:nil];
}

void hideMediaPicker() {
 AppDelegate *delegate = (AppDelegate *)[[UIApplication
sharedApplication] delegate];
 [delegate.window.rootViewController
dismissViewControllerAnimated:YES completion:nil];
}

// Defined on following steps

@end

Next, we'll implement the two actions that5.
the mediaPicker needs: didPickMediaItems for picking a media item,
and mediaPickerDidCancel for cancelling the action, as follows:

-(void) mediaPicker:(MPMediaPickerController *)mediaPicker
didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection {
 MPMediaItem *mediaItem = mediaItemCollection.items[0];
 NSURL *assetURL = [mediaItem
valueForProperty:MPMediaItemPropertyAssetURL];
 [self.bridge.eventDispatcher sendAppEventWithName:@"SongPlaying"
 body:[mediaItem
valueForProperty:MPMediaItemPropertyTitle]];
 if(musicPlayer == nil) {
 musicPlayer = [MPMusicPlayerController systemMusicPlayer];
 }
 [musicPlayer setQueueWithItemCollection:mediaItemCollection];
 [musicPlayer play];
 hideMediaPicker();
}

Adding Native Functionality - Part II Chapter 12

[446]

-(void) mediaPickerDidCancel:(MPMediaPickerController *)mediaPicker
{
 hideMediaPicker();
}

Next, we're going to need to expose our MediaManager to the React Native6.
bridge and create a method that will be invoked to show the MediaPicker, as
follows:

RCT_EXPORT_MODULE();
RCT_EXPORT_METHOD(showSongs) {
 [self showMediaPicker];
}

We're ready to move on to the JavaScript portion. Let's start by adding7.
dependencies to App.js. We also need to import the MediaManager native
module we created in step 3 to step 6 using the NativeModules component, as
follows:

import React, { Component } from 'react';
import {
 StyleSheet,
 Text,
 View,
 NativeModules,
 NativeAppEventEmitter
} from 'react-native';
import Button from 'react-native-button';
const MediaManager = NativeModules.MediaManager;

Let's define the App class and the initial state. The currentSong property will8.
hold the track info for the currently playing song, as passed from the native
layer, as follows:

export default class App extends Component {
 state = {
 currentSong: null
 }

 // Defined on following steps
}

Adding Native Functionality - Part II Chapter 12

[447]

When the component mounts, we'll subscribe to the SongPlaying event that9.
will be emitted from the native layer when a song begins playing. We'll save the
event listener to a local subscription class variable so that we can clean it up
with the remove method when the component unmounts, as follows:

 componentWillMount() {
 this.subscription = NativeAppEventEmitter.addListener(
 'SongPlaying',
 this.updateCurrentlyPlaying
);
 }

 componentWillUnmount = () => {
 this.subscription.remove();
 }

We'll also need a method for updating the currentSong value on state, and a 10.
method for calling the showSongs method on the native MediaManager module
we defined in step 3 to step 6, as follows:

 updateCurrentlyPlaying = (currentSong) => {
 this.setState({ currentSong });
 }

 showSongs() {
 MediaManager.showSongs();
 }

The render method will be made up of a Button component for executing11.
the showSongs method when pressed, and Text components for displaying the
info for the song that's currently playing, as follows:

 render() {
 return (
 <View style={styles.container}>
 <Button
 containerStyle={styles.buttonContainer}
 style={styles.buttonStyle}
 onPress={this.showSongs}>
 Pick Song
 </Button>
 <Text style={styles.instructions}>Song Playing:</Text>
 <Text
style={styles.welcome}>{this.state.currentSong}</Text>
 </View>
);
 }

Adding Native Functionality - Part II Chapter 12

[448]

Finally, we'll add our styles for laying out and styling the app, as follows:12.

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 welcome: {
 fontSize: 20,
 textAlign: 'center',
 margin: 10,
 },
 instructions: {
 textAlign: 'center',
 color: '#333333',
 marginBottom: 5,
 },
 buttonContainer: {
 width: 150,
 padding: 10,
 margin: 5,
 height: 40,
 overflow: 'hidden',
 borderRadius: 4,
 backgroundColor: '#3B5998'
 },
 buttonStyle: {
 fontSize: 16,
 color: '#fff'
 }
});

How it works...
In this recipe we covered how to use the Media Player in iOS by wrapping its functionality
in a native module. The media player framework allows us to access the native iPod library,
and play audio files from the library on the device using the same functionality as the
native iOS Music app.

Adding Native Functionality - Part II Chapter 12

[449]

Playing audio files on Android
A benefit that Google likes to claim that Android has over iOS is flexibility in dealing with
file storage. Android devices support external SD cards that can be filled with media files
and do not need a proprietary method of adding multimedia as iOS does.

In this recipe, we will use Android's native MediaPicker, which is started from an intent.
We will then be able to pick a song and have it play through our application.

Getting ready
For this recipe, we'll create a React Native application titled AudioPlayer.

In this recipe, we will use the react-native-button library. To install it, run the
following command in the terminal from your project root directory:

 $ npm install react-native-button --save

Make sure you have music files available in your Music/ directory on your Android device
or emulator.

How to do it...
Let's start by opening the Android project using Android Studio. In Android1.
Studio, select Open an existing Android Studio project and open
the android directory of the project.
We'll need two new Java classes for this2.
recipe: MediaManager and MediaPackage.

Our MediaManager will use intents to show the mediaPicker, MediaPlayer to3.
play music, and MediaMetadataRetriever to parse metadata information from
the audio file to send back to the JavaScript layer. Let's start by importing all of
the dependencies we'll need in the MediaManager.java file, as follows:

import android.app.Activity;
import android.content.Intent;
import android.media.AudioManager;
import android.media.MediaMetadataRetriever;
import android.media.MediaPlayer;
import android.net.Uri;
import android.provider.MediaStore;

Adding Native Functionality - Part II Chapter 12

[450]

import com.facebook.react.bridge.ActivityEventListener;
import com.facebook.react.bridge.Arguments;
import com.facebook.react.bridge.ReactApplicationContext;
import com.facebook.react.bridge.ReactContextBaseJavaModule;
import com.facebook.react.bridge.ReactMethod;
import com.facebook.react.bridge.WritableMap;
import com.facebook.react.modules.core.DeviceEventManagerModule;

showSongs, getName, playSong, mediaPlayer, onActivityResult,4.
mediaMetadataRetreiver, and SongPlaying should be in code formatting.
Replace with:

public class MediaManager extends ReactContextBaseJavaModule
implements ActivityEventListener {
 private MediaPlayer mediaPlayer = null;
 private MediaMetadataRetriever mediaMetadataRetriever = null;

 public MediaManager(ReactApplicationContext
reactApplicationContext) {
 super(reactApplicationContext);
 reactApplicationContext.addActivityEventListener(this);
 }

 @Override
 public String getName() {
 return "MediaManager";
 }

 @Override
 public void onCatalystInstanceDestroy() {
 super.onCatalystInstanceDestroy();
 mediaPlayer.stop();
 mediaPlayer.release();
 mediaPlayer = null;
 }

 @ReactMethod
 public void showSongs() {
 Activity activity = getCurrentActivity();
 Intent intent = new Intent(Intent.ACTION_PICK,
MediaStore.Audio.Media.EXTERNAL_CONTENT_URI);
 activity.startActivityForResult(intent, 10);
 }

 @Override
 public void onActivityResult(Activity activity, int requestCode,
int resultCode, Intent data) {
 if (data != null) {

Adding Native Functionality - Part II Chapter 12

[451]

 playSong(data.getData());
 }
 }

 @Override
 public void onNewIntent(Intent intent) {
 }

 private void playSong(Uri uri) {
 try {
 if (mediaPlayer != null) {
 mediaPlayer.stop();
 mediaPlayer.reset();
 } else {
 mediaMetadataRetriever = new MediaMetadataRetriever();
 mediaPlayer = new MediaPlayer();
 mediaPlayer.setAudioStreamType(AudioManager.STREAM_MUSIC);
 }

 mediaPlayer.setDataSource(getReactApplicationContext(), uri);

 mediaPlayer.prepare();
 mediaPlayer.start();

mediaMetadataRetriever.setDataSource(getReactApplicationContext(),
uri);
 String artist =
mediaMetadataRetriever.extractMetadata(MediaMetadataRetriever.METAD
ATA_KEY_ARTIST);
 String songTitle =
mediaMetadataRetriever.extractMetadata(MediaMetadataRetriever.METAD
ATA_KEY_TITLE);

 WritableMap params = Arguments.createMap();
 params.putString("songPlaying", artist + " - " + songTitle);

 getReactApplicationContext()
.getJSModule(DeviceEventManagerModule.RCTDeviceEventEmitter.class)
 .emit("SongPlaying", params);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Adding Native Functionality - Part II Chapter 12

[452]

The custom module will also need to be added to the getPackages array in5.
the MainApplication.java file, as follows:

 protected List<ReactPackage> getPackages() {
 return Arrays.<ReactPackage>asList(
 new MainReactPackage(),
 new MediaPackage()
);
 }

As covered in the Exposing Custom Android Modules recipe earlier in this chapter,6.
we must add the requisite boilerplate to MediaPackage.java for
our MediaManager custom module to be exported to the React Native layer.
Refer to that recipe for a more thorough explanation. Add the requisite
boilerplate as follows:

import com.facebook.react.ReactPackage;
import com.facebook.react.bridge.NativeModule;
import com.facebook.react.bridge.ReactApplicationContext;
import com.facebook.react.uimanager.ViewManager;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class MediaPackage implements ReactPackage {
 @Override
 public List<ViewManager>
createViewManagers(ReactApplicationContext reactContext) {
 return Collections.emptyList();
 }

 @Override
 public List<NativeModule>
createNativeModules(ReactApplicationContext reactContext) {
 List<NativeModule> modules = new ArrayList<>();

 modules.add(new MediaManager(reactContext));

 return modules;
 }
}

The JavaScript layer for the Android app is identical to that found in the previous7.
iOS recipe. Use step 7 to step 12 of this recipe to complete the final portion of the
app.

13
Integration with Native

Applications
In this chapter, we will cover the following recipes:

Combining a React Native app and a Native iOS app
Communicating from an iOS app to React Native
Communicating from React Native to an iOS app container
Handle being invoked by an external iOS app
Combining a React Native app and a native Android app
Communicating from an Android app to React Native
Communicating from React Native to an Android app container
Handle being invoked by an external Android app

Introduction
React Native was introduced as a solution to build native applications using JavaScript,
with the goal of granting more developers the ability to build truly native applications for
multiple platforms. As a consequence of building a React Native application with a team, it
can be common for JavaScript developers and native developers to work closely together.

One of the advantages of React Native's ability to render native UI views is that they can be
easily embedded inside existing native apps. It is not uncommon for companies to already
have sophisticated native apps that are critical to their line of business. There may be no
immediate need to rewrite their entire codebase in React Native if the app is not broken. In
such a case, React Native can be leveraged by both JavaScript and native developers to
write React Native code that can be integrated into an existing app.

Integration with Native Applications Chapter 13

[454]

This chapter will focus exclusively on using React Native inside existing native iOS and
Android applications. We will cover rendering a React Native app within a native app, how
to communicate between the React Native app and its native parent app, and how our
React Native app can be invoked with other apps on a user's device.

When working on the Android recipes, it is recommended that you enable
the auto-import settings in Android Studio or use Alt+Enter to perform a
quick fix code completion for the class import.

Combining a React Native app and a Native
iOS app
In the event that you work for a company or have a client that has an active iOS app out in
the world, it may not be advantageous to rewrite it from scratch, especially if it is well-built,
used frequently, and praised by its users. If you just want to build new functionality using
React Native, the React Native app can be embedded and rendered inside an existing native
iOS app.

This recipe will walk through creating a blank iOS app and adding it to a React Native app
so that the two layers can communicate with each other. We will cover two ways of
rendering the React Native app: embedded inside the application as a nested view, and
another as a full-screen implementation. The steps that are discussed in this recipe serve as
a baseline for rendering React Native apps, along with native iOS apps.

Getting ready
This recipe will be referencing a native iOS application named EmbeddedApp. We will walk
through creating the sample iOS application in this section. If you already have an iOS app
you intend on integrating with React Native, you can skip ahead to the recipe instructions.
You will, however, need to be sure that you have cocoapods installed. This library is a
package manager for Xcode projects. It can be installed via Homebrew using the following
command:

brew install cocoapods

Integration with Native Applications Chapter 13

[455]

With cocoapods installed, the next step is creating a new native iOS project in Xcode. This
can be done by opening Xcode and choosing File | New | Project. In the window that
follows, choose the default Single View Application iOS template to get started, and hit
Next.

In the options screen for the new project, be sure to set the Product Name field
to EmbeddedApp:

How to do it...
We'll begin by creating a new vanilla React Native app that will serve as the root1.
of our project. Let's name the new project EmbedApp. You can create the new
React Native app with the CLI using the following command:

react-native init EmbedApp

Integration with Native Applications Chapter 13

[456]

By creating the new app with the CLI, the ios and android subfolders will be2.
automatically created for us, holding the native code for each platform. Let's
move the native app we created in the Getting ready section to the ios folder so
that it lives at /EmbedApp/ios/EmbeddedApp.
Now that we have the basic structure we need for the app, we'll need to add a3.
Podfile. This is a file, similar to package.json in web development, that keeps
track of all of the cocoapod dependencies (called pods) that are used in a
project. The Podfile should always live in the root of the vanilla iOS project,
which in our case is /EmbedApp/ios/EmbeddedApp. In a Terminal, cd into this
directory and run the pod init command. This generates a base Podfile for you.
Next, open the Podfile in your favorite IDE. We'll be adding the pods that are4.
needed for the app to this file. The following is the contents of the final Podfile,
with the newly added React Native dependencies in bold:

target 'EmbeddedApp' do
 # Uncomment the next line if you're using Swift or would like to
use dynamic frameworks
 # use_frameworks!

 # Pods for EmbeddedApp

 target 'EmbeddedAppTests' do
 inherit! :search_paths
 # Pods for testing
 end

 target 'EmbeddedAppUITests' do
 inherit! :search_paths
 # Pods for testing
 end

 # Pods that will be used in the app
 pod 'React', :path => '../../node_modules/react-native',
:subspecs => [
 'Core',
 'CxxBridge', # Include this for RN >= 0.47
 'DevSupport', # Include this to enable In-App Devmenu if RN >=
0.43
 'RCTText',
 'RCTNetwork',
 'RCTWebSocket', # Needed for debugging
 'RCTAnimation', # Needed for FlatList and animations running on
native UI thread
 # Add any other subspecs you want to use in your project
]

Integration with Native Applications Chapter 13

[457]

 # Explicitly include Yoga if you are using RN >= 0.42.0
 pod 'yoga', :path => '../../node_modules/react-
native/ReactCommon/yoga'

 # Third party deps podspec link
 pod 'DoubleConversion', :podspec => '../../node_modules/react-
native/third-party-podspecs/DoubleConversion.podspec'
 pod 'glog', :podspec => '../../node_modules/react-native/third-
party-podspecs/glog.podspec'
 pod 'Folly', :podspec => '../../node_modules/react-native/third-
party-podspecs/Folly.podspec'

end

Notice how each of the paths listed in the React Native dependencies that
we're adding point to the /node_modules folder of the React Native
project. If your native project (in our case, EmbeddedApp) was at a
different location, these references to /node_modules would have to be
updated accordingly.

With the Podfile in place, installing the pods themselves is as easy as running5.
the pod install command from the Terminal in the same directory we created
the Podfile.
Next, let's return to the React Native app at the root directory of the6.
project, /EmbedApp. We'll start by removing the generated code in index.js,
and replacing it with our own simple React Native app.At the bottom of the file,
we'll use the registerComponent method on the AppRegistry component to
register EmbedApp as the root component of the React Native app. This will be a
very simple app that just renders the text Hello in React Native so that it
can be distinguished from the native layer in later steps:

import React, { Component } from 'react';
import {
 AppRegistry,
 StyleSheet,
 View,
 Text
} from 'react-native';

class EmbedApp extends Component {
 render() {
 return (
 <View style={styles.container}>
 <Text>Hello in React Native</Text>
 </View>

Integration with Native Applications Chapter 13

[458]

);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 }
});

AppRegistry.registerComponent('EmbedApp', () => EmbedApp);

Now that we have a React Native app, we can move to the native code. When we7.
initialized cocoapods in step 3, it also generated a new .xcworkspace file. Be
sure to close the EmbeddedApp project in Xcode, then re-open it in Xcode using
the EmbeddedApp.xcworkspace file.
In Xcode, let's open Main.storyboard:8.

Integration with Native Applications Chapter 13

[459]

In the storyboard, we'll need to add two buttons: one labeled Open React Native9.
App and one labeled Open React Native App (Embedded). We'll also need a
new container view below the two buttons. The resulting storyboard should look
something like this:

Integration with Native Applications Chapter 13

[460]

Next, we'll need a new a new Cocoa Touch Class. This can be created from the10.
menus by choosing File | New | File. We'll name the
class EmbeddedViewController and assign it a subclass
of UIViewController:

Let's return to Main.storyboard. In the new scene that's created by adding the11.
class in the previous step (second View Controller Scene), select the View
Controller child. Make sure that the Identity inspector is open in the right-hand
panel:

Integration with Native Applications Chapter 13

[461]

With the View Controller selected, change the Class value to our newly created
class, EmbeddedViewController:

Next, in the top View Controller Scene, select the Embed segue object:12.

With the segue selected, select the Attributes inspector from the right-hand13.
panel, and update the Identifier field to the embed value. We will use this
identifier to embed the React Native layer within the native app:

Integration with Native Applications Chapter 13

[462]

We're ready to build out the ViewController implementation. Open14.
the ViewController.m file. We'll start with the imports:

#import "ViewController.h"
#import "EmbeddedViewController.h"
#import <React/RCTRootView.h>

Just beneath the imports, we can add an interface definition to point to the15.
EmbeddedViewController we created in step 10:

@interface ViewController () {
 EmbeddedViewController *embeddedViewController;
}

@end

Following is the @interface, we'll add the methods we need to the16.
@implementation. The first method, openRNAppButtonPressed, will be wired
to the first button we created in the storyboard, labeled Open React Native App.
Likewise, the openRNAppEmbeddedButtonPressed method will be wired to the
second button, Open React Native App (Embedded).
You'll likely notice that the methods are almost identical, with the second method
referencing embeddedViewController, the same EmbeddedViewController
class we created in step 10 ([embeddedViewController
setView:rootView];). Both methods define jsCodeLocation with the value
of http://localhost:8081/index.bundle?platform=ios, which is the
URL that the React Native app will be served from. Also, take note that
the moduleName property in both methods is set to EmbedApp, which is the name
that the React Native app is exported as, which we defined in step 6:

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically
from a nib.
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

- (IBAction)openRNAppButtonPressed:(id)sender {
 NSURL *jsCodeLocation = [NSURL

Integration with Native Applications Chapter 13

[463]

URLWithString:@"http://localhost:8081/index.bundle?platform=ios"];
 RCTRootView *rootView =
 [[RCTRootView alloc] initWithBundleURL : jsCodeLocation
 moduleName : @"EmbedApp"
 initialProperties : nil
 launchOptions : nil];
 UIViewController *vc = [[UIViewController alloc] init];
 vc.view = rootView;
 [self presentViewController:vc animated:YES completion:nil];
}
- (IBAction)openRNAppEmbeddedButtonPressed:(id)sender {
 NSURL *jsCodeLocation = [NSURL
URLWithString:@"http://localhost:8081/index.bundle?platform=ios"];
 RCTRootView *rootView =
 [[RCTRootView alloc] initWithBundleURL : jsCodeLocation
 moduleName : @"EmbedApp"
 initialProperties : nil
 launchOptions : nil];
 [embeddedViewController setView:rootView];
}

// Defined in next step

@end

We'll also need to define the prepareForSegue method. Here, you can17.
see segue.identifier isEqualToString:@"embed", which refers to the
embed identifier we gave the segue in step 13:

// Defined in previous steps

- (void) prepareForSegue:(UIStoryboardSegue *)segue
sender:(id)sender {
 if([segue.identifier isEqualToString:@"embed"]) {
 embeddedViewController = segue.destinationViewController;
 }
}

@end

Integration with Native Applications Chapter 13

[464]

With our implementation of ViewController in place, we now we need to wire18.
up our button actions to the buttons themselves. Let's return
to Main.storyboard. Ctrl + click on the first button to get a menu of actions that
are assignable to the button, select the Touch Up Inside action by clicking and
dragging from Touch Up Inside back to the storyboard, and map the button to
the openRNAppButtonPressed method we defined in step 15. Repeat these steps
for the second button, linking it instead to the
openRNAppEmbeddedButtonPressed method:

Integration with Native Applications Chapter 13

[465]

For the React Native layer to be able to communicate with the native layer, we19.
also need to add a security exception, which will allow our code to communicate
with localhost. Right-click on the Info.plist file and select Open
As | Source Code. Within the base <dict> tag, add the following entry:

<key>NSAppTransportSecurity</key>
<dict>
 <key>NSExceptionDomains</key>
 <dict>
 <key>localhost</key>
 <dict>
 <key>NSTemporaryExceptionAllowsInsecureHTTPLoads</key>
 <true/>
 </dict>
 </dict>
</dict>

Our app is complete! From the /EmbedApp root directory, start up the React20.
Native app using the CLI with the following command:

react-native start

With the React Native app running, let's also run the native app EmbeddedApp21.
from Xcode. Now, pressing the Open React Native App button should open the
React Native app we created in step 6 in full screen, and the same React Native
app should open within the container view we created in step 9 when pressing
the Open React Native App (Embedded) button.

How it works...
In this recipe, we covered rendering a React Native app within a native iOS app via two
different methods. The first method replaces the application's main UIViewController
instance with the React Native app, referred to in the native code as RCTRootView. This
was accomplished in the openRNAppButtonPressed method. The second and slightly
more involved method is rendering the React Native app inline with the native app. This
was accomplish by creating a container view that links to a different UIViewController
instance. In this case, we replaced the contents of embedViewController with our
RCTRootView instance. This is what happens when the
openRNAppEmbeddedButtonPressed method is fired.

Integration with Native Applications Chapter 13

[466]

See also
For a better understanding of the role cocoapods plays in Xcode/React Native development,
I recommend Google's Route 85 Show episode covering the subject on YouTube. The video
can be found at https:/ ​/​www. ​youtube. ​com/​watch? ​v=​iEAjvNRdZa0.

Communicating from an iOS app to React
Native
In the previous recipe, we learned how to render a React Native app as part of a larger
native iOS app. Unless you're building a glorified app container or portal, you'll likely need
to communicate between the native layer and the React Native layer. This will be the
subject matter of the next two recipes, one recipe for each direction of communication.

In this recipe, we will cover communicating from the native layer to the React Native layer,
sending data from the parent iOS app to our embedded React Native app, by using a
UITextField in the iOS app that sends its data to the React Native app.

Getting ready
Since this recipe requires a native app with a nested React Native app within it, we'll be
beginning at the end of the previous recipe, effectively picking up where we left off. This
will help you understand how basic cross-layer communication works so that you can use
the same principles in your own native app, which may already exist and have complex
features. Therefore, the easiest way to follow along with this recipe is to use the endpoint of
the previous recipe as a starting place.

https://www.youtube.com/watch?v=iEAjvNRdZa0
https://www.youtube.com/watch?v=iEAjvNRdZa0
https://www.youtube.com/watch?v=iEAjvNRdZa0
https://www.youtube.com/watch?v=iEAjvNRdZa0
https://www.youtube.com/watch?v=iEAjvNRdZa0
https://www.youtube.com/watch?v=iEAjvNRdZa0
https://www.youtube.com/watch?v=iEAjvNRdZa0
https://www.youtube.com/watch?v=iEAjvNRdZa0
https://www.youtube.com/watch?v=iEAjvNRdZa0
https://www.youtube.com/watch?v=iEAjvNRdZa0
https://www.youtube.com/watch?v=iEAjvNRdZa0
https://www.youtube.com/watch?v=iEAjvNRdZa0
https://www.youtube.com/watch?v=iEAjvNRdZa0
https://www.youtube.com/watch?v=iEAjvNRdZa0
https://www.youtube.com/watch?v=iEAjvNRdZa0

Integration with Native Applications Chapter 13

[467]

How to do it...
Let's start by updating the ViewController.m implementation file in the native1.
layer. Be sure to open the project in Xcode via the .xcworkspace file in the
EmbeddedApp, which we placed in the /ios/EmbeddApp directory of the project
in the previous recipe. We'll start with the imports:

#import "ViewController.h"
#import "EmbeddedViewController.h"
#import <React/RCTRootView.h>
#import <React/RCTBridge.h>
#import <React/RCTEventDispatcher.h>

The next step is to add a reference to the React Native bridge via2.
the ViewController interface, effectively linking the native controller with the
React Native code:

@interface ViewController () <RCTBridgeDelegate> {
 EmbeddedViewController *embeddedViewController;
 RCTBridge *_bridge;
 BOOL isRNRunning;
}

We will also need an @property reference of userNameField that we will use3.
in a later step to wire to the UITextField:

@property (weak, nonatomic) IBOutlet UITextField *userNameField;

@end

Directly below this reference, we'll begin defining the class methods. We'll begin4.
with the sourceURLForBridge method, which defines where the React Native
app will be served from. In our case, the app URL should
be http://localhost:8081/index.bundle?platform=ios, which points at
the index.js file of the React Native app once it is run with the react-native
start command:

- (NSURL *)sourceURLForBridge:(RCTBridge *)bridge {
 NSURL *jsCodeLocation = [NSURL
URLWithString:@"http://localhost:8081/index.bundle?platform=ios
"];
 return jsCodeLocation;
}

Integration with Native Applications Chapter 13

[468]

We'll leave the viewDidLoad and didReveiveMemoryWarning methods as is:5.

- (void)viewDidLoad {
 [super viewDidLoad];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

Next, we'll need to update the openRNAppEmbeddedButtonPressed method.6.
Notice how the moduleName property is set to FromNativeToRN. This is a
reference to the name that we give the React Native app when it is exported,
which we'll define in a later step. This time, we are also defining a property
of userName for passing data to the React Native layer:

- (IBAction)openRNAppEmbeddedButtonPressed:(id)sender {
 NSString *userName = _userNameField.text;
 NSDictionary *props = @{@"userName" : userName};
 if(_bridge == nil) {
 _bridge = [[RCTBridge alloc] initWithDelegate:self
 launchOptions:nil];
 }
 RCTRootView *rootView =
 [[RCTRootView alloc] initWithBridge :_bridge
 moduleName : @"FromNativeToRN"
 initialProperties : props];
 isRNRunning = true;
 [embeddedViewController setView:rootView];
}

We'll also need an onUserNameChanged method. This is the method that will do7.
the actual sending of data across the bridge to the React Native layer. The event
name we're defining here is UserNameChanged, which we'll reference in the
React Native layer in a later step. This will also pass along the text that's
currently in the text input, which will be named userNameField:

- (IBAction)onUserNameChanged:(id)sender {
 if(isRNRunning == YES && _userNameField.text.length > 3) {
 [_bridge.eventDispatcher
sendAppEventWithName:@"UserNameChanged" body:@{@"userName" :
_userNameField.text}];
 }
}

Integration with Native Applications Chapter 13

[469]

We'll also need prepareForSegue for configuring embeddedViewController8.
just before it is displayed:

- (void) prepareForSegue:(UIStoryboardSegue *)segue
sender:(id)sender {
 if([segue.identifier isEqualToString:@"embed"]) {
 embeddedViewController = segue.destinationViewController;
 }
}
@end

Back in the Main.storyboard, let's add that Text Field, along with a Label that9.
defines what the input is for. You can also name the input User Name Field so
that everything is easier to recognize in the View Controller Scene:

Integration with Native Applications Chapter 13

[470]

Next, we'll need to wire an event for when the text changes in the User Name10.
Field text input, and a referencing outlet so that the View Controller knows how
to reference it. These can both be done via the Connections Inspector, which is
accessible via the last button along the top of the right-hand side panel (the icon
is a right pointing arrow in a circle). With the text input selected, click and drag
from Editing Changed to the View Controller (represented via the main
storyboard), and choose the onUserNameChange method we defined in step 7.
Then, create the following wirings by dragging the item to the ViewController.
Similarly, add a new Referencing Outlet by clicking and dragging from the New
Referencing Outlet back to the View Controller, this time choosing the
userNameField value we targeted in step 7. Your Connections Inspector settings
should now look like this:

Integration with Native Applications Chapter 13

[471]

We've now completed the steps needed in the native app. Let's move on to the11.
React Native layer. Back in the index.js file, we'll start with imports. Notice
how we're now including the NativeAppEventEmitter.
Put the following functions inside the class definition:12.

import React, { Component } from 'react';
import {
 AppRegistry,
 StyleSheet,
 View,
 Text,
 NativeAppEventEmitter
} from 'react-native';

We'll name the app FromNativeToRN to match the module name we defined in13.
the native layer in step 6, using AppRegistry.registerComponent to register
the app with the same name. We'll also leave the basic styles in place:

class FromNativeToRN extends Component {
 // Defined in following steps
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 }
});

AppRegistry.registerComponent('FromNativeToRN', () =>
FromNativeToRN);

We'll set an initial state object with a userName string property for storing and14.
displaying the text that's received from the native layer:

class FromNativeToRN extends Component {
 state = {
 userName: ''
 }

 // Defined in following steps
}

Integration with Native Applications Chapter 13

[472]

The userName value passed into the React Native layer will be received as a15.
property. When the component mounts, we want to do two things: set
the userName state property if it's already defined by the native layer, and wire
an event listener to update userName when the text field in the native layer is
updated. Recall in step 7 that we defined the event's name to
be UserNameChanged, so that's the event we'll listen for. When the event is
received, we update the state.userName to the text that's passed along with the
event:

 componentWillMount() {
 this.setState({
 userName : this.props.userName
 });

 NativeAppEventEmitter.addListener('UserNameChanged', (body) =>
{
 this.setState({userName : body.userName});
 });
 }

Finally, we can add the render function, which simply renders the value stored16.
in state.userName:

 render() {
 return (
 <View style={styles.container}>
 <Text>Hello {this.state.userName}</Text>
 </View>
);
 }

It's time to run our app! First, in the root of the project, we can start up the React17.
Native app with the React Native CLI with the following command:

react-native start

Integration with Native Applications Chapter 13

[473]

We follow this by running the native app in the simulator via Xcode:

Integration with Native Applications Chapter 13

[474]

Communicating from React Native to an iOS
app container
The last recipe covered communication between layers in the direction of native to React
Native. In this recipe, we will cover communicating in the opposite direction: from React
Native to native. This time, we will render a user input element inside our React Native app
and set up a one-way binding from React Native to a UI component rendered in the native
app.

Getting ready
Just like the last recipe, this recipe depends on the final product of the first app in this
chapter, in the Combining a React Native app and a Native iOS app recipe. To follow along, be
sure you've finished that recipe.

How to do it...
Let's begin in the native layer. Open the EmbeddedApp native app in Xcode via1.
the .xcworkspace file. We'll first add imports to ViewController.m:

#import "ViewController.h"
#import "EmbeddedViewController.h"
#import <React/RCTRootView.h>
#import <React/RCTBridge.h>
#import <React/RCTEventDispatcher.h>

As we did in the last recipe, we need to add a reference to the React Native2.
bridge via the ViewController interface, providing a bridge between the native
controller and the React Native code:

@interface ViewController () <RCTBridgeDelegate> {
 EmbeddedViewController *embeddedViewController;
 RCTBridge *_bridge;
 BOOL isRNRunning;
}

Integration with Native Applications Chapter 13

[475]

We will also need a @property reference of userNameField that we will use in3.
a later step to wire to the UITextField:

@property (weak, nonatomic) IBOutlet UITextField *userNameField;

@end

Let's move on to defining the @implementation. Again, we must provide the4.
source of the React Native app, which will be served from localhost:

@implementation ViewController

- (NSURL *)sourceURLForBridge:(RCTBridge *)bridge {
 NSURL *jsCodeLocation = [NSURL
URLWithString:@"http://localhost:8081/index.bundle?platform=ios"];
 return jsCodeLocation;
}

Using the viewDidLoad method, we can also connect the controller to the5.
method that opens the React Native app in our container view
(openRNAppEmbeddedButtonPressed). We'll leave the
didReveiveMemoryWarning method as is:

- (void)viewDidLoad {
 [super viewDidLoad];
 [self openRNAppEmbeddedButtonPressed:nil];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

Like the last recipe, we'll need to update the6.
openRNAppEmbeddedButtonPressed method. This time, the moduleName
property is set to FromRNToNative to reflect the name that we will give the
React Native app when it is exported, as defined in a later step. We also define a
property of userName for passing data to the React Native layer:

- (IBAction)openRNAppEmbeddedButtonPressed:(id)sender {
 if(_bridge == nil) {
 _bridge = [[RCTBridge alloc] initWithDelegate:self
launchOptions:nil];
 }
 RCTRootView *rootView =
 [[RCTRootView alloc] initWithBridge :_bridge

Integration with Native Applications Chapter 13

[476]

 moduleName : @"FromRNToNative"
 initialProperties : nil];
 isRNRunning = true;
 [embeddedViewController setView:rootView];
}

The last two methods we'll need in this file are prepareForSegue for7.
configuring the embeddedViewController just before it is displayed, and
an updateUserNameField method that will be fired when our text input in the
native layer is updated with new text from the user:

- (void) prepareForSegue:(UIStoryboardSegue *)segue
sender:(id)sender {
 if([segue.identifier isEqualToString:@"embed"]) {
 embeddedViewController = segue.destinationViewController;
 }
}

-(void) updateUserNameField:(NSString *)userName {
 [_userNameField setText:userName];
}
@end

Unlike the previous recipe, we'll need to also update8.
the ViewController header file (ViewController.h). The method referenced
here, updateUserNameField, will be used when we define the
ViewController implementation:

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController
- (void) updateUserNameField:(NSString *)userName;

@end

Next, we're going to need to create a new UserNameManager native module.9.
First, create a Cocoa Touch class named UserNameManager. Once created, let's
open the implementation file (UserNameManger.m) and add our imports:

#import "UserNameManager.h"
#import "AppDelegate.h"
#import "ViewController.h"
#import <React/RCTBridgeModule.h>

Integration with Native Applications Chapter 13

[477]

For a more in-depth look at creating native modules, refer to the
Exposing Custom iOS Modules recipe in Chapter 11, Adding Native
Functionality.

Next, we'll define the class implementation. The main takeaway here is10.
the setUserName method, which is the method that we're exporting from the
native layer for use in the React Native app. We'll use this method in the React
Native app to update the value in the native Text Field. However, since we are
updating a native UI component, the operation must be performed on the main
thread. This is the purpose of the methodQueue function, which instructs the
module to execute on the main thread:

@implementation UserNameManager
RCT_EXPORT_MODULE();

- (dispatch_queue_t)methodQueue
{
 return dispatch_get_main_queue();
}

RCT_EXPORT_METHOD(setUserName: (NSString *)userName) {
 AppDelegate *delegate = (AppDelegate *)[[UIApplication
sharedApplication] delegate];
 ViewController *controller = (ViewController
*)delegate.window.rootViewController;
 [controller updateUserNameField:userName];
}
@end

We'll also need to update the UserNameMangager.h header file to use the React11.
Native bridge module:

#import <Foundation/Foundation.h>
#import <React/RCTBridgeModule.h>

@interface UserNameManager : NSObject <RCTBridgeModule>

@end

Integration with Native Applications Chapter 13

[478]

Like the last recipe, we'll need to add a Text Field and Label for the User Name12.
input:

We'll also need to add a Referencing Outlet from the Text Field we created in13.
the last set to our userNameField property:

Integration with Native Applications Chapter 13

[479]

If you need more information on how to create a Referencing Outlet,
view step 10 of the previous recipe.

We're finished with the native portion of this project, so let's turn to our React14.
Native code. Let's open the index.js file at the root of the project. We'll start
with our imports:

import React, { Component } from 'react';
import {
 AppRegistry,
 StyleSheet,
 View,
 Text,
 TextInput,
 NativeModules
} from 'react-native';

Let's define the app with the name FromRNToNative to line up with the15.
moduleName we declared in the native code in step 6, and register the component
with the same name. The state object only needs a userName string property
for hold the value that's saved to the TextInput component, which we'll add in
the component's render function:

class FromRNToNative extends Component {
 state = {
 userName: ''
 }

 // Defined on next step
}

AppRegistry.registerComponent('FromRNToNative', () =>
FromRNToNative);

Integration with Native Applications Chapter 13

[480]

The app's render function uses a TextInput component to take input from the16.
user, which it will then send to the native app via the React Native bridge. It does
this by calling the onUserNameChange method when the value of the
TextInput changes:

 render() {
 return (
 <View style={styles.container}>
 <Text>Enter User Name</Text>
 <TextInput
 style={styles.userNameField}
 onChangeText={this.onUserNameChange}
 value={this.state.userName}
 />
 </View>
);
 }

The last thing we need to do is define the onUserNameChange method that's17.
used by the onChangeText property of the TextInput component we defined
in the previous step. This method updates state.userName to the value in the
text input, and also sends the value along to the native code by using the
NativeModules component in React Native. NativeModules has
the UserNameManager class we defined as a Cocoa Touch class in the native
layer in step 9. We call the setUserName method that we defined on the class in
step 10 to pass the value along to the native layer, where it will be displayed in
the Text Field we created in step 12:

 onUserNameChange = (userName) => {
 this.setState({userName});
 NativeModules.UserNameManager.setUserName(userName);
 }

The app is done! Return to the root of the project to start up the React Native app18.
with the following command:

react-native start

Integration with Native Applications Chapter 13

[481]

Then, with the React Native app started, run the native EmbeddedApp project
from Xcode. Now, the input in the React Native app should communicate its
value to the input in the parent native app:

Integration with Native Applications Chapter 13

[482]

How it works...
To communicate from our React Native app to the parent native app, we created a native
module named UserNameManager with a setUserName method, which we exported from
the native layer, and used in the React Native app, in its onUserNameChange method. This
is the recommended way of communicating from React Native to native.

Handle being invoked by an external iOS
app
It is also a common behavior for native apps to communicate between one another via
linking, and are usually prompted to the user with the phrase Open in..., along with the
name of an app that can better handle an action. This is done by using a protocol that is
specific to your app. Just like any website link has a protocol of either http://
or https://, we can also create a custom protocol that will allow any other app to open
and send data to our app.

In this recipe, we will be creating a custom protocol called invoked://. By using
the invoked:// protocol, any other app can use it to run our app and pass data to it.

Getting ready
For this recipe, we'll be starting from a new vanilla React Native app. Let's name
it InvokeFromNative.

How to do it...
Let's start by opening the native layer of the new project in Xcode. The first thing1.
we need to do is adjust the project's Build Settings. This can be done by selecting
the root project in the left panel, then choosing the Build Settings tab along the
top of the middle panel:

Integration with Native Applications Chapter 13

[483]

We'll need to add a new entry to the Header Search Paths field:2.

For the project to know the location of the React Native JavaScript, it needs the
$(SRCROOT)/../node_modules/react-native/Libraries value. Let's add it
as a recursive entry:

We also need to register our custom protocol, which will be used by other apps.3.
Open the Info.plist file as source code (right-click then Open As | Source
Code). Let's add an entry to the file that will register our application under the
invoked:// protocol:

<key>CFBundleURLTypes</key>
<array>
 <dict>
 <key>CFBundleTypeRole</key>
 <string>Editor</string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>invoked</string>
 </array>
 </dict>
</array>

Integration with Native Applications Chapter 13

[484]

Next, we need to add the RCTLinkingManager to the AppDelegate4.
implementation, which lives in AppDelegate.m, and wire it to our app:

#import "AppDelegate.h"

#import <React/RCTBundleURLProvider.h>
#import <React/RCTRootView.h>
#import <React/RCTLinkingManager.h>

@implementation AppDelegate

// The rest of the AppDelegate implementation

- (BOOL)application:(UIApplication *)application
 openURL:(NSURL *)url
 options:(NSDictionary<UIApplicationOpenURLOptionsKey,id>
*)options
{
 return [RCTLinkingManager application:application openURL:url
options:options];
}

@end

Now, let's move on to the React Native layer. Inside index.js, we'll add our5.
imports, which includes the Linking component:

import React, { Component } from 'react';
import {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 Linking
} from 'react-native';

Integration with Native Applications Chapter 13

[485]

Next, we'll create the class definition and register the component6.
as InvokeFromNative. We'll also define an initial state object with a status
string property set to the value 'App Running':

class InvokeFromNative extends Component {
 state = {
 status: 'App Running'
 }

 // Defined on following steps
}

AppRegistry.registerComponent('InvokeFromNative', () =>
InvokeFromNative);

Now, we'll use the mount and unmount life cycle hooks to add/remove the event7.
listener for the invoked:// protocol. When the event is heard, the
onAppInvoked method, which is defined in the next step, will be fired:

 componentWillMount() {
 Linking.addEventListener('url', this.onAppInvoked);
 }

 componentWillUnmount() {
 Linking.removeEventListener('url', this.onAppInvoked);
 }

The onAppInvoked function simply takes the event from the event listener and8.
updates state.status to reflect that invocation has happened, displaying the
protocol via event.url:

 onAppInvoked = (event) => {
 this.setState({
 status: `App Invoked by ${ event.url }`
 });
 }

Integration with Native Applications Chapter 13

[486]

The render method's only real purpose in this recipe is to render the status9.
property on state:

 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.instructions}>
 App Status:
 </Text>
 <Text style={styles.welcome}>
 {this.state.status}
 </Text>
 </View>
);
 }

We'll also add a few basic styles to center and size the text:10.

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 welcome: {
 fontSize: 20,
 textAlign: 'center',
 margin: 10,
 },
 instructions: {
 textAlign: 'center',
 color: '#333333',
 marginBottom: 5,
 },
});

Integration with Native Applications Chapter 13

[487]

Our app is finished. Once you've started running the app, you should see11.
something like this:

With the app running, we can simulate the action of another app opening our12.
React Native app using the invoked:// protocol. This can be done with the
following Terminal command:

 xcrun simctl openurl booted invoked://

Integration with Native Applications Chapter 13

[488]

Once invoked, the app should update to reflect the invocation:

Integration with Native Applications Chapter 13

[489]

How it works...
In this recipe, we covered how to register a custom protocol (or URL schema) for allowing
our app to be invoked by other apps. The aim of this recipe was to keep our example as
simple as possible, so we did not build out the handling data we passed to an app via the
linking mechanism. However, it is entirely possible to do so if the needs of your app
require it. For a deeper dive on the Linking component, check out the official documents
at https:/​/​facebook. ​github. ​io/ ​react- ​native/ ​docs/ ​linking.

Combining a React Native app and a native
Android app
Since the Android platform still holds the majority stake in the smartphone market space,
it's likely that you'll want to build the app for both Android as well as iOS. A large
advantage of React Native development is making this process easier. But what happens
when you want to write a new feature using React Native for a working Android app that's
already been published? Fortunately, React Native makes this possible as well.

This recipe will cover the process of embedding a React Native app inside an existing
Android app by displaying the React Native app inside a container view. The steps here are
used as a baseline for the recipes that follow, which involve communication with a React
Native app.

Getting ready
In this section, we will create a sample Android application using Android Studio
called EmbedApp. If you have a base Android application you would like to work with, you
can skip these steps and proceed to the actual implementation:

Open Android Studio and create a new project (File|New Project)1.
Set the application name to EmbeddedApp and fill out your company domain.2.
Press Next
Leave Empty Activity selected as the default and press Next3.
Leave the Activity properties as they are by default and press Finish4.

https://facebook.github.io/react-native/docs/linking
https://facebook.github.io/react-native/docs/linking
https://facebook.github.io/react-native/docs/linking
https://facebook.github.io/react-native/docs/linking
https://facebook.github.io/react-native/docs/linking
https://facebook.github.io/react-native/docs/linking
https://facebook.github.io/react-native/docs/linking
https://facebook.github.io/react-native/docs/linking
https://facebook.github.io/react-native/docs/linking
https://facebook.github.io/react-native/docs/linking
https://facebook.github.io/react-native/docs/linking
https://facebook.github.io/react-native/docs/linking
https://facebook.github.io/react-native/docs/linking
https://facebook.github.io/react-native/docs/linking
https://facebook.github.io/react-native/docs/linking
https://facebook.github.io/react-native/docs/linking
https://facebook.github.io/react-native/docs/linking

Integration with Native Applications Chapter 13

[490]

How to do it...
At this point, our app has no references to React Native, so we'll start by1.
installing it. In the app's root folder, in the Terminal, install React Native from
the command line using yarn:

yarn add react-native

Alternatively, you can use npm:

 npm install react-native --save

We'll also need a Node.js script for starting the React Native app. Let's2.
open package.json and add the following property as a member of
the scripts object:

 "start": "node node_modules/react-native/local-cli/cli.js start"

We only need a very simple React Native app for this recipe. Let's create3.
an index.android.js file with the following boilerplate app:

import React, { Component } from 'react';
import { AppRegistry, StyleSheet, View, Text } from 'react-native';

export default class EmbedApp extends Component {
 render() {
 return (<View style={styles.container}>
 <Text>Hello in React Native</Text>
 </View>);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center', backgroundColor: '#F5FCFF'
 }
});

AppRegistry.registerComponent('EmbedApp', () => EmbedApp);

Integration with Native Applications Chapter 13

[491]

Naming this file index.android.js indicates to React Native that this code only
applies to the Android version of this app. This is recommended by the official
docs when platform-specific code is more complex. You can read more about it
at https:/ ​/​facebook. ​github. ​io/​react- ​native/ ​docs/ ​platform- ​specific-
code#platform- ​specific- ​extensions.

Let's return to Android Studio and open the build.gradle file (from4.
the app module) and add the following to the dependencies:

dependencies {
 implementation fileTree(dir: "libs", include: ["*.jar"])
 implementation "com.android.support:appcompat-v7:27.1.1"
 implementation "com.facebook.react:react-native:+" // From
node_modules
}

We'll also need a reference to the local React Native maven directory. Open the5.
other build.gradle and add the following line to the
allprojects.repositories object:

allprojects {
 repositories {
 mavenLocal()
 maven {
 url "$rootDir/../node_modules/react-native/android"
 }
 google()
 jcenter()
 }
}

Next, let's update the app's permissions to use the internet, and the system alert6.
window. We'll open AndroidManifest.xml and add the following permissions
to the <manifest> node:

<?xml version="1.0" encoding="utf-8"?>
 <manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.warlyware.embeddedapp">

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission
android:name="android.permission.SYSTEM_ALERT_WINDOW"/>

 <application

https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions
https://facebook.github.io/react-native/docs/platform-specific-code#platform-specific-extensions

Integration with Native Applications Chapter 13

[492]

 android:name=".EmbedApp"
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"
/>

 <category
android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

 </manifest>

We're ready to update the MainApplication Java7.
class. The getUseDeveloperSupport method here will enable the development
menu. The getPackages method is a list of packages used by the app, and only
includes MainReactPackage() since we are only using the main React package.
The getJSMainModuleName method returns the index.android string, which
refers to the index.android.js file in the React Native layer:

import android.app.Application;

import com.facebook.react.ReactApplication;
import com.facebook.react.ReactNativeHost;
import com.facebook.react.ReactPackage;
import com.facebook.react.shell.MainReactPackage;

import java.util.Arrays;
import java.util.List;

public class MainApplication extends Application implements
ReactApplication {
 private final ReactNativeHost mReactNativeHost = new
ReactNativeHost(this) {
 @Override
 public boolean getUseDeveloperSupport() {
 return BuildConfig.DEBUG;
 }

Integration with Native Applications Chapter 13

[493]

 @Override
 protected List<ReactPackage> getPackages() {
 return Arrays.<ReactPackage>asList(
 new MainReactPackage()
);
 }
 };

 @Override
 public ReactNativeHost getReactNativeHost() {
 return mReactNativeHost;
 }
 @Override
 protected String getJSMainModuleName() {
 return "index.android";
 }
}

Next, let's create another new Java class with the name ReactFragment. This8.
class needs three methods: OnAttach is called when the fragment is attached to
the main activity, OnCreateView instantiates the view for the fragment, and
OnActivityCreated is called when the activity is being created:

import android.app.Fragment;
import android.content.Context;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.ViewGroup;

import com.facebook.react.ReactInstanceManager;
import com.facebook.react.ReactRootView;

public abstract class ReactFragment extends Fragment {
 private ReactRootView mReactRootView;
 private ReactInstanceManager mReactInstanceManager;

 // This method returns the name of our top-level component to
show
 public abstract String getMainComponentName();

 @Override
 public void onAttach(Context context) {
 super.onAttach(context);
 mReactRootView = new ReactRootView(context);
 mReactInstanceManager =
 ((EmbedApp) getActivity().getApplication())
 .getReactNativeHost()

Integration with Native Applications Chapter 13

[494]

 .getReactInstanceManager();
 }

 @Override
 public ReactRootView onCreateView(LayoutInflater inflater,
ViewGroup group, Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 return mReactRootView;
 }

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 mReactRootView.startReactApplication(
 mReactInstanceManager,
 getMainComponentName(),
 getArguments()
);
 }
}

Finally, create a Java class called EmbedFragment that will10.
extend ReactFragment:

import android.os.Bundle;

public class EmbedFragment extends ReactFragment {
 @Override
 public String getMainComponentName() {
 return "EmbedApp";
 }
}

Let's open MainActivity.java and add implements11.
DefaultHardwareBackBtnHandler to the class definition for
handling hardware back button events. You can view the annotated source code
for this React Native class here: https:/ ​/ ​github. ​com/ ​facebook/ ​react- ​native/
blob/​master/ ​ReactAndroid/ ​src/ ​main/ ​java/ ​com/ ​facebook/ ​react/ ​modules/
core/​DefaultHardwareBackBtnHandler. ​java.

https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java
https://github.com/facebook/react-native/blob/master/ReactAndroid/src/main/java/com/facebook/react/modules/core/DefaultHardwareBackBtnHandler.java

Integration with Native Applications Chapter 13

[495]

We'll also be adding a few methods to the class. The onCreate method will set12.
the content view to the Main Activity and add a FAB button that, when clicked,
will instantiate a new instance of the EmbedFragment we defined in step 10. That
instance of EmbedFragment is used by the fragment manager to add the React
Native app to the view. The remaining methods handle the events that occur
when the device's system buttons are pressed (such as the back, pause, and
resume buttons):

import android.app.Fragment;
import android.os.Bundle;
import android.support.design.widget.FloatingActionButton;
import android.support.v7.app.AppCompatActivity;
import android.support.v7.widget.Toolbar;
import android.view.KeyEvent;
import android.view.View;

import com.facebook.react.ReactInstanceManager;
import
com.facebook.react.modules.core.DefaultHardwareBackBtnHandler;

public class MainActivity extends AppCompatActivity implements
DefaultHardwareBackBtnHandler {
 private ReactInstanceManager mReactInstanceManager;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);

 FloatingActionButton fab = (FloatingActionButton)
findViewById(R.id.fab);
 fab.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Fragment viewFragment = new EmbedFragment();
getFragmentManager().beginTransaction().add(R.id.reactnativeembed,
viewFragment).commit(); }
 });

 mReactInstanceManager = ((EmbedApp)
getApplication()).getReactNativeHost().getReactInstanceManager();
 }

 @Override

Integration with Native Applications Chapter 13

[496]

 public void invokeDefaultOnBackPressed() {
 super.onBackPressed();
 }

 @Override
 protected void onPause() {
 super.onPause();

 if (mReactInstanceManager != null) {
 mReactInstanceManager.onHostPause(this);
 }
 }

 @Override
 protected void onResume() {
 super.onResume();

 if (mReactInstanceManager != null) {
 mReactInstanceManager.onHostResume(this, this);
 }
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();

 if (mReactInstanceManager != null) {
 mReactInstanceManager.onHostDestroy(this);
 }
 }

 @Override
 public void onBackPressed() {
 if (mReactInstanceManager != null) {
 mReactInstanceManager.onBackPressed();
 } else {
 super.onBackPressed();
 }
 }

 @Override
 public boolean onKeyUp(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_MENU && mReactInstanceManager
!= null) {
 mReactInstanceManager.showDevOptionsDialog();
 return true;
 }
 return super.onKeyUp(keyCode, event);

Integration with Native Applications Chapter 13

[497]

 }
}

The last step is to add some settings for the layout when the fragment is loaded.13.
We'll need to edit the content_main.xml file, which is located in the /res
folder. This is the main content of the view. It holds the container view
(FrameLayout) that we will attach the fragment to, and the other native elements
should be displayed:

 <FrameLayout
 android:layout_width="match_parent"
 android:layout_height="300dp"
 android:layout_centerVertical="true"
 android:layout_alignParentStart="true"
 android:id="@+id/reactnativeembed"
 android:background="#FFF">
</FrameLayout>

In the Terminal, run the following command:14.

 react-native start

This builds and hosts the React Native app. Now, we can open the app in
the Android emulator. You will see the following after pressing the FAB button:

Integration with Native Applications Chapter 13

[498]

How it works...
To accomplish rendering React Native inside of our Android application, we had to
perform a few steps. First, we had to define an Application class that implements
the ReactApplication interface. Then, we had to create a Fragment that would be
responsible for instantiating and rendering the ReactRootView. With a fragment, we are
able to render the React Native view in our MainActivity. In this recipe, we added the
fragment to our fragment container view. This essentially replaces all of the application
content with the React Native application.

We covered a lot of integration code in this recipe. For a more in-depth look at how each of
these pieces work, you can read the official documentation at https:/ ​/​facebook. ​github.
io/​react-​native/ ​docs/ ​integration- ​with- ​existing- ​apps. ​html.

Communicating from an Android app to
React Native
Now that we have covered how to render our React Native app inside an Android app in
the Combining a React Native app and a native Android app recipe, we're ready to take the next
step. Our React Native application should be more than a dummy UI. It should be able to
react to actions that are going on in its parent application.

In this recipe, we will accomplish sending data from our Android application to our
embedded React Native app. The React Native application can accept data when it is first
instantiated, and then at runtime. We will be covering how to accomplish both methods.
This recipe will use EditText in the Android app and set up one-way binding to the React
Native app.

Getting ready
For this recipe, please ensure that you have an Android app with a React Native app
embedded. If you need guidance to accomplish this, please complete the Combining a React
Native app and a native Android app recipe.

https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html

Integration with Native Applications Chapter 13

[499]

How to do it...
In Android Studio, open the Android portion of the React Native app. First, we'll1.
need to edit content_main.xml.
We'll only need a very simple layout for this app. You can edit the file by2.
pressing the Text tab on the bottom to open the source editor and add/replace
the following nodes:

<TextView android: layout_width = "wrap_content"
android: layout_height = "wrap_content"
android: text = "Press the Mail Icon to start the React Native
application"
android: id = "@+id/textView" />
<FrameLayout android: layout_width = "match_parent"
android: layout_height = "300dp"
android: layout_centerVertical = "true"
android: layout_alignParentStart = "true"
android: id = "@+id/reactnativeembed"
android: background = "#FFF" >
</FrameLayout>
<LinearLayout android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="75dp"
android:layout_below="@+id/textView"
android:layout_centerHorizontal="true">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="User Name:"
 android:id="@ + id / textView2"
 android:layout_weight="0.14 " />
 <EditText android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@ + id / userName"
 android:layout_weight="0.78"
 android:inputType="text"
 android:singleLine="true"
 android:imeOptions="actionDone"/>
</LinearLayout>

Open MainActivity.java and add the following class fields:3.

private ReactInstanceManager mReactInstanceManager;
private EditText userNameField;
private Boolean isRNRunning = false;

Integration with Native Applications Chapter 13

[500]

Inside the onCreatemethod, set the userNameField property with the4.
following code:

 userNameField = (EditText) findViewById(R.id.userName);

We'll be using a FAB button to update the content of the Android app to be our5.
React Native app. We will need to replace
FloatingActionButtononClickListener with the following:

fab.setOnClickListener(new View.OnClickListener() {
 @Override public void onClick(View view) {
 Fragment viewFragment = new EmbedFragment();
 if (userNameField.getText().length() > 0) {
 Bundle launchOptions = new Bundle();
 launchOptions.putString("userName",
 userNameField.getText().toString());
 viewFragment.setArguments(launchOptions);
 }
getFragmentManager().beginTransaction().add(R.id.reactnativeembed,
viewFragment).commit();
 isRNRunning = true;
 }
});

Next, we need to add a TextChangedListener to our userNameField in6.
the onCreate method:

userNameField.addTextChangedListener(new TextWatcher() {
 @Override public void beforeTextChanged(CharSequence s, int
start, int count, int after) {}
 @Override public void onTextChanged(CharSequence s, int start,
int before, int count) {}
 @Override public void afterTextChanged(Editable s) {
 if (isRNRunning) {
 sendUserNameChange(s.toString());
 }
 }
});

The last change we need to make for our Activity is to add methods that will7.
send the event across the React Native bridge:

private void sendUserNameChange(String userName) {
 WritableMap params = Arguments.createMap();
 params.putString("userName", userName);

Integration with Native Applications Chapter 13

[501]

 sendReactEvent("UserNameChanged", params);
}

private void sendReactEvent(String eventName, WritableMap params) {
 mReactInstanceManager.getCurrentReactContext()
.getJSModule(DeviceEventManagerModule.RCTDeviceEventEmitter.class)
 .emit(eventName, params);
}

Let's return to the JavaScript layer. We'll use the addListener method of8.
the NativeAppEventEmitter component to listen to
the UserNameChanged event that was sent from the native Android code, and
update state.userName with the data from the event:

import React, { Component } from 'react';
import {
 AppRegistry,
 StyleSheet,
 View,
 Text,
 NativeAppEventEmitter
} from 'react-native';

export default class EmbedApp extends Component<{}> {
 componentWillMount() {
 this.setState({
 userName : this.props.userName
 });

 NativeAppEventEmitter.addListener('UserNameChanged', (body) =>
{
 this.setState({userName : body.userName});
 });
 }
 render() {
 return (
 <View style={styles.container}>
 <Text>Hello {this.state.userName}</Text>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',

Integration with Native Applications Chapter 13

[502]

 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 welcome: {
 fontSize: 20,
 textAlign: 'center',
 margin: 10,
 },
 instructions: {
 textAlign: 'center',
 color: '#333333',
 marginBottom: 5,
 },
});

AppRegistry.registerComponent('EmbedApp', () => EmbedApp);

Now, if you run the application, you can enter text in the User Name field and9.
start the React Native application:

Integration with Native Applications Chapter 13

[503]

How it works...
In this recipe, we rendered the fragment as an inline view. In step 2, we added an
empty FrameLayout that we targeted in step 5 to render the fragment. The binding
functionality was accomplished by using the React Native bridge via
RCTDeviceEventEmitter. This was originally designed to be used with native modules,
but as long as you have access to the ReactContext instance, you can use it for any
communication with the React Native JavaScript layer.

Communicating from React Native to an
Android app container
As we discussed in the previous recipe, it is extremely beneficial for our
embedded application to be aware of what's going on around it. We should also make an
effort so that our Android parent application can be informed about what goes on inside
the React Native application. The application should not only be able to perform business
logic – it should be able to update its UI to reflect changes in the embedded app.

This recipe shows us how to leverage native modules to update the native UI that's created
inside the Android application. We will have a text field in our React Native app that
updates a text field that is rendered in the host Android application.

Getting ready
For this recipe, please ensure that you have an Android application with a React Native
app embedded. If you need guidance to accomplish this, please complete the Combining a
React Native app and a native Android app recipe.

How to do it...
Open Android Studio to your Project and open content_main.xml.1.
Press the Text tab on the bottom to open the source editor and add/replace the2.
following nodes:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

Integration with Native Applications Chapter 13

[504]

 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 tools:context="com.embedapp.MainActivity"
 tools:showIn="@layout/activity_main">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Press the Mail Icon to start the React Native
application"
 android:id="@+id/textView" />

 <FrameLayout
 android:layout_width="match_parent"
 android:layout_height="300dp"
 android:layout_centerVertical="true"
 android:layout_alignParentStart="true"
 android:id="@+id/reactnativeembed"
 android:background="#FFF"></FrameLayout>

 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="75dp"
 android:layout_below="@+id/textView"
 android:layout_centerHorizontal="true">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="User Name:"
 android:id="@+id/textView2"
 android:layout_weight="0.14" />

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/userName"
 android:layout_weight="0.78"
 android:inputType="text"
 android:singleLine="true"

Integration with Native Applications Chapter 13

[505]

 android:imeOptions="actionDone"/>
 </LinearLayout>
</RelativeLayout>

Create a Java class named UserNameManager. This will be a native module that3.
will serve the purpose of updating the EditTextfield we added to the layout.

If you are not familiar with creating a native module for React Native,
please refer to the Exposing custom Android modules recipe in Chapter
11, Adding Native Functionality.

Most of the work in UserNameManager.java is being done in the setUserName4.
method. Here, the Android layer updates the text contents of the view based on
what it's sent from the React Native layer. The React method isn't necessarily
going to run on the main UI thread, so we use mainActivity.runOnUiThread
to update the view when the main UI thread is ready:

public class UserNameManager extends ReactContextBaseJavaModule {
 public UserNameManager(ReactApplicationContext
reactApplicationContext) {
 super(reactApplicationContext);
 }
 @Override public String getName() {
 return "UserNameManager";
 }
 @ReactMethod public void setUserName(final String userName) {
 Activity mainActivity =
getReactApplicationContext().getCurrentActivity();
 final EditText userNameField = (EditText)
mainActivity.findViewById(R.id.userName);
 mainActivity.runOnUiThread(new Runnable() {
 @Override public void run() {
 userNameField.setText(userName);
 }
 });
 }
}

Integration with Native Applications Chapter 13

[506]

To export the UserNameManager module, we'll need to edit5.
the UserNamePackage Java class. We can export it to the React Native layer by
calling modules.add, passing in a new UserNameManager that takes
the reactContext as a parameter:

public class UserNamePackage implements ReactPackage {
 @Override public List < Class << ? extends JavaScriptModule >>
createJSModules() {
 return Collections.emptyList();
 }
 @Override public List < ViewManager >
createViewManagers(ReactApplicationContext reactContext) {
 return Collections.emptyList();
 }
 @Override public List < NativeModule >
createNativeModules(ReactApplicationContext reactContext) {
 List < NativeModule > modules = new ArrayList < > ();
 modules.add(new UserNameManager(reactContext));
 return modules;
 }
}

Add the UserNamePackage in the getPackages method in MainApplication:6.

 @Override
 protected List<ReactPackage> getPackages() {
 return Arrays.<ReactPackage>asList(
 new MainReactPackage(),
 new UserNamePackage()
);
 }

Now, we need to have our React Native UI render a TextField and call7.
our UserNameManager native module. Open index.android.js and import
the TextInput and NativeModules modules from 'react-native'.
Create a variable reference for the UserNameManager:8.

 const UserNameManager = NativeModules.UserNameManager;

The React Native app will simply need a TextInput for manipulating a9.
userName property on the state object:

let state = {
 userName: ''
}

Integration with Native Applications Chapter 13

[507]

onUserNameChange = (userName) => {
 this.setState({
 userName
 });

 UserNameManager.setUserName(userName);
}

render() {
 return (
 <View style={styles.container}>
 <Text>Embedded RN App</Text>
 <Text>Enter User Name</Text>
 <TextInput style={styles.userNameField}
 onChangeText={this.onUserNameChange}
 value={this.state.userName}
 />
 </View>
);
}

After running the application, starting the React Native embedded app, and10.
adding text to the text field, you should see something similar to what's shown in
the following screenshot:

Integration with Native Applications Chapter 13

[508]

How it works...
To get our React Native app to update the native app containers, we created a native
module. This is the recommended way of communicating from JavaScript to the native
layer. However, since we had to update a native UI component, the operation had to be
performed on the main thread. This is achieved by getting a reference
to MainActivity and calling the runOnUiThread method. This is done in
the setUserName method of step 4.

Handle being invoked by an external
Android app
Earlier in this chapter, we covered how to handle invocation from an external app in iOS in
the Handle being invoked by an external Android app recipe. In this recipe, we'll cover the same
concept of deep linking in Android.

How to do it...
Let's begin by opening the React Native Android project in Android Studio and1.
navigating to AndroidManifest.xml.
For our example, we will register our application under invoked://scheme.2.
We'll update the <activity> node to the following:

<activity
android:name=".MainActivity"
android:label="@string/app_name"
android:configChanges="keyboard|keyboardHidden|orientation|screenSi
ze"
android:windowSoftInputMode="adjustResize"
android:launchMode="singleTask">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

Integration with Native Applications Chapter 13

[509]

For more information on how this intent-filter works, refer to the
official Android documentation at https:/ ​/​developer. ​android. ​com/
training/ ​app- ​links/ ​deep- ​linking.

Next, we'll need to create a simple React Native app whose UI reacts to being3.
invoked. Let's open the index.android.js file. We'll start by
importing the Linking module in the import block from 'react-native':

import React from 'react';
import { Platform, Text, Linking } from 'react-native';

Let's build out the App class for the React Native app. When the component4.
mounts, we'll register a Linking event listener with an event we'll name url.
When this event occurs, onAppInvoked will be fired, updating the status
property of state, along with the event that's passed to the callback:

export default class App extends React.Component {
 state = {
 status: 'App Running'
 }
 componentWillMount() {
 Linking.addEventListener('url', this.onAppInvoked);
 }
 componentWillUnmount() {
 Linking.removeEventListener('url', this.onAppInvoked);
 }
 onAppInvoked = (event) => {
 this.setState({ status: `App Invoked by ${event.url}` });
 }
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.instructions}>
 App Status:
 </Text>
 <Text style={styles.welcome}>
 {this.state.status}
 </Text>
 </View>
);
 }
}

https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking
https://developer.android.com/training/app-links/deep-linking

Integration with Native Applications Chapter 13

[510]

Running the application and invoking it from another app will look something5.
like this:

How it works...
In this recipe, we registered our URL schema for linking by editing
the AndroidManifest.xml file in step 2. An important thing to note is the change of
the launchMode to singleTask. This prevents the operating system from creating
multiple instances of our React activity. This is important if you want to be able to properly
capture the data that's passed along with the intent.

14
Deploying Your App

In this chapter, we will cover the following recipes:

Deploying development builds to an iOS device
Deploying development builds to an Android device
Deploying test builds to HockeyApp
Deploying iOS test builds to TestFlight
Deploying production builds to the Apple App Store
Deploying production builds to the Google Play Store
Deploying Over-The-Air updates
Optimizing React Native app size

Introduction
If you're an independent developer, you're likely to go through a few different stages of
development. The first stage will find you testing your app on your personal iOS or
Android device. After exhausting this stage, you're probably going to want to share it with
a select group of people to get user feedback. Eventually, you're going to reach a point
where your app is ready to be released into the world via app stores. This chapter will walk
through each one of these stages and cover pushing updates to your app, along with a few
optimization tips.

Deploying Your App Chapter 14

[512]

Deploying development builds to an iOS
device
During development, you'll likely spend much of your time testing your iOS app using the
iOS Simulator that comes installed with Xcode. While the iOS Simulator is by far the best
performing and closest method to running our application on an iOS device, it's still not the
same as the real thing. The iOS Simulator uses the computer's CPU and GPU to render the
simulated OS, so depending on your development machine, it may end up performing
better (or worse) than the actual device.

Thankfully, Expo's ability to test running code on an actual device comes one step closer to
the real end product, but there are still differences between a final app and a development
app running in Expo. And if you're building a pure React Native app, you won't have the
luxury of using Expo to easily run the app on a device.

Either way, you'll eventually want to test the real app on a physical device so you can
experience the actual UX and performance of the end product.

In this recipe, we will walk you through taking a React Native app and deploying it to an
iPhone or iPad.

Getting ready
We'll just need a new pure React Native app, which we'll name TestDeployApp. You can
create the app via the following command:

 react-native init

Also, make sure your iOS device is connected to your development machine via USB.

How to do it...
Let's first open the newly created React Native iOS project in Xcode. Open the1.
Project Editor by selecting the root of the project in the left panel.
Under the General tab of the Project Editor, select the iOS app in the TARGETS2.
section on the left. Under the Signing section, select your Team, as follows:

Deploying Your App Chapter 14

[513]

Repeat this step for two each of the entries in the TARGETS list.3.
Select your device in the destination selector, as follows:4.

To start running the app on your connected device, just press the Play button.5.
You'll have to make sure your device is plugged in, unlocked, and trusted for it
to show up in the devices list in Xcode. If this is the first time running an app
you've developed on this device, you'll also need to adjust the settings to trust
apps from your developer account. On the iOS device, this setting can be found
in Settings | General | Device Management.

Deploying Your App Chapter 14

[514]

How it works...
Deploying our development build to the device simply involves designating a Team, then
running the app as you would for use on the Xcode simulator, but targeting the plugged in
device instead. We use the localhost packager to create our bundle file. This file then gets
saved locally on the device for the future. Note that, since this is a development build, the
code is not yet as optimized as it will be in a final release. You will see a significant
performance increase when moving to a production release.

Deploying development builds to an Android
device
While developing an Android application, you'll most often probably be running the app
on an Android emulator. While convenient, an emulator will have poor performance when
compared with a real Android device.

The best way to test an app is to use a physical Android device. This recipe will walk
through deploying a React Native app to a physical Android device.

Getting ready
We'll just need a new pure React Native app, which we'll name TestDeployApp. You can
create the app via this command:

react-native init

Also, make sure your iOS device is connected to your development machine via USB.

How to do it...
Let's start by opening our React Native Android project in Android Studio.1.
Next, press the run button, as follows:2.

Deploying Your App Chapter 14

[515]

Make sure the Choose a running device radio button is selected, and that your3.
device is displayed in the list. Press OK to continue, as follows:

There's more...
The React Native packager should start when you run the application. If it doesn't, you'll
have to manually start the packager. If you see an error screen with the message Could not
get BatchedBridge, please make sure your bundle is packaged correctly or Could not
connect to development server, you should be able to fix this by running the following
command in the Terminal:

adb reverse tcp:8081 tcp:8081

How it works...
Much like Xcode, we can run our app by simply plugging in a real device, pressing Run,
and selecting the device the app should run on. The only complication that might arise is
setting up communication between the device and the development machine. These
problems can often be solved with the command:

adb reverse

Deploying Your App Chapter 14

[516]

This establishes a port forward from the device to the host computer. This is a development
build, and the code is not yet optimized, so there will be a performance increase once the
app is built as a production release.

Deploying test builds to HockeyApp
Before releasing an app into the wild, it's important to stress test your app and to get user
feedback when possible. To accomplish this, you need to create a signed build of your app
that you can share with a group of test users. For a robust test build, you'll need two things:
analytics/reporting on app performance, and a mechanism for delivery. HockeyApp
provides this and more for your test builds on both iOS and Android. While both of the
official platforms for releasing applications to the Apple App Store and Google Play Store
provide functionality for testing and analytics, HockeyApp provides a unified place for
handling these concerns, and a secondary source of metrics, crash reporting, and more.

It should be noted that HockeyApp was recently acquired by Microsoft. They have
announced that the HockeyApp product will be discontinued in favor of Microsoft's App
Center in November of 2019. You can read more about it on the product transition page
at https:/​/​hockeyapp. ​net/ ​transition. This recipe will walk through deploying a React
Native app to HockeyApp for testing purposes. We will walk through both iOS and
Android releases.

Getting ready
For this recipe, we will be using the same empty, pure React Native app from the last two
recipes, which we named TestDeployApp. For iOS deployments, you will need to be
enrolled in the Apple Developer Program, and you'll need to have cocoapods installed.
The easiest way to install cocoapods is to use homebrew, via this command:

 brew install cocoapods

You'll also need to have a HockeyApp account, which you can sign up for at their website
at https:/​/​hockeyapp. ​net/ ​

https://hockeyapp.net/transition
https://hockeyapp.net/transition
https://hockeyapp.net/transition
https://hockeyapp.net/transition
https://hockeyapp.net/transition
https://hockeyapp.net/transition
https://hockeyapp.net/transition
https://hockeyapp.net/transition
https://hockeyapp.net/transition
https://hockeyapp.net/
https://hockeyapp.net/
https://hockeyapp.net/
https://hockeyapp.net/
https://hockeyapp.net/
https://hockeyapp.net/
https://hockeyapp.net/
https://hockeyapp.net/

Deploying Your App Chapter 14

[517]

How to do it...
First, we need to install the react-native-hockeyapp module in our1.
application. Open the Terminal, go to your application's root project directory,
and enter the following command:

 npm install react-native-hockeyapp --save

Go into your ios/ directory and initialize your Podfile:2.

 pod init

Open your Podfile and add pod "HockeySDK" to your target.3.
Back in the Terminal, install the Podfile, as follows:4.

 pod install

Now, let's open up Xcode and open our React Native project:5.
(ios/TestDeployApp.xcodeproj).
I recommend changing your Bundle Identifier to something more meaningful6.
than the default, so please change it in your General Settings dialog, as follows:

Deploying Your App Chapter 14

[518]

Drag and drop ./ios/Pods/Pods.xcodeproj into the Libraries group in your7.
project navigator, as follows:

Drag and drop the RNHockeyApp.h and RNHockeyApp.m files located in8.
./node_modules/react-native-

hockeyapp/RNHockeyApp/RNHockeyApp into the same Libraries group.
Next, we'll go to the HockeyApp site and create our app there. Log in and click9.
the New App.
Since we do not have our build ready yet, click manually in the phrase Don't10.
want to upload a build? Create the app manually instead in the following
modal.
When filling out the fields in the Create App form, be sure to match the Title and11.
Bundle Identifier that we defined earlier in step 6, then press Save, as follows:

Deploying Your App Chapter 14

[519]

Make a note of the App ID since we'll be using it in the next step.12.
Open App.js and add the following code:13.

 import HockeyApp from 'react-native-hockeyapp';

 export default class
 TestDeployApp extends Component {
 componentWillMount() {
 HockeyApp.configure(YOUR_APP_ID_HERE, true);
 }

 componentDidMount() {
 HockeyApp.start();
 HockeyApp.checkForUpdate();
 }
 }

Back in Xcode, set Generic iOS Device as your destination target and build14.
(Product | Build) the app, as follows:

Deploying Your App Chapter 14

[520]

Now, we need to create our .ipa file. This can be done from the Xcode menu15.
via Product | Archive.
This will open the Archives list. Press the Distribute App button to start the16.
process of creating the .ipa.
Select the Development option and press Next.17.
Your provisioning team should automatically be selected. With the correct Team18.
selected, press Next.
Leave the default Export settings and press Next. On the summary page, also19.
press Next.
Select the destination directory and press Export.20.
Back in the HockeyApp browser window, click Add Version.21.
Drag the .ipa file we just exported into the modal window.22.
We can leave the settings here set to their defaults, so continue pressing23.
Next until the last modal screen, then press Done at the summary screen. That's
it for the iOS app. You can add users to your HockeyApp app, and your testers
should then be able to download your app. Let's switch over to the Android side
of things. Open Android Studio, then open the Android folder in our React
Native.
Repeat step 8 to step 11, changing the Platform to Android, as follows:24.

Deploying Your App Chapter 14

[521]

Now, we need to build our .apk file. You can find the most up-to-date method25.
for building the .apk in the React Native documentation, located at:

https:/​/ ​facebook. ​github. ​io/ ​react- ​native/ ​docs/ ​signed- ​apk-​android. ​html

Repeat step 21 and step 22 for the .apk generated from our Android project.26.

How it works...
For this recipe, we used HockeyApp for its two main features: its beta distribution and its
HockeySDK (which supports crash reporting, metrics, feedback, authentication, and
notifications for updates). For iOS, beta distribution is done through the OTA enterprise
distribution mechanism hosted by HockeyApp. When you sign your app, you control which
devices can open it. HockeyApp just sends notifications and provides the URL for beta
testers to download your app through its enterprise app store. Android is simpler since
there is no need to worry about how apps are transferred. This means HockeyApp hosts the
.apk file on a web server that testers can download and install.

For more info on setting up HockeyApp on Android, you can read the official documentation
at https:/​/​support. ​hockeyapp. ​net/ ​kb/ ​client- ​integration- ​android/ ​hockeyapp- ​for-
android-​sdk.

Deploying iOS test builds to TestFlight
Before HockeyApp came along, the most popular service for beta testing mobile apps was
TestFlight. In fact, it was so good at doing just that, that Apple purchased its parent
company and integrated it into iTunes Connect. TestFlight now serves as the official app
testing platform for Apple. There are a few differences between TestFlight and HockeyApp
to consider. First and foremost, TestFlight became iOS only when it was purchased by
Apple. Second, there are two styles of testing in TestFlight: internal and external. Internal
testing involves sharing the application with Developer or Admin role members of your
team, and limits distribution to 25 testers across 10 devices each. External testing allows
you to invite up to 2,000 testers who do not have to be members of your organization. This
also means that these testers do not use up your device quota. External testing applications
go through the Beta App Review performed by Apple, which is not quite as rigorous as
Apple's review for releasing an app to the App Store, but it is a good first pass.

This recipe focuses on taking our React Native app and deploying a test build to TestFlight.
We will be setting up an internal test, since we do not want Apple reviewing our example
React Native app, but the procedure is the same for both internal and external testing.

https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk
https://support.hockeyapp.net/kb/client-integration-android/hockeyapp-for-android-sdk

Deploying Your App Chapter 14

[522]

Getting ready
For this recipe, we will be using the same boilerplate React Native app from previous
recipes, which we've named TestDeployApp. You will also need to be enrolled in the
Apple Developer Program, you'll need to have your development and distribution
certificates set up in Xcode, and your app will need to have its AppIcon set.

How to do it...
Let's start by opening our project in Xcode via the1.
ios/TestDeployApp.xcodeproj file.
As stated in the last recipe, I also recommend changing your Bundle Identifier to2.
something more meaningful than the default, for example:

Next, let's log in to the Apple Developer Program and navigate to the App ID3.
registration page, located
at https//:developer.apple.com/account/ios/identifier/bundle.
Here, fill out the Name and Bundle ID for your project, then press the Continue4.
button, followed by the Register button, and finally the Done button to complete
registration of the app.
Next, we'll log in to the iTunes Connect site, located5.
at https://itunesconnect.apple.com.
In iTunes Connect, navigate to My Apps, then press the Plus (+) button and6.
select New App to add a new app.
In the New App dialog, fill out the Name and Language. Select the Bundle ID to7.
match the one you created previously, and add a unique app reference in the
SKU field, then press Create.

https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://itunesconnect.apple.com
https://itunesconnect.apple.com

Deploying Your App Chapter 14

[523]

Next, navigate to the TestFlight section for your app and be sure to fill out the8.
Localizable Information section.
Let's return to Xcode to create the .ipa file. Select Generic iOS Device for the9.
active scheme, then create the file via the Xcode menu (Product | Archive). This
will open the Archives list, where you can press the Upload to App Store button
to upload the app.
Your provisioning team should automatically be selected. Be sure the correct10.
team is selected and press Choose. Once the archive is created, press the Upload
button.
After uploading the app, you'll need to wait until you receive an email from11.
iTunes Connect informing you that the build has completed processing. Once
processing is complete, you can return to the iTunes Connect page and open the
Internal Testing view.
In the Internal Testing section, click Select Version to Test and select your build,12.
then click the Next button. At the Export Compliance screen, press OK.
We're ready to add internal testers. Select the users you would like to test the13.
app, then click the Start Testing button and confirm your selection in the
following modal. Your users should now get an invitation email to test your app!

How it works...
TestFlight serves as a first-class citizen in the App Store publishing pipeline. Apple has
integrated its support for application beta testing distribution directly into iTunes Connect,
creating a smooth and seamless process for developers. This procedure is largely the same
as deploying to the App Store, except that when using iTunes Connect, you must enable
and configure testing.

It is a seamless experience for the tester as well. As soon as you add test users in iTunes
Connect, they are notified to install the TestFlight app, where they will have easy access to
the apps they can test. TestFlight also makes the process easier for developers by not
requiring them to add any extra third-party libraries or code to support TestFlight, as
would be needed with HockeyApp.

Deploying Your App Chapter 14

[524]

Deploying production builds to the Apple
App Store
Once you've thoroughly tested your app, you're ready to move on to the next (and likely
the most exciting) step in the iOS app making process: releasing to the Apple App Store.

This recipe will walk through the process of preparing your production build and
submitting it to the Apple App Store. We won't actually be submitting the app to the store,
since we're working with an example app instead of a production-ready one. The last few
steps in the process, however, are very straightforward.

Getting ready
For this recipe, we will again be using the simple React Native example app from earlier
recipes, TestDeployApp. You'll of course also need to be enrolled in the Apple Developer
Program, and have your development and distribution certificates set up in Xcode as
discussed earlier in this chapter. For a real production app deployment, you will also need
to have both the AppIcon set and screenshots of the app ready for use in iTunes.

How to do it...
Let's start by opening up Xcode using the ios/TestDeployApp.xcodeproj file.1.
As stated before, it's recommended that you change your Bundle Identifier to2.
something more meaningful than the default, so be sure to change it in
the General Settings dialog.
It's also a good idea to test your app in Production Mode on your device. This3.
can be done by changing your app scheme's Build Configuration (found via
the Product | Scheme | Edit Scheme menus) to Release, as follows:

Deploying Your App Chapter 14

[525]

Next, you'll need to register the app on the App ID registration page, located at:4.

https:/​/ ​developer. ​apple. ​com/ ​account/ ​ios/ ​identifier/ ​bundle

This step requires an active Apple Developer Program account.

Fill out the Name and Bundle ID fields for your project and press the Continue5.
button.
Next, we'll log in to the iTunes Connect site, located6.
at https://itunesconnect.apple.com. In the My Apps section, press the Plus (+)
button and select New App.
You'll need to fill out the Name and Language in the following dialog, then select7.
the Bundle ID matching the one you created earlier in the recipe. Also, add a
unique app reference for the SKU and press the Create button.
Let's return to Xcode and create the .ipa file. Select Generic iOS Device for the8.
active scheme, and create the file via the menus (Product | Archive), which will
open the Archives list. Finally, press Upload to App Store.
Select your Provisioning Team, then press Choose.9.

https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://itunesconnect.apple.com
https://itunesconnect.apple.com

Deploying Your App Chapter 14

[526]

Once the archive has been created, press the Upload button. Once the build has10.
been processed, you'll receive an email from iTunes Connect.
Once the app is processed, return to iTunes Connect. Under the App Store11.
section, open App Information and select the category that your app fits into.
Open the 1.0 Prepare for Submission section under iOS APP. Fill out all the12.
required fields, including App Screenshots, Description, Keywords, and
Support URL.
Next, under the Build section, select the .ipa we built in step 8.13.
Finally, fill out the Copyright and App Review Information sections, then click14.
the Submit for Review button.

How it works...
In this recipe, we covered the standard process for publishing iOS apps to the App Store.
There are no React Native-specific steps we needed to follow in this case, since the final
product (the .ipa file) contains all of the code needed to run the React Native packager,
which will in turn build the main.jsbundle file in release mode.

Deploying production builds to Google Play
Store
This recipe will walk through the process of preparing a production build of our app and
submitting it to the Google Play Store. As in the last recipe, we'll stop right before actually
submitting to the App Store, since this is only an example React Native app, but the rest of
this process is also straightforward.

Getting ready
For this recipe, we will be using the same simple React Native app we've used throughout
this chapter, TestDeployApp. You will need to have a Google Play Developer account in
order to submit an app to the store, and you'll also need to have all the icons and
screenshots ready for the Play Store if you want to actually publish your app.

Deploying Your App Chapter 14

[527]

How to do it...
Let's start by opening the React Native project in Android Studio. The first step is1.
building the .apk file. As mentioned earlier in this chapter, the process of
creating a production Android app from a React Native project is involved and
prone to change. Visit the React Native Documentation for creating the
.apk at https:/ ​/​facebook. ​github. ​io/​react- ​native/ ​docs/ ​signed- ​apk-
android. ​html.
Next, let's open the Google Play Developer Console in a web browser, located2.
at https:/ ​/​play. ​google. ​com/ ​apps/ ​publish/ ​.
Let's kick off the process by clicking Add new application. Fill out the Title field,3.
and click the Upload APK button, as follows:

You'll see the APK section of the Publish screen next. Click Upload your first4.
APK to Production, then drag and drop (or select) your .apk file.
A series of self-explanatory modals will follow. Go through each of the categories5.
in the side menu on the left (Store Listing, Content Rating, and so on). and fill
out all of the information accordingly.
Once you have satisfied all the requirements, press the Publish App button.6.

https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/

Deploying Your App Chapter 14

[528]

How it works...
In this recipe, we covered the process for publishing Android apps to the Google Play
Store. By following the directions linked to in step 2, your React Native app will have been
through the Gradle assembleRelease process. The assemble process runs the packager
to create the JavaScript bundle file, compile the Java classes, package them together with
the appropriate resources, and finally allow you to sign the app into an .apk.

Deploying Over-The-Air updates
One useful side effect of our React Native app being written in JavaScript is that the code is
loaded at runtime, which is similar to how Cordova hybrid applications work. We can
leverage this functionality to push updates to our application using Over-The-Air (OTA).
This allows for adding features and bug fixes without having to go through the App Store
approval process. The only limitation to OTA updates for React Native is that we cannot
push compiled (Objective-C or Java) code, which means the update code must be in the
JavaScript layer only. There are a few popular services that provide cloud-based OTA app
updates. We will be highlighting CodePush, a service by Microsoft.

This recipe will cover setting up and pushing updates using CodePush for our React Native
app on both iOS and Android.

Getting ready
For this recipe, we will be using the same simple React Native app we've used throughout
this chapter, TestDeployApp. We'll be deploying the apps to physical devices running in
production/release mode, which will allow the app to receive updates from the CodePush
servers.

How to do it...
In order to use CodePush, we will need to install the CodePush CLI and create a1.
free account. This can be done in a Terminal by running the following two
commands:

npm install -g code-push-cli
code-push register

Deploying Your App Chapter 14

[529]

The next step is to register our app with CodePush. Make a note of the2.
deployment keys for the app provided by the output from running code-push
register. We will be using the staging key for this recipe. The documentation
suggests adding one app per platform, with an -IOS or -Android suffix for each.
To add the app to CodePush, use this command:

code-push app add TestDeployApp-IOS
code-push app add TestDeployApp-Android

We're also going to need the React Native CodePush module installed in the3.
React Native project directory. This can be done with npm, as follows:

npm install --save react-native-code-push

Or, with yarn:

yarn add react-native-code-push

The next step is linking the CodePush native modules with our project. When4.
prompted for your deployment key for Android and iOS, use the staging key
discussed in step 2. Linking the native modules can be done with the following
command:

react-native link react-native-code-push

Next, we need to set our React Native app up to use CodePush. Inside5.
of index.js, we'll need to add three things: the CodePush import, an options
object, and a call to the imported codePush module when registering the app
via AppRegistry.registerComponent. Set up the app as follows:

import {AppRegistry} from 'react-native';
import App from './App';
import codePush from 'react-native-code-push';

const codePushOptions = {
 updateDialog : true
}

AppRegistry.registerComponent('TestDeployApp',
 () => codePush(codePushOptions)(App)
)

Deploying Your App Chapter 14

[530]

To test out our changes in the iOS app, let's deploy to our iOS device. Open the6.
React Native project in Xcode, change your scheme's Build Configuration
(Product | Scheme | Edit Scheme...) to Release, then press Run, as follows:

Next, make some sort of arbitrary change to the React Native code in the app,7.
then in the Terminal, run the following command to update the app with the
new code:

code-push release-react TestDeployApp ios -m --description
"Updating using CodePush"

Next, close and reopen the app on your iOS device. You should see the following8.
prompt:

Deploying Your App Chapter 14

[531]

After continuing past the prompt, the app will update itself to the latest version!9.
Let's also test the feature on Android. You'll need to have made your Android10.
app into a .apk file by following the steps outlined in the React Native
documentation at https:/ ​/ ​facebook. ​github. ​io/​react- ​native/ ​docs/ ​signed-
apk-​android. ​html.
With your Android device plugged into your development machine, run the11.
following command in the Terminal from the android/ directory:

adb install
app/build/outputs/apk/app-release.apk

https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html

Deploying Your App Chapter 14

[532]

Next, make a change to the React Native JavaScript code. As long as new code is12.
added, we can use that changed code to update the app. Then, run the following
command in the Terminal:

code-push release-react TestDeployApp android -m --description
"Updating using CodePush"

Once again, close and reopen your app on your Android device to get the13.
following prompt:

After proceeding past the prompt, the app will update itself to the latest version.14.

Deploying Your App Chapter 14

[533]

How it works...
CodePush (as well as other cloud-hosted OTA update platforms) works by using the same
technique that has existed in React Native since its inception. React Native loads a
JavaScript bundle when the app is initialized. During development, this bundle is loaded
from localhost:3000. Once we've deployed an app, however, it will look for a file named
main.jsbundle that has been included in the final product. By adding the call
to codePush in registerComponent in step 5, the app will check in with the CodePush
API to see if there is an update. If there is a new update, it will prompt the user about it.
Accepting the prompt downloads the new jsbundle file and restarts the app, causing the
code to be updated.

Optimizing React Native app size
Before deploying our app to production, it's always a good idea to shrink the app bundle
size to as small a file as possible, and there are several techniques we can leverage to do so.
These can involve supporting fewer devices or compressing included assets.

This recipe will cover a few techniques for limiting production package file sizes in both
iOS and Android React Native apps.

Getting ready
For this recipe, we will be using the same simple React Native app we've used throughout
this chapter, TestDeployApp. You'll also need to have code signing working for iOS, and
the ability to create .apk files as covered in previous recipes.

How to do it...
We will start off with some simple optimizations performed on our bundled1.
assets, which often includes images and external fonts:

For PNG and JPEG compression, you can use a service such as http:/ ​/
www. ​tinypng. ​com to reduce the file size with little to no reduction in
image quality.

http://www.tinypng.com
http://www.tinypng.com
http://www.tinypng.com
http://www.tinypng.com
http://www.tinypng.com
http://www.tinypng.com
http://www.tinypng.com
http://www.tinypng.com

Deploying Your App Chapter 14

[534]

If you use the react-native-vector-icons library, you will notice
that it bundles eight different font icon sets. It's recommended that you
remove any of the icon font libraries that are not being used by your
app.
SVG files can also be compressed and optimized. One service for this
purpose is http:/ ​/ ​compressor. ​io.
Any audio assets packaged with your app should be using a file
format that can leverage high quality compression, such as MP3 or
AAC.

For iOS, there's not much that can be done to further reduce file size beyond the2.
settings that are enabled by default on the release scheme. These include
enabling Bitcode for app thinning and setting the compiler optimization to
Fastest, Smallest [-Os].
For Android, there are two things you can do that could improve file size:3.

In Android Studio, open android/app/build.gradle and locate the
following lines, then update their values to the following:

def enableSeparateBuildPerCPUArchitecture = true
def enableProguardInReleaseBuilds = true

If you plan to only target ARM-based Android devices, we can prevent it from4.
building for x86 altogether. In the build.gradle file, locate the splits abi
object and add the following line to not include x86 support:

include "armeabi-v7a"

You can read more about ABI management in the Android docs at:

 https:/​/ ​developer. ​android. ​com/​ndk/ ​guides/ ​abis

How it works...
In this recipe, we covered techniques that can be used to reduce app file size. The smaller
the JavaScript bundle is, the faster the JavaScript interpreter will be able to parse the code,
translating into faster app load times, and quicker OTA updates. The smaller we can keep
our .ipa and .apk files, the faster our users will be able to download the app.

http://compressor.io
http://compressor.io
http://compressor.io
http://compressor.io
http://compressor.io
http://compressor.io
http://compressor.io
https://developer.android.com/ndk/guides/abis
https://developer.android.com/ndk/guides/abis
https://developer.android.com/ndk/guides/abis
https://developer.android.com/ndk/guides/abis
https://developer.android.com/ndk/guides/abis
https://developer.android.com/ndk/guides/abis
https://developer.android.com/ndk/guides/abis
https://developer.android.com/ndk/guides/abis
https://developer.android.com/ndk/guides/abis
https://developer.android.com/ndk/guides/abis
https://developer.android.com/ndk/guides/abis
https://developer.android.com/ndk/guides/abis
https://developer.android.com/ndk/guides/abis
https://developer.android.com/ndk/guides/abis
https://developer.android.com/ndk/guides/abis

15
Optimizing the Performance of

Your App
In this chapter, we will cover the following recipes:

Optimizing our JavaScript code
Optimizing the performance of custom UI components
Keeping animations running at 60 FPS
Getting the most out of ListView
Boosting the performance of our app
Optimizing the performance of native iOS modules
Optimizing the performance of native Android modules
Optimizing the performance of native iOS UI components
Optimizing the performance of native Android UI components

Introduction
Performance is a key requirement of almost every single piece of technology in software
development. React Native was introduced to solve the issue of poor performance that
existed in hybrid apps that wrap web applications in a native container. React Native has
an architecture that lends itself to both flexibility and excellent performance.

Optimizing the Performance of Your App Chapter 15

[536]

When considering the performance of a React Native app, it is important to think about the
big picture of how React Native works. There are three major parts to a React Native app,
and their relative performance is depicted in the following diagram:

The recipes in this chapter focus on using lower-level functions that take up less memory
and have fewer operations, thus lowering the time it takes for a task to complete.

Optimizing our JavaScript code
It's safe to say that your React Native apps will probably be written mostly in JavaScript.
There may be some native modules and custom UI components, but for the most part, all of
the views and business logic will likely be written in JSX and JavaScript. And if you're
using modern JavaScript development techniques, you'll also be using language constructs
introduced with ES6, ES7, and beyond. These may be available natively as part of the
JavaScript interpreter bundled with React Native (JavaScriptCore) or polyfilled by the Babel
transpiler. Since JavaScript probably constitutes the majority of any given React Native app,
this should be the first part we optimize in order to squeeze extra performance out of the
app.

This recipe will provide some helpful tips for optimizing JavaScript code to make it as
performant as possible.

Getting ready
This recipe is not necessarily dependent on React Native, since it focuses on the JavaScript
that's used to write any React app. Some of these suggestions are micro-optimizations that
will probably only improve performance on older/slower devices. Depending on which
devices you intend to support, some tips will go further than others.

Optimizing the Performance of Your App Chapter 15

[537]

How to do it...
The first optimization to look at is speeding up iterations. Often, you'll likely be1.
using functions that take iterator functions as arguments (forEach, filter,
and map). As a rule of thumb, these will be slower than doing a standard for
loop. If the size of the collection you're iterating over is very large, this could
make a difference. Here's an example of a faster filter function:

let myArray = [1,2,3,4,5,6,7];
let newArray;

// Slower:
function filterFn(element) {
 return element > 2;
}
newArray = myArray.filter(filterFn);

// Faster:
function filterArray(array) {
 var length = array.length,
 myNewArray = [],
 element,
 i;

 for(i = 0; i < length; i++) {
 element = array[i];
 if(element > 2) {
 myNewArray.push(array[i]);
 }
 }
 return myNewArray;
}

newArray = filterArray(myArray);

When optimizing iterations, it can also be more performant to ensure that you2.
store the variables you are accessing on the iteration, somewhere close by:

function findInArray(propertyerties, appConfig) {
 for (let i = 0; i < propertyerties.length; i++) {
 if (propertyerties[i].somepropertyerty ===
 appConfig.userConfig.permissions[0]) {
 // do something
 }
 }
}

Optimizing the Performance of Your App Chapter 15

[538]

function fasterFindInArray(propertyerties, appConfig) {
 let matchPermission = appConfig.userConfig.permissions[0];
 let length = propertyerties.length;
 let i = 0;

 for (; i < length; i++) {
 if (propertyerties[i].somepropertyerty === matchPermission)
{
 // do something
 }
 }
}

You can also optimize your logical expressions. Keep your fastest and closest3.
executing statements on the left:

function canViewApp(user, isSuperUser) {
 if (getUserPermissions(user).canView || isSuperUser) {
 return true;
 }
}

function canViewApp(user, isSuperUser) {
 if (isSuperUser || getUserPermissions(user).canView) {
 return true;
 }
}

While modern JavaScript (ES6, ES7, and so on) constructs can be more enjoyable4.
to develop with, some of their features execute more slowly than their ES5
counterparts. These features can include for of, generators, Object.assign,
and others. A good reference for performance comparisons can be found
at https:/ ​/​kpdecker. ​github. ​io/​six- ​speed/ ​.
It can be helpful to avoid try-catch statements, since they can affect the5.
optimization made by the interpreter (as is the case in V8).
Arrays should have members that are all of the same type. If you need to have a6.
collection where the type can vary, use an object.

https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/

Optimizing the Performance of Your App Chapter 15

[539]

How it works...
JavaScript performance is a topic of constant debate. It is sometimes difficult to keep up
with the latest in performance metrics, since Google, Apple, Mozilla, and the global open
source community is always hard at work improving their JavaScript engines. For React
Native, we focus on WebKit's JavaScriptCore.

Optimizing the performance of custom UI
components
While building your React Native app, it's a safe bet that you will be creating custom UI
components. These components can either be compositions of several other components or
a component that builds on top of an existing component and adds more functionality.
With added functionality, complexity also increases. This increased complexity leads to
more operations, and in turn, the potential for slowdowns. Fortunately, there are some
ways to make sure that our custom UI components are performing the best they can. This
recipe shows several techniques for getting the most out of our components.

Getting ready
This recipe requires that you have a React Native app with some custom components. As
these performance suggestions may or may not provide value to your app, use discretion
when you choose to apply these to your code.

How to do it...
The first optimization we should look at is what is tracked in the state object of1.
a given component. We should make sure that all the objects we have in the
state are being used, and that each can potentially change, causing a desired re-
render.
Take a look at the render function of each component. The overall goal is to2.
keep this function performing as fast as possible, so try to ensure that no long-
running processes occur within it. If you can, cache computations and constant
values outside the render function so that they are not instantiated every time.

Optimizing the Performance of Your App Chapter 15

[540]

If you have conditional JSX that may return in the render function, return as3.
early as possible. Here's a trivial example:

// unoptimized
render() {
 let output;
 const isAdminView = this.propertys.isAdminView;

 if(isAdminView) {
 output = (<AdminButton/>);
 } else {
 output = (
 <View style={styles.button}>
 <Text>{this.propertys.buttonLabel}</Text>
 </View>
);
 }
 return output;
}

// optimized
render() {
 const isAdminView = this.propertys.isAdminView;

 if (isAdminView) {
 return (<AdminButton/>);
 }
 return (
 <View style={styles.button}>
 <Text>{this.propertys.buttonLabel}</Text>
 </View>
);
}

The most important optimization we can make is to skip the render method4.
altogether if it isn't needed. This is done by implementing the
shouldComponentUpdate method and returning false from it, making it a
pure component. Here's how we can make a component a PureComponent:

import React, { PureComponent } from 'react';

export default class Button extends PureComponent {

}

Optimizing the Performance of Your App Chapter 15

[541]

How it works...
The majority of your React Native apps will consist of custom components. There will be a
mix of stateful and stateless components. As highlighted in step 2, the overall goal is to
render our component in the shortest amount of time possible. Another gain can be
achieved if a component can be architected to only have to render the component once and
then be left untouched, as covered in step 4. For more information on how pure components
are used and how they can be beneficial, check out https:/ ​/ ​60devs. ​com/ ​pure- ​component-
in-​react.​html.

See also
You can find some more information about React component performance optimizations in
the official documentation at https:/ ​/ ​reactjs. ​org/​docs/ ​optimizing- ​performance. ​html.

Keeping animations running at 60 FPS
An important aspect of any quality mobile app is the fluidity of the user interface.
Animations are used to provide a rich user experience, and any jank or jitter can negatively
affect this. Animations will likely be used for all kinds of interactions, from changing
between views, to reacting to a user's touch interaction on a component. One of the most
important factors in creating high-quality animations is making sure that they do not block
the JavaScript thread. To keep animations fluid and not interrupt UI interactions, the render
loop has to render each frame in 16.67 ms, so that 60 FPS can be achieved.

In this recipe, we will take a look at several techniques for improving the performance of
animations. These techniques focus in particular on preventing JavaScript execution from
interrupting the main thread.

Getting ready
For this recipe, we'll assume that you have a React Native app that has some animations
defined.

https://60devs.com/pure-component-in-react.html
https://60devs.com/pure-component-in-react.html
https://60devs.com/pure-component-in-react.html
https://60devs.com/pure-component-in-react.html
https://60devs.com/pure-component-in-react.html
https://60devs.com/pure-component-in-react.html
https://60devs.com/pure-component-in-react.html
https://60devs.com/pure-component-in-react.html
https://60devs.com/pure-component-in-react.html
https://60devs.com/pure-component-in-react.html
https://60devs.com/pure-component-in-react.html
https://60devs.com/pure-component-in-react.html
https://60devs.com/pure-component-in-react.html
https://60devs.com/pure-component-in-react.html
https://60devs.com/pure-component-in-react.html
https://60devs.com/pure-component-in-react.html
https://reactjs.org/docs/optimizing-performance.html
https://reactjs.org/docs/optimizing-performance.html
https://reactjs.org/docs/optimizing-performance.html
https://reactjs.org/docs/optimizing-performance.html
https://reactjs.org/docs/optimizing-performance.html
https://reactjs.org/docs/optimizing-performance.html
https://reactjs.org/docs/optimizing-performance.html
https://reactjs.org/docs/optimizing-performance.html
https://reactjs.org/docs/optimizing-performance.html
https://reactjs.org/docs/optimizing-performance.html
https://reactjs.org/docs/optimizing-performance.html
https://reactjs.org/docs/optimizing-performance.html
https://reactjs.org/docs/optimizing-performance.html
https://reactjs.org/docs/optimizing-performance.html
https://reactjs.org/docs/optimizing-performance.html

Optimizing the Performance of Your App Chapter 15

[542]

How to do it...
First and foremost, when debugging animation performance in React Native,1.
we'll want to enable the performance monitor. To do so, show the Dev Menu
(shake the device or cmd + D from the simulator) and tap Show Perf Monitor.
The output in iOS will look something like the following screenshot:

Optimizing the Performance of Your App Chapter 15

[543]

The output in Android will look something like the following screenshot:

If you are looking to animate a component's transition (opacity) or dimensions2.
(width, height), then make sure to use LayoutAnimation. You can find an
example of using LayoutAnimation in Chapter 6, Adding Basic Animations to
Your App, in the Expanding and collapsing containers recipe.

If you want to use LayoutAnimation on Android, you need to add the
following code when your application
starts: UIManager.setLayoutAnimationEnabledExperimental
&& UIManager.setLayoutAnimationEnabledExperimental(true).

Optimizing the Performance of Your App Chapter 15

[544]

If you need finite control over the animations, it is recommended that you use3.
the Animated library that comes with React Native. This library allows you to
offload all of the animation work onto the native UI thread. To do so, we have to
add the useNativeDriver property to our Animated call. Let's take a sample
Animated example and offload it to the native thread:

componentWillMount() {
 this.setState({
 fadeAnimimation: new Animated.Value(0)
 });
}

componentDidMount() {
 Animated.timing(this.state.fadeAnimimation, {
 toValue: 1,
 useNativeDriver: true
 }).start();
}

Currently, only a subset of the functionality of the Animated library
supports native offloading. Please refer to the There's more... section for a
compatibility guide.

If you are unable to offload your animation work onto the native thread, there is4.
still a solution for providing a smooth experience. We can use the
InteractionManager to execute a task after the animations have completed:

componentWillMount() {
 this.setState({
 isAnimationDone: false
 });
}
componentWillUpdate() {
 LayoutAnimation.easeInAndOut();
}

componentDidMount() {
 InteractionManager.runAfterInteractions(() => {
 this.setState({
 isAnimationDone: true
 });
 })
}

render() {

Optimizing the Performance of Your App Chapter 15

[545]

 if (!this.state.isAnimationDone) {
 return this.renderPlaceholder();
 }
 return this.renderMainScene();
}

Finally, if you are still suffering from poor performance, you'll have to either5.
rethink your animation strategy or implement the poorly performing view as a
custom UI view component on the target platform(s). This would mean
implementing both your view and animation natively using the iOS and/or
Android SDK. In Chapter 11, Adding Native Functionality, we covered creating
custom UI components in the Rendering custom iOS view components and
Rendering custom Android view components recipes.

How it works...
The tips in this recipe focus on the simple goal of preventing the JavaScript thread from
locking. The moment our JavaScript thread begins to drop frames (lock), we lose the ability
to interact with our application, even if it's for a fraction of a second. It may seem
inconsequential, but the effect is felt immediately by a savvy user. The focus of the tips in
this recipe is to offload animations onto the GPU. When the animation is running on the
main thread (the native layer, rendered by the GPU), the user can interact with the app
freely without stuttering, hanging, jank, or jitters.

There's more...
Here's a quick reference for where useNativeDriver is usable:

Function iOS Android
style, value, propertys √ √
decay √
timing √ √
spring √
add √ √
multiply √ √
modulo √
diffClamp √ √
interpoloate √ √
event √

Optimizing the Performance of Your App Chapter 15

[546]

division √ √
transform √ √

Getting the most out of ListView
React Native provides a pretty performant list component out of the box. It is extremely
flexible, supports rendering almost any component you can imagine inside of it, and
renders them rather quickly. If you'd like to read some more examples of how to work with
ListView, there are a couple of recipes in this book, including Displaying a list of items
in Chapter 2, Creating a Simple React Native App, that use it. The React Native ListView is
built on top of ScrollView to achieve the flexibility of rendering variable-height rows with
any view component.

The major performance and resource drawback of the ListView component occurs when
you are working with an extremely large list. As the user scrolls through the list, the next
page of rows is rendered at the bottom. The invisible rows at the top can be set to be
removed from the render tree, which we will cover shortly. However, the references to the
rows are still in memory as long as the component is mounted. Naturally, as our
component uses up the available memory, there will be less room for quickly accessible
storage for the upcoming components. This recipe will cover dealing with some of these
potential performance and memory resource issues.

Getting ready
For this recipe, we assume that you have a React Native app that is making use of
a ListView, preferably with a large dataset.

How to do it...
Let's start with some optimizations we can make to our vanilla ListView1.
component. If we set the initialListSize property to 1, we can speed up the
initial rendering.
Next, we can bump up the pageSize if the component being rendered in each2.
row is not complex.

Optimizing the Performance of Your App Chapter 15

[547]

Another optimization is setting the scrollRenderAheadDistance to a3.
comfortable value. If you can expect users to rarely scroll past the initial
viewport, or that they're likely to scroll slowly, then you can lower the value.
This prevents the ListView from rendering too many rows in advance.
Finally, the last optimization we can make use of is the4.
removeClippedSubviews property. However, the official documentation
states the following:

"The feature may have bugs (missing content) in some circumstances - use at
your own risk."

Combining steps 1 to step 4 can be seen in the following example code:5.

renderRow(row) {
 return (
 <View style={{height:44, overflow:'hidden'}}>
 <Text>Item {row.index}</Text>
 </View>
)
}

render() {
 return (
 <View style={{flex:1}}>
 <ListView
 dataSource={this.state.dataSource}
 renderRow={this.renderRow}
 pageSize={10}
 initialListSize={1}
 pageSize={10}
 scrollAheadDistance={200}
 />
 </View>
)
}

Optimizing the Performance of Your App Chapter 15

[548]

How it works...
As with developing any app, the more flexible and complex something is, the slower it
performs. ListView is an excellent example of this concept. It is extremely flexible, since it
can render any View in a row, but it can quickly bring your application to a halt if not used
carefully. The result of the optimizations defined in step 1 to step 4 will vary across different
situations based on what you are rendering and the data structure that is being used by the
ListView. You should experiment with these values until you find a good balance. As a
last resort, if you are still unable to achieve the required performance benchmark, you can
look at some of the community modules that provide new ListView implementations or
alternatives.

See also
The following is a list of some of the third-party ListView implementations that promise
increased performance:

recyclerlistview: This library is the most robust alternative to ListView,
boasting a long list of improvements and features, including support
for staggered grid layouts, horizontal mode, and footer support. The repository is
located at https:/ ​/ ​github. ​com/ ​Flipkart/ ​recyclerlistview.
react-native-sglistview: This takes removeClippedSubviews to the next
level by flushing the memory when the offscreen rows are removed from the
render tree. The repository is located at https:/ ​/​github. ​com/​sghiassy/ ​react-
native-​sglistview.

Boosting the performance of our app
The reason for React Native's existence is building native apps with JavaScript. This is
different than similar frameworks such as Ionic or Cordova hybrid applications, which
wrap a web application written in JavaScript and attempt to emulate native app behavior.
Those web applications only have access to native APIs for performing processing, but
cannot render native views inside their apps. This is one major benefit to React Native apps,
thus making them inherently faster than hybrid apps. Since it's so much more performant
out of the box, we generally do not have to worry about overall performance as much as we
would with a hybrid web app. Still, with a little extra effort, a slight improvement in
performance might be achievable. This recipe will provide some quick wins that we can use
to build faster React Native apps.

https://github.com/Flipkart/recyclerlistview
https://github.com/Flipkart/recyclerlistview
https://github.com/Flipkart/recyclerlistview
https://github.com/Flipkart/recyclerlistview
https://github.com/Flipkart/recyclerlistview
https://github.com/Flipkart/recyclerlistview
https://github.com/Flipkart/recyclerlistview
https://github.com/Flipkart/recyclerlistview
https://github.com/Flipkart/recyclerlistview
https://github.com/Flipkart/recyclerlistview
https://github.com/Flipkart/recyclerlistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview

Optimizing the Performance of Your App Chapter 15

[549]

How to do it...
The simplest optimization we can make is to not output any statements to the1.
console. Performing a console.log statement is not as trivial a task as you'd
imagine for the framework, so it's recommended to remove all console
statements when you are ready to bundle your final app.
If you use a lot of console statements during development, you can have Babel2.
automatically remove them when creating the bundle by using the transform-
remove-console plugin. This can be installed into the project via the Terminal
using yarn:

yarn add babel-plugin-transform-remove-console

Alternatively, you can use npm:3.

npm install babel-plugin-transform-remove-console --save

With the package installed, you can add it to the project by adding a .babelrc
file containing the following code:

{
 "presets": ["react-native"],
 "env": {
 "production": {
 "plugins": ["transform-remove-console"]
 }
 }
}

Next, make sure that when you're analyzing your performance, your app is4.
running in production mode, preferably on a device. If you are curious about
how to do this, you can refer to the Deploying test builds to HockeyApp recipe in
Chapter 13, Deploying Our App.
Sometimes, when you are animating the position or layout of a View, you may5.
notice performance dips in the UI thread. You can mitigate this by setting the
shouldRasterizeIOS and renderToHardwareTextureAndroid properties to
true for iOS and Android platforms. Be mindful that this may increase memory
usage significantly, so be sure to test the performance after these changes as well.

Optimizing the Performance of Your App Chapter 15

[550]

If you find that you need to transition views using a navigation state change6.
while also performing synchronous, potentially long-running processes, it can
become a performance bottleneck. This commonly occurs when building a
DataSource for a ListView or when transforming data to power the upcoming
view. You should experiment with processing only an initial subset of the data,
enough to render the UI quickly enough. Once the animation completes between
page transitions, you can use InteractionManager to load the rest of the data.
You can refer to the Keeping animations running at 60 FPS recipe for more
information on how to use InteractionManager.
Finally, if you have identified a particular component or task that is slowing7.
down your app, and cannot find a viable solution, then you should consider
moving it to the native thread by creating a native module or native UI
component to implement this piece of functionality.

How it works...
This recipe covers some higher-level and broader-scoped tips for all React Native apps. The
most significant performance gains you will likely see from these tips are from moving a
component to the native layer, as covered in step 7.

Optimizing the performance of native iOS
modules
Often, when building a React Native app, you will need to work with native Android and
iOS code. You may have built these native modules to expose some extra functionality
provided by a native API, or perhaps your app needed to perform an intensive background
task.

As was touched on earlier, working in the native layer really allows you to make use of a
device's full capacity. However, it doesn't mean that the code we write will automatically
be the fastest it could be. There's always room to optimize and achieve performance gains.

In this recipe, we will provide some tips on how to make your Objective-C code run a bit
faster using the iOS SDKs. We will also consider how React Native and the React Native
bridge, which is used to communicate between the JavaScript and the native layers, fit into
the bigger picture.

Optimizing the Performance of Your App Chapter 15

[551]

Getting ready
For this recipe, you should have a React Native app that uses native modules that have
been created for iOS. If you need help with writing native modules, take a look at
the Exposing custom iOS modules recipe in Chapter 11, Adding Native Functionality.

How to do it...
First and foremost, when working with native modules, we have to be mindful of1.
the data going through the React Native bridge. Keeping the data in cross-bridge
events and callbacks to a minimum is always the goal, since the data serialization
between Objective-C and JavaScript is very slow.
If you need to keep data cached in memory for consumption by the native2.
module, keep it stored in a local property or field variable. Native modules are
singletons. Do this instead of returning a large object to store in the React Native
component.
Sometimes, we have to leverage classes that are large because they are robust in3.
their feature set. For the Objective-C and iOS side of things, instead of
instantiating something like NSDateFormatter in your method each time that
you expose the feature via RCT_EXPORT_METHOD, store the reference of this class
as a property or an instance variable.
Furthermore, native methods such as NSDateFormatter are often extremely4.
heavy, so avoiding them is advisable where possible. For instance, if your
application can deal with just UNIX timestamps, then you can easily get an
NSDate object from a timestamp with the following function:

- (NSDate*)dateFromUnixTimestamp:(NSTimeInterval)timestamp {
 return [NSDate dateWithTimeIntervalSince1970:timestamp];
}

The most significant performance optimization you can make, if the situation5.
presents itself, is spawning asynchronous background threads to handle
intensive processing. React Native fits this model well, since it uses an
asynchronous messaging/event system to communicate between the JavaScript
and native threads. When your background process is complete, you can either
invoke a callback/promise or fire an event for the JavaScript thread to pick up. To
learn how to create and leverage background processes in React Native iOS
native modules, check out the Background processing on iOS recipe in Chapter
11, Adding Native Functionality.

Optimizing the Performance of Your App Chapter 15

[552]

How it works...
Objective-C code executes very quickly – almost as quickly as vanilla C. Therefore, the
optimizations we perform do not have much to do with executing tasks but rather with
how things are instantiated and by not blocking native threads. The biggest performance
boost you'll see is by property using the Grand Central Dispatch (GCD) to spawn
background processes, as described in step 5.

Optimizing the performance of native
Android modules
While developing your React Native application, you may find yourself writing native
Android modules to either create cross-platform features on both iOS and Android or to
make use of native APIs that have not been wrapped as first-party modules for Android
but that do exist on iOS. Hopefully, you found some useful advice on working with native
modules in Chapter 11, Adding Native Functionality.

In this recipe, we will cover several techniques for speeding up our React Native Android
native modules. Many of these techniques are limited to general development on Android,
and a few will address communicating with the React Native JavaScript layer.

Getting ready
For this recipe, you should have a React Native app that makes use of the native modules
you created for Android. If you need help with writing native modules, please take a look
at the Exposing custom Android modules recipe in Chapter 11, Adding Native Functionality.

How to do it...
First and foremost, just as with iOS native modules, you'll want to limit the1.
amount of data crossing the React Native bridge. Keeping the data that's in
events and callbacks to a minimum will help to avoid slowdowns caused by the
serialization between Java and JavaScript. Also, as with iOS, try to keep data
cached in memory to be used by the native module; keep it stored in a private
field. Native modules are singletons. This should be leveraged instead of
returning a large object to store in the React Native component.

Optimizing the Performance of Your App Chapter 15

[553]

When writing Java code for Android, you should do your best to avoid creating2.
short-term objects. If you can, use primitives, especially for datasets such as
arrays.
It is better to reuse objects instead of relying on the garbage collector to pick up3.
an unused reference and instantiate a new object.
The Android SDK provides a memory-efficient data structure for replacing the4.
use of a Map, which maps integers to objects, called SparseArray. Using it can
reduce memory usage and improve performance. Here's an example:

 SparseArray<SomeType> map = new SparseArray<SomeType>();
 map.put(1, myObjectInstance);

There is also SparseIntArray, which maps integers to integers, and
SparseBooleanArray, which maps integers to Boolean values.

While it may sound counterintuitive to developers used to OOP development in5.
Java, avoiding the use of getters and setters by accessing the instance field
directly can also improve performance.

If you're ever working with String concatenation, make use of StringBuilder.6.
Lastly, the most significant performance optimization you can make, if possible,7.
is spawning asynchronous background threads to perform heavy computations
by leveraging React Native's asynchronous messaging/event system to
communicate between the JavaScript and native threads. When your background
process is complete, you can either invoke a callback/promise or fire an event for
the JavaScript thread to pick up. To learn how to create background processes in
React Native Android native modules, please read the Background processing on
Android recipe in Chapter 11, Adding Native Functionality.

How it works...
The majority of the tips in this recipe revolve around efficient memory management. The
Android OS uses a traditional-style garbage collector similar to the desktop Java VM. When
the garbage collector kicks in, it can take anywhere between 100-200 ms to free memory.
Steps 3-6 all provide suggestions that reduce the app's memory usage.

Optimizing the Performance of Your App Chapter 15

[554]

Optimizing the performance of native iOS UI
components
React Native provides us with an excellent foundation to build almost any kind of user
interface using built-in components and styling. Components built in Objective-C using the
iOS SDK, OpenGL, or some other drawing library will generally perform better than
composing the prebuilt components using JSX. When using these native view components,
there are some use cases that may have a negative impact on app performance.

This recipe will focus on getting the most out of the iOS UIKit SDK when rendering custom
views. Our goal is to render everything as quickly as possible for our application to run at
60 FPS.

Getting ready
For this recipe, you should have a React Native app that renders custom native UI
components you have written for iOS. If you need help with wrapping UI components in
React Native, please take a look at the Exposing custom iOS view components recipe in
Chapter 11, Adding Native Functionality.

How to do it...
As mentioned previously, only pass data across the React Native bridge when it1.
is unavoidable to do otherwise, since data serialization between Objective-C and
JavaScript types is slow.
If there is data that you need to store for referencing sometime in the near future,2.
it's better to store it in the native class that you initialized. Depending on your
application, you can either store it as a property on the ViewManager, a singleton
that serves instances of the View, or a property on the View itself.
If your view component involves rendering multiple UIView instances as3.
children of a parent UIView container, make sure all the instances have the
opaque property set to true.
If you are rendering an image inside your view component (not using the React4.
Native Image component), then setting your image to be the same dimension as
the UIImageView component can help performance. Scaling, and other image
transformations, are heavy operations that can impact frame rate.

Optimizing the Performance of Your App Chapter 15

[555]

One of the most impactful tweaks in writing iOS view components is avoiding5.
offscreen rendering. Avoid doing the following with SDK functionality if
possible:

Using classes that start with the Core Graphics (CG) library
Overriding the drawRect implementation of UIView
Setting shouldRasterize=YES, or using setMasksToBounds or
setShadow on your UIView instance's layer property
Custom drawings using CGContext

If you need to add a shadow to your view, make sure to set the shadowPath to6.
prevent offscreen rendering. Here's an example of how the initialization and
shadow definition should look:

RCT_EXPORT_MODULE()

- (UIView *)view {
 UIView *view = [[UIView alloc] init];

 view.layer.masksToBounds = NO;
 view.layer.shadowColor = [UIColor blackColor].CGColor;
 view.layer.shadowOffset = CGSizeMake(0.0f, 5.0f);
 view.layer.shadowOpacity = 0.5f;

 view.layer.shadowPath = [[UIBezierPath
bezierPathWithRect:view.bounds] CGPath];

 return view;
}

How it works...
This recipe focused on some helpful tips that allow the GPU to do as much of the work as it
can. The second part discussed how to keep the load on the GPU as low as possible.
Enforcing the opaque property in step 3 tells the GPU not to worry about checking the
visibility of other components so that it can calculate transparency. Steps 5 and step 6
prevent offscreen rendering. Offscreen rendering generates bitmap images using the CPU
(which is a slow process) and, more importantly, it keeps the GPU from rendering the view
until the images have been generated.

Optimizing the Performance of Your App Chapter 15

[556]

Optimizing the performance of native
Android UI components
Over the last few years, Android native UI performance has improved significantly. This is
primarily due to its ability to render components and layouts using GPU hardware
acceleration. In your React Native app, you may find yourself using custom view
components, especially if you want to use a built-in Android feature that has not yet been
wrapped as a React Native component. Even though the Android platform has made a
conscious effort to increase the performance of its UI, the way components are rendered can
quickly negate all of these benefits.

In this recipe, we'll discuss a few ways to get the best performance out of our custom
Android view components.

Getting ready
For this recipe, you should have a React Native application that renders custom native UI
components you have written for Android. If you need help with wrapping UI components
in React Native, check out the Exposing custom Android view components recipe in Chapter
11, Adding Native Functionality.

How to do it...
As stated previously, only cross the React Native bridge with data when1.
necessary. Keep the data in events and callbacks to a minimum as the data
serialization between Java and JavaScript is slow.
If there is data that you need to store for referencing sometime in the near future,2.
it's better to store it in the native class that you've initialized. Depending on your
application, you can either store it as a property on the SimpleViewManager, a
singleton that serves instances of the View, or a property on the View itself.
When building out views, consider that components often consist of other child3.
components. These components are held in a hierarchy of layouts. Over-nesting
layouts can become a very expensive operation. If you are using multi-level
nested LinearLayout instances, try to replace them with a single
RelativeLayout.

Optimizing the Performance of Your App Chapter 15

[557]

You can analyze the efficiency of your layout using the HierarchyViewer tool4.
 that's bundled inside the Android Device Monitor. To open it from the Android
Device Monitor, click Window | Open Perspective... | Hierarchy View and
select OK.
If you are performing repeated animations on your custom view natively in Java5.
(not using the React Native Animated API), then you can leverage hardware
layers to improve performance. Simply add a withLayer method call to your
animate call. For example:

myView.animate()
 .alpha(0.0f)
 .withLayer()
 .start();

How it works...
Unfortunately, there aren't that many optimizations you can perform when it comes to
rendering Android UI components. They generally revolve around not over-nesting
layouts, since this increases complexity by orders of magnitude. When you have layout
performance issues, the app is most likely suffering from overusing the GPU, or
overdrawing. Overdrawing occurs when the GPU renders a new view over an existing
view that is already rendered. You can enable GPU Overdraw Debugging in the Android
Developer Settings menu. The order of severity of overdrawing is No Color -> Blue
-> Green -> Light Red -> Dark Red.

In step 5, we provided a quick tip for improving the performance of animations. This is
particularly true for repeated animations, since it caches the animation output on the GPU
and replays it.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Design Patterns with React Native
Mateusz Grzesiukiewicz

ISBN: 9781788994460

Explore the design Patterns in React Native
Learn the best practices for React Native development
Explore common React patterns that are highly used within React Native
development
Learn to decouple components and use dependency injection in your
applications
Explore the best ways of fetching data from the backend systems
Learn the styling patterns and how to implement custom mobile designs
Explore the best ways to organize your application code in big codebases

https://www.packtpub.com/application-development/hands-design-patterns-react-native

Other Books You May Enjoy

[559]

React and React Native - Second Edition
Adam Boduch

ISBN: 9781789346794

Learn what has changed in React 16 and how you stand to benefit
Craft reusable components using the React virtual DOM
Learn how to use the new create-react-native-app command line tool
Augment React components with GraphQL for data using Relay
Handle state for architectural patterns using Flux
Build an application for web UIs using Relay

https://www.packtpub.com/application-development/react-and-react-native-second-edition

Other Books You May Enjoy

[560]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
ABI management
 reference 534
actions
 defining 304, 305, 306
Airbnb's React Native Maps package
 reference 190
Android device
 development builds, deploying to 514, 515
Android Studio
 download link 12
 installing 12, 13, 14, 15
Android
 app, running on 22
 audio files, playing on 449, 452
 background processing 438, 439, 441
animated loading indicators
 adding, react-native-spinkit used 353, 354, 355,

357, 359
animated notifications
 creating 203, 204, 205, 206, 207, 208, 209,

210, 211, 212, 213
animations
 running 198, 200, 202, 203
 running, at 60 FPS 541, 543, 544, 545
apk file
 reference 521
App ID registration
 reference 525
app.json settings, Expo configuration

documentation
 reference 119
app
 initializing 18
 linking to 127, 129, 130, 131, 132
 performance, boosting 548, 549, 550

 planning 334, 335, 337
 push notifications, adding to 165, 166, 167,

168, 169, 170, 171, 172, 173, 175, 176, 177,
179, 180, 181, 182

 running, in emulator 19
 running, in iOS simulator 19, 20
 running, in simulator 19
 running, on iPhone or Android 22
 running, on real device 22
Apple App Store
 production builds, deploying to 524, 525, 526
Apple Developer Program
 reference 522
application content
 hiding, on multitasking 424, 425, 426, 428, 429,

430, 432
application state
 basics, of reacting to changes 412, 413, 415
application
 masking, upon network connection loss 285,

286, 287, 289, 290
AppRegistry
 reference 339
async/await
 reference 93, 262
AsyncStorage class 261
AsyncTask
 reference 443
audio files
 playing, on Android 449, 452
 playing, on iOS 443, 444, 446, 447, 448
audio player
 creating 146, 147, 148, 149, 150, 151, 152,

153, 154, 155
auth process, Spotify
 reference 189
authenticating

[562]

 via touch ID/fingerprint sensor 420, 421, 423,
424

B
background processing
 on Android 438, 439, 441
 on iOS 432, 433, 435, 437
Beta App Review 521
Blank app 57
Bootstrap
 reference 347
browser-based authentication
 implementing 183, 184, 185, 186, 187, 188
button
 creating, with loading animation 220, 221, 222,

224, 226

C
CocoaPods
 about 333
 reference 334
collapsing
 expanding 216
communication
 from Android app, to React Native 498, 500,

503

 from iOS app, to React Native 466, 467, 468,
470, 472

 from React Native, to Android app container
503, 505, 506, 508

 from React Native, to iOS app container 474,
475, 477, 479, 482

components, NativeBase
 reference 347
components
 reference 541
containers
 collapsing 213, 214, 216, 217, 219
 expanding 213, 214, 217, 219
content
 copying/pasting 415, 416, 418, 419
Core Graphics (CG) library 555
Create React Native App (CRNA) 330
cross-platform UI components
 NativeBase, using for 338, 340, 344, 346, 347

custom Android modules
 exposing 393, 394, 397, 398, 400, 401, 402,

403

custom Android view components
 exposing 409
 rendering 403, 404, 406, 407, 410
custom fonts
 including 84, 85, 86, 88, 89, 90, 91, 93
custom iOS modules
 exposing 376, 377, 378, 379, 380, 381, 383,

384, 385
custom iOS view components
 rendering 385, 386, 387, 388, 389, 391, 392,

393

custom UI components
 performance, optimizing 539, 540, 541

D
data
 retrieving, from remote API 262, 263, 264, 266
 retrieving, locally 257, 258, 260, 261, 262
 sending, to remote API 266, 267, 268, 269,

270, 271, 272
 storing, locally 257, 258, 260, 261, 262
deep linking protocol, Slack
 reference 133
dependencies
 Expo, installing 17
 installing 9
 Node.js, installing 16
 Watchman, installing 18
 Xcode, installing 9, 11
development builds
 deploying, to Android device 514, 515
 deploying, to iOS device 512, 513, 514
DOM
 reference 255

E
Easing module
 reference 197
eject processes, Expo
 reference 331
elements
 styles, adding to 24, 25, 27, 28

[563]

emulator
 app, running in 19
ES6 arrow functions
 reference 111
esm package
 reference 190
Expo app
 using 339
Expo Audio docs
 reference 190
Expo CLI
 about 331
 reference 331, 337
 setting up 337
Expo Client 332
Expo developer tools 332
Expo documentation
 reference 15
Expo MapView docs
 reference 190
Expo Permissions docs
 reference 190
Expo Push Notifications docs
 reference 190
Expo SDK 332
Expo server SDK for Node
 reference 190
Expo Snack
 about 332
 reference 332
Expo
 about 331
 installing 17
Express Basic Routing guide
 reference 190
external Android app
 invoked protocol 508, 509, 510
external iOS app
 invoked protocol 482, 484
external testing 521
external websites
 embedding, WebView used 119, 120, 121, 122,

123, 124, 125, 126, 127

F
Facebook Graph API
 reference 295
Facebook reactions widget
 creating 237, 238, 239, 240, 241, 243, 244,

245

Facebook
 app, logging in with 295, 296, 297, 300
fingerprint sensor
 using, for authentication 420, 421, 423, 424
flexbox
 used, for building complex layout for tablets 74,

75, 76, 77, 79, 80, 81, 82
 used, for creating layout 50, 51, 52, 53, 54, 55
font icons
 using 93, 94, 95, 96, 98
form component
 creating 133, 134, 135, 136, 137, 139

G
glamorous-native
 used, for styling UI components 347, 348, 349,

352, 353
Google Maps
 map app, creating 145
Google Play Developer Console
 reference 527
Google Play Store
 production builds, deploying to 526, 527
Grand Central Dispatch (GCD) 432, 552

H
HockeyApp, for Android (SDK)
 reference 520
HockeyApp
 reference 516
 test builds, deploying to 516, 517, 518, 520,

521

Homebrew
 reference 17

I
image carousel
 creating 156, 157, 158, 159, 160, 161, 163,

[564]

164

images
 displaying, in fullscreen 245, 246, 247, 248,

249, 251, 252, 254, 255
 used, for mimicking video player 30, 31, 33, 34
interconnected tools, Expo
 Expo CLI 331
 Expo Client 332
 Expo developer tools 332
 Expo SDK 332
 Expo Snack 332
internal testing 521
invoked protocol
 creating 482, 483, 486, 488
iOS device
 development builds, deploying to 512, 513, 514
iOS simulator
 app, running in 19, 20
iOS test builds
 deploying, to TestFlight 521, 522, 523
iOS
 audio files, playing on 443, 444, 446, 447, 448
 background processing 432, 433, 435, 437
iPhone
 app, running on 22
items
 removing, from list component 227, 228, 229,

231, 232, 234, 236
iTunes Connect
 reference 522

J
JavaScript code
 optimizing 536, 537, 539
JavaScript XML (JSX) 28, 117
JSON Server
 reference 262

L
Layout Props
 reference 50
layout
 creating, flexbox used 50, 51, 52, 54, 55
LayoutAnimation
 reference 220

Linking component
 reference 489
Linking module
 reference 133
list component
 items, removing from 227, 228, 229, 231, 232,

234, 236
list of items
 displaying 42, 43, 44, 46, 47, 48, 49, 50
lists 42
ListView
 obtaining 546, 547, 548
loading animation
 used, for creating button 220, 221, 222, 224,

226

locally persisted data
 synchronizing, with remote API 291, 293, 295

M
map app
 creating 140, 141, 142, 143, 145
mapStyle JSON object
 reference 146
modals
 adding, react-native-modalbox used 367, 368,

371, 373

N
Native Android app
 React Native app, embedding inside 489, 490,

492, 495, 497, 498
native Android modules
 performance, optimizing 552, 553
native Android UI components
 performance, optimizing 556, 557
native animation
 reference 191
Native Directory
 reference 334
Native iOS app
 React Native app, combining with 454, 455,

457, 459, 460, 462, 464, 465
native iOS modules
 performance, optimizing 550, 551
native iOS UI components

[565]

 performance, optimizing 554, 555
Native modules
 reference 397
NativeBase
 about 337
 reference 338
 using, for cross-platform UI components 338,

340, 344, 346, 347
navigation
 setting up 57, 58, 59, 61, 62
 using 64
ngrok package
 reference 190
Node Version Manager
 reference 272
Node.js
 download link 17
 installing 16
 reference 272
Nominazer
 reference 50

O
offline content
 storing, Redux used 326, 327, 328
orientation changes
 detecting 111, 112, 113, 114, 115, 116, 117
Over-The-Air (OTA)
 about 528
 updates, deploying 528, 529, 530, 531, 532

P
PanResponder API
 reference 237
performance optimizations
 reference 541
performance
 optimizing, of custom UI components 539, 540,

541

 optimizing, of native Android modules 552, 553
 optimizing, of native Android UI components

556, 557
 optimizing, of native iOS modules 550, 551
 optimizing, of native iOS UI components 554,

555

permission options, Facebook docs
 reference 295
persistent database functionality
 integrating, with Realm 279, 282, 283, 284
production builds
 deploying, to Apple App Store 524, 525, 526
 deploying, to Google Play Store 526, 527
props.children, React
 reference 220
pure React Native app (React Native CLI)
 using 338
push notifications
 adding, to app 165, 166, 167, 168, 169, 170,

171, 172, 173, 175, 176, 177, 178, 179, 180,
181, 182

 reference 182

R
React Native app
 combining, with Native iOS app 454, 455, 456,

457, 459, 460, 462, 464, 465
 embedding, inside Native Android app 489, 490,

491, 494, 497, 498
 size, optimizing 533, 534
React Native applications
 reference 385
React Native CLI 332
React Native development tools
 about 331
 CocoaPods 333
 Expo 331
 React Native CLI 332
React Native events
 reference 385
React Native Facebook SDK
 reference 296
React Native Image Prefetch docs
 reference 190
React Native Layout Props documentation
 reference 56
React Native Snap Carousel Custom Interpolations

docs
 reference 190
React Native Text Style Props documentation
 reference 56

[566]

React Navigation
 reference 65
react-native-maps
 reference 141
react-native-modalbox
 used, for adding modals 366, 368, 371, 373
react-native-push-notification
 reference 165
react-native-side-menu
 used, for adding side navigation menus 359,

360, 361, 363, 366
react-native-snap-carousel
 reference 156
react-native-spinkit
 used, for adding animated loading indicators

353, 354, 355, 357, 359
react-native-vector-icons package
 reference 98
real device
 app, running on 22
real-time communication
 establishing, with WebSockets 272, 273, 275,

276, 277, 279
Realm Object Store 285
Realm
 persistent database functionality, integrating with

280, 281, 283, 284, 285
 reference 279
reducers
 defining 307, 308, 309, 310
Redux store
 setting up 310, 311, 312
Redux
 installing 302, 303
 used, for storing offline content 326, 327, 328
Refs
 reference 255
remote API
 communicating with 312, 313, 314, 315, 316,

317

 data, retrieving from 262, 263, 264, 266
 data, saving to 272
 data, sending to 266, 267, 268, 269, 270, 271
 locally persisted data, synchronizing 291, 293,

295

Representational State Transfer (REST) 100
reusability 66
reusable button
 creating, with theme support 66, 67, 69, 70, 71,

72, 73
routing, Expo
 reference 65

S
scopes
 reference 189
ScreenOrientation Expo documentation
 reference 83
ScreenOrientation utility, Expo
 reference 119
Semantic-UI
 reference 347
side navigation menus
 adding, react-native-side-menu used 359, 360,

361, 363, 366
simple animations
 creating 192, 193, 194, 196, 197
simulator
 app, running in 19
Spotify API
 reference 183
StackNavigation documentation
 reference 127
staging key 529
store
 connecting, to view 317, 318, 320, 321, 323,

324, 325
styles
 adding, to elements 24, 25, 27, 28

T
Tab Navigation app 57
test builds
 deploying, to HockeyApp 516, 517, 518, 520,

521

TestFlight
 iOS test builds, deploying to 521, 522, 523
this keyword, JavaScript
 reference 111
toggle button

 creating 35, 36, 38, 39, 40, 41

U
UI components
 styling, glamorous-native used 347, 348, 349,

352, 353
universal applications
 dealing with 99, 100, 101, 102, 103, 105, 106,

108, 109, 110
Unsplash 157

V
vector-icons library
 reference 98
vector-icons package
 reference 98
video player
 mimicking, images used 30, 31, 33, 34
view
 store, connecting to 317, 319, 320, 321, 323,

324, 325

W
Watchman
 installing 18
websites
 linking to 127, 129, 130, 131, 132
WebSockets
 real-time communication, establishing 272, 273,

275, 276, 277, 279
WebView props
 reference 127
WebView
 used, for embedding external websites 119,

120, 121, 122, 123, 124, 125, 126, 127
workflow
 selecting 334, 335, 337

X
Xcode
 download link 9
 installing 9, 11

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Setting Up Your Environment
	Technical requirements
	Installing dependencies
	Installing Xcode

	Installing Android Studio
	How to do it...

	There's more...
	Installing Node.js
	Installing Expo
	Installing Watchman

	Initializing your first app
	Running your app in a simulator/emulator
	Running your app on an iOS simulator
	There's more...

	Running your app on a real device
	Running your app on an iPhone or Android

	Summary
	Further reading

	Chapter 2: Creating a Simple React Native App
	Adding styles to elements
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using images to mimic a video player
	Getting ready
	How to do it...
	How it works...

	Creating a toggle button
	Getting ready
	How to do it...
	How it works...
	There's more...

	Displaying a list of items
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using flexbox to create a layout
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up and using navigation
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 3: Implementing Complex User Interfaces - Part I
	Creating a reusable button with theme support
	Getting ready
	How to do it...
	How it works...

	Building a complex layout for tablets using flexbox
	Getting ready
	How to do it...
	There's more...
	See also

	Including custom fonts
	Getting ready
	How to do it...
	How it works...
	See also

	Using font icons
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 4: Implementing Complex User Interfaces - Part II
	Dealing with universal applications
	Getting ready
	How to do it...
	How it works...
	See also

	Detecting orientation changes
	Getting ready
	How to do it...
	There's more...

	Using a WebView to embed external websites
	Getting ready
	How to do it...
	How it works...

	Linking to websites and other applications
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a form component
	Getting ready
	How to do it...
	How it works...

	Chapter 5: Implementing Complex User Interfaces - Part III
	Introduction
	Creating a map app
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating an audio player
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating an image carousel
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding push notifications to your app
	Getting ready
	How to do it...
	How it works...
	There's more...

	Implementing browser-based authentication
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 6: Adding Basic Animations to Your App
	Introduction
	Creating simple animations
	Getting ready
	How to do it...
	How it works...

	Running multiple animations
	Getting ready
	How to do it...
	How it works...

	Creating animated notifications
	Getting ready
	How to do it...
	How it works...
	There's more...

	Expanding and collapsing containers
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a button with a loading animation
	Getting ready
	How to do it...
	How it works...

	Conclusion

	Chapter 7: Adding Advanced Animations to Your App
	Introduction
	Removing items from a list component
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a Facebook reactions widget
	Getting ready
	How to do it...
	How it works...

	Displaying images in fullscreen
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 8: Working with Application Logic and Data
	Introduction
	Storing and retrieving data locally
	Getting ready
	How to do it...
	How it works...
	See also

	Retrieving data from a remote API
	Getting ready
	How to do it...
	How it works...

	Sending data to a remote API
	Getting ready
	How to do it...
	How it works...

	Establishing real-time communication with WebSockets
	Getting ready
	How to do it...
	How it works...

	Integrating persistent database functionality with Realm
	Getting ready
	How to do it...
	How it works...

	Masking the application upon network connection loss
	Getting ready
	How to do it...
	How it works...

	Synchronizing locally persisted data with a remote API
	Getting ready
	How to do it...
	How it works...

	Logging in with Facebook
	Getting ready
	How to do it...
	How it works...

	Chapter 9: Implementing Redux
	Introduction
	Installing Redux and preparing our project
	Getting started
	How to do it...
	How it works...

	Defining actions
	Getting ready
	How to do it...
	How it works...
	There's more...

	Defining reducers
	Getting ready
	How to do it...
	How it works...

	Setting up the Redux store
	How to do it...
	How it works...

	Communicating with a remote API
	Getting ready
	How to do it...
	How it works...

	Connecting the store to the view
	Getting ready
	How to do it...
	How it works...

	Storing offline content using Redux
	Getting ready
	How to do it...
	How it works...

	Chapter 10: App Workflow and Third-Party Plugins
	How this chapter works
	React Native development tools
	Expo
	React Native CLI
	CocoaPods

	Planning your app and choosing your workflow
	How to do it...
	Expo CLI setup

	Using NativeBase for cross-platform UI components
	Getting ready
	Using a pure React Native app (React Native CLI)
	Using an Expo app

	How to do it...
	How it works...

	Using glamorous-native for styling UI components
	Getting ready
	How to do it...
	How it works...

	Using react-native-spinkit for adding animated loading indicators
	Getting started
	How to do it...
	How it works...
	There's more...

	Using react-native-side-menu for adding side navigation menus
	Getting ready
	How to do it...
	How it works...

	Using react-native-modalbox for adding modals
	Getting ready
	How to do it...
	How it works...

	Chapter 11: Adding Native Functionality - Part I
	Introduction
	Exposing custom iOS modules
	Getting ready
	How to do it...
	How it works...
	See also

	Rendering custom iOS view components
	How to do it...
	How it works...

	Exposing custom Android modules
	Getting ready
	How to do it...
	How it works...

	Rendering custom Android view components
	How to do it...
	How it works...

	Chapter 12: Adding Native Functionality - Part II
	Introduction
	Reacting to changes in application state
	How to do it...
	How it works...

	Copying and pasting content
	Getting ready
	How to do it...
	How it works...

	Authenticating via touch ID or fingerprint sensor
	Getting ready
	How to do it...
	How it works...

	Hiding application content when multitasking
	Getting ready
	How to do it...
	How it works...

	Background processing on iOS
	Getting ready
	How to do it...
	How it works...

	Background processing on Android
	Getting ready
	How to do it...
	How it works...

	Playing audio files on iOS
	Getting ready
	How to do it...
	How it works...

	Playing audio files on Android
	Getting ready
	How to do it...

	Chapter 13: Integration with Native Applications
	Introduction
	Combining a React Native app and a Native iOS app
	Getting ready
	How to do it...
	How it works...
	See also

	Communicating from an iOS app to React Native
	Getting ready
	How to do it...

	Communicating from React Native to an iOS app container
	Getting ready
	How to do it...
	How it works...

	Handle being invoked by an external iOS app
	Getting ready
	How to do it...
	How it works...

	Combining a React Native app and a native Android app
	Getting ready
	How to do it...
	How it works...

	Communicating from an Android app to React Native
	Getting ready
	How to do it...
	How it works...

	Communicating from React Native to an Android app container
	Getting ready
	How to do it...
	How it works...

	Handle being invoked by an external Android app
	How to do it...
	How it works...

	Chapter 14: Deploying Your App
	Introduction
	Deploying development builds to an iOS device
	Getting ready
	How to do it...
	How it works...

	Deploying development builds to an Android device
	Getting ready
	How to do it...
	There's more...
	How it works...

	Deploying test builds to HockeyApp
	Getting ready
	How to do it...
	How it works...

	Deploying iOS test builds to TestFlight
	Getting ready
	How to do it...
	How it works...

	Deploying production builds to the Apple App Store
	Getting ready
	How to do it...
	How it works...

	Deploying production builds to Google Play Store
	Getting ready
	How to do it...
	How it works...

	Deploying Over-The-Air updates
	Getting ready
	How to do it...
	How it works...

	Optimizing React Native app size
	Getting ready
	How to do it...
	How it works...

	Chapter 15: Optimizing the Performance of Your App
	Introduction
	Optimizing our JavaScript code
	Getting ready
	How to do it...
	How it works...

	Optimizing the performance of custom UI components
	Getting ready
	How to do it...
	How it works...
	See also

	Keeping animations running at 60 FPS
	Getting ready
	How to do it...
	How it works...
	There's more...

	Getting the most out of ListView
	Getting ready
	How to do it...
	How it works...
	See also

	Boosting the performance of our app
	How to do it...
	How it works...

	Optimizing the performance of native iOS modules
	Getting ready
	How to do it...
	How it works...

	Optimizing the performance of native Android modules
	Getting ready
	How to do it...
	How it works...

	Optimizing the performance of native iOS UI components
	Getting ready
	How to do it...
	How it works...

	Optimizing the performance of native Android UI components
	Getting ready
	How to do it...
	How it works...

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

	Index

